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ABSTRACT 

 

OPTIMISATION OF PERFORMANCE IN THE TRIPLE JUMP USING 

COMPUTER SIMULATION 

 

Samuel James Allen, Loughborough University, 2009 

 

While experimental studies can provide information on what athletes are doing, they are 

not suited to determining what they should be doing in order to improve their performance.  

The aim of this study was to develop a realistic computer simulation model of triple 

jumping in order to investigate optimum technique.  A 13-segment subject-specific torque-

driven computer simulation model of triple jumping was developed, with wobbling masses 

within the shank, thigh, and torso.  Torque generators were situated at each hip, shoulder, 

knee, ankle, and ball joint.  Kinetic and kinematic data were collected from a triple jump 

using a force plate and a Vicon motion analysis system.  Strength characteristics were 

measured using an isovelocity dynamometer from which torque-angle and torque-angular 

velocity relationships were calculated.  Segmental inertia parameters were calculated from 

anthropometric measurements.  Viscoelastic parameters were obtained by matching an 

angle-driven model to performance data for each phase, and a common set for the three 

contact phases was determined.  The torque-driven model was matched to performance 

data for each phase individually by varying torque generator activation timings using a 

genetic algorithm.  The matching produced a close agreement between simulation and 

performance, with differences of 3.8%, 2.7%, and 3.1% for the hop, step, and jump phases 

respectively.  The model showed good correspondence with performance data, 

demonstrating sufficient complexity for subsequent optimisation of performance.  Each 

phase was optimised for jump distance with penalties for excessive angular momentum at 

take-off.  Optimisation of each phase produced an increase in jump distance from the 

matched simulations of 3.3%, 11.1%, and 8.2% for the hop, step, and jump respectively.  

The optimised technique showed a symmetrical shoulder flexion consistent with that 

employed by elite performers.  The effects of increasing strength and neglecting angular 

momentum constraints were then investigated.  Increasing strength was shown to improve 

performance, and angular momentum constraints were proven to be necessary in order to 

reproduce realistic performances. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 CHAPTER OVERVIEW 

 

In this chapter an introduction to the triple jump is given.  Previous literature on triple 

jumping is discussed and the purpose of the study is outlined.  Research questions are 

posed and described with reference to the literature.  Lastly an overview of the thesis is 

given with brief descriptions of each chapter. 

 

1.2 THE AREA OF STUDY 

The triple jump is an athletic event comprising a run up followed by three consecutive 

phases (Figure 1.1): The hop, a take-off from one foot, landing on the same foot; the step, a 

take-off from one foot, landing on the other foot; and the jump, a take-off from one foot, 

landing in the sand pit, usually on two feet. 

 

 

HOP 

 

 

 

STEP 

 

 

 

JUMP 

 

 

 

Figure 1.1 The three phases of a triple jump. 
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1.3 PREVIOUS LITERATURE 

 

There have been a number of studies investigating human jumping activities.  These can be 

split broadly into those that are experimental and those that are theoretical in nature.  The 

experimental studies can be further split into those dealing with athletic events involving 

an approach run followed by a take-off from one leg: the high; long; and triple jumps, 

(Dapena and Chung, 1988; Lees et al., 1993; Hay, 1992).  And those concerned with more 

general two-legged jumping motions with no approach run: squat; countermovement; and 

drop jumps (Viitasalo et al., 1998).  The theoretical studies can again be split into two 

categories: predictive (Wakai and Linthorne, 2002; Yu and Hay, 1996); and analytical 

(Alexander, 1990, 1992; Hatze, 1981; Anderson and Pandy, 1999; van Soest et al., 1993).  

Predictive models have been used to attempt to mathematically predict behaviour from the 

interaction of a few parameters, without attempting to model the system as a whole, 

whereas analytical models have attempted, with the use of computers and with obvious 

simplifications, to model the entire system. 

 

The majority of studies of triple jumping have been concerned with attempting to 

determine the optimum ratio of each phase to the total distance jumped (Figure 2.7) (Miller 

and Hay, 1986; Hay 1992, 1993, 1995, 1997, 1999; Yu and Hay, 1996; Yu, 1999).  Hay 

(1992) stated that the identification of the optimum phase ratio for an athlete, ‘should take 

priority over all other problems of triple jump technique because, without a solution to this 

problem, all others must be considered in ignorance’.  From 1911 to 1985 a general trend 

away from a hop-dominated technique with a small step phase (39%:22%:37%) towards a 

more balanced (37-39%:28-30%:31-33%) and latterly jump-dominated technique (34-

35%:28-30%:36-37%) was seen (Hay, 1993).  Hay (1999) observed that roughly half the 

competitors in the final of the 1996 Olympic Games employed hop-dominated techniques 

and half employed other techniques.  Therefore, despite the number of studies in this area, 

these results indicate that no consensus has been reached either in the scientific community 

or the athletic community as to whether optimum phase ratios for triple jumping exist, and, 

if so, what they are. 

 

Hay (1993) stated that the peak ground reaction forces (GRFs) recorded during the support 

phase of the step in triple jumping are, ‘much greater than a human limb is exposed to in 
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any other voluntary activity for which data could be found’.  These forces range from 12.6 

times bodyweight in college level triple jumpers (Ramey and Williams, 1985), through 

15.4 times bodyweight (Perttunen et al., 2000), to 14.0-22.3 times bodyweight (Amadio, 

1985).  Hay (1993) stated that even 22.3 times bodyweight may be an underestimate of the 

forces elite triple jumpers undergo, since the largest jump distance recorded by Amadio 

(1985) was 15.35 m, nearly 3 m less than the current male world record of 18.29 m.  

Perhaps unsurprisingly considering these high forces in the stance leg, epidemiological 

studies have shown the most common sites of injury in triple jumpers are the ankle, knee, 

hip, and lower back (Kutsar, 1988). 

 

Hay (1992), in his comprehensive review of triple jump biomechanics, considered various 

kinematic variables such as: take-off, flight, and landing distances; and the heights of the 

centre of mass (COM) at touchdown and take-off.  He found that the results for all these 

measures were highly variable, with no consistent trends presenting themselves.  Hay 

(1992) also considered various technical issues such as the optimal use of the free leg, and 

the contentious issue of whether to employ a single-arm or double-arm technique, or some 

combination of the two. 

 

Other studies have investigated the effects of angular momentum (Yu and Hay, 1995) and 

the contribution of the free limbs (Yu and Andrews, 1998) to performance.  Yu and Hay, 

(1996) and Yu (1999) produced mathematical models to investigate the optimum 

horizontal-to-vertical velocity conversion ratios. 

 

It is evident that there are a number of unanswered questions raised in the literature on 

triple jumping, the overriding one being what the optimum phase ratios for any given 

athlete are, and which factors determine these ratios.  In addition to this, another 

controversial issue is what the optimum arm technique is.  Also, although the magnitude of 

the GRFs are reasonably well documented for triple jumpers of various abilities, little 

attempt has been made to determine the internal forces and moments acting on the support 

leg of the triple jumper (Hay, 1993). 
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1.4 STATEMENT OF PURPOSE 

 

All the studies described above used experimental data to describe kinematic and kinetic 

features of the triple jump in subjects ranging from novices to elite performers.  This 

method of investigation is useful for providing information on what techniques various 

athletes currently employ, but is not well suited to predicting what techniques athletes 

should employ in order to maximise the distance of their jumps.  With this in mind the 

purpose of this study was to develop a torque-driven computer simulation model of triple 

jumping in order to investigate optimum technique.  Anthropometric, strength, and 

performance data will be obtained from a national standard triple jumper in order that the 

model may be subject-specific.  Subject-specific viscoelastic parameters will be derived by 

matching an angle-driven model to performance data.  The torque-driven model will then 

be evaluated against performance data to ensure that it is a good representation of the 

activity being modelled.  The technique employed by the model will be optimised in order 

to maximise the distance jumped in each phase individually.  This will enable conclusions 

to be drawn on the components of optimal technique.  Since the technique of the model 

will be optimised for each phase individually, only components of optimal technique at 

each phase will be commented on.  However, the model will also be capable of simulating 

all three phases sequentially, and this will allow future investigations into factors such as 

optimal phase ratios and projection angles. 

 

1.5 RESEARCH QUESTIONS 

 

Q1. How close to optimum was the technique of the subject in this study? 

 

A subject-specific computer simulation model of triple jumping will allow an investigation 

into the effectiveness of the technique of the subject from which data were collected.  The 

anthropometry, mass and inertia, and strength of the model will represent that obtained 

from measurements of the subject.  Kinematic data of the subject performing a triple jump 

will provide a detailed representation of the technique he currently employs.  A subsequent 

optimisation of the torque generator activation timings governing the movement of the 

model in order to maximise the distance jumped in each phase will allow a subject-specific 

performance improvement to be calculated. 
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Q2. What is the optimum arm technique for triple jump performance? 

 

Hay (1992) stated that, ‘that the arm action used at take-off into each of the three phases 

has been the source of considerable debate over the last 2-3 decades’.  The debate centres 

on the relative merits of the single-arm technique, where the arms move in an asymmetric 

fashion, mirroring the action of the contralateral leg as they do in running, or the double-

arm technique where both arms start in a hyperextended position behind the body and are 

flexed throughout the take-off.  Hay (1992) observed that numerous points have been 

raised in the course of the debate but no quantitative data have been presented to back them 

up.  He concluded that this extended debate has been useful in identifying factors that may 

bear on the issue but little progress was likely to be made towards an understanding 

without carefully designed experiments, appropriate data, and a rational interpretation of 

the findings.  A computer simulation model of triple jumping will facilitate the 

optimisation of arm technique and allow a quantifiable understanding of the merits of this 

technique. 

 

Q3. How would an increase in strength affect triple jump performance? 

 

Athletes spend hours in the gym in an attempt to increase the strength of muscles that span 

various joints, believing that this will facilitate a performance improvement.  However the 

isolated effects of these changes in strength on performance are hard to gauge.  Bobbert 

and van Soest (1994) found that increases in strength resulted in a decrement in vertical 

jump performance if original muscle activation timings were maintained; however, after a 

re-optimisation of these muscle activation timings, performance increased in line with 

strength increases.  The effects of an increase in strength on triple jump performance can 

be quantified using the computer simulation model of triple jumping. 

 

Q4. What influence do angular momentum constraints have on simulations of the triple 

jump? 

 

In all human jumping activities there has to be a consideration of the effects of angular 

momentum generated during take-off on the ability to achieve a requisite landing 

orientation.  This is likely to be particularly marked in triple jumping in comparison to 

jumps with only one take-off phase, since not only does the athlete have to land, but on 
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two occasions, also coordinate another single leg take-off involving extremely high and 

potentially damaging GRFs.  Wilson et al. (2007) found that including constraints on 

angular momentum at take-off in their model of running vertical jumping decreased the 

height jumped by 0.16 m.  They concluded that these constraints should be included if 

models of jumping are to produce realistic results.  The computer simulation model will 

allow the effects of these angular momentum constraints on triple jump performance to be 

ascertained. 

 

1.6 CHAPTER ORGANISATION 

 

Chapter 2 comprises a critical review of the literature in human jumping activities.  In this 

review experimental and theoretical studies are considered in separate sections.  The 

review of experimental studies is further split based on the types of activity they 

investigated: high, long, and triple jumps; and squat, drop, and countermovement jumps.  

The review of theoretical studies is also split based on whether they were predictive or 

analytical in nature. 

 

Chapter 3 includes a critical review of literature relevant to the construction of the 

simulation model of triple jumping.  This comprises a review of simulation models of 

jumping in the literature, soft tissue motion, muscle models, and optimisation algorithms.  

The construction of the simulation model of triple jumping is then described.  This details 

the rigid and wobbling elements of the model, torque generators, and spring-dampers. 

 

Chapter 4 describes the methods used to collect performance, strength, and 

anthropometric data from a triple jumper, and the subsequent parameter determination.  

This performance data comprises kinematic and kinetic data from a number of partial and 

complete triple jumps.  Methods for the calculation of joint angles and the filtering of force 

data are explained.  The protocol for obtaining strength data is outlined and the method for 

the calculation of torque / angle / angular velocity functions is described.  The collection of 

anthropometric data and method for calculation of segmental inertia parameters are then 

detailed. 
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Chapter 5 includes a review of literature on the evaluation of simulation models of 

jumping and optimisation algorithms.  A description of methods for the calculation of 

subject-specific viscoelastic parameters using an angle-driven model of each phase of the 

triple jump is given.  The methods for the evaluation of a torque-driven model are then 

described.  The results of this evaluation are reported and discussed in the form of: the 

components of phase distances; joint angles; joint torques; and torque generator activation 

timings. 

 

Chapter 6 contains a review of literature on the optimisation of models of jumping.  The 

methods for optimisation of the torque-driven model of each phase of triple jumping are 

described.  The results of the optimisation of technique are then reported and analysed in 

the form of: the components of phase distance; joint angles; joint torques and torque 

generator activation timings; work / impulse analyses; and GRFs. 

 

Chapter 7 provides a summary of the thesis.  This includes a consideration of the 

techniques of kinematic, kinetic, and anthropometric data collection, and potential areas for 

improvement in future studies.  Improvements to the structure of the model with regard to 

the calculation of viscoelastic parameters are discussed.  The evaluation and optimisation 

of the model are then summarised and briefly discussed.  Research questions posed in 

Chapter 1 are then answered with reference to the results of the optimisation of technique.  

Lastly, future applications of the model are described. 
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CHAPTER 2 

 

REVIEW OF LITERATURE 

 

2.1 CHAPTER OVERVIEW 

 

In this chapter research literature on jumping activities is reviewed.  Literature pertaining 

to other specific areas of this thesis, such as data collection techniques, model evaluation, 

and model optimisation, will be included within the relevant chapters for ease of reference.  

Initially, experimental studies focusing specifically on the high, long, and triple jumps are 

discussed, followed by a brief overview of studies investigating squat, drop, and 

countermovement jumps.  Theoretical models of jumping of a predictive nature are then 

considered.  Theoretical models of jumping that incorporate computer simulation are 

included in Chapter 3. 

 

2.2 EXPERIMENTAL JUMPING STUDIES 

 

A number of research studies have been performed using data from various human 

jumping activities in an attempt to outline factors that affect performance.  These studies 

can be split into those dealing with one-legged jumps that utilise an approach run, usually 

athletic events: the high; long; and triple jumps (Dapena and Chung, 1988; Lees et al., 

1994; Hay, 1993).  And those concerned with non-sports-specific two-legged jumps with 

no approach run: squat; countermovement; and drop jumps (Viitasalo et al., 1998).  There 

has been considerable experimental research done on squat, countermovement, and drop 

jumps (Komi and Bosco, 1978; Bosco and Komi, 1979; Hudson 1986; Bobbert et al., 1986, 

1987a, 1987b; Bobbert and Ingen Schenau, 1988), the majority of this was considered to 

be beyond the scope of this review.  Since this study is concerned with the computer 

simulation of the triple jump the review of experimental literature will concentrate on the 

high, long, and triple jumps.  There is a consideration of two-legged jumps in the review of 

computer simulation studies in Chapter 3.  
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Although they are slightly different in nature, very close parallels can be drawn between 

technical issues in high and long jumping, and those in triple jumping.  Each involves an 

approach run followed by a take-off from one leg, requiring a generation of vertical 

velocity facilitated by the horizontal approach velocity. 

 

2.2.1 High jump 

 

Leg angles during take-off 

Greig and Yeadon (2000) investigated the effects of various kinematic parameters at the 

point of touchdown of the foot in the take-off stride on the performance of high jumpers.  

They found that the optimum velocity of approach for the high jumper studied was 7.0 m/s 

which was towards the upper end of the range of velocities observed.  They also found that 

optimum performance was achieved with a minimum amount of knee flexion and with a 

leg plant angle of 34° from the vertical (Figure 2.1). 

 

 

Figure 2.1 The plant angle and knee angle of a high jumper at touchdown (adapted from 

Greig and Yeadon, 2000). 

 

The jump performance was shown to be most sensitive to changes in the leg plant angle 

and the amount of knee flexion.  An increase in approach velocity was correlated with a 

larger knee angle and a larger plant angle at touchdown.  A regression equation relating leg 

plant angle and approach velocity to jump height was shown to account for 79% of the 



 

 10 

variation in jump height.  This indicated that optimum high jump performance would be 

achieved at the highest velocities at which the athlete was capable of maintaining a 

minimum amount of knee flexion whilst using a large plant angle. 

 

Vertical and radial motions of the body 

Dapena and Chung (1988) investigated the effects of the vertical and radial motions of the 

body during the take-off of a high jump.  They found that the radial velocity of the COM 

with respect to the supporting foot was generally more negative or less positive than the 

vertical velocity throughout the take-off phase.  This initial negative radial velocity 

indicated that the muscles around the joints of the stance leg were likely to be in eccentric 

conditions.  They stated that, immediately after the foot hits the ground at take-off, the 

COM velocity has a positive vertical direction and hence, unlike counter-movement jumps, 

the eccentric component of the muscular contractions can contribute directly to the positive 

vertical velocity of the COM, rather than reducing the negative vertical velocity.  Dapena 

and Chung (1988) stated that this technique has its drawbacks in that the resultant impulse 

from the GRF acts, on average, at 67° from the horizontal and hence the vertical impulse is 

8% smaller than the resultant impulse.  Dapena and Chung (1988) also showed that the 

flexion of the arms and swinging leg reduced the radial distance of the COM from the hip 

joint during the initial period of ground contact when this distance was decreasing.  This 

led to a cushioning of the stance leg from the impact peak of the GRF.  This could possibly 

allow it to resist excessive flexion.  Later in the ground contact when the radial distance of 

the COM to the hip joint was increasing, the arms and swinging leg were shown to act to 

increase this distance.  This would put the joints of the stance leg in slower concentric 

conditions, facilitating a larger GRF later in the ground contact.  This indicates that 

simulation models of jumping need both a free leg and arms in order to properly model the 

effects of the free limbs on the COM movement and subsequent loading of the stance leg. 

 

Contribution of lower extremity joints 

 

Stefanyshyn and Nigg (1998) looked at the contribution of the lower extremity joints to 

mechanical energy in running vertical and horizontal jumps (Figure 2.2).  They found a 

similar contribution of the metatarsophalangeal (MTP) joint and knee joint to each type of 

jump; the MTP joint absorbed approximately 15-16% of the total energy absorbed by the 
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lower extremity, and the knee generated 25% of the total lower extremity energy and 

absorbed 31% and 28% of the energy in the vertical and horizontal jumps respectively.  

The ankle and hip, however, had different contributions.  The ankle is the largest energy 

generator and absorber in both types of jump; in the vertical jump it generated 53% and 

absorbed 36% of the total energy generated and absorbed, but in the horizontal jump it 

generated and absorbed 49% and 47% respectively.  This indicated a much larger eccentric 

portion in the horizontal jump.  The hip was a net energy generator in both jumps, but its 

.  However, the model will also be capable of simulating all three phases sequentially, and 

he hip absorbed less energy than the other joints and less during horizontal jumping than 

vertical jumping: 10% versus 16%. 

 

 

Figure 2.2 Energy contributions at various joints in the high jump (adapted from 

Stefanyshyn and Nigg, 1998). 

 

It would be tempting to conclude that the most important joint in both long and high 

jumping is the ankle; however the ability of other joints to facilitate these energy changes 

is sometimes overlooked in energy analyses.  Greig and Yeadon, (2000) indicated that the 

best high jumps were achieved with minimum knee flexion, in this instance the joint may 

not change its angle and hence may have a small relative energy contribution, but may still 

exert a large angular impulse in order to maintain this joint angle.  Greig and Yeadon 

(2000) showed that the maintenance of this joint angle was important in high jump 
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performance.  Therefore work / energy analyses should only be used in conjunction with 

other measures in order to obtain a more thorough understanding of a sporting technique. 

 

2.2.2 Long jump 
 

Leg angles during take-off 

Graham-Smith and Lees (2005) and Lees et al. (1994) performed kinematic analyses of the 

long jump take-off in 3-D and 2-D respectively.  Lees et al. (1994) analysed competitors in 

the world student games and found an average knee angle at touchdown of 166° which 

decreased to 147° at maximum knee flexion.  The average hip angle at touchdown was 

158°.  So, on average, these long jumpers exhibited a more flexed knee with the leg 

planted closer to the vertical than the optimum high jumper analysed by Greig and Yeadon 

(2000).  This was probably indicative of the different demands of the events, the long jump 

requires a higher approach velocity and, as such, it is harder to maintain extension in the 

knee, and would be harder still if the plant angle were further from the vertical. 

 

Graham-Smith and Lees (2005) found few variables correlated linearly with jump distance.  

They cited the homogenous nature of athletes studied as the reason why these correlations 

were not apparent, intimating that they probably would be apparent if subjects with a wider 

range of abilities were studied.  It can sometimes be difficult to obtain statistically 

significant results from analyses involving athletes operating at or near their optimum 

technique in competitions, because the range of performances is often very small (Yeadon 

and Challis, 1994).  The effects of a small variation in one variable can therefore be 

masked by co-variation of other variables, leading to seemingly unrelated outcomes.  This 

is a problem that computer simulation models are ideally suited to overcoming, allowing 

the effects of the manipulation of individual variables in isolation to be quantified, which is 

impossible to achieve in experimental studies. 

 

Bridgett and Linthorne (2006) set out to investigate the validity of the simulation models of 

the long jump take-off constructed by Alexander (1990), and Seyfarth et al. (2000).  In 

order to do this they looked at the change in the take-off technique of a long jumper over a 

range of approach velocities brought about by intervention.  It was found that the models 

were in reasonable agreement with the experimental results, however there were areas 

where they were not in agreement.  The hip angle of the subject at touchdown decreased 
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linearly with increasing approach velocity, and, whilst both models predicted a decreasing 

hip angle with increasing approach velocity, they overestimated the optimum leg angle at 

touchdown (Figure 2.3).  This may be related to the invariant knee angles of the simulation 

models at touchdown.  Bridgett and Linthorne (2006) noted that optimum take-off angles 

decreased with increasing run-up speed.  This was in line with Seyfarth et al. (2000).  

However they underestimated the optimum take-off angle.  The knee angle of the subject 

at touchdown increased linearly with approach velocity, whereas the simulation models 

had a set knee angle of 170°.  Bridgett and Linthorne (2006) suggested that a model of the 

long jump take-off should include this knee angle as a technique variable.  These results 

indicate that, whilst the models of Alexander (1990) and Seyfarth (2000) were useful in 

providing general trends in the variation of optimum long jump technique with changes in 

different parameters, they were not complex enough to accurately reproduce the magnitude 

or specific form of these variations (Figure 2.3).  In order to reproduce these changes more 

accurately a more detailed simulation model would be required. 

 

 

Figure 2.3 Leg angle changes with run-up speed with a line of best fit (solid line), and the 

results of the models of Alexander (1990) (long-dashed line), and Seyfarth (2000) (short-

dashed line) (adapted from Bridgett and Linthorne, 2006). 

 

Energy changes during take-off 

Lees et al. (1994) also performed an analysis of energy changes during the take-off of a 

long jump.  They found that, from touchdown to the point of maximum knee flexion, 6.3 
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J/kg were lost from the original kinetic energy.  They hypothesised that some energy was 

dissipated by inefficient muscular mechanisms and upwards of 100 J could be stored in the 

elastic structures of the body.  During knee extension 2.7 J/kg of energy was created, 

indicating that only 40% of the kinetic energy lost during knee flexion was regained.  Lees 

et al. (1994) attributed 64% of the vertical velocity at take-off to what they called the 

‘pivot’, essentially the mechanical effect of the body rotating about the contact point on the 

foot.  This indicated that most of the vertical velocity was gained while the knee was still 

flexing.  Lees et al. (1994) stated that Dapena and Chung (1988) held a contrasting view to 

Lees et al. (1993) in their analysis of the long jump take-off.  They claimed that Lees et al. 

(1993) emphasised eccentric muscular activity as contributing directly to vertical velocity 

during the initial flexion of the knee, whereas Dapena and Chung (1988) emphasised the 

initial eccentric conditions as being important only in priming the muscles for subsequent 

concentric activity.  However in the view of this author this was not apparent in the 

discussion of Dapena and Chung (1988) and both they and Lees et al. (1993, 1994) 

acknowledged the importance of eccentric muscle actions in contributing directly to 

changes in vertical velocity. 

 

Bridgett and Linthorne (2006), in their evaluation of the models of Alexander (1990) and 

Seyfarth et al. (2000), found that mechanical energy was gained at speeds below 8 m/s and 

lost at speeds above this, and that take-off duration decreased with increasing approach 

speed.  This was due to the increased velocity of the COM but was offset somewhat by an 

increased range of motion at the hip.  The take-off duration was underestimated 

considerably by both models.  The underestimation of take-off duration was likely to be 

due to the fact neither model incorporated a foot segment, therefore the distance from the 

COM to the floor was limited by the length of the thigh and shank and could not be 

increased by ankle plantar flexion as it is in humans. 

 

Costa and McNitt-Gray (1999) investigated the kinetics of the long jump take-off.  They 

found that athletes exhibiting the largest increase in vertical velocity did so by doing more 

positive work at the hip than those showing smaller increases.  They hypothesised that, to 

achieve this positive work at the hip, the athletes had to maintain a small negative, or near-

zero, net joint moment at the knee.  It seems unlikely that an athlete could maintain a net 

joint moment of near zero, as this would result in an angular acceleration of near zero and 

the knee inevitably flexes and extends during a jump take-off. 
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Muscular activity during take-off 

Kakihana and Suzuki (2001) investigated electromyographic (EMG) activity, GRFs, and 

kinematics during the take-off phases of running jumps, at a range of approach velocities, 

by two male long jumpers.  One jumper consistently achieved a higher vertical velocity 

than the other over the range of approach velocities.  They concluded that the jumper 

achieving the larger vertical velocity did so by using a backward trunk lean at touchdown 

and take-off, a smaller range of motion of the thigh throughout the support phase, more 

extended knee and ankle angles at touchdown, and a more flexed knee angle at take-off 

(Figure 2.4). 

 

 

Figure 2.4 Visual representation and velocity vectors of long jump take-offs by two 

subjects (adapted from Kakihana and Suzuki, 2001). 

 

This jumper also experienced a greater horizontal breaking impulse and smaller horizontal 

propulsion impulse.  There were no substantial differences in the distances jumped 

between the subjects in this study, where they had limited length run-ups, but the subject 

who generated more vertical velocity had a personal best 83 cm further than the other 

subject who achieved a much smaller vertical velocity, so might be expected to be a better 

technician.  The lack of differences between these two subjects despite the difference in 

personal bests might be related to the finding of Bridgett and Linthorne (2006) that 

mechanical energy is gained at speeds below 8 m/s and lost above this speed.  Since the 

velocities in the study of Kakihana and Suzuki (2001) are all below 8 m/s (Figure 2.4) it 
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may be that the techniques of the two subjects were suited to different approach velocities 

and that an ability to generate greater vertical velocities might have become more of a 

benefit at higher approach velocities.  The muscles showing the greatest EMG activity 

were rectus femoris, vastus medialis, lateral gastrocnemius, and tibialis anterior, whilst the 

biceps femoris were less active.  However no measurement was taken of the gluteals, 

which might have been expected to contribute substantially to hip extension. 

 

Hay et al. (1999) investigated the changes in muscle-tendon lengths during the take-off of 

a long jump (Figure 2.5).  They investigated whether maximum knee flexion was a valid 

indicator of when muscles change their modes of action; they found that this was not the 

case for most muscles.  Hay et al. (1999) also looked at six different muscle groups and 

seven measures of their action during the take-off.  They then correlated these measures 

with the change in vertical velocity in order to gauge how each contributed to jump height.  

Figure 2.5 indicates that both the hamstrings and gluteus maximus lengthened throughout 

take-off.  The biarticular rectus femoris muscle lengthened throughout take-off and the 

vastii muscles very slightly lengthened (0.3 ± 0.1 cm) then shortened.  Both the soleus and 

gastrocnemius quite distinctly lengthened then shortened.  In line with the findings of 

Dapena and Chung (1988), and Lees et al. (1993, 1994), Hay et al. (1999) found that all 

but one of the seven measures that were significantly related to the change in vertical 

velocity were measures of the eccentric phase, suggesting that the fast eccentric actions 

early in the take-off allowed the generation of large vertical forces and thus gains in 

vertical velocity.  The only concentric muscle action related to the vertical velocity was the 

change in length of the hamstring muscles.  This could be more of an indicator of the 

greater plant angle in the better jumps, which could have a mechanical effect unrelated to 

the muscle actions at the hip.  The measures only give the muscle-tendon length and 

therefore do not necessarily represent the length of the contractile components, which 

might not show quite as much variation in length as Figure 2.5 suggests. 
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Figure 2.5 Muscle lengths during a long jump take-off (adapted from Hay et al., 1999). 

 

Both Hay et al. (1999) and Stefanyshyn and Nigg (1998) found an important role of the 

triceps surae (gastrocnemius and soleus) in the take-off of a running jump.  Hay et al. 

(1999) found that five of the seven measures of muscle activity that were significantly 

correlated to vertical velocity were measures of the activity of the triceps surae.  Also, as 

mentioned above, Stefanyshyn and Nigg (1998) found the ankle joint generated and 

absorbed the most energy of all the joints in the lower extremity and concluded that the 

development of the gastrocnemius and soleus muscles was a key factor in achieving 

success in the running jumps.  Stefanyshyn and Nigg (1998) also stated that the 

requirement of large hip extensor moments (400-650 Nm in their study) during take-off 
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indicated that the development of the hip extensor muscles was also important.  

Surprisingly Stefanyshyn and Nigg (1998) did not mention the contribution of knee joint 

torques as being of particular importance in the running jumps studied. 

 

Landing leg motions at take-off 

Hay (1987) mentioned two schools of thought concerning the placement of the foot at take-

off; the ‘active landing’ where the foot is moving backwards relative to the body COM, 

and the ‘locking’ placement of the foot where it is not moving relative to the body COM.  

He stated that the latter is associated with a greater increase in vertical velocity and the 

former with a greater conservation of horizontal velocity; however he did not provide any 

empirical data to back this up.  Hay (1987) cited Tiupa et al. (1982) who noted that the 

‘locking’ technique could be considered more beneficial, since an increase in vertical 

velocity is more beneficial than an increase in horizontal velocity.  Tiupa et al. (1982) 

investigated this and found correlations between the distance jumped and an increase in 

vertical velocity, and a decrease in horizontal velocity, respectively, during the period in 

which the centre of pressure (COP) was approaching the hip joint.  However, increases in 

velocity components while the COP-to-hip distance increased were not correlated with the 

length of jump.  This finding is in agreement with previously mentioned studies that found 

eccentric muscle actions early on in the contact phase greatly influenced jump performance 

(Dapena and Chung, 1988; Stefanyshyn and Nigg, 1998; Lees at al., 1993, 1994; Hay et 

al., 1999). 

 

Koh and Hay (1990a) investigated the motions of the landing leg in the last three strides of 

the approach run in long jumpers.  They used a mathematical model of muscle action 

which they validated with a physical model of the leg.  Koh and Hay (1990a) found that 

‘active’ landings - i.e. the mathematical model showed that muscle action reduced the 

forward horizontal velocity of the landing foot - were used in each stride.  But the landing 

stride was less active than the two previous strides.  The range of touchdown velocities of 

the foot relative to the COM were -10.45 m/s to -7.50 m/s, -9.34 m/s to -6.98 m/s, and -

8.95 m/s to -5.38 m/s for the three strides.  They did not find any statistically significant 

correlations of the measures of landing leg motions with measures of performance.  They 

noted that this did not support the notion that either a highly active landing or a blocking 

landing is necessary to promote jump performance.  However, they stated that there is 

some indication that a less active landing leg motion plays a role in lowering the COM in 
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the second to last stride and that this lowering increases the distance of the jump.  They 

also stated there was some indication that placing the landing foot well forward of the body 

at the end of the last stride increased the distance of the jump.  This may have been 

achieved by increasing the vertical velocity of the COM which they concluded is more 

important to jump performance than minimising the loss in horizontal velocity. 

 

Angular momentum in flight 

Hay (1993) considered the control of angular momentum in flight.  In investigating angular 

momentum during take-off, Hay (1993) stated that roughly half the angular momentum 

that an athlete has about the transverse axis at take-off is gained in the approach.  This 

leaves the athlete with a relatively large amount of forward somersaulting angular 

momentum which needs to be controlled in flight or it will lead to an inefficient landing 

with the feet well below the body.  Hay (1993) considered various techniques for 

minimising the effect of this angular momentum on the orientation of the body in the air.  

He mentioned the ‘sail’ as being ineffective, and the ‘hitch-kick’ and ‘hang’ techniques as 

being more effective, at ensuring a good landing position, which he suggested is one where 

the hips are fully flexed and the trunk is forward over the legs. 

 

Herzog (1986) investigated the sail and 2½ hitch-kick techniques in the flight phase of a 

long jump (Figure 2.6).  The subject performing the sail technique had a lower forward 

somersault angular momentum at take-off than the subject performing the hitch-kick 

technique (4.17 kg.m2/s vs 11.05 kg.m2/s).  Herzog (1986) stated that neither athlete 

managed to fully compensate for the forward rotation of the head and trunk segment as this 

segment had positive values of angular momentum (0.78 kg.m2/s and 1.14 kg.m2/s for the 

sail and hitch-kick respectively).  In this instance, with all other things being equal, the 

landing with more forward angular momentum should allow the athlete to plant their feet 

further in front of their COM without falling backwards into the sand.  Therefore it would 

seem that the best technique to adopt would be one with a high whole-body forward 

somersault angular momentum and an airborne technique that would negate the effect of 

this angular momentum on the head and trunk, allowing a suitable landing orientation to be 

achieved.  The hitch-kick would seem to be the best candidate as it is associated with 

greater forward angular momentum at take-off than the hang (21.4 kg.m2/s vs 16.9 kg.m2/s, 

Ballreich and Bruggemann, 1986; 20.31 kg.m2/s vs 14.22 kg.m2/s, Ramey, 1973) and the 

sail (11.05 kg.m2/s vs 4.17 kg.m2/s, Herzog, 1986) and can successfully negate the effect of 
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the forward angular momentum on the head and trunk if executed properly (Herzog, 1986).  

These results indicated that the technique employed by athletes in the airborne phase can 

influence the distance of their jump.  Therefore when attempting to simulate horizontal 

jumps, some account should be taken of airborne motions when calculating the distance of 

the jump, if this phase is not explicitly modelled. 

 

 

 

Figure 2.6 The sail (top) and hitch-kick techniques (bottom) in the flight phase of long 

jumping (adapted from Herzog, 1986). 

 

Landing techniques 

Hay (1987) provided a review of landing techniques  He cited a study by McIntosh and 

Hayley (1952) who analysed an athlete performing two types of landing techniques: ‘jack-

knife’ where the trunk and arms are inclined towards the feet; and ‘extended’ where the 

trunk is inclined backwards with the hands beside the hips.  McIntosh and Hayley (1952) 

noted that neither technique allowed the feet to contact the sand beyond the projected point 

of contact of the COM, but that the extended technique allowed them to contact 8 cm 

before it, in comparison to the jack-knife which contacted 40 cm before.  This led to a 

consideration of the relative importance of landing technique on distance jumped.  Hay 

(1987) cited Bruggemann et al. (1982) who found no correlation between a measure of 

landing efficiency determined by McIntosh and Hayley (1982), and the distance jumped by 

26 male long jumpers, and Hay (1986) who also found no correlation between COM height 

at landing and distance jumped.  Both indicated little effect of the quality of landing on 
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distance jumped.  However, Hay (1987) again cited Bruggemann (1982) who found a 

correlation between the height of the COM at landing and the distance jumped, and Hay 

(1986) who found a correlation between these variables for a world class jumper.  This 

could be an issue associated with inter-subject and intra-subject correlations (Yeadon and 

Challis, 1994); where intra-subject correlations may indicate that limiting the height of the 

COM at landing is important in maximising the jump distance of an individual subject, 

inter-subject differences may mask this effect when considering this relationship across a 

number of subjects. 

 

2.2.3 Triple jump  

 

Phase / effort ratios 

There have been a number of studies concerned with the choice of phase ratio – the ratio of 

the distance of each phase of the triple jump to the total distance jumped (Figure 2.7) – by 

elite jumpers (Miller and Hay, 1986; Hay 1992, 1993, 1995, 1997, 1999; Yu and Hay, 

1996; Yu 1999). 

 

Figure 2.7 Phase, official, and actual distances in the triple jump (adapted from Hay, 1999) 

 

Hay (1992) defined the three triple jump techniques with respect to phase ratios as being: 

(1) hop-dominated – where the hop percentage is at least 2% greater than the next largest 

phase percentage; (2) jump-dominated – where the jump percentage is at least 2% greater 

than the next largest phase percentage; and (3) balanced – where the largest phase 

percentage is less than 2% greater than the next largest phase percentage.  Hay (1993) 

described the relative distribution of distance over the three phases as a percentage of the 
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total distance covered, tabulating these relative distances for world record performances 

from 1911 to 1985.  This tabulation showed a general trend away from a hop-dominated 

technique with a small step phase (39%:22%:37%) towards a more balanced (37-39%:28-

30%:31-33%) and latterly jump-dominated technique (34-35%:28-30%:36-37%) over 

time, with the step phase always being the shortest of the three phases.  Hay (1993) noted 

world record advances over the last three decades considered in the analysis seemed to 

have involved a search for the ideal hop and jump percentages to go with a step of 

approximately 30%.  Hay (1999) investigated the phase ratios employed by finalists in the 

1996 Olympic Games.  He found that balanced and jump-dominated techniques were just 

as effective as hop-dominated techniques, with roughly half the competitors employing 

hop-dominated techniques and half employing other techniques.  The best distances of four 

of the top eight finishers were achieved with relatively short hop percentages in 

comparison to their other jumps.  This often led to an increased jump percentage, 

suggesting that a reduction in hop percentage led to an increase in jump percentage and 

total distance jumped.  This may be unsurprising given the nature of the event, with errors 

propagating over the three phases.  Therefore a successful jump could have the same hop 

length but a smaller hop percentage than a less successful one.  In this instance an absolute 

measure of phase length might be more informative. 

 

Yu and Hay (1996), and Yu (1999), produced theoretical models (Section 2.3.1) in an 

attempt to relate the distance achieved in each phase of the triple jump to the total distance 

covered, in order that an optimum phase or ‘effort’ ratio could be obtained. 

 

Biomechanical loading  

A few studies have attempted to clarify the extent of the mechanical loading on limbs 

during triple jumping (Amadio, 1985; Ramey and Williams, 1985; Perttunen et al., 2000).  

Perttunen et al. (2000) found mean peak forces of 15.2 ± 3.3 times bodyweight in the 

braking portion of the step contact phase in jumps with a range of 11.37 – 15.24 m.  This is 

in agreement with the range of 14.0-22.3 times bodyweight (Amadio, 1985) found in elite 

male jumpers, and higher than the maximum value of 12.6 times bodyweight found in male 

and female college-level jumpers (Ramey and Williams, 1985).  The lower values recorded 

by Ramey and Williams (1985) can be explained by the shorter distances jumped by their 

subjects (~12 m for men, and ~9 m for women).  Perttunen et al. (2000) found that higher 
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peak plantar pressures were significantly correlated to increased jump distances, indicating 

that higher forces are likely to occur in longer jumps.  Hay (1993) stated that even the 

maximum measured value of 22.3 times bodyweight may be an underestimate of the forces 

elite triple jumpers undergo, since the largest jump distance recorded by Amadio (1985) 

was 15.35 m, which is nearly 3 m less than the current male world record of 18.29 m.  

Peaks of 2.6-3.0 times bodyweight were found in the horizontal direction (Ramey and 

Williams, 1985).  These are less than the 7.0 times bodyweight found by Perttunen et al. 

(2000) and can again be explained by the difference in the distances jumped by the 

subjects in the two studies. 

 

Arm techniques 

Hay (1992) stated that, ‘the arm action used at take-off into each of the three phases has 

been the source of considerable debate over the last 2-3 decades’.  Two main techniques 

exist: the single-arm technique, where the arms move asymmetrically, as they do in 

sprinting; and the double-arm technique where the arms start in a hyperextended position 

and are flexed symmetrically throughout the take-off.  Hay (1992) observed that numerous 

points have been raised in the course of the debate: that the double-arm technique causes a 

loss of speed in the hop take-off; that athletes that have greater ‘jumping power’ and who 

are not fast must use the double-arm technique; but that no quantitative data have been 

presented to support them.  Hay (1992) concluded that the extended debate over arm 

actions had been useful in identifying factors that may bear on the issue; but that ‘little 

further progress towards an understanding of these issues is likely to be made in the 

absence of carefully designed experiments, appropriate data and a rational interpretataion 

of the findings’.  A computer simulation model of triple jumping would be ideally 

equipped to provide answers to these questions, since a quantifiable comparison of the two 

techniques could be made. 

 

Angular momentum 

Yu and Hay (1995) found significant non-linear correlations between side-somersaulting 

angular momentum at the take-off of the step and actual distance jumped, and also between 

the changes in this angular momentum during the support phase of the step and actual 

distance jumped.  They predicted an optimum magnitude of 0.0069 kg.m2/s ‘towards the 

free leg’ (which diagrams indicate was anti-clockwise when viewed from the front with the 

right leg in contact with the ground).  They also stated that the side-somersault angular 
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momentum at the take-off of the hop should also be 0.0069 kg.m2/s and that the change in 

angular momentum during the support phase of the step should be minimised.  They 

concluded that the changes in angular momenta and velocities during support phases were 

important in triple jump performance. 

 

Contribution of free limbs 

There have been some attempts to assess the contribution of the movement of free limbs 

(i.e. those not in contact with the ground) and performance in the triple jump (Yu and Hay, 

1995; Yu and Andrews, 1998).  Yu and Andrews (1998) investigated the relationship 

between free limb motions and triple jump performance in 13 subjects at the US Olympic 

trials.  They found that free limb motions were associated with decreases in the forward 

horizontal velocity of the whole-body COM, and increases in the vertical velocity of the 

COM, but were not significantly correlated to changes in the corresponding velocity 

components of the whole-body COM, except when an extreme outlier was included in the 

analysis.  They also found that, despite creating some angular momentum components 

about the COM during the support phases, the free limb motions did not affect the changes 

in whole-body angular momentum.  Finally they concluded that neither the changes in 

velocity or angular momentum of the body due to free limb motions were related to the 

actual distance of the triple jump.  These results indicate that free limb motions may not be 

important to triple jump performance.  However, as with Graham-Smith and Lees (2005), 

the lack of statistical significance could just be a feature of analysing homogenous 

subjects, operating close to their optimum technique, in a competition environment 

(Yeadon and Challis, 1994).  A comprehensive model of a triple jump should allow the 

effects of free limb motions to be isolated and quantified. 

 

Landing leg motions at take-off 

Koh and Hay (1990b) investigated the motions of the landing leg in the last three stance 

phases of triple jumpers competing in the US national championships.  They showed 

roughly similar results to their analysis of long jumping, in that there were again no 

statistically significant correlations of measures of landing leg motions with measures of 

performance.  They did note however, that the touchdown of the jump stance phase was 

the least active of the landings in the triple jump, and that there was some indication that a 

relatively active landing in this phase was linked to large effective distances.  The elite 

jumpers in their study showed more active landings in this phase than the athletes of lesser 
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ability.  Koh and Hay (1990b) concluded that it seemed active landings were beneficial but 

difficult to achieve or use effectively. 

 

Take-off angles 

Aagaard et al. (online) measured various parameters, including take-off angles, COM 

velocity, and COM height, in finalists in the men’s triple jump in the 1995 world athletics 

championships, during which the world record was broken twice by the same athlete.  In 

the second world record performance of 18.29 m they measured take-off angles of 16˚, 

14.5˚ and 19˚ for the hop, step, and jump phases respectively (Table 2.1).  The range of 

angles measured in the final for all athletes was 11-16˚ in the hop, 11-17˚ in the step and 

16-22˚ in the jump.  So the athlete breaking the world record employed a take-off angle at 

the top of the range for all athletes in the hop phase and in the centre of this range for the 

other two phases. 

 

Table 2.1 Various kinematic parameters of a world record jump (adapted from Aagaard et 

al., online) 

Phase 

Height 
of 

COM 
at heel 
strike 
(m) 

Minimum 
height of 
COM (m) 

Height 
of COM 

at toe 
off (m) 

Velocity 
at heel 
strike 
(m/s) 

Minimum 
velocity 

(m/s) 

Velocity 
at toe 

off (m/s) 

Take-off 
angle (°) 

Hop 1.00 1.00 1.20 9.60 9.26 9.60 16 

Step 0.98 0.97 1.07 9.10 8.04 8.04 14.5 

Jump 0.97 0.96 1.18 7.80 6.70 7.10 19 

 

COM positions at take-off and landing 

The COM positions incorporate the take-off and landing distances (Figure 2.7) and the 

vertical position of the COM.  Hay (1992) found that the results from studies reporting 

take-off and landing distances showed remarkably little agreement with respect to either 

magnitudes or trends from one phase to the next.  Hay and Miller (1985) found significant 

negative correlations between the take-off distance of the jump and the official distance.  

They concluded from this that a velocity with a greater vertical component would result in 

a better jump.  They similarly found significant negative correlations between the landing 

distance of the jump and the official distance.  Thus the less the landing distance the 
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greater the jump.  They found this hard to explain, speculating that it may be due to less 

angular momentum being generated in the more successful jumps, therefore the athlete 

could not afford to place their feet too far in front of their COM.  Studies reporting COM 

heights at take-off also showed variable results.  The only consistent relationship being that 

the height of the take-off for the step is the lowest of the three phases, and the height of 

touchdown of all three phases is invariably 10 cm lower than the preceding height of take-

off (Hay, 1992). 

 

Times of support 

Hay (1992) in his review of literature on triple jumping reported contact times of 0.12-0.14 

s, 0.15-0.18 s, and 0.16-0.19 s for the hop, step, and jump take-offs respectively.  This is in 

agreement with the findings of Perttunen et al., (2000) who reported mean contact times of 

0.139 s, 0.157 s, and 0.177 s for the three phases.  This trend for contact times increasing 

from phase to phase was borne out statistically, in that the support time for the step is 

significantly longer than that of the hop, and the jump significantly longer than that of the 

step (Fukashiro et al., 1981).  This increase in contact time is likely to be related to the 

decrease in horizontal velocity during each phase (Hay, 1993).  Significant negative 

correlations have been observed between each support time and the distance of the triple 

jump (Matveyev, 1985).  Although Hay (1992) stated that this is probably due to the 

decrease in contact time with increasing approach velocity, rather than a causal 

relationship in itself.  Fukashiro et al. (1981) found a positive correlation between the 

support time for the step and the total distance jumped, for which they stated no logical 

explanation could be found.  This could be due to various factors; a high vertical velocity 

in the hop take-off could lead to a longer hop phase and a ‘more vertical’ velocity vector at 

the touchdown of the step phase, possibly leading to an increased ground contact time.  

Alternatively better athletes may contact the ground with their COM further behind their 

COP, leading to the radius of COM with respect to the COP passing through a larger angle 

during the stance phase. 

 

Energy changes during each support phase 

Fukashiro et al. (1981) investigated the mechanical energy changes during the triple jump.  

They found that 4% of mechanical energy was lost during the hop take-off, followed by 

approximately 15% for the step, and for the jump.  The loss in mechanical energy during 

the step and jump was largely due to the large amount of negative work during the first 
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half of each contact phase due to high initial negative vertical velocities (Figure 2.8).  The 

loss in horizontal velocity with each phase seen in Figure 2.8 has been reported by 

numerous investigators (Hay, 1992).  The pattern of vertical velocities shown in Figure 2.8 

is also typical, with the jump take-off invariably having the highest value, and the step 

take-off the lowest. 

 

 

Figure 2.8 Graph showing velocity profiles for a triple jump (adapted from Fukashiro et 

al., 1981). 

 

2.2.4 Two-legged jumps 

 

This section is limited to one specific study on drop jumping in triple jumpers since the 

results were of direct relevance to this study.  

 

Pre-impact muscle activation 

Viitasalo et al. (1998) tested highly trained triple jumpers against controls in drop jumps 

from 40 cm and 80 cm.  The triple jumpers jumped 32% and 34% higher than the controls 

in the 40 cm and 80 cm conditions respectively.  They also showed smaller braking and 

total contact times and higher average and peak GRFs.  The EMGs of the triple jumpers 

showed an earlier pre-activity of the vastus lateralis and gastrocnemius muscles when 

compared to the controls.  Viitasalo et al. (1998) stated that myoelectrical activity has been 

found to be highly correlated with contact time, contact force, and angular velocity in 
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trained athletes.  They found earlier mean muscular pre-activations of triple jumpers than 

controls (146 ms and 140 ms vs 92 ms and 92 ms in the gastrocnemius, and 78 ms and 88 

ms vs 45 ms and 50 ms in the vastus lateralis). 

 

The findings of Perttunen et al. (2000) were in agreement with this; they found that the 

high impact loading associated with the triple jump requires well-developed pre-landing 

motor control similar to that for other high-impact, stretch-shortening cycle exercises.  

They noted that this could be seen as high and fast EMG development just before the 

touchdown and during the braking phase, and that the high pre-landing and braking activity 

of the leg extensor muscles might prevent unnecessary yielding of the jumper during the 

braking phase (Yeadon et al., accepted for publication), resulting in a better performance.  

This was borne out statistically with an increased pre-activity of the gastrocnemius muscle 

being significantly correlated to increased jump distance (Figure 2.9). 

 

 

Figure 2.9 Graph showing distance jumped against preactivity of the gastrocnemius 

muscle (adapted from Perttunen et al., 2000). 

 

These results indicate that simulations of jumping incorporating an impact should allow 

muscular co-contraction at the initiation of the simulation. 
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2.3 THEORETICAL JUMPING STUDIES 

 

There have been a number of theoretical models of human jumping activities which can be 

split into two categories: 

 

• Predictive (Yu and Hay, 1996; Yu, 1999; Wakai and Linthorne, 2002; Linthorne et 

al., 2005); 

• Analytical (Alexander, 1990, 1992; Hatze, 1981; Wilson et al., 2004; Pandy et al., 

1990; van Soest et al., 1993). 

 

These predictive models were used to attempt to mathematically (often statistically) predict 

the behaviour of a system, or a portion of a system, representing a jumping performance 

from the interaction of a few parameters, without attempting to model the whole system 

dynamically.  Whereas the analytical models integrated the system, which in these cases 

was invariably a multi-body torque-driven mathematical representation of a human 

performing a jump, backwards or forwards over small time steps in order to obtain the state 

of the system at another point in time.  A discussion of analytical models is included in 

Section 3.2, therefore only predictive models will be discussed here. 

 

2.3.1 Predictive models of jumping 

 

Wakai and Linthorne (2002, 2005) investigated the optimum take-off angle in the standing 

long jump, producing a mathematical model where the jump distance comprised three 

portions: the take-off distance; flight distance; and landing distance.  The take-off speed 

was modelled as a linear relationship between a constant applied muscular force and take-

off angle.  From this an optimum angle of 23° was predicted for maximum jump distance 

which is considerably less than the 35° preferred by athletes.  Wakai and Linthorne (2002) 

justified this by saying that a jumper may achieve a near maximal jump distance using a 

range of take-off angles from 15-35°. 

 

Linthorne et al. (2005) extended the work of Wakai and Linthorne (2002) to optimum take-

off angles in running long jumps.  As with the standing long jump, the total distance 

comprised the take-off distance, flight distance, and landing distance.  The mathematical 
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model combined the equation of a projectile in free flight with measured relations from 

three athletes between take-off speed, take-off height, and take-off angle.  This led to take-

off angle predictions of approximately 21-25° which were in good agreement with the 

competition take-off angles of the three jumpers.  Unlike Wakai and Linthorne’s (2002) 

results for standing long jump, Linthorne et al. (2005) concluded that to achieve good 

performances the athlete must jump at close to the optimum angle. 

 

In an attempt to optimise phase ratios Yu and Hay (1996) hypothesised that there is a linear 

relationship between the gain in vertical velocity and the concomitant loss of horizontal 

velocity during each of the three foot contacts that is a function of what they called the 

‘horizontal to vertical velocity conversion factor’- A1.  Having calculated this relationship 

for each subject, Yu and Hay (1996) then optimised the ratio of each phase in order to 

maximise the total distance jumped.  They calculated this ratio for approach velocities 

between 8.5 m/s and 11.5 m/s and found that the optimum phase ratio was sensitive to A1, 

when A1 was between 0.5 and 0.9.  They suggested that a hop-dominated technique should 

be employed if A1 is less than 0.5 and a jump-dominated technique should be employed if 

A1 is greater than 0.9.  This relies on the assumption that the value of A1 is independent of 

approach velocity, which is questionable.  The optimised solutions employed phase ratios 

that were outside the range of those used by elite triple jumpers. 

 

Yu (1999) expanded on this work by using a slightly different regression equation in order 

to determine the horizontal velocity loss at each phase.  Yu (1999) concluded that athletes 

with a smaller A1 were more efficient - that is they lose a smaller amount of horizontal 

velocity for a unit increase in vertical velocity.  But an optimisation of phase ratios 

indicated that athletes who have a larger A1 jumped further than those with a smaller A1.  

This would seem counterintuitive since, all other things being equal, the athlete losing the 

least horizontal velocity for a unit gain in vertical velocity will jump the furthest.  However 

Yu (1999) did not consider initial horizontal or vertical velocity when analysing this 

relationship, merely the change in these values (Figure 2.10).  He also did not consider the 

magnitude of values for which he determined his relationship for each athlete.  Hence it 

could be that athletes showing smaller values of A1 do so because they have lower levels of 

initial horizontal and / or vertical velocity.  Therefore they may seem more efficient but do 

not jump as far. 
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Figure 2.10 Graph showing the relationships between the gain in vertical velocity and loss 

in horizontal velocity during three phases of a triple jump (adapted from Yu, 1999). 

 

2.4 SUMMARY OF LITERATURE 

 

A number of factors raised in the experimental literature can inform the construction of a 

computer simulation modelling athletic jumping events.  Dapena and Chung (1988) found 

that, in addition to more predictable effects on angular momentum, movements of free 

limbs affected the movement of the COM during a high jump take-off which had 

subsequent effects on the loading of the stance leg.  This indicates that a model of jumping 

requires arms and a swinging leg in order to accurately ascertain the mechanical loading on 

the stance leg during take-off.  Herzog (1986) showed that body configuration changes 

have an effect on the whole-body orientation during the flight phase of a long jump and, as 

such, a simulation model should incorporate some measure of configuration changes in 

flight in order to obtain realistic angular momentum values at take-off.  Viitasalo et al. 

(1998) showed that triple jumpers have earlier muscular pre-activations than controls in 

drop jumping.  A computer simulation model of triple jumping should therefore allow a 

suitably high level of muscular activation at touchdown in each phase.  The analysis of 

Stefanyshyn and Nigg (1998) showed that the ankle generated the most energy in a long 

and high jump take-off; this might lead to the belief that the ankle was the most important 

joint in both types of jump.  However Greig and Yeadon (2000) found that limiting knee 
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flexion was strongly associated with improved performance in high jumping.  If the knee 

did not flex or extend it would not do any work, and would seem unimportant in a work / 

energy analysis.  Therefore, when analysing technique, various factors should be 

considered to properly ascertain how actions at various joints contribute to performance.  

The predictive models studied attempted to predict features of optimal technique based on 

measured relationships.  The problem with such studies is that observed relationships are 

only valid for the range of values measured, thus extrapolating these relationships outside 

these values can lead to optimised solutions that do not relate well to those techniques used 

by athletes (Yu and Hay, 1996; Wakai and Linthorne, 2002).  The results of these 

predictive models indicate that theoretical studies of sports techniques should incorporate 

suitable simulation models with realistic input parameters that have been evaluated against 

performance data in order to avoid spurious optimal techniques being calculated. 

 

2.5 CHAPTER SUMMARY 

 

In this chapter literature relating to experimental studies involving specific athletic 

jumping events (the long, high, and triple jumps) was described.  Theoretical studies, 

specifically those using predictive methods, were also outlined and critiqued.  The 

literature was then summarised with particular consideration of those issues relevant to the 

construction of a computer simulation model of triple jumping and subsequent analysis of 

technique.  The next chapter will describe the construction of this simulation model. 
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CHAPTER 3 

 

CONSTRUCTION OF A COMPUTER SIMULATION 

MODEL OF TRIPLE JUMPING 

 

3.1 CHAPTER OVERVIEW 

 

In this chapter literature on analytical models of jumping is reviewed, there is also a brief 

consideration of literature on soft tissue movement, muscle models and optimisation 

algorithms.  The development of a computer simulation model of triple jumping using 

AutolevTM is described comprising a description and justification of the structure and 

function of the model. 

 

3.2 ANALYTICAL MODELS OF JUMPING IN THE LITERATURE 

 

3.2.1 Models of one-legged jumps 

 

Alexander (1990, 1992) used a simple model to investigate optimum approach speeds and 

leg angles in the long and high jump take-offs.  The model comprised a rigid trunk and a 

massless two-segment leg with the model’s mass concentrated wholly in the trunk, with the 

COM at the hip.  Whilst the foot was in contact with the ground, a torque generator exerted 

a torque at the knee.  This torque generator comprised a contractile component and a series 

elastic component, was fully activated whilst the foot was in contact with the ground, and 

followed muscular mechanics similar to those outlined by Hill (1938).  Alexander (1990, 

1992) found that, according to his model, a typical male high jumper should run up at 7 

m/s with a leg angle of 45°, whereas a long jumper should run up as fast as possible with a 

steeper leg angle.  The disparity in approach velocity was explained by virtue of the fact 

that horizontal velocity is more important in long jumping than high jumping and the more 

shallow leg angle in high jumping allows a longer foot contact and hence a greater vertical 

impulse and a greater production of vertical velocity. 
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Linthorne and Kemble (1998) adapted Alexander’s (1990) model by implementing 

anthropometric values from male and female athletes.  They investigated the sensitivity of 

an athlete’s performance to deviations from the optimum technique, and the dependence of 

this optimum technique on leg strength and leg length.  Linthorne and Kemble (1998) 

found that male athletes should run up faster and have a greater leg angle at touchdown 

than women due to their longer legs and greater leg strength.  They predicted that an 

increase in an athlete’s leg strength would only benefit them if they ran up faster and 

planted with an increased leg angle at touchdown. 

 

Chow and Hay (2005) investigated the effects of the approach velocity, vertical GRF, and 

change in angular momentum about a transverse axis, on long jump performance.  They 

produced a two-dimensional inverted-pendulum-plus-foot model which was driven by 

GRFs scaled from the literature.  They performed sensitivity analyses by varying these 

parameters and computing the jump performance.  They found that jump distances were 

most sensitive to approach velocity; a 10% increase resulting in a 10% increase in jump 

distance, whereas a 10% increase in vertical GRF resulted in only a 7.2% increase in jump 

distance.  However, when the cumulative effect of both these factors was considered they 

found that a 10% increase in both factors resulted in a 20.4% increase in jump distance.  

They also found that jump performance was overestimated if angular momentum was not 

considered in the analysis.  This indicates that it is important to account for the angular 

momentum requirements of the activity when modelling human jumping activities. 

 

Seyfarth et al. (1999) investigated the forces acting on the centre of gravity during the take-

off phase of the long jump.  They produced a model comprising a linear spring with the 

ability of lengthening to represent the leg, and a distal mass representing the COM, 

coupled by nonlinear visco-elastic elements.  They found that this did not allow an 

accurate representation of the passive peak observed in the GRFs in long jumping.  They 

therefore added a second mass representing the COM of the stance leg to account for this 

(Figure 3.1).  This is an example of an oversimplification leading to a model that did not 

properly represent the activity it was attempting to simulate.  Seyfarth (1999) found that 

high stiffness values for the leg spring allowed a number of different strategies to achieve 

distances close to the theoretical maximum.  However the optimum angle of attack - the 

angle the thigh makes with the horizontal - requires only a relatively low stiffness of the 

leg. 
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Figure 3.1 Representation of the model of Seyfarth et al. (1999) (adapted from Seyfarth et 

al., 1999) 

 

As with Linthorne and Kemble (1998), Seyfarth et al. (2000) also adapted Alexander’s 

(1990) model in order to investigate the action of the knee extensor muscles during the 

long jump take-off.  Seyfarth et al. (2000) increased the complexity of Alexander’s (1990) 

representation of the muscle-tendon complex in order to demonstrate the advantages of 

eccentric force production and non-linear tendon properties.  The model showed that the 

angle of attack was insensitive to running speeds above 6 m/s and to muscle design.  

Seyfarth et al. (2000) noted that jumping distance was more sensitive to relative muscle 

fibre length than the ratio of tendon to muscle fibre cross-sectional areas and that good 

jumpers benefit from short muscles and long tendons.  Maximum velocity of shortening of 

the muscle was not very important in the performance during take-off, but is probably 

important in attaining high approach speeds. 

 

Seyfarth et al. (online) adapted the four-segment model of van Soest et al. (1993) (Section 

3.2.2) to investigate the spring-like behaviour of the leg in long jumping.  They 

incorporated the free leg into the head-arms-trunk segment of van Soest et al. (1993) to 

produce a rigid head-arms-trunk-leg segment in addition to stance thigh, shank, and foot 

segments.  They assumed the stance leg would have 65 % of the maximal isometric force 

values van Soest et al. (1993) used for two legs in vertical jumping.  They optimised the 

performance of the model by varying muscle activation timings which led to a jump of 
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5.72 m.  They found that the predicted GRFs were similar to experimental findings but that 

the contact time was 115 ms which they stated was 17% shorter than experimental values.  

This discrepancy may have been due to the lack of swinging leg and arms which would act 

to maintain ground contact.  The maximum vertical depression at the foot-ground interface 

was approximately 7 cm which is much larger than was observed experimentally, and may 

partly have been a consequence of the model not incorporating wobbling masses.  Seyfarth 

et al. (online) then attempted to decompose the force trace into active and passive traces.  

They found that the passive peak was largely (80%) due to the deceleration of distal 

segments and the active peak was almost solely due to muscle activity.  They concluded 

that the leg displayed spring-like behaviour in the optimised performance.  They stated that 

the leg stiffness was a behaviour of the whole body and that muscle-tendon complexes 

displayed quasi-elastic behaviour at high loading rates due to inherent force / length / 

velocity properties and activation dynamics. 

 

Ridka-Drdacka (1986) produced a simple model of the long jump take-off where the 

athlete was represented as a point mass.  A constant force was then applied to the mass, 

representing the GRF.  This force had two values, one representing the value up to the 

impact peak and the other the value beyond the impact peak.  Various parameters such as 

the location of the COM, approach velocity, and magnitude of the post-impact peak GRF 

were varied in order to ascertain their effects on performance.  They used their results to 

comment on the preparatory and take-off phases of long jumping.  The former being used 

to secure a low COM position and nonnegative vertical velocity and the quality of the 

latter being dependent on the magnitude of the GRF. 

 

There have also been a number of more complex models developed in an attempt to 

produce a more faithful representation of the human body performing a long jump (Hatze, 

1981; Sorensen et al., 1999; Wilson et al., 2006).  The most complex of these was the 

model of Hatze (1981), which comprised 17 segments driven by 46 myoactuators 

representing the major muscle groups of the body.  Each myoactuator was driven by 

individual neural controls, motor unit recruitment and stimulation rate.  The simulations 

did not model the impact of the foot at touchdown - instead simulations were initiated 

0.019 s after the foot contacted the ground and also did not include wobbling masses.  

Hatze (1981) used this model to simulate a long jump take-off.  The model displayed a 

very close match to experimental GRFs despite not including wobbling masses, which 
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might be considered surprising.  However, despite the complexity of the model, or perhaps 

due to the complexity of the model, no attempt was made to speculate on matters of 

technique.  This discussion was promised in a subsequent paper, however this paper could 

not be found in order that it might be included in this review. 

 

Sorensen et al. (1999) produced a two-dimensional, six-segment model comprising a trunk, 

thighs, shanks, and a right foot, with all segments, apart from the foot, having rigid and 

wobbling portions connected by damped springs.  The model was driven by eight major 

muscle groups in the take-off leg, which were represented by three-component Hill-type 

models (Hill, 1938).  The foot-ground interface was modelled vertically by a damped 

spring and horizontally by a dry friction force element as described by Gerritsen et al. 

(1995).  In order to account for the model’s lack of damping in the shoe, heel pad, bones 

and joints and its inability to evert during take-off, Sorensen et al. (1999) reduced the 

spring stiffness from that used by Gerritsen et al. (1995).  Two optimisation procedures 

were performed using an algorithm: tracking; and performance.  The tracking algorithm 

matched performance GRFs measured from a long jumper, however there was no mention 

of any model parameters that were specific to the subject.  As with Hatze (1981) no 

conclusions were drawn from the model’s performance regarding optimum technique. 

 

Wilson et al. (2004) used an eight-segment, planar model to investigate performance in 

high and long jumping (Figure 3.2).  The segments represented the foot, calf, and thigh of 

the take-off leg, shank and thigh of the free leg, and a trunk, upper arm, and lower arm 

(representing both arms).  The model had ten torque generators, each comprising a 

contractile component and a series elastic component.  These were situated at the ankle, 

knee, and hip of the take-off leg, the hip joint of the free leg, and the shoulder joint.  The 

torque generators were on both sides of each joint, allowing the model to co-contract.  

Joint torques were governed by a nine-parameter function incorporating the joint torque / 

angle / angular velocity, and angular velocity / differential activation relationships of 

human joint torque generation (Yeadon et al., 2006).  Wobbling masses were situated at 

the shank, thigh, and trunk and were attached to the rigid elements representing the 

skeleton by non-linear damped springs.  The foot-ground interface was also modelled by 

non-linear spring-damper systems at the toe and heel.  Spring stiffness and damping 

parameters were determined using an angle-driven optimisation procedure.  The 

simulations of jumps for height and distance were matched to actual performances with 
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errors of 1.6% and 8% respectively.  The performance of the model was then optimised for 

height and distance and produced increases of 11% and 6% respectively.  A number of 

other papers employed this model to investigate various features of simulation modelling 

and performance in running jumps (Wilson et al., 2006; King et al., 2006; Wilson et al., 

2007). 

 

Figure 3.2 Representation of the model of Wilson et al. (2007) (adapted from Wilson et 

al., 2007). 

 

Wilson et al. (2006) described the determination of subject-specific viscoelastic parameters 

of the foot-ground interface and wobbling masses using this model.  They used a simulated 

annealing algorithm to vary the stiffness and damping coefficients of viscoelastic elements 

in order to minimise the difference between a kinematically-driven model and performance 

data.  The six-component objective function comprised: (1) the absolute difference in trunk 

orientation at take-off; (2) the root mean square (RMS) difference in joint angles at take-

off; (3) the percentage difference in absolute time of contact; (4) the percentage difference 

in vertical and horizontal momentum at take-off; (5) the percentage difference in absolute 

angular momentum at take-off; and (6) the overall RMS difference in the horizontal and 

vertical GRFs during the take-off phase as a percentage of peak force.  Angles were 

measured in degrees and 1° was considered equal to 1%.  Whole-body angular momentum 

was small so the weighting of component (5) was adjusted so a 1% difference in angular 

momentum was equivalent to a 1° difference in landing orientation.  The optimisation 

process achieved differences of 6% and 9% between simulation and performance in jumps 
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for height and distance respectively.  Wilson et al. (2006) showed that these parameters led 

to poor agreement between simulation and performance when those from the jump for 

height were used in simulations of a jump for distance and vice versa.  They therefore 

produced a common set of parameters which led to a mean difference of 8% (made up of 

7% and 10%) over the two phases.  They concluded that subject-specific viscoelastic 

parameters should be obtained using more than one performance in order to obtain a robust 

set of parameters that can be used in different simulations.   

 

King et al. (2006) described the evaluation of this model against performance data in a 

jump for height.  Torque generator activation timings were varied using a simulated 

annealing algorithm in order to minimise the difference between simulation and 

performance.  The objective function was similar to the one used by Wilson et al. (2006) 

with the addition of minimum joint angles reached by the ankle, knee, and hip to 

component (2).  A 6.6% difference between simulation and performance was achieved.  

The performance of the model in terms of the maximum height achieved by the mass 

centre was then optimised in the same fashion and resulted in a 9 cm increase in jump 

height compared to the matched simulation.  They concluded that the model was 

sufficiently complex and had appropriate strength parameters to give realistic simulations 

of running jumps for height. 

 

Wilson et al. (2007) investigated various considerations that affect the optimum peak 

height in a running jump.  The model was matched to performance data using the same 

method as King et al. (2006).  This resulted in a performance of 1.99 m compared to the 

measured performance of 2.01 m.  Simulation jump height was maximised by varying 

torque generator activation timings whilst using the same initial conditions as the matched 

simulation.  Optimisations were run with no constraints, with constraints on angular 

momentum at take-off, with further constraints on joint angles, and with an additional 

requirement that the technique be robust to perturbations of torque generator activation 

timings.  These optimisations resulted in performances of 2.37 m, 2.21 m, 2.14 m, and 1.99 

m respectively.  They concluded that the peak height achieved in the simulation with all 

three constraints was similar to that of the matched simulation and therefore these 

constraints have a substantial influence on technique and should be included in future 

simulation studies. 
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3.2.2 Models of two-legged jumps 

 

Pandy et al. (1990) investigated maximum height human jumping with a four-segment 

planar model driven by eight musculotendon actuators.  The musculotendon actuators were 

driven by Hill-type contractile components (Hill, 1938) containing a series elastic 

component and a parallel elastic component.  The tendon properties were defined by a 

stress-strain curve and the musculotendon actuators were driven by a first-order 

representation of excitation-contraction coupling.  The performance of the model was 

optimised using an optimisation algorithm, however the model was not evaluated against 

experimental data.  The results showed that there were shortcomings in the model as it did 

not follow experimental results.  Pandy et al. (1990) were unable to speculate on the 

features of optimum technique, noting that it was, ‘at least qualitatively similar to 

experimental data reported for jumping’, but not similar enough to be considered a 

reasonable optimum technique to be employed by humans.  They investigated the effects 

of muscle timings on performance, noting that the performance of the model was 

particularly sensitive to the activation timings of the vastii muscles and suggesting that the 

model will allow an investigation into the effects of the manipulation of various 

physiological factors on standing jump performance. 

 

Pandy and Zajac (1991) used this model to investigate optimal muscular control strategies 

for squat jumping.  The optimal control strategy comprised a proximal-to-distal sequence 

of muscle activation from hip to ankle.  They found that the vasti and gluteus maximus 

muscles were the major energy producers of the lower extremity, dominating the angular 

acceleration of the hip and instantaneous power of the trunk.  However the ankle 

plantarflexors dominated the total energy of the thigh.  They investigated the effects of the 

biarticular gastrocnemius by replacing it with a monoarticular muscle and found jumping 

performance to be similar in both conditions. 

 

Anderson and Pandy (1999) produced a three-dimensional model of vertical jumping.  The 

model comprised 10 segments: a head, arms, and torso (HAT) segment; a pelvis; two 

thighs; two shanks; two hindfeet; and two forefeet.  The model was actuated by 54 

muscles; 24 in each leg and six in the upper body.  The foot-ground interface was modelled 

using a series of five spring-damper units placed under the sole of each foot.  The muscles 

comprised three-elements: a series elastic element; a contractile element; and a parallel 
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elastic element, all in series with a tendon (Figure 3.3).  Ligament torques were modelled 

using exponential terms.  A first order differential equation governed the excitation-

contraction dynamics.  Musculoskeletal geometry and properties were taken from the 

literature, and maximal isometric strength was scaled to the average of the subjects in the 

study.  Anthropometric measurements were taken from each subject, and mass and inertia 

properties were calculated for each segment by averaging this data.  The height jumped by 

the model was then optimised using a computational algorithm.  Anderson and Pandy 

(1999) noted that there was quantitative agreement between the model and the performance 

of the five subjects.  With the peak vertical acceleration, velocity at take-off, and height 

jumped, all being within the range of those achieved by the subjects.  They did also note 

however that the ground contact time was considerably shorter in the simulation than the 

measured performance and that the joints of the legs extended more.  They hypothesised 

that this may be due to the short rise time of the muscle activation (20 ms), which was 

based on results from a single muscle fibre. 

 

 

Figure 3.3 Representation of the muscle model of Anderson and Pandy (1999) (adapted 

from Anderson and Pandy, 1999). 

 

Van Soest et al. (1993) used a four-segment planar model of vertical jumping to investigate 

the influence of the biarticularity of the gastrocnemius muscle on performance.  The model 

comprised four rigid segments representing the feet, lower legs, upper legs, and head and 

trunk (Figure 3.4).  These were connected by three frictionless hinge joints representing the 
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hip, knee, and ankle, and were connected to the floor at the toe by another frictionless 

hinge joint.  The model was driven by Hill-type muscle models consisting of a series 

elastic component, a parallel elastic component, and a contractile component.  Muscle 

groups incorporated were the glutei, hamstrings, vasti, rectus femoris, soleus, and 

gastrocnemius.  Vertical jump performance was optimised by varying muscle stimulation 

patterns, with the model alternatively equipped with a biarticular gasctrocnemius, and a 

monoarticular gasctrocnemius.  They found jump height decreased by 10 mm when the 

gastrocnemius was converted to a monoarticular muscle.  This was in contrast to the results 

of Pandy and Zajac (1991).  Van Soest et al. (1993) explained this as being an effect of the 

moment arm of the biarticular gastrocnemius in the study of Pandy and Zajac (1991) 

approaching zero when the knee approached full extension.  This meant the biarticular 

gastrocnemius essentially acted as a monoarticular muscle during this range. 

 

 

Figure 3.4 Schematic representation of the model of van Soest et al. (1993) (adapted from 

Bobbert and van Soest, 1994). 

 

This model was subsequently employed in a number of studies (van Soest and Bobbert, 

1993; Bobbert and van Soest, 1994; Bobbert et al., 1996; Bobbert and van Zandwijk, 1999; 

Bobbert, 2001; Bobbert and van Soest, 2001; Bobbert and Casius, 2005, Vanrenterghem et 

al., 2008; Bobbert et al., 2008).  Those studies considered directly relevant to the current 

one are reviewed below.  Van Soest and Bobbert (1993) investigated how the force / length 

/ velocity relationships inherent in skeletal muscle affect the control of movements.  They 
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found that, when compared to the moments directly applied to joints, moments under 

muscular control led to performances that were less sensitive to perturbations to initial 

joint angles.  They concluded that the muscle properties, specifically the force / length / 

velocity relationship, act as a feedback mechanism with no time delay which allow humans 

to maintain movement patterns in the face of minor levels of disturbance. 

 

Bobbert and van Soest (1994) investigated the effect of strengthening muscles on vertical 

jump performance.  They found that strengthening muscles alone without a re-optimisation 

of muscle stimulation timings invariably resulted in a decrement in performance.  

However, a subsequent re-optimisation of muscle stimulation timings invariably led to an 

increase in jump height, with the magnitude of improvement increasing with strength 

increases. 

 

Bobbert et al. (1996) investigated the reasons why countermovement jump height is greater 

than squat jump height.  They used joint kinematics and EMG from performances as input, 

and calculated muscle states and forces, and net joint moments.  They attributed the 

majority of the increase in jump height in the countermovement condition to the fact that 

muscles were able to build up a greater active state and level of force prior to shortening 

than in the squat jump.  They used a single joint model to demonstrate that stored elastic 

energy did not contribute to increased force development.  They stated that spinal reflexes 

could contribute to an increased active state of the muscle but that muscular potentiation 

was unlikely to enhance countermovement performance due to the delay between muscular 

stretch and maximal power production. 

 

Bobbert and van Zandwijk (1999) investigated the sensitivity of jump performance to 

muscle stimulation onset times with different stimulation rise times (the time it took for the 

activation level of the muscle to increase from 10% to 90%).  They found that vertical 

jump height decreased with increasing rise times; however the performance of the model 

was more robust.  The explanation they gave for this was that the slow rise time let to 

slower development of errors in comparison to faster rise times.  They stated that this 

effect was likely to be larger in activities in which the musculoskeletal chain behaves like 

an inverted pendulum, because of the destabilising effect of gravity.  They speculated that 

humans may vary the rise times of their muscles depending on the accuracy and response 

time requirements of the task. 
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Bobbert (2001) investigated the dependence of squat jump performance on the elastic 

compliance of the triceps surae.  He varied the strain of the series elastic element at 

maximum isometric force and optimised squat jump performance by varying muscle 

activation timings.  This was done for various strain values as a percentage of the muscle-

tendon complex length: 1%; 4%; 10%; 15%; and 20%.  Concentrating on the differences 

between the reference 4% series elastic element strain, and the increased 10% series elastic 

element strain, he noted that it facilitated an increase of 4 cm in jump height.  He stated 

that the increase in jump performance with increasing series elastic element strain was due 

to extra work being done due to elastic recoil of the series elastic element putting the 

contractile component into slower concentric conditions, and also an increased efficacy of 

this work due to a redistribution of the segmental contributions to the vertical velocity of 

the COM.  He concluded that long, compliant tendons in the triceps surae are an elegant 

solution to the problem of maximising jump performance.  This result is in agreement with 

the results of Seyfarth at al. (2000) in simulations of the long jump, who observed that 

good jumpers benefit from long tendons and short muscles. 

 

Bobbert and Casius (2005) again investigated the differences between countermovement 

and squat jumps, this time using muscle stimulation timings as inputs to the simulation 

model in order to reproduce the two types of jump.  In line with Bobbert et al. (1996) they 

found that the greater jump height in countermovement jumps could be explained by the 

fact that the active state of the muscle increased during the countermovement, whereas in 

the squat jump it inevitably increased during the propulsive phase.  This meant that the 

muscles in the countermovement jump could do more work over the initial 30% of the 

propulsive phase in comparison with the squat jump. 

 

Selbie and Caldwell (1996) investigated how initial jumping posture affected vertical jump 

performance using a four-segment planar model driven by three torque actuators.  The 

torque actuators incorporated torque / angle / angular velocity relationships and an 

activation parameter controlling the rate of torque onset.  The distal point of the foot was 

connected to the floor by a frictionless hinge and the contact of the heel with the ground 

was modelled using a rotational spring damper (Figure 3.5).  They optimised vertical jump 

performance by varying torque actuator onset timings from 125 different starting postures.  

They found that jump performance was relatively insensitive to initial posture but that 

there was large variability in the torque actuator onset times employed to achieve these 
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performances.  They did not find the proximal-to-distal sequence of joint coordination that 

had been found in previous studies of vertical jumping (Bobbert and van Ingen Schenau, 

1988; Pandy and Zajac, 1991).  They explained that this may have been due to the model 

not incorporating antagonist or biarticular muscles. 

 

 

Figure 3.5 Representation of the model of Selbie and Caldwell (1996) in reference (solid 

lines) and most extreme starting postures (adapted from Selbie and Caldwell, 1996). 

 

Dapena (1999) adapted the model used by Alexander (1990), with the addition of a piston-

like ring to represent the arms, in order to explain the effects of arm actions on a vertical 

jump.  The initial and final velocities of the arms were then manipulated in order to 

ascertain their effects on vertical jump height.  Dapena (1999) found that a constant 

velocity of 3 m/s produced the largest vertical velocity of the COM, whereas initial and 

final arm velocities of –3 m/s and 3 m/s respectively produced the lowest vertical velocity, 

despite producing the most downward acceleration on the trunk.  This led Dapena (1999) 

to state that the maximum velocity of the COM depended more on the average vertical 

velocity of the arms than on the change in this velocity during the take-off phase.  He then 

hypothesised that a constant arm velocity of 3 m/s applied a force that led to the take-off 

leg musculature being put in slower and more advantageous concentric conditions.  

However, if the arms are moving at a constant velocity, the only force being applied to 

them is equivalent to the weight of the arms, which is comparable to the arms being static.  

Therefore during this simulation the arms could transfer no more force to the torque 
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generator than if they were static.  Dapena (1999) set the initial velocity of the system to 

zero; therefore the largest positive initial arm velocity would result in the largest negative 

velocity of the trunk and thus eccentric conditions in the knee extensor torque generator.  

Therefore the effect of the positive velocity of the arms was not to apply a force to the 

trunk but to put the knee extensors in the most favourable conditions for torque generation 

at the start of the simulation. 

 

Ashby and Delp (2006) also investigated the mechanisms by which arm movement 

improves jump performance, this time in the standing long jump.  They developed a two-

dimensional, five-segment model comprising: a foot; shank; thigh; head-neck-trunk; and 

arm (Figure 3.6).  The ankle, knee, hip, and shoulder were actuated by torque generators 

incorporating torque / angle / angular velocity relationships.  Ligamentous torques were 

also included to prevent hyperextension or hyperflexion at the extremes of joint range.  

Torque generator activations were determined by nodes at 50 ms intervals that could take 

any value between -1 and 1 (the signs denoting flexion and extension).  These activations 

were varied throughout the ground contact and airborne phases in an optimisation process 

using a simulated annealing algorithm in order to maximise jump distance.  Initial 

kinematic conditions were taken from experimental studies, and inertia and torque 

parameters were taken from the literature.  Penalties were implemented for ligamentous 

torques in all simulations.  Optimisations were then run with free and restricted arm 

movements.  One set of these was run with no consideration for landing configuration, and 

one with penalties for landing positions where the COM was too low or too far behind the 

toe.  Simulated jump distance was found to be 40 cm further when arm movement was free 

(2.00 m) than when it was restricted (1.60 m).  They found that three mechanisms 

contributed to this improved performance: (1) airborne motions of the arms allowed a re-

orientation of the body in the air and, as such, less consideration had to be taken of angular 

momentum constraints during take-off than when arms were restricted; (2) joint torques 

were augmented by the arm swing (Dapena, 1999) and produced 27 J more work; and (3) 

the shoulder joint torque generator did 80 J of work.  They concluded that the most 

significant contributor to the increased take-off velocity was the work done directly by the 

shoulder joint. 
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Figure 3.6 Diagram describing the model of Ashby and Delp (2006) (adapted from Ashby 

and Delp, 2006). 

 

3.3 LITERATURE ON MODELLING SOFT TISSUE MOTION 

 

Pain and Challis (2004) attempted to ascertain how sensitive a wobbling mass model of 

drop landings was to variations in certain parameters.  The model consisted of three 

segments: a head-arms-trunk segment; an upper leg; and a shank-and-foot.  Each 

comprised a wobbling and rigid element attached by non-linear spring-dampers.  Actuators 

produced torques at each joint.  Joint torque profiles, anthropometric data, and initial body 

configuration were taken from Gruber et al. (1998).  Pain and Challis (2004) found that the 

model output was not sensitive to most model parameters but was sensitive to joint torque 

activation timings.  They found that varying the stiffness of the heel pad had the most 

influence on peak vertical GRFs and that the simulations were relatively insensitive to the 

parameters governing the connections between the wobbling masses and rigid elements.  

They concluded that to produce an accurate model of a drop landing the correct properties 

for the foot-ground interface, accurate mass distribution, effective joint stiffnesses, and 

joint torque activation timings must all be calculated. 

Pain and Challis (2006) investigated the effects of soft tissue motion on GRFs, joint 

torques, and joint forces during drop landings.  Using a four-segment computer simulation 

model consisting of: a head-arms-trunk segment; an upper leg; a shank; and a foot, they 

compared a model including wobbling masses with a similar rigid body model.  The model 
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was actuated by revolute spring-dampers and had subject-specific anthropometric, mass, 

and moment of inertia parameters.  They found that the model including wobbling masses 

had a reduction in joint forces and torques of up to 50% and matched empirical GRFs from 

a subject performing drop jumps (Figure 3.7).  This is in line with the findings of Gruber et 

al. (1998) who advocated the use of wobbling masses in inverse dynamics calculations 

from motions involving impacts. 

 

 

Figure 3.7 Simulated (solid line) and empirical (dotted and dashed lines) GRFs during 

drop landings (adapted from Pain and Challis, 2006). 

 

Pain and Challis (2001) investigated the effect of the heel pad and soft tissue of the shank 

on shock attenuation during heel impacts.  They found that both had an important role to 

play in the dissipation of energy during impacts. In light of this, computer models of 

impacts should include wobbling masses and account for the force attenuating properties of 

the heel pad. 

 

3.4 SUMMARY OF LITERATURE 

 

There have been a number of relatively simple models of jumping described in this chapter 

(Ridka-Drdacka, 1986; Alexander, 1990, 1992; Seyfarth, 1999; Chow and Hay, 2005).  

While these models were suited to investigating general trends in jumping, they were not 

suited to providing specific information on individual features of technique, since they 
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often require unrealistic simplifications and input parameters in order to reproduce realistic 

performances.  In order to investigate specific technical issues more complexity is 

required.  Simulations such as the model of the long jump take-off developed by Hatze 

(1981) and the model of vertical jumping constructed by Anderson and Pandy (1999) 

attempted to provide this complexity.  However, whilst these models were valuable 

academic exercises, their complexity meant they were not ideally suited to the optimisation 

and manipulation of technique.  For this, models with a balance of sufficient complexity 

and suitable simplifications seem better suited (Ashby and Delp, 2006; van Soest et al., 

1993; Wilson et al., 2004).  These models attempted to use realistic parameters (strength, 

anthropometric etc.) in order to capture the main features of the activity they were 

attempting to measure, whilst maintaining enough simplicity to allow optimisation and 

investigation of technique.  It was also shown that models of human jumping should 

include wobbling masses if they include impacts (Pain and Challis, 2006), and have 

suitable constraints in order to reproduce realistic performances (Wilson et al., 2007; Chow 

and Hay, 2005).  Wilson et al., (2006) demonstrated that viscoelastic parameters 

determined from kinematically driven simulations should be derived from a number of 

performances in order to obtain a set that is robust enough to be used in different 

simulations. 

 

3.5 COMPUTER SIMULATION MODEL OF TRIPLE JUMPING 

 

Simple models such as those of Alexander (1990, 1992) provided very eloquent additions 

to the knowledge base of human jumping activities.  Occam’s razor states that ‘entities 

should not be multiplied beyond necessity’ and in this vein Alexander (1992) stated: 

 

‘The simpler the model, the easier it is to discover which of its features are essential to the 

observed effect’ 

 

However, Alexander (1992) also noted that a model should be adapted to its function, and 

if the function requires additional complexity then this should be included.  Therefore the 

computer simulation model in this study was created in line with Alexander’s (1990) 

premise that models should be as simple as possible, whilst being complex enough to 

reproduce realistic performances. 
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3.5.1 Structure of the computer simulation model 

 

Since a triple jump requires alternating ground contacts using both legs, the model required 

two legs.  The relative importance of the muscles spanning the ankle, knee and hip joints to 

the performance in jumping activities (Stefanyshyn and Nigg, 1998) indicated the model 

should include feet, shanks, legs, and a trunk segment to properly represent a human 

jumping activity.  The feet comprised two segments, thus allowing three contact points 

with the ground (Figure 3.8).  Were the feet represented by just one segment the COP 

would be forced to remain in one place once the heel left the ground.  Arms contribute to 

angular momentum and velocity changes during the airborne and ground contact phases of 

a triple jump (Yu and Hay, 1998) and the elbow joint is likely to have an effect on the 

nature of this contribution; hence two, two-segment arms were included.  Hands were not 

considered essential as they were likely to have a negligible effect on the performance of 

the model and therefore were included in a forearm and hand segment.  The head was 

likewise included in a head and trunk segment since its individual contribution to the 

performance of the model was likely to be limited. 

 

 

Figure 3.8 Representation of the foot-ground interface. 

 

Wobbling masses were included at the shank, thigh, and trunk, and attached to the rigid 

elements at each end by spring-dampers (Pain and Challis, 2006) (Figure 3.9).  The foot-

ground interface was also modelled by three spring-dampers, situated at the heel, ball, and 

toe of each foot (Figure 3.8).  Torque generators were located at the shoulder, hip, knee, 

ankle, and ball joints.  These torque generators had flexion and extension profiles allowing 

co-contraction.  The torque generators included contractile components and series elastic 

components, and followed the force / length / velocity relationships of skeletal muscle 
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(Hill, 1938; Gordon et al. 1966) and also allowed for differential activation (Westing et al., 

1988) (Section 4.7.4). 

 

 

Figure 3.9 Representation of the attachment of a wobbling mass to a rigid element. 

 

In summary the model was made up of 13 rigid elements with five additional wobbling 

masses (Figure 3.10).  These segments represented: head and trunk; two upper arms; two 

forearms and hands; two legs; two shanks; two two-segment feet; wobbling masses on 

shanks, legs, and torso. 

 

Figure 3.10 Structure of the computer simulation model of triple jumping (subscript 

definitions in text below). 
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3.5.2 Torque generators 

 

Active torque generators 

Torque generators employing contractile components (CON) and series elastic components 

(SEC) (Figure 3.11) were employed to flex (F) and extend (E) the right (R) and left (L) 

shoulder (S), hip (H), knee (K), ankle (A) and ball (B) joints (Figure 3.10).  The elbow 

joints were angle-driven since it was assumed they would have little effect on performance. 

 

 

Figure 3.11 Diagram of the muscle-tendon complex in extension and flexion. 

 

Figure 3.11 represents the muscle-tendon complex.  In each case the muscle is active; 

therefore the SEC has a non-zero length. 

 

Where: 

 θ  = joint angle. 

conθ  = contractile component angle. 

secθ  = series elastic component angle. 
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As can be seen from Figure 3.11: 

 

In extension:   sec2 θθπθ −−⋅= con .     (3.1) 

In flexion:   secθθθ += con .      (3.2) 

 

The contractile component torque (conT ) was calculated using the nine-parameter fit 

described in Section 4.7.5 combined with the torque generator activation level.  It was 

assumed that, at the beginning of the simulation (0=t ), the angular velocity of the 

contractile component was equal to the angular velocity of the joint, and that conT  was 

equal to the series elastic component torque (secT ): 

When 0=t , 

conθθ && = .      (3.3) 

secTTcon = .      (3.4) 

 

Having calculated this, it was possible to calculate secθ  using the following equation: 

 

secsecsec θ⋅= kT ,     (3.5) 

where seck  is the stiffness of the SEC calculated from the literature. 

 

Calculating SEC lengths 

The SEC was modelled as a linear torsional spring with a resting length of zero.  The 

stiffness of each SEC was calculated using data from the literature (Pierrynowski, 1995; 

Jacobs et al., 1996; Duda et al., 1996; Rugg, et al., 1990) (Appendix 1). 

 

With reference to Figure 3.12, the SEC length was calculated as follows: 

 

αcossec ⋅−+= fbt llll ,    (3.6) 

where secl  is the length of the SEC, tl  is the length of the tendon, bl  is the length of the 

muscle belly, fl  is the muscle fibre length, and α  is the pennation angle of the muscle. 
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Figure 3.12 Diagram representing muscles with pennate and parallel muscle fibres 

(adapted from Pierrynowski, 1995) 

 

The SEC lengths of the subject (sublsec ) were calculated using the ratio of the standing 

height of the subject in this study (subh ) and height ( lith ) and SEC lengths ( litl sec ) from the 

literature: 

lit

sub
litsub h

h
ll ⋅secsec = .     (3.7) 

Scaling moment arms 

A ratio of the radii of the body segments of the subject in this study and those in the 

literature was calculated by considering the body as being proportional to a cylinder: 

 

letting     hrm ⋅
2α  (since mass α  volume), 

therefore    
h

m
rα ,      (3.8) 

where r  is a theoretical radius, m  is body mass, and h  is standing height. 

 

The moment arms were then scaled to the subject in this study by multiplying moment 

arms from the literature by the ratio of the theoretical radii from Equation 3.8: 

 

lit

sub
litsub r

r
dd ⋅= ,     (3.9) 
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where d  is the moment arm, and the subscripts sub and lit  represent the subject and 

values from the literature. 

 

Calculating SEC stiffness 

The contribution of each muscle to the maximum isometric torque was calculated as 

follows: 

∑ ⋅

⋅
⋅=

n

j
jj

ii
isoi

dPCSA

dPCSA
TT ,    (3.10) 

where n  is the total number of muscles considered, iT  is the torque associated with an 

individual muscle, isoT  is the maximum isometric torque measured at the joint, iPCSA is 

the physiological cross sectional area of the muscle, and id  is the moment arm of the 

muscle. 

 

The change in length of the SEC (secl∆ ) was assumed to be 5% of its total length during 

maximum isometric contractions (Finni and Komi, 2002). 

 

secsec 05.0 ll ⋅=∆ .     (3.11) 

 

The associated change in SEC angle (secθ∆ ) was calculated as follows: 

 

    
d

l sec
sec

∆=∆θ .      (3.12) 

 

The stiffness ( mk ) of the SEC of an individual muscle was then calculated by dividing the 

maximum isometric torque by the associated angle change: 

 

secθ∆
= iso

m

T
k .      (3.13) 

 

The total stiffness totk  of the SEC for a joint was the sum of the stiffness values for the i  

muscles spanning the joint: 
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    ∑= n

i
itot kk .      (3.14) 

 

Due to the lack of data on the muscles spanning the shoulder joint the stiffnesses of the 

SEC for shoulder flexion and extension were set at 1500 Nm/rad based on the literature 

(King, 1998). 

 

Passive torque generators 

Although the measured joint torques (Section 4.4.4) may have some passive torques 

incorporated in them, this was assumed to be small due to the limited comfortable range 

over which the subject could be tested.  Also due to the acceleration of the crank the angle 

range at which isovelocity data were obtained would be smaller still (Chow et al., 1997).  

This could lead to an underestimation of the width of the joint torque / joint angle 

relationship, since it was unlikely that joint torque measurements were obtained for joint 

angle ranges in which passive torques have a large influence.  Therefore, in addition to 

active torque generators, the ankle, knee, and hip had passive elements which produced 

restorative torques at the extremes of range.  These acted to stop the limb exceeding 

anatomical limits, since initial kinematic conditions could put torque generators at angles 

outside the range of their torque / angle curves (Section 4.7.5).  These torques were 

described by a simple mathematical model of a ‘generic subject’ generated by measuring 

passive torques from ten males of a comparable age, mass, and height to the subject in this 

study, over a range of angles at the ankle, knee, and hip joints (Riener and Edrich, 1999).  

This model related the measured passive torque at a joint to the angle of the joint in 

question and also the angle of adjacent joints, in order to account for the effect of 

biarticular muscles spanning these joints.  The equations for the passive torques at each 

joint are displayed below: 

 

792.1)0008.0

01949.09763.7exp()0176.00843.01016.2exp(

−+

+−−−−=

K

AKAAT

θ
θθθ

,  (3.15) 

 

KHKA

HKAK

M

T

+−−+

−−−+−−=

820.4)0128.00495.00004.0

971.3exp()0217.00352.00460.0800.1exp(

θθθ
θθθ

,   (3.16) 
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072.8)0305.0

0226.03404.1exp()0750.00034.04655.1exp(

+

+−−−−−=

H

KHKHT

θ
θθθ

,  (3.17) 

where HKA TTT ,,  and HKA θθθ ,,  are the ankle, knee, and hip torques and angles 

respectively. 

 

Torque generator  activation timings 

At any given time during a simulation the activation level of each torque generator was 

governed by the following quintic function which has zero accelerations and velocities at 

the endpoints (Yeadon and Hiley, 2000): 

 





 +





−
−⋅−





−
−⋅⋅= 10156

01

0

2

01

03

tt

tt

tt

tt
ta ,    (3.18) 

where a  is the activation level, t  is the time, 0t  is the initial time at which the activation 

level is equal to zero, and 1t  is the final time at which the activation level is equal to one. 

 

Figure 3.13 shows an example activation curve representing a torque generator ramping up 

and down during a simulation.  The bold line indicates the activation of the torque 

generator.  The first quintic function begins at time 1ts  whereupon it ramps up over a time 

period 1tr .  The activation level is initially set to 0a  and remains at this level until such 

time that the value of the quintic function exceeds 0a .  The torque generator activation 

level then follows that of the quintic function until its value exceeds 1a .  The activation 

level then plateaus at 1a  for a period of time governed by the start time and duration of the 

second quintic function, which ramps down over a time period 2tr .  When the value of the 

second quintic function is less than 1a  the activation again follows the quintic function 

until it reaches 2a  whereupon it plateaus again at this value until the end of the simulation.  

The time it would take for the activation level to go from zero to one, or vice versa, is 

represented by 1tr  and 2tr .  The first ramp was allowed to initiate prior to the start of the 

simulation provided this did not cause the initial activation level to be above its upper 

bound. 
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These total ramp times were given a lower limit of 70 ms (Freund and Budingen, 1978) 

and no upper limit. 

 

Figure 3.13 shows a two ramp profile where the torque generator ramps up and down, but 

the torque generators were also able to take a ramp down-ramp up profile or simply ramp 

up or ramp down, allowing four possibilities in total (Table 5.4). 

 

 

Figure 3.13 Diagram showing a torque generator activation curve. 

 

This activation level was multiplied by a nine-parameter function defining maximal torque 

production (Section 4.7.5) in order to calculate the joint torque at any given point in time. 

 

3.5.3 Formulating equations of motion 

 

The computer simulation model was developed using AutolevTM Professional Version 3.4 

(Kane and Levinson, 1996) (Appendix 2).  This is a software package that facilitates the 

construction of multibody simulations, using Kane’s method (Kane and Levinson, 1996) in 

order to formulate the equations of motion.  The simulation is constructed using 

generalised coordinates that are required to define the position and orientation of a segment 
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with respect to one that has already been defined, or to a global origin, generalised speeds, 

which are linear combinations of the time derivatives of the generalised coordinates (Kane 

and Levinson, 1985), along with inertia parameters and all the internal and external forces 

and torques acting upon the system.  Expressions are then developed for generalised active 

forces and generalised inertia forces, and the simulation is advanced over a prescribed time 

period using a Kutta-Merson numerical integration algorithm with a variable step size 

Runge-Kutta integration method.  AutolevTM outputs code in the FORTRAN programming 

language.  When an AutolevTM file is executed, three files are produced, one containing 

FORTRAN code describing the simulation, one containing input values for the simulation, 

and another containing a list of output files and their contents, produced when a simulation 

is run. 

 

3.5.4 Spring-dampers 

 

Wobbling masses 

The connection between wobbling and rigid elements was defined by a non-linear spring-

damper (Pain and Challis, 2001) (Figure 3.9): 

 

ivkvkR ⋅⋅−⋅−= )( 2

3

1 & ,    (3.19) 

where v  is a vector defining the position of one point from another, i  is a unit vector in the 

direction of v , v  is the magnitude of v , v&  is the first time differential of v , 1k  and 2k  

are stiffness and damping coefficients respectively, and R  is a force vector. 

 

The wobbling masses of the torso, thigh, and shank each had different 1k  and 2k  

coefficients, but the coefficients were consistent across both legs and both attachments of 

the wobbling mass. 

 

Foot-ground interface 

The horizontal and vertical forces at the foot were both modelled as modified linear spring-

dampers situated at the heel, ball, and toe of each foot (Figure 3.8).  The damping term in 

the vertical spring was multiplied by the magnitude of the displacement in order to ensure 

the force was zero at touchdown and take-off (Equation 3.20). 
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iiiiiyi yykykR ⋅⋅−⋅−= &21   (for i=1,3), (3.20) 

where yR  is the vertical force, y  is the vertical displacement with respect to the floor, y&  

is the first differential of y , 1k  and 2k  are stiffness and damping coefficients respectively, 

and i  represents the three points of contact on the foot. 

 

The equation for the horizontal spring-damper was multiplied by the vertical force, 

ensuring the force was zero at touchdown and take-off (Equation 3.21). 

 

yiiiiixi RxkxkR ⋅⋅−⋅−= )( 43 &   (for i=1,3), (3.21) 

where xR  is the horizontal force, yR  is the vertical force, x  is the horizontal displacement 

from the initial ground contact point, x&  is the first differential of x , 3k  and 4k  are 

stiffness and damping coefficients respectively, and i  represents the three points of contact 

on the foot. 

 

The total horizontal and vertical GRFs on each foot were the sum of these values: 

 

∑
∑

=

=

=

=

3

1

3

1
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yiy

i
xix

RR

RR

.      (3.22) 

 

The stiffness and damping coefficients were consistent across both feet. 

 

3.6 CHAPTER SUMMARY 

 

In this chapter literature on analytical models of jumping and modelling soft tissue 

movement was reviewed.  The structure of the computer simulation model of triple 

jumping was outlined and justified, and the individual aspects of the model were described.  

The next chapter will cover the collection of triple jump performance data and methods for 

subject-specific parameter determination. 
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CHAPTER 4 

 

DATA COLLECTION AND PARAMETER 

DETERMINATION 

 

4.1 CHAPTER OVERVIEW 

 

In this chapter the experimental protocol and equipment used to collect kinematic, kinetic 

and anthropometric data from a triple jumper of national standard is described.  Where 

required, relevant literature is reviewed.  Procedures used to interpolate, rotate and 

translate kinematic data are outlined.  Experimental and theoretical procedures allowing 

the calculation of viscoelastic parameters and maximal voluntary torque profiles are also 

described. 

 

4.2 DATA COLLECTION SUMMARY 

 

The testing procedures were explained to the subject, a male triple and long jumper of 

national standard (age: 22 yr, mass: 72.6 kg, height: 1.82 m; personal bests: triple jump: 

14.35 m, long jump: 7.10 m). In accordance with the Loughborough University ethical 

guidelines, a pre-selection medical questionnaire was filled in, and an informed consent 

form was signed (Appendix 3).  Kinematic and force data were gathered at the 

Loughborough University High Performance Athletics Centre (HiPAC).  Force data were 

collected from a single force platform.  In order that force data could be collected from 

each ground contact phase of the triple jump the subject performed a number of trials from 

his full approach run where the take-off of the hop, step, and jump respectively was from 

the force platform.  The subject also performed a number of long jumps from the force 

platform.  Kinematic data were collected for all trials using a Vicon MX motion capture 

system.  High-speed and digital video were also captured and anthropometric 

measurements taken.  In a subsequent session, maximal voluntary joint torque data were 

obtained using an isovelocity dynamometer. 
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4.3 COLLECTION OF KINEMATIC DATA 

 

4.3.1 Literature on motion capture 

 

Motion capture systems 

Previously, cinematographic analysis was the main technique used in the collection of 

kinematic data in order to identify positions, velocities, and accelerations of joint centres.  

This necessitated the use of manual digitization which is tedious and time consuming 

(Clayton, 1991).  These drawbacks are partially overcome by semi-automated systems, 

which use point prediction to estimate the location of markers.  Fully automated systems 

rely on the use of contrasting markers attached to the skin of the subject overlying the 

anatomical landmarks (Clayton, 1991). 

 

There are two categories of commercial instrumentation commonly used to measure 

whole-body motion:  Those that provide a visual record of body segment positions, and 

those that utilise magnetic sensors to determine the position and orientation of segments in 

space (Richards, 1999). 

 

Image-based devices can be further divided into the categories of passive and active 

systems, depending on the type of markers each system utilises.  Passive systems use 

markers that reflect light back to the sensor, while active systems use markers that emit the 

light for the sensors (Richards, 1999).  Passive systems have the advantage that no wires or 

batteries are required, and markers are inexpensive to replace (Yeadon and Challis, 1994).  

Active systems have good resolution at high sampling rates with the disadvantage of the 

subject having to carry a power supply and wires for the light emitting diodes (LEDs) 

(Yeadon and Challis, 1994).  Magnetic tracking systems have the disadvantages of the 

active marker systems with the additional disadvantage of interference from metal in the 

capture volume (Richards, 1999). 

 

Richards (1999) reviewed seven optical-based (Ariel, CODA, Elite, Motion, Peak, 

Qualisys, and Vicon) and one electromagnetic-based measurement systems (Skill 

Technologies).  Five of the optical-based systems produced RMS errors of less than 2 mm 

when measuring fully visible moving markers and less than 1 mm RMS errors when 
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measuring a stationary marker.  The Vicon system consistently had the lowest RMS errors 

amongst the optical-based systems in measurement of moving markers and angles based on 

marker positions.  Richards (1999) also noted that the tracking and editing time for the 

Vicon system was low. 

 

All the systems discussed above necessitate the placement of markers or sensors on the 

skin, which are typically used to calculate the positions of joint centres and model the 

subject as a system of rigid bodies.  This method can produce artefacts due to skin 

movement over the underlying bony landmarks and changes in technique by the subject 

caused by the markers or sensors on the skin.  Mundermann et al. (2006) discussed the use 

of markerless motion capture for biomechanics.  They described a method using an 

articulated iterative closest point (ICP) algorithm to track human body segments in visual 

hull sequences.  They stated that the biomechanical applications of the current methods for 

markerless motion capture have been limited by their accuracy.  However, they predicted 

markerless tracking will become a feasible and practical alternative to marker-based 

systems, minimising patient preparation time and reducing experimental error. 

 

Currently, the good accuracy of the passive optical-based systems (Richards, 1999), 

combined with the lack of requirement for the subject to carry a power supply and wires, 

make them a suitable option for the measurement of dynamic human jumping activities. 

 

Soft tissue motion 

It has been shown that soft tissue movement can lead to skin markers not exactly 

representing underlying joint motion during activities involving impacts.  Minetti and Belli 

(1994) investigated the movement of the visceral mass during periodic movements; they 

found a maximum displacement of 0.1 m during hopping tasks.  Lafortune et al. (1992) 

found external markers moved 4.3 cm and 7.5 cm with respect to the tibia and femur 

respectively, during loaded and unloaded knee flexion / extension.  Reinschmidt et al. 

(1997a) investigated the effect of this skin movement on the calculation of knee joint 

motion during running.  They demonstrated average errors relative to the range of motion 

of 21%, 63%, and 70% in flexion / extension, internal / external rotation, and abduction / 

adduction respectively between skin markers and markers attached directly to the tibia and 

femur.  Reinschmidt et al. (1997b) showed that knee flexion / extension angles calculated 

from skin markers showed good agreement with underlying bone movement (mean 2.1° 
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difference) during walking.  This is in contrast to abduction / adduction and internal / 

external rotation which, on occasions, produced errors larger than the true bone movement.  

This suggests that only flexion / extension angles should be calculated at the knee using 

external markers and, even then, with caution. 

 

4.3.2 Vicon MX 

 

Vicon MX is a suite of networked Vicon MX cameras and devices that provide real-time 

and offline digital-optical motion capture data.  Each camera has a strobe unit that emits 

flashes of near infrared light (Figure 4.1), illuminating retroreflective markers located at 

key locations on the subject (Figure 4.2).  The camera then captures and electronically 

converts the pattern of reflected light from the markers into data that represents the 

position and radius of each marker in the image. 

 

 

Figure 4.1 A view of the experimental setup from behind. 

 

Details of marker positions 

Forty-five 25 mm retroreflective markers were positioned at locations on the subject’s 

body in order that the positions of joint centres could subsequently be estimated (Figure 

4.2 and Appendix 4). 
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Figure 4.2 Positioning of retroreflective markers on the subject. 

 

Camera setup 

Eighteen Vicon MX cameras were situated around the capture volume in order that a ~18m 

x 2m x 2.5m volume was covered (Figures 4.1 and 4.3).  This volume included the full 

triple jump and the last stride of the approach run.  Data were captured from a number of 

whole triple jumps at 240 Hz.  In addition to this a number of hop and step take-offs from 

the force platform, and two additional complete triple jumps, were also captured at 480 Hz. 

 

 

 

Figure 4.3 Diagram of the experimental setup. 
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Vicon calibration 

In order to calibrate the Vicon cameras it was necessary to identify internal (focal length 

and distortion) and external (camera position and orientation) camera parameters.  Vicon 

accomplished this using a dynamic calibration procedure which calculated these 

parameters through two processes: 

 

• Linearisation: 

o Distortion in the camera lenses and other non-linearities were measured and 

a correction matrix was then applied to the data. 

• Photogrammetric Calibration: 

o The physical location and orientation of the cameras were calculated. 

 

Prior to this dynamic calibration, a static calibration was performed in order to define the 

global coordinate system in the capture volume using a calibration frame.  The calibration 

frame had four 25 mm markers located in a plane with three markers defining the x axis 

and another marker which combined with the x axis to define the origin and y axis.  The z 

axis is then obtained by taking the cross product of the x and y axes. 

 

The dynamic calibration was performed with three collinear 25 mm retroreflective markers 

situated at known distances from each other on a wand.  Due to the large capture volume 

the wand was placed on the end of an extension pole in order that a much larger volume 

could be covered by the wand.  This allowed more cameras to recognise the markers and 

lower camera residuals to be achieved. 

 

Camera residuals 

The quality of the calibration was determined by camera ‘residuals’ representing the RMS 

of the distance between the light ray emitted from the camera to the retroreflective marker 

and the ray reflected back to the camera from the marker.  The ‘mean residual’ is the 

mathematical mean of all the camera residuals and the ‘residual range’ indicates the 

difference between the highest and lowest camera residuals. 

 

According to Vicon, the individual camera residuals should not be more than 0.1 % of the 

distance from the camera to the centre of the capture volume.  This would indicate that a 
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residual of less than 1 mm would be acceptable for a distance of 1 m from the centre of the 

capture volume.  Since all cameras were a number of metres from the centre of the volume, 

the measured residuals (mean 0.609 mm) were more than adequate (Appendix 5). 

 

Static reproducibility 

The static reproducibility is a measure of the RMS error of the calculated relative positions 

of markers on the static calibration object with respect to the known relative coordinates of 

the markers.  Vicon recommends that this value be less than 1%, hence on this occasion the 

value of 0.944% was just acceptable.  However, the accuracy of the static calibration 

object was not an issue in this case as the data subsequently underwent a rotation and 

translation.  This was based on a matrix determined from markers placed on the floor 

throughout the capture volume in order to define a global coordinate system (Appendix 6). 

 

Rotation and translation of the coordinate data 

Due to the relatively large capture volume, some of the cameras could not detect the static 

calibration frame, which caused problems when calibrating the equipment.  The calibration 

frame was elevated and rotated until the maximum number of cameras could detect it.  

This led to a global coordinate system that did not relate well to the activity being 

measured and therefore required a rotation and translation to be performed on the data to 

bring the origin and coordinate system in line with the running track before it could be 

analysed (Appendix 6). 

 

Vicon reconstruction parameters 

Vicon automatically tracks markers and reconstructs their position.  This reconstruction is 

dependent on various parameters, namely: 

 

• Maximum acceleration; 

• Maximum noise factor; 

• Intersection limit; 

• Residual factor; 

• Predictor radius; 

• Minimum cameras to start trajectories. 
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In order to optimise the number of markers that were tracked, and the accuracy of this 

tracking, these values were varied.  Each one was manipulated away from the default 

values whilst holding the other values constant.  It was assumed the effect of each 

parameter was independent, unless indicated otherwise in Vicon literature.  One way of 

assessing the quality of the reconstruction is to observe the number of segments created; if 

all trajectories are unbroken there will be one segment per marker.  In all cases there were 

a number of broken trajectories and therefore a much higher segment number than there 

were markers, so minimising this number was an indicator of less broken trajectories.  This 

is just an indicator and it was important to visually inspect the data too, as some 

trajectories were more important to the analysis than others.  Therefore, parameter values 

that also optimised the tracking of these trajectories were chosen.  For parameter values 

and explanations see Appendix 7. 

 

4.3.3 Video 

 

In addition to Vicon data, high-speed video of the ground contact phases on the force 

platform was captured from the front and side using Phantom high-speed cameras (Figure 

4.3).  These were used as a visual reference to aid the analysis and processing of the kinetic 

and kinematic data.  Digital video was captured at 50 Hz using three Sony digital 

Handycam VX1000E video cameras, two situated diagonally in front of the jumper and 

one diagonally behind (Figure 4.3).  In addition to acting as a visual reference, this was 

treated as a contingency plan had there been problems with the kinematic data from Vicon 

necessitating manual digitising. 

 

4.3.4 Analysis of kinematic data 

 

Marker files 

Once the kinematic data had undergone the rotation and translation it was necessary to 

assign each tracked marker with a name in order that segments could be defined and angles 

between segments calculated.  In order to do this Vicon required a marker file containing 

all the relevant marker labels.  A list of these names is displayed in Appendix 4.  This file 

also defined segments using marker positions and subsequently defined the sequence in 

which these segments were attached to each other.  The order in which lines between 

markers were drawn was also defined for display purposes. 
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For each trial it was necessary to label each marker with the correct name.  Since 

trajectories were often broken, some markers were labelled multiple times over the time 

period of the trial. 

 

Filling gaps in marker trajectories 

Where marker trajectories were broken, gaps of up to 10 frames were filled automatically 

by Vicon, since it is relatively easy to predict a trajectory over a small time period where 

information is known about the trajectory at either side of the gap.  In this case trajectories 

were then visually checked to ensure the interpolation was sensible.  Where the gaps were 

larger than 10 frames the pattern of movement of proximal markers was used to predict the 

trajectory of the marker in question.  Discretion was used in order to pick suitable markers, 

i.e. the trajectory of one knee, ankle, or elbow marker can be used with some confidence to 

predict the trajectory of the other marker on the same joint since they are on hinge joints 

and therefore bound to follow similar trajectories.  This technique was used mainly in 

airborne phases and not very close to impacts where marker movement is more erratic.  

Where a portion of a trajectory was clearly spurious this portion was deleted and the gap 

filled in one of the ways described above. 

 

Model files 

Once all the markers in the trials had been labelled it was possible to obtain joint centres 

and relevant joint angles for input into the simulation model from Vicon using a model 

written in Vicon BodyLanguage (Appendix 8).  Since the data were collected in three 

dimensions and the simulation model was restricted to the sagittal plane, it was necessary 

to convert the angles into two dimensions.  As most of the activity occurred in the sagittal 

plane, angles could be read in directly from Vicon if the axes defined within Vicon were in 

line with those of the simulation model.  Two potential operations were possible: 

projection of the angle onto the sagittal plane; or rotation of the coordinate system of the 

limb in order to obtain the angle in the sagittal plane. 

 

Projection of the limb angle 

The angle of the limb (θ ) was calculated by simply using the coordinates in the axes 

describing the sagittal plane (x and z) and disregarding the coordinate in the third axis (y) 

(Figure 4.4). 
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Figure 4.4 Illustration of the projection of a segment onto the sagittal plane. 

 

Rotation of the arm coordinate system 

The other option was that the angle of a ‘child’ segment could be calculated with respect to 

the coordinate system of the ‘parent’ segment that it was attached or the global coordinate 

system (Figure 4.5). 

 

Figure 4.5 Diagram showing clockwise rotations about three axes (indicated by arrows 

around the axes) in a right hand coordinate system. 
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A directional cosine matrix can be derived which performs rotations on data points about 

three axes: 













⋅−⋅
⋅⋅

−

θφφθφ
θφφθφ

θθ

coscossinsincos

cossincossinsin

sin0cos

.    (4.1) 

 

With reference to Figure 4.5, the directional cosine matrix described in Equation 4.1 

represents clockwise rotations about three axes: N1; N2; and N3.  Through angles: θ ; φ ; 

and ψ . 

 

The order of rotation chosen was based on the likely range of motion about each of the 

axes during common human motions such as walking and running (Tupling and 

Pierrynowski, 1987); with internal / external rotation being the smallest, followed by 

adduction / abduction, and then flexion / extension.  Each segment was therefore rotated 

first about the flexion / extension axis, followed by the adduction / abduction axis, and 

lastly the internal / external rotation axis. 

 

Both methods were trialled in the angle-driven model and it was found that the projection 

angles allowed the model to match performance data better, since they represented motion 

in the sagittal plane better than the rotated angles, so that method was preferred. 

 

4.4 COLLECTION OF KINETIC DATA 

 

4.4.1 Literature on force measurement 

 

Force is generally measured using the deformation of transducer elements to generate a 

voltage proportional to the applied force (Yeadon and Challis, 1994).  Kinetic data of foot-

ground contacts is typically collected using force platforms.  According to Yeadon and 

Challis (1994) the key design features of a force platform are that it should be large enough 

to accommodate the contact area within the movement of interest and that it should have a 

natural frequency high enough to eliminate interference of vibrations in the plate with the 

signal of interest. 
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4.4.2 Force data collection protocol 

 

Force data were obtained using an AMTI BP600900 force platform with a 4000 lb (17800 

N) vertical force capacity.  This force platform uses strain gauges mounted on four 

precision strain elements to measure forces and moments, producing a total of six voltage 

outputs: three force; and three moment channels.  The raw voltage outputs from the strain 

gauges were amplified and converted to a digital signal by an AMTI Miniamp using a gain 

of 1000, and a 12 bit analog-to-digital converter.  The excitation voltage was set to 10 V 

and the voltage range was ±10 V.  The force data were captured at 1000 Hz and 

synchronised with the kinematic data using a remote trigger.  This trigger initiated the 

capture of force data, using a 50% pre-trigger with 2 s of capture time, and applied a 

voltage to an external patch panel eliciting a square wave in an analogue channel within 

the Vicon MX system. 

 

The force platform had a covering of synthetic track.  Initially no corrections were made 

for this since it was assumed this would only slightly affect the transferred forces, as the 

mass of the deformed surface was small (Nigg and Yeadon, 1987). 

 

4.4.3 Literature on isovelocity dynamometry 

 

In torque-driven models of sporting activities it is necessary to ascertain joint torque 

parameters for the subject in order that joint torques in the model remain within realistic 

boundaries.  These joint torques may be measured using an isovelocity dynamometer (e.g. 

Cybex, Isocom).  These dynamometers have a powered crank which rotates back and forth 

through a pre-defined angle range, varying resistance in order to maintain a set velocity, 

whilst the subject exerts maximal torque on the crank, both concentrically and 

eccentrically.  This torque is measured by a strain gauge in the crank. 

 

Chow (2001) highlighted several issues concerning the use of isovelocity dynamometers:  

torque ‘overshoot’ and ‘oscillation’ can occur before constant angular velocity is attained 

and deceleration occurs towards the end of the contraction (Osternig et al., 1982); the 

period of constant angular velocity decreases as the pre-set angular velocity increases due 

to the greater angular distance through which the limb has to travel before reaching 
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constant angular velocity (Chow et al., 1997); errors in torque measurement occur when 

gravitational and inertial effects are not considered (Chow et al., 1997), although Chow 

(2001) stated that most modern machines have a gravity correction feature; and mixed 

results on within-day, inter-day, and inter-machine reliability of strength data have been 

reported for different exercises (Madsen, 1996).  Despite these concerns Chow (2001) 

emphasised that recognising the limitations of these machines does not detract from the 

valuable contribution they make to the understanding of muscular function. 

 

4.4.4 Joint torque measurement protocol 

 

An Isocom isovelocity dynamometer was used to gather data for the ankle plantar and 

dorsi flexion and for flexion and extension of the knee, hip, and shoulder on the right side 

of the body (Figures 4.6-4.7). 

 

 

Figure 4.6 Position of subject and dynamometer for knee extension. 

 

Bilateral symmetry was assumed.  Measurements were taken at angular velocities ranging 

from 0°/s (isometric) to 400°/s at 50º/s intervals, using a sampling frequency of 1000 Hz.  

These data subsequently allowed torque / angle and torque / angular velocity profiles to be 

calculated for the subject and joints in question. 
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Figure 4.7 Position of subject and dynamometer for ankle plantar flexion. 

 

When setting up the apparatus it was important to ensure that the centre of rotation of the 

crank arm was as close to that of the relevant joint as possible.  In order to do this, the 

subject was instructed to apply torque to the crank arm whilst the centre of rotation of the 

crank was aligned with that of the joint, as the joint centre moves when torque is applied. 

 

Calculation of inertial properties 

Inertial properties for the system were obtained automatically by the machine.  The crank 

and limb were allowed to fall under gravity at a prescribed angular velocity and the applied 

torque was measured.  Once this had been calculated, the torque due to gravitational 

acceleration of the limb could be accounted for to give the gross torque produced around 

the joint. 

 

Conversion of crank angle to joint angle 

The crank angle and joint angle differ due to the way the subject’s limb is attached to the 

crank arm.  In order to get joint angle data from the crank angles measured by the 

dynamometer, a mechanical goniometer was used to measure joint angles statically 

throughout the range of crank angles used by the dynamometer, whilst the subject applied 

a torque to the crank arm.  A line was then fitted to the data relating joint angles to crank 

angles.  This allowed joint angles and angular velocities to be calculated from the crank 

data. 
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4.4.5 Maximum joint velocity measurements 

 

In addition to the isovelocity data, maximum velocity data were also taken for the knee, 

hip, and shoulder joints with the limb unloaded.  The ankle was omitted as it was deemed 

impractical because maximum voluntary velocity was unlikely to exceed that measured by 

the isovelocity dynamometer.  These data were gathered using Vicon MX; retroreflective 

markers were placed on the ankle, knee, hip, shoulder, and elbow joints and the subject 

was instructed to flex and extend at each joint as quickly as possible, with flexion and 

extension being two separate movements. 

 

These data allowed a realistic maximum achievable velocity to be measured, which could 

then be used as a lower bound for maxω  in the optimisation procedure, during which a 

surface was fitted to the torque / angular velocity and torque / angle data gathered using the 

isovelocity dynamometer (Section 4.7.5).  A more accurate torque / angular velocity 

relationship for input to the simulation model of triple jumping could then be calculated. 

 

4.5 DATA PROCESSING 

 

4.5.1 Filtering force data 

 

Upon visual inspection it became apparent that the experimental force data might be noisy.  

This was especially marked in the horizontal force traces.  The simulation model 

determined forces at the foot using equations based on the movement of the foot and shoe 

relative to the ground.  If a portion of the force trace was governed by factors other than 

this, e.g. movement of the force plate or the force plate covering, the model could not be 

expected to reproduce this portion.  In order to determine whether this was the case, similar 

jumps were performed from the force plate in the laboratory, and the force plate in the 

HiPAC where the experimental data was collected.  These jumps were performed using the 

same footwear and approach run length.  The HiPAC data displayed a high frequency 

component which was absent from the laboratory data (Figures 4.8 and 4.9). 
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Figure 4.8 Horizontal force traces for similar jumps in the laboratory and HiPAC. 
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Figure 4.9 Vertical force traces for similar jumps in the laboratory and HiPAC. 
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A spectral analysis was then performed on both sets of data in order to ascertain which 

frequencies were common to both sets and which were not, and hence could be filtered out 

of the HiPAC data.  It can been seen that there was a marked increase in the spectral 

density of the HiPAC data signal above 100 Hz, peaking at around 200 Hz (Figure 4.10).  

There was no such increase in the laboratory data, with the signal continuing to die away to 

near zero (Figure 4.11).  Since the spectral density graphs differ in form after 

approximately 100 Hz for the two jumps, a low pass Butterworth filter was used to remove 

frequencies above 100 Hz from the HiPAC data.  This resulted in a total change in 

horizontal and vertical impulse of only 0.1188 % and -0.0245 % respectively, but quite a 

marked change in the form of the horizontal force trace (Figure 4.12) and a less marked 

change in the vertical force trace (Figure 4.13). 

 

 

Figure 4.10 Spectral analysis of force data from HiPAC. 
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Figure 4.11 Spectral analysis of force data from the laboratory. 
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Figure 4.12 Filtered and raw horizontal force traces from HiPAC data. 
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Figure 4.13 Filtered and raw vertical force traces from HiPAC data. 

 

4.5.2 Calculating COM velocities 

 

It was necessary to obtain accurate COM velocities at touchdown and take-off for each 

phase of the triple jump.  These were used as initial conditions and in the objective 

function to evaluate the accuracy of the model.  Whole-body COM positions were obtained 

using an inertia model (Yeadon 1990a) (Figure 4.14). 

 

 

Figure 4.14 Graphical representation of the inertia model for trial 05. 

 

Touchdown and take-off velocities were calculated from the COM positions at the 

beginning and end of the flight phases preceding and following the ground contact using 

equations of motion (Table 4.1). 
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Table 4.1 Calculated COM velocities 

Phase Trial Direction Touchdown velocity (m/s) Take-off velocity (m/s) 

07 Jump Horizontal 6.81 5.52 

  Vertical -2.22 2.28 

09 Hop Horizontal 7.73 7.00 

  Vertical -0.95 2.35 

10 Step Horizontal 7.07 6.30 

  Vertical -2.71 1.64 

 

In order to quantify the accuracy of this data the impulses calculated from the difference 

between touchdown and take-off velocities were compared to those measured from the 

force plate, and implied differences in velocities were calculated (Table 4.2). 

 

Table 4.2 Comparison of calculated and measured impulses 

Phase Trial Direction 
Calculated 

impulses (N.s) 

Measured 

impulses (N.s) 

Implied 

difference in 

velocity (m/s) 

07 Jump Horizontal -93.81 -90.98 0.04 

  Vertical 467.92 473.71 0.08 

09 Hop Horizontal -53.19 -46.94 0.09 

  Vertical 339.64 342.59 0.05 

10 Step Horizontal -56.13 -55.89 0.00 

  Vertical 456.52 462.35 0.08 

Average   176.83 180.81 0.05 

 

These implied differences in velocities were used as a number by which the initial COM 

velocities were allowed to vary in simulations to account for inaccuracies in the coordinate 

data. 
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4.5.3 Splining angle data 

 

Joint angle time histories from the performance obtained using Vicon were used as input to 

an angle-driven simulation model.  In order to drive the simulation model using different 

time-steps it is necessary to fit quintic splines (Wood and Jennings, 1979) to the joint angle 

time histories to ensure that angles could be calculated for input to the simulation model at 

any time interval during the simulations.  Six spline coefficients were calculated for each 

time step.  The simulation model could then read in these six spline coefficients and use 

them to interpolate between time-steps, calculating the angles and their first and second 

time derivatives to obtain angular velocity and acceleration for the requisite points in time. 

 

In addition to interpolation, quintic splines were also used to smooth the angle data, 

removing noise due to marker movement or errors in the tracking of markers.  In order to 

estimate errors a pseudo data set was calculated by averaging the points before and after 

each original data point; the difference between this pseudo data point and the original data 

point gave an estimate of the error in this point (Yeadon and King, 2002). 
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Figure 4.15 A comparison of raw and splined knee angles. 
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Figure 4.16 A comparison of raw and splined ankle angles. 

 

The level of smoothing was important in order to remove noise whilst keeping as much of 

the genuine signal as possible.  This level was determined by the weighting of local and 

global errors on the overall level of smoothing.  This was particularly important around 

impacts since large angular accelerations would have occurred and should not have been 

removed due to over-smoothing.  In order to obtain a balance between removing noise and 

over-smoothing, local and global errors were each given a weighting of 50%.  Average 

errors were less than 0.5° for angles at all joints.  Selected raw and splined angle time 

histories are displayed in Figures 4.15-4.16 and it can be seen that genuine angle peaks 

have been largely maintained, whilst high frequency noise has been removed. 

 

4.6 ANALYSIS OF TRIPLE JUMP DATA 

 

4.6.1 Phase ratios 

 

During the data collection the subject performed a number of complete triple jumps, the 

total distances, phase distances and phase ratios for these jumps are displayed in Table 4.3.  

A diagram showing how each phase distance is calculated is shown in Figure 2.7. 
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Table 4.3 Distance of jumps and individual phase ratios for complete trials 

Trial Hop (m) Step (m) Jump (m) Total (m) Hop % Step % Jump % 

1 4.32 4.26 4.17 12.75 33.88 33.41 32.71 

3 4.80 4.04 4.34 13.18 36.42 30.65 32.93 

5 4.59 3.96 4.53 13.08 35.09 30.28 34.63 

6 4.44 3.98 4.37 12.79 34.71 31.12 34.17 

7 4.51 3.96 4.28 12.75 35.37 31.06 33.57 

Mean 4.59 4.03 4.34 12.91 35.10 31.30 33.60 

Range 0.48 0.30 0.36 0.43 2.54 3.14 1.93 

 

It can be seen in Table 4.3 that, on average, the subject employed a balanced technique; 

one where neither the hop nor the jump was more than two percent greater than the other 

(Hay, 1999).  Only in trial number three, which resulted in the greatest distance, did the 

subject exhibit another, hop-dominated, technique (Hay, 1999).  The phase ratios displayed 

in Table 4.3 are all within those percentages reported for Olympic triple jumpers by Hay 

(1999). 
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Figure 4.17 Horizontal and vertical forces for the hop phase (Trial 09). 
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Figure 4.18 Horizontal and vertical forces for the step phase (Trial 11). 
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Figure 4.19 Horizontal and vertical forces for the jump phase (Trial 07). 

 

Figures 4.17 to 4.19 show filtered forces measured in BWs for the hop, step, and jump 

phases respectively.  These forces are in line with values in the literature, in that the 

magnitude of the vertical force peak in the hop landing is around 12 body weights (Ramey 

and Williams, 1985).  However, surprisingly the highest peak force was recorded in the 
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step landing (> 13 BWs); this was perhaps due to the subject having a bruised heel which 

he tried to protect from high forces in the hop landing by contacting the ground first with 

his toe.  This was not apparent in the step landing. 

 

4.7 PARAMETER DETERMINATION 

 

4.7.1 Literature on anthropometric measurement 

 

Yeadon and Challis (1994) stated that experimental techniques for determining body 

segment inertia parameters such as water immersion (Plagenhoef et al., 1983), reaction 

board measurements for mass centre locations (Drillis et al., 1964) and oscillation 

techniques for moments of inertia (Hatze, 1975) are time consuming and not suitable for 

determining inertia properties of central segments such as the pelvis.  Yeadon and Challis 

(1994) list a number of methods which allow calculation of body segment inertia 

parameters.  These include geometric models (Hatze, 1980; Yeadon, 1990a), regression 

equations (Hinrichs, 1985), non-linear regression equations (Yeadon and Morlock, 1989) 

and the scaling of cadaver inertia values (Forwood et al., 1985).  They claim that 

regression equations based purely on cadaver data should be viewed with caution and that 

techniques based to a lesser extent on cadaver data, i.e. geometric models, are preferable. 

 

Yeadon and Challis (1994) predicted that the use of computer aided tomography (CAT) 

(Huang and Wu, 1976) and magnetic resonance imaging (MRI) (Martin et al., 1989) may 

circumvent the reliance on cadaver data or at least allow an evaluation of models using 

these data. 

 

Geometric models 

Yeadon (1990a) evaluated his geometric model against those of Jensen (1978) and Hatze 

(1980).  The maximum errors of the total body mass estimates of these models were 2.3%, 

1.8%, and 0.5% respectively.  However Yeadon (1990a) stated that the accuracy with 

which the model estimates total body mass is not a good indicator of the accuracy of 

predicted segmental masses and inertias.  Instead Yeadon (1990a) proposed that, since the 

model was developed for the calculation of personalised inertia parameters for input into a 

simulation model, the agreement of the simulation model with performance data would 
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give an indication of the accuracy of the model.  Yeadon (1990b) performed this 

evaluation using a computer simulation of aerial movement; he found maximum deviations 

between simulation and film of 0.04 revolutions for somersault, 7° for tilt, and 0.12 

revolutions for twist.  The model of Hatze (1980) requires 242 measurements, taking over 

an hour of the subject’s time, whereas the model of Yeadon (1990a) requires only 95 

measurements, taking between 20 and 30 minutes. 

 

4.7.2 Anthropometric measurements 

 

Ninety-five anthropometric measurements were taken to be used as input to the inertia 

model of Yeadon (1990a).  Measurements were taken using anthropometric callipers and a 

measuring tape (Figure 4.20).  These comprised 34 lengths, 41 perimeters, 17 widths, and 

three depths (Appendix 9). 

 

 

Figure 4.20 Anthropometric measurement of the subject. 

 

The subject was weighed without shoes and the shoes were weighed separately in order to 

obtain inertia properties for the foot and shoe segment.  Density values for individual 

segments were taken from Chandler et al. (1975) and allied with the measured volumes of 

the segments to calculate the inertia values.  After initial estimation these values were 

adjusted in order that the total mass of the body exactly matched the measured value. 
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The inertia model of Yeadon (1990a) has 16 segments and for each segment the mass, 

location of the mass centre, principal moments of inertia about the mass centre, and 

distance between joint centres are calculated.  The simulation model of triple jumping 

requires 11 segments, therefore the forearm and hand, and the head, chest, torso and pelvis 

were considered together using the Parallel Axis Theorem. 

 

4.7.3 Determining rigid and wobbling element mass and inertia parameters 

 

Determining mass parameters 

In order to determine the mass of the rigid and wobbling elements, values for the 

percentage bone, muscle, and fat mass of individual limbs were taken from Clarys and 

Marfell-Jones (1986). 

 

The ratios of the rigid and wobbling element masses were calculated from this data using a 

method adapted from Pain (1999).  Since body fat percentages reported in literature are 

much higher than that of the subject in this study, excess fat could simply be re-distributed 

as muscle, or the muscle-to-bone ratio could be kept constant. 

 

Table 4.4 Segment mass compositions (Clarys and Marfell-Jones, 1986) 

 Thigh Shank Trunk 

Mass of segment (kg) 7.78 2.14 37.36 

Bone mass of segment (kg) 0.70 0.46 4.88 

Fat mass of segment (kg) 3.32 0.61 12.2 

% mass of bone 9.03 21.69 13.06 

% mass of fat 42.63 28.78 32.65 

% mass of muscle 48.34 49.52 54.28 

 

Using the segmental masses and compositions from Table 4.4 it was possible to ascertain 

the relative fat percentage of the segment with respect to the whole body. 

 

According to Clarys et al. (1984): 

Percentage of body mass due to fat = 34.6%. 

Percentage of body mass due to bone = 13.4%. 
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The subject’s body fat percentage was assumed to be 8% since this has been shown to be 

typical of elite male jumpers (Houtkooper et al. 2007). 

 

Re-distributing fat as muscle 

Using the thigh as an example: 

Mass of subject’s thigh from inertia model (Yeadon, 1990a) = 9.743 kg. 

Fat mass percentage of thigh from literature = 100
7785.7

3161.3
⋅  = %63.42 . 

Ratio of segment fat to total fat from literature = 
6.34

63.42
 = 1.23. 

Fat mass percentage of subject’s thigh = 23.18 ⋅  = %86.9 . 

Therefore percentage fat left to re-distribute as muscle = 86.963.42 −  = %77.32 . 

Percentage mass of wobbling element = %97.9077.3234.4886.9 =++ . 

Mass of rigid element = 88.0743.9
100

03.9
=⋅  kg. 

Mass of wobbling element = 86.8743.9
100

97.90
=⋅ kg. 

 

Maintaining muscle to bone ratio 

Using the thigh as an example: 

Percentage fat-free mass of subject’s thigh = %14.9086.9100 =− . 

Percentage of fat-free mass made up of bone = %19.1414.90
34.4803.9

03.9
=⋅

+
. 

Percentage of fat-free mass made up of muscle = %95.7519.1414.90 =− . 

Percentage mass of wobbling element = %81.8586.995.75 =+ . 

Mass of rigid element = 38.1743.9
100

19.14
=⋅  kg. 

Mass of wobbling element = 36.8743.9
100

81.85
=⋅  kg. 

 

Average value 

The two methods described above were considered to yield an upper and lower limit for 

the masses of each segment, thus the input to the simulation model was taken as an average 

of the two: 
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Mass of rigid element = 13.1
2

38.188.0
=

+
 kg. 

Mass of wobbling element = 61.8
2

36.886.8
=

+
 kg. 

 

Determining inertia parameters 

Having determined the mass and inertia parameters of the segment and calculated the 

masses of the wobbling and rigid elements (Table 4.5), inertia parameters of the wobbling 

and rigid elements could be calculated.  It was assumed that the rigid elements were 

cylinders of uniform density, with knowledge of their length and mass their radii could be 

calculated using bone densities reported in the literature (Table 4.6). 

 

Table 4.5 Subject data from inertia program (Yeadon, 1990a) 

Cat Thigh 

Segment length (m) 0.45 

Rigid segment COM position (m) 0.23 

COM position of segment from proximal joint (m) 0.19 

MOI of whole segment (kg.m2) 0.17 

Mass of segment (kg) 9.74 

Mass of rigid element (kg) 1.13 

Mass of wobbling element (kg) 8.61 

 

Table 4.6 Bone densities in different body segments 

 Thigh Shank Trunk 

Bone density (kg/m3) 1218 1207.5 1100 

 Clarys and Marfell-Jones (1986) Dempster (1955) 
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Figure 4.21 Diagram showing wobbling element, rigid element and total segment COMs. 

 

Again the thigh is used as an example. 

 

Using the equation for the volume of a cylinder: hrv 2π= .    (4.2) 

 

The radius of the cylinder can be calculated: 0256.0
1218451.0

13.1
=

⋅⋅π
 m. 

 

Since the cylinder is of uniform density, the distance of COM from proximal joint equals 

half the length: 

2255.0
2

451.0

2
==

L
 m. 

 

Taking moments from the proximal joint, the COM position of the wobbling element can 

be determined: 

wobwobrigrigsegseg gdMgdMgdM += .   (4.3) 

 

Rearranging equation 4.3: 

wob
wob

rigrigsegseg d
M

dMdM
=

⋅−⋅
.   (4.4) 

 



 

 91 

The radius of the wobbling element can then be calculated: 

 

186.0
612.8

2255.0131.1191.0743.9
=

⋅−⋅
 m. 

 

Using the equation for the moment of inertia (MOI) about the transverse axis of a cylinder 

of uniform density: 

412

22 MrML
MOI

⋅
+

⋅
= .    (4.5) 

 

The MOI of the rigid element was therefore: 

 

019.0
4

13.10256.0

12

13.1451.0 22

=
⋅

+
⋅

 2mkg ⋅ . 

 

The parallel axis theorem dictates: 2MdII go += .     (4.6) 

 

With reference to Equation 4.6, the MOI of the whole segment is the sum of the MOIs of 

the wobbling (wob) and rigid (rig ) elements (Figure 4.21): 

 

222
rigriggrigwobwobgwobsegseggseg dMIdMIdMI +++=+ .  (4.7) 

 

Equation 4.7 can be rearranged to obtain the MOI of the wobbling element (gwobI ): 

 

gwobrigrigwobwobsegseggriggseg IdMdMdMII =−−+− 222 .  (4.8) 

 

The MOI of the wobbling element is therefore: 

 

150.0)2255.0131.1()186.0612.8()191.0743.9(019.0171.0 222 =⋅−⋅−⋅+−  2mkg ⋅ . 

 

The same methods were used for the shank and trunk segments. 
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4.7.4 Literature on modelling muscular function 

 

Muscle models in the literature can be broadly split into two sections: macroscopic (Hill, 

1938); and microscopic (Huxley, 1957). 

 

The sliding filament theory (Huxley, 1957) is a complicated model involving molecular 

interactions at a microscopic level and, as such, has limited application in whole-body 

simulation models of human movement.  Therefore typically Hill-type models are 

employed (Alexander 1990, 1992; Pandy et al., 1990; van Soest et al., 1993; Wilson et al., 

2006). 

 

Force / velocity relationship in muscle 

Hill (1938) produced a model of muscle function determining the effect of load on the 

speed of shortening, comprising what he termed the ‘dynamic constants’ of muscle: 

 

• P, the isometric tension of the muscle; 

• a, the shortening heat per centimetre of shortening; 

• b, the increase of energy rate per gram decrease in load. 

 

From this he produced a ‘characteristic equation’ for the speed of shortening, v, under a 

load P: 

=++ ))(( bvaP  constant. 

 

He stated that this equation also applies to lengthening. 

 

Yeadon et al. (2006) produced a four-parameter function that represented this force / 

velocity relationship as a joint torque / angular velocity relationship for use in simulation 

models of human movement. 

 

Differential activation of muscle in eccentric contractions 

It has been shown above that, in muscle fibres in vitro, tetanic muscle force decreases 

hyperbolically with increasing speed of shortening in the concentric phase to approach zero 

at the maximum rate of shortening (Hill, 1938).  In the eccentric phase muscle force 
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quickly reaches 1.5 times the maximum isometric value with increasing speeds of 

lengthening and then plateaus for values above 0.5 times the maximum rate of shortening 

(Harry et al., 1990).  However in maximum voluntary eccentric contractions in human 

skeletal muscle there is little increase in force above the isometric level (Westing et al., 

1988).  This indicates full activation cannot be achieved in maximum voluntary eccentric 

contractions.  Westing et al. (1990) found that force was increased by 21-24% during 

eccentric contractions when electrical stimulation was applied to the muscle, where no 

corresponding increase was seen for isometric and concentric conditions.  This led them to 

hypothesise that a neural mechanism inhibits activation levels during maximum voluntary 

eccentric contractions in order to reduce the risk of injury due to the extreme muscle 

tension that would otherwise be generated.  Yeadon et al. (2006) attempted to mimic this 

‘differential activation’ of muscle using a three-parameter function; this was used in 

addition to a four-parameter function modelling the theoretical tetanic torque / angular 

velocity relationship to produce a seven-parameter function.  This seven-parameter 

function was then used to fit a line to two sets of experimental joint torque / angular 

velocity data giving unbiased root mean squared differences of 1.9% and 3.3% of the 

maximum torques achieved.  They stated that failure to include differential activation 

considerations when modelling maximal movements will lead to errors in the estimation of 

joint torque in the eccentric phase and low-velocity concentric phase. 

 

Force / length relationship in muscle 

The force / length relationship of muscle in isolated fibres was initially thought to be of a 

polygonal form (Gordon et al., 1966) but more recently has been shown to approximate 

more closely to a bell-shaped pattern (Edman and Regianni, 1987).  King et al. (2006) 

added two parameters to the seven-parameter function of Yeadon et al. (2006) describing 

the maximum torque as a quadratic function of contractile element angle.  This produced a 

nine-parameter function defining the torque / angle / angular velocity relationship in 

maximum voluntary human joint movement which they employed in a torque-driven 

model of jumping for height.  In future simulations it may be beneficial to model the 

torque / angle relationship as a bell-shaped pattern in line with the findings of Edman and 

Regianni (1987). 

 

The nine-parameter fit of King et al., (2006) accounts for the contractile mechanisms 

involved in torque production around joints.  In addition to these contractile mechanisms, 
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passive structures in the form of parallel and series elastic components also modify torques 

produced. 

 

4.7.5 Torque / angle / angular velocity profiles 

 

Once the torque / angle / angular velocity data had been measured using the isovelocity 

dynamometer and the maximum voluntary angular velocity tests, a seven-parameter 

function was fitted to the data.  This was done using the method described by Yeadon et al. 

(2006).  In the concentric phase of the action the curve is represented by the classic Hill 

hyperbola (Hill, 1938) (Appendix 10): 
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In the eccentric phase the relationship between T  and ω  is given by the rectangular 

hyperbola (Appendix 10): 
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In addition to the four-parameter function defining the concentric and eccentric phase, 

there was a three-parameter function used to define the differential activation of the 

muscles during concentric and eccentric actions (Appendix 10): 
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Having defined the three-parameter and four-parameter functions (see Appendix 10 for 

symbol definitions) they were subsequently multiplied to give a seven-parameter function 

describing the maximum torque and differential activation.  An additional two-parameter 

function describing the dependence of the torque production on joint angle variation was 

added to the seven-parameter function to produce a nine-parameter function (King et al., 
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2006).  This two parameter function differed from the quadratic function used by King et 

al. (2006).  Instead it was represented by a bell curve (Edman and Regianni, 1987). 
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where optθ  is the angle at which maximum torque is produced and 2k  represents the width 

of the curve. 

 

Fitting the nine-parameter function 

For each joint and joint motion tested, a nine-parameter function was used to fit a surface 

to the experimental data using a simulated annealing algorithm.  Experimental torque data 

were restricted to those obtained from the constant angular velocity period of the crank 

motion (Section 4.4.3).  Contractile component angles were obtained using calculated SEC 

stiffnesses (Section 3.5.2), and it was assumed that during the period of isovelocity the 

contractile component velocity was equal to the velocity of the joint.  Figure 4.22 shows a 

3D surface fit to measured data for knee flexion, where the open circles represent 

measured joint torques.  This surface describes how much torque can be produced at any 

combination of angle and angular velocity within the specified range.  Appendix 11 gives 

values for each of the nine parameters for each of the joints and joint actions and 

associated absolute and percentage RMS error values. 

 

 

Figure 4.22 Example surface fit to torque data for knee flexion. 
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The metatarsophalangeal joints 

Since no data were collected for the MTP joint, the torque parameters were estimated using 

the method described below. 

 

With reference to Figure 4.23, imagine a person is balancing on ‘tiptoes’ causing a large 

reaction force towards the end of their toes.  Taking moments about the point of force 

application, O, where B is the MTP joint and A the ankle joint: 

 

RdT AA ⋅= .      (4.13) 

 

It was estimated that Bd is one third of the length of Ad  therefore: 

 

3/AB TT = .      (4.14) 

 

 

Figure 4.23 Diagram of MTP joint torque. 

 

So the MTP joint was considered to have the same torque / angular velocity parameters as 

the ankle joint with one third of the maximum isometric torque.  The torque / angle 

relationship from the ankle was not included in order to avoid projecting the same 

optimum angle onto the MTP joint; therefore a seven-parameter function was used for the 

MTP joint. 
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The shoulder joints 

The subject was only able to complete three isometric trials in the shoulder flexion 

protocol due to injury.  The torque / angle relationship and maximum isometric torque 

were therefore calculated from these trials and this was then combined with the seven-

parameter torque / angular velocity relationship calculated from the shoulder extension 

protocol to form the nine-parameter fit. 

 

Increased T0 values 

The nine-parameter fits were calculated with the intention of 90% of the measured values 

lying below the surface and 10% lying above the surface.  It was decided not to calculate 

fits with 100% of values below the surface, since this made it difficult for the algorithm to 

accurately match the shape of the data.  However since the subject had achieved all the 

measured values it was decided that the fits should subsequently be raised based on the 

number and position of the points above the surface.  Therefore the average distances of 

the measured points above the surfaces were calculated, with isometric and dynamic points 

weighted such that each accounted for half of the calculated mean values.  The T0 and 

Tmax values were then increased accordingly by these average values, with all other 

measures remaining the same. 

 

4.8 CHAPTER SUMMARY 

 

In this chapter the collection of kinetic and kinematic performance data from a triple jump 

has been described.  Considerations for the processing of kinematic data have been 

discussed and experimental and theoretical techniques for subject-specific parameter 

determination have been outlined.  The next chapter will contain an evaluation of the 

computer simulation model of triple jumping. 
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CHAPTER 5 

 

MODEL EVALUATION 

 

5.1 CHAPTER OVERVIEW 

 

In this the chapter the method for the determination of subject-specific viscoelastic 

parameters using an angle-driven model is described.  Issues regarding matching angular 

momentum and limiting depression at the foot-ground interface are discussed.  The results 

from the determination of subject-specific viscoelastic parameters are detailed.  The 

methods for the evaluation of a torque-driven model are then described and results of this 

evaluation are reported. 

 

5.2 EVALUATION OF JUMPING MODELS IN THE LITERATURE 

 

This review will consider the methods of evaluation used in those studies involving 

analytical models of jumping reviewed in Section 3.2.  Where a model is employed by 

more than one study, the method of evaluation used in the study where the model was 

introduced will be described. 

 

5.2.1 Models of one-legged jumps 

 

Alexander (1990, 1992), in his simple models of jumping, did not quantitatively evaluate 

his models as such; he did however discuss features of the simulation results with respect 

to those from the literature.  Sorensen at al. (1999) matched their model to performance 

using GRFs measured from a long jump.  The only quantitative measure of how closely the 

simulation matched performance data they offered was that the stance knee angle deviated 

maximally from the performance knee angle by 4°.  Seyfarth et al. (1999) matched their 

simulation force data to measured force data.  They provided parameter values from the 

model and the respective performance values which gave an indication of how well the 

model matched performance, without performing an evaluation per se.  Seyfarth et al. 

(2000) also did not provide an explicit evaluation of their model, but they did provide 



 

 99 

experimental force data for comparison with simulated force data, and stated that the angle 

of attack at touchdown agreed with experimental observations within a range of 5°.  They 

stated that the model did not reproduce the magnitude of the first GRF peak and, as such, 

the model’s jumps were shorter (-9%) and had a flatter take-off angle (-7°) than 

experimental data.  These are the only quantitative attempts at evaluation that they made.  

Seyfarth at al. (online) used the results from the best of 30 long jumps (6.90 m) in order to 

compare the results of their optimised model to actual performance.  The distance jumped 

by the model (5.72 m) was quite considerably less than this best performance, so 

comparisons may not necessarily have been as valid as with a jump of a similar distance.  

Linthorne and Kemble (1998) in their adaptation of the model of Alexander (1990) stated 

that the model accurately predicted the differences in optimum take-off technique between 

males and females, and the changes in jump performance as an athlete uses a faster 

approach.  However they made no attempt to quantitatively evaluate their results.  Ridka-

Drdacka (1986) did not provide a quantitative evaluation of their model.  Ranges of input 

parameters were reported but their origin was not specified.  Some mention was made of 

estimating the influence of some of the simplifications of their model using experimental 

measures but there was only a qualitative description of these effects.  Hatze (1981) 

showed experimental and theoretical GRFs which appeared to show a very close match, 

stating that the good agreement between theoretical and experimental results was apparent.  

However he did not provide any quantitative measure of this agreement, or mention how 

well the model matched performance data in any other way.  Chow and Hay (2005) used 

kinematic and kinetic data from a long jump from the literature in order to calculate a 

‘reference jump’ which best matched this data.  They did not provide a quantitative 

evaluation of the jump; however they did give values for the parameters used in order to 

produce the reference jump, alongside those from the literature.  Wilson et al. (2006) and 

King et al. (2006) explicitly evaluated their subject-specific models against a performance 

by that subject.  Wilson et al. (2006) used a kinematically-driven model to determine 

viscoelastic parameters, using a six-component objective function (Section 3.2.1) to 

evaluate how closely the model matched performance data in a jump for height, and a jump 

for distance.  They found that parameters derived from either one of the types of jump did 

not reproduce the performance well in the other type of jump.  They therefore produced a 

common set of parameters for a jump for height and a jump for distance which led to a 

mean difference between simulation and performance of 8% (made up of 7% and 10%) 
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over the two simulations.  King et al. (2006) also used a six-component objective function 

(Section 3.2.1) to determine how closely a torque-driven model matched performance data, 

achieving a difference of 6.6%. 

 

5.2.2 Models of two-legged jumps 

 

Pandy et al. (1990) made some mention of how well their musculotendon model matched 

experimental data; providing graphs and mentioning that the model’s torque / angle curve 

was offset by up to 20° from experimental data.  They stated that their jumping model 

qualitatively matched experimental results and provided a quantitative comparison of 

ground contact time, jump height, peak GRF, and rotation of the trunk with respect to data 

from the literature.  Anderson and Pandy (1999) provided a quantitative comparison of 

model and experiment, as their model was based on subject-specific data.  They compared 

peak GRFs, peak vertical acceleration of the body, vertical velocity of the COM at take-

off, and jump height, noting that they were all in the range of those achieved by the 

subjects in their study.  They did state however that the ground contact time in the model 

was considerably shorter than the average of their subjects.  Van Soest et al. (1993) 

evaluated their model against experimental data.  They stated that it corresponds well 

qualitatively with the proximo-distal sequence of muscle activations observed in vertical 

jumping.  They compared joint angular velocity time histories and joint moments with 

experimental data graphically.  They also quantified a number of differences in: work done 

at each joint; maximal jump height; and vertical velocity at take-off.  Overall they 

acknowledged a few areas of concern, but stated that the degree of correspondence 

between experiment and simulation was highly encouraging.  Selbie and Caldwell (1996) 

compared the COM and joint kinematics of their model to experimental results from the 

literature.  They stated that several model COM kinematics are within the range of those 

seen in actual human jumps and that the model joint ranges of motion also compared well 

with experimental results.  They also stated that the segmental patterns and COM 

displacement and velocity patterns resembled those found in the literature.  Overall they 

claimed that their model captured many of the important characteristics of human jumping.  

Dapena (1999) made no mention of any sort of evaluation of his model, either quantitative 

or qualitative, in what was only a very brief paper.  Ashby and Delp (2006) whose model’s 

anthropometric and mass / inertia characteristic were taken from subjects who performed 
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standing long jumps, included a table comparing kinematic results at take-off between their 

simulation and these experimental results in jumps with and without restricted arms.  They 

found that the experimental jump distances were 9-12 cm further than the simulated ones, 

attributing this difference mainly to a lack of toe segment in the model.  They stated that 

the COM velocities at take-off were within 3% of experimental results in both arm 

conditions. 

 

5.2.3 Summary of literature on the evaluation of models 

 

The reviewed studies displayed various levels of evaluation; these ranged from those that 

either did not perform any evaluation, or only qualitatively compared their models to data 

from the literature (Ridka-Drdacka, 1986; Alexander, 1990, 1992; Dapena, 1999; 

Linthorne and Kemble, 1998), through those that performed some quantitative comparison 

between their models and performance data (Hatze, 1981; Pandy et al, 1990, Selbie and 

Caldwell, 1996, Seyfarth et al., 1999, 2000, online) to those that evaluated their partially 

subject-specific models against various aspects of performance data (van Soest et al., 1993, 

Anderson and Pandy (1999); Ashby and Delp, 2006).  However, only Wilson et al. (2006) 

and King et al. (2006) provided an explicit quantitative evaluation of their subject-specific 

models against performance data.  In order to have confidence in the results of 

optimisations of technique using simulation models, it is essential that an evaluation is first 

performed.  Furthermore subject-specificity in models allows a direct evaluation of the 

model against performance data from that subject, in order to ensure that the model is an 

accurate representation of the system it is attempting to simulate. 

 

5.3 LITERATURE ON OPTIMISATION ALGORITHMS 

 

Van Soest and Casius (2003) evaluated the performance of four different algorithms in 

solving ‘hard’ optimisations problems.  They defined these problems as sharing the 

following characteristics: (1) the objective function typically has many local optima and is 

non-smooth or even discontinuous; (2) the objective function is available in implicit form 

only, necessitating time consuming simulations be performed for every evaluation of the 

objective function; and (3) even for relatively simple models the dimensions of the 

optimisation parameter space cannot be kept very low. 
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The algorithms they evaluated were: 

 

• Downhill Simplex Algorithm (DS); 

• Sequential Quadratic Programming (SQP); 

• Genetic Algorithm (GA); 

• Simulated Annealing Algorithm (SAA). 

 

They evaluated each algorithm in five separate problems for a range of starting values.  

Two of these problems were musculoskeletal performance optimisation problems which 

are of particular relevance to this study.  They found that all algorithms managed to 

converge to a reasonable optimum in a vertical jumping problem involving six parameters, 

however the DS and SQP performed poorly in a higher-dimensional sprint cycling problem 

with 16 parameters, which were increased to 32 parameters by including initial conditions.  

GA typically converged on values close to the global optimum and SAA did not fully 

converge due to the initial temperature being too high to do so within the permitted number 

of function evaluations.  However results indicated that it had not been trapped in a local 

optimum; this suggested that it may have achieved results closer to the global optimum 

with a lower initial temperature or more function evaluations.  Van Soest and Casius 

(2003) concluded that it is essential that the initial temperature is tuned to the problem at 

hand when using SAA.  These results suggest that both SAA and GA are capable of 

finding global optima in hard optimisation problems; however GA was the most easily 

parallelised of the algorithms studied which allowed a considerable reduction in processing 

time. 

 

5.3.1 Simulated annealing algorithms 

 

Simulated annealing algorithms (Kirkpatrick et al., 1983) are based on an analogy with a 

physical property: while at high temperatures the molecules of a liquid metal move freely, 

if the temperature of the liquid is slowly decreased the thermal mobility of the liquid is lost 

and they form a pure crystal which also corresponds to a state of minimum energy 

(Locatelli et al., 2000).  If the temperature is decreased too quickly the liquid metal ends up 

in a polycrystalline or amorphous state with a high energy and not in a pure crystal.  

Simulated annealing algorithms were developed in order to find solutions for 
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combinatorial optimisation problems and the approach has later been extended to 

continuous global optimisation problems (Locatelli, 2000).  Simulated annealing 

algorithms randomly generate a candidate point at each iteration and, through a random 

mechanism controlled by a parameter known as temperature, they decide whether to move 

the candidate point or to stay in the current one at the next iteration (Locatelli, 2000).  

Corana et al., (1987) found that simulated annealing can provide very high reliability in the 

minimisation of multimodal functions but that this comes at a high computational cost 

which increases linearly with the number of dimensions of the problem. 

 

5.3.2 Genetic algorithms 

 

Genetic algorithms (Holland, 1975) are models of machine learning that derive their 

mechanisms from the Darwinian principle of ‘survival of the fittest’ (Yang et al., 1998).  

An initial population of size n, representing a generation, is created by randomly selecting 

parameters within the parameter space. Each parameter set represents the individual’s 

chromosomes (Yang et al., 1998).  Each individual is assigned a fitness based on an 

objective function.  Three operations then occur in order to create the next generation: (1) 

selection; (2) crossover; and (3) mutation.  Fit individuals are selected for mating while 

weak individuals die off (Yang et al., 1998).  Mated parents create a child with a 

chromosome set that is some mix of the parent’s chromosomes.  This process is continued 

until an entirely new population of size n is generated.  The fitness of this generation is 

determined and the process is repeated.  Successive generations are created until a global 

optimum is found. 

 

5.4 DETERMINATION OF VISCOELASTIC PARAMETERS  

 

Subject-specific viscoelastic parameters were determined using the method outlined by 

Wilson et al. (2006) (Section 3.2.1).  The simulation model of triple jumping was angle-

driven using performance data.  Stiffness and damping characteristics, and initial 

conditions of the model were varied using a simulated annealing algorithm (Kirkpatrick et 

al., 1983) in order to minimise the difference between simulation and performance, since it 

has been shown to converge to a global optimum in ‘hard’ optimisation problems such as 

the one considered here (van Soest and Casius, 2003) (Section 5.3).  In order to obtain a 
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common set of viscoelastic parameters that was robust to changes between the three 

contact phases of the triple jump, these three phases were simulated consecutively with the 

same set of viscoelastic parameters and a total average difference calculated.  Therefore the 

same 18 stiffness and damping parameters comprising: three horizontal and three vertical 

stiffness values at the feet; three horizontal and three vertical damping values at the feet; 

and one stiffness and one damping value at each of the torso, thigh, and shank wobbling 

masses (Section 3.5.4), were evaluated for each phase.  In addition to these viscoelastic 

values, three kinematic parameters specific to each phase (Section 5.4.2) were included, 

making a total of 21 parameters per simulation, and 27 parameters included in the 

optimisation process in total. 

 

5.4.1 Objective function 

 

Each simulation was given a score comprising four components adapted from the protocol 

of Wilson et al. (2006): 

 

• 1S - Percentage difference in horizontal velocity of COM at take-off; 

• 2S - Percentage difference in vertical velocity of COM at take-off; 

• 3S - Overall RMS difference in trunk orientation in degrees in the contact and 

airborne phases; 

• 4S - Percentage absolute difference in time of contact. 

 

The score was calculated by taking the overall RMS of these components in order to 

reduce the chance of any one component being neglected during the optimisation process.  

Components were equally weighted, where one degree was considered comparable to a 1% 

difference in other measures (Wilson et al., 2006): 
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The overall difference for the simulation was therefore the average of the scores for the 

three phases: 

3
321 FFF

F
++

= .     (5.2) 

Penalties 

Penalties were implemented to limit foot movement to 2 cm vertically, and 2 cm 

horizontally, relative to the initial horizontal position of the point on the foot when it first 

contacted the ground.  Wobbling mass movement was also limited to a maximum of 4.5 

cm at the shank, 7 cm at the thigh, and 10 cm at the trunk (Section 4.3.1). 

 

Changes to the objective function of Wilson et al. (2006) 

One change to the protocol of Wilson et al. (2006) (Section 3.2.1) was to match the whole-

body orientation into flight, rather than match whole-body angular momentum at take-off 

(Component 3S ).  This was because it was found that the orientation of the model in the air 

was sensitive to movement of the wobbling masses.  The wobbling masses accounted for 

the majority of the mass of the limbs and torso, and hence their angular momenta 

accounted for the majority of the whole-body angular momentum.  Thus it was impossible 

to prescribe an angular momentum of the entire system at take-off that would lead to a 

particular orientation at a point later in flight, since, although the joint angles were 

prescribed, the wobbling masses were free to move independently. 

 

Another change was the decision not to attempt to match horizontal or vertical GRFs, 

resulting in a four-component and not a six-component objective function.  Initial 

optimisations where foot depression was not penalised showed excessive vertical 

depression at the foot (> 4cm).  It was hypothesised that this was due to the pin joints in 

the model not accounting for compressions that occur in the joints of the stance leg and the 

spine.  Thus the model required unrealistically low stiffness and damping parameters in 

order to match force traces.  Table 5.1 and Figure 5.1 show the scores for the simulation 

and the associated GRFs respectively, and Appendix 12 contains the optimised stiffness 

and damping parameters. 
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Figure 5.1 Horizontal and vertical GRFs for a simulation of the hop phase with no 

penalties for foot depression (solid line) compared to performance (dashed line). 

 

Table 5.1 Score for simulation of the hop phase with no penalties for foot depression 

Score Component Value 

RMS Vertical Force (%) 7.6 

RMS Horizontal Force (%) 14.6 

Horizontal Velocity (%) 1.4 

Vertical Velocity (%) 0.0 

RMS Orientation (°) 1.0 

Contact Time (%) 1.1 

Overall Score 7.2 

 

When the springs representing the foot-ground interface depressed by a large amount (> 4 

cm) it led to a delayed impact force peak and an unrealistic time history of the path of the 

centre of pressure along the foot.  This in turn led to excessively high torques at the MTP 

joint when the springs recoiled towards the end of the ground contact, since the toe was the 

only point in contact with the ground at this time.  The torque-driven model would not be 
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able to reproduce these torques at the MTP joint.  Therefore it was decided that foot 

depression should be limited to a maximum of 2 cm, since this was slightly greater than the 

maximum level of depression observed in the performance data.  This depression was 

measured as the distance moved vertically by the ankle joint centre after the heel had 

contacted the ground.  Limiting the depression of the foot led to the overall modelled 

system being stiffer and more highly damped than the actual system.  It was decided that, 

since the main function of the model was to optimise performance, it was most important 

that the viscoelastic parameters allowed the torque-driven model to accurately match the 

kinematics of the performance.  Hence force data were removed from the objective 

function.  Due to this, the simulation force data did not match the performance force data 

as closely, however impulses and other measures were well matched (Table 5.2 and Figure 

5.2). 

 

Figure 5.2 Horizontal and vertical GRFs for a simulation of the hop phase with depression 

of the foot limited to 2 cm (solid line) compared to performance (dashed line). 

 

5.4.2 Initial conditions 

 

In addition to the angles and angular velocities driving the simulation, the other initial 

conditions required to define the system were the horizontal and vertical velocity of the 
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COM, and the angular velocity of the torso segment, which determined the angular 

momentum of the whole body. 

 

Errors in COM velocities were calculated (see Section 4.5.2) in order to determine the 

levels by which these initial conditions were allowed to vary from the measured values.  

The initial horizontal and vertical velocities were allowed to vary by 05.0± m/s.  The 

angular velocity of the trunk was allowed to vary by 1±  rad/s to account for errors in the 

kinematic data (King et al., 2006) (Section 4.3.1). 

 

5.4.3 Optimisation results 

 

Simulation results indicated that these viscoelastic parameters led to accurate model 

kinematics and were therefore acceptable for use in further simulations of the triple jump 

(Table 5.2).  Each phase was well matched, with a combined average difference of 1.8%.  

Optimised parameters obtained from all three phases of the triple jump are shown in 

Appendix 13. 

 

Table 5.2 Individual and combined scores for angle-driven simulations of all three phases 

of the triple jump 

Component Hop Step Jump Combined 

Horizontal Velocity (%) 2.1 0.1 2.2 1.6 

Vertical Velocity (%) 1.6 0.4 0.5 0.8 

RMS Orientation (Degs) 2.0 1.5 1.7 1.7 

Contact Time (%) 2.8 1.2 4.0 2.7 

Overall Difference (%) 2.2 1.0 2.4 1.8 

 

5.5 EVALUATION OF THE TORQUE-DRIVEN MODEL 

 

5.5.1 Optimisation method 

 

Having obtained the viscoelastic parameters from the angle-driven model, these parameters 

could then be used in an evaluation of the torque-driven model.  The model was driven by 

flexion-extension torques at all joints except the elbows, which were angle-driven.  A 
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genetic algorithm (Carroll, 1996) (Section 5.3) was employed to minimise an objective 

function by varying 77 torque generator activation timings in addition to seven kinematic 

initial conditions (Section 5.5.4), making a total of 84 parameters per phase.  A genetic 

algorithm was used in preference to the simulated annealing algorithm used in the 

optimisation of viscoelastic parameters, since it was found that the simulated annealing 

algorithm took much longer to converge on an optimal value than the genetic algorithm 

with such a large number of parameters, despite the fact that the genetic algorithm was not 

parallelised (van Soest and Casius, 2003).  The genetic algorithm was run with a 

population of 200 using input parameters described by Carroll (1996).  This typically led to 

convergence within 150 generations.  Bounds on the torque generator activation timings 

were estimated using torques from the kinematically driven simulation and from 

observation of the movement in order to estimate which torque generators were active and 

when.  If the bounds were subsequently hit in the optimisations then they were increased, 

unless they were at a limit of activation level or ramp time (Section 3.5.2). 

 

5.5.2 Determining the objective function 

 

The objective function used to evaluate the torque-driven model was similar to that used in 

the angle-driven model, with some alterations.  Body configuration was added to the 

objective function, this comprised the RMS difference in angles between simulation and 

performance in those joints that were being matched.  RMS configuration and orientation 

were only matched during ground contact, not into the airborne phase as with the angle-

driven model.  This would have necessitated a considerable increase in the number of 

torque generator activation timings in order to match the joint angles. 

 

Angular momentum 

Since the torque-driven model only simulated the contact phases, and not the airborne 

phases, it was necessary to calculate whether it would be possible for it to achieve the 

requisite landing orientation and configuration for the subsequent phase. 

 

In order that angular momentum could be included in the objective function on a 

comparable basis to the other measures, the error in landing orientation associated with the 

simulation angular momentum value at take-off was calculated.  Using a percentage 
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measure for the angular momentum value itself would have penalised phases with low 

angular momenta disproportionately. 

 

So as to ascertain the effect of angular momentum on the orientation of the body during 

flight, an angle-driven simulation of each airborne phase was run using performance data, 

with the whole-body angular momentum set to zero.  From this the average MOI of the 

whole body (I ) was calculated by summing the MOIs at each timestep: 
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where n  is the number of data points, and )( itI  is the MOI at time it . 

 

Since the angular momentum was zero, the change in orientation angle solely due to 

changes in body configuration measured from performance data ( cfperfθ∆ ) could then easily 

be calculated: 

initfinalcfperf θθθ −=∆ ,     (5.4) 

where initθ  and finalθ  are the orientation angles at the times representing touchdown and 

take-off from performance data respectively. 

 

In simulations of ground contact, the theoretical time of flight of the model ( simt∆ ) was 

calculated using equations of motion.  This was done using the simulation COM take-off 

height ( tosimh ), and vertical take-off velocity (tosimv ), and the performance COM height 

( tdperfh ) at the touchdown of the subsequent phase: 

 

g

)hh(g2vv
t

tosimtdperf
2
tosimtosim

sim

−⋅⋅+−−
=∆ ,  (5.5) 

 

It was assumed that the model would undergo the same configuration changes irrespective 

of flight time, and therefore the orientation change due to these configuration changes 

would be the same regardless of variations in flight time. 
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Using these values the simulation landing orientation ( tdsimθ ) was calculated in the 

following fashion: 

)/)(( ItH simsimcfperftosimtdsim ∆⋅+∆+= θθθ ,   (5.6) 

where simH  is the whole-body angular momentum of the simulation at take-off, and tosimθ  

is the orientation of the simulation at take-off. 

 

The absolute difference between the simulation landing orientation and the performance 

landing orientation (Equation 5.7) was the component included in the objective function 

(Equation 5.8): 

tdperftdsimS θθ −=6 ,     (5.7) 

where 6S  is the score component, and tdperfθ  is the performance orientation. 

 

Objective function 

The objective function contained the following components: 

 

• 1S  - Percentage difference in horizontal velocity of COM at take-off; 

• 2S  - Percentage difference in vertical velocity of COM at take-off; 

• 3S  - Overall RMS difference in trunk orientation in degrees during ground contact; 

• 4S  - Overall RMS difference in whole-body configuration in degrees during 

ground contact; 

• 5S  - Percentage absolute difference in time of contact; 

• 6S  - Absolute difference in orientation at touchdown of the subsequent phase in 

degrees (Equation 5.7). 

 

As with the angle-driven model the score was calculated by taking the overall RMS of 

these components, with each one equally weighted. 

 

The score was calculated as follows: 
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Penalties 

Where necessary, the model incurred penalties if the joint angles exceeded what were 

considered normal ranges of motion (Luttgens and Hamilton, 1997) at the equivalent of 

one percentage point per degree.  These limits were only in place if the model was likely to 

violate them, this was not considered to be the case at the shoulders.  Also where passive 

non-ligament torques were already present (Section 3.5.2), these penalties were not 

considered necessary.  The ball joint was assumed only to flex and not to extend with 

respect to the neutral position, due to the structure of the shoe prohibiting extension.  

Penalties were therefore implemented in extension at the knee, ankle, and ball joints (Table 

5.3). 

 

Table 5.3 Limits on the range of motion of the joints of the leg 

Joint Flexion Limit (Degs) Extension Limit (Degs) 

Knee n/a 0 

Ankle n/a 85 

Ball n/a 0 

 

5.5.3 Activation profiles 

 

The levels of torques driving the model were determined by the activation timings of the 

various torque generators (Section 3.5.2).  These profiles were either ramp up, ramp up-

ramp down, or ramp down-ramp up and were consistent across the three phases.  The ankle 

and ball joints in the free leg had fixed activation profiles since they were only expected to 

have a negligible influence on the performance of the model, so were not included in the 

matching process.  The ball joint of the stance leg was assumed only to extend, so did not 

have a flexion profile included in the optimisation process.  The elbows were also not 

included since they were angle-driven.  Levels of activation at touchdown were limited to 

0.5 times maximum in all joints except the free hip flexor, these were similar to levels 

reported in the literature (Perttunen et al., 2000).  The activation level of the free hip was 

allowed to take any value up to maximum, since the limb did not have to undergo an 

impact and the flexion movement could be initiated some time prior to impact.  The type of 

profile of each torque generator was estimated using joint torques calculated using inverse 
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dynamics from the angle-driven model, and muscle activations reported in the literature for 

triple jumping (Perttunen et al., 2000). 

 

Muscular co-contraction 

The ankle and knee joints of the leg in contact with the ground were assumed to have some 

level of co-contraction at the start of the simulation, as has been shown in drop jumping 

and drop landing (Viitasalo, 1998; Minetti, 1998; Kellis et al., 2003; Yeadon et al., 

accepted for publication).  And hence flexors in these joints were assigned ramp down-

ramp up profiles.  In drop jumping angular velocities around these joints are small 

immediately prior to touchdown, allowing simulations to assume that net joint torques are 

zero (Yeadon et al., accepted for publication).  However in this study joint angular 

velocities were non-zero at the instant of impact, therefore it was not assumed that net joint 

torques were zero.  Initial activations at the ankle and knee of the stance leg were therefore 

forced to vary between 0.3-0.5. 

 

Ramp up-ramp down, or ramp down-ramp up profiles had the ability to only ramp up, or 

only ramp down, respectively by delaying the initiation of the second quintic function 

(Section 3.5.2). 

 

Ramp types for each joint action are given in Table 5.4 and are decribed in terms of the 

stance and free legs, and the right and left shoulders. 

 

Table 5.4 Activation profile types for each joint action 

Joint Action Activation profile 

Stance Hip Extension Ramp up – Ramp down 

Free Hip Extension Ramp up 

Stance Knee Extension Ramp up – Ramp down 

Free Knee Extension Ramp up – Ramp down 

Stance Ankle Plantar Flexion Ramp up – Ramp down 

Free Ankle Plantar Flexion Fixed 

Stance Ball Extension Ramp up 

Free Ball Extension Fixed 
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Right Shoulder Flexion Ramp up – Ramp down 

Left Shoulder Flexion Ramp up – Ramp down 

Stance Hip Flexion Ramp up 

Free Hip Flexion Ramp up – Ramp down 

Stance Knee Flexion Ramp down – Ramp up 

Free Knee Flexion Ramp up 

Stance Ankle Dorsi Flexion Ramp down 

Free Ankle Dorsi Flexion Fixed 

Stance Ball Flexion Fixed 

Free Ball Flexion Fixed 

Right Shoulder Extension Ramp up 

Left Shoulder Extension Ramp up 

 

5.5.4 Initial conditions 

 

As in the angle-driven model initial horizontal and vertical COM velocities and torso 

angular velocities were varied.  The torque-driven model was also allowed some freedom 

in the initial joint angles.  It is inevitable that discrepancies exist between calculated and 

actual joint centre positions.  Likely reasons for this include: inherent error in the 

measurement system; skin motion artefacts; and joint centres calculated from accurate 

marker positions not representing joint centre locations throughout measured angle ranges. 

 

Measured marker locations using Vicon motion analysis systems have been shown to be 

accurate to within 2 mm of actual locations (Richards, 1999), therefore it was assumed 

measured marker positions were representative of the actual motion of the markers. 

 

With respect to the skin motion artefacts, Reinschmidt (1997b) showed mean errors of 2° 

due to soft tissue motion in knee flexion / extension angles during walking calculated from 

skin markers (Section 4.3.1).  Therefore it was decided each initial angle in the stance leg 

should be allowed to vary by a minimum of °± 2  due to this. 

 

Marker positions may not have represented joint centre locations due to various factors.  

Where the model represents joints as rigid and pin-linked, some joints, especially distal 
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joints in the limb in contact with the ground, will actually undergo deformation to the joint 

structures and changes in joint contact area and location due to changes in joint angle and 

loading (Kimizuka et al., 1980; Nisell et al., 1986; Millington et al. 2007b).  This could 

lead to changes in the point of application of forces with respect to the joint centres of 

rotation.  Nisell at al. (1986) found that the centre of the tibio-femoral contact area shifted 

by more than 20 mm when the knee was extended from °120  to straight.  At the ankle 

Millington et al. (2007a) found a change in talo-tibia contact area between ankle plantar 

flexion ( 41.139.4 ± cm2) and dorsiflexion ( 69.134.7 ± cm2) and Kimizuka et al. (1980) 

found an increase in contact area with increasing load (2.29 cm2 at 200 N to 4.83 cm2 at 

1500 N), both of which would likely result in a shift in the notional point of application of 

force with respect to the centre of rotation.  Since the point of application of force in the 

model is always through the centre of rotation of the joint, this centre of rotation would 

have to be moved in order to account for this effect.  A shift of 20 mm would account for a 

change in angle of °> 5  at the knee.  This, in addition to the skin motion mentioned above, 

introduced a level of error in every calculated joint angle, irrespective of the joint 

architecture, especially in the stance leg. 

 

In an attempt to account for these effects in simulations, initial joint angles in the stance 

leg were allowed to vary.  The ankle was allowed to vary by °± 3 , the knee by °± 5 , and 

the hip and orientation angles by °± 2 .  With the exception of these four, the initial angular 

kinematics were taken from the performance.  As with the angle-driven simulations the 

initial COM horizontal and vertical velocities were allowed to vary by 05.0± m/s and the 

angular velocity of the trunk by 1± rad/s (Section 5.4.2). 

 

5.5.5 Evaluation results 

 

Each of the three phases matched well with performance data, with overall differences of 

3.8%, 2.7% and 3.1% for the hop, step, and jump phases respectively (Table 5.5).  

Appendix 14 shows the optimised torque generator activation timings associated with each 

phase. 

 

Each phase distance (dphase) comprises three components (Figure 5.3): The take-off 

distance is the horizontal distance from the toe of the stance leg to the COM at take-off 
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(dtake-off); the flight phase is the distance travelled by the COM whilst the athlete is 

airborne; and the landing distance is the horizontal distance from the COM to the toe of the 

stance leg at touchdown, or in the case of the jump, the most posterior of the two heels at 

landing (dlanding).  Table 5.6 gives a breakdown of the component distances for each phase.  

The step had the largest take-off and landing distances.  This was a function of the low 

COM at take-off which led to a shorter flight distance than the other two phases. 

 

Table 5.5 Differences between performance and simulation of individual phases 

Score Component Hop Step Jump 

RMS Configuration (Degs) 7.26 6.48 7.03 

RMS Orientation (Degs) 1.77 1.19 1.08 

Contact Time (%) 0.14 0.16 2.45 

Horizontal Velocity (%) 4.66 0.27 0.07 

Vertical Velocity (%) 2.55 0.37 0.46 

Landing orientation (Degs) 1.78 1.16 0.80 

Overall Score (%) 3.81 2.74 3.10 

 

 

Figure 5.3 The three component distances for an individual phase. 
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Table 5.6 Component distances of individual phases 

Phase 
Take-off 

Distance (m) 

Flight Distance 

(m) 

Landing 

Distance (m) 

Total Distance 

(m) 

Hop 0.43 3.21 0.65 4.29 

Step 0.58 2.59 0.72 3.89 

Jump 0.47 3.37 0.44 4.28 

 

5.5.6 Joint angles 

 

Figures 5.4-5.6 show visual representations of the performance and matched simulations 

for each of the three phases.  Individual joint angle RMS differences between performance 

and matched simulations are shown in Table 5.7 for each of the joints considered in the 

matching process (Section 5.5.3).  Figures 5.7-5.9 show comparisons of individual joint 

angles between performance and matched simulations.  There was no clear trend for 

simulation joint angles to match performance joint angles more closely at one joint than 

another.  This indicates that no individual torque generator was consistently incapable of 

providing the requisite torques for the simulation to match performance data.  The overall 

close agreement between performance and simulation joint angles indicates that the 

simulation torque generators were consistently strong enough to match performance 

torques. 

 

 

 

 

Figure 5.4 Performance (top) and matched simulation (bottom) of the hop phase. 
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Figure 5.5 Performance (top) and matched simulation (bottom) of the step phase. 

 

 

 

Figure 5.6 Performance (top) and matched simulation (bottom) of the jump phase. 

 

Table 5.7 RMS angle differences between performance and matched simulation for 

individual joints in each phase 

Score Component Hop Step Jump 

RMS Difference Right Shoulder 6.72 3.26 3.16 

RMS Difference Left Shoulder 2.03 6.48 9.07 

RMS Difference Right Hip 8.95 8.69 6.03 

RMS Difference Left Hip 10.39 5.99 5.17 

RMS Difference Right Knee 7.71 7.52 7.14 

RMS Difference Left Knee 4.43 3.84 5.36 

RMS Difference Stance Ankle* 8.33 7.89 8.55 

RMS Difference Stance Ball* 5.91 6.16 9.34 

*the ankle and ball joints of the free leg were angle-driven, stance leg is the right leg for 

the hop and step phase and the left for the jump phase. 
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Figure 5.7 Joint angle time histories from performance (dashed lines) and matched 

simulation (solid lines) of the hop phase. 

 

Figure 5.8 Joint angle time histories from performance (dashed lines) and matched 

simulation (solid lines) of the step phase. 
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Figure 5.9 Joint angle time histories from performance (dashed lines) and matched 

simulation (solid lines) of the jump phase. 

 

5.5.7 Joint torques 

 

Joint torques in each phase showed a similar pattern, with a general trend of increasing 

torques from phase to phase (Table 5.8) and consistently large extension torques at the hip, 

knee, and ankle of the stance leg (Figures 5.10-5.12).  All three of these joints reached the 

maximum activation level in each of the three phases of the triple jump (Figures 5.13-

5.15).  This underlines the importance of strength at these joints in jumping performance. 

 

Table 5.8 Maximum extension torques at main joints of the stance leg for matched 

simulations 

 Hop Step Jump 

Maximum hip extension torque (Nm) 317 374 410 

Maximum knee extension torque (Nm) 351 433 454 

Maximum ankle extension torque (Nm) 269 307 304 
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Figure 5.10 Joint torque time histories from the matched simulation of the hop phase 

(extension is positive except at shoulder joints). 

 

Figure 5.11 Joint torque time histories from the matched simulation of the step phase 

(extension is positive except at shoulder joints). 
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Figure 5.12 Joint torque time histories from matched simulation of the jump phase 

(extension is positive except at shoulder joints). 

 

5.5.8 Torque generator activation timings 

 

The activation time histories show flexion torques in the stance leg towards the end of the 

contact phase which acted to prevent the joint hyperextending.  Levels of flexor activity in 

the knee and ankle of the stance leg at touchdown indicate co-contraction is necessary 

towards the end of the airborne phase to hold the joint in the correct configuration for 

landing whilst keeping the activation level of the extensor muscles high (Figures 5.13-

5.15).  Initial flexion torques in these joints were maintained for up to 50 ms after 

touchdown which indicates that maximum torques at these joints were not required until 

after this point in time.  This is evident in the torque time histories of these joints (Figures 

5.10-5.12).  In contrast peak torques in the stance hip occurred before 50 ms in each phase.  

In general both the torque and activation time histories indicate that the joints in the stance 

leg followed a proximal-to-distal hip-knee-ankle extension sequence (Figures 5.10-5.15).  

This was similar to that which has previously been observed in vertical jumping (Bobbert 

and van Ingen Schenau, 1988; Pandy and Zajac, 1991). 
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Figure 5.13 Extensor* (solid lines) and flexor* (dashed lines) torque generator activation 

levels for matched simulation of the hop phase. *Shoulder joints are opposite. 

 

Figure 5.14 Extensor* (solid lines) and flexor* (dashed lines) torque generator activation 

levels for matched simulation of the step phase. *Shoulder joints are opposite. 
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Figure 5.15 Extensor* (solid lines) and flexor* (dashed lines) torque generator activation 

levels for matched simulation of the jump phase. *Shoulder joints are opposite. 

 

5.5.9 Passive torques 

 

Since the passive torques implemented in the programme were not subject-specific, it was 

important to ensure that they were behaving sensibly.  These torques were included in the 

model primarily to provide realistic restorative torques when the joints began to approach 

the end of their anatomical range.  This was found to be necessary when the initial 

kinematic conditions put a joint outside the joint angle range at which the torque generator 

could exert a suitable restorative torque, potentially due to an underestimation of the width 

of the joint torque / joint angle relationship (Section 3.5.2).  They were not intended to 

have a large influence on the optimal performance of the model.  Figure 5.16 shows the 

passive torques for the matched simulation of the hop phase.  It can be seen that the 

maximal torques are relatively small (<20 Nm) and therefore should not have an excessive 

effect on the performance of the model. 
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Figure 5.16 Passive torques for matched simulation of the hop phase (extension is 

positive). 

 

5.6 CHAPTER SUMMARY 

 

In this chapter the method of determining viscoelastic parameters using an angle-driven 

model of the stance and airborne phases of a triple jump has been described.  The 

evaluation of a torque-driven model has also been outlined.  This model showed close 

agreement with performance data and was shown to be accurate enough for simulation of 

the triple jump.  The next chapter will describe the technique optimisation process. 
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CHAPTER 6 

 

OPTIMISATION OF TECHNIQUE 

 

6.1 CHAPTER OVERVIEW 

 

In this chapter procedures employed to optimise the performance of simulation models of 

jumping in the literature is described.  The method for optimisation of performance of the 

simulation model of triple jumping in this study is then described.  Results from the 

optimisation of each phase of the triple jump are outlined and analysed.  A demonstration 

of how the model can be applied to investigate issues concerned with the optimisation of 

technique and simulation modelling is then given. 

 

6.2 OPTIMISATION OF JUMPING MODELS IN THE LITERATURE 

 

This review considers the methods of optimisation employed by those analytical models of 

jumping reviewed in Section 3.2.  Where a model is employed by more than one study, the 

method of optimisation used in the study where the model was introduced will be 

considered. 

 

6.2.1 Models of one-legged jumps 

 

Alexander (1990, 1992) did not optimise the performance of his model computationally, 

rather he ran his model with ranges of different input parameters in order to obtain results 

within these ranges, from which he could then obtain the best performances.  Linthorne 

and Kemble (1998) used a similar method, running their model with a range of initial 

kinematic conditions and obtaining the optimum performance from these results.  Chow 

and Hay (2005) used a search process to obtain a reference jump by evaluating their model 

using a range of initial conditions.  They then performed sensitivity analyses by varying 

one parameter at a time and calculating results from a range of input parameters in order to 

obtain the longest jump.  Seyfarth et al. (1999) calculated a parameter set which filled the 

least-square criterion between measured and calculated GRFs.  They then used a genetic 
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algorithm in order to calculate the optimum jump attained by varying individual 

parameters.  Seyfarth et al. (2000) did not specify an optimisation process, seemingly 

evaluating their model for a range of input parameters in order to obtain optimum 

performance for a given parameter.  Ridka-Drdacka (1986) used a similar approach, 

evaluating the model over a range of input parameters in order to obtain optimum 

performance.  Seyfarth et al. (online) used a similar optimisation process to van Soest et al. 

(1993), optimising muscle activation timings.  However since this was a model of long 

jumping and not vertical jumping the activation of muscles prior to touchdown was 

included in the optimisation process by allowing muscles to have a negative activation 

time.  Hatze (1981) used an optimisation process in order to maximise an objective 

function governing the distance jumped by varying the initial kinematics and the muscle 

stimulation timings.  He stated that the technique and problems associated with the 

optimisation of the long jump were rather involved and hence he would report on them in a 

subsequent paper.  Sorensen et al. (1999) used an optimisation algorithm in order to track 

measured GRFs by varying muscle stimulation timings, initial kinematics and viscoelastic 

parameters in their simulation model.  They subsequently optimised performance by 

varying muscle stimulation timings and initial kinematics, using the viscoelastic 

parameters calculated from the tracking procedure.  Wilson et al. (2007) used a simulated 

annealing algorithm to maximise jump height by varying torque-generator activation 

timings subject to various constraints.  Optimisations without constraints, with constraints 

on angular momentum at take-off, with further constraints on joint angles, and with an 

additional requirement that the technique be robust to perturbations of torque generator 

activation timings, resulted in performances of 2.37 m, 2.21 m, 2.14 m, and 1.99 m 

respectively.  The latter result closely matched performance data, indicating that 

optimisations of jumping should include these constraints in order to accurately represent 

jumping performance. 

 

6.2.2 Models of two-legged jumps 

 

Pandy et al. (1990) used an algorithm to estimate initial muscle forces by minimising an 

objective function representing the sum of the squares of the muscle forces at each joint.  

They were then able to calculate muscle activation levels.  The height attained by the mass 

centre was then maximised by varying muscle activation timings using an optimisation 

algorithm.  Anderson and Pandy (1999) used a similar optimisation procedure to Pandy et 
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al. (1990) in order to calculate their initial muscle activations by first minimising the sum 

of the squares of the joint torques, and then the sum of the squares of the muscle forces, 

from which they could calculate muscle activations.  They then used a computational 

algorithm to optimise their muscle activation timings in order to maximise jump height.  

They stated that the algorithm allowed each perturbation of muscle activation timings to be 

performed independently and was thus suited to the architecture of a parallel computer.  

Van Soest et al. (1993) used an optimisation procedure partly based on that of Pandy et al. 

(1990).  Like Pandy et al. (1990) they used an optimisation algorithm to maximise jump 

height by varying muscle activation timings, however they imposed constraints on the 

muscle activation timings, allowing them to switch to their maximal value only once and 

thereafter remain at that level.  They evaluated this approach by running an optimisation 

without constraints and found only a 2 mm difference in jump height, indicating that 

imposing the constraints had little effect on the ability of the algorithm to find an optimal 

jump height.  Selbie and Caldwell (1996) used the same technique as Pandy et al. (1990) to 

optimise their initial muscle activations.  They then used a multidimensional downhill 

simplex method to maximise the vertical displacement of the COM in the airborne phase of 

the jump by varying torque generator activation timings.  They found optimal solutions for 

a range of 125 different starting positions.  They tested the optimality of their solution by 

restarting the algorithm using the previously obtained optimal torque generator activation 

timings, and also by widely varying the onset times to ensure a global, rather than a local, 

maximum was reached.  Dapena (1999) evaluated the performance of his model for a 

range of input values for arm velocity, obtaining the optimum value from these results.  

Ashby and Delp (2006) used a simulated annealing algorithm to vary the activation levels 

of the torque generators in order to minimise an objective function comprising: jump 

performance; a penalty for activations that did not improve jump distance; and a penalty 

for passive ligament torques. 

 

6.2.3 Summary of literature on the optimisation of jumping models 

 

The studies described above can be broadly split into those that manually optimised their 

models (Alexander, 1990, 1992; Linthorne and Kemble, 1998; Chow and Hay, 2005; 

Seyfarth et al., 2000; Ridka-Drdacka, 1986; Dapena, 1999) and those that used 

optimisation algorithms (Seyfarth et al., 1999; Seyfarth et al., online; Hatze, 1981; 

Sorensen et al., 1999; Wilson et al., 2007; Pandy et al., 1990; Anderson and Pandy, 1999; 
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van Soest et al., 1993; Selbie and Caldwell, 1996; Ashby and Delp, 2006).  Those studies 

that used manual optimisation processes typically used simple models with few variables 

which made this feasible.  It would be virtually impossible to manually optimise the more 

complex models in the studies described above, therefore a suitable optimisation algorithm 

should be chosen in order to minimise an objective function that incorporates all the main 

features of the activity being modelled.  A description of these algorithms was given in 

Section 5.3.  It is possible to reduce the search space by applying sensible constraints on 

input parameters; van Soest et al. (1993) limited their search space by using constraints on 

muscle activation timings, which they showed did not appreciably affect the ability of the 

algorithm to find an optimal solution, but reduced processing time.  Wilson et al. (2007) 

demonstrated the importance of using realistic constraints in order to obtain results that 

were consistent with performance data. 

 

6.3 OPTIMISATION METHODS 

 

The model was optimised for jump distance.  The initial conditions outlined in Section 

5.5.4 were maintained from the matched simulations for each phase.  Therefore the method 

of optimisation was the same as in the matched simulations, but with only the 77 torque 

generator activation timings being varied using a genetic algorithm.  The activation timings 

from the matched simulations were used as a starting point around which tight bounds 

were set (van Soest et al., 1993), since it was assumed that optimal technique would not 

differ too much from that employed in the performance.  Therefore the genetic algorithm 

population size was reduced from 200 in the matched simulations to 100, because the 

search space was reduced and it was found that a population size higher than this did not 

result in an improved result.  This indicated that the genetic algorithm was likely to have 

converged on a global optimum and considerably reduced the calculation time required.  

The bounds were increased if they were hit during optimisations.  In this case an objective 

function which simply comprised the jump distance was maximised. 

 

6.3.1 Penalties 

 

As with the matched simulations, penalties were imposed if the joints exceeded anatomical 

limits (Section 5.5.2).  Penalties were also imposed if the model was more than 5° from the 
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measured orientation at touchdown of the subsequent phase in the hop and step phases.  It 

was assumed additional configuration changes to those in the measured performance could 

be made in the air, partly due to an altered body configuration at take-off, which could 

offset this 5° change in orientation.  For the jump phase it was hypothesised that the 

opportunity for rotational motions of the limbs to counteract whole-body rotation were 

smaller, so the model was penalised if it was over 2° from the orientation in the measured 

trial. 

 

For the first two phases, the model was penalised in order that it remained within this 5° 

range.  For the jump phase the penalties were calculated differently; penalties were 

implemented based on the amount of distance this change in orientation would have cost 

the performance.  For the purposes of this calculation it was assumed the performance 

landing orientation and configuration were optimal and any deviation would result in either 

a maintenance or a decrement in performance.  If the simulation was under-rotated (rotated 

anti-clockwise as viewed from the performer’s right) it was assumed the performer would 

have had to open their hip angle by an equivalent amount in order to maintain the distance 

of the heels from the COM hence maintaining the same performance.  If the simulation 

was over-rotated (rotated clockwise as viewed from the performer’s right) the performer 

would maintain the same configuration and suffer a decrement in performance.  The 

decrement in performance, xP  and yP , due to the altered horizontal and vertical positions 

of the heels, was calculated using the following equations based on the length of a chord of 

a circle (Figure 6.1): 
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where r  represents the radial distance from the COM to the heel at touchdown, θ  and α  

represent the orientation of the body at touchdown in the performance and the change in 

this orientation in the simulation respectively, and xv  and yv  represent the horizontal and 

vertical components of the COM velocity (Figure 6.1). 
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Figure 6.1 A visual representation of a performance (solid line) and simulation (dashed 

line) landing orientation. 

 

This is an approximation since the amount of rotation and the landing velocity are 

calculated using the flight time associated with the performance COM position at landing, 

whereas the COM position of the simulation will be different due to the altered rotation.  

The effects of the rotation and the landing velocity on the performance decrement were in 

opposite directions so this was considered an acceptable approximation.  In practice none 

of the optimised simulations incurred penalties for altered rotation. 

 

6.4 OPTIMISATION RESULTS AND DISCUSSION 

 

6.4.1 Hop phase 

 

Components of phase distance 

Table 6.1 shows the differences between the take-off, flight, and landing distances (Figure 

5.3) between matched and optimised simulations of the hop phase.  The landing distance 

was fixed for all simulations so improvements could only come from the take-off and flight 

distances.  Table 6.1 shows that the majority of the improvement in the hop phase from the 
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matched simulation to the optimised simulation came from an increase in take-off distance 

of 0.12 m, in comparison to an increased flight distance of only 0.02 m. This led to a total 

increase of 0.14 m (3.3%) in phase distance. 

 

Table 6.1 Differences in each component of phase distance between matched and 

optimised simulations of the hop phase 

Simulation 

Type 

Take-off 

Distance (m) 

Flight Distance 

(m) 

Landing 

Distance (m) 

Total Distance 

(m) 

Matched 0.43 3.21 0.65 4.29 

Optimised 0.55 3.23 0.65 4.43 

Difference 0.12 0.02 0.00 0.14 

 

Joint angles 

Figure 6.2 gives a visual representation of the matched and optimised simulations of the 

hop phase and Figure 6.3 shows the corresponding joint angles for each of the torque-

driven joints included in the optimisation process. 

 

 

 

Figure 6.2 Matched (top) and optimised (bottom) simulations of the hop phase. 

 

The most marked difference between the matched and optimised simulations can be seen 

in the shoulder angles.  The left shoulder joint angle in the optimised simulation deviates 

considerably from the matched simulation angle.  The joint angles in the optimised 

simulation show a symmetric flexion of both shoulder joints, whereas the matched joint 

angles show a plateau of the left shoulder joint angle, indicating an asymmetric arm 

movement (Figure 6.3).  For the duration of the ground contact time of the matched 
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simulation the hip extension angle in the stance (right) leg in the optimised simulation is 

similar to that of the matched simulation, but after this time the hip continues to extend and 

has a greater degree of extension at take-off (Figure 6.3) leading to an increased ground 

contact time (Table 6.2).  The other angles of the stance leg, and the free (left) hip, are 

similar in form to the stance hip; showing a greater degree of flexion / extension at take-

off, leading to an increased ground contact time.  One other notable difference in the joint 

angle histories is that the stance knee flexes more in the optimised simulation than in the 

matched simulation.  The knee joint angles of the stance leg are the same in matched and 

optimised simulations at the time of take-off of the matched simulation (Figure 6.3) so this 

should not have affected the ground contact time geometrically.  The increase in take-off 

distance (Table 6.1), which comprises the majority of the total phase length increase, is 

largely due to the increased hip extension angle in the stance leg and the increased flexion 

of the left shoulder joint.  The increased extension of the stance hip would also act to lower 

the COM of the body, however due to the increased flexion of the shoulder joints and the 

free hip, and the increased extension of the knee, ankle, and ball joints of the stance leg, 

the optimised simulation showed a slight increase in COM height at take-off of 0.01 m 

(Table 6.3). 

 

Table 6.2 Ground contact times in matched and optimised simulationso of the hop phase 

Simulation Type Contact Time (ms) 

Matched 142 

Optimised 160 

Difference 18 

 

Table 6.3 COM height at take-off in matched and optimised simulations of the hop phase 

Simulation Type COM Height (m) 

Matched 1.14 

Optimised 1.15 

Difference 0.01 
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Figure 6.3 Joint angle time histories from matched (dashed lines) and optimised (solid 

lines) simulations of the hop phase. 

 

Joint torques 

Figure 6.4 shows the net joint torque time histories at each torque-driven joint in the 

optimised and matched simulations, Figures 6.5-6.6 show the flexor and extensor torque 

generator activation time histories and Appendix 15 shows the optimised torque generator 

activation timings.  The reason for the increased flexion of the stance knee can be seen in 

Figure 6.4 where the optimised simulation initially showed a reduced torque relative to the 

matched simulation and then a larger torque in the latter portion of the ground contact.  

Interestingly, Figures 6.5-6.6 show that the increased extensor torque at the stance knee 

joint was not due to an increased activation of the extensors, but was instead a feature of 

the kinematics of the joint.  The torque generator activation timings in the optimised 

simulation initially showed reduced extensor activation (Figure 6.5), and increased flexor 

activation (Figure 6.6), with respect to the matched simulation.  This allowed the knee to 

flex more initially and put it in more advantageous conditions for torque production later in 

the stance phase.  Towards the end of the stance phase the optimised simulation showed 

reduced flexor activity with respect to the matched simulation, allowing the stance knee to 

extend more.  With the exception of the knee, the general trend in the torque generators of 
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the stance leg was for the extensors to ramp up earlier in the optimised simulation than in 

the matched simulation, with the flexors then ramping up later (Figures 6.5-6.6).  The extra 

extension of the other joints of the stance leg in the optimised simulation was probably the 

main factor in increasing the ground contact time (Table 6.2).  The extra flexion of the free 

hip can be explained primarily by the increased ground contact time, combined with the 

delayed initiation of the extensor ramp (Figure 6.5).  Whereas the increased flexion of the 

left shoulder joint was due to a higher and more sustained activation of the flexor torque 

generator and a decreased extensor activation (Figures 6.5-6.6). 

 

 

Figure 6.4 Joint torque time histories from matched (dashed lines) and optimised (solid 

lines) simulations of the hop phase (extension is positive except at shoulder joints). 
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Figure 6.5 Activation time histories for joint extensors* in optimised (solid lines) and 

matched (dashed lines) simulations of the hop phase. *Shoulders show flexors. 

 

Figure 6.6 Activation time histories for joint flexors* in optimised (solid lines) and 

matched (dashed lines) simulations of the hop phase. *Shoulders show extensors. 
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Work done and angular impulses 

Tables 6.4-6.5 show the work done and angular impulses at each torque-driven joint 

included in the optimisation process in the matched and optimised simulations.  There was 

an overall increase in energy of 70 J contributed by these joints in the optimised 

simulation.  It can be seen that the largest increases in the optimised simulation in both 

work (31 J) and angular impulse (9.6 Nms) came from the stance knee.  Other notable 

increases in work came from the free hip (25 J) and in impulse from the left shoulder (3.9 

Nms).  There is a general trend towards increased impulses in the optimised simulation, 

with larger extension impulses in all joints of the stance leg, and larger (more negative) 

flexion impulses in the free hip, and shoulder joints (Table 6.5). 

 

Table 6.4 Work done at different joints in matched and optimised simulations of the hop 

phase 

 
Right 
Hip 
(J) 

Left 
Hip 
(J) 

Right 
Knee 

(J) 

Left 
Knee 

(J) 

Right 
Ankle 

(J) 

Right 
Ball 
(J) 

Right 
Shoulder 

(J) 

Left 
Shoulder 

(J) 
Optimised 77 59 -68 -8 -21 13 1 -6 
Matched 86 34 -98 -7 -28 0 0 -12 

Difference -9 25 31 -2 7 13 0 5 
Negative sign indicates eccentric work 

 

Table 6.5 Angular impulses at different joints in matched and optimised simulations of the 

hop phase 

 
Right 
Hip 

(Nms) 

Left 
Hip 

(Nms) 

Right 
Knee 
(Nms) 

Left 
Knee 
(Nms) 

Right 
Ankle 
(Nms) 

Right 
Ball 

(Nms) 

Right 
Shoulder 

(Nms) 

Left 
Shoulder 

(Nms) 
Optimised 20.0 -1.2 29.4 1.7 26.0 3.9 0.4 0.4 
Matched 18.7 0.7 19.8 2.1 23.8 1.5 0.2 -3.4 

Difference 1.3 -1.9 9.6 -0.4 2.2 2.4 0.2 3.9 
Negative sign indicates flexion impulse, except in shoulder joints which are opposite 

 

Ground reaction forces 

Figure 6.7 shows the horizontal and vertical GRFs for the matched and optimised 

simulations for each phase of the triple jump.  Table 6.6 shows the horizontal impulse, and 

the vertical impulses including (gross) and excluding (net) the body weight impulses for 

the matched and optimised simulations.  The signs of the horizontal impulses are positive 
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but they were opposite to the direction of motion (i.e. braking impulses).  The vertical 

velocity at take-off was lower in the optimised simulation than the matched simulation 

(Table 6.7) due to the decreased net vertical impulse (208 Ns vs 212 Ns).  However the 

decreased horizontal impulse led to an increased horizontal (7.33 m/s vs 7.20 m/s), and 

resultant (7.58 m/s vs 7.46 m/s), take-off velocity, and a lower take-off angle (15.2° vs 

15.9°).  These changes did not alter the flight distance appreciably (Table 6.1).  A 

difference can be seen in the form of the force traces, with the optimised simulation 

showing a depressed vertical force after the main impact peak, in comparison to the 

matched simulation (Figure 6.7).  This was due to the greater extension of the joints of the 

stance leg (Figure 6.3) which facilitated a longer ground contact time and greater take-off 

distance, increasing the phase distance (Table 6.1). 

 

 

Figure 6.7 GRFs for optimised (solid lines) and matched (dashed lines) simulations of the 

hop phase. 
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Table 6.6 Horizontal and vertical impulses in matched and optimised simulations of the 

hop phase 

Direction Matched Impulse (Ns) Optimised Impulse (Ns) 

Horizontal 60 50 

Vertical (Gross) 313 322 

Vertical (Net) 212 208 

 

Table 6.7 Take-off velocities and projection angle in matched and optimised simulations 

of the hop phase 

Direction Matched Velocity (m/s) Optimised Velocity (m/s) 

Horizontal 7.20 7.33 

Vertical 1.97 1.92 

Resultant 7.46 7.58 

Projection Angle 15.9 15.2 

 

6.4.2 Step phase 

 

Components of phase distance 

In contrast to the hop phase, the improvement in the step phase distance came mainly from 

the flight component, with a difference of 0.39 m.  The improvement in the take-off 

distance was 0.04 m, leading to a total increase in phase distance of 0.43 m (11.1%) (Table 

6.8). 

 

Table 6.8 Differences in each component of phase distance between matched and 

optimised simulations of the step phase 

Simulation 

Type 

Take-off 

Distance (m) 

Flight Distance 

(m) 

Landing 

Distance (m) 

Total Distance 

(m) 

Matched 0.58 2.59 0.72 3.89 

Optimised 0.62 2.98 0.72 4.32 

Difference 0.04 0.39 0.00 0.43 
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Joint angles 

As with the hop phase, the main difference in technique between the matched and 

optimised simulations came in the left shoulder angle (Figures 6.8-6.9); the shoulder angle 

in the optimised simulation continued to flex throughout the ground contact phase whereas 

the left shoulder angle in the matched simulation flexed initially then extended.  The right 

shoulder also flexed more in the optimised simulation, showing the same symmetrical 

flexion of the shoulder joints as the optimised simulation in the hop phase.  The joint 

angles in the stance leg did not differ appreciably between the matched and optimised 

simulations.  As with the hop phase, the ground contact time was increased in the 

optimised simulation (Table 6.9) and this was in part due to the increased extension of the 

stance knee and stance hip towards the end of the ground contact.  Again, as with the hop 

phase, the free hip had a greater degree of flexion at take-off in the optimised simulation 

than the matched simulation.  This flexion of the free hip, coupled with the increased 

flexion of the shoulders and increased extension of the stance hip and knee, led to an 

increase in the take-off distance and the COM height at take-off in the optimised 

simulation (Tables 6.8 and 6.10). 

 

 

 

Figure 6.8 Matched (top) and optimised (bottom) simulations of the step phase. 

 

Table 6.9 Ground contact times in matched and optimised simulations of the step phase 

Simulation Type Contact Time (ms) 

Matched 183 

Optimised 191 

Difference 8 
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Table 6.10 COM heights at take-off in matched and optimised simulations of the step 

phase 

Simulation Type COM Height (m) 

Matched 1.06 

Optimised 1.10 

Difference 0.04 

 

 

Figure 6.9 Joint angle time histories from matched (dashed lines) and optimised (solid 

lines) simulations of the step phase. 

 

Joint torques 

The main differences in the joint torque time histories between the matched and optimised 

simulations (Figure 6.10) were in the left shoulder, stance and free hips.  The left shoulder 

produced a flexion torque for the majority of the stance phase, whereas the matched 

simulation showed an extensor torque for the same period, resulting in the increased 

flexion angle of the left shoulder joint (Figure 6.9).  The cause of this can be seen in the 

torque generator activation time histories (Figures 6.11-6.12) where the optimised 

simulation showed an increased flexor activation and decreased extensor activation in 
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comparison to the matched simulation.  The stance (right) hip torque in the optimised 

simulation deviated from the matched simulation towards the end of the stance phase and 

shows what was initially an increased extension torque and latterly a decreased flexion 

torque.  This was achieved via a decreased flexor activation towards the end of the stance 

phase in the optimised simulation when compared to the matched simulation, since the 

extensor activation actually ramps off marginally earlier in the optimised simulation.  The 

free (left) hip in the optimised simulation showed a decreased extensor torque in the latter 

half of the stance phase when compared to the matched simulation.  This can be attributed 

to a delayed onset of the extensor activation ramp in the optimised simulation (Figure 6.11 

and Appendix 15).  The other joint torques did not show a large difference between the 

matched and optimised simulations. 

 

 

Figure 6.10 Joint torque time histories from matched (dashed lines) and optimised (solid 

lines) simulations of the step phase (extension is positive except at shoulder joints). 
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Figure 6.11 Activation time histories for joint extensors* from matched (dashed lines) and 

optimised (solid lines) simulations of the step phase. *Shoulders show flexors. 

 

Figure 6.12 Activation time histories for joint flexors* from matched (dashed lines) and 

optimised (solid lines) simulations of the step phase. *Shoulders show extensors. 
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Work done and angular impulses 

Tables 6.11-6.12 show the work done and angular impulses at each torque-driven joint 

included in the optimisation process in the matched and optimised simulations.  There was 

an overall increase in work done of 103 J by these joints from the matched to the optimised 

simulations.  The largest difference in work was in the stance hip (64 J); this joint also 

showed an increased angular impulse (5.8 Nms), which was indicated by the torque time 

history (Figure 6.10).  There was an increased angular impulse in the stance knee (1.9 

Nms) which led to more negative (eccentric) work being done in the optimised simulation 

(-28 J).  Despite this negative work decreasing the kinetic energy of the model, it may have 

in some way facilitated the large increase in work achieved at the hip joint.  The left 

shoulder joint displayed a large increase in angular impulse (8.2 Nms) which was evident 

from the torque time histories (Figure 6.10) and also an increase in work done (21 J).  The 

free knee also showed an increase in work done (26 J), despite showing a slightly reduced 

angular impulse (-0.2 Nms).  The flexor torque generator in this joint initiated its ramp 

earlier in the optimised simulation, but showed little difference in either joint angle time 

history (Figure 6.9) or torque time history (Figure 6.10 and Table 6.12) from the matched 

simulation.  The ball joint of the stance leg also showed an increase in work done (19 J) in 

the optimised simulation, but as with the left knee, showed a slight decrease in angular 

impulse (-0.3 Nms).  As with the left knee, the ball joint extensor torque generator time 

history showed an earlier initiation of its ramp and achieved a higher activation in the 

optimised simulation, although the matched simulation did show a higher initial level of 

activation (Figure 6.11).  Despite this, there is little difference in the form of either the 

joint angle time histories (Figure 6.9) or the joint torque time histories at the ball joint 

(Figure 6.10). 

 

Table 6.11 Work done at different joints in matched and optimised simulations of the step 

phase 

 
Right 
Hip 
(J) 

Left 
Hip 
(J) 

Right 
Knee 

(J) 

Left 
Knee 

(J) 

Right 
Ankle 

(J) 

Right 
Ball 
(J) 

Right 
Shoulder 

(J) 

Left 
Shoulder 

(J) 
Optimised 50 69 -135 2 -53 17 -16 14 
Matched -15 71 -108 -23 -54 -2 -18 -7 

Difference 64 -2 -28 26 1 19 2 21 
Negative sign indicates eccentric work 
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Table 6.12 Angular impulses at different joints in matched and optimised simulations of 

the step phase 

 
Right 
Hip 

(Nms) 

Left 
Hip 

(Nms) 

Right 
Knee 
(Nms) 

Left 
Knee 
(Nms) 

Right 
Ankle 
(Nms) 

Right 
Ball 

(Nms) 

Right 
Shoulder 

(Nms) 

Left 
Shoulder 

(Nms) 
Optimised 31.6 -4.7 45.8 -10.0 38.8 4.9 -2.4 1.3 
Matched 25.8 0.0 43.9 -9.8 38.0 5.2 -2.0 -6.9 

Difference 5.8 -4.7 1.9 -0.2 0.8 -0.3 -0.4 8.2 
Negative sign indicates flexion impulse, except in shoulder joints which are opposite 

 

Ground reaction forces 

The GRFs show an increased vertical force in the optimised simulation with respect to the 

matched simulation (Figure 6.13).  This was manifested in increases in both the gross and 

net vertical impulses (441 Ns vs 421 Ns and 305 Ns vs 291 Ns).  The horizontal force 

traces were similar, displaying only a slightly increased braking impulse in the optimised 

simulation (43 Ns vs 41 Ns) (Table 6.13), and leading to similar horizontal take-off 

velocities (6.94 m/s vs 6.93 m/s) (Table 6.14).  The change in net vertical impulse led to an 

increased vertical and resultant take-off velocity in the optimised simulation (1.78 m/s vs 

1.56 m/s and 7.15 m/s vs 7.11 m/s), which in turn increased the projection angle (14.9° vs 

13°) (Table 6.14).  This led to a large increase in flight distance of 0.39 m (Table 6.8). 

 

Table 6.13 Impulses in matched and optimised simulations of the step phase 

Direction Matched Impulse (Ns) Optimised Impulse (Ns) 

Horizontal 41 43 

Vertical (Gross) 421 441 

Vertical (Net) 291 305 

 

Table 6.14 Take-off velocities and projection angle in matched and optimised simulations 

of the step phase 

Direction Matched Velocity (m/s) Optimised Velocity (m/s) 

Horizontal 6.94 6.93 

Vertical 1.56 1.78 

Resultant 7.11 7.15 

Projection Angle 13.0 14.9 



 

 146 

 

Figure 6.13 GRFs from matched (dashed lines) and optimised (solid lines) simulations of 

the step phase. 

 

6.4.3 Jump phase 

 

Components of phase distance 

As with the step phase, but contrary to the hop phase, improvement in the jump phase 

distance came mainly from the flight component, with a difference of 0.27 m.  There was 

an increase in the take-off distance, as there was in the previous two phases, of 0.08 m, 

leading to a total improvement in phase distance of 0.35 m (8.2%) (Table 6.15). 

 

Table 6.15 Differences in each component of phase distance between matched and 

optimised simulations of the jump phase 

Simulation 

Type 

Take-off 

Distance (m) 

Flight Distance 

(m) 

Landing 

Distance (m) 

Total Distance 

(m) 

Matched 0.47 3.37 0.44 4.28 

Optimised 0.55 3.64 0.44 4.63 

Difference 0.08 0.27 0.00 0.35 
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Joint angles 

As with the hop and step phases there is a large difference in the joint angle time history of 

the shoulder joint contralateral to the stance leg, in this case the right one (Figures 6.14-

6.15).  The shoulder flexion at take-off was not as great as in the hop and step phases but 

was still noticeably different between the optimised and matched simulations.  Again, as is 

seen in the previous two phases, the free (right) hip flexed more in the optimised 

simulation (Figure 6.15).  However, in contrast to the two previous phases, the joints of the 

stance (left) leg did not extend further in the optimised simulation than the matched 

simulation (Figure 6.15).  Therefore the increase in take-off distance (Table 6.15) was due 

to the increased flexion of the shoulder joints and the free hip.  This increased flexion also 

led to an 0.02 m increase in COM height at take-off of the optimised simulation compared 

to the matched simulation, as was seen in the previous two phases (Table 6.16).  The same 

trend was seen in the ground contact time as in the previous phases, with an increase in the 

optimised simulation (Table 6.17).  The increase in the ground contact time in the jump 

phase must have been due to the increased flexion of the free limbs, since there was not an 

increased extension of the joints of the stance leg as there was in the previous two phases.  

The torques leading to the increased flexion of the free limbs would give rise to an upward 

acceleration of the mass of the limbs which would in turn have imparted downward 

accelerations, via the shoulder and hip joints, on the remainder of the mass of the body.  

Assuming the stance leg did not fully resist these downward accelerations this would have 

caused the model to maintain contact with the ground for longer. 

 

 

 

Figure 6.14 Matched (top) and optimised (bottom) simulations of the jump phase. 
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Figure 6.15 Joint angle time histories from matched (dashed lines) and optimised (solid 

lines) simulations of the jump phase. 

 

Table 6.16 COM height at take-off in matched and optimised simulations of the jump 

phase 

Simulation Type COM Height (m) 

Matched 1.07 

Optimised 1.09 

Difference 0.02 

 

Table 6.17 Ground contact times in matched and optimised simulations of the jump phase 

Simulation Type Contact Time (ms) 

Matched 203 

Optimised 212 

Difference 9 
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Joint torques 

The main differences in the joint torque time histories between the optimised and matched 

simulations of the jump phase were in the shoulder and hip joints (Figure 6.16).  The 

difference between hip joint torques of the stance (left) hip between the optimised and 

matched simulations occurred towards the end of the stance phase, with what was initially 

an increased extension torque and later a decreased flexion torque.  The torque generator 

activation timings show that the model achieved these larger extension torques / decreased 

flexion torques in the stance hip by activating the flexors later in the optimised simulation 

(Figures 6.17-6.18 and Appendix 15).  The free hip also showed a reduced extension 

torque in the optimised simulations towards the end of the stance phase (Figure 6.16) 

which was due to a delayed initiation of the flexor ramp (Figure 6.18).  This manifested 

itself in the increased flexion angle of the free hip at take-off (Figure 6.15).  The jump 

phase also showed an increased knee extension torque in the stance leg of the optimised 

simulation during the latter half of the stance phase.  An inspection of Figures 6.17-6.18 

shows that there was neither increased extensor or decreased flexor activation at this joint, 

so the increase in extensor torque must have come about as a result of changes in angular 

velocity arising from the action of torques at other joints (Dapena, 1999).  The stance ankle 

torque generator in the jump phase showed extensor and flexor profiles (Figures 6.17-6.18) 

in the optimised simulation that ramped up and down respectively later than the matched 

simulation.  These timings account for the initial depression of the torque time history in 

the optimised simulation with respect to the matched simulation, but they do not explain 

the increased torques later in the stance phase, since the extensor and flexor torque 

generators were fully active and fully inactive respectively in the matched and optimised 

simulations.  Therefore the increase in torque must have come about due to the changed 

kinematic conditions of the joint putting the torque generators in more advantageous angle 

/ angular velocity conditions for torque generation. 
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Figure 6.16 Joint torque time histories from matched (dashed lines) and optimised (solid 

lines) simulations of the jump phase (extension is positive except at shoulder joints). 

 

Figure 6.17 Activation time histories for joint extensors* in matched (dashed lines) and 

optimised (solid lines) simulations of the jump phase. *Shoulders show flexors. 
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Figure 6.18 Activation time histories for joint flexors* in matched (dashed lines) and 

optimised (solid lines) simulations of the jump phase. *Shoulders show extensors. 

 

Work done and angular impulses 

Tables 6.18-6.19 show the work done and angular impulses at each torque-driven joint 

included in the optimisation process in the matched and optimised simulations.  There was 

a total increase in work of 130 J done by the joints included in the optimisation procedure 

(Table 6.18).  The largest increase in work done was in the stance (left) hip - as with the 

step phase but in contrast to the hop phase - with a contribution of 59 J.  As in the step 

phase, the stance knee had an increased angular impulse (3.7 Nms) but was a net absorber 

of energy, although less in the jump phase than the step phase (-6 J vs -28 J).  The stance 

ankle and ball also performed more work in the optimised simulation than the matched 

simulation (28 J and 15 J).  The largest change in impulse was seen in the free hip (-8.1 

Nms) but there was very little difference in work done between the optimised and matched 

simulations (52 J vs 50 J).  This was due to the fact that the free hip in the matched 

simulation started to flex towards the end of the stance phase, allowing the extensors to 

perform positive work, whereas the hip continued to flex in the optimised simulation 

therefore the extensors were performing negative work (Figure 6.15).  Likewise the right 

shoulder joint showed a large increase in impulse in the optimised simulation (5.6 Nms) 
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but performed a similar amount of work (-3 J vs -5 J) with respect to the matched 

simulation.  An inspection of Figure 6.15 shows that the joint angle extended then flexed, 

so the flexion torque produced at the joint (Figure 6.16) did negative work followed by 

positive work, leading to a small net amount of work done, but a large impulse and 

consequently a large change in joint angle and the COM position and velocity of the arm. 

 

Table 6.18 Work done by different joints in matched and optimised simulations of the 

jump phase 

 
Right 
Hip 
(J) 

Left 
Hip 
(J) 

Right 
Knee 

(J) 

Left 
Knee 

(J) 

Left 
Ankle 

(J) 

Left 
Ball 
(J) 

Right 
Shoulder 

(J) 

Left 
Shoulder 

(J) 
Optimised 52 20 20 -123 -29 17 -3 4 
Matched 50 -39 0 -117 -57 3 -5 -5 

Difference 3 59 20 -6 28 15 2 9 
Negative sign indicates eccentric work 

 

Table 6.19 Angular impulses at different joints in matched and optimised simulations of 

the jump phase 

 
Right 
Hip 

(Nms) 

Left 
Hip 

(Nms) 

Right 
Knee 
(Nms) 

Left 
Knee 
(Nms) 

Left 
Ankle 
(Nms) 

Left 
Ball 

(Nms) 

Right 
Shoulder 

(Nms) 

Left 
Shoulder 

(Nms) 
Optimised 0.9 37.1 -11.5 53.6 38.1 5.5 6.7 -0.7 
Matched 9.0 32.8 -11.1 49.9 37.0 5.0 1.2 -3.1 

Difference -8.1 4.4 -0.4 3.7 1.1 0.5 5.6 2.5 
Negative sign indicates flexion impulse, except in shoulder joints which are opposite 

 

Ground reaction forces 

The horizontal force trace shows a slightly reduced horizontal braking force followed by a 

slightly increased propulsive force in the optimised simulation in comparison to the 

matched simulation (Figure 6.19).  This initial reduced braking force was likely to have 

been due to the lower extensor torque in the stance ankle and the increased flexor torque in 

the right shoulder (Figure 6.16).  There was an associated depression in the vertical force 

over the same time period in the optimised simulation, due to the same factors.  The 

decreased horizontal and increased vertical forces in the latter half of the ground contact 

phase were due to the increased torques of the stance leg during this period (Figure 6.16).  

This led to a decreased braking impulse (62 Ns vs 78 Ns) and an increased net vertical 

impulse (471 Ns vs 456 Ns) in the optimised simulation compared to the matched 
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simulation (Table 6.20).  This led to an increased horizontal (6.06 m/s vs 5.84 m/s) and 

vertical (2.23 m/s vs 2.12 m/s) take-off velocity in the optimised simulation and an 

increased projection angle (21.6° vs 21.3°) which led to an increase in the flight 

component of the phase distance (3.64 m vs 3.37 m) (Table 6.21). 

 

 

Figure 6.19 GRFs from matched (dashed lines) and optimised (solid lines) simulations of 

the jump phase. 

 

Table 6.20 Impulses at take-off in matched and optimised simulations of the jump phase 

Direction Matched Impulse (Ns) Optimised Impulse (Ns) 

Horizontal 78 62 

Vertical (Gross) 456 471 

Vertical (Net) 311 320 
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Table 6.21 Take-off velocities and projection angle for matched and optimised simulations 

of the jump phase 

Direction Matched Velocity (m/s) Optimised Velocity (m/s) 

Horizontal 5.84 6.06 

Vertical 2.12 2.23 

Resultant 6.21 6.47 

Projection Angle 21.3 21.6 

 

6.4.4 Increased strength 

 

In order to investigate the effects of increasing strength on triple jump performance, 

maximum isometric and eccentric torques were increased by 5% from the measured values 

displayed in Appendix 11.  The model was optimised for jump distance in the hop phase 

using the method described in Section 6.3. 

 

Components of phase distance 

Table 6.22 shows that the model with increased strength jumped 0.15 m (3.4%) further 

than the optimised simulation with measured torques.  A slight decrease in take-off 

distance (-0.01 m) was outweighed by an increased flight distance (0.16 m). 

 

Table 6.22 Differences in each component of phase distance between optimised 

simulations of the hop phase with and without increased strength 

Torques 
Take-off 

Distance (m) 

Flight Distance 

(m) 

Landing 

Distance (m) 

Total Distance 

(m) 

Measured 0.55 3.23 0.65 4.43 

Increased 0.54 3.39 0.65 4.58 

Difference -0.01 0.16 0.00 0.15 

 

Figure 6.20 gives a visual representation of the optimised simulations with and without 

increased strength; the techniques employed in both simulations were visually very similar.  

There is also very little difference between the joint angle time histories (Figure 6.21).  The 

hip angles in the increased torque conditions showed a slight increase in extension in the 

stance hip and an increase in flexion in the free hip, with respect to the measured torque 
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condition.  The stance knee was more extended at take-off in the increased torque 

condition, having flexed slightly more, earlier in the stance phase.  Also the right shoulder 

is slightly more flexed at take-off in the increased strength condition. 

 

 

 

Figure 6.20 Optimised simulations of the hop phase with measured (top) and increased 

(bottom) strengths. 

 

Figure 6.21 Joint angle time histories from simulations of the hop phase with measured 

(dashed lines) and increased (solid lines) strengths. 
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The joint torque time histories show that the only major difference in the increased strength 

condition was at the stance knee, where the torque ramps up later and is markedly higher 

then the optimisation with measured torques (Figure 6.22).  This gives an initial indication 

that the stance knee is an important joint in which to increase strength in order to improve 

performance in the hop phase of the triple jump. 

 

 

Figure 6.22 Joint torque time histories from simulations of the hop phase with measured 

(dashed lines) and increased (solid lines) strengths (extension is positive except at shoulder 

joints). 

 

6.4.5 No angular momentum constraints 

 

Angular momentum constraints were removed (Section 6.3.1) in order to ascertain how 

important they were to the performance of the model.  The model was optimised for jump 

distance in the hop phase using the method described in Section 6.3. 

 

Components of phase distance 

Table 6.23 shows that the model without angular momentum constraints jumped 0.30 m 

(6.8%) further than the optimised simulation with angular momentum constraints.  As with 
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the increased strength condition a slight decrease in take-off distance (-0.01 m) was 

outweighed by an increased flight distance (0.31 m). 

 

Table 6.23 Differences in each component of phase distance between optimised 

simulations of the hop phase with and without constraints on angular momentum 

Angular 

Momentum 

Take-off 

Distance (m) 

Flight Distance 

(m) 

Landing 

Distance (m) 

Total Distance 

(m) 

Constrained 0.55 3.23 0.65 4.43 

Unconstrained 0.54 3.54 0.65 4.73 

Difference -0.01 0.31 0.00 0.30 

 

Figure 6.23 shows that the optimised technique without constraints on angular momentum 

differs markedly from that with constraints, whereas the joint angles do not show any great 

differences (Figure 6.24).  The optimisation without constraints shows a much greater 

‘forward lean’ of the body at take-off, whereas the optimisation with constraints has a 

vertically oriented torso.  The free limbs also show a greater degree of flexion in the 

simulation without constraints.  Despite this the take-off distance is slightly reduced due to 

the hip being less extended.  The simulation without constraints exhibited a landing 

orientation error of 47° compared to performance kinematics (Section 5.5.2).  This further 

demonstrates the importance of including angular momentum constraints in simulation 

models of human jumping. (Wilson et al., 2007). 

 

 

 

Figure 6.23 Optimised simulations of the hop phase with (top) and without (bottom) 

constraints on angular momentum. 
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Figure 6.24 Joint angle time histories for simulations of the hop phase with (dashed lines) 

and without (solid lines) constraints on angular momentum. 

 

Joint torque time histories show that the largest difference between the simulations with 

and without angular momentum constraints is at the hip joint of the stance leg (Figure 

6.25).  The simulation without constraints showed a strong hip flexion towards the end of 

the ground contact phase where this was not apparent in the simulation with constraints.  

Other than this, joint torques were broadly similar across the joints, with slight increases in 

knee and ankle torques of the stance leg being the other most influential differences. 
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Figure 6.25 Joint torque time histories for simulations of the hop phase with (dashed lines) 

and without (solid lines) constraints on angular momentum (extension is positive except at 

shoulder joints). 

 

6.5 CHAPTER SUMMARY 

 

In this chapter literature on the methods of optimisation of simulation models of human 

jumping was reviewed.  The method for optimisation of technique in the simulation model 

of triple jump was described.  The components of the objective function were outlined and 

the penalties the model could incur were explained.  The results of the optimisation process 

were discussed with reference to the differences in the kinematic and kinetic features of the 

model between the matched and optimised simulations.  The effects of increasing strength, 

and neglecting angular momentum constraints on the simulation were investigated.  The 

next chapter will provide a summary of this thesis with a discussion of methods used, areas 

for improvement, implications, applications, and future directions of the study. 
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CHAPTER 7 

 

SUMMARY AND DISCUSSION 

 

7.1 CHAPTER OVERVIEW 

 

The purposes of this study were: 

 

1. To develop a full-body torque-driven computer simulation model of triple jumping; 

2. To gather anthropometric, strength, and performance data, and derive viscoelastic 

parameters, in order that the model would be subject-specific; 

3. To evaluate the model against performance data to ensure that it was a good 

representation of the activity being modelled; 

4. To optimise the technique of the model in order to maximise the distance jumped in 

each phase individually; 

5. To draw conclusions on the components of optimal technique. 

 

In this chapter the extent to which these aims have been achieved is considered.  The 

methodologies are summarised, and limitations and potential improvements are 

highlighted.  The results of the model are discussed with respect to the research questions 

posed in Chapter 1.  Future applications of the model are then outlined. 

 

7.2 DISCUSSION AND LIMITATIONS 

 

7.2.1 Computer simulation model of triple jumping 

 

A whole-body torque-driven model of triple jumping was developed in AutolevTM 

comprising thirteen segments, of which five had both rigid and wobbling elements.  The 

model was two-dimensional so only represented motion in the sagittal plane.  Torque 

generators with flexion and extension profiles were included at each of the joints of the leg 

and at the shoulders.  Elbow joints were angle-driven. 
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During a triple jump motion occurs outside the sagittal plane which cannot be represented 

in the model.  For instance the hip and shoulder joints on either side of the body move 

independently of each other and were modelled as single joints.  However the results of the 

model evaluation indicate that the model accurately represents the important features of 

triple jumping (Chapter 5).  This indicated that these motions only had a minimal effect on 

performance.  It was assumed that the action of the elbow joints would have only a small 

effect on performance and therefore simulations used angles derived from performance 

data in order to angle-drive these joints.  However if more accuracy were required, torque 

profiles could be included at the elbow joints in order to simulate the effect of the arms on 

performance.  Joints were modelled as rigid and pin-linked and did not incorporate 

compressions seen in real joints.  The effects of this are discussed in Section 7.2.3. 

 

7.2.2 Methodology 

 

Anthropometric, strength, and performance data were gathered from a triple jumper of 

national standard (Chapter 4). 

 

Kinematic data 

Kinematic data were collected individually from each phase of a triple jump and also from 

a whole triple jump (Section 4.3).  Forty-five retroreflective markers were tracked using an 

18 camera Vicon automatic motion capture system at 480 Hz for the individual phases 

from the force plate in order that the kinematic data could be combined with force data.  

The sampling frequency was reduced to 240 Hz for the whole jump, since the large capture 

volume (~18 m x 2 m x 2.5 m) necessitated an increased resolution and there is a trade off 

between sampling frequency and resolution.  Joint centres were determined from the 

positions of these markers and flexion / extension joint angles were calculated by 

‘projecting’ them onto the sagittal plane. 

 

Due to the large capture volume the system sometimes failed to track markers for the entire 

period.  Thus in future studies using such large capture volumes more cameras should be 

used, if available, in order to increase the resolution and frequency, and thus the chances of 

tracking markers throughout the duration of the activity. 
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Since the triple jump involves large GRFs, skin mounted markers were sometimes lost 

during impacts.  Skin mounted markers should be adhered as securely as possible in an 

attempt to limit these losses. 

 

Obtaining kinematics that accurately represent underlying joint motions using skin-

mounted markers is very difficult (Section 4.3.1).  It is not practical to use bone-mounted 

markers or imaging techniques (dynamic MRI) during dynamic movements, so it is 

unlikely these errors can be removed altogether. 

 

Force data 

Force data were collected from a force platform for individual phases of the triple jump at 

1000 Hz (Section 4.4.2).  The force data demonstrated a high frequency component that 

was not representative of the motion being measured and was therefore removed using a 

filtering process (Section 4.5.1).  Although this altered the horizontal and vertical impulses 

very little, this filtering process may have inadvertently removed a small portion of the 

actual signal.  Therefore in future studies researchers should ensure that the force plate is 

properly housed and that the material covering it is securely attached in order to minimise 

any signal not representative of the activity being measured. 

 

Torque data 

Torque data were collected from an isovelocity dynamometer for the shoulder, hip, knee, 

and ankle at 1000 Hz (Section 4.4.4).  Angular velocities ranged from -400°/s to 400°/s at 

50°/s intervals.  A correction was applied in order to convert crank angles to joint angles 

by using a mechanical goniometer to obtain joint angles at various crank angles 

isometrically.  This correction might not properly represent this relationship during 

dynamic contractions.  Therefore in future studies joint angles should be obtained using an 

automatic motion capture system during the movement thus allowing a more accurate 

correction to be made. 

 

Another limitation of the protocol used was that the effects of biarticular muscles were not 

completely included.  The inclusion of biarticular muscles in simulation models has been 

shown to have only a minor effect on jumping performance (van Soest et al., 1993).  In this 

protocol angles at joints proximal and / or distal to the joint being measure were not varied 
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in order to ascertain the effects of any biarticular muscles crossing these joint on the 

measured torques.  Future studies could therefore incorporate this in their joint torque data 

collection protocol in order that they can more accurately model the torque / angle / 

angular velocity relationship. 

 

The subject could not complete the dynamic shoulder flexion protocol due to injury, 

therefore the seven-parameter torque / angular velocity function calculated from the 

shoulder extension data was also used for shoulder flexion (Section 4.7.5).  It is unlikely 

that this will have greatly affected the data, since the peak isometric torque and torque / 

angle relationship were obtained for shoulder flexion and the torque / angular velocity 

relationship is unlikely to differ markedly between shoulder flexion and extension. 

 

Bilateral symmetry was assumed, if increased accuracy were desired then the protocol 

could incorporate limbs on both sides of the body.  This would greatly increase the 

duration of the data collection and it is unlikely any great asymmetry exists in able-bodied 

athletes whose performance depends on the generation of large torques on both sides of the 

body. 

 

The torque parameters for the ball joint were estimated due to the difficulties in measuring 

torques at this joint on an isovelocity dynamometer (Section 4.7.5).  It would be beneficial 

to develop a method of measuring torques at this joint in order to obtain accurate 

parameters for future models. 

 

Anthropometric data 

Anthropometric data were obtained using a geometric model (Yeadon, 1990a).  

Simulations of aerial movement using data from this model have been shown to reproduce 

realistic performances, especially for movements in the sagittal plane (Yeadon, 1990b).  

The distribution of mass between the rigid and wobbling elements was calculated using 

values from the literature (Clarys and Marfell-Jones, 1986; Clarys et al, 1984).  Although 

attempts were made to account for the likely difference in body composition of the subject 

in this study and those in the literature (Section 4.7.3) there were inevitably inaccuracies.  

The use of imaging techniques such as CAT (Huang and Wu, 1976) or MRI (Martin et al., 

1989) would allow a more accurate estimation of segmental composition and inertia 

parameters and should be used in future if available. 
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7.2.3 Viscoelastic parameter determination 

 

The viscoelastic parameters were determined by an optimisation process (Section 5.4).  

The viscoelastic parameters that led to the model best matching force traces also led to an 

excessive depression of the foot (> 4 cm).  Due to this force traces were removed from the 

objective function.  It was hypothesised that this excessive depression was due to the rest 

of the system being too stiff; not accounting for compressions in the joints of the stance leg 

and the spine (Seyfarth et al., online).  If future models are to match force traces well, the 

joints of the stance leg and the spine should include springs to model these compressions. 

 

Once force traces were removed from the objective function the model matched 

performance data closely, with differences of 2.2%, 1.0%, and 2.4% for the hop, step, and 

jump phases respectively, giving an overall difference of 1.8%. 

 

7.2.4 Evaluation and optimisation of the torque-driven model 

 

Model evaluation 

The torque-driven model was matched to performance data by varying 77 torque generator 

activation timings using a genetic algorithm.  The initial joint angles in the stance leg were 

included in the optimisation process, this was in an attempt to account for errors in the 

kinematic data, and deformations in the joints which were not represented in the pin-linked 

joints of the model.  A model with springs at these joints could go some way to account for 

these deformations (Section 7.2.3). 

 

Each of the three phases showed a close match to performance data, with overall 

differences of 3.8%, 2.7%, and 3.1% for the hop, step, and jump phases respectively.  This 

indicated the model was a good representation of the activity in question and suitable for 

simulation of the triple jump. 

 

Model optimisation 

The technique of the model was optimised in order to maximise distance jumped at each 

phase.  As with the model evaluation this was achieved by varying 77 torque generator 

activation timings.  Initial kinematics were maintained from the matched simulations. 
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These optimisations resulted in performance increases of 3.3%, 11.1%, and 8.2% 

respectively for the hop, step, and jump phases. 

 

The most marked difference in technique between the optimised and matched simulations 

was at the shoulder joints.  In each phase the optimised simulations demonstrated a 

symmetrical flexion at both shoulders, whereas the matched simulations showed an 

asymmetrical technique (Figures 6.3, 6.9 and 6.15).  Encouragingly this symmetrical 

shoulder flexion is a feature of elite triple jump technique which further indicates that the 

model is a good representation of the system it is simulating. 

 

In addition to this symmetrical shoulder flexion, optimised simulations showed a greater 

extension of the stance knee and hip and a more flexed free hip.  This technique resulted in 

an increased ground contact time in all phases with respect to matched simulations and 

facilitated an increased vertical impulse (Tables 6.6, 6.13 and 6.20). 

 

The effects of increasing strength and neglecting angular momentum constraints on the 

performance of the model were also investigated.  These led to increases in jump distance 

of 3.4% and 6.8% respectively.  These results indicated that strength increases could be 

beneficial to a triple jumper and that angular momentum constraints were necessary in 

simulations of jumping. 

 

A genetic algorithm was used in order to vary torque generator activation timings in order 

to maximise jump distance.  These optimisations typically took 24-48 hours.  This time 

period was acceptable, but the structure of the genetic algorithm is such that it lends itself 

to parallel processing (van Soest and Casius, 2003).  This was not employed in this case 

and could reduce total processing time.  In future optimisations, especially those 

attempting to optimise three phases sequentially, this is something that should be 

investigated. 
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7.3 RESEARCH QUESTIONS 

 

Q1. How close to optimum was the performance of the subject in this study? 

 

The optimisation of technique revealed that the athlete was operating sub-optimally at each 

phase.  In the hop and step phases the performances might have been limited due to 

requirements of the subsequent take-off.  However, the fact that the jump take-off, where 

there was no such requirement, showed a substantial improvement in performance when 

optimised, might indicate that this was not the case.  The optimisation of the hop phase 

showed an improvement of 0.14 m, from 4.29 m to 4.43 m, the majority of this being made 

up by an increase in take-off distance of 0.12 m.  The step phase showed the largest 

increase of 0.43 m, from 3.89 m to 4.32 m, this improvement consisted mainly of a 0.39 m 

increase in flight distance.  The jump phase showed an improvement of 0.35 m, from 4.28 

m to 4.63 m, the majority of which was made up by an increased flight distance of 0.27 m.  

These changes represented percentage improvements at each phase of 3.3%, 11.1%, and 

8.2% giving an overall theoretical increase of 7.4%.  This is a measure of how close to 

optimum the technique of the subject was post-touchdown during each take-off phase.  

Other improvements could likely be obtained by altering initial conditions. 

 

Q2. What is the optimum arm technique for triple jump performance? 

 

In each optimisation of technique the results showed a symmetrical flexion of the 

shoulders throughout the take-off phase, this was in contrast the asymmetrical technique 

employed by the subject.  This symmetrical flexion is referred to as the double-arm 

technique in the literature (Hay, 1992).  An analysis of angular impulses created at the 

shoulder joints in the matched and optimised simulations indicated that the shoulder joint 

contralateral to the stance leg showed some of the largest increases in impulse of all joints 

in the optimised simulations (Tables 6.5, 6.12, and 6.19).  However, with the exception of 

the left shoulder joint in the step phase, there was little difference in the work done at the 

shoulder joints between matched and optimised simulations.  These angular impulses could 

act to improve performance in more than one way.  Initially during the period when the 

shoulders are flexing from a hyperextended position it has been shown that they act to 

cushion the impact on the stance leg in a high jump take-off employing a double-arm 
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technique (Dapena and Chung, 1988).  This was due to the flexion of the arms reducing the 

radial distance of the COM from the hip joint during the period when this distance was 

decreasing.  This cushioning could be of major benefit in triple jumping due to the 

exceptionally high GRFs (Section 2.2.3).  The cushioning effect would be reduced or non-

existent in the asymmetrical single-arm technique, since the combined COM of the arms 

relative to the hip joint should not change appreciably.  During the subsequent period in the 

same high jump take-off when the radial distance of the COM to the hip joint was 

increasing, the arms were shown to act to increase this distance (Dapena and Chung, 

1988).  The increased flexion at the shoulder joints in the optimised simulations manifested 

itself in increases in both the take-off distance and the COM height at take-off (Table 6.).  

All the optimised simulations showed an increased impulse and ground contact time (Table 

6.).  The symmetrical flexion of the shoulder joints could have contributed to these 

increases; this would accelerate the mass of the arms forwards and upwards, thus applying 

a reaction force though the shoulder joints, accelerating the mass of the rest of the body in 

the opposite direction.  This could act to put the torque generators of the leg into slower 

concentric conditions, facilitating an increased torque production (Dapena, 1999) and / or 

increase the ground contact time which would also allow a larger propulsive impulse. 

 

Q3. How would an increase in strength affect triple jump performance? 

 

In an attempt to ascertain how an increase in strength would affect performance in the 

triple jump maximal isometric and eccentric torques were increased by 5% and torque 

generator activation timings were subsequently optimised to maximise distance jumped in 

the hop phase.  This optimisation led to an increase in performance of 0.15 m with respect 

to the optimised simulation with measured torques which represented a 3.4% 

improvement.  This improvement was wholly due to an increase in flight distance of 0.16 

m as the take-off distance was reduced by -0.01 m.  The technique in the increased strength 

simulation did not differ visually from that of the optimised simulation with measured 

torques.  However an inspection of the torque time histories (Figure 6.22) shows that, 

whilst there is little difference in most joints between the two optimisations, the 

optimisation with increased strength shows a marked difference in knee torque, ramping up 

later and reaching a higher level for longer than the simulation with measured torques.  

This gives the impression that the most beneficial joint around which to increase strength 

in order to improve performance in the hop phase would be the stance knee.  A wider 
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investigation involving each phase and variations in the maximal torques at individual 

joints is needed to properly assess the benefits of an increase in strength on triple jump 

performance. 

 

Q4. What influence do angular momentum constraints have on simulations of the triple 

jump? 

 

In order to gauge what effect angular momentum constraints have on triple jump 

performance, a simulation without these constraints was optimised to maximise the 

distance jumped.  The optimisation without angular momentum constraints jumped 0.30 m 

further than the optimisation with constraints, representing an improvement of 6.8%.  This 

was entirely due to an increased flight distance of 0.31 m as there was a decrease in take-

off distance of -0.01 m (Table 6.23).  Visually it can be seen that there is a marked 

difference in orientation of the trunk in the two optimisations (Figure 6.23).  The 

optimisation without angular momentum constraints displays a large ‘forward lean’ which 

is not a feature of horizontal jumps in athletics.  The orientation of the body at the landing 

of the next phase in this simulation was estimated to have been 47° away from the 

measured orientation.  This lends further weight to the findings of Wilson et al. (2007) who 

stated that models of jumping should include constraints on angular momentum. 

 

7.4 CONCLUSION 

 

With respect to the purposes of this study outlined at the beginning of this chapter, a 

subject-specific torque-driven model of the triple jump was successfully developed, 

evaluated and optimised.  Anthropometric, strength, and performance data were obtained 

from a triple jumper and viscoelastic parameters were derived using an angle-driven 

model, ensuring subject-specificity.  A torque-driven model was then evaluated against 

performance data and showed a close match for each phase of the triple jump, indicating 

that it is a good representation of the system it was simulating.  The components of 

optimum technique were described, quantified, and discussed.  The technique employed by 

the model in the performance optimisations showed features that are consistent with 

current elite triple jump technique which is encouraging and is a further indication of the 
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accuracy of the model.  Finally the effects of increasing strength and neglecting angular 

momentum constraints on simulations were also quantified. 

 

7.5 FUTURE RESEARCH 

 

The immediate continuation of this project will be to use the model to simulate each phase 

of the triple jump sequentially, rather than individually as was done in this study.  In order 

to do this the flight phases will be included in the simulation.  A spline will be used to 

merge the take-off angles from the simulation into the angles from the performance over 

the initial portion of the flight phase (~100 ms), the remainder of the flight phase will then 

be angle-driven.  This will allow a more accurate determination of the landing orientation 

for the subsequent phase.  The initial kinematic conditions of the subsequent phase will 

then be directly related to the take-off conditions from the previous phase.  Simulating the 

whole jump in this fashion will provide information on the interdependence of the phases 

and what the phase ratios for optimum performance in the triple jump are.  More generally, 

the model has been shown to accurately simulate human motion in the sagittal plane with 

alternating foot-ground contacts.  Consequently it can be used in future to answer questions 

relating to any activity of this type with confidence.  Research questions that will be 

addressed in the future include: 

 

• What is the contribution of approach velocity to triple jump performance? 

• How sensitive is triple jump performance to variations in initial conditions? 

• How is triple jump performance affected in each phase by variations in strength 

parameters at individual joints? 

• How sensitive is triple jump performance to variations in muscle activation 

timings? 

• How do altered anthropometric and mass/inertia characteristics affect triple jump 

performance? 

• Is a symmetrical arm technique suitable for use in long jumping? 

• What are the limitations on maximum sprinting speed? 
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APPENDIX 1 

 

PARAMETERS FOR CALCULATION OF SEC STIFFNESS 

 

Joint 

Action 
Muscle 

α 

(deg) 

Lb 

(mm) 

Lf 

(mm) 

Lt 

(mm) 

Ankle 

Dorsi 

Tibialis 

Anterior 
9 117 99 217 

Gastrocnemius 13.03 240.58 74.45 213.13 Ankle 

Plantar Soleus 26 129 49 227 

Rectus 

Femoris 
10 302 88 186 

Vastus 

Lateralis 
11 273 110 138 

Vastus 

Medialis 
10 360 112 49 

Knee 

Extension 

Vastus 

Intermedius 
6 320 106 87 

Biceps 

Femoris 
15 152 146 96 

other 

Hamstrings 
10.73 291.01 98.65 141.11 

Knee 

Flexion 

Gastrocnemius 13.03 240.58 74.45 213.13 

Gluteus 

Maximus 
1.43 172.43 162.91 232.83 Hip 

Extension 
Hamstrings 10.73 291.01 98.65 141.11 

Psoas Major 5 238 190 54 
Hip 

Flexion 
Rectus 

Femoris 
10 302 88 186 
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Joint 

Action 
Muscle 

Lsec 

(mm) 

d 

(mm) 

Height 

(cm) 

PCSA 

(mm2) 

SEC 

Stiffness 

(Nm/rad) 

Ankle 

Dorsi 

Tibialis 

Anterior 
241 40.3 168 2040 195.03 

Gastrocnemius 390 46 178 6167 Ankle 

Plantar Soleus 319 46 178 11868 
641.45 

Rectus 

Femoris 
410 42 178 3367 

Vastus 

Lateralis 
310 42 178 6880 

Vastus 

Medialis 
305 42 178 4674 

Knee 

Extension 

Vastus 

Intermedius 
308 42 178 5368 

981.99 

Biceps 

Femoris 
109 26 178 1024 

other 

Hamstrings 
343 26 178 7807 

Knee 

Flexion 

Gastrocnemius 390 17 178 6167 

508.27 

Gluteus 

Maximus 
248 62 178 4171 Hip 

Extension 
Hamstrings 343 77 178 7807 

2274.73 

Psoas Major 105 4 178 1383 
Hip 

Flexion 
Rectus 

Femoris 
410 35 178 3367 

300.60 
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APPENDIX 2 

 

AUTOLEV CODE FOR A COMPUTER SIMULATION 

MODEL OF THE TRIPLE JUMP 

 

%TRIPLEJUMP.AL 
%AUTOLEV CODE FOR 14 SEGMENT (HEAD ANGLE IS FIXED) COMPUTER 
%SIMULATION MODEL OF TRIPLE JUMP 
 
%----------------------------------------------------------------------------------------------------- 
% PHYSICAL DECLARATIONS 
 
NEWTONIAN N % WHERE N2 IS UP, N1 RIGHT AND N3 = N1 X N2 
BODIES RF1,LF1,RF2,LF2 
BODIES RS,LS,RTH,LTH,TR,HD,RUA,LUA,RFA,LFA  
BODIES WRS,WLS,WRTH,WLTH,WTR  
POINTS P{27},CM,O 
 
%----------------------------------------------------------------------------------------------------- 
% MATHEMATICAL DECLARATIONS 
 
CONSTANTS LRF1,LLF1,LRF21,LRF22,LLF21,LLF22 
CONSTANTS LRS,LLS,LRTH,LLTH,LTR,LHD,LRUA,LLUA,LRFA,LLFA  
CONSTANTS LWRS,LWLS,LWRTH,LWLTH,LWTR  
CONSTANTS LRSO,LLSO,LRTHO,LLTHO,LTRO,LHDO,LRUAO,LLUAO, 

LRFAO,LLFAO 
CONSTANTS LRF2O1,LRF2O2,LLF2O1,LLF2O2,LRF1O,LLF1O 
CONSTANTS LWRSO,LWLSO,LWRTHO,LWLTHO,LWTRO  
CONSTANTS IRF1,ILF1,IRF2,ILF2 
CONSTANTS IRS,ILS,IRTH,ILTH,ITR,IHD,IRUA,ILUA,IRFA,ILFA  
CONSTANTS IWRS,IWLS,IWRTH,IWLTH,IWTR  
CONSTANTS K{18},G,M,NANG 
VARIABLES ARSHOE,ALSHOE,ARHIPE,ALHIPE,ARKNEE,ALKNEE, 

ARANKE,ALANKE,ARBALE,ALBALE 
VARIABLES ARSHOF,ALSHOF,ARHIPF,ALHIPF,ARKNEF,ALKNEF, 

ARANKF,ALANKF,ARBALF,ALBALF 
VARIABLES WRSHOE,WLSHOE,WRHIPE,WLHIPE,WRKNEE,WLKNEE, 

WRANKE,WLANKE,WRBALE,WLBALE 
VARIABLES WRSHOF,WLSHOF,WRHIPF,WLHIPF,WRKNEF,WLKNEF, 

WRANKF,WLANKF,WRBALF,WLBALF 
VARIABLES Q{30}',U{30}' 
VARIABLES TQLUALFA,TQRUARFA 
 
%----------------------------------------------------------------------------------------------------- 
% SPECIFIED VARIABLES 
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SPECIFIED TQRSHOE,TQLSHOE,TQRHIPE,TQLHIPE,TQRKNEE,TQLKNEE, 

         TQRANKE,TQLANKE,TQRBALE,TQLBALE 
SPECIFIED TQRSHOF,TQLSHOF,TQRHIPF,TQLHIPF,TQRKNEF, 

         TQLKNEF,TQRANKF,TQLANKF,TQRBALF,TQLBALF 
SPECIFIED RFARUA'',LFALUA'' 
SPECIFIED POP{1:27}X,POP{1:27}Y,POCMX',POCMY',VOCMX,VOCMY 
SPECIFIED H,KE,PE,TE,SIMCOP 
SPECIFIED STRETCH{1:10}' 
SPECIFIED RXT, RYT,R{1:6}X,R{1:6}Y 
 
%----------------------------------------------------------------------------------------------------- 
% SET TORQUES EQUAL TO T^3 TO OBTAIN TWO DERIVATIVES IN  
% FORTRAN 
 
TQTRRUA = T^3 
TQTRLUA = T^3 
TQTRRTH = T^3 
TQTRLTH = T^3 
TQRTHRS = T^3 
TQLTHLS = T^3 
TQRSRF2 = T^3 
TQLSLF2 = T^3 
TQRF2RF1 = T^3 
TQLF2LF1 = T^3 
 
%----------------------------------------------------------------------------------------------------- 
% SET ELBOW ANGLES EQUAL TO T^3 TO OBTAIN TWO DERIVATIVES IN 
% FORTRAN 
 
RFARUA = T^3 
LFALUA = T^3 
 
%----------------------------------------------------------------------------------------------------- 
% SIMPLIFY 
AUTOZ OFF 
 
%----------------------------------------------------------------------------------------------------- 
% MASS AND INERTIA 
 
MASS RF1 = MRF1 
MASS LF1 = MLF1 
MASS RF2 = MRF2 
MASS LF2 = MLF2 
MASS RS = MRS 
MASS LS = MLS 
MASS RTH = MRTH 
MASS LTH = MLTH 
MASS TR = MTR 
MASS HD = MHD 
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MASS RUA = MRUA 
MASS LUA = MLUA 
MASS RFA = MRFA 
MASS LFA = MLFA 
MASS WRS = MWRS 
MASS WLS = MWLS 
MASS WRTH = MWRTH 
MASS WLTH = MWLTH 
MASS WTR = MWTR 
 
M = MRF1+MLF1+MRF2+MLF2+MRS+MLS+MRTH+MLTH+MTR+ 
&MRUA+MLUA+MRFA+MLFA+MWRS+MWLS+MWRTH+MWLTH+MWTR 
 
INERTIA RF1,0,0,IRF1 
INERTIA LF1,0,0,ILF1 
INERTIA RF2,0,0,IRF2 
INERTIA LF2,0,0,ILF2 
INERTIA RS,0,0,IRS 
INERTIA LS,0,0,ILS 
INERTIA RTH,0,0,IRTH 
INERTIA LTH,0,0,ILTH 
INERTIA TR,0,0,ITR 
INERTIA HD,0,0,IHD 
INERTIA RUA,0,0,IRUA 
INERTIA LUA,0,0,ILUA 
INERTIA RFA,0,0,IRFA 
INERTIA LFA,0,0,ILFA 
INERTIA WRS,0,0,IWRS 
INERTIA WLS,0,0,IWLS 
INERTIA WRTH,0,0,IWRTH 
INERTIA WLTH,0,0,IWLTH 
INERTIA WTR,0,0,IWTR 
 
%----------------------------------------------------------------------------------------------------- 
% SEGMENT ORIENTATION 
 
SIMPROT (N,TR,3,Q1) 
SIMPROT (TR,RUA,3,Q2) 
SIMPROT (TR,LUA,3,Q3) 
SIMPROT (RUA,RFA,3,RFARUA) 
SIMPROT (LUA,LFA,3,LFALUA) 
SIMPROT (TR,RTH,3,Q4) 
SIMPROT (TR,LTH,3,Q5) 
SIMPROT (RTH,RS,3,Q6) 
SIMPROT (LTH,LS,3,Q7) 
SIMPROT (RS,RF2,3,Q8) 
SIMPROT (LS,LF2,3,Q9) 
SIMPROT (RF2,RF1,3,Q10) 
SIMPROT (LF2,LF1,3,Q11) 
SIMPROT (RS,WRS,3,Q12) 
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SIMPROT (LS,WLS,3,Q13) 
SIMPROT (RTH,WRTH,3,Q14) 
SIMPROT (LTH,WLTH,3,Q15) 
SIMPROT (TR,WTR,3,Q16) 
SIMPROT (TR,HD,3,NANG) 
 
%----------------------------------------------------------------------------------------------------- 
% POSITION VECTORS  
 
P_O_P1> = Q17*N1>+Q18*N2> 
P_P1_RF1O> = LRF1O*RF11> 
P_P1_P2> = LRF1*RF11> 
P_P2_RF2O> = LRF2O1*RF21>+LRF2O2*RF22> 
P_P2_P3> = LRF21*RF21> 
P_P3_P4> = LRF22*RF22> 
P_P3_RSO> = LRSO*RS1> 
P_P3_P5> = LRS*RS1> 
P_P3_P17> = Q19*RS1>+Q20*RS2> 
P_P17_WRSO> = LWRSO*WRS1> 
P_P17_P18> = LWRS*WRS1> 
P_P5_RTHO> = LRTHO*RTH1> 
P_P5_P6> = LRTH*RTH1> 
P_P5_P19> = Q21*RTH1>+Q22*RTH2> 
P_P19_WRTHO> = LWRTHO*WRTH1> 
P_P19_P20> = LWRTH*WRTH1> 
P_P6_LTHO> = LLTHO*LTH1> 
P_P6_P7> = LLTH*LTH1> 
P_P6_P21> = Q23*LTH1>+Q24*LTH2> 
P_P21_WLTHO> = LWLTHO*WLTH1> 
P_P21_P22> = LWLTH*WLTH1> 
P_P7_LSO> = LLSO*LS1> 
P_P7_P8> = LLS*LS1> 
P_P7_P23> = Q25*LS1>+Q26*LS2> 
P_P23_WLSO> = LWLSO*WLS1> 
P_P23_P24> = LWLS*WLS1> 
P_P8_LF2O> = LLF2O1*LF21>+LLF2O2*LF22> 
P_P8_P9> = LLF22*LF22> 
P_P8_P10> = LLF21*LF21> 
P_P10_LF1O> = LLF1O*LF11> 
P_P10_P11> = LLF1*LF11> 
P_P6_TRO> = LTRO*TR1> 
P_P6_P12> = LTR*TR1> 
P_P12_HDO> = LHDO*HD1> 
P_P12_P27> = LHD*HD1> 
P_P6_P25> = Q27*TR1>+Q28*TR2> 
P_P25_WTRO> = LWTRO*WTR1> 
P_P25_P26> = LWTR*WTR1> 
P_P12_RUAO> = LRUAO*RUA1> 
P_P12_P13> = LRUA*RUA1> 
P_P13_RFAO> = LRFAO*RFA1> 
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P_P13_P14> = LRFA*RFA1> 
P_P12_LUAO> = LLUAO*LUA1> 
P_P12_P15> = LLUA*LUA1> 
P_P15_LFAO> = LLFAO*LFA1> 
P_P15_P16> = LLFA*LFA1> 
 
%----------------------------------------------------------------------------------------------------- 
% POSITION OF POINTS WITH RESPECT TO O 
 
P_O_P2> = P_O_P1> + P_P1_P2> 
P_O_P3> = P_O_P2> + P_P2_P3> 
P_O_P4> = P_O_P3> + P_P3_P4> 
P_O_P5> = P_O_P3> + P_P3_P5> 
P_O_P6> = P_O_P5> + P_P5_P6> 
P_O_P7> = P_O_P6> + P_P6_P7> 
P_O_P8> = P_O_P7> + P_P7_P8> 
P_O_P9> = P_O_P8> + P_P8_P9> 
P_O_P10> = P_O_P8> + P_P8_P10> 
P_O_P11> = P_O_P10> + P_P10_P11> 
P_O_P12> = P_O_P6> + P_P6_P12> 
P_O_P13> = P_O_P12> + P_P12_P13> 
P_O_P14> = P_O_P13> + P_P13_P14> 
P_O_P15> = P_O_P12> + P_P12_P15> 
P_O_P16> = P_O_P15> + P_P15_P16> 
P_O_P17> = P_O_P3> + P_P3_P17> 
P_O_P18> = P_O_P17> + P_P17_P18> 
P_O_P19> = P_O_P5> + P_P5_P19> 
P_O_P20> = P_O_P19> + P_P19_P20> 
P_O_P21> = P_O_P6> + P_P6_P21> 
P_O_P22> = P_O_P21> + P_P21_P22> 
P_O_P23> = P_O_P7> + P_P7_P23> 
P_O_P24> = P_O_P23> + P_P23_P24> 
P_O_P25> = P_O_P6> + P_P6_P25> 
P_O_P26> = P_O_P25> + P_P25_P26> 
P_O_P27> = P_O_P12> + P_P12_P27> 
P_O_CM> = CM(O) 
 
%----------------------------------------------------------------------------------------------------- 
% X AND Y POSITION OF POINTS WITH RESPECT TO O 
 
POP1X = DOT(P_O_P1>,N1>) 
POP1Y = DOT(P_O_P1>,N2>) 
POP2X = DOT(P_O_P2>,N1>) 
POP2Y = DOT(P_O_P2>,N2>) 
POP3X = DOT(P_O_P3>,N1>) 
POP3Y = DOT(P_O_P3>,N2>) 
POP4X = DOT(P_O_P4>,N1>) 
POP4Y = DOT(P_O_P4>,N2>) 
POP5X = DOT(P_O_P5>,N1>) 
POP5Y = DOT(P_O_P5>,N2>) 
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POP6X = DOT(P_O_P6>,N1>) 
POP6Y = DOT(P_O_P6>,N2>) 
POP7X = DOT(P_O_P7>,N1>) 
POP7Y = DOT(P_O_P7>,N2>) 
POP8X = DOT(P_O_P8>,N1>) 
POP8Y = DOT(P_O_P8>,N2>) 
POP9X = DOT(P_O_P9>,N1>) 
POP9Y = DOT(P_O_P9>,N2>) 
POP10X = DOT(P_O_P10>,N1>) 
POP10Y = DOT(P_O_P10>,N2>) 
POP11X = DOT(P_O_P11>,N1>) 
POP11Y = DOT(P_O_P11>,N2>) 
POP12X = DOT(P_O_P12>,N1>) 
POP12Y = DOT(P_O_P12>,N2>) 
POP13X = DOT(P_O_P13>,N1>) 
POP13Y = DOT(P_O_P13>,N2>) 
POP14X = DOT(P_O_P14>,N1>) 
POP14Y = DOT(P_O_P14>,N2>) 
POP15X = DOT(P_O_P15>,N1>) 
POP15Y = DOT(P_O_P15>,N2>) 
POP16X = DOT(P_O_P16>,N1>) 
POP16Y = DOT(P_O_P16>,N2>) 
POP17X = DOT(P_O_P17>,N1>) 
POP17Y = DOT(P_O_P17>,N2>) 
POP18X = DOT(P_O_P18>,N1>) 
POP18Y = DOT(P_O_P18>,N2>) 
POP19X = DOT(P_O_P19>,N1>) 
POP19Y = DOT(P_O_P19>,N2>) 
POP20X = DOT(P_O_P20>,N1>) 
POP20Y = DOT(P_O_P20>,N2>) 
POP21X = DOT(P_O_P21>,N1>) 
POP21Y = DOT(P_O_P21>,N2>) 
POP22X = DOT(P_O_P22>,N1>) 
POP22Y = DOT(P_O_P22>,N2>) 
POP23X = DOT(P_O_P23>,N1>) 
POP23Y = DOT(P_O_P23>,N2>) 
POP24X = DOT(P_O_P24>,N1>) 
POP24Y = DOT(P_O_P24>,N2>) 
POP25X = DOT(P_O_P25>,N1>) 
POP25Y = DOT(P_O_P25>,N2>) 
POP26X = DOT(P_O_P26>,N1>) 
POP26Y = DOT(P_O_P26>,N2>) 
POP27X = DOT(P_O_P27>,N1>) 
POP27Y = DOT(P_O_P27>,N2>) 
POCMX = DOT(P_O_CM>,N1>) 
POCMY = DOT(P_O_CM>,N2>) 
 
%----------------------------------------------------------------------------------------------------- 
% KINEMATIC DIFFERENTIAL EQUATIONS 
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Q1' = U1 
Q2' = U2 
Q3' = U3 
Q4' = U4 
Q5' = U5 
Q6' = U6 
Q7' = U7 
Q8' = U8 
Q9' = U9 
Q10' = U10 
Q11' = U11 
Q12' = U12 
Q13' = U13 
Q14' = U14 
Q15' = U15 
Q16' = U16 
Q17' = U17 
Q18' = U18 
Q19' = U19 
Q20' = U20 
Q21' = U21 
Q22' = U22 
Q23' = U23 
Q24' = U24 
Q25' = U25 
Q26' = U26 
Q27' = U27 
Q28' = U28 
Q29' = U29 
Q30' = U30 
 
%----------------------------------------------------------------------------------------------------- 
% ANGLES FOR TORQUE CALCULATION 
 
% CONVERT AUTOLEV ANGLES TO JOINT ANGLES 
 
ARSHOE = Q2-PI 
ALSHOE = Q3-PI 
ARHIPF = (2*PI)-Q4 
ALHIPF = (2*PI)-Q5 
ARKNEF = PI+Q6 
ALKNEF = PI+Q7 
ARANKF = PI-Q8 
ALANKF = PI-Q9 
ARBALF = PI-Q10 
ALBALF = PI-Q11 
 
% CALCULATE ANGLE FOR OPPOSITE JOINT ACTION 
 
ARSHOF = (2*PI)-ARSHOE 
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ALSHOF = (2*PI)-ALSHOE 
ARHIPE = (2*PI)-ARHIPF 
ALHIPE = (2*PI)-ALHIPF 
ARKNEE = (2*PI)-ARKNEF 
ALKNEE = (2*PI)-ALKNEF 
ARANKE = (2*PI)-ARANKF 
ALANKE = (2*PI)-ALANKF 
ARBALE = (2*PI)-ARBALF 
ALBALE = (2*PI)-ALBALF 
 
% CONVERT AUTOLEV ANGULAR VELOCITIES TO JOINT ANGULAR  
% VELOCITIES 
 
WRSHOE = -U2 
WLSHOE = -U3 
WRHIPF = U4 
WLHIPF = U5 
WRKNEF = -U6 
WLKNEF = -U7 
WRANKF = U8 
WLANKF = U9 
WRBALF = U10 
WLBALF = U11 
 
% CALCULATE ANGULAR VELOCITY FOR OPPOSITE JOINT ACTION 
 
WRSHOF = -WRSHOE 
WLSHOF = -WLSHOE 
WRHIPE = -WRHIPF 
WLHIPE = -WLHIPF 
WRKNEE = -WRKNEF 
WLKNEE = -WLKNEF 
WRANKE = -WRANKF 
WLANKE = -WLANKF 
WRBALE = -WRBALF 
WLBALE = -WLBALF 
 
%----------------------------------------------------------------------------------------------------- 
% ANGULAR VELOCITIES 
 
W_TR_N> = U1*TR3> 
W_HD_TR> = 0> 
W_RUA_TR> = U2*RUA3>  
W_LUA_TR> = U3*LUA3>  
W_RFA_RUA> = RFARUA'*RFA3> + U29*RFA3> 
W_LFA_LUA> = LFALUA'*LFA3> + U30*LFA3> 
W_RTH_TR> =  U4*RTH3>  
W_LTH_TR> = U5*LTH3>  
W_RS_RTH> = U6*RS3>  
W_LS_LTH> = U7*LS3>  
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W_RF2_RS> = U8*RF23>  
W_LF2_LS> = U9*LF23>  
W_RF1_RF2> = U10*RF13>  
W_LF1_LF2> = U11*LF13>  
W_WRS_RS> = U12*WRS3> 
W_WLS_LS> = U13*WLS3> 
W_WRTH_RTH> = U14*WRTH3> 
W_WLTH_LTH> = U15*WLTH3> 
W_WTR_TR> = U16*WTR3> 
 
%----------------------------------------------------------------------------------------------------- 
% ANGULAR ACCELERATIONS 
 
ALF_TR_N> = DT(W_TR_N>,N) 
ALF_HD_TR> = 0> 
ALF_RUA_TR> = DT(W_RUA_TR>,TR) 
ALF_LUA_TR> = DT(W_LUA_TR>,TR) 
ALF_RFA_RUA> = DT(W_RFA_RUA>,RUA) 
ALF_LFA_LUA> = DT(W_LFA_LUA>,LUA) 
ALF_RTH_TR> = DT(W_RTH_TR>,TR) 
ALF_LTH_TR> = DT(W_LTH_TR>,TR) 
ALF_RS_RTH> = DT(W_RS_RTH>,RTH) 
ALF_LS_LTH> = DT(W_LS_LTH>,LTH) 
ALF_RF2_RS> = DT(W_RF2_RS>,RS) 
ALF_LF2_LS> = DT(W_LF2_LS>,LS) 
ALF_RF1_RF2> = DT(W_RF1_RF2>,RF2) 
ALF_LF1_LF2> = DT(W_LF1_LF2>,LF2) 
ALF_WRS_RS> = DT(W_WRS_RS>,RS) 
ALF_WLS_LS> = DT(W_WLS_LS>,LS) 
ALF_WRTH_RTH> = DT(W_WRTH_RTH>,RTH) 
ALF_WLTH_LTH> = DT(W_WLTH_LTH>,LTH) 
ALF_WTR_TR> = DT(W_WTR_TR>,TR) 
 
%----------------------------------------------------------------------------------------------------- 
% LINEAR VELOCITIES 
 
V_O_N> = 0> 
V_P1_N> = DT(P_O_P1>,N) 
V2PTS(N,RF1,P1,RF1O) 
V2PTS(N,RF1,P1,P2) 
V2PTS(N,RF2,P2,RF2O) 
V2PTS(N,RF2,P2,P3) 
V2PTS(N,RF2,P2,P4) 
V2PTS(N,RS,P3,RSO) 
V2PTS(N,RS,P3,P5) 
V_P17_N> = DT(P_O_P17>,N) 
V2PTS(N,WRS,P17,WRSO) 
V2PTS(N,WRS,P17,P18) 
V2PTS(N,RTH,P5,RTHO) 
V2PTS(N,RTH,P5,P6) 
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V_P19_N> = DT(P_O_P19>,N) 
V2PTS(N,WRTH,P19,WRTHO) 
V2PTS(N,WRTH,P19,P20) 
V2PTS(N,LTH,P6,LTHO) 
V2PTS(N,LTH,P6,P7) 
V_P21_N> = DT(P_O_P21>,N) 
V2PTS(N,WLTH,P21,WLTHO) 
V2PTS(N,WLTH,P21,P22) 
V2PTS(N,LS,P7,LSO) 
V2PTS(N,LS,P7,P8) 
V_P23_N> = DT(P_O_P23>,N) 
V2PTS(N,WLS,P23,WLSO) 
V2PTS(N,WLS,P23,P24) 
V2PTS(N,LF2,P8,LF2O) 
V2PTS(N,LF2,P8,P9) 
V2PTS(N,LF2,P8,P10) 
V2PTS(N,LF1,P10,LF1O) 
V2PTS(N,LF1,P10,P11) 
V2PTS(N,TR,P6,TRO) 
V2PTS(N,TR,P6,P12) 
V_P25_N> = DT(P_O_P25>,N) 
V2PTS(N,WTR,P25,WTRO) 
V2PTS(N,WTR,P25,P26) 
V2PTS(N,RUA,P12,RUAO) 
V2PTS(N,RUA,P12,P13) 
V2PTS(N,RFA,P13,RFAO) 
V2PTS(N,RFA,P13,P14) 
V2PTS(N,LUA,P12,LUAO) 
V2PTS(N,LUA,P12,P15) 
V2PTS(N,LFA,P15,LFAO) 
V2PTS(N,LFA,P15,P16) 
V2PTS(N,HD,P12,HDO) 
V2PTS(N,HD,P12,P27) 
V_CM_N> = DT(P_O_CM>,N) 
VOCMX = DT(POCMX) 
VOCMY = DT(POCMY) 
 
%----------------------------------------------------------------------------------------------------- 
% LINEAR ACCELERATIONS 
 
A_O_N> = 0> 
A_P1_N> = DT(V_P1_N>,N) 
A2PTS(N,RF1,P1,RF1O) 
A2PTS(N,RF1,P1,P2) 
A2PTS(N,RF2,P2,RF2O) 
A2PTS(N,RF2,P2,P3) 
A2PTS(N,RF2,P2,P4) 
A2PTS(N,RS,P3,RSO) 
A2PTS(N,RS,P3,P5) 
A_P17_N> = DT(V_P17_N>,N) 
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A2PTS(N,WRS,P17,WRSO) 
A2PTS(N,WRS,P17,P18) 
A2PTS(N,RTH,P5,RTHO) 
A2PTS(N,RTH,P5,P6) 
A_P19_N> = DT(V_P19_N>,N) 
A2PTS(N,WRTH,P19,WRTHO) 
A2PTS(N,WRTH,P19,P20) 
A2PTS(N,LTH,P6,LTHO) 
A2PTS(N,LTH,P6,P7) 
A_P21_N> = DT(V_P21_N>,N) 
A2PTS(N,WLTH,P21,WLTHO) 
A2PTS(N,WLTH,P21,P22) 
A2PTS(N,LS,P7,LSO) 
A2PTS(N,LS,P7,P8) 
A_P23_N> = DT(V_P23_N>,N) 
A2PTS(N,WLS,P23,WLSO) 
A2PTS(N,WLS,P23,P24) 
A2PTS(N,LF2,P8,LF2O) 
A2PTS(N,LF2,P8,P9) 
A2PTS(N,LF2,P8,P10) 
A2PTS(N,LF1,P10,LF1O) 
A2PTS(N,LF1,P10,P11) 
A2PTS(N,TR,P6,TRO) 
A2PTS(N,TR,P6,P12) 
A_P25_N> = DT(V_P25_N>,N) 
A2PTS(N,WTR,P25,WTRO) 
A2PTS(N,WTR,P25,P26) 
A2PTS(N,RUA,P12,RUAO) 
A2PTS(N,RUA,P12,P13) 
A2PTS(N,RFA,P13,RFAO) 
A2PTS(N,RFA,P13,P14) 
A2PTS(N,LUA,P12,LUAO) 
A2PTS(N,LUA,P12,P15) 
A2PTS(N,LFA,P15,LFAO) 
A2PTS(N,LFA,P15,P16) 
A2PTS(N,HD,P12,HDO) 
A2PTS(N,HD,P12,P27) 
A_CM_N> = DT(P_O_CM>,N) 
 
%----------------------------------------------------------------------------------------------------- 
% SPRING POSITION VECTORS, AND VELOCITIES 
 
STRETCH1 = MAG(P_P3_P17>) 
STRETCH2 = MAG(P_P5_P18>) 
STRETCH3 = MAG(P_P5_P19>) 
STRETCH4 = MAG(P_P6_P20>) 
STRETCH5 = MAG(P_P6_P21>) 
STRETCH6 = MAG(P_P7_P22>) 
STRETCH7 = MAG(P_P7_P23>) 
STRETCH8 = MAG(P_P8_P24>) 
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STRETCH9 = MAG(P_P6_P25>) 
STRETCH10 = MAG(P_P12_P26>) 
 
UVEC1> = UNITVEC(P_P3_P17>) 
UVEC2> = UNITVEC(P_P5_P18>) 
UVEC3> = UNITVEC(P_P5_P19>) 
UVEC4> = UNITVEC(P_P6_P20>) 
UVEC5> = UNITVEC(P_P6_P21>) 
UVEC6> = UNITVEC(P_P7_P22>) 
UVEC7> = UNITVEC(P_P7_P23>) 
UVEC8> = UNITVEC(P_P8_P24>) 
UVEC9> = UNITVEC(P_P6_P25>) 
UVEC10> = UNITVEC(P_P12_P26>) 
 
VELOCITY1 = DT(STRETCH1) 
VELOCITY2 = DT(STRETCH2) 
VELOCITY3 = DT(STRETCH3) 
VELOCITY4 = DT(STRETCH4) 
VELOCITY5 = DT(STRETCH5) 
VELOCITY6 = DT(STRETCH6) 
VELOCITY7 = DT(STRETCH7) 
VELOCITY8 = DT(STRETCH8) 
VELOCITY9 = DT(STRETCH9) 
VELOCITY10 = DT(STRETCH10) 
 
%----------------------------------------------------------------------------------------------------- 
% VELOCITIES OF POINTS ON THE FEET FOR CALCULATING SPRING  
% FORCES 
 
VOP1X = DOT(V_P1_N>,N1>) 
VOP1Y = DOT(V_P1_N>,N2>) 
VOP2X = DOT(V_P2_N>,N1>) 
VOP2Y = DOT(V_P2_N>,N2>) 
VOP4X = DOT(V_P4_N>,N1>) 
VOP4Y = DOT(V_P4_N>,N2>) 
VOP9X = DOT(V_P9_N>,N1>) 
VOP9Y = DOT(V_P9_N>,N2>) 
VOP10X = DOT(V_P10_N>,N1>) 
VOP10Y = DOT(V_P10_N>,N2>) 
VOP11X = DOT(V_P11_N>,N1>) 
VOP11Y = DOT(V_P11_N>,N2>) 
 
R1Y = -K1*POP1Y-K4*VOP1Y 
R1X = (-K7*POP1X-K12*VOP1X)*R1Y 
R2Y = -K2*POP11Y-K5*VOP11Y 
R2X = (-K8*POP11X-K13*VOP11X)*R2Y 
R3Y = -K3*POP2Y-K6*VOP2Y 
R3X = (-K9*POP2X-K14*VOP2X)*R3Y 
R4Y = -K1*POP10Y-K4*VOP10Y 
R4X = (-K7*POP10X-K12*VOP10X)*R4Y 
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R5Y = -K2*POP4Y-K5*VOP4Y 
R5X = (-K8*POP4X-K13*VOP4X)*R5Y 
R6Y = -K3*POP9Y-K6*VOP9Y 
R6X = (-K9*POP9X-K14*VOP9X)*R6Y 
RXT = R1X+R2X+R3X+R4X+R5X+R6X 
RYT = R1Y+R2Y+R3Y+R4Y+R5Y+R6Y 
 
%----------------------------------------------------------------------------------------------------- 
% FORCES AND TORQUES 
 
% GRAVITY 
 
GRAVITY(G*N2>) 
 
% FORCES ON THE SHOE FROM THE GROUND 
 
FORCE(P1,R1X*N1>+R1Y*N2>) 
FORCE(P11,R2X*N1>+R2Y*N2>) 
FORCE(P2,R3X*N1>+R3Y*N2>) 
FORCE(P10,R4X*N1>+R4Y*N2>) 
FORCE(P4,R5X*N1>+R5Y*N2>) 
FORCE(P9,R6X*N1>+R6Y*N2>) 
 
% FORCES BETWEEN WOBBLING AND RIGID ELEMENTS 
 
FORCE(P3/P17,(-K10*STRETCH1^3-K11*VELOCITY1)*UVEC1>) 
FORCE(P5/P18,(-K10*STRETCH2^3-K11*VELOCITY2)*UVEC2>) 
FORCE(P5/P19,(-K15*STRETCH3^3-K16*VELOCITY3)*UVEC3>) 
FORCE(P6/P20,(-K15*STRETCH4^3-K16*VELOCITY4)*UVEC4>) 
FORCE(P6/P21,(-K15*STRETCH5^3-K16*VELOCITY5)*UVEC5>) 
FORCE(P7/P22,(-K15*STRETCH6^3-K16*VELOCITY6)*UVEC6>) 
FORCE(P7/P23,(-K10*STRETCH7^3-K11*VELOCITY7)*UVEC7>) 
FORCE(P8/P24,(-K10*STRETCH8^3-K11*VELOCITY8)*UVEC8>) 
FORCE(P6/P25,(-K17*STRETCH9^3-K18*VELOCITY9)*UVEC9>) 
FORCE(P12/P26,(-K17*STRETCH10^3-K18*VELOCITY10)*UVEC10>) 
 
% JOINT TORQUES 
 
TORQUE(TR/LUA,TQTRLUA*LUA3>) 
TORQUE(TR/RUA,TQTRRUA*RUA3>) 
TORQUE(LUA/LFA,TQLUALFA*LFA3>) 
TORQUE(RUA/RFA,TQRUARFA*RFA3>) 
TORQUE(TR/RTH,TQTRRTH*RTH3>) 
TORQUE(TR/LTH,TQTRLTH*LTH3>) 
TORQUE(LTH/LS,TQLTHLS*LS3>) 
TORQUE(RTH/RS,TQRTHRS*RS3>) 
TORQUE(RS/RF2,TQRSRF2*RF23>) 
TORQUE(LS/LF2,TQLSLF2*LF23>) 
TORQUE(RF2/RF1,TQRF2RF1*RF13>) 
TORQUE(LF2/LF1,TQLF2LF1*LF13>) 
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%----------------------------------------------------------------------------------------------------- 
% CALCULATE CENTRE OF PRESSURE 
 
SIMCOP = (R1Y*POP1X+R2Y*POP11X+R3Y*POP2X+R4Y*POP10X+R5Y* 

       POP4X+R6Y*POP9X)/(RYT) 
 
%----------------------------------------------------------------------------------------------------- 
% CALCULATE KINETIC, POTENTIAL ENERGY AND TOTAL ENERGY  
% EXCLUDING FOOT SPRINGS AS THEY REQUIRE MODIFICATION IN 
% FORTRAN CODE 
 
KE = KE() 
 
PE = (M*POCMY*(-G))+(0.25*K10*(STRETCH1^4+STRETCH24̂+ 

STRETCH7^4+STRETCH8^4)) + (0.25*K17*(STRETCH9^4+ 
STRETCH10^4)) + (0.25*K15*(STRETCH3^4+STRETCH4^4+ 
STRETCH5^4+STRETCH6^4)) 

 
TE = KE+PE 
 
%----------------------------------------------------------------------------------------------------- 
% CONSTRAINTS 
 
AUXILIARY[1]=U29 
AUXILIARY[2]=U30 
 
CONSTRAIN(AUXILIARY[U29,U30]) 
 
%----------------------------------------------------------------------------------------------------- 
% EQUATIONS OF MOTION 
 
ZERO = FR() + FRSTAR() 
KANE(TQLUALFA,TQRUARFA) 
 
%----------------------------------------------------------------------------------------------------- 
% GIVE ANGULAR MOMENTUM AROUND THE MASS CENTRE 
 
H>=MOMENTUM(ANGULAR,CM) 
H = DOT(H>,N3>) 
 
%----------------------------------------------------------------------------------------------------- 
% INPUTS 
 
INPUT TINITIAL=2.1625, TFINAL=2.3625 
INPUT INTEGSTP=0.0001, PRINTINT=10 
INPUT ABSERR=1.0E-08,RELERR=1.0E-07 
 
INPUT K1=0.17538E+06,K2=8969.3,K3=2511.1,K4=21473,K5=36657, 
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K6=17349,K7=10.390,K8=9.6549,K9=96.10,K10=0.12575E+08, 
K11=466.14,K12=1.0764,K13=0.54708,K14=1.8380,K15=0.12255E+08, 
K16=148.39,K17=0.32612E+07,K18=280.43 

INPUT G=-9.81 
INPUT [Q{19:28}]=1.0E-07,[U{19:28}]=0.0,NANG=-15   
INPUT [Q{1:18}]=0.0,[U{1:18}]=0.0 
INPUT IRF1=4.59E-05,ILF1=3.86E-05,IRF2=0.002904647,ILF2=0.002643125 
INPUT IRS=0.018051941,ILS=0.016799425,IRTH=0.019360505, 

ILTH=0.016387418,ITR=0.137076443 
INPUT IHD=0.033,IRUA=0.02,ILUA=0.016,IRFA=0.0217234743, 

ILFA=0.0233425179 
INPUT IWRS=0.045298547,IWLS=0.042484156,IWRTH=0.150116121, 

IWLTH=0.130392546,IWTR=0.818757107 
INPUT LRF1=-0.083,LLF1=0.083,LRF21=-0.173,LRF22=-0.119,LLF21=0.173, 

LLF22=-0.119 
INPUT LRS=-0.448,LLS=0.436,LRTH=-0.451,LLTH=0.423,LTR=0.589, 

LHD=0.266 
INPUT LRUA=0.316,LLUA=0.298,LRFA=0.433,LLFA=0.455  
INPUT LWRS=-0.448,LWLS=0.436,LWRTH=-0.451,LWLTH=0.423,LWTR=0.589 
INPUT LRF1O=-0.0415,LLF1O=0.0415,LRF2O1=-0.102500185, 

LRF2O2=-0.02441107,LLF2O1=0.070499815,LLF2O2=-0.02441107 
INPUT LRSO=-0.224,LLSO=0.218,LRTHO=-0.2255,LLTHO=0.2115 
INPUT LTRO=0.2945,LHDO=0.135,LRUAO=0.144,LLUAO=0.138, 

LRFAO=0.16718733,LLFAO=0.168284015  
INPUT LWRSO=-0.269372493,LWLSO=0.171293022,LWRTHO=-0.26453205, 

LWLTHO=0.175862041,LWTRO=0.30100882 
INPUT MRF1=0.155919835,MLF1=0.14519131,MRF2=1.13030231, 

MLF2=1.14843707 
INPUT MRS=1.069261409,MLS=1.049961566,MRTH=1.131269364, 

MLTH=1.086798855,MTR=4.649627333,MHD=5.609,MRUA=2.227, 
MLUA=2.042 

INPUT MRFA=1.54709789,MLFA=1.59230609,MWRS=3.196738591, 
MWLS=3.139038434,MWRTH=8.611730636,MWLTH=8.273201145, 
MWTR=25.34937267 

 
%----------------------------------------------------------------------------------------------------- 
% OUTPUTS 
 
OUTPUT T,H,KE,PE,TE,POCMX,POCMY,VOCMX,VOCMY 
OUTPUT T,Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8 
OUTPUT T,U1,U2,U3,U4,U5,U6,U7,U8 
OUTPUT T,Q9,Q10,Q11,Q12,Q13,Q14,Q15,Q16 
OUTPUT T,U9,U10,U11,U12,U13,U14,U15,U16 
OUTPUT T,ARSHOE,ALSHOE,ARHIPE,ALHIPE,ARKNEE,ALKNEE,ARANKE, 

    ALANKE,ARBALE,ALBALE 
OUTPUT T,ARSHOF,ALSHOF,ARHIPF,ALHIPF,ARKNEF,ALKNEF,ARANKF, 

    ALANKF,ARBALF,ALBALF 
OUTPUT T,WRSHOE,WLSHOE,WRHIPE,WLHIPE,WRKNEE,WLKNEE, 

    WRANKE,WLANKE,WRBALE,WLBALE 
OUTPUT T,WRSHOF,WLSHOF,WRHIPF,WLHIPF,WRKNEF,WLKNEF, 
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    WRANKF,WLANKF,WRBALF,WLBALF 
OUTPUT T,RFARUA,LFALUA 
OUTPUT T,TQTRRUA,TQTRLUA,TQRUARFA,TQLUALFA 
OUTPUT T,TQTRRTH,TQTRLTH,TQRTHRS,TQLTHLS 
OUTPUT T,TQRSRF2,TQLSLF2,TQRF2RF1,TQLF2LF1 
OUTPUT T,STRETCH1,STRETCH2,STRETCH3,STRETCH4,STRETCH5 
OUTPUT T,STRETCH6,STRETCH7,STRETCH8,STRETCH9,STRETCH10 
OUTPUT T,VELOCITY1,VELOCITY2,VELOCITY3,VELOCITY4,VELOCITY5 
OUTPUT T,VELOCITY6,VELOCITY7,VELOCITY8,VELOCITY9,VELOCITY10 
OUTPUT T,R1X,R1Y,R2X,R2Y,R3X,R3Y,R4X,R4Y,R5X,R5Y,R6X,R6Y,RXT, 

     RYT,SIMCOP 
OUTPUT T,POP1X,POP1Y,POP2X,POP2Y,POP4X,POP4Y 
OUTPUT T,POP9X,POP9Y,POP10X,POP10Y,POP11X,POP11Y 
OUTPUT T,POP1X,POP1Y,POP2X,POP2Y,POP3X,POP3Y,POP4X,POP4Y, 

     POP5X,POP5Y,POP6X,POP6Y,POP7X,POP7Y,POP8X,POP8Y, 
     POP9X,POP9Y,POP10X,POP10Y,POP11X,POP11Y,POP12X, 
     POP12Y,POP13X,POP13Y,POP14X,POP14Y,POP15X,POP15Y, 
     POP16X,POP16Y,POP27X,POP27Y,POCMX,POCMY 

OUTPUT T,POP17X,POP17Y,POP18X,POP18Y,POP19X,POP19Y,POP20X, 
     POP20Y,POP21X,POP21Y,POP22X,POP22Y,POP23X,POP23Y, 
     POP24X,POP24Y,POP25X,POP25Y,POP26X,POP26Y 

 
%----------------------------------------------------------------------------------------------------- 
% UNITS 
 
UNITS T=S,H=KG.M^2.RAD/S,[KE,PE,TE]=JOULES,G=M/S^2,SIMCOP=M 
UNITS [Q{17:28}]=M,[U{17:28}]=M/S   
UNITS [Q{1:16}]=DEGS,[U{1:16}]=RADS/S,[Q{29:30}]=DEGS, 

[U{29:30}]=RADS/S,NANG=DEGS 
UNITS [ARSHOE,ALSHOE,ARHIPE,ALHIPE,ARKNEE,ALKNEE,ARANKE, 

ALANKE,ARBALE,ALBALE,ARSHOF,ALSHOF,ARHIPF,ALHIPF, 
ARKNEF,ALKNEF,ARANKF,ALANKF,ARBALF,ALBALF]=DEGS 

UNITS [WRSHOE,WLSHOE,WRHIPE,WLHIPE,WRKNEE,WLKNEE, 
WRANKE,WLANKE,WRBALE,WLBALE,WRSHOF,WLSHOF,WRHIPF, 
WLHIPF,WRKNEF,WLKNEF,WRANKF,WLANKF,WRBALF,WLBALF] 
=DEGS/S 

UNITS [K{1:3}]=N/M,[K{4:6}]=N.S/M,[K{7:9}]=N/M,[K{1 2:14}]=N.S/M, 
[K10,K15,K17]=N/M^3,[K11,K16,K18]=N.S/M 

UNITS [LRF1,LLF1,LRF21,LRF22,LLF21,LLF22,LRS,LLS,LRTH,LLTH,LTR, 
LHD,LRUA,LLUA,LRFA,LLFA,LWRS,LWLS,LWRTH,LWLTH,LWTR, 
LRF1O,LLF1O,LRF2O1,LRF2O2,LLF2O1,LLF2O2,LRSO,LLSO,LRTHO, 
LLTHO,LTRO,LHDO,LRUAO,LLUAO,LRFAO,LLFAO,LWRSO,LWLSO, 
LWRTHO,LWLTHO,LWTRO]=M  

UNITS [IRF1,ILF1,IRF2,ILF2,IRS,ILS,IRTH,ILTH,ITR,IHD,IRUA,ILUA,IRFA, 
ILFA,IWRS,IWLS,IWRTH,IWLTH,IWTR]=KG.M^2  

UNITS [MRF1,MLF1,MRF2,MLF2,MRS,MLS,MRTH,MLTH,MTR,MHD,MRUA, 
MLUA,MRFA,MLFA,MWRS,MWLS,MWRTH,MWLTH,MWTR]=KG 

UNITS [POP{1:27}X,POP{1:27}Y]=M 
UNITS STRETCH{1:10}=M,VELOCITY{1:10}=M/S 
UNITS [TQRSRF2,TQLSLF2,TQRTHRS,TQLTHLS,TQTRRTH,TQTRLTH, 
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TQTRRUA,TQTRLUA,TQRUARFA,TQLUALFA,TQRF2RF1,TQLF2LF1]=N.M 
UNITS [RFARUA,LFALUA]=DEGS 
UNITS [RXT,R1X,R2X,R3X,R4X,R5X,R6X,RYT,R1Y,R2Y,R3Y,R4Y,R5Y,R6Y] 

=N 
 
%----------------------------------------------------------------------------------------------------- 
SAVE C:\AL\SAM-AL\ TRIPLEJUMP.ALL 
CODE DYNAMICS() C:\AL\SAM-AL\TRIPLEJUMP.FOR, SUBS 
 
%----------------------------------------------------------------------------------------------------- 
% END END END END END END END END END END END END END END  
%----------------------------------------------------------------------------------------------------- 
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APPENDIX 3 

 

TESTING PROCEDURES, PRE-SELECTION MEDICAL 

QUESTIONNAIRE, AND INFORMED CONSENT FORM 

 

DATA ACQUISITION FOR THE ANALYSIS OF HUMAN MOVEMENTS  

LAY SUMMARY 

 
This study comprises a biomechanical analysis of human movement.  This analysis 
requires kinematic (how you are moving) and kinetic (what forces you produce) data for 
the triple jump. 
 
The data of actual human movements are required to give detailed information about the 
current techniques used.  The data collected will then be used to understand and explain 
techniques currently used, determine the contributions of different techniques to 
performance and injury, as well as to optimise performance. 
 
The kinematic and kinetic data of the triple jump will be obtained in a number of different 
ways: 

• Video and cinematographic recordings. 
• Automatic displacement acquisition system.  This is similar to being videoed 

but reflective markers will be taped to you and only their image recorded. 
• Force readings from your foot contacting a force plate situated on the runway. 

 
The subject specific parameters will be obtained from: 

• Anthropometric measurements.  Measuring certain lengths, widths and 
circumferences of your body with a tape measure in order to construct a 
computer simulation ‘model’ of your body. 

• Muscular torque readings from an isovelocity dynamometer. This involves 
measuring your strength at different joints through a range of angles and 
speeds. 

 
Data will be acquired in the High Performance Athletics Centre (HiPAC) and Powerbase 
gym at Loughborough University.  The data collection sessions will last no longer than 
four hours, with the subject actively involved for only a fraction of the total time: 

• Actual performance of movements: 30 minutes 
• Anthropometric measurements:  30 minutes 
• Isovelocity dynamometer:   45 minutes 

 
The study in which you have been invited to participate will involve a biomechanical 
analysis of your triple jump technique.  The study will involve you being videoed, using a 
number of different cameras, as you perform the whole triple jump to obtain kinematic 
data and each phase separately in order to obtain kinetic data. This will be followed at a 
later date by strengths tests on an isovelocity dynamometer. 
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It may be necessary to shave certain areas of your body to attach monitoring equipment 
using adhesive tape.  The data collected will be used to help increase our understanding of 
the mechanics of human movements. 
 
You will perform the data collection in a suitable environment.  The risk of injury during 
the triple jump data collection will be minimal since we will only ask you to perform 
movements with which you are familiar and comfortable.  It is considered that no 
increased risks, discomforts or distresses are likely to result from the data collection of the 
triple jump above those associated with the normal performance of those movements.  You 
will undergo a familiarisation protocol for the isovelocity dynamometer prior to capturing 
data to minimise any potential for injury. 
 
The information obtained from the study will be collected and stored in adherence with the 
Data Protection Act.  Whilst certain personal and training information will be required, you 
will be allocated a reference number to ensure that your identity and personal details will 
remain confidential.  If you agree to take part in the study, you are free to withdraw from 
the study at any stage, without having to give any reasons.  An opportunity will be 
provided in this event for you to discuss privately your wish to withdraw.  A contact name 
and phone number will be provided to you for use if you have any queries about any part 
of your participation in the study. 
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PRE-SELECTION MEDICAL QUESTIONNAIRE 
 

LOUGHBOROUGH UNIVERSITY 

DEPARTMENT OF PHYSICAL EDUCATION, SPORTS SCIENCE AND  

RECREATION MANAGEMENT 

 

Please read through this questionnaire, BUT DO NOT ANSWER ANY OF THE 

QUESTIONS YET.  When you have read right through, there may be questions you would 

prefer not to answer. Assistance will be provided if you require it to discuss any questions 

on this form.    In this case please tick the box labelled “I wish to withdraw” immediately 

below.  Also tick the box labelled “I wish to withdraw” if there is any other reason for you 

not to take part. 

tick 

appropriate 

box 

I wish to withdraw

I am happy to answer the questionnaire

 

If you are happy to answer the questions posed below, please proceed.  Your answers will 

be treated in the strictest confidence. 

 

1. Are you at present recovering from any illness or operation?            YES/NO* 

 

2. Are you suffering from or have you suffered from or received medical  

treatment for any of the following conditions? 

  

a. Heart or circulation condition YES/NO* 

b. High blood pressure YES/NO* 

c. Any orthopaedic problems YES/NO* 

d. Any muscular problems YES/NO* 

e. Asthma or bronchial complaints YES/NO* 
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3. Are you currently taking any medication that may affect your  

participation in the study? YES/NO* 

 

4. Are you recovering from any injury? YES/NO* 

 

5. Are you epileptic? YES/NO* 

 

6. Are you diabetic? YES/NO* 

 

7.   Are you allergic to sticking plasters? YES/NO* 

 

8. Do you have any other allergies? If yes, please give details below YES/NO* 

………………………………………………………………………………………….

…………………………………………………………………………………………

….………………………………………………………………………………………

…….… 

 

9. Are you aware of any other condition or complaint that may be affected by 

participation in this study?  If so, please state below; 

………………………………………………………………………………………….

…………………………………………………………………………………………

….………………………………………………………………………………………

…….……………………………………………………………………………………

…………. 

 

* Delete as appropriate 
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INFORMED CONSENT FORM (SUBJECTS) 
 

PURPOSE 
To obtain kinematic and kinetic data during human movements 
 
PROCEDURES 
The kinematic data of human movements will be obtained using: 

• Video and cinematographic recordings 
• Automatic displacement acquisition system 

Body inertia parameters will be ascertained from various body measurements. 
Muscular torque data will be gathered using an isovelocity dynamometer. 
 
ACTIVITIES 

• Full triple jump 
• Individual hop, step, and jump phases. 
• Strength tests on an isovelocity dynamometer. 
 

A number of trials will be requested with suitable breaks to minimise fatigue and boredom. 
 
During the measurements a number of researchers will be present, at least one of whom 
will be of the same sex as you. 
 
QUESTIONS 
The researchers will be pleased to answer any questions you may have at any time. 
 
WITHDRAWAL 
You are free to withdraw from the study at any stage, with or without having to give any 
reasons. 
 
CONFIDENTIALITY 
Your identity will remain confidential in any material resulting from this work. 
 
I have read the outline of the procedures which are involved in this study, and I understand 
what will be required by me.  I have had the opportunity to ask for further information and 
for clarification of the demands of each of the procedures and understand what is entailed.  
I am aware that I have the right to withdraw from the study at any time with no obligation 
to give reasons for my decision.  As far as I am aware I do not have any injury or infirmity 
which would be affected by the procedures outlined. 
 

Name ………………………………………… 
 
Signed ………………………………………… (subject) Date ………………………… 
 
In the presence of: 
 
Name ………………………………………… 
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APPENDIX 4  

 

DESCRIPTION OF MARKER PLACEMENT FOR TRIPLE 

JUMP DATA COLLECTION 

 

Marker # Body Segment Marker Label(s) Marker Position 

1,2 Legs RTOE, LTOE Centre line of foot. Centre of 

marker is 3cm from tip of big toe. 

3,4  RANKM, 

LANKM 

Medial side of ankle bone. The 

line joining the centres of the 2 

ankle markers should define the 

ankle flexion axis. 

5,6  RANKL, 

LANKL 

Lateral side of ankle bone. 

7,8  RMTPL 

LMTPL 

Lateral metatarsophalangeal – 

little toe - joint.  The line joining 

the two MTP markers should 

define the MTP flexion axis. 

9,10  RMTPM 

LMTPM 

Medial metatarsophalangeal - big 

toe – joint. 

11,12  RHEE, LHEE Centre line of foot, placed on back 

of heel of shoe. 

13,14  RKNEM, 

LKNEM 

Medial side of knee, the line 

joining the centres of the 2 knee 

markers should define the knee 

flexion axis. 

15,16  RKNEL,LKNEM Lateral side of knee. 

    

17,18 Pelvis RASI,LASI Bony protrusion of the right and 

left anterior super iliac. 

19,20  RPSI, LPSI Dimple created by the right and 
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left posterior suprailiac. 

21  LHIP Position not crucial (only used for 

asymmetry purposes).  Roughly 

level with the other pelvis markers 

and approximately above the hip 

joint centre. 

    

22 Thorax LUM1 First lumbar vertebra. 

23  T10 Tenth thoracic vertebra. 

24  STRN Sternum. 

25  CLAV Clavicle. 

26  C7 Seventh cervical vertebra. 

27  RBAK Position not crucial.  Somewhere 

in the centre of the right scapula. 

    

28,29 Arms RSHOP,LSHOP Posterior of shoulder. 

30,31  RSHOA,LSHOA Anterior of shoulder. 

32,33  RSHOT,LSHOT Top of shoulder. 

34,35  RELBM,LELBM Medial side of elbow.  Line 

joining centre of elbow markers 

should define flexion axis of the 

elbow (particularly when 

reasonably straight).  Probably 

positioned on bony protrusion. 

36,37  RELBL,LELBL Lateral side of elbow.  Probably 

positioned on anterior side of bony 

protrusion. 

38,39  RWRA,LWRA Thumb side of wrist.  The centre 

of the 2 wrist markers should 

define the flexion axis of the wrist.  

Marker should be placed on the 

side of the wrist. 
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40,41  RWRB,LWRB Little finger side of wrist.  Again 

the marker should be placed on the 

side of the wrist. 

    

42 Head RFHD Right temple. 

43  LFHD Left temple. 

44  RBHD Back right of head. 

45  LBHD Back left of head. 
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APPENDIX 5 

 

INDIVIDUAL AND MEAN CAMERA RESIDUALS 

 

Camera number Residual (mm) 

1 0.699 

2 0.388 

3 0.689 

4 0.778 

5 0.321 

6 0.598 

7 0.624 

8 0.572 

9 0.664 

10 0.485 

11 0.945 

12 0.607 

13 0.798 

14 0.602 

15 0.582 

16 0.568 

17 0.556 

18 0.479 

Mean residual 0.609 

Residual range 0.624 

Static reproducibility 0.944 % 
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APPENDIX 6 

 

ROTOTRANSLATION OF COORDINATE DATA 

 

In order to define the new coordinate system of the volume, a matrix describing the plane 

of the floor was calculated using an optimisation process.  Thirty 25 mm retroreflective 

markers were situated along the lines defining the approach lane for the triple jump and on 

the force plate (Figure A6.1). 

 

 

Figure A6.1 Marker positioning for calculation of rotation and translation matrix. 

 

The direction of the lines, and therefore the general direction of motion, was used to define 

the x axis by calculating the sum of all the vectors that could be made between any two 

markers along either of the lines.  This was calculated twice; once using the markers on the 

lines defining the approach lane and once using only the markers on the force plate. 

 

Once calculated, the x axis was taken to originate in the centre of the force plate and a z 

axis was defined by taking the cross product of the x axis and a vector in the plane of the 

force plate defined using a marker on the force plate.  A y axis was subsequently defined 

by taking the cross product of the x and z axes. 
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The new coordinate system was calculated by minimising the following function in an 

iterative fashion (Challis, 1995): 

 

2

1
∑
=

−

n

i
ii

R
RcbMin ,    (A6.1) 

 

where R  is the attitude matrix mapping the thi  marker in the old coordinate system ic  to 

the thi  marker in the new one ib .  This assumes both coordinate systems have the same 

origin and there is no scaling (Challis, 1995). 

 

The two attitude matrices corresponding to the different marker sets mentioned above were 

then evaluated using the range of the distances of the markers on the approach lines from 

the calculated axes.  In the case of0R , calculated from the markers on the force plate alone, 

there was a range of 8.1 mm in the z axis and 49.9 mm and 50.0 mm in the y axis for the 

left and right lines respectively.  In the case of 1R , calculated from markers on the two 

lines, the range was 6.6 mm in the z axis and 5.8 mm and 4.6 mm in the y axis.  Therefore 

1R  was preferred. 

 

Having calculated the attitude matrix 1R , a 4x4 matrix also containing the translation 

necessary to map the origin of the coordinate system to the centre of the force platform was 

constructed.  The rotation and translation were then applied to the coordinates in the 

following fashion: 
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6113.28636230.0369193660.96920546-50.24347017-

83183.39338-50.0379509010.2448203560.96882543-

z

y

x

. (A6.2) 

 

The first three columns of the matrix in equation A6.2 represent the rotation of the 

coordinate data and the last column represents the translation.  The rotation and translation 

were applied to coordinate data in .c3d files using Matlab toolbox for C3Dserver.  The 

rotated and translated data were then available for analysis within Bodybuilder in Vicon. 
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APPENDIX 7 

 

VICON RECONSTRUCTION PARAMETERS 

 

Maximum acceleration 

Maximum acceleration is the maximum expected acceleration of the markers, the default 

value is 50 mm/s/s and upon manipulation of this value no improvements were shown, 

therefore it was considered acceptable. 

 

Maximum noise factor 

Maximum noise factor indicates how tolerant the reconstruction process is to noise in the 

marker movement.  A higher value indicates more tolerance of erratic movements.  If this 

value was increased from the default value of seven to 15 it led to a decreased segment 

number.  However this also led to a slight increase in misidentification of marker positions 

and cross over of trajectories.  It was deemed necessary to keep this higher value though as 

triple jumping involves high impacts and, as such, high levels of noise in the marker 

positions. 

 

Intersection limit 

The intersection limit is the upper limit of the separation between rays from two cameras in 

order for them to contribute to the reconstruction of a marker.  For camera residuals of 2.0 

mm Vicon suggests this value should be set to 12.  In this case the mean camera residual 

was smaller than 2.0 mm so the value was reduced but no improvements were shown so it 

was left at 12.  The intersection limit and residual factor are interdependent, the residual 

factor should be set such that multiplying by the intersection limit and dividing by the 

average camera residual leads to a value between three and ten.  In this case the best results 

were achieved using a residual factor of 0.5 this leading to a value of just under ten using 

the method above. 

 

Predictor radius 

The predictor radius should be set to roughly half the minimum marker separation.  This 

set a limit to the space used in predicting where a given marker may appear in a subsequent 
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frame.  Larger values may result in more unbroken trajectories but can also lead to 

incorrect association of a marker to a trajectory, leading to a swap.  Vicon stated this value 

is roughly 30 mm for normal human activities.  Deviations from this value did not yield 

improvements in marker tracking so it was considered acceptable. 

 

Minimum cameras to start trajectories 

Vicon stated that the minimum cameras to start trajectories should always start at zero and 

only increase if you are confident that there is an excessive contribution of cameras to 

trajectory reconstruction.  A higher value may eliminate stray reflections and marker 

ghosting.  In this case the volume was very large and often only a few cameras could see 

markers so this value was left at zero. 
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APPENDIX 8 

 

VICON BODYLANGUAGE MODEL 

 

{*Vicon Bodylanguage model for calculation of joint centres and joint angles adapted for 
triple jump model*} 
{*Start of macro section*} 
{*======================*} 
 
macro REPLACE4(p1,p2,p3,p4) 
 
{*Replaces any point missing from set of four fixed in a segment*} 
 
s234 = [p3,p2-p3,p3-p4] 
p1V = Average(p1/s234)*s234 
s341 = [p4,p3-p4,p4-p1] 
p2V = Average(p2/s341)*s341 
s412 = [p1,p4-p1,p1-p2] 
p3V = Average(p3/s412)*s412 
s123 = [p2,p1-p2,p2-p3] 
p4V = Average(p4/s123)*s123 
 
{* Now only replaces if original is missing  11-99 *} 
 
p1 = p1 ? p1V 
p2 = p2 ? p2V 
p3 = p3 ? p3V 
p4 = p4 ? p4V 
endmacro 
 
MACRO DisplayAxes( ASeg ) 
 
ASeg#O = ASeg(0) 
ASeg#X = ASeg(0) + 200 * ASeg(1) 
ASeg#Y = ASeg(0) + 200 * ASeg(2) 
ASeg#Z = ASeg(0) + 200 * ASeg(3) 
OUTPUT( ASeg#O, ASeg#X, ASeg#Y, ASeg#Z ) 
 
ENDMACRO 
 
{*Initialisations*} 
{*===============*} 
 
{*Define optional marker points*} 
 
OptionalPoints(LFHD,RFHD,LBHD,RBHD) 



 

 216 

OptionalPoints(LSHOP,LSHOA,LELBL,LELBM,LELBF,LELBB,LWRA,LWRB,LHND
A,LHNDB) 
OptionalPoints(RSHOP,RSHOA,RELBL,RELBM,RELBF,RELBB,RWRA,RWRB,RHN
DA,RHNDB) 
OptionalPoints(RASI,LASI,RPSI,LPSI) 
OptionalPoints(LKNEM,LKNEL,LANKL,LANKM,LHEE,LMTPL,LMTPM,LTOE) 
OptionalPoints(RKNEM,RKNEL,RANKL,RANKM,RHEE,RMTPL,RMTPM,RTOE) 
 
{*Set Deadband, except for static trials*} 
 
If $Static<>1 Deadband = $Deadband EndIf 
 
Gorigin = {0,0,0} 
Global = [Gorigin,{1,0,0},{0,-1,0},xyz] 
 
 
{*KINEMATICS*} 
{*==================================================*} 
 
{*Ankle markers used to locate ankle JC (midpoint) and also used in second defining line 
for tibiae definitions*} 
{*Therefore, they should be placed on axis of ankle and be square on when looking from 
the front*} 
{*Included an offset to shift the medial markers out by 12.5 mm since half markers were 
used*} 
 
LANKOS = ((LANKM-LANKL)/ABS(LANKM-LANKL))*12.5 
RANKOS = ((RANKM-RANKL)/ABS(RANKM-RANKL))*12.5 
LANKM = LANKM+LANKOS 
RANKM = RANKM+RANKOS 
LANK = (LANKM+LANKL)/2 
RANK = (RANKM+RANKL)/2 
 
{*Knee markers used to locate knee JC (midpoint) and also used in second defining line 
for femura definitions*} 
{*Therefore, they should be placed on axis of knee and be square on when looking from 
the front*} 
{*Included an offset to shift the medial markers out by 12.5 mm since half markers were 
used*} 
 
LKNEOS = ((LKNEM-LKNEL)/ABS(LKNEM-LKNEL))*12.5 
RKNEOS = ((RKNEM-RKNEL)/ABS(RKNEM-RKNEL))*12.5 
LKNEM = LKNEM+LKNEOS 
RKNEM = RKNEM+RKNEOS 
LKNE = (LKNEM+LKNEL)/2 
RKNE = (RKNEM+RKNEL)/2 
 
LSHO = (LSHOA+LSHOP)/2 
RSHO = (RSHOA+RSHOP)/2 
SHO = (LSHO+RSHO)/2 
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LELB = (LELBL+LELBM)/2 
RELB = (RELBL+RELBM)/2 
 
LWRI = (LWRA+LWRB)/2 
RWRI = (RWRA+RWRB)/2 
 
LHND = (LHNDA+LHNDB)/2 
RHND = (RHNDA+RHNDB)/2 
 
LMTP = (LMTPL+LMTPM)/2 
RMTP = (RMTPL+RMTPM)/2 
 
OUTPUT(LMTP,RMTP,LSHO,RSHO,SHO,LELB,RELB,LWRI,RWRI,LKNE,RKNE,L
ANK,RANK) 
 
{*Head Segment*} 
{*============*} 
 
{*Replace marker if one is missing*} 
 
Replace4(LFHD,RFHD,RBHD,LBHD) 
OUTPUT(LFHD,RFHD,RBHD,LBHD) 
 
{*Original method used as will be calculating offset value, so better to use average than 
calculate precisely for particular markers*} 
 
LHead = (LFHD+LBHD)/2 
RHead = (RBHD+RFHD)/2 
FHead = (LFHD+RFHD)/2 
BHead = (LBHD+RBHD)/2 
CHead = (LHead+RHead)/2 
Head = [CHead,BHead-FHead,LHead-RHead,YXZ] 
 
{*Calculate the COM of the head in order to calculate an angle between head and torso*} 
 
COMHead={(-0.4*%lengthhead),(-0.1*%lengthhead),0}*Head 
OUTPUT(COMHead) 
Head = [COMHead,COMHead-SHO,RHead-LHead,XYZ] 
DisplayAxes(Head) 
 
{*Pelvis, Sacrum and Hips*} 
{*==================================================*} 
 
{*Replace marker if one is missing*} 
 
Replace4(LASI,RASI,RPSI,LPSI) 
OUTPUT(LASI,RASI,RPSI,LPSI) 
 
If $Static==1 Then  
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 {*Save average leg length as parameter*} 
 LLegLength = DIST(LASI,LKNE)+DIST(LKNE,LANK) 
 RLegLength = DIST(RASI,RKNE)+DIST(RKNE,RANK) 
 MP_LegLength = (LLegLength+RLegLength)/2 
 PARAM(MP_LegLength) 
EndIf 
 
SACR = (LPSI+RPSI)/2  
PELF = (LASI+RASI)/2 
 
Pelvis = [PELF,RASI-LASI,SACR-PELF,xzy] 
 
{*Locate position of Hip JCs using method of Davis et al. 1991, but working in mm not 
m*} 
 
LATD = 0.1288*MP_LegLength-48.56 
RATD = LATD 
C = MP_LegLength*0.115-15.3 
InterASISDist=DIST(LASI,RASI) 
aa = InterASISDist/2 
mm = $MarkerDiameter/2 
COSBETA = 0.951 
SINBETA = 0.309 
COSTHETA = 0.880 
SINTHETA = 0.476 
COSTHETASINBETA = COSTHETA*SINBETA 
COSTHETACOSBETA = COSTHETA*COSBETA 
 
LHJC = {C*SINTHETA - aa,C*COSTHETASINBETA - (LATD + mm) * COSBETA - 
C*COSTHETACOSBETA - (LATD + mm) * SINBETA}*Pelvis 
 
RHJC = {-C*SINTHETA + aa,C*COSTHETASINBETA - (RATD + mm) * COSBETA - 
C*COSTHETACOSBETA - (RATD + mm) * SINBETA}*Pelvis 
 
HJC = (LHJC+RHJC)/2 
 
OUTPUT(LHJC,RHJC,HJC) 
 
Pelvis = (LHJC+RHJC)/2 + Attitude(Pelvis) 
DisplayAxes(Pelvis) 
 
{*Foot Segment*} 
{*==================================================*} 
 
{*Main Foot Segment*} 
 
LFoot = [LANK,LMTP-LANK,LANK-LANKL,XYZ] 
RFoot = [RANK,RMTP-RANK,RANKL-RANK,XYZ] 
 
NLMTP = LMTP+13*LFoot(1)-27*LFoot(2) 
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NRMTP = RMTP+13*RFoot(1)-27*RFoot(2) 
 
LFoot = [LANK,NLMTP-LANK,LANK-LANKL,XYZ] 
RFoot = [RANK,NRMTP-RANK,RANKL-RANK,XYZ] 
 
output(NLMTP,NRMTP) 
 
DisplayAxes(RFoot) 
DisplayAxes(LFoot) 
 
{*Forefoot Segment*} 
 
LFFoot = [LMTP,LTOE-LMTP,LMTPM-LMTP,XYZ] 
RFFoot = [RMTP,RTOE-RMTP,RMTP-RMTPM,XYZ] 
 
NLTOE = LTOE-17*LFFoot(1)-20*LFFoot(2) 
NRTOE = RTOE-17*RFFoot(1)-20*RFFoot(2) 
 
LFFoot = [NLMTP,NLTOE-NLMTP,LMTPM-LMTP,XYZ] 
RFFoot = [NRMTP,NRTOE-NRMTP,RMTP-RMTPM,XYZ] 
 
output(NLTOE,NRTOE) 
 
DisplayAxes(RFFoot) 
DisplayAxes(LFFoot) 
 
{*Tibiae*} 
{*==================================================*} 
 
LTibia = [LKNE,LANK-LKNE,LANK-LANKL,XYZ] 
RTibia = [RKNE,RANK-RKNE,RANKL-RANK,XYZ] 
 
{*NOTE - FLEXION EXTENSION (AND ABDUCTION/ADDUCTION) NOT 
NECESSARILY ABOUT ANATOMICAL AXIS*} 
 
DisplayAxes(RTibia) 
DisplayAxes(LTibia) 
 
{*Femura*} 
{*==================================================*} 
 
LFemur = [LHJC,LKNE-LHJC,LKNE-LKNEL,XYZ] 
RFemur = [RHJC,RKNE-RHJC,RKNEL-RKNE,XYZ] 
 
{*NOTE - FLEXION EXTENSION (AND ABDUCTION/ADDUCTION) NOT 
NECESSARILY ABOUT ANATOMICAL AXIS*} 
 
DisplayAxes(RFemur) 
DisplayAxes(LFemur) 
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{*Trunk Segment for triple jump model*} 
 
Trunk = [HJC,SHO-HJC,RHJC-HJC,XYZ] 
 
DisplayAxes(Trunk) 
 
{*Humerus Segments*} 
{*================*} 
 
LHumerus = [LSHO,LELB-LSHO,LELB-LELBL,XYZ] 
RHumerus = [RSHO,RELB-RSHO,RELBL-RELB,XYZ] 
 
DisplayAxes(RHumerus) 
DisplayAxes(LHumerus) 
 
{*Radius (and Ulnar) Segments*} 
{*==========================*} 
 
LRadius = [LELB,LWRI-LELB,LELB-LELBL,XYZ] 
RRadius = [RELB,RWRI-RELB,RELBL-RELB,XYZ] 
 
DisplayAxes(RRadius) 
DisplayAxes(LRadius) 
 
{*Joint Angles*} 
{*============*} 
 
{*Trunk: Global >> Trunk (VCM)*} 
 
TrunkAngles = <Trunk,Global,zyx> 
 
{*Hips: Trunk >> Femora (VCM)*} 
 
LHipAngles = <LFemur,Trunk,zyx> 
RHipAngles = <RFemur,Trunk,zyx> 
 
{*Knees: Femora >> Tibiae (VCM)*} 
 
LKneeAngles = <LTibia,LFemur,zyx> 
RKneeAngles = <RTibia,RFemur,zyx> 
 
{*Ankles: Tibiae >> Feet (VCM)*} 
 
LAnkleAngles = <LFoot,LTibia,zyx> 
RAnkleAngles = <RFoot,RTibia,zyx> 
 
{*MTP: Feet >> Forefeet (VCM)*} 
 
LMTPAngles = <LFFoot,LFoot,zyx> 
RMTPAngles = <RFFoot,RFoot,zyx> 
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{*Neck: Head >> Trunk *} 
 
NeckAngles = <Head,Trunk,zyx> 
 
{*Shoulders: Trunk >> Humeri*} 
 
LShoulderAngles = <LHumerus,Trunk,zyx> 
RShoulderAngles = <RHumerus,Trunk,zyx> 
 
{*Elbows: Humeri >> Radii*} 
 
LElbowAngles = <LRadius,LHumerus,zyx> 
RElbowAngles = <RRadius,RHumerus,zyx> 
 
OUTPUT(RShoulderAngles,LShoulderAngles,RElbowAngles,LElbowAngles,RHipAngles
,LHipAngles) 
 
OUTPUT(RKneeAngles,LKneeAngles,RAnkleAngles,LAnkleAngles,RMTPAngles,LMT
PAngles,TrunkAngles,NeckAngles) 
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APPENDIX 9 

 

ANTHROPOMETRIC MEASUREMENTS FOR 

SEGMENTAL INERTIA PARAMETERS 

 
NAME         AGE        DATE  
 

All measurements in millimetres 

TORSO 

Level hip umbilicus ribcage nipple shoulder neck  nose ear top 
Length 0 193 256 385 534 589 0 100 153 266 
Perimeter 950 793 821 956  381  508 614  
Width 327 279 277 314 321 
Depth  184 

 

 

LEFT ARM 

Level shoulder midarm elbow forearm wrist  thumb knuckle nails 
Length 0  298 352 569 0 54 91 184 
Perimeter 324 284 261 270 167  232 214 115 
Width     60  92 87 51 
 

RIGHT ARM 

Level shoulder midarm elbow forearm wrist  thumb knuckle nails 
Length 0  316 383 572 0 47 91 177 
Perimeter 345 277 269 255 175  232 214 125 
Width     60  90 87 48 
 

LEFT LEG 

Level hip crotch midthigh knee calf ankle  heel arch ball nails 
Length 0 80  423 572 859 0 7  150 196 
Perimeter  565 505 379 374 227  341 259 245 148 
Width          94 55 
Depth      117    

 

RIGHT LEG 

Level hip crotch midthigh knee calf ankle  heel arch ball nails 
Length 0 83  451 609 899 0 6  161 212 
Perimeter  555 505 365 376 225  327 255 237 157 
Width          95 57 
Depth      122    

 
Height (M)   Mass (KG)   Shoe Mass (KG) 
 
 
Shoe Heel Thickness (mm)   Shoe Ball Thickness (mm) 

Andrew Bell 22 16/03/07 

181.9 0.6 

20 15 

72.6 
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APPENDIX 10 

 

TORQUE VELOCITY PROFILES SYMBOL DEFINITIONS 

 

maxT - The maximum torque in the eccentric phase 

 0T  - The isometric torque  

maxω - The angular velocity at which the curve reaches zero torque  

cω - Defined by the vertical asymptote cωω −=  of the Hill hyperbola (see Fig. A10.1). 

k  - Ratio of the slopes of the eccentric and concentric functions at .0=ω  The value of k  

was set at 4.3, the theoretical value which Huxley (1957) predicted in his original model. 

mina - The lowest level of activation in the eccentric phase 

 1ω  - The angular velocity at the point of inflection of the function (see Fig A10.2) 

 m  - Parameter governing the rate at which the activation increases with angular velocity 

(1/m  was proportional to the slope at the point of inflection).   

 

Figure A10.1. Four-parameter maximum torque function taken from Yeadon et al. (2006). 
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Figure A10.2. The three-parameter differential activation function, taken from Yeadon et 

al. (2006). 
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APPENDIX 11 

 

VALUES FOR THE NINE-PARAMETER TORQUE FIT 

 

 Hip Ext Knee Ext Ank Plant Ball Ext Sho Flex 

Tmax (N) 668 540 464 155 138 

T0 (N) 514 416 272 91 106 

wmax (rad/s) 26 36 30.8 30.8 36 

wc (rad/s) 7.94 5.44 15.38 15.38 5.83 

amin (-) 0.77 0.99 0.88 0.88 0.84 

m (rad/s) 1.06 0 0.4 0.4 0.3 

w1 (rad/s) 0.81 -0.36 1.38 1.38 -0.18 

k2 (deg-2) 1.64 0.74 0.37 10 0.78 

θopt (deg) 4.93 4.31 4.22 4.22 3.35 

RMSweighted 24 20 14   

RMSabsolute (N) 53 51 30   

% RMSabsolute of Tmax 8 9 6   

 

 Hip Flex Knee Flex Ank Dorsi Ball Flex Sho Ext 

Tmax (N) 313 574 107 36 159 

T0 (N) 241 361 64 21 122 

wmax (rad/s) 28 34.1 26 26 36 

wc (rad/s) 4.2 5.18 3.9 3.9 5.83 

amin (-) 0.75 0.74 0.99 0.99 0.84 

m (rad/s) 0.26 0.83 0.44 0.44 0.3 

w1 (rad/s) 0.06 1.57 -1.57 -1.57 -0.18 

k2 (deg-2) 1.64 0.52 0.44 10 1.08 
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θopt (deg) 3.02 2.19 2.13 2.13 3.96 

RMSweighted 15 16 5  6 

RMSabsolute (N) 34 33 12  16 

% RMSabsolute of Tmax 11 6 11  10 



 

 227 

APPENDIX 12 

 

OPTIMISED STIFFNESS AND DAMPING PARAMETERS 

WITH NO PENALTIES FOR FOOT DEPRESSION 

 

Parameter Value 

Vertical Toe Stiffness (N/m) 296540 

Vertical Ball Stiffness (N/m) 6391 

Vertical Heel Stiffness (N/m) 1162 

Vertical Toe Damping (Ns/m) 199900 

Vertical Ball Damping (Ns/m) 2082 

Vertical Heel Damping (Ns/m) 122130 

Horizontal Toe Stiffness (N/m)* 0.00 

Horizontal Ball Stiffness (N/m)* 0.91 

Horizontal Heel Stiffness (N/m)* 19.1 

Horizontal Toe Damping (Ns/m)* 2.91 

Horizontal Ball Damping (Ns/m)* 0.40 

Horizontal Heel Damping (Ns/m)* 0.20 

Wobbling Mass Stiffness Shank (N/m3) 5040000 

Wobbling Mass Stiffness Thigh (N/m3) 8806300 

Wobbling Mass Stiffness Torso (N/m3) 5000900 

Wobbling Mass Damping Shank (Ns/m) 1685 

Wobbling Mass Damping Thigh (Ns/m) 111 

Wobbling Mass Damping Torso (Ns/m) 323 

* These values are multiplied by vertical force to calculate the horizontal force 
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APPENDIX 13 

 

OPTIMISED STIFFNESS AND DAMPING PARAMETERS 

WITH PENALTIES FOR FOOT DEPRESSION 

 

Parameter Value 

Vertical Toe Stiffness (N/m) 453260 

Vertical Ball Stiffness (N/m) 147360 

Vertical Heel Stiffness (N/m) 291880 

Vertical Toe Damping (Ns/m) 463390 

Vertical Ball Damping (Ns/m) 113740 

Vertical Heel Damping (Ns/m) 249560 

Horizontal Toe Stiffness (N/m)* 64 

Horizontal Ball Stiffness (N/m)* 126 

Horizontal Heel Stiffness (N/m)* 107 

Horizontal Toe Damping (Ns/m)* 0.10 

Horizontal Ball Damping (Ns/m)* 1.15 

Horizontal Heel Damping (Ns/m)* 1.40 

Wobbling Mass Stiffness Shank (N/m3) 636850000 

Wobbling Mass Stiffness Thigh (N/m3) 11392000 

Wobbling Mass Stiffness Torso (N/m3) 1885100 

Wobbling Mass Damping Shank (Ns/m) 1734 

Wobbling Mass Damping Thigh (Ns/m) 90 

Wobbling Mass Damping Torso (Ns/m) 196 
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Initial Horizontal Velocity Hop (m/s) 7.68 

Initial Vertical Velocity Hop(m/s) -0.99 

Initial Angular Velocity of Trunk Hop (rad/s) 1.00 

Initial Horizontal Velocity Step (m/s) 7.32 

Initial Vertical Velocity Step (m/s) -2.49 

Initial Angular Velocity of Trunk Step (rad/s) 0.85 

Initial Horizontal Velocity Jump (m/s) 6.83 

Initial Vertical Velocity Jump(m/s) -2.25 

Initial Angular Velocity of Trunk Jump(rad/s) 0.83 

* These values are multiplied by vertical force to obtain the horizontal force 
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APPENDIX 14 

 

TORQUE GENERATOR ACTIVATION TIMINGS FOR 

MATCHED SIMULATIONS OF ALL THREE PHASES  

 

Hop a0 ts1 tr1 a1 ts2 tr2 a2 
Right Hip Ext 0.1270 -0.0350 0.0700 1.0000 0.0714 0.0881 0.0000 

Left Hip Ext 0.0238 0.0876 0.0895 0.7937    

Right Knee Ext 0.3333 -0.0350 0.0700 0.9968 0.0352 0.0967 0.0000 

Left Knee Ext 0.0238 0.0936 0.0786 0.5476 0.0929 0.0705 0.0000 

Right Ank Plant 0.3651 -0.0272 0.0835 0.9968 0.0952 0.0790 0.0000 

Left Ank Plant 0.0000 0.0000 0.0700 0.0000    

Right Ball Ext 0.0317 0.0933 0.0867 0.6508    

Left Ball Ext 0.2000 0.0000 0.0700 0.2000    

Right Sho Flex 0.3016 -0.0261 0.0719 0.9206 0.0500 0.0767 0.0000 

Left Sho Flex 0.2381 -0.0206 0.0905 0.7460 -0.0198 0.0852 0.0000 

Right Hip Flex 0.0000 0.0886 0.0957 0.7619    

Left Hip Flex 0.8254 0.0164 0.0890 0.9365 0.0127 0.0976 0.0000 

Right Knee Flex 0.3032 -0.0322 0.0771 0.0000 0.0227 0.0886 0.8254 

Left Knee Flex 0.0000 0.0706 0.0933 0.4762    

Right Ank Dorsi 0.3127 -0.0161 0.0954 0.0000    

Left Ank Dorsi 0.2000 -0.0300 0.0700 0.2000    

Right Ball Flex 0.0000 0.0000 0.0700 0.0000    

Left Ball Flex 0.5000 -0.0300 0.0700 0.8000    

Right Sho Ext 0.0079 0.0829 0.1002 0.8095    

Left Sho Ext 0.4603 0.0850 0.1105 0.5714    
 

Step a0 ts1 tr1 a1 ts2 tr2 a2 
Right Hip Ext 0.3492 -0.0344 0.0767 1.0000 0.0989 0.1000 0.0000 

Left Hip Ext 0.0000 0.0819 0.0767 0.3175    

Right Knee Ext 0.3889 -0.0328 0.0724 0.9968 0.0716 0.1000 0.0000 

Left Knee Ext 0.0000 0.0850 0.0790 0.0714 0.0333 0.0738 0.0000 

Right Ank Plant 0.1905 -0.0317 0.0851 0.9905 0.1262 0.0938 0.0000 

Left Ank Plant 0.0000 0.0000 0.0700 0.0000    

Right Ball Ext 0.1587 0.1236 0.0895 0.8333    

Left Ball Ext 0.2000 0.0000 0.0700 0.2000    

Right Sho Flex 0.3968 -0.0228 0.0819 0.9683 0.0246 0.0762 0.0000 
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Left Sho Flex 0.2540 -0.0039 0.0800 0.7302 -0.0468 0.0700 0.0000 

Right Hip Flex 0.0079 0.1157 0.0757 0.9365    

Left Hip Flex 0.9048 0.0437 0.0952 0.9048 0.0968 0.0852 0.0000 

Right Knee Flex 0.3857 -0.0067 0.0986 0.0000 0.0506 0.0781 0.6667 

Left Knee Flex 0.1667 0.0014 0.0827 0.9127    

Right Ank Dorsi 0.4556 -0.0033 0.1062 0.0000    

Left Ank Dorsi 0.1000 -0.0300 0.0700 0.1000    

Right Ball Flex 0.0000 0.0000 0.0700 0.0000    

Left Ball Flex 0.5000 -0.0300 0.0700 0.5000    

Right Sho Ext 0.1349 0.1102 0.0875 0.3651    

Left Sho Ext 0.4841 -0.0276 0.0954 1.0000    
 

Jump a0 ts1 tr1 a1 ts2 tr2 a2 
Right Hip Ext 0.0159 0.1086 0.0771 0.9762    

Left Hip Ext 0.1746 -0.0344 0.0767 0.9841 0.1500 0.0919 0.0000 

Right Knee Ext 0.0000 0.0968 0.0914 0.0000 0.1000 0.0714 0.0000 

Left Knee Ext 0.3730 -0.0344 0.0716 0.9778 0.0906 0.0976 0.0000 

Right Ank Plant 0.0000 0.0000 0.0700 0.0000    

Left Ank Plant 0.1429 -0.0261 0.0906 0.9714 0.1119 0.1144 0.0000 

Right Ball Ext 0.0000 0.0000 0.0700 0.0000    

Left Ball Ext 0.1032 0.1238 0.0824 0.7381    

Right Sho Flex 0.3254 -0.0080 0.0976 0.4603 -0.0500 0.0795 0.0000 

Left Sho Flex 0.4365 -0.0317 0.0905 0.9810 0.0471 0.0857 0.0000 

Right Hip Flex 0.0794 -0.0243 0.0871 0.9302 0.1000 0.0767 0.0000 

Left Hip Flex 0.0000 0.1252 0.0948 0.6270    

Right Knee Flex 0.5000 0.0014 0.0967 0.6349    

Left Knee Flex 0.3032 -0.0194 0.0886 0.0000 0.1162 0.0719 0.5635 

Right Ank Dorsi 0.1000 -0.0300 0.0700 0.1000    

Left Ank Dorsi 0.3159 -0.0328 0.0995 0.0000    

Right Ball Flex 0.5000 -0.0300 0.0700 0.5000    

Left Ball Flex 0.0000 0.0000 0.0700 0.0000    

Right Sho Ext 0.2222 0.0657 0.1057 0.5635    

Left Sho Ext 0.0079 0.1012 0.0700 0.6111    
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APPENDIX 15 

 

TORQUE GENERATOR ACTIVATION TIMINGS FOR 

OPTIMISED SIMULATIONS OF ALL THREE PHASES 

 

Hop a0 ts1 tr1 a1 ts2 tr2 a2 
Right Hip Ext 0.4206 -0.0350 0.0702 1.0000 0.0696 0.1074 0.0000 

Left Hip Ext 0.0000 0.0959 0.0967 0.7293    

Right Knee Ext 0.4524 -0.0178 0.0781 1.0000 0.0517 0.0808 0.0000 

Left Knee Ext 0.0036 0.1192 0.0861 0.5131 0.0925 0.0740 0.0000 

Right Ank Plant 0.1916 -0.0266 0.0867 1.0000 0.1040 0.0806 0.0000 

Left Ank Plant 0.0000 0.0000 0.0700 0.0000    

Right Ball Ext 0.0074 0.0933 0.0806 0.8344    

Left Ball Ext 0.2000 0.0000 0.0700 0.2000    

Right Sho Flex 0.4206 -0.0161 0.0719 0.8968 0.0183 0.0705 0.0000 

Left Sho Flex 0.0476 -0.0339 0.0748 0.9762 0.0373 0.0781 0.0000 

Right Hip Flex 0.0032 0.1085 0.1116 0.8096    

Left Hip Flex 0.8048 0.0160 0.0824 0.9429 0.0154 0.0964 0.0000 

Right Knee Flex 0.3349 -0.0067 0.0897 0.0000 0.0600 0.0757 0.7429 

Left Knee Flex 0.0413 0.0877 0.0920 0.5808    

Right Ank Dorsi 0.4365 0.0023 0.0782 0.0000    

Left Ank Dorsi 0.2000 -0.0300 0.0700 0.2000    

Right Ball Flex 0.0000 0.0000 0.0700 0.0000    

Left Ball Flex 0.5000 -0.0300 0.0700 0.8000    

Right Sho Ext 0.0000 0.1046 0.0748 0.8254    

Left Sho Ext 0.0000 0.1021 0.0748 0.6349    
 

Step a0 ts1 tr1 a1 ts2 tr2 a2 
Right Hip Ext 0.3647 -0.0350 0.0702 1.0000 0.0970 0.0931 0.0000 

Left Hip Ext 0.0000 0.1482 0.0923 0.1508    

Right Knee Ext 0.2148 -0.0350 0.0721 1.0000 0.0610 0.0740 0.0000 

Left Knee Ext 0.0000 0.1034 0.0899 0.0000 0.0328 0.0989 0.0000 

Right Ank Plant 0.1397 -0.0330 0.0789 1.0000 0.1356 0.0921 0.0000 

Left Ank Plant 0.0000 0.0000 0.0700 0.0000    

Right Ball Ext 0.0000 0.1038 0.0713 0.9841    

Left Ball Ext 0.2000 0.0000 0.0700 0.2000    

Right Sho Flex 0.1746 -0.0183 0.0886 0.9762 0.0475 0.0862 0.0000 
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Left Sho Flex 0.1746 -0.0206 0.0971 0.6667 0.0259 0.0905 0.0000 

Right Hip Flex 0.0000 0.1492 0.0797 0.9286    

Left Hip Flex 0.5000 0.1033 0.0959 0.9481 0.0638 0.1020 0.0000 

Right Knee Flex 0.3734 -0.0333 0.0821 0.0000 0.1141 0.0823 0.6746 

Left Knee Flex 0.1267 -0.0288 0.0706 0.9810    

Right Ank Dorsi 0.3832 -0.0296 0.0906 0.0000    

Left Ank Dorsi 0.1000 -0.0300 0.0700 0.1000    

Right Ball Flex 0.0000 0.0000 0.0700 0.0000    

Left Ball Flex 0.5000 -0.0300 0.0700 0.5000    

Right Sho Ext 0.0000 0.1024 0.0862 0.8730    

Left Sho Ext 0.0000 0.1476 0.0852 0.6270    
 

Jump a0 ts1 tr1 a1 ts2 tr2 a2 
Right Hip Ext 0.0000 0.1481 0.0862 0.8317    

Left Hip Ext 0.1726 -0.0350 0.0711 1.0000 0.1662 0.0922 0.0000 

Right Knee Ext 0.0000 0.0795 0.0893 0.0000 0.1016 0.0793 0.0000 

Left Knee Ext 0.4325 -0.0307 0.0713 1.0000 0.0843 0.0909 0.0000 

Right Ank Plant 0.0000 0.0000 0.0700 0.0000    

Left Ank Plant 0.0436 -0.0092 0.0918 1.0000 0.1225 0.1177 0.0000 

Right Ball Ext 0.0000 0.0000 0.0700 0.0000    

Left Ball Ext 0.0048 0.1173 0.0742 1.0000    

Right Sho Flex 0.5000 -0.0011 0.0995 0.9127 0.0794 0.0838 0.0000 

Left Sho Flex 0.4127 -0.0272 0.0757 0.9444 0.0814 0.0829 0.0000 

Right Hip Flex 0.2214 -0.0296 0.0932 0.9524 0.0984 0.0773 0.0000 

Left Hip Flex 0.0063 0.1450 0.0907 0.4333    

Right Knee Flex 0.4968 -0.0350 0.0859 1.0000    

Left Knee Flex 0.3317 -0.0081 0.0984 0.0000 0.1284 0.0734 0.4148 

Right Ank Dorsi 0.1000 -0.0300 0.0700 0.1000    

Left Ank Dorsi 0.4302 -0.0130 0.1046 0.0000    

Right Ball Flex 0.5000 -0.0300 0.0700 0.5000    

Left Ball Flex 0.0000 0.0000 0.0700 0.0000    

Right Sho Ext 0.0000 0.1484 0.0910 0.7222    

Left Sho Ext 0.0000 0.1357 0.0819 0.7302    
 


