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Summary

This thesis describes the use of mathematical modelling to analyse the treatment of

patients with immune disorders; namely, Multiple Myeloma, a cancer of plasma cells

that create excess monoclonal antibody; and kidney transplants, where the immune

system produces polygonal antibodies against the implanted organ. Linear and nonlin-

ear compartmental models play an important role in the analysis of biomedical systems;

in this thesis several models are developed to describe the in vivo kinetics of the an-

tibodies that are prevalent for the two disorders studied. These models are validated

against patient data supplied by clinical collaborators. Through this validation process

important information regarding the dynamic properties of the clinical treatment can

be gathered. In order to treat patients with excess immune antibodies the clinical

staff wish to reduce these high levels in the patient to near healthy concentrations. To

achieve this they have two possible treatment modalities: either using artificial meth-

ods to clear the material, a process known as apheresis, or drug therapy to reduce the

production of the antibody in question. Apheresis techniques differ in their ability to

clear different immune complexes; the effectiveness of a range of apheresis techniques

is categorised for several antibody types and antibody fragments. The models devel-

oped are then used to predict the patient response to alternative treatment methods,

and schedules, to find optimal combinations. In addition, improved measurement tech-

niques that may offer an improved diagnosis are suggested. Whilst the overall effect

of drug therapy is known, through measuring the concentration of antibodies in the

patient’s blood, the short-term relationship between drug application and reduction in

antibody synthesis is still not well defined; therefore, methods to estimate the gener-

ation rate of the immune complex, without the need for invasive procedures, are also

presented.

xv



Chapter 1

Introduction

1.1 Problem statement

The human immune system is a diverse collection of organisms and processes that

enable an individual to fight a huge range of infections. It has redundancy and flexibility

beyond the scope of current scientific capabilities and continues to function even within

the most arduous environments. In everyday life the immune system responds to

infection and invading bodies in an efficient manner, often without the individual being

aware of its presence. However, as with all natural processes the immune system itself

is susceptible to disease and malfunction, either through infection or genetic disorders.

Immune disorders can be broadly categorised into two types: immunocomprised,

where the disease leaves the patient open to infection through lack of an immune re-

sponse; or over-active, in which the immune system’s reaction to the invading antigens

is excessive. In this work the focus shall be on the latter condition, more specifi-

cally gammopathic immune dysfunctions. These are medical conditions that result in

an increase in the synthesis of antibodies, which may be due to disease (e.g. Multi-

ple Myeloma, Lupus, Multiple Sclerosis, or Rheumatoid Arthritis) or a natural but

unwanted reaction to a medical treatment that would otherwise be beneficial to the

patient (e.g. organ transplants or implanted medical devices). This imbalance allows

an incredibly complex system to be modelled mathematically due to the predominance

of one type of immune response; in addition, through observation of this imbalance

light can also be shed on the normal operation of biological processes.

1



Section: 1.1.0 2

For such conditions it is possible to investigate the chemical interactions in vitro

to yield greater understanding of the base processes involved. However the purpose of

this work is to take a more holistic approach, viewing the patient as a simple system.

The reason for this is to assist clinicians directly, and where possible in real-time, with

ongoing patient treatment to improve the medical efficacy and the patient’s experience,

rather than to fuel further investigation or drug/device development. As such a control

system approach is the most appropriate method for investigation, with the aim of

yielding practical solutions that can be applied to patient treatment.

In order to treat patients with gammopathic diseases clinicians have two methods

of treatment available:

• To reduce the production of the antibodies that are in excess. This is achieved

through the administration of drugs (e.g. immunosuppression or chemotherapy).

• To remove additional antibodies through the use of artificial clearance techniques

(e.g. haemodialysis).

Initially it was envisaged that with minimal knowledge of the patient, pre-treatment,

control theory could be used to indicate the most appropriate treatment combinations;

either in terms of the most efficient use of resources, minimising patient discomfort

or achieving the best results in the shortest time. However, after preliminary investi-

gations it was discovered that this would not be feasible due to a lack of knowledge

around the underlying biological systems. Therefore fundamental work was required

prior to addressing the optimality of treatment combinations, as current models do not

describe the effects of either of these mechanisms in sufficient detail; neither in terms

of the antibody dynamics nor the effects of the treatment in terms of the synthesis

control or synthetic clearance. Therefore the focus of this work is to provide funda-

mental techniques and models to assist clinicians in patient prognosis and to predict,

with greater confidence and accuracy, the state of the patient’s medical condition and

response to treatment. It is envisaged that the models and algorithms presented will

help uncover the relationships between individual patients and the treatment’s effect,

with the hope of designing personalised patient treatment regimes in the future.

The aims of the research can, then, be simply stated as the development of novel

analytical techniques to assist clinicians in diagnosis, prediction of current patient
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status and description of patient prognosis, with different treatments, through the use

of mathematical modelling. In scope, it is concerned with antibodies, and associated

antibody fragments, and treatments which enhance the natural clearance or suppress

in vivo synthesis. The objectives required to achieve these aims are:

• To create, or extend, where a previous model is applicable, mathematical models

to effectively describe the in vivo dynamics of the major antibody proteins (IgG,

IgA and IgM) and antibody fragments associated with Multiple Myeloma and

kidney transplant.

• To validate these models analytically and against patient data, where possible.

• To generate estimates for key parameters relating to the kinetics and synthesis

of antibodies.

• To use the validated models and estimated parameters to:

– retrospectively determine the effectiveness of current treatments with pro-

vided patient data.

– simulate patient response to alternative treatments or schedules, to deter-

mine effectiveness.

• To develop new methods to determine unmeasurable indicators of patient re-

sponse to treatment.

• To investigate new analytical techniques to categorise patient response to treat-

ments.

The primary contribution to the body of knowledge are the methods and descrip-

tions outlined in translating medical experience and knowledge into mathematical mod-

els. However, there are several key features of this research that require highlighting,

these can be broken down into contributions to mathematical modelling of biomedical

systems or clinical diagnosis and treatment:

• Biomedical Modelling
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– Identification of issues surrounding current models, and extend them allow

applicability to patient treatment.

– Creation and validation of new models to describe antibody kinetics, specif-

ically:

∗ A linear kinetics model for the removal of antibody fragments.

∗ A multiple filter model to investigate the impact on clearance of using

dual dialysis filters.

∗ A nonlinear compartmental model describing the recycling of antibodies

in vivo and the competitive binding between different antibody types.

– The development of deconvolution algorithms to determine the immeasur-

able antibody synthesis to assist in discovering the effects of treatment on

the underlying antibody production. The methods developed were adapt-

able enough to allow their use in non-immunological problems (e.g. diabetes

glucose intolerance testing and residual distribution of particles in manhole

drainage).

• Clinical Practice

– To show the beneifit of using mathematical modelling as a diagnostic tool

that is applicable to ongoing patient treatment.

– New techniques to assist in the categorisation of patients according to their

response to treatment:

– Identification of issues surrounding current best-practices regarding patients

treatment and allow hypothesis testing of alternative therapies.

– The identification and validation of a potential new markers in patients with

Intact Secreting Multiple Myeloma.

– The use of cluster analysis, in conjunction with dimension reduction meth-

ods, to classify patient response through time series data alone.
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1.2 Physiological modelling

As the purpose of this thesis is to provide valid models that describe physiological

processes it is beneficial to explore the methods of modelling available and explain the

logic behind choosing one method over another.

A model, irrespective of domain or application, is an abstract construct that ex-

plains a real-world situation through the use of a set of simplified rules and constraints.

Once a model has been created it can be used to investigate the response to differing

perturbations or alternative scenarios. From these theoretical experiments it is possi-

ble to predict the outcome of real-world scenarios or improve explanations of unknown

problems. In the following study the focus is upon mathematical models in which

equations and formulae are used to define the model of the real process. In order to

create such a model a process of conversion must take place from real-world measure-

ments into a mathematical structure; numerous excellent texts are available on the

methodology of mathematical modelling [Bender, 1978; Bonate, 2006; Carson et al.,

1983; Close et al., 2002; Rohatagi et al., 2004].

The natural question that arises is: why create mathematical models at all? The

most obvious answer is that of cost. Using a mathematical model can significantly

reduce the resources required to investigate complex problems. It may be possible to

produce the necessary experiment using real-world facilities but to repeat or modify

the procedure would incur a significant cost. However, with a mathematical model,

especially with the wide-spread availability of powerful computing resources, it is ex-

tremely quick and cost effective to re-run tests or multiple scenarios with significant

modifications without addition cost. Alternatively, it may not always be feasible to

recreate the experiment in the real-world, whether this is due to danger from the out-

side environs or implausible sets of constraints; or in the treatment of patients, due to

the recovery being paramount over investigation of biological processes.

Mathematical modelling can also address issues surrounding the use of test subjects

during the development of medical drugs or procedures [Bross, 1989]. The use of live

subjects (animal or human) in testing is an ethical problem that is better discussed

in medical literature; however, the use of mathematical modelling to validate clinical

methods prior to moving into latter stages of drugs trials to reduce the effects on living
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organisms to a minimum is an import step. The move towards mathematical modelling

has been encouraged by the Food and Drug Administration (FDA) in the United States,

which insists on ‘significant’ pharmacokinetics modelling during its review processes for

new drug development; requiring that stringent criteria are met in terms of modelling

results prior to moving onto Phase II1 of a drugs development [F.D.A, 2004].

A problem that the biomedical domain often encounters is the inability to physically

access key features of a system. In most engineering or scientific applications the device

or system in question can be analysed and scrutinised completely, through invasive

measurement techniques, e.g. gaining physical access, if required. However, with living

tissue this is not always possible, or ethical, due the delicate nature of its structure;

although invasive and non-invasive measurement techniques can be employed it is not

always possible to gather the required data. As shall been seen in subsequent chapters

it is often feasible using appropriate methods to create data that simulate the effects

of hidden artifices that are immeasurable but vital to a patient’s response.

System models can be divided into two main types, based on the technique em-

ployed to construct the model: they may be either data or process driven models. In

data driven models the underlying mechanics are not considered and mathematical

models are generated that describe statistics of the measurements and observations

taken, with the hope of identifying relationships or trends that will enable analysis

of the problem. However, without understanding of the processes underpinning the

system in question it is more difficult to address issues of optimisation and improve-

ment. For this reason the predominance of modelling, with the exception of some

categorisation work carried out in chapter 6, is process driven. From a patient cen-

tred perspective, these models are constructed from knowledge gained from in vitro

research and discussion with medical collaborators to construct simplified models de-

scribing the key in vivo dynamics of a single patient. The same basic model can then

be extrapolated either ‘intra’, or ‘inter’ patient.

For pharmacokinetic modelling two common types of models are used: physio-

logically based pharmacokinetic modelling (PBPK) and compartmental [Droz, 1992;

Levitt, 2004; Ritschel and Kearns, 2004]. PBPK modelling uses realistic anatomical

1FDA Phase II - phase of study where large groups of human subjects (20-300) are incorporated

into the trial.
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Figure 1.1: Physiological model [Levitt, 2002].

models to describe a drug’s effect on a patient. In such models this is achieved by

defining the system’s organs (e.g. liver, kidney, lungs) and the interconnection and

flows of material between the organs in a network flow schematic. An example of a

physiological schematic can be seen in Figure 1.1. After the model is created a series

of equations can be derived relating the flow-rates and drug kinetics. Physiological

models require detailed knowledge and data of how material flows between the organs,

and the potential for each organ to store and maintain the substance in question. This

level of information can be gathered but requires invasive imaging and tissue sam-

pling and as such is not available during standard treatment procedures. However,

an interesting example of a PBPK model describing the distribution and clearance of

injected monoclonal antibody was presented by Ferl et al. [2005], the model used mice

data for evaluation and validation; this is discussed in more detail in Chapter 5. For

the immune conditions studied within this thesis the measurement data available are

limited to measurements in plasma only, infrequently taken and at intervals that are

convenient for the patient, given the ongoing treatment. Therefore, given the data

available, compartmental modelling is a far more suitable approach.
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1.3 Structure of thesis

This thesis is divided in to eight chapters. In the second chapter the biological back-

ground of the immune complexes and their in vivo catabolism shall be described.

Whilst the background is not in great detail it should be sufficient for the reader to

understand the medical treatments under consideration during the subsequent chapters

and assist in the evaluation of the boundaries of the modelling problem, e.g. what is

necessary to model, what may be omitted or assumed. Chapter three contains prelimi-

nary material on compartmental analysis and model validation which are fundamental

in understanding the models, results and conclusions in the subsequent four chapters.

The remaining chapters focus on the models developed to describe human immune con-

ditions kinetics. Each chapter builds on the work described in the preceding chapter

to include greater granularity of antibody kinetics.

The mathematical modelling begins in chapter four, with models that describe the

kinetics of antibodies fragments, known as Light Chains. These are studied through

data gained from the Birmingham University Hospital Renal Unit, from patients with

a condition known as Free Light Chain secreting Multiple Myeloma. Patients with

this condition are treated with apheresis techniques and chemotherapy; therefore, the

models described are extended to accommodate these treatments. Recommendations

are drawn from the simulation analysis regarding the optimal apheresis modality.

In chapter five the models are extended to incorporate whole antibody kinetics.

These are constructed of the Light Chains described in the previous chapter but they

are catabolised and metabolised differently in vivo. As such the model is extended

to incorporate this. In this form of Multiple Myeloma the cancerous tumours secret

intact, or whole, antibodies. Intact Secreting Myeloma patients produce monoclonal

antibodies, the most common of which is IgG; in fact all patient data available for this

study is IgG. Therefore the models produced focus solely upon this antibody. How-

ever, IgG, in terms of the kinetic behaviour, is the most complex of the antibodies with

other antibody subclasses (e.g. IgA and IgM) following the same metabolic pathways.

Although the models are developed to assist in Multiple Myeloma patients they are

applicable for more generic applications and this is exploited in the following chapter

to investigate the three main types of antibody produced against medical implants:
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IgG, IgA and IgM. Whilst each type behaves slightly differently in vivo, the systems

dynamics can be derived from the base models presented in the previous chapter.

In conjunction with Coventry and Warwickshire University Hospitals, the models are

then applied to the problem of estimating synthesis of antibody in kidney transplant

patients. In addition to providing standard antibody measurements, clinicians were

able to provide information regarding the patient’s production of antibodies specifi-

cally against the donated organ. However, due to anomalies in the data, modelling

techniques previously presented were not applicable and promising preliminary work is

presented regarding the categorising of patient responses to transplants using cluster

analysis of time series data.

A key feature of any system is its input. Whilst in classical engineering problems

these are often known phenomena, this is rarely the case in the biomedical domain when

considering real patients. In the previous chapters the study was limited to cases where

patients were assumed to be producing antibodies at a constant rate or the synthesis

could be described by a known functional form, e.g. exponential or logistic decay.

In Chapter 7 a technique known as deconvolution is used to estimate the antibody

synthesis under the influence of chemotherapy treatment. This method extends a tech-

nique from astrophysics called Maximum Entropy Deconvolution to provide optimal

estimates with respect to the amount of information present in the data. The results

allow several important conclusions to be drawn regarding the effect of chemotherapy

with respect to the suppression of tumour producing cells. The versatility of this de-

convolution method is then demonstrated by using the Maximum Entropy method to

estimate, non-parametrically, other nonlinear features of several other models, includ-

ing a patient’s volume changes due to hypoproteinemia and the synthesis of insulin

in response to glucose intolerance tests in diabetes. Finally, digressing slightly from

the pharmacokinetics theme, the technique has proved successful, without modifica-

tion, in a non-biomedical domain to estimate system impulse responses of man-holes in

drainage systems; this enable the residual distribution time of particles within a drain

to be estimated. This problem has implication in the long term accumulation of par-

ticulate matter from drainage systems, e.g. disposal of drugs after medical treatment.

To assist in comprehension each chapter will close with a discussion of the key

findings and important features developed in it. A summary of conclusions drawn
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by all the work will be succinctly outlined in the closing chapter. This chapter will

also address possible avenues for future research that may be used to build upon the

theories presented in this thesis.



Chapter 2

Medical background

This chapter presents the basics of immunology and the treatments used on patients

with gammopathic immune dysfunction. Due to the complex nature of the immune

system it is not possible to provide a complete description within this thesis; however,

it is anticipated that sufficient detail will been given to allow the analysis performed

in later chapters to be understood without reference to external sources.

The following chapter is separated into four sections: the first discusses the immune

system and natural immune responses, the second, focuses upon immune conditions

that may occur naturally or due to disease. The final two sections discuss the treat-

ments available to patients with problematic immune systems and the measurement

techniques used by clinicians to assist in diagnosis and monitoring.

2.1 The immune system

The human immune system is a collection of complex biological processes that com-

bine to protect the host against infection and disease through external agents known

as antigens. An antigen is a foreign body that invokes a reaction by the immune sys-

tem. This response is separated into two branches [Davies, 1997; Janeway et al., 1999;

Manning and Turner, 1976]:

• Humoral - produces antibodies that detect and neutralise antigens. This is often

called the ‘specific’ response.

11
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• Cell mediated - the immune response that does not use antibodies to remove

infection, referred to as ‘non-specific’ response.

The work presented here focuses on the humoral response, as the immune conditions

investigated produce measurable excess antibodies which have a detrimental impact

upon the patient. To model cell mediated response would require extensive laboratory

work, which would detract from the primary direction of this study, namely, practical

recommendations for patient treatment.

2.1.1 Humoral immune response

The process of antibody synthesis, or production, begins with B lymphocytes (more

commonly referred to as ‘B cells’), that are produced in bone marrow. After a series of

maturation stages B cells differentiate into 2 types: memory cells, to allow information

to be retained relating to an antigen for fast response on subsequent re-infection; or

plasma cell, which exist mainly in bone marrow, and secrete antibodies directly into

the blood [Davies, 1997]. The structure of a generic antibody can be seen in Figure

2.1.

Figure 2.1: Simple antibody structure

The antibody is made of two polypeptide sub-units: two larger units, called heavy-

chains, and two smaller ones, referred to as light-chains. There are different types of

heavy-chains which combine to form monomers, dimers and polymers; a simple diagram

of these can be seen in Figure 2.2. There are five classes (isotypes) of antibody created
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in response to infection; a list of the types, their location, function and that percentage

of immune response each isotype contributes to the total, can be seen in Table 2.1.

Figure 2.2: Structure of antibodies [Brandli, 2008].

An antibody binds to a specific antigen through the Fab portion of its structure,

whilst the opposite end, referred to as the Fc region, is responsible for signalling other

cells to assist in removing the antigen. Whilst it is popularly viewed that antibodies

are responsible for the destruction of antigens they are in fact unable to penetrate cell

walls and are only used to inform other cells (T lymphocytes) of the presence of an

antigen, that actually perform the destruction of the antigen. The Fc region is also

used by the body to prevent IgG isotypes from being catabolised (see Section 2.1.2),

this process shall be explored in detail in Chapter 5.

For the medical conditions considered in this thesis only IgA, IgM and IgG are

relevant and as such the focus of the modelling will be around these proteins. It

can also been seen from Table 2.1 that these account for the majority of the immune

response, although, due to the structural similarity of the immune complexes, the

models developed are applicable to IgD and IgE, if required in further investigations.

2.1.2 Natural clearance

Due to physical size, whole antibody and antibody fragments are cleared through

different clearance pathways.
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Table 2.1: Classes of antibody [King, 1998, p. 9-11].

Class Function %

IgA Predominant in mucous and is responsible

for protecting exposed areas of the body,

e.g. nose, breathing passages, etc.

10%− 15%

IgG The most abundant antibody, it is found

in all bodily fluids to detect plasma infec-

tions.

75%− 85%

IgM Largest of the antibody, similar to IgG but

with multiple Fab regions.

5%− 10%

IgD Found in the abdomen, it’s function is cur-

rently unclear.

< 1%

IgE Located in lungs, skin, airways - reacts

against foreign bodies and responsible for

allergic response.

< 1%

Whole antibody

All the antibodies and constituent elements discussed above are in an elaborate metabolic

cycle, constantly being synthesised and cleared by natural processes. Whilst the me-

chanics of these processes are often complex and poorly understood, qualitative studies

have been conducted using radiolabelling to determine the half-life and catabolic path-

ways of the five Ab groups [Barth et al., 1964; Rogentine et al., 1966; Strober et al.,

1968; Waldman and Strober, 1969; Waldmann et al., 1976]. The results of these studies

are summarised in Table 2.2. In addition to the half-lives, the table also shows the

Fractional Catabolic Rate (FCR) for each antibody. This a common clearance measure

used in immunology and is the percentage of antibody cleared from the body per day.

Table 2.2 shows the different rates at which antibodies are cleared, the most notable

of these is IgG, with a very low clearance rate, and conversely, extended half-life;

approximately 5 times greater than an other antibody type. It is believed that all other

antibodies with the exception of IgG are removed at a constant rate from the plasma
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Table 2.2: Antibody clearance and Half-life, summarised from [Mariani and Strober, 1990].

Class FCR 1
2
-life

(% cleared/day) (days)

IgG 6.7 23

IgA 25.2 5.8

IgM 18.6 5.1

IgD 37 2.8

IgE 62.0 1.3

pool irrespective of the concentration of that antibody. The clearance of IgG, however,

has been shown to vary greatly depending on the in vivo concentration [Waldman

and Strober, 1969]. At greater concentrations the clearance increases, whilst at low

concentrations it decreases. This is believed to occur due to a receptor, referred to as the

neo-natal receptor or FcRn, that binds to circulating IgG in the intravascular pool and

prevents it from being catabolised [Brambell et al., 1964]. The overall effect of this is to

increase the half-life of IgG significantly. Figure 2.3 shows estimates for the fractional

catabolic rate of IgG. The estimates were calculated by Waldman and Strober [1969]

from patients with different serum concentrations using radiolabelling. Even given

the patient variability, the trend of high clearance at higher serum concentration can

clearly be seen. This will be discussed further in Chapter 5.

In patients without this receptor [Waldmann and Terry, 1990] the half-life is in the

range of other antibodies shown in Table 2.2, directly indicating recycling capabilities

of the FcRn.

Light-chains

In a healthy subject light-chain fragments are naturally produced in abundance of

heavy-chain fragments (see Figure 2.1), resulting in an excess of light-chains, known

as ‘Free Light-chains’, or FLCs. It is therefore necessary for the body to clear these

from plasma. There are currently two known pathways of clearance for FLC [Bradwell
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Figure 2.3: IgG Fractional Catabolic Rate (FCR) clearance of IgG, data from Waldman and

Strober [1969].

et al., 2005]:

• Light-chains, unlike intact immunoglobulins, are small enough to be cleared via

glomeruli in the kidneys.

• The Reticuloendothelial System (RES) is a system that is responsible for the

removal of ‘worn out’ cells within the body. This system provides an underlying

clearance of light-chains.

Removal via the kidneys, under normal immune conditions, is perfectly adequate

to maintain homeostasis of light-chains. However, if the kidneys are not functioning

correctly, through disease or damage, this route will not be available. To compound

this problem excess FLCs form cysts within nephrons of the kidney and block the

filtering of material, resulting in poor kidney function or failure, often resulting in

apheresis [Bradwell et al., 2005; Hutchison et al., 2007], see Section 2.3.2.

2.1.3 Human Leukocyte Antigen

Human Leukocyte Antigens, or HLAs, will become important in a later chapter (Chap-

ter 6), but are relevant to the immune system described here. In short, contrary to the
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name antigen, HLAs are markers that allow the immune system to recognise ‘self’ from

‘non-self’, and respond accordingly [Owen and Lamb, 1988]. HLAs are of great impor-

tance in the rejection of graft implants, for example, kidney transplants (see section

2.2.2). As the donated tissue is allograft1 it will express ‘non-self’ HLA and as such

antibodies will be produced against the tissues. These can be measured to assist in

categorisation of the patient’s response to the transplant but are simply IgG antibodies

as described above.

2.2 Gammopathic immune conditions

Whilst the models created for the immune complex kinetics are generic in nature, and

are applicable to many diseases and non-standard immune conditions, the models are

validated against two primary conditions in this thesis: Multiple Myeloma and immune

reaction to kidney transplant (due to the proximity of collaborators and availability of

data). Whilst it is possible to conduct clinical trials of normal and unhealthy patients,

this would require extensive cost, time and complex medical trial ethics to be overcome.

However, as a patient undergoing clinical treatment will be routinely tested as part of

their treatment, these data can be used to elicit information regarding the underlying

kinetics. In addition, patients with the two conditions considered require apheresis and

synthesis reducing drugs; as such the treatment regime can be viewed as a method of

perturbing the system to expose the fundamental system features.

2.2.1 Multiple Myeloma

Multiple Myeloma (MM or Myeloma) is a cancer of the plasma cells which accounts for

around 1% of all cancer cases in the UK. Approximately 3,750 people are affected by

the condition annually in the UK; whilst in the United States there are around 13,000

per year. There are approximately 150,000 people with the disease globally. After

non-Hodgkin lymphoma, it is the most prevalent hematological malignancy (cancers

of the blood, lymph and bone marrow). Myeloma patients present with a variety of

symptoms ranging from bone pain, to anaemia and renal failure. There is a median

1A transplant from a non-identical member of the same species.
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survival time of approximately 62 months, depending on the stage of the disease at

diagnosis [Bradwell et al., 2005; Cancer-Research, UK; Pozzi, 1987].

In a healthy individual ‘normal’ plasma cells produce a range of antibodies against

invading antigens. In a patient with Myeloma the plasma cells become tumourous

and as such single antibody types, referred to as monoclonal antibodies, are generated

that react only against a single antigen. This prevents an effective immune response

to a range of invading antigen, leaving the patient immunocompromised and prone to

infection. Myeloma is categorised into four main groups [Bradwell et al., 2005]:

• Light-chain Multiple Myeloma

These patients do not produce whole monoclonal antibodies in excess, only the

Light-chain fragments. 15% of Myeloma patients have this form of the disease.

• Intact Immunoglobulin Multiple Myeloma

Patients in this category produce fully constructed monoclonal antibodies; in

addition, the majority of patients also produce excess FLCs. The monoclonal

antibodies can be of any of the isotype (IgA, IgG, etc). Around 83% of Myeloma

patients over-produce intact immunoglobulin G (IgG).

• Nonsecretory Myeloma

1− 5% of Myeloma patients do not secrete monoclonal antibodies; the disease is

diagnosed through bone marrow biopsies, and as such is difficult to detect.

• Asymptotic (or Smoldering) Myeloma

Asymptotic Myeloma patients have low levels of monoclonal antibody production

and tumourous plasma cell concentrations but the condition is not adversely af-

fecting other organs. Less than 1% of patients present with this type of Myeloma.

The latter two conditions (Nonsecretory and Smoldering MM) do not produce

measurable excess immunoglobulin, or associated fragments. They are therefore not

considered in this study; these are rare conditions representing a small percentage of

patients with Multiple Myeloma, therefore obtaining data and information is more

difficult.
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2.2.2 Antibody incompatible transplantation

The second medical condition that will be a focus in this thesis is antibody incompatibil-

ity during organ replacement; specifically kidney transplants. However, the techniques

presented are equally applicable to other organs or medical device implants.

Unlike the disease condition Multiple Myeloma, the immune response to transplant

is natural but unwanted. Once a foreign substance has been implanted into the body

the host produces a range of antibodies against it, all with the purposes of attacking

the antigen and removing it from the body, which can ultimately result in failure of the

organ or medical device, and as such is a response that must be kept to a minimum,

or stopped altogether. In standard transplants the clinicians will attempt to match

the donated organ to the host immune system in terms of both the blood group type

(A, O, AB and B; rhesus status positive or negative) and HLA types [Campbell and

Halloran, 1996]. The probability that the patient and donor are compatible to reduce

rejection are extremely restrictive and in many cases cannot be found in a time frame

applicable for the patient’s survival. In the UK 25% of all patients on the donor

transplant list have HLAs that prevent transplant, resulting in about 250 transplants

being cancelled annually due to HLA issues [Higgins, 2007]. To reduce the number of

patient deaths whilst awaiting transplant Takahashi et al. [2004] began using kidneys

from incompatible donors in transplants. The methods developed by Takahashi et al.

[2004] have been replicated and modified by several groups [Higgins, 2007; Jordan et al.,

2003; Montgomery et al., 2000].

The immune response to incompatible transplants is considerable, and much greater

than that produced when equivalently matched donor organs are used. It is this

strength of response that enabled analogies between the cancer driven synthesis of

Multiple Myeloma to be drawn and the modelling techniques used laterally in the

description of the underlying biological processes of transplantation.

2.3 Medical treatments

In medical conditions with excess antibodies the primary concern of the medical treat-

ment is to reduce the high concentrations of antibodies within the patient to ranges



Section: 2.3.1 20

considered normal for a healthy individual. There are two mechanisms by which this

can be achieved: to reduce the synthesis, and to artificially clear more from the system

than is produced. The former, reduction of synthesis, is achieved primarily through

drug combinations; to increase clearance, apheresis techniques are used.

2.3.1 Drug treatments

There are three possible types of treatment that affect the immune system [Galton and

Brito-Babapulle, 1990; Halloran, 2004]:

• Immunotherapy

Although the term ‘immunotherapy’ refers to any treatment that modulates the

immune systems, in the conditions considered the main concern is immunosup-

pression, i.e. drugs that reduce the efficacy of the immune system from responding

to antigens or to increase the reaction against cancerous plasma cells.

• Chemotherapy

Chemotherapy drugs intervene in the cell life-cycle to reduce the number of can-

cerous plasma cells, either by encouraging apoptosis (cell death) or preventing

mitosis (cell division). Combinations of drugs are used (e.g. Vincristine, Adri-

amycin, Dexamethasone, Thalidomide) often including the immunosupressing

drugs discussed previously.

• Radiotherapy

Radiotherapy uses radiation to kill tumourous cells and prior to chemotherapy

was solely used to treat Myeloma patients. However, with the introduction of

chemotherapy, its use has been limited to analgesic relief or locally identifiable

tumours.

Chemotherapy and radiotherapy are used on patients with production linked to

tumourous conditions (e.g. Multiple Myeloma) and after each of these treatments

the patient will require bone marrow or stem cell transplants to replace the destroyed

plasma cells [Alexanian et al., 1977]. Immunosuppresion is not applicable for cancer pa-

tients, although the same immunosuppressing drugs may be used in the combinatorial

treatment. It is used primarily in transplant patients [Halloran, 2004].
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The specific drug combination used in all cases is largely down to clinical expe-

rience and availability. The effectiveness of the treatment is monitored by measuring

concentrations of antibodies in the patient’s blood.

2.3.2 Extracorporeal removal (Apheresis)

Apheresis is the term for medical techniques that remove elements from the patient’s

blood stream. In most cases this involves taking the blood out of the patient into an

external apparatus that is responsible for the separation of elements which are to be

kept and those that are to be removed. A schematic diagram outlining the elements

of an extracorporeal circuit can be seen in Figure 2.4. The circuit is used to extract

the blood from the patient’s venous blood stream and re-inject the cleaned blood

back to arterial blood flow; the circuit consists of: a device for extracting proteins

(in this case a dialysis filter); pumps for maintaining a consistent blood flow through

the device; connective tubing and connectors; monitors and values to monitor patient

safety. The connective tubing includes injection points along the length to allow for the

introduction of drugs during treatment (e.g. heparin, to prevent blood clotting) or to

remove small blood samples without disturbing the patient [Henrich, 2004; Nissenson

and Fine, 2005].

Figure 2.4: Haemodialysis schematic [Mrabet., 2008].
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In general apheresis can be broadly categorised into dialysis and therapeutic aphere-

sis [Daugirdas, 2006]. Which technique is used is based largely on the size of the

molecule to be removed. For small proteins (< 10 KDa) haemodialysis is used, it is

relatively cheap and easy to implement. In dialysis, or more precisely haemodialysis (as

this study is concerned solely with clearance from blood) the particles are removed by

passing them across a semipermeable membrane which, through convection (pressure

gradients) and diffusion (concentration gradients), can be used to remove different ele-

ments from the blood. Haemodialysis is most commonly used to remove toxins from the

blood in the advent of kidney failure. However, recently filters have been developed by

manufacturers ([Toray Industries Inc., 2009] and [Gambro Dialysatoren GmbH, 2009]),

which are able to pass larger molecules. These have been used to remove FLC antibody

fragments [Hutchison et al., 2007]. This process is studied in more detail in Chapter

4. For larger molecules, therapeutic apheresis is used.

There are several methods categorised under the term therapeutic apheresis and

two treatment types are used in this study: plasmapheresis and plasma exchange.

Plasmapheresis uses a centrifuge device that the blood is passed through to separate

out molecules of a particular size, whilst proteins that are not to be removed are

returned to the blood and re-introduced in to the patient’s blood stream. Plasma

exchange is a simple process that involves removing a pre-defined volume of plasma

over the treatment period, approximately three hours, and replacing it with an equal

quantity of a saline solution. This has the effect of removing a portion of the offending

substance; however, it is a nonspecific treatment removing all substances from plasma,

so unlike plasmapheresis and haemodialysis, which extract particular elements from

plasma, plasma exchange is applied with strict limits, and is usually limited to three

or four treatments over a two week period [Clark et al., 2005; Zucchelli et al., 1988].

2.4 Measurement techniques

In order to begin the modelling process it is important to have an understanding and

recognition of the methods clinicians have available to them to determine the levels

of antibodies in the patient. It is known that there is a linear relationship between

a plasma cell and the number of antibodies it produces [Sullivan and Salmon, 1972].
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Therefore the most effective diagnostic measurement tool is a tissue sample to confirm

and quantify the presence of plasma cells, from which the antibody production can be

inferred. However, as the plasma cells exist solely within bone marrow this becomes an

extremely intrusive and painful treatment and as such is rarely performed. No biopsy

data are available for any of the patients treated during this work. Clinicians therefore

measure the concentration of antibody in plasma.

There are several methods used to measure antibody concentrations (e.g. immuno-

electrophersis, immunoassay, immunofluorescence, immunoblot) [Bradwell et al., 2005;

George and Urch, 2000]. A study of these measurement techniques is beyond the scope

of this work. Fortunately, clinicians provided measurements of the antibody titres in

standard units of concentration, generally g/L, in addition to possible errors that may

exist in the measurement. The exception to this is the measurement of Donor Specific

Antibodies, in which only a mean fluorescence indicator is available, therefore requiring

pre-processing prior to use of the data; this is covered in detail in Chapter 6.



Chapter 3

Compartmental modelling

In the modelling of physiological systems an approach that is often used is that of

compartmental analysis [Brown, 1985; Godfrey, 1983; Jacquez, 1996]. It is a lumped

system approach which focuses upon the quantity of material to be observed (e.g.

antibodies), and how it moves around the system (e.g. the human body). Crucial to

this is the understanding of a compartment: a compartment is simply a subsystem

that contains homogeneously well mixed concentrations, or quantity, of the material

of interest. For example, as previously mentioned (see Chapter 2), antibodies are

synthesised by plasma cells and ‘released’ into the patient’s blood stream; therefore, a

candidate compartment would be blood. It should be noted that not all compartments

have direct physical analogies, nor exist as a separate entity in the physical space,

e.g. antibodies bound to a receptor or antigen share the same physical space but

may represented by separate compartments. A system is modelled as a series of inter-

connected compartments. For all the models considered in this work the exchange

between these compartments is assumed to occur instantaneously and all the individual

elements within a compartment (e.g. antibodies or antibody fragments) are equally

likely to exchange with other compartments.

3.1 Model construction

Given the above definition of a compartmental model the question naturally arises

on how a complex system, such as the immune system kinetics can be modelled using

24
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such an approach. A method of model construction is defined by Walter and Contreras

[1999]:

1. Divide the problem into a collection of compartments and sub-compartments by

reviewing the problem domain.

2. Determine the material flow between the compartments.

3. Perform preliminary analysis and validation of the model using mathematical

techniques.

4. Identify appropriate functions for the transfer of material between compartments

and the system inputs/outputs.

5. Establish initial conditions and compartment levels from established data.

6. Perform analysis on the model by manipulating the differential equations manu-

ally, or through computer simulation depending on model complexity.

Whilst it may at times be possible to skip steps (e.g. by deriving differential

equations directly) compartmental analysis forces a more rigorous methodology upon

model construction that can often lead to clearer understanding and mitigate against

simple human error.

Figure 3.1: Generic compartmental model structure

Compartmental models are often expressed through simple schematic diagrams (see

Figure 3.1), showing the compartments, inputs, outputs and compartment connectiv-

ity. Such a simple representation leads to a feature of compartmental models which is

often overlooked, their ability allow multidisciplinary research teams to express ideas;;
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ensuring mathematicians, engineers and medical staff are able to communicate at dif-

ferent levels about a common problem, facilitating model development to achieve a

simple form understandable by each group.

The process of modelling begins with the investigation of the biology involved, from

which the underlying process and governing equations can be extracted. Through the

study of the biology, compartments should be identified as areas of the body which

interact with the material in question; the interactions high-light the movement of

material between compartments. Once the compartments and interactions are defined

it is possible, through mass balance principles, to generate a system of differential

equations mathematically describing the compartmental quantities over time [Godfrey,

1983; Jacquez, 1996]:

dqi(t)

dt
= −f0i(t)qi(t) +

∑

j 6=i

fij(t)qj(t)−
∑

i6=j

fji(t)qi(t) + Ii(t) (3.1)

where qi is the quantity of material in compartment i, fij is the flow of material to

compartment i from compartment j and the subscript 0 indicates exchange with the

system environment; Ii is the rate at which the material enters compartment i. All the

functions f in the above equation can be either linear or nonlinear, depending on the

process modelled. Due to physical properties of biological systems in question, and the

mass-balance principles evoked, a compartmental model inherits several key features of

positivity that are important when validating the model; namely qi(t) ≥ 0, fij(t) ≥ 0

and Ii(t) ≥ 0 for all t > 0.

Whilst the representation of the modelled system shown in equation 3.1 is used

through out this work, alternative forms are used. When referring to general functional

form of a model, without the need for specific structure, the system may be expressed

as:

q̇(t, p) = f(q(t, p), u(t), p, t), (3.2)

y(t, p) = h(q(t, p), p),

q(0) = q0(p),
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where q(t) is the state variable vector ([q1(t) q2(t) ... qn(t)]T ) and p a vector of model

parameters; u(t) defines the input vectors. However, it is often necessary to refer to

the elements relating to the model structure without defining the full differential form

(as in equation 3.1), in which case a state-space representation can be defined as:

q̇(t, p) = A(q(t, p), p, t)q(t) + B(p)u(t), (3.3)

y(t) = C(p)q(t, p),

q(0) = q0(p),

where A(.) is the system matrix relating the movement of material between compart-

ments; B(p) the input gain matrix and C(p) the observation matrix describing which

compartments are measured by the specific experiment. In the general state-space

definition it is possible that the matrices (A, B and C) may depend on the system

states, parameter vector and time; however, for the systems studied in this work a

more restrictive structure is used: the matrices B and C are strictly linear with simple

scalar elements representing input and output gain, but the system matrix (A) may

be nonlinear and non-autonomous, depending on both the system states and time in

addition to the parameter vector.

3.2 Model validation

The purpose of constructing a model to predict the real system response to new inputs

(e.g. medical treatments) or environmental conditions (e.g. patient health) and elicit

information regarding the current state of the system (e.g. the patient); however prior

to evaluating these scenarios it is necessary to validate the model: that is, does the

model adequately describe the real system for the intended purpose. For the case of

treating patients in a clinical setting this involves comparing the model’s output to

samples taken, from a single patient, during a known procedure or treatment. In order

to compare the output with the data, the model must first be initialised with values

for the internal parameters (e.g. initial conditions, transfer co-efficients, etc). Whilst it

may be possible to obtain some of these from the literature, or previous experiments,

this may not always the case. In addition, there will be significant variation in the
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parameter values for the same patient on different days, with different conditions, and

between patients undergoing the same treatment.

It is therefore necessary to perform parameter estimation during model validation,

this is often referred to as the ‘inverse problem’ [Bard, 1974; Jacquez, 1996], in which the

parameters of the model are modified to allow the output of the model to closely match

the real system output. In addition to allowing validation the parameter estimation

process can offer insight into how different treatments affect the underlying process

and gain knowledge on how intra and inter-patient variation may alter the impact of

a specific treatment.

Prior to performing the parameter estimation, two important questions must be

answered:

• Is it possible to estimate the model parameters given the observations available?

This can be addressed analytically by a field of research referred to as Structural,

or A priori, Identifiability [Bellman and Aström, 1970; Jacquez, 1996; Walter,

1982].

• If the parameters are, in theory, identifiable does the experiment accuracy and

observations made allow the parameters to be reliably estimated in practice?

The system outputs response to perturbations in key parameters can be used to

investigate this issue, a field of study referred to as Sensitivity Analysis [Tomovic

and Vukobratovic, 1972; Vajda et al., 1985].

3.2.1 Structural identifiability

The structural identifiability of a model can be categorised through the following defi-

nition.

Definition 3.2.1. Given a system (as defined in eqns (3.3)), an ideal measurement

of the output (y(t)) and known input functions (u(t)) and a parameter vector p, the

system can be either:

• Globally Identifiable (S.G.I), if for all values of p, the input-output behaviour

(defined by eqn. (3.3)) of the system uniquely determines p.
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• Locally Identifiable (S.L.I), if there is a countable set of values for p that give the

same output behaviour.

• Unidentifiable, if there is an uncountably infinite set of values for p that give rise

to the same observed output.

For a formal mathematical definition of identifiability see Chapman and Godfrey

[1996] or Evans et al. [2002]. An extension to structurally identifiability is that of struc-

tural indistinguishability. That is whether two model structures are indistinguishable

in terms of the observable input-output behaviour [Chapman and Godfrey, 1996; Evans

et al., 2004; Godfrey and Chapman, 1989]. This is not an issue for the models presented

in this work due to their uniqueness with no opposing theoretical structures.

Several analytical methods are available for performing identifiability analysis de-

pending on whether the model is linear or nonlinear [Chappell et al., 1990; Jacquez,

1996; Walter, 1982]:

• Transfer Function Approach, often referred to the Laplace Transform Approach.

(linear systems only)

• Similarity Transform Method (linear and nonlinear systems).

• Taylor Series, (linear and nonlinear)

• Differential Algebra, (linear and nonlinear).

Approaches based on the latter two methods (Taylor series and Differential Alge-

bra) are used in this work due to their applicability to both linear and nonlinear models.

In addition, the methods are either simple to implement in standard computer algebra

systems, or have reliable implementations freely available.

Taylor Series approach

The Taylor series approach [Pohjanpalo, 1978] to identifiability relies on the Taylor

series expansion of the observation/output of the system. The output (y(t, p), from

equation 3.3) can be expanded as a Taylor series about a known time point (e.g. t = 0):
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y(t, p) = y(0, p) + y(1)(0, p)t + ... + y(n)(0, p)
tn

n!
+ ... (3.4)

where

y(n)(0, p) = dn

dtn
y(0, p). (3.5)

As the coefficients of the Taylor series are, in principle measurable and unique, given

two parameter vectors p and p̄ then if y(t, p) = y(t, p̄) it must be the case that

yn(0, p) = yn(0, p̄) n ≥ 0 (3.6)

y(0) = y.

Thus yielding a set of simultaneous equations which can be solved for each of the

parameters pi in the vector p. The number of solutions to these equations determine

the categorisation of the system according to definition 3.2.1.

Difficulties arise with the Taylor series approach when determining how many co-

efficients of the expansion are necessary to determine the identifiability of the parame-

ters. Upper bounds have been found for specific system [Chappell et al., 1999] (where

n is the dimension of the state vector q):

• 2n− 1, for linear systems.

• 22n − 1, for bilinear systems

• (q2n − 1)/(q − 1), for nonlinear systems of homogeneous polynomial form (q is

the degree of the polynomial).

However, in general an upper limit is not available. Due to this fact the Taylor series

method can prove difficult in determining if a system is unidentifiable. Calculation

of the derivative terms in equation (3.4) becomes increasingly difficult, it is therefore

sensible to use computer algebra systems, e.g. MATHEMATICA [Wolfram, 1999] and

MAPLE [Heal et al., 1998], in their calculation.

Differential Algebra methods

Differential Algebra techniques [Diop and Fliess, 1991; Margaria et al., 2001; Saccomani

et al., 2001] attempt to redefine the system equations, through algebraic manipulation
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into an input-output relationship, e.g. a function depending only on the known output

and input functions. Through elimination theory, presented originally in work on

differential algebra by Ritt [1950], a characteristic set is generated, which is a finite set

of differential equations with the same solution set as the original system, from which

the identifiability of the parameter vector (p) can be determined [Saccomani et al.,

2002]. To generate the characteristic set, a set of differential polynomials is formed

directly from the system equations:

q̇(p) − f(q, u, p), (3.7)

y − h(q, p).

Then given a ranking, that specifies the elimination precedents of the indeterminates,

it is possible from this differential ideal generated by the differential polynomials to

derive an input-output map (g(.)) for the system can be created. This map will only

contain terms of the measured variables and known inputs, associated derivatives and

the parameter vector (p); thus eliminating the unknown states (qi(t)). As with the

Taylor series approach, given perfect data the derivatives of y(t) and u(t) are in theory

calculable [Margaria et al., 2001]. It is therefore possible to set up a replica input-

output function instantiated with an alternative parameterisation (p̄), e.g.

g(y, ..., yn, u, ..., un, p) = g(y, ..., yn, u, ..., un, p̄), (3.8)

if these functions are linearly independent their co-efficients can be equated to deter-

mine the parameter identifiability in accordance with definition 3.2.1.

Implementation of the Differential Algebra method is a non-trivial computational

mathematical problem; fortunately it is freely available in two software packages:

Bellu et al. [2007] have created a software module, called Daisy, that runs in the RE-

DUCE [Hearn, 1995] algebraic tool; an alternative implementation, DiffAlg [Hubert,

2005], is available as a module for MAPLE [Heal et al., 1998]. It must be noted that

the elimination procedure is a computationally expensive procedure and as such both

of these software tools can encounter difficulties when generating the characteristic set

from the system equations, and with complex systems may fail to return a result.
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3.2.2 Numerical sensitivity

Once a model has been confirmed to be S.G.I (or restricted to a unique subset in the case

of S.L.I parameters) it must be determined whether the system output is sensitive to

perturbations of the parameter set (at a nominal value) in order to influence the output.

If the parameter does not impact on the output significantly parameter estimates will

not be found reliably during the parameter estimation procedure (see section 3.2.3).

It is therefore important to determine the system sensitivity to each parameter to be

estimated.

If an analytical solution to the system of differential equations is available then it

may be possible to obtain an expression to determine the amount the solution changes

with respect to the parameter directly; unfortunately, this is rarely possible in complex

systems. An alternative approach is to perform the sensitivity analysis manually by

modifying a singe parameter from its initial value, performing a simulation and com-

paring changes in the simulated output and rejecting those parameters that do not

have an observable influence. Depending on the model complexity and the number of

parameters to be estimated, this can be an error-prone and time-consuming process.

A automated numerical approach is suggested by Vajda et al. [1985].

In order to determine the sensitivity of the output to the input parameters, a matrix

is created of changes in the normalised output values to changes in the parameters at

each observation time point. For a multi-output system at n time points,

S = [S1 ... Sn]T (3.9)

with the submatrices (Si) describing the effects at time point i defined as

Si =
∂ ln(yji)

∂ ln(pk)
(3.10)

where yji is the observed compartment j at time i and pk the kth parameter of pa-

rameter vector p. Natural logs are used to non-dimensionalise the values and allow

comparison of parameters of different units. The partial derivatives of the S matrix

can be generated from finite differencing methods [Chapra and Canale, 2002] or through

the application of the chain-rule to the above system to define the ‘forward sensitivity

equations’ [Tomovic and Vukobratovic, 1972] which can be solved interactively during
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the simulation of the system.

Principal component analysis is then performed on the square of the sensitivity

matrix, which approximates the sum of squares response of the output to changes in

the parameters [Vajda et al., 1985]. If singular value decomposition is used the matrix

can be deconstructed into orthogonal components

V = ST S = UΣUT (3.11)

where U is a matrix of orthonormal eigenvectors and Σ contains the ‘singular values’

of the matrix. The square of the singular values are equal to the eigenvalues of V . The

magnitude of the eigenvalues relate to the influence a parameter has on the principal

axis, or ultimately, changes in the output response y(t). Vajda et al. [1985] suggest

parameters with eigenvector components in U with magnitudes less > 0.2 should be

considered for rejection from the parameter estimation procedure, as this relates to

less than 4% change in the sum of squares of the output. This can be implemented

in standard computer tools, however it is handled automatically in the parameter

estimation software used for the work presented in this thesis.

3.2.3 Parameter estimation

Parameter estimation of compartmental models is commonly performed by a least-

squares process, using a distance metric (χ2 in the example below) between the simu-

lated output and the observed, or measured, response, with respect to the estimated

parameter values. In a multi output system this can be represented as

p0 = arg min
p

χ2(p), (3.12)

χ2(p) ≡
∑

j

∑

i

(

ŷji − yj(ti, p)

σj

)2

, (3.13)

where p is the vector of parameter to be fitted, p0 the values at the minimum, yj is the

simulated output of compartment j at time ti, ŷji the measured output of appropriate

compartment and time samples point, and σj the standard error in the measurement.

When dealing with in vivo measurements the observations available will be a noisy,
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sparse, unevenly sampled time series of measurements from patients undergoing treat-

ment.

3.2.4 Parameter estimation tools

It is possible to develop the above validation procedures in customised software; how-

ever, there are a plethora of pre-built tools designed specifically for this purpose. Two

such tools that are predominately aimed at compartmental modelling are: Berkeley

Madonna [Oster, 2009] and Facsimile [M.C.P.A, 2009]. Berkeley Madonna is a use-

ful prototyping tool, allowing quick model construction and feasibility studies to be

performed. Facsimile is a robust modelling environment with excellent parameter es-

timation facilities. Facsimile performs statistical analysis during the parameter fitting

process and will reject parameters in accordance with their sensitivity (as defined in

section 3.2.2), ensuring numerical validity in the choice of parameters and initial val-

ues. Unless otherwise stated, any parameter estimates given in this work were obtained

using Facsimile. The variance of parameter estimates are given as the standard devia-

tion of the log of the parameter (SDLN), this can viewed as an approximation to the

coefficient of variation (CoV) for the parameter estimated [Bland and Altman, 1996].

3.3 Summary

Compartmental modelling provides a framework under which physiological and kinetic

models can be described and analysed. In addition, due to the depth of research in this

field, techniques to assist in model validation are well known, documented and often

pre-built into available modelling tools. The approach identified above is used on all

clinical models developed in later chapters. For each model three key stages are ad-

dressed: firstly, identification of potential compartments, inputs, outputs and transfer

co-efficients from reviewing the available literature or discussion with clinical experts;

secondly, the model and experiment is validated using identifiability analysis to ensure

the parameters required can theoretically be determined by the measurements; finally,

parameter estimation with sensitivity analysis is employed to obtain appropriate pa-

rameter values. Once this is complete the model can be used to investigate alternative
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treatment scenarios, or investigate unmeasured patient responses.

In the next chapter compartmental models, and mathematical analysis, are used to

investigate the in vivo kinetics of an immunoglobulin sub-complex, namely Free Light

Chains, in patients with Multiple Myeloma. This investigation allows information

to be obtained regarding the underlying disease, the effectiveness of treatment and

the possibility of improving the patient’s condition through alternative therapies or

medication.



Chapter 4

Free-Light Chain clearance through

haemodialysis

Haemodialysis is the removal of substances from the blood through an extracorporeal

semi-permeable membrane. The first dialyser, or ‘artificial kidney’, was developed in

1913 [Abel et al., 1914], this was a proto-type system tested on animals with reduced

renal function. It was not until 1943 that haemodialysis was used in a clinical setting

on patients with kidney failure, initially with limited success [Kolff, 2002]. However,

its use is now ubiquitous with regard to patients with renal failure and kidney damage.

Haemodialysis is conventionally used to remove waste products (e.g. urea, creati-

nine, potassium) from a patient’s blood and ensure appropriate fluid levels are main-

tained. In order to determine efficacy of treatment and predict the required dose,

mathematical models have been developed. These models focus upon urea, which is

a waste product that is created when the body metabolises proteins. It is passed by

kidneys and cleared by the dialysis and is an indicator of renal and dialyser perfor-

mance [Gotch, 2001; Sargent and Gotch, 1996]. Although urea is not toxic it is used

as a marker for dialysis efficiency as it is simple to measure, high in concentration in

patients with reduced kidney function and has been linked, statistically, with patients’

outcome in terms of dialysis dose [Tattersall, 2005].

The first mathematical models to describe urea haemodialysis were single pool

models, in which a single compartment represented the total urea in the body, with

first order removal representing dialysis clearance and constant (level) input for urea

36
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production [Gotch, 2001]. Calculations and estimates from the single model are rou-

tinely used during clinical treatment; however, it has been found that with increasingly

effective clearance mechanisms the single pool kinetics are insufficient and can result in

serious over-estimation of dialyser efficiency and patient fluid levels [Daugirdas et al.,

1999; Vanholder et al., 1996]. The errors present are due to the ability of urea to pass

through the cell membrane, the kinetics of which are slower than that of dialyser clear-

ance, resulting in disequilibrium of concentration across the cell wall. This inbalance

is quickly restored when the dialysis treatment stops (a process known as rebound);

this leads to an over-estimation of clearance and under estimation of the total toxins

remaining in the patient. To account for this, models have been developed with two

compartments (see Figure 4.1): the first representing the urea within plasma; the sec-

ond, urea concentrations within cells [Sargent and Gotch, 1996]. The kinetic exchange

between these two compartments is governed by the exchange of urea across the cell

wall.

Although the models defined for urea are useful indicators of the mechanism that

should be considered when modelling dialysis, they cannot be used directly for the

analysis of Free light chains (FLC); urea is a small molecule, with a molecular weight

(mw) of 60 Da, whereas FLC is considerably larger (mw 24-48 kDa) [Fielding, 2002,

p. 184], and as such it will not be removed as readily by standard dialysis filters.

β2-microglobulin (B2M) is a middle-molecule of similar dimensions to FLC (mw 11.8

kDa) that has been modelled during dialysis [Gotch et al., 1989; Leypoldt, 2005; Ley-

poldt et al., 1997; Ward et al., 2006]. However, as it was found that high levels of

B2M build-up during dialysis are highly correlated to patient morbidity during treat-

ment [Winchester et al., 2003] mathematical models have been developed to simulate

middle-molecule removal in haemodialysis.

As with urea, single-pool models were considered to describe B2M but it has been

found [Leypoldt et al., 1997], through measurement of B2M in the blood and dialysate

fluids across the dialyser, that a single pool model was inadequate in predicting dialyser

clearance and once again a two-compartment model produced more accurate results.

An example of a two compartment B2M dialysis model can be seen in Figure 4.1. The

two pools are given the names of perfuse (when a region of the body has direct access to

a blood supply) or non-perfuse (when the blood supply is not accessible from a region).
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Unfortunately there are contradictions as to what these pools represent, anatomically.

Leypoldt et al. [2003] refer to them as intracellular (perfuse) and extracellular (non-

perfuse) while others [Gotch and Keen, 2005; Ward et al., 2006] describe the volumes

of distribution as plasma and interstitial fluid. This distinction is important as it

determines the transport mechanism defined by the intercompartmental transfer: if

the boundary is intra/extracellular it is the cell membrane, whilst plasma/interstitial

fluid would denote transfer across the plasma membrane. This confusion leads to

differences in the input function (i.e. generation rate of B2M) and whether the B2M

is created directly into the perfuse, non-perfuse or into both compartments. Further,

this B2M model ignores renal clearance which if present, even when severally limited

in function, could greatly affect the reported efficiency of the dialysis clearance.

Gnp

knr

Cp

Vp

Cnp

Vnp

kIC

Js

Jv

Gp

Figure 4.1: Schematic representation of Gotch β2-microglobulin model [Gotch et al., 1989].

Reproduced from Leypoldt et al. [2003] with permission of the copyright owner. P - Perfuse

pool, NP - non-perfuse pool, C - B2M concentration, V - apparent volume of the pool, Jv -

volume removal from dialysis, Js - solute removal from dialysis, KIC - intercompartmental

transfer, KNR - non-renal clearance and G the generation rate of B2M.

Although B2M and FLC are of comparable sizes they are believed to have different

in vivo kinetics [Waldman and Strober, 1969] and as such require new models to be

constructed; however, the structure of the B2M models can be considered as a starting

point from which to build upon.

FLC offers clinicians different treatment options in addition to dialysis, namely

the use of chemotherapy treatments. Therefore in the first section of this chapter the

effects of chemotherapy on FLC concentration without the influence of haemodialysis
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are investigated; after which an FLC model will be described and its application to

comparison of therapeutic regimes to determine the treatment’s effectiveness in the

presence of Free Light-Chain secreting tumours. This model is then used de novo, to

determine the impact of using different apheresis and chemotherapy regimes on a single

patient, and ultimately to assess the adequacy and benefits of the treatment.

4.1 Patient response to chemotherapy

As previously stated in Chapter 2 a range of treatments are available for patients with

Multiple Myeloma (MM). Whilst it is possible to treat some patients with apheresis,

this is an experimental therapy and as such is only used in the clinical trial described in

detail in Section 4.2. The standard procedure for MM patients, irrespective of the type

(e.g. FLC, Intact secreting) is to use combined chemotherapy. In Mead et al. [2006]

the first few cycles of chemotherapy, often referred to as induction chemotherapy, were

monitored. Whilst all patients had tumours producing intact immunoglobulin, only

FLC were observed due to their shorter half-life; as such they are a better indicator of

the effects of chemotherapy than measuring whole immunoglobulin. Data from patients

receiving three different chemotherapy drug combinations were monitored:

• Vincristine, Doxorubicin plus Dexamethasone (VAD): eight patients.

• Melphalan and Prednisone (MP): five patients.

• Thalidomide plus Dexamethasone (CTD): five patients.

Patients were monitored over an extended period to observe their response to the

treatments. Measurements of FLC in plasma were taken periodically at between 0,

4, 8 and 21 months; occasionally, if the patient was re-admitted to hospital between

these key periods further measurements were often available. From this minimal set

of measurements, clinicians wished to determine the relationship between a particular

chemotherapy treatment and tumour kill, and ultimately, patient health. An example

of the data available can be seen in Figure 4.2.

The patient’s clinical response is analysed by the treating physician and is a medical

assessment of the patient’s conditions. Whilst this is an unquantified measurement it
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Figure 4.2: Typical data available for the chemotherapy treatment comparison.

is an indicator of the effect of the treatment, and in general it would be expected

that analytical results should correlate well with this assessment. Clinical response

is estimated through various non-invasive measurements, for example, observation of

heart-rate, oxygenation, mobility, patient responsiveness, which are incorporated by

clinicians in a general diagnosis. This is discussed further in Section 4.1.2.

4.1.1 Single compartment model

To assist in this analysis a mathematical model is beneficial to determine tumour kill

and baseline processes, such as natural clearance and production of FLC. Due to the

period and availability of observations, a simple one compartment model is used. This

can be described by a single ordinary differential equation

ċ(t) = −k0 c(t) + f

c(0) = c0

(4.1)

where c(t) represents the concentration of FLC within the patient, k0 the natural

clearance of FLC and f the synthesis of healthy FLC, which is assumed to be con-

stant [Bradwell et al., 2005, ch. 3].

A clinical measure that is often used in assessing the treatment effectiveness is the

time taken for the plasma concentration to reach half the initial concentration. This

is an indicator of both effectiveness and the speed of response of the chemotherapy.

However, with the minimal measurements normally available it is difficult to estimate
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the point at which the biological half-life has occurred. Fortunately, with this simple

linear model, an analytical solution can be obtained from which the apparent half-life

(τ 1
2
) of FLC in the patient can be estimated:

τ 1
2

=
1

k0

ln

(

2(f − k0 c0)

2f − k0 c0

)

(4.2)

The vector of parameters to be estimated is p = (c(0), k0, f)T . Using the Taylor

series method (as described in Section 3.2.1), it can be shown that all parameters are

uniquely determined from the observation of concentration of FLC in the patient (c(t)).

Due to the simplicity of the model the identifiability analysis can be performed by hand.

Given the model defined above (eq. 4.1), the first three Taylor series coefficients of the

observation are given by:

y(t, p) = c(t)

y(0, p) = c(0)

y′(0, p) = −k0 c(0) + f

y′′(0, p) = −k0 (−k0 c(0) + f)

(4.3)

An alternative vector (φ = (φ1, φ2, φ3)
T ) of observable parameter combinations can

be generated directly from these equations:

φ1 = c(0)

φ2 = −k0 φ1 + f

φ3 = −k0 φ2

(4.4)

The initial conditionsc(0) is clearly identifiable from φ1, and the clearance k0 is iden-

tifiable from φ3. Finally, it is evident from the φ2, that if k0 and c(0) are globally

identifiable f is also. In subsequent identifiability analyses only the results will be

presented; however, the analysis and code listings, when symbolic packages have been

used, can be found in Appendix A.
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4.1.2 Results

The model (eqn. 4.1) was fitted to the data gathered for all eighteen patients. Examples

of the simulation results can be seen in Figure 4.3; for brevity only four patients are

shown (4, 7, 10 and 11); the other patient data and fits displayed similar behaviour.
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Figure 4.3: Estimated results for four induction chemotherapy patients.

Facsimile was used to estimate the natural clearance k0, baseline synthesis reached

(f) and the initial concentration of FLC (c(0)) when the patient was presented for

treatment. It should be noted that although the initial concentration is measured, to

assume that it is equal to the measured value would neglect the possible error present

in the measurement. Unsurprisingly, in all cases the estimated parameter was very

close to the measured value. The results of the parameter estimation can be seen in

Table 4.1.

The model described and results obtained allow clinicians to easily compare the

different chemotherapy drug combinations. The results of the study are succinctly

stated by Mead et al. [2006]:

“Patients showed slower FLC reductions with MP treatment than with reg-

imens containing Dexamethasone. The extent of SFLC [Serum Free Light-
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Table 4.1: Estimates for patient parameters from single pool model, with associated standard

deviation of the natural log (SDLN). To aid in interpretation, the SDLN (shown in brackets)

can be viewed as an approximation to the coefficient of variation for the parameter [Bland and

Altman, 1996]. NWD - not well determined, indicates the parameter could not be estimated

from the given model against the supplied data. N/A - not applicable as the patient did not

reach the desired 50% reduction in FLC concentration within 21 months.

Patient τ 1
2

f k01 c(0) Drug

(days) (mg L−1 day−1) (day−1) (mg L−1) Type

1 0.16 1.68E+02(0.09) 8.21E+00(NWD) 6.20E+01(0.12) VAD

2 25.18 6.46E+00(0.33) 4.76E-02(0.41) 4.77E+02(0.26) MP

3 0.33 7.14E+01(0.26) 4.27E+00(NWD) 4.84E+01(0.44) VAD

4 2.54 4.09E-03(NWD) 2.72E-01(0.06) 3.17E+02(0.36) CTD

5 1.05 1.26E+03(0.50) 7.50E-01(0.18) 1.97E+04(0.05) CTD

6 4.06 3.56E+00(0.75) 1.97E-01(0.73) 1.93E+02(0.17) VAD

7 5.05 1.17E+00(0.46) 1.40E-01(0.11) 5.64E+02(0.08) VAD

8 15.10 1.01E+00(0.66) 7.54E-02(0.44) 5.08E+01(0.04) VAD

9 3.97 2.01E+01(NWD) 1.11E+00(0.11) 3.68E+01(0.43) VAD

10 1.31 7.86E+01(0.32) 5.66E-01(0.41) 2.93E+03(0.25) VAD

11 9.16 4.32E+02(0.45) 1.42E-01(0.37) 9.65E+03(0.13) CTD

12 N/A 8.16E+00(0.68) 2.24E-01(0.68) 4.53E+01(0.28) CTD

13 N/A 1.45E+00(0.35) 1.70E-02(0.03) 1.57E+02(0.22) MP

14 N/A 1.59E+03(NWD) 1.67E+00(0.08) 1.71E+03(0.12) MP

15 N/A 1.93E+04(0.15) 8.08E+00(NWD) 3.50E+03(0.09) CTD

16 N/A 4.74E-01(0.31) 3.47E-02(0.17) 1.69E+01(0.15) VAD

17 N/A 9.61E+02(0.30) 2.95E-01(0.37) 5.50E+03(0.10) MP

18 N/A 4.12E+00(0.05) 1.63E-01(0.47) 1.97E+01(0.01) MP
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Chains.] response was generally predictive of the final clinical assessment at

3 months and this may help to separate non responders from good respon-

ders as early as within 1 month of starting therapy. This may represent

an important observation in the treatment of Myeloma and is now being

assessed in a larger cohort study.”

This can be clearly seen in Table 4.1, with only a single Melphalan and Prednisone

patient achieving a 50% reduction in serum FLC in the twenty one month observation

period; the time taken for this patient is at least an order of magnitude greater than

the majority of patients reaching a half-life reduction. From these results it is unlikely

that this would be down to either high initial concentrations in plasma, or low clear-

ance rates, as greater extremes are seen in several patients undergoing VAD and CTD

treatments. However, whilst Dexamethasone is clearly beneficial for these patients, it

is unclear from the results which combination would be preferable, with Thalidomide

or Vincristine and Doxorubicin showing similar outcomes.

4.1.3 Discussion of chemotherapy results

The above method shows how even a simple model can be extremely beneficial in

categorising patient response, allowing analysis and comparison of drug treatments.

To the author’s knowledge this is the first time the chemotherapy treatments for FLC

have been analysed with respect to patients’ response; prior to this the treatment used

was driven solely by previous clinical experience. The above process, whilst simple to

understand is by no means ideal and has several flaws which should be addressed if

it is to be considered for further treatment studies. The model relies on several key

assumptions:

• Instant, and consistent, chemotherapy effects

It is assumed that the chemotherapy has an instant effect, reducing the tumourous

FLC synthesis to a baseline level that is then maintained over the treatment pe-

riod. Whilst over the timescales of months this may be the case, it is not uncom-

mon for patients to receive repeated chemotherapy due to a ‘relapse’ in tumour

synthesis. An example of this can be seen in Figure 4.3(d). The fifth measurement
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taken (at ≈ 47 days) shows a marked increase over the previous measurement,

which is maintained in subsequent measurements. This is due to the patient hav-

ing an additional set of chemotherapy treatments during this period, indicating

that an exponential decay to a baseline can be an oversimplification.

• Constant clearance

The clearance of FLC in the above model is assumed to be constant. Whilst it is

believed that natural clearance is linear, apheresis is used in order to augment this

catabolism. This is evident from some of the results obtained; with reference to

Table 4.1, patients 1, 3 and 15 all have high clearance rates, an order of magnitude

greater than the mean value1 (mean of k0 = 0.22 day−1). This is due to these

patients having apheresis, specifically plasma exchange, during early stages of

the treatment regime, resulting in a clearance that is dependent on time, i.e. it

is at natural clearance when the patient was not receiving plasma exchange but

elevated to an increased value when plasma exchange was performed.

• Single pool kinetics

For the model described it is assumed that the kinetics are described adequately

by a single pool, which is equally impacted by both clearance and synthesis in

equal measure. Whilst this may be appropriate over the time periods considered

in the above treatment, it is known that FLC travel freely between the vascular

and intravascular spaces within the body via the plasma membrane [Waldman

and Strober, 1969]. As such a two-compartment model, as seen for B2M models,

would be more applicable when analysising the kinetics of treatment.

The validity of the assumptions noted is vital to the accuracy of the analysis con-

ducted. A patient response that does not adhere to the assumptions could easily allow

misclassification of the patient’s conditions with regard to long term recovery. There-

fore, by more realistic modelling of the kinetics and treatment an improved classification

may be obtained. In addition, features of the treatment may be revealed that were not

apparent in the simple model described by equation (4.1). As such, the effectiveness of

chemotherapy and its impact upon the underlying antibody synthesis will be discussed

1The mean value excluding parameters sets not well determined by the data.
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further in Chapters 5 and 7. The remainder of this chapter will focus on adaptations

of this model to deal with non-constant clearance, due to clinical intervention in the

form of apheresis.

4.2 Two compartment FLC model

As seen in the previous section, the standard treatment for patients with Multiple

Myeloma is to use chemotherapy drug combinations to ‘kill’ the tumour, relying on

the patient’s natural clearance to reduce the dangerously high concentrations of FLC

in plasma. However, as described in Chapter 2, the majority of clearance of FLC

is through the renal path, which for most FLC Multiple Myeloma patients has been

severely compromised, and is usually reduced to zero, due the destruction of nephrons

from FLC cysts [Hutchison et al., 2007]. In order to increase clearance, plasma ex-

change has been proposed, but after several studies this continues to be a controversial

treatment [Leung et al., 2008]. Recently, an alternative treatment using highly porous,

or ‘protein leaking’, dialysis filters has been tested [Bradwell et al., 2005]. These are

filters with pores of sufficient dimensions to allow FLC proteins to be more readily

cleared through the membrane. As patients with high-levels of FLC are already receiv-

ing haemodialysis to clear urea the use of dialysis filters to also remove FLC has the

added benefit of working in conjunction with existing treatments. In a study by Evans

et al. [2006] a two-compartment model was created and using parameter values gained

from in vitro measurements, simulations were conducted to initially evaluate the indi-

vidual effects of plasma exchange and haemodialysis for FLC patients. A schematic

for this model can been seen in Figure 4.4.

As in the B2M model, Figure 4.1, the FLC model contains two compartments;

rather than the abstract perfuse and non-perfuse separation of pools, the compartments

represent more anatomically recognisable regions. The first compartment represents

FLC in the plasma (q1); the second, for FLC that exist outside of the plasma space,

an area described as extravascular fluid. The rate constant k21 describes the flow of

FLC across the capillary walls from plasma to extravascular fluid (EVF); k12 is the

flow in the reverse direction. From equilibrium conditions k12 can be derived from

k21 and compartmental volume ratios (k12 = (v1/v2)k21) [Jacquez, 1996]. The rate
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Figure 4.4: The FLC model [Evans et al., 2006]. Compartment 1 - FLC in plasma; com-

partment 2 - FLC in extravascular fluid; ka - aphereis clearance; kre - reticuloendothelial

clearance; k01 natural renal clearance; k12 and k21 exchange across the plasma membrane;

f(t) synthesis of FLC.

constant kre corresponds to the rate of the removal of FLC from plasma and EVF via

the reticuloendothelial system (see Chapter 2). It is calculated from the half-life values

of FLC when the patient has no natural renal clearance. k01 estimates the rate of FLC

removal via the urinary tract. It is provided here for completeness as in all patients

considered, the renal function is negligible and therefore under these circumstances

k01 = 0. ka is the rate of removal of FLC via apheresis, which is controlled by the

time-varying function

ka(t) =







0 t /∈ [τsi, τei]

ka t ∈ [τsi, τei]
. (4.5)

τsi and τei are the start and end times of the ith apheresis treatment. A description of

the model parameters and related units can be found in Table 4.2.

By using mass-balance principles a system of equations can be derived from the

compartmental schematic in Figure 4.4:

q̇1(t) = −(k21 + kre + k01 + ka)q1(t) + k12q2(t) + f(t)

q̇2(t) = k21q1(t)− (kre + k12)q2(t)

q1(0) = q10

q2(0) = q20

(4.6)
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Table 4.2: FLC model parameter description.

Parameter Description (Units)

q1(t) Quantity of FLC in plasma (mg)

q2(t) Quantity of in EVF (mg)

c1(t) Concentration of FLC in plasma (mg/L)

c2(t) Concentration of FLC in EVF (mg/L)

f(t) FLC synthesis (mg/min).

k21 Transfer rate constant from plasma to EVF (min−1)

k12 Transfer rate constant from EVF to plasma (min−1)

kre Reticuloendothelial clearance (min−1)

k01 Normal renal clearance of FLC-Kappa (min−1)

v1 Apparent plasma volume (L)

v2 Apparent EVF volume (L)

ka Apheresis clearance rate constant (min−1)

kd Haemodialysis clearance rate constant (min−1)

kp Plasma exchange clearance rate constant (min−1)

where q1(t) and q2(t) are the quantities of FLC in plasma and EVF respectively and

f(t) is the generation of new FLC proteins; all other rate constants are as defined

previously (see Table 4.2).

During treatment clinicians are able to take periodic blood samples from the pa-

tient, from which the concentration (mg/L) of FLC can be measured using immunoas-

says. If it is assumed that the assay is able to measure 100% of the FLC in the sample,

the following output structure can then be assumed:

y1(t) =
q1(t)

v1

(4.7)

In order to solve equations (4.6) an initial value problem can be constructed if the

initial conditions of the compartments are known. As it is impossible to measure the

concentration of the FLC in EVF fluid assumptions must be made to overcome this.

As with all biological processes the generation of FLC via the tumourous plasma cells is

bounded. Due to the nature of cancerous cells, growth is prohibited by the availability
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of resource; in the case of Multiple Myeloma this is believed to be predominantly down

to limited space for the cancerous cells to grow within the bone-marrow [Bataille, 1996].

Patients with Multiple Myeloma are difficult to diagnose, therefore the disease is usually

in a state of equilibrium, where the synthesis has reached a constant maximum value;

therefore, without the initiation of chemotherapy or apheresis the concentration across

the plasma membrane should have had sufficient time to equilibrate. As such the initial

concentrations in plasma and the EVF space can be considered equal. Thus the initial

conditions for equations (4.6) are therefore

q1(0) = c1(0)v1

q2(0) = c2(0)v2

(4.8)

The steady-state assumption prior to treatment was validated against available

patient data. Prior to treatment plasma samples were taken of several patients and the

FLC concentration calculated. Over a 3-4 day period it was seen that the concentration

levels in plasma remained constant, to within ±10% which is within the measurement

error.

Identifiability analysis

It can be shown (see Appendix A.1.1) that given two unknown parameter vectors, p1

when the patient is off dialysis and p2 during dialysis,

p1 = (kre, k21, q1(0), q2(0), f, v1, v2)
T ,

p2 = (ka, kre, k21, q1(0), q2(0), f, v1, v2)
T ,

(4.9)

the above model (eqn. 4.6) is SGI only if the parameter kre and EVF volume are

known. As in the model description the rate of reticuloendothelial clearance can be

approximated from the half-life and the EVF volume can be estimated from the plasma

volume of the patient, v2 ≈ 3 v1 [Malesker and Morrow, 2007], resulting in a globally

identifiable parameter vector pf = (ka, k21, q10, q20, f, v1)
T .

If plasma samples are taken during the dialytic period only the parameters v1 and

q2(0) become unidentifiable; however, the plasma volume v1 can be estimated from the
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patient’s weight (v1 =8% of body weight in kilograms [Malesker and Morrow, 2007])

and if it is assumed the patient is in steady-state prior to treatment (t < 0) the quantity

of FLC in the EVF compartment and the synthesis rate can be calculated from

q2(0) =
k21q1(0)

(kre + k12)
,

f(0) =
(k21(ka + kre) + kre(k12 + ka + kre))q1(0)

(kre + k12)
.

(4.10)

4.2.1 Apheresis analysis

Once the model has been validated and parameter estimates obtained for the model, it

is possible to investigate clinical questions regarding optimal treatment, for example:

• Which treatment modality (plasma exchange or haemodialysis) is ‘best’ for FLC

patients?

• Which of the available dialysis filters is best at clearing FLC?

• Is there a difference in the removal of FLC-Kappa or FLC-Lambda variants of

Free Light Chains?

• What is the impact of apheresis in conjunction with chemotherapy?

• Does the recovery of natural renal clearance during treatment significantly im-

prove recovery?

In order to answer the above questions the FLC model must first be initialised with

appropriate values for the model parameters. Fortunately, parameter estimates for the

FLC model were obtained through a study on the comparison of different dialysis

filters; this is described in the following section. The parameters obtained are then

used in a series of simulated experiments to answer the question listed above.

4.2.2 Comparison of filter manufacturers and FLC type

Dialysis filters are traditionally used for the removal of small molecular toxins (<

1000 Da) from a patient, e.g. urea. However, only three high-flux membranes with
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sufficient pore size to remove proteins the size of FLC (> 25 kDa) are currently avail-

able: BKF (Toray Industries Inc, Tokyo, Japan), HCO (Gambro Dialysatoren GmbH,

Hechingen, Germany) and Hi-Pres 18, (B. Braun Medical Ltd, Sheffield, UK). Al-

though each membrane has similar physical characteristics (e.g. pore size, average

number of pores, membrane thickness and length) due to the complexity of manufac-

ture and design it cannot be assumed that the filters will all behave identically in a

treatment scenario. It should be noted that manufacturers do perform in vivo tests to

determine filter clearance capabilities, but these are not yet available for FLC, only for

more common proteins e.g. urea, albumin [Toray, 2006].

To determine the filter clearance, four patients were tested with the three avail-

able membranes; three patients (DM, MF and VF) had the Kappa FLC Myeloma, the

other had the Lambda variant. During the dialysis session plasma samples were taken

to allow measurement of FLC concentration; in addition, one patient, due to complica-

tions, was monitored for a period post-dialysis, giving two off-dialysis measurements.

Example data sets can be seen in Figure 4.5.

Traditionally only pre- and post-dialysis measurements are taken and the percent-

age change in plasma concentrations compared as an indicator of total clearance and

filter efficiency. The results of comparing the percentage changing plasma concentra-

tion can be seen in Table 4.3. In this experiment FLC assays were used to measure the

concentration in plasma samples; the Coefficient of Variation (CV) has been estimated

to be 10% [Herzum et al., 2005]. With the exception of the Hi-Pres filters and FLC-

Lambda patient, in which the clearance was poor (a drop of only 7%), the remaining

combinations of filter and MM appear approximately equivalent. Given the magnitude

of the error estimates it is difficult to differentiate between the remaining filters and

MM types.

The FLC model was used to evaluate the clearance, inter-compartmental transfer

and synthesis of FLC in the same patients. The model was fitted to the time series

data provided to estimate the unknown parameters. Initial guesses for the parameters

were obtained from previous work conducted by Evans et al. [2006]. The longitudinal

data varied in number and frequency of samples, with between 6 and 10 measurements

per patient, generally taken every 30 minutes, with some missing data points. For

some patients, off-dialysis data measurements were available, but the simulation was
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Table 4.3: Percentage change in patient FLC levels, pre- and post-dialysis. The estimated

propagated error is shown assuming a CV of 10%.

Patient MM Type FLC Filter Type % Reduction in FLC (% Error)

DM Kappa HCO 32.17(12.5)

VF Kappa BKF 28.12(12.62)

VF Kappa Hi-PeS 23.5(12.8)

MF Lambda BKF 36.82(12.39)

MF Lambda Hi-PeS 7.3(13.66)

conducted over a full dialysis and interdialytic period. As most patients are on a daily

dialysis treatment, this involved a 24 hour simulation. However, in one patient the filter

was changed under the belief that is was clogged; as a clean filter was used this results

in an extra estimate for the Hi-Pres filter for one of the Kappa Myeloma patients (VF).

Two examples of the data set and corresponding simulation can be seen in Figure 4.5.
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(a) Patient DM - single six hour dialysis session with

two post dialysis measurements.
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(b) Patient VF - single three hours dialysis session with

a change of filter after thirty minutes incurring a thirty

minute period where the patient was measured but not

on dialysis; then two post dialysis measurements.

Figure 4.5: Patient data (dots) and simulation results for plasma (solid-line) and extravas-

cular fluid (dotted-line).

The results of the parameter fitting can be seen in Table 4.4. A clear distinction

can be seen between the clearance for the filters, with the Braun Hi-PeS’s performance

being much poorer than the Gambro HCO and Toray BKF membranes. In this limited

study, there appears to be no significant difference between the HCO and BKF filters
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used. This prediction fits in with clinical evaluations conducted regarding patient

health and recovery.

Table 4.4: Parameter estimates for FLC Model with different high-flux filters. The value in

brackets is the estimated standard deviation of the natural log of the parameters estimates.

Patient MM Filter k21 ka f c1(0)

Type Type min−1 min−1 mg min−1 g L−1

DM Kappa HCO 0.038(0.30) 0.015(0.10) 2.0(0.16) 0.6(0.05)

VF Kappa BKF 0.031(0.10) 0.011(0.06) 28.5(0.20) 9.5(0.03)

VF(i)* Kappa Hi-PeS 0.022(0.08) 0.009(0.07) 2.3(0.13) 7.5(0.05)

VF(ii)* Kappa Hi-PeS 0.022(0.18) 0.005(0.12) 2.3(0.13) 7.5(0.05)

MF Lambda BKF 0.021(0.11) 0.015(0.15) 23.3(0.34) 1.7(0.02)

MF Lambda Hi-PeS 0.053(0.21) 0.004(0.26) 4.1(0.3) 2.6(0.04)

* During the treatment, two filters were used, therefore clearance (ka)

is unique, but production (f), initial concentration (c1(0)) and inter-

compartment transfer (k21) are fitted simultaneously. See Figure 4.5(b) for

simulation results.

In addition to allowing the filters to be ranked in order of clearance rate this

analysis offers insight into the intercompartmental transfer dynamics during treatment.

The estimates for the intercompartmental rate constant (k21) can be seen for each

patient in Table 4.4, ranging from 0.022 to 0.053 min−1, showing little intra or inter-

patient variability; however, with reference to patients VF and MF using the BKF

filter there is some evidence of an increase between the FLC-Kappa and FLC-Lambda

intercompartmental transfer rate, as would be expected from the increased size of

Lambda.

The inter-compartmental transfer rate is a key factor in the total body clearance

during a dialysis session. This effect can be seen in Figures 4.5(a) and 4.5(b); in

each the EVF compartment, which is not directly accessible by the dialysis clearance,

is reduced, but at a much slower rate due to restriction by the limited transfer rate

(k21). The effect of this can also be seen when the patient is taken off dialysis. For a

period after dialysis the compartments equilibrate, resulting in a sharp increase in the
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plasma concentration due to the large difference in concentration between plasma and

EVF. The rate of change in each compartment slows as the concentration difference

is minimised. This phenomenon is seen in standard urea dialysis [Spiegel et al., 1995]

and is known as ‘rebound’ but it was unclear, until this analysis, whether it would

occur in middle-molecule clearance for the size of FLCs. The increase in FLC after the

rebound period has elapsed, as seen in Figure 4.5(a), is due to the production of new

FLC proteins.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time (mins)

N
or

m
al

is
ed

 p
la

sm
a 

F
LC

(a) Normalised plasma quantity (
q1(t)
q1(0)

).

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time (mins)

N
or

m
al

is
ed

 T
ot

al
 F

LC

(b) Normalised Total Quantity (
q1(t)+q2(t)
q1(0)+q2(0)

).

Figure 4.6: Comparison of increased filter clearance (ka), all values taken from patient DM

in Table 4.4. Solid-line DM fitted ka = 0.011 mins−1, dotted-line 2 ka, chained-line 4 ka and

dashed-line 8 ka.

The effects of intercompartmental transfer in addition to explaining post dialysis

rebound also have an impact upon the maximum clearance achieved by a dialysis

membrane. Clinicians believe that merely increasing the clearance to as large a value

as possible will ultimately remove all the FLC contained within the patient in the

shortest time, to give the kidneys the maximum possibility of recovery. Due to the

intercompartmental transfer rate there is a diminishing return on the observable FLC

removed from plasma, which is magnified in terms of the total FLC removed.

In order to demonstrate this to clinical staff, a series of simulations have been

conducted. The FLC model is initialised with the parameter estimates obtained for

patient DM and simulated over a single dialysis session with increasing values of dialysis

clearance kd, the results of which can be seen in Figure 4.6. Over the four simulations

the value of clearance is doubled. The normalised plasma quantities are shown in Figure

4.6(a) and the effects of doubling the clearance are reduced by intercompartmental
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transfer; when the aphersis clearance is 8×ka the ‘plateauing’ is within the first hour of

treatment. Figure 4.6(b) shows the total FLC quantity (q1(t)+q2(t)), normalised to the

initial values, where the impact of rapidly clearing FLC from the plasma compartment

has a relatively small effect on the total FLC quantity. It should be noted that as the

volume of each compartment is considered constant the above analysis applies equally

well to FLC concentration.

4.3 Treatment prediction and comparison

During the previous analysis of filter types it was necessary to perform parameter esti-

mation in order to determine the clearance rates of the filters. The information gained

during this process can be used to investigate alternative treatments and compare the

benefits of using haemodialysis. The current clinical ‘best practice’ to increase the

removal of FLC is to use plasma exchange [Bradwell et al., 2005]; as explained in

Chapter 2, this is the simple removal of a fixed amount of plasma volume over the

treatment period which is replaced with a saline based solution. In order to extend the

use of high-flux haemodialysis it must be shown that the new treatment modality is

a significant improvement on the previous best practice. Mathematical modelling is a

fundamental part of this process, allowing clinicians to analyse the treatment modali-

ties prior to validating the methods against a larger cohort study and change current

safe and known procedures.

In order to investigate haemodialysis and FLC in a meaningful context for clinical

experts it is essential to replicate the whole of the treatment regimes; for Multiple

Myeloma the modelling must therefore account for both chemotherapy and the alter-

native apheresis schedule.

4.3.1 Apheresis schedules

As previously stated, for patients with FLC there are two possible methods to assist in

the clearance of FLC: plasma exchange and haemodialysis. However, due to the nature

of the treatment mechanism these methods can be used with different schedules and

treatment patterns. Plasma exchange removes all materials present in the blood that



Section: 4.3.2 56

have been exchanged, including proteins and fluids that are beneficial to the patient;

as such over use of plasma exchange can have a detrimental impact on the patient’s

health. It therefore can only be used for a limited period after which the patient

must be taken off plasma exchange to recover. The standard treatment is six plasma

exchange sessions over a two week period, which is then stopped for an unspecified

period until the patient’s plasma has recovered, generally for a period of one to two

months. In the study below a more extreme plasma exchange regime is tested. With

severe medical conditions patients can be treated daily with plasma exchange for up

to ten days [Hutchison et al., 2007].

Haemodialysis is less aggressive relative to plasma exchange. By careful balancing

of the contents of the dialysate (a process that is handled by the dialysis machine)

clinicians can remove only the toxic proteins, leaving beneficial elements in the blood

to re-circulate. It is therefore possible to have a greater range of treatment schedules.

The following schedules were suggested by clinical collaborators: four hours - three

times per week, four hours daily, eight hours on alternate days, eight hours daily, twelve

hours daily and eighteen hours daily. The first four treatment schedules reflect current

practices in a standard treatment for a renal compromised patient [Hutchison et al.,

2007; Kumar et al., 2004]; the patient would be moved between schedules depending

on response. The eight hour treatment schedules would be rare, but are occasionally

used in practice. The remaining treatments are considered experimental, with such

periods on dialysis still being under investigation [Kumar et al., 2004]; however, with

the advent of home haemodialysis facilities this may become more feasible.

4.3.2 Modelling chemotherapy effects

If it is assumed that the patient has reached a maximal concentration of FLC prior to

treatment, and that unless treated this would be maintained indefinitely, i.e. the system

is in steady-state, the synthesis rate of FLC prior to treatment (time t = 0) can be

derived from the system equations (f(0) in equation 4.10). This can be also considered

to be the constant production required to maintain an in vivo plasma concentration at

a steady-state level (e.g. 10 g/L) without treatment (chemotherapy or haemodialysis).

To simulate a patient’s response to chemotherapy the FLC synthesis rate, previ-
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ously assumed to be constant, must provide a dynamic response to treatment. As the

direct link between synthesis and chemotherapy is not known several simple assump-

tions will be made to provide a clinically significant model of chemotherapy effect of

FLC generation.

It is assumed that chemotherapy reduces the FLC synthesis rate by killing a set

proportion of plasma cells per day (e.g. 50%) until non-cancerous levels of production

are reached. As each individual plasma cell produces FLC at a constant rate [Sullivan

and Salmon, 1972] the impact on FLC generation will be equivalent to the effective

tumour kiil. This is approximated by a function that exponentially decreases to a

known baseline. Therefore the FLC synthesis term (f(t) in equations 4.6) can be

expressed as:

f(t) = (pmax − pmin)e−λt + pmin, (4.11)

where pmin is the asymptotic baseline production, representing natural polyclonal FLC

synthesis; pmax is a constant that encapsulates the maximum tumourous synthesis; in

real terms this is calculated as the malignant production rate at the start of treatment

to maintain a pre-treatment concentration. The decay constant (λ) can be changed

to achieve the desired percentage tumour kill per day. This simple model can be

extended to accommodate two complications that occur clinically during chemotherapy

treatment: delay to starting chemotherapy and interruptions during the chemotherapy

schedule. These may occur for either clinical or procedural reasons, e.g. the patient is

unable to continue treatment or resources are unavailable.

The effectiveness of the chemotherapy drugs will vary between patients, with some

seeing no alteration in FLC levels after chemotherapy; therefore a range of tumour kills

were simulated, after consultation with clinical experts the following were chosen to

reflect a range of responses: 0%, 2%, 5%, 10% and 100%. The first (0%) representing a

worst case scenario of a completely ineffectual chemotherapy treatment, and conversely

100% the ideal situation were the tumour production of FLC is reduced to normal levels

instantly. This approximation is necessary as the actual impact of the chemotherapy

on plasma cells is currently unknown; this will be investigated further in Chapter 7.
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Delayed chemotherapy

In some patients the chemotherapy is delayed until after apheresis; in such cases the

production (eqn. 4.11) can be modified to a simple piecewise continuous function

f(t) =







pmax 0 < t ≤ ts

(pmax − pmin)e−λt + pmin ts < t ≤ te
. (4.12)

the interval ts ≤ t ≤ te denotes the effective period for chemotherapy.

Interruptions in chemotherapy

To replicate interruptions in the chemotherapy treatment it is assumed that whilst

the patient is on chemotherapy the FLC synthesis will decay at a constant rate (e.g.

reduces by 5 % per day), and conversely, when the patient is not receiving chemotherapy

the synthesis will exhibit growth of the same magnitude as the previous decay (e.g.

increases by 5 % per day). Therefore, chemotherapy interruptions can be generically

modelled by

f(t) = (f(τi)− pmin)eλi(t−τi) + pmin, t ∈ (τi, τi+1] (4.13)

with f(0) = pmax (e.g. the production required to maintain 10 g/L) and λi dictates

if the synthesis grows (λi > 0) or decays (λi < 0) in response to the application or

removal of chemotherapy treatment over that period.

4.3.3 Patient FLC exposure

To elicit information visually for all simulation results would be extremely difficult;

therefore, a quantitative approach has been developed to assist clinicians in the com-

parison of treatments. During treatment two key clinical factors are paramount: the

time taken for the plasma FLC concentration to reach clinically acceptable levels and

the total exposure the body has to the monoclonal FLC. The first of these can be

simply handled by estimating the time the simulation takes to reach the required con-

centration, and for exposure concepts from pharmacokinetics can be used [Ritshel and

Kearns, 2004, chap. 20].
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Drug exposure, calculated as the integral of the plasma concentration time profile

(often referred to as the Area-Under-the-Curve or AUC method), is a commonly used

estimate of the total amount of drug in the body in pharmacokinetics [Ritshel and

Kearns, 2004, chap. 20]. As clinicians are primarily interested in the FLC concentration

delivered to the kidneys via plasma an equivalent FLC exposure is appropriate. The

exposure of FLC between the start (t = 0) and end of patient monitoring (t = T ) is

calculated for each scenario

Eij =

∫ T

0

yij(t) dt. (4.14)

The exposure Eij is a scalar value for the AUC of the simulation with tumour kill i (e.g.

10%) and treatment regime j (e.g. 12 hours daily); yij is the simulated output from

the model, in all the comparisons made below this the plasma concentration of FLC.

The percentage improvement gained from using the treatment j can thus be quantified

by

Ei0 − Eij

Ei0

, (4.15)

where Ei0 is the area under the curve with tumour kill estimate i and no apheresis,

Eij is the AUC calculated from the simulated result with the same tumour kill and

apheresis treatment j. In all cases the integration in equation (4.14) is calculated

numerically.

4.3.4 Comparing plasma exchange and haemodialysis

To compare the combined apheresis and chemotherapy treatments a series of simu-

lations were conducted using the FLC model, instantiated either with parameter es-

timates from the patient DM in the filter comparison or values generated to match

clinical settings. A full list of parameter values can be seen in Table 4.5. For each of

the treatment regimes outlined (Section 4.3.1) a simulation was performed that esti-

mated the patient FLC concentration with one of the effective tumour kill scenarios

(Section 4.3.2).
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Table 4.5: Parameter values for treatment comparison simulation: a Multiple Myeloma pa-

tient with a FLC-Kappa tumour producing steady state initial FLC concentration of 10 g/L.

Parameter Description Value Units

c1(0) Initial concentration in plasma due to tu-

mourous synthesis.

10 g/L

pmax Tumourous synthesis of FLC-Kappa. 22.95 mg/min

pmin Normal FLC-Kappa production. 0.22 mg/min

k21 Transfer rate from plasma to EVF (DM, Ta-

ble 4.4)

0.031 min−1

kre Reticuloendothelial clearance (estimated

from literature, see text).

1.6× 10−4 min−1

k01 Normal renal clearance of FLC-Kappa (esti-

mated from literature, see text).

0.012 min−1

v1 Plasma volume (assumed 70 kg male) 2.58 L

v2 EVF volume (assumed 70 kg male) 12 L

kd Haemodialysis clearance (DM, Table 4.4) 0.011 min−1

kp Plasma exchange clearance of 21
3

litres per

hour.

0.015 min−1
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To allow different apheresis techniques and regimes to be compared the model

parameters are all maintained as defined in Table 4.5. FLC synthesis (f(t)) is controlled

by equation (4.11), with the decay rate (λ) calculated from the percentage reduction

in plasma cells. The apheresis clearance is controlled by the time-varying function

kai(t) =







0 t /∈ [τsi, τei]

kp or kd t ∈ [τsi, τei]
. (4.16)

τsi and τei are the start and end times of the apheresis treatment (i); with ka set to

either kp if the treatment is plasma exchange or kd for haemodialysis (see Table 4.5).
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Figure 4.7: Simulations of serum free light chain (FLC) removal by plasma exchange versus

haemodialysis. Simulations: 1) 100% tumour kill on day one with only reticuloendothelial

system removal. 2) 10% tumour kill per day with reticuloendothelial system removal alone.

3) 10% tumour kill per day with plasma exchange (3.5 litres exchange in 1.5 hours × 6 over

10 days). 4) 10% tumour kill per day with haemodialysis for 4 hours, three times a week. 5)

10% tumour kill per day with haemodialysis for 4 hours per day. 6) 10% tumour kill per day

with haemodialysis for 12 hours per day. 7) No tumour kill with 8 hours haemodialysis on

alternate days. 8) No tumour kill and no haemodialysis

The results of the simulations for a patient with 10% tumour kill can be seen in Fig-

ure 4.7; the results are split between Figures 4.7(a) and 4.7(b) for clarity only. Referring

to Figure 4.7(b), line 8 represents a patient that is not responding to chemotherapy and

is not undergoing any form of apheresis. In contrast line 1 shows a patient responding

extremely well to chemotherapy with 100% tumour kill instantly (time t = 0). For ref-

erence both graphs contain line 2, no apheresis and with 10% tumour kill per day. The



Section: 4.3.5 62

remaining plots in Figure 4.7(b) show the effects of continuous dialysis, with lines 5 and

6 showing the difference between 4 and 12 hour dialysis sessions. As would be expected

the 12 hour sessions reduced the FLC to normal levels (500 mg/L) approximately 10

days earlier than the 4 hour sessions. Line 7, however, shows an interesting facet of the

treatment revealing that, with no chemotherapy, if the patient can be maintained on

an 8 hour daily session the FLC levels can be maintained at levels that may prevent

the kidneys from further damage.2

Figure 4.7(a) compares plasma exchange and haemodialysis to the related chemother-

apy kill. Line 3 depicts the plasma exchange treatment, 6 sessions in two weeks, with

the remainder of the treatment period relying solely on natural clearance. Using plasma

exchange shows a marked increase in clearance compared to the no apheresis values

(Line 2). However, if the equivalent haemodialysis schedule is used, 4 hours 3 times a

week, the clearance seen is ‘close’ to the clearance seen if the chemotherapy had been

100% at the first injection.

The results of all the simulations are summarised in Table 4.6, from which the

suggested benefit of using apheresis can be seen. In each instance an improvement

over the non-apheresis treatment is evident. Of greater interest is the comparison

between plasma exchange and haemodialysis; for chemotherapy responses the shortest

haemodialysis schedule (4 hours × 3/week) are a major improvement over the most

active plasma exchange treatment possible (10 sessions in 10 days). Plasma exchange

schedules also took much longer to reach the 500 mg/L concentration levels; for an

ineffective chemotherapy result the peak plasma exchange concentration did not fall

below the initial concentration for either of the plasma exchange treatments. As would

be expected, as the length of haemodialysis increases the percentage improvement

increased and the length of time to reach 500 mg/L reduced. It is important to note

the relatively small improvement gained in moving to an 18 hour daily schedule from

an 8 hours session; this reflects the impact of the intercompartmental transfer as noted

in Section 4.2.2. However, as with all de novo experiments, care should taken when

interpreting the results without validation to real patient response data.

2Bradwell et al. [2004] define this as 1 g/L.
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Table 4.6: Model calculations of the efficiency of therapeutic removal of free light chains

(FLC). 100% to 0% are the chemotherapy tumour kill rates per day. Numbers are the ad-

ditional % of FLCs removed by intervention beyond that from tumour cytoreduction from

chemotherapy. Numbers in brackets are the time in days for FLC concentrations to reduce

from 10 g/L to 0.5 g/L. * Serum FLC concentrations at day 150 when 0.5 g/L was not

achieved. PE: plasma exchange. HD: haemodialysis. NA: not applicable. 1-8 Simulations

shown in Figure 4.7.

Method of FLC removal Percentage of FLCs removed by apheresis

(and time, in days, to reduce to 0.5 g/L)

Tumour kill per day 100% 10% 5% 2 % 0%

None NA(14)1 NA(30)2 NA(52) NA(121) NA(*10 g/L)8

PE x 6 in 10 days 37(10) 28(29)3 24(52) 21(121) 19(*10 g/L)

PE x 10 in 10 days 51(8) 40(29) 34(52) 30(121) 27(*10 g/L)

HD 4 hrs x 3/week 62(7) 53(19)4 42(31) 39(73) 37(*6.2 g/L)

HD 4 hrs daily 77(4) 72(13)5 70(23) 69(55) 68(*3.7 g/L)

HD 8 hrs alternate days 81(4) 73(13) 71(19) 69(47) 67(*4.4 g/L)7

HD 8 hrs daily 88(3) 84(7) 83(14) 82(29) 81(*2.2 g/L)

HD 12 hrs daily 92(2) 89(5)6 88(8) 87(16) 87(*1.8 g/L)

HD 18 hrs daily 94(2) 93(3) 92(4) 92(8) 91(*1.2 g/L)

4.3.5 Intensive haemodialysis schedules

In previous examples several dialysis schedules were simulated to investigate the effects

of frequency and duration of haemodialysis when compared to plasma exchange. In

clinical settings the amount of haemodialysis a patient will be able to receive will change

depending on the local facilities. To investigate the impact of this on the benefits of

high-flux haemodialysis for FLC patients several schedules were generated that reflect

a realistic schedule for hospital resources and procedures:

1. No apheresis

2. Standard Schedule - four hours every Monday, Wednesday and Friday.

3. Extended Schedule 1 - six hours every Monday, Wednesday, Friday and Sunday.
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4. Extended Schedule 2 - six hours day one and then 8 hours, days two to five,

followed by eight hours, alternate days.

In order to compare these schedules it was assumed that the patient was receiving

chemotherapy during the entire period and achieved a 5 % tumour kill per day, to the

polyclonal baseline for FLC-Kappa production, see Table 4.5. Each of the schedules

was simulated over a thirty day period. The patients’ exposure to FLCs was calculated,

using equations (4.14) and (4.15), for these periods; exposure was also calculated for

the regime with and without haemodialysis, see Table 4.7.

Table 4.7: Reductions in serum FLC exposure with intensive haemodialysis schedules. Peak

FLC is the maximum plasma concentration after four days.

Schedule FLC exposure FLC reduction Peak FLC

(days) (g days) (%) (g/L)

No HD 422 0 9.2

Standard 242 42 3.6

Extended 1 182 56 3.0

Extended 2 141 66 1.3

Whilst the results are unsurprising with regard to the improvement seen when

haemodialysis is used, regardless of the treatment intensity, it shows the relatively

small improvements gained from using the extended schedules. If the total amount of

time the patient spends on haemodialysis is considered over the 30 day period, for the

standard schedule (52 hours), extended schedule 1 (102 hours) and extended schedule

2 (134 hours), it can be seen that there is not a simple relationship between the FLC

exposure and dialysis frequency and duration. However, the benefit of schedule 2 with

the initial intensive chemotherapy can be seen if the peak plasma concentrations are

observed during the first four days, with extended schedule 2 reducing to almost 10 % of

the original concentration. As previously mentioned, this may have clinical significance

by allowing the kidneys to recover some function, which as will be seen in Section 4.3.7

can have implications on long term patient recovery.
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4.3.6 Effects of modified chemotherapy treatment

Whilst the previous study included the concept of chemotherapy effectiveness, clinicians

are equally concerned with the timing of chemotherapy. During treatment, alterations

to the chemotherapy schedule are often required to incorporate either patient health

or resource availability. Therefore, two scenarios were investigated:

1. Delay in initiating chemotherapy.

2. Interruptions to chemotherapy.

Delayed chemotherapy

The importance of rapid initiation of chemotherapy was evaluated by comparing the

total FLC exposure when chemotherapy was started at days 0, 5, 10, 15 and 20.

The potential role of haemodialysis to protect the kidneys from ongoing high FLC

concentrations was explored by repeating these simulations with haemodialysis. Once

again, for comparison, a baseline effectiveness of chemotherapy was assumed to be a

5% reduction in synthesis rates of monoclonal FLCs per day and the extended schedule

2 (see Section 4.3.5).

Table 4.8: Changes in FLC exposure when initiation of chemotherapy is delayed for a variable

period, with and without haemodialysis.

Delay FLC exposure FLC reduction

(days) (g days) %

without HD with HD without HD with HD

0 417 106 0 74

5 519 138 -24 67

10 609 169 -46 59

15 685 196 -64 53

20 739 218 -77 48

The results of delaying chemotherapy can be seen in Table 4.8. When compared

to a 5% tumour kill per day effectiveness, delaying had a dramatic impact on the kid-

ney’s exposure to FLC, increasing from 24% (5 days delay) to 77% (20 days) without
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haemodialysis. However, if it is assumed that haemodialysis is administered immedi-

ately at the start of observation, the FLC exposure is significantly reduced. The im-

portance of haemodialysis increases as the delays in initiating chemotherapy became

greater.

Interrupted chemotherapy
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Figure 4.8: Impact of interrupting chemotherapy on serum concentrations of FLCs with and

without dialysis.

The influence of stopping and re-starting the treatment were assessed through

simulating interruptions at days eight and fifteen, the simulated patient response was

then left for either seven or fourteen days before beginning treatment again. For the

purpose of the simulation it was assumed that the chemotherapy killed 5% of the

tumourous cells per day, and conversely, when the chemotherapy was stopped the

cancerous cells would increase by 5% per day.

Interruptions to chemotherapy increased the FLC concentration in plasma (Figure

4.8) and the total FLC exposure significantly (Table 4.9). As would be expected, the

earlier the interruption occurred the greater the increase in FLC exposure. Similarly,

the longer the interruption continued the greater the exposure. As can be seen clearly

in Figure 4.8, whilst the interruptions had dramatic effects on the FLC concentrations

in the simulated patient, haemodialysis was beneficial in controlling the variations in

the monoclonal synthesis; with haemodialysis maintaining a lower level than the initial

concentration when compared to the ‘no dialysis’ simulation. This is most evident in

scenario five with the increase in FLC synthesis forcing the concentration up to 14 g/L if
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Table 4.9: Changes in FLC exposure when chemotherapy was interrupted, with and without

heamodialysis.

Chemotherapy Interruptions FLC exposure FLC reduction

(days) (g days) (%)

Line Start Stop Re-start without HD with HD without HD with HD

1 0 n/a n/a 423 142 0 66

2 0 15 22 486 173 -16 58

3 0 8 15 586 215 -41 48

4 0 15 29 515 192 -23 54

5 0 8 22 752 299 -80 28

haemodialysis was not used, whilst with haemodialysis the peak value is well below the

initial concentration (≈ 8 g/L). An interesting feature is shown in treatment scenario

four, although the patient is off chemotherapy for the longest period (fourteen days)

a lower exposure is seen; this is due to the impact of a longer time on chemotherapy

prior to the interruption. However, it should be noted that, if the simulations were left

to run, scenario four would exhibit much worse behaviour due to the natural rising of

the synthesis rate.

4.3.7 Renal recovery

As stated in Chapter 2, it has been noted [Bradwell et al., 2004; Leung et al., 2008]

that when FLC levels are reduced significantly some patients may recover partial renal

function. In addition, if patients are diagnosed with FLC secreting Myeloma before

the nephrons are completely damaged there may be some natural renal clearance main-

tained. It is of interest to determine the minimum recovery of renal function recovery

required to benefit the patient with respect to FLC clearance. For this the extended

haemodialysis schedule 2 (see Section 4.3.5) was used with 0, 5, 10, 20, 40% of nor-

mal renal function (all simulations were undertaken assuming a 5% reduction in FLC

production per day in response to chemotherapy).

In previous examples the renal function was assumed to be zero, however for this

study an estimate is required for the renal clearance of FLC (k01 in equation (4.6)). The
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patients observed during this study were in end-stage renal failure, and as such had no

renal clearance of FLC, it was not possible to obtain values for k01 during parameter

estimation. However, renal clearance can be estimated from the glomerular filtration

rate (GFR), which is an indicator of renal function obtained from measuring other

products in urine, commonly from urea [Coresh et al., 2005]. For FLC-Kappa renal

clearance is approximately 40% of GFR, whilst for FLC-Lambda it is approximately

20% [Bradwell et al., 2005, pp. 17-19]. The base GFR is taken from Coresh et al.

[2005], assuming a 60 year old male patient.

Table 4.10: Effects of renal recovery on FLC exposure in an FLC-Kappa patient.

Renal function FLC exposure FLC reduction

(%) (g days) (%)

without HD with HD without HD with HD

0 420 133 0 68

5 253 108 40 74

10 181 91 57 78

25 97 62 77 85

40 67 47 84 88

100 30 24 93 94

The results of increasing renal function can be seen in Tables 4.10 and 4.12. It

clearly shows that renal function must recover significantly before haemodialysis can

be discontinued; for both FLC-Kappa and FLC-Lambda renal function only has to

be greater than 10% of the healthy value (see Table 4.5 and 4.11) to achieve results

similar to that through using extracorporeal filters. This is due to the fact that natural

clearance occurs constantly, whilst haemodialysis clearance is limited to the times when

the patient is on dialysis. The results also convey the message that, if it is possible,

haemodialysis is extremely beneficial for clearing FLC quickly, even if the kidneys have

recovered their clearance function.

Table 4.12 shows the effect of the recovery of kidney function on FLC-Lambda.

As with the FLC-Kappa patient a significant increase is seen when renal function is

present and dialysis is not used. The effect is smaller than that for FLC-Kappa patients
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Table 4.11: Parameter values for treatment comparison simulation: a Multiple Myeloma

patient with an FLC-Lambda tumour producing an FLC concentration of 10 g/L. All other

parameters are as for the FLC-Kappa patient Table 4.5.

Parameter Description Value Units

pmax Tumourous synthesis. 22.74 mg/min

pmin Normal (polyclonal) production. 0.12 mg/min

k21 Transfer rate from plasma to EVF (MF, Ta-

ble 4.4)

0.021 min−1

kd Haemodialysis clearance (MF, Table 4.4) 0.015 min−1

k01 Normal renal clearance of FLC-Lambda (see

text).

0.006 min−1

kre Reticuloendothelial clearance. 9.6× 10−4 min−1

due to the slower underlying renal clearance of FLC-Lambda proteins. The differences

seen in the exposure between the FLC-Kappa and Lambda in Tables 4.10 and 4.12

can be related to the differences in polyclonal synthesis, recticuloendothial clearance,

intercompartmental transfers rates and differences in haemodialysis clearance.

4.4 Analytical asymptotic prediction

In the previous work all the results were obtained from numerically evaluating the sys-

tem of differential equations (eqns. 4.6) and solving them using numerical integration.

For engineers and mathematicians such techniques are relatively simple; this is not

the case for clinicians. It would be beneficial if a simpler method could be derived

that encapsulates the treatment information in an analytical expression, which could

be implemented in a more accessible or familiar analysis tool, e.g. a spreadsheet; thus

providing a mechanism for non-technical staff to interpret the results during patient

treatment.
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Table 4.12: Effects of renal recovery on FLC exposure in FLC-Lambda patient.

Renal function FLC exposure FLC reduction

(%) (g days) (%)

without HD with HD without HD with HD

0 469 107 0 77

5 311 94 34 79

10 231 84 51 82

25 130 64 72 86

40 90 52 81 88

100 41 30 91 94

4.4.1 Switched systems

In a standard system as defined by equations (4.6) the asymptotic values can be de-

scribed using steady-state assumptions on the model. However, during the aphere-

sis treatment the state-matrix is not continuous and changes structure depending on

whether the patient is on or off apheresis. To accommodate this discontinuity it is

useful to consider the concept of a switched system.

Definition 4.4.1. A switched system is made up of a finite subset of systems with a

rule that defines when each subsystem is active.

q̇(t, p) = fi(q(t, p), p) q(t) + gi(q(t, p), p) u(t) (4.17)

y(t, p) = hi(q(t, p), p) (4.18)

q(0, p) = q0(p) (4.19)

where the switch-state i is controlled by

i =



















1 if t ∈ [t0, t1)
...

n if t ∈ [tn−1, tn)

(4.20)

with switching between states occurring instantaneously.
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The apheresis models presented thus far fall into a specialised set of switched

systems that are periodic linear time-invariant (LTI) state-switch systems.

Definition 4.4.2. A periodic LTI state-switched system is of the form

q̇(t, p) = Ai(p)q(t) + B(p)u(t) (4.21)

y(t, p) = C(p)q(t) (4.22)

q(0) = q0 (4.23)

with a switching sequence of period T

i =



















1 if t ∈ [t0 + lT, t1 + lT )
...

n if t ∈ [tn−1 + lT, tn + lT )

l = 0, 1, . . . (4.24)

Research into switched systems has received attention from the control community;

for a review see Liberzon and Morse [1999]. However, the focus is on the stability of

such systems under an arbitrary switching sequence ([Cevat, 2004; Phat and Pairote,

2006]) or the control of the switched systems through the manipulation of the switch-

ing sequence and input function. Whilst excellent for the handling of electrical and

mechanical systems, these approaches are not readily applicable to biomedical systems.

As previously stated, the control over the system input is rudimentary at best and the

application of dialysis as treatment is not applicable to automated switching due to

the preparation and planning required to implement it. The analysis here is therefore

reduced to estimating in vivo results from known conditions and a predefined switching

sequence.

4.4.2 Estimates for pre- and post-apheresis measurements

Assuming the in vivo kinetics are modelled by a linear period switched system, an

analytical solution for the asymptotic maximum (pre-dialysis) and minimum (post-

dialysis) solutions are available.

Proposition 4.4.1. Given definition 4.4.2, the asymptotic minimum and maximum

values of a linear single-switch3 state-space system with constant input are given by

3A system with only two possible system matrices
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lim
t→∞

max c(t) = (Id − eA1τ1eA2τ2)−1(eA2τ2α + β)

lim
t→∞

min c(t) = (Id − eA2τ2eA1τ1)−1(α + βeA1τ1)
(4.25)

where eAi is the matrix exponential, A1 ∈ R
d×d and A2 ∈ R

d×d are the two possible

system matrices, τ1 is the duration system one is operational, τ2 system matrix two, Id

is the identity matrix of dimension d; with α and β defined as

α :=

∫ τ1

0

eA1(τ1−s) P∞ ds (4.26)

β :=

∫ τ2

0

eA2(τ2−s) P∞ ds (4.27)

where P∞ is a vector of the asymptotic baseline of the input functions; for FLC patients

this is P∞ = [fmin, 0]T .

The proof of this proposition can be found in Appendix B; it uses a recursive

expansion of the analytical solution of consecutive phases of treatment and rest periods

to derive the above expressions. It is also possible from the asymptotic estimation,

see Appendix B, to construct an envelope function that approximates the maximum

values of patient concentration during the period when the initial conditions continue

to influence the system

qenv(t) = (eA2(T−D)eA1D)
t
T (c(0)−max c(t)) + max c(t); (4.28)

where T is the period between dialysis sessions and D is the duration; however, this

function should only be interpreted at the time points t = nT , n ∈ Z
+. Using these

equations it is possible to show the maximum concentration a treatment schedule will

provide, and the time at which the patient’s plasma concentration will reach a certain

level, e.g. 500 mg/L, without the necessity of implementing the system as a set of

time-variant ODEs, as has been done previously.
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Figure 4.9: Asymptotic pre- and post-dialysis quantities and exponential envelope function.

Chained-line is the minimum and maximum values, dotted-line, the envelope function and

the solid-line is the simulated patient response from the full model.

4.4.3 Patient example

As an example, consider a patient receiving periodic haemodialysis treatment; using

the linear two compartment FLC model, results in a switched system with the two

system matrices defined as

A1 = A2 +





−kd 0

0 0



 and A2 =





−(k1e + k21) k12

k21 −(k1e + k12)



 . (4.29)

If the parameters for the patient and treatment are known, the asymptotic values of

FLC concentrations can be estimated from equation (4.25) and the peak value attained

pre-dialysis can be estimated by equation 4.28. An illustration of this can be seen in

Figure 4.9, where the parameters for patient DM, as defined in Table 4.5, are used.

Figure 4.9(a) shows the results of simulating the patient treatment with a standard

ODE solver (solid-line); overlaid onto this graph are the asymptotic maximum and

minimum values (chained-line). It can clearly be seen that within six days of beginning

treatment the patient’s plasma concentration has reached the estimated asymptotic

minimum and maximum values. In addition, an estimate can be made for the levels of

FLC in the unobservable EVF compartment, see Figure 4.9(b).

An alternative example is shown in Figure 4.10, where rather than assuming the

production remains at the value required to maintain steady-state, it is assumed to
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increase, at time t = 0, by a factor of 10. All other parameters are as previously

defined; this step in production results in asymptotic min-max values that are greater

than the initial concentrations for both plasma and EVF.
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Figure 4.10: Asymptotic pre and post plasma exchange quantities and exponential envelope

function. The chained-line shows the minimum and maximum values, the dotted-line, the

envelope function and the solid-line is the simulated patient response from the full model.

4.5 Extended filter model

In the previous section of this chapter models have been developed that address the

problem of patient treatment from a whole-body perspective. The assumptions made

during the model construction allowed a linear model to be used to compare the relevant

treatments; however, whilst the in vivo kinetics are unknown, those of a standard

counter-flow filter can be investigated in vitro [Galach et al., 2003; Waniewski, 1994].

In the following sections closer scrutiny is made of the filter kinetics, investigating the

dynamics of a counter flow filter, and its impact on whole body clearance. This leads

on to an extension of the above model to include the extracorporeal dialysis circuit

(see Chapter 2).

4.5.1 Single filter dynamics

In the models presented thus far the dialysis removal rate (kd) was considered con-

stant over the dialysis session. However, from filter theory this is known not to be true
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[Fournier, 2007, ch. 8]; the movement of particles across a semi-permeable membrane is

driven by concentration (diffusive transport) and pressure gradients (convective trans-

port). The amount of substance (q) crossing the membrane at time t can by described

by the Kedem-Katchalsky equations [Kedem and Katchalsky, 1958]:

q̇(t) = D(c1(t)− c2(t)) + Js cm(t) (4.30)

where c1(t) and c2(t) are the substance concentration either side of the membrane, D

the diffusive permeability to the material in question, Js the ultrafiltration rate and

cm(t) the mean of intramembrane concentration (most often taken as the arithmetic

mean i.e. c1−c2
2

[Williams, 1996]). For the patients considered in this study the ul-

trafiltration rate was zero, which reduces equation (4.30) to its diffusive components

only:

q̇(t) = D(c1(t)− c2(t)). (4.31)

It should be noted that these equations ignore other phenomena known to occur at

the membrane-fluid interface (Donnan effect [Petitclerc, 1998] or membrane absorp-

tion [Clark et al., 1994]) and these will be discussed in Chapter 8. Whilst the dialysis

equipment was set to ensure the ultrafiltration was zero, due to internal pressures

between the filters ultrafiltration may still occur during treatment.

Equations (4.30) and (4.31) make it apparent that the concentration of the sub-

stance in the dialyzer is a key component, and as such should be considered in the

model description. Therefore, in the following section a model is presented that will

develop the membrane dynamics described above into a generic structure, enabling

multiple filters configurations to be modelled, allowing the overall impact on whole

body clearance to be assessed.

4.5.2 Multiple filter models

As stated in the biological introduction modern dialysis filters are a collection of semi-

permeable fibres contained within a polyurethane jacket, that have inputs and outputs
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for blood and dialysate fluid to flow through. The dialyser is connected into the patien-

t/dialysis machine circuit through flexible tubes. This simple connection mechanism

allows multiple filters to be connected together in a single circuit. Figure 4.11 shows

how the plasma and dialysate flows are commonly connected for two filters.

Figure 4.11: Schematic dialysis filter configuration

Some studies on multiple filter configurations have been conducted previously.

Powers et al. [2000] used two large filters to determine their effectiveness at clearing

urea, but the study was only concerned with pre- and post-dialysis urea concentra-

tions, rather than the dynamics during treatment. An excellent in vitro comparison

of serial and parallel configurations was conducted by Eloot et al. [2005], with varying

flow rates. Blood flow and hematocrit were closely evaluated in a clinical setting by

Kato et al. [2007] on β2-microglobulin when a series dual-dialyser was used. However,

these latter two studies used monitors on the inputs and outputs of filters to determine

flow rates and pressure differences between the filters; however, no attempt was made

to model the system or attempt prediction on patient in vivo kinetics. In addition,

the methods used are not feasible for standard clinical treatment, i.e. it is not possible

to have continuous monitoring for all patients during treatment outside of a specialist

trial. Therefore, in the following sections a model is described that can use observations

of plasma and dialysate concentrations of FLC only to determine parameter values for

different filter configurations.

4.5.3 The model

If the FLC is assumed not to collect in the lines connecting the patient and filters (see

Figure 2.4, Chapter 2) and there is no time lag between the FLC molecules leaving one

compartment and entering another a generalised form of the compartmental model can

be seen, Figure 4.12; for a description of the nomenclature used for the model please
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refer to Table 4.5.

Figure 4.12: Extended filter model for N filters with plasma and dialysate in counter-flow

configuration.

As in the FLC model [Evans et al., 2006] compartments 1 and 2 represent the flow of

FLC in vivo, between plasma and EVF. The remaining compartments all relate to the

extracorporeal dialysis circuit. The structure surrounding compartments 1 and 2 will

remain unchanged during and after dialysis treatment, whilst the other compartments

are only ‘in-situ’ during the dialysis period.

Compartments 3a to Na represent the FLC flowing in plasma in the filters; 3a

donates the first filter, Na the N − 2 filter. There may be numerous filters between

these but in practice the maximum currently used is 3 filters. It should be noted

that this is a closed-loop system and the output of the last filter is returned to the

patient. This means that any FLC not removed by the filters is recirculated into the

patient. It is assumed that the FLC remains well mixed whilst progressing through

the tubes connecting the patients and filters and the volume of plasma contained in

the connecting tubes is negligible.

The compartments 3b to Nb represent the FLC flowing (in the opposite direction for

a counter-flow circuit) through the dialysate side of the filter. As with the plasma flow,

the tubes are connected in series with respect to the dialysate fluid. Fresh dialysate

is constantly fed into the first filter, the output of which is then fed as an input to

the second filter. So any FLC removed from filter 1 (compartment Nb) will be passed
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onto filter 2 ((N − 1)b) and so on. Unlike the plasma side of the filter the output from

the final compartment (3b) is not fed back, it is removed from the system. This has

the effect of maintaining a constant volume in the dialysate compartments without the

need for any form of input.

The rate constants between filters are derived from known fluid flows and volumes,

e.g. k3a1 = Qp/v1, where Qp is the FLC flow in plasma. The parameter kdi represents

the diffusive permeability of the filter membrane (between FLC plasma and dialysate

fluid).

The system of equations generated from the model (Figure 4.12) is

q̇1(t) = −(k21 + kre + k01 + k3a1)q1(t) + k12q2(t) + k1NaqNa(t) + f(t)

q̇2(t) = k21q1(t)− (kre + k12)q2(t)

˙q3a(t) = −k4a3aq3a(t)− kd1(
q3a(t)

v3a

−
q3b(t)

v3b

) + k3a1q1(t)

˙q3b(t) = −k03bq3b(t) + kd1(
q3a(t)

v3a

−
q3b(t)

v3b

) + k3b4bq4b(t)

...

˙qNa(t) = −k1NaqNa(t)− kdN(
qNa(t)

vNa

−
qNb(t)

vNb

) + kNa(N−1)aq(N−1)a(t)

˙qNb(t) = kdN(
qNa(t)

vNa

−
qNb(t)

vNb

)− k(N−1)bNbqNb(t)

(4.32)

Prior to treatment the filters are ‘primed’ with the patients plasma by drawing

it manually through the entire blood-side circuit; then clean dialysate is fed through

the dialysate side of the filter at which point treatment is considered to have started.

Therefore the quantity of FLC in the dialysate can be considered to be zero at the

start of treatment, and the quantity of FLC in the blood side of the filter is equal to

the concentration in compartment 1, resulting in the following initial conditions:

q1(0) = c10 v1, q2(0) = c10 v2

q3a(0) = c10 v3a, q3b(0) = 0

...

qNa(0) = c10 vNa, qNb(0) = 0

where c10 represents the concentration of the FLC in plasma at time t = 0 and vi the

volume of distribution of compartment i.
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Previously only the FLC observed in plasma was considered; however, clinicians

are able to take additional measurements during dialysis by extracting plasma samples

from the patient directly or from plastic tubes between the dialysis filters, plasma or

dialysate. However, in the above model the compartments representing the dialysis

filter are lumped parameter models and thus model the average concentration within

the filter, but measurements are taken at the ends of the filter, not the middle. This

discrepancy can be accounted for by modifications to the observation functions. If it is

assumed that the concentration change along the membrane is linear [Williams, 1996]

and the compartments (c3a, ..., cNa and c3b, ..., cNb) represent the mean concentration at

the mid-point of the filter (e.g. c3a = (c1 +c4a)/2) the observations (yi) at the extremes

of the filter can be described by

y1(t) = c1(t) t ∈ [τs, τt)

y3a(t) = 2c3a(t)− y1(t) t ∈ [τs, τe]

...

yNa(t) = 2cNa(t)− yN−1a(t) t ∈ [τs, τe]

y3b(t) = 2c3b(t)− y4b(t) t ∈ [τs, τe]

...

yNb(t) = 2cNb(t) t ∈ [τs, τe]

(4.33)

where τe equates to the end of the dialysis session, τs the start and τt the end of the

patient’s treatment. Whilst it is physically possible to measure at all connections points

between the filters, only a limited subset of data were available: the concentration of

FLC in plasma in the patient (y1), between filters on the plasma side of the filter

(y3a, ..., yNa) and the concentration leaving dialysate (y3b).

Figure 4.13 shows how the generic extended model (Fig. 4.12) can be used to repli-

cate different filter configurations. Figure 4.13(a) describes the kinetic model applicable

when two filters have been connected in series and Figure 4.13(b), where a three-filter

configuration is pictured. The extended filter model is not limited to a series configu-

ration, with simple modification it is possible to model parallel configuration, in which

either the plasma or dialysate flow is split across multiple filters. However, it was clin-

ical infeasible to construct parallel configurations; therefore, the following validation is
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(a) Two filters (b) Three filters

Figure 4.13: A schematic of different filter configurations using the extended filter model.

limited to serial configuration. The modelling of alternative filter configurations (e.g.

filters in parallel) is discussed in Chapter 8.

4.5.4 Validation and parameter estimation

Prior to parameter estimation the model was tested for structural identifiability. As

data were only available for the two filter model (Fig. 4.13(a)) the identifiability was

only performed on this model. The differential algebra approach was used (using the

DAISY package, see Chapter 3), gave rise to the results and input files are shown in

Appendix A. It should be noted that the identifiability of the model was attempted

using the Taylor series approach but due to the model structure the co-efficients become

computationally intractable after the third derivative. With reference to equation 5.2

and Figure 4.13, for a two filter model the parameter vector for the model, assuming

all constants are unknown, is given by

p2 = [c10, v1, v3a, v3b, v4a, v4b, k12, k21, kre, f, kd1, kd2, k3a1, k3b4b, k14a, k03b, k4a3a]
T .

It was found that by observing comparments q1(t), q3a(t), q3b(t) and q4a(t) the
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parameter vector p2 is globally identifiable. It can also be seen that several parameters

relating to the in vivo kinetics are structurally identifiable that were unidentifiable in

the FLC Model, notably, k12 and kre. Previously these were estimated through physical

assumptions which can be verified numerically with the extended model.

Although all the parameters were found to be identifiable, validating this model

against real data gives extremely poor results in terms of both the fit to the data

and the estimates obtained for the parameters, with several parameters being rejected

from parameter estimation for being poorly determined numerically. On further in-

vestigation it has been found that in a dual filter urea haemodialysis an ultrafiltration

circuit can develop between the two filters, even though ultrafiltration is not set in

the dialysis equipment [Daugirdas, 2006]. This results in an ultrafiltration flow that

pushes molecules between plasma and dialysate in the first filter and in the reverse

direction (dialysate to plasma) in the second filter. These ultrafiltration rates must

be equivalent, resulting in no net fluid loss during the treatment. Therefore, the full

transport equations (eqn. (4.30)) are used over the diffusion equations (eqn. (4.30)).

For a dual filter series configuration this results in the following system of equations:

q̇1(t) = −(kre + k21 + k3a1 + k01)q1(t) + k12q2(t) + k14aq4a(t) + f

q̇2(t) = −(kre + k12)q2(t) + k21q1(t)

˙q3a(t) = −k4a3aq3a(t) + k3a1q1(t)− kd1

(

q3a(t)

v3a

−
q3b(t)

v3b

)

−
uf1

2

(

q3a(t)

v3a

+
q3b(t)

v3b

)

˙q3b(t) = −k03bq3b(t) + k4b3bq4b(t) + kd1

(

q3a(t)

v3a

−
q3b(t)

v3b

)

+
uf1

2

(

q3a(t)

v3a

+
q3b(t)

v3b

)

˙q4a(t) = −k14aq4a(t) + k4a3aq3a(t)− kd2

(

q4a(t)

v4a

−
q4b(t)

v4b

)

−
uf2

2

(

q4a(t)

v4a

+
q4b(t)

v4b

)

˙q4b(t) = −k3b34q4b(t) + kd2

(

q4a(t)

v4a

−
q4b(t)

v4b

)

+
uf2

2

(

q4a(t)

v4a

+
q4b(t)

v4b

)

(4.34)
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q1(0) = c10v1 q2(0) = c10v2

q3a(0) = c10v3a q3b(0) = 0

q4a(0) = c10v4a q4b(0) = 0

with all parameters as previously defined and where uf1 and uf2 are the ultrafiltration

rates of the first and second filter respectively; similarly, kd1 and kd2 are the diffusive

rate constants for each filter. It should be noted that in the above model the direction

of ultrafiltration is assumed to be in the same direction for both filters; however,

positivity is not enforced on either uf1 or uf2 during the parameter estimation process,

thus allowing the flow direction to be determined during the parameter estimation

process.

The transfer rate between filters is determined by the volumetric flow rate between

them. It is therefore possible to reduce the number of parameters by redefining the

transfer rates in terms of the flow rates and ultrafiltration losses. As the plasma

(Qp) and dialysate (Qd) flow-rates are provided by clinical staff along with the FLC

concentration measurements, the transfer rates between filters are modified by the loss

or addition of the ultrafiltration flow, that is:

k4b3b =
Qd + uf2

v4b

,

k03b =
Qd + (uf1 + uf2)

v3b

,

k3a1 =
Qp

v1

,

k4a3a =
Qp − uf1

v3a

,

(4.35)

and

k14a =
Qp − (uf1 + uf2)

v4a

.

In addition, the volume of fluid within the filters is constant and measurable, as it

is provided by the manufacturers of the filters [Toray, 2006]. For the filter used in

the validation below, the fluid volume was 70 millilitres for plasma and dialysate (i.e.

v4a = v3a = v4a = v4b = 0.07). The filters used in this trial were the same make and
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model, it is therefore assumed that the filters have the same diffusion characteristic

(kd1 = kd2 = kd), so a reduced parameter vector is available, i.e.

p2 = [c10, v1, k12, k21, kre, f kd, uf1, uf2]
T .

The analysis was performed to ensure identifiability of the parameter vector p2, and

excluding the initial condition (c10), the model was found to be globally identifiable.

Unfortunately, due to computational limitations, if the initial condition is added to

this set, identifiability results are not achievable. Therefore, the initial condition (c10)

is assumed known, and taken as the pre-treatment FLC concentration measurement.

The DAISY input file and results for this analysis can be found in Appendix A.
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Figure 4.14: Validation of simulated results against patient data for a dual-filter haemodialysis

session; solid line - simulated FLC concentration; dots - measured values. Figure a) shows

the FLC concentration in plasma; b) the FLC concentration leaving filter 1 in the dialysate;

c) the FLC concentration between filters 1 and 2; d) FLC returned to the patient from filter

2.

Data were available for a single patient who was treated with two dialysis filters
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connected in series (as shown in Figure 4.11). Figure 4.14 shows a comparison of

the simulation results and measured FLC values seen in plasma, dialysis filters and

dialysate for the double filter configuration. The FLC plasma concentration can be

seen in Figure 4.14. Figure 4.14(b) shows the comparison of measurements in the

dialysate fluid on exit from the final dialyser; whilst the remaining two, Figures 4.14(c)

and 4.14(d), describe the plasma-side concentration of each filter.

The model predicts the observed behaviour accurately, with the exception of initial

measurements of filter two, for which the model fails to estimate the sharp decline in

concentration within the first few minutes. It was not possible to have this sample re-

calculated and it is not known if it is a true measurement or an outlier that should be

ignored; it has therefore been left in the dataset. The plasma concentration is similar

in nature to that already seen in the FLC model validation above. The simulations

of the dialysate and between filter measurements, however, exhibit some surprising

features. In filter one an increase is seen in the concentration from the initial starting

value, whilst the reverse is seen in filter two. The dialysate concentration increases

drastically in the first few minutes from its initial zero concentration to a maximum

of approximately 600 mg/L. Further investigation is required to determine why these

effects occur and if they can be exploited to assist in clearance.

The parameter estimates obtained by fitting to the data in Figure 4.14 are displayed

in Table 4.13. The transfer rate between plasma and EVF (k21) shows a similar value

to that seen previously in the FLC model. The plasma volume is within the same

range, approximately 2L. Using k21, k12 and v1 results in an estimated EVF volume of

approximately 6L which suggests the previous approximation of transfer rate constants

ratio being equal to the patient volume ratio is correct. However, the value obtained

for reticuloendothelial clearance, based on the single compartment half-life of FLC

may be underestimated, with the value shown here an order of magnitude greater. Of

greater interest are the estimates given for the diffusive clearance and ultrafiltration

rates, with the results suggesting that flow across the membrane due to ultrafiltration

is much greater than that offered by diffusion; this agrees with the finding of Eloot

et al. [2005], where in vitro tests were conducted to determine the effects of middle-

molecule clearance through high-flux filter membranes. The two ultrafiltration rates are

in opposition to each other, as can be determined by the sign, and of similar magnitudes,
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Parameter Description (Units) Value (SDLN)

v1 Plasma volume (L). 1.92 (0.18)

k21 FLC transfer constant between plasma and EVF

(min−1).

0.011 (0.58)

k12 FLC transfer constant between EVF and plasma

(min−1).

0.003 (0.23)

kre Clearance via reticuloenditilium system (min−1). 2.49e-4 (0.31)

kd diffusive transfer across membrane (L/min). 0.010 (0.19)

f FLC generation (mg/min). 22.66 (0.51)

uf1 Ultrafiltration rate from first filter (L/min). 0.041 (0.64)

uf2 Ultrafilteration rate from second filter (L/min). -0.035 (0.61)

Table 4.13: Parameter estimates (and SDLNs) for extended filter model, two filter configura-

tion.

which would prevent the dialysis monitors from detecting a net ultrafiltration rate.

However, with only a single dataset available to validate these findings, care must be

taken not to place too much emphasis on them at present.

4.6 Summary

In this chapter methods and techniques have been developed that allow the analysis

of the in vivo kinetics of Free Light Chains. Three models have been presented:

1. A single compartment system to model the effects of chemotherapy on FLC MM

patients over an extended evaluation periods of months.

2. A two compartment model that describes the impact of increasing the natural

clearance rate via haemodialysis over a shorter time scale, i.e. hours.

3. An extendable multi compartment model to simuate the use of a multi-filter in

a single dialysis session.

In addition, simple functions that describe quantitatively the impact of cytotoxics

on the underlying FLC synthesis have been documented. Whilst very simple, the single
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compartment model is beneficial in analysing the effectiveness of different combinations

of drug treatments, that would be difficult to assess using only plasma concentration

measurements. The second models were then used de novo to compare treatment

for FLC patients, from which the benefits of using haemodialysis are clearly evident,

offering indications of the ability of different manufacturers’ proto-type high-flux fil-

ters to remove FLC for MM patients during haemodialysis. It was also shown that

regular and repeated dialysis regimes are required to maintain the desired levels of

FLC allowing patient recovery that would not be possible to achieve using more tradi-

tional apheresis methods, namely plasma exchange. However, whilst haemodialysis can

assist in maintaining lower levels of FLC concentration, if it is combined with success-

ful chemotherapy significant improvements in clearance levels are seen. In addition,

the models have also been used to describe the impact of altering the application of

chemotherapy, with the simple rule of initiating chemotherapy as soon as possible on

presentation and avoiding interruptions in the treatment. However, in situations when

interruptions are known or planned beforehand, the application of haemodialysis can

assist in maintaining significantly lower levels of FLC. The effect of kidney recovery on

FLC clearance has also been demonstrated, with even modest levels of recovery of the

natural kidney function yielding significantly improved whole-body clearance.

An extension to the standard compartmental model developed by Evans et al.

[2006] has been described. The extended model incorporates measurements of inter-

filter and dialysate side concentrations. The extended model allowed assumptions

made previously regarding parameter values to be validated and highlighted the po-

tential recirculatory ultrafiltration issue that may account for anomalies seen in patient

clearance when using filter combinations. Whilst it is evident that performing such ex-

tensive measurements on patients is neither financially justifiable nor possible in all

clinical environments, conducting such detailed studies for initial haemodialysis treat-

ments may offer insight into a particular patient’s characteristics; enabling a better

understand of treatment effectiveness. However, consideration must be given to intra-

and inter-patient variability and the assumption that FLC synthesis and body volume

is constant throughout the treatment. As all patients in this study are undergoing

chemotherapy and, with falling renal output, ultrafiltration these assumption may be

invalid.
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Due to the underlying dynamics, FLCs lend themselves to the linear modelling

techniques presented above, as they are inactive in vitro, in that they do not bind

readily to other material, and the clearance routes can assumed be to be linear. For

patients with Intact Secreting Myeloma or transplant subjects with healthy immune

response, this is not the case. Therefore in the following chapter the kinetics of whole

antibodies are investigated to reveal more complex dynamics resulting in nonlinear sys-

tem models that build upon the simple single and two compartment models presented

in this chapter.



Chapter 5

Kinetics of Intact Immunoglobulin

IgG

Immunoglobulin G are known to be recycled through the Brambell, or FcRn, receptor,

with the effect of prolonging the half-life of IgG circulating in plasma [Waldman and

Strober, 1969]. In patients with Intact Secreting Immunoglobulin Multiple Myeloma,

monoclonal Immunoglobulin G is produced in excess when compared to normal an-

tibody production. In this chapter a mathematical model, incorporating nonlinear

binding kinetics and delayed-logistic growth, is described, that relates the interaction

of tumourous and non-tumourous immunoglobulin on the FcRn receptor. The model

is validated against data from patients with Hypercatabolic Hypoproteinemia1, Multi-

ple Myeloma and normal subject kinetics. The results show the effects of a dynamic

concentration-dependent catabolism on IgG concentrations and highlight the differ-

ences between perceived and actual tumour decay under the influence of chemotherapy.

As with FLC Myeloma patients, chemotherapy is given to patients with Intact

IgG Myeloma to encourage cell-death of the tumourous plasma cells and ultimately

reduce the concentration of tumourous IgG to normal levels; however, due to the size

of the whole IgG antibodies haemodialysis is not available as a treatment. Other

forms of apheresis are used to clear whole antibody, these are covered in the following

chapter (Chapter 6). To determine the effectiveness of the chemotherapy on Intact IgG

Myeloma, the concentration of total IgG is measured in plasma. The first section of

1A disease resulting in a lack of FcRn [Waldmann and Terry, 1990]

88
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this chapter uses a mathematical model of IgG binding to investigate the effects of the

tumour and non-tumourous IgG competing for the same receptor under the influence of

chemotherapy. In the second section the benefits of calculating the tumour kill through

the measurement of alternative IgG markers are analysed, using the model previously

developed, through which it is shown that, given applicable assumptions regarding the

treatment, measuring the ratio of tumourous and non-tumourous IgG may present a

better marker than measuring plasma concentrations alone.

5.1 Model describing the recycling IgG

Immunoglobulins are removed from plasma via a process of pinocytosis, which would

yield an effective in vivo half-life similar to that of FLC, i.e. between three and five

days. However, IgG is known to have a much greater half-life, approximately 21 days

in normal subjects, though it is frequently shorter in MM patients [Bradwell et al.,

2005, pages 90-105]. The reason for this extended retention is due to receptors known

as the ‘Brambell Receptors’; the existence of which was first theorised by Brambell

et al. [1964]. The receptors exist in the plasma membrane, in the endosomes2, and

prevent a portion of IgG from being catabolised through binding to the receptor. Any

free, or non-bound, IgG is destroyed whilst those ‘selected’ by the receptors are recycled

[Junghans and Anderson, 1996; Mariani and Strober, 1990]. In addition, this receptor is

also responsible for transportation of IgG between mother and infant during pregnancy

and is therefore referred to as the FcRn (Fc Receptor-neonatal) [Ghetie and Ward,

2002].

5.2 The model

As seen in the previous chapters, FLC are produced in two variants: Kappa and

Lambda. A single antibody is constructed of only one type of FLC; as such two variants

of IgG exists: IgG-Kappa (IgGK) and IgG-Lambda (IgGL). Multiple Myeloma patients

will produce only a single monoclonal IgG (either Kappa or Lambda) far in excess of

all other antibodies. The FcRn receptor does not differentiate between the types of

2Small vesicles within the plasma membrane [Metzer, 1990, ch. 3].
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IgG it binds to, therefore all IgG are effectively ‘competing’ for the free FcRn to

prevent destruction. It is therefore necessary to review the mathematics surrounding

the kinetics of receptor and ligand binding in a competitive environment. This will

subsequently be used in the construction of a complete metabolic model.

5.2.1 Competitive binding kinetics

The most common form used to represent receptor kinetics is to consider the process as

a bimolecular reaction [Foreman and Johansen, 2002]; if the two ligands do not interact

the competitive process can be expressed by the following chemical equations:

L1 + R
ka−⇀↽−
kd

L1R

L2 + R
ka−⇀↽−
kd

L2R,

where L1 and L2 represent the free ligands, R the free receptor concentration and LiR

the bound receptor-ligand complex. The rate at which the molecules bind is governed

by ka (association rate - the rate at which the ligand binds to a receptor site, in M−1

min−1) and kd (the dissociation rate constant - the rate at which it is released, in

min−1). A schematic representation of this reaction can be seen in Figure 5.1.

Figure 5.1: Model of receptor binding.

If receptor binding is considered to obey the law of mass-action, the rate of the

reaction is directly proportional to the product of the concentrations. For two ligands

binding to a single receptor, this leads to a five state model (Figure 5.1) that describes

the reaction, where the hook-arrow represents kinetic binding, as opposed to material

flow as seen previously. This model results in the following set of ordinary differen-

tial equations [Sklar et al., 1985], square brackets, e.g. [R], indicate concentration as

opposed to quantity:
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˙[L1] = −ka[L1][R] + kd[L1R]

˙[L1R] = ka[L1][R]− kd[L1R]

˙[L2] = −ka[L2][R] + kd[L2R]

˙[L2R] = ka[L2][R]− kd[L2R]

˙[R] = kd[L1R]− ka[L1][R] + kd[L2R]− ka[L2][R]

(5.1)

However, as shall be seen later (section 5.3) this model can be significantly reduced

using basic laws of conservation. It should be noted that Gurbaxani and Morrison

[2006] give strong evidence for the existence of more complex interactions than a single-

site receptor binding to IgG; however, this is not considered in this work due to the

level of granularity of the model and the data available for validation.

5.2.2 Full metabolic model

In order to construct a model, the biology of IgG was reviewed, then mass-balance

principles were applied. It was constructed without considering constraints on measur-

able variables or availability of known parameters; assumptions will be applied later to

produce a more tractable model for simulation. A schematic of the full kinetic model

is shown in Figure 5.2.

On first inspection the model is clearly symmetrical as the IgG Kappa (IgGK) and

IgG Lambda (IgGL) proteins are treated identically by the metabolic processes. All

compartments labelled K represent the quantity of IgG Kappa, whilst L denotes the

quantity of IgG Lambda. The model was initially constructed by considering the flow

of IgG in plasma. It is known, through radio-nuclide marking [Waldman and Strober,

1969], that IgG moves between plasma and extravascular (EVF) pools. Therefore,

two compartments were created for each IgG type (K1,L1 representing plasma and

K2,L2 EVF quantities) with two linear rate constants (k12 and k21 describing the flow

across the plasma membrane. The flow between plasma/EVF is considered to be the

same process as EVF and plasma; it is therefore possible to define this exchange by

a single parameter, with respect to the volume ratio between the two compartments

k21 = v1

v2
k12, where vi is the apparent volume of distribution of compartment i. However,
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Figure 5.2: IgG full model. IgGK (K) and IgGL (L) with the subscripts i, i.e Ki and Li

representing the following compartments: 1) Plasma, 2) EVF, 3) Free in the endosome, 4)

bound in the endosome, and FcRn) bound to FcRn in the endosome.

from radiolabelling experiments Waldman and Strober [1969] have demonstrated that

for IgG the volume of distributions are approximately equal (v1 ≈ v2). The synthesis of

intact IgG is controlled by two time-dependent functions: PK(t) (for IgGK) and PL(t)

(for IgGL).

Both IgGK and IgGL are continuously exchanged between plasma and the endo-

some through pinocytosis. This is represented by the linear rate constant k31. The K3

and L3 compartments represents free IgG in the endosome, from which IgG is either

cleared from the system, rate constant k03, or bound to FcRn (bound IgG is repre-

sented by K4 and L4). The quantity of free receptors in the endosome is represented

by the FcRn compartment. FcRn receptors are also catabolised in the endosome; this

is represented by the clearance of FcRn (k0F ) and synthesis of new receptors by the

input function, PF (t). A concise list of the parameters and model nomenclature can

be seen in Table 5.1.

Through the model the clearance mechanism of IgG can be easily described. The

IgG is allow to move freely between plasma and EVF (k12 and k21) but is passed into
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Table 5.1: IgG and FcRn competitive binding parameters description.

Variable Description

PK(t),PL(t) and PF (t) Production of IgGK, IgGL and FcRn (mg min−1)

Ki or Li Quantity of Kappa or Lambda in compartment i (mg)

FcRn Quantity of FcRn in the Endosome (mg)

yi Observation of compartment i, ci will be used as obser-

vation gain, in all cases this 1
vi

kij Rate Constant of flow of material from compartment j

to compartment i (min−1)

k0j Rate Constant removal of material from compartment j

(min−1)

ka Association rate of IgG and FcRn receptor (mg min−1)

kd Dissociation rate of IgG and FcRn receptor (min−1)

vi Volume of compartment i (1=plasma, 2=extra-vascular

and 3=endosome) (L)

and out of the endosomes via pinocytosis (k31 and k14). If an individual IgG is bound

to an FcRn receptor it is returned to plasma, whilst if it is not bound it is eliminated

from the endosome (k03).

The system of equations generated from the model (Figure 5.2) can be seen in

equations (5.2). Only the equations for IgGK, with the equation for free FcRn recep-

tors, are shown but due to the symmetry in the model, the IgGL variant can be derived

by replacing K for L in each case.

K̇1(t) = −(k21 + k31)K1(t) + k12K2(t) + k14K4(t) + PK(t)

K̇2(t) = k21K1(t)− k12K2(t)

K̇3(t) = −kbK3(t)FcRn(t) + kdK4(t)− k03K3(t) + k31K1(t)

K̇4(t) = kbK3(t)FcRn(t)− kdK4(t)− k14K4(t)

˙FcRn(t) = −kb(K3(t) + L3(t))FcRn(t) + kd(K4(t) + L4(t))

− k0F FcRn(t) + PF (t)

(5.2)
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The association constant (ka) in equation 5.2 has been replaced by kb, where kb =

ka

v3
, to convert the concentrations as shown in equation 5.1 and quantity used above.

On clinical presentation, prior to treatment, it is assumed that the patient’s tumour

has produced sufficient IgG to saturate all compartments and receptor sites; with

the system therefore in steady-state the initial conditions are (once again only IgGK

examples):

K1(0) = CK10 v1 K2(0) = CK20 v2

K3(0) = CK10 v3 K4(0) = CK40 v3

FcRn(0) = FcRn0 v3

where CK10 represents the concentration of the IgGK in plasma prior to any chemother-

apy treatment. Due to the steady-state assumption the concentration difference be-

tween plasma and EVF has equilibrated; in addition, as pinocytosis is a sampling

process it can be assumed that IgG free in the endosome is of equal concentration to

that in plasma.

Whilst in a restricted laboratory experiment it may be possible to take measure-

ments relating to numerous aspects of the above model, the expectation of this mod-

elling study is that it is used in a clinical environment and as such the only mea-

surements available are those that can be taken in vivo and hence, are restricted to

concentrations in plasma allowing the following measurements to be taken:

yK1(t) = c1K1(t),

yL1(t) = c1L1(t) or

yΣ(t) = c1(K1(t) + L1(t)).

(5.3)

where c1 represents an observation gain. It is possible to observe IgGK (yK1) and IgGL

(yL1) individually, and the total IgG present (yΣ). As with FLC it is assumed that all

IgGK and IgGL are captured by the measurement technique and as such equates c1 to

the volume of distribution in plasma, c1 = 1
v1

.
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5.3 Model reduction

The above model is a comprehensive description of the process involved in IgG re-

cycling, and it is extremely difficult to obtain information regarding key parameters,

even initial estimates from literature. For example, the volume of the endosome would

require knowledge of the average number and approximate volumes of the vesicles.

Therefore, a simplified model is derived through the application of assumptions re-

garding the kinetic behaviour of the receptors.

If the total concentration of receptors is considered constant throughout the dura-

tion of the treatment, the total receptors available, RT , is then given by:

RT = K4(t) + L4(t) + FcRn(t) or (5.4)

FcRn(t) = RT − (K4(t) + L4(t)) (5.5)

If equation (5.5) is applied to the full system model (Equation (5.2)) the quantity

of IgG bound in the endosome can be rewritten as

K̇4(t) = kb(RT − (K4(t) + L4(t)))K3(t)− (kd + k14)K4(t)

L̇4(t) = kb(RT − (K4(t) + L4(t)))L3(t)− (kd + k14)L4(t)
(5.6)

Further, if a quasi-steady state assumption is made regarding the bound IgG,

namely that the bound IgG dynamics are much faster than the free IgG in the endo-

some, the IgG bound in the endosome can be considered in steady-state (i.e. K̇4(t) =

L̇4(t) = 0 ). Equations (5.6) can thus be reduced to

K4(t) =
kb(RT − L4(t))K3(t)

kd + k14 + kbK3(t)
and L4(t) =

kb(RT −K4(t))L3(t)

kd + k14 + kbL3(t)
, (5.7)

which with re-arrangement gives

K4(t) =
kbRT K3(t)

kd + k14 + kb(K3(t) + L3(t))
and L4(t) =

kbRT L3(t)

kd + k14 + kb(K3(t) + L3(t))
. (5.8)
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Focusing on K4, as stated above, pinocytosis is assumed to be a constant extraction

and recycling process, which ensures that the concentrations of IgG in the endosome

and plasma are constant (K3(t)
v3

= K1(t)
v1

and L3(t)
v3

= L1(t)
v1

). Then equation (5.8) can be

re-written as

K4(t) =
kbRT

v3

v1
K1(t)

kd + k14 + kb
v3

v1
(K1(t) + L1(t))

. (5.9)

If this is re-written in a more familiar Michaelis-Menten form, then

k14 K4(t) =
VmK1(t)

Km + (K1(t) + L1(t))
(5.10)

where Vm = k14 RT and Km = v1(k14+kd)
kbv3

. As only the bound IgG in equation (5.10)

occurs into the plasma compartment of the system equations (5.2)

K̇1(t) = −

(

k31 −
Vm

Km + (K1(t) + L1(t))

)

K1(t)− k21K1(t) (5.11)

+ k12K2(t) + PK(t)

and applying the same process to the IgGL in plasma equation and yields

˙L1(t) = −

(

k31 −
Vm

Km + (K1(t) + L1(t))

)

L1(t)− k21L1(t) (5.12)

+ k12L2(t) + PL(t)

The first term in these equations
(

k31 −
Vm

Km+(K1+L1)

)

is referred to as the Frac-

tional Catabolic Rate [Waldman and Strober, 1969], and represents the fraction of the

available plasma pool cleared per unit time.
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5.3.1 Tumour synthesis of IgG

As seen with FLC patients, patients with Myeloma will have chemotherapy to destroy

the tumour-producing plasma cells. It is therefore necessary to consider the dynamic

effects of chemotherapy; for FLC patients this was modelled by a simple exponential

decay to a baseline. When applied to data for a patient with Intact Immunoglobulin

Multiple Myeloma the results were not appropriate; through the use of deconvolution

techniques (see Chapter 7) it could be seen that the underlying synthesis was not

responding to chemotherapy in the same manner seen by FLC MM; therefore, an

alternative functional form for the tumour cell numbers and monoclonal IgG synthesis

is required.

Logistic curves have been used to model tumour growth [Forys and Marciniak-

Czochra, 2003] during chemotherapy. These models were used to describe the survival

of tumour cells, rather than the substance produced by the tumour. These logistic

models were then validated with measurements for the number of tumour cells, esti-

mated from imaging the tumour mass and average cell numbers per unit volume of

tumour. In MM a measure of the number of plasma cells killed during chemotherapy is

only possible through an invasive biopsy and is a parameter that is not often available.

However, the logistic curve equation parameters are not directly related to specific tu-

mour properties, only to the initial condition, growth rate and maximum final value.

As it is known from in vitro experiments [Sullivan and Salmon, 1972], a single cancer-

ous cell produces IgG at a constant rate; therefore it is possible to use the same logistic

equation approach to simulate IgG synthesis under chemotherapy treatment, up to a

constant scaling factor. The synthesis is therefore modelled by the logistic equation

and the rate of change of production is given by:

ṖK(t) = rPK(t)

(

1−
PK(t)

K

)

, PK(0) = PK0 (5.13)

where r is the growth rate of cells (which may be negative for effective tumour kill)

and K the carrying capacity. When applied to patients undergoing chemotherapy

treatment two addition phenomena must be recognised:

• The chemotherapy may not affect the tumour sythnesis immediately, i.e. at time
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t = 0. This may be due to the behaviour of the drug or the effects on the

individual patient.

• The treatment may not be 100 % effective, with some baseline production of the

tumourous IgG type still evident.

The first of these issues leads naturally to the use of a delayed logistic equation, a

solution for which is given in Forys and Marciniak-Czochra [2003], with the addition

of basal terms for minimum production, gives

PK(t) =
K

1 + er(t−τ)
+ β, (5.14)

where β is the basal production, τ the delay effect, or time shift. The baseline pro-

duction may be solely due to normal (non-tumourous) cells if the chemotherapy is 100

% effective; however, it is more likely to be a constant production combining normal

and tumourous cells. The non-tumourous production is assumed to be unaffected by

the chemotherapy. The delay in equation (5.14) provides the possibility of a non-

instantaneous response to the chemotherapy. If an instant response to chemotherapy

is evident then τ = 0.

There are other functions that provide greater flexibility to describe tumour dy-

namics, e.g. Richard’s Curve [Richards, 1959]; however, difficulties arise when fitting

this function to data due to over-parameterisation [Karkach, 2006], as such the sim-

pler logistic function is preferred; as it offers sufficient flexibility, capturing a range of

production dynamics by altering just four parameters (K, β, τ and r).

5.3.2 Model parameters

Hypercatabolic Hypoproteinemia is a rare medical condition that results in a patient

that does not express FcRn; Waldmann and Terry [1990] measured proteins of two

patients with this condition. Markers were injected into these patients and the plasma

and whole body concentrations of IgG were measured; whole body concentrations

were determined from renal clearance of the radio marker. If total IgG is considered,

combining equations (5.11) and (5.12) and removing the effects of the FcRn receptors,

this results in a standard linear two-compartment model.
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˙IgGT1(t) = −(k01 + k21)IgGT1(t) + k12IgGT2(t)

˙IgGT2(t) = k21IgGT1(t)− k12IgGT2(t)
(5.15)

where the subscripts 1 and 2 denote plasma and EVF pools respectively, IgGTi(t) is the

total IgG (IgGKi(t) + IgGLi(t)) in compartment i at time t, k01 is the clearance from

the system and the remaining parameters are as defined previously. As the study used

radio-labelled IgG the production term for IgG is zero. Equations (5.15) were fitted to

the data described in Waldmann and Terry [1990] to enable approximate values to be

obtained for the parameters k01, k21 and k12; for patients with Hypoproteinemia the

apparent volume of distribution is not considered equal Waldmann and Terry [1990], so

k12 and k21 are estimated separately. The results of these fits can be seen in Figure 5.3

and the values obtained are displayed in Table 5.2.
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(b) ‘Normal’ individual

Figure 5.3: Fits of equation 5.15 to [Waldmann and Terry, 1990]; �=whole body IgG, ◦=
plasma IgG.

The parameters obtained for k01 by applying the model to Hypoproteinemia pa-

tients provide a useful measure of the Fractional Catabolic Rate (FCR). For ‘normal’

subjects the value equates to the FCR, with recycling, at normal IgG concentration,

approximately 12 g/L on average [Waldmann and Terry, 1990]. However, for Hy-

poproteinemia patients (with the FcRn missing) it is the maximum clearance possible

by the FCR, i.e. k31. The value distinctly shows the benefit of the FcRn receptor in

maintaining high levels of IgG in plasma by ensuring a low clearance rate.

The results of fitting the simplified model (eqns. (5.11) and (5.12)) with logistic

production (eq (5.13)), to patient data can be seen in Figure 5.4; it should be noted that
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Table 5.2: Model parameters for Hypoproteinemia patients and normal subjects, with SDLN.

The model was checked to ensure all parameters were uniquely globally identifiable, see Ap-

pendix A.2.1.

Parameter Hypoproteinemia Normal

(days−1) Value (SDLN) Value (SDLN)

k21 0.20 (0.17) 0.51 (0.04)

k12 0.54 (0.29) 0.41 (0.04)

k01 0.28 (0.02) 0.07 (0.01)
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Figure 5.4: Parameter estimation of IgG-FcRn and tumour synthesis parameters. Data: �-

Lambda (non-tumourous) ◦-Kappa (tumourous). Simulation: IgGK (solid line) and IgGL

(chained-line).



Section: 5.3.3 101

although the system appears to be numerically identifiable, i.e. the fitting procedure

is sensitive to the parameters chosen, a formal identifiability analysis has not been

completed. The reduced recycling model with the logistic input is a nonlinear time-

delayed system and the identifiability analysis is a non-trivial problem. Both the Taylor

series and differential algebra methods have been used but neither approach was able

to produce informative results. This is the subject of ongoing research.

Table 5.3: Model parameters for intact secreting MM patient, with SDLN for fitted parame-

ters.

Parameter Description Value (SDLN)

k21 Plasma/EVF inter-compartment transfer (days−1). 0.51 (N/A)

k12 EVF/Plasma inter-compartment transfer (days−1). 0.41 (N/A)

v1 Plasma volume (L) 2.59 (N/A)

k31 Maximum clearance rate of IgG through endosome

(days−1).

0.13 (0.31)

Vm Maximum rate of FcRn recycling (g/day) 15.51 (0.29)

Km The quantity at which half the Vm is achieved (g). 79.29 (0.18)

r Decay rate of the tumour (% per day). 0.03 (0.42)

τ Chemotherapy delay effect (days) 98.11 (0.19)

β Baseline production of tumourous IgG (g/day) 0.18 (0.12)

The patient for whom the data were collected had an IgGK secreting tumour and

received treatment on the day of the first measurement. The simulation results show

(Figure 5.4) excellent approximations to the data on visual inspection. The fall in

IgGK is clearly evident and is dominated by the IgGK tumourous synthesis rate.

5.3.3 Predicted clinical response

Figure 5.5(a) compares the plasma concentrations over the treatment period for the

patient given in Table 5.3, in which an interesting effect of the concentration dependent

clearance can be seen. The tumourous IgG declines due to the chemotherapy killing

the cancerous plasma cells and thus restricting production, as expected; however, the

non-tumourous IgG, IgG-Lambda in this case, rises from around 400 mg/L to 2 g/L,
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(a) Simulation results
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Figure 5.5: Simualated results using parameters estimates in Table 5.3. Figure a) Simulation

results of tumourous (IgGK - solid line) and non-tumourous (IgGL - chained line) concen-

trations in plasma over the time course of the chemotherapy treatment. Figure b) Esimated

Fractional Catabolic Rate (eq. 5.11) for the patient parameters specified in Table 5.3)

even though the non-cancerous synthesis remains constant throughout the treatment.

The increase is due to the decrease in natural clearance (FCR) over the time course,

effective in both tumourous and non-tumourous IgG concentrations. The FCR defined

by the paramters in Table 5.3 is shown in Figure 5.5(b), the similarities between this

and the FCR as measured by Waldmann and Terry [1990] (see Figure 2.3 in Chapter

2) can clearly been seen. Figure 5.5(b) shows two facets of the model that should be

mentioned: firstly, that over the range of concentrations shown for the patient data

considered (10-30g/L) the IgG clearance could be approximated by a simple linear

function; secondly, that for low concentrations the FCR predicts a negative clearance,

which by definition is not feasible.

In order to determine the effectiveness of chemotherapy, clinicians measure changes

in concentration of the tumourous IgG in plasma. The change in concentration will

be directly related to the concentration fall in plasma, the tumour kill estimated and

ultimately how the patient is categorised clinically in terms of their response, e.g. a

good response requiring no additional chemotherapy or a poor response which requires

further treatment. The accuracy of this categorisation should therefore be of great

significance to clinicians and patients alike. In Figure 5.6 a comparison3 is shown of

3All simulations have been normalised to the maximum value, in all cases this is the value at time

t = 0.
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the change in total plasma tumourous IgG concentration, against that of IgG tumour

production. For this patient, after the initial period, using the change in plasma IgG

measurement underestimates the tumour kill, and at steady-state results in a 35%

difference.
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Figure 5.6: Comparison of IgGK (dotted-line), IgG synthesis (solid-line) and the ratio Ig-

GK/IgGL (dashed-line).

An alternative measure of tumour kill has been suggested by clinicians, that is using

the ratio of the tumourous and non-tumourous concentration as an alternative form

of categorising patients. This has risen out of ancedotal evidence of patient recovery

when the ratio has been taken. This ratio can also be seen in Figure 5.6 (dotted-line)

and appears to offer a significant improvement in the estimation of tumour kill. The

merit of using the ratio as a improved tumour marker over the measured period is

studied in the following section.

5.4 Ratio of IgG Kappa/Lambda as an improved

tumour marker

As has been described above, in MM patients, the excess tumourous monoclonal anti-

bodies compete for free receptor sites in the endosome, resulting in a nonlinear relation-

ship between IgG synthesis, concentration and catabolism. Due to this relationship the
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total IgG cleared during chemotherapy will exhibit variation. The standard measure of

chemotherapy effectiveness is to consider the drop in concentration of the tumourous

IgG type in plasma. In this section a comparison is made using alternative plasma con-

centration measurements to describe the efficacy of the chemotherapy. The following

tumour markers are compared:

• Total tumourous IgG type, inclusive of tumour and non-tumour production.

• Tumorous IgG alone.

• Ratio of total IgG type over non-tumourous IgG.

• Ratio of tumour IgG over non-tumour IgG.

5.4.1 Quasi steady-state model

In order to study the effectiveness of the ratio as a tumour marker, the competitive IgG

FcRn quasi-steady state model is used. A schematic of the model is shown in Figure

5.2.

Figure 5.7: QSSA compartmental model of IgG-K and IgG-L dynamics.

The model is constructed from two coupled systems representing the IgGK and

IgGL antibodies. All compartments labelled K represent the quantity of IgG Kappa,

whilst L denotes the quantity of IgG Lambda in the equivalent pool. The model was

initially constructed by considering the flow of IgG in plasma. It is known through
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radio-nuclide marking, ([Waldman and Strober, 1969]), that IgG moves freely between

plasma and EVF pools, across the plasma membrane. Therefore, two compartments

were created (K1,L1 and K2,L2) with two linear rate constants (k12 and k21) describing

the flow between the plasma and EVF. However, for normal subjects, the quantity of

IgG in plasma and EVF are approximately equal [Waldman and Strober, 1969], for

this to be true, under steady state conditions k12=k21. The synthesis of intact IgG is

controlled by three functions: PK(t) (IgGK), PL(t) (IgGL) and PT (t), representing the

monoclonal IgG produced by the tumourous MM cells. In the above diagram, Figure

5.2, the tumour synthesis is shown only producing monoclonal IgGK. Tumours can

produce either IgGK or IgGL.

Both IgGK and IgGL are continuously exchanged between plasma and the en-

dosome through pinocytosis; IgG is either bound to FcRn receptors or remains free

in the endosome. Bound IgG is protected and recycled into plasma, whilst the free

IgG is catabolised. The system generated from the model (Figure 5.2) can be seen in

equations (5.16a)-(5.16d):

K̇1(t) = −

(

k31 −
Vm

Km + (K1(t) + L1(t))

)

K1(t)− k21K1(t)

+k12K2(t) + PK(t) + PT (t) (5.16a)

K̇2(t) = k21K1(t)− k12K2(t) (5.16b)

L̇1(t) = −

(

k31 −
Vm

Km + (K1(t) + L1(t))

)

L1(t)− k21L1(t)

+k12L2(t) + PL(t) (5.16c)

L̇2(t) = k21L1(t)− k12L2(t) (5.16d)

with parameter definitions supplied in Table 5.3. On clinical presentation, prior to

treatment, it is assumed that the patient’s tumour has produced sufficient IgG to

saturate all compartments and receptor sites. With the system therefore in steady-

state the initial conditions are:

K1(0) = CK1(0)v1 K2(0) = CK1(0)v2

L1(0) = CL1(0)v1 L2(0) = CL1(0)v2

where CK1(0) and CL1(0) represent the concentration of the IgGK and IgGL in plasma

prior to any chemotherapy treatment and v1 and v2 are the apparent volumes of dis-
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tribution for plasma and EVF respectively. It is possible to observe four different

measures relating to the IgG produced in vivo:

yK1(t) = CK1(t) = c1K1(t)

yT1(t) = CT1(t) = c1T1(t)

yL1(t) = CL1(t) = c1L1(t)

yKT1(t) = (CK1(t) + CT1(t)) = c1(K1(t) + T1(t))

(5.17)

where c1 represents an observation gain. It is assumed that all IgGK (CK1(t)), IgGL

(CL1(t)) and monoclonal tumourous IgG (CT1(t)) are captured by the measurement

technique and as such this equates to the volume of distribution in plasma, c1 = 1
v1

and the observation is simply the concentration in plasma. In equation (5.17) yK1(t)

represents the concentration of IgGK in plasma; yL1(t) that of IgGL. The remaining

two measurements relate to the measuring of tumour-specific concentrations. yT1 is

the measurement of the monoclonal antibody produced by the tumour, whilst yKT1

is the total amount of IgG tumour type, in this case Kappa, but this may be Kappa

or Lambda depending on the MM tumour type. If measurement of the monoclonal

antibody is possible for a patient, two additional compartments would be added to the

system model (eqns. (5.16a)-(5.16d)), representing the monoclonal antibody as follows

˙KT1(t) = −

(

k31 −
Vm

Km + (K1(t) + L1(t) + KT1(t))

)

KT1 − k21KT1(t)

+ k12KT2(t) + PT (t)

˙KT2(t) = k21KT1(t)− k12KT2(t)

(5.18)

where KT i represents the quantity of monoclonal antibody in compartment i and the

remaining compartments are modified accordingly. Equations 5.16a and 5.16c would

be modified as follows
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K̇1(t) = −

(

k31 −
Vm

Km + (K1(t) + L1(t) + KT1(t))

)

K1(t)− k21K1(t)

+ k12K2(t) + PK(t)

L̇1(t) = −

(

k31 −
Vm

Km + (K1(t) + L1(t) + KT1(t))

)

L1(t)− L21L1(t)

+ k12L2(t) + PL(t)

(5.19)

The above equations assume that the tumour is producing IgGK.

5.4.2 Chemotherapy markers

In order to compare the appropriateness of the different tumour markers it is necessary

to define a mathematical framework by which markers can be compared. However,

prior to this it is prudent to consider the medical definition of a tumour marker. A

succinct description is offered by Krishna [Krishna, 2004, pp. 1163]

“A tumour marker is a substance present in or produced by a tumour itself

or produced by the host in response to a tumour, that can be used to

distinguish a tumour from normal tissue, or can be used to detect tumours

in large screening surveys.”

To compare tumour markers, e.g. two measurable substances, it is necessary to

define a metric between them to enable quantitive comparison. A ‘better’ marker is one

that more closely predicts the underlying synthesis of the tumour during the patient’s

treatment. To view this concept from a different perspective the synthesis and markers

can be viewed as discrete samples of a continuous function, yielding vectors in a real

vector space R
N , where N is the number of samples. It is then natural to consider the

metric induced by the Lp norms as suitable candidates (e.g. Euclidean Norm, absolute

value, etc) to produce a simple scalar comparison of two markers. For example, if two

markers m1(t) and m2(t), are sampled at equivalent time points, ti, i = 1, ..., N, and

compared via the p-norm to a tumour synthesis q(t); m1 could be considered a better

marker than m2 if

(
N

∑

i=1

(m1[i]− q[i])p)
1
p < (

N
∑

i=1

(m2[i]− q[i])p)
1
p (5.20)



Section: 5.4.3 108

where [i] denotes discrete sampling of the relevant signal (i.e., q[i] = q(ti)). However, if

the use of the marker is considered in a clinical application, measurements will be peri-

odically taken of the plasma concentrations (monthly or quarterly are not uncommon)

with a sample interval that will be irregular and unspecified a priori. At each sample

point the clinician will wish to make assessments of the chemotherapy’s effectiveness.

It is therefore imperative that for one tumour marker to be considered ‘better’ than

another it must be closer to the monoclonal synthesis at any point in time during the

patient’s observation. This is not the case for the inequality in (5.20), and this rela-

tionship may hold true even if at a specific time point (ti) marker m1 is not a better

representation of the tumour kill than m2, i.e.

|m1[i]− q[i]| > |m2[i]− q[i]| (5.21)

Therefore, a marker (m1) can only be regarded better than another (m2) if

|m1(t)− q(t)| ≤ |m2(t)− q(t)| t ∈ (0, to] (5.22)

where to is the maximum observation time. A perfect marker would be one that is

exactly equal to tumour synthesis during this period.

5.4.3 Normalised ratio marker

Considering this information, a new marker (R(t)) has been suggested of the ratio of

tumourous over non-tumourous IgG. For example, if the patient has an IgGK producing

tumour the ratio is

R(t) :=
yKT1(t)

yL1(t)
. (5.23)

To relate this to the percentage tumour kill R(t) is normalised with respect to the

initial conditions to produce a precentage change in the ratio, e.g.

R(t) :=
yKT1(t)

yL1(t)

yL1(0)

yKT1(0)
. (5.24)
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Alternatively, if the clinician has the ability to measure the monoclonal IgGK (yT1(t))

produced by the tumour in isolation from normal IgGK,

R(t) :=
yT1(t)

yL1(t)
, (5.25)

which is normalised to

R(t) :=
yT1(t)

yL1(t)

yL1(0)

yT1(0)
. (5.26)

5.4.4 Analysis of ratio IgG marker

As described by equation (5.22) a better marker is one that is closest to the underlying

tumour synthesis for all time. Unfortunately, the IgG-FcRn model proved intractable

for this problem, in that an algebraic solution to inequality in equation (5.22) could not

be found. Therefore an alternative problem is investigated: that is whether the ratio

related markers are better indicators of tumour kill under asymptotic steady-state con-

ditions. Given the definition of the normalised ratio above (R(t)), normalised tumour

producing synthesis (PT (t)) and the normalised IgG concentration in plasma, Kappa

(K(t)) and Lambda (L(t)), the question reduces to: is the ratio a closer estimate of

the overall tumour kill on completion of chemotherapy treatment? Numerical analysis,

using typical patient parameters, is conducted (Section 5.4.4) to investigate the appli-

cability of the markers during the entire treatment under typical clinical settings and

patient conditions.

Steady-state analysis

If it is assumed that the patient secreting monoclonal IgGK has completed chemother-

apy treatment and the concentrations of both the tumourous and non-tumourous IgG

have reached steady-state, equations (5.16a)-(5.16d) all equal zero. Thus, for an IgGK

secreting tumour, in steady-state we have
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0 = −FCR(K̃1, L̃1)K̃1 − k21K̃1 + k12K̃2 + PK + αPT (0) (5.27a)

0 = k21K̃2 − k12K̃1 (5.27b)

0 = −FCR(K̃1, L̃1))L̃1 − k21L̃1 + k12L̃2 + PL (5.27c)

0 = k21L̃1 − k12L̃2 (5.27d)

where K̃i and L̃i are the steady-state quantities of Kappa and Lambda IgG respectively,

α is the fraction to which the initial tumour production (PT (0)) has fallen, i.e. 1 - α

is the amount of synthesis reduced by chemotherapy, independent of the rate of kill.

PK are PL is the constant production rates for normal IgGK and IgGL. In addition,

FCR(·, ·) is the fractional catabolic rate of IgG from plasma defined by

FCR(K1, L1) = k31 −
Vm

Km + (K1 + L1)
(5.28)

with all other parameters as defined previously.

Proposition 5.4.1. Assuming the above model is a valid representation of the patient

response to treatment, irrespective of the dynamic tumour phase (growth or decay),

under steady-state conditions prior to and after the treatment period, the ratio of tu-

mourous over non-tumourous concentration will equal the fraction of tumour killed if

either of the following conditions are met:

(i) the initial tumour production is infinitely high, or

(ii) the normal production rate for the tumourous IgG type (Kappa or Lambda) is

zero.

Proof. For ease of nomenclature an IgGK producing tumour will be assumed; however,

the analysis is equivalent for either type of IgG.

Using the approximation k12 = k21 the EVF compartments, Equations (5.27b) and

(5.27d), yield K̃1 = K̃2 and L̃1 = L̃2 and Equations (5.27a) and (5.27c) simplify to give

−FCR(K̃1, L̃1)K̃1 + PK + αPT (0) = 0, (5.29a)

−FCR(K̃1, L̃1))L̃1 + PL = 0. (5.29b)
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The ratio of the tumourous over non-tumourous IgG is then given by

K̃1

L̃1

=
PK + αPT (0)

PL

. (5.30)

To consider the percentage fall the ratio should be analysed with reference to the

initial conditions

K1(0) =
PK + PT (0)

FCR(K1(0), L1(0))
(5.31)

and

L1(0) =
PL

FCR(K1(0), L1(0))
. (5.32)

The ratio, normalised to the initial conditions, therefore becomes

K̃1

L̃1

L1(0)

K1(0)
=

PK + αPT (0)

PL

PL

PK + PT (0)
=

PK + αPT (0)

PK + PT (0)
. (5.33)

with the normalised ratio of the IgGK over IgGL purely dependent upon the terms

relating to IgGK synthesis and the percentage of tumour killed (PK , PT (0) and α). This

suggests that if the patient is in steady-state post-chemotherapy treatment, which is

often seen in patients, the normalised ratio is dependent solely upon the initial tumour

production (PT (0)), the underlying normal IgG production (PK) and the fractional

tumour kill (α). In summary, the smaller the normal production or larger the initial

tumour, the closer the ratio will be to the tumour kill. Considering the size of the

tumour

lim
PT (0)→∞

PK + αPT (0)

PK + PT (0)
= α (5.34)

and the normal production of IgG, in this instance a patient with an IgGK tumour,

lim
PK→0

PK + αPT (0)

PK + PT (0)
= α. (5.35)

This may at first seem an impractical statement as with real patients the above lim-

iting conditions will cannot exist (limPT (0)→∞ and limPK→0); however, in MM patients

tumourous production will be considerably increased, and the greater the synthesis the
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worse the patient condition and more critical appraisal of the fraction of tumour killed.

Also, it is believed that in a tumourous environment normal production is often sup-

pressed in patients. Therefore studying the limits offers insight into the overall trend

or behaviour.

Corollary 1. Given the model of the system defined in Equations 5.16a-5.16d, if it

is possible to measure only the tumourous IgG produced, i.e. excluding normal IgG of

the same type (Kappa or Lambda), the ratio of tumourous over non-tumourous IgG

concentration, in steady-state conditions, will give the exact fractional tumour kill.

Proof. In this case, the extended model described in Equation (5.18) is used, as such

Equation 5.33 in the previous proof becomes

K̃1

L̃1

L1(0)

K1(0)
=

αPT (0)

PL

PL

PT (0)
= α. (5.36)

As can be seen from Equation (5.36), the result under the assumptions of Corollary

1 is completely independent of the underlying production of normal IgG, of the same

type as the tumour, in this case IgGK.

Proposition 5.4.2. If the patient, as described by the QSS model (Equations 5.16a-

5.16d), is in a steady-state condition, the ratio of the total IgG tumour over the non-

tumourous variant will be an improved marker on measuring tumour IgG concentration

alone if there is a change in the total IgG present from the pre-treatment values.

Proof. Considering a patient that has an IgGK producing tumour which is decaying un-

der the influence of chemotherapy, the total IgG concentration is expected to decrease,

therefore

K1(0) + L1(0) > K̃1 + L̃1. (5.37)

Also, the definition of the Fractional Catabolic Rate (Equation (6.6)) implies that

k31 −
Vm

Km + (K̃1 + L̃1)
< k31 −

Vm

Km + (K1(0) + L1(0))
, (5.38)
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or

FCR(K̃1, L̃1) < FCR(K1(0), L1(0)), (5.39)

and, as FCR in practice is always positive, ultimately results in

1 <
FCR(K1(0), L1(0))

FCR(K̃1, L̃1)
. (5.40)

The normalised steady-state concentration, using Equations (5.29a) and (5.31), can

be written as

K̃1

K1(0)
=

PK + αPT (0)

FCR(K̃1, L̃1)

FCR(K1(0), L1(0))

PK + PT (0)
. (5.41)

Therefore, comparing the ratio of tumour over non-tumourous concentration (Equa-

tion (5.33)) against the normalised plasma concentration (Equation (5.41)), the in-

equality 5.40 implies that

R(t)

R(0)
=

PK + αPT (0)

PK + PT (0)
<

PK + αPT (0)

FCR(K̃1, L̃1)

FCR(K1(0), L1(0))

PK + PT (0)
=

K̃1

K1(0)
. (5.42)

Therefore, for the ratio to be a better marker there must be a fall in total IgG

plasma concentration, which in all patient data provided, is true. As with previous

results, the reverse holds for tumours exhibiting growth.

Numerical analysis

In order to exercise the model in a realistic environment, two patient scenarios have

been considered:

• Patient A presents with a concentration of 80 g/L tumourous IgGK, with a 50%

reduction seen post-chemotherapy.

• Patient B presents with a concentration of 30 g/L IgGK and a 100% reduction

in synthesis is achieved.

Assuming that synthesis of normal IgGK and IgGL continues in line with normal

concentrations, the synthesis parameters PK and PL, are set to achieve concentrations
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of 12 g/L IgGK and 6 g/L IgGL. However, it should be noted that the concentrations

of normal IgG will be suppressed under increased catabolism due to the raised total

concentration of IgG present. If the normal level of production and the required initial

level of tumourous IgG concentration are known, the remaining initial conditions can

be found, see Appendix C.
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Figure 5.8: Simulated results for patient A. Figure a) IgG in plasma (solid line total IgGK,

chained-line IgGK tumour, dotted-line normal IgGK and dashed-line IgGL); figure b) percent-

age change in markers (bold-solid line tumour synthesis, solid-line total IgG K, chained-line

IgG K tumour, dotted-line ratio total IgGK/IgGL, dashed-line ratio IgGK tumour/IgGL)

For each of the above scenarios a simulated experiment has been conducted using

the parameters derived in Table 5.3 (Figure 5.4), the results of which can be seen in

Figures 5.8 and 5.9. Figure 5.8(a) shows the simulation results for Patient A for the

concentrations of the IgG proteins present in plasma. In this figure the left hand axis

is scaled for the tumour and total IgGK (tumourous + normal) whilst the right hand

axis is formatted to display the normal IgGK and IgGL concentrations. The simulation

clearly shows the fall in tumour IgG and the effect it has on the total tumourous IgG

measured. In addition, the rise in normal IgG (both Kappa and Lambda) is evident

with each rising above the initial concentration. However, they do not increase to the

normal concentration ranges (12 g/L and 6 g/L) as noted previously.

Figure 5.8(b) compares the concentration change that will be seen if the four differ-

ent marker measurements are considered. The solid line, marked with circles, represents

the actual synthesis of the monoclonal IgGK produced by the tumourous cells; the ideal

but immeasurable marker. Interestingly, if the actual tumour synthesis is compared to



Section: 5.4.4 115

the fall in plasma concentration a large difference is evident, with the plasma falling

indicating a 50% reduction when the synthesis has actually drop by almost 70%.

During the initial phase (0-75 days) little difference is evident between the markers;

however, as described by the analysis above, the ratio becomes a better marker than

measuring the concentrations in plasma directly. As noted in Proposition 5.4.1, the

ratio of total IgGK is a much improved marker due to the relatively high tumour

production and low non-tumour production. The most accurate marker, as anticipated

by Corollary 1, is the ratio of IgGK tumour and the non-tumour IgGL, with the final

value at 300 days equalling the fractional kill (a 22 % difference seen between this

measurement and that of total IgGK). The ratio of IgGK tumour over non-tumour is

the most effective marker during the entire measurement process.
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Figure 5.9: Simulated results for patient B. Figure a) IgG in plasma (solid line total IgGK,

chained-line IgGK tumour, dotted-line normal IgGK and dashed-line IgGL); figure b) percent-

age change in markers (solid-line (◦) tumour synthesis, solid-line total IgG K, chained-line

IgG K tumour, dotted-line ratio total IgGK/IgGL, dashed-line ratio IgGK tumour/IgGL).

The simulation of the condition described by the ‘Patient B’ scenario can be seen

in Figure 5.9, with the plots and axes scaled as for Patient A. With reference to Figure

5.9(a) the tumour concentration is seen to drop to zero, due to the 100% tumour

kill; however, in this scenario the normal IgG levels return to those expected in a

healthy patient. As shown in Figure 5.9(b) the ratio markers are once again better

than the plasma concentration measurements, with one noticeable exception, that of

measuring tumourous monoclonal IgG. As would be expected in the latter stages of

treatment as the synthesis is zero the concentration will lag behind but will eventually
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also reach zero. It is interesting to note, that even for this scenario it is still more

effective to measure the ratio of monoclonal IgGK over IgGL, as the ratio approaches

zero on a shorter time frame than the monoclonal tumour concentration. However,

approximately 40% difference can be seen between measuring the ratio and total IgGK

in plasma concentration.

5.5 Summary

In this chapter a model has been proposed describing the competitive binding of IgG-

Kappa and IgG-Lambda to FcRn receptors. A reduced model was derived using basic

assumptions from the underlying receptor kinetics. It was validated using data from

normal subjects and patients with Hypoproteinemia, the results of which offered in-

formation on the maximum and normal clearance achieved through pinocytosis and

binding to the FcRn. These parameters were then used to investigate the effects of

FcRn recycling on a patient with IgG secreting Multiple Myeloma. It was shown that

the model, when coupled with a delayed-logistic input function, could be used to suc-

cessfully simulate the effects of chemotherapy in accordance with evidence provided by

in vitro measurements.

Although certain biological complexities noted above have been excluded from the

model presented, evidence has been provided (see Figure 5.6) that suggests the ratio

of tumour over non-tumour plasma measurement may offer an improved tumour kill

indicator. The ratio appears to give a significant improvement over the current best

practice of measuring the total change in IgG tumour in plasma alone. This may

offer an alternative method of categorising the chemotherapy response of patients with

intact IgG secreting Myeloma giving improved accuracy and earlier detection of poor

tumour kill or ineffective chemotherapy treatment.

In the next chapter investigation of the whole-antibody analysis is continued but

rather than the tumourous synthesis seen in MM patients discussed in this chapter, the

full immune responses to transplanted organs will be considered. Patients with Intact

Secreting MM produce only monoclonal IgG all of which behave with similar dynamics

in vivo; transplant patients, however, produce a range of antibodies and antibody types

and as such additional models are derived from the IgG models presented here.



Chapter 6

Immune response to transplants

As described in Chapter 2, patients who receive transplants will incur an immune

response to any transplanted device or implanted material. To avoid damage to the

implanted substance clinicians use apheresis to clear antibodies from the blood stream;

however, due to the size of whole antibodies haemodialysis is not an option. Patients

also receive immunosuppressant drugs to prevent the immune system generating new

antibodies [Higgins, 2007], rather than chemotherapy drugs given to Myeloma patients,

as seen previously (Chapters 4 and 5). Unlike MM patients, the immune response

generated by transplant patients is natural and as such a range of antibody isotypes

are produced.

In this chapter, models are defined that attempt to estimate the synthesis and

clearance of immunoglobulin (IgG, IgA and IgM) of patients undergoing kidney trans-

plants. The models constructed previously worked solely upon either single antibody

or antibody fragments; however, due to the similarity in the catabolism of the anti-

body types, with minor modification, these models are combined to analyse the total

immune response. At first glance this may not appear comparable to the previous

work; however, although transplant patients do not have cancerous tumours, they do

have highly-elevated immunoglobulin concentration in plasma. In addition, although

the treatments given to transplant patients are different from those of cancer patients,

they are analogous in their effect on the body from a systems perspective. Multiple

Myeloma patients receive chemotherapy which suppresses the production of immune

complexes, whereas transplant patients are given immune suppressing drugs that re-
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tard the production of antibodies to antigens; both have the effective of reducing the

underlying synthesis. As was seen in Chapter 4, MM patients are treated with high-

flux haemodialysis to clear excess FLC but due to the size of the molecules in question

(immunoglobulin A, G and M) this is not possible for transplant patients. In com-

parison transplant patients are treated with plasmapheresis, hemoperfusion or plasma

exchange. These analogies allow the previous models developed to be modified slightly

and the analysis techniques employed to address the dynamics.

The aim of the work presented in this chapter is to enable clinicians to better

categorise a patients response to the implanted organ, allowing them to modify pro-

cedures earlier on in the patient’s treatment than was previously possible. In the first

part of this chapter a simple technique to estimate the synthesis rates and efficiency

of apheresis for different antibody types is presented and from this, understanding

of the antibody synthesis can be gained regarding the effects of immune suppression

drugs and apheresis, pre- and post-transplant. In the final section of this chapter an

alternative method for automatic categorisation of patients is investigated. A new

measurement technique is available to measure antibodies directly targeted against the

kidney [Higgins, 2007]. However, due to anomalies in the measurements the process-

driven modelling techniques used previously are not applicable. Therefore, time series

cluster analysis techniques are used to separate the patients into groups in an attempt

to assist clinicians in diagnosing a particular patients response in a nonparametric

manner.

6.1 Describing the immune reaction to transplanted

organs

After transplantation a patient’s immune system will generate antibodies against the

donated organ. It will be seen as an invading body and therefore marked for removal.

Even in the best possible match of donor organ and patient this is the case. It is

therefore of great interest to clinicians to have an accurate estimate for the generation

of antibodies. As seen for Multiple Myeloma (Chapter 5) the current best practice

is to measure the concentration of antibodies in plasma. To determine the response
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the concentrations are compared to previous history to determine the current state

of the patient. However, this expert analysis is further complicated by the different

numbers of antibodies produced. For each patient it is common practice to measure

three antibodies: IgG, IgA and IgM (please refer to Chapter 2 for a description of

these). Each will be prevalent at different stages of the immune response. In addition,

through new measurement techniques [Higgins, 2007] antibodies specifically generated

to target the donor organ can be measured, referred to as donor specific antibodies

(DSA). Due to inconsistency in the measurement techniques the DSA measurements

cannot be used in process driven modelling; however, an alternative method to use

these measurements is described in Section 6.2.

For each patient the following data were available (an example dataset can be seen

in Figure 6.1):

• Measurements of IgM, IgG and IgA concentrations; unlike the previous haemodial-

ysis study (Chapter 4) only two measurements were taken, one at the start and

one at the end of apheresis. In addition, these data were not always complete

(see Section 6.1.1) with either pre- or post-apheresis measurements missing.

• Indication of the apheresis treatment given at each session (plasmapheresis (PP),

plasma exchange (PE) or plasma absorption (PA)). For details on the different

treatments see Chapter 2.

• The total body weight prior to the apheresis treatment.

• Date of each of the apheresis sessions and the transplant operation.

The IgG models previously developed in Chapter 5 can be applied to the trans-

planted patient data allowing physicians to estimate the antibody synthesis and its re-

action to immunosuppressive drugs and to investigate the effectiveness of the apheresis

treatments in removing whole-antibody. From the previous work presented, the most

practical approach would be to assume a known parametric form for the synthesis (e.g.

Logistic growth, as seen in Chapter 5) and initial estimates for the system and fit the

data using a reliable method. The results from this approach were extremely poor

yielding numerically undetermined parameters and poor fits to data. The reasons for
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this are believed to be the sparsity of data and the variability of patient response to

immunotherapy drugs and apheresis treatment. For example, a single patient could

receive twelve apheresis treatments prior to their operation, each requiring a separate

clearance parameter, with only a maximum of twenty four data points.

In order to provide estimates for the required parameters, assumptions are made

regarding the system dynamics over a known time interval, allowing the problem to be

discretised. It is assumed that the synthesis is piecewise constant over the treatment

period. Further, all other parameters, with the exception of apheresis clearance, anti-

body production and EVF concentrations, are assumed to be known for each patient.

6.1.1 Patient data

Figure 6.1 shows two examples of the data provided1; in each case there are three types

of measurement taken:

• Pre-apheresis, taken immediately before apheresis (pre).

• Post-apheresis, taken when apheresis has finished (post).

• No apheresis, measured when the patient is under clinical observation but not on

apheresis (no ap).
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(b) Missing data points - large dark circle are

missing measurements

Figure 6.1: Normalised example data sets. IgG 5, IgA � and IgM +. Vertical line represents

the time of transplant.

1All data have been normalised to the maximum value, to enable comparison.
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A complete dataset is shown in Figure 6.1(a), with no missing values; it should

be noted that even in this case the data are not ideal, in that they are sparse and

irregularly sampled. The alternative case (a poor dataset) can be seen in figure 6.1(b);

the figure has been annotated with large dots to highlight the missing data points.

When using in vivo biomedical data, missing data points are a common problem. Two

basic solutions to the problem exist [Altman and Bland, 2007]:

• to ignore all data sets that contain missing data.

• impute the missing values using statistical techniques.

Ignoring datasets that contain missing observations can be applied during the

model development and validation phase; however, to be used in a clinical setting

the model should be applicable to all patients and suggest a typical response even with

the limited information available. When the observations provided are frequently sam-

pled continuous time series data, the missing measurements may be simply imputed by

interpolation techniques; for the discontinuous system of apheresis this is not possible.

In the following work this problem is addressed by assuming that the parameter esti-

mates that are not calculable due to the missing data points (e.g. apheresis clearance

and Ig synthesis) remain the same as the previous estimated value, or are constant until

the next observation. This approach is only applicable as the missing observations are

relatively uncommon, with contiguous missing points never occurring.

6.1.2 Method

To investigate the kinetics three models were constructed, one for each of the Ig types of

interest: IgA, IgG and IgM. A compartmental schematic of each can be seen in Figure

6.2. In the following subsections each model will be described in more detail. As the

models produced are all linear, closed form solutions are available for the unknown

clearance, synthesis and EVF concentrations given the available plasma concentration

measurements.

In Figure 6.2, label q∗1(t) indicates the quantity of the antibody present in plasma;

whilst, q∗2(t) is the quantity in EVF. P∗(t) is the synthesis rate of the immunoglobulin,

due to the immune suppression and subsequent immune response to the transplanted
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(a) IgM (b) IgG (c) IgA

Figure 6.2: The three Ig models. The variables qMi, qGi and qAi denote the quantity of IgM,

IgG and IgA in compartment i respectively; compartment 1 is plasma, 2 is EVF. kpM , kpG

and kpA are the effective apheresis clearance. k01∗ the natural clearance of the antibody.

kidney; this is known to be non-constant over the period of observation. All other rate

constants are discussed in the relevant model section.

IgG model

As has been previously discussed (Chapter 5) IgG is known to exist in both plasma

and EVF, it has been shown via radio marking to be equally distributed between both

compartments in terms of quantities [Waldman and Strober, 1969]. The model, as seen

in figure 6.2(b), has plasma (qG1) and EVF (qG2) compartments with linear exchange

between the two (k12 and k21). Clearance (k01 and kpG) and synthesis (PG(t)) are via

the plasma pool only. Unlike the FcRn model, described in Chapter 5, only the total

IgG is measured therefore a simplified version of the FcRn model can be used. This

model is equivalent to that presented by Kim et al. [2007] and Ferl et al. [2005]. The

model for IgG dynamics can be described by the following equations:

˙qG1(t) = −(k01G(qG1(t)) + kpG + k21)qG1(t) + k12qG2(t) + PG(t) (6.1)

˙qG2(t) = −k12qG2(t) + k21qG1(t) (6.2)

qG1(0) = qG10 (6.3)

qG2(0) = qG20 (6.4)

As described above only a single measurement of the plasma concentration is taken

before and after apheresis has been performed. Therefore, the output structure of the
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model is simply

yG1(τ) =
qG1(τ)

v1(τ)
τ ∈ {ts1, te1, ..., tsN , teN} (6.5)

where v1(τ) is the plasma volume at time τ , this may not be constant as has been as-

sumed previously; tsi and tei are the time points at the start and end of plasmapheresis,

and N is the number of plasmapheresis treatments.

FcRn clearance (k01)

It is known that clearance of the IgG protein is mediated through the FcRn recep-

tor [Brambell et al., 1964]. The rate of clearance is dependent upon the quantity of

IgG in plasma due to the binding and subsequent recycling via the epithelium, often re-

ferred to as the fractional clearance rate (FCR). Unlike the case for Multiple Myeloma

intact IgG modelling, seen previously in Chapter 5, there is no distinction between

the IgG isotypes produced (Lambda or Kappa); as such the competitive binding to

the FcRn receptors modelled previously need not be considered and the clearance re-

duces to a standard form [Ferl et al., 2005; Kim et al., 2007; Waldman and Strober,

1969]. If pseudo-steady state assumptions are made regarding the receptor dynamics

the fractional clearance rate (k01G) can be estimated by

k01G(qG1(t)) =
(

α−
Vm

Km + qG1(t)

)

(6.6)

where α is the maximum rate of clearance and Vm the maximum recycling rate of IgG

and Km the concentration at which half-maximal recycling occurs, as seen in Chapter

5.

IgA model

IgA is similar in size to IgG (IgA ≈ 160 kDa, IgG≈ 146 kDa) and has very similar prop-

erties in terms of in vivo kinetics and distribution between plasma and EVF [Mehlhorn

and Armstrong, 2001, pp. 43 - 44]). IgA does not bind to FcRn receptors and so

is not recycled into plasma. Therefore the FCR of IgA is constant and in equation
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(6.1) reduces to k01A(t) = α from equation (6.6). As such the system equations can be

considered linear and can be described by the following system:

˙qA1(t) = −(k01A + kpA + k21)qA1(t) + k12qA2(t) + PA(t) (6.7)

˙qA2(t) = −k12qA2(t) + k21qA1(t) (6.8)

qA1(0) = qA10 (6.9)

qA2(0) = qA20 (6.10)

Concentrations are sampled at pre- and post-apheresis treatment, therefore the

output structure is identical to equation 6.5, measuring IgA rather than IgG.

IgM model

IgM is a larger molecule than either IgA or IgG (≈ 900 kDa); it does not flow between

plasma and EVF in significant quantities [Mehlhorn and Armstrong, 2001, pp. 43 -

44]). The model constructed therefore consists of a single pool describing the quantity

of IgM in plasma:

˙qM(t) = −(k01M + kpM)qM(t) + PM(t) (6.11)

qM(0) = qM0 (6.12)

PM(t) is the synthesis of new IgM molecules. k01M can be estimated from the known

half-life of IgM (≈ 5 days). PM(t) and kpM are the parameters to be investigated

during this study.

Volume of distribution

The volume of distribution for IgM is the plasma pool, whilst IgG and IgA are dis-

tributed between two pools: plasma and EVF. These are calculated from the total

body weight given in the clinical data by the approximations given in Malesker and

Morrow [2007], as shown in Chapter 4.
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6.1.3 Analysis

As has been previously seen, if it is assumed that the patient’s immune system is in

steady-state prior to treatment, estimates for starting synthesis can be calculated, and

if applicable, initial concentration in EVF. Using these initial values, it is then possi-

ble to iterate through all given data points generating values for predicted discretised

values of P [n], kp[n] and q2[n], where [n] is the value at the nth data point. For each

off-apheresis session the synthesis is calculated, whilst for an on-apheresis data set the

clearance is estimated assuming the synthesis is maintained at the pre-apheresis value.

This is feasible given the relative timescales of the measurements and the response time

of the immune suppression treatment. The pseudo-code for this algorithm is presented

below in Algorithm 1. A similar method is suggested by Iga et al. [1986] to determine

drug absorption rates for continuous systems, without the added complexity of the

switched dynamics introduced by the apheresis treatment.

Algorithm 1: Pseudo-code to estimate clearance and synthesis.

Input: all valid data-points

Output: all estimated synthesis and clearance

foreach observation do
curr ← current observation;

next ← next observation;

if (curr of type ‘post’ or ‘no ap’) and (next of type ‘pre’ or ‘no ap’) then
Estimate synthesis and EVF concentration at end period;

else if (curr of type ‘pre’) and (next of type ‘post’) then
Estimate clearance, using previous synthesis estimate, and EVF

concentration at end period;

else
Missing data point. Synthesis and clearance assumed unchanged;

end

end

Equations relating the immune synthesis (P∗[n]) and EVF concentration q2i[n] can

be found analytically. Unfortunately, the closed form solutions of eqns. (6.1), (6.10)

and (6.12) do not allow an algebraic relationship for apheresis clearance (kp∗[n]) to be

calculated. Therefore, a numerical solution for the value of kp∗ can be found using an
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appropriate one-dimensional root-finding algorithm [Press et al., 1992, chap. 9].

As an example, consider the IgM model (eq. (6.12)). If the patient is not on

apheresis and the synthesis of IgM is assumed to be constant over the obersvation

period, an analytical solution can be found for the quantity of IgM in the patient,

given by

qM(t) = e−k01M tqM0 + PM

k01M
(1− e−k01M t). (6.13)

If this equation is then discretised, with the production assumed to be constant over

the sample period, equation (6.13) can be re-arranged to give an estimate for the IgM

production, given consecutive measurements of IgM (qM [n] and qM [n + 1])

PM [n] = k01M (qM [n+1]−e−k01M τ qM [n])

1−e−k01M τ n = 1, 2, ... (6.14)

where n is the sample index, τ time between the measurements and qM [i] is the mea-

surement at i. If the IgM concentration is assumed to be in steady-state prior to

treatment the initial value of the IgM synthesis is given by

PM [0] = k01qM [0] (6.15)

The IgM apheresis clearance estimates (kpM [n]) can then be found by minimising the

difference between the observation and the predicted estimate at time point tn, e.g.

kpM [n] = arg min
kpM

d(qM(tn; kpM), cM [n] vp[n]) n = 1, 2, ... (6.16)

where cM [n] is the observation of the patient concentration at time point tn, qM [n] the

estimated quantity from equation (6.12), and vp[n] the pre-treatment plasma volume.

The metric to be minimised (d(·) in equation (6.16)) can then be chosen to suit the

optimisation algorithm, i.e. for the MATLAB fzero function the difference between the

estimate and measured value is sufficient.

A similar, if slightly more complex, process can be followed for IgG and IgA where

the analytical solution at time point tn is given by
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q[n] = eAτq[n− 1] +

∫ τ

0

P [n]eA(τ−s)ds (6.17)

where q[n] is a vector of solutions for plasma (q1) and EVF (q2); eAτ is the matrix

exponential, A the linear system matrix. As q1[n] is the given measurement, these

equations can be solved simultaneously for P [n] and q2[n] (see Appendix D). The

apheresis clearance (kp) is again calculated through a numerical minimisation proce-

dure, as in equation (6.16). For the IgG model (equation 6.1) in order to produce

a solution the estimate for natural clearance (k01G) is linearised around the observed

value (q1[n − 1]), and assumed to remain constant through the observation period;

giving a linear system to which the solution in equation 6.17 is applicable.

6.1.4 Variation estimates

For the values used to predict the synthesis and clearance two types of uncertainty

exist:

• Measurement error in the data provided (e.g. plasma concentration).

• Inter- and intra-patient rate constant variation (e.g. FCR, intercompartmental

transfers, natural clearance).

The measurement error for antibody measurements is provided by the clinical staff

and an estimate of ±5% has been given by haematological staff through unpublished

dilution studies. Patient variability is more difficult to quantify. Each patient will have

different parameter estimates than those of the parameter values used; there may also

be variation between patients and in the same patient on different days. However, from

previous work carried out with regards to FLC clearance (Chapter 4) a coefficient of

variation (CoV) of ±10% would appear to give a reasonable estimate.

To estimate the deviation in the values a simple iterative Monte Carlo scheme has

been implemented. For each value calculated one thousand iterations were performed

to re-calculate the estimated values. At each iteration, values for the model parameters

and data measurement were selected from a normally distributed parameter set, with

mean value (µi) equal to the initial estimate and a standard deviation given by µi ×

CoVi.
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6.1.5 Results

The above algorithm was run for each set of patient data. This results in an estimate

for the synthesis of the antibody production over the time course of the treatment. Ex-

ample sets of results are shown in Figures 6.3 and Figures 6.4. Referring to Figure 6.3,

for each antibody type two figures are shown, the lower figure is the estimated produc-

tion using the above technique; the upper figure shows the simulated output given the

estimated input. The circles in the top figure represent pre-apheresis measurements,

whilst the triangles denote the post-apheresis observations. The estimated input is

shown as a piecewise constant graph to encourage the recognition that a constant pro-

duction is assumed for the discretisation and the estimate should be considered a mean

estimate for the antibody synthesis. For the simulated output the solid line in the top

figure represents the concentration of the antibody in the plasma compartment. The

vertical line shown in each figure shows the time of organ transplant.

Patient 1, as seen in Figure 6.3, shows a classic, and successful, response to the

combination of immune suppression and plasma exchange treatment. Pre-transplant,

all immune complexes (IgG, IgA and IgM) decrease within two or three days of treat-

ment. During this time the patient is given a series of plasma exchange treatments to

reduce the basal level of antibodies to as low as possible. In some patients an immune

response can be generated against the apheresis treatment which would be recognised

by an increase in the antibody synthesis; this can often be masked by reductions in

concentration in plasma due to the ongoing apheresis treatments. Post-transplant the

patient is still on the same amount of immuno-suppressing drug, but little evidence is

seen for this from the plots.

An alternative patient response can be seen in Figure 6.4. The patient received

extended apheresis treatment sessions prior to surgery, ten sessions in total, indicat-

ing that the clinicians did not believe the change in plasma concentration to be great

enough for a successful transplant. However, from viewing the underlying synthesis it

can be seen that this is probably due to reaching basal levels of concentration due to

production. Overall very little change can be seen in production of each of the anti-

body types, approximately 30% at best, as can be seen in Figure 6.3; in a patient with

a successful response this can be considerably higher, often 80% or greater. For IgM a
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Figure 6.3: Estimates for synthesis of antibodies from patient 1. Top - simulated plasma

concentration and measurements (circles pre-apheresis, triangles post-apheresis. Bottom -

solid-line predicted synthesis, dashed-line ± one standard deviation from estimated value.)

typical response to the immuno-suppressing drugs is evident, whilst IgG rises indicat-

ing an increased immune response, and IgA remains relatively constant throughout.

Unfortunately, patient data were not available post-operatively.

The discrete deconvolution as described presents difficulties that should be noted.

Firstly, assuming the production is constant over the discretisation period, e.g. two

days for patient two, may be unrealistic as the antibody synthesis is suppressed by drug

combinations which are administered throughout the treatment. Whilst the piecewise

constant values suggest a trend in the synthesis, it would be beneficial to consider

the function as continuous over the treatment range. In addition, there is information

regarding the functional form of the synthesis that is known a priori which could

be used to determine the generation rate more accurately. The input signal cannot,

by definition, be negative; whilst this did not occur for the patient data seen it is
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Figure 6.4: Estimates for synthesis of antibodies from patient 2 (pre-transplant only). Top

- simulated plasma concentration and measurements (circles pre-apheresis, triangles post-

apheresis. Bottom - solid-line predicted synthesis, dashed-line ± one standard deviation from

estimated value.

not prevented by the discrete method. An extension of this problem can be seen

in Figure 6.4(b), with the confidence interval generated by the Monte-Carlo method

suggesting a negative production as the minimum bound between the second to fourth

day. Further, as it is a natural signal, the synthesis will not contain discontinuities and

will exhibit a degree of smoothness. This issue will be addressed in Chapter 7, where

a more complex deconvolution method is developed.

In addition to offering prediction on a patient’s response to immunosuppression the

algorithm presented provides information on the different apheresis treatments (plasma

exchange, plasma absorption and plasmapheresis). Table 6.1 shows the clearance values

obtained for each of the antibody types (IgM, IgG and IgA) for the 13 patients observed

during the studies. Each patient was treated with only one of the apheresis methods
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Table 6.1: Estimates for the clearance of IgM, IgG and IgA of different apheresis techniques

(DFPP - Double Filtration Plasmapheresis, PE - Plasma Exchange, PA - Plasma Absorp-

tion). The estimate for each patient is averaged over all the treatments, as specified in the

number column.

Id Type Number Clearance mins−1 (std. dev.)

IgM IgG IgA

1 PE 11 6.94E-04 (3.71E-05) 6.44E-03 (3.98E-03) 2.94E-03 (1.19E-03)

2 PA 4 6.90E-04 (2.82E-05) 6.31E-04 (3.44E-04) 5.06E-04 (4.84E-04)

3 PA 3 6.75E-04 (7.37E-06) 1.03E-03 (2.20E-04) 9.21E-04 (3.54E-04)

4 DFPP 4 7.03E-04 (4.53E-05) 3.06E-03 (8.74E-04) 3.88E-03 (1.56E-03)

5 DFPP 8 6.87E-04 (3.12E-05) 3.37E-03 (2.44E-04) 4.61E-03 (1.15E-03)

6 DFPP 3 6.84E-04 (2.32E-05) 4.84E-03 (1.14E-03) 6.46E-03 (1.48E-03)

7 DFPP 3 7.16E-04 (5.09E-05) 3.62E-03 (5.43E-04) 3.68E-03 (3.62E-04)

8 DFPP 10 6.85E-04 (2.95E-05) 5.10E-03 (1.09E-03) 6.19E-03 (1.30E-03)

9 DFPP 5 6.81E-04 (4.80E-05) 5.33E-03 (1.90E-03) 6.35E-03 (2.01E-03)

10 DFPP 5 6.81E-04 (2.30E-05) 5.51E-03 (1.46E-03) 6.91E-03 (1.41E-03)

11 DFPP 7 6.90E-04 (3.20E-05) 5.32E-03 (1.07E-03) 5.85E-03 (1.19E-03)

12 DFPP 7 6.77E-04 (4.25E-05) 4.50E-03 (6.43E-04) 5.02E-03 (1.09E-03)

13 DFPP 5 7.05E-04 (6.95E-04) 5.01E-03 (4.93E-03) 6.12E-03 (5.87E-03)

during their entire period, pre- and post-transplant, the values shown in the table are

averaged over all sessions. Unfortunately, the treatment used was based on clinical

requirements and resources and did not provide equal observations, therefore plasma-

pheresis measurements predominate. However, it can still be seen from Table 6.1 that

all three treatments appear to clear IgM with similar effectiveness, whilst IgG and IgA

have much less predictability. As seen with FLC (Chapter 4) clearance of material that

flows freely between plasma and EVF is limited by the exchange rate between these

two compartments as well as the rate of clearance. It is therefore surprising that IgG

and IgA are cleared more rapidly than IgM, even though IgM is limited to plasma pool

distribution. This may be down to the size difference between the three isotypes, with

IgM being approximately five times larger, which may influence the filter technology



Section: 6.2.0 132

used in the apheresis method.

Apheresis Clearance mins−1 (std. dev.)

IgM IgG IgA

PA 6.87E-04 (2.51E-05) 7.79E-04 (2.99E-04) 6.62E-04 (4.04E-04)

PE 6.94E-04 (3.71E-05) 6.44E-03 (3.98E-03) 2.94E-03 (1.19E-03)

DFPP 6.90E-04 (3.18E-05) 4.57E-03 (1.46E-03) 5.57E-03 (1.55E-03)

Table 6.2: Clearance estimates for apheresis treatments, averaged across all patients.

To allow direct comparison of the apheresis methods the results of Table 6.1 have

been further condensed. Table 6.2 shows the average clearance values of each treat-

ment independent of the patient. It should be noted that for plasma exchange only a

single patient over eleven sessions is monitored, and for plasma absorption data for two

patients from seven sessions were available. This limited sample size should be kept

in mind when considering the predicted outcomes, however, from Table 6.2 some in-

teresting conclusions can be drawn. It is believed by clinicians that plasma absorption

(PA) is less effective at clearing due to the limited ability of the device to continue ab-

sorbing antibodies over the entire treatment period. Whilst this is not proven here, it

seems that PA performs relatively consistently across the three isotypes with clearance

values in the range 6.62× 10−4 to 7.79× 10−4 min−1 for IgM, IgG and IgA. Although

PE and DFPP clear IgM with similar rates to PA (≈ 6.9 × 10−4 min−1), IgG and

IgA have clearance values an order of magnitude greater, with DFPP offering a slight

advantage when clearing IgA. This may allow clinical staff to customise the aphere-

sis used depending on the patient’s condition, the cost of treatment and the facilities

available. For example, it is known (see Chapter 2) that the immune response consists

of two phases: primary, which consist of IgM antibodies and secondary which consist

predominately IgG; therefore, during the primary phase any of the treatments would

be appropriate but for the secondary response PA should be avoided. Alternatively, if

the donor-specific response to the implanted organ is measured and contains a majority

of a single antibody isotype, the appropriate apheresis method could be used, e.g. PP

for IgA, PE for IgG.
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6.2 Categorising patients according to immune re-

sponse

As described in Chapter 2, specific antibodies are produced against invading antigens.

After surgery the body perceives the transplanted organ as an antigen and as such pro-

duces antibodies specifically against the donated organ; these are referred to as donor

specific antibodies, or DSA. Recent measurement techniques have become available

that enable DSA to be measured [Higgins, 2007] in isolation from other more general

antibodies.
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Figure 6.5: Example Mean Fluorescence Inidicator data.

The technique uses the Enzyme-Linked Immuno Sorbent Assay, or ELISA, method

coupled with photo-reactive agents to provide an indication of the number of antibodies

against a particular antigen to be measured. The observation value returned by the

measurement technique is the mean fluorescence produced from the application of light

to the marker antibodies, known as a Mean Fluorescence Indicator (MFI). An example

MFI data set can be seen in Figure 6.5; immediate comparisons can be made with

the plasma concentration measurements. The MFI observation exhibits peaks and

troughs during the apheresis sessions, with a large increase post surgery indicating an

aggressive response to the new organ. However, the MFI scale is not expressed in the

required concentration form to allow use of the above process-driven models. This

therefore poses a pertinent question: how do you convert between MFI and antibody

concentration?

The modelling preferred in this study is that of a process driven approach, i.e. one

that inherently relies upon real world states, variables and parameter estimates, for
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unknown values or starting estimates for parameter fitting. As such the observations

gained must be provided in real world measures (e.g. grams or Mole) in order for

parameter estimates and model validation to occur. Unfortunately, the relationship

between MFI and quantities of antibodies is difficult to identify. Figure 6.6 shows data

sets for two patients, each patient had MFI and concentration measurements taken of

antibodies in plasma. The figures plotted are MFI value versus antibody concentration.

From these two figures it is evident that the relationship is not linear nor an easily

identifiable nonlinear function. In Figure 6.6(a) the relationship can be visualised to

be exponential in nature, or linear if a log-transformation is used; however, the data

shown in Figure 6.6(b) do not maintain the same relationship between data points.

Some of the measurements exhibit a high MFI but a low concentration, with the reverse

also holding on several occasions; nor is there a one-to-one mapping between MFI and

concentration. The results have been re-tested and neither the MFI nor concentration

appear to be incorrect, and it is extremely unlikely to be occurring through noise or

measurement error. Efforts to determine this relationship are currently ongoing.
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(b) Patient irregular relationship between IgG and MFI

Figure 6.6: Patient data showing the unqualified relationship between the MFI values obtained

and standard concentration measures from plasma.

It would, however, seem feasible to make some estimate regarding the patient’s

concentration in plasma and consider only the percentage change in MFI; this could

then simply be converted to a percentage change in concentration. However, the DSA

MFI measurement is unable to distinguish between the three antibody types (IgM,

IgA and IgG). It is believed that DSA is primarily comprised of IgM and IgG, which

as have been seen above, have very different in vivo kinetics; thus making a simple
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percentage conversion unrealistic.

The MFI data collected are extensive and are believed to carry valuable information

that should not be rejected due to loss of conformity with traditional longitudinal anal-

ysis methods. Therefore a non-process driven method is used, namely cluster analysis,

to investigate the relationship between patients and their response to transplantation.

6.2.1 Cluster analysis

The purpose of the work thus far has been to provide quantitative estimates for bi-

ological processes that will allow clinicians to make more accurate predictions on a

patient’s condition and decisions on future treatment. This requires detailed analysis

of the underlying biomedical process and parameters. In this section a more statistical

approach is taken, that relies solely upon the measurements without consideration of

the in vivo kinetics. Data analysis techniques, specifically Cluster Analysis, are used to

separate a cohort of patients into categories from which clinicians can infer information

regarding the group. Clustering is a technique that allows data sets to be categorised

that share common attributes or features as defined by a distance measure. Cluster

analysis is a well developed field of statistical analysis with numerous supporting texts

(e.g. [Everitt et al., 2001]).

Cluster analysis has been used in the biomedical domain, but predominately in im-

age analysis and segmentation (e.g. [Wismüller et al., 2002] and [Baudelet and Gallez,

2003]). However, using cluster analysis to categorise time series data has been used

extensively in economics and engineering for some time (e.g. [Shaw and King, 1992]

and [Maharaj, 2000]). In terms of immune systems experiments Spirovskia et al. [2005]

used cluster analysis to categorise patients’ IgG measurements in cerebrospinal fluid

from image data to determine disease conditions. There appears to be little evidence

of its use in the analysis of time series patient data in disease or medical complaints

that allow periodic samples to taken in plasma. Interestingly, clustering has been used

to categorise patient responses to drug treatment in psychology in a similar approach

to that which is being taken here [Lipkovich et al., 2008]. Unlike the current study

patient response was not based on clinical measurements, but on results of a psycho-

logical survey that was taken periodically. From the results the patients were seen to
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respond to four distinct cohort groups, from which assessments were made regarding

the effectiveness of the treatment.

6.2.2 Method

The processing of time series data by cluster analysis has two distinct phases:

Data set reduction Prior to categorisation, if the data set is large, techniques can

be used to reduce the dimension of the data to more manageable dimensions. In

this study three reduction techniques are considered:

• Raw Data - biomedical data sets are typically small (less than 100 mea-

surements); as such it is computationally feasible to use the raw data as

provided by clinicians, or in the test case, generated in silico.

• Principal Component Analysis - reduces the data set by calculating orthogo-

nal components with the effect of maintaining the variance between objects,

thus increasing the chance of distinguishing similar patient MFI results.

• Sammon Mapping [Sammon, 1969] - is an algorithm that produces a reduced

data set but preserves the distance between objects within the dataset, e.g.

the distance between the patient MFI measurements.

Categorisation The data are then collected into categories with similar properties,

or clusters, automatically by a clustering algorithm. Clustering algorithms can

be separated into two groups: hierarchical and partitioning. Partitioning cluster

methods split the group into a predefined number of clusters based on a distance

measure. In hierarchical clustering, the data are clustered into cluster trees, or

dendograms, separating the data into an increasing number of clusters until a

maximum depth is reached.

6.2.3 Implementation

In terms of implementation the clustering was performed in Matlab [Mathworks] and

the R statistical package [R Development Core Team, 2008]. Both environments pro-

vide robust utilities for clustering, including PCA. The Sammon Mapping algorithm

implementation was kindly provided by Cawley and Talbot [2007].
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6.2.4 Results

In order to validate the clustering procedures, artificial data sets were generated. After

consultation with clinical experts, three hypothetical scenarios were considered:

Response A The patient responds well to immune suppression and plasma exchange

and does not produce excess antibodies, post transplant.

Response B The patient has no response to either the immune suppression drugs, or

the implanted kidney.

Response C The patient responds well to immune suppression prior to transplant,

but post operatively a large response rejecting the kidney is seen that is sup-

pressed with further treatment.

In order to validate the cluster analysis method the IgG model (eqn. (6.1)) was used

to generate a sample set of possible observation points (these are shown in Figure 6.7).

For simplicity it was assumed that only plasmapheresis was used as the clearance

mechanism. To simulate the response to transplant and immune suppression, specified

above, three functions were created describing the IgG synthesis. For response A the

delayed exponential function seen in Chapter 4 was used; however, unlike chemotherapy

it is assumed that immune suppression treatment can reduce the synthesis of antibody

to zero, therefore equation (4.12) simplifies to

PG(t) =







PG(0) 0 < t ≤ ts

PG(0)e−λ t ts < t ≤ te
. (6.18)

where λ is the rate constant required to achieve the half-life of the synthesis decay, ts

the start of effect of the immune suppressive treatment and te the end. In the simulated

data te occurred after the last observation. If the patient has no response to the kidney

or immune suppression a simple constant is used (PG(t) = PG(0)). Describing the

patient that has a strong immune reaction to the transplant (response C) an extended

version of the logistic decay, described in Chapter 5 (Section 5.3.1) is used, namely:

PG(t) = PG(0)− PL(t− τ1) + PL(t− τ2)− PL(t− τ3) (6.19)

PL(t) =
PG(0)

1 + ert
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with r representing the growth and decay rate due to immune suppression and τ1, τ2

and τ3 describing the times at which the change in synthesis occurs. This function

allows for decay, growth and a further decay to be descibed in the IgG synthesis; as

is expected of patients responding initially to the tumour then to immune-suppression

drugs (for an example please refer to Figure 6.7(a)).

In order to replicate the in vivo variability several aspects of the treatment were

randomised, using a uniform distribution on the interval shown:

1. Start of treatment (range: 9-20 days before transplant).

2. End of observation (range: 9-20 days after transplant).

3. Number of apheresis sessions (range: 1-7).

4. Initial concentration in plasma, which in turn governs production rate (range: 10

to 30 mg/L).

5. Time that pre- and post-operative effects appear (ts and τ1 5-9 days before trans-

plant, τ2 and τ3 10-20 days post transplant).

All other parameters are considered constant during the generation of the data

sets. Figure 6.7 shows examples of the input functions (Figure 6.7(a)) and resulting

patient response (Figure 6.7(b)).
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(b) Example data set generated

Figure 6.7: Example data sets created with an IgG model using plasmapheresis with ran-

domised treatment parameters (see text). To allow comparison the signal has been normalised

to the initial value; chained - patient response A, dotted - response B and dashed - response

C.
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In total thirty simulated patient responses were created, ten for each response type

(A, B and C as defined above). Once generated, all data sets can be categorised

using the cluster algorithm, with the data being pre-processed by one of the dimension

reduction techniques. An example of the results of performing this analysis can be seen

in Figure 6.8. In each figure the clusters can clearly been seen; although the plots are

presented on two dimensional graphs this is purely for simplicity. The raw data have

full dimensionality of the measured data, in this case the dimension was 40; the PCA

representation has been reduced to two dimensions, whilst the Sammon Mapping is

reduced to four.
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Figure 6.8: Results from the cluster analysis with generated data sets, only the first two

dimensions of each dataset are plotted. At 0% noise, two dimensions for PCA and four for

the Sammon Mapping. © - patients with response A; � - response B; 4 - response C.

In order to test the clustering robustness in the presence of measurement error

each data point in the generated datasets was modified with normally distributed noise

ranging from 0% to ±20% of the measured value. The clustering process was then per-

formed to determine the number of correctly classified patients, in terms of the three

response profiles. This process was repeated one hundred times with randomly added
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Table 6.3: Results of Monte Carlo test of cluster analysis algorithm using generated data. Each cell shows percentage of successful categorisations,

with standard deviation expressed in brackets.

Noise 0% ±10% ±20%

Raw Data 100 (0) 93.9 (1.2) 53 (3.7)

Dimensions 2 3 4 2 3 4 2 3 4

Sammon 97 (0.3) 99.7 (0.3) 100 (0) 93.3 (0.8) 94.3 (1.2) 96.3 (0.9) 66.3 (1.0) 71 (2.0) 82.7 (2.7)

PCA 100 (0) 100 (0) 100 (0) 96.7 (0.8) 93.3 (1.4) 90.3 (4.4) 55 (2.2) 54 (1.6) 55.3 (3.0)
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noise. The results of this test can be seen in Table 6.3. All dimension reduction tech-

niques performed extremely well at zero noise level, with even the full dimension data

set returning 100% success rates. The Sammon Mapping technique did not produce

an exact map until at least four dimensions were used. The PCA approach in gen-

eral worked better at low dimensions, whilst the Sammon Mapping approach worked

well at higher dimensions. At 10% noise levels the three techniques were comparable.

However, in the higher noise scenario (20%) the Sammon Mapping shows a surprising

resilience in comparison to the other two methods, with both PCA and the raw data

techniques showing a large descrease in terms of successful categorisations.

Although the artificial data sets are beneficial in a proof-of-concept exercise, the

data used are slightly contrived. In order to validate the cluster analysis against real

data a second set was taken from real patient data. Four different types of patients

were identified as classic responses to transplantation:

• (LR) Large rises in DSA

• (LF) Large falls in DSA

• (SA) Large quantities of the DSA are absorbed into the implanted organ

• (SM) Modulation of specific DSA post-operatively

Real patient data were selected by clinicians that would be described by one of

the above responses, by means other than the MFI data presented. Each category

contained between two and four patients. In terms of cluster analysis this experiment

is somewhat unusual in that the number of clusters is known a priori; therefore, once

again the partition clustering algorithm is used, with PCA and the Sammon Mapping

dimension reduction emplolyed. Based on the findings in the validation study (Table

6.3) PCA was constrained to two dimensions, and the Sammon Mapping to four.

Figure 6.9 shows a pictorial representation of the clustering when applied to the

patient data. The large symbols associated with each cluster (e.g. cross, circle, square

or triangle) identify the centre of the cluster, indicating the characteristic of a patient

that would be an ideal match in terms of the cluster. The distance from this point

indicates how closely the patients response matches the idealised response. The cate-
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Figure 6.9: Categorisation the of patients’ response, PCA two dimensions and the Sammon

Mapping four dimensions. © - DSA absorption (SA); � - Larger falls (LF); 4 - DSA

Modulation (SM), + - Large Risers (LR).

gorisation achieved using the raw data can been seen in Figure 6.9(a), the benefit of

using dimension reduction can be clearly seen in Figures 6.9(b) and 6.9(c).

Through the graphical representation shown in Figure 6.9 it is difficult to achieve a

quantitative description of the results. However, an alternative representation has been

provided in Table 6.4, allowing comparison of the cluster analysis categorisation with

the separation of patients by clinicians. The underlined numbers outline the incorrectly

classified patients.

The results produced by cluster analysis are promising with a high degree of success

when categorising the control data and a good degree of accuracy seen in terms of

matching the clinicians expert knowledge with real patient data. The necessity for

using reduced dimension data is apparent, as can be seen in Table 6.4; using raw data

produced five misclassifications compared to two and one with the PCA and Sammon
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Table 6.4: Comparison of categorisations, numbers represent patient ids. The clinical cat-

egorisation was provided by experienced medical practitioners. Underlined numbers indicate

incorrect categorisation when compared to the clinical diagnosis.

Category Clinical Raw Data PCA Sammon Map

LR 1 2 8 10 37 39 2 8 10 34 39 1 2 8 10 37 39 1 2 8 10 37 39

LF 31 52 31 34 52 31 34 52 31 34 52

SM 21 48 51 9 1 4 9 48 21 48 51 21 48 51 9

SA 4 34 21 51 4 9 4

Mapping reduction techniques respectively. However, in this study it has been assumed

that each patient fits exclusively into one category, whilst it seems feasible that a patient

responds with a large rise in donor specific antibody which ultimately results in high

absorption rates onto the transplanted organ.

Unfortunately, the dimension reduction techniques are purely statistical processes,

in that there is no relationship with the original system, patient or treatment variables.

If this relationship could be formed analytically the cluster analysis would become a

more powerful tool in predictive medicine, allowing clinicians to focus treatment on

the variables pertaining strongly to a known positive response in patients.
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Figure 6.10: Dendogram of cluster analysis on the generated dataset.
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In the above clustering the number of categories required was given a priori; in

a true clinical setting, this would not be the case. However, as mentioned earlier an

alternative to partition clustering is hierarchical clustering. In hierarchical clustering

a tree is generated that splits the data into an increasing number of clusters, until

all data sets are categorised into their own cluster. This is implemented by Partition

Clustering at each branch in the tree until the terminal, unique, clustering is reached.

Hierarchical clusters can be succinctly displayed by a dendrogram, an example of which

can be seen in Figure 6.10, from which the breakdown of the generated data sets

into an increasing number of clusters can be seen. In a clinical setting, if a large

data set was constructed of patients undergoing treatment, combined with patients

that have received a transplant and the outcome were known, it may be possible to

predict the current patient’s long term response, based on their categorisation. For

example, if patients were located in a branch of the hierarchical cluster tree in which

many patients have rejected the organ it may suggest that the patient’s prognosis is

poor. However, without the advantages of process-driven modelling and its benefits in

identifying a causal relationship between the treatments and the underlying system,

such an approach would need significant testing.

6.3 Summary

In this chapter prediction of the immune response of patients undergoing transplants

has been addressed. The models developed in the previous section were used to eval-

uate and validate the clustering techniques, through the generation of datasets with

feasible anatomical features, as seen in patients undergoing kidney transplants. Fi-

nally, clustering technique were used to classify data collected from kidney transplant

patients according to categorisation specified by clinical collaborators. Using cluster

analysis an expert system has been suggested that may allow clinicians to use the data

to predict patients’ long term prognosis through the categorisation of a cohort study

of patient response.

In addition, it has been shown how discretised deconvolution techniques can al-

low clinicians and laboratory staff to estimate the synthesis of antibody production

in response to kidney transplants. This required the development of three models to
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describe the in vivo kinetics, one for each antibody type of interest. Each model had

slightly different dynamics, but through assumptions and linearisation, analytical so-

lutions are available to enable estimates for concentrations in the immeasurable EVF

compartment and the synthesis. The simplified deconvolution method enables an un-

complicated implementation, that is suitable in both time and complexity, to be used

by medical staff without extensive training or non-standard tools. The mechanics of

deconvolution will be explored further in the following chapter; however, rather than

assuming that the synthesis is discrete over a fixed time period, to ensure linear solu-

tions to the system a more flexible method will be used, namely that of regularisation,

which allows the synthesis to be predicted non-parametrically over the entire treatment

period.



Chapter 7

Non-parameteric estimation of

model parameters

In the previous chapters several models have been presented that describe immuno-

logical kinetics in vivo; two types of diseased conditions have been described: Free

Light Chain (FLC) and Intact IgG secreting tumours. In both cases the synthesis of

these proteins was assumed to be known; for FLC a constant production was assumed,

whilst for intact IgG it was described by a logistic equation. However, while these

conditions may hold for short periods, the long-term prospect of the synthesis obeying

these assumptions is unlikely.

A question naturally arises: what if the functional form of the system input is not

known? In this situation a parametric form for the synthesis cannot be provided or

assumed. This was indeed the case for the transplant patients, as seen in Chapter 6. In

that case, a simplistic method was described that assumed synthesis was constant over

a known period yielding a piecewise constant function that could be estimated, given

a known form for the kinetics of the antibody observed. The process of determining

the input in these cases is referred to as deconvolution, and the piecewise function

approximation used is known as discrete deconvolution [Iga et al., 1986; Sparacino

et al., 2001]. In this chapter a method is presented that assists in the identification

of model inputs using a non-parametric approach. Although the focus of this work

is to determine the effects of chemotherapy on plasma tumours, the deconvolution

techniques were found to be suitable to several other applications. Subsequently, the

146
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same method will be used to recover other unknown non-linear aspects of models in a

non-parametric fashion.

An interesting extension to deconvolution is a process known as ‘Blind Deconvolu-

tion’ [Ayers and Dainty, 1988; Holmes, 1992], a method which attempts to recover the

input signal when the output is measured, but the system response is also unknown.

The technique used in Chapter 6 can be considered a simple Blind Deconvolution, as

elements of the system response and input signal were determined in parallel. However

in general, such techniques would allow a more general approach than that described in

this chapter, which requires that model structure and parameters are assumed known.

Blind deconvolution methods have been pioneered by the optics and astronomical com-

munity, where strong assumptions can be made about the form of the system response;

in most cases a point-spread distribution of blur on an image is assumed. Unfortu-

nately, for biomedical systems such strong assumptions are often not valid, therefore

a more process-driven model-based approach to the system description is employed;

namely, that of a compartmental structure as has been seen previously.

7.1 Deconvolution

Given a known system response (h(t)) and a known input (u(t)) the output of the

system (y(t)), with zero initial conditions, can be given by the convolution integral

y(t) = l(h(t), u(t)) =

∫ t

0

h(t− τ)u(τ)dτ (7.1)

Conversely, if the output (y(t)) and system response (h(t)) are known, and an

inverse function (l−1(·, ·)) is available, the input function can be calculated. To derive

the input in this fashion is known as deconvolution. This process fits in naturally with

the models generated in the previous three chapters. As the output is measured the

system dynamics are identified through a process model, but the input is unknown

due to the perturbations enforced by the drugs used to control the immune system

generation (e.g. chemotherapy and immuno-suppression drugs). However, for the

immunological conditions under consideration for this study additional constraints are

forced upon the deconvolution process. The following must be considered:
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1. The system has non-zero initial conditions. Any immunological protein to be

measured will already exist in the patient prior to observation.

2. The system is not linear or time-invariant. Most patients will either be undergoing

an apheresis treatment which is non-linear and switched, either periodically or

aperiodically, during a typical treatment, e.g. three times a week in addition

to ad-hoc treatments if the concentration levels in plasma become dangerously

large.

Several deconvolution techniques have been considered for biomedical systems [Cut-

ler, 1978; Hovorka et al., 1998; Pedersen, 1980]. All of these assume a linear time-

invariant system with non-zero initial conditions. Furthermore, they assume a known

functional form for the input function (e.g. polynomial [Cutler, 1978] or quadratic [Hov-

orka et al., 1998]) which may be appropriate for the drug synthesis but is not applicable

for the in vivo synthesis of antibody proteins. However, all of these techniques are based

on the closeness of the simulated output to the data in a least-squares sense, a concept

that is expanded below (see Section 7.2).

A deconvolution technique that has been successfully employed with the above

constraints in mind is Maximum Entropy [Charter and Gull, 1991; Hattersley et al.,

2008; Madden et al., 1995]. This approach will be described below, but Maximum

Entropy can be constructed as a regularisation technique that can function under the

criteria of high noise, sparse and irregularly sampled data that are commonplace in

biomedical signals, without the need to assume a functional form for the input signal.

In addition, it will be shown how a time-variant and non-linear compartmental model

can be integrated into the Maximum Entropy framework to produce simulation results

that show good comparison with patient data and produce clinically viable immune

complex synthesis. The Maximum Entropy method is a subset of a large group of

deconvolution methods known as Regularisation [Engl et al., 1996].

7.2 Regularisation

Simply stated regularisation is a method of translating an ill-posed problem into a

more tractable well-posed one by approximation or constraints. Consider a discrete



Section: 7.2.0 149

linear system, with zero initial conditions,

y = Fu, F ∈ R
m×n (7.2)

where y is an output vector, length m, F a convolution matrix and u the vector of the

unknown input, of length n. If a noisy output of the system (ŷ) is available it would

be expected that the predicted output y be sufficiently close to the measured output,

accounting for noise (ε)

||y − ŷ||2 < ε. (7.3)

A naive solution to this, if F is square and invertible, is to ignore the presence

of noise in the measured signal (ŷ) and to invert the convolution matrix to give an

estimate for the input

û = F−1ŷ; (7.4)

however, due to the noise present the solutions of this process are ill-conditioned,

leading to negative values and oscillations. Alternatively, to recover the vector u a

least squares minimisation approach could be employed

min
u
||ŷ − Fu||2, F ∈ R

m×n m > n (7.5)

where u are parameters relating to the input function, not system parameters as would

be seen in a standard parameter estimation procedure. This may still result in an ill-

posed and ill-conditioned problem [Sparacino et al., 2001] as the optimisation process

is free to alter the parameters, possibly into unfeasible regions, to obtain the closest

fit to the measured output. To alleviate this problem a priori knowledge of the input

function is used to form additional constraints on the solution in order to stabilise the

deconvolved input. The constraints are formed by an additional function, that will

provide a mapping from the input vector u to a scalar value which encapsulates the a

priori information regarding the input signal, referred to as g(u) in the following text.
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Using regularisation is beneficial when recovering biomedical signals due to the

existence of two obvious constraints: Firstly, due to the distributive nature of drug

kinetics the in vivo immune system response in terms of the synthesis of the immune

complex would be ‘smooth’ over the measured response time. Secondly, the input

signal is by definition positive, and a negative synthesis is already accounted for in the

model by clearance.

In order to deconvolve the input vector u from noisy data both the constraint g(u)

and distance metric between the observered and simulated output f(u) need to be

minimised, which is a constrained optimisation problem.

min
u

f(u) subject to g(u) = c. (7.6)

It should be noted at this point that the object of this work is not to evaluate con-

strained optimisation, nor evaluate the performance of algorithms to solve the problems

specified. A successful outcome is a working prototype that demonstrates the use of

deconvolution to highlight possible synthesis and chemotherapy effects. Nonetheless,

the question remains as to the form the distance metric (f(u)) and constraint function

(g(u)) should take. These will be explored in the following section.

7.2.1 Maximum Entropy signal recovery

The use of Maximum Entropy to recover signal data originates in the field of image

analysis [Cornwell and Evans, 1985; Skilling and Bryan, 1984], where it is used to filter

images to remove high-levels of noise. However, it has also been used in the recovery

of biomedical signals [Charter and Gull, 1987]. An excellent review and comparison

of methods can be found in Madden et al. [1995]. The ‘entropy’ in the title refers to

the amount of uncertainty present in a signal. The concept behind Maximum Entropy

is to produce an input signal that maximises the uncertainty, thus creating a signal

that has the minimal assumptions whilst maintaining an acceptable fit to an observed

output. If the input signal (u(t)) is discretised into piecewise function, the entropy of

the signal can be used [Skilling and Bryan, 1984]



Section: 7.3.0 151

xi =
ui

Σui

, S(x) = −
N

∑

i=1

xi ln(
xi

ri

). (7.7)

where xi presents the normalised value of the input at the ith sample, and ri is a base-

line value that the production should take in the presence of no other information. The

values of xi are assumed to be positive, since a negative production is unfeasible. In the

above equations rn is calculated using a nearest neighbour average ((xi−1 + xi+1)/2).

This discourages adjacent elements of the input function from large variation, thus

smoothing the recovered input signal. At the sample points i = 0 and i = N the

average is taken of adjacent samples, e.g. (x0 + x1)/2.

During the Maximum Entropy signal reconstruction the entropy of the input signal

is maximised under the constraint that the output of the system should ‘match’ the real

data measurements. A common form used to model this constraint is the χ2 metric.

This is given by:

χ2 =
N

∑

i=1

(D1[i]− c1[i])
2

σ2
i

, E(χ2) = N (7.8)

where E denotes the expected value, N the number of samples, and D1[i] and c1[i] are

the measurements taken and the predicted value at the ith sample, t = τi. This can be

seen as a weighted least squares estimator with weights of 1
σi

.

7.3 Interfacing to compartmental models

In the methods discussed above it has been assumed that the simulation results can

be expressed in the standard convolution form, equation (7.4). All the modelling

conducted thus far, in terms of patient kinetics, has been implemented through com-

partmental modelling which ultimately results in a state-space model, i.e. a system of

ODEs, of the form

q̇(t, p) = f(q(t, p), u(t, p), p)

y(t, p) = h(q(t, p), p)

q(0, p) = q0(p)

(7.9)
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where q(t, p) are the state-variables, y(t, p) are system outputs, u(t, p) the inputs to

the system and p a vector of constant parameters. If a single-input-single-output linear

time-invariant model structure with a linear observation function is first considered,

the system can be described in the familiar form given by:

q̇(t) = Aq(t) + Bu(t)

y(t) = Cq(t)

q(0) = q0

(7.10)

where A, B and C are matrices of the parameter vector p only. Using the matrix

exponential form an analytical solution of the system can be found

y(t) = CeAtq0 + C

∫ t

0

eA(t−s)Bu(s) ds. (7.11)

If the effect of the initial conditions is removed from the measured system output

(ŷ(t)), to give a translated observation function (ȳ(t))

ȳ(t) = ŷ(t)− CeAtq0 = C

∫ t

0

eA(t−s)Bu(s) ds (7.12)

then the standard convolution integral as expressed in equation (7.1), is obtained.

Further, if it is assumed that the input function u(t) is piecewise constant over the

period of sampling, equation (7.12) is equivalent to the discrete convolution

ȳ[n] =
n

∑

i=1

h[n− j]u[j]∆j, (7.13)

where h[j] is the discretisation of the impulse response, u[j] the discretised input func-

tion and ∆j the change in time between samples. An interesting feature of the con-

volution matrix is that due, to the causality of the system (i.e. future states depend

only on the current state and past inputs, the matrix must be Toeplitz [Sparacino

et al., 2001]). The elements of the convolution matrix can in turn be expressed by [?,

Hovorka1998]
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Fij =







0 if i > j

C
∫ ti

τj−1
eA(τj−s)B ds elsewhere

. (7.14)

where τj and tj are the sample points for the input and output signals respectively. This

enables a linear compartmental model to be expressed in a convolution matrix form,

equation (7.4). If the convolution matrix can be constructed there are non-iterative

approaches available [Hansen, 1998] to deconvolve the input signal; a toolbox that is

freely available which has implemented several of these methods is described in Hansen

[2007].

Unfortunately, this approach has several limitations that have prevented it from

being used for the deconvolution of antibody synthesis:

• If the system is non-linear, an analytical solution in the form of equation (7.11)

is not available.

• For an accurate solution, a small time step (∆j) between samples is required,

or the approximation of the input u(t) being constant over the period will be

invalid. For biomedical in vivo measurements this is not feasible, taking, for

example FLC patients on dialysis, during treatment a sample every 30 minutes

for a 6 hour treatment would be too resource-intensive for clinical staff.

• Creation of the zero initial conditions system (eqn. 7.12) requires the use of mea-

sured data, which contain noise; from this it is possible to generate observations

(ȳ(t)) that are negative.

• In a time-variant system, e.g. a switched system in the case of apheresis, the

convolution matrix will not be continuous and a new matrix is required for each

period.

• The construction of the design matrix is a non-trivial process in all but the

simplest of compartmental models; for example, in models with more than a

single compartment the analytical solution of equation (7.11) leads to a state-

transition matrix that uses the Matrix Exponential, rather than the exponential

function. This quickly leads to difficulty in implementing the convolution matrix

and is a process prone to error and difficult to adapt in the light of model changes.
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• This method is applicable to single-input single-output systems; however, it is not

applicable for multi-input or multi-output systems (for an example, see Section

7.5.2).

To account for these issues an obvious, but effective, alternative is available. The

solution to the system of ODEs (eqn. (7.16)) can be evaluated through existing robust

numerical solutions (e.g. Runge-Kutta, Gear’s algorithm, Predictor-corrector meth-

ods) [Chapra and Canale, 2002, Ch. 25-26]. Using standard packages to implement

the ODE enables the non-linearity and time-variant nature of the models under con-

sideration to be easily accounted for. In addition, the output of the ODE solver can

be sampled at the same time as the measured data, even accounting for non-equally

spaced time intervals.

The use of variable step numerical integration algorithms does present some prob-

lems in terms of evaluating the input function, in that, at any time point within the

sampled period, a value for production must be available to the solver. This can be

solved using interpolation techniques to approximate the input function at the required

time point. Care should be taken in the choice of interpolation method to ensure the

constraints of smoothness and positivity are not violated during calculation of the in-

terpolated input value; for the work presented here simple linear interpolation proved

sufficient.

7.4 Optimisation implementation

The purpose of this work is not to determine the best optimisation routine, nor to

investigate the different characteristics of the available optimisation algorithm. The

goal of the present work was to arrive at a more pragmatic methodology, searching

for a useable solution to assist in the clinical difficulties related to therapeutic effects

of chemotherapy treatment. However, it is necessary for clarity to review the basic

approach taken and the algorithms and libraries used to solve the deconvolution prob-

lems.

In order to implement the input recovery, the process can be viewed as a constrained

optimisation problem, given by:



Section: 7.4.0 155

min
u
−S(u) subject to χ2(u) = N

ui ≥ 0

(7.15)

where −S(u) is the negative of the regularisation function, to allow for minimising, as

opposed to maximising the entropy. There are several algorithms available for solv-

ing this problem (see for example [Charter and Gull, 1987; Cornwell and Evans, 1985;

Fletcher, 1987; Skilling and Bryan, 1984]) the majority of which require the derivative

of the χ2 metric to be known. Unfortunately, due to the non-linearity present within

the systems this is not available. The implementation is therefore restricted to deriva-

tive free optimisation techniques. In all the algorithms used in this study a numerical

approximation is used to estimate the derivative of the function to be optimised. Good

results have been obtained using a Sequential Quadratic Programming (SQP) tech-

nique. The SQP algorithm is implemented in the fmincon method of Matlab, which

uses a Quadratic Programming sub-problem coupled with calculation of the Hessian of

the Lagrangian of the objective function (S(u)) and the constraints (χ2(u) and positiv-

ity of u) via the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [Mathworks]. For

validation, alternative methods have been used to perform the derivative free optimisa-

tion (e.g. COBYLA [Powell, 1998]). Each of the constrained optimisation algorithms

used produced similar results with computational performance being seen when com-

piled code was used, as opposed to the interpreted methods. An implementation of the

Maximum Entropy routine can be found in Appendix F.

It should be noted that the optimisation techniques discussed are all local in nature,

in that they do not attempt to search for the global minimum of the solution. As such,

in each example shown in Section 7.5 the deconvolution was tried from a range (±10%)

of initial conditions around an estimated constant input value. Global optimisation

techniques are available [Mongeau et al., 2000; Ratschek and Rokne, 1988] but have

not been considered due to computational complexity and the availability of a priori

knowledge regarding the input function giving a feasible start point.

Prior to deconvolving the synthesis on patient data several validation checks were

performed. The results produced were comparable with those seen in Madden et al.

[1995]. Madden et al. [1995] define a series of test functions, and an example model, that
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can be used to assess the performance of different deconvolution algorithms. However,

in the Madden work constraints were placed regarding the initial and final values

of the input signal, i.e. it was assumed that the signal at t = 0 and for several

points around the final sampled point were known to be zero. This restriction was not

required to produce equivalent results using the Maximum Entropy implementation.

In addition, the results were not ‘smoothed’ via post-processing (e.g. averaging) as

in the Madden et al. [1995] study. Further details on the validation of the Maximum

Entropy implementation can be seen in Appendix E.

7.5 Deconvolution results

The deconvolution methods were initially developed to investigate the effect of chemother-

apy on Multiple Myeloma patients, the results of which are shown in the first part of

this section. Both FLC and Intact IgG Myeloma patients are considered. In the last

section a series of results are described that are a consequence of interaction with other

projects that required deconvolution to esimate non-chemotherapy related functions,

and in one instance a non-biomedical problem, showing the versatility of the simple

implementation of the regularisation methods.

7.5.1 Patient response to chemotherapy

As has been discussed in previous chapters, patients with gammopathic conditions

received medication to reduce the antibody synthesis. For kidney transplant patients

these are drugs to suppress the entire immune system; whilst for Multiple Myeloma

patients, combined chemotherapy is used. Irrespective of the mechanics of the drugs

course the effect is simply to modulate the underlying production. In the following

two sections the Maximum Entropy method is used to investigate the effect of treating

Multiple Myeloma patients with FLC and Intact IgG secreting tumours. Although the

use of deconvolution is used to elicit input signals, the definition of the ‘input’ allows

some flexibility, as is shown in Section 7.5.2, where the impact of increased proteins

levels on the viscosity of plasma are investigated.
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Free Light Chain patients

During the Maximum Entropy deconvolution process the input signal (u(t)) is modified

to allow E(χ2)→ N as the iterations increase (see Section 7.4). At each iteration the

plasma concentration (c1(t)) is estimated using a numerical solver for the new values

of u(t). This is then sampled at the appropriate points for the concentration measure-

ments (e.g. D1[1], . . . , D1[N ]) and χ2 is calculated. To produce the simulated output

(c1(t)) the FLC model described in Chapter 4 is used; as all the patients considered

below are FLC-Kappa, the parameter estimates associated with this type of FLC are

provided in Table 4.5. The initial estimate for the FLC generation rate is chosen to

be constant over the treatment period to ensure minimal assumptions regarding the

input form. The input function is sampled at the same time points as the data given

by clinicians; however, there are no limitations on the number or location of input

samples beyond that of computing resource. The initial values for the input function

are calculated from the steady-state input required to maintain the concentration of

the first measurement, without haemodialysis.
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Figure 7.1: Recovered FLC input signal for patient one (Pat1). Top (solid - simulated FLC

concentration in plasma, dashed - FLC concentration in EVF, dots - measured FLC concen-

tration in plasma). Bottom (solid - deconvolved input, dotted - initial estimate, dots - input

sample points)
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The results of the Maximum Entropy reconstruction can be seen in Figures 7.1 to

7.4. Each figure consists of two graphs. The top graph shows the results of applying

the recovered input signal to the system equations and the simulated output of plasma

(solid line) and EVF (dashed-line) concentrations . The circles in the top graph indicate

the measured values in plasma, as provided by the clinicians.
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Figure 7.2: Recovered FLC input signal patient two (Pat2). Top (solid - simulated FLC

concentration in plasma, dashed - FLC concentration in EVF, dots - measured FLC concen-

tration in plasma). Bottom (solid - deconvolved input, dotted - initial estimate, dots - input

sample points)

In the bottom graph the deconvolved input signal is shown (solid-line). The dot-

ted line denotes the FLC production calculated from the initial plasma measurement,

assuming the production is constant and the system is in steady-state at time t = 0.

This is used as the starting value for production (f(t)) during the Maximum Entropy

optimisation.

It is of interest to note the point at which the patient received chemotherapy in

relation to the measured haemodialysis session. For all the patients shown the dialysis

session monitored is the first session received since the previous chemotherapy treat-

ment. Patients three (Figure 7.3) and four (Figure 7.4) received chemotherapy within

an hour of the dialysis treatment; whilst patients one (Figure 7.1) and two (Figure
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7.2) both had chemotherapy over 24 hours before dialysis treatment. Unfortunately

information regarding the particular chemotherapy drugs used is not available.

As can be seen in Figures 7.1 and 7.2, the results suggest that chemotherapy

treatment is still effectively reducing the FLC generation rate in the two patients. In

patient Pat1 a gradual decline in synthesis occurs over the entire treatment period of 10

hours, even though the chemotherapy was applied 24 hours previously. It should also

be noted that FLC synthesis has reached approximately zero in this patient, indicating

an excellent response to the treatment. The overall trend for patient two is similar,

in that the trajectory over the measured period is generally downward, with a basal

level reached after 500 mins; however, patient Pat2 did not reach a synthesis rate that

was below the FLC production expected in a healthy individual (0.22 mg/min see

Chapter 4). This suggests that the chemotherapy has not completely destroyed all the

tumourous plasma cells. Patient Pat2 exhibits some unusual behaviour in regard to

the FLC concentration seen in plasma; the third observation, rather than falling (as

would be expected when the patient is on haemodialysis) shows a significant increase,

almost reaching the level of the initial concentration. According to the clinical notes

there was no break in haemodialysis during this period nor was the filter changed at

any point; in addition, the sample was re-measured suggesting it is a genuine increase

in the FLC generation. The reason for this increase is unclear; it has been noted by

clinicians in other patients, but unfortunately no data were available for comparison.

However, the deconvolution technique shows the synthesis trajectory that would be

required to achieve such a rise. It is interesting to note that the deconvolution method

does not predict a simulated output that is as close to the measured value as would be

expected. This is due to the ‘smoothness’ constraint and the number of input sample

points chosen. If it were imperative that this measurement were more closely simulated

the constraint could be relaxed or the number of sample points increased around the

point of greatest curvature, to allow for ‘peaks’ in the input signal. These issues are

covered in more detail in Chapter 8.

As mentioned previously patient Pat3 had chemotherapy immediately before dial-

ysis; the effect of this on synthesis can be clearly seen in Figure 7.3. During the first

thirty minutes of dialysis the deconvolved synthesis shows a significantly elevated rate

of reduction to that seen in patient Pat1. It is, however, interesting to note that after
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Figure 7.3: Recovered FLC input signal patient three (Pat3). Top (solid - simulated FLC

concentration in plasma, dashed - FLC concentration in EVF, dots - measured FLC concen-

tration in plasma). Bottom (solid - deconvolved input, dotted - initial estimate, dots - input

sample points)

this initial period (first 30 mins) the synthesis declines more gradually.

For the final patient Pat4 (Figure 7.4) plasma concentration data are available

for an extended 16 hour period, including a 6 hour dialysis session, which started

at t = 0, and 10 hours off dialysis. Patient Pat4 also had chemotherapy within an

hour of haemodialysis and as with patient three the synthesis reduction is quickest

early in the treatment (t < 100 mins), continuing to fall until approximately two

hundred minutes. However, unlike the previous three FLC patients the synthesis does

not show a decline over the entire treatment and even before the end of dialysis the

deconvolved synthesis suggests an increasing generation rate of FLC, indicating a poor

response to chemotherapy. As in patient Pat2 there is an unexpected increase in plasma

concentration between the second (t = 30 mins) and third (t = 60 mins) measurements;

however, after referring to clinical notes there was a break in dialysis which would

account for this rise. This change in clearance is described by a discontinuity in the

solution to the system equations.
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Figure 7.4: Recovered FLC input signal patient four (Pat4). Top (solid - simulated FLC

concentration in plasma, dashed - FLC concentration in EVF, dots - measured FLC concen-

tration in plasma). Bottom (solid - deconvolved input, dotted - initial estimate, dots - input

sample points)

Intact IgG MM patients

As stated in Chapter 5, patients with intact IgG also undergo aggressive chemotherapy

in order to reduce the number of tumourous plasma cells that are secreting intact IgG.

As such a similar method of deconvolution as that described for the FLC producing

Myeloma patients is used to predict the change in synthesis. The simulated output

c1(t) for the χ2 metric is produced by solving the quasi steady-state model, as de-

scribed in Section 5.3 of Chapter 5. The model was initialised with the parameters

defined in Table 5.3. After discussion with clinical staff it is believed that chemother-

apy affected only the tumourous synthesis; as such the non-tumourous production of

normal antibodies was assumed to be constant over the treatment period, and only the

tumourous IgG (IgG-Kappa for both the patients considered) was estimated through

deconvolution.

The results of applying the deconvolution process to predict the tumourous IgG-

Kappa synthesis for two patients can be seen in Figures 7.5 and 7.6. The figures are

displayed with the same format as above, i.e. simulated output and measurements in
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Figure 7.5: Recovered synthesis for Intact IgG-Kappa patient 1. Top (solid - simulated IgG-

Kappa concentration in plasma, dashed - IgG-Kappa concentration in EVF, dots - measured

IgG-Kappa concentration in plasma). Bottom (solid - deconvolved input, dotted - initial

estimate)

the top-pane, with deconvolved synthesis and starting values shown in the bottom-

pane. Patient 1, as seen in Figure 7.5, was observed over a short period; as this is

intact IgG secreting Myeloma no apheresis was used, therefore measurements were

only available on a timescale of days, rather than minutes as has been seen previously.

The deconvolved input, as with the FLC patients, shows a noticeable decline in the

synthesis rate over the entire treatment period, with two slight increases at days two

and nine; this is most likely due to measurement noise. Over the time period measured

it would seem plausible when considering a parametric form for the input function, to

assist in predictive analysis of treatment, that a simple exponential function may be

appropriate as was used for FLC synthesis in Chapter 4.

However, if we consider an alternative patient (see Figure 7.6) the necessity for

using the delayed logistic equation becomes apparent. Patient two was observed over a

much longer period, approximately 2 years. In this case although the patient received

chemotherapy prior to the start of the observation period (t = 0) the predicted synthesis

does not show a significant reduction until approximately 3 months later, at which point
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Figure 7.6: Recovered synthesis for Intact IgG-Kappa patient 2. Top (solid - simulated IgG-

Kappa concentration in plasma, dashed - IgG-Kappa concentration in EVF, dots - measured

IgG-Kappa concentration in plasma). Bottom (solid - deconvolved input, dotted - initial

estimate)

synthesis falls dramatically down to a baseline level less than 1 g/day. From discussion

with clinical collaborators, whilst this is not an uncommon feature of the chemotherapy

effects on intact IgG secreting MM patients, it is not fully understood. Analysing this

would require additional datasets to be made available for a variety of patients. It is

therefore the focus of further research and is discussed further in Chapter 8.

7.5.2 Volume changes in IgG patients

Patients with IgG secreting Myeloma often present with an increased viscosity of

plasma due to the elevated concentration of proteins generated by tumourous cells

[Tuddenham and Bradley, 1974]. This results in increased plasma volumes that evolve

as the tumour synthesis changes. However, in the clinical study for this project the

facilities were not available to measure the viscosity of each sample. In some patients

unexplained changes in the non-tumourous IgG concentration were evident that were

unlikely to be due to synthesis or clearance, as has been previously encompassed in this

study. The following deconvolution was performed to determine whether such changes
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in plasma volume could account for this phenomena.

Whilst this is a departure from the concept of deconvolving the input in a classic

sense, with a simple reformulation of what is considered as an input the same decon-

volution methods described previously can be used. As has been done previously with

synthesis, the volume was discretised and treated as an input to the deconvolution

process. The output of the system can be described by

q̇(t, p) = f(q(t, p), u[t], p)

y(t, p) =
q(t, p)

v[t]

q(0, p) = q0(p)

(7.16)

where v[t] represents the discretised plasma volume and u[t] the discretised tumourous

input function for IgG-Kappa. The non-tumourous synthesis is considered constant

during the treatment. The input vector for the deconvolution process is a combination

of the volume and tumourous synthesis, both sampled at the output sample periods,

each element of which is modified by the optimisation routine at each iteration. The

input vector (u = [v(t1), ..., v(tn), u(t1), ..., u(tn)]T ) is split in the numerical integration

routine, interpolated to provide a continuous representation, and used in the generation

of the system output for the χ2 estimate.

The results of deconvolving the tumourous synthesis can be seen in Figure 7.7;

the patient initially responds to chemotherapy, but then relapses towards the end of

treatment. However, if the chemotherapy has no effect on the non-tumourous IgG

production the synthesis of the normal IgG should be constant, assuming the patient

does not have an unknown immune response. As such there should be a rise, then

subsequent fall, due to the change in the fractional catabolic rate in opposition to the

change in the tumourous concentration.

The modulation in the non-tumourous IgG-Lambda can be seen in the data shown

in Figure 7.8. If the volume is not modified the simulated output does not match the

measurements well, with the central peak (at approximately 800 days) being poorly

estimated and two troughs at the beginning and the end of treatment not well described

by the simulation. However, if the deconvolution is permitted to also modify the volume

during optimisation, much better results are obtained. The top graph of Figure 7.9
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Figure 7.7: Tumour synthesis (IgG-Kappa). Top (solid - simulated IgG-Kappa concentration

in plasma, dashed - IgG-Kappa concentration in EVF, dots - measured IgG-Kappa concen-

tration in plasma). Bottom (solid - deconvolved input, dotted - initial estimate)
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output of non-tumourous IgG-Lambda concentration in plasma, dots - measured IgG-Lambda

concentration in plasma.
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Figure 7.9: Estimation of volume change due to excess protein viscosity and the effect on the

non-tumourous concentration. Top (solid - simulated IgG-Lambda concentration in plasma,

dots - measured IgG-Lambda concentration in plasma). Bottom (solid - deconvolved percent-

age change in volume, dotted - initial estimate)

shows the simulation results (dashed-line) against those for the measured data (◦).

Whilst the simulation results suggest that the volume change could account for

the difference between the observed behaviour and that expected from the model, the

results may be misleading. In Tuddenham and Bradley [1974] patients with Macroglob-

ulinaemia with increased concentrations of IgM and IgA certainly exhibit volume in-

creases within the range shown; in patients with MM secreting intact IgG it is less

evident. IgG patient volumes in Tuddenham and Bradley [1974] showed an increase in

the range of 5-50%. However, all but one patient in the study produced monoclonal

IgG-Kappa, the sole patient with IgG-Lambda Myeloma exhibited a 3% increase in

volume over that expected.

7.6 Additional applications

Two different applications of deconvolution are described below. Although neither of

these methods relate to chemotherapy of tumour synthesis, they do show important
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facets of the deconvolution process and highlight the simplicity and flexibility of the

methodology used. In addition, these applications also show how, with altering the

perspective in which the problem is viewed, it may be recast in a classic input-output

relationship applicable for the deconvolution process.

Firstly, in a series of experiments conducted by Guymer et al. [2005] the relation-

ship between the dimensions of a drainage manhole structure and the transport of

particulate matter was investigated. Such systems have the capacity to maintain pol-

lutants through fluid storage for extended periods; this ability has implications upon

the dispersion of pollutants and the retention of chemicals hazardous to the surround-

ing environment. In order to analyse such systems the residence distribution time

(RDT) is calculated. Previously it was estimated using computational fluid dynamic

techniques [Stovin et al., 2008]. These are, however, computationally expensive and

time consuming, and prone to convergence errors. The RDT is analogous to the sys-

tem impulse response and it has been suggested that the response generation could

be accomplished through deconvolution [Levenspiel, 1962]. To investigate this, data

were provided of upstream and downstream concentration of markers of fluid flowing

through a manhole from which the RDT was efficiently estimated. Using Maximum

Entropy deconvolution the RDT for a range of drainage structures were calculated

simply and accurately, a process which could not previously be done. This work is

presented in detail in Stovin et al. [2009].

Secondly, nonlinear compartmental models have been developed that describe the

in vivo kinetics of insulin and glucose during glucose intolerance tests [Cobelli and

Pacini, 1988]. In a collaboration between the University of Warwick and AstraZeneca

UK the deconvolution method was used to estimate the insulin secretion in fasting

rats, enabling a more improved marker of insulin secretion to be defined (please see

Watson et al. [2007] for details).

7.6.1 Confidence estimates

Point estimations, as shown so far, are beneficial when considering trends or overall

trajectories of the underlying system behaviour. However, when conducting any form

of parameter estimation it is important to have a measure of how confident the experi-
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menter is in the results obtained. In statistics this will generally result in identification

of the variance for each estimate; in the case of deconvolution, the variance of the de-

convolved signal at each point estimate. Two techniques have been used to investigate

the variance of the point estimates generated in the deconvolution:

• Approximation of Hessian of the unconstrained optimisation

If the surface of the cost function is considered, from a geometric perspective,

the curvature of the solution around the minimal value relates to the amount of

variance in the parameters [Jacquez, 1996, p. 187-190]. If the surface around

the minimal value is of high curvature a small change in the parameter values

would account for a large change in the cost function, therefore the confidence

with which each parameter is defined should be high. If the cost function surface

were broad and flat (low curvature) a large change in the parameter may result in

very little change in the cost function and hence the confidence in that parameter

estimate would be low.

If it is assumed that the true solution of the input signal were known (u) and the

deconvolved signal (û) had been estimated using the above methods, the variance

can be found through the covariance matrix [Fletcher, 1987, p. 110-112]

V = var(u) = E((u− û)(u− û)T ), (7.17)

where the diagonal elements of V are the variance of elements (ûi) of the recovered

input signal.

It can be shown [Fletcher, 1987, p. 111] that the covariance matrix is equal to

the inverse of the residual function Hessian matrix; further, if the solution is close

enough to the ‘real’ underlying solution, the hessian can be linearised around the

estimated values and the Hessian matrix (H) can be approximated by the square

of the Jacobian Matrix (J). Therefore V can be approximated by

V = H−1σ2 ≈ (JJT )−1σ2, (7.18)
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where Jij = ∂ri

∂uj
and ri are the residuals between simulated and measured output

evaluated at the sample point i, and σ2 is the variance of the error. Once again,

due to the non-linearity in the solution the Jacobian matrix must be calculated

numerically [Press et al., 1992].

The above analysis assumes that the optimisation is unconstrained, this how-

ever is not the case. Several authors have suggested that this results in an

over-estimate in the confidence of the variance [De Nicolao and Liberati, 1993;

Sparacino et al., 2001]. To accomodate this Monte-Carlo methods are recom-

mended [De Nicolao et al., 1995].

• Monte-Carlo method

A Monte-Carlo technique is a brute-force approach that relies on numerical ran-

domisation and repetition of the simulation to identify the statistical parame-

ters. The techniques used stems from the ‘bootstrapping’ methods invented by

Efron and Tibshirani [1993], where datasets are sampled, or divided, to generate

new datasets which can be used in the regularisation procedure to produce an

ensemble of input estimates, allowing variance estimates to be generated. Un-

fortunately, the number of samples available for the biomedical systems model is

relatively small, and therefore an alternative method known as residual resam-

pling is used ([Efron and Tibshirani, 1993, p. 111-121] and [Davison and Hinkley,

1997, p. 353-355]). In this method a new data set is generated at each iteration

by adding randomly selected residual errors to the simulated results (ŷ) at the

optimal solution (û), giving an new dataset that can be used to deconvolve the

input signal.

An example of estimating the variance of the signal is shown in Figure 7.10, where

Figure 7.10(a) shows the variance as estimated by the Jacobian approximation to the

Hessian, Figure 7.10(b) the variance using the Monte-Carlo method. Both figures

show a single standard deviation. It should be noted that the examples shown here

can be considered as a ‘best case’ and were selected due to the stable behaviour of the

optimisation process, and the consistent calculation of the Hessian of the residuals.

Whilst the results seem promising both methods suffer from problems which need

to be addressed before the variation in the estimate can be reliably given. Firstly,
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(a) Hessian Calculation
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(b) Residual Bootstrap Calculation

Figure 7.10: Variance estimates for deconvolved signal, error bars indicate a single standard

deviation from the deconvolved point estimate.

the bootstrap method, from visual inspection, appears to produce consistent results;

however, this method is computationally very expensive. For each iteration a full decon-

volution is required, with a minimum of two hundred iterations, preferably more, being

suggested by Efron and Tibshirani [1993], which, depending on the machine resource,

the number of sample points and the optimisation routine, could be unacceptable.

The Hessian method requires numerical differentiation to be performed, which in

the presence of noise is a notoriously unstable process. In addition, if the Hessian

matrix is ill-conditioned the inverse can prove unstable. Further research is required

in order to successfully recover confidence intervals for the deconvolved signals.

7.7 Summary

In this chapter convolution and deconvolution are presented in the context of biomed-

ical systems analysis. Maximum Entropy regularisation was implemented to allow

signals from biomedical processes to be constrained using a priori knowledge regarding

the processes to be recovered. The regularisation was reformulated as a constrained

optimisation problem that can be solved by readily available optimisation routines,

without the need for extensive development of novel minimisation methods, as pre-

sented by Skilling and Bryan [1984]. As compartmental models are ubiquitous in the

field of biomedical modelling, two methods of interfacing the optimisation process to

compartmental models were shown, for non-linear and for linear models.
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The deconvolution method can successfully be used to provide point estimates

for immeasurable quantities in patients. Synthesis of cancerous proteins produced by

patients with Multiple Myeloma were deconvolved; for patients with FLC producing

tumours different responses can be seen to different regimes. Some patients responded

extremely quickly, over hours, during the dialysis treatments. In patients with intact

IgG secreting tumours the response to chemotherapy appeared over a more gradual

timescale, months rather than hours. However deconvolving the input signal in a

non-parametric form permitted a parametric function to be found that was then sub-

sequently fed back to the standard modelling processes (see Chapter 5).

In addition to the original objective of estimating the therapeutic effects of chemother-

apy on patients, Maximum Entropy regularisation offered solutions to unexpected prob-

lems. Ranging from estimating changes in plasma volume, insulin secretion in response

to glucose models, and to non-biomedical problems of estimating the system response

in urban drainage systems.



Chapter 8

Conclusions

In this final chapter, the significant outcomes of this thesis will be identified and dis-

cussed, both in terms of their contribution to the body of knowledge regarding immune

kinetics analysis and the wider field of biomedical systems modelling. The general con-

clusion to be drawn from the totality of the work presented here is the facility of

physiological modelling to directly influence clinical decisions; supporting or discour-

aging hypotheses that are generated by medical staff during the treatment of patients,

through the use of validated compartmental models and mathematical analysis.

As described in the introduction, the aim of the research presented is to assist

clinicians in the diagnosis, treatment and development of new treatments for patients

with three immune conditions: two types of Multiple Myeloma (FLC and Intact Se-

creting IgG) and the immune response to organ transplantation. This aim has been

successfully met through the creation of several new mathematical models (Chapters

4-6) that describe the kinetics of measurable antibodies relating to the patient’s con-

dition. The models generated are, where possible, validated against patient data to

ensure their applicability in describing known dynamic responses. They are then used

to investigate alternative treatments or assist in the diagnosis of patients currently

undergoing treatment. An iterative approach to the model development has been pre-

sented starting with linear models to describe the kinetics of FLC under the influence

of haemodialysis; these simple models were then extended to include non-linear ligand

and receptor binding kinetics to describe the in vivo kinetics of whole IgG antibodies.

The non-linear receptor models were subsequently used, with minor modification, to

172
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investigate the underlying response of the patient to implanted kidneys.

The models developed enable suggestions to be made regarding the optimal form

of apheresis to be used for the clearance of different immune complexes. For Free Light

Chains (FLCs) it was shown (Chapter 4) that haemodialysis, with high-flux dialysis

membranes, is more effectively able to clear FLC than plasma exchange. Further,

through parameter estimation applied to patient data, it was shown that the clear-

ance rate for the two apheresis methods (haemodialysis and plasma exchange) was

approximately the same. However, due to the ability to use haemodialysis for a longer

duration than plasma exchange greater whole-body removal can be achieved. From

the FLC model it was also possible to analyse the effect of haemodialysis in increasing

the patient’s chance of recovery of renal function under different chemotherapy effec-

tiveness and treatment schedules; suggesting that prolonged and early use of high-flux

haemodialysis throughout the chemotherapy treatment has the potential to aid in kid-

ney function recovery. It was also shown that even low-level recovery of the natural

renal function had a surprising impact on clearance of monoclonal FLC. In order to

predict the long term effect of haemodialysis, a simplified model was presented that

utilised the pseudo periodic nature of haemodialysis treatment to yield estimates for

minimum and maximum plasma concentrations, without the need for iteratively solv-

ing the system equations; however, although periodicity in treatment is hypothetically

feasible due to resource constraints (e.g. dialysis equipment, trained staff, etc.) dial-

ysis is often performed a-periodically, thus requiring iterative procedures to be used

to solve the system equations. The work on FLC haemodialysis has encouraged the

development of a larger follow-on study [Hutchison et al., 2008]; it has also stimulated

manufacturers of the membranes to invest resources into further development of the

membrane technologies with regards to the FLC clearance.

Comparison of clearance methods is also important when considering kidney trans-

plant patients (Chapter 6) as three apheresis methods are available: plasma exchange,

plasmapheresis and plasma absorption. Unfortunately, unlike FLC Myeloma patients

the clearance estimates for these methods cannot readily be calculated using standard

parameter estimation. A discretisation technique was developed that simultaneously

estimates the underlying synthesis and apheresis clearance for a series of transplant

patients, from which clearance rates for a range of patients and antibody types (IgM,
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IgG and IgA) were estimated. The results of this suggest that IgM is cleared equally

well by all methods, whilst IgG and IgA clearance is improved with plasma exchange

and plasmapheresis. It should be noted that the data supplied for the clearance esti-

mates showed a bias towards patients undergoing plasmapheresis, due to the facilities

available at the University Hospital Coventry and Warwick. Ideally a larger cohort

study should be performed, with data from more patients undergoing both plasma

exchange and plasma absorption.

For Intact Secreting Myeloma patients an improved tumour marker has been pro-

posed (Chapter 5) that relies on the competitive binding of IgG-Kappa and IgG-

Lambda antibodies. A mathematical study has been performed to demonstrate the

effectiveness of using combinations of IgG variant markers to optimally determine

chemotherapy effects on IgG tumours. It has been shown that in the absence of noise,

measuring the ratio of monoclonal tumourous IgG over the non-tumourous IgG will

give the most effective measure of tumour synthesis reduction. Further, through sim-

ulated results, if the monoclonal IgG cannot be measured independently the ratio of

total IgG tumour over non-tumourous IgG will be a better indicator than measur-

ing IgG concentration changes. As resource allocation is always an issue within any

clinical environment, it is prudent to rank the markers shown in terms of accuracy

of the measurement technique, thus enabling informed decisions to be made regarding

which marker to employ. From the analysis presented an appropriate ranking of marker

effectiveness would be:

1. Ratio of tumourous IgG over non-tumour IgG.

2. Ratio of total IgG type over non-tumourous IgG.

3. Tumourous IgG only.

4. Total Tumour IgG type inclusive of tumour and non-tumour production.

Based upon the model presented it is anticipated that the ratios discussed could

be used either in an ‘on-line’ diagnostic mode during treatment to assess chemother-

apy, or post-treatment, to assist in categorising patients to determine future treatment.

The ratio under observable events (changes in initial conditions) will offer, at worst, a
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comparable estimate of tumour kill as measurement of concentration changes and at

best, a significantly more accurate estimate. Once again, a caveat exists that addi-

tional clinical validation of the model is required with a greater range of patients and

with different responses to ensure the dynamics of the model are sufficient for clinical

consideration.

In addition to the clearance of the immune complex, to reduce their impact on

the patients, a key feature of treatment is the use of drugs to reduce the production

of new proteins. Whilst the long-term effects of the drugs are known, i.e. if the pa-

tient responds successfully to the drug this leads to a reduction in the concentration

of the immune complex occurs over time; unfortunately, the short-term behaviour and

functional descriptions of the direct relationship between drug induction and synthesis

dynamics are generally not available. To assist in this, deconvolution methods have

proven to be particularly useful (Chapter 7). A simple deconvolution method was

used to describe the synthesis of three antibody classes (IgM, IgG and IgA) in patients

undergoing immune suppression and apheresis pre- and post-kidney transplants (Chap-

ter 6) . A more complex deconvolution method was used to investigate the effects of

chemotherapy on the synthesis of monoclonal antibodies (IgG) and antibody fragments

(FLC) in Multiple Myeloma (MM) patients. Through the use of Maximum Entropy

deconvolution, a regularisation technique, estimates were provided for several patients.

In the case of Intact Secreting MM patients the deconvolved IgG synthesis suggested

the use of the Logistic function to describe the dynamics of the immune complex gen-

eration rate. For FLC MM patients the short term (hours rather than days) impact of

chemotherapy was described, with the effects declining over a twenty four hour period.

However, of greater interest was the detection of the tumour recovering from the drug

treatment within eight hours; this was discovered even in the presence of apheresis,

which, through clearance of FLC, would normally prevent clinicians from detecting

such an increase. Deconvolution was also used to suggest, non-parametrically, the

form of other time-varying signals, e.g. the relationship between viscosity and plasma

volume in MM patients, and the production of insulin in an in vitro diabetic study.

Finally, two prototype applications have been suggested that, although having

limited validation, show promise in the analysis of patient data. For haemodialysis,

an extendable multi-filter model was introduced (Chapter 4) that may allow clinicians
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to predict the effects of using multi-filters to reduce increased amounts of FLC in

a single session. The model also highlighted the effects of ultrafiltration on middle-

molecule clearance. In Chapter 6 cluster analysis was used on longitudinal data of

patients undergoing kidney transplants, using dimension reduction techniques (PCA

and Sammon Mapping) and partition clustering, patients were categorised into groups,

which closely matched the suggested categorisation given by clinical staff. However,

both methods require further validation and testing before they can be used for the

analysis of real patient data to assist clinical decision making.

8.1 Future work

As with all research, it is possible to define alternative directions that may be taken and

further refinement that should be made. The patients studied for the FLC validation

(Chapter 4) had no renal function for clearing FLC and were still able to maintain fluid

levels in the body. This resulted in a zero ultrafiltration rate for the entire treatment

period and a constant volume level during the treatment. However, this is not always

true and volume should be introduced as a state-variable, as described in Ward et al.

[2006]. Also relating to ultrafiltration, it is known that proteins bind to the surface of a

filter membrane during dialysis. This is a process known as membrane fouling [Pedrini

et al., 2006]. Fouling negatively affects the membrane’s ability to clear material due to

restrictive porosity, which becomes worse with both an increase in ultrafiltration and

the time that the surface is in contact with the fluid. In order to increase the accuracy

of the estimates presented, and determine the impact of membrane fouling on FLC

clearance, it might be beneficial to include additional features in the model that would

account for this reduction in clearance.

As mentioned in Chapter 4, it is theoretically possible for multiple filters to be

connected in a variety of formats, through modification of the tubes or lines connecting

the filters. Schematics describing how the extended FLC model could be used to create

five different filter configurations can be seen in Figure 8.1. It may be possible using

alternative configurations to increase the amount of FLC cleared in a single session.

For instance, if Model D (Fig 8.1(d)) is considered, by having the plasma and dialysate

sides of the filter connected in parallel an increased concentration gradient across the
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inlet of both filters is possible. However, it would be premature to suggest this would

result in an increased diffusive transfer across the filter, without further information on

the effects this may have on ultrafiltration rates and maximum flow rates in a clinical

setting. It would therefore require an in vitro validation experiment to be conducted

prior to suggesting modification in patient treatment using the extended filter model.

(a) Model A (b) Model B

(c) Model C (d) Model D (e) Model E

Figure 8.1: Possible extended filter configurations. Model A - single filter. Model B - two

filters with plasma and dialysate flows in parallel. Model C - two filter plasma and dialysate

flows in series. Model D - two filters, plasma in series and dialysate flow in parallel. Model

E - plasma flow in parallel with dialysate in series.

In addition to clearing the protein of interest, in this case FLC, all apheresis tech-

niques remove elements from the bloodstream that are beneficial to the homeostasis of

the patients [Kim et al., 2007], e.g. albumin. If measurements of other particles were

taken alongside the FLC plasma concentration it may be possible to investigate the
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clearance of these substances in addition to FLC and analyse the correlation between

differing protein clearance and patient recovery long term.

The cluster analysis approach of Chapter 6 may offer early indicators for patients

that may not be responding successfully to an implanted organ, even though measure-

ments taken throughout treatment indicate otherwise. If a database of patients’ data

and categorisation is maintained over a period of time, it seems plausible that these

data could be used to reference current patients’ response to those seen previously,

offering an indicator to assist in the prediction of the future response.

The deconvolution process discussed in Chapter 7 allows immeasurable inputs to

the system to be analysed. However, two areas of this method which require further

investigation are the placement and number of samples for the deconvolved signal.

The ‘sample points’ are defined as the points in the input function around which

the interpolation is produced. To determine the synthesis of cancerous cells in MM

patients, due to the assumed ‘smoothness’ of the synthesis function, the choice of

sample points was relatively simple in that choosing sample points equal to the time

points at which the observation were taken was adequate. When the deconvolution

method was applied to alternative experiments, namely, man-hole flow reconstruction

and insulin deconvolution, this was inappropriate. In the man-hole problem the output

was measured every millisecond for several minutes, resulting in thousands of sample

points, using all of these as input sample points is computationally infeasible. In

the diabetes experiment spikes were observed at the start of the observation period,

which should be matched in the deconvolved input. Both these problems were solved

through manual manipulation of the time at which the input signal was sampled. In

order to determine the optimal node placement automatically several techniques were

investigated including:

1. Genetic Algorithms [Goldberg, 1989] with each individual in the population

representing a different distribution of sample points.

2. Nested Optimisation where both the number and time points are used as

parameters for the outer minimisation problem, and magnitude of the input is

minimised in the inner loop.

3. Sensitivity Analysis of the Output to sample point. D-optimal sampling
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techniques [Jacquez, 1996, ch. 16] were used to determine the output sensitivity

to changes in the placement of the input samples on the timeline.

Unfortunately, all these methods were computationally expensive with poor con-

vergence and repeatability.

When conducting parameter estimation it is important to have a measure of how

confident the experimenter is in the results obtained. In statistics this generally results

in identification of the variance for each estimate, or in the case of deconvolution, the

variance of the deconvolved signal at each point estimate. Two techniques have been

used to estimate the variance of the point estimates generated in the deconvolution,

Hessian approximation and Monte Carlo simulations. Both of these require more robust

algorithms to be developed.

The models presented in this thesis could be expanded to other immune disorders,

e.g. Multiple Sclerosis and Rheumatoid Arthritis, offering similar insight into the un-

derlying dynamics and allowing simulated prediction on patient response to treatment.

Due to the exploratory nature of the treatments being undertaken, a limited number

of data sets were available for this work. It would be interesting to gather data from a

large cohort study and investigate the physical variation within a population in terms

of both the in vivo parameters (e.g. renal clearance of FLC, plasma and EVF transfer

of IgG) in addition to their response to the treatment. For the FLC modelling this may

be possible as the use of haemodialysis in treating Multiple Myeloma FLC patients is

now being tested in an extended European trial, referred to as EuLite [Hutchison et al.,

2008]. Data from these trials were not available during the writing of this thesis.
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Appendix A

Identifiability analysis

The identifability analysis for each of the models presented in this thesis can be found

below. Each section contains models pertaining to a single chapter.

A.1 Chapter 4

A.1.1 Warwick FLC model

For completeness both the Mathematica [Wolfram, 1999] and Daisy [Bellu et al., 2007]

code are presented.

On/Off dialysis model analysis using Taylor Series in Mathematica

The system equations for an ‘on’ and ‘off’ dialysis FLC model

q1′[t ]:=− (kre + k12)q1[t] +
(

v1
v2

k12
)

q2[t] + f,

q2′[t ]:=k12q1[t]−
(

kre +
(

v1
v2

k12
))

q2[t],

q1d′[t ]:=− (kd + kre + k12)q1d[t] +
(

v1
v2

k12
)

q2d[t] + f,

q2d′[t ]:=k12q1d[t]−
(

kre +
(

v1
v2

k12
))

q2d[t],

yd[t ]:=q1d[t]/v1,

yd[t ]:=q1[t]/v1;

the initial conditions,

198
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q1[0] = q10; q2[0] = q20; q1d[0] = q1d0; q2d[0] = q2d0.

Defining the alternative parameterisation set

subst = {q10→ q10b, q1d0→ q1d0b, f → fb,

k12→ k12b, q2d0→ q2d0b, q20→ q20b,

kd→ kdb, v1→ v1b}.

Create the Taylor series coefficients

a0 = {y[0], yd[0]};

y1 = D[y[t], t]; y1d = D[yd[t], t]; a1 = ({y1, y1d}/.t→ 0);

y2 = D[y1, t]; y2d = D[y1d, t]; a2 = ({y2, y2d}/.t→ 0);

y3 = D[y2, t]; y3d = D[y2d, t]; a3 = ({y3, y3d}/.t→ 0);

y4 = D[y3, t]; y4d = D[y3d, t]; a4 = ({y3, y3d}/.t→ 0);

Solve the equations for the parameterisation, using the first and second Taylor se-

ries co-efficients

eqn0 = a0− (a0/.subst);

eqn1 = a1− (a1/.subst);

eqns = {eqn0, eqn1};

newSoln = Simplify[Solve[eqns == 0, {q10b, q10db, fb, k12b, q2d0b, q20b, kdb, v1b}]]

newSoln[[1]] =

kdb→ kdq1d0v2+k12(q20v1−q2d0v1−q10v2+q1d0v2)
q1d0v2

, fb→ q1d0b(k12q20v1+fv2−k12q10v2)
q1d0v2

,

q10b→ q10q1d0b
q1d0

, k12b→ 0, v1b→ q1d0bv1
q1d0

newSoln[[2]] =
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kdb→ k12 + kd− f

q1d0
+ fb

q1d0b
+ k12b

(

−1 + q2d0bv1
q1d0v2

)

− k12q2d0v1
q1d0v2

,

q20b→ k12q1d0bq20v1−fbq1d0v2+fq1d0bv2−k12q10q1d0bv2+k12bq10q1d0bv2
k12bq1d0bv1

,

q10b→ q10q1d0b
q1d0

, v1b→ q1d0bv1
q1d0

k12b cannot be zero, we therefore reject the first solution

soln = newSoln[[2]];

The following two solutions are separated for computational issues. If this was not

done first the ‘Solve’ would not return a value but consume all available computer

resources (e.g. memory and CPU).

eqn = (a2− (a2/.subst))/.soln;

newSoln = Simplify[Solve[eqn == 0, {q10db, fb, q2d0b}]];

soln = Simplify[soln/.newSoln[[1]]];

soln = Union[soln, newSoln[[1]]];

eqn = (a3− (a3/.subst))/.soln;

newSoln = Simplify[Solve[eqn == 0, {q1d0b, k12b}]]

{{q1d0b→ q1d0, k12b→ k12}}

The only solution is p = p̄; therefore,the system is SGI.

soln = Simplify[soln/.newSoln[[1]]];

soln = Union[soln, newSoln[[1]]]

{fb→ f, k12b→ k12, kdb→ kd, q10b→ q10, q1d0b→ q1d0,
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q20b→ q20, q2d0b→ q2d0, v1b→ v1}

On/Off dialysis model using Differential Algebra in Daisy

The daisy input file for the on/off dialysis model.

WRITE "Two Compartment Warwick Model - On + Off dialysis."

% B_ IS THE VARIABLE VECTOR

B_:={y1,y1d,q1,q2,q1d,q2d}

FOR EACH EL_ IN B_ DO DEPEND EL_,T

%B1_ IS THE UNKNOWN PARAMETER VECTOR

B1_:={q10,q10d,q20,q20d,k12,kd,P,v1}

LET kre=beta,v2=alpha

%NUMBER OF STATES

NX_:=4

%NUMBER OF OUTPUTS

NY_:=2

%MODEL EQUATIONS

C_ := { df(q1,t) = -(kre+k12)*q1 + k12*(v1/v2)*q2 + P,

df(q2,t) = k12*q1-(k12*(v1/v2)+kre)*q2,

df(q1d,t) = -(kre+k12+kd)*q1d + k12*(v1/v2)*q2d + P,

df(q2d,t) = k12*q1d-(k12*(v1/v2)+kre)*q2d,

q1*v1=y1,

q1d*v1=y1d}

SEED_:=150

DAISY()

% INITIAL CONDITIONS

IC_:={q1=q10,q2=q20,q1d=q10d,q2d=q20d}

CONDINIZ()
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Below is the resulting output using the above input and Daisy 1.4 [Bellu et al., 2007]

under Reduce 3.8 [Hearn, 1995]. Only the characteristic set, exhaustive summary and

identifiability results are shown.

CHARACTERISTIC SET

aa_(1) := df(y1,t,2)*v2 + df(y1,t)*(k12*v1 + k12*v2 + 2*kre*v2)

+ y1*kre*(k12*v1 + k12*v2 + kre*v2)

- p*v1*(k12*v1 + kre*v2)

aa_(2) := df(y1d,t,2)*v2

+ df(y1d,t)*(k12*v1 + k12*v2 + kd*v2 + 2*kre*v2)

+ y1d*(k12*kd*v1

+ k12*kre*v1 + k12*kre*v2 + kd*kre*v2 + kre**2*v2)

- p*v1*(k12*v1 + kre*v2)

aa_(3) := q1*v1 - y1

aa_(4) := df(y1,t)*v2 - q2*k12*v1**2

+ y1*v2*(k12 + kre) - p*v1*v2

aa_(5) := q1d*v1 - y1d

aa_(6) := df(y1d,t)*v2 - q2d*k12*v1**2

+ y1d*v2*(k12 + kd + kre) - p*v1*v2

RANDOMLY CHOSEN NUMERICAL PARAMETER VECTOR

b2_ := {q10=120,q10d=25,q20=117,q20d=83,k12=38,kd=130,p=55,v2=135}

THE ALGEBRAICALLY OBSERVABLE STATE(S)

flist1_ := {(135*k12*v1 + 135*k12*v2 - 38*v1*v2 - 5130*v2)/(135*v2),

(kre*(135*k12*v1 + 135*k12*v2 - 38*v1*v2 - 5130*v2))/(135*v2),

(v1*( - 27*k12*p*v1 - 27*kre*p*v2 + 1485*kre*v2 + 418*v1*v2))/(27*v2),

(v1*( - 27*k12*p*v1 - 27*kre*p*v2 + 1485*kre*v2 + 418*v1*v2))/(27*v2),

(135*k12*v1 + 135*k12*v2 + 135*kd*v2 - 38*v1*v2 - 22680*v2)/(135*v2),

(135*k12*kd*v1 + 135*k12*kre*v1 + 135*k12*kre*v2 + 135*kd*kre*v2

- 38*kre*v1*v2 - 22680*kre*v2 - 4940*v1*v2)/(135*v2),
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v1*(q10 - 120),

(v1*( - 15*k12*q20*v1 + 1800*k12*v2 - 15*p*v2

+ 494*v1*v2 - 67575*v2))/15,

v1*(q10d - 25),

(v1*( - 135*k12*q20d*v1 + 3375*k12*v2 + 3375*kd*v2

- 135*p*v2 + 3154*v1*v2 - 559575*v2))/135}

MODEL PARAMETER SOLUTION(S)

gi_ := {{k12=38,kd=130,p=55,q10=120,q10d=25,q20=117,q20d=83,v2=135}}

SYSTEM GLOBALLY IDENTIFIABLE

On dialysis model using Differential Algebra in Daisy

The daisy input file for the dialysis model when measurements are only taken when

the patient is on dialysis.

WRITE "Two Compartment Warwick Model - On dialysis only."

% B_ IS THE VARIABLE VECTOR

B_:={y1,q1,q2}

FOR EACH EL_ IN B_ DO DEPEND EL_,T

%B1_ IS THE UNKNOWN PARAMETER VECTOR

B1_:={q10,k12,kd,P}

let kre=alpha,q20=beta,v1=gamma,v2=delta

%NUMBER OF STATES

NX_:=2

%NUMBER OF OUTPUTS

NY_:=1

%MODEL EQUATIONS

C_ := { df(q1,t) = -(kre+k12+kd)*q1 + k12*(v1/v2)*q2 + P,

df(q2,t) = k12*q1-(k12*(v1/v2)+kre)*q2,

y1=q1/v1}

SEED_:=150
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DAISY()

% INITIAL CONDITIONS

IC_:={q1=q10,q2=q20}

CONDINIZ()

The resulting output showing a globally identifiable parameter set.

CHARACTERISTIC SET

aa_(1) := - df(y1,t,2)*delta*gamma + df(y1,t)*gamma*( - 2*alpha*delta

- delta*k12 - delta*kd - gamma*k12) - y1*gamma*(alpha**2*delta

+ alpha*delta*k12 + alpha*delta*kd + alpha*gamma*k12

+ gamma*k12*kd) + p*(alpha*delta + gamma*k12)

...

EXHAUSTIVE SUMMARY INCLUDING INITIAL CONDITION(S) OF

THE ALGEBRAICALLY OBSERVABLE STATE(S)

flist1_ := {alpha*delta*p - 83*alpha*delta + gamma*k12*p

- 2075*gamma, - delta*k12 - delta*kd + 142*delta

- gamma*k12 + 25*gamma, - alpha*delta*k12

- alpha*delta*kd + 142*alpha*delta - alpha*gamma*k12

+ 25*alpha*gamma -gamma*k12*kd + 2925*gamma,-q10

+ 120,- beta*gamma*k12 + 25*beta*gamma

+ 120*delta*k12 + 120*delta*kd - delta*p

- 16957*delta}

MODEL PARAMETER SOLUTION(S)

gi_ := {{k12=25,kd=117,p=83,q10=120}}

SYSTEM GLOBALLY IDENTIFIABLE

Two filter model without ultrafiltration

Input commands to determine the identifiability of the two filter model.

% B_ IS THE VARIABLE VECTOR
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B_:={y1,y2,y3,y4,q1,q2,q3a,q3b,q4a,q4b}

FOR EACH EL_ IN B_ DO DEPEND EL_,T

%B1_ IS THE UNKNOWN PARAMETER VECTOR

B1_:={q10,v1,v3a,v3b,v4a,v4b,k12,k21,k1e,P,

kpout,kre,kd1,kd2,kdout1,kpret1,kdout2,kpret2}

let q20=a, q30=b, q40=c

%NUMBER OF STATES

NX_:=6

%NUMBER OF OUTPUTS

NY_:=4

%MODEL EQUATIONS

C_ := { df(q1,t) = -(kre + k12 + k1e + kpout)*q1 + k21*q2

+ kpret2*q4a + P,

df(q2,t) = k12*q1-(k21+kre)*q2,

df(q3a,t) = -kd1*(q3a*v3a-q3b*v3b) - kpret1*q3a

+ kpout*q1,

df(q4a,t) = -kd2*(q4a*v4a-q4b*v4b) - kpret2*q4a + kpret1*q3a,

df(q3b,t) = kd1*(q3a*v3a-q3b*v3b) - kdout1*q3b + kdout2*q4b,

df(q4b,t) = kd2*(q4a*v4a-q4b*v4b) - kdout2*q4b,

y1=q1*v1,

y2=q3a*v3a*2 - q1*v1,

y3=q4a*v4a*2 - q3a*v3a*2 - q1*v1,

y4=q3b*v3b*2 - 2*q4b*v4b}

SEED_:=150

DAISY()

% INITIAL CONDITIONS

IC_:={q1=q10,q2=q20, q3a=q30, q3b=0, q4a=q40, q4b=0}

CONDINIZ()

The resulting output showing the global identifiability is

...

THE SYSTEM IS ALGEBRAICALLY OBSERVABLE
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...

MODEL PARAMETER SOLUTION(S)

gi_ := {{k12=39,k1e=73,k21=146,kd1=124,kd2=34,kdout1=111,

kdout2=115,kpout=4,kpret1=147,kpret2=81,kre=75,

p=17,q10=48,v1=42,v3a=92,v3b=58,v4a=131,v4b=69}}

SYSTEM GLOBALLY IDENTIFIABLE

Two filter model with ultrafiltration

WRITE "2 Filter FLC Model with UF included (2FilterUF.txt)."

% B_ IS THE VARIABLE VECTOR

B_:={y1,y2,y3,y4,q1,q2,q3a,q3b,q4a,q4b}

FOR EACH EL_ IN B_ DO DEPEND EL_,T

%B1_ IS THE UNKNOWN PARAMETER VECTOR

B1_:={v1,k12,k21,P,kre,kd,UF1,UF2}

let kpout=d,kdout1=e,kpret1=f,kdout2=g,kpret2=h,v3a=i,v3b=j,v4a=k,v4b=l

%NUMBER OF STATES

NX_:=6

%NUMBER OF OUTPUTS

NY_:=4

%MODEL EQUATIONS

C_ := { df(q1,t) = -(kre + k12 + kpout)*q1 + k21*q2 + kpret2*q4a + P,

df(q2,t) = k12*q1-(k21+kre)*q2,

df(q3a,t) = -kd*(q3a*v3a-q3b*v3b) - kpret1*q3a + kpout*q1

- UF1*(q3a*v3a + q3b*v3b),

df(q3b,t) = kd*(q3a*v3a-q3b*v3b) - kdout1*q3b + kdout2*q4b

+ UF1*(q3a*v3a + q3b*v3b),

df(q4a,t) = -kd*(q4a*v4a-q4b*v4b) - kpret2*q4a + kpret1*q3a

- UF2*(q4a*v4a + q4b*v4b),

df(q4b,t) = kd*(q4a*v4a-q4b*v4b) - kdout2*q4b

+ UF2*(q4a*v4a + q4b*v4b),

y1=q1*v1,
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y2=2*q3a*v3a - y1,

y3=2*q4a*v4a - y2,

y4=2*q3b*v3b-2*q4b*v4b}

SEED_:=100

DAISY()

The resulting output showing local identifiability is

...

THE SYSTEM IS ALGEBRAICALLY OBSERVABLE

...

MODEL PARAMETER SOLUTION(S)

gi_ := {{k12=75,k21=67,kd=30,kre=88,p=83,uf1=5,uf2=35,v1=20},

{k12=-67,k21=-75,kd=30,kre=88,p=83,uf1=5,uf2=35,v1=20}}

SYSTEM LOCALLY IDENTIFIABLE

However, the second parameter set contains negative values for the rate constants

k12 and k21 that are, by definition, positive. Therefore as the parameter estimatation

process is restricted to positive values a globally identifiable solution is available.

A.2 Chapter 5

Identifiability analysis relating to IgG and FcRn recycling.

A.2.1 Hypoproteinemia patient

Define the system equations of model for patient with Hypoproteinemia,

IgGT1′[t ]:=− (k01 + k21)IgGT1[t] + k12IgGT2[t],

IgGT2′[t ]:=k21IgGT1[t]− k12IgGT2[t],

and specify the observations, plasma concentration and total tracer,
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y1[t ]:=IgGT1[t],

y2[t ]:=IgGT1[t] + IgGT2[t].

Set the initial conditions, tracer is administered as a bolus injection into plasma,

IgGT1[0] = 1

IgGT2[0] = 0.

Calculate the Taylor series co-efficients,

y11 = D[y1[t], t];

y12 = D[y11, t];

y21 = D[y2[t], t];

and define the alternate parameter vector and Taylor series coefficients,

subst = {k01→ k01b, k12→ k12b, k21→ k21b},

coeffs = {y11, y12, y21}/.t→ 0,

coeffsPbar = coeffs/.subst,

eqns = coeffs− coeffsPbar,

soln = Solve[eqns == 0, {k01b, k12b, k21b}].

The system is not locally identifiable as there is only a single solution

Length[soln]

1

and all the parameters are globally identifiable

Simplify[soln[[1]]] {k12b→ k12, k01b→ k01, k21b→ k21}.



Appendix B

Analytical asymptotic prediction
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Figure B.1: Example of apheresis treatment.

Proposition B.0.1. Given definition 4.23, the asymptotic minimum and maximum

values of a linear single-switch1 state-space system with constant input are given by

lim
t→∞

max c(t) = (Id − eA1τ1eA2τ2)−1(eA2τ2α + β)

lim
t→∞

min c(t) = (Id − eA2τ2eA1τ1)−1(α + βeA1τ1)
(B.1)

where eAi is the matrix exponential, A1 ∈ R
d×d and A2 ∈ R

d×d are the two possible

system matrices, τ1 is the duration system one is operational, τ2 system matrix two, Id

is identity matrix of dimension d; with α and β defined as

α(τ1) :=

∫ τ1

0

eA1(τ1−s) P∞ ds (B.2)

1A system with only two possible system matrices
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β(τ1) :=

∫ τ2

0

eA2(τ2−s) P∞ ds (B.3)

where P∞ is a vector of the asymptotic baseline of the input functions; for FLC patients

this is P∞ = [fmin, 0]T .

Proof. As each system matrix is linear, an analytical solution is available for each

switching phase, using the matrix exponential solution the quantities of the material

in each compartment can be expressed as

q(t) = eAitq0 +

∫ t

0

eAi(t−s)P∞ ds, t ∈ [τi, τi+1] (B.4)

where Ai is the matrix for switching phase i and q0 is vector of starting conditions,

either the initial conditions if 0 > t > D or terminal conditions from the previous

switching phase if t > D. With reference to Figure B.1, taking t = 0 as the start

of the first apheresis treatment, the quantity in the system after the treatment (with

duration D) can be calculated as

q(D) = eA1Dq0 +

∫ D

0

eA1(D−s)P∞ ds. (B.5)

The patient is then left off apheresis for a fixed period, after which the FLC quantity

can then be found from

q(T ) = eA2(T−D)q(D) +

∫ T−D

0

eA2((T−D)−s)P∞ ds (B.6)

where T is the time between the first and second apheresis treatments. If the treat-

ment is then repeated with period T, using a recursive process (often referred to as

Picard’s iterative process [Jacquez, 1996, pp. 81–85]) by substituting equation (B.5)

into equation (B.6) results in

q(T ) = eA2(T−D)(eA1Dq0 +

∫ D

0

eA1(D−s)P∞ ds)

+

∫ T−D

0

eA2((T−D)−s)P∞ ds.

= eA2(T−D)eA1Dq0 + eA2(T−D)

∫ D

0

eA1(D−s)P∞ ds

+

∫ T−D

0

eA2((T−D)−s)P∞ ds.

(B.7)
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It should be noted that in general the on and off apheresis matrices do not commute,

A2A1 6= A1A2, therefore the matrix exponential can not be manipulated as in the scalar

case. Repeating this process for two more treatment cycles yields

q(T + D) = eA1Dq(T −D) +

∫ D

0

eA1(D−s)P∞ ds

= eA1DeA2(T−D)eA1Dq0 + eA1DeA2(T−D)

∫ D

0

eA1(D−s)P∞ ds

+ eA1D

∫ T−D

0

eA2((T−D)−s)P∞ ds.

+

∫ D

0

eA1(D−s)P∞ ds

(B.8)

q(2T ) = eA2(T−D)q(T + D) +

∫ T−D

0

eA2((T−D)−s)P∞ ds

= (eA2(T−D)eA1D)2q0

+ eA2(T−D)eA1DeA2(T−D)

∫ D

0

eA1(D−s)P∞ ds

+ eA2(T−D)eA1D

∫ T−D

0

eA2((T−D)−s)P∞ ds.

+ eA2(T−D)

∫ D

0

eA1(D−s)P∞ ds

+

∫ T−D

0

eA2((T−D)−s)P∞ ds

(B.9)

Noting that the contribution of q(0) → 0 as t → ∞, repeating this process infin-

ity yields a recursive formula for the on and off dialysis points. Collecting the term

eA2(T−D)
∫ D

0
eA1(D−s)P∞ ds+

∫ T−D

0
eA2((T−D)−s)P∞ ds from equation (B.9) yields a peak,

off dialysis, value of

lim
t→∞

max q(t) = (In + eA1τ1eA2τ2 + (eA1τ1eA2τ2)2 + . . .)(eA2τ2α + β). (B.10)

Whilst collecting
∫ D

0
eA1(D−s)P∞ ds+ eA1(D)

∫ T−D

0
eA2((T−D)−s)P∞ ds from the recursion

of equation (B.8), gives the following formula for the minimum, on dialysis, measure-

ment

lim
t→∞

min q(t) = (In + eA2τ2eA1τ1 + (eA2τ2eA1τ1)2 + . . .)(α + βeA1τ1). (B.11)
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In both equation (B.10) and (B.11), α and β are as defined by equations (B.2) and

(B.3). Using the Neumann Series [Meyer, 2000], if A is a square matrix, such that

||A|| < 1 then

(In + A)−1 = In + A + A2 + ... =
∞

∑

m=0

Am (B.12)

where A is matrix in Rn×n, In is a d dimensional identity matrix. Using this identity

equations (B.9) can be succinctly expressed as

lim
t→∞

max q(t) = (In − eA1τ1eA2τ2)−1(eA2τ2α + β) (B.13)

lim
t→∞

min q(t) = (In − eA2τ2eA1τ1)−1(α + βeA1τ1) (B.14)

If attention is now turned to the effect of the initial conditions on the early phase

of treatment. Comparing coefficients of the initial conditions

q(0) = 1

q(T ) = eA2(T−D)eA1D

q(2T ) = (eA2(T−D)eA1D)2

. . .

q(nT ) = (eA2(T−D)eA1D)n

from which it is evident that the initial conditions are decaying by an exponential func-

tion. It seems therefore feasible to approximate the discrete values of the maximum,

pre dialysis, measurements by a simple function

qenv[n] = (eA2(T−D)eA1D)n(q(0)− γ) + γ (B.15)

(B.16)

where n ∈ Z
+ is the number of complete dialysis treatments performed (on dialysis

plus interdialytic rest period) and γ is the maximum asymptotic value as defined in

equation (B.1). It should be noted that equation (B.15) is only an approximation to
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the peak values and as such has inherent error in the calculation. This occurs due

to the use of the asymptotic values of q(t) used as an approximation to the effects

of the input integral on the overall FLC levels. Comparing equation (B.1) with the

integral terms in equation (B.7), it can be seen the asymptotic maximum contains

higher order terms that are not present at this stage in the recursion. Therefore as n,

or t, increase the error will be reduced. An analytical bound on the error has not yet

been found, however, in the examples presented it is significantly smaller (O(10−3))

than the numerical error in ODE solvers used. To assist in visual representation, and

comparison of treatments, equation (B.15) can be converted into a continuous function

qenv(t) = (eA2(T−D)eA1D)
t
T (q(0)− γ) + γ; (B.17)

however, this function should only be interpreted where analytical at time t = nT .



Appendix C

Calculation of initial conditions for

the FcRn model

If IgG-Kappa, IgG-Lambda and the tumourous IgG are measured, and the system is in

steady-state prior to treatment, the system can be described by the following equations:

−

(

β −
γ

ζ + (K1(0) + L1(0) + T1(0))

)

K1(0) + PK = 0 (C.1a)

−

(

β −
γ

ζ + (K1(0) + L1(0) + T1(0))

)

L1(0) + PL = 0 (C.1b)

−

(

β −
γ

ζ + (K1(0) + L1(0) + T1(0))

)

T1(0) + PT (0) = 0 (C.1c)

For the patient simulations all parameters are known with the exception of PT (0),

K1(0) and L1(0). Equations (C.1a) can be re-arranged to yield three quadratic Equa-

tions, each with two solutions of opposing sign:

PT (0) = T1(0) α δ

ζ
(C.2a)

K1(0) = PK δ

2PL(PK+PL)α
(C.2b)

L1(0) = δ
2(PK+PL)α

(C.2c)

where

δ = PKPL + P 2
L + PLT1(0)α− PLβ + PLαγ

±
√

P 2
L (4(PK + PL)α(T1(0) + γ) + (PK + PL − T1(0)α + β − αγ)2)
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and

ζ = PKPL + P 2
L + PLT1(0)α + PLβ + PLαγ

+
√

P 2
L (4(PK + PL)α(T1(0) + γ) + (PK + PL − T1(0)α + β − αγ)2).

However, in vivo IgG concentration and synthesis must be positive, therefore any neg-

ative solution can ignored. As all parameters are positive, for Equations (C.2a) and

(C.2c) to be negative δ must be negative.

0 > PKPL + P 2
L + PLT1(0)α− PLβ + PLαγ

−
√

P 2
L (4(PK + PL)α(T1(0) + γ) + (PK + PL − T1(0)α + β − αγ)2)

which reduces to

P 2
L(PK + PL)α(T + α) > 0 (C.3)

As all parameters are positive, this must be true, yielding a single positive solution

δ = PKPL + P 2
L + PLT1(0)α− PLβ + PLαγ

+
√

P 2
L (4(PK + PL)α(T1(0) + γ) + (PK + PL − T1(0)α + β − αγ)2)



Appendix D

Equation to support transplant

immune response

The following equations describe the synthesis (P [n]) and quantity of Ig in EVF (q2[n])

for the IgG and IgA models.

P [n] =
λ1λ2α

β
(D.1)

where

α = etλ2 ((q1[n− 1] + q2[n− 1])k21 − q1[n− 1]λ1) + et(λ1+λ2)q1[n] (λ1 − λ2) +

etλ1 (q1[n− 1]λ2 − (q1[n− 1] + q2[n− 1])k21)

β = et(λ1+λ2)k21 (λ1 − λ2) + etλ2 (k21 − λ1) λ2 − etλ1λ1 (k21 − λ2)

q2[n] =
e−t(λ1+λ2)−etλ2 (A+B)+

k12C

D

λ1−λ2
(D.2)
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where

A := (q1[n− 1] + q2[n− 1])k12 + q2[n− 1] (k1e + kp − λ1)

B := etλ1 ((q1[n− 1] + q2[n− 1])k12 + q2[n− 1] (k1e + kp − λ2))

C :=
(

−etλ1λ1 + et(λ1+λ2) (λ1 − λ2) + etλ2λ2

)

E

D := −etλ1λ1 (k21 − λ2) + et(λ1+λ2)k21 (λ1 − λ2) + etλ2 (k21 − λ1) λ2

E := etλ2 ((q1[n− 1] + q2[n− 1])k21 − q1[n− 1]λ1) +

et(λ1+λ2)q1[n] (λ1 − λ2) +

etλ1 (q1[n− 1]λ2 − (q1[n− 1] + q2[n− 1])k21)

λ1 and λ2 are the eigenvalues of characteristic polynomial of the system matrix defined

by

A =





−(k01 + kp + k21) k12

k21 −k21



 .



Appendix E

Validation of Maximum Entropy

method

The results shown in Figure E.1 are reproductions of the Madden et al. [1995] equations

which are used to test the Maximum Entropy procedure. The system was based on a

zero initial condition linear system with a bi-exponential impulse response; the impulse

and state-space representation can be seen in equations E.3 and E.2.

f1(t) = 1.2e−2t

f3(t) = 20te−5t

f4(t) = 15te−9t1.7

+ t3e
t4

2

(E.1)

Each input function was convolved with the system (E.2), the output was ’blurred’

with 15% randomly distributed noise and sampled at the following points t = [0 0.05 0.1

0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5 1.8 2.2 2.7 3.3 4.0]. The resulting output

was passed to the Maximum Entropy implementation along with an initial guess for

the input function, take as the mean of the output.

ẋ = Ax + Bf(t) x(0) = 0

y = Cx
(E.2)

A =





−6 −5

1 0



B =





1

0



 C =
[

2 6
]
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g(t) = e−t + e−5t

y(t) =

∫ t

0

g(t− s)f(s) ds
(E.3)
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0.4
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(a) input f1(t) 15% noise
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(b) input f3(t) 15% noise
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(c) input f4(t) 15% noise

Figure E.1: Maximum Entropy recovered test input functions (eq. E.1); (solid line) the real

input function, (*-line) recovered input, * indicates the input sample points as defined above.

As can be seen in Figure E.1 the deconvolved input is succesfully recovered for each

of the four input signals.



Appendix F

Implementation of Maximum

Entropy Regularisation

The following code is a Matlab function implementing the Maximum Entropy Regular-

isation using the fmincon function to minimise the inverse of the entropy of the input

function constrainted by the chi-squared metric.

function [xout,chi2out,messout,grad,hessian] ...

= maxentExample(initial guess, ...

sampled output, ...

t sample, ...

t sample in, ...

PERCNOISE, ...

dbg, ...

x0)

% [xout,chi2out,messout,grad,hessian] =

% maxentNonZeroInit ode(initial guess,sampled output,t sample,t sample in,

% PERCNOISE,dbg,x0,t on)

%

% Example function implementing max ent regularization. Th e function opus

% should be changed to implement the underlying model. In thi s case a

% switched system is implemented as a simpled ODE. Please not e this is not

% a robust production worth function, it is here as a guide to u sing

% fminson and maxent regularisation.

%
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% Inputs: (not all inputs are required)

%

% initial guess − vector of initial guess, same dimension as t sample in

% sampled output − observations

% t sample − time points of obsevation

% t sample in − number of nodes in output function.

% PERCNOISE − Estimates on noise measurement, assumed scalar.

% dbg − boolean flag (0 − output plots, 1 − don't).

% x0 − initial conditions for ODE

%

% Ouputs:

%

% xout − Deconvolved input

% chi2out − chiSquared measure (how close to output)

% messout − Output message (if has an error check it out)

% grad − gradient of Lagrangian at solution xout.

% hessian − hessian of Lagrangian at solutout xout.

%

% Written by

% J Hattersley,

% Systems Modelling and Simulation Group

% School of Engineering

% University of Warwick,

% December, 2008

%

%================================================== ======================%

% Stop divide by zero issues

%================================================== ======================%

ZEROISH = 1E−5;

ns = 100;

%================================================== ======================%

% Setup for Chiˆ2 stuff.

%================================================== ======================%

sigma = sampled output * PERCNOISE;

sigma(find(sigma == 0)) = ZEROISH;
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Caim = length(sampled output) + 2 * sqrt(length(sampled output));

%================================================== ======================%

% Setup Optimization

%================================================== ======================%

OPTIONSINNER=optimset( 'LargeScale' , 'on' );

OPTIONSINNER = optimset(OPTIONS INNER, 'Display' , 'iter' );

OPTIONSINNER = optimset(OPTIONS INNER, 'Diagnostics' , 'off' );

if dbg > 0;

OPTIONSINNER=optimset(OPTIONS INNER, 'OutputFcn' ,@printEm);

end

OPTIONSINNER = optimset(OPTIONS INNER, 'MaxIter' ,100);

% As it's normalised...

lb = ones(1,length(initial guess)) * ZEROISH;

lb(1) = max(initial guess);

ub = ones(1,length(initial guess)) * max(initial guess);

x = initial guess;

[x,fval,exitflag,output,lambda,grad,hessian] = fminco n(@objFunc,x,[], ...

[],[],[],lb,ub, ...

@myconfun, ...

OPTIONSINNER);

chi2out = chiSquared(x);

xout = x;

messout = output;

%================================================== ============

% debug − just output some plots for diagnostics

%================================================== ============

function stop = printEm(x,optimvalues,state,userdata,varargin)

stop = false;

switch state

case 'init'

figure;

% hold on
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case 'iter'

[t sim,F] = opus(x);

output sim C1 = F(:,1);

output sim C2 = F(:,2);

subplot(2,1,1);

plot(t sample,sampled output, 'ro' , ...

t sim,output sim C1, ' −' , ...

t sim,output sim C2, ' −−' , 'Linewidth' ,2.0);

ylabel( 'IgG Plasma g/L' );

xlabel( 'time (days)' );

%legend('Real','Simulated C1','Simulated C2');

title( 'System output' );

axis tight;

subplot(2,1,2);

plot(t sample in,x, ' −ro' , ...

t sample in,initial guess, ...

t sample in,ub, ':' , 'Linewidth' ,2.0);

ylabel( 'IgG Synthesis g/day' );

xlabel( 'time (days)' );

% legend('Recovered','Initial');

title( 'Recovered Input' );

axis tight;

% Need this pause or you won't see the plots.

pause(0.1);

case 'done'

% hold off

otherwise

end

end %end of printEm

%================================================

% Objective and Constraints

%================================================

% For nonlinear constraints
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function [cin,ceq] = myconfun(x)

% Catch all in case fmincon gets stuff with negative values.

% This should never be the case, if this is called fix it.

if ((isreal(x)==0) | | (length(find(x <0)) >0))

cin = 1E100;

else

% In equality contraint

C = chiSquared(x);

cin = C − Caim;

% Equality constraint − for Max Entropy

% all inputs should only sum up to 1!

end

ceq = [];

end %end of myconfun

function C = chiSquared(x)

[t1,output sim1] = opus(x);

output sim1 = output sim1(:,1);

C = sum(((((sampled output − output sim1')./sigma).ˆ2)));

end %end chiSquared

function [obj] = objFunc(x)

% Smooth attempts to remove peaks/troughs from the signal −

% make it more natural.

m = zeros(1,length(x));

m(1) = 0.5 * (x(2)+x(3));

for i=2:length(x) −1

m(i) = 0.5 * (x(i −1) + x(i+1));

end

m(end) = 0.5 * (x( end−2)+x( end ));

smoothed x = x./m;

logx = log(smoothed x);

% Remember entropy = −sum(x log(x))

% but we're after maximum, so *−1

obj = sum(x. * logx);

end %objFunc
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function [T,F] = opus(x)

[T,F] = dialODE(x,t sample,t sample in,x0);

end

end % End of Max Ent


