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Summary

Originally established as an analytical technique in the fields of physics and

chemistry, mass spectrometry has now also become an essential tool in biology.

Advances in ionisation methods and novel types of instrumentation have led to the

development of mass spectrometry for the analysis of a wide variety of biological

samples. The work presented here describes the use mass spectrometry for the study

of a number of biological systems.

A new family of techniques has been developed allowing ions to be created under

ambient conditions. Three of these ambient ionisation techniques, coupled to

different mass analysers, were employed for the rapid screening of pharmaceutical

formulations. Active ingredients were identified and subjected to collisionally-

induced dissociation, enabling the elucidation of potential fragmentation pathways.

Drug metabolites were also successfully identified from biological samples.

Inorganic mass spectrometry was employed to probe the metal centres of the

enzyme, particulate methane monooxygenase, a methane-oxidising complex found in

certain bacteria. This protein has been extensively studied, but questions remain

regarding its catalytic mechanism, particularly the involvement of indigenous metal

ions. Inductively-coupled plasma mass spectrometry experiments have indicated the

presence of copper and iron within the enzyme.

Protein cross-sections, obtained using ion mobility mass spectrometry, can be used to

probe the conformation of molecules in the gas phase. A commercial instrument was

used to investigate human hemoglobin from clinical samples. A complex assembly

mechanism was deduced, resolving previous disputes in the literature, and

conformational differences were observed between healthy and sickle molecules.

The field of proteomics is rapidly evolving; as described, techniques are constantly

being developed and improved to deal with the enormous complexity that proteomes

present. Three proteomics approaches were used to study a recently identified

bacterium under two growth conditions. Differences in protein expression were

observed and correlated to relevant biological pathways.
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Chapter 1

Introduction to mass spectrometry



1.1 What is mass spectrometry?

Mass is a fundamental yet easily understood characteristic of a

and for many analytical problems, mass is also highly specific. The use of mass in

scientific measurements began with the pioneering work of S

who was awarded the Nobel Prize in Physics in 1906 for the discovery o

electron (Thomson, 1899)

called the parabola spectrograph, and used it to separate isotopes of neon by mass

(Thomson, 1911). This

Francis W. Aston, who designed an instrument with improved resolving power that

allowed him to study isotopes of many other elements

awarded the Nobel Prize for Chemistry in 1922.

The modern definition of mass spectrometry

charge ratios (m/z) of gas

are represented in Figure 1.1. An ion source is required to produce gaseous ions

from the analyte; the formed ions are resolved by a mass analyser according to their

mass and charge. A detector regis

computer system then stores the acquired data and presents it in an accessible format.

Figure 1.1 – Schematic representation of a modern mass spectrometer

Mass spectrometers are in daily use worldwide for the identification and analysis of a

wide range of molecules, including flavours, natural products, pollutants, drugs, and

metabolites. MS-based techniques are being broadly used for probing the molecular

complexity found in many fields, such as agriculture, atmospheric chemistry,

medicine, food, forensics and geochemistry. Many of the improvements in

biochemical MS are a direct consequence of the introduction of

methods that permit the i
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Mass spectrometers are in daily use worldwide for the identification and analysis of a

wide range of molecules, including flavours, natural products, pollutants, drugs, and

based techniques are being broadly used for probing the molecular

complexity found in many fields, such as agriculture, atmospheric chemistry,

medicine, food, forensics and geochemistry. Many of the improvements in

biochemical MS are a direct consequence of the introduction of ‘soft ionisation’

onisation of large, polar and thermally labile biomolecules.
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1.2 Ionisation

Until the 1980s, to analyse a sample by MS, ionisation was usually performed by

electron impact (EI) or chemical ionisation (CI) methods (Munson and Field, 2002).

These require a vaporised sample, which is of no great concern when studying small

organic molecules or those amenable to gas chromatography. Biomolecules of

interest, however, are generally polar thermally labile, and as such cannot be

analysed by EI- or CI-MS without prior derivatisation (Griffiths et al., 2001). The

introduction of fast atom bombardment (FAB) (Barber et al., 1981) allowed, for the

first time, the routine MS analysis of polar thermally labile molecules of masses up

to a few thousand Daltons (Da). FAB proved most suitable for analysis of samples

which exist as pre-formed ions in solution, i.e. protonated/deprotonated or sodiated

molecules. Whilst molecules as large as insulin have been studied, this approach

works best for species of masses below 1000 Da. Another limitation is the formation

of matrix-associated chemical noise, which may mask the presence of sample ions.

The most significant step forward in the ionisation of biological samples for MS

analysis was the development of matrix-assisted laser desorption/ionisation (MALDI)

and electrospray ionisation (ESI) around two decades ago.

1.2.1 MALDI

Koichi Tanaka was awarded the Nobel Prize in Chemistry in 2002 for his work on

laser desorption (Tanaka et al., 1988). It is Michael Karas and Franz Hillenkamp,

however, whose competitive work became more commercially accepted, and which

has led to the place of MALDI as an established technique (Karas and Hillenkamp,

1988).

In MALDI, ions are desorbed from the solid phase. A sample is first dissolved in a

suitable solvent and mixed with an excessive amount of an appropriate matrix. For

peptide analysis, the most commonly used matrix is α-cyano-4-hydroxycinnamic

acid (CHCA); for intact proteins sinapinic acid (3,5-dimethoxy-4-hydroxycinnamic

acid) is usually employed. Subsequently, the mixture is spotted on a MALDI plate

(commonly made of stainless steel) and air-dried. The sample co-crystallises with

the matrix. The components in the sample/matrix mixture are brought into the gas

phase via a laser beam (usually a nitrogen laser at a wavelength of 337 nm) that hits
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the sample-matrix crystal, leading to absorption of the laser energy by the matrix and

subsequent desorption and ionisation of the analytes in the sample. Figure 1.2

represents the process of ion formation in MALDI.

Several hypotheses have been outlined to explain the ionisation process, but details

of the mechanism remain unclear. The most commonly accepted theory is that

protons are transferred from the matrix to the analyte molecules, either during

passage into, or just subsequent to entering, the gas phase (Zenobi and Knochenmuss,

1998). Singly-charged species resulting from the attachment of a single proton are

the most commonly formed type of ion in MALDI.

1.2.2 ESI

Alongside Tanaka, John Fenn was also awarded the 2002 Nobel Prize in Chemistry

for his work on electrospray ionisation (Fenn et al., 1989). In contrast to the pulsed

nature of MALDI, ESI is a continuous ionisation process. The sample is solubilised

in aqueous solution with an appropriate concentration of organic solvent, typically

acetonitrile (ACN) or methanol. For the more common approach of positive ion ESI,

an acid is also added, such as formic or acetic. The particular solvent make-up will

depend upon the compound class being studied. The solution is sprayed through a

capillary needle, which is held at a high electrical potential with respect to the

entrance of the mass spectrometer. The most commonly accepted mechanism for ion

formation in ESI is that the charged liquid at the end of the needle forms a cone,

known as a Taylor cone, that minimises the charge-to-surface ratio. Droplets are

released, the formation of which is facilitated by a nebulising gas (usually nitrogen)

flowing around the outside of the needle directing the emerging spray towards the

mass spectrometer. Once airborne, the charge repulsion in the droplets overcomes

the surface tension (at a point referred to as the Rayleigh limit) and solvent

molecules are lost, leading to an increased charge density at the surface of the

droplets. Smaller and smaller droplets are formed via this process, and charged,

multiply-protonated ions enter the mass spectrometer, as represented in Figure 1.3. It

is common for ESI sources to be coupled to high performance liquid chromatography

(HPLC) columns, particularly in biochemical analysis.
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Figure 1.2 – The MALDI ionisation process; energy from the UV laser is absorbed

by matrix molecules, which transfer the energy to the co-crystallised peptides.

Figure 1.3 – The ESI ionisation process (modified from (de Hoffmann and Stroobant,

2007))
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1.3 Mass analysers

Once ions have been produced, they are separated by m/z ratio in the mass analyser,

of which there are several types. All mass analysers have a number of main

characteristics, amongst which the most important are: upper mass limit,

transmission efficiency and resolving power. The upper mass limit defines the

highest value of m/z which can be measured, the transmission efficiency is the ratio

of number of ions detected to the number of ions produced, and the resolving power

represents the ability to separate two adjacent masses with a small mass difference.

1.3.1 The quadrupole
The quadrupole mass analyser consists of four round or hyperbolic rods, arranged as

two sets of two electrically connected rods. A combination of radio frequency (RF)

and direct current (DC) voltages are applied to each pair, producing a complex

oscillating movement of the ions as they move along the mass analyser. The motion

of the ions will depend on the electric fields, so that only ions of a particular m/z will

have a trajectory stable enough to allow passage through to the detector. The

remaining ions will collide with the sides of the rods, or will be lost at the walls of

the analyser (Paul and Steinwendel, 1953).

Depending how the voltages are applied, quadrupoles can be used to selectively pass

ions of a particular m/z, or can be operated in RF-only mode to allow through a much

broader ion packet. This latter form often serves as a collision cell for collision-

induced dissociation (CID), which will be discussed in further detail later.

Variations on RF-only quadrupoles include multipoles with higher numbers of rods,

e.g. hexapoles and octopoles. The mutipole mass filter can be found in a large

variety of mass spectrometers, often in series with other mass analysers.

1.3.2 Time-of-flight

First described by Wiley and McLaren (Wiley and McLaren, 1955), the time-of-

flight (TOF) mass analyser measures the m/z of an ion based on the time it takes for

that ion to traverse a field-free region. Ions are pulsed and given a fixed amount of

kinetic energy to provide initial acceleration. They subsequently enter the field-free
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region, known as the flight tube, where they travel at a velocity inversely

proportional to the square root of their mass. The general principle is that the larger

the ion, the longer the time needed for its flight.

A disadvantage of linear TOF analysers is the poor resolution. Factors such as the

length of the ion formation pulse, the volume of the space where the ions are formed

and the variation in initial kinetic energy between ions will all affect resolution.

Differences in initial kinetic energy will cause ions of the same m/z to reach the

detector at slightly different times, resulting in peak broadening. This can be

overcome by using delayed pulse extraction (also known as pulsed ion extraction),

which compensates for the variation (Vestal et al., 1995). This reduces the kinetic

energy spread among ions with the same m/z by introducing a time delay between

ion formation and extraction. The ions are allowed to expand into a field-free region

in the source and after a lag (hundreds of nanoseconds to several microseconds) a

voltage pulse is applied to extract the ions. As mass resolution is proportional to

flight time, increasing the length of the flight tube will achieve higher resolution.

Reflectron instruments (Mamyrin et al., 1973) accomplish this by reflecting ions

back down the flight tube using a series of ring electrodes which act as an ion mirror,

as shown in Figure 1.4. Ions with higher initial kinetic energies travel further into

the reflectron compared to those with less initial kinetic energy. The addition of an

extra pass (also known as W optics) effectively quadruples the flight path and further

improves resolution.

1.3.3 Ion traps
As the name suggests, ion trap mass analysers operate on the principle of trapping

ions rather than passing them on. The quadrupole ion trap (QIT) can be imagined as

a quadrupole bent in on itself; it uses a combination of RF and DC voltages to select

ions of a particular m/z and then trap them in three dimensions (Stafford et al., 1984).

A mass spectrum is generated by trapping a broad range of m/z values, then scanning

them out of the trap to the detector using a ramping of RF voltages. The linear, or

2D, ion trap (LIT) resembles the quadrupole, but additional DC potentials allow for

the trapping of ions along the long axis. Ions can be ejected either radially or axially.
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These analysers offer the advantage of greater trapping volumes, thereby allowing

the analysis of more ions per cycle (Douglas et al., 2005).

Figure 1.4 – Representation of a TOF instrument equipped with a reflectron. Both

ions have the same mass, but different initial kinetic energy. The ion with the higher

energy will travel further into the reflectron compared to the one with less energy;

both ions will reach the detector simultaneously.

1.3.4 Fourier transform ion cyclotron resonance

Fourier transform ion cyclotron resonance (FT-ICR) instruments measure mass

indirectly by oscillating ions in a strong magnetic field (Henry et al., 1989). The

oscillations occur as a function of m/z, meaning their frequency can be used to infer

m/z using a Fourier transform. FT-ICR mass spectrometers offer the highest mass

accuracy and resolution of all current instrumentation. The novel Orbitrap,

introduced by Makarov in 2000, also uses an FT-based strategy to measure m/z

(Makarov, 2000). The ion trapping is performed electrostatically, compared to

magnetically in other FT MS approaches; this is attractive as it negates the need for a

large superconducting magnet and concomitant requirements for liquid helium and

nitrogen (Qizhi et al., 2005).
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1.4 Detectors

Once an ion beam passes through the mass analyser it is recorded and transformed

into a usable signal by a detector. Various types of detector have been employed.

The first mass spectrometers used photographic plates located behind the analyser;

ions of the same m/z reach the plate at the same time. A calibration scale allows

determination of m/z values, and darkness of spots enables approximation of beam

intensity. Also used were Faraday plates. Ions reach the cylinder where they give up

their charge, and the discharge current is then amplified and measured. These types

of detector provide a direct measurement of the charges recorded.

Electron or photon multiplier detectors and array detectors increase the intensity of

the signal. Photon multipliers comprise a phosphorescent screen and a

photomultiplier, allowing the detection of both positive and negative ions with an

amplification of 104 to 105. In electron multipliers, ions which reach the plate cause

the emission of secondary particles, those of interest are typically negative ions and

electrons. These secondary particles are accelerated into a continuous dynode

electron multiplier, causing electrons to be dislodged. A cascade of electrons is

therefore generated, which results in a measurable current. An amplification of up to

107 can be achieved (de Hoffmann and Stroobant, 2007).

An array detector consists of a plate where parallel channels have been drilled. A

widely used detector in modern mass spectrometry is the microchannel plate detector

(MCP) (Wiza, 1979). MCP plates contain an array of miniature electron multiplier

channels, typically placed at an 8° angle to the surface of the plate. A single ion

reaching the MCP detector will affect only a few of the channels, making it possible

to detect many different ions at the same time. This is useful for the analysis of

complex biological samples, where hundreds of ions can be created simultaneously.

Great care needs to be taken not to saturate the MCP with ion signals, as the channels

must have time to recover (dead time) before they can detect new signals. If the

MCP becomes saturated with a large signal, it will not be able to detect any smaller

signal which may follow directly afterwards.

Modern mass spectrometers utilise analog-to-digital (ADC) or time-to-digital (TDC)

converters as their detector system. ADCs register the ion current produced, amplify

the signal and filter to remove high frequency noise. The current is then plotted on
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an m/z scale by comparing to previously acquired calibration data; these are

employed by certain Agilent (Agilent Technologies, CA, USA) and JEOL (JEOL,

Tokyo, Japan) instruments. TDCs are most commonly used in ESI-MS

instrumentation, and are used on all Waters (Waters, Manchester, UK) instruments.

TDCs record the time at which each ion strikes the detector, individual acquisitions

are then summed together to produce the observed spectrum; these offer the

advantages of speed, efficiency and low noise (de Hoffmann and Stroobant, 2007).

1.5 Tandem mass spectrometry

Tandem mass spectrometry (commonly abbreviated as MS/MS) is any method

involving at least two stages of mass analysis. In the most common approach, the

first mass analyser is used to isolate a precursor ion, which then undergoes some sort

of fragmentation to yield product ions and neutral fragments. A second mass

analyser then studies the product ions. The number of steps can be increased to yield

an MSn experiment, where n refers to the number of generations of ions being

analysed. In protein analysis, interpretation of the product ion spectrum can provide

a peptide sequence (either partially or in full), depending on the type of

fragmentation observed. The nomenclature used for describing peptide product ions

was proposed by Roepstorff, Fohlmann and Biemann, and is represented in Figure

1.5 (Biemann, 1992; Roepstorff and Fohlmann, 1984).

Two types of tandem mass spectrometry can be performed: in-space and in-time. In-

space experiments utilise a number of spatially separate mass analysers, such as

TOF/TOF, Q-TOF and multiple quadrupoles. Four main scan modes are used,

although many others are possible:

Product ion scan: A precursor ion of a certain m/z is selected and all resulting

product ions are determined. The first analyser is focused and the second scans all

masses.

Precursor ion scan: A product ion is chosen, and the associated precursor ions are

determined. The second analyser is focused and the first scans all masses.



Chapter 1 – Introduction to mass spectrometry

11

Neutral loss scan: A neutral fragment is selected, and all fragmentations leading to

the loss of that fragment are determined. Both mass analysers operate in scanning

mode, but with a constant mass offset.

Selected reaction monitoring: A fragmentation reaction is selected, and both mass

analysers are focused on selected masses. Ions selected by the first analyser are only

detected if they produce a given fragment by the selected reaction.

In-time experiments are performed using instruments which are capable of trapping

ions, such as ion traps and FT mass spectrometers, where RF and DC fields are

applied to select the ion to undergo dissociation. The peptide and resulting

fragments are scanned by the same analyser.

One of the most commonly used fragmentation methods employed in MS/MS

experiments is collisionally-induced dissociation (CID), pioneered by Jennings and

McLafferty in the 1960s (Haddon and McLafferty, 1968; Jennings, 1968). In CID,

precursor ions are isolated and subjected to collision with an inert gas such as argon.

Figure 1.5 – Peptide ion nomenclature, as proposed by Roepstorff, Fohlmann and

Biemann.

The energy transferred to the precursor ion upon impact with the gas molecule causes

fragmentation. In the case of peptides, this occurs primarily at amide bonds to give b

and y fragment ions. Initial observations of CID products were dismissed as a

curiosity or nuisance, and CID was viewed as a ‘technique waiting for a problem’

until developments at the end of the 1970s. The construction of commercially

available triple quadrupole instrumentation and the introduction of FAB meant that
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CID became an integral part of methodology for structural studies of biological

molecules. This remains the case in modern biological mass spectrometry, with CID

employed in quadrupole, TOF, QIT, LIT and FT-ICR MS (Jennings, 2000).

Complementary to CID are electron capture dissociation (ECD) and electron transfer

dissociation (ETD). Developed by Zubarev, ECD is based on ion-electron reactions

in which the capture of electrons by a gaseous positive ion leads to fragmentation

and neutralisation of the positive ion (Zubarev et al., 1998). When applied to

peptides, ECD leads to extensive cleavage of the backbone at N-Cα bonds to yield c

and z ions. ECD is an available option on commercial FT-ICR instruments. Since it

is not amenable to ion trap instrumentation, the analogous ETD was developed by

Hunt and colleagues. ETD is an ion-ion reaction between singly-charged anions and

multiply-charged peptide cations (Syka et al., 2004). Reagent anions are created by

a CI source and serve as a source of electrons. The interaction of the anions with the

peptides results in proton transfer without dissociation and electron transfer with or

without dissociation. Proton transfer leads to charge reduction, and dissociation

generates c and z ions with fragmentation characteristic of ECD.

1.6 Current approaches in biological mass spectrometry

Biological MS could consider its beginning to be when the coupling of gas

chromatography (GC) first occurred in the 1950s. This allowed, for the first time,

the chromatographic separation of complex biological mixtures for their

identification by MS (Gohlke and McLafferty, 1993). Since then, via a number of

key milestones, MS has become firmly established as an essential tool in biochemical

analysis.

The advent of MALDI and ESI saw the birth of a whole new era in MS, supported by

the commercial introduction of instruments such as triple quadrupoles, ion traps and

updated TOFs, FT-ICR, as well as hybrid systems and the novel Orbitrap. Tandem

MS methods and the coupling of MS to high performance LC were other key

developments, and more recently, the use of MALDI to map biological tissue

sections, and coupling MS to ion mobility separations to add the dimension of shape.
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The analysis of peptides, proteins, nucleic acids, carbohydrates, lipids and

metabolites by MS is now commonplace, with their spectral complexity offset by

improvements in resolution and mass accuracy. Diverse MS methodology is now

available, with unique capabilities for speed, sensitivity, specificity and automation.

Table 1.1 highlights some of the key landmarks in the development of mass

spectrometry as a tool for analysing biological systems, with particular focus on

developments which will be touched upon later in this thesis. The research presented

here focuses on three aspects of modern mass spectrometry for the study of

biological problems:

1. The use of recently developed ambient ionisation techniques to study

pharmaceutical formulations and their resulting metabolites.

2. The study of metal-containing protein complexes by inorganic mass

spectrometry and by organic mass spectrometry incorporating an ion mobility

separation aspect.

3. The characterisation of the proteome of a recently identified prokaryote using

quantitative mass spectrometry-based proteomic techniques.

The work has been separated into three discrete sections, to reflect the self-

contained nature of the projects.
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1911 Sir JJ Thomson builds his parabola spectrograph and separates isotopes of
neon.

1919 Francis Aston develops Thomson’s design and separates isotopes of other
elements.

1922 Aston awarded Nobel Prize for Chemistry
1955 TOF first described by Wiley and McLaren.
1962 Biemann and McCloskey analyse free amino acids by TOF-MS.
1965 Researchers at MIT describe the GC/MS interface.
1966 CI developed.

Researchers at MIT, Manchester and Purdue use a computer to interpret
mass spectra to sequence oligopeptides.

1968 Precursor work on CID (Jennings) and MS/MS in mixtures (Haddon and
McLafferty)

1969 First report on MS peptide sequencing from protein hydrolysates (Lucas et
al., 1969)

1972 Amino acid sequencing by computer-assisted GC/MS of oligopeptide
mixtures (Nau et al., 1972)

1973 Development of the reflectron TOF (Mamyrin et al., 1973)
Peptide sequencing by enzymatic hydrolysis and GC/MS of resulting
peptides

1974 Introduction of FT-ICR MS
1975 High resolution separation of proteins by two-dimensional electrophoresis

(O'Farrell, 1975)
1978 Introduction of triple-quadrupole tandem MS (Yost and Enke, 1978)
1980 Inductively coupled plasma MS (ICP-MS) developed.
1981 Introduction of FAB.
1983 First commercial ion trap analyser (Finnigan).

First commercial ICP-MS system (SCIEX).
1984 John Fenn and colleagues use electrospray to ionise biomolecules.
1985 Karas and Hillenkamp coin the term MALDI.
1986 First protein sequence database (SWISS-PROT).
1988 MALDI of proteins over 10,000 Da (Karas and Hillenkamp).
1989 Computer deconvolution of ESI spectrum (Mann et al., 1989)

First combination of ESI and FT-ICR (Henry et al., 1989)
1990 First use of ESI-MS to monitor the conformation of a protein in solution

(Chowdhury et al., 1990)
1991 Non-covalent complexes analysed by MS (Ganem et al., 1991)

Development of LC-MS/MS for complex peptide mixtures (Covey et al.,
1991)

1993 Peptide mass fingerprinting described (James et al., 1993)
1994 Direct correlation of peptide MS/MS spectra with sequences in databases

(Eng et al., 1994)
First use of the term ‘proteome’ at the Sienna 2D electrophoresis meeting.
(Wilm et al., 1996)

1995 2D gel electrophoresis used for profiling proteomics (Klose and Kobalz,
1995)

1996 Combination of 2D gels with MS and database searching for protein
identification (Wilm et al., 1996).
Commercial introduction of a Q-TOF instrument (Micromass) and the LCQ
ion trap (Finnigan).
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1997 Development of 2D differential gel electrophoresis (DIGE) (Ünlü et al.,
1997)

1998 Application of ECD to proteins (Zubarev et al., 1998)
1999 Isotope coded affinity tags (ICAT) for protein quantification (Gygi et al.,

1999)
Makarov presents the Orbitrap.

2001 ‘Gel-free’ approach to profiling proteomics (Washburn et al., 2001)
Automated method for shotgun proteomics (MudPIT) (Wolters et al., 2001)
Introduction of imaging MALDI MS (Stoeckli et al., 2001)

2004 Desorption electrospray ionisation (DESI) (Cooks et al., 2006).
Development of ETD (Syka et al., 2004)

2005 Commercial introduction of the Orbitrap.
2006 Introduction of a commercial ion mobility MS instrument (Synapt from

Waters).
2009 Introduction of an improved commercial ion mobility MS instrument

(Waters) (Giles et al., 2009)

Table 1.1 – Instrumental and experimental developments that have contributed to the

study of biological systems by MS (adapted from (Gelpí, 2008) and (Gelpí, 2009))
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2.1 Emergence of ambient ionisation techniques

One of the major limitations of mass spectrometry is the ability to transfer the sample

of interest into the vacuum environment of the instrument, in the form of ions which

are suitable for analysis. This problem has been partially tackled with the advent of

electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation

(MALDI), as previously described. A more recent development is the advent of a

new family of techniques which allow ions to be created under ambient conditions.

Described by Takáts et al in 2004 (Takáts et al., 2004), desorption electrospray

ionisation (DESI) is related to spray ionisation methods such as ESI and to

desorption ionisation methods such as secondary ion mass spectrometry (SIMS) and

MALDI. A fine spray of charged droplets hits a solid surface of interest, from which

it picks up small organic molecules and large biomolecules, ionises them and

delivers them, as desolvated ions, into the mass spectrometer (Cooks et al., 2006). In

the original experiments, an aqueous spray was directed at an insulating sample or an

analyte deposited on an insulating surface such as polytetrafluoroethylene (PTFE),

and the desorbed ions were sampled with an ion trap mass spectrometer equipped

with an atmospheric interface (Takáts et al., 2004). Advances since have seen the

interfacing of other types of instrument with an ambient ionisation source in order to

perform DESI experiments. An overview of the system can be seen in Figure 2.1.

Ion formation in DESI has been proposed to occur by one of two different

mechanisms. One is the formation of charged solvent species in the electrospray

source, followed by ionisation of the analyte molecule on the surface by charge

transfer. Desorption of analyte ions from the surface is a type of chemical sputtering

(Cooks et al., 2004). The other mechanism involves the impact of electrosprayed

droplets on the surface, dissolution of the analyte in the droplet, and subsequent

evaporation by mechanisms as in ESI; this has been referred to as ‘droplet pick-up’.

A modelling study investigating droplet collisions with a liquid thin film in DESI has

indicated that the droplet pick-up mechanism is the dominant process, showing that

the secondary droplets leaving the surface of the analyte after primary droplet impact

contain both liquid from the thin film and liquid from the primary droplet (Costa and

Cooks, 2007).
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Figure 2.1 – Schematic of a typical DESI experiment. The sample is deposited on a

solid surface and a spray of charged solvent is directed towards it. The desorbed

analyte is then carried into the mass spectrometer. From (Cooks et al., 2006).

A variant of DESI is desorption atmospheric pressure chemical ionisation (DAPCI).

The electrospray emitter in a DESI source is replaced by a stainless steel needle, and

ions are generated by an atmospheric pressure corona discharge in the vapour of a

solvent which is mixed into the gas flow. As droplets are not formed, the ions are

produced by the charge transfer mechanism (Takáts et al., 2005a).

Another ambient ionisation technique which has recently emerged is the direct

analysis in real time (DART) method (Cody et al., 2005). An electrical potential is

applied to a gas (usually nitrogen or helium) to form a plasma of excited-state

electrons, ions, and metastable species. These species then desorb low-molecular

weight molecules from the surface of a sample. A representation of the DART

process can be seen in Figure 2.2(a). The ionisation mechanism involves the reaction

of excited-state gas molecules with water in the atmosphere to produce protonated

water clusters followed by proton transfer to the analyte. Other potential ionisation

mechanisms that have been reported involve Penning ionisation, in which a

metastable species ionises a neutral to produce a radical cation and an electron, and

the interaction of a metastable species with a surface to produce electrons (Van

Berkel et al., 2008); these reactions are shown schematically in Figure 2.2(b). In the
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negative ion mode, negative ions of analytes have been proposed to form from

reactions with negatively charged oxygen/water cluster ions

The emergence of DESI and DART could be described as milestones in the field of

mass spectrometry, as they spearheaded the development of a whole new family of

related ionisation methods. These techniques, which require little or no sample

preparation, are advancing the analytical sciences by enabling complex systems to be

probed without chemical separations with significant speed and sensitivity. A

summary of current ambient ionisation techniques is presented in Table

an outline of the method

The methods can be broadly grouped into three categories: liquid and gas jet

desorption/ionisation, thermal desorption/ionisation, and laser desorption/ionisation.
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The emergence of DESI and DART could be described as milestones in the field of

mass spectrometry, as they spearheaded the development of a whole new family of

related ionisation methods. These techniques, which require little or no sample

e advancing the analytical sciences by enabling complex systems to be

probed without chemical separations with significant speed and sensitivity. A

summary of current ambient ionisation techniques is presented in Table

an outline of the method and any particular advantages or issues.

The methods can be broadly grouped into three categories: liquid and gas jet

desorption/ionisation, thermal desorption/ionisation, and laser desorption/ionisation.
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summary of current ambient ionisation techniques is presented in Table 2.1, giving

The methods can be broadly grouped into three categories: liquid and gas jet

desorption/ionisation, thermal desorption/ionisation, and laser desorption/ionisation.
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M* + N →  N+• + M + electron

M* + surface →  M+• + electron

(a) sample introduction using a DART source, from (Cooks et al., 2006)

e interaction of helium with water, which precedes the protonation of the

, and the two alternative mechanisms, which produce charged radicals and

electrons, from (Cody et al., 2005).

+ M + electron

+ electron

(Cooks et al., 2006),
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, and the two alternative mechanisms, which produce charged radicals and



Chapter 2 – Introduction to ambient ionisation mass spectrometry

24

Technique Overview Features

Atmospheric pressure glow discharge
desorption ionisation

APGDDI Atmospheric pressure glow discharge source used for
surface sampling; thermal desorption is component
from plasma heating.

Atmospheric pressure matrix-assisted
desorption ionisation

AP-
MALDI

As MALDI, but performed at atmospheric pressure Less fragmentation than vacuum
MALDI due to rapid collisional cooling.

Atmospheric solids analysis probe ASAP Vaporisation of materials in hot nitrogen gas stream
from ESI or APCI probe. Ionisation of thermally
induced vapours occurs by corona discharge.

Can be installed on any commercial
atmospheric pressure instrument; faster
than vacuum solids probe analysis.

Atmospheric pressure thermal desorption
ionisation

APTI Heat used to liberate sample (mainly organic salts)
from condensed phase directly to gas phase as ions.

Desorption atmospheric pressure chemical
ionisation

DAPCI Gaseous solvent vapours ionised by corona discharge
from stainless steel tip in DESI source.

Known charge transfer mechanism.

Desorption atmospheric pressure
photoionisation

DAPPI Heated nebuliser microchip delivers heated jet of
vaporised solvent towards sample surface to desorb
sample. Photons emitted from photoionisation lamp
ionise analytes.

Effective for non-polar and neutral
compounds.

Desorption electrospray ionisation DESI Aqueous spray at analyte on solid surface. Wide range of analytes.
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Desorption sonic spray ionisation DeSSI Polar solutions of analyte sprayed from a capillary
with a supersonic nebulising gas flow.

Avoiding high voltages may prove
beneficial for tissue analysis, especially
in situ.

Dielectric barrier discharge ionisation DBDI Plasma generated which interacts with surface of
analyte.

Direct analysis in real time DART Plasma of charged species created by application of
electric potential to a gas; molecules desorbed from
sample surface.

Electrospray-assisted laser desorption
ionisation

ELDI Nitrogen laser pulse desorbs intact molecules from
matrix-containing sample droplets, followed by ESI
post-ionisation.

Produces ESI-like charge distributions
in tandem MS experiments, which
provides potential for sequencing
peptides and proteins.

Extractive electrospray ionisation EESI One sprayer nebulises the sample solution, another
produces charged microdroplets of solvent. Liquid-
liquid extractions occurs between the colliding
droplets.

Longer-term stability of signal
compared with alternative methods.

Jet desorption ionisation JeDI High-velocity solvent jet erodes sample surface and
generates gas-phase ions.

Depth profiling capabilities.

Laser ablation with electrospray ionisation LAESI Combination of laser ablation and ESI. Interactions
between ablation plume and ESI spray result in ESI-
like ionisation.

No matrix required; laser enables depth
analysis; potential imaging capabilities.

Laser desorption atmospheric pressure
chemical ionisation

LD-APCI Laser desorption to sample surface, followed by
secondary ionisation via an APCI process.
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Laser desorption electrospray ionisation LD-ESI Much the same as LD-APCI, but desorbed material
ionised through reaction with charged solvent droplets.

High secondary ionisation efficiency;
ability to form multiply charged species
from macromolecules.

Laser diode thermal desorption LDTD IR laser thermally desorbs samples deposited onto
stainless steel sample wells.

Has been used for high-throughput
assays.

Natural desorption extractive electrospray
ionisation

NDEESI Room temperature gas jet desorbs sample; ionisation
via secondary ESI process

Predominantly used for small, volatile
compounds.

Plasma-assisted desorption ionisation PADI Non-thermal plasma generated which interacts with
surface of analyte.

Close to ambient temperature; tolerant
of contaminants.

Thermal desorption atmospheric pressure
chemical ionisation

TD-APCI Heat used to liberate sample from condensed phase;
once in gas phase, ionisation occurs by APCI.

Table 2.1 – Summary of currently available ambient ionisation methods.
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2.2 Liquid and gas jet desorption/ionisation

The development of the liquid and gas desorption/ionisation group of techniques was

triggered by the advent of DESI in 2004. Any solvent appropriate for use in ESI can

be used for DESI. Solvent additives such as volatile acids and bases, non-volatile

salts or other chemical reagents can be used to enhance detection, a process referred

to as reactive DESI. By switching off the variable high voltage in DESI and

providing sufficient nebulising gas velocity, the desorption sonic spray ionisation

(DeSSI) source is created (Haddad et al., 2006). SSI uses only the force of a high-

velocity nebulising gas to generate gas-phase ions from species in solution

(Hirabayashi et al., 2002). As no voltages are used, the spray plume is nearly neutral,

with a distribution of positively- and negatively-charged droplets. This allows the

analysis of both positive and negative ions without the need to rapidly switch high

voltages in the source. Somewhat confusingly, the technique has also been referred

to as easy ambient sonic spray ionisation (EASI) (Haddad et al., 2008). This method

is of interest as biological relevant charge states have been absorbed, but the poor

sensitivity achieved has prevented its wider use.

At the extreme of liquid flow is jet desorption ionisation (JeDI), where a fused silica

capillary is used to generate a continuous liquid jet. This is orientated in a position

relative to the surface to be analysed, similar to the emitter in DESI. A voltage is

applied at the emitter to the solution that is pumped through. The high-velocity jet

stream continuously erodes the sample surface and generates gas-phase ions, making

this technique an interesting option for depth profiling (Takáts et al., 2006).

The method of neutral desorption extractive electrospray ionisation (NDEESI)

retains the general desorption and sampling geometry of a DESI experiment, but

eliminates both the liquid and high voltage. A room temperature gas jet is used to

accomplish the desorption step, and the ionisation of desorbed material occurs by a

secondary ESI process (Chen, Huanwen et al., 2007). Predominantly, small, volatile

compounds such as amines from spoiled meat have been analysed. Some less

volatile explosives have, however, been detected directly from human skin. The

limitation of the technique is ultimately what can be aerosolised and transported to

the ion source by the gas stream, making volatile and semi-volatile species most

amenable.
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2.3 Thermal desorption/ionisation

Thermal desorption atmospheric pressure chemical ionisation (TD/APCI) is a

sampling technique introduced in the 1970s. Commercially available in the 1980s, it

was largely forgotten in the 1990s, but has had reincarnations in recent years. Heat is

used to liberate the sample intact from the condensed phase to the vapour phase. The

heating is most commonly accomplished through the use of a heated gas passing over

the sample. Once in the gas phase, the sample can be ionised; typically, this is by

atmospheric pressure chemical ionisation (APCI) (Moini, 2007). It has recently been

shown that some organic salts can be thermally desorbed into the gas phase directly

as ions, a process termed atmospheric pressure thermal desorption ionisation (APTDI)

(Chen, Hao et al., 2006). At the outset, samples were analysed by direct vapour

detection and collection of trace particle residue or vapours, followed by TD and

corona discharge APCI. Of late, commercial ‘plug-and-play’ corona discharge APCI

sources designed for liquid introduction can be used to sample materials from

surfaces. McEwen et al., modified such a commercial source to allow the insertion

of a glass melting point capillary into a heated gas stream emerging from the heated

nebuliser, to allow the rapid analysis of liquids and (semi)volatile solid materials;

they named this approach atmospheric pressure solids analysis probe (ASAP)

(McEwen et al., 2005). These techniques have proved suitable for the analysis of

lipids, capsaicins and carotenoids from fresh biological samples, polymer additives,

fatty acids and pharmaceuticals. A new form of TD/APCI has emerged, called laser

diode thermal desorption (LDTD), which uses an IR laser to thermally desorb

samples that have been deposited onto stainless steel sample wells in a plate (Wu et

al., 2007). Thermally desorbed species are carried by heated air through a transfer

tube and are ionised by a corona discharge source at the inlet of the mass

spectrometer. LDTD has been used as a high-throughput method for the analysis of

enzyme inhibition assays.

The aforementioned technique of DART can also be categorised as a thermal

desorption/ionisation method. Although the desorption process involved in DART

has not been categorically stated, it is likely that TD is a dominant process. DAPCI

can also be seen as a simple TD/APCI system, as the sheath gas involved may be

heated. A technique similar to DAPCI is desorption atmospheric pressure
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photoionisation (DAPPI), where the reagent ion population is initiated by a

photoionisation process rather than by corona discharge (Haapala et al., 2007).

Certain plasma-assisted techniques have also emerged, which have, at least in part, a

TD component. In plasma-assisted desorption/ionisation (PADI) (Ratcliffe et al.,

2007) and dielectric barrier discharge ionisation (DBDI) (Na et al., 2007), a plasma

is created in a flowing stream of helium by applying an alternating voltage between

two electrodes. The recently described method of atmospheric pressure glow

discharge desorption ionisation (APGDDI) utilises an AP glow discharge source for

surface sampling, where there is a TD component from plasma heating of the sample

(Andrade et al., 2008).

2.4 Laser desorption/ionisation

In laser desorption/ionisation, a pulsed laser beam is focussed at a small spot on the

surface to be analysed, material is desorbed/ionised by the laser pulse and the ions

generated are analysed by a suitable mass spectrometer. The exact mechanisms of

this are often complex and not fully understood. It is common for more neutral

species to be generated than ions from a typical laser desorption/ionisation process.

The use of a distinct secondary ionisation process therefore allows for the desorption

and ionisation conditions to be independently optimised. Such methods can be

subdivided into two categories: atmospheric pressure laser desorption (ablation) with

secondary ionisation (AP-LD/SI) and atmospheric pressure matrix-assisted laser

desorption ionisation (AP-MALDI).

2.4.1 Atmospheric pressure laser desorption (ablation) with

secondary ionisation (AP-LD/SI)

Laser ablation inductively coupled plasma (LA-ICP) is the oldest and most

established of the AP-LD/SI systems, and is increasingly being employed for the

study of biological samples. There is a more focussed discussion of this area in

Chapter 5 and therefore will not be elaborated upon here.
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Laser desorption atmospheric pressure chemical ionisation (LD/APCI) uses laser

desorption to sample a surface, followed by secondary ionisation via an APCI

process to produce molecular ionic species. This was initially used in the 1980s for

analysis of small biological molecules such as amino acids and vitamins; it has been

utilised for screening analytes separated on thin layer chromatography (TLC) plates,

and for the analysis of proteins and peptides directly from polyacrylamide gels

(Kolaitis and Lubman, 1986). The method of laser desorption electrospray ionisation

(LD/ESI) was first reported under the name electrospray-assisted laser

desorption/ionisation (ELDI) (Shiea et al., 2005). It works in much the same way as

LD/APCI, except that the desorbed material is ionised through reaction with the

charged solvent droplets, protonated solvent species, or gas-phase ions produced in

the ESI process. This technique offers the advantages of high secondary ionisation

efficiency and the ability to form multiply charged species from macromolecules

such as proteins. It has, so far, been used for the direct characterisation of chemical

compounds on TLC plates, and the detection of intact proteins in biological fluids,

bacterial cultures and tissues (Peng et al., 2007). Adding a chemical matrix to the

samples converts the process to matrix-assisted laser desorption electrospray

ionisation (MALDESI) (Sampson et al., 2006).

While ELDI and MALDESI use a UV laser, a technique has been introduced which

uses an IR laser. Termed laser ablation with electrospray ionisation (LAESI) (Nemes

and Vertes, 2007) or infrared laser assisted desorption electrospray ionisation (IR-

LD/ESI) (Rezenom et al., 2008), this allows for the direct analysis of ‘wet’

biological samples. The method appears to work well on samples with high water

content (e.g. fruit), whilst success has been limited with dried or less water-rich

analytes, such as bone.

2.4.2 Atmospheric pressure matrix-assisted laser desorption

ionisation (AP-MALDI)

First reported in 2000, the use of AP-MALDI (Laiko et al., 2000) has increased

significantly as commercial easily interfaced technology has become widely

available. The coupling of AP-MALDI sources with ion traps, orthogonal

acceleration (oa) Q-TOFs, and hybrid instruments takes advantage of their high duty
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cycle and capabilities to perform MS/MS and MSn experiments. Papers published

indicate that this technique is therefore being used to provide structural information

from analytes. As with other laser desorption/ionisation techniques, AP-MALDI

results in less fragmentation than vacuum MALDI, due to the rapid collisional

cooling that occurs at atmospheric pressure (Van Berkel et al., 2008).

2.5 Applications of ambient ionisation techniques

Ambient ionisation methods have many advantages that make them attractive to a

number of areas of analysis. They are applicable to solids, liquids, frozen solutions

and adsorbed gases, usually with little or no sample preparation, and with high

sensitivity and a virtually instantaneous response time (Harris et al., 2008).

A point of focus for ambient ionisation techniques has been the area of forensics,

such as the detection of explosives, toxic compounds and chemical warfare agents

(Takáts et al., 2005b). Early in situ MS methods employed trace atmospheric gas

analysers, including transportable triple-quadrupole instruments, for the analysis of

gas-phase trinitrotoluene (TNT). In these types of applications, the sensitivity,

specificity, speed of response and lack of sample preparation are major advantages,

all of which can be offered by various ambient ionisation methods. Explosives and

chemical warfare agents have been analysed by DESI from surfaces such as metal,

brick, paper, cloth and skin (Ifa et al., 2009). The initial publication on DART also

demonstrated the direct detection of solid-phase explosives and toxic industrial

compounds (Cody et al., 2005).

Other applications have included the identification of natural products in plant

material, food adulterants, and chemical imaging by DESI. The latter is a particularly

interesting application that has been used to profile analyte bands on TLC plates

(Van Berkel et al., 2005), inked lettering and images on paper and fingerprints.

DESI is capable of producing an image based on any particular ion within a mass

spectrum, recorded at different positions within a latent fingerprint. Endogenous

compounds such as fatty acids and lipids, known to be present on the skin, can be

detected and identified. Several ambient ionisation methods have been reported to be

safe enough for the direct analysis of skin (Ifa et al., 2008). EESI has been used to
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detect caffeine from skin following coffee consumption, and cocaine has been

detected from skin (Chen, Huanwen et al., 2007). The analysis of phospholipid

distributions in rat brain thin tissue sections indicates there is potential for DESI to

become a valuable analytical technique for identifying compounds, both endogenous

and exogenous, in tissues. DESI imaging has achieved a lateral resolution of 200 μm,

although competitive MALDI imaging has shown resolutions of 100 μm to 600 nm.

Detection levels and sensitivity will need significant improvement before this can be

implemented in a practical, clinical manner.

High throughput analysis of pharmaceuticals, and the identification of drugs and

drug metabolite from blood and other biological fluids, is another area of interest.

Early DART and DESI publications demonstrated the ability to interrogate

compounds directly from tablets and other formulations (Rodriguez-Cruz, 2006), and

the techniques have since been used to identify illicit and abused drugs in biological

fluids (Kauppila et al., 2007). Counterfeit pharmaceutical drugs are an increasing

public health problem, with consumption sometimes causing death (Fernandez et al.,

2007). Older methods of tablet analysis are often inconvenient, with LC-MS

analyses requiring extensive sample preparation and chromatography time, as well as

expensive equipment. The minimal sample preparation and rapid analysis time of

ambient ionisation methods offer an attractive alternative, particularly as ionisation

sources and instruments become more available and affordable.

Proteins, protein complexes, carbohydrates, oligonucleotides, industrial polymers

and small organic molecules have all been analysed by DESI and other ambient

ionisation techniques. There is no doubt that ambient ionisation methods have made

an important impact in the field of mass spectrometry. There remains, nevertheless,

much to be learned about the fundamental mechanisms of many of these methods. If

tackled, this could pave the way for further development and optimisation of these

analytical tools.
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2.6 Aims and objectives

The field of ambient ionisation techniques in mass spectrometry emerged only five

years ago and since then has undergone rapid and considerable growth. The work

presented here was conducted from 2005 to 2006, in the early stages of method

development when both fundamentals and potential applications were being deduced.

The specific aims of my work were:

1. To evaluate the techniques of DESI, DAPCI and DART using commonly

available pharmaceuticals.

2. To increase information content available from DESI experiments by using

fragmentation and neutral loss/precursor scanning.

3. To investigate the merits of coupling DESI to a then novel polarity switching

mass spectrometry approach.

This work has been peer-reviewed and published as the following articles:

Williams et al., (2006) The use of recently described ionisation techniques for the

rapid analysis of some common drugs and samples of biological origin, Rapid

Communications in Mass Spectrometry 20: 1447-1456

Williams et al., (2006) Collision-induced fragmentation pathways including odd-

electron ion formation from desorption electrospray ionisation generated protonated

and deprotonated drugs derived from tandem accurate mass spectrometry, Journal of

Mass Spectrometry 41: 1277-1286

Williams et al., (2006) Polarity switching accurate mass measurement of

pharmaceutical samples using desorption electrospray ionisation and a dual ion

source interfaced to an orthogonal acceleration time-of-flight mass spectrometry,

Analytical Chemistry 78: 7440-7445
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3.1 Overview of ambient ionisation study

Three different studies were carried out: rapid screening of common drugs using

different ambient ionisation techniques, collision-induced dissociation and polarity

switching accurate mass measurements.

Non-prescription medications were obtained from commercial suppliers; prescription

drugs were obtained under permission from medical professionals.

The complete complement of samples analysed has been summarised in Table 3.1,

with corresponding active ingredients detailed in Table 3.2.

3.2 Direct analysis in real time (DART)

DART experiments were carried out on an AccuToF LC TOF mass spectrometer

(Jeol, Peabody, MA, USA). A detailed description of the DART source can be found

elsewhere (Cody et al., 2005).

The AccuToF instrument was operated with helium flowing into the DART source

and a voltage of 2 kV applied to the discharge needle in positive mode of ionisation.

Orifice 1 of the interface was set to 27 eV. This voltage can be increased or

decreased depending on the amount of fragmentation desired. The gas temperature

was maintained at 80 °C and the operating resolution of the instrument was

approximately 6000 full width at half maximum (FWHM). Mass spectra were

acquired over the mass range m/z 50 – 500 at an acquisition rate of 0.5 spectra per

second. For sample analysis, the helium gas was directed towards the sample or

allowed to interact with vapour-phase samples. Tablets were broken to expose an

uncoated sample surface, before being held with tweezers in the path of the flowing

helium at atmospheric pressure. Samples in solution were analysed by placing filter

paper (1 cm - 8 cm) in the solution prior to being held in a similar manner. For

ointments, approximately 100 mg was applied to the surface of a piece of matt-

finished cardboard (1 cm - 2 cm) and held in the same position.
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3.3 Desorption electrospray ionisation (DESI)

Experiments were carried out on a Q-ToF I (Waters, Manchester, UK). The

instrument was operated in positive and negative mode with a capillary voltage of

3.5 kV and -3.2 kV respectively. The ion source block and nitrogen desolvation gas

temperatures were set to 100 °C and 400 °C respectively, and the desolvation gas

was set to a flow rate of 300 L/h. The cone voltage was set at 20 V for both mass

spectrometry (MS) and tandem mass spectrometry (MS/MS) experiments, and the

collision energy used for MS/MS experiments was ramped between 10 and 25 eV

during the acquisition. The TOF mass analyser was operated at a resolution of

approximately 6000 (FWHM), with spectra acquired over the mass range m/z 50 –

500 at an acquisition rate of 1 spectrum/s. For all MS/MS experiments, argon was

used as the collision gas. Each tablet was broken to expose an uncoated sample

surface, before being held with tweezers, at an angle of approximately 45° to the

solvent spray and a distance of 5 mm from the source sampling cone. Approximately

100 mg of the ointment was applied to the surface of a piece of matt-finished

cardboard (1 cm - 2 cm) and held in the same position as the solid tablets. The

surface of the tablet or card was then sprayed with a solution of acetonitrile/H2O (1:1)

in negative mode and a solution of acetonitrile/H2O with 0.2 % formic acid in

positive mode at a flow rate of 10 mL/min, using a model 22 syringe pump (Harvard

Apparatus, MA, USA). No extensive modification of solvents, buffers and pH was

carried out.

3.4 Desorption atmospheric pressure chemical ionisation

(DAPCI)

Experiments were carried out on a Q-TOF I (Waters, UK). The instrument was

operated in positive and negative mode with a capillary voltage of 3.5 kV and -3.0

kV respectively. The cone voltage was optimised between 10 and 25 V for each

sample. The collision energy used for MS/MS experiments was ramped between 10

and 25 eV during the acquisition. The flow rate of the nitrogen desolvation gas was

set to 150 L/h. The source and probe temperatures were set to 100 °C and 400 °C,

respectively. A solvent mixture of methanol and water (1:1) flowing at 10 mL/min

was infused into the heated nebuliser probe where it was converted into an aerosol
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which was rapidly heated in a stream of nitrogen gas, forming a vapour at the probe

tip. The probe tip directly faced the tablet or ointment (which had been deposited

onto the card) positioned between the corona discharge pin and the sampling cone.

Reagent ions formed in the corona discharge region reacted with desorbed analyte

molecules from the tablet or card forming, depending on the ionisation mode, for the

most part, protonated or deprotonated molecules. The same experiments were also

performed without any solvent flowing into the heated probe. This solventless

DAPCI experiment is similar to the ASAP experiment previously described.

3.5 Accurate mass measurement protocol for the Q-TOF I

Instrumental mass drift was corrected for by using a single internal reference lock

mass in MS and MS/MS mode on the Q-TOF. Since the target compounds in this

study are known, the precursor ion selected for MS/MS experiments provided the

internal reference lock mass in MS/MS mode. Data acquisition and processing were

carried out using the digital dead-time correction algorithm embedded in the

operating software (MassLynx v3.5, Waters, UK). The high ion counts generated

using the DAPCI and DESI techniques caused time-to-digital (TDC) dead-time

saturation. The TDC correction software was utilised and displayed a peak centroid

with the correct mass and signal intensity.

3.6 Collision-induced dissociation pathways

Experiments were performed in a triple-quadrupole (Q1qQ2 , where q is a hexapole)

mass spectrometer (Quattro Ultima, Waters, UK) and a hybrid quadrupole time-of-

flight mass spectrometer (Q-TOF I, Waters, UK). Experimental details using the Q-

TOF I were as previously described. These experiments were performed at Waters

Technologies, Manchester, UK with Dr. Brian Green.

The Q1qQ2 instrument was equipped with the standard Z-spray electrospray ion

source and operated at a source and desolvation temperature of 110 °C and 250 °C,

respectively. The desolvation gas was set to a flow rate of 200 L/h. The instrument

was operated in the positive and negative modes with capillary voltages of 3.0 kV

and -2.6 kV, respectively. MS/MS was carried out using argon as collision gas at a
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pressure of 2.5 × 10-3 mbar within the radio frequency-only hexapole collision cell.

Each tablet was broken to expose an uncoated sample surface, before being held with

tweezers, at an angle of approximately 45° to the solvent spray. The surface of the

tablet was sprayed with a solution of acetonitrile/H2O + 0.2% formic acid at a flow

rate of 10 µl/min using a Model 22 syringe pump (Harvard Apparatus, USA). Mass

spectra were acquired in the MCA mode at an acquisition rate of 1 spectrum per 8

seconds. Data acquisition and processing were carried out using MassLynx v3.5.

3.7 Polarity switching accurate mass measurement

This was performed at Waters Technologies, Manchester, UK, with Dr. Richard

Lock. Experiments were carried out using a LCT Premier orthogonal acceleration

time-of-flight mass spectrometer (oa-TOFMS) fitted with a two-way electrospray

ionization source (LockSpray) (Waters, Manchester, UK). The instrument was

operated in positive and negative modes with a capillary voltage of 3.0 and -2.5 kV,

respectively. The ion source block and nitrogen desolvation gas temperature were

set to 120 °C and 350 °C, respectively, and the desolvation gas was set to a flow rate

of 300 L/h. The TOF mass analyser was tuned in W-optic mode for an operating

resolution of 10,000 (FWHM). Mass spectra were acquired at an acquisition rate of

1 spectrum per 150 ms with an interscan delay of 50 ms in centroid mode.

For solid sample analysis, each tablet was broken to expose an uncoated sample

surface, before being held with tweezers, at an angle of 45° to the solvent spray

emanating from inlet 1.

The source was open to the laboratory atmosphere to allow manual introduction of

the samples. Approximately 100 mg of the ointment or 50 μL of the liquid medicine

was applied to the surface of a piece of matt-finished cardboard (1 - 2 cm) and held

in the same position as the solid tablets. The surface of the tablet or card was then

sprayed with a solution of acetonitrile/H2O with 0.1 % formic acid at a flow rate of

10 μL/min, using an Acquity Binary Solvent Manager pump (Waters, UK). Accurate

mass measurement was provided by infusing leucine enkephalin ([M+H]+ 556.2771

and [M-H]- 554.2615) into inlet two of the dual source and used as a single-point

lockmass against which any subsequently acquired mass spectra were mass measured

in real time. The lock mass was infused at a flow rate of 5 μL/min at a concentration
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of 200 pg/μL (acetonitrile/H2O with 0.1 % formic acid) using a single piston Waters

Reagent Manager pump. No significant modification of solvents, buffers, and pH

was carried out.
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4.1 Rapid screening of common pharmaceuticals and

samples of biological origin

An investigation was conducted on a number of prescription and non-prescription

pharmaceuticals to evaluate the potential of selected ambient ionisation techniques

for the rapid analysis of active ingredients. In addition, human urine was analysed

post-ingestion of a non-steroidal anti-inflammatory drug (NSAID). DART, DESI

and DAPCI (with and without solvent) were utilised for the study. Any proposed

fragmentation schemes are not assumed to be sequential.

4.1.1 Analysis of solid tablets

A solid tablet of Anadin Extra (Wyeth, UK) containing 300 mg aspirin, 45 mg

caffeine and 200 mg paracetamol was analysed by DESI, DAPCI and DART, all

operated in positive ion mode. Figure 4.1 shows representative spectra obtained for

all three techniques. The protonated species for each of the active ingredients can be

seen in the DESI and DAPCI spectra, but the protonated aspirin is missing from the

DART spectrum. There are a number of other ions observed, which have been

labelled in each of the spectra. The peak at m/z 163 corresponds to the loss of water

from the protonated aspirin; this is seen in all three spectra, despite the absence of

protonated aspirin in the DART analysis. Ammoniated aspirin is seen in the DESI

and DAPCI spectra at 198, with the additional observation of sodiated aspirin in the

DESI spectrum at 203. The peak at 121, seen in all three spectra, relates to an odd-

electron cation from aspirin; the characterisation of this ion will be discussed later.

The base peak in the DESI and DAPCI spectra is the protonated caffeine at 195.

This was selected for MS/MS, performed by increasing the energy in the collision

cell to cause fragmentation by CID. The DAPCI MS/MS spectrum is shown in

Figure 4.2. The molecule appears to fragment by the loss of methyl isocyanate (57

Da) to form an even-electron ion at 138. This fragment produces the ion at 110

through the loss of CO.

A Solpadeine Max tablet (GlaxoSmithKline, UK) containing 12.8 mg codeine

phosphate and 500 mg paracetamol was also analysed by DESI, DAPCI and DART

in positive mode. Representative spectra can be seen in Figure 4.3(a)-(c). The
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protonated species for both active ingredients are observed in all three spectra. The

DESI and DAPCI analyses also show the dimer of paracetamol at m/z 303. In these

spectra, the dimer is more abundant than codeine, whereas using DART the dimer is

barely visible. The DAPCI MS/MS spectrum of codeine is shown in Figure 4.3(d); it

is very complex, but was shown to be reproducible. The assignments for some of the

product ions obtained are given in Table 4.1.

Measured mass Formula

266.1196 C17H16NO2

225.0922 C15H13O2

215.1094 C14H15O2

199.0765 C13H11O2

183.0800 C13H11O

Table 4.1 – Fragments from DAPCI MS/MS with proposed elemental structures

4.1.2 Detection of active ingredients in a topical ointment

Proctosedyl is an ointment used for the treatment of haemorrhoids, containing the

active ingredients cinchocaine hydrochloride and hydrocortisone. In this

investigation, the ointment was analysed by both positive and negative ion DAPCI,

spectra from which are shown in Figure 4.4. High ion counts were generated in both

modes, indicating the sensitivity of the technique. The base peak in both spectra

corresponds to cinchocaine, but hydrocortisone is only observed by positive ion

DAPCI. The ions in both acquisitions corresponding to cinchocaine were selected

for MS/MS analyses, the spectra from which can be seen in Figure 4.5. In the

negative ion mode experiment the prominent peaks are at m/z 200 and 144,

corresponding to the loss of C7H14N2O from the deprotonated molecule, and further

fragmentation loss of C4H8. The positive ion mode experiment yielded a product ion

at 271, corresponding to the loss of C4H11N from the protonated molecule. This then

undergoes the same 56 Da loss as seen in the negative ion mode to give a fragment of

215. The proposed fragmentation pathways are shown in Figure 4.6.
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(A) Loss of H2O from aspirin, (B) [Aspirin+NH
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Anadin Extra tablet by (a) DESI, (b) DAPCI and (c) DART, all in

positive ion mode.

O from aspirin, (B) [Aspirin+NH4]
+, (C) potential odd

from caffeine, (D) [Aspirin+Na]+

Ambient ionisation techniques

Extra tablet by (a) DESI, (b) DAPCI and (c) DART, all in

, (C) potential odd-electron ion



Figure 4.2 –

(A) Loss of

Figure 4.3 – Solpadeine Max tablet by (a) DESI, (b) DAPCI, (c) DART; (d) DAPCI
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– Positive ion DAPCI MS/MS from protonated caffeine,

[M+H]+ of m/z 195

Loss of methyl isocyanate, (B) Loss of CO from 138

Solpadeine Max tablet by (a) DESI, (b) DAPCI, (c) DART; (d) DAPCI

MS/MS of codeine, [M+H]+ m/z 300.

Ambient ionisation techniques

Positive ion DAPCI MS/MS from protonated caffeine,

methyl isocyanate, (B) Loss of CO from 138

Solpadeine Max tablet by (a) DESI, (b) DAPCI, (c) DART; (d) DAPCI



Figure 4.4 – DAPCI analyses of proctosedyl

cinchocaine can be seen in both negative and positive modes, but hydrocortisone is

Figure 4.5 – DAPCI MS/MS of cinchocaine in negative and positive ion mode. The

masses selected for fragmentation in either mode are indicated on the spectra.

(A) Loss of C7H14N2

Loss of C4H11
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DAPCI analyses of proctosedyl ointment. The active ingredient

cinchocaine can be seen in both negative and positive modes, but hydrocortisone is

only observed in positive ion mode.

DAPCI MS/MS of cinchocaine in negative and positive ion mode. The

or fragmentation in either mode are indicated on the spectra.

N2O from the deprotonated ion, (B) Loss of 56 Da from 200, (C)

11N from the protonated ion, (D) Loss of 56 Da from 271.

Ambient ionisation techniques

ointment. The active ingredient

cinchocaine can be seen in both negative and positive modes, but hydrocortisone is

DAPCI MS/MS of cinchocaine in negative and positive ion mode. The

or fragmentation in either mode are indicated on the spectra.

O from the deprotonated ion, (B) Loss of 56 Da from 200, (C)

N from the protonated ion, (D) Loss of 56 Da from 271.



Figure 4.6 – Proposed fragmentation pathways for cinchocaine in (a) negative ion

DAPCI MS/MS and (b) positive ion DAPCI MS/MS; (A)

observed fragments as indicated in Figure 4.5.

The cinchocaine in proctosedyl ointment appears to ionise more effi

hydrocortisone. A comparison was performed between positive ion DESI and

DAPCI, the latter with and without solvent; the spectra from this analysis are shown

in Figure 4.7. Protonated molecules for both active ingredients were observed b

three techniques; in all experiments the cinchocaine was shown to ionise more

efficiently than the hydrocortisone. The hydrocortisone has a relative abundance of

approximately 3%, 4% and 35% compared with cinchocaine in DESI, DAPCI

without solvent and DAPCI with solvent, respectively. T

with solvent provides the most effective detection of both active ingredients in this

ointment. When compared with DAPCI

with a relative hydrocorti

Figure 4.8.

4.1.3 Desorption of a gel formulation from human skin

A thin layer of ibuprofen gel containing 5% w/w of the active ingredient was applied

to the surface of a human finger.

skin. DESI was used

application. The deprotonated drug was detected at

spectrum as shown in Figure 4.9

minutes after application

the loss of CO2 from the deprotonated ibuprofen ion.
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Proposed fragmentation pathways for cinchocaine in (a) negative ion

DAPCI MS/MS and (b) positive ion DAPCI MS/MS; (A) – (D) correspond to

observed fragments as indicated in Figure 4.5.

The cinchocaine in proctosedyl ointment appears to ionise more effi

. A comparison was performed between positive ion DESI and

DAPCI, the latter with and without solvent; the spectra from this analysis are shown

in Figure 4.7. Protonated molecules for both active ingredients were observed b

three techniques; in all experiments the cinchocaine was shown to ionise more

efficiently than the hydrocortisone. The hydrocortisone has a relative abundance of

approximately 3%, 4% and 35% compared with cinchocaine in DESI, DAPCI

nd DAPCI with solvent, respectively. This indicates that DAPCI

solvent provides the most effective detection of both active ingredients in this

ointment. When compared with DAPCI (with solvent), DART shows similar results,

with a relative hydrocortisone abundance of approximately 10%.

Desorption of a gel formulation from human skin

buprofen gel containing 5% w/w of the active ingredient was applied

to the surface of a human finger. The gel was gently massaged until absorbed by the

DESI was used in negative ion mode to analyse the skin at the point of

. The deprotonated drug was detected at m/z 205, as the base peak in the

spectrum as shown in Figure 4.9(a). The MS/MS spectrum of 205, acquired 20

minutes after application, is shown in Figure 4.9(b). The mass at 161 corresponds to

from the deprotonated ibuprofen ion.

Ambient ionisation techniques

Proposed fragmentation pathways for cinchocaine in (a) negative ion

(D) correspond to

observed fragments as indicated in Figure 4.5.

The cinchocaine in proctosedyl ointment appears to ionise more efficiently than the

. A comparison was performed between positive ion DESI and

DAPCI, the latter with and without solvent; the spectra from this analysis are shown

in Figure 4.7. Protonated molecules for both active ingredients were observed by all

three techniques; in all experiments the cinchocaine was shown to ionise more

efficiently than the hydrocortisone. The hydrocortisone has a relative abundance of

approximately 3%, 4% and 35% compared with cinchocaine in DESI, DAPCI

his indicates that DAPCI

solvent provides the most effective detection of both active ingredients in this

, DART shows similar results,

sone abundance of approximately 10%. This is shown in

Desorption of a gel formulation from human skin

buprofen gel containing 5% w/w of the active ingredient was applied

gently massaged until absorbed by the

to analyse the skin at the point of

205, as the base peak in the

of 205, acquired 20

. The mass at 161 corresponds to



Figure 4.7 – A comparison of DESI, DAPCI without solvent and DAPCI with solvent

to analyse proctosedyl ointment. The hydrocortisone shows abundances relative to

cinchocaine of 3%, 4% and 35% for the thr

Figure 4.8 – A comparison of DART with DAPCI (with solvent) to analyse
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A comparison of DESI, DAPCI without solvent and DAPCI with solvent

proctosedyl ointment. The hydrocortisone shows abundances relative to

cinchocaine of 3%, 4% and 35% for the three methods, respectively.

A comparison of DART with DAPCI (with solvent) to analyse

proctosedyl ointment.

Ambient ionisation techniques

A comparison of DESI, DAPCI without solvent and DAPCI with solvent

proctosedyl ointment. The hydrocortisone shows abundances relative to

ee methods, respectively.

A comparison of DART with DAPCI (with solvent) to analyse



Figure 4.9 – Negative ion

detection of the active ingredient by DESI, (b) MS/MS of deprotonated ibuprofen,

yielding a fragment at 161 from loss of CO

4.1.4 Comparison of positive and negative DAPCI

Metoclopramide is a pharmaceutical

facilitate gastric emptying in patients with gastroparesis

containing 10 mg of active ingredient was analysed by DAPCI in
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Negative ion DESI of ibuprofen gel desorbed from human skin, (a)

detection of the active ingredient by DESI, (b) MS/MS of deprotonated ibuprofen,

yielding a fragment at 161 from loss of CO2.

Comparison of positive and negative DAPCI-MS/MS

pramide is a pharmaceutical used to treat nausea and vomiting, and to

facilitate gastric emptying in patients with gastroparesis. A metoclopramide tablet

containing 10 mg of active ingredient was analysed by DAPCI in

Ambient ionisation techniques

DESI of ibuprofen gel desorbed from human skin, (a)

detection of the active ingredient by DESI, (b) MS/MS of deprotonated ibuprofen,

MS/MS

used to treat nausea and vomiting, and to

. A metoclopramide tablet

containing 10 mg of active ingredient was analysed by DAPCI in positive and



negative ion modes; the s

deprotonated metoclopramide molecule is seen at 298 and 300 with relative signal

intensities of approximately

the molecule. Peaks at 283 and 255 are the result of in

loss of a methyl radical.

peak in the spectrum, with a corresponding isotope peak at 302. A very similar

spectrum is observed i

Figure 4.10 – Analysis of a metoclopramide tablet by (a) negative ion DAPCI, (b)

positive ion DAPCI and (c) positive ion DART. Fragments labelled (A) and (B) in

the negative ion DAPCI spectrum are produc
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negative ion modes; the spectra are shown in Figure 4.10(a) and (b)

deprotonated metoclopramide molecule is seen at 298 and 300 with relative signal

approximately 3:1, consistent with the presence of one chlorine atom in

Peaks at 283 and 255 are the result of in-source CID, the former due to

loss of a methyl radical. The protonated molecule is observed at 300 as the base

peak in the spectrum, with a corresponding isotope peak at 302. A very similar

spectrum is observed in positive ion DART, shown in Figure 4.10(c).

Analysis of a metoclopramide tablet by (a) negative ion DAPCI, (b)

positive ion DAPCI and (c) positive ion DART. Fragments labelled (A) and (B) in

the negative ion DAPCI spectrum are produced as a result of in

Ambient ionisation techniques

(a) and (b). The

deprotonated metoclopramide molecule is seen at 298 and 300 with relative signal

3:1, consistent with the presence of one chlorine atom in

source CID, the former due to

The protonated molecule is observed at 300 as the base

peak in the spectrum, with a corresponding isotope peak at 302. A very similar

n positive ion DART, shown in Figure 4.10(c).

Analysis of a metoclopramide tablet by (a) negative ion DAPCI, (b)

positive ion DAPCI and (c) positive ion DART. Fragments labelled (A) and (B) in

ed as a result of in-source CID.



The metoclopramide ion was fragmented in both polarities, and the comparative

spectra can be seen in Figure 4.11. Four fragment peaks are observed in the negative

ion spectrum. As previously stated, the ion at 283 is fo

methyl radical. The associated

ion at 211. An additional loss of

at the substituted carbon, as shown in Figure 4.12, produces the 156 ion. In the

positive ion spectrum, there are ions are at 227 and 184. The base peak of 227

indicates fragmentation of the protonated molec

fragmentation to 184 occurs by loss of C

is also shown in Figure 4.12. All of the fragments observed show an isotope pattern

indicative of chlorine, which is useful in confirmi

pathways.

Figure 4.11 – Fragmentation of metoclopramide by negative and positive ion

(A) Loss of methyl radical, (B) Loss of diethylamine from 283, (C)

additional CH
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The metoclopramide ion was fragmented in both polarities, and the comparative

spectra can be seen in Figure 4.11. Four fragment peaks are observed in the negative

ion spectrum. As previously stated, the ion at 283 is formed from the loss of a

The associated loss of a diethylamine moiety (72 Da)

An additional loss of CH2 generates the fragment at 197. Fragmentation

at the substituted carbon, as shown in Figure 4.12, produces the 156 ion. In the

positive ion spectrum, there are ions are at 227 and 184. The base peak of 227

indicates fragmentation of the protonated molecule by loss of diethylamine. Further

fragmentation to 184 occurs by loss of C2H5N (43 Da), a proposed scheme for which

is also shown in Figure 4.12. All of the fragments observed show an isotope pattern

indicative of chlorine, which is useful in confirming potential fragmentation

Fragmentation of metoclopramide by negative and positive ion

DAPCI.

(A) Loss of methyl radical, (B) Loss of diethylamine from 283, (C)

additional CH2 loss, (D) – (F) See fragmentation schemes below

Ambient ionisation techniques

The metoclopramide ion was fragmented in both polarities, and the comparative

spectra can be seen in Figure 4.11. Four fragment peaks are observed in the negative

rmed from the loss of a

a diethylamine moiety (72 Da) produces the

generates the fragment at 197. Fragmentation

at the substituted carbon, as shown in Figure 4.12, produces the 156 ion. In the

positive ion spectrum, there are ions are at 227 and 184. The base peak of 227

ule by loss of diethylamine. Further

N (43 Da), a proposed scheme for which

is also shown in Figure 4.12. All of the fragments observed show an isotope pattern

ng potential fragmentation

Fragmentation of metoclopramide by negative and positive ion

(A) Loss of methyl radical, (B) Loss of diethylamine from 283, (C) As (B) but with

(F) See fragmentation schemes below



Figure 4.12 – Proposed fragmentation pathways for the deprotonated and

protonated metoclopramide molecule. Letters (A)

4.1.5 Analysis of a plant

Nicotine is a plant alkaloid, known for its natural presence in the tobacco plant.

Tobacco was removed from a cigarette and analysed by positive ion DESI, DAPCI

and DART. The mass spectra are shown in Figure 4.13

DAPCI (b) spectra were performed at low cone voltage and produced a single ion at

m/z 163, corresponding to protonated nicotine. The DART data was obtained at a

higher cone voltage, resulting in some of the in

Similar fragmentation is seen when nicotine was fragmented by DAPCI MS/MS, the

spectrum from which is shown

loss of CH3NH2 from the methyl

this generates the ion seen at 130, which contains a four

structure. Ions of m/z

and C2H2, respectively, from 132. The ions represented by peaks at 84 and 80 are

formed by the cleavage of the bond between the two rings in the nicotine structure.
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Proposed fragmentation pathways for the deprotonated and

protonated metoclopramide molecule. Letters (A) – (F) correspond to peaks

indicated in spectra above.

Analysis of a plant alkaloid

Nicotine is a plant alkaloid, known for its natural presence in the tobacco plant.

Tobacco was removed from a cigarette and analysed by positive ion DESI, DAPCI

The mass spectra are shown in Figure 4.13(a)-(c). The DESI (a) and

DAPCI (b) spectra were performed at low cone voltage and produced a single ion at

163, corresponding to protonated nicotine. The DART data was obtained at a

higher cone voltage, resulting in some of the in-source fragmentation obse

Similar fragmentation is seen when nicotine was fragmented by DAPCI MS/MS, the

spectrum from which is shown in Figure 4.13(d). The ion at 132 is generated

from the methyl-substituted pyrrolidine ring. The loss of H

generates the ion seen at 130, which contains a four-membered ring in its

m/z 117 and 106 could be attributed to the loss of a methyl radical

, respectively, from 132. The ions represented by peaks at 84 and 80 are

he cleavage of the bond between the two rings in the nicotine structure.

Ambient ionisation techniques

Proposed fragmentation pathways for the deprotonated and

(F) correspond to peaks

Nicotine is a plant alkaloid, known for its natural presence in the tobacco plant.

Tobacco was removed from a cigarette and analysed by positive ion DESI, DAPCI

. The DESI (a) and

DAPCI (b) spectra were performed at low cone voltage and produced a single ion at

163, corresponding to protonated nicotine. The DART data was obtained at a

source fragmentation observed.

Similar fragmentation is seen when nicotine was fragmented by DAPCI MS/MS, the

The ion at 132 is generated by the

substituted pyrrolidine ring. The loss of H2 from

membered ring in its

117 and 106 could be attributed to the loss of a methyl radical

, respectively, from 132. The ions represented by peaks at 84 and 80 are

he cleavage of the bond between the two rings in the nicotine structure.



Figure 4.13 – Analysis of tobacco from a cigarette by (a) DESI, (b) DAPCI, (c)

DART and (d) DAPCI MS/MS (selected mass 163, nicotine) all in positive ion mode.

(A) Loss of 31 Da

fragments generated in the proposed scheme shown in Figure 4.14 below.

Figure 4.14 – Proposed positive ion fragmentation pathway for protonated nicotine.
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Analysis of tobacco from a cigarette by (a) DESI, (b) DAPCI, (c)

DART and (d) DAPCI MS/MS (selected mass 163, nicotine) all in positive ion mode.

from the pyrrolidine ring (CH3NH2), (B) – (E) correspond to

fragments generated in the proposed scheme shown in Figure 4.14 below.

Proposed positive ion fragmentation pathway for protonated nicotine.

Ambient ionisation techniques

Analysis of tobacco from a cigarette by (a) DESI, (b) DAPCI, (c)

DART and (d) DAPCI MS/MS (selected mass 163, nicotine) all in positive ion mode.

(E) correspond to

fragments generated in the proposed scheme shown in Figure 4.14 below.

Proposed positive ion fragmentation pathway for protonated nicotine.
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4.1.6 Identification of ibuprofen metabolites from human urine

The study of drug metabolites in urine is of interest in medicine, sport regulation and

forensics, but can often be challenging due to the low level of metabolites in relation

to fairly high levels of endogenous materials such as salts. Samples may, therefore,

have to undergo lengthy preparation in order to be analysed. The ability of DAPCI

to detect drug metabolites from human urine was evaluated. Ibuprofen was used as

the administered pharmaceutical, as it produces metabolites which have previously

been characterised (de Oliveira et al., 2005). A urine sample was obtained 75

minutes after ingestion of two ibuprofen tablets, each containing 200 mg active

ingredient. Filter paper (1 cm × 8 cm) was dipped into the urine sample and allowed

to absorb the liquid. Negative ion mode DAPCI was used with a solvent mixture of

methanol and water.

Figure 4.15(a) shows the mass spectrum of the analysis. There are ions which can be

attributed to endogenous compounds, some from components of urine (Coleman and

Norton, 1986) and some ascribed to background species. Some of these have been

assigned as deprotonated pyruvic acid (m/z 87), lactic acid (m/z 89), methylmalonic

acid (m/z 117), xanthine (m/z 151) and hippuric acid (m/z 178). An accurate mass

acquisition for a zoomed in m/z region can be seen in Figure 4.15(b). The

hydroxylated and carboxylated metabolites of ibuprofen can be seen at m/z 221 and

235, respectively. No glucuronide metabolites were observed. The composition of

the 221 ion was confirmed by an MS/MS experiment, where the deprotonated

hydroxy-inbuprofen fragmented to give a single product ion at m/z 177 through loss

of CO2. This spectrum and the proposed fragmentation are shown in Figure 4.15(c).



Figure 4.15 – Negative ion DAPCI analysis of a urine sample, 75 minutes after oral

administration of 400 mg ibuprofen. (a)

DAPCI acquisition, (c) DAPCI
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Negative ion DAPCI analysis of a urine sample, 75 minutes after oral

administration of 400 mg ibuprofen. (a) DAPCI acquisition, (b) accurate mass

DAPCI acquisition, (c) DAPCI-MS/MS of m/z 221 showing loss of CO

Ambient ionisation techniques

Negative ion DAPCI analysis of a urine sample, 75 minutes after oral

DAPCI acquisition, (b) accurate mass

MS/MS of m/z 221 showing loss of CO2.
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4.2 Determining collision-induced dissociation

pathways

A triple quadrupole instrument was used to elucidate fragmentation pathways for

some of the product ions observed in the MS/MS spectra obtained. Triple-

quadrupole mass spectrometers are extremely useful research tools, as they provide

an efficient means of compound identification due to their various scanning

capabilities, such as precursor, product and neutral loss scanning. As the tandem

quadrupole instrument employed does not provide sufficient accurate mass

measurements for unequivocal identification of the product ions studied, accurate

mass MS/MS performed in a Q-TOF instrument was also used to provide

complementary structural information.

4.2.1 Product ion and neutral loss scanning in negative ion DESI

Three NSAIDs were chosen as model pharmaceuticals to evaluate the use of triple-

quadrupole scanning modes coupled with DESI for the detection of targeted, group-

specific losses. Tablets of diclofenac, ibuprofen and naproxen were sampled

separately during the same acquisition. Negative ion mode was utilised, as acidic

functional groups in each of the molecules leads to efficient deprotonation. The

DESI mass spectrum is shown in Figure 4.16(a). Deprotonated naproxen gives the

base peak at m/z 229, deprotonated ibuprofen is observed at m/z 205, and

deprotonated diclofenac at m/z 294. The peak at 250 corresponds to a loss of CO2

from the diclofenac ion. Product ion spectra were generated for each of the drugs,

which are shown in Figure 4.16(b). Under low collision energy, the ibuprofen and

diclofenac produced a single product ion at m/z 161 and 250, respectively. Naproxen

generated two product ions at m/z 185 and 170. The ions of 161, 250 and 185 are

generated by a CO2 loss; that at 170 is from losses of CO2 and a methyl group. To

confirm the CO2 loss occurs from all three molecules, a neutral loss scan was

performed with a pre-defined mass difference of 44 Da. As expected, the three

deprotonated molecules of m/z 205, 229 and 294 were detected. This is the first

demonstration of DESI coupled with a neutral loss scan for targeted losses.



Figure 4.16 – (a) negative ion DESI

DESI MS/MS spectrum of the three deprotonated species, (c) DESI

loss spectr

(A) Loss of CO

(B)
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(a) negative ion DESI-MS of ibuprofen, naproxen and diclofenac, (b)

DESI MS/MS spectrum of the three deprotonated species, (c) DESI

loss spectrum, with pre-determined mass difference of 44 Da.

(A) Loss of CO2 from deprotonated drug molecule

(B) Simultaneous loss of CO2 and a methyl group

Ambient ionisation techniques

MS of ibuprofen, naproxen and diclofenac, (b)

DESI MS/MS spectrum of the three deprotonated species, (c) DESI-MS/MS neutral

determined mass difference of 44 Da.

from deprotonated drug molecule

and a methyl group
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4.2.2 Product ion and precursor ion scanning in positive ion DESI

to analyse pharmaceutical drugs

Triple quadrupole scanning and accurate mass Q-TOF MS/MS were combined to

determine the fragmentation pathways of protonated aspirin, caffeine, nicotine and

paracetamol. An Anadin Extra tablet (containing 45 mg caffeine, 200 mg

paracetamol and 300 mg aspirin) was analysed by DESI on a triple quadrupole

instrument. The mass spectrum is shown in Figure 4.17(a), where protonated

paracetamol and caffeine and sodiated aspirin can be seen at m/z 152, 195 and 203,

respectively. The ions at m/z 110 and 121 are in-source fragments. The 110 Da

fragment was thought to originate from caffeine and from paracetamol, as previously

stated. A precursor ion scan, shown in Figure 4.17(b), confirms that the ion is

formed by the loss of ketene from protonated paracetamol, and by the loss of CO and

methyl isocyanate from protonated caffeine. The 121 fragment in the Anadin Extra

analysis, resulting from in-source CID, was thought to originate from aspirin,

confirmed by the precursor ion scan shown in Figure 4.17(c), which indicates it

comes from m/z 139 and 163. These are formed by the loss of ketene and the loss of

water from aspirin. The scan also indicates m/z 149 as a precursor of 121. An

accurate mass measurement of 149.0243 suggests a formula of C8H5O3, which arises

from the dissociation of an unknown phthalate, a common contaminant in ESI mass

spectra. The proposed fragmentation of protonated aspirin and the phthalate is

shown in Figure 4.18.

DESI accurate mass of protonated caffeine generated product ions of m/z 138, 123

and 110, shown in Figure 4.19(a). The 138 Da fragment is formed through loss of

methyl isocyanate, which then loses CO to generate the 110 fragment. The accurate

mass measurement indicated an elemental formula of C5H5N3O for m/z 123,

suggesting the unusual formation of an odd-electron product ion. A precursor ion

scan of m/z 123 is shown in Figure 4.19(b), indicating the ion is formed from the 138

fragment. This is proposed to occur through the loss of a methyl radical by cleavage

of the N-C bond. The fragmentation pathway resulting in the formation of the 110,

123 and 138 product ions is shown in Figure 4.20.



Figure 4.17 – (a) positive ion DESI

of fragment ion 110, (c) precursor ion scan of fragment ion 121.

(A) Loss of water from aspirin, (B) Loss of ketene from aspirin, (C) Fragment from

dissociation of phthalate contaminant, (D) selected ion

correspond to assignments in the fra
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ositive ion DESI-MS of Anadin Extra, (b) precursor ion spectrum

fragment ion 110, (c) precursor ion scan of fragment ion 121.

(A) Loss of water from aspirin, (B) Loss of ketene from aspirin, (C) Fragment from

dissociation of phthalate contaminant, (D) selected ion; these assignments

correspond to assignments in the fragmentation pathway shown in Figure 4.18.

Ambient ionisation techniques

, (b) precursor ion spectrum

fragment ion 110, (c) precursor ion scan of fragment ion 121.

(A) Loss of water from aspirin, (B) Loss of ketene from aspirin, (C) Fragment from

; these assignments

gmentation pathway shown in Figure 4.18.



Figure 4.18 – Proposed fragmentation pathways of protonated aspirin by means of

Figure 4.19 – (a) positive ion DESI

precursor ion scan of the 123 fragment, highlighted.

(A) Loss of methyl isocyanate, (B) Loss of CO from 138, (C) precursor ion scan

shows that this fragment is generated from the 138 ion, which is proposed to occur

via loss of a methyl radical.

fragmentation pathway shown in Figure 4.
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Proposed fragmentation pathways of protonated aspirin by means of

DESI-MS/MS

(a) positive ion DESI-MS/MS of protonated caffeine,

precursor ion scan of the 123 fragment, highlighted.

(A) Loss of methyl isocyanate, (B) Loss of CO from 138, (C) precursor ion scan

shows that this fragment is generated from the 138 ion, which is proposed to occur

via loss of a methyl radical. The assignments correspond to assignments in the

fragmentation pathway shown in Figure 4.20.

Ambient ionisation techniques

Proposed fragmentation pathways of protonated aspirin by means of

MS/MS of protonated caffeine, m/z 195, (b)

precursor ion scan of the 123 fragment, highlighted.

(A) Loss of methyl isocyanate, (B) Loss of CO from 138, (C) precursor ion scan

shows that this fragment is generated from the 138 ion, which is proposed to occur

The assignments correspond to assignments in the



Figure 4.20 - Proposed fragmentation pathways of protonated caffeine by means of

DESI-MS/MS, (A)-(C) correspond to annotated peaks in previously shown spectra.

4.2.3 Product ion and precursor ion scanning in positive ion DESI

to analyse nicotine from cigarette tobacco

Accurate mass measurements and triple quadrupole scanning were utilised to

determine more detailed fragmentation pathways for nicotine as sampl

cigarette tobacco. The DESI

Figure 4.21, where a number of fragment peaks can be observed.

pathways which may lead to these ions were proposed, as shown in Figure 4.14. The

product ion of m/z 117 is an unusual odd

performed to more categorically determine its origins. The spectrum from this scan,
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Proposed fragmentation pathways of protonated caffeine by means of

(C) correspond to annotated peaks in previously shown spectra.

Product ion and precursor ion scanning in positive ion DESI

to analyse nicotine from cigarette tobacco

Accurate mass measurements and triple quadrupole scanning were utilised to

determine more detailed fragmentation pathways for nicotine as sampl

cigarette tobacco. The DESI-MS/MS spectrum of protonated nicotine is shown in

Figure 4.21, where a number of fragment peaks can be observed.

pathways which may lead to these ions were proposed, as shown in Figure 4.14. The

117 is an unusual odd-electron ion, and a precursor scan was

performed to more categorically determine its origins. The spectrum from this scan,

Ambient ionisation techniques

Proposed fragmentation pathways of protonated caffeine by means of

(C) correspond to annotated peaks in previously shown spectra.

Product ion and precursor ion scanning in positive ion DESI

Accurate mass measurements and triple quadrupole scanning were utilised to

determine more detailed fragmentation pathways for nicotine as sampled from

MS/MS spectrum of protonated nicotine is shown in

Figure 4.21, where a number of fragment peaks can be observed. Fragmentation

pathways which may lead to these ions were proposed, as shown in Figure 4.14. The

electron ion, and a precursor scan was

performed to more categorically determine its origins. The spectrum from this scan,



shown in Figure 4.22(a), confirms that the 117 fragment is formed from the loss of a

methyl radical from the 132 nicotine fragment. A precursor scan of the 106 fragment

was also performed, the spectrum from which can be seen in Figure 4.22(b). This

indicates that the ion of

protonated nicotine mol

fragmentation pathway for nicotine is summarised in Figure 4.23.

Figure 4.21 – Positive ion DESI

cigarette tobacco. (A)

of m/z 106 and 117

Figure 4.22 – (a) precursor ion spectrum of

nicotine, (A) corresponds to the fragmentation

precursor ion spectrum of

Chapter 4 – Results – Ambient ionisation

67

shown in Figure 4.22(a), confirms that the 117 fragment is formed from the loss of a

from the 132 nicotine fragment. A precursor scan of the 106 fragment

was also performed, the spectrum from which can be seen in Figure 4.22(b). This

indicates that the ion of m/z 106 is formed solely by the loss of C

protonated nicotine molecule, contrary to the previous assignment. The revised

fragmentation pathway for nicotine is summarised in Figure 4.23.

Positive ion DESI-MS/MS spectrum of protonated nicotine from

cigarette tobacco. (A)-(E) correspond to assignments as shown in Figure 4.23.

106 and 117 (highlighted) were selected for precursor ion scans.

(a) precursor ion spectrum of m/z 117 from MS/MS spectrum of

nicotine, (A) corresponds to the fragmentation assignment shown in Figure 4.23, (b)

precursor ion spectrum of m/z 106, which shows that this ion is generated directly

from the protonated nicotine molecule.

Ambient ionisation techniques

shown in Figure 4.22(a), confirms that the 117 fragment is formed from the loss of a

from the 132 nicotine fragment. A precursor scan of the 106 fragment

was also performed, the spectrum from which can be seen in Figure 4.22(b). This

106 is formed solely by the loss of C3H7N from the

ecule, contrary to the previous assignment. The revised

MS/MS spectrum of protonated nicotine from

E) correspond to assignments as shown in Figure 4.23. Ions

were selected for precursor ion scans.

from MS/MS spectrum of

assignment shown in Figure 4.23, (b)

106, which shows that this ion is generated directly



Figure 4.23 - Proposed fragmentation pathways of protonated

DESI-MS/MS, (A)-(F
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Proposed fragmentation pathways of protonated nicotine

(F) correspond to annotated peaks in previously shown spectra

Ambient ionisation techniques

nicotine by means of

) correspond to annotated peaks in previously shown spectra.
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4.3 Polarity switching accurate mass measurement of

pharmaceutical samples using DESI

For the rapid analysis of pharmaceutical formulations, as demonstrated so far, it

would be useful to extend the sampling approach to simultaneously detect both basic

and acidic active ingredients that easily protonate and deprotonate in the same

acquisition. Many medications contain more than one active ingredient, with

different preferential ionisation. This would negate the need for repeat analysis,

which can be both time-consuming and costly, and would also be of benefit for

compound screening where the ionisation mode for the active ingredient is unknown

or uncertain. DESI was coupled to a TOF instrument fitted with a two-way

electrospray ionisation source (Waters, UK). Accurate mass measurements are more

simply acquired, as a reference compound is infused into a separate inlet rather than

sampling before or after the drug under investigation. Sampling pharmaceutical

formulations can generate very high ion counts, as the amount of active ingredient

can range from 1 to 1000 mg. When using an instrument with a time-to-digital (TDC)

detector, as is the case here, mass accuracy can be compromised at high ion counts

due to dead-time saturation. During this study, we have successfully used a single

TOF instrument incorporating dynamic range extension (DRE) technology together

with polarity switching, for routine accurate mass measurement of DESI generated

ions. The DRE technique employs modified transfer optics capable of reducing the

transmission of the ion beam into the orthogonal sampling (pushout) region by

means of an applied voltage. These optics are arranged to defocus the ion beam

normal to the plane of the TOF-MS, resulting in minimal effect on resolution and

mass measurement.

4.3.1 Preferential ionisation

During any single acquisition, data from each of the two sprays are sampled

independently and stored as separate functions within the same data file. This means

that four functions are acquired: positive ion reference, negative ion reference,

positive ion analyte and negative ion analyte. Figure 4.24 shows the reference

compound leucine enkephalin (a) and a solid tablet containing 500 mg of the

macrolide antibiotic, erythromycin (b).



Figure 4.24 – Mass spectra for DESI

seen in both polarities,

positive ion mode. The peak

Leucine enkephaline is observed in both ion modes, whilst erythromycin is only seen

in positive ion mode

protonate rather than deprot

over of sample is seen.

of erythromycin generated by in

counts due to the DRE technology employ

observed in the spectrum, shown in Figure 4.25

accurate mass data. The fragment at

deprotonated drug molecule,

558 is either loss of water and cladinose, or the loss

is either the loss of (H

and m/z 158 corresponds to the desosamine
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Mass spectra for DESI-MS of (a) leucine enkephalin

seen in both polarities, and (b) erythromycin, where significant ions are only seen in

. The peak observed at 564.3 can only be interpreted as baseline

noise.

Leucine enkephaline is observed in both ion modes, whilst erythromycin is only seen

in positive ion mode; this is expected as erythromycin is known to preferentially

protonate rather than deprotonate. Although a high ion count was seen

over of sample is seen. Accurate mass measurements were performed on fragments

of erythromycin generated by in-source CID, which was possible despite the high ion

counts due to the DRE technology employed. Five prominent product ions are

in the spectrum, shown in Figure 4.25, and can be assigned using the

accurate mass data. The fragment at m/z 716 results from the loss of water from the

deprotonated drug molecule, m/z 576 is the loss of the cladinose sugar moiety,

558 is either loss of water and cladinose, or the loss of water from

is either the loss of (H2O)2 and the loss of cladinose or the loss of H

158 corresponds to the desosamine sugar moiety.

Ambient ionisation techniques

MS of (a) leucine enkephalin, where ions are

ions are only seen in

observed at 564.3 can only be interpreted as baseline

Leucine enkephaline is observed in both ion modes, whilst erythromycin is only seen

; this is expected as erythromycin is known to preferentially

was seen, no carry-

Accurate mass measurements were performed on fragments

source CID, which was possible despite the high ion

Five prominent product ions are

, and can be assigned using the

716 results from the loss of water from the

ladinose sugar moiety, m/z

of water from m/z 576, m/z 540

and the loss of cladinose or the loss of H2O from m/z 558,



Figure 4.25 – (a) accurate mass spectrum obtained for protonated erythromycin, (b)

accurate mass in

4.3.2 Analysis of multiple active ingredients from a single tablet

An Anadin Extra tablet, containing aspirin, caffeine and paracetamol, was analysed

to attempt the simultaneous detection of

switching in the same acquisition. Figure 4.26(a) shows results from the positive ion

mode analysis. Two peaks dominate the spectrum, protonated paracetamol at

152 and protonated caffeine at

negative ion mode analysis, the spectrum from which is shown in Figure 4.26(b),

three ions were detect

seen at m/z 179 and 150, respectively. The peak at 137 corresponds to the loss of

ketene from aspirin. This indicates the power of a polarity switching experiment, as

all three drugs were detecte

analysis to be repeated in each ion mode.

4.3.3 Analysis of a pharmaceutical ointment

The eye ointment chloramphenicol

desorbed from a piece of cardboard. The drug was only detected in negative ion

mode. The obtained mass spectrum shows excellent agreement to the theoretical

masses which would be expected, as can be seen in

measurements generated the spectrum shown in Figure 4.27(b). Three peaks are

seen, separated by two

with the presence of two chlorine atoms in the molecule.
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(a) accurate mass spectrum obtained for protonated erythromycin, (b)

accurate mass in-source CID mass spectrum of protonated erythtomycin.

Analysis of multiple active ingredients from a single tablet

Extra tablet, containing aspirin, caffeine and paracetamol, was analysed

to attempt the simultaneous detection of all three active ingredients using polarity

switching in the same acquisition. Figure 4.26(a) shows results from the positive ion

sis. Two peaks dominate the spectrum, protonated paracetamol at

152 and protonated caffeine at m/z 195. No protonated aspirin was observed. In the

negative ion mode analysis, the spectrum from which is shown in Figure 4.26(b),

three ions were detected. Deprotonated aspirin and deprotonated paracetamol are

179 and 150, respectively. The peak at 137 corresponds to the loss of

ketene from aspirin. This indicates the power of a polarity switching experiment, as

all three drugs were detected in the same acquisition, thereby negating the need for

analysis to be repeated in each ion mode.

Analysis of a pharmaceutical ointment

The eye ointment chloramphenicol, containing 1 % w/v of active ingredient, was

desorbed from a piece of cardboard. The drug was only detected in negative ion

mode. The obtained mass spectrum shows excellent agreement to the theoretical

masses which would be expected, as can be seen in Figure 4.27(a). Accurate mass

measurements generated the spectrum shown in Figure 4.27(b). Three peaks are

seen, separated by two m/z units, with relative intensities of 9:6:1, which is consistent

with the presence of two chlorine atoms in the molecule.

Ambient ionisation techniques

(a) accurate mass spectrum obtained for protonated erythromycin, (b)

source CID mass spectrum of protonated erythtomycin.

Analysis of multiple active ingredients from a single tablet

Extra tablet, containing aspirin, caffeine and paracetamol, was analysed

all three active ingredients using polarity

switching in the same acquisition. Figure 4.26(a) shows results from the positive ion

sis. Two peaks dominate the spectrum, protonated paracetamol at m/z

195. No protonated aspirin was observed. In the

negative ion mode analysis, the spectrum from which is shown in Figure 4.26(b),

ed. Deprotonated aspirin and deprotonated paracetamol are

179 and 150, respectively. The peak at 137 corresponds to the loss of

ketene from aspirin. This indicates the power of a polarity switching experiment, as

d in the same acquisition, thereby negating the need for

, containing 1 % w/v of active ingredient, was

desorbed from a piece of cardboard. The drug was only detected in negative ion

mode. The obtained mass spectrum shows excellent agreement to the theoretical

Figure 4.27(a). Accurate mass

measurements generated the spectrum shown in Figure 4.27(b). Three peaks are

units, with relative intensities of 9:6:1, which is consistent



Figure 4.26 – Anadin Extra tablet data in

mode. (A) fragment generated by the loss of ketene from deprotonated aspirin.

Figure 4.27 – (a) theoretical isotope distribution for deprotonated

data acquired, showing excellent agreement, (b) accurate mass spectrum for

deprotonated chloramphenicol
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Anadin Extra tablet data in (a) positive ion mode, and (b) negative ion

mode. (A) fragment generated by the loss of ketene from deprotonated aspirin.

(a) theoretical isotope distribution for deprotonated

data acquired, showing excellent agreement, (b) accurate mass spectrum for

deprotonated chloramphenicol showing isotope distribution consistent with the

presence of two chlorine atoms.

Ambient ionisation techniques

, and (b) negative ion

mode. (A) fragment generated by the loss of ketene from deprotonated aspirin.

(a) theoretical isotope distribution for deprotonated compared with

data acquired, showing excellent agreement, (b) accurate mass spectrum for

showing isotope distribution consistent with the
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4.4 Conclusions

DESI, DAPCI and DART techniques have provided a highly robust means of

interrogating the active ingredients of a variety of pharmaceutical formulations.

Sampling the formulation is rapid and ionisation occurs almost instantly. The

techniques DART, DESI and DAPCI (solvent and solventless) have complex,

potentially inter-related mechanisms but have been shown to provide complementary

information on a range of compounds of interest. Whilst all the methods gave spectra,

some are better than others depending on the type of sample under study; DESI

showed more efficient detection for those molecules which were polar or of higher

molecular weight, whereas DAPCI appeared to be more efficient for analysis of non-

polar compounds. The direct analysis of urine and molecules adsorbed on skin is of

particular interest, due to their medical and forensic application potential.

The use of collisionally inducted dissociation, coupled with capabilities such as

neutral loss scanning, enhanced the information content available from a DESI

experiment, providing added insight into fragmentation pathways of drugs of interest.

This shows potential as a rapid and powerful analytical tool for unequivocal

determination of the identity of observed species, and their subsequent fragmentation.

Data acquired when employing DESI with a novel polarity switching instrument

show that this approach has many advantages in the rapid screening of

pharmaceuticals. This could be of benefit in industrial quality control, forensics and

the identification of counterfeit medication, with many advantages in terms of its

high-throughput capabilities.

Ambient ionisation has moved forward vastly since its inception in 2004, now being

coupled to emerging ion mobility technology (Kaur-Atwal et al., 2007; Weston et al.,

2005; Williams and Scrivens, 2008) and used to image drugs and metabolites in

tissues (Wiseman et al., 2008). This area of research appears to have firmly

established roots in the field of MS and will likely continue its rapid evolution for the

foreseeable future.
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5.1 Metals and proteins

It has been estimated that over 30% of proteins either incorporate metal atoms, or

require them in order to function properly. Metal ions are required by biological

systems for a variety of fundamental processes: signalling, gene expression and

catalysis to name but a few. In order to fully characterise the biochemistry of a cell,

therefore, one needs to look not only at the genome and proteome, but also at the

metallome: the entirety of individual metal species in the cell (Szpunar, 2004). This

encompasses free metal ions, and those in complex with biomolecules; of particular

interest here are the metal species associated with proteins, i.e. the metalloproteome.

A representation of the involvement of metals in various aspects of biology can be

seen in Figure 5.1. The term ‘metallomics’ was proposed by Haraguchi in 2003 as a

new field integrating research related to biometals, which should be considered at the

same level of significance as genomics and proteomics due to the hugely important

role played by metals in biological processes (Haraguchi, 2004). Major groups of

proteins of interest in the metallomics field include metalloenzymes, metal-transport

proteins and metal stress proteins (Szpunar, 2005).

A complete fingerprint of the metal-binding components in a cell is likely to provide

new insight into the role of metal ions in biochemistry. The current analysis methods

available are not without their limitations, one in particular being the ability to scan

samples for multiple trace elements. Whilst much work is being carried out in this

burgeoning field, it is very much in the stages of technique evaluation and there is

much potential to increase information gained on the metalloprotein content of a cell.

If the metalloproteome refers to the metal-site structures in all proteins of the

proteome of a given organism (or given tissue) under a given set of conditions at a

given stage of development, then metalloproteins and their bound metals could be

considered as biological markers for physiological differences (Lobinski et al., 2006).

The ability to perform high-throughput screens of metal content and protein-metal

binding could provide significant insight into cellular processes.



Figure 5.1 – A schematic model of a biological system, showing the relationships

between genomics, proteomics, metabolomics and metallomics. The involvement of

metal ions is depicted by ‘M’.

5.2 Multi-technique approaches

metalloproteins

The analysis of metalloproteins

separation technique, such as liquid chromatography or 2D

separate out the proteins from a complex mixture isolated from the biological system

of interest. Then, an atomic detector is neede

metal, and a detector capable of tandem mass spectrometry (MS/MS) for

characterisation of the biomolecule (protein or peptide). Using these techniques

together provides complementary data for the sensitive detection,

identification of metallobiomolecules

spectrometry technique

molecules, but their application in the analysis of metalloproteins has its limitations.

Probing metal-protein interactions by ESI
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A schematic model of a biological system, showing the relationships

genomics, proteomics, metabolomics and metallomics. The involvement of

metal ions is depicted by ‘M’. Adapted from (Haraguchi, 2004)

technique approaches to studying

metalloproteins

The analysis of metalloproteins includes three major components. Firstly, a

separation technique, such as liquid chromatography or 2D-PAGE is required to

separate out the proteins from a complex mixture isolated from the biological system

n atomic detector is needed for elemental quantification of the

metal, and a detector capable of tandem mass spectrometry (MS/MS) for

characterisation of the biomolecule (protein or peptide). Using these techniques

together provides complementary data for the sensitive detection,

identification of metallobiomolecules (Lobinski et al., 2006). Traditional mass

spectrometry techniques are widely used for the characterisation of biological

molecules, but their application in the analysis of metalloproteins has its limitations.

protein interactions by ESI-MS is hampered by its poor tolerance of
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A schematic model of a biological system, showing the relationships

genomics, proteomics, metabolomics and metallomics. The involvement of

(Haraguchi, 2004).

includes three major components. Firstly, a

PAGE is required to

separate out the proteins from a complex mixture isolated from the biological system

d for elemental quantification of the

metal, and a detector capable of tandem mass spectrometry (MS/MS) for

characterisation of the biomolecule (protein or peptide). Using these techniques

together provides complementary data for the sensitive detection, quantification and

. Traditional mass

s are widely used for the characterisation of biological

molecules, but their application in the analysis of metalloproteins has its limitations.

MS is hampered by its poor tolerance of
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salt buffers and solubilising agents (e.g. detergents) which are often used to maintain

stability of the sample. Little success has been achieved with MALDI, as protein

complexes are often not preserved during the ionisation process. There has been

some success for analysing metal-containing non-covalent complexes using these

types of mass spectrometry (which will be discussed later) but they are unable to

provide information on metal content. This is where the need arises for an atomic

technique capable of identifying and quantifying inorganic constituents of a protein

or protein complex.

Analytical atomic spectrometry has not always been particularly popular for the

speciation of metallobiomolecules, with the majority of applications driven by

analytical chemistry and not biochemistry (Jakubowski et al., 2004). Limitations

have prevented the use of atomic techniques for biological work. Detection limits

are often unsuitable for biologically relevant concentrations, and problems are often

encountered when dealing with the complex sample matrix that a sample often

requires. The exception, and therefore the approach almost exclusively used for

inorganic biochemistry, is inductively coupled plasma mass spectrometry (ICP-MS),

favoured over alternative techniques such as inductively coupled plasma optical

emission spectrometry (ICP-OES) due to its extremely low detection limits. The

latter is of particular importance when considering samples at biological

concentrations. An overview of the current techniques being employed in

metalloprotein analysis can be seen in Figure 5.2.

5.3 ICP-MS for metal identification and quantification

5.3.1 Principles of ICP-MS

Inductively coupled plasma mass spectrometry (ICP-MS) has become an important

part of metallomics, its main advantage being the ability to discriminate between

metal-containing and metal-free species. ICP-MS combines the use of plasma

formed from a gas (usually argon) at atmospheric pressure with a mass spectrometer

operating under vacuum conditions (Houk et al., 1980). A stable, high-temperature

plasma is generated from the gas by seeding it with a spark from a Tesla unit (similar
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to that used on a car spark plug). The plasma torch is designed in such a way as to

allow a sample to be injected directly into the heart of the plasma.

Figure 5.2 – Current hyphenated techniques for the study of metalloproteomes.

Adapted from (Lobinski et al., 2006).

The sample consists of a fine aerosol, which can come from any number of sources

including, but not limited to, nebulised liquids and ablated solids. As the sample

passes through the plasma, it collides with free electrons, argon cations and neutral

argon atoms. The result is that any molecules present in the sample are quickly and

completely broken down to charged atoms. These ions are then passed through a

series of apertures (cones) into a high vacuum mass analyser. The isotopes of the

elements present are identified by their mass-to-charge ratio (m/z), and the intensity

of a specific peak in the mass spectrum is proportional to the amount of that isotope

in the original sample. Ions produced by the ICP are principally atomic and singly-

charged, making this technique ideal for atomic analysis. A schematic of the process

can be seen in Figure 5.3.

The three main separation principles used in ICP-MS systems are quadrupole,

magnetic sector, and time-of-flight (TOF). Quadrupole MS is used in the majority of

ICP-MS instruments, although some systems utilise a magnetic sector analyser,

typically employed when higher resolution is required.



Figure 5.3 – An overview of the process

can be from liquid or solid state, and the type of mass analyser will vary according

A diagram of a quadrupole ICP

appreciated for its isotope specificity, versatility and sensitivity, this technique was

originally applied to geological samples, but is being increasingly used for the

analysis of biological

developments in ICP-

sample handling.

Figure 5.4 – Sample is introduced into the instrument from either a liquid or

source. The sample, carried in argon gas, is nebulised and then enters the ICP torch

where it is ionised; the ions pass to the mass filter, then to the detector. The detector

is typically an electron multiplier which converts the incoming electrons

electrical signal which is interpreted by software.
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An overview of the processes involved in ICP-MS. Sample introduction

can be from liquid or solid state, and the type of mass analyser will vary according

to specific instrumentation.

quadrupole ICP-MS instrument can be seen in Figure

appreciated for its isotope specificity, versatility and sensitivity, this technique was

originally applied to geological samples, but is being increasingly used for the

analysis of biological samples (Muller et al., 2005). This is largely due to

-MS which tackle previous limitations such as interferences and

Sample is introduced into the instrument from either a liquid or

source. The sample, carried in argon gas, is nebulised and then enters the ICP torch

where it is ionised; the ions pass to the mass filter, then to the detector. The detector

is typically an electron multiplier which converts the incoming electrons

electrical signal which is interpreted by software.
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MS. Sample introduction

can be from liquid or solid state, and the type of mass analyser will vary according

MS instrument can be seen in Figure 5.4. Widely

appreciated for its isotope specificity, versatility and sensitivity, this technique was

originally applied to geological samples, but is being increasingly used for the

. This is largely due to

MS which tackle previous limitations such as interferences and

Sample is introduced into the instrument from either a liquid or solid

source. The sample, carried in argon gas, is nebulised and then enters the ICP torch

where it is ionised; the ions pass to the mass filter, then to the detector. The detector

is typically an electron multiplier which converts the incoming electrons into an

electrical signal which is interpreted by software.
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5.3.2 Overcoming interferences

Interferences in ICP-MS can be classified into two major groups: spectral and non-

spectral. Spectral interferences arise from other elements (isobaric interferences),

polyatomic ions or (to a lesser extent) doubly charged ions (Rowan and Houk, 1989).

The constant nature of isotope ratios for most naturally occurring elements means

that elemental isobaric interferences can be corrected mathematically by monitoring

the intensity of an isotope of the interfering element which is free from spectral

interferences (Van Veen et al., 1994). Polyatomic ions can prove more challenging.

These molecular interferences can be produced by the combination of two or more

atoms and/or ions, and are usually associated with the argon plasma, atmospheric

gases, or matrix components of the solvent or sample (Tan and Horlick, 1987). For

example, a common interference when looking at the biologically relevant element,

iron, is argon oxide; 40Ar16O gives the sample signal response as the 56Fe isotope.

Some methods employed to overcome such interferences are to choose an

interference-free isotope to monitor (Vanhaecke et al., 2002), removing the matrix

(Evans and Giglio, 1993), the use of mathematical equations (Cao et al., 2001), using

cool plasma conditions (Hasan et al., 2001), using a high resolution mass analyser, or

utilising a collision or reactor cell (Tanner and Baranov, 1999). This latter approach

has been employed in the work described here. A quadrupole instrument was used

with an incorporated reaction cell, known as a dynamic reaction cell (DRC). A

schematic can be seen in Figure 5.5.

5.3.3 Sample introduction

The main goal of an ICP-MS sample introduction system is to introduce a normally

wet sample aerosol into the plasma, without causing destabilisation and resultant

extinction of the plasma. It is also desirable to transfer the maximum amount of

analyte into the plasma in the most suitable form. Most commonly, the sample is

supplied as a liquid, preferred due to its homogeneity, ease of handling and the

ability to simply prepare calibration standards as required (Mora et al., 2003). The

calibration process for liquid samples often achieves very high accuracy (Becker, J.

Sabine and Jakubowski, 2009). The liquid sample must be converted to an aerosol

by a nebuliser, which can take several forms. An overview of these is given in
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Figure 5.6. A filter chamber then filters the aerosol and transports it to the plasma; a

desolvation system can also be used to present a drier aerosol which can improve

sensitivity for aqueous solutions. To analyse organic solutions, a desolvator may be

necessary, as the resultant solvent present in the aerosol after passing through a

normal spray chamber may be too much for the plasma to tolerate. In this case the

spray chamber would be replaced by a desolvating system. The use of autosamplers

has also made liquid sample introduction a quick and efficient process. Less

commonly, laser ablation (LA) has been used as a means of sample introduction.

In this method, a laser is focused on the sample and creates a plume of ablated

material which can be swept into the plasma. The use of laser ablation in the

analysis of biological samples is attractive as it is potentially fast and robust,

requiring no reaction or derivatisation. Ablation of a metalloprotein can be carried

out directly from a gel or Western blot, eliminating the problems related to recovery

of protein from a gel (Feldmann, Ingo et al., 2006). LA-ICP-MS has also been

developed in recent times as the method of choice for imaging elements in thin cross

sections of biological tissues. At present, LA-ICP-MS is accepted as one of the most

sensitive techniques for imaging of biological tissues (Becker, J. Sabine et al., 2008).

A representation of a laser ablation cell is shown in Figure 5.7. Elements such as

copper, zinc, iron and cadmium have been identified from biological samples using

LA-ICP-MS (Becker, J. Sabine et al., 2004; Becker, J. Susanne et al., 2007; Binet et

al., 2003) and it has also shown potential in the study of protein phosphorylation

(Bandura et al., 2004). One problem associated with the use of laser ablation is that

the laser heats the sample in the vicinity of the laser shot. This causes water to

evaporate from the sample, which can cause interference issues, and leads to drying

of the sample. In order to overcome this, cryogenically cooled ablation cells have

been developed (Feldmann, Jorg et al., 2002).
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Figure 5.5 – (a) The DRC is located between the ion optics and the mass analyzer

quadrupole. It consists of a quadrupole placed inside an enclosed reaction chamber.

This quadrupole eliminates polyatomic interferences caused by the combination of

plasma gases and sample-matrix constituents before they can enter the analyzing

quadrupole. Gas inlets pressurize the reaction chamber with a low flow of reaction

gas, in this case, helium. The reaction gas is selected based on its predictable ability

to undergo a gas phase chemical reaction with the interfering species and remove

the interference. Interference removal can occur through various processes,

including collisional dissociation, electron transfer, proton transfer and oxidation.

(b) Analyte and interfering ions from the ICP enter the DRC. The reaction gas

combines with the interfering ions, creating a non-interfering reaction product at a

different mass. The DRC eliminates reaction by-products using a function known as

Dynamic Bandpass Tuning (DBT). The DBT mechanism ejects the precursor ions

before they can react to form new interferences – a real concern with complex

sample matrices, as are often required for biological samples. Figure from Perkin

Elmer technical note.



Figure 5.6 – Pneumatic nebulisers for liquid sample introduction in ICP

analysis, (a) concentric, (b) cross

(e) microwave thermal. Adapted from

Figure 5.7
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Pneumatic nebulisers for liquid sample introduction in ICP

, (a) concentric, (b) cross-flow, (c) Babington, (d) single-bore high

(e) microwave thermal. Adapted from (Mora et al., 2003)

– A laser ablation inductively coupled plasma source.

Introduction to metallomics

Pneumatic nebulisers for liquid sample introduction in ICP-MS

bore high-pressure,

ora et al., 2003).

A laser ablation inductively coupled plasma source.
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5.4 Organic mass spectrometry methods for the study of

metalloproteins

Mass spectrometry has become increasingly important in the study of protein

structure, in areas such as protein complex assembly, and the interactions of subunits

and ligands. In the field of metalloprotein research, as inorganic MS only provides

information on the presence of the metal atoms, the complementary ability to probe

the overall structure of the protein of interest is crucial. The inception of ESI and

MALDI gave huge impetus to the structural study of proteins and non-covalent

protein complexes by mass spectrometry, as these soft ionisation techniques enable

proteins and complexes to remain intact. ESI is used as the method of choice for

non-covalent analysis, although success has also been achieved with MALDI

(Wenzel et al., 2005; Yanes et al., 2006). Often, however, the matrix required is not

an ideal environment to keep proteins under physiologically relevant conditions

(Heck and van den Heuvel, 2004). Over the years, ESI has emerged as a powerful

tool for producing intact ions in vacuo from large and complex species in solution

(Fenn et al., 1989; Loo, 2000). The typical ESI mass spectrum of a protein consists

of an envelope of peaks attributed to a series of multiply charged gas-phase ions that

can indicate the stability and compactness of its structure in the gas phase

(Chowdhury et al., 1990); multiply charged ions are produced by proton attachment,

predominantly to exposed basic sites on the protein. Recent work suggests that those

ions of lowest charge are most representative of native structure (Scarff et al., 2008).

Non-covalent complexes usually appear with lower net charge compared to ions

produced from denatured proteins of similar size, possibly due to the fact that basic

amino acids are buried in the structure. This translates to high m/z values, often

outside the range of quadrupole analysers, meaning that study of non-covalent

complexes is predominantly performed on TOF instruments. Although TOFs

theoretically have an unlimited m/z range, it was observed that detecting large

complexes was problematic unless the pressures in the first vacuum chambers were

increased (Tahallah et al., 2001). Larger ions generated by ESI may acquire

excessive energy resulting in their missing of the detector, either partially or

completely (Chernushevich and Thomson, 2004). The ions can be thermalised by

collisions at elevated pressure with gas molecules. This collisional cooling dissipates

the excess energy, allowing for more efficient transmission (Douglas and French,
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1992; Krutchinsky et al., 1998). Questions have been raised as to whether the gas-

phase measurements of MS can be correlated to solution-phase (i.e. physiological)

events. Whilst there are certain examples where ESI-MS data are not completely

faithful to solution-phase characteristics (Robinson et al., 1996), there is an

increasing body of work that indicates MS can provide an indication of native

structure and behaviour (Hunter et al., 1997; Kaddis et al., 2007; Loo, 1997). The

ability to maintain protein structures and protein complexes in ESI-MS enables the

study of proteins binding ligands, such as metal ions, in a near-native state. This has

been successfully demonstrated for a number of metal cofactors, such as calcium

binding to calbindin (Veenstra et al., 1997).

5.5 Ion mobility

The mobility of an ion is a measure of how rapidly it moves through a buffer gas

under the influence of a weak electric field. This time is related to the rotationally

averaged collision cross section, mass and charge of the ion (Mesleh et al., 1996).

The development of high-resolution ion mobility spectrometry (IMS) techniques

coupled with MS has provided a powerful tool for the determination of molecular

structure (Kanu et al., 2008). Traditional IMS is measured as drift time, i.e. the time

for the ion to move through the cell containing the buffer gas, and in low-field

conditions can be thought of as directed diffusion. Under these conditions, the

velocity of the ion is directly proportional to the electric field. This proportionality is

called the ion mobility constant (K) and is related to the ion’s collision cross section

by the following equation:

q is the charge on the ion, N is the number density of the buffer gas, k is the

Boltzmann constant, T is the absolute temperature, m is the mass of the buffer gas, M

is the mass of the ion and Ω is the collision cross section of the ion. There are two

modes of drift-time IMS: reduced-pressure (RPIMS) and ambient-pressure (APIMS).

RPIMS has the main advantage of efficient transfer of ions from the mobility cell to
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the mass spectrometer (McAfee et al., 1967); APIMS is predominantly used as a

field-deployable stand-alone instrument for the separation and identification of

explosives, drugs and chemical warfare agents (Creaser et al., 2004).

Aspiration ion spectrometry is practically employed in the design of the IMCell. The

flow of buffer gas is perpendicular to the direction of the electric field. Both positive

and negative ions can be measured, as they travel in opposite directions. Another

method passes ions between two flat parallel electrodes or two concentric cylinder

electrodes with a flowing buffer gas similar to the aspiration design. An alternating

electric field is placed between the two electrodes such that the ions move

perpendicular to the gas flow in alternating directions (Guevremont, 2004).

Alternating-field (AFIMS) has also been called field-ion spectrometry (FIS), field-

asymmetric waveform (FAIMS) and differential-mobility spectrometry (DMS)

(Kanu et al., 2008).

A novel method has recently been developed, described as travelling-wave ion

mobility spectrometry (TWIMS). The travelling-wave mobility cell comprises a

series of electrodes arranged orthogonally to the ion transmission axis. Opposite

phases of an RF voltage are applied to adjacent electrodes, creating pulses of

travelling waves (T-waves) along which the ions are propelled through a background

gas. The drag due to the presence of gas causes ions to periodically slip over the

waves, with ions of higher mobility slipping over less often than those of lower

mobility and so exiting the device first (Riba-Garcia et al., 2008). A T-wave

separator has been incorporated into a commercial Q-TOF instrument, the Synapt

HDMS (Waters, Manchester, UK), a schematic of which is shown in figure 5.8

(Pringle et al., 2007). The T-wave device does not allow for absolute cross-sectional

measurements to be obtained, although these may be estimated by using reference

samples of known cross sections (Ruotolo et al., 2005) (Thalassinos et al., 2008).

The combination of IMS with MS (often abbreviated to IMMS) adds another level of

information in structural studies, providing data on shape as well as mass. IMMS

has emerged as a technique complementary to the well-established methods of X-ray

crystallography and nuclear magnetic resonance (NMR) spectroscopy for three-

dimensional analysis (van den Heuvel and Heck, 2004). Multiple studies have

shown good agreement between rotationally averaged cross-sectional measurements
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obtained from X-ray and NMR experiments and those obtained by ion mobility

(Scarff et al., 2008; Shelimov et al., 1997; Shelimov and Jarrold, 1997).

Figure 5.8 – A schematic of the Synapt HDMS instrument, which combines a

quadrupole/IM separator with an orthogonal acceleration-TOF. The ion mobility

section comprises three T-wave ion guides as labelled. From (Pringle et al., 2007).

5.6 Particulate methane monooxygenase

Methanotrophic bacteria use methane as their sole source of carbon and energy, and

are, therefore, of significant environmental interest. Not only do they play a key role

in carbon cycling, they are crucially involved in the removal of the potent

greenhouse gas, methane, from their surroundings (Smith et al., 2000). The

metabolism of methane is performed by the organisms using a methane

monooxygenase enzyme, either particulate (pMMO), soluble (sMMO) or ammonia

(AMO). The commonly accepted methane oxidation pathway is highlighted in

Figure 5.9. With one exception (Theisen et al., 2005) all methanotrophs produce

pMMO, when copper concentrations are high (Murrell et al., 2000). Under

conditions where copper is limited in the environment, several strains can also

produce sMMO. The soluble version has been well-characterised, and is known to

have a carboxylate-bridged dinuclear iron centre. Despite vast study, there remains
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disagreement over the metal centre of the pMMO enzyme. A summary of proposed

compositions is given in Table 5.1.

The crystal structure of pMMO, purified from the organism Methylococcus

capsulatus (Bath), was recently determined by researchers at Northwestern

University (Lieberman and Rosenzweig, 2005a). The complex is composed of three

subunits, pmoB (α, ~47 kDa), pmoA (β, ~24 kDa) and pmoC (γ, ~22 kDa).  Three 

copies each of the three subunits form a cylindrical trimer, α3β3γ3, with the soluble

regions derived predominantly from pmoB, and pmoA and pmoC residing primarily

in the membrane. Each protomer in the trimer comprises single copies of the pmoB,

pmoA and pmoC subunits. Three metal centres were identified per protomer. The

first and second are located in pmoB, both assigned as copper sites, one mononuclear

and one dinuclear. The third has been modelled as a mononuclear zinc site within

the lipid bilayer, but inductively coupled plasma atomic emission spectroscopy (ICP-

AES) analysis indicates that this is derived from zinc acetate in the crystallisation

buffer. The in vivo occupation of this site, therefore, remains open for discussion.

Additional structural studies performed by electron microscopy (EM) at Warwick

show that pMMO, as described above, forms a supramolecular complex with

methane dehydrogenase, the second enzyme employed in the methane oxidation

pathway (Myronova et al., 2006).

Figure 5.9 – The methane oxidation pathway of methanotrophic bacteria.

The elucidated crystal structure is shown in Figure 5.10, with the metal sites

highlighted. The EM-determined complex can be seen in Figure 5.11. The oxidation

of methane to methanol is challenging, as methane is the most inert hydrocarbon

(104 kcal/mol C–H bond) (Lieberman and Rosenzweig, 2005a). Some studies have

determined possible roles for the copper ions, but a full characterisation has not been

achieved (Lieberman et al., 2006; Yoshizawa and Shiota, 2006). Further information
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regarding the third, unassigned metal centre in pMMO could provide crucial insight

into the enzyme’s catalytic mechanism.

Organism Group Mol Cu per

200 kDa

Mol Fe per

200 kDa

Reference

Methylococcus

capsulatus

(Bath)

Chan 24.8 ~0 (Nguyen et al., 1998)

30 ~0 (Nguyen et al., 1998)

27.2 ~0 (Yu et al., 2003)

Dalton 4 2 (Basu et al., 2003)

DiSpirito 29 5 (Zahn and DiSpirito,

1996)

16-20 4 (Choi et al., 2003)

Rosenzweig 4-6 1-2 (Lieberman et al.,

2003)

Methylosinus

trichosporium

OB3b

Okura 25.6 1.8 (Takeguchi et al.,

1998)

4 0 (Miyaji et al., 2002)

Table 5.1 – Proposed compositions of the metal sites in pMMO, provided as moles

per 200 kDa, as gel purification had previously indicated this as the molecular mass

of the complex. Adapted from (Lieberman and Rosenzweig, 2004).



Figure 5.10 – (a) a single pMMO protomer with the constituent polypeptides

labelled, the copper centres are indicated, as is the third site which crystallised with

a zinc ion, (b) the pMMO trimer v

adapted from (Lieberman and Rosenzweig, 2005a)

parallel to the membrane normal with one protomer and its metal centres indicated

(adapted from
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(a) a single pMMO protomer with the constituent polypeptides

labelled, the copper centres are indicated, as is the third site which crystallised with

a zinc ion, (b) the pMMO trimer viewed parallel to the membrane normal (both

(Lieberman and Rosenzweig, 2005a)), (c) the pMMO trimer viewed

parallel to the membrane normal with one protomer and its metal centres indicated

(adapted from (Lieberman and Rosenzweig, 2005b)
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(a) a single pMMO protomer with the constituent polypeptides

labelled, the copper centres are indicated, as is the third site which crystallised with

iewed parallel to the membrane normal (both

(c) the pMMO trimer viewed

parallel to the membrane normal with one protomer and its metal centres indicated

(Lieberman and Rosenzweig, 2005b)).
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Figure 5.11 – Three-dimensional structure of pMMO as determined by EM. The

membrane graphic has been added to enable visualisation of the positioning of the

complex in vivo. Figure reproduced with kind permission from Dr. Nataliia

Myronova.

5.7 Hemoglobin and hemoglobin disorders

Hemoglobin (Hb) is the major oxygen-transport protein found in the red blood cells

of all vertebrates. It has a tetrameric structure comprising four chains, two α- and

two β-, each associated with a heme group, as shown in Figure 5.12. Inherited

hemoglobin disorders are the commonest diseases attributable to single defective

genes. Approximately 7 % of the world’s population are carriers, and 300,000 to

500,000 babies with severe forms of such disorders are born each year (WHO 1989).

Although these disorders are most frequent in tropical regions, they are now

encountered in most countries because of migrations of populations (Weatherall et

al., 2006). As such, hemoglobin has been extensively studied.

Inherited hemoglobin disorders fall into two main groups: the structural hemoglobin

variants, which are predominantly caused by single amino acid mutations, and the

thalassemias, which are caused by defective globin production. More than 700

structural variants have been identified, the most debilitating of these being sickle

cell anaemia. The sickle cell mutation results in the production of a β-chain where

the sixth residue has changed from glutamate, which is negatively charged, to valine,

which is hydrophobic (Ingram, 1957). This changes the conformation of the

assembled tetramer, lowering solubility and allowing molecular stacking.



Figure 5.12 – The tetrameric structure of human hemoglobin, with the α

chains shown in different colours, and the heme groups in green.

Polymerisation of the sickle hemoglobin molecule (HbS) in deoxygenated blood

causes a characteristic alteration in shape of red blood cells from biconcave to

crescentic (Murayama, 1967)

occurs when a person inherits two copies of the mutated β

misshapen HbS leads to shortened red cell survi

blood vessels (Bunn, 1997)

fatigue, shortness of breath and dizzine

bone pain, sequestration of blood into lungs, liver or spleen, or thrombosis of

cerebral vessels causing strokes

ESI-MS has been widely used to de

2005; Shackleton et al.

assembly into a non

Kaltashov, 2003, 2007)

The exact assembly pathway for hemoglobin is still under debate. One α

monomer come together to form a heterodimer, and two of these associate to form
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The tetrameric structure of human hemoglobin, with the α

chains shown in different colours, and the heme groups in green.

Polymerisation of the sickle hemoglobin molecule (HbS) in deoxygenated blood

causes a characteristic alteration in shape of red blood cells from biconcave to

(Murayama, 1967). The disease of sickle cell anaemia is recessive, and

occurs when a person inherits two copies of the mutated β-globin gene.

misshapen HbS leads to shortened red cell survival and a tendency to block small

(Bunn, 1997). Clinical symptoms often present as anaemia, such as

fatigue, shortness of breath and dizziness, but more acute presentations can involve

bone pain, sequestration of blood into lungs, liver or spleen, or thrombosis of

cerebral vessels causing strokes (Weatherall et al., 2006).

MS has been widely used to detect Hb variants in hemoglobin

et al., 1991; Wild et al., 2004) and to investigate its structural

assembly into a non-covalent complex (Boys and Konermann, 2007; Griffith and

Kaltashov, 2003, 2007) and its corresponding disassembly (Versluis and Heck, 2001)

The exact assembly pathway for hemoglobin is still under debate. One α

monomer come together to form a heterodimer, and two of these associate to form
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The tetrameric structure of human hemoglobin, with the α- and β-

chains shown in different colours, and the heme groups in green.

Polymerisation of the sickle hemoglobin molecule (HbS) in deoxygenated blood

causes a characteristic alteration in shape of red blood cells from biconcave to

. The disease of sickle cell anaemia is recessive, and

globin gene. The

val and a tendency to block small

. Clinical symptoms often present as anaemia, such as

ss, but more acute presentations can involve

bone pain, sequestration of blood into lungs, liver or spleen, or thrombosis of

tect Hb variants in hemoglobin (Daniel et al.,

and to investigate its structural

(Boys and Konermann, 2007; Griffith and

(Versluis and Heck, 2001).

The exact assembly pathway for hemoglobin is still under debate. One α- and one β-

monomer come together to form a heterodimer, and two of these associate to form
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the tetramer. The α- and β-monomers can exist in heme-free (apo, αa and βa) and

heme-bound (holo, αh and βh) forms (Boys and Konermann, 2007). It is unclear

whether the heme groups are attached to the monomers prior to dimer formation, or

whether their association with each other leads to recruitment of the heme groups.

One suggestion is the formation of a heme-deficient dimer intermediate, consisting

of a natively folded holo-α-globin (αh) and a partially folded apo-β-globin (βa),

before complete dimer formation leading to the correct tetrameric arrangement

(Griffith and Kaltashov, 2007). Other work reports, however, that the heme-deficient

dimer is seen only when using commercially available lyophilised protein, and not

when using freshly prepared samples (Boys et al., 2007). This study of the acid-

induced denaturation of bovine Hb concluded that a highly symmetric mechanism

took place:

(αhβh)2 2(αhβh) 2 αh
folded + 2 βh

folded 2 αa
unfolded + 2 βa

unfolded + 4 heme

Further insight into the assembly of the hemoglobin tetramer could be of particular

importance in understanding the effects of structural Hb disorders.



5.8 Aims and objectives

The multi-technique approach to metallomic studies, highlighted in section 5.2, is

summarised in Figure 5.13. Each of

organic MS and ion mobility, were

problems, with the following aims:

1. To confirm or challenge previous characterisation of the metal sites in the

pMMO complex usin

and liquid sample introduction.

2. To further elucidate the structural properties of the hemoglobin tetramer and

its components, and to determine whether conformational differences

between HbA and HbS

mobility MS.

The work towards (1) was

industrial site of Intertek MSG, formerly ICI M

supervision of Dr. Jeff Franks.

The research involved in

Scarff et al., (2009)

mobility mass spectrometry

20(4): 625-631

Figure 5.13 – Approaches to the study of metalloproteins, (A) was used for work on

pMMO, (B) and (C) for investigating hemoglobin structure.
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Aims and objectives

technique approach to metallomic studies, highlighted in section 5.2, is

summarised in Figure 5.13. Each of the three types of methodology

organic MS and ion mobility, were utilised for the study of particular biological

problems, with the following aims:

To confirm or challenge previous characterisation of the metal sites in the

pMMO complex using inorganic mass spectrometry, by both laser ablation

and liquid sample introduction.

To further elucidate the structural properties of the hemoglobin tetramer and

its components, and to determine whether conformational differences

between HbA and HbS can be observed by travelling wave

(1) was part of my CASE Award project, conducted at the

industrial site of Intertek MSG, formerly ICI Measurement Science

supervision of Dr. Jeff Franks.

rch involved in (2) has been peer reviewed and published:

(2009) Probing hemoglobin structure by means of travelling

mobility mass spectrometry, Journal of the American Society for Mass Spectrometry

Approaches to the study of metalloproteins, (A) was used for work on

pMMO, (B) and (C) for investigating hemoglobin structure.
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g inorganic mass spectrometry, by both laser ablation

To further elucidate the structural properties of the hemoglobin tetramer and

its components, and to determine whether conformational differences

can be observed by travelling wave-based ion
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Probing hemoglobin structure by means of travelling-wave ion

, Journal of the American Society for Mass Spectrometry
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6.1 Purification of pMMO

This purification was performed with Dr. Nataliia Myronova. Experiments used

pMMO from Methylocella capsulatus (Bath) from the University of Warwick culture

collection. Cultivation, isolation and purification were performed as previously

described (Myronova et al., 2006). In brief, M. capsulatus (Bath) was cultured in

nitrate minimal salt medium with a final copper sulphate concentration of 40 μM.

Cells were harvested, washed with 25 mM piperazine-1,4-bis(2-ethanesulfonic acid)

(PIPES), pH 7.2, and resuspended in the same buffer. Concentrated cells were

frozen and stored at -80 °C. Thawed cells, resuspended in PIPES, were broken and

debris and soluble protein were removed. Membrane-bound protein was solubilised

and fractionated by gel filtration chromatography. Solubilisation was performed by

adding the dissolved anionic detergent dodecyl-β-D-maltoside (Ultrol grade,

Calbiochem, USA) to give a detergent/protein (w/w) ratio of 1.5 to the particulate

extract (Basu et al., 2003). Fractions containing pMMO were purified using a Mono

Q-10 anion-exchange column (GE Healthcare, Bucks, UK). The activity of pMMO

was assayed at each stage of membrane isolation and purification by following the

oxidation of propylene to propylene oxide by gas chromatography. Fractions with

protein concentrations of 0.08 – 0.22 mg/ml were generated, and some retained for

in-solution ICP-MS analysis.

6.2 EDTA treatment

To prepare samples for control analysis, ethylenediamine tetraacetic acid (EDTA)

was used to remove any adventitious metals that may have been associated with the

protein. Samples were incubated with 10 mM EDTA for one hour on ice, then de-

salted using a pre-cooled HiTrap column (GE Healthcare, UK).

6.3 Gel electrophoresis

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was

performed on pMMO and EDTA-treated pMMO according to Laemmli (Laemmli,

1970) at 200V at room temperature. Gels of 17 % acrylamide were used, with

protein loadings of 12 – 165 μg per well. Proteins bands were visualised using
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Coomassie brilliant blue R-250 (0.1 % w/v in 10 % (v/v) methanol and 10 % (v/v)

glacial acetic acid). The gel was destained by incubation in a solution of methanol,

acetic acid and water (4:1:5 v/v).

Protein standards of myoglobin (equine, Sigma), alcohol dehydrogenase (ADH, yeast

and equine, Sigma) were loaded on separate acidic native gels to be used as standards.

Gels were prepared according to McLellan (Garfin, 2003). Replicate standard gels

were dried onto filter paper (Whatman) using a vacuum system. Blank SDS gels

were spiked with copper sulphate, zinc nitrate and ferric sulphate to be used as

standards for laser ablation work (Binet et al., 2003).

Blue native PAGE was also performed, only on non-treated pMMO, with an 8-13 %

gradient gel and a protein loading of 48 – 144 μg per well. Samples were mixed with

0.5 M aminocaproic acid and loaded on the top of a 4 % stacking gel. The gel was

run at 8 °C at 16 mA constant current and 70 – 120 V. When the samples had

completely passed through the stacking gel, the voltage was gradually increased to

300 V. The 0.02 % Coomassie-containing cathode buffer was used until the dye

front was one-third of the way from the top of the gel, when it was replaced with

0.002 % Coomassie-containing buffer. Following electrophoresis, gels were further

destained in 25 % methanol and 10 % acetic acid.

6.4 Inorganic analysis

These experiments were performed under the supervision of Dr. Jeff Franks in the

laboratory of the Measurement Science Group, ICI Wilton (now Intertek MSG).

6.4.1 Laser ablation

A neodymium:yttrium aluminium garnet (Nd:YAG) laser system with an output at

the fundamental wavelength of 213 nm (UP213, New Wave, UK) was used to ablate

gel samples. Ablated material was carried into the plasma of the ICP-MS instrument

by helium gas flow. The laser was tuned on NIST 612 glass, which contains trace

elements at 50 parts per million (ppm). Conditions were optimised, using blank gel

regions, at nebuliser gas flow of 1 L/min, laser power at 50-75 % power and 10 Hz,

with 5 μm depth pass and an ablation area of 105 μm. Calibration was performed

using polypropylene discs containing known amount of the metals of interest,
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namely copper, iron and zinc. Gels under study were dissected into slices of a

suitable size for the ablation chamber and placed on a glass or plastic slide prior to

analysis. Dried gels were affixed using double-sided tape; wet gels were placed

without any adhesive.

6.4.2 Digestion of gel bands

Gel bands were cut out using a plastic knife to avoid any metal contamination. Each

band was placed in a separate plastic tube and 0.2 ml of concentrated nitric acid

added. These were left in a beaker of water at ~90 °C on a hotplate for 30 minutes.

0.05 ml of rhodium standard was added to give a concentration of 1 ppm, and each

tube made up to 5 ml final volume with 4.75 ml water.

6.4.3 ICP-MS

An Elan DRC II (Perkin Elmer, USA) was used for all ICP-MS analysis with a

concentric nebuliser. For in-solution analysis an auto-sampler system was used for

sample introduction, with nebuliser gas optimised at 0.7 L/minute. Ablated material

from LA and nebulised material from in-solution analysis was transported by argon

as a carrier gas into the plasma. The instrument was operated in DRC mode, using 5 %

hydrogen in argon pumped at 0.2 ml/min into the cell. Calibration in solution mode

was performed using standard solutions of iron, copper and zinc at 5, 10, 20, 50 and

100, 200, 300 and 500 parts per billion (ppb) in 4% nitric acid with 1 ppm rhodium

as internal standard. For digested gel samples, these were acid-matched calibration

standards. For purified pMMO fractions, standards were prepared in 25 mM PIPES

buffer. Multiple isotopes were monitored for each of the three metals of interest, to

allow for monitoring of interferences and signal consistency. These were: 63Cu, 65Cu,

54Fe, 56Fe, 57Fe, 64Zn, 66Zn and 67Zn.

6.5 Hemoglobin sample preparation

Samples of fresh whole blood were supplied by University Hospitals Coventry and

Warwickshire NHS Trust. Sample preparation for mass spectrometric analysis was
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adapted from that detailed by Ofori-Acquah (Ofori-Acquah et al., 2001). Samples

(20 µl) were diluted 10-fold in 10 mM ammonium acetate pH 6.8 and spun at 3000 g

for 15 minutes in centrifugal filter units with a 10 kDa cut-off (Microcon® YM-10,

Millipore Corporation, MA, USA). Sample retained on the filter was diluted a

further 20-fold with 10 mM ammonium acetate and desalted by agitating for two ten-

minute periods with approximately 5 mg of ion-exchange mixed bed resin (AG 501-

X8, Bio-Rad Laboratories, Hercules, CA, USA) that had been prepared for use by

rinsing twice in liquid chromatography MS grade water. The resulting solutions were

introduced into the ESI source of a Synapt HDMS System (Waters, UK) by means of

fused silica nanospray needles. All solvents and calibration and protein standards

were obtained from Sigma (St. Louis, USA).

6.6 IMMS analysis

6.6.1 Data acquisition

Data were acquired by means of a Synapt HDMS System in ESI positive mode with

a capillary voltage of 1.2 kV from 1000-4500 m/z. The time-of-flight (TOF) mass

analyser was calibrated using 2 mg/ml cesium iodide in 50% aqueous propan-2-ol.

Instrument acquisition parameters were adjusted to provide the optimal ion mobility

separation. The cone voltage was 60 V and the collision energy in the trap region

was 10 eV. Source temperature and gas flow were 110°C and 35 ml/min

respectively. Nitrogen was used as the gas in the ion mobility cell and the indicated

pressure within the cell was 0.68 mbar, equivalent to a flow rate of 38 ml/min. The

backing pressure was increased in increments from 2 to 8 mbar to identify the ideal

pressure conditions for transmission of the relevant ionic species. The travelling

wave velocity and wave height were altered in increments from 100-600 m/s and 8-

20V respectively, and the conditions that provided the optimal mobility separation

were used for all following experiments.

The synchronisation of gated release of ions into the ion mobility separator with TOF

acquisition allows arrival time distributions of ions to be obtained. Ions are released

from the trapping cell to the mobility cell in a pulse every 100 μs, and 200

orthogonal acceleration pushes of the TOF analyser are recorded to form one ion
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mobility experiment. The overall mobility recording time is 200 x tp, where tp is the

pusher period (Pringle et al., 2007). The pusher period depends on the mass

acquisition range; for these experiments, a pusher period of 120 µs was used giving a

mobility recording time of 24 ms. Equine myoglobin at a concentration of 10µM in

50% aqueous acetonitrile containing 0.2% formic acid was used to provide data

which were used to create a calibration curve for cross-sectional measurements.

Data obtained for each hemoglobin tetramer over the m/z range 3000-4500 were

deconvoluted on to a true mass scale using the MaxEnt software to provide an

estimate of molecular mass. Experiments were carried out in triplicate.

6.6.2 Calibration, modelling and cross-section estimation

The equine myoglobin data was used to create a calibration curve for each set of

experiments. Absolute cross-sections for equine myoglobin were obtained from

drift-time ion mobility mass spectrometry (DTIMS) studies (Prof. Michael T.

Bowers, personal communication). The calibration was performed using a procedure

developed in-house based on previously published work (Ruotolo et al., 2005;

Scrivens et al., 2006; Wildgoose et al., 2006). In brief, normalised cross-sections

(corrected for charge and reduced mass) were plotted against corrected arrival times

(corrected to exclude time spent outside the ion mobility cell) to create a calibration

with a power series fit. The calibration allows for estimation of the cross-section of a

molecule of interest provided that the mobilities (corrected arrival times) for that

molecule lie within the mobilities observed for the calibrant, irrespective of the size

range of cross-sections for the calibrant (Shvartsburg and Smith, 2008; Thalassinos

et al., 2008). The calibration was used to estimate rotationally averaged collision

cross-sections of hemoglobin monomer, dimer and tetramer for the different charge

states observed based on their arrival time distributions, provided that their corrected

arrival times fell along the calibration curve.

To compare the experimental cross-sections for the normal and sickle hemoglobin

tetramers with accepted values, cross-sections were calculated using MOBCAL, a

program to calculate mobilities (Mesleh et al., 1996; Shvartsburg and Jarrold, 1996)

from published X-ray structures held at the RCSB Protein Data Bank (Berman et al.,

2000). MOBCAL facilitates the use of three approximations to calculate cross
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sections. The projection approximation (PA) typically results in an underestimation

of the cross-section of a large ion. It calculates the cross-section by averaging the

projections produced by every orientation of a molecule and so does not take into

account interactions with the buffer gas. The trajectory method (TM) takes into

account all interactions but is computationally intense. The exact hard sphere

scattering model (EHSS) carries out trajectory calculations whilst ignoring long-

range interactions but nevertheless gives values within a few percent of the TM

approximations (Jarrold, 1999; Scarff et al., 2008). For this work, cross-sections

were calculated using the PA and EHSS methods to reduce computational time.
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7.1 Analysis of gel-resolved proteins by LA-ICP-MS

7.1.1 Technical aspects of the laser ablation system

The laser system used for the LA-ICP-MS work was a newly-released instrument

provided by New Wave (Cambs, UK) for assessment. One particular advantage was

the use of helium, rather than the traditional argon, as a carrier gas in the ablation cell,

as ablation in helium results in smaller particles produced at the ablation site.

Helium is less dense than argon, has a higher thermal conductivity and can remove

energy away from the ablation site faster. It has a higher ionisation energy than

argon resulting in a smaller plasma above the surface of the sample (Hergenroder,

2006). These particles are transported and processed by the plasma more efficiently,

and are not deposited back on the sample. Although it was superior to the previously

available infrared laser, a number of technical issues were encountered. Visualising

the gels using the built-in camera system was difficult, with a lack of sufficient

contrast between the background and the protein bands, and limited control of the

light settings which could assist with this issue. An example of the imaging is shown

in Figure 7.1. Due to the size of the visualisation area, only a small amount of the

gel could be seen at any one time. In order to obtain the view required for analysis of

protein bands, a visualisation map had to be created which could take up to ten

minutes. Whilst not a problem when looking at dried gels, it was a significant

drawback when studying wet gels. The heat in the ablation chamber would often

cause wet gels to dry and distort before ablation could commence. An additional

problem was encountered when opening the chamber to change samples. This

process would cause the inductively coupled plasma (ICP) to extinguish; re-igniting

this must be a gradual procedure to prevent the plasma extinguishing again, therefore

slowing the throughput of samples. Although this was partially overcome by careful

control of the nebuliser gas flow, it was not completely solved.

7.1.2 Analysis of dried gels

Laser ablation (LA) of dried gels was performed on gels containing the standard

proteins of myoglobin and alcohol dehydrogenase (ADH). Images of the ablated

gels can be seen in Figure 7.2. Although the gels appeared to hold their structural
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transportation and handling, as is evident in the cracks highlighted. Blank areas of

gels were initially analysed to provide background readings to which data from the
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insufficient to provide necessary signal when transferred to the mass spectrometer.

The laser energy and ablation area were both increased to try and overcome this; the

result, however, was the scorching of the gel right thr

It was decided to attempt analysis of wet gels in consideration of the lab

instrument time available.

Figure 7.1 – An example of gel visualisation in the laser ablation chamber
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Blank gels spiked with metal salts were prepared to be used for calibrating
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polymerise, but gels containing

difficulties described above, some data was obtained. The monitoring of multiple

isotopes allowed for the monitoring of interferences, as specific isobaric

interferences only affect particular isotopes of ce
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integrity well during the drying process, they soon suffered the effects of

transportation and handling, as is evident in the cracks highlighted. Blank areas of

gels were initially analysed to provide background readings to which data from the

otein bands could be compared, but the amount of ablated material

insufficient to provide necessary signal when transferred to the mass spectrometer.

The laser energy and ablation area were both increased to try and overcome this; the

result, however, was the scorching of the gel right through to the backing filter paper.

It was decided to attempt analysis of wet gels in consideration of the lab

instrument time available.

An example of gel visualisation in the laser ablation chamber

Analysis of wet gels

Blank gels spiked with metal salts were prepared to be used for calibrating

background readings (Binet et al., 2003). Gels containing copper sulphate did not

polymerise, but gels containing iron and zinc were used. Despite the technical

difficulties described above, some data was obtained. The monitoring of multiple

isotopes allowed for the monitoring of interferences, as specific isobaric

interferences only affect particular isotopes of certain elements, e.g.
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iron and zinc were used. Despite the technical

difficulties described above, some data was obtained. The monitoring of multiple

isotopes allowed for the monitoring of interferences, as specific isobaric

rtain elements, e.g. 40Ar16O to 56Fe.
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Figure 7.2 – Laser ablation of dried polyacrylamide gels
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Laser ablation of dried polyacrylamide gels



For the iron-containing gels,

33S and 13C, as sulphur and carbon are components of the gel. For the zinc

containing gels, 63Zn,

over a period of 60 seconds; the aim was to generate a stable reading for the metal

ions, so that significant readings in protein bands could be confirmed. As shown in

Figure 7.3, stable readings could not be obtained from the spiked gels, and they were

therefore not suitable

calibration using polypropylene discs spiked with known concentrations of metal, gel

bands from ADH and pMMO were analysed. Examples of data obtained are given in

Figure 7.4. As with the spiked gels, stable readings could not be obtained.

Significant readings for zinc wou

background signals from carbon and sulphur.

inconclusive.
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containing gels, 53Fe and 56Fe were monitored, along with

C, as sulphur and carbon are components of the gel. For the zinc

Zn, 65Zn and 66Zn were monitored. A region of the gel was ablated

over a period of 60 seconds; the aim was to generate a stable reading for the metal

significant readings in protein bands could be confirmed. As shown in

Figure 7.3, stable readings could not be obtained from the spiked gels, and they were

suitable to be used to calibrate the LA-ICP-MS system. Following

olypropylene discs spiked with known concentrations of metal, gel

bands from ADH and pMMO were analysed. Examples of data obtained are given in

As with the spiked gels, stable readings could not be obtained.

Significant readings for zinc would be expected for ADH, but these are dwarfed by

background signals from carbon and sulphur. The pMMO analysis was also

– LA-ICP-MS analysis of gels spiked with iron and zinc.
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Analysis of protein bands in wet gels; the upper panel shows readings

from ADH, the lower from pMMO.
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Analysis of protein bands in wet gels; the upper panel shows readings



Chapter 7 – Results – Metallomic studies

118

7.2 Analysis of gel-resolved proteins by digestion and in-

solution ICP-MS

An alternative approach employed to obtain results from gel-resolved samples was to

digest the gel bands and detect any released metals. An example of an SDS-PAGE

separation of pMMO can be seen in Figure 7.5, with the constituent subunits labelled.

These bands were digested and analysed for levels of copper, iron and zinc.

Although there is agreement that the zinc observed in the structure of the pMMO

complex is an artefact of the crystallisation process, it was monitored as a control.

As shown in Figure 7.6(a), a linear response was achieved for increasing

concentrations of the metals for multiple isotope calibration, when normalised to the

internal standard of rhodium. The isotopes 63Cu, 65Cu, 54Fe, 56Fe, 57Fe, 66Zn, 64Zn

and 67Zn were monitored. Readings for these metals have been summarised in

Figure 7.6(b)-(d), and show that none of the elements appeared at any significant

levels, remaining in the very low ppb range. When compared with samples from

EDTA-treated pMMO, results from which are summarised in Figure 7.7, there is no

difference; in fact, there is a slightly higher metal content in the treated samples,

which are supposedly metal-depleted.

A fresh preparation of pMMO was analysed several weeks later in order to provide

repeat data which could shed light on the unexpected results obtained. The

calibration and summarised results are shown in Figure 7.8, indicating very similar

results. It is possible that the SDS-PAGE caused the pMMO to denature such that

the metal ions were lost, as PAGE analysis is problematic for membrane proteins

(Jiménez et al., 2009; Rath et al., 2009). A blue native (BN) gel was therefore

analysed; as the name suggests, this allows for more native conformation to be

retained. Two closely positioned bands are obtained from a BN-PAGE separation of

pMMO, as shown in Figure 7.9. These bands were digested and analysed, but again,

no significant levels of any of the metals were detected. These results are

summarised in Figure 7.10.



Figure 7.5 – SDS-PA

previous characterisation
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PAGE of purified pMMO. Band identifications correspond to

previous characterisation (Smith and Dalton, 1989)
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. Band identifications correspond to

(Smith and Dalton, 1989).



Figure 7.6 – Analysis of digested gel bands from SDS

calibration curves for multiple isotopes of copper, iron and zinc, (b) copper

concentrations, (c) zinc concen
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Analysis of digested gel bands from SDS-PAGE of purified pMMO

calibration curves for multiple isotopes of copper, iron and zinc, (b) copper

concentrations, (c) zinc concentrations. None were at significant levels.

Metallomic studies

of purified pMMO, (a)

calibration curves for multiple isotopes of copper, iron and zinc, (b) copper

None were at significant levels.



Figure 7.7 - Analysis of digested gel bands from SDS

EDTA to deplete any naturally occurring metal, (a) copper concentrations, (b) iron

concentrations, (c) zinc concentrations.
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Analysis of digested gel bands from SDS-PAGE of pMMO, treated with

EDTA to deplete any naturally occurring metal, (a) copper concentrations, (b) iron

concentrations, (c) zinc concentrations. None were at significant levels.

Metallomic studies

PAGE of pMMO, treated with

EDTA to deplete any naturally occurring metal, (a) copper concentrations, (b) iron

were at significant levels.



Figure 7.8 – Repeat

pMMO, (a) calibration curve, (b) c
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Repeat analysis of digested gel bands from SDS-PAGE of purified

pMMO, (a) calibration curve, (b) copper content, (c) iron content

significant levels.

Metallomic studies

PAGE of purified

opper content, (c) iron content. None were at



Figure 7.8 – Repeat analysis of dige

pMMO, (d) copper content in EDTA

treated sample.
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Repeat analysis of digested gel bands from SDS-PAGE of

pMMO, (d) copper content in EDTA-treated sample, (e) iron content in EDTA

treated sample. None were at significant levels.
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PAGE of purified

treated sample, (e) iron content in EDTA-

None were at significant levels.



Figure 7.9

Figure 7.10 – Analysis of digested bands from blue native PAGE of purified pMMO,

(a) copper concentrations, (b) iron concentrations
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Figure 7.9 – Blue Native gel of purified pMMO

Analysis of digested bands from blue native PAGE of purified pMMO,

(a) copper concentrations, (b) iron concentrations. Neither were at significant levels.

Metallomic studies

Blue Native gel of purified pMMO

Analysis of digested bands from blue native PAGE of purified pMMO,

were at significant levels.
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7.3 In-solution analysis of pMMO by ICP-MS

The use of in-solution ICP-MS for the analysis of biological samples is often limited

by the sample requirements, as volumes needed often reduce the concentration of the

elements of interest to outside the range of sensitivity of the instrumentation.

Interferences are also encountered from the buffers required to keep samples in

solution. Fractions from the chromatographic separation of pMMO were analysed in

the smallest possible volume to allow for replicate analyses (5 ml), and the

calibration was performed with the use of 1 ppb rhodium as an internal standard to

normalise all measurements against. Five fractions (I – V) were used; these

correspond to elution from the column and do not necessarily correspond to a distinct

separation of pMMO subunits. Half of each was treated with EDTA to deplete metal.

As previously, isotopes 63Cu, 65Cu, 54Fe, 56Fe, 57Fe, 66Zn, 64Zn and 67Zn were

monitored. The results are summarised in Figure 7.11 for copper and iron data; the

calibration shows a good linear response, as before.

Levels of metal recorded are much higher than the gel analyses, over 100 ppb,

suggesting that these readings indicate genuine detection rather than being

experimental artefacts or background signals. The somewhat surprising observation

is that the levels of metal appear similar or, in the case of iron, significantly higher in

the EDTA-treated samples compared to the non-treated. As this has been

consistently observed across analysis approaches and a number of replicate

experiments it would indicate a problem with the samples. A possible explanation is

that some sort of contamination is present in the column used to filter the treated

samples, but confirmation of this would require further investigation.



Figure 7.11 – In-solution ICP

concentrations of copper, iron and zinc, (b) copper concentrations in treated and

untreated samples, (c) iron concentrations in treated and untreated samples, (d)

combined data for untreated samples showing
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solution ICP-MS analysis of pMMO, (a) calibration using known

concentrations of copper, iron and zinc, (b) copper concentrations in treated and

untreated samples, (c) iron concentrations in treated and untreated samples, (d)

combined data for untreated samples showing considerable metal levels.

Metallomic studies

MS analysis of pMMO, (a) calibration using known

concentrations of copper, iron and zinc, (b) copper concentrations in treated and

untreated samples, (c) iron concentrations in treated and untreated samples, (d)

considerable metal levels.
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If the EDTA-treated samples are removed from the dataset, copper appears to be

present at levels between 100 and 250 ppb across the fractions, and iron at levels

between 25 and 60 ppb. As shown in Figure 7.12(a), Fraction II shows the highest

levels of both metals, with Fraction III at slightly lower levels, and Fractions I, IV

and V at comparably lower levels. The isotope levels appear almost identical, an

observation made clearer by plotting the abundances of the separate isotopes present

in each fraction, as in Figure 7.12(b). The data-handling software for the ICP-MS

instrument accounts for natural abundances of the isotopes, shown for copper and

iron in Table 7.1, and therefore each isotope should be observed at the same level.

This adds confidence to the data obtained on metal content. These results appear to

correlate with previous work showing presence of copper in the pMMO complex,

and seem to be in agreement with the work of those groups proposing that iron is the

metal in the third metal site. In order to confirm the results obtained, ICP optical

emission spectrometry (ICP-OES) was performed. This technique is less sensitive,

and therefore less precise than ICP-MS at very low concentrations. It can be used to

monitor multiple emission lines rather than multiple isotopes. In this case, results

obtained showed similar trends in metal concentration, as shown in Figure 7.13. The

inorganic data obtained are not significant enough to confidently comment on any

biological context.

To place any significant data in context of the overall structure of pMMO, the protein

content of the fractions would need to be determined, in order to correlate the organic

and inorganic structural aspects (Becker, J. Sabine et al., 2005). This is problematic,

however, due to the membrane-bound nature of the complex. Membrane proteins are

notoriously difficult to analyse by organic mass spectrometry, as the detergents used

to extract and purify them are incompatible with the ionisation methods employed

(Santoni et al., 2000). Some efforts were made with the available pMMO sample

using methods developed at the MRC (Carroll et al., 2007), Dr. Ian M. Fearnley,

personal communication) but with little success. The sample availability of pMMO

is a common problem in any analysis, as there has been no expression system

developed to date. Suitable methanotrophs must therefore be cultivated, and

naturally occurring protein extracted and purified.



Figure 7.12 – In-solution ICP

in each fraction, (b) concentration of individual isotopes in the five fractions showing
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solution ICP-MS of untreated pMMO, (a) concentrations of metal

in each fraction, (b) concentration of individual isotopes in the five fractions showing

good reproducibility.

Metallomic studies

MS of untreated pMMO, (a) concentrations of metal

in each fraction, (b) concentration of individual isotopes in the five fractions showing



Figure

Isotope

63Cu

65Cu

54Fe

56Fe

57Fe

Table 7.1
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Figure 7.13 – ICP-OES analysis of untreated pMMO.

Isotope Abundance

Cu 69.17 %

Cu 30.83 %

Fe 5.8 %

Fe 91.72 %

Fe 2.2 %

Table 7.1 – Natural abundances of copper and iron isotopes.

Metallomic studies

OES analysis of untreated pMMO.

Abundance

69.17 %

30.83 %

5.8 %

91.72 %

2.2 %

Natural abundances of copper and iron isotopes.



7.4 Ion mobility studies of human hemoglobin

7.4.1 Instrument

The instrument acquisition parameters must be optimised for each individual

application of ion mobility separation. T

interest, as optimal conditions are dependent on ionic spec

ratios (Tahallah et al.

pressure of between 6.6 and 6.7 mbar was ideal for intact hemoglobin tetramer

analysis. The optimal ion mobility separation of the tetramer was

travelling-wave velocity of 400 m/s and wave height of 18 V.

A calibration curve was used to allow the estimation of cross

hemoglobin molecules at different charge states. Cross sections calculated for

equine myoglobin were within 2 % of absolute values obtained by drift cell

experiments, seen reproducibly across the three datasets acquired. A curve plotted

for one calibration dataset is shown in Figure 7.14.

measured parameter, which can then be related to cross

described. A correlation between arrival times on our instrument and published

cross-sections can be seen.

Figure 7.14
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Ion mobility studies of human hemoglobin

Instrument acquisition parameters and calibration

instrument acquisition parameters must be optimised for each individual

ion of ion mobility separation. These must be tailored to each sample of

interest, as optimal conditions are dependent on ionic species and mass

et al., 2001). Controlled optimisation indicated that a backing

pressure of between 6.6 and 6.7 mbar was ideal for intact hemoglobin tetramer

analysis. The optimal ion mobility separation of the tetramer was

wave velocity of 400 m/s and wave height of 18 V.

A calibration curve was used to allow the estimation of cross-sections for different

hemoglobin molecules at different charge states. Cross sections calculated for

were within 2 % of absolute values obtained by drift cell

, seen reproducibly across the three datasets acquired. A curve plotted

for one calibration dataset is shown in Figure 7.14. Arrival time at the detector is the

measured parameter, which can then be related to cross-section as previously

described. A correlation between arrival times on our instrument and published

sections can be seen.

Figure 7.14 – Calibration curve for estimation of cross sections.
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Ion mobility studies of human hemoglobin

acquisition parameters and calibration

instrument acquisition parameters must be optimised for each individual

hese must be tailored to each sample of

ies and mass-to-charge

. Controlled optimisation indicated that a backing

pressure of between 6.6 and 6.7 mbar was ideal for intact hemoglobin tetramer

analysis. The optimal ion mobility separation of the tetramer was achieved at a

sections for different

hemoglobin molecules at different charge states. Cross sections calculated for

were within 2 % of absolute values obtained by drift cell

, seen reproducibly across the three datasets acquired. A curve plotted

Arrival time at the detector is the

section as previously

described. A correlation between arrival times on our instrument and published

for estimation of cross sections.
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7.4.2 Hemoglobin tetramer analysis

Data for normal (HbA) and sickle (HbS) hemoglobin were analysed under non-

denaturing conditions; representative spectra are shown in Figure 7.15. The data

were deconvoluted to give masses of 64,454.7 Da for HbA and 64,385.8 Da for HbS,

which are very close to the theoretical masses of 64,453.2 and 64,393.4, respectively

(Ofori-Acquah et al., 2001).

The spectra show the presence of the tetramer ((αhβh)2), heterodimer (αhβh), and apo-

and holo-monomer species. The trimer is not seen, as would be expected considering

that the tetramer involves the non-covalent association of two αhβh dimers. As

clinical samples were used, and carefully controlled near-physiological conditions

were employed in the preparation, the absence of trimer implies that the species

observed exist naturally in solution. This is consistent with results from isotope-

labelling studies, which showed that non-tetrameric ions seen in the spectrum

correspond to genuine in-solution species (Hossain and Konermann, 2006) rather

than the products of fragmentation (Kuprowski et al., 2007).

Both types of monomer (α and β) are observed in the HbA spectrum in both apo and

holo form. A previous study (Griffith and Kaltashov, 2003) suggested that an αh

monomer becomes associated with a βa monomer, to enable the β-chain to

incorporate its heme group. This was based upon the fact that no βh was observed in

the spectrum. A subsequent study (Boys et al., 2007) detected very small quantities

of heme-deficient dimer, and found that both monomers were capable of binding

heme. The discrepancies between these two studies are thought to be attributed to

differences between the commercially prepared and freshly obtained samples used.

In this study, which used fresh blood samples, βh was observed in multiple charge

states.



Figure 7.15 – Mass spectra of (a) normal (HbA) and (b) sickle (HbSS) hemoglobin

analysed by ESI

heterodimer (D) and apo
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Mass spectra of (a) normal (HbA) and (b) sickle (HbSS) hemoglobin

analysed by ESI-TOF-MS. Charge states are labelled for the tetramer (Q),

heterodimer (D) and apo- and mono-monomers; subscripts a and

holo forms, respectively.

Metallomic studies

Mass spectra of (a) normal (HbA) and (b) sickle (HbSS) hemoglobin

MS. Charge states are labelled for the tetramer (Q),

and h refer to apo and
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7.4.3 Cross-section determination

It has been reported that without the attachment of a heme group, the α and β

monomers adopt extensively unfolded conformations (Leutzinger and Beychok,

1981). Cross-sections for various charge states of the monomers in both apo and

holo forms were estimated. These suggest that the predominant conformations of

both monomers in the gas phase are similar to each other and show little change in

the presence of heme, as shown in Figure 7.16. The cross-section of each of the

molecules increases with an increase in charge, thought to be a result of the effects of

Coulomb repulsion (Badman et al., 2001; Valentine et al., 1997).

The heme-deficient dimer observed in previous studies was not observed. The

presence of both apo and holo forms of the monomers suggests that a βa does not

need to associate with αh in order to recruit a heme group. Many more charge states

of αa were observed than βa. The number of charges accepted by a protein depends

upon the number of exposed basic sites on its surface; a more folded protein has

fewer sites exposed than an unfolded one, and cannot accept as many charges. This

may suggest, therefore, that the α-chain adopts more unfolded conformations in the

gas phase than the β-chain. Alternatively, the absence of higher charge states of βa

may be due to the different desolvation behaviour of the two types of monomer. Due

to its greater non-polar character, the α-chain ionises preferentially compared to the

β-chain, thereby competing more effectively for charge (Kuprowski et al., 2007).

The cross-section estimations of monomer, dimer and tetramer can be put together to

form a picture of the hemoglobin assembly process, as shown in Figure 7.17. The 6+

charge state of αh and βh ([M+6H]6+) have estimated cross-sections of 1583 and 1488

Å2, respectively. If these two monomers were to come together to form a dimer, it

would be expected that a dimer with a cross-section of approximately the sum of

these values, i.e. around 3071 Å2, would be observed. This is the case, as the

([M+12H]12+) dimer charge state has an estimated cross-section of 3001 Å2. The

slightly smaller value is not unexpected, as the contact area on both of the monomers

would be compacted and contribute less to the overall cross-section.

The average estimated cross-sections for the HbA and HbS, for four different charge

states, are shown in Figure 7.18. The data indicate a difference in cross-section

between normal and sickle-cell hemoglobin, and a variation with charge state.



Figure 7.16 – Average estimated cross

β
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Average estimated cross-sections for (a) the α-monomer, and (b) the

β-monomer, observed across three datasets.

Metallomic studies

monomer, and (b) the



Figure 7.17 – Average estimated cross

HbA tetramer, using data obtained across three datasets.

Figure 7.18 – Estimated cross

charge states, showing averaged values from three datasets, with corresponding
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Average estimated cross-sections for holo-α, holo-β, heterodimer and

tetramer, using data obtained across three datasets.

Estimated cross-sections for HbA and HbS tetramers for four different

charge states, showing averaged values from three datasets, with corresponding

errors.

Metallomic studies

β, heterodimer and

tetramer, using data obtained across three datasets.

sections for HbA and HbS tetramers for four different

charge states, showing averaged values from three datasets, with corresponding
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For the charge states studied, the cross-sections observed for HbS are somewhat

larger than those of HbA. Theoretically determining what the charge state of a

molecule should be, within a particular solvent at a certain pH, is difficult, as

secondary, tertiary and quaternary structure have to be taken into consideration.

Previous work indicates that the lowest charge states observed under near-

physiological conditions are most representative of the native protein structure

(Scarff et al., 2008). With this in mind, the [M+18H]18+ charge state for HbA and

HbS may correspond to a tetrameric structure that is beginning to denature. The

reproducibility of the cross-sections estimated for [M+15H]15+, [M+16H]16+ and

[M+17H]17+ charge states of HbA is ± 1 % between three replicate datasets; this is

believed to be representative of the reproducibility capabilities of the experiment.

The cross-sections for HbS show a larger deviation of ± 3 %, which may reflect the

presence of a more diverse population of conformations of the HbS molecule with

similar cross-sections.

The rotationally averaged cross-sections for HbA calculated from X-ray

crystallographic structures were 3133 and 4343 Å2 for projection approximation (PA)

and exact hard sphere scattering (EHSS), respectively. The values for HbS were

3733 and 4775 Å2. The experimentally obtained estimations for the [M+15H]15+,

[M+16H]16+ and [M+17H]17+ charge states of HbA and HbS fall between these two

theoretical approximations, and agree with the X-ray observation that HbS has a

larger cross-section than that of HbA. Although illustrative of solution-phase

structures under controlled conditions, gas-phase conformations have been shown to

be smaller than those predicted by EHSS approximations (Hoaglund-Hyzer et al.,

1999). A more compact conformation is thought to be adopted in the gas phase due

to intramolecular interactions causing the collapse of polar side chains onto the

surface of the protein (Shelimov et al., 1997).

Native protein structure during and following transfer into the gas phase has been the

subject of much discussion. Globular proteins, such as hemoglobin, appear to

undergo a temporal evolution of structure after ESI. This process involves side-chain

collapse, unfolding, and subsequent refolding into new structures, as shown in Figure

7.19. Desolvation is followed, on the picosecond (ps) scale, by interactions on the

protein surface which stabilise the native fold. This structure can remain unchanged
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for up to milliseconds (ms), within the time frame of the experiments performed in

this study (Breuker and McLafferty, 2008).

Figure 7.19 – Evolution of the structure of a globular protein following ESI, (A)

native protein covered with a monolayer of water, (B) native protein with exterior

ionic functionalities still hydrated (C) dry protein undergoes collapse of its exterior

ionic functionalities, (D) millisecond loss of hydrophobic bonding, (E) millisecond

loss of electrostatic interactions, (F) transiently unfolded ions form new noncovalent

bonds in seconds, (G) more stable gaseous ion structures stabilise to energy minima

conformers in minutes. From Breuker and McLafferty, 2008.
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7.5 Conclusions

7.5.1 Inorganic analysis to determine metal content of pMMO

The determination of metal content by two inorganic analysis methods which both

appear to indicate the presence of iron would suggest that the study of the third metal

site of pMMO warrants further attention and that inorganic MS may be a useful tool.

Although the LA-ICP-MS analysis proved unsuccessful in this study, it has been

used to good effect elsewhere, albeit generally with sector-field (SF) instruments

(Becker, J. Susanne et al., 2009). It should also be considered that the laser system

under use was a prototype. Use of a laser which offers better depth sampling, and

with improved control on the ablation conditions could provide more positive results.

The majority of work performed using ICP-MS in the field of biology has focussed

on heavier elements, such as those found in anti-cancer drugs, or on systems with a

higher overall metal concentration (Bettinelli, 2005).

Inorganic analysis of biological samples continues to expand, with the use of LA-

ICP-MS with antibody labelling to detect proteins (Roos et al., 2008) and the

imaging of metals in human brain samples (Dobrowolska et al., 2008). Improved

methods to tackle isobaric interferences are need, however, to fully utilise the

potential of this approach. There are still a number of limitations in the sample

preparation of pMMO, such as the lack of an expression system, the slow growth of

the bacteria, and the incompatibility of detergents used for membrane solubilisation

with MS analysis. Progress in the expression, purification and solubilisation of the

complex could lead to better applicability of MS for the analysis of this complex,

making use of the developments in both the organic and inorganic fields.

7.5.2 Probing hemoglobin structure

Travelling-wave ion mobility mass spectrometry has been successfully used to probe

the gas-phase conformations of the three-dimensional protein structure of the non-

covalent complexes of normal and sickle hemoglobin.

Non-tetrameric species were seen which correspond to apo- and holo- forms of the α-

and β-monomers and αhβh-dimers; these are naturally present in solution, and are not

products of in-source fragmentation during the ESI process. Both monomer types
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have cross-sections similar to each other, suggesting that they maintain a similar

folded structure. Extensively disordered monomer structures were not seen, and the

similarity between the apo- and holo- forms indicates that the chains are able to

retain a folded structure with or without the attachment of a heme group.

A heme-deficient dimer was not observed, and the results suggest that there is no

requirement for the association of βa with αh in order for the β-monomer to recruit

heme. The data, acquired on fresh blood samples rather than commercially prepared

protein, do not support the hypothesis that a heme-deficient dimer is an essential

intermediate in the assembly of the hemoglobin tetramer.

The cross-sections calculated for HbA and HbS are comparable to those estimated

from published X-ray crystallographic data, supporting other work which

investigated the relationship between values obtained from these different techniques.

Conformational differences have been observed between the HbA and HbS

molecules, a significant structural change caused by a single amino acid substitution.

This result, from a relatively well-studied hemoglobin disorder, gives confidence for

the use of this method for the investigation of other hemoglobin variants, and also for

the study of other metalloproteins.
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8.1 Mass spectrometry-based proteomics

Proteomics can be loosely described as the large-scale study of proteins, and as a

field of research it makes a crucial contribution to our understanding of biology.

The term proteome was first coined by Mark Wilkins in 1995 as being the protein

complement of the genome (Wilkins et al., 1996). A more specific definition of

proteomics is the global characterisation of protein products expressed by a given

genome at a specific point in time, under particular physiological conditions.

Since the mid-1990s, mass spectrometry-based strategies have been the

mainstream method for determining protein identifications (Pandey and Mann,

2000). There remain, however, a number of issues to be tackled. Intrinsic

characteristics of proteomes raise a number of experimental challenges. By nature,

proteomes are large and complex. A single gene can often give rise to multiple,

distinct proteins due to alternative splicing, sequence polymorphisms and post-

translational modifications, so that protein databases generated from an

organism’s genome may not be a true reflection of the potential protein

complement. The advent of electrospray ionisation (ESI) and matrix-assisted laser

desorption-ionisation (MALDI) in the late 1980s catalysed the emergence of

methods for the analysis of proteins by mass spectrometry (Domon and Aebersold,

2006). In recent years, with the development of new mass analysers and complex

instruments, there has been significant progress in the area of mass spectrometry-

based proteomics. The use of MS for proteomics is not the application of a single

technique, but rather a collection of methods, each with its own strengths suited to

particular areas of interest (Han et al., 2008). Approaches in mass spectrometry-

based proteomics can be grouped into two broad definitions: top-down and

bottom-up.

8.1.1 Top-down proteomics

First described in 1999 (Kelleher et al., 1999), top-down proteomics is the

analysis of intact proteins, combining ESI with high resolution mass spectrometry.

A mixture of proteins is introduced into the mass spectrometer; molecular ions of

an individual component can then be mass-isolated and dissociated to yield

fragment ions (Reid and McLuckey, 2002). The high mass accuracy of
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instrumentation used for top-down proteomics approaches has traditionally led to

their use for the characterisation of post-translational modifications such as

acetylation and methylation (Lee et al., 2002). The dissociation of protein ions for

MS/MS analysis originally employed threshold activation methods with sequential

activation events, such as energetic collisions and IR photon absorption, that

cleave the weakest bonds within the protein first. More recently, the method of

electron capture dissociation (ECD) (Zubarev et al., 1998) and its off-shoot,

electron transfer dissociation (ETD) (Syka et al., 2004), add a larger amount of

energy such that only backbone bonds are cleaved, generating c and z ions. The

fragment masses are matched against those predicted from the protein sequence, to

provide identification. The ECD/ETD mechanism preserves side-chain

modifications, such as glycosylation and phosphorylation, which enables site-

specific analyses.

The top-down proteomic approach requires high resolution and mass accuracy,

and therefore, most top-down studies to date report the use of Fourier transform

ion cyclotron resonance (FTICR) MS instrumentation. A front-end input

capability for ion storage and mass separation, such as the linear trap quadrupole

(LTQ), provides additional control permitting selection of specific MS and

MS/MS experiments. The recently introduced Orbitrap (Makarov, 2000) shows

promise in the field of top-down analysis, although its resolving power and mass

accuracy do not yet match FTICR instruments. There has also been some study

into the use of quadrupole time-of-flight instrumentation for top-down analysis of

complex protein mixtures (Hayter et al., 2003).

Top-down proteomics provides two major advantages. The first is the potential to

cover the complete sequence of the protein under investigation; the second is the

ability to locate and characterise post-translational modifications. This approach,

however, is a young field in comparison to bottom-up proteomics; as such, it

suffers from a number of limitations. The complex spectra which are generated

often require significant interpretation. The need for FT instrumentation is

another limitation of top-down proteomics, as they have high associated

purchasing, operational and maintenance costs (Marshall, 2000). Size limitations

also exist; typically top-down experiments have been used to characterise proteins

up to 50 kDa (McLafferty et al., 2007). The use of new methods such as
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prefolding dissociation has, however, enabled the analysis of higher molecular

masses (Han et al., 2006). This limit is a significant concern, as around 50 % of

known proteins are over 50 kDa in size. The dissociation methods of ECD and

ETD often require long accumulation, activation and detection times, and the

mechanisms of protein dissociation are less well understood than those of peptide

fragmentation. High-throughput remains a challenge for top-down proteomics, as

the approach struggles in the analysis of very complex protein mixtures.

8.1.2 Bottom-up proteomics

The bottom-up approach to proteomic study is the most widely used for

identifying proteins and determining details of their sequence (Chait, 2006).

Proteins are digested using an enzyme, and the resulting peptides are analysed by

means of mass spectrometry.

A traditional proteomics approach is based on the separation of proteins via

polyacrylamide gel electrophoresis (PAGE). Proteins are then digested within the

gel, and the resulting peptides extracted for MS analysis. Two-dimensional (2D)

gels were developed in the 1970s (O'Farrell, 1975), and have gained considerable

popularity in the area of large-scale protein separation. A protein mixture is first

separated according to isoelectric point (the pH at which the protein carries no net

charge), usually with precast IPG strips (Ek et al., 1983). Various gradients exist

that allow different parts of the proteome to be focussed on, thereby increasing

resolution. Strips with a non-linear pH gradient are also available, again to

increase resolution. The second separation is according to molecular size.

Proteins are visualised using a staining solution, the most commonly used being

Coomassie Blue R-250, Coomassie Blue G-250, silver stain and fluorescent dyes

such as SYPRO red.

Limitations associated with PAGE include limited dynamic range, insufficient

resolving power to fully separate all proteins within a sample, and restricted

sample throughput (Horgan, 2007). More recently, non-gel based techniques have

become popular for the analysis of complex proteomic samples in order to

overcome some of these limitations. Liquid phase separations of intact proteins

are becoming attractive alternatives to gel-based separations. Linear separations
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that are orthogonal in selectivity are combined, permitting a wide range of

separation mechanisms to be applied, such as molecular size, hydrophobicity,

ionic character and specific affinity interactions. Such methods offer increased

selectivity compared to gels, and can be scaled up to meet sample and analysis

requirements. These are often also applicable to proteins which may not be

compatible with gel separations, for example those with extreme pI values or

those which are hydrophobic (Millea et al., 2005). Another major advantage of

liquid phase separations is that they provide the option to generate a fractionated

proteome of intact proteins which can then be analysed in a top-down manner as

previously described.

Alternatively, analysis can be performed entirely at the peptide level. So-called

‘shotgun’ experiments are employed, where a whole proteome is digested without

prior protein separation. Typically, the resulting peptides are separated by strong

cation-exchange chromatography before MS analysis. This method can be

favoured due to its increased proteome coverage compared to gels, although it still

suffers from problems in reproducibility and dynamic range. This coupling of

strong cation-exchange chromatography with reverse-phase chromatography and

MS is part of what is known as ‘MudPIT’: multi-dimensional protein

identification techniques (Link et al., 1999). This approach is becoming

increasingly utilised in proteomic studies in preference to gels (Domon and

Aebersold, 2006). Once peptides have been generated, they are separated as

desired, often in multiple dimensions (Issaq et al., 2005). Protein identification

can then take place using peptide mass fingerprinting (Henzel et al., 1993) or

tandem MS.

Commonly used analysers in bottom-up proteomics are quadrupole (Q), ion trap

(quadrupole ion trap, QIT; linear ion trap, LIT or LTQ), and time-of-flight (ToF).

These vary in their performance, and many hybrids have been designed to

combine various capabilities. Each type of instrumentation has benefits and

disadvantages.

Quadrupoles are low cost, robust and easy to maintain, but possess limited mass

range and resolving power, and cannot perform MS/MS (El-Aneed et al., 2009).

Some of these issues can be overcome by attaching the quadrupole to other
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analysers, and also the combination of multiple quadrupoles. The triple

quadrupole was introduced in 1978, and consists of two quadrupoles and a

hexapole (Yost and Enke, 1978). The first and last are mass spectrometers, the

centre quadrupole is a collision cell using RF only (de Hoffmann and Stroobant,

2007).

Ion traps are often the most affordable option, but have a number of limitations.

Only a finite number of ions can be trapped, and only half are transferred to the

detector when released. They also suffer from limited mass accuracy and

resolution, although a narrow scan range can be employed to improve these.

Coupling ion traps to quadrupoles overcomes some of these limitations, as it

allows the accumulation of more ions and involves the use of two detectors,

minimising ion loss. The drawback, however, is a reduced mass range.

ToF analysers have the advantage of being able to detect a very high mass range,

but their major limitation is the inability to perform true MS/MS. Although post-

source decay (PSD) (Brown and Lennon, 2002) is an option, there is restricted

ability to select ions, and the fragmentation incurred is not predictable. ToF/ToF

instrumentation goes some way in tackling this problem (Bienvenut et al., 2002).

The first ToF is used for the ion selection process, fragmentation occurs in a

collision cell and the product ions are analysed in the second ToF. Although this

is a rapid technique, a relatively large amount of sample is required for sufficient

ion signal. Due to the high-energy nature of this process, the dissociation which

takes place is more complex than alternative techniques, with side-chain

fragmentation observed. Sequencing of peptides is possible, but as a result of the

complex fragmentation which takes place the data obtained are not generally

compatible with available database searching programs.

The combination of the scanning capabilities of a quadrupole and the resolving

power of a ToF analyser was first described in 1996 (Morris et al., 1996). Q-ToF

instruments usually include an additional quadrupole as an ion focussing device.

One of the major advantages is the ability to interface with either ESI or MALDI,

and the quadrupole offers superior selectivity for precursor ions. Other

advantages include ease of operation and high resolution.
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The Orbitrap has also been used in peptide-based, bottom-up proteomics studies,

with results indicating good resolution, mass accuracy and sequence coverage,

although the fragmentation was originally performed in a linear ion trap

environment (Yates et al., 2006). Improved approaches using higher energy traps

have recently been developed (Olsen et al., 2009; Zhang, Yi et al., 2009).

A summary of these instruments and their distinguishing characteristics is given in

Table 8.1.

Figure 8.1 gives an overview of the approaches employed in both top-down and

bottom-up proteomics. All of the various experimental methods have the potential

to provide information on different aspects of a proteome. Complete

characterisation is the ultimate goal of proteomics study, and in order to achieve

this it should be considered that complementary techniques need to be employed

(Nemeth-Cawley et al., 2003).

Figure 8.1 – Some typical approaches in top-down and bottom-up proteomics.
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Instrument Mass
resolution

Mass
accuracy

(ppm)

Sensitivity m/z range Scan rate Dynamic
range

MS/MS
capability

Ion
source

Main applications

QIT 1000 100-1000 picomole 50-2000
200-4000

Moderate 103 MSn ESI Protein identification in
samples of low
complexity;
PTM identification.

LTQ 2000 100-500 femtomole 50-2000
200-4000

Fast 104 MSn ESI High throughput large-
scale protein identification
from complex mixtures;
PTM identification.

Q-q-Q 1000 100-1000 attomole to
femtomole

10-4000 Moderate 6 × 106 MS/MS ESI Quantification (selective
reaction monitoring);
PTM detection (precursor
ion and neutral loss
scanning).

Q-q-LIT 2000 100-500 femtomole 5-2800 Fast 4 × 106 MSn ESI

TOF 10,000-
20,000

10-20 / <5 femtomole No upper
limit

Fast 104 n/a MALDI Protein identification from
digested samples (peptide
mass fingerprinting).

TOF-TOF 10,000-
20,000

10-20 / <5 femtomole No upper
limit

Fast 104 MS/MS MALDI Protein identification from
digested samples (peptide
mass fingerprinting or CID
MS/MS).

Q-q-TOF 10,000-
20,000

10-20 / <5 femtomole No upper
limit

Fast 104 MS/MS ESI
MALDI

Protein identification from
complex mixtures;
Intact protein analysis;
PTM identification.
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FTICR 50,000-
750,000

<2 femtomole 50-2000
200-4000

Slow 103 MSn ESI
MALDI

Top-down proteomics;
High mass accuracy PTM
characterisation;
Protein identification from
complex mixtures

LTQ-
Orbitrap

30,000-
100,000

<5 femtomole 50-2000
200-4000

Moderate
to fast

4 × 103 MSn ESI
MALDI

Top-down proteomics;
High mass accuracy PTM
characterisation;
Protein identification from
complex mixtures;
Quantification.

Table 8.1 – Comparison of performance characteristics of commonly used mass spectrometers for proteomics (adapted from Han et al., 2008)
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8.2 Quantitative proteomics

Within the field of proteomics, in addition to a profile of what proteins are present

within a system, information on the expression levels of these proteins is also

often required. Since the proteome is a dynamic entity, the abundance of proteins

differs depending on many factors, such as the type of cell they are expressed in,

developmental stage, and changes in the environment. Information regarding

protein abundance can provide insight into cellular processes, and lead to better

understanding of the biological system under study. Techniques in quantitative

proteomics have, therefore, also developed significantly in recent years. These

quantitative techniques are generally associated with a bottom-up proteomics

approach.

8.2.1 Gel-based quantification

Relative quantification can be performed to look at the levels of proteins separated

by two-dimensional PAGE, using image analysis software. The gels to be

analysed are scanned using a densitometer, and the captured images analysed.

The software normalises and filters the images; spots are identified and manually

checked, before being matched between the gels. Changes are recorded in relation

to differences in spot size and intensity, and used to infer differences in protein

concentration. This method suffers the effects of 2D gel limitations already

mentioned, including low reproducibility. To overcome some of the problems of

gel-to-gel variations, difference gel electrophoresis (DiGE) was developed (Ünlü

et al., 1997). Fluorescent dyes that are mass and charge matched, but spectrally

resolvable, are used to label different protein samples. All samples are mixed

together and resolved on the same gel, meaning the resulting images are perfectly

overlaid. DiGE does not, however, omit all problems with a gel-based approach.

The issue of inter-gel variation is tackled for a single experiment, but a number of

gels must be run for statistical significance, making the process unsuitable for

high-throughput analyses. There is also a considerable associated cost, as the dyes

are expensive, and specialised equipment is required to scan the gels.
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8.2.2 Peptide labelling

A number of labelling approaches can also be incorporated into MudPIT

experiments. These include isotope dilution (Fairwell et al., 1970), stable isotope

labelled peptides (Ong et al., 2002), radiolabelled amino acid incorporation (Sirlin,

1958), chemically synthesised peptide standards (Gerber et al., 2003) and isotope-

coded affinity tags (ICAT) (Gygi et al., 1999). An approach which has become

increasingly popular is the use of isobaric tags for relative and absolute

quantification (iTRAQ) in which the N-terminus of peptides generated by tryptic

digest are chemically tagged (Ross et al., 2004). Each tagging reagent consists of

a reporter group (based on N-methylpiperazine), a balance group (carbonyl) and

an amine-specific peptide reactive group (N-hydroxy-succinimide ester). The

system is commercially available (Applied Biosystems, USA) with four tags

containing reporter groups of masses 114.1, 115.1, 116.1 and 117.1 Da, and

balance groups of masses 28, 29, 30 and 31 Da. Reporter and balance groups are

combined so that each of the reagents has a total mass of 145.1 Da. Upon tandem

MS analysis by CID, the balance and reporter groups are lost from the peptides,

with the reporter groups retaining the charge. These appear as distinct ion species

in the spectrum, and are designed not to interfere with MS/MS data from the

peptide fragments, as they appear in a quiet region of the spectrum where peptide

ions are not observed. The intensity of reporter ions is used to quantify associated

peptides. A summary of the iTRAQ system can be seen in Figure 8.2. This

system has been widely used in proteomic studies (Sadowski et al., 2006) and is

now commercially available with eight isobaric tags (Ow et al., 2008).

8.2.3 Non-labelling quantification

All labelled quantification approaches experience drawbacks: complex sample

preparation, the requirement for large sample amounts, incomplete labelling.

There has, therefore, been development in the area of non-labelled quantification

to make an attempt at tackling some of these problems. Recently, a number of

label-free approaches have emerged (Panchaud et al., 2008).
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Figure 8.2 – An overview of the iTRAQ labelling quantification system.

Peptide match score summation (PMSS) uses peptide identification scores to

derive a semi-quantitative abundance indicator (Allet et al., 2004). A closely

related method is spectrum sampling (SpS), based upon the relationship between

the level of sampling observed and relative abundance of the protein, where the

spectra identifying each protein are counted (Liu et al., 2004). Both of these can

be combined with a statistical test to detect differentially expressed proteins

(Colinge et al., 2005).

Another approach to estimate protein content utilises a protein abundance index

(PAI), which is derived by normalising the number of observed peptides with the

number of observable peptides within a sample (Rappsilber et al., 2002). This

uses the correlation between the number of peptides generated and the amount of

protein present. There has been shown to be a linear relationship between the

number of peptides and the logarithm of protein concentration, therefore PAI is

converted to exponentially modified PAI (emPAI) for absolute protein

quantification (Ishihama et al., 2005).
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The intensity of MS signal cannot be predicted from peptide sequence, although it

is generally accepted that peptides containing more basic amino acids are more

likely to be seen, and signal intensity for the same peptide may vary depending on

the sample. This does not apply, however, when comparing chromatographic runs,

although very accurate and reproducible LC and MS data is required (Chelius and

Bondarenko, 2002).

A methodology for relative quantification based on LC-MS was described which

utilised a reproducible chromatographic separation system along with high mass

resolution and mass accuracy time-of-flight MS (Silva et al., 2006a). This has

since been developed into a label-free system, capable of both relative and

absolute quantification. All detectable, eluting peptides and their corresponding

fragments are observed via rapid switching between high and low collision energy

during the LC-MS/MS experiment, giving a comprehensive list of all ions. Post-

acquisition data analysis methods then extract chromatographic and MS

information on the peptides, resulting in time-resolved accurate mass

measurements which can be used for both identification and quantification.

Absolute quantification of proteins is possible due to the discovery of a

relationship between MS signal response and protein concentration, which states

that the average MS signal response for the three most intense tryptic peptides per

mole of protein is constant within a coefficient of less than 10 per cent (Silva et al.,

2006b). This analysis approach has been termed MSE, and is available

commercially as the Waters IdentityE and ExpressionE systems.

Despite these advancements in the field of proteomics, the identification and

quantification of proteins from large-scale, automated experiments can still be

problematic. An ideal approach would enable comprehensive studies of

proteomes in a high-throughput manner. Currently, the techniques involved can

be complex, with high costs and may involve time-consuming data analysis. A

low number of biological replicates, due to a lack of sample availability, mean that

reproducibility is a big concern. In addition, any given technique may only yield

information on a fraction of relevant peptides in any single analytical run (Wilkins

et al., 2006). Figure 8.3 summarises a bottom-up proteomics experiment,

including a quantitative element, highlighting key technical limitations and

intrinsic biological challenges.
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Figure 8.3 – A typical workflow for a bottom-up profiling and quantitative

proteomics experiment, along with some of the associated limitations and

problems.

8.3 Computational proteomics

Computational proteomics is the term used to refer to the computational methods,

algorithms, databases and bioinformatics methodologies used to process, manage,

analyse and interpret the data produced in proteomics experiments (Cannataro,

2008). The ultimate goal of computational proteomics is to infer knowledge

models, such as the identification of proteins involved in a particular disease, from

the inspection of biological samples.

Proteomic data are typically very complex, leading to a number of practical

considerations when undertaking data analysis. The raw data must be processed,

and protein identifications must be performed and subjected to quality control. If

quantification is being performed then this information must also be extracted and

combined with the profiling information to give a comprehensive dataset.

Applicable statistical methods should be employed to check the validity of the

data, and ideally all this should be combined into an easily accessible workflow.
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As with most analytical fields, these processes are hugely dependent on

computational tools. The dynamic process of software development progresses

alongside the technical development of instrumentation. The resulting

computational programs are often developed for specific types of mass

spectrometers and will only operate with a limited number of platforms. It is,

therefore, not trivial to choose an appropriate program suitable for the analysis of

proteomics datasets. In addition to the limited applicability of programs to various

MS platforms, it is important to consider practical factors such as file

compatibility, computational requirements, ease of use, visualisation options, and

variations in the sample preparation protocol. MS-based proteomics offers a high-

throughput platform and the capability to analyse complex samples on a global

scale, but this has led to a computational bottleneck, as available methods struggle

to cope with the large datasets generated.

8.3.1 Protein identification

In protein identification, there are two basic approaches: database searching and

de novo sequencing. Database searching methods have long been the primary

method of identification (Eng et al., 1994), as the fragmentation and sequence

coverage required for de novo methods have not always been achievable with

available mass spectrometers. Database searches also offer a much higher degree

of automation in their setup, whether using a freely available program such as

Mascot (Matrix Science, Boston, USA) or commercial software such as

SEQUEST (Thermo, MA, USA) and ProteinLynx (Waters, MA, USA). The

availability of a suitable protein database to search will depend upon the system

under investigation. Many organisms will have specific databases, although many

of those that are commonly studied are listed as part of the Universal Protein

Resource (UniProt). This is a resource on protein sequence and annotation,

formed in collaboration between the European Bioinformatics Institute (EBI), the

Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource

(PIR).

One of the major issues with database searches is the large false positive rate

associated with the sheer number of peptide candidates to consider for each
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spectrum searched (Cargile et al., 2004). As more proteomes are sequenced and

protein databases further expanded, there is an increasing need for accuracy. New

algorithms for matching experimental to in silico spectra have begun to focus on

accounting for multiple sources of information, such as mass peak intensity and

correlation among ions (Sun et al., 2007). The performance of search algorithms

will have some dependence upon the platform being used for experimentation. It

is important to understand inherent limitations, and to improve the quality of the

identifications by either filtering out spectra with insufficient information or

removing low signal peaks (‘noise’ or less common fragments). An approach to

reduce the raw size of a database and to remove potential false positives is the

generation of proteotypic peptides, that is, peptides which are detectable by an

MS-experiment. For example, certain peptides do not contain ionisable amino

acids, thereby carrying only a minimal charge on the N-terminus and reducing the

likelihood of their capture by MS and subsequent identification in a database

search (Craig et al., 2005).

Some work has focused on developing sequence-specific fragmentation models, as

fragmentation patterns vary significantly depending on the sequence of the peptide

(Zhang, Z, 2005). There are certain problems to this approach. The mere

evaluation of a peptide’s amino acid composition is not sufficient to predict

fragmentation patterns on longer chains. In addition, it is not possible to build a

sufficiently diverse spectral database; just a 6-mer would generate 206 unique

peptides requiring observation. An older method to deal with insufficient

sampling which has re-gained popularity is the direct use of spectral libraries.

Identified spectra for specific peptides serve as models, against which newly

acquired spectra are compared. A major drawback to this approach, however, is

that incorrect annotations will be propagated through libraries. Additionally,

peptides that undergo incomplete fragmentation are likely to be underrepresented

(Webb-Robertson and Cannon, 2007).

De novo sequencing is an option which can be employed in cases where database

searches cannot identify a peptide from MS/MS data. This may occur for a

number of reasons: novel proteins, mutations, post-translational modifications,

database sequencing errors, and meta-proteomic studies. Although, in principle,

an MS/MS spectrum contains a set of ions that can be used to sequence a peptide,
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it is often the case that incomplete fragmentation and low mass accuracy will only

provide partial sequence information. This has seen some improvement in recent

years, with the advent of newer instrumentation such as the Orbitrap and high-

resolution Q-TOFs (Frank et al., 2007). It is unlikely that de novo sequencing will

become the commonly used method for protein identification, owing to the

computationally compatible and user-friendly nature of database searching, but it

does provide important flexibility in instances where genomes may be

insufficiently sequenced or unknown. The ease of using de novo sequencing

approaches has been assisted by the introduction of associated software, such as

PEAKS (Bioinformatics Solutions, Ontario, Canada).

8.3.2 Protein quantification

There are a number of computational options available to handle proteomic data

containing a quantitative aspect, from a labelling or non-labelling approach.

Certain programs are freely available for the analysis of iTRAQ data, which

import pre-processed MS/MS data in certain file formats. Commercial systems

also offer a number of processing functionalities for more sophisticated analysis of

platform-specific iTRAQ data; these include ProQuant and ProteinPilot from

Applied Biosystems, and ProteinLynx from Waters.

The XPRESS software was developed for the analysis of ICAT data and is sold

commercially as part of BioWorks from Thermo. ASAPRatio is a more advanced

program, which includes additional downstream statistical methods (Li et al.,

2003); both these systems work on isotope-labelled data from Thermo’s

quadrupole linear ion trap (LTQ) and FT-LTQ instrumentation. SILAC

experiments can be quantified by STEM, and also by MSQuant, which imports

MS/MS data from Mascot searches. Commercial solutions such as Bruker’s

WARP-LC offer a generic platform for the quantification and visualisation of

various isotopic labelling data.

Label-free quantitative studies often span a large number of LC-MS measurements;

this leads to volumes of data, which require considerable computational resources

to complete data analysis within a reasonable amount of time. Spectral counting

methods transform frequency of peptide identification into a measure for peptide
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abundance, and have most commonly been used for analysis of low to moderate

mass resolution LC-MS data. Software for automated quantification via spectral

counting has been developed as laboratory information management systems

(LIMS), programming scripts and stand-alone software packages. The program

Scaffold (Proteome Software, Oregon, USA) enables spectral counting

quantification by searching a collection of MS/MS spectra against a peptide

matching algorithm such as SEQUEST.

Data from signal intensity or peak area approaches can be processed using a

number of computational options, several of which are freely available. These

include SpecArray (part of the Trans Proteomics Pipeline), msInspect (Fred

Hutchinson Cancer Research Centre, Seattle, USA), MSight (Swiss Institute of

Bioinformatics), OpenMS and PEPPeR (Jaffe et al., 2006). Although these are

accessible with no purchase costs, all carry limitations with respect to the data file

types they can process, and the operating systems with which they are compatible.

A key challenge in high-throughput LC-MS analysis is how to detect and handle

poor quality data, e.g. low signal response, imperfect chromatography, in large

datasets. It is common to use a reference acquisition against which to normalise

all other data; the use of a spiked internal standard can prove useful in this respect.

The program SuperHirn implements an alternative strategy, where similarities

between all LC-MS runs are computed based on common peptides of an LC-MS

pair and their intensity correlation. It is compatible with mzXML-formatted

QTOF, FT-LTQ and Orbitrap data, and is available for Linux and OSX platforms

(Mueller et al., 2007).

Commercial analysis frameworks are also available, developed and distributed

under licence to be used with particular manufacturers’ platforms. MassLynx is

the dedicated data processing system for Waters instrumentation. The

accompanying ProteinLynx software and GlobalSever search engine are essential

components in the analysis of acquired measurements, with the most recent

release containing in-built options to handle label-free quantification processing of

MSE data. LC-MS data from Thermo instruments, i.e. LTQ, FT-LTQ, Orbitrap,

can be processed by the software package termed Statistical Iterative Exploratory

Visualisation Environment (SIEVE). This performs extraction and alignment of
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peptide signals across measurements and provides GUI functionality to assess the

alignment and tools to perform discriminative analysis of peptide abundance

changes.

Also commercially available is Expressionist from GeneData (Basel, Switzerland),

which is predominantly a platform for biomarker discovery, capable of integrating

different ‘omics’ data. Previously available was the Elucidator framework from

Rosetta Biosoftware, which offered statistical tools for data exploration and

extensive GUI functionality with a complete MS/MS processing routine, feature

extraction and LC-MS alignment modules. Since a commercial takeover earlier

this year, however, Elucidator has not been re-introduced.

All these commercial and platform-specific systems allow the user to assemble

customised automated workflows for high-throughput data analysis. A drawback,

however, is that these are closed, that is, there is no access to the source code.

Workflows and data formats are implemented within the program, limiting options

once the raw data has been imported into the software. In addition, commercial

programs come with a cost associated with the professional setup they offer.

8.4 Quality of data

Proteomics studies typically generate large and complex sets of data; these must

be statistically analysed if the results are to be meaningfully interpreted, perhaps

more so in quantitative studies where regulation of protein expression is often the

subject of interest. It is important to have a clear understanding of the

experimental setup and the nature and quality of obtained data in order to select

suitable statistical methods.

Results typically improve with increased sampling, as a greater number of

biological and technical replicates allow for more stringent statistical analysis. It

is not uncommon that such replicates are unavailable due to sample availability,

and the cost and time which are required to perform repeat experiments. In such

cases, however, biological effects may be missed as technical bias overshadows

true protein regulation. Label-free approaches may offer an advantage in this area,

as generally sample requirements are lower than labelling methods. The problem



Chapter 8 – Introduction to mass spectrometry-based proteomics

162

of incomplete, insufficient or inconsistent labelling is also negated, which can be a

significant technical issue in quantitative studies. The use of statistical testing

methods also assists in determining the probability of false assignments. The

performance of a particular statistical test is aided greatly by the use of reference

data, another benefit of including an internal standard in label-free experiments.

The recent developments in quantitative proteomics have resulted in an

exponential increase in data volume and complexity. This demands the

development of appropriate statistical approaches in order to arrive at meaningful

interpretations of data obtained. There is a danger that the computational methods

outlined in Section 8.3 are used with little or no validation, leading to poor

standards in data handling. As mass spectrometers and associated software

become more widely available, there are an ever-increasing number of

laboratories with little or no mass spectrometry experience that are performing

analysis under the assumption that the results obtained are unquestionably correct.

It has been suggested that low quality MS/MS spectra should be filtered out of the

analysis, or that machine learning techniques should be used to classify database

search results and thereby improve discrimination between correct and random

matches. Another approach is to send the data to more than one search engine in

order to enable the cross-validation or consolidate results, so that confidence in the

results obtained can be increased. A drawback of this stems from existing issues

regarding the compatibility of types of data files. Another problem with direct

cross-validation between different search engines is that each algorithm uses

different methods for assessing the quality of its peptide assignments, meaning

that comparisons can sometimes be misleading (Stead et al., 2008).

A popular approach to estimate false-positive rates, and so gain an indication of

information quality, is the use of decoy databases. These are composite databases

containing all possible protein and peptide sequences from a given organism as

well as an equivalent number of nonsense protein and peptide sequences that

should not be present in the sample analysed (Huttlin et al., 2006). For its ease of

implementation and applicability across platforms, search engines and

experimental conditions, the use of combined forward and reversed protein

databases for assessment of false-positive rates has become commonplace.
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8.5 Mapping proteomic data to biological pathways

A grand challenge in the post-genomic era is a complete computer representation

of the cell, the organism, and the biosphere, which will enable computational

prediction of higher-level complexity of cellular processes and organism

behaviours from genomic and molecular information.

To take on this challenge, the Kanehisa Laboratories in the Bioinformatics Center

of Kyoto University and the Human Genome Center of the University of Tokyo

have developed a resource called the Kyoto Encyclopedia of Genes and Genomes

(KEGG). This is a database of biological systems that integrates genomic,

chemical and systemic functional information (Kanehisa et al., 2008; Kanehisa

and Goto, 2000). The KEGG Automatic Annotation Server (KAAS) is a tool

which provides BLAST comparisons of genomic or proteomic data against the

manually curated KEGG database. The result contains orthology assignments to

KEGG pathways, of which there are approximately 90,000.

8.6 Methylocella silvestris

In this work, three bottom-up proteomics approaches have been used to identify

and relatively quantify the proteins within Methylocella silvestris, a bacterium

from the methanotroph family. Methylotrophs use one-carbon compounds as their

sole carbon and energy source, and methanotrophs are the subset of these which

use methane. Methane is well-known as a greenhouse gas, and methanotrophs

hold a unique place in global methane cycling. They oxidise a high percentage of

biogenic methane before it reaches the atmosphere, making them of significant

environmental importance (King, 1997).

Methanotrophs use the enzyme methane monooxygenase to oxidise methane.

This enzyme exists in two forms: soluble methane monooxygenase (sMMO) and

membrane-bound, particulate methane monooxygenase (pMMO). Until recently,

it was believed that all methanotrophs were unable to utilise substrates containing

carbon-carbon bonds. A newly-discovered genus, Methylocella, has been shown

to grow on multi-carbon compounds such as acetate and ethanol, whilst retaining

its ability to grow on single-carbon sources (Dedysh et al., 2005). Figure 8.4
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shows cultures of the bacterium Methylocella silvestris grown using acetate as the

sole carbon and energy source. Studies on M. silvestris show that whilst it utilises

sMMO for methane oxidation as in other methanotrophs, pMMO is absent

(Theisen et al., 2005); this has not been observed in any other organism within the

family. Identification of enzymes involved in Methylocella metabolism,

particularly when using multi-carbon compounds, is essential to understanding the

biochemical pathways in this organism.

Figure 8.4 – Whole cell hybridisation in a culture of

Methylocella silvestris grown on acetate as the sole

carbon and energy source. Upper – phase contrast,

middle – hybridisation with the Methylocella genus-

specific probe Mcell-1445, lower – hybridisation with

the M. silvestris species-specific probe Mcells-1024

(Dedysh et al., 2005)
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8.7 Aims and objectives

The field of proteomics is rapidly evolving; as described, techniques are

constantly being developed and improved to deal with the enormous complexity

that proteomes present. No single approach can provide a complete picture; the

task therefore becomes to choose the most suitable experimental methods to

obtain as much relevant information as possible.

The overall objectives of this project were to look at changes in protein expression

under different experimental conditions in order to understand biological

processes in prokaryotes, and to develop a confident, comprehensive approach for

the identification and quantification of proteins that would enable this to be done.

More specifically, the aims were:

1. To characterise proteins present within the organism Methylocella

silvestris.

2. To measure changes in expression of these proteins under varying growth

conditions.

3. To relate these changes in the proteome to important biological pathways.

4. To compare existing methods with new approaches, without bias.

Samples from M. silvestris, grown under the substrates methane and acetate, have

been analysed both qualitatively and quantitatively by three methods: one-

dimensional PAGE, MudPIT incorporating iTRAQ tags, and an LC/MSE

acquisition enabling label-free quantification. In the comparison of two growth

conditions, as here, relative quantification provides valuable information regarding

specific protein abundance changes. This not only provides insight into the

cellular processes of the organism, but also provides a comparison of the

information content generated by the different approaches.

This work has been peer reviewed and published:

Patel, Thalassinos et al., (2009) A comparison of labelling and label-free mass

spectrometry-based proteomics approaches, Journal of Proteome Research 8(7):

3752-3759
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9.1 Sample preparation

9.1.1 Bacterial growth and sample preparation

This was performed with Andrew Crombie in the lab of Prof. J. Colin Murrell.

Methylocella silvestris was grown in fermenter cultures on diluted nitrate mineral

salts (NMS) medium with methane or acetate (5 mM) as previously described

(Theisen et al., 2005). Cells, grown to late exponential phase (OD540 ~1.0), were

harvested by centrifugation (17,700 × g, 20 min, 4°C), washed in growth medium,

resuspended in 0.1 M PIPES buffer (piperazine-N,N'-bis[2-ethanesulfonic acid], pH

7.0), and frozen in liquid nitrogen. Subsequently, frozen cells were thawed and

resuspended in PIPES buffer containing 1 mM benzamidine and broken by four

passes through a French pressure cell at 125 MPa (4°C) (American Instrument Co.,

Silver Spring, MD). Cell debris and membranes were removed by two centrifugation

steps (13,000 × g, 30 min, 4°C, followed by 140,000 × g, 90 min, 4°C ), and the

supernatant, containing soluble cytoplasmic proteins, used for analysis. A protein

assay was conducted on the soluble extract, using a Micro BCA Protein Assay Kit

(Pierce Protein Research Products, Thermo Scientific, Cramlington, UK) according

to the manufacturer's protocol.

9.1.2 Protein separation by gel electrophoresis

Proteins were resolved by 1D SDS-PAGE (14 µg per lane) and stained with

Coomassie Blue. 30 to 40 slices were excised from each lane, and subjected to

tryptic digestion. All processing of the gel plugs was performed by a MassPrep

robotic protein handling system (Waters Corporation, Manchester, UK) using the

manufacturer’s protocol. In brief, the gel plugs were destained, the disulfide bonds

were reduced by the addition of dithiothreitol and the free cysteine residues were

alkylated with iodoacetamide. The gel plugs were washed prior to a dehydration step,

followed by the addition of trypsin, and incubated for 4.5 hours. The resultant tryptic

peptides were extracted up to two times in total and transferred to a cooled 96-well

microtitre plate; if necessary, they were stored at –20 °C.
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9.1.3 iTRAQ labelling and strong cation exchange chromatography

(SCX)

Labelled quantification was carried out using the iTRAQ 4-plex labelling kit

(Applied Biosystems, Warrington, UK). Protein extracts from the two growth

conditions were digested and labelled according to the manufacturer’s standard

protocol, and the samples pooled and lyophilised. A total of 400 µg protein from

each growth condition was labelled, giving a total protein loading of 800 μg. As

SCX was carried out offline, the potential for sample losses is higher. A larger initial

protein loading was therefore used in order to minimise such losses and optimise the

number of proteins identified by this approach. 200 μg of acetate-grown sample was

labelled with the 114 reporter tag, and 200 μg with the 116 reporter tag. 200 μg of

the methane-grown sample was labelled with the 115 tag and 200 μg with the 117 tag.

As per the manufacturer’s protocol, a maximum of 100 μg of protein was labelled

per vial of iTRAQ label, i.e. two vials were used per label. The labelling of one

growth condition with two different iTRAQ tags provides the means for an internal

control to monitor labelling efficiency. The labelled tryptic peptides were partially

resolved using a PolySULFOETHYL A SCX column, 2.1 mm × 20 cm, 5 µm

particles, 300 Å pore size (PolyLC, Columbia, USA), using a stepwise gradient of

KCl, adapted from Link et al., (Link et al., 1999) from 2.5–50% salt solution over a

period of 75 minutes. In total, 64 fractions were collected.

9.1.4 In-solution tryptic digestion

100 µg of soluble protein extract was resuspended in 1 mL of 0.1% Rapigest (Waters

Corporation, Milford, MA) and concentrated using a 5 kDa cut-off spin column. The

solution was then heated at 80°C for 15 minutes, reduced with DTT at 60°C for 15

minutes, alkylated in the dark with iodoacetamide at ambient temperature for 30

minutes, and digested with 1:50 (w/w) sequencing grade trypsin (Promega,

Southampton, UK) for 16 hours. RapiGest was hydrolysed by the addition of 2 µL

15 M HCl, centrifuged, and each sample diluted 1:1 with a 50 fmol/µl glycogen

phosphorylase B standard tryptic digest to give a final protein concentration of 500

ng/µl per sample and 25 fmol/µl phosphorylase B.
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9.2 Mass spectrometry

9.2.1 LC-MS/MS acquisition for gel-separated samples

Peptides extracted from the digested gel were transferred to a nanoACQUITY system

(Waters Corporation). A 6.4 µl aliquot of extract was mixed with 13.6 µl of 0.1%

formic acid and loaded onto a 0.5 cm LC Packings C18 5 µm 100Å 300 µm i.d µ-

precolumn cartridge. Flushing the column with 0.1% formic acid desalted the bound

peptides before a linear gradient of solvent B (0.1% formic acid in acetonitrile) at a

flow rate of approximately 200 nl/min eluted the peptides for further resolution on a

15 cm LC Packings C18 5 µm 5Å 75 µm i.d. PepMap analytical column. The eluted

peptides were analysed on a Micromass Q-Tof Global Ultima (Waters Corporation)

mass spectrometer fitted with a nano-LC sprayer with an applied capillary voltage of

3.5 kV. The spectral acquisition scan rate was 1.0 s with a 0.1 s interscan delay. The

instrument was calibrated against a collisionally induced dissociation (CID) spectrum

of the doubly charged precursor ion of [Glu1]-fibrinopeptide B (GFP – Sigma

Aldrich, St. Louis, USA), and fitted with a GFP lockspray line. The instrument was

operated in data dependent acquisition (DDA) mode over the mass/charge (m/z)

range of 50-2000. During the DDA analysis, CID experiments were performed on

the three most intense, multiply charged peptides as they eluted from the column at

any given time. Once these data have been collected, the next three most intense

peptides are selected, and this process repeated.

9.2.2 LC-MS/MS acquisition for iTRAQ samples

Fractions collected from the SCX separation of iTRAQ-labelled peptides were snap-

frozen on dry ice and lyophilised to dryness. The samples were resuspended in 20 μl

0.1% formic acid and transferred to a CapLC system (Waters Corporation). A 6.4 µl

aliquot of extract was mixed with 13.6 µl of 0.1% formic acid and loaded onto a 0.5

cm LC Packings C18 5 µm 100Å 300 µm i.d precolumn cartridge. Flushing the

column with 0.1% formic acid desalted the bound peptides before a linear gradient of

solvent B (0.1% formic acid in acetonitrile) at a flow rate of approximately 200

nl/min eluted the peptides for further resolution on a 15 cm LC Packings C18 5 µm

5Å 75 µm i.d. PepMap analytical column. The eluted peptides were analysed on a

Micromass Q-Tof Global Ultima (Waters Corporation) mass spectrometer fitted with
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a nano-LC sprayer with an applied capillary voltage of 3.5 kV. The spectral

acquisition scan rate was 1.0 s with a 0.1 s interscan delay. The instrument was

calibrated against a CID spectrum of the doubly charged precursor ion of GFP, and

fitted with a GFP lockspray line. The instrument was operated in data dependent

acquisition (DDA) mode as described above.

9.2.3 LC-MS configurations for label-free analysis

Nanoscale LC separations of tryptic peptides for qualitative and quantitative

multiplexed LC-MS analysis were performed with a nanoACQUITY system (Waters

Corporation) using a Symmetry C18 trapping column (180 µm x 20 mm 5 µm) and a

BEH C18 analytical column (75 µm x 250 mm 1.7 µm). The composition of solvent

A was 0.1% formic acid in water, and solvent B, 0.1% formic acid in acetonitrile.

Each sample (total protein 0.5 μg) was applied to the trapping column and flushed

with 1% solvent B for 5 minutes at a flow rate of 15 µL/min. Sample elution was

performed at a flow rate of 300 nL/min by increasing the organic solvent

concentration from 3 to 40% B over 90 min. All analyses were conducted in

triplicate. The precursor ion masses and associated fragment ion spectra of the

tryptic peptides were mass measured with a Q-ToF Premier mass spectrometer

(Waters, UK) directly coupled to the chromatographic system.

The time-of-flight analyzer of the mass spectrometer was externally calibrated with

NaI from m/z 50 to 1990, with the data post-acquisition lockmass-corrected using the

monoisotopic mass of the doubly charged precursor of GFP, fragmented with a

collision energy of 25V. The GFP was delivered at 500 fmol/µL to the mass

spectrometer via a NanoLockSpray interface using the auxiliary pump of a

nanoACQUITY system at a flow rate of 500 nL/min. The reference sprayer was

sampled every 60 seconds.

Accurate mass data were collected in data independent mode of acquisition (LC-MSE)

by alternating the energy applied to the collision cell between a low energy and

elevated energy state. The spectral acquisition scan rate was 0.6 s with a 0.1 s

interscan delay. In the low energy MS mode, data were collected at constant collision

energy of 4 eV. In elevated energy MS mode, the collision energy was ramped from

15 eV to 35 eV during each integration.
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9.3 Data processing and database searching

9.3.1 Data processing for DDA acquisitions

The uninterpreted MS/MS data from the gel-separated and iTRAQ-labelled samples

were processed using ProteinLynx Global Server (PLGS) v2.3 (Waters, UK). The

data were smoothed, background subtracted, centred and deisotoped. All data were

lockspray calibrated against GFP using data collected from the reference line during

acquisition.

9.3.2 Data processing for label-free acquisitions

The LC-MSE data were processed using PLGS v2.3. The ion detection, data

clustering and normalisation of the data independent, alternate scanning LC-MSE

data has been explained in detail elsewhere (Geromanos et al., 2009). In brief,

lockmass-corrected spectra are centroided, deisotoped, and charge-state-reduced to

produce a single accurately mass measured monoisotopic mass for each peptide and

the associated fragment ion. The initial correlation of a precursor and a potential

fragment ion is achieved by means of time alignment.

9.3.3 Database searches

All data were searched using PLGS v2.3 against a Methylocella silvestris database

(http://genome.ornl.gov/microbial/msil). Fixed modification of carbamidomethyl-C

was specified, and variable modifications included were acetyl N-terminus,

deamidation N, deamidation Q and oxidation M. For the iTRAQ data, variable

modifications for the isobaric tags were specified. One missed cleavage site was

allowed. Search parameters specified were a 50 ppm tolerance against the database-

generated theoretical peptide ion masses and a minimum of one matched peptide.

For the LC-MSE data, the time-based correlation applied in data processing was

followed by a further correlation process during the database search that is based on

the physicochemical properties of peptides when they undergo collision induced

fragmentation (Li et al., 2009). The precursor and fragment ion tolerances were

determined automatically. The protein identification criteria also included the
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detection of at least three fragment ions per peptide, at least one peptide determined

per protein and the identification of the protein in at least two out of three technical

replicates. By using protein identification replication as a filter, the false positive

rate is minimised, as false positive protein identifications, i.e. chemical noise, have a

random nature and as such do not tend to replicate across injections. This approach

rules out systematic search events errors due to the repeated ambiguity of a particular

spectrum and the subsequent sequence assignment by a search algorithm, as could be

the case with peptide-centric searches. An overview of the processing and searching

of MSE data is given in Figure 9.1.

9.4 Protein quantification

9.4.1 Protein quantification using iTRAQ labelling

PLGS was also used for quantitative evaluation of MS/MS data generated from the

analysis of the iTRAQ-labelled peptides. A relative quantification was conducted

using a merged dataset comprising the results from the database search.

Concentration ratios of iTRAQ-labelled proteins were calculated based on signal

intensities of reporter ions observed in peptide fragmentation spectra, with the

relative areas of the peaks corresponding to proportions of the labelled peptides

(Ross et al., 2004).

9.4.2 Protein quantification using label-free system

Relative quantitative analysis across conditions was performed by comparing

normalised peak area/intensity of each identified peptide. Normalisation of the data

was conducted by the use of an internal protein digest standard. In brief, peak

areas/intensities are corrected using those of the internal protein digest.
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Figure 9.1 – An overview of the data processing and database searching workflow from an MSE acquisition (adapted from Li et al., 2009).
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Intensity measurements are typically further adjusted on those components, that is

de-isotoped and charge-state reduced accurate mass retention time pairs, that

replicate throughout the complete experiment. Next, the redundant, proteotypic

quantitative measurements provided by the multiple tryptic peptide identification

from each protein were used to determine an average, relative protein fold-change.

The algorithm performs binary comparisons for each of the conditions to generate an

average normalised intensity ratio for all matched proteins. Proteins with a

likelihood of quantification smaller than 0.05 were considered to be significantly

regulated. The entire data set of differentially expressed proteins was further filtered

by considering only the identified peptides that replicated two out of three technical

instrument replicates. A likelihood of regulation higher than 95%, as reported by the

quantification algorithm, was considered.

9.5 Mapping protein identifications onto biological

pathways

Proteins identified from each growth condition (acetate and methane) were placed in

separate FASTA-formatted files. The FASTA files were used as an input for the

KEGG Automatic Annotation Server (KAAS) program 36. KAAS performs a

homology search to associate query proteins to KEGG GENES database identifiers.

The list of these KEGG gene identifiers was used by an in-house Perl script to access

the KEGG system, using the KEGG API (application programming interface), and

map these onto KEGG biochemical pathways. The output of the script is a URL

which points to an on-line interactive image of a KEGG pathway with proteins from

different conditions highlighted in different colours. Since Methylocella silvestris-

specific pathways are not comprehensively catalogued in the KEGG database,

proteins were mapped onto those available.
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10.1 Protein identifications

Three distinct experimental approaches were employed in order to provide profiling

and quantitative information regarding the proteome of M. silvestris.

The gel-based analysis identified 331 proteins and 202 protein identifications, for the

acetate and methane growth conditions respectively. In total, the gel-based analysis

provided 389 non-redundant identifications. The iTRAQ analysis uses a pooled

sample, so both growth conditions were placed together. The total number of protein

identifications was 384. As with the gel-based experiments, the MSE method keeps

the growth conditions separate. Filtering out those identifications only seen in one of

the three replicates, 355 and 194 identifications were made for the acetate and

methane growth conditions respectively. This corresponded to 425 non-redundant

protein identifications.

The numbers of proteins identified via each approach are summarised in Table 10.1.

The total number of non-redundant proteins identified is comparable for all three

techniques at 389, 384 and 425 proteins respectively. Differences arise, however,

when looking at the number of peptides per protein identification. There have been

questions raised in the literature regarding the validity of identifications performed

using a single peptide, so-called ‘one-hit wonders’, and whether they should be

included in the list of proteins identified (Veenstra et al., 2004). Of the gel

separation identifications, 133 from the acetate-grown sample and 93 from the

methane-grown sample were made using a single peptide; this translates as 40% and

46% respectively. Overall, 154 of the 389 non-redundant identifications were single-

peptide assignments, which is 40%. The iTRAQ data contained 208 single-peptides

from the total of 384, proportionally 54%. For the MSE analysis, two identifications

from each growth condition were identified with a single peptide; this represents 0.6%

for acetate and 1% for methane. The proportions of single-peptide identifications for

the gel-based and iTRAQ analyses are typical of many results in the literature (Breci

et al., 2005). In the label-free results, of the 425 identifications, only 4 are from a

single peptide: proportionally less than 1%. As the label-free analysis is performed

in triplicate, only an identification observed in at least two of the three replicates was

taken to be valid; therefore, single-peptide identification in label-free data means that

a single peptide was found in at least two of three data sets.
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Table 10.1 - Total protein identifications for the three experimental approaches

Proteins identified by each experimental setup are listed in Appendix 1, Tables 1-5.

Figure 10.1 shows the overlap of protein identifications between the three approaches;

10.1(a) uses all data, including single-peptide identifications, 10.1(b) illustrates

filtered data, with only identifications obtained with two or more peptides. All

proteins identified are listed in Supplementary Tables 1 to 5, giving information on

the molecular weight and pI of the identifications, and also the number of peptides

identified. When including single peptide based identifications, there are a total of

699 proteins identified. Each of the techniques uniquely provides approximately 17%

of those identifications. The remaining 49% of the identifications overlapped as

shown. To overcome the uncertainty involved in the inclusion of single peptide-

based identification, Figure 10.1(b) shows the data presented only including

identifications made using a minimum of two peptides. This gives a total of 509

protein identifications, of which 9% were unique to the gel-based approach, 6% to

iTRAQ, and 38% to label-free. This shows a significant increase in the proportion of

unique identifications by the label-free method, a reduction in gel-based unique

identifications and a considerable decrease in those uniquely identified by iTRAQ.

A closer inspection of the number of proteins identified with and without the

inclusion of single-peptide identifications reveals some interesting observations. As

one would expect, the total number of proteins identified is lower when single-

peptide identifications are excluded (509 when excluded, compared to 699 when

included), including those identifications common to all three methods (89 when

excluded, compared to 152 when included). In contrast, the number of proteins

unique to the label-free method, and those common to the label-free and gel methods,

has increased.

Gel-based iTRAQ Label-free
Total 389 384 425
Single-peptide 154 202 4
Proportion based on single hit 40% 54% 0.9%
More than one peptide 235 178 421
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Figure 10.1 – Number of proteins identified by the various experimental approaches,

(a) including single-peptide identifications, (b) based on a minimum of two peptides.

This is because all but four of the proteins identified by the label-free method were

done so with two or more peptides, whereas the gel and iTRAQ methods generated a

large number of single-peptide identifications. The fact that 152 proteins were

independently identified by all three methods provides strong evidence that although

some of these (63 in total) were identified with a single-peptide by one or more

technique, they should possibly not be discarded as false-positive identifications.

This raises the questions as to what should be done with protein identifications based

on a single-peptide. While the majority of these are likely to correspond to false-

positive identifications, there are a small number that are potentially valid and should

also be included in the list of confidently-identified proteins, although this is not

definitive. Further discussions of results will therefore exclude single-peptide

identifications.

10.2 Relative quantification of identified proteins

10.2.1 Gel-based approach

Figure 10.2 shows the 1D SDS-PAGE separation of the soluble M. silvestris

proteome from different growth conditions. By looking at the image, differential

expression can be identified in certain protein bands, and some representative

changes are highlighted. Most notably, the key methane oxidation enzyme, sMMO,

can be seen as a darkly stained band in the methane-grown sample, as indicated, but
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its expression is significantly reduced in the acetate-grown sample. This is very

similar to previous work (Theisen et al., 2005). Although the analysis of gel-

separated samples provided a comparable number of protein identifications,

quantitative analysis using a 1D separation is difficult. Quantitation via gel methods

is more routinely performed using two-dimensional separations, which were not

carried out here. Further results, focussing on differential expression, use only

MudPIT and MSE data.

Figure 10.2 -
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more faintly stained, implying lower levels of expression.
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10.2.2 iTRAQ labelling

Figure 10.3 represents the differential expression of proteins as characterised by

iTRAQ labelling, plotted on a loge scale; the values are included alongside protein

identifications in Appendix 1, Table 3. Tags 115 and 117, which correspond to

methane-grown samples, and tag 116, which corresponds to an acetate-grown sample,

were normalised to tag 114, which corresponds to an acetate-grown sample. The

values for the 116 sample are clustered close to a line along the x-axis as would be

expected since the 114 and 116 samples should be identical. The 115 and 117

samples should also be identical and we would therefore expect good agreement

between their ratios, as is observed. This experiment provides a good indication of

the reproducibility of the iTRAQ approach. As can be seen by the 115 and 117

trends, distinct up- and down-regulated proteins may be identified in M. silvestris

when grown under methane as compared to when the organism is grown under

acetate. The standard deviation of all the 116:114 ratios is 0.17, providing an

indication of what can be considered true up- or down-regulation. If these values are

considered to be a normal distribution around a calculated mean of 0, then any

proteins with 115:114 and 117:114 ratios within -0.5 and 0.5 cannot be said to be

regulated, using the value of three standard deviations to provide filtering parameters.

Only those identifications showing ratios outside these values have been accepted as

up- or down-regulated. In the iTRAQ method, samples from different growth

conditions are pooled together. Quantification depends entirely upon the isobaric

tags; if insufficient data is available from the isobaric tags, the protein identification

will still be provided in the overall results table, but will not appear in the

quantification data. For the dataset presented here, quantification data was available

for all confidently identified proteins.

10.2.3 Label-free MSE quantification

In the label-free system, samples from differing growth conditions are kept separate,

so a distinct set of protein identifications is generated for each sample. 231 proteins

were identified unique to the acetate-grown sample, 70 were unique to the methane-

grown sample and 124 were common to both conditions.
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Figure 10.3 - Differential expression as determined by iTRAQ labelling; all tags

have been normalised to the 114 label.

Data relating to these 124 proteins were then processed to provide information on

relative expression between the samples.

Figure 10.4 shows the relative protein expression for the regulated proteins (common

to acetate and methane substrates) identified using the label-free approach; this is the

output from the relative quantification software, which generates peptide signal

intensity measurements, using all the peptides identified for any particular protein

identification. These represent deisotoped, charge-state reduced and accurately mass

measured ion lists, which are used for both qualitative identification and relative

quantification (Silva et al., 2006). Log(e) values used as the quantitative

measurement can be found in Appendix 1, Table 6, including indication of proteins

assigned to only one of the two growth conditions. Error measurements are

automatically generated as standard deviation values, which have been plotted. For

an MSE acquisition, the technical variation with respect to signal intensity has been

shown to be 10-15% with highly consistent reproducibility (Silva et al., 2005;

Vissers et al., 2007). For the label-free quantitative data, the significance level of

regulation was determined at 30% fold change, which is an average relative fold
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change between -0.3 and 0.3 on a natural log scale (Vissers et al., 2007). This is

typically 2-3 times higher than the estimated error on the intensity measurement

(Chambery et al., 2009; Silva et al., 2006; Vissers et al., 2007). Those identifications

with relative expression values between -0.3 and 0.3 cannot be taken as regulated;

only those identifications outside these values can be said to be regulated.

Figure 10.4 - Automated protein-level quantification of regulated proteins using the

label-free system; error bars correspond to the automatically generated standard

deviation values.

10.2.4 Agreement of quantification approaches

Both iTRAQ and label-free allow profiling and relative quantitative data to be

concurrently collected. The ability to do this, particularly in a high throughput

manner, is desirable but often difficult. In total, 79 confident identifications (i.e.

more than one peptide) are common between the two methods, which is a much

larger overlap than previous studies comparing methods of quantification (Ross et al.,

2004; Usaite et al., 2008a). A scatter plot comparing the regulation as assessed by

the two methods is shown in Figure 10.5a. There is reasonable correlation, with an
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R2 value of 0.69, with one distinct outlier. If the overall trend of regulation is

compared, all of the common identifications for which quantification data is

available are in agreement, bar the outlier. 21 proteins are indicated to be up-

regulated in the methane sample compared to acetate and 6 are indicated to be down-

regulated; the remaining proteins show no distinct differential expression when

filters for both datasets are applied. If the one distinct outlier is removed from the

dataset then the correlation improves significantly (R2 value 0.80), as shown in

Figure 10.5b.

The outlier, corresponding to the enzyme citrate synthase, presented down-regulation

in the methane-grown sample according to the label-free analysis, but up-regulation

according to iTRAQ. Interrogation of the raw data showed good correlation between

all three replicates of the label-free acquisition in both growth conditions. In the

iTRAQ data, however, there was a disparity in the data from the isobaric tags. Five

peptides were used for identification, with quantification data available for four of

these. Three peptides showed down-regulation in the methane growth condition; the

one peptide which indicated up-regulation was the shortest of the five (four residues),

the others matching at least eight residues within the assigned MS/MS spectrum. If

the short peptide is removed, there is down-regulation of citrate synthase within the

filtering parameters, and in-line with the label-free data, suggesting that this was a

mis-assignment by the software. MS/MS spectra of the matched sequences and

isobaric tags are shown in Figure 10.6. Although this is only one anomalous data

point, it indicates potential problems if single-peptide identifications are used to

provide quantitative data from an iTRAQ experiment.

The label-free approach differs from iTRAQ in that each growth condition is

analysed independently, while in iTRAQ samples from different conditions are

pooled together. Of the 425 non-redundant identifications obtained by the label-free

method, 231 were unique to the acetate-grown sample and 70 unique to the methane-

grown. From these 301 proteins, 54 were also identified by iTRAQ, and were

compared with the iTRAQ quantification list. Of these, 25 were distinctly regulated

and all showed agreement, i.e. were shown by iTRAQ to be up-regulated in

whichever growth condition the label-free method had exclusively assigned. This

has been represented as a comparative table in Appendix 1, Table 7. The 29
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identifications which fall outside the iTRAQ filtering parameters for accepted

regulation levels, as described earlier, have been highlighted.

Figure 10.5 - (a) Correlation of quantification data from iTRAQ and the label-free

method for identifications using two or more peptides; (b) Correlation when the

outlier corresponding to citrate synthase is removed.
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Figure 10.6 - Peptide sequences for precursors (all doubly-charged ions) and corresponding isobaric reporter ions for outlying protein

identification citrate synthase (a) Mis-assigned peptide, precursor m/z 366, (b) reporter ions for precursor 366
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Figure 10.6 - (c) precursor m/z 581, (d) reporter ions for precursor 581
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Figure 10.6 - (e) precursor m/z 679, (f) reporter ions for precursor 679
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Figure 10.6 - (g) precursor m/z 736, (h) reporter ions for precursor 736.
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10.3 Comparison of experimental approaches

A summary of the methodology for all three experimental systems and the results

obtained from each can be seen in Table 10.2. There is a stark difference in the total

amount of protein required for the three setups: up to 1 mg for iTRAQ, 14 µg for the

gel-based method, and less than 1 µg for label-free. Although the injection amount

for the LC-MS/MS analysis is comparable between all three techniques, this does not

relate to the total amount of protein required for an adequate dataset. In the gel-

based and iTRAQ approaches, the amount indicated is necessary to generate enough

peptides over 30-60 fractions for MS analysis. With the employed label-free method,

the amount loaded directly for LC-MS analysis is sufficient for a full qualitative and

quantitative dataset. Sample requirement can be an important consideration when

performing proteomic studies, as it can be a challenge to generate a suitable amount

from biological systems. If less sample is required for a single experiment,

additional analyses can be carried out, which will add confidence to the results

obtained (Karp and Lilley, 2007). It has previously been shown that even three

replicate MudPIT experiments may not provide full coverage of all the proteins

within a sample (Durr et al., 2004).

An ideal method for proteomic analysis would enable comprehensive and high-

throughput studies, making experimental and instrumentation time an important

factor when considering which approach to utilise. Both the gel-based and iTRAQ

setups require up to 60 hours of MS data acquisition time, based upon our chosen

number of bands cut from the gel or fractions from the strong cation exchange

chromatography, and upon the gradient setup in the reversed-phase chromatography.

The analytical time could be shortened by choosing fewer fractions, or reducing the

reversed-phase gradient, but this may also reduce peptide recovery and/or separation.

The label-free experiments require 6 hours of instrument time (2 hours per replicate).

In addition to this, preparing samples for iTRAQ requires a number of days,

including overnight steps. This issue can make the approach less suitable for a

routine analysis setup when compared to the label-free method.

The average number of peptides identified per confident protein assignment for the

gel-based and iTRAQ analyses is 5, compared to an average of 12 for the label-free

method. The gel-based approach gives an average sequence coverage of 15%, higher
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than the iTRAQ average of 11% which is slightly lower than previous work (Domon

and Aebersold, 2006). The average sequence coverage for the label-free data is 45%.

An increased number of peptides and higher sequence coverage can confer more

confidence in identifications obtained.

1D-SDS-PAGE iTRAQ Label-free

Protein loading 14 µg 100 µg per iTRAQ
labeling vial; 800
µg total loading

0.5 µg for each of
3 technical
replicates

Number of overnight
steps

2 5 1

Samples to analyse
by MS

30-40 fractions 30-60 fractions 1 per growth
condition

Reverse-phase LC
and MS acquisition

30-40 hours 30-60 hours 2 hours

Total analysis time 4 days 6 days Less than 3 days

Total instrument
time

30-40 hours 30-60 hours 6 hours per
sample

Size of data file 300 MB x 40 (1.2
GB)

300 MB x 40 (1.2
GB)

6 GB x 3 (18GB)

Number of proteins
confidently
identified

235 178 421

Average number of
peptides per protein
(when including
single-peptide
identifications)

5
(3)

5
(3)

12
(12)

Average sequence
coverage
(when including
single-peptide
identifications)

15 %
(10 %)

11 %
(7 %)

45 %
(45 %)

Table 10.2 - A comparison of the experimental requirements for each of the

approaches, and the information obtained from the data generated.
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10.4 Biological significance of results obtained

10.4.1 Placing results in the context of methane oxidation

Bacteria from the methanotroph family utilise a common pathway to process

methane in order to use it as a carbon and energy source, an overview of which is

given in Figure 10.7. As the Methylocella genus has been recently identified and is

relatively uncharacterised, it is difficult to make predictions about potential

biochemical changes which would be seen on a growth substrate other than methane.

It could, however, be suggested that some down-regulation of the enzymes in the

methane oxidation pathway would be seen. Our study identified the key enzymes

methane monooxygenase (MMO) and methanol dehydrogenase, with quantitative

data from both iTRAQ and the label-free approach indicating a significant down-

regulation when M. silvestris was grown on acetate. MMO is a multimeric protein

with subunits α, β and γ (Colby and Dalton, 1976). The α and β subunits show up-

regulation in the methane growth samples, as does the accessory MMO Protein B.

The γ subunit shows significant up-regulation on methane when analysed by iTRAQ;

using our data filtering (more than one peptide, more than one replicate for label-free)

this subunit is only seen in the methane growth condition for the gel and label-free

analyses, as is the accessory MMO Protein C. There is also up-regulation of the

alpha and beta subunits of methanol dehydrogenase in the methane-grown samples,

which is the second enzyme in the methanotroph methane oxidation pathway.

Figure 10.7 - The pathway of methane oxidation in methanotrophic bacteria.

The quantification data relating to these enzyme identifications has been shown in

Figure 10.8. DNA-directed RNA polymerase has also been included as a

housekeeping protein, and as such should not display up- or down-regulation

regardless of growth substrate. Such proteins can provide a check, on the biological

level, for the significance of differential proteomic data.
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10.4.2 Mapping protein identifications onto biological

pathways

Having identified the proteins expressed by the Methylocella silvestris organism

under the different growth conditions and obtained the relative expression levels for

the regulated proteins it is important to probe the biochemical pathways employed.

Such pathway mapping is becoming increasingly popular in the fields of genomics

and proteomics. Information regarding gene expression or levels of proteins only

provides part of the picture; in order to further understand the biochemistry within a

system, this information must be put into the context of cell activity.

Figure 10.8 - iTRAQ and label-free quantification data for proteins identified as key

metabolic enzymes within M. silvestris; a housekeeping protein has been included as

indication of a biological marker.

In order to begin to classify the pathways involved in M. silvestris data was uploaded

to KAAS. Although the system works best when a complete set of genes in a

genome is known, it is not necessary. As M. silvestris has only recently been

identified, sequencing of its genome is still in progress; the gene and protein

databases are, therefore, incomplete and not publically available. Pathways specific
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to this organism were therefore not able to be searched, but assignments to pathways

could be made on the basis of homology. The output of the KAAS program

indicated that the majority of proteins identified were involved in metabolism (e.g.

TCA cycle) and genetic information processing, as would expected for this type of

organism. Figure 10.9 shows an example of the output obtained with proteins from

each growth condition mapped onto the citric acid cycle; significant specific

differences can be seen between the various substrates.

Methylocella assimilates carbon from the formaldehyde produced during methane

oxidation via the serine cycle. The serine cycle requires the conversion of acetyl

CoA into glyoxylate, catalysed by isocitrate lyase, but a lot of methanotrophs do not

possess this enzyme. Interestingly, isocitrate lyase was only detected in the acetate

growth condition. This might suggest that it was used during metabolism of acetate

but not during metabolism of methane, and would need to be investigated further.

The conventional idea of acetate metabolism is that first acetate is converted into

acetyl CoA, by an enzyme such as acetate CoA ligase, and that the metabolism of

acetyl CoA requires the glyoxylate bypass, which consists of the two enzymes

isocitrate lyase and malate synthase, to bypass the decarboxylation steps of the TCA

cycle, and allow assimilation of biomass from acetyl CoA. Malate synthase was only

detected in acetate, in keeping with its role in the glyoxylate bypass, and acetate CoA

ligase was highly upregulated during growth on acetate as expected.

These data, showing differences in expression of key proteins between the two

growth conditions, indicate that a proteomics-based approach has the potential be

expanded in the future to probe these metabolic pathways in more detail. Combined

with other methods (e.g. enzyme assays), a great deal of valuable information could

be obtained providing crucial insight into the biochemistry of Methylocella.
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Figure 10.9 - Extracted

pathway analysis of the citric

acid cycle from KEGG

database; red - unique when

acetate used as substrate, blue

- unique when methane used as

substrate, purple - present

under both growth conditions.
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10.5 Conclusions

For any integrated proteomics experiment, a number of important issues need to be

considered. These include the need for qualitative (profiling) and quantitative

information. Confidence in identification and quantification, reproducibility, sample

size, instrument time, sample preparation, cost, and sequence coverage are all

important factors that need to be taken into account. The ability to place any changes

observed into the context of the biological pathways involved remains a crucial

aspect of the research. This study has evaluated the potential applicability of a

number of common approaches to profiling and differential proteomics. The

experiments have been restricted to a proteomics study of cytosolic proteins, and

comparable technology platforms were employed. Good agreement was obtained

between the commonly utilised iTRAQ labelled experiment, a gel based study and

that based on a label-free LC-MS approach. At the profiling level, when considering

all identifications, including those based on single peptides, the number of identified

proteins was comparable for all three methods. When requiring more than one

peptide for identification, the label-free approach gave superior information

particularly when coverage was taken into account. Both the iTRAQ experiment and

the label-free approach provided relative quantification datasets, and the agreement

between the approaches was better than previously observed in comparisons between

different quantitative methods (Usaite et al., 2008b). This is most likely due to the

use of comparable instrumentation, as each method employed high-performance

liquid chromatography coupled to a Q-TOF tandem MS acquisition. The label-free

experiment does, however, have advantages in terms of sample requirement, sample

preparation and instrumental time requirements. A preliminary screen of the protein

regulation results for biological significance shows agreement with previous analysis

of the regulation of methane monooxygenase in Methylocella. This, together with

the significant number of identifications provided by all three approaches, and the

excellent agreement of two quantitative datasets, indicates the potential for further

proteomic studies on this methanotroph.
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Concluding remarks

The work presented here describes the use mass spectrometry for the study of a

number of biological systems.

New ambient ionisation techniques, coupled to different mass analysers, were

employed for the rapid screening of pharmaceutical formulations. Active ingredients

were identified, potential fragmentation pathways were elucidated and drug

metabolites were also successfully identified from biological samples. Since the

work was conducted, there has been huge growth in the field of ambient ionisation,

with a number of novel and complementary techniques emerging for various

applications. There remains much to determine regarding aspects such as

fundamental mechanisms of ionisation, detection limits for compounds of interest,

and the utilisation of these methods’ non-invasive and high-throughput capabilities

for practical applications. Studies are continuing in our research group on the

investigation of pharmaceutical formulations using a variety of methods, and also on

natural products used as alternative therapies and supplements.

Inorganic mass spectrometry was employed to probe the metal centres of the enzyme,

particulate methane monooxygenase, a methane-oxidising complex found in certain

bacteria. The data obtained was largely inconclusive, but this protein remains of

significant interest. The mechanism by which it oxidises methane is still to be fully

understood, but if this is to be performed by mass spectrometry, then considerable

progress will first have to be made in improving the compatibility of sample

preparation methods with the instrumentation used.

It was shown that protein cross-sections, obtained using a commercial ion mobility

mass spectrometry instrument, can be used to probe the conformation of hemoglobin

in the gas phase. This initial work has been followed by investigations of a number

of other clinical blood samples, and also the study of other metal containing proteins,

such as copper-bound prion and zinc finger complexes. There is still much to

optimise in terms of calibrating travelling wave-based ion mobility for different types

of sample, and also the correlation of data obtained with complementary techniques

to gain as full a picture as possible regarding protein conformation.
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The comparison of three proteomics techniques to study a novel organism,

Methylocella silvestris showed promising results, both in terms of the technical

application of methods involved and the biology of the organism. Since the

publication of this work, a fully-annotated genome has been released. This will

allow for the data obtained to be re-analysed, in order to create a clearer picture of

differences in the organism between growth on a one-carbon and on a multi-carbon

compound. Work is now being carried out to investigate the technical merits of a

multi-dimensional separation of the proteome prior to mass spectrometric analysis;

alongside this, the growth of M. silvestris on a number of multi-carbon compounds is

being investigated.
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Appendix A

Supplementary Proteomic Data
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Supplementary Table 1

Protein identifications – Gel-based separation – Methane growth condition

Entry Description
Number of
peptides

Sequence
coverage (%)

Molecular
weight (Da) pI

0008_MSIL msil 20jun08 Contig14 revised geneMsil0008 3 8.2317 34715 6.1877

0061_MSIL msil 20jun08 Contig14 revised geneMsil0061 3 13.6546 25530 6.1859

0082_MSIL msil 20jun08 Contig14 revised geneMsil0082 2 3.9773 39510 5.7627

0096_MSIL msil 20jun08 Contig14 revised geneMsil0096 6 28.5714 21825 5.5093

0097_MSIL msil 20jun08 Contig14 revised geneMsil0097 2 8.6066 27751 6.0683

0098_MSIL msil 20jun08 Contig14 revised geneMsil0098 2 8.7805 23289 4.9658

0216_MSIL msil 20jun08 Contig14 revised geneMsil0216 9 11.8421 92754 6.0967

0268_MSIL msil 20jun08 Contig14 revised geneMsil0268 4 6.8627 77238 5.161

0340_MSIL msil 20jun08 Contig14 revised geneMsil0340 2 11.7021 20083 7.8691

0341_MSIL msil 20jun08 Contig14 revised geneMsil0341 4 8.6444 54708 5.7219

0343_MSIL msil 20jun08 Contig14 revised geneMsil0343 9 22.1532 51312 4.745

0367_MSIL msil 20jun08 Contig14 revised geneMsil0367 2 3.6957 49285 5.0629

0426_MSIL msil 20jun08 Contig14 revised geneMsil0426 8 20.4611 38813 5.7072

0427_MSIL msil 20jun08 Contig14 revised geneMsil0427 4 8.9552 52033 5.2363

0471_MSIL msil 20jun08 Contig14 revised geneMsil0471 29 48.32 68485 5.8453

0472_MSIL msil 20jun08 Contig14 revised geneMsil0472 5 15.4386 31041 5.1363

0473_MSIL msil 20jun08 Contig14 revised geneMsil0473 4 26.2376 22047 5.814

0475_MSIL msil 20jun08 Contig14 revised geneMsil0475 2 4.6377 38805 5.5419

0515_MSIL msil 20jun08 Contig14 revised geneMsil0515 7 19.4379 44925 4.5795

0577_MSIL msil 20jun08 Contig14 revised geneMsil0577 2 5.7348 30494 11.35

0579_MSIL msil 20jun08 Contig14 revised geneMsil0579 2 7.767 22125 10.897
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0580_MSIL msil 20jun08 Contig14 revised geneMsil0580 3 13.4694 26030 10.3667

0582_MSIL msil 20jun08 Contig14 revised geneMsil0582 12 30.8081 43107 5.3617

0583_MSIL msil 20jun08 Contig14 revised geneMsil0583 4 4.9204 76241 5.0898

0584_MSIL msil 20jun08 Contig14 revised geneMsil0584 4 29.4872 17839 10.3623

0620_MSIL msil 20jun08 Contig14 revised geneMsil0620 3 14.2857 28612 4.7858

0643_MSIL msil 20jun08 Contig14 revised geneMsil0643 9 22.1477 47756 6.0291

0795_MSIL msil 20jun08 Contig14 revised geneMsil0795 13 32.5411 57572 4.9437

0811_MSIL msil 20jun08 Contig14 revised geneMsil0811 8 26.8199 27389 5.9431

0832_MSIL msil 20jun08 Contig14 revised geneMsil0832 3 10.25 41752 6.078

0928_MSIL msil 20jun08 Contig14 revised geneMsil0928 2 5.8981 38838 5.5254

0968_MSIL msil 20jun08 Contig14 revised geneMsil0968 2 15 15026 7.7732

0971_MSIL msil 20jun08 Contig14 revised geneMsil0971 2 8.1522 20591 4.5989

1012_MSIL msil 20jun08 Contig14 revised geneMsil1012 2 8.5911 31519 5.4069

1043_MSIL msil 20jun08 Contig14 revised geneMsil1043 2 8.5561 19103 4.5654

1125_MSIL msil 20jun08 Contig14 revised geneMsil1125 4 8.5714 54389 5.9583

1140_MSIL msil 20jun08 Contig14 revised geneMsil1140 2 8.2645 26506 4.8895

1193_MSIL msil 20jun08 Contig14 revised geneMsil1193 2 2.5487 70184 5.9489

1226_MSIL msil 20jun08 Contig14 revised geneMsil1226 5 7.4419 70867 5.6898

1237_MSIL msil 20jun08 Contig14 revised geneMsil1237 4 15.5116 33325 6.8214

1262_MSIL msil 20jun08 Contig14 revised geneMsil1262 11 23.5741 59751 5.7755

1263_MSIL msil 20jun08 Contig14 revised geneMsil1263 18 40.1535 44905 5.7274

1265_MSIL msil 20jun08 Contig14 revised geneMsil1265 6 28.8235 19537 9.3867

1267_MSIL msil 20jun08 Contig14 revised geneMsil1267 3 10.5714 38492 4.8748

1325_MSIL msil 20jun08 Contig14 revised geneMsil1325 2 2.6352 79052 6.0073

1360_MSIL msil 20jun08 Contig14 revised geneMsil1360 12 10.7236 126072 5.9681

1382_MSIL msil 20jun08 Contig14 revised geneMsil1382 2 3.6058 46188 5.373
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1395_MSIL msil 20jun08 Contig14 revised geneMsil1395 2 2.9371 75621 5.2117

1574_MSIL msil 20jun08 Contig14 revised geneMsil1574 2 11.8519 28560 5.7598

1575_MSIL msil 20jun08 Contig14 revised geneMsil1575 4 14.0794 29145 6.791

1607_MSIL msil 20jun08 Contig14 revised geneMsil1607 4 17.2691 27020 5.248

1681_MSIL msil 20jun08 Contig14 revised geneMsil1681 14 27.972 47690 6.3444

1691_MSIL msil 20jun08 Contig14 revised geneMsil1691 3 13.4783 24353 4.483

1706_MSIL msil 20jun08 Contig14 revised geneMsil1706 2 4.5356 49832 5.1275

1712_MSIL msil 20jun08 Contig14 revised geneMsil1712 2 3.5842 59899 6.6418

1713_MSIL msil 20jun08 Contig14 revised geneMsil1713 9 36.4217 33824 5.2581

1714_MSIL msil 20jun08 Contig14 revised geneMsil1714 9 27.2727 42582 6.893

1716_MSIL msil 20jun08 Contig14 revised geneMsil1716 6 19.2982 42881 5.2007

1718_MSIL msil 20jun08 Contig14 revised geneMsil1718 3 2.8292 102443 6.1371

1758_MSIL msil 20jun08 Contig14 revised geneMsil1758 3 2.5758 141391 5.892

1808_MSIL msil 20jun08 Contig14 revised geneMsil1808 13 38.4342 30823 5.7768

1819_MSIL msil 20jun08 Contig14 revised geneMsil1819 3 3.0336 101793 5.4351

1821_MSIL msil 20jun08 Contig14 revised geneMsil1821 2 5.5556 35710 5.2853

1841_MSIL msil 20jun08 Contig14 revised geneMsil1841 2 7.8947 28110 9.3347

1860_MSIL msil 20jun08 Contig14 revised geneMsil1860 2 5.1383 52530 6.5993

1872_MSIL msil 20jun08 Contig14 revised geneMsil1872 2 13.2075 17446 10.975

1907_MSIL msil 20jun08 Contig14 revised geneMsil1907 2 2.8935 95453 5.6468

2004_MSIL msil 20jun08 Contig14 revised geneMsil2004 8 31.3953 28160 5.4965

2007_MSIL msil 20jun08 Contig14 revised geneMsil2007 23 59.2593 43429 7.1534

2074_MSIL msil 20jun08 Contig14 revised geneMsil2074 2 4.5977 45551 5.0458

2091_MSIL msil 20jun08 Contig14 revised geneMsil2091 6 15.6627 35103 5.5523

2110_MSIL msil 20jun08 Contig14 revised geneMsil2110 8 17.9724 45996 6.7786

2111_MSIL msil 20jun08 Contig14 revised geneMsil2111 3 10.8824 33339 5.5651
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2114_MSIL msil 20jun08 Contig14 revised geneMsil2114 2 5.2 27896 5.5937

2282_MSIL msil 20jun08 Contig14 revised geneMsil2282 7 21.194 35502 6.9589

2301_MSIL msil 20jun08 Contig14 revised geneMsil2301 6 17.2962 55865 5.3183

2385_MSIL msil 20jun08 Contig14 revised geneMsil2385 7 17.2881 30948 4.9871

2387_MSIL msil 20jun08 Contig14 revised geneMsil2387 4 15.528 33939 5.3212

2390_MSIL msil 20jun08 Contig14 revised geneMsil2390 5 31.4286 18558 5.8748

2400_MSIL msil 20jun08 Contig14 revised geneMsil2400 4 12.1951 39186 4.9005

2402_MSIL msil 20jun08 Contig14 revised geneMsil2402 2 7.947 31864 6.1088

2447_MSIL msil 20jun08 Contig14 revised geneMsil2447 4 15.7895 36002 6.5391

2460_MSIL msil 20jun08 Contig14 revised geneMsil2460 2 2.3256 76831 6.9587

2501_MSIL msil 20jun08 Contig14 revised geneMsil2501 7 18.0685 33442 5.088

2503_MSIL msil 20jun08 Contig14 revised geneMsil2503 2 8.8435 30052 5.3925

2523_MSIL msil 20jun08 Contig14 revised geneMsil2523 11 30.1242 34028 5.8129

2601_MSIL msil 20jun08 Contig14 revised geneMsil2601 2 7.2829 38162 5.0845

2753_MSIL msil 20jun08 Contig14 revised geneMsil2753 2 8.0508 23938 5.599

2955_MSIL msil 20jun08 Contig14 revised geneMsil2955 9 18.9274 67769 4.823

2970_MSIL msil 20jun08 Contig14 revised geneMsil2970 2 10 23277 4.7113

2996_MSIL msil 20jun08 Contig14 revised geneMsil2996 5 14.6154 40184 6.267

2997_MSIL msil 20jun08 Contig14 revised geneMsil2997 6 24.8963 25472 8.4214

3002_MSIL msil 20jun08 Contig14 revised geneMsil3002 3 8.6567 35366 5.6917

3011_MSIL msil 20jun08 Contig14 revised geneMsil3011 5 12.9794 36619 5.714

3157_MSIL msil 20jun08 Contig14 revised geneMsil3157 4 7.3801 59779 5.8885

3226_MSIL msil 20jun08 Contig14 revised geneMsil3226 2 7.7441 32668 6.0456

3309_MSIL msil 20jun08 Contig14 revised geneMsil3309 3 13.806 28857 4.6071

3510_MSIL msil 20jun08 Contig14 revised geneMsil3510 2 6.4865 40188 4.9473

3530_MSIL msil 20jun08 Contig14 revised geneMsil3530 6 16.2162 45231 6.7689
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3552_MSIL msil 20jun08 Contig14 revised geneMsil3552 5 23.1183 19778 9.7436

3626_MSIL msil 20jun08 Contig14 revised geneMsil3626 4 25.1613 17620 5.0894

3632_MSIL msil 20jun08 Contig14 revised geneMsil3632 3 5.802 31524 4.7128

3774_MSIL msil 20jun08 Contig14 revised geneMsil3774 5 5.7811 86684 5.2244

3818_MSIL msil 20jun08 Contig14 revised geneMsil3818 2 5.6537 31221 5.0032

3865_MSIL msil 20jun08 Contig14 revised geneMsil3865 3 12.987 23929 9.9968

3866_MSIL msil 20jun08 Contig14 revised geneMsil3866 2 12.2807 17717 9.906

3868_MSIL msil 20jun08 Contig14 revised geneMsil3868 6 4.2878 153612 5.0548

3874_MSIL msil 20jun08 Contig14 revised geneMsil3874 2 5.0847 51686 6.0818

3875_MSIL msil 20jun08 Contig14 revised geneMsil3875 20 14.1124 170158 5.7504
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Supplementary Table 2

Protein identifications – Gel-based separation – Acetate growth condition

Entry Description
Number of
peptides

Sequence
coverage (%)

Molecular
weight (Da) pI

0058_MSIL msil 20jun08 Contig14 revised geneMsil0058 6 27.9245 27691 9.0434

0061_MSIL msil 20jun08 Contig14 revised geneMsil0061 3 13.6546 25530 6.1859

0074_MSIL msil 20jun08 Contig14 revised geneMsil0074 2 10.5882 27817 6.3344

0081_MSIL msil 20jun08 Contig14 revised geneMsil0081 5 18.0685 35081 5.3448

0082_MSIL msil 20jun08 Contig14 revised geneMsil0082 7 19.3182 39510 5.7627

0096_MSIL msil 20jun08 Contig14 revised geneMsil0096 4 12.7551 21825 5.5093

0097_MSIL msil 20jun08 Contig14 revised geneMsil0097 5 20.9016 27751 6.0683

0098_MSIL msil 20jun08 Contig14 revised geneMsil0098 5 19.0244 23289 4.9658

0105_MSIL msil 20jun08 Contig14 revised geneMsil0105 2 8.7805 23649 10.3174

0106_MSIL msil 20jun08 Contig14 revised geneMsil0106 2 4.1016 54236 5.7662

0152_MSIL msil 20jun08 Contig14 revised geneMsil0152 2 5.9701 35747 10.205

0178_MSIL msil 20jun08 Contig14 revised geneMsil0178 6 26.284 34870 6.0123

0194_MSIL msil 20jun08 Contig14 revised geneMsil0194 7 6.7568 96924 5.1328

0195_MSIL msil 20jun08 Contig14 revised geneMsil0195 3 22.9508 19801 5.4911

0202_MSIL msil 20jun08 Contig14 revised geneMsil0202 3 9.9432 37207 6.2

0209_MSIL msil 20jun08 Contig14 revised geneMsil0209 5 9.3098 70016 5.3441

0216_MSIL msil 20jun08 Contig14 revised geneMsil0216 4 6.1005 92754 6.0967

0255_MSIL msil 20jun08 Contig14 revised geneMsil0255 2 9.9567 26309 5.1048

0268_MSIL msil 20jun08 Contig14 revised geneMsil0268 15 19.888 77238 5.161

0286_MSIL msil 20jun08 Contig14 revised geneMsil0286 3 10.9489 29864 4.5688

0318_MSIL msil 20jun08 Contig14 revised geneMsil0318 2 5.7229 37242 5.4631
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0336_MSIL msil 20jun08 Contig14 revised geneMsil0336 3 3.4247 97923 5.6922

0340_MSIL msil 20jun08 Contig14 revised geneMsil0340 3 18.0851 20083 7.8691

0341_MSIL msil 20jun08 Contig14 revised geneMsil0341 12 26.7191 54708 5.7219

0342_MSIL msil 20jun08 Contig14 revised geneMsil0342 5 16.8385 31610 9.8547

0343_MSIL msil 20jun08 Contig14 revised geneMsil0343 8 19.0476 51312 4.745

0351_MSIL msil 20jun08 Contig14 revised geneMsil0351 2 10.7884 25862 5.4586

0367_MSIL msil 20jun08 Contig14 revised geneMsil0367 2 6.087 49285 5.0629

0380_MSIL msil 20jun08 Contig14 revised geneMsil0380 4 16.2264 28019 6.1848

0412_MSIL msil 20jun08 Contig14 revised geneMsil0412 2 6.4257 26499 7.2621

0426_MSIL msil 20jun08 Contig14 revised geneMsil0426 2 6.9164 38813 5.7072

0427_MSIL msil 20jun08 Contig14 revised geneMsil0427 9 24.0938 52033 5.2363

0471_MSIL msil 20jun08 Contig14 revised geneMsil0471 26 42.08 68485 5.8453

0472_MSIL msil 20jun08 Contig14 revised geneMsil0472 9 32.6316 31041 5.1363

0473_MSIL msil 20jun08 Contig14 revised geneMsil0473 4 29.2079 22047 5.814

0499_MSIL msil 20jun08 Contig14 revised geneMsil0499 3 10.2041 35928 5.3007

0515_MSIL msil 20jun08 Contig14 revised geneMsil0515 5 12.8806 44925 4.5795

0519_MSIL msil 20jun08 Contig14 revised geneMsil0519 2 5.814 38123 6.9263

0520_MSIL msil 20jun08 Contig14 revised geneMsil0520 2 5.6522 48749 4.5293

0559_MSIL msil 20jun08 Contig14 revised geneMsil0559 10 48.7047 20525 7.5602

0565_MSIL msil 20jun08 Contig14 revised geneMsil0565 2 11.2994 18780 10.478

0579_MSIL msil 20jun08 Contig14 revised geneMsil0579 2 7.767 22125 10.897

0582_MSIL msil 20jun08 Contig14 revised geneMsil0582 9 21.2121 43107 5.3617

0583_MSIL msil 20jun08 Contig14 revised geneMsil0583 10 15.0507 76241 5.0898

0619_MSIL msil 20jun08 Contig14 revised geneMsil0619 3 16.1111 19836 5.2982

0620_MSIL msil 20jun08 Contig14 revised geneMsil0620 5 22.6481 28612 4.7858

0629_MSIL msil 20jun08 Contig14 revised geneMsil0629 2 4.8309 44413 9.3138
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0643_MSIL msil 20jun08 Contig14 revised geneMsil0643 4 9.396 47756 6.0291

0672_MSIL msil 20jun08 Contig14 revised geneMsil0672 3 2.3487 118521 4.981

0673_MSIL msil 20jun08 Contig14 revised geneMsil0673 2 11.8421 16433 4.869

0730_MSIL msil 20jun08 Contig14 revised geneMsil0730 3 8.0769 27821 6.2047

0764_MSIL msil 20jun08 Contig14 revised geneMsil0764 2 9.375 31170 5.9786

0786_MSIL msil 20jun08 Contig14 revised geneMsil0786 4 15.9159 35835 5.38

0795_MSIL msil 20jun08 Contig14 revised geneMsil0795 24 44.0585 57572 4.9437

0811_MSIL msil 20jun08 Contig14 revised geneMsil0811 8 24.5211 27389 5.9431

0822_MSIL msil 20jun08 Contig14 revised geneMsil0822 5 15.1515 36012 5.0724

0823_MSIL msil 20jun08 Contig14 revised geneMsil0823 3 24.6377 14691 4.8723

0848_MSIL msil 20jun08 Contig14 revised geneMsil0848 5 16.443 31524 6.3311

0895_MSIL msil 20jun08 Contig14 revised geneMsil0895 2 8.9796 25252 8.4752

0931_MSIL msil 20jun08 Contig14 revised geneMsil0931 12 22.8632 51377 5.7431

0971_MSIL msil 20jun08 Contig14 revised geneMsil0971 3 12.5 20591 4.5989

1012_MSIL msil 20jun08 Contig14 revised geneMsil1012 5 18.9003 31519 5.4069

1025_MSIL msil 20jun08 Contig14 revised geneMsil1025 8 38.5475 20004 5.2809

1043_MSIL msil 20jun08 Contig14 revised geneMsil1043 2 8.5561 19103 4.5654

1068_MSIL msil 20jun08 Contig14 revised geneMsil1068 4 12.8472 30007 6.239

1097_MSIL msil 20jun08 Contig14 revised geneMsil1097 2 9.8361 19610 4.7765

1140_MSIL msil 20jun08 Contig14 revised geneMsil1140 3 12.3967 26506 4.8895

1160_MSIL msil 20jun08 Contig14 revised geneMsil1160 2 8.0986 31741 5.3829

1165_MSIL msil 20jun08 Contig14 revised geneMsil1165 4 11.9403 35440 4.5306

1184_MSIL msil 20jun08 Contig14 revised geneMsil1184 3 3.6735 77073 4.8657

1191_MSIL msil 20jun08 Contig14 revised geneMsil1191 6 24.4318 37950 5.2592

1193_MSIL msil 20jun08 Contig14 revised geneMsil1193 3 4.4978 70184 5.9489

1194_MSIL msil 20jun08 Contig14 revised geneMsil1194 3 10.5263 39071 5.571
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1214_MSIL msil 20jun08 Contig14 revised geneMsil1214 4 13.2296 54892 5.2304

1215_MSIL msil 20jun08 Contig14 revised geneMsil1215 5 12.1076 47959 5.3205

1218_MSIL msil 20jun08 Contig14 revised geneMsil1218 3 12.7962 22113 5.4562

1226_MSIL msil 20jun08 Contig14 revised geneMsil1226 17 25.5814 70867 5.6898

1237_MSIL msil 20jun08 Contig14 revised geneMsil1237 2 9.901 33325 6.8214

1325_MSIL msil 20jun08 Contig14 revised geneMsil1325 10 13.4535 79052 6.0073

1328_MSIL msil 20jun08 Contig14 revised geneMsil1328 2 4.4355 52701 6.206

1375_MSIL msil 20jun08 Contig14 revised geneMsil1375 10 23.694 58198 6.0253

1382_MSIL msil 20jun08 Contig14 revised geneMsil1382 6 11.7788 46188 5.373

1388_MSIL msil 20jun08 Contig14 revised geneMsil1388 8 32.5359 22288 5.8751

1395_MSIL msil 20jun08 Contig14 revised geneMsil1395 10 10.9091 75621 5.2117

1519_MSIL msil 20jun08 Contig14 revised geneMsil1519 5 15.3846 51487 5.7548

1575_MSIL msil 20jun08 Contig14 revised geneMsil1575 7 25.2708 29145 6.791

1587_MSIL msil 20jun08 Contig14 revised geneMsil1587 12 23.7937 65094 5.8834

1603_MSIL msil 20jun08 Contig14 revised geneMsil1603 5 25.7642 24460 8.2592

1624_MSIL msil 20jun08 Contig14 revised geneMsil1624 2 5.0378 42515 4.3233

1676_MSIL msil 20jun08 Contig14 revised geneMsil1676 3 13.5678 22228 5.6911

1677_MSIL msil 20jun08 Contig14 revised geneMsil1677 3 14.3541 22918 8.5001

1681_MSIL msil 20jun08 Contig14 revised geneMsil1681 11 26.5734 47690 6.3444

1688_MSIL msil 20jun08 Contig14 revised geneMsil1688 2 2.5499 100109 5.3073

1691_MSIL msil 20jun08 Contig14 revised geneMsil1691 3 14.7826 24353 4.483

1693_MSIL msil 20jun08 Contig14 revised geneMsil1693 4 12.2581 31980 5.3806

1694_MSIL msil 20jun08 Contig14 revised geneMsil1694 2 4.5845 37679 5.5659

1705_MSIL msil 20jun08 Contig14 revised geneMsil1705 4 14.7059 37163 5.33

1706_MSIL msil 20jun08 Contig14 revised geneMsil1706 2 4.7516 49832 5.1275

1713_MSIL msil 20jun08 Contig14 revised geneMsil1713 3 13.738 33824 5.2581
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1714_MSIL msil 20jun08 Contig14 revised geneMsil1714 8 26.5152 42582 6.893

1716_MSIL msil 20jun08 Contig14 revised geneMsil1716 4 9.7744 42881 5.2007

1718_MSIL msil 20jun08 Contig14 revised geneMsil1718 2 1.741 102443 6.1371

1759_MSIL msil 20jun08 Contig14 revised geneMsil1759 2 5.3846 41902 7.7274

1760_MSIL msil 20jun08 Contig14 revised geneMsil1760 4 10.3578 55688 5.8566

1808_MSIL msil 20jun08 Contig14 revised geneMsil1808 11 31.6726 30823 5.7768

1851_MSIL msil 20jun08 Contig14 revised geneMsil1851 2 8.2988 24865 4.1404

1907_MSIL msil 20jun08 Contig14 revised geneMsil1907 12 14.9306 95453 5.6468

1910_MSIL msil 20jun08 Contig14 revised geneMsil1910 6 9.8462 71093 4.9285

2091_MSIL msil 20jun08 Contig14 revised geneMsil2091 7 29.5181 35103 5.5523

2110_MSIL msil 20jun08 Contig14 revised geneMsil2110 7 21.1982 45996 6.7786

2111_MSIL msil 20jun08 Contig14 revised geneMsil2111 5 18.8235 33339 5.5651

2114_MSIL msil 20jun08 Contig14 revised geneMsil2114 6 24 27896 5.5937

2221_MSIL msil 20jun08 Contig14 revised geneMsil2221 5 10.5751 55691 5.0689

2224_MSIL msil 20jun08 Contig14 revised geneMsil2224 3 10.4762 34241 9.8112

2245_MSIL msil 20jun08 Contig14 revised geneMsil2245 4 21.3198 21627 9.588

2282_MSIL msil 20jun08 Contig14 revised geneMsil2282 9 24.4776 35502 6.9589

2283_MSIL msil 20jun08 Contig14 revised geneMsil2283 4 10.5651 43185 5.7662

2342_MSIL msil 20jun08 Contig14 revised geneMsil2342 5 11.0672 55624 5.5428

2344_MSIL msil 20jun08 Contig14 revised geneMsil2344 2 10.4651 28660 4.5842

2360_MSIL msil 20jun08 Contig14 revised geneMsil2360 4 21.8579 19910 4.6688

2361_MSIL msil 20jun08 Contig14 revised geneMsil2361 3 8.9286 56514 5.4291

2362_MSIL msil 20jun08 Contig14 revised geneMsil2362 3 18.0124 17271 6.3389

2385_MSIL msil 20jun08 Contig14 revised geneMsil2385 3 9.4915 30948 4.9871

2387_MSIL msil 20jun08 Contig14 revised geneMsil2387 2 7.1429 33939 5.3212

2390_MSIL msil 20jun08 Contig14 revised geneMsil2390 3 25.7143 18558 5.8748
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2400_MSIL msil 20jun08 Contig14 revised geneMsil2400 7 17.0732 39186 4.9005

2403_MSIL msil 20jun08 Contig14 revised geneMsil2403 3 12.6866 27342 6.1179

2447_MSIL msil 20jun08 Contig14 revised geneMsil2447 6 22.2222 36002 6.5391

2485_MSIL msil 20jun08 Contig14 revised geneMsil2485 2 6.0423 36190 8.7427

2501_MSIL msil 20jun08 Contig14 revised geneMsil2501 13 44.8598 33442 5.088

2503_MSIL msil 20jun08 Contig14 revised geneMsil2503 11 37.7551 30052 5.3925

2504_MSIL msil 20jun08 Contig14 revised geneMsil2504 12 8.5462 113040 6.3444

2505_MSIL msil 20jun08 Contig14 revised geneMsil2505 4 8.8785 44809 6.1965

2506_MSIL msil 20jun08 Contig14 revised geneMsil2506 4 8.0851 49375 5.8597

2523_MSIL msil 20jun08 Contig14 revised geneMsil2523 12 40.0621 34028 5.8129

2532_MSIL msil 20jun08 Contig14 revised geneMsil2532 3 7.109 47245 5.8951

2576_MSIL msil 20jun08 Contig14 revised geneMsil2576 3 4.8387 69037 5.3423

2592_MSIL msil 20jun08 Contig14 revised geneMsil2592 3 14.2857 18866 4.6838

2598_MSIL msil 20jun08 Contig14 revised geneMsil2598 2 6.7797 31211 5.5496

2608_MSIL msil 20jun08 Contig14 revised geneMsil2608 4 12.6685 39929 5.7501

2641_MSIL msil 20jun08 Contig14 revised geneMsil2641 2 8.5837 24484 9.2

2647_MSIL msil 20jun08 Contig14 revised geneMsil2647 6 22.2727 24375 5.6852

2655_MSIL msil 20jun08 Contig14 revised geneMsil2655 13 18.1446 79319 4.9565

2733_MSIL msil 20jun08 Contig14 revised geneMsil2733 2 3.2134 87555 5.8548

2810_MSIL msil 20jun08 Contig14 revised geneMsil2810 7 15.8317 53968 5.5942

2816_MSIL msil 20jun08 Contig14 revised geneMsil2816 2 4.6794 61891 6.2639

2912_MSIL msil 20jun08 Contig14 revised geneMsil2912 3 9.0909 50614 4.5209

2913_MSIL msil 20jun08 Contig14 revised geneMsil2913 4 24.6512 24061 5.6364

2914_MSIL msil 20jun08 Contig14 revised geneMsil2914 2 4.7506 46241 5.4924

2924_MSIL msil 20jun08 Contig14 revised geneMsil2924 2 2.7656 73697 5.5728

2955_MSIL msil 20jun08 Contig14 revised geneMsil2955 26 41.3249 67769 4.823
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2961_MSIL msil 20jun08 Contig14 revised geneMsil2961 4 9.75 43501 5.7889

2969_MSIL msil 20jun08 Contig14 revised geneMsil2969 2 9.7872 25234 6.6251

2970_MSIL msil 20jun08 Contig14 revised geneMsil2970 2 9.5455 23277 4.7113

2977_MSIL msil 20jun08 Contig14 revised geneMsil2977 2 5.3191 49334 5.8105

2991_MSIL msil 20jun08 Contig14 revised geneMsil2991 3 8.8757 37111 4.9232

2993_MSIL msil 20jun08 Contig14 revised geneMsil2993 2 3.7815 49645 6.4279

2996_MSIL msil 20jun08 Contig14 revised geneMsil2996 11 43.8462 40184 6.267

2997_MSIL msil 20jun08 Contig14 revised geneMsil2997 11 43.5685 25472 8.4214

3011_MSIL msil 20jun08 Contig14 revised geneMsil3011 7 19.174 36619 5.714

3157_MSIL msil 20jun08 Contig14 revised geneMsil3157 10 17.8967 59779 5.8885

3166_MSIL msil 20jun08 Contig14 revised geneMsil3166 2 8.042 32038 5.525

3172_MSIL msil 20jun08 Contig14 revised geneMsil3172 5 6.1728 88327 5.6957

3203_MSIL msil 20jun08 Contig14 revised geneMsil3203 2 7.8049 21612 9.2192

3210_MSIL msil 20jun08 Contig14 revised geneMsil3210 2 8.7719 37778 5.5278

3226_MSIL msil 20jun08 Contig14 revised geneMsil3226 3 10.4377 32668 6.0456

3255_MSIL msil 20jun08 Contig14 revised geneMsil3255 4 10.0446 46035 4.9156

3285_MSIL msil 20jun08 Contig14 revised geneMsil3285 6 23.8298 25547 8.4968

3309_MSIL msil 20jun08 Contig14 revised geneMsil3309 10 37.6866 28857 4.6071

3336_MSIL msil 20jun08 Contig14 revised geneMsil3336 6 19.9387 36137 6.5101

3509_MSIL msil 20jun08 Contig14 revised geneMsil3509 4 4.3956 98931 6.9772

3510_MSIL msil 20jun08 Contig14 revised geneMsil3510 3 9.1892 40188 4.9473

3523_MSIL msil 20jun08 Contig14 revised geneMsil3523 4 4.3575 96361 5.417

3530_MSIL msil 20jun08 Contig14 revised geneMsil3530 12 31.4496 45231 6.7689

3538_MSIL msil 20jun08 Contig14 revised geneMsil3538 2 3.0864 73034 5.8524

3545_MSIL msil 20jun08 Contig14 revised geneMsil3545 13 8.996 136026 5.0726

3550_MSIL msil 20jun08 Contig14 revised geneMsil3550 4 8.9855 37436 6.0612
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3552_MSIL msil 20jun08 Contig14 revised geneMsil3552 3 13.4409 19778 9.7436

3553_MSIL msil 20jun08 Contig14 revised geneMsil3553 4 29.8013 16533 7.5068

3562_MSIL msil 20jun08 Contig14 revised geneMsil3562 2 7.722 29297 7.5939

3563_MSIL msil 20jun08 Contig14 revised geneMsil3563 2 3.7582 66456 6.2254

3597_MSIL msil 20jun08 Contig14 revised geneMsil3597 6 9.366 75934 5.6633

3674_MSIL msil 20jun08 Contig14 revised geneMsil3674 3 8.0882 28127 9.8057

3687_MSIL msil 20jun08 Contig14 revised geneMsil3687 4 5.5152 76585 5.163

3697_MSIL msil 20jun08 Contig14 revised geneMsil3697 2 8.1356 31834 5.9965

3698_MSIL msil 20jun08 Contig14 revised geneMsil3698 5 18.4066 39171 5.0233

3705_MSIL msil 20jun08 Contig14 revised geneMsil3705 4 10.4839 40354 5.1559

3712_MSIL msil 20jun08 Contig14 revised geneMsil3712 2 11.2676 16557 9.3783

3739_MSIL msil 20jun08 Contig14 revised geneMsil3739 2 11.0526 21191 5.7189

3801_MSIL msil 20jun08 Contig14 revised geneMsil3801 2 13.2948 18317 6.4805

3809_MSIL msil 20jun08 Contig14 revised geneMsil3809 4 24.2718 22722 6.3755

3820_MSIL msil 20jun08 Contig14 revised geneMsil3820 3 16.9399 19338 5.9685

3828_MSIL msil 20jun08 Contig14 revised geneMsil3828 4 25.1337 20392 8.2513

3865_MSIL msil 20jun08 Contig14 revised geneMsil3865 3 13.8528 23929 9.9968

3866_MSIL msil 20jun08 Contig14 revised geneMsil3866 3 21.6374 17717 9.906

3868_MSIL msil 20jun08 Contig14 revised geneMsil3868 18 12.5727 153612 5.0548

3869_MSIL msil 20jun08 Contig14 revised geneMsil3869 12 8.0888 154345 8.0233

3881_MSIL msil 20jun08 Contig14 revised geneMsil3881 3 6.1144 53327 5.4987
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Supplementary Table 3

Protein identifications – iTRAQ labelling

Entry Description

Number
of

peptides

Sequence
coverage

(%)

Molecular
weight

(Da) pI

Isobaric
tags

115:114
Log(e)

Isobaric
tags

116:114
Log(e)

Isobaric
tags

117:114
Log(e)

0008_MSIL msil_20jun08_Contig14_revised_geneMsil0008 2 5.4878 34715 6.1877 -0.11 -0.13 -0.08

0011_MSIL msil_20jun08_Contig14_revised_geneMsil0011 5 21.2121 13835 8.7636 -0.31 -0.32 -0.39

0061_MSIL msil_20jun08_Contig14_revised_geneMsil0061 7 18.4739 25530 6.1859 0.65 -0.05 0.59

0082_MSIL msil_20jun08_Contig14_revised_geneMsil0082 5 7.1023 39510 5.7627 0.05 0.26 -0.02

0096_MSIL msil_20jun08_Contig14_revised_geneMsil0096 2 8.1633 21825 5.5093 -0.56 -0.19 -0.61

0098_MSIL msil_20jun08_Contig14_revised_geneMsil0098 2 7.3171 23289 4.9658 -0.23 -0.07 -0.17

0110_MSIL msil_20jun08_Contig14_revised_geneMsil0110 14 18.6567 43565 5.5878 2.26 0.13 2.32

0112_MSIL msil_20jun08_Contig14_revised_geneMsil0112 3 13.125 18205 5.0261 0.54 0.1 0.53

0162_MSIL msil_20jun08_Contig14_revised_geneMsil0162 3 4.0892 58608 5.7361 0.25 -0.04 0.39

0191_MSIL msil_20jun08_Contig14_revised_geneMsil0191 2 0.8172 107892 7.0968 0.02 -0.26 0.19

0195_MSIL msil_20jun08_Contig14_revised_geneMsil0195 5 19.1257 19801 5.4911 0.23 -0.07 0.33

0209_MSIL msil_20jun08_Contig14_revised_geneMsil0209 2 3.3708 70016 5.3441 -0.46 -0.1 -0.51

0240_MSIL msil_20jun08_Contig14_revised_geneMsil0240 2 0.4322 189740 5.3062 0.13 0.15 0.15

0268_MSIL msil_20jun08_Contig14_revised_geneMsil0268 5 4.3417 77238 5.161 -0.28 -0.26 -0.28

0286_MSIL msil_20jun08_Contig14_revised_geneMsil0286 2 5.4745 29864 4.5688 0.13 -0.03 0.09

0341_MSIL msil_20jun08_Contig14_revised_geneMsil0341 11 16.8959 54708 5.7219 -0.47 0.06 -0.54

0343_MSIL msil_20jun08_Contig14_revised_geneMsil0343 5 13.2505 51312 4.745 -0.26 -0.18 -0.32

0380_MSIL msil_20jun08_Contig14_revised_geneMsil0380 4 10.1887 28019 6.1848 0.4 0.16 0.39

0410_MSIL msil_20jun08_Contig14_revised_geneMsil0410 18 26.0246 52382 6.4645 1.59 -0.01 1.59
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0427_MSIL msil_20jun08_Contig14_revised_geneMsil0427 2 3.1983 52033 5.2363 0.2 -0.38 0.08

0471_MSIL msil_20jun08_Contig14_revised_geneMsil0471 52 34.08 68485 5.8453 1.88 -0.01 1.87

0472_MSIL msil_20jun08_Contig14_revised_geneMsil0472 7 13.6842 31041 5.1363 0.78 0.02 0.82

0474_MSIL msil_20jun08_Contig14_revised_geneMsil0474 14 31.6832 10891 9.4294 1.86 -0.03 1.84

0475_MSIL msil_20jun08_Contig14_revised_geneMsil0475 2 4.6377 38805 5.5419 0.23 -0.49 0.18

0515_MSIL msil_20jun08_Contig14_revised_geneMsil0515 3 6.7916 44925 4.5795 -0.34 -0.03 -0.33

0521_MSIL msil_20jun08_Contig14_revised_geneMsil0521 2 2.7027 45767 6.8047 0.45 -0.09 0.48

0522_MSIL msil_20jun08_Contig14_revised_geneMsil0522 2 2.7083 50915 6.6623 -0.21 0.02 -0.34

0538_MSIL msil_20jun08_Contig14_revised_geneMsil0538 2 8.2949 22785 9.704 -0.63 0.01 -0.76

0563_MSIL msil_20jun08_Contig14_revised_geneMsil0563 2 7.9365 20307 11.7014 -0.19 -0.17 -0.38

0582_MSIL msil_20jun08_Contig14_revised_geneMsil0582 10 14.3939 43107 5.3617 -0.39 0.12 -0.36

0583_MSIL msil_20jun08_Contig14_revised_geneMsil0583 3 4.631 76241 5.0898 -0.91 -0.24 -0.82

0620_MSIL msil_20jun08_Contig14_revised_geneMsil0620 4 16.7247 28612 4.7858 -0.1 -0.11 -0.15

0643_MSIL msil_20jun08_Contig14_revised_geneMsil0643 2 4.2506 47756 6.0291 -0.48 -0.04 -0.53

0673_MSIL msil_20jun08_Contig14_revised_geneMsil0673 3 17.1053 16433 4.869 -0.45 0.03 -0.48

0675_MSIL msil_20jun08_Contig14_revised_geneMsil0675 2 2.4055 64094 4.9874 -0.37 0.17 -0.67

0678_MSIL msil_20jun08_Contig14_revised_geneMsil0678 2 8.1818 12021 6.1296 0.89 -0.14 0.86

0729_MSIL msil_20jun08_Contig14_revised_geneMsil0729 2 1.7593 117473 4.5879 -0.57 -0.16 -0.32

0730_MSIL msil_20jun08_Contig14_revised_geneMsil0730 2 5 27821 6.2047 -0.57 -0.16 -0.32

0736_MSIL msil_20jun08_Contig14_revised_geneMsil0736 2 6.7114 14673 12.2175 -0.23 -0.2 -0.29

0767_MSIL msil_20jun08_Contig14_revised_geneMsil0767 8 14.2857 34409 8.9361 1.84 -0.23 1.78

0770_MSIL msil_20jun08_Contig14_revised_geneMsil0770 5 10.1266 42305 6.6301 0.71 0.06 0.83

0794_MSIL msil_20jun08_Contig14_revised_geneMsil0794 8 45.2632 10218 5.2236 0.31 -0.03 0.31

0795_MSIL msil_20jun08_Contig14_revised_geneMsil0795 34 41.3163 57572 4.9437 -0.01 -0.09 -0.07

0806_MSIL msil_20jun08_Contig14_revised_geneMsil0806 2 6.7669 26953 3.9626 0.14 0 0.04

0823_MSIL msil_20jun08_Contig14_revised_geneMsil0823 2 8.6957 14691 4.8723 0.14 0 0.04
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0848_MSIL msil_20jun08_Contig14_revised_geneMsil0848 3 9.0604 31524 6.3311 0.04 -0.17 0.04

0893_MSIL msil_20jun08_Contig14_revised_geneMsil0893 2 1.6706 44084 6.0714 -0.38 -0.17 -0.39

0941_MSIL msil_20jun08_Contig14_revised_geneMsil0941 3 28.125 6581 9.934 2.65 0.38 2.84

0960_MSIL msil_20jun08_Contig14_revised_geneMsil0960 2 4.1667 25419 4.7461 -0.76 -0.26 -0.78

0971_MSIL msil_20jun08_Contig14_revised_geneMsil0971 2 8.6957 20591 4.5989 0.45 -0.19 0.36

1000_MSIL msil_20jun08_Contig14_revised_geneMsil1000 2 7.8049 23094 5.0301 -0.7 -0.12 -0.65

1012_MSIL msil_20jun08_Contig14_revised_geneMsil1012 2 4.4674 31519 5.4069 -0.35 -0.34 -0.44

1025_MSIL msil_20jun08_Contig14_revised_geneMsil1025 5 18.4358 20004 5.2809 0.49 -0.14 0.37

1117_MSIL msil_20jun08_Contig14_revised_geneMsil1117 2 1.3675 63830 5.5768 -0.51 -0.33 -0.62

1171_MSIL msil_20jun08_Contig14_revised_geneMsil1171 2 10.1266 17679 5.6594 -0.26 0.21 -0.29

1188_MSIL msil_20jun08_Contig14_revised_geneMsil1188 2 5.3648 49713 5.6631 0.13 -0.07 0.19

1193_MSIL msil_20jun08_Contig14_revised_geneMsil1193 4 5.0975 70184 5.9489 -0.1 -0.13 0.15

1226_MSIL msil_20jun08_Contig14_revised_geneMsil1226 5 4.9612 70867 5.6898 -0.4 -0.14 -0.07

1262_MSIL msil_20jun08_Contig14_revised_geneMsil1262 29 27.3764 59751 5.7755 -0.05 0.02 -0.01

1263_MSIL msil_20jun08_Contig14_revised_geneMsil1263 35 38.1074 44905 5.7274 2.23 -0.1 2.38

1264_MSIL msil_20jun08_Contig14_revised_geneMsil1264 10 26.2774 15296 4.5163 2.31 0.22 2.37

1265_MSIL msil_20jun08_Contig14_revised_geneMsil1265 19 53.5294 19537 9.3867 1.74 0.09 1.78

1312_MSIL msil_20jun08_Contig14_revised_geneMsil1312 15 36.2745 32521 5.7444 2.08 0.48 2.11

1321_MSIL msil_20jun08_Contig14_revised_geneMsil1321 4 9.1413 38462 5.1075 1.45 -0.02 1.45

1328_MSIL msil_20jun08_Contig14_revised_geneMsil1328 3 5.2419 52701 6.206 1.27 -0.18 1.24

1365_MSIL msil_20jun08_Contig14_revised_geneMsil1365 2 11.1111 8500 6.1018 -0.11 -0.06 -0.13

1375_MSIL msil_20jun08_Contig14_revised_geneMsil1375 4 6.3433 58198 6.0253 0.28 0.24 0.2

1382_MSIL msil_20jun08_Contig14_revised_geneMsil1382 3 5.0481 46188 5.373 -1.4 -0.07 -1.37

1405_MSIL msil_20jun08_Contig14_revised_geneMsil1405 3 5.5385 34207 4.7607 -0.23 0.39 -0.21

1576_MSIL msil_20jun08_Contig14_revised_geneMsil1576 3 28.9855 6993 7.7192 0.31 0.08 0.23

1595_MSIL msil_20jun08_Contig14_revised_geneMsil1595 2 1.9149 51573 5.4084 0.01 0.21 0.1



224

1611_MSIL msil_20jun08_Contig14_revised_geneMsil1611 2 10.582 20276 4.8536 -0.11 -0.02 -0.26

1619_MSIL msil_20jun08_Contig14_revised_geneMsil1619 2 4.3478 17417 9.4969 -0.13 -0.27 -0.24

1624_MSIL msil_20jun08_Contig14_revised_geneMsil1624 2 4.0302 42515 4.3233 -0.14 0.07 -0.15

1676_MSIL msil_20jun08_Contig14_revised_geneMsil1676 4 15.0754 22228 5.6911 1.15 0.03 1.01

1681_MSIL msil_20jun08_Contig14_revised_geneMsil1681 5 8.6247 47690 6.3444 -0.41 -0.11 -0.5

1693_MSIL msil_20jun08_Contig14_revised_geneMsil1693 3 5.1613 31980 5.3806 1.96 0.03 2.14

1706_MSIL msil_20jun08_Contig14_revised_geneMsil1706 4 6.0475 49832 5.1275 -0.12 0.09 -0.14

1712_MSIL msil_20jun08_Contig14_revised_geneMsil1712 2 2.509 59899 6.6418 0.34 -0.08 0.22

1713_MSIL msil_20jun08_Contig14_revised_geneMsil1713 2 7.3482 33824 5.2581 -0.03 -0.3 -0.16

1714_MSIL msil_20jun08_Contig14_revised_geneMsil1714 2 2.7778 42582 6.893 0 -0.2 -0.1

1716_MSIL msil_20jun08_Contig14_revised_geneMsil1716 6 8.7719 42881 5.2007 -0.39 0.17 -0.38

1743_MSIL msil_20jun08_Contig14_revised_geneMsil1743 2 4.2328 38453 5.4631 0.14 -0.06 0.05

1745_MSIL msil_20jun08_Contig14_revised_geneMsil1745 4 20.3822 16460 11.1802 -0.09 -0.27 0

1806_MSIL msil_20jun08_Contig14_revised_geneMsil1806 3 35.0365 14138 5.1848 -0.23 0.16 -0.26

1808_MSIL msil_20jun08_Contig14_revised_geneMsil1808 8 8.8968 30823 5.7768 -0.32 -0.23 -0.01

1834_MSIL msil_20jun08_Contig14_revised_geneMsil1834 2 17.5926 11686 10.4636 -0.82 0.1 -0.74

1861_MSIL msil_20jun08_Contig14_revised_geneMsil1861 3 14.2857 12014 9.1807 -0.13 -0.07 -0.17

1881_MSIL msil_20jun08_Contig14_revised_geneMsil1881 2 5.0314 32781 8.8033 0.69 0.07 0.7

1907_MSIL msil_20jun08_Contig14_revised_geneMsil1907 4 4.0509 95453 5.6468 -0.08 -0.23 -0.16

1910_MSIL msil_20jun08_Contig14_revised_geneMsil1910 6 10 71093 4.9285 -0.3 0.02 -0.39

1941_MSIL msil_20jun08_Contig14_revised_geneMsil1941 3 8.0645 7213 6.5078 -0.06 -0.12 0.16

1945_MSIL msil_20jun08_Contig14_revised_geneMsil1945 2 0.843 107081 5.8046 1.6 -0.11 1.6

2091_MSIL msil_20jun08_Contig14_revised_geneMsil2091 4 13.5542 35103 5.5523 2.07 2.12 2.21

2110_MSIL msil_20jun08_Contig14_revised_geneMsil2110 14 28.1106 45996 6.7786 -0.2 -0.24 -0.27

2111_MSIL msil_20jun08_Contig14_revised_geneMsil2111 2 7.3529 33339 5.5651 -0.51 -0.11 -0.6

2224_MSIL msil_20jun08_Contig14_revised_geneMsil2224 2 6.0317 34241 9.8112 0.65 -0.22 0.71
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2232_MSIL msil_20jun08_Contig14_revised_geneMsil2232 2 1.726 101306 5.0079 -0.23 -0.15 0.15

2233_MSIL msil_20jun08_Contig14_revised_geneMsil2233 3 13.6905 18690 5.883 0.24 -0.34 0.04

2246_MSIL msil_20jun08_Contig14_revised_geneMsil2246 11 16.0458 37409 8.7356 -0.2 -0.37 -0.18

2282_MSIL msil_20jun08_Contig14_revised_geneMsil2282 9 17.0149 35502 6.9589 2.41 0.43 2.41

2283_MSIL msil_20jun08_Contig14_revised_geneMsil2283 3 5.4054 43185 5.7662 -0.55 -0.15 -0.65

2309_MSIL msil_20jun08_Contig14_revised_geneMsil2309 2 23.6842 8468 5.792 -0.82 -0.12 -0.85

2329_MSIL msil_20jun08_Contig14_revised_geneMsil2329 6 10.4784 47932 5.4802 0.15 -0.02 0.17

2342_MSIL msil_20jun08_Contig14_revised_geneMsil2342 8 8.6957 55624 5.5428 -0.39 -0.14 -0.36

2345_MSIL msil_20jun08_Contig14_revised_geneMsil2345 9 61.8644 12692 5.2178 -0.72 0.07 -0.73

2360_MSIL msil_20jun08_Contig14_revised_geneMsil2360 2 8.7432 19910 4.6688 0.04 -0.12 0.03

2361_MSIL msil_20jun08_Contig14_revised_geneMsil2361 2 3.373 56514 5.4291 0.26 -0.14 0.25

2362_MSIL msil_20jun08_Contig14_revised_geneMsil2362 2 4.3478 17271 6.3389 0.11 0.08 0.19

2385_MSIL msil_20jun08_Contig14_revised_geneMsil2385 4 7.7966 30948 4.9871 0.68 0.53 0.62

2390_MSIL msil_20jun08_Contig14_revised_geneMsil2390 14 38.8571 18558 5.8748 -0.09 -0.1 -0.17

2430_MSIL msil_20jun08_Contig14_revised_geneMsil2430 2 1.6632 52561 7.7446 0.61 -0.1 0.38

2442_MSIL msil_20jun08_Contig14_revised_geneMsil2442 3 13.3333 13844 5.6887 0.52 0.17 0.61

2447_MSIL msil_20jun08_Contig14_revised_geneMsil2447 2 5.848 36002 6.5391 0.46 -0.17 0.45

2464_MSIL msil_20jun08_Contig14_revised_geneMsil2464 2 2.0513 41928 7.8556 0.57 0.14 0.34

2501_MSIL msil_20jun08_Contig14_revised_geneMsil2501 4 7.7882 33442 5.088 0.18 -0.16 0.18

2503_MSIL msil_20jun08_Contig14_revised_geneMsil2503 3 7.1429 30052 5.3925 -0.48 -0.15 -0.46

2504_MSIL msil_20jun08_Contig14_revised_geneMsil2504 3 2.6523 113040 6.3444 -0.34 -0.11 -0.43

2505_MSIL msil_20jun08_Contig14_revised_geneMsil2505 4 9.5794 44809 6.1965 -0.24 -0.13 -0.21

2506_MSIL msil_20jun08_Contig14_revised_geneMsil2506 2 3.1915 49375 5.8597 0.48 -0.07 0.52

2523_MSIL msil_20jun08_Contig14_revised_geneMsil2523 4 12.4224 34028 5.8129 -0.82 -0.36 -0.86

2592_MSIL msil_20jun08_Contig14_revised_geneMsil2592 2 4.3478 18866 4.6838 -0.51 0.07 -0.47

2608_MSIL msil_20jun08_Contig14_revised_geneMsil2608 2 5.1213 39929 5.7501 0.93 0.13 1.02



226

2647_MSIL msil_20jun08_Contig14_revised_geneMsil2647 6 17.2727 24375 5.6852 -0.27 -0.12 -0.39

2655_MSIL msil_20jun08_Contig14_revised_geneMsil2655 2 3.0014 79319 4.9565 0.57 -0.05 0.57

2800_MSIL msil_20jun08_Contig14_revised_geneMsil2800 2 5.3476 20491 4.8182 0.37 -0.16 0.28

2809_MSIL msil_20jun08_Contig14_revised_geneMsil2809 2 1.6746 88070 9.1743 -0.23 -0.14 -0.35

2810_MSIL msil_20jun08_Contig14_revised_geneMsil2810 2 2.6052 53968 5.5942 0.68 0.2 0.68

2816_MSIL msil_20jun08_Contig14_revised_geneMsil2816 3 3.9861 61891 6.2639 0.13 0.06 0.17

2876_MSIL msil_20jun08_Contig14_revised_geneMsil2876 2 3.2751 48749 6.6044 0.24 -0.04 0.19

2884_MSIL msil_20jun08_Contig14_revised_geneMsil2884 3 1.7316 122346 6.446 0.49 0 0.24

2912_MSIL msil_20jun08_Contig14_revised_geneMsil2912 3 6.71 50614 4.5209 1.59 -0.08 1.58

2913_MSIL msil_20jun08_Contig14_revised_geneMsil2913 2 6.5116 24061 5.6364 -0.41 -0.06 -0.31

2915_MSIL msil_20jun08_Contig14_revised_geneMsil2915 3 0.9938 88961 5.9123 -0.2 -0.29 -0.2

2952_MSIL msil_20jun08_Contig14_revised_geneMsil2952 2 24.2857 7311 5.8109 -0.07 0.21 0.01

2955_MSIL msil_20jun08_Contig14_revised_geneMsil2955 13 13.8801 67769 4.823 0.09 -0.1 0.22

2961_MSIL msil_20jun08_Contig14_revised_geneMsil2961 5 5.25 43501 5.7889 -0.34 0.05 -0.35

2996_MSIL msil_20jun08_Contig14_revised_geneMsil2996 11 29.2308 40184 6.267 0.74 0.29 0.75

2997_MSIL msil_20jun08_Contig14_revised_geneMsil2997 6 21.5768 25472 8.4214 -0.2 -0.01 -0.25

3011_MSIL msil_20jun08_Contig14_revised_geneMsil3011 2 5.0147 36619 5.714 -0.14 -0.08 -0.07

3030_MSIL msil_20jun08_Contig14_revised_geneMsil3030 3 6.0606 37155 4.7115 0.16 -0.39 0.01

3098_MSIL msil_20jun08_Contig14_revised_geneMsil3098 4 0.9346 47122 10.6414 1.22 -0.27 1.34

3127_MSIL msil_20jun08_Contig14_revised_geneMsil3127 4 13.9394 16923 7.3207 1.87 -0.09 1.77

3128_MSIL msil_20jun08_Contig14_revised_geneMsil3128 2 10.8696 19951 5.5578 1.11 -0.25 1.27

3129_MSIL msil_20jun08_Contig14_revised_geneMsil3129 4 23.2704 16933 9.3918 2.28 0.01 2.25

3131_MSIL msil_20jun08_Contig14_revised_geneMsil3131 7 9.4697 88101 6.4166 1.8 -0.69 1.78

3132_MSIL msil_20jun08_Contig14_revised_geneMsil3132 3 4.9793 52339 6.3926 1.93 0.24 2.21

3135_MSIL msil_20jun08_Contig14_revised_geneMsil3135 4 13.9535 17983 9.2488 1.58 -0.21 1.49

3145_MSIL msil_20jun08_Contig14_revised_geneMsil3145 2 4.2813 34932 4.9797 2.41 0.06 2.49
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3157_MSIL msil_20jun08_Contig14_revised_geneMsil3157 6 9.4096 59779 5.8885 1.21 0.02 1.65

3181_MSIL msil_20jun08_Contig14_revised_geneMsil3181 2 2.069 63099 5.7794 -0.41 0.04 -0.47

3199_MSIL msil_20jun08_Contig14_revised_geneMsil3199 4 17.1429 14553 5.8634 1.44 -0.05 1.58

3206_MSIL msil_20jun08_Contig14_revised_geneMsil3206 4 11.2583 16033 5.1931 -0.32 -0.19 -0.31

3218_MSIL msil_20jun08_Contig14_revised_geneMsil3218 2 20 11710 8.1954 0.64 -0.12 0.64

3220_MSIL msil_20jun08_Contig14_revised_geneMsil3220 2 3.1496 55425 5.5692 -0.99 -0.13 -1.05

3226_MSIL msil_20jun08_Contig14_revised_geneMsil3226 2 6.734 32668 6.0456 0.62 -0.03 0.7

3234_MSIL msil_20jun08_Contig14_revised_geneMsil3234 2 2.7597 65172 5.8015 0.66 -0.03 0.52

3255_MSIL msil_20jun08_Contig14_revised_geneMsil3255 4 9.1518 46035 4.9156 0.71 0.02 0.7

3285_MSIL msil_20jun08_Contig14_revised_geneMsil3285 3 12.3404 25547 8.4968 -0.4 -0.23 -0.55

3309_MSIL msil_20jun08_Contig14_revised_geneMsil3309 4 8.5821 28857 4.6071 -0.28 -0.12 -0.35

3400_MSIL msil_20jun08_Contig14_revised_geneMsil3400 2 1.4925 43379 6.1718 -0.19 -0.05 -0.26

3416_MSIL msil_20jun08_Contig14_revised_geneMsil3416 3 1.3158 49794 8.007 0.25 -0.05 0.18

3440_MSIL msil_20jun08_Contig14_revised_geneMsil3440 2 1.2793 54017 5.2592 1.85 0.14 1.97

3502_MSIL msil_20jun08_Contig14_revised_geneMsil3502 2 12.4031 13946 4.4063 -0.14 0.01 -0.26

3530_MSIL msil_20jun08_Contig14_revised_geneMsil3530 8 18.6732 45231 6.7689 -0.27 -0.03 -0.36

3552_MSIL msil_20jun08_Contig14_revised_geneMsil3552 2 9.6774 19778 9.7436 -0.22 0.2 -0.05

3697_MSIL msil_20jun08_Contig14_revised_geneMsil3697 2 8.1356 31834 5.9965 -0.35 -0.07 -0.37

3698_MSIL msil_20jun08_Contig14_revised_geneMsil3698 6 19.7802 39171 5.0233 -0.39 -0.13 -0.41

3705_MSIL msil_20jun08_Contig14_revised_geneMsil3705 3 8.0645 40354 5.1559 0.52 -0.02 0.46

3821_MSIL msil_20jun08_Contig14_revised_geneMsil3821 2 14.6667 7377 7.0692 0.33 -0.04 0.09

3828_MSIL msil_20jun08_Contig14_revised_geneMsil3828 4 13.9037 20392 8.2513 -0.21 0.21 -0.05

3846_MSIL msil_20jun08_Contig14_revised_geneMsil3846 2 1.0165 85703 9.1377 -0.62 -0.07 -0.62

3867_MSIL msil_20jun08_Contig14_revised_geneMsil3867 2 10.3175 12939 4.7399 1.1 0.15 1.13

3868_MSIL msil_20jun08_Contig14_revised_geneMsil3868 4 2.6163 153612 5.0548 -0.26 -0.14 -0.2

3869_MSIL msil_20jun08_Contig14_revised_geneMsil3869 5 2.2906 154345 8.0233 -0.14 -0.35 -0.21
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3875_MSIL msil_20jun08_Contig14_revised_geneMsil3875 3 1.2771 170158 5.7504 -0.49 -0.15 -0.56

3881_MSIL msil_20jun08_Contig14_revised_geneMsil3881 9 12.6233 53327 5.4987 1.41 -0.03 1.61

3907_MSIL msil_20jun08_Contig14_revised_geneMsil3907 2 6.25 14650 10.5747 0.32 0.03 0.38
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Supplementary Table 4

Protein identifications – label-free quantification – Methane growth condition

Description

Molecular
weight

(Da)

Average
number of
peptides

Average
sequence

coverage (%)
Technical
replicates

msil_20jun08_Contig14_revised_geneMsil0008 34737 10 32.01 2

msil_20jun08_Contig14_revised_geneMsil0011 13843 7.666666667 75.50666667 3

msil_20jun08_Contig14_revised_geneMsil0058 27709 8.666666667 40.62666667 3

msil_20jun08_Contig14_revised_geneMsil0061 25546 6.666666667 49.66666667 3

msil_20jun08_Contig14_revised_geneMsil0082 39534 15.66666667 44.79333333 3

msil_20jun08_Contig14_revised_geneMsil0096 21839 6.5 35.46 2

msil_20jun08_Contig14_revised_geneMsil0106 54270 14.5 34.67 2

msil_20jun08_Contig14_revised_geneMsil0110 43592 21 48.34 3

msil_20jun08_Contig14_revised_geneMsil0154 14853 6.333333333 53.52 3

msil_20jun08_Contig14_revised_geneMsil0162 58645 20.5 39.87 2

msil_20jun08_Contig14_revised_geneMsil0178 34892 16.66666667 70.19 3

msil_20jun08_Contig14_revised_geneMsil0179 46560 15.33333333 46.56 3

msil_20jun08_Contig14_revised_geneMsil0181 9466 2.333333333 36.67 3

msil_20jun08_Contig14_revised_geneMsil0195 19814 8.5 55.735 2

msil_20jun08_Contig14_revised_geneMsil0239 32226 6.5 32.56 2

msil_20jun08_Contig14_revised_geneMsil0268 77286 15 24.3 2

msil_20jun08_Contig14_revised_geneMsil0286 29882 6.333333333 37.10333333 3

msil_20jun08_Contig14_revised_geneMsil0288 10907 4 42.925 2

msil_20jun08_Contig14_revised_geneMsil0341 54742 14.66666667 29.66666667 3

msil_20jun08_Contig14_revised_geneMsil0343 51344 20 58.18 3
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msil_20jun08_Contig14_revised_geneMsil0352 15502 5.333333333 32.4 3

msil_20jun08_Contig14_revised_geneMsil0380 28036 12.66666667 48.05 3

msil_20jun08_Contig14_revised_geneMsil0410 52414 25.66666667 64.75333333 3

msil_20jun08_Contig14_revised_geneMsil0427 52067 15 38.59 2

msil_20jun08_Contig14_revised_geneMsil0428 12019 5.5 55.805 2

msil_20jun08_Contig14_revised_geneMsil0468 12976 4 35.45 3

msil_20jun08_Contig14_revised_geneMsil0471 68529 53 69.97333333 3

msil_20jun08_Contig14_revised_geneMsil0472 31060 17.66666667 56.72333333 3

msil_20jun08_Contig14_revised_geneMsil0473 22062 5.666666667 30.03333333 3

msil_20jun08_Contig14_revised_geneMsil0474 10898 6 23.76 3

msil_20jun08_Contig14_revised_geneMsil0499 35950 8.5 37.755 2

msil_20jun08_Contig14_revised_geneMsil0515 44953 14 35.20666667 3

msil_20jun08_Contig14_revised_geneMsil0520 48780 10.5 28.915 2

msil_20jun08_Contig14_revised_geneMsil0541 58002 17 40.27 2

msil_20jun08_Contig14_revised_geneMsil0566 14589 3.5 20.45 2

msil_20jun08_Contig14_revised_geneMsil0582 43134 16.66666667 44.36 3

msil_20jun08_Contig14_revised_geneMsil0583 76289 22.66666667 38.73666667 3

msil_20jun08_Contig14_revised_geneMsil0584 17850 4.5 30.13 2

msil_20jun08_Contig14_revised_geneMsil0612 34378 7.5 26.75 2

msil_20jun08_Contig14_revised_geneMsil0619 19849 9.666666667 63.33333333 3

msil_20jun08_Contig14_revised_geneMsil0620 28630 12.33333333 67.36333333 3

msil_20jun08_Contig14_revised_geneMsil0629 44441 9 27.535 2

msil_20jun08_Contig14_revised_geneMsil0636 50409 12.5 30.34 2

msil_20jun08_Contig14_revised_geneMsil0643 47785 11 30.875 2

msil_20jun08_Contig14_revised_geneMsil0678 12028 7.5 76.365 2

msil_20jun08_Contig14_revised_geneMsil0764 31189 8.5 28.3 2
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msil_20jun08_Contig14_revised_geneMsil0767 34430 18 52.28 3

msil_20jun08_Contig14_revised_geneMsil0770 42331 15.33333333 53.33333333 3

msil_20jun08_Contig14_revised_geneMsil0774 33332 9.666666667 35.97333333 3

msil_20jun08_Contig14_revised_geneMsil0794 10224 5.666666667 56.84333333 3

msil_20jun08_Contig14_revised_geneMsil0795 57608 36.66666667 64.77666667 3

msil_20jun08_Contig14_revised_geneMsil0811 27406 6 30.265 2

msil_20jun08_Contig14_revised_geneMsil0823 14700 5.666666667 36.95666667 3

msil_20jun08_Contig14_revised_geneMsil0839 36345 9 29.395 2

msil_20jun08_Contig14_revised_geneMsil0870 19884 7.5 48.59 2

msil_20jun08_Contig14_revised_geneMsil0887 9398 4 46.51 2

msil_20jun08_Contig14_revised_geneMsil1012 31539 8.666666667 35.85666667 3

msil_20jun08_Contig14_revised_geneMsil1025 20017 7 47.765 2

msil_20jun08_Contig14_revised_geneMsil1043 19114 4.333333333 37.25666667 3

msil_20jun08_Contig14_revised_geneMsil1068 30027 7 29.05 3

msil_20jun08_Contig14_revised_geneMsil1124 63363 16 39.715 2

msil_20jun08_Contig14_revised_geneMsil1136 9819 5 42.42333333 3

msil_20jun08_Contig14_revised_geneMsil1140 26523 8.666666667 39.66666667 3

msil_20jun08_Contig14_revised_geneMsil1146 14184 4 34.09333333 3

msil_20jun08_Contig14_revised_geneMsil1149 28664 6 26.88 2

msil_20jun08_Contig14_revised_geneMsil1171 17691 8 37.76333333 3

msil_20jun08_Contig14_revised_geneMsil1178 11619 7 72.38333333 3

msil_20jun08_Contig14_revised_geneMsil1186 12265 5.5 62.5 2

msil_20jun08_Contig14_revised_geneMsil1224 10019 3 47.195 2

msil_20jun08_Contig14_revised_geneMsil1226 70912 23 45.32333333 3

msil_20jun08_Contig14_revised_geneMsil1262 59789 39.66666667 63.49666667 3

msil_20jun08_Contig14_revised_geneMsil1263 44933 35 78.17666667 3
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msil_20jun08_Contig14_revised_geneMsil1264 15306 17.33333333 74.45 3

msil_20jun08_Contig14_revised_geneMsil1265 19549 12.66666667 60.78333333 3

msil_20jun08_Contig14_revised_geneMsil1267 38516 12.33333333 47.43 3

msil_20jun08_Contig14_revised_geneMsil1270 59731 14.66666667 31.96 3

msil_20jun08_Contig14_revised_geneMsil1278 9552 3.5 59.57 2

msil_20jun08_Contig14_revised_geneMsil1312 32541 17.33333333 73.09 3

msil_20jun08_Contig14_revised_geneMsil1314 12494 6 66.825 2

msil_20jun08_Contig14_revised_geneMsil1321 38486 12 45.15333333 3

msil_20jun08_Contig14_revised_geneMsil1354 43183 15.5 35.845 2

msil_20jun08_Contig14_revised_geneMsil1388 22303 6 23.205 2

msil_20jun08_Contig14_revised_geneMsil1389 16866 8 51.40666667 3

msil_20jun08_Contig14_revised_geneMsil1395 75669 14.33333333 25.78333333 3

msil_20jun08_Contig14_revised_geneMsil1411 11268 3.666666667 42.68 3

msil_20jun08_Contig14_revised_geneMsil1575 29163 5 22.745 2

msil_20jun08_Contig14_revised_geneMsil1603 24476 5.5 25.985 2

msil_20jun08_Contig14_revised_geneMsil1624 42542 6.666666667 24.85333333 3

msil_20jun08_Contig14_revised_geneMsil1628 8288 4.5 39.61 2

msil_20jun08_Contig14_revised_geneMsil1649 40230 12.66666667 41.36333333 3

msil_20jun08_Contig14_revised_geneMsil1651 64278 15 35.42 2

msil_20jun08_Contig14_revised_geneMsil1676 22241 10.33333333 54.10333333 3

msil_20jun08_Contig14_revised_geneMsil1681 47722 15.66666667 44.99 3

msil_20jun08_Contig14_revised_geneMsil1693 32000 13.5 44.675 2

msil_20jun08_Contig14_revised_geneMsil1706 49863 20 46.14666667 3

msil_20jun08_Contig14_revised_geneMsil1712 59937 10.5 20.875 2

msil_20jun08_Contig14_revised_geneMsil1714 42610 12.33333333 40.49 3

msil_20jun08_Contig14_revised_geneMsil1716 42908 12.66666667 38.18 3
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msil_20jun08_Contig14_revised_geneMsil1719 35013 9.5 45.075 2

msil_20jun08_Contig14_revised_geneMsil1745 16470 4 30.36 3

msil_20jun08_Contig14_revised_geneMsil1798 7536 3.666666667 56.52333333 3

msil_20jun08_Contig14_revised_geneMsil1806 14147 7 64.96 2

msil_20jun08_Contig14_revised_geneMsil1816 8581 2 22.785 2

msil_20jun08_Contig14_revised_geneMsil1827 36279 7.666666667 29.37 3

msil_20jun08_Contig14_revised_geneMsil1851 24880 3 13.9 2

msil_20jun08_Contig14_revised_geneMsil1861 12022 5 41.96333333 3

msil_20jun08_Contig14_revised_geneMsil1910 71137 20 43.155 2

msil_20jun08_Contig14_revised_geneMsil2091 35124 13.66666667 52.11 3

msil_20jun08_Contig14_revised_geneMsil2098 17176 5.5 57.01 2

msil_20jun08_Contig14_revised_geneMsil2110 46025 14.5 40.09 2

msil_20jun08_Contig14_revised_geneMsil2111 33360 7 20.88333333 3

msil_20jun08_Contig14_revised_geneMsil2114 27914 12 44.4 2

msil_20jun08_Contig14_revised_geneMsil2224 34262 7.333333333 28.67666667 3

msil_20jun08_Contig14_revised_geneMsil2246 37432 20.66666667 66.47333333 3

msil_20jun08_Contig14_revised_geneMsil2282 35524 11 42.535 2

msil_20jun08_Contig14_revised_geneMsil2301 55900 13.33333333 31.74666667 3

msil_20jun08_Contig14_revised_geneMsil2342 55659 19 52.43666667 3

msil_20jun08_Contig14_revised_geneMsil2345 12700 11 66.1 3

msil_20jun08_Contig14_revised_geneMsil2361 56550 15.66666667 45.24 3

msil_20jun08_Contig14_revised_geneMsil2385 30967 13 53.05 2

msil_20jun08_Contig14_revised_geneMsil2390 18570 10.66666667 57.90666667 3

msil_20jun08_Contig14_revised_geneMsil2442 13852 4.666666667 36.54333333 3

msil_20jun08_Contig14_revised_geneMsil2447 36024 10.33333333 43.17333333 3

msil_20jun08_Contig14_revised_geneMsil2453 16949 5.5 46.205 2
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msil_20jun08_Contig14_revised_geneMsil2481 13273 5 44.76 2

msil_20jun08_Contig14_revised_geneMsil2501 33463 16.66666667 57.63 3

msil_20jun08_Contig14_revised_geneMsil2503 30071 11 46.26 2

msil_20jun08_Contig14_revised_geneMsil2505 44837 17 41.58666667 3

msil_20jun08_Contig14_revised_geneMsil2523 34049 8.666666667 30.43666667 3

msil_20jun08_Contig14_revised_geneMsil2544 16674 6.666666667 61.99333333 3

msil_20jun08_Contig14_revised_geneMsil2561 32370 8 40.655 2

msil_20jun08_Contig14_revised_geneMsil2592 18878 6.5 50 2

msil_20jun08_Contig14_revised_geneMsil2600 32884 5 23.63 2

msil_20jun08_Contig14_revised_geneMsil2601 38186 9.5 25.35 2

msil_20jun08_Contig14_revised_geneMsil2608 39954 14.33333333 43.75333333 3

msil_20jun08_Contig14_revised_geneMsil2623 59260 7 7.64 2

msil_20jun08_Contig14_revised_geneMsil2647 24390 13.66666667 64.69666667 3

msil_20jun08_Contig14_revised_geneMsil2655 79369 26 37.28666667 3

msil_20jun08_Contig14_revised_geneMsil2671 38305 13 40.41666667 3

msil_20jun08_Contig14_revised_geneMsil2674 21733 8 54.56 3

msil_20jun08_Contig14_revised_geneMsil2678 44881 5.5 24.04 2

msil_20jun08_Contig14_revised_geneMsil2753 23953 4.5 25.21 2

msil_20jun08_Contig14_revised_geneMsil2836 18231 4 28.06 3

msil_20jun08_Contig14_revised_geneMsil2847 37670 11.5 39.36 2

msil_20jun08_Contig14_revised_geneMsil2876 48780 13.5 34.17 2

msil_20jun08_Contig14_revised_geneMsil2912 50645 16 38.96 2

msil_20jun08_Contig14_revised_geneMsil2952 7316 4 62.38333333 3

msil_20jun08_Contig14_revised_geneMsil2953 78051 19 33.025 2

msil_20jun08_Contig14_revised_geneMsil2955 67811 29.33333333 52.41666667 3

msil_20jun08_Contig14_revised_geneMsil2991 37134 6.666666667 25.74 3
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msil_20jun08_Contig14_revised_geneMsil2996 40209 19.66666667 69.31666667 3

msil_20jun08_Contig14_revised_geneMsil2997 25488 11.66666667 48.27 3

msil_20jun08_Contig14_revised_geneMsil3011 36643 7 28.90666667 3

msil_20jun08_Contig14_revised_geneMsil3127 16934 10.66666667 62.82666667 3

msil_20jun08_Contig14_revised_geneMsil3128 19963 11.33333333 68.84333333 3

msil_20jun08_Contig14_revised_geneMsil3129 16943 10.66666667 67.08333333 3

msil_20jun08_Contig14_revised_geneMsil3130 31470 16 61.03666667 3

msil_20jun08_Contig14_revised_geneMsil3131 88155 31 49.54 3

msil_20jun08_Contig14_revised_geneMsil3132 52371 20.66666667 57.4 3

msil_20jun08_Contig14_revised_geneMsil3135 17994 7 53.1 3

msil_20jun08_Contig14_revised_geneMsil3180 39523 11.33333333 31.76666667 3

msil_20jun08_Contig14_revised_geneMsil3181 63138 12 25.085 2

msil_20jun08_Contig14_revised_geneMsil3191 11219 3.5 42.855 2

msil_20jun08_Contig14_revised_geneMsil3199 14562 3.5 25 2

msil_20jun08_Contig14_revised_geneMsil3206 16043 7 45.03333333 3

msil_20jun08_Contig14_revised_geneMsil3211 14445 3.333333333 41.53333333 3

msil_20jun08_Contig14_revised_geneMsil3216 20999 7.5 62.565 2

msil_20jun08_Contig14_revised_geneMsil3220 55460 13.5 33.17 2

msil_20jun08_Contig14_revised_geneMsil3226 32689 8.666666667 32.55 3

msil_20jun08_Contig14_revised_geneMsil3234 65213 18.33333333 33.82 3

msil_20jun08_Contig14_revised_geneMsil3255 46063 9.5 26.34 2

msil_20jun08_Contig14_revised_geneMsil3278 34581 10 32.11 3

msil_20jun08_Contig14_revised_geneMsil3309 28875 7.5 47.205 2

msil_20jun08_Contig14_revised_geneMsil3530 45259 20.33333333 44.88 3

msil_20jun08_Contig14_revised_geneMsil3563 66498 17.5 28.595 2

msil_20jun08_Contig14_revised_geneMsil3584 30055 6 21.35 2
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msil_20jun08_Contig14_revised_geneMsil3636 10342 3.333333333 51.70333333 3

msil_20jun08_Contig14_revised_geneMsil3698 39195 20.33333333 60.80666667 3

msil_20jun08_Contig14_revised_geneMsil3705 40379 12.66666667 33.15333333 3

msil_20jun08_Contig14_revised_geneMsil3712 16567 5 27.465 2

msil_20jun08_Contig14_revised_geneMsil3746 7075 4 73.81 2

msil_20jun08_Contig14_revised_geneMsil3763 59987 15.5 29.51 2

msil_20jun08_Contig14_revised_geneMsil3776 25471 6 39.27 2

msil_20jun08_Contig14_revised_geneMsil3828 20405 8.5 45.72 2

msil_20jun08_Contig14_revised_geneMsil3854 12064 5.666666667 54.76333333 3

msil_20jun08_Contig14_revised_geneMsil3855 48384 5.333333333 10.23 3

msil_20jun08_Contig14_revised_geneMsil3867 12947 4 34.925 2

msil_20jun08_Contig14_revised_geneMsil3868 153709 30 22.345 2

msil_20jun08_Contig14_revised_geneMsil3869 154444 27 23.98 2

msil_20jun08_Contig14_revised_geneMsil3874 51719 16 31.00666667 3

msil_20jun08_Contig14_revised_geneMsil3875 170267 49.33333333 37.14333333 3

msil_20jun08_Contig14_revised_geneMsil3881 53361 20.33333333 58.25 3
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Supplementary Table 5

Protein identifications – label-free quantification – Acetate growth condition

Description
Molecular

weight (Da)

Average
number of
peptides

Average
sequence

coverage (%)
Technical
replicates

msil_20jun08_Contig14_revised_geneMsil0011 13843 9.333333333 60.35333333 3

msil_20jun08_Contig14_revised_geneMsil0061 25546 12.33333333 69.61333333 3

msil_20jun08_Contig14_revised_geneMsil0078 17055 6 38.985 2

msil_20jun08_Contig14_revised_geneMsil0081 35103 11.5 56.075 2

msil_20jun08_Contig14_revised_geneMsil0082 39534 18.66666667 60.23 3

msil_20jun08_Contig14_revised_geneMsil0096 21839 11.33333333 50.68 3

msil_20jun08_Contig14_revised_geneMsil0105 23664 5.666666667 33.65666667 3

msil_20jun08_Contig14_revised_geneMsil0106 54270 19.66666667 44.40333333 3

msil_20jun08_Contig14_revised_geneMsil0107 35134 15.33333333 60.36 3

msil_20jun08_Contig14_revised_geneMsil0131 49760 14.5 42.275 2

msil_20jun08_Contig14_revised_geneMsil0135 50049 10.5 30.18 2

msil_20jun08_Contig14_revised_geneMsil0136 18091 6.666666667 53.09333333 3

msil_20jun08_Contig14_revised_geneMsil0147 45138 8.333333333 28.94 3

msil_20jun08_Contig14_revised_geneMsil0154 14853 7 52.115 2

msil_20jun08_Contig14_revised_geneMsil0162 58645 19.33333333 45.41333333 3

msil_20jun08_Contig14_revised_geneMsil0178 34892 15 58.91333333 3

msil_20jun08_Contig14_revised_geneMsil0181 9466 3 55.55666667 3

msil_20jun08_Contig14_revised_geneMsil0188 53255 16 33.27 3

msil_20jun08_Contig14_revised_geneMsil0189 26072 9.5 44.59 2

msil_20jun08_Contig14_revised_geneMsil0193 23482 8.5 56.755 2
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msil_20jun08_Contig14_revised_geneMsil0195 19814 10 56.65 3

msil_20jun08_Contig14_revised_geneMsil0202 37231 12.66666667 52.27666667 3

msil_20jun08_Contig14_revised_geneMsil0212 58102 15.33333333 38.13333333 3

msil_20jun08_Contig14_revised_geneMsil0239 32226 9 36.41333333 3

msil_20jun08_Contig14_revised_geneMsil0255 26326 8.666666667 42.42 3

msil_20jun08_Contig14_revised_geneMsil0268 77286 30.33333333 49.20666667 3

msil_20jun08_Contig14_revised_geneMsil0286 29882 10 50.60666667 3

msil_20jun08_Contig14_revised_geneMsil0289 18026 10.33333333 60.69666667 3

msil_20jun08_Contig14_revised_geneMsil0292 34508 9.5 32.52 2

msil_20jun08_Contig14_revised_geneMsil0314 17592 7.666666667 61.69666667 3

msil_20jun08_Contig14_revised_geneMsil0318 37265 13 39.155 2

msil_20jun08_Contig14_revised_geneMsil0325 10539 4 44.795 2

msil_20jun08_Contig14_revised_geneMsil0328 40649 11.5 51.555 2

msil_20jun08_Contig14_revised_geneMsil0340 20096 9 62.76666667 3

msil_20jun08_Contig14_revised_geneMsil0341 54742 25.33333333 42.24 3

msil_20jun08_Contig14_revised_geneMsil0342 31630 14.66666667 58.19333333 3

msil_20jun08_Contig14_revised_geneMsil0343 51344 25.66666667 67.63333333 3

msil_20jun08_Contig14_revised_geneMsil0344 14406 5 56.13666667 3

msil_20jun08_Contig14_revised_geneMsil0351 25878 8.666666667 51.73 3

msil_20jun08_Contig14_revised_geneMsil0352 15502 6.333333333 48.02 3

msil_20jun08_Contig14_revised_geneMsil0367 49316 11.5 32.065 2

msil_20jun08_Contig14_revised_geneMsil0380 28036 12.33333333 49.30666667 3

msil_20jun08_Contig14_revised_geneMsil0381 36470 15.66666667 42.71666667 3

msil_20jun08_Contig14_revised_geneMsil0420 39448 12 44.16666667 3

msil_20jun08_Contig14_revised_geneMsil0426 38837 13.33333333 40.44333333 3

msil_20jun08_Contig14_revised_geneMsil0427 52067 19.66666667 48.61666667 3
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msil_20jun08_Contig14_revised_geneMsil0428 12019 4 49.10666667 3

msil_20jun08_Contig14_revised_geneMsil0450 20681 4 29.23333333 3

msil_20jun08_Contig14_revised_geneMsil0471 68529 42 71.68 3

msil_20jun08_Contig14_revised_geneMsil0472 31060 17.33333333 58.59666667 3

msil_20jun08_Contig14_revised_geneMsil0485 22673 6.666666667 35.58 3

msil_20jun08_Contig14_revised_geneMsil0493 12257 5 53.50666667 3

msil_20jun08_Contig14_revised_geneMsil0495 65056 21.33333333 41.69333333 3

msil_20jun08_Contig14_revised_geneMsil0499 35950 11.5 39.65 2

msil_20jun08_Contig14_revised_geneMsil0515 44953 17.66666667 45.97666667 3

msil_20jun08_Contig14_revised_geneMsil0519 38148 8.666666667 34.30333333 3

msil_20jun08_Contig14_revised_geneMsil0520 48780 17.33333333 49.78333333 3

msil_20jun08_Contig14_revised_geneMsil0521 45795 23 44.29666667 3

msil_20jun08_Contig14_revised_geneMsil0522 50947 19.33333333 50.76333333 3

msil_20jun08_Contig14_revised_geneMsil0534 30949 7 30.42 2

msil_20jun08_Contig14_revised_geneMsil0559 20538 13 67.70333333 3

msil_20jun08_Contig14_revised_geneMsil0561 17054 4.5 34.455 2

msil_20jun08_Contig14_revised_geneMsil0563 20320 5.666666667 28.22 3

msil_20jun08_Contig14_revised_geneMsil0573 15501 5 30.17333333 3

msil_20jun08_Contig14_revised_geneMsil0574 26639 6.666666667 33.33333333 3

msil_20jun08_Contig14_revised_geneMsil0576 10354 4.333333333 54.34666667 3

msil_20jun08_Contig14_revised_geneMsil0579 22138 7.333333333 46.44 3

msil_20jun08_Contig14_revised_geneMsil0582 43134 24.33333333 74.15666667 3

msil_20jun08_Contig14_revised_geneMsil0583 76289 35.33333333 55.33 3

msil_20jun08_Contig14_revised_geneMsil0584 17850 6.666666667 42.09333333 3

msil_20jun08_Contig14_revised_geneMsil0586 51588 17 32.75 2

msil_20jun08_Contig14_revised_geneMsil0612 34378 12.66666667 47.51666667 3
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msil_20jun08_Contig14_revised_geneMsil0619 19849 9 64.81666667 3

msil_20jun08_Contig14_revised_geneMsil0620 28630 18.33333333 89.19666667 3

msil_20jun08_Contig14_revised_geneMsil0643 47785 21.33333333 55.48333333 3

msil_20jun08_Contig14_revised_geneMsil0651 12125 5 33.48 2

msil_20jun08_Contig14_revised_geneMsil0660 17046 5.5 49.695 2

msil_20jun08_Contig14_revised_geneMsil0672 118596 23.66666667 32.16 3

msil_20jun08_Contig14_revised_geneMsil0673 16443 7.333333333 43.64 3

msil_20jun08_Contig14_revised_geneMsil0675 64133 25 48.51 3

msil_20jun08_Contig14_revised_geneMsil0701 49297 10.33333333 28.25666667 3

msil_20jun08_Contig14_revised_geneMsil0737 53465 21.33333333 53.74 3

msil_20jun08_Contig14_revised_geneMsil0738 52264 20 53.21333333 3

msil_20jun08_Contig14_revised_geneMsil0747 91754 27 32.80666667 3

msil_20jun08_Contig14_revised_geneMsil0749 12177 6.5 61.945 2

msil_20jun08_Contig14_revised_geneMsil0758 8371 4 59.72 2

msil_20jun08_Contig14_revised_geneMsil0764 31189 11.66666667 53.58666667 3

msil_20jun08_Contig14_revised_geneMsil0774 33332 5 22.57 3

msil_20jun08_Contig14_revised_geneMsil0780 70259 18.66666667 30.69 3

msil_20jun08_Contig14_revised_geneMsil0786 35857 18.5 67.12 2

msil_20jun08_Contig14_revised_geneMsil0794 10224 4.666666667 47.37 3

msil_20jun08_Contig14_revised_geneMsil0795 57608 41.33333333 70.32333333 3

msil_20jun08_Contig14_revised_geneMsil0805 53987 17 40.715 2

msil_20jun08_Contig14_revised_geneMsil0806 26970 7 38.22 3

msil_20jun08_Contig14_revised_geneMsil0811 27406 11 55.555 2

msil_20jun08_Contig14_revised_geneMsil0823 14700 11.66666667 55.31333333 3

msil_20jun08_Contig14_revised_geneMsil0832 41778 14.5 40 2

msil_20jun08_Contig14_revised_geneMsil0839 36345 10 33.145 2
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msil_20jun08_Contig14_revised_geneMsil0848 31544 11.66666667 47.87666667 3

msil_20jun08_Contig14_revised_geneMsil0852 13555 6.5 64.615 2

msil_20jun08_Contig14_revised_geneMsil0870 19884 9 64.03333333 3

msil_20jun08_Contig14_revised_geneMsil0887 9398 5 57.36666667 3

msil_20jun08_Contig14_revised_geneMsil0895 25268 9.333333333 58.50333333 3

msil_20jun08_Contig14_revised_geneMsil0898 16594 5.666666667 37.44333333 3

msil_20jun08_Contig14_revised_geneMsil0899 9233 2.333333333 24.16666667 3

msil_20jun08_Contig14_revised_geneMsil0903 36627 11 32.57 2

msil_20jun08_Contig14_revised_geneMsil0931 51409 26.33333333 61.32333333 3

msil_20jun08_Contig14_revised_geneMsil0968 15036 6.333333333 46.90333333 3

msil_20jun08_Contig14_revised_geneMsil0970 18853 10.66666667 36.89333333 3

msil_20jun08_Contig14_revised_geneMsil0971 20604 10.33333333 55.79666667 3

msil_20jun08_Contig14_revised_geneMsil0999 14246 5.5 53.875 2

msil_20jun08_Contig14_revised_geneMsil1003 30140 13.66666667 62.17666667 3

msil_20jun08_Contig14_revised_geneMsil1006 67355 12.5 28.705 2

msil_20jun08_Contig14_revised_geneMsil1007 46510 16 50.465 2

msil_20jun08_Contig14_revised_geneMsil1012 31539 11.33333333 51.54666667 3

msil_20jun08_Contig14_revised_geneMsil1025 20017 5.666666667 51.39666667 3

msil_20jun08_Contig14_revised_geneMsil1043 19114 6.333333333 48.31 3

msil_20jun08_Contig14_revised_geneMsil1068 30027 9.333333333 44.56333333 3

msil_20jun08_Contig14_revised_geneMsil1086 33521 13.33333333 45.26666667 3

msil_20jun08_Contig14_revised_geneMsil1117 63869 23.66666667 48.20333333 3

msil_20jun08_Contig14_revised_geneMsil1125 54423 19.5 41.735 2

msil_20jun08_Contig14_revised_geneMsil1133 27825 10 32.76 2

msil_20jun08_Contig14_revised_geneMsil1138 27183 7.5 41.94 2

msil_20jun08_Contig14_revised_geneMsil1140 26523 9.5 45.04 2
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msil_20jun08_Contig14_revised_geneMsil1149 28664 7.666666667 33.99333333 3

msil_20jun08_Contig14_revised_geneMsil1154 52933 21.33333333 54.76 3

msil_20jun08_Contig14_revised_geneMsil1158 58989 22 50.92 3

msil_20jun08_Contig14_revised_geneMsil1160 31761 11 40.49333333 3

msil_20jun08_Contig14_revised_geneMsil1165 35463 10.33333333 36.91666667 3

msil_20jun08_Contig14_revised_geneMsil1171 17691 7.333333333 54.85 3

msil_20jun08_Contig14_revised_geneMsil1186 12265 9.333333333 69.94 3

msil_20jun08_Contig14_revised_geneMsil1191 37974 7.666666667 26.70333333 3

msil_20jun08_Contig14_revised_geneMsil1193 70227 22.33333333 48.87666667 3

msil_20jun08_Contig14_revised_geneMsil1194 39096 14.66666667 61.49333333 3

msil_20jun08_Contig14_revised_geneMsil1203 30940 8.666666667 43.65 3

msil_20jun08_Contig14_revised_geneMsil1205 30006 11.66666667 32.87 3

msil_20jun08_Contig14_revised_geneMsil1215 47989 10.33333333 23.91333333 3

msil_20jun08_Contig14_revised_geneMsil1224 10019 5.333333333 61.04666667 3

msil_20jun08_Contig14_revised_geneMsil1226 70912 30.66666667 50.28333333 3

msil_20jun08_Contig14_revised_geneMsil1236 19181 3.333333333 28.28666667 3

msil_20jun08_Contig14_revised_geneMsil1259 34728 7.5 32.09 2

msil_20jun08_Contig14_revised_geneMsil1262 59789 18 37.58 3

msil_20jun08_Contig14_revised_geneMsil1263 44933 16.5 55.245 2

msil_20jun08_Contig14_revised_geneMsil1264 15306 7.333333333 51.34 3

msil_20jun08_Contig14_revised_geneMsil1314 12494 3.666666667 53.58333333 3

msil_20jun08_Contig14_revised_geneMsil1325 79102 33.33333333 56.12666667 3

msil_20jun08_Contig14_revised_geneMsil1328 52734 21 46.03666667 3

msil_20jun08_Contig14_revised_geneMsil1347 36232 8 34.89333333 3

msil_20jun08_Contig14_revised_geneMsil1353 44433 10 32.76 3

msil_20jun08_Contig14_revised_geneMsil1365 8505 3.666666667 51.38666667 3
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msil_20jun08_Contig14_revised_geneMsil1368 44591 11 37.745 2

msil_20jun08_Contig14_revised_geneMsil1375 58235 28 61.19333333 3

msil_20jun08_Contig14_revised_geneMsil1381 42704 11 31.46 2

msil_20jun08_Contig14_revised_geneMsil1382 46216 19.33333333 56.97 3

msil_20jun08_Contig14_revised_geneMsil1388 22303 9 28.47 2

msil_20jun08_Contig14_revised_geneMsil1395 75669 29.33333333 53.1 3

msil_20jun08_Contig14_revised_geneMsil1411 11268 7.666666667 61.37333333 3

msil_20jun08_Contig14_revised_geneMsil1429 45127 12.66666667 33.49 3

msil_20jun08_Contig14_revised_geneMsil1493 31367 7 46.27333333 3

msil_20jun08_Contig14_revised_geneMsil1559 42669 16.33333333 62.98 3

msil_20jun08_Contig14_revised_geneMsil1574 28579 10.66666667 35.92333333 3

msil_20jun08_Contig14_revised_geneMsil1575 29163 10 34.77666667 3

msil_20jun08_Contig14_revised_geneMsil1587 65135 16 40.1 3

msil_20jun08_Contig14_revised_geneMsil1603 24476 7.333333333 31.87666667 3

msil_20jun08_Contig14_revised_geneMsil1611 20289 6.333333333 29.63 3

msil_20jun08_Contig14_revised_geneMsil1616 45805 17 39.5 2

msil_20jun08_Contig14_revised_geneMsil1624 42542 7.333333333 28.46333333 3

msil_20jun08_Contig14_revised_geneMsil1627 76934 17.33333333 30.16 3

msil_20jun08_Contig14_revised_geneMsil1628 8288 2 16.88666667 3

msil_20jun08_Contig14_revised_geneMsil1630 39298 13.33333333 47.85333333 3

msil_20jun08_Contig14_revised_geneMsil1633 23930 6 34.36333333 3

msil_20jun08_Contig14_revised_geneMsil1649 40230 17 41.46 2

msil_20jun08_Contig14_revised_geneMsil1676 22241 16 77.55666667 3

msil_20jun08_Contig14_revised_geneMsil1677 22932 10 44.97666667 3

msil_20jun08_Contig14_revised_geneMsil1680 51617 16 40.59 3

msil_20jun08_Contig14_revised_geneMsil1681 47722 21 57.57666667 3
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msil_20jun08_Contig14_revised_geneMsil1688 100172 18.66666667 25.49666667 3

msil_20jun08_Contig14_revised_geneMsil1691 24368 8.5 58.695 2

msil_20jun08_Contig14_revised_geneMsil1693 32000 15.33333333 57.63666667 3

msil_20jun08_Contig14_revised_geneMsil1694 37702 16.33333333 54.15333333 3

msil_20jun08_Contig14_revised_geneMsil1706 49863 23.33333333 60.98 3

msil_20jun08_Contig14_revised_geneMsil1707 42671 12.5 40.76 2

msil_20jun08_Contig14_revised_geneMsil1713 33845 13.33333333 56.66 3

msil_20jun08_Contig14_revised_geneMsil1714 42610 19.66666667 59.59666667 3

msil_20jun08_Contig14_revised_geneMsil1716 42908 16.66666667 50.88 3

msil_20jun08_Contig14_revised_geneMsil1717 31773 10.5 39.775 2

msil_20jun08_Contig14_revised_geneMsil1719 35013 14 56.615 2

msil_20jun08_Contig14_revised_geneMsil1743 38477 13 43.56333333 3

msil_20jun08_Contig14_revised_geneMsil1744 13791 4.5 52.615 2

msil_20jun08_Contig14_revised_geneMsil1745 16470 6.666666667 44.16 3

msil_20jun08_Contig14_revised_geneMsil1759 41928 16.33333333 50.94 3

msil_20jun08_Contig14_revised_geneMsil1760 55723 20.33333333 50.72 3

msil_20jun08_Contig14_revised_geneMsil1777 14945 5 25 2

msil_20jun08_Contig14_revised_geneMsil1807 23932 7.666666667 35.37666667 3

msil_20jun08_Contig14_revised_geneMsil1808 30842 16.33333333 52.43 3

msil_20jun08_Contig14_revised_geneMsil1816 8581 2 44.935 2

msil_20jun08_Contig14_revised_geneMsil1821 35733 11 38.30333333 3

msil_20jun08_Contig14_revised_geneMsil1827 36279 5.5 17.68 2

msil_20jun08_Contig14_revised_geneMsil1843 14867 4 53.4 2

msil_20jun08_Contig14_revised_geneMsil1858 26586 8.333333333 36.18666667 3

msil_20jun08_Contig14_revised_geneMsil1860 52564 4 14.95333333 3

msil_20jun08_Contig14_revised_geneMsil1861 12022 8.333333333 61.01333333 3
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msil_20jun08_Contig14_revised_geneMsil1865 32182 12 52.83 3

msil_20jun08_Contig14_revised_geneMsil1869 31672 9 34.375 2

msil_20jun08_Contig14_revised_geneMsil1872 17457 7.333333333 36.89666667 3

msil_20jun08_Contig14_revised_geneMsil1881 32802 11.33333333 50.84 3

msil_20jun08_Contig14_revised_geneMsil1898 27222 8.666666667 47.78666667 3

msil_20jun08_Contig14_revised_geneMsil1900 25195 9 37.445 2

msil_20jun08_Contig14_revised_geneMsil1905 89867 26.5 38.98 2

msil_20jun08_Contig14_revised_geneMsil1907 95512 29.33333333 37.34666667 3

msil_20jun08_Contig14_revised_geneMsil1910 71137 34 58.35666667 3

msil_20jun08_Contig14_revised_geneMsil2074 45579 11 35.86 2

msil_20jun08_Contig14_revised_geneMsil2079 37620 8.333333333 29.16333333 3

msil_20jun08_Contig14_revised_geneMsil2091 35124 17.66666667 64.66 3

msil_20jun08_Contig14_revised_geneMsil2110 46025 22 52.30666667 3

msil_20jun08_Contig14_revised_geneMsil2111 33360 9 34.21666667 3

msil_20jun08_Contig14_revised_geneMsil2114 27914 11 48.66666667 3

msil_20jun08_Contig14_revised_geneMsil2141 17478 6.333333333 52.29666667 3

msil_20jun08_Contig14_revised_geneMsil2206 19288 8 64 2

msil_20jun08_Contig14_revised_geneMsil2212 11167 6.5 76.53 2

msil_20jun08_Contig14_revised_geneMsil2221 55725 17.5 41.005 2

msil_20jun08_Contig14_revised_geneMsil2224 34262 13 46.87666667 3

msil_20jun08_Contig14_revised_geneMsil2232 101369 26 27.83 2

msil_20jun08_Contig14_revised_geneMsil2245 21640 11.5 65.735 2

msil_20jun08_Contig14_revised_geneMsil2246 37432 8.666666667 35.14666667 3

msil_20jun08_Contig14_revised_geneMsil2253 20419 5 43.205 2

msil_20jun08_Contig14_revised_geneMsil2282 35524 15.66666667 57.61 3

msil_20jun08_Contig14_revised_geneMsil2283 43212 15 55.69333333 3
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msil_20jun08_Contig14_revised_geneMsil2289 18866 4.666666667 37.75333333 3

msil_20jun08_Contig14_revised_geneMsil2295 95767 26.66666667 36.38333333 3

msil_20jun08_Contig14_revised_geneMsil2297 59527 15.66666667 34.83666667 3

msil_20jun08_Contig14_revised_geneMsil2301 55900 11.33333333 30.28333333 3

msil_20jun08_Contig14_revised_geneMsil2329 47962 19 41.08 3

msil_20jun08_Contig14_revised_geneMsil2342 55659 26.33333333 65.01666667 3

msil_20jun08_Contig14_revised_geneMsil2344 28678 6 31.91333333 3

msil_20jun08_Contig14_revised_geneMsil2345 12700 13.66666667 86.16 3

msil_20jun08_Contig14_revised_geneMsil2360 19922 8.666666667 48.99666667 3

msil_20jun08_Contig14_revised_geneMsil2361 56550 23.66666667 56.08333333 3

msil_20jun08_Contig14_revised_geneMsil2385 30967 11.66666667 65.65 3

msil_20jun08_Contig14_revised_geneMsil2387 33960 12.66666667 58.38666667 3

msil_20jun08_Contig14_revised_geneMsil2390 18570 9 58.66666667 3

msil_20jun08_Contig14_revised_geneMsil2400 39210 17 58.80666667 3

msil_20jun08_Contig14_revised_geneMsil2403 27359 8.666666667 38.68333333 3

msil_20jun08_Contig14_revised_geneMsil2427 66206 19.5 44.985 2

msil_20jun08_Contig14_revised_geneMsil2428 61868 12 32.875 2

msil_20jun08_Contig14_revised_geneMsil2436 16019 8.333333333 71.33333333 3

msil_20jun08_Contig14_revised_geneMsil2442 13852 5.666666667 52.1 3

msil_20jun08_Contig14_revised_geneMsil2447 36024 12.33333333 53.21666667 3

msil_20jun08_Contig14_revised_geneMsil2485 36213 11.66666667 48.84333333 3

msil_20jun08_Contig14_revised_geneMsil2501 33463 21.66666667 80.58333333 3

msil_20jun08_Contig14_revised_geneMsil2503 30071 14.66666667 57.59666667 3

msil_20jun08_Contig14_revised_geneMsil2504 113111 36.66666667 43.68 3

msil_20jun08_Contig14_revised_geneMsil2505 44837 19.66666667 45.87 3

msil_20jun08_Contig14_revised_geneMsil2523 34049 19 56.73 3
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msil_20jun08_Contig14_revised_geneMsil2525 105844 27 32.295 2

msil_20jun08_Contig14_revised_geneMsil2530 23299 7 45.375 2

msil_20jun08_Contig14_revised_geneMsil2532 47274 14 31.28 2

msil_20jun08_Contig14_revised_geneMsil2544 16674 4.333333333 54.14 3

msil_20jun08_Contig14_revised_geneMsil2576 69080 20 35.165 2

msil_20jun08_Contig14_revised_geneMsil2598 31231 16 63.27666667 3

msil_20jun08_Contig14_revised_geneMsil2608 39954 18.66666667 63.61 3

msil_20jun08_Contig14_revised_geneMsil2645 15175 7 51.51333333 3

msil_20jun08_Contig14_revised_geneMsil2647 24390 13 61.36333333 3

msil_20jun08_Contig14_revised_geneMsil2653 36393 12 48.25 2

msil_20jun08_Contig14_revised_geneMsil2655 79369 40.33333333 65.39333333 3

msil_20jun08_Contig14_revised_geneMsil2678 44881 5.5 21.535 2

msil_20jun08_Contig14_revised_geneMsil2707 17807 7.5 49.68 2

msil_20jun08_Contig14_revised_geneMsil2796 13182 5.666666667 47.78 3

msil_20jun08_Contig14_revised_geneMsil2800 20504 4 34.22333333 3

msil_20jun08_Contig14_revised_geneMsil2810 54003 20.33333333 46.16 3

msil_20jun08_Contig14_revised_geneMsil2811 12104 4 26.89 3

msil_20jun08_Contig14_revised_geneMsil2815 8480 4.333333333 45.52666667 3

msil_20jun08_Contig14_revised_geneMsil2816 61931 14.66666667 35.64 3

msil_20jun08_Contig14_revised_geneMsil2864 47166 11.5 32.99 2

msil_20jun08_Contig14_revised_geneMsil2894 38212 11.66666667 45.28666667 3

msil_20jun08_Contig14_revised_geneMsil2903 15538 5 42.28 3

msil_20jun08_Contig14_revised_geneMsil2912 50645 22.66666667 53.75 3

msil_20jun08_Contig14_revised_geneMsil2913 24076 10.33333333 59.22666667 3

msil_20jun08_Contig14_revised_geneMsil2914 46270 15.66666667 42.83666667 3

msil_20jun08_Contig14_revised_geneMsil2915 89017 26.66666667 36.23333333 3
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msil_20jun08_Contig14_revised_geneMsil2952 7316 6 87.62 3

msil_20jun08_Contig14_revised_geneMsil2955 67811 29 52.52333333 3

msil_20jun08_Contig14_revised_geneMsil2969 25250 10 49.21666667 3

msil_20jun08_Contig14_revised_geneMsil2977 49364 15 44.25333333 3

msil_20jun08_Contig14_revised_geneMsil2991 37134 15 54.24333333 3

msil_20jun08_Contig14_revised_geneMsil2996 40209 30.33333333 79.74333333 3

msil_20jun08_Contig14_revised_geneMsil2997 25488 14.33333333 61.27333333 3

msil_20jun08_Contig14_revised_geneMsil3000 54595 14.5 35.645 2

msil_20jun08_Contig14_revised_geneMsil3002 35388 8 46.96333333 3

msil_20jun08_Contig14_revised_geneMsil3011 36643 11.33333333 43.85333333 3

msil_20jun08_Contig14_revised_geneMsil3070 45240 11 43.42 2

msil_20jun08_Contig14_revised_geneMsil3149 68915 11 21.395 2

msil_20jun08_Contig14_revised_geneMsil3157 59816 23.33333333 54.73333333 3

msil_20jun08_Contig14_revised_geneMsil3159 27522 6 37.255 2

msil_20jun08_Contig14_revised_geneMsil3172 88382 24 38.39333333 3

msil_20jun08_Contig14_revised_geneMsil3206 16043 7 60.70666667 3

msil_20jun08_Contig14_revised_geneMsil3210 37801 13.66666667 56.62666667 3

msil_20jun08_Contig14_revised_geneMsil3211 14445 5.333333333 55.02666667 3

msil_20jun08_Contig14_revised_geneMsil3216 20999 8.666666667 71.02333333 3

msil_20jun08_Contig14_revised_geneMsil3218 11717 7 59.05 2

msil_20jun08_Contig14_revised_geneMsil3226 32689 7 29.46 2

msil_20jun08_Contig14_revised_geneMsil3238 45932 13 44.85666667 3

msil_20jun08_Contig14_revised_geneMsil3248 122929 28.33333333 23.29666667 3

msil_20jun08_Contig14_revised_geneMsil3255 46063 17.66666667 45.46 3

msil_20jun08_Contig14_revised_geneMsil3270 18324 5.5 33.625 2

msil_20jun08_Contig14_revised_geneMsil3285 25563 11 43.97333333 3
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msil_20jun08_Contig14_revised_geneMsil3287 76131 28.66666667 49.83333333 3

msil_20jun08_Contig14_revised_geneMsil3292 26279 8 29.00666667 3

msil_20jun08_Contig14_revised_geneMsil3306 39546 13.5 37.37 2

msil_20jun08_Contig14_revised_geneMsil3309 28875 14 72.385 2

msil_20jun08_Contig14_revised_geneMsil3314 33266 7 33.43666667 3

msil_20jun08_Contig14_revised_geneMsil3336 36160 14 51.53333333 3

msil_20jun08_Contig14_revised_geneMsil3475 6308 3.333333333 82.46 3

msil_20jun08_Contig14_revised_geneMsil3483 48455 15.66666667 45.04666667 3

msil_20jun08_Contig14_revised_geneMsil3502 13955 5 52.97333333 3

msil_20jun08_Contig14_revised_geneMsil3509 98993 31.66666667 44.68666667 3

msil_20jun08_Contig14_revised_geneMsil3510 40214 19 62.25333333 3

msil_20jun08_Contig14_revised_geneMsil3530 45259 27 58.39333333 3

msil_20jun08_Contig14_revised_geneMsil3538 73080 24 33.18 2

msil_20jun08_Contig14_revised_geneMsil3544 33697 11 46.08 3

msil_20jun08_Contig14_revised_geneMsil3545 136112 41.33333333 39.09 3

msil_20jun08_Contig14_revised_geneMsil3550 37460 12 41.885 2

msil_20jun08_Contig14_revised_geneMsil3552 19790 12.33333333 70.07 3

msil_20jun08_Contig14_revised_geneMsil3553 16543 7.333333333 58.05666667 3

msil_20jun08_Contig14_revised_geneMsil3563 66498 20.66666667 41.67 3

msil_20jun08_Contig14_revised_geneMsil3660 28431 4.5 25.885 2

msil_20jun08_Contig14_revised_geneMsil3674 28144 7.5 41.175 2

msil_20jun08_Contig14_revised_geneMsil3676 17015 6.333333333 76.75 3

msil_20jun08_Contig14_revised_geneMsil3687 76633 23.66666667 42.47666667 3

msil_20jun08_Contig14_revised_geneMsil3696 35129 12.5 33.89 2

msil_20jun08_Contig14_revised_geneMsil3697 31854 14 56.38333333 3

msil_20jun08_Contig14_revised_geneMsil3698 39195 21 72.16 3
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msil_20jun08_Contig14_revised_geneMsil3702 53285 17 43.39 3

msil_20jun08_Contig14_revised_geneMsil3705 40379 13.33333333 48.11666667 3

msil_20jun08_Contig14_revised_geneMsil3746 7075 3.666666667 58.2 3

msil_20jun08_Contig14_revised_geneMsil3780 31701 10 45.65666667 3

msil_20jun08_Contig14_revised_geneMsil3781 26419 7 38.55666667 3

msil_20jun08_Contig14_revised_geneMsil3816 45238 7.5 27.845 2

msil_20jun08_Contig14_revised_geneMsil3820 19350 6.333333333 39.16 3

msil_20jun08_Contig14_revised_geneMsil3821 7381 2.5 56 2

msil_20jun08_Contig14_revised_geneMsil3828 20405 10.66666667 59.71333333 3

msil_20jun08_Contig14_revised_geneMsil3831 26234 10 42.26 2

msil_20jun08_Contig14_revised_geneMsil3832 20774 5.5 45.43 2

msil_20jun08_Contig14_revised_geneMsil3845 13993 6 58.27 2

msil_20jun08_Contig14_revised_geneMsil3851 15220 4.666666667 44.05333333 3

msil_20jun08_Contig14_revised_geneMsil3863 19697 7.666666667 48.48666667 3

msil_20jun08_Contig14_revised_geneMsil3867 12947 3 26.45666667 3

msil_20jun08_Contig14_revised_geneMsil3868 153709 49.66666667 43.41 3

msil_20jun08_Contig14_revised_geneMsil3869 154444 51 46.36333333 3

msil_20jun08_Contig14_revised_geneMsil3874 51719 17 30.22333333 3

msil_20jun08_Contig14_revised_geneMsil3881 53361 26 73.63666667 3

msil_20jun08_Contig14_revised_geneMsil3907 14659 3.333333333 23.15 3

msil_20jun08_Contig14_revised_geneMsil3913 18654 5.333333333 59.15666667 3
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peptides identified in M. silvestris
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Supplementary figure 1 – Correlation of protein concentration and number of

peptides identified in M. silvestris when grown under (a) methane, (b) acetate.

Correlation of protein concentration and number of

when grown under (a) methane, (b) acetate.
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Three ionisation techniques that require no sample preparation or extraction prior to mass analysis

have been used for the rapid analysis of pharmaceutical tablets and ointments. These methods were

(i) the novel direct analysis in real time (DART), (ii) desorption electrospray ionisation (DESI), and

(iii) desorption atmospheric pressure chemical ionisation (DAPCI). The performance of the three

techniques was investigated for a number of common drugs. Significant differences between these

approaches were observed. For compounds of moderate to low polarity DAPCI produced more

effective ionisation. Accurate DESI andDAPCI tandemmass spectra were obtained and these greatly

enhance the selectivity and information content of the experiment. The detection fromhuman skin of

the active ingredients from ointments is reported together with the detection of ibuprofen metab-

olites in human urine. Copyright # 2006 John Wiley & Sons, Ltd.
Desorption electrospray ionisation (DESI) is a newly

developed ionisation technique for the analysis and detec-

tion of samples present on a variety of surfaces.1 Rapid high-

throughput analysis can be undertaken for a variety of

sample types. The technique can be used to detect analytes

on surface areas of sub-mm2 dimensions. Applications

utilising the DESI technique include the detection of

rhodamine dyes and pharmaceutical samples separated on

thin-layer chromatography (TLC) plates,2 the rapid detection

of pharmaceutical samples using ion mobility/time-of-flight

mass spectrometry (ToFMS),3 high-throughput analysis of

pharmaceutical samples,4 the detection of explosives,5,6 the

rapid accurate mass tandem mass spectrometry (MS/MS) of

pharmaceutical samples,7 intact biological tissue imaging,8

direct analysis of alkaloids from plant tissue,9 and the

analysis of controlled substances.10,11 Several possible

mechanisms of ionisation have been postulated, including

chemical sputtering involving gas-phase ions generated by

electrospray ionisation (ESI) or corona discharge and

subsequent charge transfer between these primary ions

and sample molecules on the surface. The occurrence of gas-

phase ion-molecule reactions has also been suggested

together with a droplet splashing or pick-up mechanism.

This involves the impacting of multiply charged solvent

droplets dissolving sample molecules from the surface

leading to the formation of secondary charged droplets

carrying sample molecules and resulting in ion formation

mechanisms similar to that of ESI.1,4–6

Desorption atmospheric pressure chemical ionisation

(DAPCI) was first reported for the trace level detection of
ndence to: J. P. Williams, Department of Biological
University of Warwick, Gibbet Hill Road, Coventry
, UK.
p.williams@warwick.ac.uk
TNT, PETN and RDX explosives,5 and has not received as

much attention to date as DESI. Ionisation of the explosives

was provided by the initial formation of toluene or methanol

reagent ions produced by a corona discharge. These reagent

ions formed are thought to ionise the analyte molecules by

either electron or proton transfer in a chemical ionisation

step.5 For those compounds that do not provide sufficient ion

intensity by DESI, DAPCI offers an alternative option.

DAPCI has been shown to provide increased sensitivity for

compounds of moderate polarity.7 DAPCI generated higher

signal intensities for the active ingredient hydrocortisone, a

weakly polar corticosteroid, than DESI using the same

solvent system normally used for conventional ESI exper-

iments.7 The DAPCI technique previously reported7 used

nitrogen sheath gas and a mixture of methanol/water (1:1)

from which ions were produced by a corona discharge.

Reagent ions formed in the corona discharge region react

with desorbed analyte molecules forming, depending on the

ionisation mode, for the most part, protonated or deproto-

nated molecules.7 A variant to the DAPCI technique for the

rapid analysis of volatile and semi-volatile compounds,

referred to as atmospheric pressure solids analysis probe

(ASAP), was recently used in the analysis of a number of

steroids and biological tissues.12 Vapourisation of the sample

is accomplished by placing it within the hot flowing nitrogen

gas at atmospheric pressure.

Another rapid and newly developed ionisation method,

direct analysis in real time (DART), was recently reported.13

Pharmaceutical samples, explosives and metabolites in urine

were analysed on a single ToF instrument. Sample analysis
Copyright # 2006 John Wiley & Sons, Ltd.
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by the DART technique is carried out at ambient temperature

and ionisation is brought about by exposing the sample to a

stream of excited gas, typically helium. An electrical

discharge produces ions, electrons and excited state

metastable neutral species. Several ionisation mechanisms

have been postulated, including Penning ionisation, in which

ionisation of the sample occurs by energy transfer from an

excited atom or molecule of energy greater than the

ionisation energy of the sample.13 It was reported that when

helium is used as the gas, the mechanism involves the

formation of ionised water clusters followed by proton

transfer reactions.13

In this present study we have made use of these three

newly developed ionisation techniques. The main focus of

this study was to evaluate the potential of the ionisation

techniques for the rapid analysis of active ingredients

formulated into a variety of pharmaceutical tablets, gels

and ointments. The rapid analysis of pharmaceutical drug

formulations, the detection from human skin of the active

ingredients from ointments or gels, and the detection of

ibuprofen metabolites in human urine have been carried out.

The increased selectivity and specificity of the DESI and

DAPCI techniques used with a hybrid quadrupole ToF

instrument were compared with that obtained by the use of

DART with a single ToF instrument. Accurate mass MS and

accurate mass MS/MS measurements, to within 2mTh, has

allowed elemental compositions for the product ions to be

determined, thereby facilitating the identification of frag-

mentation pathways. We believe this to be the first report

exploiting all three newly developed ionisation techniques

combined with accurate mass DAPCI-MS/MS.
EXPERIMENTAL

The tablets and ointment formulations investigated are listed

in Table 1, together with the molecular formulae and

molecular weights of the active ingredients. Ibuprofen tablets

and gel (Tesco, UK), Anadin Extra (Wyeth, UK) and

Solpadeine Max (Tesco, UK) were purchased without

prescription fromapharmacy. Proctosedyl ointment (Aventis)
Table 1. Structures, molecular formulae and molecular weights o

Copyright # 2006 John Wiley & Sons, Ltd.
and metoclopramide (APS) were obtained by prescription.

Solvents were obtained from Sigma-Aldrich (Poole, UK).

Mass spectrometry
DART experiments were carried out on an AccuToF LC ToF

mass spectrometer (Jeol, Peabody, MA, USA) and DESI/

DAPCI experiments were carried out on a Q-ToF I (Waters,

Manchester, UK). Experimental conditions for each are given

below.

DART
A detailed description of the DART source can be found

elsewhere.13 The AccuToF instrument was operated with

helium flowing into the DART source and a voltage of 2 kV

applied to the discharge needle in positive mode of

ionisation. Orifice 1 of the interface was set to 27 eV. This

voltage can be increased or decreased depending on the

amount of fragmentation desired. The gas temperature was

maintained at 808C and the operating resolution of the

instrument was approximately 6000 (FWHM). Mass spectra

were acquired over the mass range of m/z 50–500 at an

acquisition rate of 0.5 spectrum/s. For DART sample

analysis the helium gas was directed towards the sample

or allowed to interact with vapour-phase samples. Tablets

were broken, to expose an uncoated sample surface, before

being held with tweezers in the path of the flowing helium at

atmospheric pressure. Samples in solution were analysed by

placing filter paper (1 cm� 8 cm) in the solution prior to

being held similarly. For ointments, approximately 100mg

was applied to the surface of a piece of matt-finished

cardboard (1 cm� 2 cm) and held in the same position.

DESI
The Q-ToF I instrument was operated in positive and

negativemodewith a capillary voltage of 3.5 kV and�3.2 kV.

The ion source block and nitrogen desolvation gas tempera-

tures were set to 1008C and 4008C and the desolvation gas

was set to a flow rate of 300 L/h. The cone voltage was set at

20V for MS and MS/MS experiments and the collision

energy used for MS/MS experiments was ramped between
f the compounds investigated
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10 and 25 eV during the acquisition. The ToF mass analyser

was operated at a resolution of approximately 6000 (FWHM),

with spectra acquired over themass range ofm/z 50–500 at an

acquisition rate of 1 spectrum/s. For all MS/MS experiments

argon was used as the collision gas. For DESI sample

analysis, each tablet was broken, to expose an uncoated

sample surface, before being held with tweezers, at an angle

of approximately 458 to the solvent spray and a distance of

5mm from the source sampling cone. Approximately 100mg

of the ointment was applied to the surface of a piece of matt-

finished cardboard (1 cm� 2 cm) and held in the same

position as the solid tablets. The surface of the tablet or card

was then sprayed with a solution of acetonitrile/H2O (1:1) in

negative mode and a solution of acetonitrile/H2Oþ 0.2%

formic acid in positive mode at a flow rate of 10mL/min,

using a model 22 syringe pump from Harvard Apparatus

(South Natick, MA, USA). No extensive modification of

solvents, buffers and pH was carried out.

DAPCI
DAPCI experiments were performed on the Q-ToF I in both

positive and negative modes of ionisation. The corona

discharge pin voltage was set to 3.5 kV and �3.0 kV in

positive and negative modes, respectively. The cone voltage

was optimised between 10 and 25V for each sample. The

collision energy used for MS/MS experiments was ramped

between 10 and 25 eV during the acquisition. The flow rate of

the nitrogen desolvation gas was set to 150L/h. The source

and probe temperatures were set to 1008C and 4008C,
respectively. A solvent mixture of methanol and water (1:1)

flowing at 10mL/min was infused into the heated nebuliser

probe where it was converted into an aerosol which was

rapidly heated in a stream of nitrogen gas, forming a vapour

at the probe tip. The probe tip directly faced the tablet or

ointment (which had been deposited onto the card)

positioned between the corona discharge pin and the

sampling cone. Reagent ions formed in the corona discharge

region reacted with desorbed analyte molecules from the

tablet or card forming, depending on the ionisation mode, for

the most part, protonated or deprotonated molecules. The

same experiments were also performed without any solvent

flowing into the heated probe. This solventless DAPCI

experiment is similar to the ASAP experiment previously

described.12

Accurate mass measurement protocol
for the Q-ToF I
Instrumental mass drift was corrected for by using a single

internal reference lock mass in MS and MS/MS mode on the

Q-ToF. Since the target compounds in this study are known,

the precursor ion selected for MS/MS experiments provided

the internal reference lock mass in MS/MS mode. Data

acquisition and processing were carried out using the digital

dead-time correction algorithm embedded in the operating

software,MassLynx (V3.5), supplied byWaters UK. The high

ion counts generated using the DAPCI and DESI techniques

caused time-to-digital (TDC) dead-time saturation.7 The

TDC correction software was utilised and displayed a peak

centroid with the correct mass and signal intensity.
Copyright # 2006 John Wiley & Sons, Ltd.
RESULTS AND DISCUSSION

An investigation has been carried out of a number of

prescription and non-prescription pharmaceutical formu-

lations. Active ingredients from a gel applied to human skin

and drug metabolites in human urine were also investigated.

DART, DESI and DAPCI (solvent/solventless) techniques

were employed. The DESI and DAPCI techniques can be

used as a rapid screen for the analysis of solids and liquids

and can be set up quickly onmost instruments by the use of a

home-built source,1,10 or where the samples are handled

manually.7,11 The relative signal intensities of the active

ingredients are different when samples are held manually.

This is due to the non-reproducibility of positioning of the

sample in the solvent spray. The use of these techniques for

the rapid analysis of samples provides similar information to

that provided by the DART source. The active ingredients

formulated in the solid tablets were detected by the DART

technique and the analysis time in MS mode of operation

was, for the majority of samples, as rapid as in the DESI and

DAPCI techniques, requiring, in most cases, less than 5 s.

The analysis of solid tablets and the identification of

ranitidine metabolites in human urine using the DART

source have previously been reported.13 Since DAPCI has

received little attention, a representative sample of results

will focus on this together with others obtained using DESI.

A comparison of the three techniques is made for the

detection of a range of drugs. Tandem mass spectrometry

(MS/MS) was performed on either the protonated or

deprotonated molecule. The ion selected for collision-

induced dissociation (CID) using the DAPCI and DESI

techniques is annotated with a filled black circle and

included in each figure for clarity. Some of the fragmentation

pathways are complex and a detailed description of these has

not been included. The proposed fragmentation schemes for

some of the molecules are not assumed to be sequential. MS/

MS of the protonated molecule [MþH]þ of nicotine, for

example, forms a product ion at m/z 106. This ion could

possibly be formed by more than one route; m/z 163! 106

(loss of C3H7N) or m/z 163! 132! 106 (sequential loss of

CH3NH2 and C2H2).

Analysis of solid tablets in positive ion DAPCI,
DESI and DART mode
A solid Anadin Extra tablet, which contained 45mg of

caffeine, 200mg of paracetamol and 300mg of aspirin, was

analysed by DAPCI, DESI and DART. The mass spectra

obtained for Anadin Extra using the DAPCI, DESI and the

DART sources are shown in Figs. 1(A)–1(C). The protonated

molecules for each of the active ingredients, paracetamol at

m/z 152, aspirin at m/z 181 and caffeine at m/z 195, were

observed in the DAPCI and DESI mass spectra but the

protonated aspirin molecule was absent in the DART

spectrum. The base peak in all the spectra is m/z 195,

protonated caffeine. Accurate mass measurement confirms

that the ion at m/z 163 is formed by loss of H2O from

protonated aspirin. This ion was observed in all three spectra.

The ion at m/z 198 in the DAPCI and DESI spectra is

ammoniated aspirin, [MþNH4]
þ, m/z 203 in the DESI

spectrum is sodiated aspirin, [MþNa]þ. Figure 1(D) shows
Rapid Commun. Mass Spectrom. 2006; 20: 1447–1456
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Figure 1. (A) Positive ion DAPCI-MS spectrum of an Anadin Extra tablet.

(B) Positive ion DESI-MS spectrum of an Anadin Extra tablet. (C) Positive ion DART

MS spectrum of an Anadin Extra tablet. (D) Positive ion DAPCI accurate mass MS/

MS spectrum obtained from the protonated molecule of caffeine, [MþH]þ of m/z 195.
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the accurate mass MS/MS spectrum obtained for protonated

caffeine. The elemental composition assignments for the

product ions obtained for caffeine are given in Table 2. The

base peak in the MS/MS spectrum is m/z 138. The MS/MS

spectrum obtained during this study is very similar to that

obtained previously.14 Elemental composition assignment

shows that the protonated molecule primarily fragments by

the loss of methyl isocyanate (57Da) forming an even-electron

ion at m/z 138 with the formula of C6H8N3O. Two other

product ions were generated with sufficient ion counts for the

generation of elemental formulae: m/z 121 is an odd-electron

radical cation with probable formula of C5H3N3O and the ion

at m/z 110 has the elemental formula of C5H8N3 formed

through loss of CO from m/z 138.

A SolpadeineMax tablet containing 500mg of paracetamol

and 12.8mg of codeine phosphate was analysed. The mass

spectra obtained using the DAPCI, DESI and DART sources

are shown in Figs. 2(A)–2(C). The m/z 152 base peak in the

DAPCI andDART spectra is fromprotonated paracetamol. The

base peak in the DESI spectrum is the dimer [2MþH]þ at

m/z 303 from paracetamol. The formation of dimers has been

observed in all three techniques and is related to the local

concentration of the active ingredient under study. The ratio of

monomer to dimer species can vary with the exposed part of

the tablet under investigation. The protonated molecule from

codeine was more abundant than the protonated dimer of

paracetamol using DART. The reverse was observed for
Table 2. DAPCI-MS/MS accurate mass of m/z 195 [MþH]þ

of caffeine

Measured mass Formulae Error (mTh)

138.0675 C8H10O2 �0.6
C6H8N3O 0.8

121.0293 C7H5O2 0.4
C5H3N3O 1.7

110.0729 C6H10O �0.3
C5H8N3 1.1

Copyright # 2006 John Wiley & Sons, Ltd.
DAPCI and DESI. Other minor ions observed in the spectra are

probably due to additives in the tablet formulation. The MS/

MS spectrum of protonated codeine is shown in Fig. 2(D). The

product ion spectrum generated from protonated codeine can

be seen to be very complex but it is also specific and

reproducible. The elemental composition assignments for some

of the product ions obtained for codeine are given in Table 3.

Analysis of the active ingredients of a gel
formulation by desorption from human skin by
DESI
A thin layer of Ibuprofen gel containing 5%w/wof the active

ingredient was applied to the surface of a human finger. The

gel was gently massaged until absorbed by the skin. Using

the DESI technique, with a source and desolvation

temperature of 1008C, one could readily detect the drug at

the point of application. Figure 3(A) shows the negative DESI

mass spectrum, generated in 2 s, obtained 20min after

applying the gel. The base peak in the spectrum is

deprotonated ibuprofen. Figure 3(B) shows the accurate

mass MS/MS spectrum obtained for the deprotonated

ibuprofen molecule 20min after applying the gel. The

deprotonated ibuprofen, [M–H]� at m/z 205.1229, was used

as the internal lock mass. Accurate mass measurement of the

product ion atm/z 161.1321 confirms that CO2 is lost from the

deprotonated molecule. This ion has an empirical formula of

C12H17, a mass difference of �0.9mTh from the theoretical

monoisotopic mass. [Caution: there is a risk of electric shock from

the capillary. Although the capillary carries only limited current, it

is advisable to keep the finger well away from the capillary tip in the

experiment].

Comparison of DART/DESI/DAPCI for the
detection of two active ingredients in
Proctosedyl ointment
It has been previously demonstrated that the detection of the

two active ingredients formulated into proctosedyl ointment,

cinchocaine hydrochloride (5mg/g) and hydrocortisone
Rapid Commun. Mass Spectrom. 2006; 20: 1447–1456
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Figure 2. (A) Positive ion DAPCI-MS spectrum of a Solpadeine Max tablet.

(B) Positive ion DESI-MS spectrum of a Solpadeine Max tablet. (C) Positive ion DART

MS spectrum of a Solpadeine Max tablet. (D) Positive ion DAPCI accurate mass MS/

MS spectrum obtained from the protonated molecule of codeine, [MþH]þ of m/z 300.
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(5mg/g), was better with DAPCI than with DESI exper-

iments. In positive ion mode, hydrocortisone, a weakly polar

corticosteroid, was more effectively ionised by DAPCI.7

During this investigation, the ointment was applied to the

card in the usual way and investigated in both negative and

positive ion DAPCI modes of operation. The mass spectrum

obtained for the ointment in negative ion mode is shown in

Fig. 4(A). High ion counts were generated, highlighting the

sensitive response of the ointment to the DAPCI process in

negative mode. The base peak in the spectrum is the

deprotonated molecule of cinchocaine at m/z 342. Other ions

observed in the spectrum arise from additives in the

ointment formulation. No ion was observed for deproto-

nated hydrocortisone. The mass spectrum obtained for the

ointment in positive ion mode is shown in Fig. 4(B). High ion

counts were generated, highlighting the sensitive response of

the ointment to the DAPCI process in positive ion mode. The

base peak in the spectrum is protonated cinchocaine

at m/z 344. The ion at m/z 363 corresponds to protonated

hydrocortisone.

The product ion spectra of the deprotonated and

protonated molecules of cinchocaine can be compared in

Figs. 4(C) and 4(D). Figure 4(C) shows the negative ion

accurate mass MS/MS spectrum obtained for deprotonated

cinchocaine. The elemental composition assignments for the

product ions are given in Table 4. The base peak in the MS/

MS spectrum is formed by the loss of C7H14N2O from the

deprotonated molecule to the ion at m/z 200. This ion further
Table 3. DAPCI-MS/MS accurate mass of m/z 300 [MþH]þ

of codeine

Measured mass Formulae Error (mTh)

266.1196 C17H16NO2 1.5
225.0922 C15H13O2 0.6
215.1094 C14H15O2 2.2
199.0765 C13H11O2 0.6
183.0800 C13H11O �0.9

Copyright # 2006 John Wiley & Sons, Ltd.
fragments to m/z 144 by loss of 56Da. Accurate mass

measurement confirms this to be a loss of C4H8. A proposed

fragmentation scheme is shown in Fig. 4(E).

Figure 4(D) shows the positive ion accurate mass MS/MS

spectrum obtained for protonated cinchocaine. The probable

elemental composition assignments for the product ions are

given in Table 5. The base peak in the MS/MS spectrum is

formed by the loss of C4H11N from the protonatedmolecule to

the ion atm/z 271. This ion further fragments tom/z 215 by loss

of 56Da. Accurate mass measurement confirms this to be a

loss of C4H8. A proposed fragmentation scheme is shown in

Fig. 4(F).
Figure 3. (A) Negative ion DESI-MS spectrum of Ibuprofen

gel desorbed off skin. (B) Negative ion DAPCI accurate mass

MS/MS spectrum obtained from the deprotonated molecule of

ibuprofen, [M–H]� of m/z 205.
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Figure 4. (A) Negative ion DAPCI-MS spectrum of Proctosedyl ointment. (B)

Positive ion DAPCI-MS spectrum of Proctosedyl ointment. (C) Negative ion DAPCI

accurate mass MS/MS spectrum of m/z 342, the deprotonated molecule [M–H]� of

cinchocaine hydrochloride. (D) Positive ion DAPCI accurate mass MS/MS spectrum

of m/z 344, the protonated molecule [MþH]þ of cinchocaine hydrochloride.

(E) Proposed negative ion fragmentation pathway of [M–H]� of cinchocaine hydro-

chloride. (F) Proposed positive ion fragmentation pathway of [MþH]þ of cinchocaine

hydrochloride.
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The detection of active ingredients in ointments and creams

using this approach is non-labour-intensive since the analysis

requires no prior analyte extraction. A comparison of the DESI

and DAPCI (solvent and solventless) techniques was made for

this ointment since it contained both polar and weakly polar

ingredients. Figure 5 shows the comparison. The mass

spectrum of each is shown over the m/z region of 300–400.

The top spectrum was obtained using DESI, the middle

spectrum obtained using DAPCI without the use of solvent,

and the bottom spectrum was obtained using DAPCI with

solvent flowing into the heated probe. Protonated molecules

were detected for both cinchocaine (m/z 344) and hydrocor-

tisone (m/z 363) by all three techniques. The top two spectra

have been magnified (�16) over the m/z region for hydrocor-

tisone. The [MþH]þ ion fromcinchocaine is the base peak in all

three spectra showing that this compound ionises more

efficiently than hydrocortisone. The hydrocortisone has a

relative abundance of approximately 3%, 4% and 35%

compared with cinchocaine in DESI, DAPCI without solvent

and DAPCI with solvent modes, respectively. This demon-

strates the more effective detection of all the active ingredients

in this formulation when using DAPCI with solvent.

Figure 6(A) shows the positive ion mass spectra, over the

regionm/z 340–365, for the same ointment when using DART

and DAPCI with solvent. DART shows results similar to the
Table 4. DAPCI-MS/MS accurate mass of m/z 342 [M–H]�

of cinchocaine

Measured mass Formulae Error (mTh)

200.1078 C13H14NO 0.3
144.0468 C9H6NO 1.9

Table 5. DAPCI-MS/MS accurate mass of m/z 344 [MþH]þ

of cinchocaine

Measured mass Formulae Error (mTh)

271.1451 C16H19N2O2 0.4
215.0821 C12H11N2O2 0.0

Copyright # 2006 John Wiley & Sons, Ltd.
DESI and DAPCI without solvent experiments. The active

ingredient cinchocaine produces the base peak and the peak

due to the hydrocortisone has a relative abundance of

approximately 10% compared with cinchocaine.

Comparison of positive and negative
DAPCI-MS/MS
Metoclopramide is a medicine that increases the movements

or contractions of the stomach and intestines and it is used to

treat the symptoms of a stomach problem called diabetic

gastroparesis. A metoclopramide tablet which contained

10mg of the active ingredient was investigated by DAPCI in

positive and negative ion modes. The negative ion mass

spectrum of metoclopramide is shown in Fig. 7(A). The

deprotonated molecule for the active ingredient was
Figure 5. Top: positive ion DESI-MS spectrum of Proctose-

dyl ointment. The m/z range over m/z 363 (protonated mol-

ecule, [MþH]þ of hydrocortisone) has been expanded

showing a low abundance ion at m/z 363 which has been

magnified (�16). Middle: positive ion DAPCI-MS spectrum of

Proctosedyl ointment obtained without solvent. The m/z range

over m/z 363 has been expanded showing a low abundance

ion at m/z 363 which has been magnified (�16). Bottom:

positive ion DAPCI-MS spectrum of Proctosedyl ointment

obtained with solvent.
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Figure 6. (A) Positive ion DART-MS spectrum of Proctosedyl

ointment. (B) Positive ion DAPCI-MS spectrum of Proctosedyl

ointment obtained with solvent.
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observed in the spectrum atm/z 298 and 300. These two peaks

have relative signal intensities of 3:1, consistent with the

presence of one chlorine atom in the molecule. The positive

ion mass spectrum is shown in Fig. 7(B). The protonated
Figure 7. (A) Negative ion DAPCI-MS spe

ion DAPCI-MS spectrum of metoclopramid

mass MS/MS spectrum of m/z 298, the de

clopramide. (D) Positive ion DAPCI accurate

protonated molecule [MþH]þ of metoclopra

trum of metoclopramide. (F) Proposed ne

[M–H]� of metoclopramide. (G) Proposed

[MþH]þ of metoclopramide.

Copyright # 2006 John Wiley & Sons, Ltd.
molecule for the active ingredient was observed as the base

peak in the spectrum at m/z 300. The positive ion mass

spectrum obtained using DART for metoclopramide is

shown in Fig. 7(E). Once again, the protonated molecule

for the active ingredient at m/z 300 was the base peak.

A comparison of the product ion mass spectra of

protonated and deprotonated metoclopramide is shown in

Figs. 7(C) and 7(D). Figure 7(C) shows the accuratemassMS/

MS spectrum obtained for deprotonated metoclopramide.

The elemental composition assignments for the product ions

are given in Table 6. The deprotonated molecule appears to

fragment by the unusual loss of a methyl radical forming an

odd-electron radical anion of m/z 283. This ion further

fragments to m/z 211 by loss of 72Da, the diethylamine

moiety. Accurate mass measurement confirms this to be a

loss of C4H10N. A proposed fragmentation scheme is shown

in Fig. 7(F).

Figure 7(D) shows the accurate mass MS/MS spectrum

obtained for protonated metoclopramide. The spectrum

shows ions at m/z 227 and 184, in agreement with results

obtained previously.15 The elemental composition assign-

ments for the product ions are given in Table 7. The base peak

in theMS/MS spectrum atm/z 227 shows that the protonated

molecule primarily fragments by the loss of C4H11N,

diethylamine. This ion further fragments to m/z 184 by

loss of 43Da. Accuratemassmeasurement confirms this to be

a loss of C2H5N. A proposed fragmentation scheme is shown

in Fig. 7(G).

Analysis of a naturally occurring plant alkaloid
DAPCI, DESI and DART analysis of tobacco was performed

by removing the tobacco from a cigarette and holding the
ctrum of metoclopramide. (B) Positive

e. (C) Negative ion DAPCI accurate

protonated molecule [M–H]� of meto-

mass MS/MS spectrum of m/z 300, the

mide. (E) Positive ion DART-MS spec-

gative ion fragmentation pathway of

positive ion fragmentation pathway of
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Table 6. DAPCI-MS/MS accurate mass ofm/z 298 [M–H]� of

metoclopramide

Measured mass Formulae Error (mTh)

283.1078 C13H18ClN3O2 �0.9
211.0258 C9H8ClN2O2 �1.6
197.0106 C8H6ClN2O2 �1.2
156.0220 C7H7ClNO 0.3

Table 7. DAPCI-MS/MS accurate mass of m/z 300 [MþH]þ

of metoclopramide

Measured mass Formulae Error (mTh)

227.0592 C10H12ClN2O2 0.4
184.0159 C8H7ClNO2 �0.7

Figure 8. (A) Positive ion DAPCI-MS spectru

spectrum of tobacco. (C) Positive ion DART-M

DAPCI accurate mass MS/MS spectrum ofm/z 1

active ingredient nicotine found in tobacco. (E)

way of [MþH]þ of nicotine.

Copyright # 2006 John Wiley & Sons, Ltd.
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contents with tweezers by the method described in the

Experimental section. Nicotine is an alkaloid and is known to

be found naturally in the tobacco plant. The DAPCI, DESI

and DART mass spectra obtained in positive ion mode are

shown in Figs. 8(A)–8(C). A low cone voltage produced a

single ion at m/z 163, corresponding to protonated nicotine,

using DAPCI and DESI. Figure 8(C) shows the spectrum

obtained using the DART source at a high cone voltage. A

high cone voltage produced in-source fragmentation and the

DART spectrum is very similar to the DAPCI-MS/MS

spectrum of m/z 163 shown in Fig. 8(D). The elemental

composition assignments for the product ions obtained for

nicotine are given in Table 8. These show that the protonated

molecule fragments by the loss of 31Da to form an ion at

m/z 132. Accurate mass measurement confirms this loss to be

CH3NH2 from the methyl-substituted pyrrolidine ring. The

base peak in the MS/MS spectrum is m/z 130 formed by loss
m of tobacco. (B) Positive ion DESI-MS

S spectrum of tobacco. (D) Positive ion

63, the protonated molecule [MþH]þ of the

Proposed positive ion fragmentation path-
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Table 8. DAPCI-MS/MS accurate mass of m/z 163 [MþH]þ

of nicotine

Measured mass Formulae Error (mTh)

132.0820 C9H10N 0.7
130.0674 C9H8N 1.7
117.0596 C8H7N 1.8
106.0660 C7H8N 0.4
84.0828 C5H10N 1.5
80.0524 C5H6N 2.4
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of H2 fromm/z 132. Other ions atm/z 117 and 106 are possibly

formed by the loss of a methyl radical and a C2H2 molecule,

respectively, from m/z 132. The methyl radical loss has been

observed previously.16 Other easily recognised product ions

include the ion of m/z 84 due to the methyl-substituted

pyrrolidine ring moiety obtained from cleavage of the bond

between the two rings and the ion of m/z 80 due to the

pyridine ring moiety of the molecule, obtained in the same

way. A proposed fragmentation scheme is shown in Fig. 8(E),

and is similar to the scheme previously proposed.16 Accurate

mass MS/MS confirms that the previous proposals are

correct.

Identification of ibuprofen metabolites from
human urine
The development of a rapid screen for the detection of drug

or drug metabolites in urine is simplified by the use of these

newly developed ionisation techniques. The study of drug

metabolites in urine can be challenging due to the low levels

of metabolites and high levels of endogenous materials such

as salts. Ibuprofen is a non-steroidal anti-inflammatory drug

and the known bio-transformations of ibuprofen include

hydroxylation, carboxylation and glucuronidation.17 A

control sample of human urine was obtained 60min after

administration of two ibuprofen tablets which each con-
Figure 9. (A) Negative ion DAPCI-MS spec

dose of 400 mg of ibuprofen tablets. (B)

spectrum of a urine sample, 75 min after

tablets. The mass spectrum has been exp

(C) Negative ion DAPCI-MS/MS spectrum o

Copyright # 2006 John Wiley & Sons, Ltd.
tained 200mg of the active ingredient. We used DAPCI, with

a mixture of methanol/water flowing into the heated probe,

for the detection of ibuprofen metabolites in human urine.

A urine sample was absorbed onto filter paper

(1 cm� 8 cm) by placing the paper into the urine sample.

Metabolites in the urine were then identified by holding the

filter paper with tweezers as described in the Experimental

section. Figure 9(A) shows the negative ion mass spectrum

obtained without any pre-treatment of the urine sample. The

spectrum contains ions attributable to the presence of

endogenous components, of which many can be ascribed

to components in the urine and some to background species.

Ions detected other than the known bio-transformations of

ibuprofen have been tentatively assigned to deprotonated

pyruvic acid at m/z 87, lactic acid at m/z 89, methylmalonic

acid at m/z 117, xanthine at m/z 151, and hippuric acid at

m/z 178.

Figure 9(B) shows the accurate mass spectrum obtained

using the deprotonated molecule [M–H]� at m/z 205.1229

from the parent drug ibuprofen, as the internal lock mass.

Ions corresponding to the deprotonated molecules of two

low-level metabolites were detected, the hydroxyl-ibuprofen

atm/z 221 and carboxy-ibuprofen atm/z 235. No glucuronide

metabolites were detected. The specificity of the technique

coupled with accurate mass measurement has allowed the

determination of an elemental composition for m/z 221. The

probable elemental composition for the accurate mass of

221.1163 is C13H17O3, consistent with the formula for a

hydroxylated ibuprofen metabolite. The mass error calcu-

lated is�1.5mTh from the theoretical monoisotopic mass for

hydroxyl-ibuprofen metabolite. The elemental composition

for the accurate mass of 235.0983 is C13H15O4, consistent with

the formula for a carboxylated ibuprofen metabolite. The

mass error calculated is 1.2mTh from the theoretical

monoisotopic mass for the carboxy-ibuprofen metabolite.

Figure 9(C) shows the MS/MS spectrum obtained for the
trum of urine sample, 75 min after oral

Negative ion DAPCI accurate mass

an oral dose of 400 mg of ibuprofen

anded over the m/z range 195–245.

f m/z 221 showing loss of CO2.
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deprotonated hydroxy-ibuprofen metabolite at m/z 221. This

primarily fragments with the formation of a single product

ion at m/z 177 through the loss of CO2.
CONCLUSIONS

The use of DART, DESI and DAPCI (solvent and solventless)

techniques has been demonstrated for a wide range of

molecules of pharmaceutical interest. In all cases the sample

to be studied has been desorbed from a solid substrate. The

well-demonstrated ability of the DART technique to rapidly

characterise gaseous samples was not utilised. Significant

differences between these approaches were observed. For

compounds of moderate to low polarity, DAPCI (solvent and

solventless) produced more effective ionisation. DAPCI with

solvent was observed to be more effective in the ionisation of

these compounds than DART, DESI or solventless DAPCI.

The previously described approach of ASAP12 was found to

be very similar to solventless DAPCI.

DESI and DAPCI techniques have provided a highly

robust means of interrogating the active ingredients of a

variety of pharmaceutical formulations. Sampling the

formulation is rapid and ionisation occurs almost instantly.

The orientation of the surface in front of the stream of excited

gas seems to be more critical with the DART source. The

current design of the DART source, although very effective

for the analysis of gaseous samples, is less effective for

the analysis of adsorbed molecules. This is due to the

inability of visualise the gas stream and the relatively wide

sampling geometry.

The surface to be analysed via DESI can be held in the

solvent stream at an angle of 458 and at a distance of 5–20mm

prior to the sampling cone orifice or it can be held at an angle

directly in front of the probe tip some distance from the

sampling cone on the QToF 1 instrument. Since the spray

emanating from the probe tip can be seen in DESI mode, the

tip can be positioned exactly to spray the surface to be

interrogated, which can be of the order of cm2 to sub-mm2.

The use of aQ-ToF instrument, with elevated resolution and

full-scan sensitivity, has improved the selectivity and

specificity of the DAPCI technique originally shown by

Cooks and co-workers5 by allowing the generation of accurate

massMS/MS information towithin 2mThusing a single point

internal lock mass to correct mass scale drift. The high

information content has allowed probable elemental compo-

sitions and fragmentation pathways to be determined.

The development of these new ionisation techniques offers

very significant advantages for a number of important
Copyright # 2006 John Wiley & Sons, Ltd.
scientific areas. The ability to rapidly analyse complex

mixtures with little, or no, sample preparation is very

important. The techniques DART, DESI and DAPCI (solvent

and solventless) have complex, potentially inter-related

mechanisms but have been shown to provide complemen-

tary information on a range of compounds of pharmaceutical

interest. The direct analysis of urine and molecules adsorbed

on skin is of particular interest. This work has focused on

samples desorbed from solid substrates although the study

of gaseous samples is also possible, particularly with the

DART technique. The techniques produce little fragmenta-

tion and so the addition of accurate mass MS and MS/MS

greatly increases the selectivity of the approach.
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The rapid desorption electrospray ionisation (DESI) of some small molecules and their fragmentation
using a triple-quadrupole and a hybrid quadrupole time-of-flight mass spectrometer (Q-ToF) have been
investigated. Various scanning modes have been employed using the triple-quadrupole instrument to
elucidate fragmentation pathways for the product ions observed in the collision-induced dissociation (CID)
spectra. Together with accurate mass tandem mass spectrometry (MS/MS) measurements performed on
the hybrid Q-ToF mass spectrometer, unequivocal product ion identification and fragmentation pathways
were determined for deprotonated metoclopramide and protonated aspirin, caffeine and nicotine. Ion
structures and fragmentation pathway mechanisms have been proposed and compared with previously
published data. The necessity for elevated resolution for the differentiation of isobaric ions are discussed.
Copyright  2006 John Wiley & Sons, Ltd.

KEYWORDS: desorption electrospray ionisation; mass spectrometry; tandem mass spectrometry; drugs; accurate mass
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INTRODUCTION

Mass spectrometry sampling using desorption electrospray
ionisation (DESI) is gaining popularity for the analysis
of a variety of surface types under ambient conditions.1

In DESI, charged solvent droplets are sprayed towards
the surface under investigation. These charged solvent
droplets collide with the analytes on the surface which
are desorbed, and ionisation is thought to occur by a
droplet pick-up mechanism.2 These secondary ions pro-
duced from the surface are then sampled by the mass
spectrometer. For the analysis of solid pharmaceutical drug
formulations, mass spectrometry sampling using DESI is
extremely rapid since it requires little sample preparation.
The DESI technique together with desorption atmospheric
pressure chemical ionisation3 (DAPCI) and direct analy-
sis in real time4 (DART) has been utilised for the analysis
of some common drugs and samples of biological origin
using mass spectrometry and tandem mass spectrometry
accurate mass measurements.5,6 DESI of pharmaceutical

ŁCorrespondence to: Jonathan P. Williams, Department of
Biological Sciences, University of Warwick, Gibbet Hill Road,
Coventry, CV4 7AL, UK. E-mail: j.p.williams@warwick.ac.uk

samples has previously been studied in an ion trap mass
spectrometer7 and an ion-mobility mass spectrometer8 and
analysed directly from thin layer chromatography (TLC)
plates.9

Triple-quadrupole mass spectrometers are extremely
useful as a research tool since they provide an efficient means
of compound identification because of their unique scanning
capabilities. The combination of the various scanning tech-
niques employed in a triple-quadrupole instrument together
with elevated-resolution time-of-flight (ToF) mass spectrom-
eters, which provide accurate mass measurements allowing
generation of elemental formulae, represents a powerful
approach for unequivocal product ion identification and
fragmentation pathways. The DESI technique is rapid since
little or no sample preparation is required. The combination
of both these mass spectrometry techniques provides high
information content.

Experiments have been undertaken using various triple-
quadrupole scanning techniques and/or elevated-resolution
ToF accurate mass, with the focus on fully characterising frag-
mentation pathways for some low-molecular-weight species.
Three compounds, caffeine, nicotine and metoclopramide,
were of particular interest since they generated odd-electron

Copyright  2006 John Wiley & Sons, Ltd.
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product ions from even-electron precursor ions via low-
energy, collision-induced dissociation (CID). Protonated or
deprotonated molecules do not usually lose a radical to
form an odd-electron cation or anion since violation of
the ‘even-electron rule’ occurs. However, fragmentations
of many small even-electron ions that have not obeyed the
rule have previously been reported from electron-impact (EI)
and chemical-ionisation (CI) experiments.10 – 12 Using DESI,
we demonstrate that under low-energy CID conditions, rad-
ical elimination can occur from even-electron ions especially
if the generated product ions have a high stability: for exam-
ple, they are aromatic. The necessity for elevated resolution
for the differentiation of isobaric ions and accurate mass
measurement for identification and confirmation has been
demonstrated for an in-source CID-generated product ion of
m/z 110 formed from protonated caffeine and paracetamol.
The combination of a triple-quadrupole instrument, which
can operate in full scan, product ion, precursor ion and
neutral scan modes, together with a ToF instrument which
provided elevated resolution and full scan sensitivity, will
be discussed. The rapid analysis using DESI of a variety of
compounds is shown, in which these experiments enhance
the information content.

EXPERIMENTAL

Mass spectrometry
Experiments were performed in a triple-quadrupole (Q1qQ2,
where q is a hexapole) mass spectrometer (Quattro Ultima,
Waters MS Technologies, Manchester, UK) and a hybrid
quadrupole time-of-flight mass spectrometer (Q-ToF 1,
Waters MS Technologies, Manchester, UK). Experimental
details using the Q-ToF 1 have been previously reported.5,6

The Q1qQ2 instrument was equipped with the standard Z-
spray electrospray ion source and operated at a source and
desolvation temperature of 110 °C and 250 °C, respectively.
The desolvation gas was set to a flow rate of 200 l/h. The
instrument was operated in the positive and negative modes
with capillary voltages of 3.0 kV and – 2.6 kV, respectively.
Tandem mass spectrometry (MS/MS or MS2) was carried out
using argon as collision gas at a pressure of 2.5 ð 10�3 mbar
within the radio frequency (r.f.r.f.)-only hexapole collision
cell. For DESI analysis, each tablet was broken, to expose an
uncoated sample surface, before being held with tweezers,
at an angle of approximately 45° to the solvent spray.
The surface of the tablet was sprayed with a solution
of acetonitrile/H2O C 0.2% formic acid at a flow rate of
10 µl/ min using a Harvard Apparatus (South Natick, MA,
USA) Model 22 syringe pump. Mass spectra were acquired
in the MCA mode at an acquisition rate of 1spectrum per
8 s. Data acquisition and processing were carried out using
MassLynx (V3.5).

Compounds investigated
The structures of the compounds investigated are listed in
Fig. 1, together with the molecular formulae and molecular
weights of their active ingredients. Diclofenac (50 mg) and
naproxen (500 mg, Roche) were obtained by prescription.
Ibuprofen (200 mg, Tesco, UK) and Anadin Extra (300 mg of
aspirin, 200 mg of paracetamol and 45 mg of caffeine, Wyeth
UK) were purchased from a local pharmacy. Nicotine was
obtained directly from tobacco contained in a cigarette.

RESULTS AND DISCUSSION

The triple-quadrupole utilised in these experiments does
not provide sufficient accurate mass measurements for the
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Figure 1. Structures, molecular formulae and molecular weights of the compounds studied.
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unequivocal identification of the product ions resulting from
CID. Accurate mass MS/MS performed in a Q-ToF-type
instrument has been used to provide complementary struc-
tural information of the fragmentation pathways for many of
the product ions observed in the CID spectra allowing frag-
mentation pathways to be determined. Ion structures and
fragmentation pathway mechanisms have been proposed
for deprotonated metoclopramide and protonated aspirin,
caffeine and nicotine.

Negative ion DESI: product ion and neutral-loss
scan modes
The rapid sampling of the DESI technique may be useful for
metabolite identification during the drug discovery process.
The detection of metabolites in urine has previously been
reported by DESI.13,14 Signal suppression was observed
for the analysis of metabolites in urine; however, the
results demonstrate the applicability of the DESI approach
as a rapid screen for metabolite identification. We have
previously detected ibuprofen metabolites in human urine
using DAPCI.6

Precursor and neutral-loss scan modes are efficient in
detecting targeted or untargeted compounds, for example,
metabolites of a drug. Sulfate, glutathione and glucuronide
conjugates when fragmented by CID produce a characteristic
loss of 80 Da �SO3�, 129 Da (loss of C5H7NO3, the pyrog-
lutamic acid moiety) and 176 Da �C6H8O6�, respectively, by
positive ion mode analysis.15 – 17 MS/MS analysis in nega-
tive ion mode of sulphate conjugates leads to the formation
of characteristic product ions of m/z 80 �SO3

�� and m/z
97 �HSO4

��. Glucuronide conjugates form a product ion
of m/z 175 �C6H7O6

��, the free glucuronide moiety, when

fragmented by CID. Q2 is set to transmit only these low mass
ions, and the precursor ions that fragment to these specific
product ions are detected by scanning Q1 for precursor ions.

Three non-steroidal anti-inflammatory drugs (NSAIDs)
were chosen as model pharmaceutical tablets to evaluate the
suitability of various scanning modes of a triple-quadrupole
instrument using DESI for the detection of targeted group-
specific losses. The three tablets, diclofenac, ibuprofen and
naproxen, were sampled separately during the same acquisi-
tion for 8 s. Each of the compounds is known to deprotonate,
owing to the acidic functional group in the molecules.

The mass spectrum obtained is shown in Fig. 2(A) over
the m/z range 200–300. Intense deprotonated molecules
together with some in-source CID fragment ions were
observed in the mass spectrum. The peaks in the mass
spectrum can be ascribed to [M–H]� from ibuprofen of m/z
205, the base peak [M–H]� from naproxen of m/z 229 and
[M–H]� from diclofenac of m/z 294. The peak at m/z 250
corresponds to loss of CO2 from the deprotonated molecule
of diclofenac. The product ion mass spectrum generated
for each of the deprotonated NSAID molecules is shown in
Fig. 2(B). Deprotonated ibuprofen and diclofenac produced
a single product ion under the low collision energy used
during the experiment of m/z 161 and m/z 250, respectively.
Naproxen generated two product ions of m/z 185 and m/z
170. It can be seen that all deprotonated molecules fragment
with a characteristic loss of CO2 (44 Da). Figure 2(C) shows
the neutral-loss mass spectrum obtained by sampling the
three NSAIDs during the same acquisition. As expected,
the three deprotonated molecules of m/z 205, 229 and 294
were detected. Q1 and Q2 were scanned together with a
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Figure 2. (A) Negative ion DESI-MS spectrum of ibuprofen, naproxen and diclofenac, (B) negative ion DESI-MS/MS spectrum of
[M—H]� of m/z 205 from ibuprofen, [M—H]� of m/z 229 from naproxen and [M—H]� of m/z 294 from diclofenac, and (C) negative
ion DESI-MS/MS neutral-loss spectrum in which both quadrupoles were scanned with a pre-defined mass difference of 44Da,
corresponding to CO2 loss.
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pre-defined mass difference of 44 Da. We believe this to
be the first report combining rapid neutral-loss scanning
methods and DESI for targeted group specific losses.

Accurate mass MS/MS of deprotonated metoclopramide,
[M–H]� of m/z 298, led to the formation of four intense
product ions as shown in Fig. 3. The ion of m/z 283 is
of particular interest since it is a delocalised aromatic
odd-electron anion formed through the loss of a methyl
radical from deprotonated metoclopramide. The proposed
mechanism for the generation of this product ion, together
with the product ions of m/z 211, 197 and 156, is shown
in Scheme 1. The formation of the ion with m/z 283 occurs
via the route 1 ! 2 and the ion with m/z 211 via route

1 ! 3, both starting from the deprotonated amino [M–H]�

species. Possible mechanisms for the route of formation have
been suggested for the ions 8 with m/z 156 and 6 or 7 with
m/z 197. These ions are suggested to be generated from the
metoclopramide molecules, which have been deprotonated
at the amide nitrogen. Ion 7 is more likely than ion 6 because
it does not have the strained four-membered ring fused with
the aromatic ring as ion 6 has.

Positive ion DESI: product ion and precursor ion
scan modes
Q-ToF accurate mass MS/MS experiments were carried
out and combined with precursor ion tandem quadrupole
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Figure 3. Negative ion DESI-MS/MS spectrum of [M–H]� of
m/z 298 from metoclopramide.

experiments to determine unequivocal fragmentation path-
ways for protonated aspirin, caffeine, paracetamol and
nicotine.

A solid Anadin Extra tablet, which contained 45 mg of the
active ingredient caffeine, 200 mg of paracetamol and 300 mg
of aspirin, was analysed using DESI. The mass spectrum
obtained for Anadin Extra is in Fig. 4(A) and represents two
8 s scans obtained in the tandem quadrupole instrument.
The protonated molecules for each of the active ingredients,
paracetamol of m/z 152 and caffeine of m/z 195, were
observed in the mass spectrum but the protonated aspirin
molecule was absent. The sodiated molecule, [M C Na]C for
the active ingredient aspirin was observed at m/z 203. The
base peak in the mass spectrum is at m/z 195, the protonated
molecule of caffeine. Other ions detected at m/z 163, 121 and
m/z 110 have been previously characterised by accurate mass
MS/MS.6 Accurate mass confirmed the ion of m/z 163 to be

[MH–H2O]C from aspirin. The ions at m/z 110 and m/z 121
are products of in-source CID. We have previously shown
that the ion at m/z 110 is a fragment produced by loss of
CO from a product ion of m/z 138 from protonated caffeine
and by loss of ketene from protonated paracetamol with the
elemental formulae of C5H8N3 and C6H8NO, respectively.5,6

The quadrupole instrument does not have the resolving
power to distinguish between these two fragment ions since
a resolution of ¾9800 full width at half-maximum (FWHM)
is required.

A precursor ion scan of m/z 110 is shown in Fig. 4(B). The
optimum intensity of the ion of m/z 110 was first reached by
increasing the in-source declustering voltage. The collision
energy was optimised manually so that the yield of the m/z
110 ion generated within the collision cell from all precursors
was maximised. The data confirms that the ion of m/z 110
is formed by loss of ketene (42 Da) from the [M C H]C of
paracetamol at m/z 152. The data also confirms that the ion
of m/z 110 is formed by loss of CO from m/z 138, which
is subsequently formed by loss of methyl isocyanate (57Da)
from [M C H]C of caffeine at m/z 195.

A precursor ion scan of m/z 121 is shown in Fig. 4(C).
The data confirms that the ion of m/z 121 is formed
from m/z 139 and m/z 163 from aspirin. Accurate mass
measurement of m/z 139.0411 suggested a formula of
C7H7O3, loss of ketene from the protonated aspirin molecule
[MH–CH2 CO]C. Accurate mass measurement of m/z
149.0243 suggested a formula of C8H5O3. This ion probably
arises from the dissociation of an unknown phthalate: a
ubiquitous contaminant often found in ESI mass spectra,
which further dissociates via loss of CO to form m/z 121.
Accurate mass measurement of m/z 163.0391 suggested
a formula of C9H7O3, loss of H2O from the protonated
molecule [MH–H2O]C. The MS/MS spectrum of protonated
aspirin (m/z 181, data not shown) shows C2H4O2 elimination
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Figure 4. (A) Positive ion DESI-MS spectrum of Anadin Extra, (B) precursor ion spectrum of m/z 110 from the mass spectrum of
Anadin Extra, and (C) precursor ion spectrum of m/z 121 from the mass spectrum of Anadin Extra.
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[MH–HOCOCH3]C from the side chain substituent. These
fragmentation pathways are summarised in Scheme 2, and
were generated from the data provided by the precursor
ion spectrum together with accurate mass MS/MS. The
ortho-hydroxybenzoyl cation will be energetically preferred
because of the delocalisation of the positive charge over the
aromatic ring and the hydroxyl group.

DESI accurate mass MS/MS of [M C H]C of m/z 195
from caffeine in Anadin Extra generated three product
ions of m/z 138, 123 and 110 with sufficient intensity
for the exact mass and hence generation of an elemental
formula, shown in Fig. 5(A). The ion of m/z 138 is formed
through loss of methyl isocyanate from protonated caffeine
and m/z 110 is formed through loss of carbon monoxide
from m/z 138. An odd-electron product ion of m/z 123
with elemental formula C5H5N3O was detected but its
formation was unknown. Radical-induced bond cleavages
of protonated molecules (even-electron ions) generated by
DESI are unusual since molecules are generally eliminated
from even-electron species. The aim was to determine which
precursor ion generated the product ion of m/z 123 from

MS/MS experiments on protonated caffeine. A precursor
ion mass spectrum of m/z 123 is shown in Fig. 5(B). The
proposed mechanism for generation of this product ion
together with the product ions of m/z 138 and m/z 110 is
shown in Scheme 3. The data together with accurate mass
MS/MS confirms that the ion of m/z 123 is formed from
the loss of a methyl radical probably from the ring nitrogen
atom of ion 2 of m/z 138 in Scheme 3. Methyl radical loss
by homolytic cleavage of the N–C bond generates a radical
that can be delocalised over the other nitrogen atoms and
the carbon atom of the protonated carbonyl group of the
resulting radical cation resembling an aromatic system. The
routes of product ion formation for m/z 138 and m/z 110
from caffeine are 1 ! 2 ! 3 ! 4. The route of formation of
the odd-electron ion of m/z 123 is 1 ! 2 ! 5 as shown in
Scheme 3.

The DESI MS/MS spectrum of nicotine is shown in
Fig. 6(A). Fragmentation pathways for protonated nicotine
were previously described in part using the precursor ion
scan mode in a tandem quadrupole instrument.18 During
this study, accurate mass MS/MS data together with

O

O OH

O

+
+H

- H2O

- CH2CO

m/z 181

O

O

O
+

m/z 163

O OH

OH2
+

m/z 139

- CH2CO

- H2O

OH

O
+

O OH

+

m/z 121

m/z 121

O OH

+

m/z 121

- CO
O

O

OH
+

m/z 149

X
(unknown phthalate)

Scheme 2. The proposed fragmentation pathways of [M C H]C of aspirin by means of DESI-MS/MS.

m/z
120 140 160 180 200

%

0

100 138.0659

110.0713

123.0432 195.0882

m/z
125 130 135 140 145 150

%

0

100 138.2

123.1

123

(A) (B)

[M+H]+

[MH-CH3NCO]+

Figure 5. (A) Positive ion DESI-MS/MS spectrum of [M C H]C of m/z 195 from caffeine in Anadin Extra and (B) precursor ion
spectrum of m/z 123 from the product ion spectrum of protonated caffeine.

Copyright  2006 John Wiley & Sons, Ltd. J. Mass Spectrom. 2006; 41: 1277–1286
DOI: 10.1002/jms



DESI tandem mass spectrometry 1283

80 100 120 140 160 180 200
m/z0

100

%

163.1

106.1

164.1

80 100 120 140 160
m/z0

100

%

130.1

117.1
106.1

84.1

132.1

163.1

133.1 164.1

[M+H]+

m/z
110 115 120 125 130 135 140

%

0

100 x4 132.1

117.1 132.3

117

106

(A) (B)

(C)

Figure 6. (A) Positive ion DESI-MS/MS spectrum of [M C H]C of m/z 163 from nicotine, (B) precursor ion spectrum of m/z 110 from
the product ion mass spectrum of [M C H]C of m/z 163 from nicotine and (C) precursor ion spectrum of m/z 106 from the product ion
mass spectrum of [M C H]C of m/z 163 from nicotine.

N

N

N

O

O

CH3

CH3

CH3

N

H
+

- CH3NCO via

retro-Diels-Alder
reaction N

N

CH3

CH3

N

OH
+

N

N

CH3

CH3

N

C=O
H

+
N

N

CH3

CH3

N

H
+

- CO

two successive
1,2-H+-shifts

1, m/z 195 2, m/z 138

3, m/z 1384, m/z 110

N

CH3

N

OH
+

5, m/z123

-CH3

N

•

•

Scheme 3. The proposed fragmentation pathways of [M C H]C

of caffeine by means of DESI-MS/MS.

detailed precursor ion scans of selected ions generated
fragmentation pathways for protonated nicotine. Protonated

nicotine fragments under CID with the formation of an ion
of m/z 132 through loss of 31 Da [MH–CH3NH2]C from the
methyl-substituted pyrrolidine ring. The base peak in the
MS/MS spectrum is m/z 130 [MH–CH3NH2 –H2]C formed
by loss of H2 from m/z 132. Accurate mass MS/MS of
[M C H]C of nicotine generated an unusual odd-electron
product ion of m/z 117. The aim was to determine which
precursor ion generated this product ion from MS/MS
experiments together with the precursor ions that fragment
to form m/z 106. Ions of m/z 80 and m/z 84 are obtained
from cleavage of the bond between the two rings.

A precursor ion scan of m/z 117 is shown in Fig. 6(B).
The optimum intensity of the ion of m/z 117 was reached by
increasing the in-source declustering voltage. The collision
energy was optimised manually so that the yield of the
m/z 117 ion generated within the collision cell from all
precursors was maximised. The data, together with accurate
mass MS/MS, confirms that the ion of m/z 117 is formed
by the loss of a methyl radical from m/z 132 in nicotine
[MH–CH3NH2 –žCH3]Cž. A precursor ion scan of m/z 106
is shown in Fig. 6(C). The data together with accurate mass
MS/MS confirms that the ion of m/z 106 is formed solely from
the loss of C3H7N from m/z 163 in nicotine [MH–C3H7N]C,
as previously proposed.18 These fragmentation pathways are
summarised in Scheme 4, and were generated from the data
provided by the precursor ion spectra together with accurate
mass MS/MS. The ion structures proposed are significantly
different from the previously proposed structures.6,18

The routes of product ion formation for nicotine are:
routes 1 ! 2 ! 4 for formation of m/z 106, 1 ! 2 ! 3 ! 5
for formation of m/z 132, 5 ! 6 ! 8 for formation of m/z
130 if 5 has enough energy and 5 ! 6 ! 7 ! 9 for formation
of the odd-electron ion with m/z 117 if 5 has enough energy
(in principle the carbenium ion centre in ion 5 could form
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of nicotine by means of DESI-MS/MS.

also a C–C bond with carbon atom 2 of the pyridine ring,
but this has been omitted in Scheme 4). Ion 9 with m/z 117 is
energetically an attractive aromatic radical cation, and that
is the reason why it can be generated from the even-electron
ion 7 with m/z 132. The mechanistic routes of formation of
the ions 12 with m/z 80 and 13 with m/z 84 are also included.
Previous ion structures contained carbenium ion structures
that are not in a potential energy minimum and with strained
rings6,18 and are therefore unlikely to be formed.

It has been shown that utilising the DESI technique cou-
pled with a triple-quadrupole instrument offers an efficient
and quick method for gaining structural molecular infor-
mation. Individual ions can be mass-selected and allowed
to fragment through collisions with neutral gas atoms con-
tained in a collision cell. The product ions generated can be
detected; precursor ions that form fragments of a specific m/z
value can be detected together with group-specific neutral-
loss detection. Triple-quadrupole instrumentation provides
nominal mass information, which is not sufficient for the
provision of elemental formulae. It is possible to establish
the elemental composition of an organic ion if its mass can be
mass-measured with sufficient accuracy. For low-molecular-
weight compounds the number of combinations is small or
the composition may even be unique if the mass can be
measured to within 5 ppm.

For instrumentation where MS/MS is not an option, for
example, single-quadrupole and single ToF, fragment ions
can be produced prior to entry into the mass spectrometer
by increasing the voltage applied to the sampling cone.
In-source CID has been utilised to the analysis of a
Paracetamol Plus tablet which contains both paracetamol and
caffeine, in a tandem quadrupole and a hybrid quadrupole-
ToF instrument equipped with a 4 GHz time-to-digital
converter (TDC) (Q-ToF Ultima, Waters MS Technologies)
as an example of in-source CID. We have previously
shown that the ion of m/z 110 is a fragment produced
by CID of protonated caffeine and paracetamol with the
elemental formulae of C5H8N3 and C6H8NO, respectively.
The quadrupole and single ToF instrument used in a previous
study6 did not have the resolving power to distinguish
between these two product ions and therefore had difficulty
in its characterisation.

Figure 7(A) shows the in-source CID mass spectrum
obtained in the quadrupole instrument for Paracetamol
Plus. Figure 7(B) and (C) shows a comparison of the peak
widths obtained for the product ion of m/z 110 obtained
in the quadrupole and ToF instruments, respectively. The
enhanced mass resolution of the hybrid Q-ToF (¾10 000
FWHM, in V-mode) aids exact mass measurement and thus
facilitates assignment of an elemental formula, as shown in
Fig. 7(D), for both product ions of m/z 110. Here, protonated
paracetamol [M C H]C of m/z 152.0711 was used as the lock
mass to correct for mass scale drift. Although the peaks are
partially resolved, the ToF instrument has allowed unam-
biguous identification for these low mass ions separated by
only 11.2 mDa. The ion of m/z 110.0624 is generated from
protonated paracetamol and shows a mass error 1.8 mDa
from the theoretical monoisotopic mass of 110.0606 Da. The
ion of m/z 110.0701 is generated by loss of CO from m/z 138
from protonated caffeine and shows a mass error �1.7 mDa
from the theoretical monoisotopic mass of 110.0718 Da.

CONCLUSIONS

The rapid DESI of some small molecules and their frag-
mentation using a triple-quadrupole and a hybrid Q-ToF
has allowed for fragmentation pathways to be determined.
Deprotonated metoclopramide and protonated caffeine and
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Figure 7. (A) Positive ion in-source CID DESI-MS spectrum of Anadin Extra, (B) expanded region of mass spectrum of fragment ion
of m/z 110 from a quadrupole-type instrument, (C) expanded region of mass spectrum of fragment ion of m/z 110 from a ToF-type
instrument and (D) accurate mass in-source CID of both fragment ions of m/z 110 from protonated paracetamol and caffeine from a
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nicotine have been shown to form odd-electron product ions
upon low-energy CID by elimination of a methyl radical
forming either a stable aromatic radical anion or cation. The
formation of odd-electron product ion is unusual since even-
electron ions generally produce even-electron product ions
upon low-energy CID by elimination of a neutral.

Ion structures and ion formation mechanisms have
been proposed for these low-molecular-weight compounds.
Ion structures proposed for the product ions formed
from CID of protonated nicotine are significantly different
from previous proposals.6,18 The combination of the DESI
technique with various scanning techniques employed
in a triple-quadrupole instrument together with elevated
resolution ToF mass spectrometry has been shown to
represent a rapid and powerful analytical approach for
unequivocal product ion identification and fragmentation
pathways. The improved information content derived from
ToF mass spectrometry has been demonstrated for the
identification of isobaric ions to within 2 mDa. This could
not have been achieved on instruments of low resolution.

The recently developed DESI approach has been shown
to provide a method of obtaining rapid mass spectral data.
The information content of the DESI experiment is limited,
however, in most cases, to protonated and deprotonated
molecules. The use of precursor, product and neutral-loss
mass spectrometry experiments and ToF MS/MS accurate
mass measurement enhances the information content of
the DESI experiment and provides significantly greater
selectivity. The experiments can be carried out on a time
scale compatible with the DESI experiment.
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A novel approach for the rapid, accurate mass analysis
of pharmaceutical solid, liquid, and cream formulations
using desorption electrospray ionization (DESI) is de-
scribed. The method is based on polarity switching and
real-time accurate mass measurement in an orthogonal
acceleration time-of-flight mass spectrometer fitted with
a dual-inlet electrospray ion source. Infusion of a refer-
ence compound into one inlet provides a single-point
“lock mass” for accurate mass measurement. The other
inlet sprays solvent at the sample being investigated using
DESI. Minimal sample preparation was required. Results
demonstrate the ability to acquire simultaneously positive
and negative accurate mass DESI data within the same
acquisition, thus negating the need for repeat analysis in
each ion mode. In this paper, drugs that preferentially
ionize in a particular mode depending on their physio-
chemical properties are presented. Mass accuracy to
within 2 mTh was obtained for all drugs sampled.

The rapid ambient mass spectrometry sampling of pharma-
ceutical formulations using desorption electrospray ionization1

(DESI) is analytically attractive since little or no sample prepara-
tion is required. In DESI, charged solvent droplets are sprayed
toward the pharmaceutical being analyzed. These charged solvent
droplets collide with the surface releasing desorbed secondary
gas-phase analyte ions, which are sampled by the mass spectrom-
eter (MS).2 There have been a number of recent reports ex-
ploiting the DESI technique for the analysis of active ingredients
in drug formulations3-8 together with high-throughput analysis

of selected tablets.9 The rapid identification of active ingre-
dients in pharmaceutical formulations by accurate mass MS and
MS/MS can be obtained in seconds using the DESI technique.4,5

DESI may therefore be a convenient method for high-throughput
assays within pharmaceutical method development, without
requiring separation by liquid chromatography (liquid chroma-
tography) prior to mass spectrometric detection, as is often used.
Although some sensitivity would be expected to be sacrificed using
DESI-MS compared to electrospray ionization (ESI) LC-MS,
analysis times will be shorter. Shorter analysis time would
therefore lead to throughput enhancement.

For the rapid analysis of pharmaceutical drug formulations, it
would be useful to extend the sampling approach using DESI to
simultaneously detect both basic and acidic active ingredients that
easily protonate and deprotonate in a particular formulation during
the same acquisition. Many pharmaceuticals contain more than
one active ingredient and fall into this category. Data for such
tablets that contain a range of active ingredients will be pre-
sented. Pharmaceutical ingredients have diverse chemical proper-
ties, which require different polarity MS detection modes. The
present study extends the previous approach9 by using DESI and
polarity switching real-time accurate mass measurement. This
negates the need for time-consuming repeat analysis in each ion
mode and can be of benefit to compound screening applications
where the ionization mode for analysis is not known. The time-
of-flight (TOF) analyzer used in this present study made use of
dynamic range enhancement (DRE) technology,10 facilitating
routine accurate mass measurement of pharmaceutical formula-
tions. Polarity switching accurate mass measurement using DESI
will be presented for pharmaceutical solid, liquid, and cream
formulations.* To whom correspondence should be addressed. Fax: +44 2476 523701.

Tel: +44 2476 528379. E-mail: j.p.williams@warwick.ac.uk.
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Accurate mass and accurate mass in-source collision-induced
data to within 2 mTh were obtained in <5 s for the drug
formulations investigated. To the best of our knowledge, this is
the first report combining real-time accurate mass measurement,
polarity switching, and DESI.

EXPERIMENTAL SECTION
The tablets, liquid, and cream formulations investigated were

as follows: erthromycin tablets (500 mg, Abbot) and chloram-
phenicol eye ointment (1% w/w/ 4 g, IVAX) obtained by prescrip-
tion. Anadin Extra (300 mg of aspirin, 200 mg of paracetamol,
and 45 mg of caffeine, Wyeth, UK) and Night Nurse liquid
medicine (1000 mg/20 mL paracetamol, 20 mg/20 mL pro-
methazine hydrochloride, and 15 mg/20 mL dextromethorphan
hydrobromide, GSK) were purchased without prescription from
a pharmacy.

Experiments were carried out using a Waters MS Technologies
(Manchester, UK) LCT Premier orthogonal acceleration time-of-
flight mass spectrometer (oa-TOFMS) fitted with a two-way
electrospray ionization source11,12 (LockSpray). The instrument
was operated in positive and negative modes with a capillary
voltage of 3.0 and 2.5 kV, respectively. The ion source block and
nitrogen desolvation gas temperature were set to 120 and 350 °C,
respectively, and the desolvation gas was set to a flow rate of 300
L/h. The TOF mass analyzer was tuned in W-optic mode for an
operating resolution of 10 000 (fwhm) (Figure 1). Mass spectra
were acquired at an acquisition rate of 1 spectrum/150 ms with
an interscan delay of 50 ms in centroid mode.

For DESI sample analysis, each tablet was broken, to expose
an uncoated sample surface, before being held with tweezers, at
an angle of ∼45° to the solvent spray emanating from inlet one.

The source was open to the laboratory atmosphere to allow
manual introduction of the samples. Approximately 100 mg of the
ointment or 50 µL of the liquid medicine was applied to the surface
of a piece of matt-finished cardboard (1 cm × 2 cm) and held in
the same position as the solid tablets. The surface of the tablet or
card was then sprayed with a solution of acetonitrile/H2O + 0.1%
formic acid at a flow rate of 10 µL/min., using a Waters Acquity
binary Solvent Manager pump. Accurate mass measurement was
provided by infusing leucine enkephalin ([M + H]+ ) 556.2771
and [M - H]- ) 554.2615) into inlet two of the dual source and
used as a single-point “lock mass” against which any subsequently
acquired mass spectra were mass measured in real time. The lock
mass was infused at a flow rate of 5 µL/min at a concentration of
200 pg/µL (acetonitrile/H2O + 0.1% formic acid) using a single-
piston Waters Reagent Manager pump. No significant modification
of solvents, buffers, and pH was carried out.

RESULTS AND DISCUSSION
Accurate Mass Protocol. We have previously shown the

usefulness of mass spectrometry and tandem mass spectrometry
accurate mass for the generation of empirical formulas of small
molecules using DESI coupled with a hybrid quadrupole-time-of-
flight mass spectrometer.4,5 Instrumental mass drift was corrected
for by a single internal reference lock mass in MS and MS/MS
mode. For MS experiments, a reference standard is sampled
during the acquisition after analysis of the surface under investiga-
tion. For MS/MS experiments, the precursor ion selected for
collision-induced dissociation (CID) provided the internal refer-
ence lock mass.

During this study, we have made use of a dual ESI source
interfaced to a single TOF mass analyzer. The interface provides
a simpler method of obtaining accurate mass measurements
through infusion of a reference compound into a separate
electrospray inlet rather than sampling a reference standard
during the acquisition after analysis of the surface under investiga-

(11) Eckers, C.; Wolff, J. C.; Haskins, N. J.; Sage, A. B.; Giles, K.; Bateman, R.
Anal. Chem. 2000, 72, 3683.

(12) Wolff, J. C.; Eckers, C.; Sage, A. B.; Giles, K.; Bateman, R. Anal. Chem.
2001, 73, 2605.

Figure 1. Schematic diagram of the LCT Premier.
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tion used with a single probe.4 Using the dual probe interface,
the spray from each capillary tip is sampled independently through
use of a rotating baffle, which is externally driven by a stepper
motor. The sprays are admitted to the sampling cone region of
the LCT through an aperture in the baffle. The two positions of
the sampling rotor are indexed, which allows data from each of
the two sprays to be stored into separate functions within a single
data file during acquisition.

Sampling of pharmaceutical drug formulations using DESI
combined with a TOF mass spectrometer incorporating a time-
to-digital (TDC) based detection system generates very high ion
counts since the active ingredient can typically range from 1 to
1000 mg. Mass measurement accuracy can be compromised at
high ion counts due to TDC “dead-time” saturation. TDC dead
time is the time after an ion is recorded within which the TDC is
not able to record another ion arriving at the detector. Dead-time
saturation occurs when more than one ion arrives at the detector
within the TDC dead-time period. Under multiple ion arrival
conditions, some of the ions are not recorded resulting in a
nonlinear intensity response and a shift in measured m/z value

toward lower m/z. A software-based correction method, based on
statistical calculation, is employed to correct for dead-time satura-
tion effects over a limited dynamic range. Previously it was
necessary to manually select an area of the total ion chromatogram
(TIC) where this correction software could be successfully
employed to display data with accurate mass measurement and
intensity values.4,5

During this study, we have successfully used a single TOF
instrument incorporating DRE10 technology together with polarity
switching, for routine accurate mass measurement of DESI-
generated ions. A full description of the mode of operation of DRE
technology is given elsewhere13,14 and so will only be described
briefly here. In principle, the DRE technique employs modified
transfer optics capable of reducing the transmission of the ion
beam into the orthogonal sampling (pushout) region by means

(13) Howes, K.; Wildgoose, J.; Green, M.; McCullagh, M. Proceedings of the
American Society for Mass Spectrometry, Montreal, Canada, 2003. Available
at http://www.waters.com/WATERSDIVISION/pdfs/720000648EN.pdf.

(14) McCullagh, M. Application Note, Waters UK, 2005. Available at http://
www.waters.com/WATERSDIVISION/pdfs/720001098EN.pdf.

Figure 2. (A) Ion chromatograms obtained from a single acquisition of erythromycin and leucine enkephalin reference using DESI and polarity
switching. (B) Mass spectra obtained from time of DESI analysis of erythromycin and leucine enkephalin at ∼1 min.
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of an applied voltage. These optics are arranged to defocus the
ion beam in the Z direction (normal to the plane of the time-of-
flight mass spectrometer), resulting in minimal effect on resolution
and mass measurement. During acquisition, the transmission of
the instrument is switched repeatedly between two calibrated
values resulting in ion currents of low and high intensity. Rapidly
switching between the two values allows saturated high-intensity
data to be replaced by low-intensity data. The ion transmission
ratio between switching is multiplied by the low-intensity ion signal
to give an unsaturated high-intensity ion signal allowing mass
measurements to be made in “real time” in regions of the TIC
where previously detector saturation would have occurred.14 When
TDC saturation effects limit measurements for the data recorded
using full transmission, data from the low transmission cycle can
be used.

During any one acquisition utilizing polarity switching, Lock-
Spray and DESI data from each of the two sprays are sampled
independently and stored as separate functions within the same
data file. During an acquisition, four separate functions are
acquired, a reference and an analyte function in positive and
negative ion modes. The data system acquires data points for each
of these functions in quick succession by rapidly switching from
negative to positive and from analyte sprayer to reference sprayer
in a repetitive cycle, resulting in a data file with four simultaneously
acquired chromatograms. To demonstrate the ability to acquire
simultaneously positive and negative accurate mass DESI data
within the same acquisition, thus negating the need for repeat
analysis in each ion mode, samples were chosen that preferentially
ionize in a particular mode depending on their chemical structure.
This type of analysis using DESI provides a rapid screen
combining detection and characterization. It provides significant
potential for the rapid identification of unknown materials.

Figure 2A shows the four base peak ion chromatograms
obtained from sampling both an erythromycin tablet using DESI
and leucine enkephalin (reference lock mass) using conventional
ESI. (The polarity function is shown for each chromatogram in
this example only and annotated in the top right corner of each
chromatogram.) In this example, the erythromycin tablet was
exposed to the solvent spray twice for 5 s. The point of ionization
can be seen in function two in positive mode at ∼1 min. The
relative signal intensities of the active ingredient are slightly
different due to the nonreproducibility of manually holding the
tablet in the solvent spray. Figure 2B shows the mass spectrum
obtained from each of the four functions over the m/z range of
400-750. The polarity function is shown for each spectrum in this

example only and annotated in the top right corner of each
spectrum. It can be clearly seen that leucine enkephalin is suitably
ionized in both modes of operation in contrast to erythromycin,
which is only ionized in the positive mode of operation forming
[M + H]+ of m/z 734. Although very high ion counts were
generated, no carryover of protonated erythromycin was observed
in the reference mass spectrum.

Figure 3A shows the accurate mass spectrum obtained in real
time. The data obtained show a mass error of 0.7 mDa from the
theoretical monoisotopic mass of 734.4690 Da. This mass accuracy
could not have been achieved by selecting the top of the TIC peak
obtained on the instrument used previously4 since the ion counts
generated by the DESI technique were far too high to allow for
successful mass measurement. High ion counts are expected since
the erythromycin tablet contained 500 mg of the active ingredient.
Figure 3B shows a typical accurate mass in-source CID mass
spectrum obtained from sampling an erythromycin tablet using
DESI.

In-source collision-induced product ions generated from pro-
tonated erythromycin show ions characteristic of the cladinose
and desosamine sugars present in the molecule. Elemental
formula assignments for the product ions formed are as fol-
lows: m/z 734 (C37H68NO13) corresponding to [M + H]+, m/z
716 (C37H66NO12) corresponding to [MH - H2O]+, m/z 576
(C29H54NO10) corresponding to loss of the cladinose sugar moiety
[MH - cladinose]+ and not loss of the desosamine sugar moiety
as previously reported,15 m/z 558 (C29H52NO9) corresponding to
either [MH - H2O - cladinose]+ or H2O loss from m/z 576, m/z

(15) Yang, S.; Carlson, K. H. J. Chromatogr., A 2004, 1038, 141.

Figure 4. (A) Accurate mass spectrum obtained for Anadin Extra
in positive ion mode. (B) Accurate mass spectrum obtained for Anadin
Extra in negative ion mode

Figure 3. (A) Accurate mass spectrum obtained for protonated erythromycin. (B) Accurate mass in-source CID mass spectrum of protonated
erythromycin.
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540 (C29H50NO8) corresponding to either [MH - (H2O)2 -
cladinose]+ or H2O loss from m/z 558, and m/z 522 (C29H48NO7)
corresponding possibly to loss of H2O from m/z 540. The product
ion of m/z 158 (C8H16NO2) corresponds to the desosamine sugar
moiety.

Anadin Extra tablets contain three active ingredients, aspirin,
paracetamol, and caffeine. A tablet was analyzed with the intention
of simultaneously detecting all three compounds using polarity
switching within the same acquisition. Figure 4A shows the
accurate mass spectrum obtained in positive mode. Two intense
ions dominate the mass spectrum, [M + H]+ from paracetamol
of m/z 152 and the base peak [M + H]+ from caffeine of m/z
195. No protonated molecule was detected for aspirin. A low-
abundant ion of m/z 163 was detected, which corresponds to [MH
- H2O]+ from aspirin. Figure 4B shows the accurate mass
spectrum obtained in negative mode. Three ions were detected.
Two intense ions in the spectrum correspond to [M - H]- from
aspirin of m/z 179 and the base peak of m/z 137 to [M -
HsCH2dCO]- formed by loss of ketene from deprotonated
aspirin. An ion of low abundance with an accurate mass measure-
ment of m/z 150.0544 corresponds to deprotonated paracetamol.
No deprotonated molecule was detected for caffeine. This shows

the power of polarity switching since all three protonated or
deprotonated molecules could be detected in one acquisition, thus
negating the need for repeat analysis in each ion mode. The mean
and standard deviation of three repeat accurate mass measure-
ments of the active ingredients formulated into Anadin Extra
acquired simultaneously in positive and negative modes are shown
in Table 1.

Figure 5B shows the partial negative ion mass spectrum
obtained by spotting eye ointment containing the active ingredient
chloramphenicol on to a piece of matt-finished cardboard. Very
high ion counts were generated for the deprotonated molecule
[M - H]- of m/z 321. An abundant dimer was also detected of
m/z 643 (not shown). Figure 5A shows the theoretical isotope
pattern for deprotonated chloramphenicol as a comparison to the
raw data, indicating excellent agreement with that obtained
experimentally. The deprotonated molecule for the active ingredi-
ent was observed in the mass spectrum at m/z 321. Three peaks
separated by two m/z units were observed that have relative
intensities of 9:6:1, consistent with the presence of two chlorine
atoms in the molecule. Figure 5C shows the accurate mass
spectrum for deprotonated chloramphenicol. Table 2 shows the
empirical formulas generated for chloramphenicol taking into

Figure 5. (A) Theoretical isotope distribution for deprotonated chloramphenicol. (B) Mass spectrum obtained for deprotonated chloramphenicol
showing comparison with the theoretical isotope distribution. (C) Accurate mass spectrum obtained for deprotonated chloramphenicol.

Table 1. Summary of Results from Five Accurate Mass Measurements of the Active Ingredients in an Anadin Extra
Tablet

drug
theoretical
[M + H]+

calculated
[M + H]+

deviation
(mTh)

theoretical
[M - H]-

calculated
[M - H]-

deviation
(mTh)

paracetamol 152.0712 152.0700 -1.2 150.0555 150.0544 -1.1
152.0698 -1.4 150.0547 -0.8
152.0696 -1.6 150.0543 -1.2

mean
SDc 152.0698 -1.4 150.0545 -1.0

0.2 0.2

caffeine 195.0882 195.0876 -0.6 193.0726
195.0871 -1.1
195.0883 +0.1

Xb X
mean 195.0877 -0.5
SD 0.6

aspirin 181.0501 179.0344 179.0348 +0.4
179.0336 -0.8
179.0336 -0.8

X X
mean 179.0340 -0.4
SD 0.7

a SD, standard deviation. b X, not detected.
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account the relative contribution of the 35Cl and 37Cl isotopes. No
protonated molecule was detected for chloramphenicol in the
positive ion mode.

Finally, Night Nurse liquid medicine was analyzed, which
contained three active ingredients, paracetamol, promethazine, and
dextromethorphan, and was spotted on to cardboard and held with
tweezers in the usual way. All three protonated active ingredients
were detected in positive ionization mode of m/z 152 for parac-
etamol, m/z 272 for dextromethorphan, and m/z 285 for promet-
hazine. Only deprotonated paracetamol of m/z 150 was detected
in negative ionization mode (data not shown). The accurate mass
measurements, obtained in positive ionization mode only, are
shown in Table 3.

CONCLUSION
The simultaneous analysis of pharmaceutical tablets that

contain both basic and acidic polar active ingredients has been
demonstrated using polarity switching, a dual-inlet source, and
DESI. Analysis of pharmaceutical liquid and cream formulations
that contain active ingredients that have different ionization
preferences has also been shown. Polarity switching has negated
the need for repeat analysis in each ionization mode for formula-
tions that contain a range of compounds that require both positive
and negative modes of mass spectrometric detection.

DRE has been successfully employed in these examples by
selecting the top of the peak of the ion chromatogram for the
generation of an accurate mass measurement through transmis-
sion switching experiments. The data generated show mass
accuracy to within 2 mTh sufficient for the generation of an
empirical formula.

Rapid sample analysis and high-throughput characteristics for
the detection of multiple active ingredients in pharmaceutical
formulations using polarity switching, DESI, and real-time accurate
mass measurement make the technique useful for screening
assays and may be of benefit to the pharmaceutical drug discovery
process.
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Table 2. Summary of Accurate Mass Measurements for
Isotope Peaks of Deprotonated Chloramphenicol

measured
mass

theoretical
mass formulas

error
(mTh)

321.0039 321.0045 C11H11O5N2
35Cl2 -0.6

323.0019 323.0015 C11H11O5N2
35Cl37Cl 0.4

324.9990 324.9985 C11H11O5N2
37Cl2 0.5

Table 3. Summary of Results from Four Positive Ion
Mode Accurate Mass Measurements of the Active
Ingredients in Night Nurse Liquid Medicine

drug [M + H]+
measured

mass
theoretical

mass
error

(mTh)

paracetamol 152.0709 152.0711 -0.2
dextromethorphan 272.2012 272.2014 -0.2
promethazine 285.1414 285.1425 -1.1
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Probing Hemoglobin Structure by Means of
Traveling-Wave Ion Mobility Mass Spectrometry
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Hemoglobin (Hb) is a tetrameric noncovalent complex consisting of two �- and two �-globin
chains each associated with a heme group. Its exact assembly pathway is a matter of debate.
Disorders of hemoglobin are the most common inherited disorders and subsequently the
molecule has been extensively studied. This work attempts to further elucidate the structural
properties of the hemoglobin tetramer and its components. Gas-phase conformations of
hemoglobin tetramers and their constituents were investigated by means of traveling-wave ion
mobility mass spectrometry. Sickle (HbS) and normal (HbA) hemoglobin molecules were
analyzed to determine whether conformational differences in their quaternary structure could
be observed. Rotationally averaged collision cross sections were estimated for tetramer, dimer,
apo-, and holo-monomers with reference to a protein standard with known cross sections.
Estimates of cross section obtained for the tetramers were compared to values calculated from
X-ray crystallographic structures. HbS was consistently estimated to have a larger cross section
than that of HbA, comparable with values obtained from X-ray crystallographic structures.
Nontetrameric species observed included apo- and holo- forms of �- and �-monomers and
heterodimers; �- and �-monomers in both apo- and holo- forms were found to have similar
cross sections, suggesting they maintain a similar fold in the gas phase in both the presence
and the absence of heme. Heme-deficient dimer, observed in the spectrum when analyzing
commercially prepared Hb, was not observed when analyzing fresh blood. This implies that
holo-�-apo-� is not an essential intermediate within the Hb assembly pathway, as previously
proposed. (J Am Soc Mass Spectrom 2009, 20, 625–631) © 2009 Published by Elsevier Inc. on
behalf of American Society for Mass Spectrometry
Mass spectrometry (MS) has become an impor-
tant tool for the study of various aspects of
protein structure, including the assembly and

disassembly of protein complexes, subunit interactions,
and ligand interactions [1]. The study of noncovalent
complexes has been facilitated by the use of collisional
cooling or dampening of ions by elevating the pressure
within the source region or by deceleration [2, 3].

The typical electrospray ionization (ESI) mass spec-
trum of a protein consists of an envelope of peaks attrib-
uted to a series of multiply charged gas-phase ions that
can indicate the stability and compactness of its struc-
ture in the gas phase [4, 5]. Multiply charged ions are
produced by proton attachment, predominantly to ex-
posed basic sites on the protein [6], and those of lowest
charge are thought to be most representative of native
structure [7]. A highly compact protein would have
fewer exposed basic sites than those of an unfolded
conformation of the same protein and thus would
accept fewer charges [4, 8].

Address reprint requests to Dr. James H. Scrivens, University of Warwick,

Department of Biological Sciences, Coventry CV4 7AL, UK. E-mail: j.h.
scrivens@warwick.ac.uk

© 2009 Published by Elsevier Inc. on behalf of American Society for M
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Ion mobility spectrometry is a shape-selective tech-
nique, based on the time taken for an ion to traverse a
mobility cell containing an inert gas under the influence
of a weak electric field [9]. This time is related to the
rotationally averaged collision cross section, mass, and
charge of the ion. The coupling of ion mobility separa-
tion with mass spectrometry has provided a powerful
method for the analysis of complex mixtures and for the
determination of molecular structure [10].

Ion mobility mass spectrometry has emerged as a
complementary technique to the well-established meth-
ods of X-ray crystallography and nuclear magnetic
resonance (NMR) spectroscopy for three-dimensional
protein structure analysis [11]. There is now substantial
evidence to support the view that the gas-phase protein
structure can reflect, under controlled conditions, the
native solution-phase structure [1, 6, 12]. Multiple stud-
ies have shown good agreement between rotationally
averaged cross-sectional measurements obtained from
X-ray and NMR structures and those obtained by ion
mobility experiments [7, 13–17].

In this study traveling-wave ion mobility mass
spectrometry (TWIMS) was used to probe the gas-
phase conformations of hemoglobin tetramers and

their constituents.
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A traveling-wave ion mobility separator (T-wave)
[18] has been incorporated into a quadrupole time-of-
flight (TOF) instrument, the Synapt HDMS system
(Waters Corp., Milford, MA, USA) [9]. The T-wave
allows for samples to be analyzed at biologically rele-
vant concentrations, having speed and sensitivity
advantages over the traditional drift-time ion mobil-
ity device. The T-wave device does not allow for
absolute cross-sectional measurements to be obtained
from drift-time information, although these may be
estimated by using reference samples of known cross
sections [7, 13, 19].

Hemoglobin (Hb) is a tetramer consisting of four
globin chains, two �- and two �-, each associated with
a heme group. It is the major oxygen-transport protein
found in the red blood cells of all vertebrates. Disorders
of hemoglobin are the most common of all inherited
disorders and, consequently, the molecule has been
extensively studied.

The most debilitating Hb variant is that which causes
sickle-cell anemia. This disease occurs when a person
inherits two particular mutated copies of the �-globin
gene. The sickle-cell mutation results in the production
of a �-chain with a single amino acid substitution (�6
Glu ¡ Val) and changes the conformation of the
assembled tetramer to allow molecular stacking. Poly-
merization of this sickle-cell hemoglobin molecule
(HbS), in deoxygenated blood, causes the characteristic
alteration in shape of red blood cells from biconcave
discs to crescentic [20].

ESI-MS has been widely used to detect Hb variants
in hemoglobin [21–25] and to investigate its structural
assembly into a noncovalent complex [26–29] and its
corresponding disassembly [30].

The exact assembly pathway for hemoglobin is still
under debate. It is known that one �- and one �-monomer
come together to form a heterodimer and that two of these
dimers associate to form the tetramer. Since �- and
�-monomers can exist in heme-free (apo, �a and �a) and
heme-bound (holo, �h and �h) forms [28], it is unclear as
to whether the heme groups are attached to both �- and
�-monomers before dimer formation or whether asso-
ciation leads to heme recruitment.

Griffith and Kaltashov have suggested that the for-
mation of a heme-deficient dimer intermediate (�h�a)
occurs, consisting of a natively folded holo-�-globin
(�h) and a partially unfolded apo-�-globin (�a), before
complete dimer formation, to ensure correct tetramer
structure arrangement [26, 27]. The Konermann group,
however, reported that the heme-deficient dimer seen
consistently when using commercially available sam-
ples, in the form of lyophilized powder, was not ob-
served when using freshly prepared samples [31]. They
studied the acid-induced denaturation of bovine Hb
and concluded that it followed a highly symmetric
mechanism: (�h�h)2 ¡ 2 �h�h ¡ 2�h

folded � 2�h
folded ¡

2�a
unfolded � 2�a

unfolded � 4 heme.
This work attempts to further elucidate the structural
properties of the hemoglobin tetramer and its compo-
nents and to determine whether conformational differ-
ences between the HbA and HbS molecules can be
observed by TWIMS.

Experimental

Samples and Sample Preparation

Samples of fresh whole blood were supplied by Uni-
versity Hospitals Coventry and Warwickshire NHS
Trust. Sample preparation for mass spectral analysis
was adapted from that detailed by Ofori-Acquah et al.
[29]. Samples (20 �L) were diluted 10-fold in 10 mM
ammonium acetate (pH 6.8) and spun at 3000 g for 15
min in centrifugal filter units with a 10-kDa cutoff
(Microcon YM-10, Millipore Corp., Billerica, MA, USA).
Sample retained on the filter was diluted a further
20-fold with 10 mM ammonium acetate and desalted by
agitating for two 10-min periods with close to 5 mg of
ion-exchange mixed bed resin (AG 501-X8, Bio-Rad
Laboratories, Hercules, CA, USA) that had been pre-
pared for use by rinsing twice in liquid chromatogra-
phy MS grade water. The resulting solutions were
introduced into the ESI source of a Synapt HDMS
System (Waters) by means of fused silica nanospray
needles. All solvents and calibration and protein stan-
dards were obtained from Sigma–Aldrich (St. Louis,
MO, USA).

Mass Spectral Analysis

Data were acquired by means of a Synapt HDMS
system in ESI positive mode with a capillary voltage of
1.2 kV from 1000 to 4500 m/z. The TOF mass analyzer
was calibrated using 2 mg/mL cesium iodide in 50%
aqueous propan-2-ol.

Instrument acquisition parameters were adjusted to
provide the optimal ion mobility separation. The cone
voltage was 60 V and the collision energy in the trap
region was 10 eV. Source temperature and gas flow
were 110 °C and 35 mL/min, respectively. Nitrogen
was used as the gas in the ion mobility cell and the
indicated pressure within the cell was 0.68 mbar, equiv-
alent to a flow rate of 38 mL/min. The backing pressure
was increased in increments from 2 to 8 mbar to identify
the ideal pressure conditions for transmission of the
relevant ionic species. The traveling-wave velocity and
wave height were altered in increments from 100 to 600
m/s and 8 to 20 V, respectively, and the conditions that
provided the optimal mobility separation were used for
all following experiments.

The synchronization of gated release of ions into the
ion mobility separator with TOF acquisition allows
arrival time distributions of ions to be obtained. For
each gate pulse, 200 orthogonal acceleration pushes of
the TOF analyzer are recorded to form one ion mobility
experiment. The overall mobility recording time is
200 � tp, where tp is the pusher period [9]. The pusher

period depends on the mass acquisition range; for these



627J Am Soc Mass Spectrom 2009, 20, 625–631 ION MOBILITY STUDIES OF HEMOGLOBIN STRUCTURE
experiments, a pusher period of 120 �s was used, giving
a mobility recording time of 24 ms.

Equine myoglobin at a concentration of 10 �M in
50% aqueous acetonitrile containing 0.2% formic acid
was used to provide data that were used to create a
calibration curve for cross-sectional measurements.

Data obtained for each hemoglobin tetramer over the
m/z range 3000–4500 were deconvoluted onto a true
mass scale using maximum entropy modeling (MaxEnt
for short) software to provide an estimate of molecular
mass. Experiments were carried out in triplicate.

Calibration, Modeling, and Estimation of
Cross Section

The equine myoglobin data were used to create a
calibration curve for each set of experiments. Absolute
cross sections for equine myoglobin were obtained from
drift-time ion mobility mass spectrometry (DTIMS)
studies (Prof. Michael T. Bowers, personal communica-
tion). The calibration was performed using a procedure
developed in-house based on previously published
work [13, 19, 32, 33]. In brief, normalized cross sections
(corrected for charge and reduced mass) were plotted
against corrected arrival times (corrected to exclude
time spent outside the ion mobility cell) to create a
calibration with a power-series fit. The calibration al-
lows one to estimate the cross section of a molecule of
interest provided that the mobilities (corrected arrival
times) for that molecule lie within the mobilities ob-
served for the calibrant used, irrespective of the size
range of cross sections for the calibrant [34, 35]. The
calibration was used to estimate rotationally averaged
collision cross sections of hemoglobin monomer, dimer,
and tetramer for the different charge states observed,
based on their arrival time distributions, provided that
their corrected arrival times fell along the calibration
curve.

To compare the experimental cross sections for the
normal and sickle hemoglobin tetramers with accepted
values, cross sections were calculated using MOBCAL,
a program to calculate mobilities [36, 37], from pub-
lished X-ray structures held at the RCSB Protein Data
Bank [38].

MOBCAL facilitates the use of three approximations
to calculate cross sections. The projection approxima-
tion (PA) typically results in an underestimation of the
cross section of a large ion. It calculates the cross section by
averaging the projections produced by every orientation
of a molecule and so does not take into account interac-
tions with the buffer gas. The trajectory method (TM)
takes into account all interactions, but is computation-
ally intense. The exact hard-sphere scattering model
(EHSS) carries out trajectory calculations, while ignor-
ing long-range interactions, but nevertheless gives val-
ues within a few percent of the TM approximations [7,

39]. For this work, cross sections were calculated using
the PA and EHSS methods to reduce computational
time.

Results and Discussion

Instrument Acquisition Parameters

Considerable optimization of instrument acquisition
parameters is required for each individual application
of ion mobility separation. This must be tailored to the
sample of interest because optimal conditions are de-
pendent on ionic species and mass-to-charge ratio [3].
Controlled optimization of instrument acquisition pa-
rameters indicated that a backing pressure of between
6.6 and 6.8 mbar was ideal for intact hemoglobin
tetramer analysis. The optimal ion mobility separation
of the tetramer was achieved at a traveling-wave veloc-
ity and wave height of 400 m/s and 18 V, respectively.

Calibration

A calibration curve was used to allow the estimation of
cross sections for different constituents of hemoglobin
in different charge states. Cross sections calculated for
equine myoglobin were within 2% of absolute values
obtained by DTIMS experiments. These results were
reproducible across the three datasets acquired.

Hemoglobin Tetramer Analysis

Representative spectra for normal (HbA) and sickle
(HbS) hemoglobin analyzed by means of ESI-TOF-MS
under nondenaturing conditions are shown in Figures
1a and b, respectively. The data were deconvoluted to
give masses of 64,454.7 Da for HbA and 64,395.8 Da for
HbS, which were very close to the theoretical masses of
64,453.2 and 64,393.4 Da, respectively [29].

The hemoglobin spectra obtained show the presence
of the tetramer [(�h�h)2], heterodimer (�h�h), and apo-
and holo-monomer species. The trimer is not seen, as
would be expected, because the formation of the hemo-
globin tetramer involves the noncovalent association of
two �h�h-dimers. Carefully controlled near-physiological
conditions were used in preparing the sample and the
absence of any trimer implies that the species observed
within the spectra exist naturally in solution. This is
consistent with results from isotope labeling studies
that showed that nontetrameric ions in the spectrum
corresponded to species present in solution [40] rather
than products of fragmentation formed during the ESI
process [41].

Alpha and beta monomers are observed within the
HbA spectrum in both apo- and holo- forms. In a
previous study, Griffith and Kaltashov [26] suggested
that an �h monomer first becomes associated with an �a

monomer, to enable the �-chain to incorporate the heme
group. This observation was based on the absence of �h

in the spectrum. A subsequent study by Boys and

Konermann [31] detected very small quantities of heme-
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Figure 1. Mass spectra of (a) normal (HbA) and (b) sickle (HbS) hemoglobin analyzed by
ESI-TOF-MS under near-physiological conditions, labeled with charge states of tetramer (Q), het-
erodimer (D), and apo- and holo-monomers (superscripts “a” and “h” refer to apo- and holo-forms,

respectively).
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deficient dimer and found that both �- and �-monomers
were capable of binding heme. The discrepancies ob-
served are thought to be attributable to differences
between the commercially prepared and freshly ob-
tained samples used. In the work reported here, in
which fresh blood samples were used, �h was observed
in multiply charged states.

It has been reported [42] that without the attachment
of the heme group, �- and �-monomers adopt exten-
sively unfolded conformations. Cross sections for vari-
ous charge states of �- and �-monomers in both the
apo- and holo- forms have been estimated and our
observations suggest that the predominant conforma-
tions of �- and �-monomers in the gas phase are similar
to each other and show little change in the absence or
the presence of heme (Figure 2). The cross section of
each of the molecules studied increases with an increase
in charge, thought to be a result of the effects of
Coulomb repulsion [16, 43].

The heme-deficient dimer observed in previous stud-
ies is not observed here. The existence of both apo- and
holo- forms of �- and �-monomers, all of similar cross
sections, does not support the need for a �a to associate
with �h for the �-monomer to recruit heme. Analysis of
commercially prepared human hemoglobin (data not
shown) does show the presence of a heme-deficient
dimer at a molecular mass 32 Da higher than expected;
this is in agreement with previous work conducted by
the Konermann group [31] on bovine hemoglobin, who
attributed the additional mass to the occurrence of
oxidative modifications in the commercial protein.

Figure 2. Average estimated cross sections for charge states of (a)
apo-� and holo-� monomers and (b) apo-� and holo-� observed

within three datasets.
We observe many more charge states of �a than of �a.
The number of charges accepted on a protein is related
to the number of exposed basic sites on the protein’s
surface. A more folded protein has fewer of its basic
sites exposed than an unfolded conformation and thus
cannot accept as many charges. This may suggest that
the �-chain adopts more unfolded conformations in the
gas phase than is possible for the �-chain but, alterna-
tively, the absence of higher charge states of �a in the
spectra may be ascribed to the different desolvation
behavior of �- and �-monomers. The �-chain ionizes
preferentially over the �-chain because of its greater
nonpolar character, thereby competing more effectively
for charge [41].

By estimating the cross sections of monomer,
dimer, and tetramer, a picture of the assembly pro-
cess can be obtained (Figure 3). The [M � 12H]12�

charge state of dimer has an estimated cross section of
3001 Å2. The [M � 6H]6� charge states of �h and �h

have estimated average cross sections of 1583 and 1488
Å2, respectively. If these two globin monomers come
together to form a dimer, one would expect that the
cross section of that dimer would be approximately the
addition of the cross sections of the two constituent
parts and, indeed, that is the case here. One would
further expect that the cross section observed would be
slightly smaller than the sum of the monomer subunits
because the contact area on both of the monomers
would be compacted and contribute less to the overall
cross section. The data are in agreement with this.

The average estimated collision cross sections for
HbA and HbS, for four different charge states, are
illustrated in Figure 4. The data indicate a difference in
cross section between normal and sickle-cell hemoglo-
bin and a variation in cross section with charge state.

For HbA and HbS for the charge states studied, the
cross sections observed for HbS are somewhat larger
than those of HbA. Secondary, tertiary, and quaternary
structural considerations make it difficult to determine
what the charge state of a molecule should be, theoret-
ically, within a particular solvent at a particular pH. It is
clear from previous work that the lowest charge states

Figure 3. Average estimated cross sections for holo-�, holo-�,
heterodimer, and HbA tetramer, from three datasets.
observed under near-physiological conditions are most
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representative of the native protein structure [7]. The
[M � 18H]18� charge state, for HbA and HbS, is
suspected to be representative of a tetrameric structure
that is beginning to denature.

The reproducibility of the cross sections estimated
for the [M � 15H]15�, [M � 16H]16�, and [M � 17H]17�

charge states of HbA, between the three replicate data-
sets, is � 1%, believed to be representative of the
reproducibility capabilities of the experiment. The
larger deviation in estimation of cross section for
the same charge states for HbS, of � 3%, may reflect
the presence of a broader population of conforma-
tions of the HbS molecule of similar cross section.

The rotationally averaged cross sections for HbA and
HbS calculated from X-ray crystallographic structures
were 3313 and 3733 Å2 for the PA and 4343 and 4775 Å2

for the EHSS, respectively. Values estimated experi-
mentally for the [M � 15H]15�, [M � 16H]16� and [M �
17H]17� charge states of HbA and HbS fall between
these two theoretical approximations and agree with
the X-ray observation that HbS has a larger cross section
than that of HbA. Gas-phase conformations, although
illustrative of solution-phase structures under con-
trolled conditions, have been shown previously to be
smaller than those predicted by EHSS approximations
[6]; a more compact conformation is thought to be
adopted in the gas phase because increased intramolec-
ular interactions cause polar side chains to collapse onto
the protein’s surface [14].

Conclusions

This work demonstrates the use of TWIMS to probe
gas-phase conformations of three-dimensional protein
structure and noncovalent complexes.

TWIMS has been successfully used to analyze hemo-
globin tetramers. Cross sections calculated for intact
hemoglobin tetramers are comparable to those esti-
mated from published X-ray crystallography data and
conformational differences are observed between the
HbA and HbS molecules. Nontetrameric species ob-

Figure 4. Estimated cross sections for HbA and HbS tetramers
for three different charge states, showing averaged values from
three datasets with corresponding errors.
served, including apo- and holo- forms of �- and
�-monomers and �h�h-dimers, are naturally present in
equilibrium in solution and are not products of frag-
mentation during the ESI process.

Both �- and �-monomers have cross sections similar
to each other, suggesting that they maintain a similar
fold in the gas phase. Apo- and holo- forms of the
monomers also have similar cross sections, suggesting
that �- and �-monomers can retain a folded structure in
the absence and the presence of the heme group.
Extensively disordered monomer structures are not
observed.

A heme-deficient dimer has not been observed and the
results do not suggest the requirement for association of
�a with �h for the �-monomer to recruit heme. The results,
obtained on fresh blood samples rather than commercially
prepared samples, do not support the hypothesis that a
heme-deficient dimer is an essential intermediate in the
tetramer assembly process.
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Abstract: The proteome of the recently discovered bac-
terium Methylocella silvestris has been characterized
using three profiling and comparative proteomics ap-
proaches. The organism has been grown on two different
substrates enabling variations in protein expression to be
identified. The results obtained using the experimental
approaches have been compared with respect to number
of proteins identified, confidence in identification, se-
quence coverage and agreement of regulated proteins.
The sample preparation, instrumental time and sample
loading requirements of the differing experiments are
compared and discussed. A preliminary screen of the
protein regulation results for biological significance has
also been performed.
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Introduction
Since the mid-1990s, mass spectrometry-based strategies

have been the mainstream method for protein identification.1

There remain, however, a number of issues to be tackled.
Intrinsic characteristics of proteomes raise a number of ex-
perimental challenges. By nature, proteomes are large and
complex. A single gene can often give rise to multiple, distinct
proteins due to alternative splicing, sequence polymorphisms
and post-translational modifications. Protein databases gener-
ated from the genome of an organism may, therefore, not be
a true reflection of the potential protein complement.2 There
has been significant progress in the development of new
approaches to tackle these issues, but technical challenges
persist.

An ideal approach would enable the comprehensive char-
acterization of proteomes in a high-throughput manner. Cur-
rently, the techniques involved can be complex, costly and
involve time-consuming data analysis. A low number of
replicate experiments conductedsoften due to a lack of sample
availabilitysmeans that reproducibility is a concern. In addi-
tion, any given technique may only yield information on a
fraction of the relevant peptides in any single analytical run.3

An established proteomics approach is based on the separa-
tion of proteins via one- or two-dimensional polyacrylamide
gel electrophoresis (PAGE). Proteins are digested within the gel,
and the resulting peptides extracted for MS analysis. Drawbacks
associated with PAGE include dynamic range, insufficient
resolving power to fully separate all proteins within a sample,
and restricted sample throughput.4

Nongel-based techniques have been developed for the
analysis of complex proteomic samples: so-called ‘shotgun’
experiments, where a whole proteome is digested without prior
protein separation. Typically, the resulting peptides are sepa-
rated by strong cation exchange (SCX) chromatography before
reversed-phase LC-MS/MS analysis,5 an example of an ap-
proach known as multidimensional protein identification
techniques (MudPIT). This method has been shown to provide
increased proteome coverage compared to gels, although it still
suffers from problems with reproducibility and dynamic range.
This approach has gained popularity within proteomic studies
in preference to gels.2

In addition to providing a profile of what proteins are present
within a system at a given time, information on the expression
levels of these proteins is increasingly required. Techniques in
comparative and quantitative proteomics have, therefore, also
been developed significantly in recent years. Relative quanti-
fication can be performed on proteins separated by two-
dimensional PAGE, using image analysis software, sometimes
incorporating selective labeling approaches such as difference
gel electrophoresis (DiGE).6 This approach is subject to the
restrictions imposed by the gel methods.

A number of labeling approaches can also be incorporated
into ‘shotgun’ type experiments. These include stable isotope
labeling by amino acids in cell culture (SILAC),7 isotope
dilution,8 stable isotope labeled peptides,9 radiolabeled amino
acid incorporation,10 chemically synthesized peptide stan-
dards,11 tandem mass tags (TMT),12 isotope-coded affinity tags
(ICAT),13 and more recently, isobaric tags for relative and
absolute quantification (iTRAQ).14 The iTRAQ system is now
commercially available with eight isobaric tags,15 having only
initially been available with four tags, and has been widely used
in proteomic studies.16

Most label-based quantification approaches have potential
limitations: complex sample preparation, the requirement for
increased sample concentration, and incomplete labeling.
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There has, therefore, recently been a focus in the area of
nonlabeled quantification in order to address some of these
issues.17

Nonlabeled techniques which have been developed include
peptide match score summation (PMSS)18 and spectrum
sampling (SpS),19 both of which can be combined with statisti-
cal evaluation to detect differentially expressed proteins.20

Another approach utilizes a protein abundance index (PAI),21

which can be converted to exponentially modified PAI (emPAI)
for absolute protein quantification.22

It has been observed that electrospray ionization (ESI)
provides signal responses that correlate linearly with increasing
concentration,23 but there have been concerns regarding the
nonlinearity of signal response.24 Previous works have intro-
duced quantitative, label-free LC-MS-based strategies for global
profiling of complex protein mixtures.25,26 More recently, a
simple LC-MS-based methodology was published which relies
on changes in signal response from each accurate mass
measurement and corresponding retention time (AMRT) to
directly reflect concentrations in one sample relative to an-
other,27 which has since been developed into a label-free
system capable of relative and absolute quantification.28,29 All
detectable, eluting peptides and their corresponding fragments
are observed via rapid switching between high and low collision
energy during the LC-MS/MS experiment, giving a compre-
hensive list of all ions that can subsequently be searched.30

In this work, three proteomics approaches have been used
to identify and relatively quantify the proteins within a bacte-
rium when grown under different substrates. Samples have
been analyzed both qualitatively and quantitatively by: (i) one-
dimensional PAGE; (ii) MudPIT incorporating iTRAQ tags; and
(iii) a data-independent, alternate scanning LC-MS method
enabling label-free quantification. Comparisons have been
made regarding experimental considerations such as ease of
use, amount of biological sample required, time required to
prepare samples for analysis and total instrument time. The
data obtained have been evaluated with respect to number of
protein identifications, confidence of the assignments, se-
quence coverage and agreement of regulated proteins. All
approaches have been carried out using equivalent instrumen-
tation, enabling the results to be more directly compared. The
organism used in this study is the methanotrophic bacterium
Methylocella silvestris, an environmentally important organism
involved in global methane cycling. Unlike other methanotro-
phs, M. silvestris is able to grow on multicarbon compounds
as well as on methane.31 In this work, cultures of M. silvestris
were grown on acetate and methane.

Materials and Methods

Bacterial Growth and Sample Preparation. M. silvestris was
grown in fermenter cultures on diluted nitrate mineral salts
(NMS) medium with methane or acetate (5 mM) as previously
described.31 Cells, grown to late exponential phase (OD540 ∼1.0),
were harvested by centrifugation (17 700g, 20 min, 4 °C),
washed in growth medium, resuspended in 0.1 M PIPES buffer
(piperazine-N,N′-bis[2-ethanesulfonic acid], pH 7.0), and frozen
in liquid nitrogen. Subsequently, frozen cells were thawed and
resuspended in PIPES buffer containing 1 mM benzamidine
and broken by four passes through a French pressure cell at
125 MPa (4 °C) (American Instrument Co., Silver Spring, MD).
Cell debris and membranes were removed by two centrifuga-
tion steps (13 000g, 30 min, 4 °C, followed by 140 000g, 90 min,
4 °C), and the supernatant, containing soluble cytoplasmic

proteins, was used for analysis. A protein assay was conducted
on the soluble extract, using a Micro BCA Protein Assay Kit
(Pierce Protein Research Products, Thermo Scientific, Cram-
lington, U.K.) according to the manufacturer’s protocol.

Protein Separation by Gel Electrophoresis. Proteins were
resolved by 1D SDS-PAGE (14 µg per lane) and stained with
Coomassie Blue. Thirty to 40 slices were excised from each lane,
and subjected to tryptic digestion. All processing of the gel plugs
was performed by a MassPrep robotic protein handling system
(Waters Corporation, Manchester, U.K.) using the manufac-
turer’s protocol. In brief, the gel plugs were destained, the
disulfide bonds were reduced by the addition of dithiothreitol,
and the free cysteine residues were alkylated with iodoaceta-
mide. The gel plugs were washed prior to a dehydration step,
followed by the addition of trypsin (Promega, Southampton,
U.K.), and incubated for 4.5 h. The resultant tryptic peptides
were extracted twice and transferred to a cooled 96-well
microtiter plate; if necessary, they were stored at -20 °C.

iTRAQ Labeling and Strong Cation Exchange Chroma-
tography (SCX). Labeled quantification was carried out using
the iTRAQ 4-plex labeling kit (Applied Biosystems, Warrington,
U.K.). Protein extracts from the two growth conditions were
digested and labeled according to the manufacturer’s standard
protocol, and the samples pooled and lyophilized. A total of
400 µg of protein from each growth condition was labeled,
giving a total protein loading of 800 µg. As SCX was carried
out offline, the potential for sample losses is higher. A larger
initial protein loading was therefore used in order to minimize
such losses and optimize the number of proteins identified by
this approach. A total of 200 µg of acetate-grown sample was
labeled with the 114 reporter tag, and 200 µg with the 116
reporter tag. Two hundred micrograms of the methane-grown
sample was labeled with the 115 tag and 200 µg with the 117
tag. As per the manufacturer’s protocol, a maximum of 100 µg
of protein was labeled per vial of iTRAQ label, that is, two vials
were used per label. The labeling of one growth condition with
two different iTRAQ tags provides the means for an internal
control to monitor labeling efficiency. The labeled tryptic
peptides were partially resolved using a PolySULFOETHYL A
SCX column, 2.1 mm × 20 cm, 5 µm particles, 300 Å pore size
(PolyLC, Columbia, MD), using a stepwise gradient of KCl,
adapted from Link et al.,32 from 2.5-50% salt solution over a
period of 75 min. In total, 64 fractions were collected.

In-Solution Tryptic Digestion. A total of 100 µg of soluble
protein extract was resuspended in 1 mL of 0.1% Rapigest
(Waters Corporation, Milford, MA) and concentrated using a 5
kDa cutoff spin column. The solution was then heated at 80
°C for 15 min, reduced with DTT at 60 °C for 15 min, alkylated
in the dark with iodoacetamide at ambient temperature for 30
min, and digested with 1:50 (w/w) sequencing grade trypsin
(Promega, Southampton, U.K.) for 16 h. RapiGest was hydro-
lyzed by the addition of 2 µL of 15 M HCl, centrifuged, and
each sample diluted 1:1 with a 50 fmol/µL glycogen phospho-
rylase B standard tryptic digest to give a final protein concen-
tration of 500 ng/µL per sample and 25 fmol/µL phosphory-
lase B.

LC-MS/MS Acquisition for Gel-Separated Samples. Peptides
extracted from the digested gel were transferred to a nanoAC-
QUITY system (Waters Corporation). A 6.4 µL aliquot of extract
was mixed with 13.6 µL of 0.1% formic acid and loaded onto a
0.5 cm LC Packings C18 5 µm 100 Å 300 µm i.d µ-precolumn
cartridge. Flushing the column with 0.1% formic acid desalted
the bound peptides before a linear gradient of solvent B (0.1%

Labeling and Label-Free MS-Based Proteomics Approaches technical notes
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formic acid in acetonitrile) at a flow rate of approximately 200
nL/min eluted the peptides for further resolution on a 15 cm
LC Packings C18 5 µm, 5 Å, 75 µm i.d. PepMap analytical
column. The eluted peptides were analyzed on a Micromass
Q-Tof Global Ultima (Waters Corporation) mass spectrometer
fitted with a nano-LC sprayer with an applied capillary voltage
of 3.5 kV. The spectral acquisition scan rate was 1.0 s with a
0.1 s interscan delay. The instrument was calibrated against a
collisionally induced dissociation (CID) spectrum of the doubly
charged precursor ion of [Glu1]-fibrinopeptide B (GFP, Sigma
Aldrich, St. Louis, MO), and fitted with a GFP lockspray line.
The instrument was operated in data dependent acquisition
(DDA) mode over the mass/charge (m/z) range of 50-2000.
During the DDA analysis, CID experiments were performed on
the three most intense, multiply charged peptides as they eluted
from the column at any given time. Once these data have been
collected, the next three most intense peptides are selected,
and this process repeated.

LC-MS/MS Acquisition for iTRAQ Samples. Fractions col-
lected from the SCX separation of iTRAQ-labeled peptides were
snap-frozen on dry ice and lyophilized to dryness. The samples
were resuspended in 20 µL of 0.1% formic acid and transferred
to a CapLC system (Waters Corporation). A 6.4 µL aliquot of
extract was mixed with 13.6 µL of 0.1% formic acid and loaded
onto a 0.5 cm LC Packings C18 5 µm, 100 Å, 300 µm i.d.
precolumn cartridge. Flushing the column with 0.1% formic
acid desalted the bound peptides before a linear gradient of
solvent B (0.1% formic acid in acetonitrile) at a flow rate of
approximately 200 nL/min eluted the peptides for further
resolution on a 15 cm LC Packings C18 5 µm, 5 Å, 75 µm i.d.
PepMap analytical column. The eluted peptides were analyzed
on a Micromass Q-Tof Global Ultima (Waters Corporation)
mass spectrometer fitted with a nano-LC sprayer with an
applied capillary voltage of 3.5 kV. The spectral acquisition scan
rate was 1.0 s with a 0.1 s interscan delay. The instrument was
calibrated against a CID spectrum of the doubly charged
precursor ion of GFP, and fitted with a GFP lockspray line. The
instrument was operated in data dependent acquisition (DDA)
mode as described above.

LC-MS Configurations for Label-Free Analysis. Nanoscale
LC separations of tryptic peptides for qualitative and quantita-
tive multiplexed LC-MS analysis were performed with a nano-
ACQUITY system (Waters Corporation) using a Symmetry C18

trapping column (180 µm × 20 mm, 5 µm) and a BEH C18

analytical column (75 µm × 250 mm, 1.7 µm). The composition
of solvent A was 0.1% formic acid in water, and solvent B was
0.1% formic acid in acetonitrile. Each sample (total protein 0.5
µg) was applied to the trapping column and flushed with 1%
solvent B for 5 min at a flow rate of 15 µL/min. Sample elution
was performed at a flow rate of 300 nL/min by increasing the
organic solvent concentration from 3 to 40% B over 90 min.
All analyses were conducted in triplicate. The precursor ion
masses and associated fragment ion spectra of the tryptic
peptides were mass measured with a Q-ToF Premier mass
spectrometer (Waters Corporation) directly coupled to the
chromatographic system.

The time-of-flight analyzer of the mass spectrometer was
externally calibrated with NaI from m/z 50 to 1990, with the
data postacquisition lockmass-corrected using the monoiso-
topic mass of the doubly charged precursor of GFP, fragmented
with a collision energy of 25 V. The GFP was delivered at 500
fmol/µL to the mass spectrometer via a NanoLockSpray

interface using the auxiliary pump of a nanoACQUITY system
at a flow rate of 500 nL/min. The reference sprayer was sampled
every 60 s.

Accurate mass data were collected in data independent mode
of acquisition (LC-MSE) by alternating the energy applied to
the collision cell between a low energy and elevated energy
state. The spectral acquisition scan rate was 0.6 s with a 0.1 s
interscan delay. In the low energy MS mode, data were
collected at constant collision energy of 4 eV. In elevated energy
MS mode, the collision energy was ramped from 15 to 35 eV
during each integration.

Data Processing for DDA Acquisitions. The uninterpreted
MS/MS data from the gel-separated and iTRAQ-labeled samples
were processed using ProteinLynx Global Server (PLGS) v2.3.
The data were smoothed, background subtracted, centered and
deisotoped. All data were lockspray calibrated against GFP
using data collected from the reference line during acquisition.

Data Processing for Label-Free Acquisitions. The LC-MSE

data were processed using PLGS v2.3. The ion detection, data
clustering and normalization of the data independent, alternate
scanning LC-MSE data has been explained in detail elsewhere.33

In brief, lockmass-corrected spectra are centroided, deisotoped,
and charge-state-reduced to produce a single accurately mass
measured monoisotopic mass for each peptide and the associ-
ated fragment ion. The initial correlation of a precursor and a
potential fragment ion is achieved by means of time alignment.

Database Searches. All data were searched using PLGS v2.3
against a M. silvestris database (http://genome.ornl.gov/
microbial/msil). Fixed modification of carbamidomethyl-C was
specified, and variable modifications included were acetyl
N-terminus, deamidation N, deamidation Q and oxidation M.
For the iTRAQ data, variable modifications for the isobaric tags
were specified. One missed cleavage site was allowed. Search
parameters specified were a 50 ppm tolerance against the
database-generated theoretical peptide ion masses and a
minimum of one matched peptide.

For the LC-MSE data, the time-based correlation applied in
data processing was followed by a further correlation process
during the database search that is based on the physicochem-
ical properties of peptides when they undergo collision induced
fragmentation.34 The precursor and fragment ion tolerances
were determined automatically. The protein identification
criteria also included the detection of at least three fragment
ions per peptide, at least one peptide determined per protein
and the identification of the protein in at least two out of three
technical replicates. By using protein identification replication
as a filter, the false positive rate is minimized, as false positive
protein identifications, that is, chemical noise, have a random
nature and as such do not tend to replicate across injections.
This approach rules out systematic search events errors due
to the repeated ambiguity of a particular spectrum and the
subsequent sequence assignment by a search algorithm, as
could be the case with peptide-centric searches.

Protein Quantification Using iTRAQ Labeling. PLGS was
also used for quantitative evaluation of MS/MS data generated
from the analysis of the iTRAQ-labeled peptides. A relative
quantification was conducted using a merged data set com-
prising the results from the database search. Concentration
ratios of iTRAQ-labeled proteins were calculated based on
signal intensities of reporter ions observed in peptide frag-
mentation spectra, with the relative areas of the peaks corre-
sponding to proportions of the labeled peptides.14

technical notes Patel et al.
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Protein Quantification Using Label-Free System. Relative
quantitative analysis across conditions was performed by
comparing normalized peak area/intensity of each identified
peptide. Normalization of the data was conducted by the use
of an internal protein digest standard. In brief, peak areas/
intensities are corrected using those of the internal protein
digest. Intensity measurements are typically further adjusted
on those components, that is, deisotoped and charge-state
reduced accurate mass retention time pairs, that replicate
throughout the complete experiment. Next, the redundant,
proteotypic quantitative measurements provided by the mul-
tiple tryptic peptide identification from each protein were used
to determine an average, relative protein fold-change. The
algorithm performs binary comparisons for each of the condi-
tions to generate an average normalized intensity ratio for all
matched proteins. Proteins with a likelihood of quantification
smaller than 0.05 were considered to be significantly regulated.
The entire data set of differentially expressed proteins was
further filtered by considering only the identified peptides that
replicated two out of three technical instrument replicates. A
likelihood of regulation higher than 95%, as reported by the
quantification algorithm, was considered.

Results and Discussion

Protein Identifications. Three distinct experimental ap-
proaches have been employed in order to provide profiling and
quantitative information regarding the proteome of M. silvestris.
The numbers of proteins identified via each approach are
summarized in Table 1. The total number of nonredundant
proteins identified, when single peptide identifications are
included, is comparable for all three techniques at 389, 384,
and 425 proteins, respectively.

Differences arise, however, when looking at the number of
peptides per protein identification. There have been questions
raised in the literature regarding the validity of identifications
performed using a single peptide, so-called ‘one-hit wonders’,
and whether they should be included in the list of proteins
identified.35 Of the gel separation identifications, 154 were from
a single peptide as are 206 in the iTRAQ experiment. As a
proportion of the total proteins identified, these values are 40%
and 54%, respectively. This is typical of many results in the
literature.36 In the label-free results, of the 425 identifications,
only 4 are from a single peptide: proportionally less than 1%.
As the label-free analysis is performed in triplicate, only an
identification observed in at least two of the three replicates
was taken to be valid; therefore, single-peptide identification
in label-free data means that a single peptide was found in at
least two of three data sets. Proteins identified by each
experimental setup are listed in Supplementary Data, Tables
1-5. Figure 1 shows the overlap of protein identifications
between the three approaches; 1a uses all data, including

single-peptide identifications, 1b illustrates filtered data, with
only identifications obtained with two or more peptides. All
proteins identified are listed in Supplementary Tables 1-5,
giving information on the molecular weight and pI of the
identifications, and also the number of peptides identified.
When including single peptide based identifications, there are
a total of 699 proteins identified. Each of the techniques
uniquely provides approximately 17% of those identifications.
The remaining 49% of the identifications overlapped as shown.
To overcome the uncertainty involved in the inclusion of single
peptide-based identification, Figure 1b shows the data pre-
sented only including identifications made using a minimum
of two peptides. This gives a total of 509 protein identifications,
of which 9% were unique to the gel-based approach, 6% to
iTRAQ, and 38% to label-free. This shows a significant increase
in the proportion of unique identifications by the label-free
method, a reduction in gel-based unique identifications and a
considerable decrease in those uniquely identified by iTRAQ.

A closer inspection of the number of proteins identified with
and without the inclusion of single-peptide identifications
reveals some interesting observations. As one would expect,

Table 1. Total Protein Identifications for the Three
Experimental Approaches

gel-based iTRAQ label-free

Total number of protein
identifications

389 384 425

Single-peptide identifications 154 206 4
Proportion of identifications

which were from a single peptide
40% 54% 0.9%

Identifications with more
than one peptide

235 178 421

Figure 1. (a) Number of proteins identified by the various
experimental approaches, including single-peptide identifica-
tions. (b) Proteins identified by the various experimental ap-
proaches, identifications based on a minimum of two peptides.

Figure 2. Differential expression as determined by iTRAQ label-
ing; all tags have been normalized to the 114 label.

Labeling and Label-Free MS-Based Proteomics Approaches technical notes
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the total number of proteins identified is lower when single-
peptide identifications are excluded (509 when excluded,
compared to 699 when included), including those identifica-
tions common to all three methods (89 when excluded,
compared to 152 when included). In contrast, the number of
proteins unique to the label-free method, and those common
to the label-free and gel methods, has increased. This is because
all but four of the proteins identified by the label-free method
were done so with two or more peptides, whereas the gel and
iTRAQ methods generated a large number of single-peptide
identifications. The fact that 152 proteins were independently
identified by all three methods provides strong evidence that,
although some of these (63 in total) were identified with a
single-peptide by one or more technique, they should possibly
not be discarded as false-positive identifications. This raises
the question as to what should be done with protein identifica-
tions based on a single-peptide. While a majority of these are
likely to correspond to false-positive identifications, there are
a small number that are potentially valid and should also be
included in the list of confidently identified proteins, although
this is not definitive. Further discussions of results will therefore
exclude single-peptide identifications.

Relative Quantification of Identified Proteins. Supplemen-
tary Figure 1 shows the 1D SDS-PAGE separation of the M.
silvestris proteome obtained from different growth conditions.
The difference in intensity of staining in a 1D gel is indicative
of differential expression, and some representative changes are
highlighted. A band on a 1D gel, however, can often contain
multiple proteins due to the limitations of the resolving power
of this technique. Although the analysis of gel-separated
samples provided a comparable number of protein identifica-
tions, quantitative analysis using a 1D separation is difficult.
Quantification via gel methods is more routinely performed
using two-dimensional separations, which were not carried out
here. Further results, focusing on differential expression, use
only iTRAQ and label-free data.

Figure 2 represents the differential expression of proteins as
characterized by iTRAQ labeling, plotted on a loge scale; the
values are included alongside protein identifications in Supple-
mentary Data, Table 3. Tags 115 and 117, which correspond
to methane-grown samples, and tag 116, which corresponds
to an acetate-grown sample, were normalized to tag 114, which
corresponds to an acetate-grown sample. The values for the
116 sample are clustered close to a line along the x-axis as
would be expected since the 114 and 116 samples should be
identical. The 115 and 117 samples should also be identical
and we would therefore expect good agreement between their
ratios, as is observed. This experiment provides a good indica-
tion of the reproducibility of the iTRAQ approach. As can be
seen by the 115 and 117 trends, distinct up- and down-
regulated proteins may be identified in M. silvestris when grown
under methane as compared to when the organism is grown
under acetate. The standard deviation of all the 116:114 ratios
is 0.17, providing an indication of what can be considered true
up- or down-regulation. If these values are considered to be a
normal distribution around a calculated mean of 0, then any
proteins with 115:114 and 117:114 ratios within -0.5 and 0.5
cannot be said to be regulated, using the value of three standard
deviations to provide filtering parameters. Only those identi-
fications showing ratios outside these values have been ac-
cepted as up- or down-regulated.

In the iTRAQ method, samples from different growth condi-
tions are pooled together. Quantification depends entirely upon

the isobaric tags; if insufficient data is available from the
isobaric tags, the protein identification will still be provided in
the overall results table, but will not appear in the quantifica-
tion data. In the label-free system, samples from differing
growth conditions are kept separate, so a distinct set of protein
identifications is generated for each sample. A total of 231
proteins were identified unique to the acetate-grown sample,
70 were unique to the methane-grown sample and 124 were
common to both conditions. Data relating to these 124 proteins
were then processed to provide information on relative expres-
sion between the samples.

Figure 3 shows the relative protein expression for the
regulated proteins (common to acetate and methane sub-
strates) identified using the label-free approach; this is the
output from the relative quantification software, which gener-
ates peptide signal intensity measurements, using all the
peptides identified for any particular protein identification.
These represent deisotoped, charge-state reduced and ac-
curately mass measured ion lists, which are used for both
qualitative identification and relative quantification.28 Loge

values used as the quantitative measurement can be found in
Supplementary Data, Table 6, including indication of proteins
assigned to only one of the two growth conditions. Error
measurements are automatically generated as standard devia-
tion values, which have been plotted. For an MSE acquisition,
the technical variation with respect to signal intensity has been
shown to be 10-15% with highly consistent reproducibility.27,38

For the label-free quantitative data, the significance of regula-
tion level was specified at 30%. Hence, 1.3-fold ((0.30 natural
log scale) was used as a threshold to identify significant up- or
down-regulation.38 This is typically 2-3 times higher than the
estimated error on the intensity measurement.27,38,39 Those
identifications with relative expression values between -0.3 and
0.3 cannot be taken as regulated; only those identifications
outside these values can be said to be regulated.

Both iTRAQ and label-free allow profiling and relative
quantitative data to be concurrently collected. The ability to
do this, particularly in a high-throughput manner, is desirable
but often difficult. In total, 79 confident identifications (i.e.,
more than one peptide) are common between the two meth-
ods, which is a much larger overlap than previous studies
comparing methods of quantification.14,40 A scatter plot com-
paring the regulation as assessed by the two methods is shown

Figure 3. Automated protein-level quantification of regulated
proteins using the label-free system; error bars correspond to
the automatically generated standard deviation values.
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in Supplementary Figure 2a. There is reasonable correlation,
with an R2 value of 0.69, with one distinct outlier. If the overall
trend of regulation is compared, all of the common identifica-
tions for which quantification data is available are in agree-
ment, bar the outlier. Twenty-one proteins are indicated to be
up-regulated in the methane sample compared to acetate and
6 are indicated to be down-regulated; the remaining proteins
show no distinct differential expression when filters for both
data sets are applied. If the one distinct outlier is removed from
the data set, then the correlation improves significantly (R2

value 0.80), as shown in Supplementary Figure 2b. The outlier,
corresponding to the enzyme citrate synthase, presented down-
regulation in the methane-grown sample according to the label-
free analysis, but up-regulation according to iTRAQ. Interro-
gation of the raw data showed good correlation between all
three replicates of the label-free acquisition in both growth
conditions. In the iTRAQ data, however, there was a disparity
in the data from the isobaric tags. Five peptides were used for
identification, with quantification data available for four of
these. Three peptides showed down-regulation in the methane
growth condition; the one peptide which indicated up-regula-
tion was the shortest of the five (four residues), the others
matching at least eight residues within the assigned MS/MS
spectrum. If the short peptide is removed, there is down-
regulation of citrate synthase within the filtering parameters,
and in-line with the label-free data, suggesting that this was a
misassignment by the software. MS/MS spectra of the matched
sequences and isobaric tags are shown in Supplementary
Figure 3. Although this is only one anomalous data point, it
indicates potential problems if single-peptide identifications
are used to provide quantitative data from an iTRAQ experiment.

The label-free approach differs from iTRAQ in that each
growth condition is analyzed independently, while in iTRAQ,
samples from different conditions are pooled together. Of the
425 nonredundant identifications obtained by the label-free
method, 231 were unique to the acetate-grown sample and 70
unique to the methane-grown. From these 301 proteins, 54
were also identified by iTRAQ, and were compared with the
iTRAQ quantification list. Of these, 25 were distinctly regulated
and all showed agreement, that is, were shown by iTRAQ to
be up-regulated in whichever growth condition the label-free
method had exclusively assigned. This has been represented
as a comparative table in Supplementary Data, Table 7. The
29 identifications which fall outside the iTRAQ filtering pa-
rameters for accepted regulation levels, as described earlier,
have been highlighted.

Comparison of Experimental Approaches. A summary of
the methodology for all three experimental systems and the
results obtained from each can be seen in Table 2. There is a
stark difference in the total amount of protein required for the
three setups: up to 1 mg for iTRAQ, 14 µg for the gel-based
method, and less than 1 µg for label-free. Although the injection
amount for the LC-MS/MS analysis is comparable between all
three techniques, this does not relate to the total amount of
protein required for an adequate data set. In the gel-based and
iTRAQ approaches, the amount indicated is necessary to
generate enough peptides over 30-60 fractions for MS analysis.
With the employed label-free method, the amount loaded
directly for LC-MS analysis is sufficient for a full qualitative
and quantitative data set. Sample requirement can be an
important consideration when performing proteomic studies,
as it can be a challenge to generate a suitable amount from
biological systems. If less sample is required for a single
experiment, additional analyses can be carried out, which will
add confidence to the results obtained.41 It has previously been
shown that even three replicate MudPIT experiments may not
provide full coverage of all the proteins within a sample.42

An ideal method for proteomic analysis would enable
comprehensive and high-throughput studies, making experi-
mental and instrumentation time an important factor when
considering which approach to utilize. Both the gel-based and
iTRAQ setups require up to 60 h of MS data acquisition time,
based upon our chosen number of bands cut from the gel or
fractions from the strong cation exchange chromatography, and
upon the gradient setup in the reversed-phase chromatography.
The analytical time could be shortened by choosing fewer
fractions, or reducing the reversed-phase gradient, but this may
also reduce peptide recovery and/or separation. The label-free
experiments require 6 h of instrument time (2 h per replicate).
In addition to this, preparing samples for iTRAQ requires a
number of days, including overnight steps. This issue can make
the approach less suitable for a routine analysis setup when
compared to the label-free method.

The average number of peptides identified per confident
protein assignment for the gel-based and iTRAQ analyses is 5,
compared to an average of 12 for the label-free method. The
gel-based approach gives an average sequence coverage of 15%,
higher than the iTRAQ average of 11% which is slightly lower
than previous work.2 The average sequence coverage for the
label-free data is 45%. An increased number of peptides and
higher sequence coverage can confer more confidence in
identifications obtained.

Table 2. A Comparison of the Experimental Requirements for Each of the Approaches, and the Information Obtained from the
Data Generated

1D-SDS-PAGE iTRAQ label-free

Protein loading 14 µg 100 µg per iTRAQ labeling
vial; 800 µg total loading

0.5 µg for each of 3
technical replicates

Number of overnight steps 2 5 1
Samples to analyze by MS 30-40 fractions 30-60 fractions 1 per growth condition
Reverse-phase LC and MS acquisition 30-40 h 30-60 h 2 h
Total analysis time 4 days 6 days Less than 3 days
Total instrument time 30-40 h 30-60 h 6 h per sample
Size of data file 300 MB × 40 (1.2 GB) 300 MB × 40 (1.2 GB) 6 GB × 3 (18GB)
Number of proteins confidently

identified (with more than one peptide)
235 178 421

Average number of peptides
per protein (including
single-peptide identifications)

5 5 12

Average sequence coverage 15% 11% 45%
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Biological Significance of Results Obtained. Bacteria from
the methanotroph family utilize a common pathway to process
methane in order to use it as a carbon and energy source, an
overview of which is given in Figure 4. As the Methylocella
genus has been recently identified and is relatively uncharac-
terized, it is difficult to make predictions about potential
biochemical changes which would be seen on a growth
substrate other than methane. It could, however, be suggested
that some down-regulation of the enzymes in the methane
oxidation pathway would be seen. Our study identified the key
enzymes methane monooxygenase (MMO) and methanol de-
hydrogenase, with quantitative data from both iTRAQ and the
label-free approach indicating a significant down-regulation
when M. silvestris was grown on acetate. MMO is a multimeric
protein with subunits R, � and γ.37 The R and � subunits show
up-regulation in the methane growth samples, as does the
accessory MMO Protein B. The γ subunit shows significant up-
regulation on methane when analyzed by iTRAQ; using our data
filtering (more than one peptide, more than one replicate for
label-free), this subunit is only seen in the methane growth
condition for the gel and label-free analyses, as is the accessory
MMO Protein C. There is also up-regulation of the R and �
subunits of methanol dehydrogenase in the methane-grown
samples, which is the second enzyme in the methanotroph
methane oxidation pathway.

The quantification data relating to these enzyme identifica-
tions has been shown in Figure 5. DNA-directed RNA poly-
merase has also been included as a housekeeping protein, and
as such should not display up- or down-regulation regardless
of growth substrate. Such proteins can provide a check, on the
biological level, for the significance of differential proteomic
data.

Conclusions

For any integrated proteomics experiment, a number of
important issues need to be considered. These include the need
for qualitative (profiling) and quantitative information. Confi-

dence in identification and quantification, reproducibility,
sample size, instrument time, sample preparation, cost, and
sequence coverage are all important factors that need to be
taken into account. The ability to place any changes observed
into the context of the biological pathways involved remains a
crucial aspect of the research. This study has evaluated the
potential applicability of a number of common approaches to
profiling and differential proteomics. The experiments have
been restricted to a proteomics study of cytosolic proteins, and
comparable technology platforms were employed. Good agree-
ment was obtained between the commonly utilized iTRAQ
labeled experiment, a gel based study and that based on a label-
free LC-MS approach. At the profiling level, when considering
all identifications, including those based on single peptides,
the number of identified proteins was comparable for all three
methods. When requiring more than one peptide for identifica-
tion, the label-free approach gave superior information par-
ticularly when coverage was taken into account. Both the iTRAQ
experiment and the label-free approach provided relative
quantification data sets, and the agreement between the
approaches was better than previously observed in compari-
sons between different quantitative methods.40 This is most
likely due to the use of comparable instrumentation, as each
method employed high-performance liquid chromatography
coupled to a Q-TOF tandem MS acquisition. The label-free
experiment does, however, have advantages in terms of sample
requirement, sample preparation and instrumental time
requirements.

A preliminary screen of the protein regulation results for
biological significance shows agreement with previous analysis
of the regulation of methane monooxygenase in Methylocella.43

This, together with the significant number of identifications
provided by all three approaches, and the excellent agreement
of two quantitative data sets, indicates the potential for further
proteomic studies on this methanotroph.
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Supporting Information Available: Tables of protein
identifications from gel-based analysis, acetate growth and
methane growth; protein identifications from iTRAQ analysis;
protein identifications from label-free analysis, acetate growth
and methane growth; quantification data from label-free
analysis; qualitative agreement between iTRAQ identified pro-
teins and label-free identification assigned to only one growth
condition. 1D SDS-PAGE separation of the M. silvestris cyto-
plasmic proteome under different growth conditions; Correla-
tion of quantification data from iTRAQ and the label-free
method for identifications using two or more peptides and
when the outlier corresponding to citrate synthase is removed;
peptide sequences for precursors and corresponding isobaric
reporter ions for outlying protein identification citrate synthase.

Figure 4. The pathway of methane oxidation in methanotrophic bacteria.

Figure 5. iTRAQ and label-free quantification data for proteins
identified as key metabolic enzymes within M. silvestris; a
housekeeping protein has been included as indication of a
biological marker.
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