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Abstract 
 

The use of C2-symmetric chiral ligands to promote selectivity in transition metal 

catalysed asymmetric transformations has been well documented over the last few 

decades.1 In recent years, more and more interest has been focused on C3-symmetric 

chiral ligands and complexes and their applications in this field.2 It has been 

proposed, for a number of reasons, that transition metal complexes derived from 

C3-symmetric ligands have even greater potential for asymmetric catalysis than their 

C2-symmetric counterparts.3 

 

This project is focused on the development of a new, chiral family of amine 

tris(phenolate) ligands, such as 1. Despite ligand 1 being achiral, it has been shown 

that it forms a chiral (but racemic) monomeric complex with titanium such as 2 

(Scheme 1).4 The chirality is due to its propeller-like structure, leading to both the P 

and M isomers. Complexes of this type have been shown to catalyse a number of 

organic transformations.5 
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Ti(Oi-Pr)4

(P)-2 (M)-21  
Scheme 1. Formation of complex (rac)-2 

 

In light of this, the design and synthesis of chiral pseudo-C3-symmetric ligands (R)-3 

and (R)-4 was completed via the protocol depicted in Scheme 2 using a chiral 

auxiliary controlled addition to an imine, followed by oxidative cleavage and 

bisalkylation of the primary amine and subsequent hydrogenolytic deprotection of 

                                                 
1 J. K. Whitesell, Chem. Rev., 1989, 89, 1581-1590; 2 S. E. Gibson and M. P. Castaldi, Chem. 

Commun., 2006, 3045-3062; 3 (a) C. Moberg, Angew. Chem. Int. Ed., 1998, 37, 248-268; (b) S. T. 

Handy, Curr. Org. Chem., 2000, 4, 363-395; 4 M. Kol, M. Shamis, I. Goldberg, Z. Goldschmidt, S. 

Alfi and E. Hayut-Salant, Inorg. Chem. Commun., 2001, 4, 177-179; 5 (a) S. D. Bull, M. G. Davidson, 

A. L. Johnson, D. E. J. E. Robinson and M. F. Mahon, Chem. Commun., 2003, 1750-1751; (b)  G. 

Licini, M. Mba and L. J. Prins, Org. Lett., 2007, 9, 21-24 
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the benzyl protecting groups. Upon coordination to titanium, the chirality of the 

ligands effectively locked the conformation of the propeller-like complex, such that 

the α-methyl group occupied its predicted pseudoaxial orientation (Scheme 3). 
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d) Pd/C, H2, EtOAc 98%

(R)-3 (R = Me)
(R)-4 (R = t-Bu)

 
Scheme 2. Synthesis of ligands (R)-3 and (R)-4 
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Scheme 3. Formation of complexes (R,M)-5 and (R,M)-6 

 

In the screening of these titanium complexes in a number of organic transformations 

(R,M)-6 showed moderate selectivity in the oxidation of aryl alkyl sulfides, 

delivering the (R)-sulfoxide in enantioselectivities of up to 47% ee (Scheme 4). 
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S Ph
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(R,M)-6 (10mol %)

toluene, -30 °C
+

O

ratio 33:67
(R)-7

47% ee  
Scheme 4. Sulfoxidation reaction catalysed by (R,M)-6 
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1 Introduction 
 

1.1 CHIRALITY 
 

A molecule is considered to be chiral if it is non-superimposable on its mirror image. 

As many compounds associated with living organisms are chiral (eg DNA, enzymes, 

antibodies and hormones), the way in which enantiomers of a molecule interact can 

have markedly different biological activities. This is true for limonene, a compound 

which is formed naturally in both R and S forms, with one of the enantiomers, 

(S)-limonene 1 smelling of lemons, while its mirror image, (R)-limonene 1 smells of 

oranges (Figure 1).1 

(R)-limonene 1
Smells of oranges

(S)-limonene 1
Smells of lemons  

Figure 1. (S)-limonene and (R)-limonene 1 

 

Another example found in nature is the unusual case of the pheromone activity of 

olean 2, the female sex pheromone of the olive fruit fly (Bactrocera oleae).2 After 

both enantiomers were synthesised and bioassayed it was found that the 

(R)-enantiomer stimulated the male fruit flies, while the (S)-enantiomer stimulated 

the females.3 Analysis of the natural olean showed it to be a racemic mixture; thus, 

the female produced pheromone stimulates both male fruit flies and the female 

herself. 

O

O

O

O

(R)-2 (S)-2  
Figure 2. (R)-olean and (S)-olean 2 

 

It is therefore apparent that biology is sensitive to chirality and the activity of drugs 

will also depend on which enantiomer is used. Chiral drugs are often sold in the 

racemic form, with only one of the enantiomers matching the target receptor in the 

cell. In the late 1950s, the drug thalidomide 3 was prescribed as a sedative and anti-
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emetic for pregnant women (Figure 3).4, 5 Following reports revealing a link 

between limb growth defects in babies and maternal usage of thalidomide, the drug 

was withdrawn from the market in 1961. It was subsequently found that while the 

(R)-enantiomer of 3 was beneficial, the (S)-enantiomer caused the teratogenic 

effects. As a consequence, pharmaceutical companies now test both enantiomers of a 

drug, and the ability to synthesise enantiomerically pure compounds is of great 

importance in drug production. 

N

O

O

NH

O

O

(R)-(+)-thalidomide 3

N

O

O

NH

O

O

(S)-(-)-thalidomide 3  
Figure 3. Thalidomide 3 

 

1.2 ASYMMETRIC SYNTHESIS 
 

There are four main methods for achieving asymmetric synthesis based on: 

• The chiral pool approach 

• Resolution of a racemate 

• The use of chiral auxiliaries 

• Asymmetric catalysis 

Examples of each of these approaches will now be discussed together with the 

relative scope and limitations of each method. 

 

1.2.1 Chiral Pool Approach 

 

The use of a chiral starting material, derived from a naturally occurring product, is a 

popular methodology, with a large number of chiral molecules having been 

manufactured in this way. A recent example in the literature is by Prasad and 

co-workers, who reported the synthesis of both enantiomers of the Western pine 

beetle pheromone 2-hydroxy-exo-brevicomin 4 from the protected bis-Weinreb 

amide 5, which was derived from the naturally abundant L-(+)-tartaric acid.6, 7 

 

For (+)-2-hydroxy-exo-brevicomin 4,6 the synthesis proceeded via the stereoselective 

addition of ethylmagnesium bromide to the bis-Weinreb amide 5 to afford the 
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ketoamide. The highly diastereoselective reduction of the keto group furnished its 

corresponding (R)-alcohol, which was then protected as its silylether 6. DIBAL-H 

reduction followed by Wittig olefination yielded the α,β-unsaturated ketone 7, which 

was converted to the saturated ketone 8 by standard Pd/C hydrogenation. 

Simultaneous deprotection of the silyl ether and acetonide with FeCl3·6H2O 

catalysed instantaneous intramolecular ketalisation furnishing the natural product in 

38% yield over all the steps (Scheme 5). 

N

O

N

O

MeO

Me

OMe

Me

O

O

OH

5

(+)-2-hydroxy-exo-brevicomin
4

a, b c, d

e

f

a) EtMgBr, THF, 0 °C, 88% yield; b) (i) K-Selectride, -78 °C, THF, (ii) TBDMSCl, imidazole, DMAP, DMF, 80 °C, 68%
yield over 2 steps; c) DIBAL-H, THF, -78 °C; d) 1-(triphenylphosphoranylidene)-2-propanone, benzene, reflux, 74% over 
2 steps; e) 10% Pd/C, H2, MeOH, quant. yield; f) FeCl3•6H2O, DCM, rt, 87% yield

O

O

N

O

EtMeO

Me

6

O

O

OTBDMS

Et

7

O

O

OTBDMS

Me

O

Et

8

O

O

OTBDMS

Me

O

 
Scheme 5. Synthesis of (+)-2-hydroxy-exo-brevicomin 4 

 

The synthesis of (-)-2-hydroxy-exo-brevicomin 4
7 proceeded via the controlled 

addition of 3-butenylmagnesium bromide to 5, affording the ketoamide. Again 

stereoselective reduction of the keto group was followed by silylether protection to 

give silyloxy Weinreb amide 9. Addition of MeMgCl to 9, followed by reduction 

with NaBH4 afforded a 50:50 mixture of diastereomers of the corresponding alcohol, 

which were converted to a mixture of xanthate esters 10 under standard conditions. 

These esters then underwent tributyltin hydride catalysed Barton-McCombie free 

radical deoxygenation to yield 11. The desired product was obtained after 11 was 

subjected to a Wacker oxidation with PdCl2 under an oxygen atmosphere in DMF, 

which resulted in the formation of the ketone and simultaneous deprotection of the 

silyl and acetonide group followed by intramolecular ketalisation, to afford the 

opposing (-)-enantiomer of the pheromone in a high overall yield of 35% (Scheme 

6). 
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5

(-)-2-hydroxy-exo-brevicomin
4

a, b c, d, e

f
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O

O
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O

MeO

Me O
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OTBDMS
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OTBDMS
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OTBDMS

MeS2CO

10

11

9

a) 3-Butenylmagnesium bromide, THF, -15 °C, 90% yield; b) (i) L-Selectride, -78 °C, THF, (ii) TBDMSCl, imidazole, DMAP, 
DMF, 80 °C, 78% yield over 2 steps; c) MeMgCl, THF, 0 °C, 98% yield; d) NaBH4, 96% yield; e) NaH, CS2, MeI, THF,
reflux, 94% yield; f) AIBN, Bu3SnH, benzene, ∆; g) PdCl2, CuCl, O2, DMF/H2O, rt, 56% yield over 2 steps  

Scheme 6. Synthesis of (-)-2-hydroxy-exo-brevicomin 4 

 

An obvious limitation with the chiral pool approach is that the desired synthetic 

target needs to be closely related to a natural product that is readily available; 

otherwise the synthetic route becomes so laborious and wasteful that it renders the 

method unfeasible. Another major drawback is the lack of availability of both 

enantiomers of many natural products, meaning that synthesis requiring the opposite 

enantiomer may require additional steps to invert chiral centres.  

 

1.2.2 Resolution of Racemates 

 

Chiral Resolving Agents 

Classical resolution, where the enantiomers of a racemic mixture are separated by 

addition of a chiral resolving agent, is still a popular technique in asymmetric 

synthesis. The addition of the chiral resolving agent results in a mixture of 

diastereomers that can then be separated by fractional crystallisation or column 

chromatography. For example, Tayama et al. recently demonstrated that a racemic 

mixture of β-hydroxy-tetraalkylammonium bromide 12 could be resolved using 

chiral BINOL (Scheme 7).8 After addition of 0.50 equivalents of (R)-BINOL 13 to 

(rac)-12, the precipitate that formed (a 1:1 complex of 12 and BINOL) was filtered 

off. A diethyl ether-water extraction separated the two components of 14, with the 
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enantioenriched β-hydroxy-tetralkylammonium bromide (S)-12 (>95% ee) recovered 

from the aqueous phase, and (R)-BINOL 13 recovered from the organic phase.  

N
Me Ph

OH

Br

(rac)-12

(R)-BINOL 13 (0.50 eq.)

DCM
filtration

N
Me Ph

OH

Br

OH

OH
�

Et2O-H2O

extractive separation

N
Me Ph

OH

Br

14

Me Me

Me

(S)-12

29% yield, >95% ee

•H2O

•H2O

OH
OH

 
Scheme 7. Resolution of chiral β-hydroxy-tetralkylammonium bromide 12 by (R)-BINOL 13 

 

Unfortunately, the maximum theoretical yield from such a process can only ever be 

50%, which means it is highly wasteful. In industrial synthesis, the disposal of such a 

quantity of high quality waste would be prohibitively expensive. The exception to 

this is when the undesired enantiomer can be re-racemised and recycled. 

 

Kinetic Resolution 

This strategy relies on the differences in rates of reaction of the two enantiomers of a 

racemic mixture with an enantiomerically pure reagent or catalyst. In an ideal 

scenario, the difference in rates is such that one of the enantiomers reacts while the 

other essentially remains unreacted. Again the major drawback is that the maximum 

theoretical yield is 50%. In 2007, Hoveyda and Snapper and co-workers 

demonstrated its potential, with the kinetic resolution of 1,2-diols through 

asymmetric silylation catalysed by dipeptide 15.9 For example, reaction of racemic 

1,2-diol 16 bearing a primary alcohol and tertiary carbinol proceeded with excellent 

regioselectivity (>98% primary silyl ether), yielding the (S)-silyl ether 17 in 49% 

yield and 91% ee with (R)-16 recovered in 45% yield and >98% ee (Scheme 8). 
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HO Me
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H
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O
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NN

NMe

Me

tBu

15 (20mol %)

TBSCl, DIPEA, THF
HO

tBu

HO Me

TBSO
tBu

Me OH

HO
tBu

Me OTBS
+ +

(rac)-16 (S)-18(S)-17

49% yield
91% ee

(R)-16

45% yield
>98% ee

>99:<1
17:18

 
Scheme 8. Kinetic resolution of 1,2-diol 16 through catalytic asymmetric silylation 

 

Dynamic Kinetic Resolution 

Dynamic kinetic resolution (DKR) is a more efficient method of obtaining 

enantiomerically enriched products from racemic mixtures of the starting substrate. 

Again the chiral resolving reagent or catalyst reacts preferentially with one 

enantiomer. Importantly in this protocol it is possible to obtain the product in yields 

greater than 50%. This is due to racemisation of the substrate, with increased yields 

(theoretically up to 100%) possible when the racemisation rate successfully 

competes with the rate of the resolution reaction. In 2008, Yamada et al. reported the 

dynamic kinetic resolution of hemiaminals by acylation catalysed by the chiral 

DMAP organocatalyst 19 (Scheme 9).10 The hemiaminal 20 is able to undergo very 

rapid racemisation, with acylation of 20 favouring the (R)-enantiomer to afford the 

corresponding (R)-ester 21 in >99% yield and 88% ee. 

N

O

O

OH

N

O

O

OH

N

O

O

O

N

N

N

O

S

S

tBu

19 (1mol %)

(iPrCO)2O
Et3N

O

iPrO

(R)-20

(S)-20

(R)-21

>99% yield
88% ee

 
Scheme 9. Catalytic dynamic resolution of 20 catalysed by organocatalyst 19 

 

Enzymatic Dynamic Kinetic Resolution 

Enzymes offer a powerful approach as they are catalytic and perform clean and 

specific reactions to afford chiral products with very high enantioselectivity. A 
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representive example of enzymatic DKR uses Horse Liver Alcohol Dehydrogenase 

(HLADH) enzyme and nicotinamide adenine dinucleotide (NADH) as the reducing 

agent, to yield (2S)-2-(4-iso-butylphenyl)propanol 23 ((S)-ibuprofenol)  from the 

starting racemic ibuprofenal 22 (Scheme 10).11 In the process of reducing one 

enantiomer of aldehyde (rac)-22 to the primary alcohol 23, NADH is oxidised to 

NAD+ which results in stoichiometric consumption of the expensive cofactor.  The 

addition of an excess of ethanol to the reaction mixture allows for the use of a 

catalytic amount of cofactor, which was successfully regenerated in situ by the same 

HLADH enzyme.  This process yields the desired product in 93% yield and >99% 

ee. 

NADH NAD+

Me

H

O

Me

OH

OHO

HLADH
phosphate buffer

MeCN

(S)-23

93% yield
>99% ee

Me

H

O

(S)-22(R)-22

 
Scheme 10. Enzymatic DKR of racemic ibuprofenal 22 

 

However, enzymes often suffer from being highly substrate specific and sensitive to 

their reaction conditions. They tend only to operate in aqueous environments at 

specific pHs and temperatures, and any variations in these conditions can cause the 

enzyme to denature. As a consequence, many reactions have to be performed in 

biphasic solvent systems complicating the process even further. 

 

1.2.3 Chiral Auxiliaries 

 
A chiral auxiliary is an enantiomerically pure compound that is attached to a 

prochiral substrate that then influences the stereochemical course of a reaction. In 

most cases the auxiliary is introduced prior to the stereoselective reaction and 

removed afterwards. These additional synthetic steps and the cost of stoichiometric 

amounts of auxiliary can make this process unattractive. However, for many of these 

applications no enantioselective catalytic method exists.12 The most well known 

chiral auxiliaries are the oxazolidin-2-ones, which were first reported by Evans in 

1981,13 and are derived from chiral amino acids. Nowadays, many structural 

variations of these auxiliaries exist. For example, the SuperQuat auxiliary (R)-24, 
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developed by Davies et al., was employed in the synthesis of the chiral α-substituted 

carboxylic acid (S)-27 (Scheme 11).14 In the alkylation step, the enolate of 25 is 

coordinated to the lithium counterion and the electrophile approaches from the 

opposing face to the stereodirecting iso-propyl group of the auxiliary, exclusively 

forming (R,S)-26 in high diastereoselectivity and yield. After cleavage of the 

auxiliary, carboxylic acid (S)-27 is obtained in high enantiomeric excess and yield, 

with the auxiliary recovered for recycling. 

NHO

O

NO

O O

NO

O O

Ph

NHO

O
O

Ph

HO

BuLi

EtCOCl
prochiral substrate

LHMDS

PhCH2Br

LiOH
THF, H2O

+
recycling of auxiliary

(R)-24 (R)-25 (R,S)-26

>95% de
93% yield

(R)-24

98% yield

(S)-27

>95% ee
96% yield  

Scheme 11. Use of chiral SuperQuat (R)-24 for the synthesis of α-alkyl carboxylic acid (S)-27 

 

1.2.4 Asymmetric Catalysis 

 

The principles behind asymmetric catalysis are that a chiral reagent, upon 

coordination to the achiral substrate, modifies the course of a reaction to afford 

diastereomeric transition states that differ in energy. The transition state which is 

lower in energy is kinetically favoured, and therefore the reaction results in one of 

the enantiomers being formed in excess. Since the catalyst is not destroyed in this 

process, it can be used in substoichiometric amounts, significantly reducing the 

overall cost of the process. However, it is often found that catalysts are highly 

substrate specific, with different classes of substrate requiring development of a new 

catalytic system. Today, modern asymmetric catalysis can be classified into one of 

three main processes, namely:  

• Biocatalysis 
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• Organocatalysis  

• Organometallic catalysis 

Recent examples of asymmetric catalysis from each of these subcategories will now 

be discussed. 

 

Biocatalysis  

As mentioned earlier, reactions catalysed by enzymes are highly desirable as they are 

often considered ‘greener’ than the corresponding organometallic catalysed systems. 

For example, in 2007 Griengl and co-workers published the first example of an 

enzymatic nitroaldol (Henry) reaction (Scheme 12).15 In their work, the 

hydroxynitrile lyase from Hevea brasiliensis (HbHNL) was shown to accept 

nitromethane 29 as an enolate donor for reaction with various aldehydes, to yield the 

β-nitro alcohols 30a-f in modest yields and high enantioselectivity (Table 1). The 

reaction was found to be broadly applicable to aromatic (entries 1-2), heteroaromatic 

(entries 3-4) and aliphatic aldehydes (entries 5-6). 

R H

O

H3C
NO2+

R

OH

NO2

HbHNL
McIlvaine buffer / TBME

rt, 48 hr

28a-f 29 (S)-30a-f  
Scheme 12. Enzyme catalysed Henry reaction of nitromethane 29 and aldehydes 28a-f 

 

Table 1 

Entry Product R Yield /% ee /% 

1 30a C6H5 32 97 

2 30b 3-Cl(C6H4) 36 98 

3 30c 2-furyl 43 88 

4 30d 2-thienyl 29 98 

5 30e n-hexyl 34 96 

6 30f cyclohexyl 18 99 

 

Organocatalysis 

The term organocatalysis describes the acceleration of chemical reactions through 

the addition of a substoichiometric quantity of an organic compound.16 The interest 

in this field has grown quite dramatically in recent years, with the efficiency and 

selectivity of some of these organocatalytic reactions now approaching the standards 
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of established asymmetric reactions.17 Due to the vastly increasing types of 

organocatalysts employed in asymmetric catalysis, List and co-workers recently 

devised a system of categorising them by their mechanistic behaviour.18 

Accordingly, the organocatalysts can be categorised as either Lewis base, Lewis 

acid, Brønsted base and Brønsted acid, since most organocatalysts fall into one of 

these categories. The simplified catalytic cycles are shown in Scheme 13. Lewis 

base catalysts (B:) work by initiating the catalytic cycle via nucleophilic addition to 

the substrate (S). The resulting complex then undergoes a reaction before the product 

(P) is released, allowing for the catalyst to perform further turnovers. Lewis acid 

catalyst (A) activate nucleophilic substrates (S:) in a similar manner. Brønsted base 

and acid catalytic cycles are initiated via partial deprotonation or protonation of the 

substrate, respectively. 

B+ S-

B+ P-B

P

S

A- S+

A- P+A

P

S

BH+ S-

BH+ P-B

P

S

A- SH+

A- PH+A

P

S

H

H

Lewis Base Catalysis Lewis Acid Catalysis

Brønsted Base Catalysis Brønsted Acid Catalysis

H

 
Scheme 13. Organocatalytic cycles 

 

The majority of organocatalysts are N-, C-, O-, P- and S-based Lewis bases, which 

convert the substrates into either activated nucleophiles or electrophiles. Typical 

reactive intermediates include iminium ions, enamines, carbenes, acyl ammonium 

ions or 1-, 2- or 3-ammonium enolates. An example of a Lewis base organocatalyst 

is the imidazolidinone 31, which Macmillan and co-workers demonstrated to 

facilitate the Diels-Alder reaction between (E)-cinnaldehyde 32 and cyclopentadiene 

33, giving the desired Diels-Alder adducts (2S)-endo-34 and (2S)-exo-34 in 93% ee 

(ratio of endo-34 to exo-34 1:1.3) (Scheme 14).19 The sense of asymmetric induction 
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observed in the reaction was consistent with the proposed iminium ion intermediate 

35, with the selective formation of the (E)-iminium isomer minimising steric 

interaction between the geminal methyl substituents on the catalyst framework, and 

the benzyl group shielding the Re face of the dienophile, leaving the Si face exposed 

to cycloaddition (Scheme 15). 

Ph O

Ph

CHO

CHO

Ph

N
H

N
MeO

Ph •HCl

Me

Me

+ +
31 (5mol %)

MeOH-H2O
23 °C

99% yield
32 33 (2S)-endo-34

93% ee

(2S)-exo-34

93% ee

endo:exo
1.3:1  

Scheme 14. Organocatalysed Diels-Alder cycloaddition between (E)-cinnaldehyde 32 and 
cyclopentadiene 33 

 

H

N

N
O Me

Ph

Me

Me

Iminium ion 
intermediate 

35

H

Si-face CHO

Ph

 
Scheme 15. Proposed iminium ion intermediate 35 in the Diels-Alder reaction catalysed by the 
imidazolidinone 31 

 

An important class of organocatalysts that can be considered as Lewis acids are 

phase-transfer catalysts. An example of this class of organocatalyst is the Cinchona 

alkaloid-derived ammonium salt, O(9)-allyl-�-(9-anthracenylmethyl)-

cinchonidinium bromide 36, used in the alkylation of the enolate of tert-butyl 

glycinate-benzophenone Schiff base 37 under phase-transfer conditions (Scheme 16, 

Table 2).20 The reaction was conducted in dichloromethane with solid cesium 

hydroxide monohydrate used as the base phase, unlike other literature examples, 

where Cinchona alkaloid-derived quaternary ammonium salts were employed in 

water-immiscible solvent systems.21-23 This change in protocol meant lower reaction 

temperatures were possible, with the reaction being conducted at -60 to -78 °C. A 

range of carbon halides were successfully used to alkylate 37, with the products 

38a-f obtained in 71-89% yield and 94-99.5% ee. 
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N

N

O

Br
NPh

Ph

Ot-Bu

O

NPh

Ph

Ot-Bu

O

H R

+ RX
36 (10mol %)

CsOH•H2O
DCM

37 38a-f

36  
Scheme 16. Enantioselective catalytic phase transfer alkylation of 37 using Cinchona alkaloid-
derived ammonium salt 36 

 

Table 2 

Entry RX Product Temp /°C Time /h Yield /% ee /% 

1 CH3I 38a -60 28 71 97 

2 CH3(CH2)4CH2I 38b -60 32 79 99.5 

3 
Br

 
38c -60 36 75 99 

4 Br
 38d -78 22 89 97 

5 PhCH2Br 38e -78 23 87 94 

6 Ph2CHBr 38f -78 22 73 99.5 

 

An example of an organic Brønsted base catalyst is the C2-symmetric guanidine 39, 

which was used to catalyse the addition of hydrogen cyanide to aldimine 40 to form 

the corresponding α-amino nitrile 41 in 96% yield and 86% ee (Scheme 17).24 The 

reaction proceeds via interaction of the hydrogen cyanide with the nitrogen base 

generating a guanidinium cyanide complex, which can then serve as a hydrogen 

bond donor to the aldimine 40 forming the pre-transition-state termolecular assembly 

42 (Scheme 18). Finally, attack by the cyanide ion within the ion pair on the 

hydrogen-bond-activated aldimine affords the Strecker product (R)-41. 

N

Ph

HN

Ph

39 (10mol %)
HCN

toluene, -40 °C

Ph Ph

40 (R)-41

96% yield
86% ee

39

CN
H N

H

N

N

 
Scheme 17. Addition of hydrogen cyanide to imine 40 catalysed by C2-symmetric guanidine 39 
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Scheme 18. Proposed mechanism of the Strecker reaction of imine 40 catalysed by C2-symmetric 
guanidine 39 

 

In contrast, Jacobsen and co-workers showed that their thiourea organocatalyst 43 

behaved as a Brønsted acid in the reaction of similar aldimine substrates with 

hydrogen cyanide, with the reaction proceeding through formation of a hydrogen 

bond between the imine nitrogen and the thiourea hydrogens (Scheme 19, Table 

3).25 For example, the reaction of 44e with two equivalents of hydrogen cyanide, in 

the presence of 1mol % of organocatalyst 43, led to the formation of the 

corresponding α-amino nitrile (S)-45e in quantitative conversion and 99.3% ee (entry 

5). 

N
H

S

N
H

N

N

O

HO

O

O

Me

Me

43

R1 R2

N Ph

R1 CN

HN Ph43 (1mol %)
HCN

toluene, -78 °C
>99% conversion

44a-e (S)-45a-e

R2

 
Scheme 19. Asymmetric Strecker reaction of aldimines and ketoimines 44a-e catalysed by 
organocatalyst 43 

 

Table 3 

Entry Substrate R1 R2 ee /% 

1 44a i-Pr H 97 

2 44b n-Pent H 96 

3 44c t-Bu H 86 

4 44d t-Bu Me 99.3 

5 44e Ph H 99.3 
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The use of organocatalysts in reactions has been shown to give rise to extremely high 

enantioselectivities. Preparative advantages are notable with the reactions generally 

being more tolerant of air and water. The catalysts are inexpensive and are often 

more stable than enzymes or other bioorganic catalysts. However, as yet, 

organocatalysis does not rival the scope of reactions of organometallic catalysis, or 

the efficiency and selectivity of enzymes. 

 

Organometallic Catalysis 

Organometallic catalysis describes the use of metal based complexes to catalyse an 

asymmetric process. In 2001 the Nobel Prize in Chemistry was awarded to Dr 

William S. Knowles, Professor Ryoji Noyori and Professor K. Barry Sharpless for 

“their development of catalytic asymmetric synthesis”. Knowles and Noyori received 

half the prize for “their work on chirally catalysed hydrogenation reactions” and 

Sharpless was rewarded with the other half of the prize for “his work on chirally 

catalysed oxidation reactions”. The pioneering work of these three chemists have had 

a great impact on academic research and the development of new drugs and 

materials and are used in many industrial syntheses of drugs and other biologically 

active compounds.26 For example, Knowles and co-workers worked on developing 

an industrial synthesis of L-DOPA 49, a drug used in the treatment of Parkinson’s 

disease. They showed that the cationic rhodium (III) complex, containing the chiral 

diphosphine ligand (R,R)-DiPAMP 46 (Figure 4), catalysed the enantioselective 

hydrogenation of enamide 47 to afford the protected amino acid 48 in quantitative 

yield and 95% ee (Scheme 20).27 Acid hydrolysis of 48 completed the synthesis of 

L-DOPA 49. This was the first industrial process to employ a chiral transition metal 

complex for asymmetric synthesis. 

P P

OMe

MeO

 
Figure 4. Chiral diphosphine ligand, (R,R)-DiPAMP 46 
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HO
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H3O

L-DOPA 49

95% ee  
Scheme 20. Synthesis of L-DOPA 49 using a rhodium complex of (R,R)-DiPAMP 46 

 

In 1980, Noyori et al. developed a chiral disphosphine ligand (S)-BINAP 50 (Figure 

5), which was found to be an excellent ligand for rhodium catalysed hydrogenation 

reactions of enamides.28 In a later publication, the authors found that ruthenium 

complexes of BINAP were superior in the asymmetric hydrogenation of 

α,β-unsaturated carboxylic acids that didn’t bear an α-amino or related group.29 For 

example, the hydrogenation of α,β-unsaturated carboxylic acid 51 in the presence a 

Ru(II)-BINAP complex gave the anti-inflammatory agent (S)-naproxen 52 in 92% 

yield and 97% ee (Scheme 21). 

PPh2

PPh2

(S)-50  
Figure 5. Chiral diphosphine ligand, (S)-BINAP 50 

 

MeO

CO2H

MeO

CO2H

H2
[Ru(OAc)2{(S)-BINAP}]

MeOH

51 (S)-naproxen 52

92% yield
97% ee  

Scheme 21. Sythesis of anti-inflammatory agent (S)-naproxen 52 using a ruthenium complex of 
(S)-BINAP 50 

 

Around the same time, Sharpless et al. were developing catalysts for asymmetric 

oxidation reactions. In 1980, they reported the first practical method for asymmetric 

epoxidation of allylic alcohol using titanium tetra-iso-propoxide, tert-butyl 

hydroperoxide and diethyl tartrate (DET).30 It was found that the reaction was highly 



Chapter 1: Introduction 

17 
 

stereoselective with the selectivity totally reagent controlled: by using either (+)- or 

(-)-DET the corresponding enantiomer of the 2,3-epoxy alcohol can be obtained. For 

example, use of (-)-diethyl tartrate will direct the epoxidation to the top face of the 

alkene (as shown by the mnemonic in Scheme 22), switching to (+)-diethyl tartrate 

will result in the bottom face being epoxidised. Scheme 23 shows an example of its 

use with geraniol 53 being epoxidised to give (S,S)-54 in 77% yield and >95% ee, 

using the naturally occurring (+)-diethyl tartrate.30 

R3
R1

R2

OH

O

R1

R3 R2

HO

O

R3 R2

R1

HO

CO2EtHO

CO2EtHO

CO2EtHO

CO2EtHO

D-(-)-DET

Ti(Oi-Pr)4
t-BuOOH, DCM
4Å MS, -20 °C

L-(+)-DET

 
Scheme 22. Allylic epoxidation catalysed by the Sharpless titanium-tartrate complex 

 

OH OH

O
L-(+)-DET, Ti(Oi-Pr)4

t-BuOOH, DCM
4Å MS, -20 °C

53 (S,S)-54

77% yield
>95% ee  

Scheme 23. Asymmetric epoxidation of geraniol 53 under Sharpless conditions 

 

Throughout the literature there are many different examples of metal-ligand 

complexes that have been used for asymmetric organometallic catalysis, and whose 

efficiency is influenced by the steric and electronic demands of the chiral ligand 

responsible for asymmetric induction. One of the factors to consider in the design of 

a new class of chiral ligands is the ligand symmetry. 

 

1.3 LIGAND SYMMETRY 
 

While twofold rotational symmetry has been successfully employed in a large 

number of chiral reagents and catalysts,31 there is still comparatively little known 

about the efficiency of systems of higher rotational symmetry.32 In recent years, 

more and more interest has been focused on C3-symmetric chiral ligands and 
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complexes and their application in catalysis.33, 34 In considering how a C3-symmetric 

ligand might be advantageous in comparison to its C2-symmetric counterpart, it is 

first necessary to look at the potential architecture of such a molecule.  

L L

L
 

L
L

L
 

LL

L
 

L L L

 

a b c d 

Figure 6. Topologies of structures with C3-symmetry 

 

A tridentate ligand or a trifunctional molecule with C3-symmetry can be considered 

to have one of four principal topologies: acyclic (a), exocyclic (b), macrocyclic (c), 

or bicyclic (d).33 In explaining the potential of such a ligand in asymmetric catalysis 

it is necessary to consider the effects of ligand symmetry on square planar and 

octahedral complexes.35 
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Figure 7. Symmetry and geometry in chemistry 

 

In the simplest case, a single, monodentate chiral ligand generates a chiral catalyst in 

which none of the remaining coordination sites are equivalent, regardless of the 

complex geometry. As a result, this type of ligand, despite its simplicity of 

preparation, has proven difficult to utilise and obtain high levels of 

enantioselectivity.35 The C2-bidentate ligand gives a favourable situation for the 

square planar complex, as the remaining two sites are homotopic, but the octahedral 

complex gives two sets of sites (A and B) which are pairwise homotopic.  The 

C2-tridentate ligand leaves only one remaining vacant site in the square planar 

complex.  In the octahedral complex there remain two diastereotopic sites (A and B) 

in a ratio of 2:1. The relative ease of designing a C2-symmetric ligand, has meant the 
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vast majority of ligands used in asymmetric catalysis fall into this category. Ligands 

such as BINOL 13 (Figure 8) have proven to be remarkably general in terms of their 

applicability in a wide array of synthetic transformations.36 

OH

OH

(R)-13  
Figure 8. (R)-BINOL 13 

 

The situation changes with the C3-tridentate ligands, as they demonstrate a potential 

superiority over lower symmetry species in the case of octahedral complexes, where 

the remaining sites on the octahedral complex are homotopic. The situation is 

different in a square planar complex, where a bidentate, C3-symmetric ligand affords 

two inequivalent coordination sites. For reactions that proceed via an octahedral 

ligand-metal-substrate complex, C3-symmetric ligands have the potential to enhance 

stereocontrol. One drawback to consider, is the fact that ligands of this type can 

potentially deactivate the catalyst, by generating a metal centre that is too electron 

rich, due to its three donating sites. 

 

1.4 C3-SYMMETRY IN CHEMISTRY 
 

1.4.1 Applications of C3-Symmetric Molecules in Molecular 
Recognition 

 
The ability of a C3-symmetric receptor (H) to differentiate the two enantiomers of a 

chiral guest molecule (GR and GS) is determined by the environment of the small, 

medium and large groups of the guest.37 On first inspection of the two diastereomeric 

complexes (H-GR and H-GS), formed between the guest molecule and host, it might 

appear that the steric requirements of the two complexes are of equal energy (Figure 

9). This would be true if the analysis were only to consider each of the substituents 

in the diastereomeric host-guest complexes in isolation (Figure 10). However, such 

a simple analysis does not take into account the chirality of the guest molecule. 

Instead, the order in space of the three substituents of the guest needs to be factored 

in. Only after consideration of all the non-identical segments of the diastereomeric 
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host-guest complexes H-GR and H-GS (Figure 11), does it become apparent that the 

steric requirements of the two complexes are different (one favourable, two 

unfavourable interactions for H-GR compared to two favourable, one unfavourable 

for H-GS), with certain interactions bearing more importance than others. It is this 

difference in steric demands that could, in theory, lead to differentiation of the two 

guest molecules.  

R

R

R

R

R

R

R

R

R

H GR GS

H-GR H-GS  
Figure 9. C3-symmetric host (H), enantiomeric guests (GR and GS) and diastereomeric host-guest 
complexes. The pink, green and blue spheres represent large, medium and small substituents, 
respectively, in the guest 

 

from H-GR from H-GS

R

R

R

R

from H-GR from H-GS

R

R

R

R

R

R

R

R

from H-GR from H-GS  
Figure 10. Isolated, isometric segments of diastereomeric host-guest complexes, H-GR and H-GS 
 

R

R

R

unfavourable

favourable unfavourable

R

R

R

favourable

favourable unfavourable

H-GR H-GS  
Figure 11. The non-identical segments of diastereomeric host-guest complexes, H-GR and H-GS 
 

The ability of C3-symmetric molecules to differentiate between the two enantiomers 

of a chiral guest molecule has been demonstrated for a number of examples in the 
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literature. Representative examples of recent applications of these types of receptors 

are briefly reviewed herein. 

 

The synthesis of a bowl-shaped C3-symmetric receptor 55 with a phosphine oxide 

functionality in the interior of the molecular bowl was reported by Hong and 

co-workers (Figure 12).38 In NMR titration experiments, the receptor exhibited good 

binding affinities for �-dodecylamide amino acids, with the D-isomer always 

binding preferentially (Table 4). �-Alkylamide amino acid derivatives with a 

lipophilic side chain showed weaker binding affinity compared with those with a 

hydrophilic side chain (entries 1-2 versus entries 3-9). The highest affinity was found 

for the asparagine (Asn) derivatives (entry 5). In comparison, glutamine (Gln) 

derivatives with the same H-bond donor and acceptor geometry except for an 

additional methylene on the side chain showed a much lower binding affinity to 55 

(entry 8). 

P
O

S

S

S

NH

O

NH

O

O

HN

N
H

O

O

HN

NHO

 

 

55 

Figure 12. Bowl-shaped C3-symmetric receptor 55 
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Table 4a 

Entry Guestb 
Ka /M

-1 
es 

D-isomer L-isomer 

1 D,L-Val-NHR 400 80 83:17 

2 D,L-Phe-NHR 1000 170 85:15 

3 D,L-Ser-NHR 1800 1500 55:45 

4 D,L-Thr-NHR 2250 1050 68:32 

5 D,L-Asn-NHR 45000 12000 79:21 

6 D,L-Asn-(β-NHMe)-NHR 3100 2000 61:39 

7 D,L-Asp-NHR 5000 1600 76:24 

8 D,L-Gln-NHR 3000 2000 60:40 

9 D,L-Glu-NHR 5200 700 88:12 

a Measured by 1H NMR titration in CDCl3/CD3OD (10:1, v/v) at 25 °C. b Guests were used as their 
trifluoroacetate salts; R = docecyl. 

 

The enantiomeric recognition of α-chiral primary ammonium ions by C3-symmetric 

trisoxazoline receptor 56 was reported by Ahn et al. (Figure 13, Table 5).39 The 

chiral discrimination was found to be general in the case of α-aryl substituted guests, 

suggesting π-π interactions were an important factor. For example, receptor 56 

displayed a moderate level of enantioselectivity (71:29) between the enantiomers of 

α-phenylethylammonium ions (entry 1). 

N

O

N O

N

O

Ph

Ph

Ph

(S,S,S)-56  
Figure 13. C3-symmetric trisoxazoline receptors, 56 
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Table 5 

Entry Racemic ammonium guest Enantioselectivitya Extraction /%b 

1 NH3

Me

 

71(R):29(S) 82 

2 NH3

Me

 

70:30 99 

3 NH3

CO2Me

 

78(S):22(R) 60 

4 
NH3

CO2Me

NH
 

67(S):33(R) 57 

5 
Me NH3

CO2Me

 
53(S):47(R) 41 

6 
NH3

CO2Me

 

55(S):45(R) 36 

a Enantioselectivity of the ammonium ion extracted from excess racemic salts (RNH3
+Cl-, 10 M equiv, 

0.5 M in D2O; 0.6 M NaPF6) by trisoxazoline 56 (0.05 M in CDCl3) at 25 °C. b Percentage of the 
ammonium salts extracted in CDCl3 with respect to trisoxazoline 56. 

 

In a later publication, the authors showed that receptor 56 could also be used in the 

enantio-discrimination of β-chiral primary ammonium ions.40 One difficulty in the 

recognition of β-chiral amines via their ammonium ions is that the β-chiral site is 

relatively remote from the binding site. To overcome this problem, bifurcated 

H-bonds were suggested to block the free rotation of β-substituents (Figure 14). 

O

N

N
O

O N N

R

Y

H
H

H

H

H

Ph

Ph

Ph
Y

R

H≡ = secondary interaction

 
Figure 14. Diastereomeric inclusion complexes between receptor 56 and β-chiral primary 
ammonium ions with a secondary interaction 
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Guests with a β-hydroxy functionality, which can act as a hydrogen bond acceptor, 

were initially examined. It was found that the β-OH group plays a crucial role in the 

chiral discrimination, presumably by forming a bifurcated H-bond (Table 6, entries 

1-3). In contrast, when no β-hydroxy group was present then no chiral discrimination 

was observed (entry 4). When the β-hydroxy group was changed to β-acetoxy and 

β-carbomethoxy groups, lower selectivity was observed (entries 5 and 6). With 

carboxamide functionalities at the β-position, higher levels of enantiodiscrimination 

were observed, indicating that the carboxamide functionality similarly participates in 

the intramolecular bifurcated H-bonding (entries 7-9). 

HO NH3
+

H3C

HO NH3
+

Ph

HO NH3
+

m-HO-Ph

H3C NH3
+

Ph

AcO NH3
+

Ph

N

H

O

CH3

NH3
+

HO

CH3NH

O

CH3

NH3
+CH3O

O

CH3

NH3
+

N

O

CH3

NH3
+

O

Am 1 Am 2 Am 3 Am 4

Am 5 Am 6 Am 7

Am 8 Am 9  
Table 6 

Entry Racemic Guest Enantioselectivitya Extraction /%b 

1 Am 1 63:37 50 

2 Am 2 75:25 60 

3 Am 3 72:28 40 

4 Am 4 50:50 97 

5 Am 5 58:42 72 

6 Am 6 58:42 71 

7 Am 7 71:29 <5 

8 Am 8 61:39 10 

9 Am 9 83:17 <5 

a Enantioselectivity of the ammonium ion extracted from excess racemic salts (10 M equiv, 0.5 M in 
D2O) by trisoxazoline 56 (0.05 M in CDCl3) at 25 °C. b Percentage of the ammonium salts extracted 
in CDCl3 with respect to trisoxazoline 56. 

 

The synthesis of the C3-symmetric receptor (S,S,S)-57, which incorporated 

1,3,5-triphenylbenzene and 1,3,5-tris(phenylethynyl)benzene platforms as the ‘floor’ 
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and ‘ceiling’, was reported by Diederich et al. (Figure 15).41 The host-guest 

complexes of receptor 57 with octyl glucosides in CDCl3, were of modest stability, 

with the highest association constant (Ka) of 270 M
-1 being reported for the 

complexation of 57 with octyl β-D-glucoside. The authors noted that the modest 

complex stabilities were probably due to the monosaccharides ‘nestling’ on the 

outside, rather than being incorporated inside the cavity of the receptor. 

O
NH

HN

O

NH

O
HN O

NH

O

HN O

(S,S,S)-57  
Figure 15. C3-symmetric receptor 57 

 

In 2003, Kubik and co-workers reported the synthesis of a series of C3-symmetric 

cyclic hexapeptides, 58a-d, containing alternating L-proline and 3-aminobenzoic 

acid derivatives as subunits (Figure 16).42 In the presence of racemic 

�,�,�-trimethyl-1-phenylethyl ammonium salt 59, the peptides formed 

diastereomeric complexes, giving well defined splittings of the guest signals in the 
1H NMR spectrum. In all cases the stability constants (Ka) were greater for the 

complexes of the (R)-enantiomer of the ammonium salt than the (S)-enantiomer. 

Peptide 58c formed the most stable complexes with the ammonium salt, while 

peptide 58b gave the best discrimination (de of 21) (Table 7, entries 2-3). 
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R
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58a: R = H
58b: R = OCH3
58c: R = CO2CH3
58d: R = CO2CH2Ph

N
CH3
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CH3
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O2N NO2

NO2
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Figure 16. C3-symmetric cyclic hexapeptides 58a-d, and the picrate salt of (rac)-N,N,N-trimethyl-1-
phenylethylammonium salt 59 

 

Table 7 

Entry Hexapeptide 
Ka 

de 
(R)-enantiomer (S)-enantiomer 

1 58a 1580 1330 8 

2 58b 1550 1030 21 

3 58c 4550 3050 20 

4 58d 3620 3150 7 

 

In 2000, the novel receptor 60a, based on a scaffold of trifunctionalised triphenylene 

ketals, was reported in the selective recognition of caffeine 61 and other �-alkylated 

oxopurines (Figure 17).43 In a later publication, a series of receptors 60b-e were 

screened, which were shown to give good enantiofacial discrimination of caffeine 61 

(Scheme 24, Table 8).44 In the variable temperature NMR spectroscopy 

experiments, receptor 60b failed to show any preference for either of the 

diastereomeric forms (entry 1). The repulsive interaction between the �-7 methyl 

group of caffeine and the tert-butyl fragment of receptor 60c meant a preference for 

the β-form was observed (entry 2). Host-guest complexes of 60d and 60e both 

showed a preference for the α-form, with the strongly restricted chiral coordination 

space of receptor 60e leading to an excellent enantiofacial differentiation (entries 3 

and 4). 
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Figure 17. Artifical receptors 60a-e 
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61 α form β form  
Scheme 24. Schematic representation of the enantiofacial differentiation of caffeine 61 by receptors 
60b-e, giving the two diastereomeric complexes described as the α- and β-form. 

 

Table 8 

Entry Host-guest complex Diastereomeric ratioa Preferenceb 

1 60b + 61 1:1 - 

2 60c + 61 3±0.5:1 β 

3 60d + 61 3.4±0.6:1c α 

4 60e + 61 ≥9:1c α 

a 1H NMR spectroscopy experiments: [60] = [61] = 10mM, CD2Cl2, 193 K. Integrals for the 
resonance signals of NH(distal) of the receptor and of H-8 of 61. b Molecular modelling studies. c 
Difference NMR spectra with [8-D]caffeine 

 

1.4.2 Applications of C3-Symmetric Ligands in Catalysis 

 
The applications of C3-symmetric ligands and their complexes for enantioselective 

catalysis are reviewed herein, and are conveniently categorised according to the class 

of ligand used for metal complex formation. 
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 Hydroxyl Based Ligands  

In 1992, Nugent first reported the use of trialkanolamines 63a-c as ligands in 

asymmetric catalysis, for the zirconium catalysed desymmetrization of meso 

epoxides with azides.45 The ligands were synthesised from reaction of the 

enantiopure epoxides 62a-e with ammonia at 60 °C in 73-85% yield (Scheme 25).46 

Formation of the active catalyst required sequential treatment of ligand 63a with 

Zr(Ot-Bu)4, followed by the addition of one equivalent of water to give the complex 

(63a-Zr-OH)2·
t-BuOH, 64. The combination of catalyst 64 and trimethylsilyl 

trifluoroacetate was found to catalyse the opening of meso epoxides with 

azidosilanes in good yields and enantioselectivities with a best result of 86% yield 

and 93% ee for the desymmetrisation of cyclohexane oxide with 

azido(iso-propyl)dimethylsilane (Table 9, entry 1). 

R

O
NH3 +

MeOH

60 °C, 3-8 days
73-85% yield

62a-e

R

OH

N

OH R

R

OH

(S,S,S)-63a, R = Me
(R,R,R)-63b, R = Ph
(R,R,R)-63c, R = t-Bu

(R,R,R)-63d, R = Cyclohexyl
(R,R,R)-63e, R = i-Pr  

Scheme 25. Synthesis of trialkanolamines 63a-e 

 

Table 9 

Entry Epoxide Azide Temp /°C Product Yield /% ee /% 

1 O

 

i-PrMe2SiN3 0 

OSiR3

N3  

86 93 

2 O

 

i-PrMe2SiN3 0 

OSiR3

N3  

59 87 

3 O

 

i-PrMe2SiN3 25 

OSiR3

N3  

79 89 

4 O

 

i-PrMe2SiN3 25 
N3

OSiR3

 

64 83 

5 O O

 
Me3SiN3 25 O

N3

OSiR3

 

78 88 
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In a subsequent publication the complex was shown to exist as a mixture of 

interconverting dimeric and tetrameric zirconium tri-iso-propanolamine species.47 

The precatalytic complex was proposed to be a dimeric species, activated by 

exchange of an alkoxide or hydroxide ligand for an azide. The proposed catalytic 

cycle involved coordination of the epoxide to one metal centre, followed by 

intramolecular delivery of the azide from the other zirconium centre to the activated 

epoxide in the rate determining step (Scheme 26).  

L*4Zr4(OR)4 2 L*2Zr2(OR)2

L*Zr ZrL*(OR)

N3

L*Zr ZrL*(OR)

N3 O

O

(RO)L*Zr ZrL*

ON3

OSiR3

N3

R3Si-N3 slow

rate determining

step

 
Scheme 26. Proposed catalytic cycle of the desymmetrisation of meso epoxides by the zirconium 
complex 64 

 

The authors hypothesised that if the azide on the zirconium atom could be replaced 

with another nucleophile, then the alternative nucleophile might undergo selective 

transfer to the epoxide as well.48 This was proven when two equivalents of allyl 

iodide were added to the reaction of cyclopentene oxide 65 and azidotrimethylsilane 

under the same conditions as before. Here the β-iodohydrin 66 was obtained in 96% 

yield with only 4% of the usual azide product 67, with 66 being formed in 95% ee 

(Scheme 27). 

O + Me3SiN3

(S,S,S)-63a

CH2=CHCH2I

65

I

OSiMe3

+

N3

OSiMe3

66
96% yield
95% ee

67
4% yield
79% ee  

Scheme 27. The desymmetrisation of cyclopentene oxide 65 to yield β-iodohydrin 66 

 

The reaction was then extended to the synthesis of protected β-bromohydrins. Large 

excesses of allyl bromides were required to suppress the formation of azide side 

products as the rate of exchange of the zirconium bound azide with bromide was 



Chapter 1: Introduction 

30 
 

slower than had been observed with iodide. In all cases twenty equivalents of allyl 

bromide was sufficient to keep the yield of azide to <5%. The results are summarised 

in Table 10.  

Table 10 

Entry Epoxide Product Yield /% ee /% 

1 O

 Br

OSiMe3

 

81 95 

2 O

 Br

OSiMe3

 

86 91 

3 O

 Br

OSiMe3

 

90 89 

4 O

 Br

OSiMe3

 

92 84 

5 OMeO

 
MeO

Br

OSiMe3

 

89 96 

6 OEtO2C

 
EtO2C

Br

OSiMe3

 

83 95 

 

Nugent et al. went on to report coordination of ligands 63a-c to titanium (IV) iso-

propoxide, to give well defined monomeric complexes 68a-c, with one iso-propoxy 

group retained in the titanium coordination sphere as an axial ligand.49 Displacement 

of the iso-propoxide group by an alkyl hydroperoxide gave the corresponding 

monomeric peroxocomplexes 69a-c. When ligands 63a-c were treated with 

substoichiometric amounts of titanium (IV) iso-propoxide a mixture of  discrete 2:1, 

3:2 and 4:3 oligomers were produced, in which excess trialkanolamine ligands 

bridged multiple titanatrane units.50 Treatment of these polynuclear aggregates 70a-c 

with alkyl hydroperoxide also gave the monomeric peroxocomplexes 69a-c (Scheme 

28). 
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Scheme 28. Formation of the peroxocomplexes 69a-c 

 

The catalysts 68a-c were screened in the oxidation of alkyl aryl sulfides with cumyl 

hydroperoxide (CHP) as the oxidant, with peroxocomplex 69b proving to be the 

most effective. In the initial screening using methyl-p-tolyl sulfide as a model 

substrate, with 0.1 equivalent of  catalyst 68b, the (S)-sulfoxide was obtained in 

modest enantioselectivity (36%), together with the over oxidised sulfone in a ratio of 

84:16 (sulfoxide:sulfone). The sulfone was found to be present in the early stages of 

the reaction indicating that two different asymmetric processes were involved: 

asymmetric oxidation of the sulfide to the sulfoxide and kinetic resolution of the 

resultant scalemic sulfoxide via oxidation to its sulfone. Fortunately, both processes 

were working in tandem to increase the enantioselectivity. In the asymmetric 

oxidation, the (S)-sulfoxide formed preferentially (29% ee when almost no sulfone is 

present), whilst in the oxidation of the sulfone the (R)-enantiomer reacted faster. This 

was proven for the kinetic resolution of racemic methyl-p-tolyl sulfoxide, which 

gave the (S)-enantiomer in 33% ee after 50% conversion. The best result obtained 

was for the oxidation of benzyl phenyl sulfide 71 with cumyl hydroperoxide (CHP) 

72 in the presence of 10mol % 68b, giving the (S)-sulfoxide 73 in 84% ee together 

with sulfone 74 in a ratio of 77:23 (73:74) (Scheme 29). 
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ratio 77:23 (73:74)

Ph
S

Bn
Ph O

OH+
(R,R,R)-68b

DCE, 0°C Ph
S

Bn Ph
S

Bn
+

71 72 74(S)-73

84% ee

O O O

 
Scheme 29. Oxidation of benzyl phenyl sulfide 71 by CHP 72 catalysed by (R,R,R)-68b 

 

In 1999 Nugent and co-workers showed that a partially hydrolysed zirconium 

catalyst bearing the same trialkanolamine 63b also mediated the stereoselective 

sulfoxidation, giving higher levels of enantioselection but with the opposite 

enantiomer being formed compared to the Ti(IV)/63b system.51 The catalytic species 

75, formed by reaction of Zr(On-Bu)4 with 63b in the presence of water, was shown 

to have the formula [[Zr263b2(O
n-Bu)(OH)]·nH2O]m (n = 3,4). Reactions employing 

only 2mol % of 75, using CHP 72 as the oxidant, (R)-sulfoxides were obtained in 

79-91% ee. For example, the reaction of benzyl phenyl sulphide 71 with this new 

complex yielded (R)-benzyl phenyl sulfoxide 73 in 79% ee together with sulfone 74 

in a ratio of 22:78 (73:74) (Scheme 30). 

ratio 22:78 (73:74)

Ph
S

Bn
Ph O

OH+
75 (2mol %)

DCE, 0°C Ph
S

Bn Ph
S

Bn
+

71 72 74(R)-73

79% ee

O O O

 
Scheme 30. Sulfoxidation of 71 by CHP 72 catalysed by zirconium catalyst 75 

 

More recently Takabe et al. have shown that the quaternary amine salts of 63b, 63d 

and 63e can act as chiral phase-transfer catalysts (PTC) in the alkylation of tert-butyl 

glycinate-benzophenone Schiff base 37 to give the alkylated product (S)-38e in 

moderate yields and enantioselectivities (Scheme 31).52  The PTC derived from 63e 

was found to give the best enantioselectivity. Increasing the solubility of the catalyst 

in toluene by using a long chain alkyl halide to form the quaternary ammonium salt 

or exchanging the bromide counter anion to a triflate improved the enantiomeric 

excess of the resultant chiral α-amino acid (Table 11, entries 4 and 5). 
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R
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N

OH R

R

OH
R1 X

37 (S)-38e  
Scheme 31. Alkylation of 37 with benzyl bromide employing chiral phase-transfer catalysts 63b, 
63d and 63e 

 

Table 11 

Entry PTC R1 X Time /h Yield /% ee /% 

1 63b Bn Br 6 65 27 

2 63d Bn Br 7 75 50 

3 63e Bn Br 20 62 55 

4 63e CH3(CH2)11Bn Br 10 62 57 

5 63e Bn TfO 12 55 58 

 

The authors proposed that selectivity was due to hydrogen bonding between the 

hydroxyl group on the PTC and the nitrogen of the E-enolate of 37, resulting in a 

nine-membered transition state in which the R group sits pseudo-equatorial. Benzyl 

bromide approaches from the less hindered face (Re face) to afford the product 38e 

with an S configuration (Figure 18). 

O
O

N

t-Bu

Ph
Ph

HO

R

N
R'' R''

R1

BnBr
(S)-isomer

 
Figure 18. Proposed mechanism for enantioselectivity in the PTC 

 

In 1997, Sundermeyer and co-workers reported the synthesis of C3-symmetric triols 

76a and 76b and their coordination to titanium and vanadium alkoxides.53 The 

synthesis of the triols started from the commercially available aldehydes 78a,b, 

which were converted to their α-bromo derivatives 79a,b by a bromination-

elimination sequence. Alkylation with the appropriate dialkyl zinc in the presence of 

Ti(Oi-Pr)4 and the chiral disulfonamide 77 furnished the (S)-alcohols 80a,b in 

75-88% yield and >95% ee. Following benzyl protection of the alcohol, giving 

(S)-81a,b, reaction with tert-butyl lithium allowed for a bromine-lithium exchange, 

which after quenching with excess �,�-dimethylformamide gave the α,β-unsaturated 

aldehydes 82a,b in 52-63% yield. A second alkylation with dialkyl zinc in the 
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presence of 77 and Ti(Oi-Pr)4 gave the secondary alcohols (S,S)-83a,b. The third 

stereocentre was introduced via diastereoselective hydroboration, giving the desired 

monobenzylated triols 84a,b together with the undesired epimer (Scheme 32). In the 

case of triol 76a, the desired diastereomer could be separated by flash 

chromatography, and following hydrogenolysis, 76a was obtained in 96% yield. For 

the isolation of triol 76b, even after debenzylation the desired diasteromer could not 

be separated from the other isomer. However, when treated with 

trimethylorthoformate only the C3-symmetric isomer formed the cyclic ortho ester 

85b and thus could be separated from its epimer. Following hydrolysis the desired 

triol 76b was isolated in 61% yield over the two steps (Scheme 33). 

R H

O

R H

O
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OBn

OH
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RHO
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OHR

R

NHSO2CF3

NHSO2CF3

a b c

d

ef77

78a: R = Et
78b: R = n-Pr

79a,b (S)-80a,b (S)-81a,b

(S)-82a,b(S,S)-83a,b84a,b

a) Br2, DCM, 0 °C then Et3N, 72-85% yield; b) 77 (8mol %), Ti(Oi-Pr)4, R2Zn, toluene, -60 °C, 75-88% yield, >95% ee; 
c) BnBr, NaH, THF, 89-96% yield; d) t-BuLi, Et2O, -105 °C then DMF, 52-63% yield; e) 77 (8mol %), Ti(Oi-Pr)4, R2Zn,
Et2O, -30 °C, 59-88% yield; f) BH3•SMe2, Et2O then H2O2, 45-47% yield  

Scheme 32. Synthesis of monobenzylated triols 84a and 84b 
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Scheme 33. Isolation of the C3-symmetric triol (S,S,S)-76a and (S,S,S)-76b 
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In reacting ligands 76a,b with Ti(Oi-Pr)4 only oligomers 86a and 86b were formed, 

with their conformation rapidly  interconverting  through bridging alkoxide 

intermediates on the NMR timescale. In contrast the vanadyl complexes 87a or 87b, 

obtained in good yields from transesterification reactions of [VO(Oi-Pr)3] with triols 

76a,b, could be isolated and characterised. They were shown to exist as a binuclear 

complex, where two triolato ligands bridge the two metal centres, thus destroying the 

C3-symmetry of the complex (Scheme 34). 
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87a
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Scheme 34. C3-symmetric triols 76a and 76b and their complexes 

 

The catalytic activity of these complexes was tested for a series of asymmetric 

transformations: the addition of diethyl zinc and trimethylsilyl cyanide to 

benzaldehyde 28a, and the oxidation of geraniol 53 and phenyl ethyl sulfide 90 with 

tert-butyl hydroperoxide (TBHP). The titanium complexes 86a,b showed limited 

stereocontrol in the addition reactions to benzaldehyde 28a, with both catalysts 

giving the resulting alcohols 88 and 89 in modest enantioselectivities but good 

yields. The oxidation of geraniol 53 with TBHP resulted in epoxide 54 in good 

yields for both catalysts (90% and 88% yield for 86a and 86b respectively). 

However, no enantioselectivity was observed in either reaction. Both 86a and 86b 

failed to catalyse the oxidation of phenyl ethyl sulfide 90 (Scheme 35). 
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Scheme 35. Screening of titanium complexes 86a,b 

 

The screening of vanadyl complex 87a was also attempted, but when tested in the 

addition reactions to benzaldehyde 28a, no catalytic activity was observed. However, 

it was found that 87a was a very efficient catalyst for oxidations using TBHP. 

Geraniol 53 was oxidised in the presence of 0.1mol % of 87a resulting in the racemic 

product 54 in 96% yield. Similarly, the oxidation of phenyl ethyl sulfide 90 with 

TBHP, in the presence of 0.1mol % of 87a gave the racemic sulfoxide (rac)-91 in 

84% yield (Scheme 36).  

+ TBHP
87a (0.1mol %)

OH
O

+ TBHPPh
S

Et
Ph

S
Et

O

53

90 (rac)-91

84% yield

(rac)-54

96% yield

87a (0.1mol %)

OH

 
Scheme 36. Screening of vanadyl complex 87a 

 

A C3-symmetric triol 92 (Figure 19) was used in the enantioselective addition of 

diethyl zinc to benzaldehyde 28a by Armstrong and co-workers.54 The presumed 

complex arising from 92 and Ti(Oi-Pr)4 gave racemic 1-phenylpropanol 88 in good 

yield. When an additional ten equivalents of Ti(Oi-Pr)4 was added to the reaction 

mixture the resulting alcohol was obtained in 10% ee (in favour of the (R)-

enantiomer) (Scheme 37). 
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Figure 19. C3-symmetric triol 92 
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Ph
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Scheme 37. Titanium catalysed addition of diethyl zinc to benzaldehyde 28a using triol 92 

 

In 2003, Bringmann et al. reported the synthesis of a series of axially chiral 

C3-symmetric tripodal ligands (M,M,M)-93a, (M,M,M)-93b and (M,M,M)-93c from 

the same biaryl subunit (M)-94 (Scheme 38).55 For example, treatment of the 

homochiral phenyl-(2-bromomethyl)naphthalene (M)-94y with liquid ammonia in 

toluene led to the corresponding primary amine as the initial product, which was 

further alkylated by two more equivalents of (M)-94y to the tertiary amine. 

Following deprotection of the oxygen functional groups with boron trichloride 

ligand (M,M,M)-93a was obtained in 77% yield over the two steps.56 Ligands 

(M,M,M)-93b and (M,M,M)-93c, were constructed by attaching 

tris(bromomethyl)benzene to the phenolic oxygen atoms on (M)-94 or to the 

benzylic nitrogen of (M)-94z respectively. Reaction of (M)-94 with 

tris(bromomethyl)benzene delivered the tripodal ligand (M,M,M)-93b in just a single 

step and 89% yield. Similarly, reaction of (M)-94z with tris(bromomethyl)benzene, 

followed by deprotection with boron trichloride gave (M,M,M)-93c in 68% yield 

over the two steps.55 
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Scheme 38. Synthesis of axially chiral C3-symmetric ligands (M,M,M)-93a, (M,M,M)-93b and 
(M,M,M)-93c 

 

The ligands were initially screened for the enantioselective addition of diethyl zinc to 

benzaldehyde, with (M,M,M)-93a catalysing the reaction with a moderate 

enantiomeric excess of 56%. Further optimisation investigated the addition of 

Ti(Oi-Pr)4 to form titanium complexes of (M,M,M)-93b and (M,M,M)-93c in situ. 

(Previous studies had shown that the titanium complex of (M,M,M)-93a was 

unstable, indicating that the binding cavity was too small to accommodate 

titanium).56 Under these conditions only (M,M,M)-93b catalysed the reaction, with 

0.2 equivalents of ligand 93b, 1 equivalent of diethyl zinc and 1.4 equivalents of 

Ti(Oi-Pr)4, resulting in  (R)-ethylcarbinols in excellent yields (81-97%) and 90-98% 

ee (Scheme 39). 
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Scheme 39. Enantioselective additions of diethylzinc to aromatic aldehydes catalysed by 
(M,M,M)-93b 

 

A series of tris(β-hydroxy amide) ligands 95a-d were used in the catalytic 

asymmetric alkynylation of aldehydes.57 In initial screening of the enantioselective 

addition of phenylacetylene to benzaldehyde, it was found that the use of diethyl zinc 

and Ti(Oi-Pr)4, ligands 95a, 95b and 95d gave the corresponding (R)-propargyl 

alcohol in <20% ee. Promisingly ligand 95c gave the (S)-enantiomer in 85% yield 

and 78% ee. By fine-tuning the proportion of 95c:Ti(Oi-Pr)4 to a ratio of 1:7, the 

result was improved to give the (S)-propargyl alcohol in 84% yield and 87% ee. The 

application of these metal complexes to other substituted benzaldehydes shows it 

tolerated both electron-withdrawing and electron-donating groups to give products in 

high yields and enantioselectivities (Scheme 40). 
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Figure 20. C3-symmetric tris(β-hydroxy amide) ligands 95a-d 
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R = H, 2-MeO, 4-MeO, 2-F, 2-Cl, 4-Cl 83-86% yield
84-92% ee  

Scheme 40. Enantioselective addition of phenylacetylene to aldehydes catalysed by 95c 

  

In later publications, application of the structurally related ligands tris(β-hydroxy 

amide) 95e and tris(β-hydroxy phosphoramide) 95f (Figure 21) to the 

enantioselective borane reduction of prochiral ketones was reported.58, 59 Both 
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proved efficient in the reduction of electron-deficient and electron-rich ketones, 

furnishing chiral alcohols in high yields and high ees (Scheme 41, Table 12). 95f 

had the added advantage of being recoverable from the reaction mixture (>70% yield 

by crystallisation), and could be recycled in situ, with no loss of activity or 

selectivity after eight iterative additions of ketone and borane. 
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N O

N O
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Ph Ph

Ph
HO Ph

HO
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95f  
Figure 21. C3-symmetric tris(β-hydroxy amide) ligand 95e and tris(β-hydroxy phosphoramide) 
ligand 95f 
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Scheme 41. Enantioselective borane reduction of ketones catalysed by 95e and 95f 

 

Table 12 

Entry R 
95ea 95fb 

Yield /% ee /% Yield /% ee /% 

1 Ph 96 94 94 95 

2 4-F(C6H5) 94 97 95 95 

3 4-Br(C6H5) 93 96 96 95 

4 4-MeO(C6H5) 90 91 92 93 

5 4-NO2(C6H5) 94 97 95 98 

6 3,5-NO2 (C6H4) 94 74 94 95 

7 2-Naphthyl 94 95 94 94 

a Reaction run at 50 °C; b Reaction run at 45 °C 

 

The authors proposed a transition state for the reaction of 95f, in which one borane 

atom is associated with the three oxygens of the hydroxyl groups, with another 

borane interacting with the phosphoramide oxygen atom facilitating hydride attack at 

the Re face of the prochiral ketone, to yield an alcohol with an R configuration 

(Figure 22). 
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Figure 22. Proposed transition state for borane reduction by 95f 

 

 Phosphoramidate Based Ligands 

In 1992, Tolman et al. first reported application of the C3-symmetric polypyrazole 

ligand 96 in the copper catalysed cyclopropanation of styrene 99 by 

ethyldiazoacetate 100 (Scheme 42).60 The ligand series was later expanded to 

include the structurally related tris(pyrazolyl)phosphine oxide ligand 97 and the 

tris(pyrazolyl)hydroborate ligand 98 (Figure 23).61 Of the three, the copper complex 

of 98 produced the best result, giving cis-(1R,2S) cyclopropane 101 in 85% ee and 

trans-(1R,2R) cyclopropane 101 in 81% ee in a cis:trans ratio of 60:40 (Table 13, 

entry 4).  
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Figure 23. C3-symmetric polypyrazole ligands 96-98 
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Scheme 42. Copper catalysed cyclopropanation of styrene 99 by ethyldiazoacetate 100 
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Table 13 

Entry Ligand Yield /% cis:trans ratio 
ee /% 

cis-101 trans-101 

1 96 52 56:44 51 31 

2a 96 48 67:33 60 40 

3 97 51 35:65 24 36 

4 98 46 60:40 85 81 

a Reaction performed at -78 °C. 

 

In 1993, Wills and co-workers reported the synthesis of a novel C3-symmetric 

catalyst 102 containing an phosporamidate structural unit for the asymmetric 

reduction of ketones, using borane as the reductant (Figure 24, Scheme 43).62 With 

a catalyst loading of 10mol %, acetophenone 103 was reduced to give the (S)-alcohol 

104 in 70% yield and 20% ee after only 1 hour at room temperature. 

HN P

O

MeH

3

(R,R,R)-102  
Figure 24. C3-symmetric catalyst 102 containing an N-P=O structural unit 

 

Ph Me

O
102 (10mol %)

BH3�SMe2 (0.6 eq)

THF, rt, 1h Ph Me

OHH

103 (S)-104

70% yield
20% ee  

Scheme 43. Borane reduction of acetophenone 103 with chiral catalyst (R,R,R)-102 

 

Nitrogen Based Ligands 

In 2000, Bolm et al. reported application of a dinuclear manganese(III) complex 106 

bearing a novel proline derived C3-symmetric trispyrrolidine-1,4,7-

triazacyclononane (TP-TACN, 105, Figure 25), for the enantioselective epoxidation 

of styrenes.63 For example, reaction of styrene 99 and hydrogen peroxide, in the 

presence of 2mol % of catalyst 106, gave the (S)-epoxide 107 in 28% conversion and 

24% ee after 2 hours. Extending the reaction time to 4 hours increased the 

conversion (ca. 88%) but reduced the enantioselectivity to 15% ee (Scheme 44). 
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Figure 25. TP-TACN 105 and its dinuclear manganese complex 106 
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Scheme 44. Enantioselective epoxidation of styrene 99 by dinuclear manganese complex 106 

 

A series of C3-symmetric receptors, 108a-c (Figure 26), based around a 

hexasubstituted benzene scaffold were synthesised in the labs of Anslyn and 

co-workers.64 These were tested for the asymmetric alkylation of the enolate of 

2-acetylcyclohexanone 110 with benzyl bromide. Use of a [2.2.1] cryptand 109 was 

necessary to separate the enolate from the sodium counterion and promote binding of 

the enolate to the receptor. In the benzylation reaction, both 108a and 108b gave low 

enantioselectivities (10% ee and 20% ee respectively), with the best result obtained 

using 108c, furnishing the alkylated product 111 in 40% yield and 42% ee (Scheme 

45). 
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Figure 26. Receptors 108a-c 
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Scheme 45. Enantioselective benzylation of the enolate 110 by 108c 

 

The use of zirconium alkyl complexes 112a and 112b (Figure 27) as catalysts for 

the stereoselective addition of a methyl group to aryl aldehydes and ketones was 

reported by Gade et al. (Scheme 46).32, 65 

H

SiMe2

SiMe2

Me2Si

N
NN

Zr

Me
Ph Ph Ph

H

SiMe2
SiMe2

Me2Si

N
NN

Zr

Me
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Figure 27. Zirconium complexes 112a and 112b 

 

The reaction of (S,S,S)-112a with aryl ketones was found to give the corresponding 

(S)-alcohols with the best result being obtained for propiophenone 113c of 40% ee 

(Table 14, entries 1-3). In contrast, the conversion of aryl aldehydes with 112a gave 

the secondary alcohols (entries 4-7), with much higher levels of stereoselectivity, 

with 2-naphthaldehyde 113g giving the corresponding (S)-alcohol 114g in 80% ee 

(entry 7). Reaction of (R,R,R)-112b with 2-naphthaldehyde gave (R)-114g in 82% ee 

(entry 8). 

R1 R2

O

R1 R2

OH
Me

*
112a or 112b

toluene, -70 °C

113a-g 114a-g  
Scheme 46. Stereoselective addition of a methyl group to aryl ketones 113a-c and aryl aldehydes 
113d-g 
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Table 14 

Entry Product R1 R2 Complex ee /% Config. 

1 114a Ph CH=CHPh 112a 0 - 

2 114b Ph i-Pr 112a 12 S 

3 114c Ph Et 112a 40 S 

4 114d Ph H 112a 76 S 

5 114e 4-F(C6H4) H 112a 74 S 

6 114f 4-Cl(C6H4) H 112a 68 S 

7 114g 2-Naphth H 112a 80 S 

8 114g 2-Naphth H 112b 82 R 

 

 
 Sulfonamide Based Ligands 

A series of ligands, including the C3-symmetric tosyl sulfonamide (S,S,S)-116a, were 

synthesised from the microwave assisted ring-opening of chiral aziridines (S)-115a,b 

with ammonia by Moberg and co-workers (Scheme 47).66 In the titanium mediated 

addition of diethylzinc to benzaldehyde 28a, ligand 116a gave the product, 

(R)-1-phenylpropanol 88, in 91% yield and 31% ee. In contrast, in the reaction with 

the closely related trifluoromethylsulfonyl-substituted ligand 116b, the (S)-product 

was obtained in 89% yield and 11% ee, although at low conversions the (R)-product 

formed preferentially in 17% ee after 29% conversion (Scheme 48). 

NHR
N

3

(S,S,S)-116a: R = Ts, 85% yield
(S,S,S)-116b: R = Tf, 53% yield

N
R
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Scheme 47. Synthesis of C3-symmetric sulphonamide ligands 116a,b 
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Scheme 48. Titanium mediated addition of diethylzinc to benzaldehyde 28a catalysed by 
sulphonamide ligands 116a,b 
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 Chiral Trisoxazolines Based Ligands 

Inspired by the versatility of bisoxazolines, the synthesis and application of 

trisoxazolines has received increasing attention in the last decade.67 The synthesis of 

trisoxazolines 117a,b (Figure 28) has been achieved via one of two synthetic routes. 

The first strategy involved reaction of nitrilotriacetate 118 with three equivalents of 

the amino alcohol to give the triamides 119a,b in 67-94% yield. Treatment of 

triamides 119a,b with triphenylphosphine, carbon tetrachloride and triethylamine, 

allowed for the cyclisation to the desired trisoxazolines in 24-41% yield (Scheme 49, 

Method A).68 Alternatively, nitrilotriacetic acid 120 was coupled with three 

equivalents of the amino ester to give the triamide (S)-121b in good yield. Selective 

reduction of the ester functionality was achieved with sodium borohydride. The 

alcohol (S)-122b was subsequently cyclised with tris(triazole)phosphine oxide to 

furnish the trisoxazoline (S)-117b in 82% yield over the two steps (Method B).69 
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Figure 28. Trisoxazolines 117a-c 
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Scheme 49. Synthesis of trisoxazolines 117a,b 
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The first application of amine based trisoxazolines 117a and 117b (Figure 28) for 

the copper catalysed enantioselective allylic oxidation of cyclic alkenes was reported 

in 1995 by Katsuki et al. (Scheme 50).68 For example, the complex resulting from 

trisoxazoline (S)-117a and Cu(OTf)2 catalysed the allylic oxidation reaction of 

cyclopentene 123a with tert-butyl perbenzoate 124a giving (S)-2-cyclopentenyl 

benzoate 125a, in 74% ee and 68% yield. In contrast when ligand (S)-117b was 

used, the asymmetric induction observed was much lower (23% ee). The 

enantioselectivity could be increased to 88% by performing the reaction at -20 °C; 

however the yield was only 11% after 111 hours (Table 15, entry 2). Oxidation of 

other cycloalkenes, cyclohexene 123b and cyclooctene 123d, gave the corresponding 

products in 54-69% ee, with only the oxidation of cycloheptene 123c showing a poor 

enantioselectivity of 14% ee (Table 15, entries 3 to 6). In a subsequent report the 

influence of the aryl substituent of peroxy esters on enantioselectivity for the 

oxidation of cyclopentene 123a using ligand (R)-117a was examined (Table 15, 

entries 7 to 12).70 The use of meta- or para-substituents did not influence the 

selectivity, though introduction of a para-nitro group strongly retarded the reaction 

(entries 7 to 9). The presence of an ortho-methyl substituent gave the best result 

(91% ee when performed at -20 °C), while an ortho-chloro substituent decreased 

enantioselectivity whilst increasing the yield of the reaction (entries 10 to 12).  

n

Cu(OTf)2-117a

Acetone
+

t-Bu
O

O

O

Ar n

OCOAr

123a-d 124a-f (S)-125a-i  
Scheme 50. Enantioselective allylic oxidation of cycloalkenes 
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Table 15 

Entry Product n Ar Temp /°C Time /h Yield /% ee /% 

1 125a 1 Ph rt 40 68 74 

2 125a 1 Ph -20 111 11 88 

3 125b 2 Ph rt 48 11 56 

4 125b 2 Ph -20 670 10 69 

5 125c 3 Ph rt 90 34 14 

6 125d 4 Ph rt 90 18 54 

7 125e 1 4-MeO(C6H4) rt 17 55a 68 

8 125f 1 4-NO2(C6H4) rt 17 - a - 

9 125g 1 3-Me(C6H4) rt 17 61 a 65 

10 125g 1 2-Me(C6H4) rt 17 16 a 83 

11 125h 1 2-Me(C6H4) -20 190 5 a 91 

12 125i 1 2-Cl(C6H4) rt 17 70 a 74 

a Reaction performed in the presence of 4Å molecular sieves 

 

The authors were able demonstrate the application of this reaction in the oxidative 

functionalisation of racemic dioxygenated dicyclopentadiene derivatives 

(rac)-126a-c.71 The reaction of 126 in the presence of tert-butyl peroxybenzoate 

124a and Cu(OTf)2-117a provides a mixture of isomers 127, 128 and 129 (Scheme 

51). The results are summarised in Table 16, with the best result using substrate 

126b with isomer 127a obtained in 87% ee. 

RO
H

H
R2

R1

H
H

OCOPh

+

O
O

Ph

O

t-Bu

+

(R)-117a
Cu(OTf)2

Acetone
4Å MS, rt

RO

RO
RO

RO

124a 127a-c: R1 = OCOPh, R2 = H
128a-c: R1 = H, R2 = OCOPh
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Scheme 51. Oxidative functionalisation of dioxygenated dicyclopentadienes 126a-c 
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Table 16 

Entry Substrate Time /h Regioselectivity 

(127:128:129) 

Yield /% ee /% 

(127:128:129) 

1 126a 69 6.0:5.9:1 78 80, 12, 42 

2 126b 144 3.8:3.6:1 57 87, 22, 69 

3 126c 132 3.2:3.2:1 69 59, 7, 17 

 

The Kharash-Sosnovsky reaction has been proposed to start with the copper 

catalysed reductive cleavage of the O-O bond of the peroxy ester and subsequent 

hydrogen atom abstraction by the resulting tert-butoxy radical (Scheme 52). 

Abstraction of hydrogen at the methylene carbon provides a meso-allyl radical A, 

with abstraction at the methine carbon giving racemic allyl radicals (B and ent-B). 

After ligation of the resulting allyl radical to the copper carboxylate, it is the face 

selectivity that determines the enantioselectivity of 127 from the meso-allyl radical 

A. The efficiency of the catalyst to differentiate between B and ent-B to give 128 and 

129 was not as good, as demonstrated by the observed ees. 

H

H

RO

RO

.

H

RO

RO

.

RO

RO

.

H

A

B

ent-B

128

127

+ 129

(rac)-126 + t-BuO

Cu(II) + t-BuOOCOPh + Cu(III)(OCOPh)t-BuO

 
Scheme 52. Proposed reaction pathway of the reaction of 126 

 

The efficiency of trisoxazoline (S)-117b in the enantioselective addition of diethyl 

zinc to aldehydes was demonstrated by Chan and co-workers.69 Use of 20mol % of 

117b in the presence of diethylzinc gave the alcohols in good yield (81-95%) and up 

to 90% ee (Scheme 53). 
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Ar H

O

Ar

OH20mol% (S)-117b

Toluene, 0 °C
48 h

+ Et2Zn

(3.0 eq)

Ar = C6H5, 2-MeO(C6H4), 1-Naphthyl, 
2-Naphthyl, 9-Phenanthrenyl

81-95% yield, 72-90% ee (R)

 
Scheme 53. Addition of diethylzinc to aldehydes catalysed by (S)-117b 

 

In 2000, Katsuki et al. went on to expand the ligand series to include (R)-117c, 

where the central nitrogen was replaced by a carbon methine (Figure 28).72 In the 

allylic oxidation of cycloalkenes, under similar conditions as before, the products 

were now obtained in better yields and ees across all ring sizes (Scheme 54, Table 

17). It is noteworthy that when compared to ligand (R)-117a, the allylic alcohol 

products now had an R configuration even though both ligands bear the same 

chirality in the oxazoline units. 

n

Cu(OTf)2-117c

DCE
+

t-Bu
O

O

O

Ph n

OCOPh

123a-d 124a (R)-125a-d  
Scheme 54. Copper(II) catalysed enantioselective allylic oxidation of cycloalkenes with tert-butyl 
peroxybenzoate 124a 

 

Table 17 

Entry Product n Temp /°C  Time /h Yield /% ee /% 

1 125a 1 0 48 73 85 

2 125a 1 -20 200 46 89 

3 125b 2 0 48 80 82 

4 125b 2 -20 200 50 86 

5 125c 3 0 48 64 88 

6 125c 3 -20 200 13 92 

7 125d 4 rt 48 24 81 

8 125d 4 0 200 25 85 

 

A series of structurally related 1,1,1-tris(oxazolinyl)ethane derivatives were 

synthesised in the labs of Gade and co-workers (Figure 29).73 The modular approach 

to the synthesis of such ligands, not only allowed for the conventional symmetrically 

substituted derivatives (eg, 1,1,1-tris[2-((S)-4-iso-propyl)oxazolinyl]ethane 130a) but 

also tripods of mixed substitution patterns (eg, 130b,c). For example, the synthesis 
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of (S)-130b was achieved by coupling of bisoxazoline (S)-131 with 

2-bromooxazoline (S)-132 to afford the trisoxazoline in 88% yield (Scheme 55). 

ON

O

NO

N

(S)-130a: R1= R2 = R3 = i-Pr
(S)-130b: R1= t-Bu, R2 = R3 = i-Pr
(S)-130c: R1= i-Pr, R2 = R3 = t-Bu
(S)-130d: R1= R2 = R3 = t-Bu
(R)-130e: R1= R2 = R3 = Ph
(S)-130f: R1= R2 = R3 = Bn
(4R,5S)-130g: R1= R2 = R3 = Ind

R1

R2

R3

*

*

*

 
Figure 29. Ligands 130a-g 

O

N N

O
Br

N

O ON

O

NO

N

(S)-132 (S)-130b

86% yield

+

t-BuLi

THF, 80 °C
5 days

(S)-131

 
Scheme 55. Synthesis of ligand (S)-130b 

 

Ligands 130a-d were screened in the copper(I)-catalysed asymmetric 

cyclopropanation of styrene 99 with tert-butyl and ethyl diazoacetate (Scheme 56).73 

The strong preference for the trans diastereomer is similar to results obtained for 

bisoxazoline ligands. Of the four, mixed tripod ligand 130c was found to give the 

best results: 85% ee for the cis diastereomer in the reaction with tert-butyl 

diazoacetate and 86% ee for the trans diastereomer in the reaction with ethyl 

diazoacetate (Table 18, entry 3). 

Ph
N2

CO2R
130a-d (1.2mol %)
CuOTf (1mol %)

DCM, rt
+ +

Ph

ORO

Ph

ORO

(1R,2R) (1R,2S)99  
Scheme 56. Copper(I) catalysed cyclopropanation of styrene 99 with tert-butyl and ethyl 
diazoacetate 
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Table 18 

Entry Ligand 

R = tert-Bu R = Et 

cis:trans cis ee /% trans ee 
/% 

cis:trans cis ee /% trans ee 
/% 

1 130a 22:78 70 65 29:71 64 67 

2 130b 22:78 72 66 29:71 72 78 

3 130c 23:77 85 81 31:69 81 86 

4 130d 19:81 73 70 31:69 68 70 

 

In a subsequent publication, the authors reported a direct comparison of the 

enchanced efficiency of i-Pr-trisox ligand 130a compared to its analogous i-Pr-BOX 

ligand 133.74 The comparison was made for the copper(II)-catalysed enantioselective 

Mannich reaction of ethyl 2-methylacetoacetate 134 with �-tosyl-α-imino methyl 

ester 135 at different catalyst loadings. With 10mol % of 130a the product 136 was 

obtained in 84% yield and 90% ee. At lower catalyst loadings the enantioselectivity 

remained unchanged (at 0.01mol% the product was isolated in 36% yield and 90% 

ee). In contrast, using 10mol % of i-Pr-BOX ligand 133 under the same reaction 

conditions gave the Mannich product in 84% yield and 84% ee, dropping to 35% 

yield and 66% ee using 0.01mol % of catalyst (Scheme 57, Table 19). 

Me

O

Me

O

OEt +
N

Ts

CO2Et
Me

O

CO2Et

HN
Ts

Me CO2Et

130a or 133
Cu(ClO4)2

Acetone/Et2O
-28 °C, 36 h

134 135 136

O

N N

O

i-Pr-BOX, 133  
Scheme 57. Copper(II) catalysed enantioselective Mannich reaction of ethyl 2-methylacetoacetate 
134 with N-tosyl-α-imino methyl ester 135 

 

Table 19 

Entry 

Catalyst 
loading  

/mol % 

i-Pr-BOX 133 i-Pr-trisox 130a 

Yield /% ee /% Yield /% ee /% 

1 10 84 84 84 90 

2 1 70 84 75 89 

3 0.1 56 80 59 91 

4 0.01 35 66 36 90 
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The complex formed by reaction of trisoxazoline (S)-130a and Zn(OTf)2 was found 

to give modest enantioselectivity for the kinetic resolution of various phenyl ester 

derivatives of �-protected amino acids by transesterification with methanol (Scheme 

58).75 The catalyst gave a selectivity factor (S) of between 1.3 and 2.0 for the various 

substrates. Changing from a zinc triflate complex to an acetate complex improved 

the selectivity factor (S), but the trifluoroacetate complex gave the best results (up to 

S = 5.1, Table 20, entry 3). 

H
NR1

O R2

O

O
H
NR1

O R2

O

O

Me
H
NR1

O R2

O

O
130a/Zinc (10mol %)

MeOH (0.7 eq)
+

 
Scheme 58. Kinetic resolution of phenyl ester derivatives of N-protected amino acids 

 

Table 20 

Entry 
Substrate Selectivity factor (S)a 

R1 R2 Zn(OTf)2 Zn(OAc)2 Zn(OCOCF3)2 

1 Ph Ph 1.8 3.5 3.8 

2 Ph Me 1.3 2.7 3.0 

3 Me Me 2.0 4.5 5.1 

4 Me Bn 1.8 2.6 4.3 

a Selectivity factor S = (rate of the fast-reacting enantiomer)/(rate of the slow-reacting enantiomer) 

 

The use of trisoxazolines 130a,e-g in the palladium-catalysed asymmetric allylic 

alkylation was reported by Gade et al.
76 The complexation of trisoxazolines with 

palladium(II) species gave a structure where the ligand adopted a bidentate 

coordination, with the third oxazoline unit not coordinated. The trisoxazoline-Pd(II) 

complexes formed between 130a,e-g and [{PdCl(η3-C3H5)}2] were tested in the 

allylic alkylation of 1,3-diphenyl-prop-2-enyl acetate 137, with dimethyl malonate 

138 as the nucleophile (in the presence of �,O-bis(trimethylsilyl)acetamide (BSA)) 

(Scheme 59, Table 21). 

Ph Ph

OAc

Ph Ph

CH(CO2Me)2[Pd/L]

BSA, KOAc
THF, rt

CO2MeMeO2C+

137 138

*

139  
Scheme 59. Palladium catalysed allylic alkylation of 1,3-diphenylprop-2-enyl acetate 137 
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Table 21 

Entry R 

O

N N

O

R R  O

N

N

O

R

R

O

NR

 

Yield /% ee /% TOF /h-1 Yield /% ee /% TOF /h-1 

1 (S)-i-Pr (130a) 89 89 (S) 1.35 90 95 (S) 5.02 

2 (R)-Ph (130e) 7 72 (R) 0.05 28 88 (R) 0.2 

3 (S)-Bn (130f) 88 83 (S) 0.91 92 88 (S) 3.73 

4 (4R,5S)-Ind (130g) 13 93 (R) 0.19 95 98 (R) 12.2 

 

As a comparison the corresponding bisoxazolines ligands were also studied under 

the same reaction conditions. For example, use of i-Pr-BOX ligand gave the product 

in 89% yield and 89% ee after 3 days, whereas i-Pr-trisoxazoline gave an ee of 95% 

and 90% yield (Table 21, entry 1). A similar pattern emerged, with other 

trisoxazolines giving better enantioselectivities compared to their bisoxazoline 

analogues (entries 2-4). The trisoxazolines also enhanced the rate of reaction, as 

shown by their superior turn-over frequencies (TOFs). The reason for this is not 

clear, but could be due to the presence of an additional donating group inducing the 

formation of the Pd(0) species, both in the initial generation of the active species as 

well as in the product/substrate exchange at the end of the catalytic cycle. 

 

In 2005, Gade and co-workers reported the use of trisoxazoline 130a as a ligand for 

lanthanide based catalysts in the stereoselective polymerisation of α-olefins.77 The 

trialkyl complex 140, [Sc(130a)(CH2SiMe3)3] could be converted to the active 

catalyst species 141 by reacting with two equivalents of trityl 

tetrakis(pentafluorophenyl)borate (Scheme 60). The polymerisation of 1-hexene 

using 141 at 21 °C proved to be highly exothermic, with a high activity of 36200 kg 

mol-1 h-1 (Table 22, entry 1). However, at this temperature the tacticity of the 

poly(1-hexene) was relatively low and GPC analysis of the polymer indicated a 

bimodal mass distribution (Mw/Mn = 2.22) suggesting thermal degradation of the 

molecular catalyst. At a temperature of -30 °C, polymerisation was more controlled, 

producing highly isotactic polymer (mmmm = 90%) with a very narrow monomodal 



Chapter 1: Introduction 

55 
 

molecular-mass distribution (Mw = 750 000 and PDI = 1.18) suggesting the catalyst 

displayed living-type behaviour (entry 4).  

O

N N

O

N

O

O

N N

O
O

Sc

Me3Si SiMe3 SiMe3

O

N N

O
O

Sc

Me3Si

Sn

[Sc(CH2SiMe3)3(THF)2] [Ph3P][B(C6F5)4]

(S =solvent)

130a 140 141

2+

[B(C6F5)4
-]2

N N

 
Scheme 60. Formation the Sc complex 140 and its conversion into the dicationic catalyst 141 

 

141
* *

n

 
Table 22 

Entry Temp /°C Time /min Activity 

/kg mol-1 h-1 

Mw PDI (Mw/Mn) 

1 21 0.5 36230 227 000 2.22 

2 0 1 13080 354 000 2.36 

3 -20 1.5 7600 552 000 1.87 

4 -30 3 2030 750 000 1.18 

 

The authors also reported the use of identical lanthanide complexes 

[M(130a)(CH2SiMe3)3] where M = Lu, Tm, Er, Ho and Dy in the polymerisation of  

α-olefins.78, 79 Polymerisation of 1-hexene, 1-heptene and 1-octene at -5 °C all gave 

polyolefins with Mw/Mn values between 1.58 and 2.08 and isotacticities of 80-95%. 

The activities of the catalysts were much lower than the scandium catalyst (typically 

around 150-30 kg mol-1 h-1) and the activity decreased with increasing chain length 

(activity order 1-hexene > 1-heptene > 1-octene).  

R

R R

* *
n

R = CH3, C2H5, C3,H7

[M(130a)(CH2SiMe3)3]

[Ph3C][B(C6F5)4] (2 eq)

M = Lu, Tm, Er, Ho or Dy

Mw/Mn 1.58-2.08
Isotacticity 80-95%

 
Scheme 61. Polymerisation of α-olefins with organolanthanide complexes 
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The structurally related benzene based tripodal oxazolines, 142a-c (Figure 30), were 

found to catalyse the enantioselective Michael addition of the potassium enolate of 

methyl phenylacetate 143 to methyl acrylate 144.80 The results showed that the t-Bu 

ligand 142b provided a highly crowded environment around the potassium ion 

giving the highest enantioselectivity (82% ee) (Scheme 62). 

N

O

N O

N

O

R

R

R

(S,S,S)-142a: R = i-Pr
(S,S,S)-142b: R = t-Bu
(S,S,S)-142c: R = Ph  

Figure 30. Benzene-based tripodal oxazolines 142a-c 

 

Ph CO2Me CO2Me+
142a-c (20mol %)

t-BuOK, Toluene
-78 °C

Ph

CO2Me

CO2Me

143 144 (R)-145

142a: 80% yield, 56% ee
142b: 83% yield, 82% ee
142c: 85% yield, 41% ee

 
Scheme 62. Enantioselective Michael addition catalysed by 142-t-BuOK complexes 

 

In 2000, Bolm et al. reported the synthesis of the trisoxazolines 146a-d  mounted on 

the rigid backbone of a cyclohexane ring (Figure 31).81 These ligands were screened 

in both the diethyl zinc addition to benzaldehyde and the allylic oxidation of 

cyclopentene. 

Ox
Ox

Ox

Me Me

Me

Ox =

146a: R1 = Me, R2 = H
146b: R1 = i-Pr, R2 = H
146c: R1 = t-Bu, R2 = H
146d: R1 = H, R2 = Ph

O

N
R1

R2

 
Figure 31. Chiral trisoxazolines 146a-d 

 

The use of trisoxazolines 146a-c in the diethyl zinc addition to benzaldehyde 28a 

gave the alcohol 88 in moderate enantioselectivities (33-43% ee) (Scheme 63, Table 

23). Interestingly ligands 146a and 146b resulted in predominately 



Chapter 1: Introduction 

57 
 

(R)-1-phenylpropanol 88, whilst with ligand 146c the (S)-enantiomer predominated. 

No explanation was offered for this change in selectivity. 

Ph H

O

Ph

OH
Et2Zn
146a-c

Toluene, rt
16 h

*

28a 88  
Scheme 63. Addition of diethyl zinc to benzaldehyde catalysed by trisoxazolines 146a-c 

 

Table 23 

Entry Ligand Yield /% ee /% Configuration 

1 146a 75 36 R 

2 146b 46 43 R 

3 146c 75 33 S 

 

The copper catalysed allylic oxidation of cylcopentene 123a with tert-butyl 

perbenzoate 124a using ligand 146a-d gave the product 125a in poor to moderate 

ees. As with the previous amine trisoxazoline systems (vide supra), molecular sieves 

were found to enhance the reaction rate. Use of ligands 146a-c, derived from the 

(S)-amino alcohol, gave the (R)-product, with 146d giving the (S)-enantiomer. At -20 

°C the reaction proceeded slowly to give the product in poor yields and moderate 

ees. Raising the temperature to 4 °C improved the yield but enantioselectivity 

remained low. For example use of ligand 146d at -20 °C gave 125a in 31% yield and 

48% ee after 92 hours, while at 4 °C, 125a was obtained in 94% yield and 45% ee 

after 40 hours (Table 24, entries 5 and 6). 

Cu(OTf)2-146a-d

Acetone
+

t-Bu
O

O

O

Ph

OCOPh

123a 124a 125a

*

 
Scheme 64. Copper(II) catalysed allylic oxidation of cyclopenene 123a with tert-butyl perbenzoate 
124a 
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Table 24 

Entry Ligand Temp /°C Time /h Yield /% ee /% Config. 

1 146a -20 92 29 49 R 

2 146b -20 252 17 43 R 

3 146b 4 40 51 31 R 

4 146c -20 92 12 3 R 

5 146d -20 92 31 48 S 

6 146d 4 40 94 45 S 

 

More recently, the use of pseudo-C3-symmetric trisoxazolines 147a-c (Figure 32) in 

the copper catalysed Friedel-Crafts alkylation of indoles was reported by Tang and 

co-workers (Scheme 65).82 The ligands differ from the 1,1,1-tris(oxazolinyl)ethane 

ligands of Gade and co-workers since one of the three sidearms contains a methylene 

group between the oxazoline ring and the central carbon. 

N

O O

N

O

N

R R

R

* *

*

(S)-147a: R = i-Pr
(S)-147b: R = s-Bu
(R)-147c: R = Ph  

Figure 32. Pseudo-C3-symmetric trisoxazolines 147a-c 

 

Screening of complexes Cu(OTf)2·147a-c in the Michael-type addition of 

2-benzylidene diethylmalonate 149a (R2 = C6H5) to indole 148a (R1 = H) revealed 

147a to be a superior ligand. With iso-butanol as the solvent the (S)-product 150a 

could be obtained in 99% yield and 94% ee, whereas using 

1,1,2,2-tetrachloroethanol (TTCE) as a solvent gave an inversion in configuration to 

give (R)-150a in 86% yield and 80% ee (Table 25, entry 1). The scope of the 

reaction was shown to be tolerant to a number of arylidene malonates (entries 2-4) 

with the indole ester products 150b-d obtained in high yields and ees with either iso-

butanol (conditions A, 83-97% ee) or TTCE (conditions B, 81-89% ee) as the 

reaction solvent. Substitutions on the indole ring were shown to have little effect on 

enantioselectivity in the cases where iso-butanol was the solvent ((S)-products 

150e-h obtained in 89-98% ee). A more pronounced effect was seen with TTCE as 



Chapter 1: Introduction 

59 
 

the solvent, with (R)-products obtained in 56 to 73% ee (entries 5-8). A reason for 

this observation was not given. 

N
H

R1

R2
CO2Et

CO2Et
+

N
H

R1

R2

CH(CO2Et)2

150a-h

*

148a: R1 = H
148b: R1 = 4-MeO
148c: R1 = 5-MeO
148d: R1 = 5-Me
148e: R1 = 7-Me

149a: R2 = C6H5

149b: R2 = 2-Cl(C6H4)
149c: R2 = 3-NO2(C6H4)
149d: R2 = 4-NO2(C6H4)

Cu(OTf)2
147a

solvent

 
Scheme 65. Copper(II) catalysed Friedel-Crafts alkylation of indoles 148a-e with alkylidene 
malonates 149a-d 

 

Table 25 

Entry Product R1 R2 

Conditions A Conditions B 

Yield /% (S)-150 

ee /% 

Yield /% (R)-150 

ee /% 

1 150a H C6H5 99 94 86 80 

2 150b H 2-Cl(C6H4) 93 97 99 85 

3 150c H 3-NO2(C6H4) 99 83 99 89 

4 150d H 4-NO2(C6H4) 99 91 99 81 

5 150e 4-MeO C6H5 99 98 90 61 

6 150f 5-MeO C6H5 79 94 67 60 

7 150g 5-Me C6H5 89 95 75 73 

8 150h 7-Me C6H5 82 89 90 56 

Conditions A: Cu(OTf)2 (10mol %), 147a (11-12mol %), iso-butanol, -20 °C. Conditions B: Cu(OTf)2 
(10mol %), 147a (6.7mol %), TTCE, 0 °C. 

 

The screening of pseudo-C3-symmetric trisoxazolines 147a-c in the copper catalysed 

enantioselective Diels-Alder reaction has also been reported.83 Initially the copper(II) 

complexes of ligands 147a-c and Cu(ClO4)2·6H2O were screened in the reaction of 

cyclopentadiene 33 with �-acryloyl-2-oxazolidinone 151a (Table 26, entries 1-3). 

The reactions were performed under an air atmosphere at -20 °C in acetone, giving 

the (2S)-endo-product 152a in high yields (99% with all three ligands) and high 

diastereoselectivity (exo:endo ratio between 7:93 and 12:88). Out of the three ligands 

screened, 147b gave the best enantioselectivity for the endo product which was 

obtained in 75% ee (entry 2). Lowering the temperature to -45 °C improved the ee of 

the endo product to 80% without affecting the yield (entry 4). Conducting the 
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reaction at -78 °C resulted in an improved 82% ee, but the yield fell to 20% due to 

the poor solubility of 151a at this temperature (entry 5). Reaction with the less 

reactive β-methyl dienophile 151b went to completion after 48 hours at 0 °C, with 

product 152b obtained in 90% and 74% ee (endo product). At -20 °C, the yield fell 

to 21% but enantioselectivity improved to 81% ee (entries 6-7). 

+
N

O
R

O O

O N

O
O

R
147a-c, 

Cu(ClO4)2�6H2O

acetone

(2S)-152a-b151a-b33  
Scheme 66. Copper(II) catalysed Diels-Alder reaction between cyclopentadiene 33 and 
2-oxazolidinones 151a-b 

 

Table 26 

Entry Ligand Product R Temp 
/°C 

Time /h Yield /% exo:endo ee /% 

1 147a 152a H -20 3 99 8:92 67 

2 147b 152a H -20 3 99 7:93 75 

3 147c 152a H -20 3 99 12:88 41 

4 147b 152a H -45 6 99 4:96 80 

5 147b 152a H -78 24 20 4:96 82 

6 147b 152b Me 0 48 90 19:81 74 

7 147b 152b Me -20 48 21 10:90 81 

 

The Diels-Alder reaction between cyclopentadiene 33 and ketoesters 153a-d was 

also conducted (Scheme 67, Table 27). These proceeded with good 

enantioselectivities (up to 71% ee) and good yields (47-82%). The best result was 

with ketoester 153a and cyclopentadiene 33, affording the endo product 154a in 64% 

yield and 71% ee (exo:endo ratio of 3:97) (entry 1).  

+
CO2RAr

O

O

Ar147b
Cu(ClO4)2�6H2O

acetone, 
48h, -35ºC CO2R

33 153a-d 154a-d  
Scheme 67. Copper(II) catalysed Diels-Alder reaction between cyclopentadiene 33 and ketoesters 
153a-d 
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Table 27 

Entry Product Ar R Yield /% exo:endo ee /% 

1 154a Ph Me 64 3:97 71 

2 154b Ph Et 82 3:97 64 

3 154c Ph Bn 47 3:97 62 

4 154d 4-Br(C6H4) Me 56 nda nda 

a
 Not determined; diastereomer and enantiomers could not be resolved. 

 

The authors proposed a transition state based on a distorted octahedral geometry at 

the copper centre to account for the stereochemistry observed (Figure 33). In this 

model the Si face of �-acryloyl-2-oxazolidinone is blocked by the iso-butyl 

substituent on the ligand, so the diene attack is favoured from the Re face, thus 

affording the (S)-enantiomers. 

Cu
ON

ON

O

N

O

O

OH2

N iBu

Me

Re favoured

 
Figure 33. Proposed transition state 

 

The use of trisoxazoline 147b in the asymmetric synthesis of β-lactams via the 

copper-catalysed Kinugasa reaction of nitrones and terminal alkynes has also been 

reported (Scheme 68, Table 28).84 Initial screening revealed that a combination of 

the copper(II) salt, Cu(ClO4)2·6H2O with 147b, and dicyclohexylamine gave optimal 

yields, diastereoselectivity and enantioselectivity. Under these conditions a variety of 

structurally different nitrones and alkynes were examined. The electronic character 

of the aromatic group on the nitrogen atom of the nitrone (R3) affected both the 

yields and stereoselectivity. Electron-rich aromatic groups increased the 

enantioselectivity but gave lower yields (entries 1-3), whilst electron-deficient 

groups gave better yields but lower ees (entries 4-5). Changes in the electronic 

properties of aromatic group on the carbon atom (R2) had little effect on the 

enantioselectivity (entries 6-8), however with a α-furyl moiety the best enantiomeric 

excess was obtained (85%) but with poorest diastereoselectivity (cis:trans ratio 2:1) 

(entry 9). The reaction proved sensitive to changes in the R1 group of the alkyne with 

trimethylsilyl acetylene not reacting and 1-cyclohexenyl acetylene affording a cis 
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product in 72% ee and high dr of 13:1 (entries 10-11). Ethyl propiolate reacted with 

an inversion in diastereoselectivity with the trans stereoisomer obtained as the major 

product (cis:trans ratio 1:5) in moderate ee (48%) (entry 12). 

R1

N

HR2

O R3

+
N

O

R1 R2

R3

+
N

O

R1 R2

R3

155 156 trans-157 cis-157

147b/Cu(ClO4)2�6H2O

Cy2NH, MeCN

 
Scheme 68. Kinugasa reaction of alkynes 155 and nitrones 156 to give trans- and cis-lactams 157 

 

Table 28 

Entry R1 R2 R3 Lactam 
Yield 
/% 

cis:trans 

cis-
157 

ee /% 

1 Ph Ph Ph 157a 56 15:1 82 

2 Ph Ph 4-Me(C6H4) 157b 36 19:1 82 

3 Ph Ph 4-MeO(C6H4) 157c 36 31:1 84 

4 Ph Ph 4-Br(C6H4) 157d 70 13:1 74 

5 Ph Ph 4-EtO2C(C6H4) 157e 98 10:1 70 

6 Ph 4-Me(C6H4) Ph 157f 50 18:1 82 

7 Ph 4-MeO(C6H4) Ph 157g 58 18:1 83 

8 Ph 4-CF3(C6H4) Ph 157h 75 14:1 82 

9 Ph α-furyl Ph 157i 56 2:1 85 

10 1-cyclohexenyl Ph Ph 157j 33 13:1 72 

11 Me3Si Ph Ph 157k nr - - 

12 EtO2C Ph Ph 157l 45 1:5 48a 

a ee of the trans enantiomer 

 

In the literature, the Kinugasa reaction is proposed to proceed via a [3+2] 

cycloaddition reaction to give A, followed by a rearrangement (B to C) to give the 

β-lactam (Scheme 69, path I).85-87 Following the observation that an imine was 

forming as a by-product in the reactions and that the nitrones with �-bound 

electron-withdrawing substituents gave better yields than those with �-bound 

electron-rich substituents (Table 28, entries 4-5 versus entries 1-3), the authors 

proposed another possible mechanism. In their proposed pathway, cycloaddition 

adduct A decomposes into an intermediate ketene D, followed by an intramolecular 
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nucleophilic cyclisation to give enolate F, as in the Staudinger reaction. Enolate F is 

then protonated to afford the β-lactam (Scheme 69, path II). They proposed that 

nitrones with �-bound electron-withdrawing substituents stabilised intermediate D 

and prevented its decomposition into the corresponding imine. 
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Scheme 69. Proposed mechanisms of the Kinugasa reaction 

 

To help explain the stereochemical outcome of the reactions, the authors proposed a 

model to account for the enantioselectivity. Owing to the steric hindrance between 

the nitrone and iso-propyl group, cuprous phenylacetylide approaches the si-face of 

the nitrone to afford the (4S)-enantiomer of the β-lactam (Figure 34). 

R2
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N

O

O
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OCu
L

R3
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H

O

Si
R1

 
Figure 34. Proposed stereochemical model 

 

Phosphorus Containing Ligands 

In 1991, Burk et al. reported the development of novel C3-symmetric tripodal 

phosphines 158 and 159 (Figure 35) from the enantiomerically pure 

phenylphospholane (S,S)-160.88 The synthesis of phospolane 160 is outlined in 

Scheme 70. Initially β-keto ester 161 was enantioselectively reduced to the 
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corresponding β-hydroxy ester 162 in 100% conversion and >99% ee. Following 

hydrolysis with aqueous potassium hydroxide, (R)-3-hydroxybutyric acid 163 was 

subjected to an electrochemical Kolbe-coupling procedure, which provided the 

enantiomerically pure 1,4-diol (R,R)-164 in 47% yield over the three steps. After 

conversion of (R,R)-164 to the bismesylate (R,R)-165, reaction with Li2PPh·THF led 

to ring closure and afforded the desired phenyl phospholane (S,S)-160 in 67% yield 

over the two steps. 

 

H

P

P

P

(S,S)-158

N

P

PP

(S,S)-159  
Figure 35. Chiral phosphines 158 and 159 
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Kolbe coupling, NaOMe, MeOH, 48% yield; d) MsCl, Et3N, DCM, 0 °C, 88% yield; e) Li2PPh•THF, THF, -78 °C, 76% 
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Scheme 70. Synthesis of (2S,5S)-2,5-dimethyl-1-phenylphospolane 160 

 

Ligands (S,S)-158 and (S,S)-159 were examined in rhodium-catalysed asymmetric 

hydrogenation reactions (Scheme 71). When screened for the hydrogenation of 

methyl acetamidocinnamate 166a, (S,S)-158 resulted in formation of the (S)-product 

in 89% ee after 3 days at 50 °C (Table 29, entry 1). In contrast, (S,S)-159 failed to 

catalyse the reaction. Attempts to increase the rate of the hydrogenation by 

increasing the reaction temperature 65 °C were successful, but to the detriment of the 

selectivity, with the product obtained in 40% ee (entry 2). The hydrogenation of 
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dimethyl itaconate 166b proceeded to give the product in 94% ee after 20 hours 

(entry 3). 

 

R2
CO2Me

R1

R2
CO2Me

R1

[(COD)Rh{(S,S)-158}][SbF6]

H2, MeOH

166a,b (S)-167a,b

*

 
Scheme 71. Rhodium catalysed asymmetric hydrogenation by chiral phosphine ligands 158 

 

Table 29 

Entry Product R1 R2 Time /h Temp /°C ee /% 

1 167a NHCOMe Ph 72 50 89 

2 167a NHCOMe Ph 48 65 40 

3 167b CH2CO2Me H 20 50 94 

 

The use of C3-symmetric monodentate triarylphosphines 168a-c, 169a-c and 170a-c  

has been reported in the palladium catalysed asymmetric allylation reactions (Figure 

36, Scheme 72).89, 90 Three ligand-types were screened in four reactions (reactions 

a-d) and the best results for each class of ligand are reported for each transformation. 

Ligands 168-169 were found to give the highest enantioselectivities for the reactions 

of cyclic substrates (up to 82% ee, reactions a and b) which compare favourably with 

previously reported results, but do not match the best obtained for either substrate 

category.91, 92 However, the reaction involving 1,3-diphenylpropenyl acetate gave the 

substitution product with relatively poor selectivity (up to 32% ee, reactions c and d) 

compared with previously reported systems that gave selectivities of 99% or more.93 

OR

(R)-168a: R = Me
(S)-168b: R = Ph
(S)-168c: R = (2,6-Me)-C6H3

OR

OMe

(R)-169a: R = Me
(S)-169b: R = Ph
(S)-169c: R = (2,6-Me)-C6H3

OR

OR

(R,R)-170a: R = Me
(S,S)-170b: R = Ph
(S,S)-170c: R = (2,6-Me)-C6H3

3 3
3

P P
P

 
Figure 36. C3-symmetric monodentate triarylphosphines 168a-c, 169a-c and 170a-c 
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OCO2Bn Nphth
2.5mol % [(π-C3H5)PdCl]2
10mol % ligand 168-170

phthalimide (3 eq)
DCM, 0 °C, 24h

a)

b)

OCO2Bn 2.5mol % [(π-C3H5)PdCl]2
10mol % ligand 168-170

CH2(CO2Me)2 (3 eq)
DCM, 0 °C, 24h

O

MeO

O
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Ph Ph

OAc
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CH2(CO2Me)2 (3 eq)
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DCM, 10 °C, 24h
Ph Ph

O
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2.5mol % [(π-C3H5)PdCl]2
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CH2(CO2Me)2 (3 eq)
MeCN(TMS)O(TMS), 

DCM, 10 °C, 24h

O

MeO

O

OMe

c)

d)

168c: 81% ee (S), 54% yield
169a: 82% ee (R), 50% yield
170b: 65% ee (S), 20% yield

168c: 72% ee (S), 79% yield
169a: 75% ee (R), 80% yield 
170a :25% ee (R), 85% yield

168c: 32% ee (S), 90% yield  
169c: 24% ee (S), 80% yield 
170c: 26% ee (S), 76% yield

168c: 12% ee (S), 85% yield 
169c: 19% ee (S), 82% yield 
170a: 20% ee (R), 83% yield

Best results for each class of ligand

e)

MeO

OAc 1mol % [(π-C3H5)PdCl]2
2.2mol % ligand 169-170

NaCMe(CO2Me)2 (2 eq)
THF, -30 °C, 24h

MeO

+

internal

MeO2C CO2Me

MeO

CO2Me

CO2Me

external

169b: 24% ee (S), 99% yield, 
41% internal
170c: 21% ee (S), 69% yield, 
47% internal

 
Scheme 72. Range of transformations catalysed by ligands 168a-c, 169a-c and 170a-c 

 

The more sterically demanding ligands (169a-c and 170a-c) were also screened in 

transformation e. The regioselectivty of the allylation is controlled by the 

trans-directing effect of the phosphine, which can lead to high regioselectivity in 

favour of the internal isomer. The best regioselectivity was achieved using ligand 

170c (47:53 ratio of internal:external regioisomer), however, the enantiomeric excess 

was a disappointing 21% which is well below a previously reported system of 

Hayashi et al. that achieved 87% ee (90:10 ratio of internal:external regioisomer).94 

 

The application of a previously reported C3-symmetric phosphate95 in the rhodium-

catalysed asymmetric hydrosilylation of acetophenone 103 was reported by Pizzano 

et al. (Figure 37, Scheme 73).96 After initial screening the optimal rhodium source 

was found to be the ethylene dimer [RhCl(C2H4)2]2. When the reaction was 
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performed with 171a, with a rhodium:P-ligand ratio of 1:1, the product was formed 

in 92% conversion and 7% ee (Table 30, entry 1). Increasing the rhodium:P-ligand 

ratio was found to improve the enantioselectivity, with a ratio of 1:3 giving the 

product in 51% ee (entries 2 and 4). Increasing the ratio of ligand further was found 

to have a detrimental effect on the conversion and enantioselectivity (entries 6 and 

7). Using the bulkier cyclohexylidene substituted ligand 171b gave the best result, 

with the product obtained in 94% conversion and 58% ee (entry 5).  
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Figure 37. Monodentate phosphates 171a and 171b 

 

Ph Me

O
(i) 171a or b/[Rh]

Ph2SiH2

(ii) H3O+ Ph Me

HHO

103 (R)-104  
Scheme 73. Rhodium catalysed asymmetric hydrosilylation of acetophenone 103 with C3-symmetric 
phosphate ligands 171a and 171b 
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Table 30 

Entry Catalyst precursor Ligand (L) Conversion /% ee /% 

1 ½[RhCl(C2H4)2]2 + L 171a 92 7 

2 
½[RhCl(C2H4)2]2 + 2L 

171a 96 41 

3 171b 92 52 

4 
½[RhCl(C2H4)2]2 + 3L 

171a 89 51 

5 171b 94 58 

6 ½[RhCl(C2H4)2]2 + 4L 171a 83 28 

7 ½[RhCl(C2H4)2]2 + 5L 171a 79 26 

 

Yamamoto and co-workers reported the first synthesis of chiral C3-symmetric 

triamidoamine 172 and its use in the one-pot synthesis of the corresponding chiral 

protetraazaphosphatrane 173 (Scheme 74).97 Protetrazaphosphatrane 173, was 

shown to catalyse the silylation of benzyl alcohol, however, no asymmetric induction 

was observed for the attempted resolution of (rac)-1-phenylethanol 88. In the 

reaction of diethylzinc and benzaldehyde 23a, catalyst 173 gave the (R)-alcohol 88 

in a moderate yield of 49% and low enantioselectivity of 15% (Scheme 75). 

H

N
N

NN
P H

H

N

HN

NH

H
N

(i) (Et2N)2PCl, MeCN

(ii) t-BuOK, MeCN

(S,S,S)-172 173  
Scheme 74. Synthesis of chiral C3-symmetric protetraazaphosphatrane 173 from triamidoamine 
172 

 

Ph H

O
+ Et2Zn

173 (10mol %)

toluene
-20 °C to rt

Ph

OH

28a (R)-88

49% yield
15% ee  

Scheme 75. Addition of diethyl zinc to benzaldehyde 28a catalysed by protetraazaphosphatrane 
173 
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The use of chiral tripodal ligands, (S,S,S)-TRISPHOS 174a and related 

(R,R,S)-TRISPHOS 174b, in the rhodium-catalysed asymmetric hydrosilation of 

acetophenone 103 was reported by Pastor et al. (Figure 38, Scheme 76).98, 99 The 

investigation focused on the use of dimeric, monomeric and cationic rhodium(I) 

catalyst precursors. For example, the combination of (S,S,S)-TRISPHOS 174a with 

chloro(1,5-cyclooctadiene)rhodium(I) dimer (ratio Rh:P-ligand, 1:1) gave 

(R)-sec-phenethyl alcohol 104 in 38% yield and 81% ee (Table 31, entry 1). When 

the ratio of Rh:P-ligand was increased to 2:3, stereocontrol fell to 75% ee (entry 3). 

Using the monomeric Rh(I) species [(NBD)RhAcAc] also saw a drop in selectivity 

to 58% ee (entry 4). The cationic Rh(I) species [(NBD)Rh(ClO4)] gave the best 

result with the product obtained in 65% yield and 81% ee (entry 5). Switching to the 

non C3-symmetric (R,R,S)-TRISPHOS 174b gave the (R)-alcohol in 5% ee, 

suggesting the stereocentre and stereoaxis in the enantioselective transition state 

were mismatched (entry 2). 
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Figure 38. Tripodal phosphites, (S,S,S)-TRISPHOS 174a and (R,R,S)-TRISPHOS 174b 
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Scheme 76. Rhodium catalysed asymmetric hydrosilylation of acetophenone 103 with 
(S,S,S)-TRISPHOS 174a and (R,R,S)-TRISPHOS 174b ligands 
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Table 31 

Entry Catalyst precursor Ligand Yield /% ee /% 

1 
½[(COD)RhCl]2 + L 

174a 38 81 

2 174b NRa 5 

3 ⅓[(COD)RhCl]2 + L 174a 53 75 

4 [(NBD)RhAcAc] + L 174a 67 58 

5 [(NBD)Rh(ClO4)] + L 174a 65 81 

a Not Reported 

 

The synthesis of a chiral C3-symmetric phosphine oxide tripodal cobalt complex 

Na[CpCo{PO(S-BINOL)3}], Na(175), from Na[PO(S-BINOL)3] and [CpCo(CO)I2] 

was accomplished by Leung and co-workers (Figure 39).100 The Cu(175) complex, 

prepared in situ from [Cu(MeCN)4][BF4] and Na(175), was screened for the 

aziridination of substituted styrenes with PhI=NTs (Scheme 77). The reaction of 

styrene, in the presence of 5mol % of Cu(175), gave (R)-styrene aziridine in 85% 

yield and 41% ee (Table 32, entry 1). It was found that the enantioselectivity was 

enhanced by electron-withdrawing substituents. For example, the reaction of 

4-chlorostyrene gave the product in 61% ee, whereas the product from the reaction 

of 4-methylstyrene had an ee of 27% (entries 3 and 5). 
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Figure 39. C3-symmetric tripodal ligand Na(175) 
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Scheme 77. Aziridination of substituted styrenes with PhI=NTs catalysed by Cu(175) complex 
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Table 32 

Entry Product X Yield /% ee /% 

1 177a H 85 41 

2 177b 4-F 82 32 

3 177c 4-Cl 82 61 

4 177d 4-Br 67 41 

5 177e 4-Me 77 34 

6 177f 3-Cl 87 27 

7 177g 2-Cl trace nda 

a Not determined 

 

Na(175) was also screened in the catalytic ring opening of cyclohexene oxide 178 by 

trimethylsilyl azide. It was found that Na(175), in conjunction with Ti(Oi-Pr)2Cl2, 

was an active catalyst giving 2-azido-1((trimethylsilyl)-oxy)cyclohexane 179 in 74% 

and 23% ee (1R,2R) (Scheme 78). 

O Me3SiO N3Ti(Oi-Pr)2Cl2/Na(175) (2mol %)

Me3SiN3, DCM, rt, 15 h

178 (1R,2R)-179

74% yield
23% ee  

Scheme 78. Enantioselective ring opening of cyclohexene oxide 178 catalysed by Na(175) 

 

The use of Na(175) in the allylation of benzaldehyde 28a with allyltrichlorosilane 

180 was also investigated. Thus, treatment of benzaldehyde 28a with 

allyltrichlorosilane in the presence of 20mol % of Na(175) afforded the 

(R)-homoallylic alcohol, 4-phenyl-1-buten-4-ol 181 in 80% yield and 30% ee 

(Scheme 79). 

Ph H

O
SiCl3+

Ph

OHNa(175) (20mol %)

DCM

28a 180 (R)-181

80% yield
30% ee  

Scheme 79. Allylation of benzaldehyde 28a catalysed by Na(175) 
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1.5 CONCLUSION 
 

Whilst the field of C3-symmetry in chemistry is relatively new there are already 

some promising results that have been obtained. However, in the area of 

enantioselective catalysis, the vast majority of C3-symmetric ligands and complexes 

have yet to match their C2-symmetric counterparts in terms of yield and stereocontrol 

for comparable transformations.   
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2 Results and Discussion I 
 

2.1 AMINE TRIS(PHENOLATE) LIGANDS 
 

2.1.1 Introduction 

Triphenolamines, of the type shown in Figure 40, have been known for a long time, 

with the hydrochloride salt of 182a first appearing in the literature in 1922.101 The 

synthesis of such a compound, in this case 182b, was later reported in 1949 by 

Hultzsch.102 However, it was not until 1998 that the potential of these compounds as 

coordinating ligands was first realised, with 182a used to make the iron (III) 

complex 183.103 In subsequent years, the complexation behaviour of these ligands, 

have been reported for a wide variety of metals (including Ti(IV),104-115 Zr(IV),115, 116 

In(III),117 Ga(III),117 Ta(V),118-120 V(V),121 Al(III),122 and Ge(IV)123) and main group 

elements (Si(IV),124-126 and P(V)127). Examples of these appear in Figure 41.  

N

OH

R1

R2
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HO

R1

182a: R1 = R2 = H
182b: R1 = R2 = Me
182c: R1 = R2 = t-Bu

182d: R1 = t-Bu, R2 = Me  
Figure 40. Amine tris(phenolate) ligands 182a-d 
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Figure 41. Representive examples of complexes of amine tris(phenolate) ligands 

 

The catalytic potential of complexes of this type have been demonstrated by 

Davidson and co-workers, with the germanium alkoxide 191 showing good activity 

for the solvent-free ring-opening polymerisation (ROP) of (rac)-lactide 192, to 

provide the highly heterotactic polylactide (Scheme 80, Table 33).123 Treatment of 

racemic lactide (rac)-192 with germanium complex 191 at 130 °C for 24 hours 

resulted in polylactide 193 in a 70% yield with a polydiversity index (PDI) of 1.19 

(entry 3). Interestingly, analysis of the microstructure of the isolated polymers 

revealed a strong heterotactic bias in all cases (the probability of heterotactic 

enchainment, Pr = 0.78-0.82). 
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Scheme 80. Solvent-free ring-opening polymerisation of (rac)-lactide 192 catalysed by germanium 
alkoxide 191 

 

Table 33 

Entry M / I Yield /% Mn PDI Pr
a 

1 200 71 17700 1.15 0.78 

2 300 85 35700 1.15 0.79 

3 600 70 52100 1.19 0.82 

a Pr is the probability of heterotactic enchainment calculated by analysis of the homonuclear 
decoupled 1H NMR spectra 

 

2.1.2 Titanium Complexes of Amine Tris(phenolate) Ligands and 
their Applications in Catalysis 

 
The most studied of all amine tris(phenolate) complexes are the complexes based 

around a titanium centre (Figure 42), with a number of reports on the catalytic 

activity of these racemic complexes. For example, complexes 196a-b demonstrate 

high activity and appreciable selectivity in the polymerisation of styrene 99, to give 

syndiotactic polystyrene 198 (Scheme 81).112 The results are summarised in Table 

34, which reveals that 196a displayed reasonable catalytic activity and was slightly 

more reactive than 196b under comparable conditions (entries 1 and 5). When the 

reaction was run with a ratio of methylaluminoxane (MAO):Ti of 2000:1 at 50 °C, 

196a showed reasonably high activity (3.1 × 106) and excellent stereoselectivity 

(98.1%) (entry 2). This is comparable to the (η5-indenyl)TiCl3/MAO and 

CpTi(OCH2CH2)3N/MMAO catalytic systems of Rausch128 and Do129, which 

showed activities and stereospecificities of 3.7 × 107 and 98.1%, and ca. 2-4 × 107 

and 98-99% respectively. At higher reaction temperatures 196a showed a loss of 

stereocontrol, down to only 68% when run at 90 °C (entries 3 and 4). 
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194e: R1 = t-Bu, R2 = H
194f: R1 = t-Bu, R2 = Me
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Figure 42. Titanium based amine tris(phenolate) complexes 194-197 

 

 

Ph R

Ph PhPh

n

196a or 196b

MAO, toluene

99 syndiotactic 198  
Scheme 81. Polymerisation of styrene 99 catalysed by titanium complexes 196a and 196b 

 

Table 34a 

Entry Catalystb MAO/196 Temp /°C Yield 198 
/g 

Activity (× 
106)c 

% sPS 

1 196a 500 50 0.374 1.38 82.4 

2 196a 2000 50 0.837 3.09 98.1 

3 196a 500 80 1.075 3.90 91.5 

4 196a 500 90 0.383 1.40 68.1 

5 196b 2000 50 0.202 0.98 50.5 

6 196b 1000 80 0.382 1.85 84.8 

a 22mmol of styrene 99 used in all runs; b Concentration of catalysts in the reactions: [196a] = 1.24 
nM and [196b] = 0.94 nM; c units are (g PS)/(mol of Ti)(mol of styrene)(h) 

 

The use of the titanium complex 197 for the polymerisation of lactides was reported 

by Verkade and co-workers (Scheme 82, Table 35).109 Treatment of racemic lactide 

(rac)-192 with 197 at 130 °C for 24 hours resulted in atactic polylactide 193a in 68% 
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yield with a PDI of 1.43 (entry 1). When chiral lactide (R,R)-192 was employed, 

isotactic polylactide 193a was obtained in 69% yield and PDI of 1.51 (entry 2). In a 

later publication, the authors showed that complexes 194b,f displayed similar 

activities in the same polymerisation reaction (entries 3-6).113 

O
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O
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O

O

O
H

n

197 or 194b,f

192 193a: R = 2,6-i-Pr(C6H3)
193b: R = i-Pr  

Scheme 82. Ring opening polymerisation of lactide 192 catalysed by titanium complexes 194b,f 
and 197 

 

Table 35a 

Entry Catalyst Lactide Time /h g 
polymer 

Yield /% Mw
b 

Mn
c PDId 

1 
197 

(rac)-192 24 1.35 68 23 000 16 000 1.43 

2 (R,R)-192 24 1.38 69 29 300 19 000 1.51 

3 
194b 

(rac)-192 4 1.06 53 51 400 38 000 1.35 

4 (R,R)-192 4 1.10 55 76 100 52 000 1.46 

5 
194f 

(rac)-192 14 0.48 24 43 400 36 200 1.44 

6 (R,R)-192 14 0.52 26 38 450 28 400 1.35 

a Reaction conditions: 192 (2g), 192/Ti = 300, 130 °C; b The weight average molecular weight; c 
The number average molecular weight; d PDI = Mw/Mn 

 

Titanium complexes 194b-c and 197 were also shown to display high catalytic 

activities in the polymerisation of ethylene 199 (Scheme 83, Table 36).108 Both 

194b and 194c showed good catalytic activities at 100 °C in toluene (entries 1 and 

2), with even higher catalytic activities for 194b obtained when the reaction was run 

in n-octane (entry 4). Performing the reaction at 120 °C, gave a further increase in 

the activity (entry 5). In all cases the resultant polymer was shown to be linear, with 

low polydiversity indexes (PDI) of 1.5-2.2, suggesting that the polymerisation 

proceeds in a single-site manner. 

n

194b,c or 197

d-MAO
100 °C, 1 h

199 200  
Scheme 83. Titanium catalysed polymerisation of ethylene 199 
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Table 36a 

Entry Catalyst Solvent Yield /mg Activityb Mw PDI 

1 194b toluene 76.1 761 28 400 2.2 

2 194c toluene 185.1 1850 9100 1.5 

3 197 toluene 68.1 680 ndc ndc 

4 194b n-octane 161.9 1620 8000 1.6 

5d 194b n-octane 229 2290 10 200 1.6 

a Reaction conditions: Catalyst (0.1 µmol), solvent (30 mL), 199 (8 atm), 100 mL scale autoclave, 
d-MAO (prepared by removing AlMe3 and toluene from commercially available MAO), molar ratio of 
d-MAO/Ti = 40 000; b Units are (kg-polyethylene)/(mol-Ti)(h); c Not determined; d Reaction run at 
120°C 

 

Very recently, Licini et al. have reported the use of titanium iso-propoxide 

complexes 194a,d-e in the oxidation of sulfides with aqueous hydrogen peroxide.107 

In an initial screening, all three complexes catalysed the oxidation of thioanisole 

201a to the corresponding sulfoxide 202a and sulfone 203a in high yields, good 

selectivities, and short reaction times (30-60 min) (Table 37). The most active 

complex, 194d afforded a turnover frequency (TOF) of 1700 h-1 (entry 2), followed 

by 194a then 194e. However, whilst 194e gave the slowest reaction (entry 3), it gave 

the best selectivity (202a:203a of 98:2) and also did not decompose in solution under 

turnover conditions. A series of arylalkyl and dialkyl sulfides were also surveyed 

under these reaction conditions (Scheme 85), and these are summarised in Table 38. 

The reaction proved to be quite general, even tolerating the introduction of an 

electron-donating group on the aryl ring, without any detrimental effect on the yield 

or selectivity (entry 4). However, introduction of an electron-withdrawing group (a 

nitro group) led to a decreased yield and a decrease in selectivity for sulfoxide 

formation (85:15) (entry 5). 

Ph
S

Me
Ph

S
Me

O

Ph
S

Me
+

194a,d-e (1mol %)
H2O2 (1 equiv)

CD3OD, 28 °C

201a 202a 203a

O O

 
Scheme 84. Oxidation of thioanisole 201a with hydrogen peroxide, catalysed by titanium iso-
propoxide complexes 194a,d-e 
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Table 37 

Entry Complex t1/2 /min TOF /h-1 Conv. /% 202:203 

1 194a 4 740 92 92:8 

2 194d <3 1700 90 90:10 

3 194e 17 170 96 98:2 

 

R1
S

R2

R1
S

R2

O

R1
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+
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201a-e 202a-e 203a-e

O O

 
Scheme 85. Screening of sulfides 201a-e in sulfoxidation reaction catalysed by titanium complex 
194e 

 

Table 38 

Entry Substrate R1 R2 Conv. /% 202:203 Yield 202 /% 

1 201a Ph Me 96 98:2 92 

2 201b Ph n-Bu 91 93:7 84 

3 201c n-Bu n-Bu 92 93:7 83 

4 201d 4-MeO(C6H4) Me 94 94:6 86 

5 201e 4-NO2(C6H4) Me 77 85:15 61 

 

2.1.3 Screening of (rac)-194b and (rac)-195a-Previous Work 
within the Group 

 
With the potential for these racemic complexes having been demonstrated in a 

number of catalytic applications in the literature, the screening of complexes 194b 

and 195a in a number of organic transformations was undertaken by a previous 

member of the SDB group.130 

Aza-Diels Alder Reaction 

Initially, the titanium iso-propoxide complex 194b was used to catalyse the 

aza-Diels Alder reaction between �-benzylidenebenzylamine 204a and 

Daniskefsky’s diene 205 (Scheme 86, Table 39). When stoichiometric amounts of 

the catalyst were employed, �-benzyl-2,3-dihydro-2-phenyl-1H-pyridin-4-one 206a 

was obtained in 62% conversion and 40% isolated yield after 2 hours (entry 1). 

When the reaction was left for 21 hours the conversion was still only 72% whilst the 

isolated yield had decreased to 32% (entry 2). Attempts to use sub-stoichiometric 
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amounts of 194b (10mol %) gave the desired dihydropyridinone 206a in only 30% 

conversion and 12% isolated yield (entry 3). 

N Ph

Ph H

OSiMe3

OMe

194b

DCM
+

204a 205 206a

NPh

O

Ph

 
Scheme 86. Aza-Diels Alder reaction catalysed by 194b 

 

Table 39 

Entry Catalyst loading 
/mol % 

Time /h Conversion /% Yield /% 

1 100 2 62 40 

2 100 21 72 32 

3 10 48 30 12 

 

In an attempt to improve the reactivity of complex 194b, the iso-propoxide ligand 

was replaced with the more weakly coordinating axial triflate ligand, to give 

complex 195a. After optimisation it was found that with 10mol % of 195a and three 

equivalents of diene, �-benzyl-2,3-dihydro-2-phenyl-1H-pyridin-4-one 206a could 

be obtained in 100% conversion and 73% isolated yield after only 45 minutes 

(Scheme 87, Table 40, entry 1). The scope of this reaction was investigated, with a 

number of imines (204b-f) tested. All reacted to give the corresponding 2,3-dihydro-

pyridin-4-ones 206b-f in good yields (100% conversions uniformly obtained) and 

reaction times of less than 80 minutes in all cases (entries 2-6).106 

N
R2

R1 H

OSiMe3

OMe

195a (10mol %)

DCM
+

204a-f 205 206a-f

NR1

O

R2

 
Scheme 87. Aza-Diels Alder reaction between imines 204a-f and Danishefsky’s diene 205, 
catalysed by 195a 
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Table 40 

Entry Product R1 R2 Time /min Isolated Yield 
/% 

1 206a  Ph  Bn 45 73 

2 206b 2-naphthyl Bn 40 71 

3 206c 3,5-MeO(C6H3) Bn 70 60 

4 206d cyclohexyl Bn 45 56 

5 206e Ph i-Pr 60 72 

6 206f Ph 3,5-MeO(C6H3)CH2 80 62 

 

The success of titanium complex 195a in catalysing the aza-Diels Alder reaction led 

to the screening of 195a in a variety of other transformations, namely: 

• Allylation of benzaldehyde 

• Diethylzinc addition to benzaldehyde 

• A conventional Diels Alder reaction 

• An aldol reaction 

 

Allylation of Benzaldehyde catalysed by 195a 

The allylation of benzaldehyde 28a with allyltributyltin 207, in the presence of 195a, 

was also attempted (Scheme 88, Table 41). When 50mol % of the catalyst was 

employed, the reaction went to completion after only 30 minutes, with 

1-phenylbut-3-en-1-ol 181 obtained in 75% yield (entry 1). Furthermore, when the 

catalyst loading was dropped to only 5mol % the product 181 was obtained in 64% 

yield after 4 hours (entry 2). 

O

Ph H

SnBu3

Ph

OH195a

DCM, rt
+

20728a 181  
Scheme 88. Allylation of benzaldehyde 28a with allyltributyltin 207 catalysed by 195a 

 

Table 41 

Entry Catalyst loading /mol % Time Isolated yield /% 

1 50 30 min 75 

2 5 4 h 64 
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Diethylzinc Addition to Benzaldeyde catalysed by 195a 

The addition of diethylzinc to benzaldehyde 28a was also investigated. Treatment of 

a solution of 195a with diethyl zinc at room temperature followed by benzaldehyde 

28a at 0 °C resulted in the formation of the crude product after 6 hours. Following 

column chromatography, 1-phenyl propanol 88 was isolated in 77% yield (Scheme 

89).  

Ph H

O
195a (20mol %)

Et2Zn

DCM Ph

OH

28a 88

77% yield  
Scheme 89. Diethylzinc addition to benzaldehyde 28a catalysed by 195a 

 

Convential Diels Alder Reaction catalysed by 195a 

Initially, the conventional Diels Alder between N-acroyloyloxazolidin-2-one 151a 

and cyclopentadiene 33 was investigated (Scheme 90, Table 42). It was discovered 

that in the presence of only 5mol % of catalyst 195a, 3-(bicyclo[2.2.1]hept-2-

enecarbonyl) oxazolidin-2-one 152a was obtained in 81% yield with an endo:exo 

selectivity of >97:3 (entry 1). However, application of these optimised conditions to 

other �-acryloyloxazolidin-2-ones 151b and 151c gave the desired products in 

substantially lower yields. Instead, conditions had to be optimised for each 

dienophile. For example, with (E)-�-but-2-enoyloxazolidin-2-one 151b and 

cyclopentadiene 33, a catalyst loading of 20mol % was found to give the product 

152b in 87% yield and 87:13 diastereoselectivity (entry 2). In comparison, 

�-((E)-3-phenyl-acryloyl)oxazolidin-2-one 151c required one equivalent of catalyst 

and a reaction time of 6 hours to achieve 100% conversion, with the desired product 

152c isolated in 81% yield (entry 3). 

+

O N
O

O N

O O

O
195a

DCM, rt

151a-c 33 152a-c

R

R

 
Scheme 90. Diels Alder between N-acryloyl-oxazolidin-2-ones 151a-c and cyclopentadiene 33 
catalysed by 195a 
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Table 42 

Entry Product R Catalyst /mol % Time /h Yield /% endo:exo 

1 152a H 5 0.5 81 >97:3 

2 152b Me 20 3 87 87:13 

3 152c Ph 100 6 81 84:16 

 

Following the good diastereoselectivities obtained with �-acryloyloxazolidin-2-ones 

151a-c, the chiral Diels Alder reaction between dienophile (S)-208 and 

cyclopentadiene 33 was also investigated in the hope that a higher 

diastereoselectivity would be induced (Scheme 91, Table 43). 

 

Initially, the reaction was performed in the presence of chlorotitanium 

tri-iso-propoxide and the titanium complex generated in situ from 2,4-

dimethylphenol and titanium (IV) chloride, to give a benchmark against which the 

performance of complex 195a could be compared. The reaction catalysed by 

chlorotitanium tri-is-propoxide gave the product 209 in 84% yield and an endo:exo 

ratio of 79:21. Analysis of the product revealed that a total of three diastereoisomers 

were observed in a ratio of 77:21:2 (endo1:exo1:endo2), with the major product being 

the endo product, which was obtained in 96% de (Table 43, entry 1). The catalyst 

derived from TiCl4 and 2,4-dimethylphenol was found to be more reactive, affording 

the bicyclic product 209 in 74% yield after only 2 hours, although with a lower 

endo:exo ratio (72:28). This time four diastereomers were observed in a ratio of 

70:16:2:12 (endo1:exo1:endo2:exo2), with the major endo product obtained in 93% de 

(entry 2). The presence of the fourth diastereomer (exo2) implied that the flexible 

orientation of the phenolate ligands may have an effect on the coordination sphere 

around the titanium, and therefore the diastereoselectivity. 

 

In comparison, when (S)-4-benzyl-�-but-enoyloxazolidin-2-one 208 was treated 

cyclopentadiene 33, in the presence of 20mol % of catalyst 195a, the bicyclic 

product 209 was obtained in an excellent 97% yield after 3 hours (Table 43, entry 

3). Analysis of the product revealed that the major product had been obtained in an 

improved endo:exo ratio of 89:11. Only three diastereomers were observed in a ratio 

88:11:1 (endo1:exo1:endo2), which indicated that there was an improved interaction 

between the rigid phenolate framework of 195a and the titanium’s coordination 
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sphere when compared to the tris(2,4-dimethylphenolate) titanium complex formed 

in situ (entry 3 compared to entry 2). 

+
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Scheme 91. Diels Alder reaction between (S)-4-benzyl-N-but-2-enoyloxazolidin-2-one 208 and 
cyclopentadiene 33 

 

Table 43 

Entry Catalyst Time /h Yield /% endo:exo 
endo-209 

de /% 

1 TiCl(Oi-Pr)3 24 84 79:21 96 

2 
2,4-Me(C6H3)OH 

TiCl4 
2 74 72:28 93 

3 195a 3 97 89:11 98 

 

Aldol Reaction catalysed by 195a 

The aldol reaction between the titanium enolate of (S)-210, generated via treatment 

of (S)-4-benzyl-3-propionyl-oxazolidin-2-one 210 with DIPEA and one equivalent of 

195a, with benzaldehyde 28a was performed. After 24 hours the desired syn-product 

211 was obtained in 42% conversion.   

O N

O O

(i) 195a (1 eq.)
    DIPEA, DCM

(ii)

Ph

(S)-210

O N

O O

Ph

Ph

OH

211

42% conversion

Ph H

O

28a

 
Scheme 92. Aldol reaction catalysed by 195a 
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Given the number of organic transformations that titanium complexes of amine 

tris(phenolate) ligands have successfully shown to catalyse, the synthesis of a chiral 

triphenolate ligand was decided to be attempted. 

 

2.2 DESIGN OF A CHIRAL AMINE TRIS(PHENOLATE) 
LIGAND 

 

It has been shown that complexation of the achiral amine tris(phenolate) ligand to a 

five-coordinate metal centre gives rise to a racemic mixture of (P)- and 

(M)-enantiomers, owing to the propeller-like chirality of the complex formed 

(Figure 43). In the case of the titanium complexes, the barrier to invert is quite high 

and can be visualised on the NMR time-scale. For the titanium complexes 194b and 

194c, the barrier for inversion was found to be ∆G
‡

(350 K) = 65.7 kJ mol-1 for 194b, 

and ∆G
‡

(386 K) = 74.4 kJ mol-1 for the bulkier 194c.104 Given the relatively small 

difference in activation energy between two ligands that differ so much in steric bulk 

it was proposed that concerted inversion of the three aryl rings was responsible for 

the high barrier of inversion for these complexes.104 
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R
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M
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R
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X
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(P)-enantiomer (M)-enantiomer 

Figure 43. (P)- and (M)-enantiomers of a five-coordinate metal complex of tetradentate ligand 182 

 

2.2.1 Novel C3-Symmetric Amine Tris(phenolate) Ligands 

 

It was therefore proposed that if a chiral C3-symmetric version of amine 

tris(phenolate) ligand, such as (R,R,R)-212, could be synthesised then this would 

result in chiral metal complexes with a locked propeller-like conformation due to its 

R groups adopting a pseudoaxial conformation. Furthermore, locking of the 

propeller-like chirality on the underside of the complex would result in its point 

chirality being effectively relayed into the coordination sphere of the metal centre, 

through the ortho-substituents (R1) of the phenolate rings (Scheme 93). 
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Scheme 93. Proposed formation of C3-symmetric complex (R,R,R)-213 

 

The preparation of a ligand such as (R,R,R)-212, in particular the stereoselective 

formation of the three benzylic centres, would be difficult without recourse to a 

lengthy multi-step synthesis. Only a few examples of the synthesis of 

C3-symmetrical amines with chiral centres adjacent to the nitrogen atom are known. 

Two such examples are the homochiral triethanolamine (R,R,R)-214a of Van 

Vranken and co-workers,131 and (R,R,R)-tris(α-methylbenzyl)amine 215 of Wyatt 

and co-workers.132 
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Scheme 94. Triethanolamine (R,R,R)-214a and (R,R,R)-tris(α-methylbenzyl)amine 215 

 

The synthesis of triethanolamine (R,R,R)-214a was accomplished in 3 steps from 

(R)-alanine ethyl ester 216 via bisalkylation with the triflate ester of (S)-ethyl lactate 

217 (Scheme 95).131 Whilst the first alkylation proceeded smoothly, the second 

alkylation was much slower. Reaction of the dialkylamine (R,R)-218 with three 

equivalents of (S)-217 in refluxing nitromethane gave triamine 219 in 32% yield. 

The triester 219 was reduced to 214a using lithium borohydride with 10mol % of 

trimethylborate in 66% yield. Overall triethanolamine (R,R,R)-214a was obtained in 

21% yield from 216. However, attempts to synthesise the corresponding triphenyl 

and tribenzyl analogues, 214b and 214c, were unsuccessful due to a competing 

elimination reaction in the alkylation step. 
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Scheme 95. Synthesis of triethanolamine (R,R,R)-214a 

 

Wyatt and co-workers synthesis of (R,R,R)-tris(α-methylbenzyl)amine 215 started 

from the commercially available C2-symmetric amine 220 (Scheme 96).132 Initially 

220 was converted into its formamide 221 via treatment with trimethyl orthoformate. 

Addition of phenyl lithium gave 222, which was then converted into the presumed 

iminium species 223 with oxalyl chloride. After addition of MeMgCl, the amine 

(R,R,R)-215 was obtained together with its diastereomer (R,R,S)-215 in a 4:1 ratio in 

favour of the C3-symmetrical amine. The desired amine proved to be remarkably 

crystalline, making the separation from the mixture with the C1-symmetric 

diastereomer relatively facile. With this protocol, (R,R,R)-tris(α-methylbenzyl)amine 

215 was obtained in an overall yield of 70% from 220. 
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Scheme 96. Synthesis of (R,R,R)-tris(α-methylbenzyl)amine 215 
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Whilst both these synthesises are impressive, they both produce relatively 

unfunctionalised compounds when compared to a C3-symmetric amine 

tris(phenolate) ligand such as (R,R,R)-212. Also both approaches rely on the use of 

commercially available chiral starting materials, something which would not be 

available for the synthesis of (R,R,R)-212.  

 

2.2.2 Pseudo-C3-Symmetric Ligands 

 
Given the potential difficulties faced synthesising the C3-symmetric amine 

tris(phenolate) ligand, an alternative target was required, one in which the desired 

ligand could be obtained in as few a steps as possible. Consequently, it was proposed 

that a pseudo-C3-symmetric ligand such as (R)-224, which possesses only a single 

stereogenic centre on one of the benzylic arms, would serve equally well to control 

the propeller chirality of a metal derived complex (Scheme 97). 
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Scheme 97. Proposed formation of pseudo-C3-symmetric complex (R,M)-225 

 

The complexation of amine tris(phenolate) ligand (R)-224 to a five coordinate metal 

centre would result in a chiral metal central (R,M)-226 whose helical chirality would 

be controlled by its stereogenic α-group adopting a pseudoaxial conformation. This 

diastereoisomer would occur preferentially because formation of the corresponding 

diastereoisomer (R,P)-226 would be disfavoured by syn-pentane-like interactions 

between the pseudoequatorial α-group and its proximal aryl ring (Scheme 98). 
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Scheme 98. (R,M)-226 and (R,P)-226 diastereoisomers of a five-coordinate metal complex of 
tetradentate ligand (R)-224 
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Although examples of this type of conformational control are rare, precedent did 

exist for control of helical chirality using point chirality within metal-ligand 

complexes. For example, the use of a single stereogenic centre to dictate the 

propeller-type chirality metal complexes had been demonstrated previously by 

Canary et al.
133, 134 The authors showed that when a series of chiral pyridyl ligands 

227a-b and 229 were coordinated to zinc(II) the resultant penta-coordinate complex 

was found to have a distorted trigonal bipyramidal geometry with the pyridyl 

nitrogens coordinated in the equatorial positions and the tertiary amine nitrogen in an 

axial position (Scheme 99). Furthermore, it was shown that the α-substituent 

controlled the propeller-like twist of all three pyridyl rings, by occupying the lowest 

energy pseudo-axial conformer. It was shown that use of the (R)-enantiomer formed 

a complex exclusively with M-symmetry. Similarly, the use of the (S)-enantiomer 

delivered a complex with P-symmetry. The authors found that the magnitude of the 

tilt (as defined by the angle between the planes containing the pyridine rings and the 

Nam-Zn-Cl axis in the crystal structures) ranged between 8.3° for complex 228a, to 

12.3° for complex 228b and 15.9° for complex 230, although the authors proposed 

that much of the difference in magnitude was probably due to crystal packing forces 

rather than the steric differences between the complexes. To date these complexes 

have not been applied as catalysts for asymmetric transformations. 
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Scheme 99. Formation of zinc complexes 228a-b and 230 from the corresponding pseudo-C3-
symmetric amines 227a-b and 229 

 

2.3 PREVIOUS WORK WITHIN THE GROUP-ATTEMPTED 
SYNTHESIS OF CHIRAL LIGAND (R)-231 

 

An attempted synthesis of pseudo-C3-symmetric ligand (R)-231 was first carried out 

by a former member of the SDB group.130 Initial work focussed on the synthesis of 

ligand (R)-231, which bears no ortho or para substituents on the phenolate moiety, 

due to the commercial availability of the key starting material 

2-methoxybenzaldehyde 233. The attempted synthesis is highlighted in Scheme 100. 

The chiral ligand precursor (R)-235 was successfully synthesised from the chiral 

primary amine (R)-232 via a double reductive amination strategy with the secondary 

amine (R)-234 as the intermediate. However, cleavage of the methyl aryl ethers of 

(R)-235 proved unsuccessful, with numerous different demethylation strategies 

employed. Under most conditions screened, competitive cleavage of the benzylic 

C-N bond was observed.  
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Scheme 100. Attempted synthesis of chiral ligand (R)-231 

 

Since the work in synthesising the ligand precursor (R)-235 had been shown to be 

robust, it was decided that any new strategy to generate chiral ligands like (R)-231 

should follow a similar route with the selection of a more suitable protecting group 

being the only alteration required (Scheme 101).  
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Scheme 101. Retro-synthesis analysis of pseudo-C3-symmetric amine 

 

It was considered that a benzyl protecting group might be a more suitable protecting 

group because like methyl ethers, benzyl ethers are robust and stable to a wide range 

of aqueous acidic and basic conditions, and are not readily attacked by metal hydride 

reducing agents or mild oxidising agents.135 However, unlike methyl ethers they can 

be easily deprotected under relatively mild hydrogenolysis conditions, thus avoiding 

the problems encountered with Lewis acids. 
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2.4 WORK TOWARDS THE SYNTHESIS OF (R)-232 AND 
(R)-236 

 

Initially, as an introduction into the chemistry, work was focussed towards the 

synthesis of chiral primary amine (R)-232 and the related benzyl protected amine 

(R)-236 (Scheme 102). This was to ensure that the introduction of the benzyl 

protecting group would not impede the synthesis of the chiral amines. 

OMe

NH2

OBn

NH2

(R)-232 (R)-236  
Scheme 102. Chiral primary amines (R)-232 and (R)-236 

 

Given the previous efforts within the group, it was envisioned that the synthesis of 

primary amine (R)-232 and (R)-236 could be achieved by a diastereoselective 

alkylation of chiral imine precursors 

 

2.4.1 Literature Precedent 

 
In the literature there are a number of reports of the synthesis of chiral amines using 

(S)- and (R)-2-amino-2-phenylethanol 237 as a chiral auxiliary.136-141 For example in 

1991, Pridgen et al. showed that addition of methyl magnesium chloride to the 

oxazolidine 238, formed by condensation of benzaldehyde 28a and 

(R)-2-amino-2-phenylethanol 237, gave (R,R)-239 in 56% yield and 90% de.141 This 

was then deprotected using lead (IV) acetate, followed by acid hydrolysis to give 

primary amine (R)-240 in 50% yield (Scheme 103). 
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Scheme 103. Addition of methyl magnesium chloride to oxazolidine (R)-238 

 

In 2000, Kündig and co-workers showed that the structurally related chiral amine 

(S)-243 could be obtained in a similar manner (Scheme 104).139 This involved 

formation of imine (S)-241 from (S)-2-amino-2-phenylethanol 237  and 

2-methoxybenzaldehyde 233, followed by addition of tert-butyl lithium at -85 °C to 

yield the secondary amine (S,S)-242 in 91% de and 75% yield after chromatography. 

This time cleavage was achieved with palladium on carbon and ammonium formate 

giving amine (S)-243 in 80% yield. 

OMe O
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H2N

OH

Ph
OMe

N

Ph

OHEtOH

4Å MS

t-BuLi

THF, -85 °C
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N
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     Pd/C, MeOH
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Scheme 104. Addition of tert-butyl lithium to chiral imine (S)-241 
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2.4.2 Preparation of Benzyl Protected Aldehyde 245 

 

Benzylation of commercially available 2-hydroxybenzaldehyde 244 was achieved by 

treating with one equivalent of benzyl bromide and 3.8 equivalents of potassium 

carbonate in �,�-dimethylformamide at 60 °C. After passing the crude product 

through a short silica plug, 2-benzyloxybenzaldehyde 245 was obtained in 89% 

yield. The structure of the product was confirmed by 1H NMR spectroscopy, which 

indicated the presence of the benzyl group with the benzylic protons appearing as a 

singlet at δ = 5.20 ppm. 

OH

H

O OBn

H

O

Br

K2CO3

DMF, 60 °C

244 245

89% yield  
Scheme 105. Preparation of aldehyde 245 

 

2.4.3 Synthesis of Imines (R)-241 and (R)-246 

 

Imines (R)-241 and (R)-246 were synthesised following the procedure published by 

Kündig et al.
139 Thus, either 2-methoxybenzaldehyde 233 or 

2-benzyloxybenzaldehyde 245 were stirred with (R)-2-amino-2-phenylethanol 237 in 

ethanol in the presence of 4Å molecular sieves, to yield 

(R)-2-(2-methoxybenzylideneamino)-2-phenylethanol 241 or (R)-2-(2-benzyloxy 

benzylideneamino)-2-phenylethanol 246 in 99% yield and 97% yield respectively. 

For imine (R)-241 (R = Me), the structure was confirmed by comparison of the 1H 

NMR spectra to the literature.139 The structure of imine (R)-246 (R = Bn) was also 

confirmed by analysis of its 1H NMR spectra, with a resonance corresponding to the 

imine proton observed at δ = 8.80 ppm. 

OR

H

O

233: R = Me
245: R = Bn

OR

N

H

OH

Ph

H2N

Ph

OH

(R)-241: R = Me; 99% yield
(R)-246: R = Bn; 97% yield

(R)-237

EtOH

4Å MS
+

 
Scheme 106. Synthesis of imines (R)-241 and (R)-246 

 



Chapter 2: Results and Discussion I 

96 
 

2.4.4 Addition of Alkyl Lithium to Imines (R)-241 and (R)-246 

 

Since both iso-propyl lithium and methyl lithium were available in the laboratory it 

was decided to test both in the addition to imines (R)-241 and (R)-246, with 

iso-propyl lithium added to (R)-241 and methyl lithium added to (R)-246. For imine 

(R)-241, after addition of an excess of iso-propyl lithium the reaction was stirred at 

-85 °C for 6 hours before being allowed to slowly warm to room temperature 

overnight. After column chromatography, the product (R)-2-((R)-1-(2-

methoxyphenyl)-2-methylpropylamino)-2-phenylethanol 247 was isolated in 92% de 

and 59% yield. The structure of the product was confirmed by 1H NMR 

spectroscopy, which indicated the presence of the iso-propyl group, with two 

doublets at δ = 1.13 ppm and δ = 0.73 ppm corresponding to the methyl groups and a 

multiplet at δ = 2.00 ppm for the methine proton. It is noteworthy that the two 

diastereotopic methyl groups are split by 0.40 ppm indicating that the compound has 

a relatively rigid structure with one of the methyl groups shielded by the anisotropic 

effect of one of the aryl groups. Following a similar protocol for the addition of 

methyl lithium to imine (R)-246 the product (R,R)-248 could be obtained in 53% 

yield. The presence of the methyl group was indicated by the doublet at δ = 1.23 

ppm. The diastereomeric excess was determined to be >95% with no signals 

corresponding to the minor diastereomer observed when the 1H NMR was run in 

either CDCl3 or C6D6.  
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N

H

OH

Ph

OMe

N

H

OH

Ph OMe

N
H

OH
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OBn

N
H
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i-PrLi

THF, -85 °C

MeLi

THF, -85 °C

(R)-246

(R)-241 (R,R)-247

92% de
59% yield

(R,R)-248

>95% de
53% yield  

Scheme 107. Addition of iso-propyl lithium and methyl lithium to imines (R)-241 and (R)-246 

 

Having demonstrated that the presence of the benzyl group did not have any 

detrimental effect on addition of alkyl lithium to the chiral imine (R)-246, it was 
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decided to turn efforts towards the synthesis of a ligand bearing an ortho substituent 

on the phenolate ring. As mentioned earlier, in order for there to be effective transfer 

of the propeller-like chirality of a propeller ligand within a metal complex there 

needs to be an ortho substituent on the aryl ring. However, before attempting 

synthesis of this type of ligand it was decided to test the relative ease of deprotection 

of each protecting group of the secondary amines (R,R)-247 and (R,R)-248. 

 

2.4.5 Attempted Cleavage of Methyl Aryl Ether of Amine 
(R,R)-247 

 

In 2000, Kündig et al. reported the cleavage of methyl aryl ether 243 using boron 

tribromide in dichloromethane to give amine 249 in 94% yield after 20 hours 

(Scheme 108).139 As a consequence it was decided to test these conditions on amine 

(R,R)-247. 

OMe

NH2

t-Bu

OH

NH2

t-Bu

3eq. BBr3

DCM, 20 h

243 249

94% yield  
Scheme 108. Demethylation of amine 243 using boron tribromide 

 

Following treatment of amine (R,R)-247 with boron tribromide for 20 hours the 

reaction was worked up and the crude product was analysed by 1H NMR 

spectroscopy. This revealed that no product had formed, with only the starting amine 

(R,R)-247 present in the mixture (Scheme 109). 

OMe

N
H

OH

Ph

(R,R)-247

4 eq. BBr3

DCM, 20 h

OH

N
H

OH

Ph

(R,R)-250  
Scheme 109. Attempted demethylation of amine (R,R)-247 with boron tribromide 

 

Similarly, in another publication Kündig and co-workers had reported demethylation 

of the secondary amine (R,R)-251 using aluminium tribromide in benzene, to give 

the product (R,R)-252 in 82% yield and >99% ee after eight hours (Scheme 110).142 

The authors had noted that the use of boron tribromide in this transformation resulted 

in the competitive cleavage of the benzylic C-N bond. 



Chapter 2: Results and Discussion I 

98 
 

OMe

N
H

(R,R)-251

3 eq. AlBr3

benzene, 8 h
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(R,R)-252

>99% ee
82% yield

OMe OH

 
Scheme 110. Demethylation of amine (R,R)-251 using aluminium tribromide 

 

In an attempt to apply these conditions, secondary amine (R,R)-247 was treated with 

two equivalents of aluminium tribromide in toluene for 20 hours. Disappointingly, 

under these conditions again no product was formed with only starting amine 

(R,R)-247 recovered (Scheme 111). 

OMe

N
H

OH

Ph

(R,R)-247

2 eq. AlBr3

toluene, 20 h

OH

N
H

OH

Ph

(R,R)-250  
Scheme 111. Attempted demethylation of amine (R,R)-247 with aluminium tribromide 

 

2.4.6 Successful Cleavage of Benzyl Aryl Ether of Amine 
(R,R)-248 

 

Given the lack of success at cleaving the methyl aryl ether of secondary amine 

(R,R)-247, attention was instead turned to the analogous benzyl protected amine 

(R,R)-248. Cleavage of the benzyl group was achieved by hydrogenolysis; amine 

(R,R)-248 together with 10% palladium on carbon in ethyl acetate were stirred 

vigorously under one atmosphere of hydrogen for 24 hours, after which time the 

desired product (R,R)-253 was isolated in 95% yield (Scheme 112). Analysis by 1H 

NMR spectroscopy showed that the benzylic protons in the starting material (which 

appeared as doublets at δ = 4.46 ppm and δ = 4.40 ppm) were no longer present in 

the product. High resolution mass spectrometry identified the molecular mass of 

[M+H]+ as 258.1491 (C16H20NO2 requires 258.1489). In the low resolution spectrum 

there were signals at 258 for the molecular ion and at 138 corresponding to the 

molecular ion with loss of the 2-phenylethanol unit. 
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Scheme 112. Cleavage of benzyl protecting group on amine (R,R)-248 

 

2.5 SYNTHESIS OF CHIRAL AMINES (R)-255A-C  
 

Having determined that benzyl ethers would be a suitable protecting group, the focus 

of the project was directed towards the synthesis of the chiral ligands (R)-254a-c, 

which possessed ortho- and para-methyl groups on the aryl rings (Scheme 113). 

Whilst an α-methyl group at the benzylic position had been shown to be sufficiently 

sterically encumbering to control the gait of the propeller in 5-membered zinc 

complexes of Canary et al. (see Section 2.2.2) it was uncertain if this would be the 

case in our 6-member metallocycles. Therefore a series of ligands with different 

α-substituents would need to be synthesised. Given the commercial availability of 

solutions of methyl lithium, iso-propyl lithium and tert-butyl lithium and the steric 

differences that these groups would provide, the synthesis of the primary amines 

(R)-255a-c was undertaken. 

OBn R

NH2 +

OBn O

H
2 x

Me

Me

Me

Me
OH R

N

OH

HO

Me

Me

Me Me

Me

Me

(R)-254a: R = Me
(R)-254b: R = i-Pr
(R)-254c: R = t-Bu

(R)-255a: R = Me
(R)-255b: R = i-Pr
(R)-255c: R = t-Bu

256

 
Scheme 113. Retrosynthetic analysis of ligands (R)-254a-c 

 

2.5.1 Preparation of Aldehyde 261 

 

In order to synthesis chiral ligands (R)-255a-c it was necessary to prepare 

2-hydroxy-3,5-dimethylbenzaldehyde 256 from commercially available 

2,4-dimethylphenol 260. The method chosen was a modification of the Duff reaction 

reported by Svenstrup and co-workers in 1998.143 They had shown that 

monoformylation of 4-tert-butylphenol 257 could be achieved using one equivalent 
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of hexamethylenetetramine 258 in refluxing trifluoroacetic acid to give 4-tert-butyl-

2-hydroxybenzaldehyde 259 in 29% yield. Whilst the yield of this transformation 

was modest, the relative inexpense of the starting materials meant scale-up of this 

method should produce sufficient quantities of the desired aldehyde. 

259

29% yield

OH

H

O

t-Bu

OH

257

t-Bu

N
N

N

N

+

258

TFA

85 °C

 
Scheme 114. Monoformylation of 4-tert-butylphenol 257 with hexamethylenetetramine 258 in TFA 

 

Thus, the reaction of 2,4-dimethylphenol 260 under these conditions yielded 

2-hydroxy-3,5-dimethylbenzaldehyde 261 in 21-26% yield. With this reaction it was 

easily possible to synthesise ca. 2-3 grams of aldehyde at a time. 

OH

H

O

261

21-26% yield

Me

Me

OH

260

Me

Me

N
N

N

N

+

258

TFA
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Scheme 115. Synthesis of 2-hydroxy-3,5-dimethylbenzaldehyde 261 from 2,4-dimethylphenol 260 

 

A proposed mechanism of the Duff reaction under these conditions is shown in 

Scheme 116.144 Initially, hexamethylenetetramine 258 is protonated and then 

decomposes to form the iminium species. 2,4-Dimethylphenol then adds to the 

iminium ion followed by tautomerisation, resulting in aryl amine A. A similar 

protonation/decomposition of aryl amine A forms the iminium species B. The 

iminium ion abstracts a hydrogen from the aryl amine moiety in B to form iminium 

species C. Acid hydrolysis of this releases the product 261. 
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Scheme 116. Proposed mechanism of the modified Duff reaction 

 

2.5.2 Synthesis of Benzyl Protected Aldehyde 256 

 

The conversion of 2-hydroxy-3,5-dimethylbenzaldehyde 261 to 2-(benzyloxy)-3,5-

dimethylbenzaldehyde 256 was accomplished by reacting 261 with one equivalent of 

benzyl bromide and excess potassium carbonate in �,�-dimethylformamide at 60 °C 

for 24 hours. The desired product was isolated in 94% yield and its structure was 

confirmed by analysis of the 1H NMR spectrum with the benzylic protons appearing 

as a singlet at δ = 4.94 ppm. 
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Scheme 117. Formation of aldehyde 256 
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2.5.3 Formation of Imine (R)-262 

 

The formation of imine (R)-262 from the dehydration of 2-(benzyloxy)-3,5-

dimethylbenzaldehyde 256 with (R)-2-amino-2-phenylethanol 237 proceeded in 98% 

yield. The imine (R)-262 was detected by the presence of a singlet at δ = 8.64 ppm in 

its 1H NMR spectrum. 
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Scheme 118. Formation of the imine (R)-262 from the reaction of aldehyde 256 and (R)-2-amino-
2-phenylethanol 237 

 

2.5.4 Diastereoselective Addition of Alkyl Lithium to Imine 
(R)-262 

 

The addition of methyl lithium, iso-propyl lithium and tert-butyl lithium to imine 

(R)-262 gave the corresponding amines (R,R)-263a-c (Scheme 119, Table 44). For 

both the addition of methyl lithium and iso-propyl lithium the product was isolated 

in good diastereomeric excess (94% and 91% de respectively, entries 1 and 2). 

However for the addition of tert-butyl lithium the diastereomeric excess of the 

isolated product dropped to 85%, which was not improved after repeated purification 

by column chromatography (entry 3). Given the lower de of amine 263c it was 

decided not to take this substrate on through further synthesis. 
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Scheme 119. Diastereoselective addition of alkyl lithium to imine (R)-262 
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Table 44 

Entry R Product Yield /% dea /% 

1 Me 263a 49 94 

2 i-Pr 263b 60 91 

3 t-Bu 263c 55 85 

a Diastereomeric excess of products after column chromatography 

 

2.5.5 Oxidative Cleavage of Amines (R,R)-263a and (R,R)-263b 

 

The cleavage of the 2-phenyl ethanol auxiliary with lead (IV) acetate had been 

shown to be an efficient and effective method to deliver chiral primary amines. For 

example, Pridgen and co-workers had shown that lead (IV) acetate followed by acid 

hydrolysis was successful in the deprotection of α-amino alcohol (R,R)-239.141 

Treatment of (R,R)-239 with lead (IV) acetate for 10 minutes, lead to the formation 

of imine (R)-264, which was immediately hydrolysed, without further purification, 

with 3M hydrochloric acid to yield (R)-1-phenylethylamine 240 in 50% yield 

(Scheme 120). 
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Scheme 120. Deprotection of (R,R)-239 using lead (IV) acetate 

 

The application of these conditions to secondary amine (R,R)-263a, resulted in the 

formation of amine (R)-255a in 59% yield. Its structure was confirmed by 1H NMR 

spectroscopy which showed an absence of signals relating to the 2-phenyl ethanol 

auxiliary or the imine formed after the first step. Analysis of the IR spectrum 

revealed there to be two absorptances at 3367 and 3299 cm-1 corresponding to the 

two primary amine N-H stretches. 
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Scheme 121. Deprotection of amine (R,R)-263a using lead (IV) acetate 
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Similarly for amine (R,R)-263b treatment with lead (IV) acetate followed by acid 

hydrolysis yielded the amine (R)-255b in 63% yield. The 1H NMR spectrum 

confirmed its structure, with the two methyl groups of the iso-propyl unit appearing 

as doublets at δ = 1.03 ppm and δ = 0.83 ppm. Again analysis of the IR spectrum 

confirmed the presence of the amine functionality with two stretch absorptances at 

3376 and 3310 cm-1. 
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Scheme 122. Deprotection of amine (R,R)-263b using lead (IV) acetate 

 

The mechanism of the oxidative cleavage of α-amino alcohols 263a-b is shown in 

Scheme 123. Initially, the lead (IV) acetate chelates to the alcohol and amine to form 

a 5-member cyclic intermediate which then undergoes elimination to afford the 

desired imine and formaldehyde. The imine is then hydrolysed by the hydrochloric 

acid to liberate the amine (as the hydrochloride salt) and benzaldehyde.  
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Scheme 123. Mechanism of the oxidative cleavage of α-amino alcohol (R,R)-263a or (R,R)-263b 
with lead (IV) acetate 
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2.6 SYNTHESIS OF CHIRAL LIGAND (R)-254A 
 

2.6.1 Attempted Formation of Amine (R)-266b via a Two Step 
Reductive Amination 

 

Previous work within the SDB group had shown that tertiary amine (R)-235 could be 

synthesised from the primary amine (R)-232 via a two step reductive amination 

protocol. Treatment of amine (R)-232·HCl with triethylamine yielded the free base in 

situ, followed by addition of one equivalent of 2-methoxybenzaldehyde 233 and 1.4 

equivalents of sodium triacetoxyborohydride. This afforded secondary amine 

(R)-234 in 88% yield. The secondary amine was then further treated with 

2-methoxybenzaldehyde and triacetoxyborohydride, in the presence of a catalytic 

amount of acetic acid, to yield tertiary amine (R)-235 in 61% yield. 
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88% yield

(R)-235

61% yield

NaBH(OAc)3
AcOH, DCE

OMe

NH2•HCl
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Scheme 124. Formation of tertiary amine (R)-235 from primary amine (R)-232·HCl 

 

It was therefore decided to apply these conditions to the synthesis of ligand (R)-266b 

using primary amine (R)-255b. Thus, amine (R)-255b was treated with 1 equivalent 

of 2-(benzyloxy)-3,5-dimethylbenzaldehyde 256 and 1.4 equivalents of 

triacetoxyborohydride (Scheme 125). After column chromatography the secondary 

amine (R)-265b was isolated in 80% yield. The product was identified by the 

presence of a singlet corresponding to the newly formed benzylic methylene group at 

δ = 3.72 ppm. 
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Scheme 125. Reductive amination of amine (R)-255b 

 

In an attempt to form the tertiary amine (R)-266b, secondary amine (R)-265b was 

further treated with aldehyde 256 and sodium triacetoxyborohydride with a catalytic 

amount of acetic acid added. However, these conditions were found to be ineffective 

with no tertiary amine formed after 48 hours, with only the competing reaction 

involving the reduction of the aldehyde predominating, albeit very slowly. 

 

2.6.2 Alternative Strategy for the Synthesis of Amines (R)-254a 
and (R)-254b  

 

Since the reductive amination approach proved unsuccessful to produce the tertiary 

amine (R)-254b an alternative strategy was required. One alternative was a potential 

bisalkylation strategy, where the primary amine (R)-255a,b was reacted with two 

equivalents of a benzyl bromide analogue of 2-(benzyloxy)-3,5-

dimethylbenzaldehyde 267. 
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Scheme 126. Retrosynthesis analysis of ligands (R)-254a and (R)-254b 

 

2.6.3 Preparation of Benzyl Bromide 267 

The benzyl bromide 267 could be synthesised in very high yields from 

2-(benzyloxy)-3,5-dimethylbenzaldehyde 256 via the alcohol 268. Thus, aldehyde 

256 was treated with 1.4 equivalents of sodium borohydride in ethanol to yield 
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(2-benzyloxy)-3,5-dimethylphenyl)methanol 268 in 99% after 4 hours. The product 

was identified by 1H NMR spectroscopy by the absence of the aldehyde resonance 

seen in the starting material and from the singlet at δ = 4.62 ppm corresponding to 

the newly formed methylene group. 
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Scheme 127. Formation of benzyl bromide 267 from aldehyde 256 

 

The benzyl bromide 267 could be easily prepared from the benzyl alcohol 268 by 

reacting with 1.1 equivalents of phosphorus tribromide. The product was isolated in 

97% yield with no further purification required. Overall the benzyl bromide 267 was 

obtained from the aldehyde 256 in 96% yield over the two steps and could be 

prepared on a multi-gram scale. 

 

2.6.4 Formation of Amines (R)-266a and (R)-266b via a 
Bisbenzylation Reaction 

 

It was decided to test the bisbenzylation protocol on a model system of 

α-methylbenzylamine 269 and bromide 267, before using any precious chiral amine. 

Thus, a solution of racemic α-methylbenzylamine 269 in DMF was treated with two 

equivalents of benzyl bromide 267 and potassium carbonate. Pleasingly, after 20 

hours, analysis of the crude product by 1H NMR spectroscopy revealed that the 

desired tertiary amine had been formed together with the secondary amine in a ratio 

of ca. 3:1. The desired tertiary amine was isolated after column chromatography in 

31% yield. Its structure was confirmed by resonances at δ = 3.79 ppm and δ = 3.53 

ppm corresponding to the new benzylic methylene protons group which were 

equivalent to four protons. 
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Scheme 128. Bisbenzylation tested on model substrate 269 

 

For the bisbenzylation of (R)-255a with two equivalents of bromide 267, the 

progress of the reaction was monitored by TLC. It was found that an additional 0.5 

equivalents of bromide 267 and a reaction time of 48 hours were required to get the 

reaction to go to completion. After column chromatography the tertiary amine 

(R)-266a was isolated in 57% yield (Scheme 129). The structure of the product was 

confirmed by 1H NMR spectroscopy, with two resonances corresponding to the new 

benzylic methylene group (δ = 3.72 ppm and δ = 3.61 ppm) which were equivalent 

to four protons (Figure 44). Four sets of singlets were observed for the ortho- and 

para-methyl groups at δ = 2.18 ppm (equivalent to 3 protons), δ = 2.17 ppm (6 

protons), δ = 2.14ppm (3 protons) and δ = 2.10 ppm (6 protons). 
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Scheme 129. Formation of tertiary amine (R)-266a 
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Figure 44. 1H NMR (CDCl3) of the tertiary amine (R)-266a 

 

Similarly for the formation (R)-266b, primary amine (R)-255b was reacted with a 

total of 2.5 equivalents of bromide 267 over 48 hours to yield the tertiary amine in 

54% yield (Scheme 130). Analysis of the 1H NMR spectrum showed resonances at δ 

= 3.70 ppm and δ = 3.56 ppm corresponding to the new benzylic methylene protons 

group (Figure 45). 
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Scheme 130. Formation of tertiary amine (R)-266b 
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Figure 45. 1H NMR (CDCl3) of the tertiary amine (R)-266b 

 

2.6.5 Deprotection of Tertiary Amines (R)-266a and (R)-266b 

 
The hydrogenation of amine (R)-266a with 10% palladium on carbon in ethyl acetate 

under one atmosphere of hydrogen proceeded smoothly to deliver the chiral ligand, 

(R)-�,�-bis(2-(hydroxy)-3,5-dimethylbenzyl)-1-(2-(hydroxy)-3,5-dimethylphenyl) 

ethylamine 254a in 98% yield (Scheme 131). The chiral ligand was identified by the 

presence of two resonances in the 1H NMR spectrum corresponding to the benzylic 

methylene group (δ = 3.87 ppm and δ = 3.51 ppm) which were now equivalent to 

four protons (Figure 46). The methine proton adjacent to the chiral methyl group 

appeared as a quartet at δ = 4.34 ppm. The three phenolic protons were observed as a 

broad singlet at δ = 4.49 ppm. High resolution mass spectrometry identified the 

molecular mass of [M+H]+ as 434.2693 (C28H36NO3 requires 434.2690). In the low 

resolution spectrum there were signals at 434 for the molecular ion and at 286 

corresponding to the molecular ion with loss of the chiral arm. 
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Scheme 131. Hydrogenolysis of tertiary amine (R)-266a to give chiral ligand (R)-254a 
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Figure 46. 1H NMR (CDCl3) spectrum of chiral ligand (R)-254a 

 

In an attempt to isolate the chiral ligand (R)-254b, tertiary amine (R)-266b was 

subjected to the same hydrogenation conditions. Unfortunately, whilst the benzyl 

groups were successfully cleaved as shown by the 1H NMR spectrum of the crude 

product, a number of other products were also observed (Scheme 132). Even after 

repeated attempts at the reaction and numerous attempts to purify the crude mixture 

by column chromatography the desired product (R)-254b could never be isolated.  
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Scheme 132. Attempted formation of chiral ligand (R)-254b 

 

A number of observations suggested that the chiral ligand was unstable and readily 

decomposed. Monitoring the hydrogenation reaction by TLC showed that it went 

from the one spot of starting material to one spot of assumed product. After filtration 

of the reaction solution through Celite® and concentration under reduced pressure, 

another TLC was run which showed that many products were now present, which 

was confirmed by 1H NMR analysis. Similarly, in an attempt to purify the crude 

product by flash chromatography, the spot relating to the product could be isolated. 

However after concentration of those fractions any subsequent TLC of the isolated 

product appeared identical to a pre-column sample. A possible mechanism for this 

decomposition is shown in Scheme 133. Following protonation of the ligand 

(R)-254b (possibly by the phenolic proton of another ligand) to give the quaternary 

ammonium ion A, secondary amine B is eliminated to give intermediate C. 

Following rearrangement of intermediate C, alkene D is formed. The reason this 

process occurs with ligand (R)-254b and not ligand (R)-254a could be due to the 

increase in steric strain the iso-propyl group introduces to the protonated ligand 

(R)-254b compared with the corresponding protonated form of ligand (R)-254a. 
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Scheme 133. Possible mechanism for the decomposition of ligand (R)-254b 
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2.7 CONCLUSION 
 

The chiral ligand (R)-254a was synthesised via the protocol described in Scheme 

134. The synthesis involved asymmetric addition to imine (R)-262 followed by 

deprotection of amine (R,R)-263a with lead (IV) acetate. Bisbenzylation of primary 

amine (R)-255a with the benzyl bromide 267 lead to tertiary amine (R)-266a. The 

chiral ligand (R)-254a was obtained following deprotection by hydrogenolysis. The 

chiral ligand was synthesised in 16% overall yield.  
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Scheme 134. Overall synthesis of ligand (R)-254a 
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3 Results and Discussion II 
 

3.1 FORMATION OF TITANIUM TRIS(PHENOLATE) 
ISO-PROPOXIDE COMPLEX (R,M)-2712 

 

Having successfully synthesised the pseudo-C3-symmetric ligand (R)-254a, attention 

was then turned to coordinating it to titanium (IV) iso-propoxide. The treatment of 

ligand (R)-254a in toluene with titanium (IV) iso-propoxide followed by removal of 

the solvent gave the crude product as an orange/red solid. Initial attempts at isolating 

(R,M)-271 proved unsuccessful with complex mixtures of products obtained, further 

attempts at purifying by recrystallisation also being unsucessful. Eventually a small 

amount of reasonably pure product was obtained without the need for further 

purification (Scheme 135). 
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Scheme 135. Coordination of pseudo-C3-symmetric ligand (R)-254a to Ti(Oi-Pr)4, giving rise to 
titanium tris(phenolate) complex (R,M)-271 

 

The structure of the complex was analysed spectroscopically, with the iso-propoxide 

ligand showing a doublet at δ = 1.53 ppm and a septet at δ = 5.24 ppm in the 1H 

NMR spectrum (Figure 47). Most notably, the resonances corresponding to the 

benzylic protons of the tripodal ligand were now much more complex than when 

compared to the corresponding parent amine tris(phenolate) titanium iso-propoxide 

(rac)-194b.104, 130 In the 1H NMR spectrum of (rac)-194b the diastereotopic benzylic 

protons appeared as two broad doublets at δ = 2.75 ppm and δ = 3.89 ppm. In 

comparison, the five benzylic protons of the tripodal ligand in (R,M)-271 now 

appeared as a quartet and four doublets (two partially overlapped) between δ = 4.06 

ppm and δ = 3.07 ppm (Figure 48). These signals were ascribed to the three 

                                                 
2 This work was conducted in collaboration with Miss Carly J. Gilfillan 
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pseudoequatorial benzylic protons (appearing as a quartet at δ = 4.00 ppm, and two 

doublets at δ = 3.74 ppm and δ = 3.54 ppm) and two pseudoaxial benzylic protons 

(appearing between δ = 3.22 and 3.07 ppm). This indicated that the proposed chiral 

relay strategy was successful in controlling the propeller-like conformation of the 

ligand. 
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Figure 47. 1H NMR (CDCl3) spectrum of titanium complex (R,M)-271 
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Figure 48. Expansion of 1H NMR of titanium complex (R,M)-271 showing the benzylic region 

 

In an attempt to obtain a crystalline sample of (R,M)-271 a solution of the complex 

in hexane was allowed to stand for two weeks, after which time, crystals that were 

3.13.23.33.43.53.63.73.83.94.04.1 ppm
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suitable for X-ray analysis were obtained. It was found that these contained both the 

complex (R,M)-271 co-crystallised with a partially hydrolysed trimetallic amine 

tris(phenolate)-oxo-alkoxide complex (Figure 49). In the crystal, there was no 

intermolecular interaction between these two components. For (R,M)-271, the crystal 

structure agreed with what had been observed in the solution phase, with the 

configuration of the C(1) (R)-stereocentre serving to lock the axial chirality of the 

complex into the (M)-isomer such that the α-methyl group occupies its predicted 

pseudoaxial orientation. In the solid state this is disordered over the three possible 

sites. Most of the key structural parameters are similar to those observed for 

(rac)-194b,104, 130 with the bonds between the titanium atom and the three phenolate 

oxygen atoms in (R,M)-271 being of similar lengths [Ti-O(phenolate) distances (Å): 

Ti(1)-O(1) 1.841(6), Ti(1)-O(2) 1.844(6), Ti(1)-O(3) 1.853(6)]. The bond angles 

between the three phenolate oxygens are also similar to one another [bond angles 

between phenolate oxygen atoms (°): O(1)-Ti(1)-O(2) 116.4(3), O(2)-Ti(1)-O(3) 

118.3(3), O(3)-Ti(1)-O(1) 119.9(3)]. The axial sites of the trigonal bipyramidal 

titanium centre were occupied by the apical nitrogen and the monodentate iso-

propoxide anion, with a Ti-N bond length of 2.411(7) Å and a Ti-Oi-Pr distance of 

1.763(6) Å, and a bond angle between N(1)-Ti(1)-O(4) of 178.3(3)°. This is 

compared to a Ti-N bond length of 2.303(2) Å and a Ti-Oi-Pr distance of 1.774(2) Å 

found in the crystal structure of (rac)-194b. In both cases the titanium atom sits the 

same distance above the plane of the three equatorial phenolate oxygen atoms [the 

distance of the Ti atom above the plane of the three phenolate O atoms is 0.2497(16) 

Å for (R,M)-271 and 0.247(1) Å for (rac)-194b]. The observed differences in Ti-N 

bond lengths means there is a reduction in the tilt of the aryl rings (as defined by the 

average angle between the aryloxide planes and the Ti-N bond vector) from 15º for 

(rac)-194b to 4º for (R,M)-271.  

 

The second component within the structure consisted of a trimetallic adduct of two 

(R,M)-271 bridged by a Ti(O)(Oi-Pr)2 fragment, which presumably resulted from the 

incomplete reaction and slow hydrolysis of (R,M)-271. Both Ti(2) and Ti(3) are 

six-coordinate via the µ3-oxo atom, O(13) of the central unit and one arm of each 

tripodal ligand bridged to the central Ti centre. This binding mode caused one arm of 

the tripodal ligand to ‘flip’ thereby reducing the symmetry of the system. This was 

observed with unequal angles between the three phenolate oxgyens and each 
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titanium centre [bond angles between phenolate oxygen atoms (°): O(6)-Ti(2)-O(7) 

162.7(19), O(5)-Ti(2)-O(7) 90.6(2), O(6)-Ti(2)-O(5) 98.0(2) and O(11)-Ti(3)-O(10) 

161.7(19), O(9)-Ti(3)-O(10) 90.3(19), O(11)-Ti(3)-O(9) 99.0(2)]. 

 

a b 

 

c 

Figure 49. Side and top views of the X-ray crystal structure of (R,M)-271 (a and b) and the 
co-crystallised trimetallic amine (trisphenolate)-oxo-alkoxide complex (c) 
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3.2 FORMATION OF TITANIUM TRIS(PHENOLATE) TRIFLATE 
COMPLEX (R,M)-2723 

 

The titanium tris(phenolate) iso-propoxide complex (R,M)-271 was converted to the 

corresponding titanium tris(phenolate) triflate complex (R,M)-272 by treatment with 

trimethylsilyltriflate (Scheme 136). The structure of the complex was analysed by 1H 

NMR with the resonances corresponding to the iso-propoxide ligand of (R,M)-271 

no longer present (Figure 50). The signals for the benzylic protons of the tripodal 

ligand again appeared as a quartet and four doublets (two partially overlapped) 

between δ = 4.17 ppm and δ = 3.30 ppm. As before, the quartet at δ = 4.11 ppm was 

ascribed to the pseudoequatorial methine benzylic proton adjacent to the methyl 

substituent. The two doublets at δ = 3.88 ppm and δ = 3.67 ppm were due to the 

other two pseudoequatorial benzylic protons. The resonances for the two pseudoaxial 

benzylic protons were observed between δ = 3.49 ppm and δ = 3.30 ppm. A doublet 

at δ = 1.60 ppm corresponded to the pseudoaxial methyl substituent. The ortho- and 

para-methyl groups on the aryl rings appeared as singlets at δ = 2.29, 2.26, 2.24, 

2.24, 2.23 and 2.21 ppm. In the 13C NMR spectrum there were signals at δ = 55.1, 

54.3 and 51.3 ppm which corresponded to the three benzylic carbons. High 

resolution mass spectrometry identified the molecular mass of [M]+ as 627.1375 

(C29H32F3NO6STi requires 627.1376). 
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Scheme 136. Formation of titanium tris(phenolate) triflate complex (R,M)-272 

 

                                                 
3 This work was conducted in collaboration with Miss Carly J. Gilfillan 
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Figure 50. 1H NMR (CDCl3) spectrum of titanium complex (R,M)-272 

 

3.3 INITIAL SCREENING OF THE CHIRAL TITANIUM 
COMPLEXES OF (R,M)-271 AND (R,M)-272 

 

Having prepared a small quantity of both (R,M)-271 and (R,M)-272, the next goal 

was to screen these complexes in a number of organic transformations. Therefore, it 

was decided to screen reactions where the corresponding racemic titanium catalyst 

(rac)-195a had shown appreciable activity. 

 

3.3.1 Diethyl Zinc Addition to Benzaldehyde 

 

In 1997, Chan and co-workers reported the enantioselective addition of diethyl zinc 

to aromatic aldehydes catalysed by (S)-H8-BINOL 273 and titanium (IV) 

iso-propoxide (Scheme 137).145 With a 7:1 ratio of titanium (IV) iso-propoxide to 

(S)-H8-BINOL 273, the addition of diethyl zinc was found to give the desired 

products in excellent conversion and enantioselectivity (up to 98% ee) after 5 hours 

at 0 °C. For example, the addition of diethyl zinc to benzaldehyde 274a resulted in 

(S)-1-phenylpropan-1-ol 275a in 100% conversion and 98% ee (Table 45, entry 1). 

A lower enantioselectivity was observed with 2-bromobenzaldehyde (85% ee), 
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possibly due to the steric hindrance that the ortho-substituent exerted upon 

coordination to the metal (entry 2). The introduction of an electron-withdrawing 

group (-NO2) at the meta-position also resulted in a decreased enantioselectivity for 

the product (88% ee, entry 4). Excellent enantioselectivities were also obtained for 

1-naphthaldehyde 274g and 2-naphthaldehyde 274h (98% ee and 95% ee, entries 7 

and 8 respectively). 

R H

O

OH
OH

(S)-H8-BINOL 273
Ti(Oi-Pr)4

DCM, 0 °C

+ Et2Zn

R

OH

274a-h (S)-275a-h  
Scheme 137. Enantioselective addition of diethyl zinc to aromatic aldehydes catalysed by 
(S)-H8-BINOL 273 and Ti(Oi-Pr)4 

 

Table 45 

Entry Product R Conversion /% ee /% 

1 275a C6H5 100 98 

2 275b 2-Br(C6H4) 98 85 

3 275c 3-MeO(C6H4) 100 96 

4 275d 3-NO2(C6H4) 100 88 

5 275e 4-Cl(C6H4) 89 97 

6 275f 4-MeO(C6H4) 99 97 

7 275g 1-Naphthyl 100 98 

8 275h 2-Naphthyl 100 95 

 

Given the number of reports on the enantioselective addition of diethyl zinc to 

aromatic aldehydes by complexes of titanium,146 it was decided to screen both the 

racemic titanium iso-propoxide complex (rac)-194b and the chiral titanium complex 

(R,M)-271 in this transformation (Scheme 138, Table 46). Treatment of a solution of 

(rac)-194b with diethyl zinc at room temperature followed by benzaldehyde 274a at 

0 °C resulted in the crude product. Analysis of the 1H NMR spectrum of the crude 

product revealed that the reaction had gone to 54% conversion (entry 1). Column 

chromatography afforded the product 1-phenyl propanol 275a as a yellow oil in 29% 

yield. Repeating the reaction with (R,M)-271 afforded the product in 45% conversion 
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and 20% yield (entry 2). The enantioselectivity of this product was determined by 

chiral HPLC analysis to be 0% ee. Given the low conversions obtained with these 

two catalysts, it was decided to run a reaction under identical conditions but without 

the addition of either of the complexes to ensure that these were indeed showing 

catalytic activity. Under these conditions the alcohol product was formed in trace 

amounts (entry 3).  

Ph

O

H

Et2Zn, catalyst

DCM Ph

OH

274a 274b  
Scheme 138. Diethyl zinc addition to benzaldehyde 274a 

 

Table 46 

Entry  Catalyst Conversion /% Isolated yield /% ee /% 

1 (rac)-194b (20mol %) 54 29 0 

2 (R,M)-271 (20mol %) 45 20 0 

3 none trace  - - 

4 (R)-254a (20mol %) trace - - 

5 (R,M)-272 (20mol %) 57 32 0 

 

The reaction was also attempted with just the chiral ligand (R)-254a as the catalyst. 

However, analysis of the crude reaction mixture by 1H NMR once again revealed 

that almost no product was present (entry 4). Finally, the chiral titanium triflate 

complex (R,M)-272 was also screened in the transformation. The product was 

obtained in 57% conversion and 32% isolated yield (entry 5). Again analysis of the 

alcohol product showed it to be racemic. 

 

As a comparison, the addition of diethyl zinc to benzaldehyde 274a was performed 

with (S)-BINOL 13 and titanium (IV) iso-propoxide as reported by Chan and co-

workers.147 Thus, treatment of a solution of 20mol % of BINOL and 140mol % of 

titanium (IV) iso-propoxide in dichloromethane with diethyl zinc followed by 

benzaldehyde gave the crude product in 86% conversion (Scheme 139). Following 

purification by column chromatography the product 275a was isolated in 70% yield. 

Analysis by chiral HPLC showed the enantiomeric excess to be 77% in favour of the 

(S)-enantiomer. Whilst this result is somewhat lower than was reported by Chan and 
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co-workers (100% conversion, 92% ee),147 it does compare favourably to results 

reported by Nakai et al.,148 that under similar conditions they obtained the product in 

98% yield and 84% ee. 

Ph H

O

OH
OH

(S)-BINOL 13
Ti(Oi-Pr)4

DCM, 0 °C

+ Et2Zn

Ph

OH

274a (S)-275a

70% yield
77% ee  

Scheme 139. Addition of diethyl zinc to benzaldehyde 274a catalysed by (S)-BINOL 13 and 
Ti(Oi-Pr)4 

 

3.3.2 Aza-Diels Alder Reaction 

 

In 1993, Yamamoto et al. reported the enantioselective aza-Diels Alder reaction of 

benzylidenebenzylamine 204a with Danishefsky’s diene 205 catalysed by metal 

complexes of (R)-BINOL 13 to give �-benzyl-2,3-dihydro-2-phenyl-4-pyridinone 

206a (Scheme 140).149 Initial screening with various metal sources revealed that 

whilst complexes of aluminium and titanium did catalyse the reaction, use of borane 

with BINOL gave a superior yield and enantioselectivity (Table 47, entries 1-3). 

Using dimethyl zinc as a metal source failed to catalyse the reaction with no product 

obtained (entry 4). The use of trimethyl borate and triphenyl borate also mediated the 

transformation, with the bulkier aryloxy reagent giving the best result, with the 

product isolated in 75% yield and 82% ee (entries 5 and 6). 

N

O

Ph

Ph

Ph

N Ph

H

OSiMe3

OMe

204a 205

+

(R)-BINOL 13
Mediator metal

DCM, -78 °C

OH
OH

(R)-206a

H

 
Scheme 140. Asymmetric aza-Diels Alder reaction mediated by various metal complexes of (R)-
BINOL 13 
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Table 47 

Entry Mediator metal Yield /% ee /% 

1 BH3 62 72 

2 TiCl2(O
i-Pr)2 20 17 

3 Me3Al 15 12 

4 Me2Zn 0 - 

5 B(OMe)3 42 72 

6 B(OPh)3 75 82 

 

The authors went on to screen a range of imines in the reaction with the chiral 

complex formed from triphenyl borate and (R)-BINOL acting as the catalyst 

(Scheme 141). The reaction was tolerant to a range of imines, with both aromatic 

and non-aromatic groups tolerated at the R1 position (Table 48, entries 1-3). 

Generally, a benzyl type substituent at the R2 position gave better enantioselectivity 

(entries 4-8). 

N

O

R1
R1

N
R2

H

OSiMe3

OMe

276a-h 205

+

B(OPh)3
(R)-BINOL 13

DCM, -78 °C

(R)-277a-h

H
R2

 
Scheme 141. Asymmetric aza-Diels Alder reaction of imines 276a-h with Danishefsky’s diene 205 
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Table 48 

Entry Imine Product Yield /% ee /% 

1 
N

N
Bn

 
277a 71 90 

2 
N

Bn

OMe

MeO

 

277b 89 74 

3 N
Bn

 
277c 45 76 

4 
N

OMe

OMe  
277d 73 85 

5 N

 
277e 97 70 

6 N Ph

Ph

 

277f 0 - 

7 N
Ph

 
277g 77 24 

8 N

 

277h 13 4 

 

Given the success of the amine tris(phenolate) titanium triflate complex (rac)-195a 

in catalysing this transformation to afford racemic pyridones, it was decided to test 

the corresponding chiral titanium triflate complex (R,M)-272. Thus, to a solution of 

�-benzylidenebenzylamine 204a and titanium complex (R,M)-272 in 

dichloromethane at -78 °C was added three equivalents of Danishefsky’s diene 205 

(Scheme 142). Analysis of the crude reaction mixture revealed that the reaction had 

proceeded to give the dihydropyridinone product 206a in 61% conversion. After 

purification by column chromatography the product was isolated as a yellow oil in 

39% yield. The structure of the dihydropyridone 206a was confirmed by 1H NMR 

spectroscopy with doublets at δ = 4.32 ppm and δ = 4.09 ppm corresponding to the 

diastereotopic benzylic protons. Similarly the resonances of the two diastereotopic 

protons adjacent to the carbonyl appeared as a doublets of doublets at δ = 2.82 ppm 

and δ = 2.65 ppm. Analysis of the product by chiral HPLC showed that the product 

had formed in 0% ee. 
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N

O

Ph

Ph

Ph

N Ph

H

OSiMe3

OMe

204a 205

+
(R,M)-272 (20mol %)

DCM, -78 °C to rt

206a

61% conversion
39% yield

0% ee  
Scheme 142. Aza-Diels Alder between N-benzylidenebenzylamine 204a and Danishefsky’s diene 
205 catalysed by (R,M)-272 

 

In analogy to the work of Yamamoto and co-workers,149 the reaction was also 

attempted using the chiral ligand (R)-254a and borane as the metal source. The 

reaction was performed by adding the imine 204a and Danishefsky’s diene 205 to a 

solution of containing the borane and ligand (R)-254a. Disappointingly, analysis of 

the crude reaction mixture revealed that only trace amounts of product had formed 

(Scheme 143). 

N

O

Ph

Ph

Ph

N Ph

H

OSiMe3

OMe

204a 205

+

(R)-254a (20mol %)
BH3•SMe2 (20mol %)

DCM, -78 °C to rt

206a

Trace amounts 
of product  

Scheme 143. Attempted aza-Diels Alder between N-benzylidenebenzylamine 204a and 
Danishefsky’s diene 205 catalysed by borane dimethyl sulfide and chiral ligand (R)-254a 

 

3.4 SYNTHESIS OF CHIRAL LIGAND (R)-278 
 

Given that the complex derived from the dimethyl substituted ligand (R)-254a had 

not shown any enantioselectivity in the initial screening it was decided that the 

synthesis of the analogous di-tert-butyl substituted ligand would be undertaken. It 

was hoped that the introduction of these bulkier substituents at the ortho position 

would improve the relay of the chirality of the complex to the upper hemisphere 

where coordination of a substrate would occur. It was planned that the synthesis of 

the chiral ligand (R)-278, which has tert-butyl groups at the ortho and para positions 

of the aryl ring, would follow a similar strategy to the synthesis of the ligand 

(R)-254a (Scheme 144). Therefore, in order to synthesise the chiral ligand, it was 

first necessary to produce the chiral primary amine (R)-279 via the diastereoselective 

addition of methyl lithium to its corresponding imine. 
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+

OBn

Br
2 x
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t-Bu

t-Bu
OH Me

N

OH

HO

t-Bu

t-Bu

t-Bu t-Bu

t-Bu

t-Bu

280(R)-278 (R)-279  
Scheme 144. Retrosynthetic analysis of ligand (R)-278 

 

3.4.1 Synthesis of Aldehyde 282 and Imine (R)-283 

 

The benzyl protection of commercially available 3,5-di-tert-butyl-2-

hydroxybenzaldehyde 281 was achieved by reacting with benzyl bromide in the 

presence of potassium carbonate in �,�-dimethylformamide (Scheme 145). The 

product 2-(benzyloxy)-3,5-di-tert-butylbenzaldehyde 282 was isolated in 99% yield 

with its structure confirmed by the resonance at δ = 5.08 ppm in the 1H NMR 

spectrum corresponding to the benzylic methylene group. 

OBn

H

O

t-Bu

t-Bu

OH

H

O

281

t-Bu

t-Bu

Br

K2CO3

DMF, 60 °C

282

99% yield  
Scheme 145. Formation of aldehyde 282 

 

The imine (R)-283, formed from the reaction of aldehyde 282 with (R)-2-amino-2-

phenylethanol 237, proceeded to give the desired imine (R)-283 in 92% yield 

(Scheme 146). The presence of a singlet (δ = 8.73 ppm) in the 1H NMR spectrum 

corresponded to the methine proton of the imine moiety. An absorption at 1632 cm-1 

in the infrared spectrum was also observed which corresponds to the imine stretch. 

OBn

H

O OBn

N

H

OH

Ph

H2N

Ph
OH

(R)-283

92% yield

(R)-237

EtOH

4Å MS
+

t-Bu

t-Bu

t-Bu

t-Bu

282

 
Scheme 146. Formation of imine (R)-283 
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3.4.2 Diastereoselective Addition of Methyl Lithium to Imine 
(R)-283 

 

For the addition to imine (R)-283, methyl lithium was added to a solution of (R)-283 

at -85 °C. After column chromatography the product (R)-2-((R)-1-(2-(benzyloxy)-

3,5-di-tert-butylphenyl)ethylamino)-2-phenylethanol 284 was isolated in a 

diastereomeric excess of >95% and a yield of 44%. The presence of the methyl 

group was indicated by the doublet at δ = 1.46 ppm in the 1H NMR spectrum. High 

resolution mass spectrometry identified the molecular mass of [M+H]+ as 460.3209 

(C31H42NO2 requires 460.3210). 

 

OBn

N

H

OH

Ph OBn

N
H

Me

OH

Ph

MeLi

THF, -85 °C

(R)-283 (R,R)-284

>95% de
44% yield

t-Bu

t-Bu

t-Bu

t-Bu

 
Scheme 147. Diastereoselective addition of methyl lithium to imine (R)-284 

 

3.4.3 Oxidative Cleavage of Amine (R,R)-284 

 

The cleavage of the 2-phenyl ethanol auxiliary from amine (R,R)-284 with lead (IV) 

acetate following the conditions of Pridgen and co-workers, gave the desired primary 

amine (R)-279 in 66% yield (Scheme 148). Its structure was confirmed by 1H NMR 

spectroscopy which showed an absence of signals relating to the 2-phenyl ethanol 

auxiliary or the imine formed after the first step. Analysis of the IR spectrum 

revealed there to be two absorptions at 3379 and 3305 cm-1 corresponding to the two 

primary amine N-H stretches. 

OBn

N
H

Ph

OH

Me OBn Me

NH2

Pb(OAc)4

DCM/MeOH

OBn

N

Me Ph

H
t-Bu

t-Bu

t-Bu

t-Bu

t-Bu

t-Bu

(i) 3M HCl/THF

(ii) 2M NaOH/Et2O

(R,R)-284 (R)-279

66% yield  
Scheme 148. Deprotection of amine (R,R)-284 using lead (IV) acetate 
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3.4.4 Preparation of Benzyl Bromide 280 

 

The benzyl bromide 280 was prepared from the aldehyde 282 via the corresponding 

alcohol 285. Thus, aldehyde 280 was treated with 1.4 equivalents of sodium 

borohydride in ethanol to yield (2-(benzyloxy)-3,5-di-tert-butylphenyl)methanol 285 

in 98% after 4 hours (Scheme 149). The structure of the product was confirmed by 
1H NMR spectroscopy, with a resonance observed at δ = 4.81 ppm corresponding to 

the newly formed methylene benzylic protons. 

OBn O

H

t-Bu

t-Bu

282

OBn

OH

t-Bu

t-Bu

OBn

Br

t-Bu

t-Bu
NaBH4

EtOH

PBr3

Et2O

285

98% yield

280

95% yield  
Scheme 149. Formation of the benzyl bromide 280 

 

The alcohol 285 was converted to the bromide 280 by treatment with phosphorus 

tribromide. The product was isolated in 95% yield without the need for further 

purification. The 1H NMR spectrum showed the resonance relating to the methylene 

benzylic protons was now observed at δ = 4.62 ppm. The benzyl bromide 280 was 

obtained in 93% overall yield from the aldehyde 282. 

 

3.4.5 Formation of the tertiary amine (R)-286 

 

Following the conditions that had successfully given the tertiary amines (R)-266a 

and (R)-266b (See Section 2.6.4), amine (R)-279 was reacted with 2.5 equivalents of 

benzyl bromide 280 in the presence of potassium carbonate for 48 hours. After this 

time, analysis of the crude mixture by 1H NMR analysis revealed that the reaction 

had not gone to completion, with both the tertiary amine (R)-286 and the secondary 

amine (R)-287 present in a ratio of ca. 2:1 (Scheme 150). It was reasoned that the 

increased steric bulk that the tert-butyl groups provided was to account for the 

incomplete reaction. 
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Scheme 150. Formation of tertiary and secondary amines (R)-286 and (R)-287 

 

It was found that the reaction of amine (R)-279 with 3.5 equivalents of bromide 280 

and five equivalents of potassium carbonate in the presence of one equivalent of 

potassium iodide was needed to force the reaction to completion (Scheme 151). The 

presence of the potassium iodide presumably allowed for a Finkelstein reaction to 

occur, where an equilibrium exchange of the benzylic bromide with the iodide was 

initiated. After 48 hours under these conditions no secondary amine was observed by 

analysis of the crude reaction mixture by TLC or 1H NMR spectroscopy. Following 

purification by column chromatography the desired tertiary amine (R)-286 was 

isolated in 64% yield. The 1H NMR spectrum confirmed its structure with two 

resonances (δ = 3.75 ppm and δ = 3.62 ppm) corresponding to the two new benzylic 

methylene protons (Figure 51). Four sets of singlets were observed for the ortho- 

and para-tert-butyl groups at δ = 1.28 ppm (equivalent to 18 protons), δ = 1.26 ppm 

(9 protons), δ = 1.19 ppm (9 protons) and δ = 1.18 ppm (18 protons). High resolution 

mass spectrometry identified the molecular mass of [M+H]+ as 956.6921 

(C67H90NO3 requires 956.6915). In the low resolution spectrum there were signals at 

957 for the molecular ion and at 649 corresponding to the molecular ion with loss of 

one of the non-chiral arms. 
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Scheme 151. Formation of tertiary amine (R)-286 
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Figure 51. 1H NMR (CDCl3) spectrum of tertiary amine (R)-286 

 

3.4.6 Deprotection of Tertiary Amine (R)-286  

 
The cleavage of the benzyl protecting groups on amine (R)-286, was performed 

under the same conditions as before, with (R)-286 stirred with 10% palladium on 

carbon in ethyl acetate under one atmosphere of hydrogen to give (R)-�,�-bis(2-

(hydroxy)-3,5-di-tert-butylbenzyl)-1-(2-(hydroxy)-3,5-di-tert-butylphenyl)ethyl-

amine 278 in 98% yield (Scheme 152). Its structure was confirmed by 1H NMR 

spectroscopy with two resonances corresponding to the benzylic methylene group 

observed at δ = 3.93 ppm and δ = 3.49 ppm which were equivalent to two protons 

each (Figure 52). The methine proton adjacent to the chiral methyl group appeared 

t-Bu

t-Bu

OBn

N

Me

BnO

t-Bu

t-Bu

OBn

t-But-Bu

(R)-286
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as a quartet at δ = 4.28 ppm. The three phenolic protons were observed as broad 

singlet at δ = 6.59 ppm. High resolution mass spectrometry identified the molecular 

mass of [M+H]+ as 686.5509 (C46H72NO3 requires 686.5507). In the low resolution 

spectrum there were signals at 686 for the molecular ion and at 454 corresponding to 

the molecular ion with loss of the chiral arm. 
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Scheme 152. Cleavage of the benzyl protecting groups of (R)-286 

 

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm

2
7
.
1
9
0

2
6
.
7
1
8

3
.
5
8
7

1
.
9
2
8

1
.
9
0
1

0
.
9
5
5

2
.
0
0
0

1
.
0
4
3

3
.
3
1
4

I
n
t
e
g
r
a
l

 
Figure 52. 1H NMR (CDCl3) spectrum of chiral ligand (R)-278 
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3.5 FORMATION OF TITANIUM COMPLEX (R,M)-2874 
 

The reaction of ligand (R)-278 in toluene with titanium (IV) iso-propoxide followed 

by removal of the solvent gave the crude titanium iso-propoxide complex. After 

recrystallisation from hexane, the analytically pure complex (R,M)-287 was obtained 

as yellow crystals in 65% yield (Scheme 153). Analysis of its structure by 1H NMR 

spectroscopy revealed a quartet and four AB doublets (two partially overlapped) 

between δ = 4.05 ppm and δ = 3.10 ppm (Figure 53). These resonances are similar 

to the ones that were observed for the ortho- and para-methyl substituted complex 

(R,M)-271 (vide supra). The signals were assigned to the two pseudoaxial and three 

pseudoequatorial benzylic protons of the ligand, with NOE spectroscopy establishing 

close proximity between the methyl protons and the two inequivalent pseudoaxial 

benzylic protons (Figure 54). Similarly the aromatic methine protons were also 

inequivalent with all six appearing as singlets between δ = 7.24 ppm and δ = 6.93 

ppm. These observations are consistent with the predicted pseudoaxial orientation of 

the α-methyl group implying that in solution the complex exists as (R,M)-287. 
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Scheme 153. Formation of titanium tris(phenolate) iso-propoxide complex (R,M)-287 

 

                                                 
4 This work was conducted in collaboration with Dr. Matthew  D. Jones 
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Figure 53. 1H NMR (CDCl3) spectrum of titanium complex (R,M)-287 
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Figure 54. Expansion of 1H NMR of titanium complex (R,M)-287 showing the benzylic region 

 

Following recrystallisation from hexane, an X-ray crystal structure of (R,M)-287 was 

obtained and was consistent with the structure inferred in solution by 1H NMR 

spectroscopy (Figure 55). The trigonal bipyramidal titanium centre is shown to be 

sitting centrally with all three phenolate oxygens being of similar lengths 

[Ti-O(phenolate) distances (Å): Ti(1)-O(2) 1.786(2), Ti(1)-O(3) 1.836(2), Ti(1)-O(4) 

1.848(2)]. Similarly the bond angles between the three phenolate oxygens are also 

similar to one another [bond angles between phenolate oxygen atoms (°): 

3.13.23.33.43.53.63.73.83.94.04.1 ppm
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O(3)-Ti(1)-O(2) 116.4(10), O(3)-Ti(1)-O(4) 118.2(10), O(2)-Ti(1)-O(4) 120.6(10)]. 

The axial sites of the trigonal bipyramidal titanium centre are occupied by the apical 

nitrogen and the monodentate iso-propoxide anion, with a Ti-N bond length of 

2.351(2) Å and a Ti-Oi-Pr distance of 1.786(2) Å, and a bond angle between 

N(1)-Ti(1)-O(1) of 179.5(9)°. This is compared to a Ti-N bond length of 2.334(5) Å 

and a Ti-Oi-Pr distance of 1.778(4) Å found in the crystal structure of (rac)-194c. In 

(R,M)-287, the titanium lies 0.2364(6) Å above the plane defined by the three 

oxygen atoms of the phenolate rings. The tilt of the aryl rings (as defined by the 

average angle between the aryloxide planes and the Ti-N bond vector) is 11º. This 

observed tilt of the aryl rings was greater than with (R,M)-271 (the complex formed 

from the dimethyl substituted ligand (R)-254a), which had a tilt of 4º. 

 

 
 

a b 

Figure 55. Side and top views (a and b) of the X ray crystal structure of (R,M)-287 

 

3.6 FORMATION OF TITANIUM COMPLEX (R,M)-2885 
 

Conversion of the titanium tris(phenolate) iso-propoxide complex (R,M)-287 to the 

corresponding titanium tris(phenolate) triflate complex (R,M)-288 was accomplished 

by treating (R,M)-287 with trimethylsilyltriflate. The 1H NMR spectrum of the 

product was similar to that of the starting complex. Notably the signals 

corresponding to the iso-propoxide ligand were no longer present. Again the signals 

for the benzylic protons of the tripodal ligand appeared as a quartet and four doublets 

                                                 
5 This work was conducted in collaboration with Dr. Matthew  D. Jones 
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(two partially overlapped) between δ = 4.15 ppm and δ = 3.40 ppm. As before, the 

quartet at δ = 4.13 ppm was assigned to the pseudoequatorial methine benzylic 

proton adjacent to the methyl substituent. The two doublets at δ = 3.93 ppm and δ = 

3.72 ppm were due to the other two pseudoequatorial benzylic protons. The two 

pseudoaxial benzylic protons were observed as two partially overlapped doublets 

between δ = 3.53 ppm and δ = 3.42 ppm. A doublet at δ = 1.69 ppm corresponded to 

the pseudoaxial α-methyl substituent. The ortho- and para-tert-butyl groups on the 

aryl rings appeared as singlets at δ = 1.45, 1.43, 1.40, 1.31, 1.30 and 1.29 ppm. In the 
13C NMR spectrum there were signals at δ = 55.3, 54.7 and 51.8 ppm which 

corresponded to the three benzylic carbons. High resolution mass spectrometry 

identified the molecular mass of [M]+ as 879.4188 (C47H68F3NO6STi requires 

879.4193). 
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Scheme 154. Formation of titanium tris(phenolate) triflate complex (R,M)-288 
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Figure 56. 1H NMR (CDCl3) spectrum of titanium complex (R,M)-288 

 

3.7 CONCLUSION 
 

The chiral ligand (R)-254a was successfully coordinated to titanium 

tetra-iso-propoxide to give titanium tris(phenolate) iso-propoxide complex 

(R,M)-271, which was also converted to the corresponding titanium tris(phenolate) 

triflate complex (R,M)-272 by treatment with trimethylsilyltriflate. Both these 

complexes showed that the α-methyl substituent was successful in controlling the 

gait of the propeller-like conformation of the ligand. Disappointingly, both 

complexes failed to induce any stereocontrol in the addition of diethyl zinc to 

benzaldehyde 274a or in the aza-Diels Alder reaction of �-benzylidenebenzylamine 

204a and Danishefsky’s diene 205. Consequently, the synthesis of the analogous di-

tert-butyl substituted ligand (R)-278 was completed via the protocol described in 

Scheme 155. As with the synthesis of (R)-254a, the synthesis involved asymmetric 

addition to imine (R)-283 followed by deprotection of amine (R,R)-284 with lead 

(IV) acetate. The ligand precursor (R)-286 was obtained by bisalkylation of the 

primary amine (R)-279 by the benzyl bromide 280. The synthesis of the chiral ligand 

(R)-278 was completed by hydrogenolytic deprotection of (R)-286, with the 

synthesis completed in 17% overall yield. 
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Scheme 155. Overall synthesis of chiral ligand (R)-278 

 

As before, the coordination of ligand (R)-278 to titanium (IV) iso-propoxide gave the 

titanium tris(phenolate) iso-propoxide complex (R,M)-287. Conversion of (R,M)-287 

to its titanium tris(phenolate) triflate complex (R,M)-288 was accomplished by 

treatment with trimethylsilyltriflate. With both these complexes synthesised, the 

screening of these in other organic transformations was then conducted. 
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4 Results and Discussion III 
 

Having successfully synthesised a significant amount of the chiral titanium complex 

(R,M)-288 the next step was to screen the complex as a possible catalyst in a number 

of organic transformations.  

 

4.1 AZA-DIELS ALDER REACTION 
 

As had been shown in the previous chapter (see Section 3.3.2), the 2,4-

dimethylphenol derived ligand-titanium complex (R,M)-272 had been shown to 

catalyse the aza-Diels Alder reaction between �-benzylidenebenzylamine 204a and 

Danishefsky’s diene 205 to give the dihydropyridinone product 206a in 39% yield. It 

was decided to screen the racemic titanium triflate complex (rac)-195b alongside the 

chiral titanium triflate complex (R,M)-288 in this reaction for comparison. Thus, to a 

solution of the imine 204a and catalyst (either (rac)-195b or (R,M)-288) in 

dichloromethane was added three equivalents of Danishefsky’s diene 205. Both 

reactions were conducted at 0 °C and allowed to warm to room temperature 

overnight. After purification, the product was isolated from each of the crude 

mixtures in 60% yield and 41% yield respectively. Chiral HPLC analysis of the 

product 206a obtained with catalyst (R,M)-288 revealed it was racemic. 
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+
(rac)-195b (20mol %)

DCM, 0 °C to rt

206a
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Scheme 156. Aza-Diels Alder between N-benzylidenebenzylamine 204a and Danishefsky’s diene 
205 catalysed by (rac)-195b 

N

O

Ph

Ph

Ph

N Ph

H

OSiMe3

OMe

204a 205

+
(R,M)-288 (20mol %)

DCM, 0 °C to rt

206a

41% yield
0% ee  

Scheme 157. Aza-Diels Alder between N-benzylidenebenzylamine 204a and Danishefsky’s diene 
205 catalysed by (R,M)-288 
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4.2 SULFOXIDATION REACTION 
 

Given that the chiral titanium complexes (R,M)-287 and (R,M)-288 went on to give 

promising results in the enantioselective oxidation of sulfides, there now follows a 

brief literature review on the titanium-catalysed asymmetric sulfoxidation reaction. 

 

4.2.1 Titanium-Catalysed Asymmetric Oxidation of Sulfides 

 

In 1984, two groups independently reported the enantioselective oxidation of 

unsymmetrical sulfides mediated by chiral titanium complexes.150, 151 Both protocols 

used titanium (IV) iso-propoxide and (R,R)-diethyl tartrate 289 in catalytic systems 

based upon the Sharpless reagent for asymmetric epoxidation of allylic alcohols. 

Kagan and co-workers found that employing the standard Sharpless conditions of 

titanium (IV) iso-propoxide, (R,R)-diethyl tartrate 289 and tert-butyl hydroperoxide 

290 (in a ratio of 1:1:2) in the oxidation of methyl-p-tolyl sulfide 291a yielded only 

the racemic sulfoxide product 292a in 41% yield together with the over-oxidised 

sulfone product 293a in 17% yield. However, the combination of titanium (IV) 

iso-propoxide, (R,R)-diethyl tartrate 289, tert-butyl hydroperoxide 290 and water in a 

ratio of 1:2:2:1 gave (R)-methyl-p-tolyl sulfoxide 292a in 90% yield and 91% ee 

(Table 49, entry 1).152  Under these conditions sulfone formation was negligible. A 

number of other aryl methyl sulfides were reacted to give the corresponding 

(R)-sulfoxides in 58-88% yields and 77-90% ee (entries 2 to 5). The variation of the 

alkyl moiety in aryl alkyl sulfides 291f-h gave the products with much lower 

enantioselectivites (7-24% ee), when compared with the analogous aryl methyl 

sulfides (entries 6 and 7 versus entry 1 and entry 8 versus entry 3). The asymmetric 

oxidation of alkyl methyl sulfides 292i-j was also possible under these conditions, 

giving the desired products in moderate enantioselectivities (entries 9 and 10). 
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Scheme 158. Asymmetric oxidation of sulfides 291 to sulfoxides (R)-292 

 

Table 49 

Entry Sulfide R1 R2 Reaction 
conditionsa 

Yield /% ee /% 

1 291a 4-Me(C6H4) Me -20 °C, 4 hb 90 91 

2 291b 4-Br(C6H4) Me -20 °C, 4 h 70 80 

3 291c 2-naphthyl Me -20 °C, 4 h 88 90 

4 291d 4-MeO(C6H4) Me -21 °C, 15 h 58 86 

5 291e 4-NO2(C6H4) Me -20 °C, 60 h 63 77 

6 291f 4-Me(C6H4) 
n-Bu -20 °C, 3 hb 75 20 

7 291g 4-Me(C6H4) Bn -20 °C, 12 hb 40 7 

8 291h 2-naphthyl n-Pr -21 °C, 12 h 78 24 

9 291i cyclohexyl Me -21 °C, 18 h 67 54 

10 291j t-Bu Me -21 °C, 22 h 72 53 

a Reaction conditions: Ti(Oi-Pr)4 (100mol %), (R,R)-DET 289 (100mol %), TBHP 290 (110mol %) 
and H2O (100mol %). b Reaction conditions as in a but with 200mol % of TBHP 290 

 

Similarly, Modena and co-workers reported the asymmetric oxidation of sulfides 291 

using titanium (IV) iso-propoxide, (R,R)-diethyl tartrate 289 and tert-butyl 

hydroperoxide 290 in a ratio of 1:4:2.150 The (R)-sulfoxides 292 were obtained in 

41-99% yield and 14-88% ee. The enantiomeric excess obtained in the oxidation of 

methyl-p-tolyl sulfide 291a (88%) was similar to that obtained by Kagan’s system 

(91% ee).152 
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Scheme 159. Asymmetric oxidation of sulfides 291 to the corresponding (R)-sulfoxides 292 
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Table 50 

Entry Sulfide R1 R2 Reaction 
conditionsa 

Yield /% ee /% 

1 291a 4-Me(C6H4) Me toluene 

-20 °C, 24 h 

46 65 

2 291a 4-Me(C6H4) Me 1,2-dichloroethane 

-20 °C, 14 h 

60 88 

3 291k Ph t-Bu toluene 

-20 °C, 30 h 

99 35 

4 291l 4-Cl(C6H4) CH2CH2OH toluene 

-20 °C, 24 h 

41 14 

5 291m Bn Me DCM 

-77 °C, 24 h 

70 46 

a Reaction conditions: Ti(Oi-Pr)4 (100mol %), (R,R)-DET 289 (400mol %), TBHP 290 (200mol %). 

 

In 1996, Kagan and co-workers discovered that the addition of 4 mol equivalence of 

iso-propanol to the Modena system gave a complex that could be used in catalytic 

quantities.153 In the oxidation of methyl-p-tolyl sulfide 291a by cumyl hydroperoxide 

72, the use of 10mol % of a combination of Ti(Oi-Pr)4/(R,R)-DET/i-PrOH (1:4:4) was 

found to give (R)-methyl-p-tolyl sulfoxide 292a in 77% yield and 96% ee (entry 1). 

The reaction required the presence of 4Å molecular sieves. A number of other aryl 

methyl sulfides reacted to give the corresponding (R)-sulfoxides with >90% ee 

(entries 2-4). The oxidation of benzyl methyl sulfide 292o proceeded in 90% ee 

(entry 5). Also (R)-methyl-n-octyl sulfoxide 292p could be formed in moderate 

enantiomeric excess (71% ee, entry 6), however, this is lower than was obtained with 

the stoichiometric procedure (85% ee).152  
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Scheme 160. Catalytic asymmetric sulfoxidation of sulfides 291 
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Table 51 

Entry Sulfide R1 R2 Yield /% ee /% 

1 291a 4-Me(C6H4) Me 77 96 

2 291m Ph Me 81 91 

3 291d 4-MeO(C6H4) Me 73 92 

4 291n 4-Me(C6H4) Et 68 78 

5 291o Bn Me 72 90 

6 291p n-Octyl Me 69 71 

 

In 1989 Yamamoto et al. reported the application of both 

1,2-bis(2-methoxyphenyl)ethane-1,2-diol 294a and 1,2-bis(4-methoxyphenyl)ethane-

1,2-diol 294b in the titanium catalysed oxidation of thioanisole 291m (Figure 57, 

Scheme 161).154 The reaction was performed in the presence of stoichiometric 

amounts of Ti(Oi-Pr)4/diol/H2O (1:2:1) giving the (S)-sulfoxide product 292m in 

81% yield and 84% ee when diol 294a was used. Interestingly, use of diol 294b 

under identical reaction conditions gave an inversion in the stereochemistry, with 

(R)-sulfoxide 292m obtained in 75% yield and 49% ee. 

HO OH

RR

HO OH* *

(1S,2S)-294a: R = 2-MeO
(1S,2S)-294b: R = 4-MeO
(1R,2R)-294c: R = H

(3S,4S)-295

 
Figure 57. Chiral 1,2-diols 294a-c and 295 
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294b: 75% yield, 49% ee (R)

292m

O

*

 
Scheme 161. Titanium catalysed oxidation of phenyl methyl sulfide 291m 

 

The use of the complex formed from titanium (IV) iso-propoxide, 

(R,R)-diphenylethane-1,2-diol 294c and water in the asymmetric oxidation of aryl 

alkyl and aryl benzyl sulfides was reported by Rosini and co-workers (Scheme 162, 

Table 52).155, 156 Optimum reaction conditions were 5mol % of a combination of 

Ti(Oi-Pr)4/(R,R)-293c/H2O (1:2:20), together with two equivalence of tert-butyl 

hydroperoxide 290 (70% in water) in CCl4 for two hours. Under these conditions 



Chapter 4: Results and Discussion III 

145 
 

(S)-methyl-p-tolyl sulfoxide 292a was obtained in 62% yield and 80% ee, together 

with the undesired sulfone 293a in 8% yield (entry 1). It was found that extending 

the reaction time resulted in the decomposition of the diol together with an increase 

in the formation of sulfone, without raising the yield or enantiomeric excess of the 

sulfoxide product. A number of sulfides were screened, with the oxidation of aryl 

benzyl sulfides 291g, 291q and 291r giving the best results, delivering the 

(S)-sulfoxide in 92-99% ee (entries 4-6). 
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R1
S

R2

O O
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Scheme 162. Asymmetric oxidation of sulfides 291 giving (S)-sulfoxides 292 

 

Table 52 

Entry Sulfide R1 R2 Yield sulfoxide 
/%a 

ee /% 

1 291a 4-Me(C6H4) Me 62 80 

2 291c 2-naphthyl Me 65 73 

3 291d 4-MeO(C6H4) Me 55 69 

4 291g 4-Me(C6H4) Bn 65 98 

5 291q Ph Bn 73 99 

6 291r 4-MeO(C6H4) Bn 60 92 

a Yield of corresponding sulfoxide <10%. 

 

The synthesis and application of (3S,4S)-2,2,5,5-tetramethyl-3,4-hexanediol 295 in 

the titanium catalysed sulfoxidation reaction was reported by Imamoto and 

co-workers.157 The reaction of methyl-p-tolyl sulfide 291a with cumyl 

hydroperoxide 72, in the presence of the titanium complex prepared in situ from 

Ti(Oi-Pr)4 and 295, yielded the (S)-sulfoxide 292a in 42% yield and 95% ee together 

with the sulfone 293a in 40% yield (Scheme 163). Kinetic studies revealed that 

following the asymmetric oxidation of the initial sulfide there was a kinetic 

resolution of the sulfoxide. These two processes worked in a cooperative fashion to 

enhance the enantioselectivity, since preferential oxidation of the (R)-sulfoxide to 

sulfone took place. 
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Scheme 163. Asymmetric oxidation of methyl-p-tolyl sulfide 291a 

 

In 1992 Uemura et al. first reported that (R)-BINOL 13 could be used in conjunction 

with titanium (IV) iso-propoxide in the oxidation of methyl-p-tolyl sulfide 291a 

(Scheme 164).158 The use of 10mol % of a combination of Ti(Oi-Pr)4/(R)-BINOL 

13/H2O (1:2:20) in toluene at -20 °C, together with tert-butyl hydroperoxide 290, 

delivered the (R)-sulfoxide 292a in 88% yield and 73% ee. In a later publication the 

scope of their catalytic system was explored.159 It was found that running the 

reaction at room temperature in carbon tetrachloride with 2.5mol % of the catalyst 

together with 70% aqueous tert-butyl hydroperoxide 290 gave (R)-methyl-p-tolyl 

sulfoxide 292a in 44% yield and 96% ee (Table 53, entry 1). It was found that the 

high enantioselectivity was due to the simultaneous kinetic resolution of the 

sulfoxide formed in the initial step. It was estimated that (R)-methyl-p-tolyl 

sulfoxide was formed in only 50% ee through the enantioselective oxidation of the 

starting sulfide. The screening of other aryl methyl sulfides also gave the 

corresponding sulfoxides in high enantioselectivity (entries 2 and 3). However the 

reaction of methyl-n-octyl sulfide 291p proceeded to give the (R)-sulfoxide 292p in 

only 64% yield and 69% ee (entry 4). 
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Scheme 164. Use of (R)-BINOL 13 in the enantioselective oxidation of sulfides 291 
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Table 53a 

Entry Sulfide R1 R2 Temp /°C Time /h Yield 
sulfoxide 

/% 

ee /% 

1 291a 4-Me(C6H4) Me 25 9 44 96 

2 291b 4-Br(C6H4) Me 25 10 39 96 

3 291m Ph Me 25 9 28 96 

4b 291p n-octyl Me 0 31 64 69 

aReaction conditions: (R)-BINOL 13 (5mol %), Ti(Oi-Pr)4 (2.5mol %) and H2O (50mol %); bReaction 
conditions: (R)-BINOL 13 (20mol %), Ti(Oi-Pr)4 (10mol %) and H2O (200mol %). 

 

A number of other BINOL analogues have also been utilised in the titanium 

catalysed sulfoxidation reaction, including the octahydro- and dinitrooctahydro-

derivatives 296a and 296b, the steroid-derived BINOL derivative 297 and the 

octafluoro-derivative 298 (Figure 58). For example, Reetz and co-workers compared 

the efficiency of both octahydrobinaphthol (R)-296a and 

3,3’-dinitrooctahydrobinaphthol (R)-296b in the oxidation of methyl-p-tolyl sulfide 

291a under similar conditions employed by Uemura (5mol % of titanium (IV) 

iso-propoxide and 10mol % of ligand together with two equivalents of both water 

and cumene hydroperoxide 72) (Scheme 165).160 Performing the reaction in toluene 

at 0 °C with ligand (R)-296a yielded the (R)-sulfoxide product 292a in 10% ee 

(Table 54, entry 1). In comparison, use of dinitrooctahydro-derivative (R)-296b in 

CCl4 led to the preferential formation of the (S)-sulfoxide 292a in 52% yield and 

86% ee (entry 2). The reason for the reversal of enantioselectivity of the reaction 

when switching from ligand (R)-296a and (R)-296b was not reported. 
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Figure 58. BINOL derivatives 296a-b, 297 and 298 

 

In 1999, Bolm et al. reported the use of the previously reported BINOL analogue 

(S,S)-297 prepared from equilenine. In the reaction of methyl-p-tolyl sulfide 291a 

with tert-butyl hydroperoxide 290 (1.1 equivalents) in THF, in the presence of water 
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(3 equivalents) the (S)-sulfoxide product 292a was obtained in 63% yield and 86% 

ee (Table 54, entry 3).161 Similarly, the use of the octafluoro-binaphthol (R)-298 in 

the sulfoxidation of methyl-p-tolyl sulfide 291a was reported by Yudin and 

co-workers.162 They found that reaction of the sulfide wth cumene hydroperoxide 72 

(1.2 equivalents) in chloroform gave the (S)-sulfoxide product 292a in 55% yield 

and 80% ee (entry 4). The preference for the formation of (S)-sulfoxide product is in 

contrast to the work of Uemura and co-workers who showed that use of (R)-BINOL 

13 led to the formation of the (R)-sulfoxide (vide supra).158, 159 The authors 

speculated that the change in enantioselectivity was as a result of differences in 

aggregation of the catalytically active species. 

S
S *

Ti(Oi-Pr)4 (5mol %)
Ligand (10mol %)

Solvent

291a 292a

O

 
Scheme 165. Catalytic asymmetric sulfoxidation using BINOL derivatives 296a-b, 297 and 298 

 

Table 54 

Entry Ligand Conditions Solvent Temp /°C Yield 
sulfoxide /% 

ee /% Ref 

1 296a H2O (2 eq.) 

CHP (2 eq.) 

Toluene 
0 

NR 10 (R) 
160 

2 296b CCl4 52 86 (S) 

3 297 
H2O (3 eq.) 

TBHP (1.1 eq.) 
THF 0 63 86 (S) 161 

4 298 
H2O (2 eq.) 

CHP (1.2 eq.) 
CHCl3 rt 55 80 (S) 162 

 

The use of (R,R)-di-µ-oxo-titanium(salen) complex 300 in the asymmetric oxidation 

of various sulfides with urea hydrogen peroxide was reported by Katsuki et al.163, 164 

The di-µ-oxo species 300 was prepared from reaction of the parent (salen)titanium 

(IV) complex (R,R)-299 with water in the presence of triethylamine (Scheme 166). 

The reaction of methyl aryl sulfides, 291a, 291b and 291e, with one equivalent of 

urea hydrogen peroxide in the presence of 2mol % of 300 yielded the corresponding 

(S)-sulfoxides in 78-93% yield and 92-96% ee (Scheme 167, Table 55, entries 1-3). 

Similarly, oxidation of benzyl methyl sulfide 291o and ethyl phenyl sulfide 291s 

gave the desired products in 72% and 91% yield respectively, with an 

enantioselectivity 93% in both cases (entries 4 and 5). 
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Scheme 166. Formation of (R,R)-di-µ-oxo Ti(salen) 300 catalyst from (salen)titanium (IV) complex 
(R,R)-299 
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Scheme 167. Asymmetric sulfoxidation of sulfides 291 with urea hydrogen peroxide catalysed by 
(R,R)-di-µ-oxo Ti(salen) 300 

 

Table 55 

Entry Sulfide R1 R2 Yield /% ee /% 

1 291a 4-MeO(C6H4) Me 78 96 

2 291b 4-Br(C6H4) Me 93 96 

3 291e 4-NO2(C6H4) Me 92 92 

4 291o Bn Me 72 93 

5 291s Ph Et 91 93 

 

The use of the C3-symmetric chiral trialkanolamine (R,R,R)-68b in the titanium 

catalysed sulfoxidation has also been reported.49 In this work, Licini and co-workers 

found employing 5mol % of titanium (IV) iso-propoxide and 10mol % of ligand 68b 

with one equivalent of cumyl hydroperoxide 72 in 1,2-dichloroethane gave the 

desired (S)-sulfoxide product together with the over-oxidised sulfone product 

(Scheme 168). For example, reaction of methyl-p-tolyl sulfide 291a yielded 

(S)-methyl-p-tolyl sulfoxide 292a in 45% ee and methyl-p-tolyl sulfone 293a in a 
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ratio of 62:38 (292:293) (Table 56, entry 1). Kinetic studies revealed that 

methyl-p-tolyl sulfone 293a is formed from the outset of the reaction and that the 

two different asymmetric processes involved, the asymmetric oxidation of the sulfide 

to the sulfoxide and the kinetic resolution via oxidation of the sulfoxide to sulfone, 

worked in tandem to improve the enantioselectivity of the sulfoxide product. It was 

shown that the (S)-sulfoxide 292a was formed in 29% ee when almost no sulfone 

was present. The screening of other aryl methyl sulfides showed that the electronic 

effect of the aryl substituents had a significant effect on the enantioselectivity with 

the electron withdrawing para-nitro substituted sulfide 291e giving the 

corresponding (S)-sulfoxide 292e in only 15% ee (entry 4). The best result was 

obtained with benzyl phenyl sulfide 291q with the sulfoxide (S)-292q obtained in 

84% ee and a ratio of sulfoxide to sulfone of 77:23 (entry 7). 
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Scheme 168. Titanium catalysed asymmetric oxidation of sulfides 291 using trialkanolamine 
(R,R,R)-68b 

 

Table 56 

Entry Sulfide R1 R2 Yield /% 292:293 ee /% 

1 291a 4-Me(C6H4) Me 98 62:38 45 

2 291c 2-Naphthyl Me 86 60:40 38 

3 291d 4-MeO(C6H4) Me 94 68:32 41 

4 291e 4-NO2(C6H4) Me 88 26:74 15 

5 291n 4-Me(C6H4) Et 99 64:36 38 

6 291k Ph t-Bu 98 60:40 60 

7 291q Ph Bn 94 77:23 84 

 

Summary 

This brief review on titanium-catalysed oxidations of sulfides has shown that a 

variety of conditions were employed with the different catalytic systems. The most 
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common organic peroxides used in these reactions appear to be tert-butyl 

hydroperoxide 290 or cumene hydroperoxide 72, with reactions that were conducted 

in aqueous media using hydrogen peroxide or urea hydrogen peroxide. Where 

organic peroxides were employed as the oxidant, reactions typically performed best 

in chlorinated solvents, such as dichloromethane, 1,2-dichloroethane and carbon 

tetrachloride, or non-chlorinated solvents, such as toluene and benzene. Typical 

reaction temperatures ranged from -77 °C to room temperature, with a number of 

catalytic systems working optimally at ca. -20 °C. For some of the catalytic systems 

additives such as water, alcohols or molecular sieves were also found to improve the 

efficiency of the reaction. 

 

4.3 SULFOXIDATION REACTION CATALYSED BY 
(RAC)-195B, (R,M)-287 AND (R,M)-288 

 

It was decided that before any initial investigations into the screening of titanium 

complexes (R,M)-287 and (R,M)-288 were conducted, the screening of the parent 

titanium complex (rac)-195b would first be performed (Figure 59). As a starting 

point, benzyl phenyl sulfide 291q was chosen as a model substrate due to its 

commercial availability. But before any screening reactions could commence, it was 

first necessary to prepare an authentic sample of benzyl phenyl sulfoxide 292q for 

comparison. 
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Figure 59. Titanium complexes (rac)-195b, (R,M)-287 and (R,M)-287 

 

4.3.1 Synthesis of Racemic Benzyl Phenyl Sulfoxide (rac)-292q 

 

A search through the literature for the oxidation of sulfides to their racemic 

sulfoxides revealed a number synthetic procedures were available. However, a recent 

protocol that used aqueous hydrogen peroxide and sodium dodecyl sulphate to 
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oxidise sulfides to sulfoxides, in the absence of any organic co-solvent and under 

metal-free conditions, was chosen to do this. Firouzabadi and co-workers showed 

that dodecyl hydrogen sulphate, generated in situ from protonation of the dodecyl 

sulphate anion, catalysed the oxidation of sulfides 291 to their corresponding 

sulfoxides 292 in high yields (Scheme 169, Table 57).165 
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aq. HCl (10mol %)

aq. H2O2

 
Scheme 169. Oxidation of sulfides 291 to sulfoxides 292 by hydrogen peroxide catalysed by 
sodium dodecyl sulphate 

 

Table 57 

Entry Sulfide R1 R2 Time /min Yield /% 

1 291m Ph Me 5 92 

2 291q Ph Bn 5 h 91 

3 291t n-Bu n-Bu 5 88 

4 291u CH2=CHCH2- -CH2CH=CH2 5 85 

5 291v Bn -CH2CH2OH 10 93 

6 291w Ph -CH2CH2C(O)CH3 10 90 

7 291x Ph -CH2CH2CN 10 92 

 

The authors proposed that the reaction proceeds by proton transfer from the strong 

acid to the dodecyl sulphate anion to form dodecyl hydrogen sulphate (Scheme 170). 

This in situ generated Brønsted acid surfactant shows dual activity. Firstly, the 

non-polar tail wraps round the sulfide molecule which also acts to bring the peroxide 

molecule close to the sulphur atom. After this process, the reaction proceeds via 

activation of hydrogen peroxide by hydrogen bonding between R-OSO3H and H2O2 

in the vicinity of the sulphur atom. 
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Scheme 170. Proposed catalytic role of in situ generated dodecyl hydrogen sulphate, for the 
activation of hydrogen peroxide by ROSO3H and solubilisation of the lipophilic organic sulfide by its 
hydrocarbon tail 

 

This method was applied to the synthesis of benzyl phenyl sulfoxide (rac)-292q. 

Thus, benzyl phenyl sulfide 291q was treated with four equivalents of aqueous 

hydrogen peroxide, in the presence of sodium dodecyl sulphate and aqueous 

hydrochloric acid, until all the starting sulfide had been consumed (as determined by 

TLC). Analysis of the crude product by 1H NMR spectroscopy showed that the 

major product to form was the sulfoxide 292q together with a small quantity of the 

sulfone 293q (ratio of 292:293 was 95:5). Following purification by column 

chromatography, the desired racemic sulfoxide 292q was obtained in 90% yield. Its 

structure was confirmed by comparison of its 1H NMR spectrum with the literature, 

with the two benzylic protons appearing as doublets at δ = 4.02 and 3.93 ppm 

(Scheme 171).166  

Ph
S

Ph
S

291q

O
SDS (5mol %), 

aq. HCl (10mol %)

aq. H2O2

Ph
Ph

(rac)-292q

90% yield

Ph
S Ph

O O

293q

+

 
Scheme 171. Oxidation of benzyl phenyl sulfide 291q to benzyl phenyl sulfoxide 292q by hydrogen 
peroxide in the presence of dodecyl hydrogen sulphate 

 

4.3.2 Screening of (rac)-195b in the Oxidation of Benzyl Phenyl 
Sulfide 291q 

 

For screening of the parent titanium complex (rac)-195b, the reactions were 

performed in dichloromethane since this had proven to be one of the best solvent 

systems for a number of other titanium-based catalysts (vida supra). Similarly, the 
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oxidant chosen to be used in this screening was cumene hydroperoxide 72. The 

reaction was first run with 10mol % of (rac)-195b and one equivalent of cumene 

hydroperoxide 72 at -30 °C (Scheme 172, Table 58). After twenty-four hours the 

reaction was worked up and the crude reaction mixture was analysed by 1H NMR 

spectroscopy. This revealed that the desired product, benzyl phenyl sulfoxide 292q, 

had been obtained in only 16% conversion (entry 2). Increasing the number of 

equivalents of cumene hydroperoxide 72 to two gave the product in an improved 

conversion of 29% (entry 3). In both of these reactions no over-oxidation of the 

sulfoxide 292q to the sulfone 292q was observed. When the reaction was run with 

two equivalents of cumene hydroperoxide without any catalyst present, the sulfoxide 

product was observed in less than 5% conversion without any sulfone present (entry 

1). This indicated that the titanium complex (rac)-195b was catalysing the reaction. 

Running the reaction at room temperature for 24 hours, in the presence of 10mol % 

of catalyst and two equivalents of cumene hydroperoxide, increased the conversion 

to 61%, however analysis of the crude reaction mixture revealed that both the 

sulfoxide 292q and sulfone 293q were present in a ratio of 93:7 in favour of the 

sulfoxide (entry 4). 
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Scheme 172. Screening of titanium catalyst (rac)-195b in the oxidation of benzyl phenyl sulfide 
291q with cumene hydroperoxide 72 

 

Table 58 

Entry Catalyst Conditions Temp /°C Conversion 
/% 

Ratio 
292:293 

1 none CHP  72 (2 eq.) -30 <5 no sulfone 

2 (rac)-195b (10mol %) CHP  72 (1 eq.) -30 16 no sulfone 

3 (rac)-195b (10mol %) CHP  72 (2 eq.) -30 29 no sulfone 

4 (rac)-195b (10mol %) CHP  72 (2 eq.) rt 61 93:7 
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4.3.3 Screening of (R,M)-287 and (R,M)-288 in the Oxidation of 
Benzyl Phenyl Sulfide 291q 

 

Following the success of the parent racemic amine tris(phenolate) titanium complex 

(rac)-195b in the sulfoxidation reaction, the screening of the chiral titanium 

complexes (R,M)-287 and (R,M)-288 in the same reaction was then investigated 

(Scheme 173, Table 59). The reactions were therefore repeated under the same 

conditions as before, with the oxidation of benzyl phenyl sulfide 291q by cumene 

hydroperoxide 72 conducted in dichloromethane at -30 °C. Thus, to a solution of the 

sulfide and 10mol % of the titanium triflate complex (R,M)-288 was added two 

equivalents of the oxidant. After twenty-four hours the reaction was worked up and 

the crude product was analysed by 1H NMR spectroscopy, which revealed that all of 

the starting material had been consumed. Furthermore, it showed that both benzyl 

phenyl sulfoxide 292q together with the over-oxidised product, sulfone 293q, had 

formed in a ratio of 85:15 in favour of the desired sulfoxide. Following purification 

via column chromatography, the sulfoxide product 292q was isolated in 74% yield. 

Analysis of the sulfoxide by chiral HPLC showed the product had formed in 23% ee 

(entry 1). Based on the order of elution of the enantiomers on the HPLC and also by 

comparison of the optical rotation of the product with the literature, the major 

enantiomer was determined to be the (R)-enantiomer.167, 168  

 

When the reaction was repeated with the titanium iso-propoxide complex (R,M)-287, 

the reaction went to only 63% conversion after twenty-four hours. The ratio of 

sulfoxide 292q to sulfone 293q was found to be 90:10, and following purification 

(R)-benzyl phenyl sulfoxide was isolated in 46% yield and 18% ee (entry 2). Given 

the superior reactivity and enantioselectivity that the titanium triflate complex 

(R,M)-288 had given in comparison to (R,M)-287, all further reactions were 

conducted with this catalyst.  

 

Another aspect of this reaction to explore was the choice of oxidant, and for this 

reason the reaction was repeated under the same conditions, with two equivalents of 

tert-butyl hydroperoxide 290 in place of cumene hydroperoxide 72. Under these 

conditions sulfoxide 292q formed in 25% conversion with only traces of sulfone 
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293q present. Following isolation of sulfoxide 292q (16% yield), the enantiomeric 

excess was found to be only 3% ee (entry 3). 

 

In an attempt to improve the selectivity obtained in the first reaction, where 10mol % 

of (R,M)-288 and two equivalents of cumene hydroperoxide 72 were employed, the 

reaction was repeated but with the temperature maintained at -78 °C. After ten hours 

at this temperature, the reaction was continued at -30 °C for the remaining fourteen 

hours. Following work-up, analysis of the crude product by 1H NMR spectroscopy 

showed that the reaction had again gone to 100% conversion, but that the ratio of 

sulfoxide 292q to sulfone 293q had now improved to 91:9 (from 85:15, entry 1). 

Disappointingly, the enantioselectivity of the reaction had not improved with the 

sulfoxide isolated also having 23% ee (entry 4).  

 

When the reaction was run with only 5mol % of catalyst the reaction went to only 

25% conversion after the twenty-four hours (entry 5). Repeating the reaction with a 

catalyst loading of 50mol %, gave a 90% conversion after only eighteen hours, with 

a ratio of sulfoxide 292q to sulfone 293q of 91:9. HPLC analysis showed the 

sulfoxide had formed in only 10% ee (entry 6). When the sulfide was reacted with 

only one equivalent of cumene hydroperoxide 72, the reaction went to only 54% 

conversion, with the sulfoxide formed in 8% ee (entry 7). 
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Scheme 173. Screening of titanium catalysts (R,M)-287 and (R,M)-288 in the oxidation of benzyl 
phenyl sulfide 291q 
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Table 59 

Entry Catalyst Oxidant Conversion 
/% 

Ratio 
292:293 

Yield of 
292 /% 

ee /% 

1 
(R,M)-288 
(10mol %) 

CHP 72 (2 eq.) 100 85:15 74 23 

2 
(R,M)-287 
(10mol %) 

CHP 72 (2 eq.) 63 90:10 46 18 

3 
(R,M)-288 
(10mol %) 

TBHP 290 (2 eq.) 25 trace sulfone 16 3 

4 
(R,M)-288 
(10mol %) 

CHP 72 (2 eq.) 100a 91:9 80 23 

5 
(R,M)-288 
(5mol %) 

CHP 72 (2 eq.) 25 no sulfone - - 

6 
(R,M)-288 
(50mol %) 

CHP 72 (2 eq.) 90b 91:9 - 10 

7 
(R,M)-288 
(10mol %) 

CHP 72 (1 eq.) 54 97:3 28 8 

a Reaction run at -78 °C for 10 hours, then -30 °C for 14 hours; b Reaction run for 18 hours 
 

 

4.3.4 Solvent Screen in the Oxidation of Benzyl Phenyl Sulfide 
291q Catalysed by (R,M)-288 

 

Since the reaction had shown to proceed in good yield in dichloromethane, the 

screening of different solvents in the oxidation benzyl phenyl sulfide 291q with 

cumene hydroperoxide 72 was also explored (Scheme 174, Table 60). Given that 

other chlorinated solvents had also been employed in other catalytic systems in the 

literature (see Section 4.2.1), the reaction was repeated using 1,2-dichloroethane as 

the solvent system. Under these conditions the reaction went to 100% conversion, 

with both the sulfoxide 292q and the sulfone 293q present in the crude reaction 

mixture, in a ratio of 86:14 (entry 2). Following purification the (R)-sulfoxide 292q 

was obtained in 65% yield and 23% ee, which was almost identical to the result 

obtained with dichloromethane as the solvent (entry 1). 

 

When the reaction was repeated with acetonitrile as the solvent, the reaction went to 

only 70% conversion, with the sulfoxide 292q the predominant product present (with 

a ratio of sulfoxide to sulfone of 94:6). After purification, the sulfoxide (R)-292q 

was isolated in 60% yield and 9% ee (entry 3). The reaction was then attempted 

using toluene as the solvent and this time the reaction went to completion. The ratio 
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of sulfoxide to sulfone was 89:11 in favour of the sulfoxide. (R)-Benzyl phenyl 

sulfoxide 292q was isolated in 78% yield and 37% ee (entry 4), which was a 

significant improvement on the reaction in dichloromethane (entry 1).  

 

Finally, two reactions were attempted in benzene and hexane. However, since 

benzene freezes at ca. 5 °C, it was necessary to add the minimum amount of 

dichloromethane to the reaction, in order to achieve homogeneity. At a ratio of 

benzene to dichloromethane of 2:1 this was obtained. For the reaction in hexane, the 

addition of dichloromethane was required to dissolve the catalyst, such that the 

reaction was run in a mixed solvent system of hexane and dichloromethane at a ratio 

of 5:1. Both these reactions were shown to go to 100% conversion after twenty-four 

hours, but both reactions showed that a significant amount of over-oxidation to the 

sulfone 293q had occurred (ratio 292:293 65:35 and 59:41 respectively). 

Significantly, the isolated benzyl phenyl sulfoxide from both of these reactions was 

shown to have a much lower enantiomeric excess than in previous reactions, with 

only a 7% ee obtained in both cases (entries 5 and 6, compared to the 37% ee 

obtained using toluene, entry 4). 
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Scheme 174. Solvent screening in the oxidation of benzyl phenyl sulfide 291q with cumene 
hydroperoxide 72 in the presence of (R,M)-288 

 

Table 60 

Entry Solvent Conversion 
/% 

Ratio 
292:293 

Yield of 292 
/% 

ee /% 

1 DCM 100 85:15 74 23 

2 DCE 100 86:14 65 23 

2 MeCN 70 94:6 60 9 

4 Toluene 100 89:11 78 37 

5 
Benzene/DCM 

(ratio 2:1) 
100 65:35 57 7 

6 
Hexane/DCM 

(ratio 5:1) 
100 59:41 41 7 
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4.3.5 Addition of 4Å Molecular Sieves to the Oxidation of Benzyl 
Phenyl Sulfide 291q 

 

The use of additives in the sulfoxidation reaction has been widely reported. For 

example, the addition of either water or iso-propanol to the stoichiometric or 

catalytic systems of Kagan and co-workers was necessary to achieve any 

selectivity,151, 153 while water was also found to improve the efficiency of the 

catalytic system of Uemura et al.
158, 159 Other additives such as 4Å molecular sieves 

have also given improvements these catalytic systems. 

 

It was therefore decided that the oxidation of benzyl phenyl sulfide 291q under the 

same conditions as before but with the addition of 4Å molecular sieves. Two 

reactions were conducted, using either dichloromethane or toluene as the solvent 

system, with 10mol % of catalyst and two equivalents of oxidant. After twenty-four 

hours the reactions were worked-up, with analysis of the crude product by 1H NMR 

spectroscopy revealing that both reactions had gone to 100% completion. For the 

reaction run in dichloromethane, the sulfoxide 292q and sulfone 293q were present 

in a ratio of 78:22 (entry 1), while for the reaction run in toluene had a ratio of 

sulfoxide and sulfone of 50:50 (entry 3). Analysis of both the sulfoxide products by 

chiral HPLC showed that the enantiomeric excess was 32% and 11% in favour of the 

(R)-enantiomer, for dichloromethane and toluene, respectively. When compared to 

the analogous reactions run in these solvents without the addition of the molecular 

sieves, the additive appears to have significantly increased the rate of reaction in 

toluene (ratio 292:293 of 50:50 compared to 89:11) but at the detriment of the 

enantioselectivity of the sulfoxide product (11% ee compared to 37% ee, entry 3 and 

entry 4). In comparison, the addition of molecular sieves to dichloromethane appears 

not to have significantly affected the ratio of sulfoxide to sulfone (78:22 versus 

85:15), but has given an improvement in selectivity (32% ee compared to 23% ee). 
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Scheme 175. Oxidation of benzyl phenyl sulfide 291q under the standard conditions, with or 
without the addition of 4Å molecular sieves 
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Table 61 

Entry Solvent 4Å MS 
added 

Conversion 
/% 

Ratio 
292:293 

Yield of 
292 /% 

ee /% 

1 DCM Yes 100 78:22 59 32 

2 DCM No 100 85:15 74 23 

3 Toluene Yes 100 50:50 30 11 

4 Toluene No 100 89:11 60 37 

 

4.3.6 Kinetic Resolution of Racemic Benzyl Phenyl Sulfoxide 
(rac)-292q  

 

As has been shown in other catalytic systems, the kinetic resolution of the sulfoxide 

via oxidation of the sulfoxide to the sulfone, has been shown to either enhance or 

diminish the enantioselectivity of the sulfoxidation reaction. Scheme 176 illustrates 

both the possible matched and mismatched systems. In the case of the matched 

system, the initial oxidation of sulfide 291q forms the (R)-sulfoxide 292q in excess. 

For the second process (the oxidation of the sulfoxide 292q to the sulfone 293q), the 

(S)-sulfoxide is oxidised preferentially, thus enhancing the enantiomeric excess of 

the remaining (R)-sulfoxide. In the case of the mismatched system, the second 

oxidative step favours the (R)-sulfoxide, such that, the enantiomeric excess of the 

remaining (R)-sulfoxide diminishes. 
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Scheme 176. An illustration of possible matched/mismatched systems in the oxidation of sulfide 
291q 

 

In order to demonstrate if there is any kinetic resolution of the sulfoxide in this 

reaction, a sample of racemic benzyl phenyl sulfoxide (rac)-292q was treated under 
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these optimised conditions. Thus, (rac)-292q in toluene was treated with one 

equivalent of cumene hydroperoxide 72 in the presence of (R,M)-288 at -30 °C 

(Scheme 177). After 8 hours, the reaction was worked-up and the crude product 

analysed by 1H NMR spectroscopy, which showed that 55% of the starting sulfoxide 

292q had been converted to the sulfone 293q. After purification, the remaining 

sulfoxide 292q was isolated in 37% yield. Analysis of this product via chiral HPLC 

revealed the enantiomeric excess to be 16% ee in favour of the (R)-enantiomer. This 

showed that the (S)-sulfoxide was being oxidised preferentially, and as the initial 

oxidation of the sulfide 291q in this reaction favoured the (R)-sulfoxide 292q, it 

suggested that the two processes were working in a co-operative fashion.  
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Scheme 177. Kinetic resolution of racemic benzyl phenyl sulfoxide (rac)-292q under the reaction 
conditions 

 

4.3.7 Monitoring the Oxidation of Benzyl Phenyl Sulfide 291q 
Catalysed by (R,M)-288 

 

As was shown earlier (see Section 4.3.4, Table 60, entry 4), the oxidation of benzyl 

phenyl sulfide 291q under these conditions produced a ratio of sulfoxide to sulfone 

of 89:11, suggesting that while kinetic resolution might be enhancing the 

enantioselectivity of this reaction, it wasn’t a significant factor. However, if the 

reaction was run for a longer period of time, then the enantiomeric excess of the 

remaining sulfoxide in the reaction should increase. To test this, the reaction of 

benzyl phenyl sulfide 291q with three equivalents of cumene hydroperoxide 72 was 

performed and aliquots of the reaction mixture were taken and analysed at both 

twenty four hours and thirty two hours (Scheme 178, Table 62). At twenty four 

hours the reaction had gone to 100% conversion, with all of the starting benzyl 

phenyl sulfide 291q having reacted (entry 1). The ratio of sulfoxide 292q to sulfone 

293q was determined to be 83:17. Following isolation of the (R)-sulfoxide 292q, 

analysis by chiral HPLC showed it had formed in 35% ee. This compares favourably 

to the reaction where two equivalents of cumene hydroperoxide were employed in 
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the reaction (see Section 4.3.4, Table 60, entry 4), where a ratio 292:293 of 89:11 

was obtained, and the (R)-sulfoxide formed in 37% ee. When an aliquot was taken at 

thirty two hours the ratio of sulfoxide to sulfone was found to be 33:67 in favour of 

the sulfone (entry 2). The analysis of the remaining sulfoxide revealed that the 

enantiomeric excess had increased to 47% ee, showing that the kinetic resolution of 

the sulfoxide 292q to the sulfone 293q was working to enhance the selectivity. 

Overall the enantioselectivity of this reaction was the best achieved yet but this was 

at the detriment to the maximum possible yield of sulfoxide 292q from this reaction.  
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Scheme 178. Monitoring of the oxidation of benzyl phenyl sulfide 291q by cumene hydroperoxide 
72 in the presence of (R,M)-288 

 

Table 62 

Entry Time /h Conversion /% Ratio 292:293 ee 292q /% 

1 24 100 83:17 35 

2 32 100 33:67 47 

 

4.3.8 NMR Studies 

 

A series of NMR experiments were performed to examine whether the structural 

integrity of the titanium complex remained intact during the course of the reaction. 

Firstly, two experiments were run in which complex (R,M)-288 was treated with 

either 2.5 equivalents of sulfide 291q or four equivalents of cumene hydroperoxide 

72. In both cases signals corresponding to (R,M)-288 remained, suggesting that there 

was no degradation of the complex (see Appendix 7.1). Next, an NMR experiment 

was run where all the components of the reaction were present (two equivalents of 

sulfide 291q and four equivalents of cumene hydroperoxide 72 with respect to 

(R,M)-288) (Scheme 179). Under these conditions the oxidation of the sulfide 291q 

(A) to the sulfoxide 292q (B) proceeded, although the reaction remained incomplete 

after forty-eight hours, probably due to a lack of agitating or mixing in the NMR 

tube (Figure 62). Similarly, new signals appeared at δ = 5.29 ppm and δ = 5.01 ppm 

and these were assigned to α-methyl styrene 301 (C), which presumably arose from 

the decomposition of cumene hydroperoxide 72 at room temperature. Importantly, 
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the signals corresponding to the benzylic protons in (R,M)-288, usually observed 

between δ = 4.15 ppm and δ = 3.40 ppm, were now replaced with a series of new 

signals between δ = 4.70 ppm and δ = 3.05 ppm. These signals were tentatively 

ascribed to one or more titanium complexes formed by displacement of the triflate 

ligand with benzyl phenyl sulfoxide. As confirmation, another NMR experiment was 

conducted, where titanium complex (R,M)-288 was treated with two equivalents of 

benzyl phenyl sulfoxide (rac)-292q (see Appendix 7.1). This gave rise to an almost 

identical set of signals as was observed in the reaction mixture. Further confirmation 

was obtained by mass spectrometry with both samples shown to contain signals at 

946.5 which corresponded to complex (R,M)-302 (C59H80NO4STi), where benzyl 

phenyl sulfoxide was now coordinated to the metal centre. Finally, the reaction 

mixture was quenched with addition of a saturated aqueous sodium sulfite solution, 

and this gave rise to a new titanium tris(phenolate) complex, with signals for the 

benzylic protons now observed between δ = 4.05 ppm and δ = 3.15 ppm (Figure 63). 

Mass spectrometry indicated this could be the titanium hydroxide compound 

(R,M)-303 (C46H68NO4Ti) with a signal observed at 746.5. No signal was observed 

for the µ-oxo-bridged dimer species. From these initial studies, it appears over the 

course of the reaction the structural integrity of the complex remains intact. 
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Scheme 179. Reaction of benzyl phenyl sulfide 291q studied by 1H NMR spectroscopy 
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Figure 60.  1H NMR (CDCl3) spectrum of titanium complex (R,M)-288 
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Figure 61. 1H NMR (CDCl3) spectrum of benzyl phenyl sulfoxide (rac)-292q 
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Figure 62. 1H NMR (CDCl3) spectrum of reaction after 48 hours 
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Figure 63. 1H NMR (CDCl3) spectrum of reaction after addition of a saturated aqueous sodium sulfite 
solution 
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4.4 SCREENING OF SULFIDES 291 IN THE REACTION 
CATALYSED BY (R,M)-288 

 

Before any screening of sulfides could commence, the synthesis of both these and 

their racemic sulfoxides would first need to be completed. A series of methyl aryl 

sulfides, 291a, 291c, 291d and 291e, were chosen, since these had extensively been 

used in other catalytic systems, as well benzyl-tert-butyl sulfide 291y, the bulky 

nature of which has been shown to impede the oxidation of its corresponding 

sulfoxide in other catalytic systems.169 

 

4.4.1 Synthesis of Sulfides 291 

 

The synthesis of sulfides 291 was achieved by alkylation of the corresponding thiol. 

Treament of the thiols in ethanol with potassium hydroxide followed by addition of 

the alkyl halide (methyl iodide or benzyl bromide) gave the desired sulfides in 

82-98% yield. 

R1
SH

R2
X+

KOH

EtOH R1
S

R2

291  
Scheme 180. Synthesis of sulfides 291 

 

Table 63 

Entry R1-SH R2-X Sulfide Yield /% 

1 
SH

 

MeI 
S

 

291a 98 

2 
SH

 

MeI 
S

 

291c 96 

3 
MeO

SH

 

MeI 

S

MeO  

291d 91 

4 
O2N

SH

 

MeI 

S

O2N  

291e 82 

5 
SH

 
BnBr 

S Ph

 
291y 79 
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4.4.2 Synthesis of racemic sulfoxides (rac)-292 

 

The synthesis of racemic sulfoxides (rac)-292, which were to be used for 

comparison with those isolated from the reactions involving the chiral titanium 

catalyst (R,M)-288, was completed. Following the same procedure as earlier, sulfides 

291 were reacted with four equivalents of aqueous hydrogen peroxide, in the 

presence of sodium dodecyl sulphate and aqueous hydrochloric acid. Following 

purification the desired racemic sulfoxides (rac)-292 were isolated in 78-92% yield 

(Scheme 181, Table 64). 

R1
S

R2

R1
S

R2

291

O
SDS (5mol %), 

aq. HCl (10mol %)

aq. H2O2

(rac)-292  
Scheme 181. Oxidation of sulfides 291 to sulfoxides 292 by hydrogen peroxide in the presence of 
dodecyl hydrogen sulphate 

 

Table 64 

Entry Sulfoxide Yield /% 

1 
S

O

 

292a 87 

2 
S

O

 

292c 81 

4 
S

MeO

O

 

292d 84 

3 
S

O2N

O

 

292e 78 

5 S Ph

O

 

292y 92 
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4.4.3 Screening of Sulfides 291 in the Sulfoxidation Reaction 
Catalysed by (R,M)-288 

 

As has been shown earlier the oxidation of benzyl phenyl sulfide 291q by cumene 

hydroperoxide 72 in the presence of (R,M)-288 gave the desired (R)-sulfoxide 292q 

in 74% yield and 23% ee when the reaction was run in dichloromethane, and 78% 

yield and 37% ee when run in toluene (Table 65, entries 1 and 2). For the reactions 

of other sulfides, the same conditions were also employed. In particular, the reaction 

time was kept at twenty-four hours, since monitoring these reactions by TLC proved 

to be difficult. For the oxidation of 4-methylthioanisole 291a, the reaction was run in 

dichloromethane. Analysis of the crude product revealed the reaction had gone to 

completion, with the ratio of methyl-p-tolyl sulfoxide 292a to methyl-p-tolyl sulfone 

293a of 28:72, showing a significant amount of over-oxidation had occurred. The 

desired sulfoxide 292a was isolated in 14% yield, and following analysis by chiral 

HPLC, the enantioselectivity of reaction was determined to be 13% ee in favour of 

the (R)-enantiomer (entry 3). 

 

The oxidation of methyl-2-naphthyl sulfide 291c in dichloromethane proceeded to 

100% conversion, with the ratio of desired of sulfoxide 292c to sulfone 293c 32:68 

in favour of the sulfone 293. Following purification methyl-2-naphthyl sulfoxide 

292c was isolated in 28% yield and 10% ee (entry 4). In contrast, when the reaction 

was repeated with toluene as the reaction solvent, the ratio of sulfoxide to sulfone 

was found to be 79:21, with the desired sulfoxide obtained in 61% yield and 20% ee 

(entry 5). 

 

The oxidation of methyl-(4-methoxyphenyl)-sulfide 291d in toluene proceeded in 

88% conversion with a ratio of sulfoxide 292d to sulfone 293d of 90:10. Following 

purification the desired sulfoxide 292d was isolated in 65% yield and 17% ee (entry 

6). When the oxidation of methyl-(4-nitrophenyl)-sulfide 291e by cumene 

hydroperoxide 72 was run in toluene, the reaction went to completion with a 

significant proportion of the crude product the sulfone 293e (ratio sulfoxide 292e to 

sulfone 293e, 56:44). The desired methyl-(4-nitrophenyl)-sulfoxide was isolated in 

47% yield. Following analysis via chiral HPLC the product was found to be racemic 

(entry 7). Finally, the oxidation of benzyl-tert-butyl sulfide 291y went to 90% 
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conversion, the major product being the desired sulfoxide 292y with only traces of 

the sulfone 293y. This confirmed that the bulky tert-butyl did impede the oxidation 

of the newly formed sulfoxide 292y. After isolation, tert-butylphenylmethyl 

sulfoxide 292y was obtained in 71% yield, however, it was found that no 

enantioselective inducement had taken place, with the product being racemic (entry 

8). 

R1
S

R2

R1
S

R2 R1
S

R2

O O
+

291 292 293

Ph O
OH

(R,M)-288 (10mol %)

solvent, -30 °C
24 h

+

72

O

 
Scheme 182. Oxidation of sulfides 291 by cumene hydroperoxide 72, catalysed by (R,M)-288 

  

Table 65 

Entry Sulfoxide Solvent Conversion 
/% 

Ratio 
292:293 

Yield of 
292 /% 

ee /% 

1 

Ph
S Ph

O

  
292q 

DCM 100 85:15 74 23(R) 

2 Toluene 100 89:11 78 37(R) 

3 
S

O

 
292a 

DCM 100 28:72 14 13(R) 

4 
S

O

 
292c 

DCM 100 32:68 28 10(R) 

5 Toluene 100 79:21 61 20(R) 

7 
S

MeO

O

 
292d 

Toluene 88 90:10 65 17(R) 

6 

S

O2N

O

 
292e 

Toluene 100 56:44 47 0 

8 
S Ph

O

 
292y 

Toluene 90 trace sulfone 71 0 

 



Chapter 4: Results and Discussion III 

170 
 

4.5 CONCLUSION 
 

Titanium triflate complex (R,M)-288 has been shown to catalyse the oxidation of a 

range of sulfides by cumene hydroperoxide 72 giving the desired sulfoxides in 

moderate to good yields. For the reactions involving benzyl phenyl sulfide 291q, 

4-methylthioanisole 291a, methyl-2-naphthyl sulfide 291c and 4-methoxythioanisole 

291d modest levels of enantioselectivity were obtained, with the best result obtained 

in the reaction of benzyl phenyl sulfide 291q, giving (R)-benzyl phenyl sulfoxide 

292q in 78% yield and 37% ee. 

 

4.6 FUTURE WORK 
 

Following the successful synthesis of ligands (R)-254a and (R)-278 and their 

subsequent complexation to form the titanium iso-propoxide complexes (R,M)-271 

and (R,M)-287, together with the modest enantioselective inducement that complex 

(R,M)-288 displayed in the sulfoxidation reaction, two areas of improvement in the 

ligand/complex design could be envisaged. Firstly, if the angle of the tilt of the aryl 

rings with respect to the titanium-nitrogen bond could be increased then this would 

be relayed to any coordinating substrate on the upper face of the complex. Secondly, 

if the ortho-substituents on the aryl rings could be increased in size or turned in 

further towards one another to create a smaller ‘pocket’, then this would further 

induce a chiral coordination sphere around the metal centre. One way in which this 

could be addressed is by removing the two benzylic methylene groups between the 

aryl rings and central nitrogen from the non-chiral arms to give a ligand such as 

(R)-304 (Scheme 183). 

R

OH

R

N

Me

R

R

HO

OH

RR

N

Ti
O

O
O

Oi-Pr

R

R

Me

R

R

R

R
H

Ti(Oi-Pr)4

(R)-304 Complex (R,M)-305 ?  
Scheme 183. Proposed ligand (R)-304 and the possible titanium complex (R,M)-305 
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Synthesis of the ligand (R)-304 could possibly be achieved by a Buchwald-Hartwig 

cross coupling of the primary amine (R)-306 with the ortho-bromophenol compound 

307 (Scheme 184). Under forcing conditions the bisarylation of the primary amine 

(R)-306 to give the desired ligand precursor (R)-308 might be possible.  

R

R

OBn

NH2

Me OBn

R

R

Br
R

OBn

R

N

Me

R

R

BnO

OBn

RR

(R)-308

+ 2 ×

Pd catalyst
Base

Buchwald-Hartwig 
cross coupling

(R)-304

(R)-306 307

Pd/C

H2

 
Scheme 184. Possible synthesis of ligand (R)-304 

 

Another possible design would be to replace the aryl rings on the ligand with 

polyaromatics such as phenanthrenes, such as ligand (R)-309 (Scheme 185). Upon 

coordination, the curved polyaromatic group would act to increase the tilt of the 

propeller function of the complex, whilst also creating more of a ‘pocket’ at the 

metal cenre.  Synthesis of 4-hydro-3-phenanthrenecarboxaldehye 311, from which 

the ligand could be synthesised as before, was published by Levy et al. in 2005 

(Scheme 186).170 The synthesis began with a Friedel-Crafts acylation of naphthalene 

to give 312 followed by a Wolff-Kishner reduction of 314 to give the acid 315 in 

34% yield over the two steps. Subsequent cyclisation of the acid 315 with 

methanesulfonic acid gave 2,3-dihydrophenanthren-4(1H)-one 316 in 96% yield. 

Condensation of 316 with ethyl formate gave 317 in 86% yield; followed by 

oxidation with triphenylmethanol in trifluoroacetic acid gave the desired 4-hydro-3-

phenanthrenecarboxaldehye 311 in 82% yield, with an overall yield of 23% yield 

over the five steps. 

N

Ti
O

O
O

Oi-Pr

Me

OH Me

N

OH

HO

Complex (R,M)-310 ?

Ti(Oi-Pr)4

(R)-309

H

 
Scheme 185. Proposed ligand (R)-309 and the possible titanium complex (R,M)-310 
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OO O

O

HO2C HO2C

O
O

CHOH

HO

CHO

312

+

AlCl3

PhNO2
16 h, rt

H2NNH2•H2O

O(CH2CH2OH)2
16 h, 195 °C

CH3SO3H
1 h, 90 °C

HCO2C2H5
NaOMe

C6H6
2 h, rt

Ph3COH

CF3CO2H
2 h, reflux

313

314

37% yield

315

91% yield

316

96% yield

317

86% yield

311

82% yield  
Scheme 186. Synthesis of 4-hydro-3-phenanthrenecarboxaldehye 311 from naphthalene 312 
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5 Experimental 
 

5.1 GENERAL EXPERIMENTAL 
 

Proton magnetic resonance spectra were either recorded at 250.13 MHz on a Bruker 

Advance 250 spectrometer, at 300.22 MHz on a Bruker Avance AC-300 

spectrometer or at 399.78 MHz on a Bruker Avance WH-400 spectrometer.  

Chemical shifts δ are quoted in parts per million and are referenced to the residual 

solvent peak.  Coupling constants (J) are quoted to the nearest 0.1 Hz. The 

multiplicities and general assignments of the spectroscopic data are denoted as: s, 

singlet; d, doublet; t, triplet; q, quartet; sept, septet; dd, doublet of doublets; ddd, 

doublet of doublet of doublets; dt, doublet of triplets; m, multiplet; app., apparent 

and br., broad.   

 

Carbon magnetic resonance spectra were either recorded at 75.49 MHz on a Bruker 

Avance AC-300 spectrometer or at 100.52 MHz on a Bruker Avance WH-400. 

Chemical shifts δ are quoted in parts per million and are referenced to the residual 

solvent peak. 

 

Infrared spectra were recorded on a Perkin Elmer 1600 series FT-IR spectrometer 

with internal background calibration for the range 600-4000 cm-1, from thin films on 

NaCl plates (film), as KBr discs (KBr) or as Nujol mulls (Nujol). Selected 

absorptions are quoted as ν in cm-1. 

 

Capillary melting points were recorded on a Büchi 535 series instrument and are 

uncorrected. 

 

Mass spectra including high resolution spectra were either recorded by the EPSRC 

National Mass Spectrometry Service Centre, Swansea, or by the mass spectrometry 

service of the University of Bath. Electron impact (EI) and chemical ionisation (CI) 

analyses were performed in positive ionisation mode. 
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Elemental analyses were performed with an Exeter Analytical, Inc. CE-400 

elemental analyser at the University of Bath. 

 

Optical rotations were recorded on an Optical Activity Ltd AA-10 automatic 

polarimeter with a path length of 1 dm. Concentrations are quoted in g/100mL. 

 

High performance liquid chromatography was performed on a Perkin Elmer series 

200 high performance liquid chromatography system, using different chiral columns, 

flow rates and n-hexane/i-PrOH solvent ratios, as specified. 

 

Crystallographic measurements were recorded on a Nonius KappaCCD 

diffractometer with Mo-Kα radiation (λ = 0.71074 Å). All structures were solved by 

direct methods and refined on all F2 data using the SHELX-97 suite of programmes. 

Analytical thin layer chromatography was carried out using commercially available 

aluminium backed plates coated with Merck G/UV254.  Plates were visualised under 

UV light (at 254nm) or by staining potassium permanganate or ninhydrin followed 

by heating.  Flash chromatography was carried out using Merck 60 H silica gel 

(35-70 µm).  Samples were pre-absorbed onto silica or loaded as saturated solvents 

in an appropriate solvent. 

 

Anhydrous tetrahydrofuran, toluene, dichloromethane, methanol, diethyl ether, 

hexane and acetonitrile were obtained from an Innovative Technology Pure Solv 

solvent purification system (SPS).  Petrol refers to the fraction of petroleum ether 

boiling at 40-60 °C.  Ether refers to diethyl ether.  Solvents were evaporated on a 

Büchi Rotorvapor. 

 

All chemicals were used as supplied unless otherwise stated, and were supplied by 

Acros Organics, Alfa Aesar, Avocado, Fisher Scientific, Fluka, Lancaster Synthesis, 

Sigma-Aldrich and Strem Chemicals. Reactions requiring anhydrous conditions were 

performed under nitrogen in oven dried glassware. 4Å molecular sieves (powdered 

and beads) were activated by drying in an oven at 150 °C. All temperatures quoted 

are external. 
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5.2 GENERAL PROCEDURES 
 

5.2.1 General Procedure A: Preparation of Benzyl Protected 
Aldehydes 

 

To a stirred solution of the 2-hydroxy-benzaldehyde (1 equiv.) in DMF was added 

benzyl bromide (1 equiv.) and potassium carbonate (3.8 equiv.).  The solution was 

stirred under nitrogen at 60 °C for 20 h, after which the reaction mixture was filtered 

through Celite® and washed with DMF. The solvent was removed under reduced 

pressure to leave the crude product. 

 

5.2.2 General Procedure B: Preparation of Imines 

 

The appropriate aldehyde (1 equiv.) was dissolved in ethanol and to this was added 

4Å molecular sieves and (R)-phenyl glycinol 237 (1 equiv.). The reaction mixture 

was stirred at room temperature under nitrogen for 20 h before being filtered through 

Celite®, washed with ethanol and concentrated in vacuo to yield the crude product. 

 

5.2.3 General Procedure C: Addition of Alkyl Lithium to Imines 

 

A solution the imine (1 equiv.) in THF was cooled to -85 °C before the alkyl lithium 

was added dropwise. The solution was stirred at -85 °C for 4 hours before being 

slowly warmed to room temperature over 12 hours, after which, a saturated 

ammonium chloride solution was added. The layers were separated and the organic 

layer concentrated in vacuo. After the crude oil was taken up in diethyl ether it was 

washed with a saturated sodium hydrogen carbonate solution. The aqueous layer was 

extracted with diethyl ether (× 2) and the combined organic extracts were dried over 

magnesium sulphate and concentrated under reduced pressure to leave the crude 

product as an oil. 
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5.2.4 General Procedure D: Preparation of Primary Amines 

 

Lead (IV) acetate (1 equiv.) was added to a solution of the relevant amine in 

dichloromethane and methanol (2:1 ratio DCM:MeOH) at 0 °C.  After stirring for 5 

minutes the reaction was neutralised by addition of a saturated sodium bicarbonate 

solution, before being filtered through Celite®. After separation of the two phases, 

the aqueous layer was extracted twice with dichloromethane before the combined 

organic layers were dried (MgSO4), filtered and evaporated in vacuo yielding the 

crude imine as a yellow oil. The imine was immediately dissolved in a mixture of a 

3M aqueous hydrochloric acid solution and tetrahydrofuran  (3:1 ratio HCl:THF) and 

the resulting solution stirred at room temperature for 1 hour before heating to 80 °C 

for 4 hours.  The crude reaction mixture was evaporated to leave an oil that was 

dissolved in diethyl ether and stirred with a 3M aqueous sodium hydroxide solution 

(1:1 ratio Et2O:NaOH) for 15 minutes before the aqueous layer was separated and 

extracted with diethyl ether.  The combined organic layers were dried (MgSO4) and 

concentrated in vacuo to afford the crude product. 

 

5.2.5 General Procedure E: Preparation of Benzyl Alcohols 

 

A stirred solution of aldehyde (1 equiv.) in ethanol was cooled to 0 °C before sodium 

borohydride (1.4 equiv.) was added portionwise. The reaction mixture was stirred for 

4 hours before being quenched with a 1M aqueous sodium hydroxide solution. The 

ethanol was removed in vacuo and the aqueous solution extracted with ethyl acetate 

(× 3). The combined organic extracts were washed with a 1M aqueous sodium 

hydroxide solution, water and brine. The organic layer was dried (MgSO4), filtered 

and concentrated under reduced pressure to afford the product. 

 

5.2.6 General Procedure F: Preparation of Benzyl Bromide 
Analogues 

 

The appropriate benzyl alcohol (1 equiv.) was taken up in diethyl ether (ca. 0.1M) 

and phosphorus tribromide (1.1 equiv.) was added dropwise over 15 minutes. After 

stirring for a further 15 minutes the solution was cooled to 0 °C and the reaction 

quenched with saturated ammonium chloride solution. The two layers were 
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separated and the aqueous layer extracted with diethyl ether (× 3). The combined 

organic extractions were dried (MgSO4) and concentrated under reduced pressure to 

yield the desired product. 

 

5.2.7 General Procedure G: Preparation of Tertiary Amines via 
bis-N,N-alkylation 

 

To a stirred solution of amine, potassium carbonate and 4Å molecular sieves in DMF 

was added the benzyl bromide analogue. The reaction was stirred at room 

temperature and monitored by TLC until complete conversion to the tertiary amine 

was achieved (additional benzyl bromide analogue and potassium carbonate were 

added if required). The reaction mixture was filtered through Celite® and the organic 

solvents removed in vacuo to afford a crude oil that was purified by column 

chromatography. 

 

5.2.8 General Procedure H: Removal of Benzyl Protecting 
Groups 

 

A solution of the amine in ethyl acetate was added to 10% palladium on carbon and 

the resulting mixture was stirred vigorously under one atmosphere of hydrogen for 

24 hours. Afterwards the mixture was passed through Celite® and concentrated under 

reduced pressure to afford the crude product. 

 

5.2.9 General Procedure I: Preparation of Sulfides 

 

To a stirred solution of the thiol in ethanol was added powdered potassium 

hydroxide (1 equiv.).  The reaction mixture was stirred at room temperature until all 

the solids dissolved. Following this the alkyl halide (1 equiv.) was added. After 

stirring for 24 hours the ethanol was removed in vacuo and ethyl acetate and water 

were added. The layers were partitioned and the organic layer washed with water and 

brine, dried over magnesium sulphate, and concentrated under reduced pressure to 

afford the crude product. 
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5.2.10 General Procedure J: Preparation of Racemic Sulfoxides 

 

To a flask containing the sulfide and sodium dodecyl sulphate (0.05 equiv.) was 

added aqueous hydrogen peroxide (35%, 4 equiv.) and 1M aqueous hydrochloric acid 

(0.1 equiv.). The progress of the reaction was monitored by TLC. After complete 

disappearance of the starting material, the excess hydrogen peroxide was destroyed 

by the addition of saturated aqueous sodium sulphite solution to the reaction mixture. 

The reaction mixture was extracted with ethyl acetate (× 3) and the combined 

organic layers dried over magnesium sulphate. After evaporation of the solvent 

under reduced pressure the crude product was obtained. 

 

5.3 RESULTS AND DISCUSSION I 
 

5.3.1 Synthesis of Chiral Amines (R,R)-247 and (R,R)-248 

 

2-(Benzyloxy)benzaldehyde, 245171 

OBn

H

O

 

According to general procedure A, salicylaldehyde (5.00 mL, 46.9 mmol) in DMF 

(60 mL) was treated with benzyl bromide (5.58 mL, 46.9 mmol) and potassium 

carbonate (24.6 g, 178.2 mmol). The crude product was taken up in 5% ether in 

petrol and passed through a plug of silica to remove baseline impurities to give the 

product as a colourless oil (8.86 g, 41.7 mmol, 89% yield): 1H-NMR (300MHz, 

CDCl3) δ 10.59 (1H, s, CHO), 7.89-7.85 (1H, m, Ar-H), 7.57-7.51 (1H, m, Ar-H), 

7.48-7.32 (5H, m, Ph), 7.08-7.01 (1H, m, Ar-H), 5.20 (2H, s, PhCH2O); 13C-NMR 

(75.5MHz, CDCl3) δ 189.7, 161.0, 136.0, 135.8, 128.7, 128.4, 128.2, 127.2, 125.1, 

121.0, 113.0, 70.4; νmax/cm-1(film) 1683 (C=O); MS (EI+) m/z (%) 235 (100, 

[M+Na]+); HRMS m/z (EI+) [M+Na]+ - C14H12NaO2 requires 235.0734, found 

235.0720.  

The spectroscopic data is in agreement with the literature data 
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(R)-2-(2-Methoxybenzylideneamino)-2-phenylethanol, 241139 

OMe

N

Ph

OH

 

According to general procedure B, 2-methoxybenzaldehyde (4.00 g, 29.4 mmol) in 

ethanol (50 mL) was treated with (R)-phenyl glycinol 237 (4.03 g, 29.4 mmol). The 

product was obtained as a yellow solid (7.50 g, 99% yield): mp 74-75 °C; [ ]25
Dα  

+14.8 (c 1.69, CHCl3); 
1H-NMR (300MHz, CDCl3) δ 8.84 (1H, s, CH=N), 8.10 (1H, 

dd, J  = 7.5 and 1.9 Hz, Ar-H), 7.48-7.24 (6H, m, Ph and Ar-H), 7.02 (1H, app. t, J  

= 7.5 Hz, Ar-H), 6.91 (1H, app. d, J  = 8.3 Hz, Ar-H), 4.53 (1H, dd, J = 8.3 and 4.5 

Hz, NCH(Ph)CH2), 4.00-3.88 (2H, m, CH(Ph)CHAHB and CH(Ph)CHAHB), 3.85 

(3H, s, OCH3), 2.36 (1H, br s, OH); 13C-NMR (75.5MHz, CDCl3) δ 158.9, 158.8, 

141.1, 132.2, 128.5, 127.5, 127.3, 127.3, 124.3, 120.7, 110.9, 76.5, 67.8, 55.4; 

νmax/cm-1(KBr) 3235 (OH); MS (EI+) m/z (%) 256 (100, [M+H]+); HRMS m/z (EI+) 

[M+H]+ - C16H18NO2 requires 256.1338, found 241.1329.  

The spectroscopic data is in agreement with the literature data 

 

(R)-2-(2-(Benzyloxy)benzylideneamino)-2-phenylethanol, 246 

OBn

N

Ph

OH

 

According to general procedure B, aldehyde 245 (8.29 g, 39.1 mmol) in ethanol (100 

mL) was treated with (R)-phenyl glycinol 237 (5.36g, 39.1 mmol). The product was 

obtained as a crude yellow solid (12.94 g, 97% yield): mp 78-80 °C; [ ]25
Dα  -20.4 (c 

2.16, CHCl3); 
1H-NMR (300MHz, CDCl3) δ 8.80 (1H, s, CH=N), 8.03 (1H, dd, J  = 

7.5 and 1.9 Hz, Ar-H), 7.36-7.13 (6H, m, Ph and Ar-H), 6.92 (1H, app. t, J  = 7.5 Hz, 

Ar-H), 6.85 (1H, app. d, J  = 8.3 Hz, Ar-H), 5.02-4.98 (2H, m, PhCH2O), 4.42 (1H, 

dd, J = 7.9 and 4.5 Hz, NCH(Ph)CH2), 3.86 (1H, dd, J = 11.3 and 7.9 Hz, 

CH(Ph)CHAHB), 3.77 (1H, dd, J = 11.3 and 4.5 Hz, CH(Ph)CHAHB), 2.43 (1H, br s, 

OH); 13C-NMR (75.5MHz, CDCl3) δ 158.6, 158.1, 140.9, 136.6, 132.1, 128.6, 128.5, 

128.0, 127.7, 127.4, 127.3, 127.2, 124.8, 121.0, 112.5, 76.3, 70.3, 67.8; 

νmax/cm-1(KBr) 3390 (OH); HRMS m/z (EI+) [M+H]+ - C22H22NO2 requires 

332.1651, found 332.1629.  
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(R)-2-((R)-1-(2-Methoxyphenyl)-2-methylpropylamino)-2-phenylethanol, 247130 

OMe

N
H

Ph

OH

 

According to general procedure C, imine 241 (1.00 g, 3.91 mmol) in THF (70 mL) 

was treated with iso-propyl lithium (0.7M in hexanes, 20.10 mL, 14.10 mmol). The 

crude product was purified by column chromatography (SiO2 90:10 PE:EtOAc) to 

yield a yellow oil (0.69 g, 2.31 mmol, 59% yield, 92% de after purification): [ ]25
Dα  -

42.7 (c 0.38, CH2Cl2); 
1H-NMR (300MHz, CDCl3) δ 7.25-7.00 (7H, m, 2 × Ar-H 

and Ph), 6.82 (1H, ddd, J = 8.3, 7.5 and 0.8 Hz, Ar-H), 6.67 (1H, dd, J = 8.3 and 0.8  

Hz, Ar-H), 3.67 (1H, dd, J = 10.2 and 4.1 Hz, CH(Ph)CHAHB), 3.68-3.55 (6H, m, 

CH(Ph) CHAHB, CH(Ph)CHAHB, CH(i-Pr)N and OCH3), 2.00 (1H, m, CH(CH3)2), 

1.13 (3H, d, J = 6.4 Hz, (CH3)CH(CH3)), 0.73 (3H, d, J = 6.8 Hz, (CH3)CH(CH3)); 
13C-NMR (75.5MHz, CDCl3) δ 157.7, 142.8, 129.5, 128.5, 128.1, 127.5, 127.4, 

120.6, 110.9, 64.6, 62.0, 55.2, 33.2, 20.9, 20.6; MS (EI+) m/z (%) 300 (100, 

[M+H]+); HRMS m/z (EI+) [M+H]+ - C19H26NO2 requires 300.1963, found 

300.1956. 

The spectroscopic data is in agreement with the literature data 

 

(R)-2-((R)-1-(2-(Benzyloxy)phenyl)ethylamino)-2-phenylethanol, 248 

OBn

N
H

Ph

OH

Me

 

According to general procedure C, imine 246 (1.50 g, 4.53 mmol) in THF (100 mL) 

was treated with methyl lithium (1.6M in Et2O, 10.2 mL, 16.31 mmol). The crude 

product was purified by column chromatography (SiO2 90:10 to 90:20 PE:EtOAc) to 

give a yellow oil (0.84 g, 2.42 mmol, 53% yield, >95% de after purification): [ ]25
Dα  

-28.7 (c 2.27, CH2Cl2); 
1H-NMR (300MHz, C6D6) δ 7.08 (1H, app. dt, J = 8.3 and 

1.5 Hz, Ar-H), 7.03-6.83 (11H, m, 2 × Ph and Ar-H), 6.71 (1H, app. td, J = 7.5 and 

1.1 Hz, Ar-H), 6.43 (1H, d, J = 8.3 and 1.1  Hz, Ar-H), 4.46 (1H, d, J = 11.7 Hz, 

PhCHAHBO), 4.40 (1H, d, J = 11.7 Hz, PhCHAHBO), 4.12 (1H, q, J = 6.4 Hz, 

CH(CH3)N), 3.62 (1H, dd, J = 6.8 and 4.5 Hz, CH(Ph)CH2), 3.54 (1H, dd, J = 10.5 

and 4.5 Hz, CH(Ph)CHAHB), 3.34 (1H, dd, J = 10.5 and 6.8 Hz, CH(Ph)CHAHB),  

2.32 (1H, br. s, OH), 1.23 (3H, d, J = 6.4 Hz, CH(CH3)N); 13C-NMR (75.5MHz, 
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CDCl3) δ 156.9, 141.3, 136.8, 133.9, 128.6, 128.2, 127.8, 127.6, 127.2, 127.1, 127.1, 

120.9, 111.7, 69.8, 65.6, 61.4, 50.7, 21.1; νmax/cm-1(film) 3323 (OH);  MS (CI+, 

NH3) m/z (%) 348 (15, [M+H]+), 106 (100, [M-NH2CH(C6H5)CH2OH and 

C6H5CH2O]+); HRMS m/z (ES+) [M+H]+ - C23H26NO2 requires 348.1958, found 

348.1857. 

 

5.3.2 Attempted Cleavage of Methyl Aryl Ether of (R,R)-247 

 

Boron tribromide 

To a stirred solution of amine (R,R)-247 (210 mg, 0.70 mmol) in DCM (20 mL) at 

-78 °C was added boron tribromide (1M solution in DCM, 2.80 mL, 2.80 mmol) and 

the mixture was allowed to warm to room temperature over 20 hours. The reaction 

mixture was quenched with the slow addition of a 1M sodium hydroxide solution (20 

mL). The aqueous layer was separated and extracted with DCM (4 × 15 mL). The 

combined organic layers were dried over MgSO4, filtered and the solvent removed to 

yield the crude product. The 1H NMR spectrum revealed no reaction had occurred 

with only starting amine (R,R)-247 present. 

 

Aluminium bromide 

Amine (R,R)-247 (210 mg, 0.70 mmol) in toluene (0.5 mL) was added to a stirred 

solution of aluminium bromide (573 mg, 1.40 mmol) in toluene (6.5 mL) at room 

temperature. Stirring continued for 20 hours before the reaction mixture was added 

to saturated sodium bicarbonate solution (15 mL) at 0 °C. The mixture was filtered 

through Celite® before being extracted with EtOAc (4 × 15 mL). The combined 

organic layers were dried over MgSO4, filtered and the solvent removed to yield the 

crude product. The 1H NMR spectrum revealed no reaction had occurred with only 

starting amine (R,R)-247 present. 
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5.3.3 Removal of Benzyl Protecting Group of (R,R)-248 

 

2-((R)-1-((R)-2-Hydroxy-1-phenylethylamino)ethyl)phenol, 253 

OH

N
H

Ph

OH

Me

 

According to general procedure H, to 10% palladium on carbon was added to amine 

(R,R)-248 (0.80 g, 2.30 mmol) dissolved in EtOAc (25 mL). After column 

chromatography (SiO2, 80:20 PE:EtOAc) the title compound was obtained as a 

yellow oil (0.56 g, 1.56 mmol, 95% yield): [ ]25
Dα  -65.5 (c 2.75, CH2Cl2); 

1H-NMR 

(300MHz, CDCl3) δ 7.38-7.23 (5H, m, Ph), 7.10 (1H, app. td, J = 7.5 and 1.9 Hz, 

Ar-H), 6.92 (1H, app. d, J = 7.9, Ar-H), 6.78-6.72 (2H, m, 2 × Ar-H), 5.10 (1H, br. s, 

OH), 4.00 (1H, q, J = 6.8 Hz, CH(CH3)N), 3.95 (1H, dd, J = 6.0 and 4.1 Hz, 

CH(Ph)CH2), 3.89 (1H, dd, J = 10.9 and 4.1 Hz, CH(Ph)CHAHB), 3.75 (1H, dd, J = 

10.9 and 6.0 Hz, CH(Ph)CHAHB), 1.46 (3H, d, J = 6.8 Hz, CH(CH3)N); 13C-NMR 

(75.5MHz, CDCl3) δ 157.0, 138.8, 128.7, 128.3, 127.8, 127.4, 127.3, 119.1, 116.8, 

65.2, 60.8, 55.1, 20.4; νmax/cm-1(film) 3305 (OH); MS (CI+, NH3) m/z (%) 258 (20, 

[M+H]+), 138 (100, [M+H-CH(C6H5)CH2OH]+); HRMS m/z (ES+) [M+H]+ - 

C16H20NO2 requires 258.1489, found 258.1491. 

 

5.3.4 Preparation of Chiral Amines (R)-255a and (R)-255b 

 

2-Hydroxy-3,5-dimethylbenzaldehyde, 261172 

Me

Me

OH

H

O

 

To a stirred solution of hexamethylenetetraamine (11.60 g, 82.7 mmol) dissolved in 

TFA (60 mL) under nitrogen was added 2,4-dimethylphenol (90% purity, 11.11 mL, 

82.7 mmol). The reaction mixture was heated to reflux overnight.  The solution was 

allowed to cool to room temperature before 3M aqueous hydrochloric acid (50 mL) 

was added and stirred for a further 30 minutes. The crude mixture was extracted with 

DCM (3 × 50 mL). The combined organic extractions were then washed with 3M 

aqueous hydrochloric acid (2 × 30 mL), brine (30 mL) and dried (MgSO4). Removal 

of the solvent in vacuo yielded a yellow residue which was purified by flash 
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chromatography (SiO2, 95:5 PE:EtOAc) to give a colourless oil (3.21 g, 21.4 mmol, 

26% yield): 1H-NMR (300MHz, CDCl3) δ 11.08 (1H, s, ArOH), 9.81 (1H, s, CHO), 

7.20 (1H, d, J = 1.5 Hz, Ar-H), 7.16 (1H, d, J = 1.5 Hz, Ar-H), 2.30 (3H, s, CH3), 

2.23 (3H, s, CH3); 
13C-NMR (75.5MHz, CDCl3) δ 196.6, 157.9, 139.0, 130.0, 128.5, 

126.5, 119.7, 20.2, 14.9; νmax/cm-1(film) 3628(OH), 1651(C=O). 

The spectroscopic data is in agreement with the literature data 

 

2-(Benzyloxy)-3,5-dimethylbenzaldehyde, 256 

OBn

H

O

Me

Me  

According to general procedure A, aldehyde 261 (2.32 g, 9.65 mmol) in DMF (12 

mL) was treated with benzyl bromide (1.15 mL, 9.65 mmol) and potassium 

carbonate (5.07 g, 36.67 mmol). The crude product was taken up in 5% ether in 

petrol and passed through a plug of silica to remove baseline impurities to give the 

product as a white solid (2.18 g, 9.07 mmol, 94% yield): mp 37-40 °C; 1H-NMR 

(300MHz, CDCl3) δ 10.23 (1H, s, CHO), 7.49 (1H, d, J = 2.3 Hz, Ar-H), 7.36-7.44 

(5H, m, Ph), 7.29 (1H, d, J = 2.3 Hz, Ar-H), 4.94 (2H, s, PhCH2O), 2.33 (6H, app. s, 

Ar-CH3); 
13C-NMR (75.5MHz, CDCl3) δ 190.4, 158.1, 138.4, 136.1, 134.0, 132.1, 

129.1, 128.6, 128.5, 128.2, 126.3, 77.7, 20.0, 15.8; νmax/cm-1(KBr) 1690 (C=O); MS 

(EI+) m/z (%) 240 (50, [M]+); HRMS m/z (ES+) [M+H]+ - C16H16O2 requires 

241.1223, found 241.1220.  

 

 

(R)-2-(2-(Benzyloxy)-3,5-dimethylbenzylideneamino)-2-phenylethanol, 262 

OBn

N
Me

Me

Ph

OH

 

According to general procedure B, aldehyde 261 (7.00 g, 29.1 mmol) in ethanol (80 

mL) was treated with (R)-phenyl glycinol 237 (4.00 g, 29.1 mmol). The product was 

obtained as a yellow solid (10.27 g, 28.5 mmol, 98%): mp 81 °C; [ ]25
Dα  -6.0 (c 2.18, 

CHCl3); 
1H-NMR (300MHz, CDCl3) δ 8.64 (1H, s, CH=N), 7.71 (1H, d, J  = 1.9 Hz, 

Ar-H), 7.42-7.27 (10H, m, 2 × Ph), 7.11 (1H, d, J  = 1.9 Hz, Ar-H), 4.81 (1H, d, J  = 
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10.9 Hz, PhCHAHBO), 4.77 (1H, d, J  = 10.9 Hz, PhCHAHBO), 4.40 (1H, dd, J = 7.9 

and 4.9 Hz, NCH(Ph)CH2), 4.01 (1H, dd, J = 10.9 and 7.9 Hz, CH(Ph)CHAHB), 3.90 

(1H, dd, J = 10.9 and 4.9 Hz, CH(Ph)CHAHB), 2.90 (1H, br s, OH), 2.33 (3H, s, 

Ar-CH3), 2.30 (3H, s, Ar-CH3);
 13C-NMR (75.5MHz, CDCl3) δ 159.3, 155.2, 140.7, 

136.5, 134.6, 133.5, 131.0, 128.4, 128.3, 128.3, 128.0, 127.9, 127.2, 127.1, 125.4, 

76.4, 76.4, 67.2, 20.6, 15.8; νmax/cm-1(KBr) 3325 (OH); HRMS m/z (EI+) [M+H]+ - 

C24H26NO2 requires 360.1964, found 360.1946.  

 

 (R)-2-((R)-1-(2-(Benzyloxy)-3,5-dimethylphenyl)ethylamino)-2-phenylethanol, 

263a 

OBn

N
H

Ph

OH

Me

Me

Me  

According to general procedure C, imine 262 (1.00 g, 3.02 mmol) in THF (60 mL) 

was treated with methyl lithium (1.6M in Et2O, 6.79 mL, 10.87 mmol). The crude 

product was purified by column chromatography (SiO2, 90:10 PE:EtOAc) to give a 

yellow oil, which slowly solidified (0.55 g, 1.46 mmol, 49% yield, 94% de after 

purification): mp 72-73 °C; [ ]25
Dα  -36.4 (c 1.32, CH2Cl2); 

1H-NMR (300MHz, 

CDCl3) δ 7.23-7.02 (10H, m, 2 × Ph), 6.96 (1H, d, J = 1.7 Hz, Ar-H), 6.77 (1H, d, J 

= 1.7 Hz, Ar-H), 4.46 (1H, d, J = 11.1  Hz, PhCHAHBO), 4.35 (1H, d, J = 11.1 Hz, 

PhCHAHBO), 4.08 (1H, q, J = 6.5 Hz, CH(CH3)N), 3.75 (1H, dd, J = 8.0 and 4.6 Hz, 

CH(Ph)CHAHB), 3.58 (1H, dd, J = 10.7 and 4.6 Hz, CH(Ph)CHAHB), 3.58 (1H, dd, J 

= 10.7 and 8.0 Hz, CH(Ph)CHAHB), 2.53 (1H, br s, OH), 2.16 (3H, s, Ar-CH3), 2.14 

(3H, s, Ar-CH3), 1.20 (3H, d, J = 6.5 Hz, CH(CH3)N); 13C-NMR (75.5MHz, CDCl3) 

δ 151.9, 140.8, 138.3, 137.2, 133.7, 130.6, 130.5, 128.4, 128.2, 127.7, 127.4, 127.3, 

127.1, 125.0, 75.0, 66.0, 61.4, 47.5, 21.9, 20.8, 16.3; νmax/cm-1(KBr) 3385 (OH); MS 

(CI+, NH3) m/z (%) 376 (100, [M+H]+), 286 (40, [M+NH4-OCH2(C6H5)]
+); HRMS 

m/z (ES+) [M+H]+ - C25H30NO2 requires 376.2271, found 376.2276. 
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(R)-2-((R)-1-(2-(Benzyloxy)-3,5-dimethylphenyl)-2-methylpropylamino)-2-
phenylethanol, 263b 

OBn

N
H

Ph

OHMe

Me  

According to general procedure C, imine 262 (1.09 g, 3.28 mmol) in THF (60 mL) 

was treated with iso-propyl lithium (0.7M in hexanes, 16.9 mL, 11.81 mmol). The 

crude product was purified by column chromatography (SiO2, 90:10 to 90:20 

PE:EtOAc) to give a yellow oil (0.74 g, 1.97 mmol, 60% yield, 91% de after 

purification): [ ]25
Dα  -47.6 (c 1.47, CH2Cl2); 

1H-NMR (300MHz, CDCl3) δ 7.42-7.29 

(5H, m, Ph), 7.25-7.14 (5H, m, Ph), 6.87 (1H, s, Ar-H), 6.85 (1H, s, Ar-H), 4.65 (1H, 

d, J = 11.3  Hz, PhCHAHBO), 4.47 (1H, d, J = 11.3 Hz, PhCHAHBO), 3.87 (1H, d, J = 

6.8 Hz, CH(i-Pr)N), 3.78 (1H, dd, J = 10.2 and 4.5 Hz, CH(Ph)CHAHB), 3.72 (1H, 

dd, J = 5.7 and 4.5 Hz, CH(Ph)CHAHB), 3.54 (1H, dd, J = 10.2 and 5.7 Hz, 

CH(Ph)CHAHB), 2.25 (3H, s, Ar-CH3), 2.24 (3H, s, Ar-CH3), 2.00 (1H, app. sept, J = 

6.8 Hz, CH(CH3)2), 1.02 (3H, d, J = 6.8 Hz, (CH3)CH(CH3)), 0.88 (3H, d, J = 6.8 

Hz, (CH3)CH(CH3)); 
13C-NMR (75.5MHz, CDCl3) δ 153.3, 141.9, 137.6, 135.6, 

133.2, 130.5, 128.4, 128.3, 127.8, 127.3, 127.2, 127.2, 126.0, 74.4, 65.0, 61.8, 33.4, 

20.9, 19.8, 19.6, 16.6; νmax/cm-1(film) 3418 (OH); MS (CI+, NH3) m/z (%) 404 (100, 

[M+H]+); HRMS m/z (ES+) [M+H]+ - C27H34NO2 requires 404.2584, found 

404.2586. 

 

(R)-2-((R)-1-(2-(Benzyloxy)-3,5-dimethylphenyl)-2,2-dimethylpropylamino)-2-
phenylethanol, 263c 

OBn

N
H

Ph

OHMe

Me  

According to general procedure C, imine 262 (1.09 g, 3.28 mmol) in THF (60 mL) 

was treated with tert-butyl lithium (1.7M in pentane, 6.95 mL, 11.81 mmol). The 

crude product was purified by column chromatography (SiO2, 90:10 to 90:20 

PE:EtOAc) to give a yellow oil (0.75 g, 1.80 mmol, 55% yield, 85% de after 

purification): 1H-NMR (300MHz, CDCl3) δ 7.52-7.32 (5H, m, Ph), 7.32-7.20 (5H, 

m, Ph), 6.94 (1H, d, J = 2.3 Hz, Ar-H), 6.90 (1H, d, J = 2.3 Hz, Ar-H), 4.66 (1H, d, J 
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= 11.7  Hz, PhCHAHBO), 4.36 (1H, d, J = 11.7 Hz, PhCHAHBO), 4.07 (1H, s, CH(t-

Bu)N), 3.80 (1H, dd, J = 10.2 and 9.8 Hz, CH(Ph)CHAHB), 3.76 (1H, dd, J = 9.8 and 

4.9 Hz, CH(Ph)CHAHB), 3.60 (1H, dd, J = 10.2 and 4.9 Hz, CH(Ph)CHAHB), 2.33 

(3H, s, Ar-CH3), 2.30 (3H, s, Ar-CH3), 1.04 (9H, s, t-Bu); 13C-NMR (75.5MHz, 

CDCl3) δ 153.8, 142.3, 137.9, 134.9, 132.4, 130.3, 130.0, 128.4, 128.3, 127.6, 127.3, 

127.2, 126.9, 126.0, 73.6, 65.2, 63.2, 61.6, 36.3, 27.0, 20.9, 16.6; MS (CI+, NH3) m/z 

(%) 418 (100, [M+H]+); HRMS m/z (ES+) [M+H]+ - C28H36NO2 requires 418.2741, 

found 418.2744. 

 

(R)-1-(2-(Benzyloxy)-3,5-dimethylphenyl)ethanamine, 255a 

OBn

NH2

Me

Me

Me  

According to general procedure D, amine 263a (0.50 g, 1.33 mmol) dissolved in 

DCM (5 mL) and MeOH (2.5 mL) was treated with lead (IV) acetate (0.59 g, 1.33 

mmol). The crude product was purified by column chromatography (SiO2, 50:49:1 

DCM:EtOAc:Et3N) to give a pale yellow oil (0.20 g, 0.78 mmol, 59% yield): [ ]20
Dα  

+8.81 (c 1.14, CH2Cl2); 
1H-NMR (300MHz, CDCl3) δ 7.51-7.32 (5H, m, Ph), 7.09 

(1H, d, J = 1.5 Hz, Ar-H), 6.94 (1H, d, J = 1.5 Hz, Ar-H), 4.87 (1H, d, J = 11.3  Hz, 

PhCHAHBO), 4.82 (1H, d, J = 11.3 Hz, PhCHAHBO), 4.46 (1H, q, J = 6.8 Hz, 

CH(CH3)N), 2.33 (3H, s, Ar-CH3), 2.31 (3H, s, Ar-CH3), 1.64 (2H, br s, NH2), 1.38 

(3H, d, J = 6.8 Hz, CH(CH3)N); 13C-NMR (75.5MHz, CDCl3) δ 152.0, 140.3, 137.4, 

133.8, 130.8, 130.4, 128.5, 128.0, 127.7, 124.1, 75.2, 44.6, 24.5, 20.9, 16.4; 

νmax/cm-1(film) 3367 and 3299 (NH2); MS (CI+, NH3) m/z (%) 256 (100, [M+H]+), 

166 (70, [M+H-OCH2(C6H5)]
+); HRMS m/z (ES+) [M+H]+ - C17H22NO requires 

256.1696, found 256.1698. 

 

(R)-1-(2-(Benzyloxy)-3,5-dimethylphenyl)-2-methylpropan-1-amine, 255b 

OBn

NH2

Me

Me  

According to general procedure D, amine 263b (3.33 g, 8.25 mmol) dissolved in 

DCM (40 mL) and MeOH (20 mL) was treated with lead (IV) acetate (3.66 g, 8.25 
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mmol). The crude product was purified by column chromatography (SiO2, 50:49:1 

DCM:EtOAc:Et3N) to give a yellow oil (1.46 g, 5.20 mmol, 63% yield): [ ]20
Dα  -5.9 

(c 2.38, CH2Cl2); 
1H-NMR (300MHz, CDCl3) δ 7.53-7.48 (2H, m, Ph), 7.46-7.33 

(3H, m, Ph), 7.05 (1H, d, J = 1.5 Hz, Ar-H), 6.99 (1H, d, J = 1.5 Hz, Ar-H), 4.88 

(1H, d, J = 11.3  Hz, PhCHAHBO), 4.83 (1H, d, J = 11.3 Hz, PhCHAHBO), 3.97 (1H, 

d, J = 7.9 Hz, CH(i-Pr)N), 2.35 (3H, s, Ar-CH3), 2.32 (3H, s, Ar-CH3), 1.93 (1H, app. 

sept, J = 6.8 Hz, CH(CH3)2), 1.42 (2H, br. s, NH2), 1.03 (3H, d, J = 6.8 Hz, 

(CH3)CH(CH3)), 0.83 (3H, d, J = 6.8 Hz, (CH3)CH(CH3)); 
13C-NMR (75.5MHz, 

CDCl3) δ 152.5, 138.5, 137.6, 133.4, 130.4, 130.2, 128.4, 127.8, 127.5, 125.1, 74.9, 

55.2, 34.7, 20.9, 20.3, 18.8, 16.4; νmax/cm-1(film) 3376 and 3310 (NH2); MS (CI+, 

NH3) m/z (%) 284 (100, [M+H]+); HRMS m/z (ES+) [M+H]+ - C19H26NO requires 

284.2009, found 284.2011. 

 

5.3.5 Attempted Preparation of (R)-266b via Reductive 
Amination ((R)-265b Formed) 

 

(R)-N-(2-(Benzyloxy)-3,5-dimethylbenzyl)-1-(2-(benzyloxy)-3,5-dimethylphenyl)-2-
methylpropan-1-amine, 265b 

OBn

N
H

Me

Me

OBn

Me

Me  

To a mixture of amine (R)-255b (150 mg, 0.47 mmol), aldehyde 256 (106 mg, 0.47 

mmol) in DCE (6 mL) was added sodium triacetoxyborohydride (139 mg, 0.66 

mmol). The reaction was then stirred at room temperature under a nitrogen 

atmosphere and monitored by TLC. When the reaction was deemed complete the 

reaction was quenched with saturated sodium bicarbonate (10 mL) and the crude 

product was extracted with EtOAc (3 × 15 mL). The organic layer was dried 

(MgSO4), filtered and the solvent removed in vacuo to yield the crude product. The 

title compound was isolated after column chromatography (SiO2, 75:24:1 

PE:EtOAc:Et3N) to give a pale yellow oil (191 mg, 0.37 mmol, 80% yield): [ ]20
Dα  

+9.6 (c 1.04, CH2Cl2); 
1H-NMR (300MHz, CDCl3) δ 7.17 (1H, d, J = 1.9 Hz, Ar-H), 

7.06 (1H, d, J = 2.3 Hz, Ar-H), 6.97 (1H, d, J = 1.9 Hz, Ar-H), 6.94 (1H, d, J = 2.3 

Hz, Ar-H), 4.82 (1H, d, J = 10.9  Hz, PhCHAHBO), 4.79 (1H, d, J = 11.7 Hz, 
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PhCHAHBO), 4.76 (1H, d, J = 10.9  Hz, PhCHAHBO), 4.70 (1H, d, J = 11.7 Hz, 

PhCHAHBO), 3.95 (1H, d, J = 6.8 Hz, CH(i-Pr)N), 3.72 (2H, s, NCH2Ar), 2.36 (3H, 

s, Ar-CH3), 2.33 (3H, s, Ar-CH3), 2.31 (3H, s, Ar-CH3), 2.30 (3H, s, Ar-CH3), 1.97 

(1H, app. sept, J = 6.8 Hz, CH(CH3)2), 1.03 (3H, d, J = 6.8 Hz, (CH3)CH(CH3)), 

0.88 (3H, d, J = 6.8 Hz, (CH3)CH(CH3)); 
13C-NMR (75.5MHz, CDCl3) δ 153.9, 

153.3, 137.7, 137.6, 135.8, 133.4, 133.4, 133.2, 130.8, 130.5, 130.4, 130.2, 129.0, 

128.3, 128.1, 127.7, 127.6, 127.6, 127.3, 125.9, 74.8, 74.3, 53.3, 46.9, 34.2, 27.6, 

22.6, 20.2, 19.0, 16.4, 16.2; MS (CI+, NH3) m/z (%) 508 (100, [M+H]+); HRMS m/z 

(ES+) [M+H]+ - C35H42NO2 requires 508.3210, found 508.3208. 

 

To a mixture of secondary amine (R)-265b (13 mg, 0.026 mmol), aldehyde 256 (8 

mg, 0.031 mmol) and acetic acid (1 µL) in DCE (1 mL) was added sodium 

triacetoxyborohydride (8 mg, 0.036 mmol). The reaction was then stirred at room 

temperature under a nitrogen atmosphere and monitored by TLC for 48 hours after 

which it was quenched with saturated sodium bicarbonate (5 mL) and the crude 

product was extracted with EtOAc (3 × 10 mL). The organic layer was dried 

(MgSO4), filtered and the concentrated. The 1H NMR spectrum showed that no 

tertiary amine had formed, only the slow reduction of the aldehyde 256 to the 

corresponding alcohol 268. 

 

5.3.6 Preparation of Benzyl Bromide 267 

 

(2-(Benzyloxy)-3,5-dimethylphenyl)methanol, 268 

OBn

OH
Me

Me  

According to general procedure E, aldehyde 256 (4.50 g, 18.7 mmol) in ethanol (50 

mL) was treated with sodium borohydride (0.99 g, 26.2 mmol). The product was 

obtained as a colourless oil (4.49 g, 18.5 mmol, 99% yield): 1H-NMR (300MHz, 

CDCl3) δ 7.50-7.30 (5H, m, Ph), 7.02 (1H, s, Ar-H), 6.98 (1H, s, Ar-H), 4.86 (2H, s, 

OCH2Ph), 4.62 (2H, s, CH2OH), 2.33 (3H, s, Ar-CH3), 2.30 (3H, s, Ar-CH3), 2.24 

(1H, br s, OH); 13C-NMR (75.5MHz, CDCl3) δ 153.0, 137.3, 133.8, 133.6, 131.6, 

130.9, 128.6, 128.2, 128.0, 127.5, 75.5, 61.6, 20.7, 16.2; νmax/cm-1(film) 3400 (OH); 
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MS (CI+, NH3) m/z (%) 242 (100, [M+H]+); HRMS m/z (ES+) [M+NH4]
+ - 

C16H22NO2 requires 260.1645, found 260.1643. 

 

 

2-(Benzyloxy)-1-(bromomethyl)-3,5-dimethylbenzene, 267 

OBn

Br
Me

Me  

According to general procedure F, benzyl alcohol 268 (2.76 g, 11.40 mmol) in ether 

(120 mL) was treated with phosphorus tribromide (1.18 mL, 12.53 mmol). The 

product was isolated without the need for further purification as a pale yellow solid 

(3.37 g, 11.0 mmol, 97% yield): mp 58-60 °C; 1H-NMR (300MHz, CDCl3) δ 7.58-

7.53 (2H, m, Ph), 7.48-7.36 (3H, m, Ph), 7.06 (1H, s, Ar-H), 7.00 (1H, s, Ar-H), 5.00 

(2H, s, OCH2Ph), 4.56 (2H, s, CH2Br), 2.34 (3H, s, Ar-CH3), 2.31 (3H, s, Ar-CH3); 
13C-NMR (75.5MHz, CDCl3) δ 153.3, 137.3, 134.0, 132.9, 131.4, 130.9, 129.5, 

128.6, 128.1, 127.9, 74.8, 28.9, 20.7, 16.3. 

 

5.3.7 Synthesis of Chiral Ligand (R)-254a 

 
N,N-bis(2-(Benzyloxy)-3,5-dimethylbenzyl)-1-phenylethanamine, 270 

N

Me OBn

BnO

Me

Me

MeMe

 

To a stirred solution of α-methyl benzylamine (50 µL, 0.39 mmol), potassium 

carbonate (107 mg, 0.78 mmol) and 4Å molecular sieves (0.25 g) in DMF (2 mL) 

was added the benzyl bromide analogue 267 (0.24 g, 0.78 mmol).  The reaction was 

stirred at room temperature overnight before being filtered through Celite® and the 

organic solvents removed in vacuo to leave a crude oil. After purification by column 

chromatography (SiO2, 92:8 PE:Et2O) the title compound was obtained as pale 

yellow oil (70 mg, 0.12 mmol, 31% yield): 1H-NMR (300MHz, CDCl3) δ 7.48-7.29 

(17H, m, 3 × Ph and 2 × Ar-H), 6.93 (2H, d, J = 1.9 Hz, Ar-H), 4.73 (2H, d, J = 11.3 

Hz,  2 × PhCHAHBO), 4.69 (2H, d, J = 11.3 Hz,  2 × PhCHAHBO), 4.00 (1H, q, J = 
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6.8 Hz , CH(CH3)N), 3.79 (2H, d, J = 14.3 Hz,  2 × ArCHAHBN), 3.53 (2H, d, J = 

14.3 Hz,  2 × ArCHAHBN), 2.37 (6H, s, 2 × Ar-CH3), 2.30 (6H, s, 2 × Ar-CH3), 1.44 

(3H, d, J = 6.8 Hz, CHCH3); 
13C-NMR (75.5MHz, CDCl3) δ 153.6, 142.5, 137.5, 

133.2, 133.0, 132.7, 130.4, 130.0, 128.4, 128.2, 128.1, 127.9, 127.9, 127.8, 126.5, 

74.9, 57.1, 47.4, 21.0, 16.3, 14.6; MS (CI+, NH3) m/z (%) 570 (30, [M+H]+), 346 

(80, [M+H-C16H17O]+); HRMS m/z (ES+) [M+H]+ - C40H44NO2 requires 570.3367, 

found 570.3362. 

 

(R)-N,N-bis(2-(Benzyloxy)-3,5-dimethylbenzyl)-1-(2-(benzyloxy)-3,5-
dimethylphenyl)ethanamine, 266a 

N

Me OBn

BnO

Me

Me

MeMe

OBn

Me

Me

 

According to general procedure G, amine (R)-255a (0.55 g, 2.17 mmol), potassium 

carbonate (0.75 g, 5.42 mmol), 4Å MS (1.00 g) dissolved in DMF (11 mL) was 

reacted with bromide 267 (1.65 g, 5.42 mmol). The crude product was purified by 

column chromatography (SiO2, first column 90:10 to 70:30 PE:DCM; second 

column 95:5 PE:EtOAc) to give a pale yellow oil (0.92 g, 1.24 mmol, 57% yield): 

[ ]25
Dα  -10.1 (c 2.17, CH2Cl2); 

1H-NMR (300MHz, CDCl3) δ 7.41 (2H, d, J = 1.5 Hz, 

2 × Ar-H), 7.35-7.24 (13H, m, Ph), 7.23 (1H, d, J =1.9 Hz, Ar-H), 7.11-7.06 (2H, m, 

Ph), 6.96 (1H, d, J = 1.9 Hz, Ar-H), 6.86 (2H, d, J = 1.5 Hz, 2 × Ar-H), 4.65 (2H, d, 

J = 11.3 Hz,  2 × PhCHAHBO), 4.59 (1H, q, J = 7.2 Hz, CH(CH3)N), 4.57 (2H, d, J = 

11.3 Hz,  2 × PhCHAHBO), 4.55 (2H, s, PhCH2O), 3.82 (2H, d, J = 15.4 Hz,  2 × 

CHAHBN), 3.72 (2H, d, J = 15.4 Hz,  2 × CHAHBN), 2.31 (3H, s, Ar-CH3), 2.30 (6H, 

s, 2 × Ar-CH3), 2.27 (3H, s, Ar-CH3), 2.23 (6H, s, 2 × Ar-CH3), 1.45 (d, 3H, J = 7.2 

Hz, CH(CH3)N); 13C-NMR (75.5MHz, CDCl3) δ 152.8, 152.6, 137.3, 136.5, 133.8, 

133.3, 133.1, 133.0, 130.6, 130.4, 130.3, 129.5, 128.5, 128.3, 128.2, 128.0, 127.7, 

126.9, 126.6, 75.2, 73.6, 51.3, 48.1, 23.2, 23.2, 21.4, 19.8, 16.5, 16.1 (spectra run at 

253 K); MS (CI+, NH3) m/z (%) 704 (15, [M+H]+); HRMS m/z (ES+) [M+H]+ - 

C49H54NO3 requires 704.4098, found 704.4108. 
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(R)-N,N-bis(2-(Benzyloxy)-3,5-dimethylbenzyl)-1-(2-(benzyloxy)-3,5-
dimethylphenyl)-2-methylpropan-1-amine, 266b 

N

i-Pr OBn

BnO

Me

Me

MeMe

OBn

Me

Me

 

According to general procedure G, amine (R)-255b (54 mg, 0.19 mmol), potassium 

carbonate (99 mg, 0.72 mmol), 4Å MS (100 mg) dissolved in DMF (2 mL) was 

reacted with bromide 267 (145 mg, 0.48 mmol). The crude product was purified by 

column chromatography (SiO2, first column 90:10 to 70:30 PE:DCM; second 

column 95:5 PE:EtOAc) to give a white powder (73 mg, 0.10 mmol, 54% yield): mp 

103-104 °C; [ ]20
Dα  -25.2 (c 1.39, CH2Cl2); 

1H-NMR (300MHz, CDCl3) δ 7.62 (2H, d, 

J = 1.5 Hz, 2 × Ar-H), 7.29-7.14 (13H, m, Ph), 7.03 (1H, d, J = 1.9 Hz, Ar-H), 7.00 

(1H, d, J = 1.9 Hz, Ar-H), 6.85 (1H, d, J = 1.5 Hz, Ar-H), 6.81-6.76 (2H, m, Ph), 

4.65 (2H, d, J = 10.9 Hz, 2 × PhCHAHBO), 4.55 (1H, d, J = 10.9 Hz, PhCHAHBO),  

4.48 (2H, d, J = 10.9 Hz, 2 × PhCHAHBO), 4.45 (1H, d, J = 10.9 Hz, PhCHAHBO), 

4.22 (1H, d, J = 11.3 Hz, CH(i-Pr)N), 3.70 (2H, d, J = 16.2 Hz, 2 × CHAHBN), 3.56 

(2H, d, J = 16.2 Hz, 2 × CHAHBN), 2.55-2.40 (1H, m, (CH3)CH(CH3)), 2.31 (6H, s, 2 

× Ar-CH3), 2.27 (3H, s, Ar-CH3), 2.21 (6H, s, 2 × Ar-CH3), 2.19 (3H, s, Ar-CH3) 

1.52 (3H, d, J = 6.4 Hz, (CH3)CH(CH3)), 0.85 (d, J = 6.4 Hz, (CH3)CH(CH3)); 
13C-

NMR (75.5MHz, CDCl3) δ 154.7, 152.9, 137.8, 137.2, 133.5, 133.1, 132.7, 130.6, 

130.5, 130.3, 130.2, 129.4, 129.4, 128.3, 128.1, 127.8, 127.6, 127.3, 126.5, 75.0, 

73.5, 61.8, 47.8, 29.4, 22.1, 21.3, 21.3, 21.1, 16.7, 16.1; MS (ES+) m/z (%) 732 (100, 

[M+H]+); HRMS m/z (ES+) [M+H]+ - C51H58NO3 requires 732.4411, found 

732.4408. 
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(R)-N,N-bis(2-(Hydroxy)-3,5-dimethylbenzyl)-1-(2-(hydroxy)-3,5-
dimethylphenyl)ethylamine, 254a 

N

Me OH

HO

Me

Me

MeMe

OH

Me

Me

 

According to general procedure H, to 10% palladium on carbon was added to amine 

(R)-266a (0.92 g, 1.07 mmol) dissolved in EtOAc (15 mL). The title compound was 

obtained as a white powder (0.45 g, 1.04 mmol, 98% yield): [ ]25
Dα  -13.9 (c 0.58, 

CHCl3); 
1H-NMR (300 MHz, CDCl3) δ 6.85 (1H, d, J = 1.5 Hz, Ar-H), 6.82 (3H, 

app. s, 3 × Ar-H), 6.69 (2H, d, J = 1.9 Hz, 2 ×Ar-H), 4.49 (3H, br s, 3 × OH), 4.34 

(1H, q, J = 6.8 Hz, CH(CH3)N), 3.87 (2H, d, J = 13.2 Hz, 2 × ArCHAHBN), 3.51 

(2H, d, J = 13.2 Hz,  2 × ArCHAHBN), 2.22 (3H, s, Ar-CH3), 2.21 (3H, s, Ar-CH3), 

2.18 (6H, s, 2 ×  Ar-CH3), 2.16 (6H, s, 2 × Ar-CH3), 1.49  (3H,d, J = 6.8 Hz, 

CH(CH3)N); 13C-NMR (75.5MHz, CDCl3) δ 151.2, 150.8, 131.0, 130.7, 128.8, 

128.5, 128.1, 125.7, 125.5, 124.6, 124.5, 121.8, 53.2, 51.2, 20.5, 20.2, 15.9, 15.7, 

8.7; MS (CI+, NH3) m/z (%) 434 (15, [M+H]+), 286 (80, [M+H-C10H13O]+), 152 

(100, [M+NH4-C19H24NO2]
+); HRMS m/z (ES+) [M+H]+ - C28H36NO3 requires 

434.2690, found 434.2693. 
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5.4 RESULTS AND DISCUSSION II 
 

5.4.1 Preparation of Titanium Complexes (R,M)-271 and 
(R,M)-272 

 

Titanium tris(phenolate) iso-propoxide complex, (R,M)-271 

Heq

O

Me

Me
Hax

Me

Me

N
Me

MeOO

Me

Hx

Hax

Heq

Ti

O

 

Titanium (IV) iso-propoxide (68 µL, 0.23 mmol) was added to a suspension of 

ligand (R)-254a (100 mg, 0.23 mmol) in toluene (3 mL) under an argon atmosphere. 

The resulting solution was heated to reflux and concentrated under vacuum to afford 

the crude product as a yellow-orange solid (121 mg, 0.23 mmol, 98% yield): [ ]25
Dα  

-28.2 (c 0.85, CHCl3); 
1H-NMR (300MHz, CDCl3) δ 6.90-6.82 (4H, m, 4 × Ar-H), 

6.76 (1H, d, J = 1.5 Hz, Ar-H), 6.70 (1H, d, J = 1.5 Hz, Ar-H), 5.24 (1H, sept, J = 

6.0 Hz, CH(CH3)2), 4.00 (1H, q, J = 6.8 Hz,  CH
x(CH3)N), 3.74 (1H, d, J = 14.3 Hz, 

CH
eqHaxN), 3.53 (1H, d, J = 13.2 Hz, CH

eqHaxN), 3.22-3.08 (2H, m, 2 × CHeq
H

axN), 

2.27 (6H, app s, 2 ×Ar-CH3), 2.26 (3H, s, Ar-CH3), 2.24 (3H, s, Ar-CH3), 2.23 (3H, 

s, Ar-CH3), 2.21 (3H, s, Ar-CH3), 1.53 (6H, d, J = 6.0 Hz, CH(CH3)2), 1.45 (3H, d, J 

= 6.8 Hz, CHx(CH3)N); 13C-NMR (75.5MHz, toluene-d8) δ 160.9, 160.9, 160.4, 

131.0, 130.9, 130.7, 129.3, 129.1, 129.0, 128.5, 128.3, 128.1, 125.7, 125.7, 124.6, 

124.4, 124.4, 123.9, 79.6, 54.1, 53.5, 51.3, 26.1, 26.0, 25.4, 21.2, 16.8, 16.6, 16.6, 

9.0. 
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Titanium tris(phenolate) triflate complex, (R,M)-272 

Heq

O

Me

Me
Hax

Me

Me

N
Me

MeOO

Me

Hx

Hax

Heq

Ti

O
S

O

O
F3C

 

Titanium tris(phenolate) iso-propoxide complex, (R,M)-271 (80 mg, 0.15 mmol) in 

toluene (2 mL) was treated with trimethylsilyltriflate (27 µL, 0.15 mmol) under an 

argon atmosphere. The resulting suspension was heated to reflux and concentrated 

under vacuum to a yield the crude product as a deep red solid (87 mg,  0.14 mmol, 

95% yield): 1H-NMR (300MHz, CDCl3) δ 6.95-6.87 (4H, m, 4 × Ar-H), 6.83 (1H, d, 

J = 1.5 Hz, Ar-H), 6.77 (1H, d, J = 1.5 Hz, Ar-H), 4.11 (1H, q, J = 6.8 Hz,  

CH
x(CH3)N), 3.88 (1H, d, J = 14.3 Hz, CH

eqHaxN), 3.67 (1H, d, J = 13.2 Hz, 

CH
eqHaxN), 3.49-3.35 (2H, m, 2 × CHeq

H
axN), 2.29 (3H, s, Ar-CH3), 2.26 (3H, s, Ar-

CH3), 2.24 (3H, s, Ar-CH3), 2.24 (3H, s, Ar-CH3), 2.23 (3H, s, Ar-CH3), 2.21 (3H, s, 

Ar-CH3), 1.60 (3H, d, J = 6.8 Hz, CHx(CH3)N); 13C-NMR (75.5MHz, CDCl3) δ 

160.8, 160.6, 160.1, 132.1, 132.0, 131.6, 131.4, 131.2, 130.5, 127.3, 125.9, 125.4, 

124.3, 124.2, 124.2, 122.4, 121.7, 117.5, 55.1, 54.3, 51.3, 21.0, 20.7, 20.6, 15.8, 

15.6, 14.1, 10.0; HRMS m/z (EI+) [M]+ - C29H32F3NO6STi requires 627.1376, found 

627.1375. 

 

5.4.2 Addition of Diethyl Zinc to Benzaldehyde Catalysed by 
(R,M)-271 and (R,M)-272  

 

1-Phenylpropan-1-ol, 275a173 

OH

 

A solution of diethyl zinc in hexane (1M solution, 0.558 mL, 0.558 mmol) was added 

to a solution of catalyst (see Table 66) in DCM (1 mL). This solution was stirred for 

10 minutes before being cooled to 0 °C and benzaldehyde (19 µL, 0.186 mmol) was 

added. Stirring was continued at 0 °C for 6 hours, then at room temperature 

overnight. The solution was quenched by addition of aqueous 1 M hydrochloric acid 

(5 mL). The aqueous layer was extracted with EtOAc and the combined organic 
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layers were dried (MgSO4), filtered and the solvent removed in vacuo to yield the 

crude product as a yellow oil. Column chromatography (SiO2, 80:20 PE:EtOAc) 

resulted in the product as a yellow oil. The enantiomeric excess of the alcohol 275a 

was determined via chiral HPLC analysis over a Daicel Chiralcel OD-H column 

using a mixed n-hexane/i-PrOH (98:2) solvent system at a flow rate of 1 mL/min 

with the enantiomers of 275a having retention times of 10 min (R) and 12 min (S) 

(detection at 254 nm). The configuration of the alcohol product was determined by 

the order of elution of the enantiomers compared with the literature.173 
1H-NMR (300MHz, CDCl3) δ 7.37-7.25 (5H, m, Ph), 4.60 (1H, t, J = 6.8 Hz, 

CHOH), 1.90-1.70 (2H, m, CH2), 0.92 (3H, t, J = 7.2 Hz, CH3); 
13C-NMR 

(75.5MHz, CDCl3) δ 144.5, 128.4, 127.5, 125.9, 76.0, 31.9, 10.1. 

The spectroscopic data is in agreement with the literature data 

Table 66 

Entry  Catalyst Conversion /% Isolated yield /% eea /% 

1 none trace - - 

2 (R)-254a (20mol %) trace - - 

3 (rac)-194b (20mol %) 54 29 0 

4 (R,M)-271 (20mol %) 45 20 0 

5 (R,M)-272 (20mol %) 57 32 0 

6 (S)-BINOL 13 (20mol %)  

Ti(Oi-Pr)4 (140mol %) 

86 70 77(S) 

a Enantiomeric excess determined via chiral HPLC analysis 

 

5.4.3 Aza-Diels Alder Reaction Catalysed by (R,M)-272 

 

1-Benzyl-2-phenyl-2,3-dihydropyridin-4-one, 206a149 

N

O

Ph

Ph  

To a solution of titanium tris(phenolate) triflate (R,M)-272 (28 mg, 0.046 mmol) in 

DCM (1 mL) was added �-benzylidene(phenyl)methanamine 204a (43 µL, 0.23 

mmol). The reaction mixture was cooled to -78 °C before Danishefsky’s diene 205 

(134 µL, 0.70 mmol) was added. After stirring at -78 °C for 4 hours the reaction 

mixture was warmed to room temperature and stirred overnight. The reaction 
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mixture was quenched with saturated ammonium chloride solution (8 mL) and the 

aqueous layer extracted with DCM (3 × 15 mL). The combined organic layers were 

dried (MgSO4) and concentrated in vacuo to afford the crude product as a yellow oil. 

Column chromatography (SiO2, 50:50 PE:EtOAc) resulted in the product as a yellow 

oil (24 mg, 0.09 mmol, 39% yield, 0% ee). The enantiomeric excess of the 

dihydropyridinone 206a was determined via chiral HPLC analysis over a Daicel 

Chiralcel AD column using a mixed n-hexane/i-PrOH (97:3) solvent system at a 

flow rate of 1 mL/min with the enantiomers of 206a having retention times of 70 

min (R) and 79 min (S) (detection at 225 nm): 1H-NMR (300MHz, CDCl3) δ 7.36-

7.19 (9H, m, 8 × Ar-H and CH=CHN), 7.13-7.07 (2H, m, 2 × Ar-H), 5.06 (1H, d, J = 

7.5 Hz, CH=CHN), 4.47 (1H, dd, J = 7.9 and 7.5 Hz, NCH(Ph)), 4.32 (1H, d, J = 

15.1 Hz, CHAHBPh), 4.09 (1H, d, J = 15.1 Hz, CHAHBPh), 2.82 (1H, dd, J = 16.6 and 

7.5 Hz, NCH(Ph)CHAHB), 2.65 (1H, dd, J = 16.6 and 7.9 Hz, NCH(Ph)CHAHB); 13C-

NMR (75.5MHz, CDCl3) δ 190.3, 154.2, 138.6, 135.9, 129.0, 128.9, 128.3, 128.2, 

127.7, 127.1, 98.7, 60.7, 57.2, 43.7; HRMS m/z (ES+) [M+H]+ - C18H18NO requires 

264.1388, found 264.1366. 

The spectroscopic data is in agreement with the literature data 

 

5.4.4 Attempted aza-Diels Alder Reaction Catalysed by (R)-
254a 

 

To a solution of ligand (R)-254a (26 mg, 0.060 mmol) in DCM (1 mL) was added 

borane dimethylsulfide (1M solution in DCM, 60 µL, 0.60 mmol) and stirred at room 

temperature for 30 minutes. To this was added �-benzylidene(phenyl)methanamine 

204a (58 µL, 0.30 mmol). The reaction mixture was cooled to -78 °C before 

Danishefsky’s diene 205 (174 µL, 0.90 mmol) was added. After stirring at -78 °C for 

4 hours the reaction mixture was warmed to room temperature and stirred overnight. 

The reaction mixture was quenched with saturated ammonium chloride solution (8 

mL) and the aqueous layer extracted with DCM (3 × 15 mL). The combined organic 

layers were dried (MgSO4) and concentrated in vacuo to afford the crude product as 

a yellow oil. The 1H NMR spectrum revealed there to be starting imine 204a present 

with only trace amounts of the desired product. 
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5.4.5 Synthesis of Chiral Amine (R)-279 

 

2-(Benzyloxy)-3,5-di-tert-butylbenzaldehyde, 282174 

OBn

H

O
t-Bu

t-Bu  

According to general procedure A, 3,5-di-tert-butyl-2-hydroxybenzaldehyde (40.0 g, 

171 mmol) in DMF (200 mL) was treated with benzyl bromide (20.3 mL, 171 mmol) 

and potassium carbonate (89.3 g, 650 mmol). The product was isolated without the 

need for further purification as a pale brown solid (55.2 g, 170 mmol, 99% yield): 

mp 95-98 °C [Lit.174 mp 96-97 °C]; 1H-NMR (300MHz, CDCl3) δ 10.39 (1H, s, 

CHO), 7.80 (1H, d, J = 2.6 Hz, Ar-H), 7.71 (1H, d, J = 2.6 Hz, Ar-H), 7.56-7.35 

(5H, m, Ph), 5.08 (2H, s, PhCH2O), 1.50 (9H, s, t-Bu), 1.38 (9H, s, t-Bu); 13C-NMR 

(75.5MHz, CDCl3) δ 190.7, 159.6, 146.5, 143.0, 136.5, 130.9, 129.2, 128.6, 128.1, 

126.9, 124.0, 80.3, 35.3, 34.7, 31.3, 30.9; νmax/cm-1(Nujol) 1691 (C=O).  

The spectroscopic data is in agreement with the literature data 

 

(R)-2-(2-(Benzyloxy)-3,5-di-tert-butylbenzylideneamino)-2-phenylethanol, 283 

OBn

N
t-Bu

t-Bu

Ph

OH

 

According to general procedure B, aldehyde 282 (35.0 g, 108 mmol) in ethanol (540 

mL) was treated with (R)-phenyl glycinol 237 (14.8 g, 108 mmol). The product was 

obtained as a yellow solid (43.9 g, 99.0 mmol, 92%): mp 95-100 °C; [ ]25
Dα  -21.5 (c 

1.44, CH2Cl2); 
1H-NMR (300MHz, CDCl3) δ 8.73 (1H, s, CH=N), 7.98 (1H, d, J  = 

2.5 Hz, Ar-H), 7.53 (1H, d, J  = 2.5 Hz, Ar-H), 7.44-7.25 (10H, m, 2 × Ph), 5.00 

(1H, d, J  = 12.0 Hz, PhCHAHBO), 4.81 (1H, d, J  = 12.0 Hz, PhCHAHBO), 4.45 (1H, 

dd, J = 8.3 and 4.5 Hz, NCH(Ph)CH2), 4.01 (1H, dd, J = 11.0 and 8.4 Hz, 

CH(Ph)CHAHB), 3.90 (1H, dd, J = 11.0 and 4.5 Hz, CH(Ph)CHAHB), 2.40 (1H, br s, 

OH), 1.48 (9H, s, t-Bu), 1.40 (9H, s, t-Bu); 13C-NMR (75.5MHz, CDCl3) δ 160.6, 

156.7, 146.2, 142.2, 140.8, 137.1, 128.9, 128.5, 128.5, 127.7, 127.5, 127.4, 127.2, 

126.9, 122.9, 78.1, 76.2, 67.6, 35.3, 34.7, 31.4, 31.0; νmax/cm-1 (KBr) 3246 (OH), 

1632 (C=N); MS (CI+, NH3) m/z (%) 444 (100, [M+H]+), 354 (35, [M+NH4-O 



Chapter 5: Experimental 

199 
 

CH2C6H5]
+); HRMS m/z (ES+) [M+H]+ - C16H16O2 requires 241.1223, found 

241.1220. 

 

(R)-2-((R)-1-(2-(Benzyloxy)-3,5-di-tert-butylphenyl)ethylamino)-2-phenylethanol, 
284 

OBn

N
H

Ph

OH

Me
t-Bu

t-Bu  

According to general procedure C, imine 283 (10.0 g, 22.6 mmol) in THF (400 mL) 

was treated with methyl lithium (1.6M in Et2O, 50.8 mL, 81.4 mmol). The crude 

product was purified by column chromatography (80:20 PE:EtOAc) to yield the 

desired product as a yellow solid (4.57 g, 9.94 mmol, 44% yield, >95% de after 

purification): mp 103-105 °C; [ ]25
Dα  -31.6 (c 0.98, CH2Cl2); 

 1H-NMR (300 MHz, 

CDCl3) δ 7.38-7.28 (5H, m, Ph), 7.26-7.12 (7H, m, Ph and 2 × Ar-H), 4.73 (1H, d, J  

= 13.5 Hz, PhCHAHBO), 4.67 (1H, d, J  = 13.5 Hz, PhCHAHBO), 4.31 (1H, q, J = 6.4 

Hz, CH(CH3)N), 3.77 (1H, dd, J = 7.9 and 4.7 Hz, CH(Ph)CHAHB), 3.71 (1H, dd, J 

= 10.3 and 4.7 Hz, CH(Ph)CHAHB), 3.54 (1H, dd, J = 10.3 and 7.9 Hz, 

CH(Ph)CHAHB), 2.42 (2H, br s, NH and OH) , 1.46 (3H, d, J = 6.4 Hz, CH(CH3)N), 

1.42 (9H, s, t-Bu), 1.31 (9H, s, t-Bu); 13C-NMR (75.5MHz, CDCl3) δ 152.9, 146.3, 

141.8, 141.0, 138.5, 137.5, 128.5, 128.5, 128.3, 127.4, 127.0, 126.5, 123.2, 121.9, 

76.2, 65.8, 61.7, 48.0, 35.5, 34.7, 31.5, 31.3, 22.8; νmax/cm-1 (KBr) 3200 (OH); MS 

(CI+, NH3) m/z (%) 460 (55, [M+H]+), 138 (100, [M-C23H30O]+); HRMS m/z (ES+) 

[M+H]+ - C31H42NO2 requires 460.3210, found 460.3209. 

 

(R)-1-(2-(Benzyloxy)-3,5-di-tert-butylphenyl)ethanamine, 279 

OBn

NH2

Me
t-Bu

t-Bu  

According to general procedure D, amine 284 (3.24 g, 7.05 mmol) dissolved in 

DCM (40 mL) and MeOH (20 mL) was treated with lead (IV) acetate (3.13 g, 7.05 

mmol). The crude product was purified by column chromatography (SiO2, 50:49:1 

DCM:EtOAc:Et3N) to give a pale yellow oil (1.57 g, 4.62 mmol, 66% yield): mp 

94-96 °C; [ ]25
Dα  +5.2 (c 1.55, CH2Cl2); 

1H-NMR (300 MHz, CDCl3) δ 7.55-7.52 (2H, 
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m, Ph), 7.48-7.30 (5H, m, Ph and 2 × Ar-H), 5.02 (1H, d, J = 12.2 Hz, PhCHAHBO), 

4.92 (1H, d, J = 12.2 Hz, PhCHAHBO), 4.55 (1H, q, J = 6.6 Hz, CH(CH3)N), 1.68 

(2H, br s, NH2), 1.47 (9H, s, t-Bu), 1.45 (3H, d, J = 6.6 Hz, CH(CH3)N), 1.35 (9H, s, 
t-Bu); 13C-NMR (75.5MHz, CDCl3) δ 152.7, 146.3, 141.9, 140.4, 137.8, 128.5, 

127.6, 126.6, 123.0, 121.2, 76.3, 44.3, 35.5, 34.7, 31.6, 31.4, 25.4; νmax/cm-1 (KBr) 

3379 and 3305 (NH2); MS (CI+, NH3) m/z (%) 340 (50, [M+H]+), 250 (50, 

[M+NH4-OCH2C6H5]
+), 233 (100, [M+H-OCH2C6H5]

+); HRMS m/z (ES+) [M+H]+ - 

C23H34NO requires 340.2635, found 340.2637. 

 

5.4.6 Preparation of Benzyl Bromide 280 

 

(2-(Benzyloxy)-3,5-di-tert-butylphenyl)methanol, 285 

OBn

OH
t-Bu

t-Bu  

According to general procedure E, aldehyde 282 (15.0 g, 46.2 mmol) in ethanol (300 

mL) was treated with sodium borohydride (2.45 g, 64.7 mmol). The product was 

obtained as a white solid (14.8 g, 45.3 mmol, 98% yield): mp 73-78 °C; 1H-NMR 

(300MHz, CDCl3) δ 7.57 (1H, s, Ar-H), 7.54 (1H, s, Ar-H), 7.49-7.34 (5H, m, Ph), 

5.04 (2H, s, PhCH2O), 4.81 (2H, s, CH2OH), 2.25 (1H, br s, OH), 1.49 (9H, s, t-Bu), 

1.38 (9H, s, t-Bu); 13C-NMR (75.5MHz, CDCl3) δ 153.8, 146.2, 142.0, 137.6, 133.7, 

128.5, 127.7, 126.8, 124.8, 124.2, 75.8, 61.6, 35.4, 34.5, 31.5, 31.2; νmax/cm-1(Nujol) 

3234 (OH); MS (CI+, NH3) m/z (%) 344 (100, [M+NH4]
+), 326 (80, [M+H]+), 309 

(70, [M+H-OH]+); HRMS m/z (ES+) [M+NH4]
+ - C22H34NO2 requires 344.2584, 

found 344.2583. 

 

2-(Benzyloxy)-1-(bromomethyl)-3,5-di-tert-butylbenzene, 280 

OBn

Br
t-Bu

t-Bu  

According to general procedure F, benzyl alcohol 282 (4.24 g, 13.0 mmol) in ether 

(130 mL) was treated with phosphorus tribromide (1.34 mL, 14.3 mmol). The 

product was isolated without the need for further purification as a white solid (4.79 
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g, 12.3 mmol, 95% yield): mp 97-99°C; 1H-NMR (300MHz, CDCl3) δ 7.60 (1H, s, 

Ar-H), 7.58 (1H, s, Ar-H), 7.49-7.43 (2H, m, Ph), 7.41-7.35 (3H, m, Ph), 5.16 (2H, s, 

PhCH2O), 4.62 (2H, s, CH2Br), 1.47 (9H, s, t-Bu), 1.37 (9H, s, t-Bu); 13C-NMR 

(75.5MHz, CDCl3) δ 154.2, 146.5, 142.5, 137.6, 130.9, 128.5, 127.7, 127.3, 126.8, 

125.3, 75.2, 35.6, 34.6, 31.4, 31.2, 30.1; MS (CI+, NH3) m/z (%) 406, 408 (15, 

[M+NH4]
+), 326 (100, [M-Br+H2O]+). 

 

5.4.7 Synthesis of Chiral Ligand (R)-278 

 

(R)-N,N-bis(2-(Benzyloxy)-3,5-di-tert-butylbenzyl)-1-(2-(benzyloxy)-3,5-di-tert-
butylphenyl)ethanamine, 286 

N

Me OBn

BnO

t-Bu

t-Bu

t-But-Bu

OBn

t-Bu

t-Bu

 

According to general procedure G, amine (R)-279 (0.82 g, 2.42 mmol), potassium 

carbonate (1.67 g, 12.10 mmol), 4Å MS (4.00 g) dissolved in DMF (12 mL) was 

reacted with bromide 280 (3.29 g, 8.48 mmol). To the reaction mixture was also 

added sodium iodide (0.36 g, 2.42 mmol). The crude product was purified by column 

chromatography (SiO2, 85:15 Petrol: CH2Cl2) to afford the title compound as a white 

powder (1.49 g, 1.56 mmol, 64% yield): mp 81-82 °C; [ ]25
Dα  +9.3 (c 1.08, CH2Cl2); 

1H-NMR (300 MHz, CDCl3) δ 7.74 (2H, d, J = 2.5 Hz, Ar-H), 7.61 (1H, d, J = 2.5 

Hz, 2 × Ar-H), 7.28-7.24 (4H, m, Ph), 7.21-7.10 (12H, m, 3 × Ar-H and Ph), 6.99-

6.93 (2H, m, Ph), 4.63 (2H, d, J = 12.1 Hz, 2 × PhCHAHBO), 4.59 (1H, d, J = 12.1 

Hz, PhCHAHBO), 4.56 (2H, d, J = 12.1 Hz, 2 × PhCHAHBO), 4.44 (1H, d, J = 12.1 

Hz, PhCHAHBO), 4.09 (1H, q, J = 6.8 Hz, CH(CH3)N), 3.75 (2H, d, J = 15.1 Hz, 2 × 

CHAHBN), 3.61 (2H, d, J = 15.1 Hz, 2 × CHAHBN), 1.28 (18H, s, 2 ×  t-Bu), 1.26 

(9H, s, t-Bu), 1.19 (9H, s, t-Bu), 1.18 (18H, s, 2 ×  t-Bu), 1.14 (3H, d, J = 6.8 Hz, 

CH(CH3)N); 13C-NMR (75.5MHz, CDCl3) δ 153.9, 153.5, 145.8, 141.7, 141.3, 

137.9, 137.8, 137.7, 133.8, 128.3, 128.2, 127.3, 127.1, 127.0, 126.6, 124.6, 122.9, 

122.7, 122.3, 75.6, 74.6, 56.8, 51.0, 35.4, 35.3, 34.6, 34.6, 31.7, 31.7, 31.4, 31.3, 
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20.1; MS (CI+, NH3) m/z (%) 957 (25, [M+H]+), 649 (25, [M+H-C22H29O]+); HRMS 

m/z (ES+) [M+H]+ - C67H90NO3 requires 956.6915, found 956.6921. 

 

(R)-N-(2-(Benzyloxy)-3,5-di-tert-butylbenzyl)-1-(2-(benzyloxy)-3,5-di-tert-
butylphenyl)ethanamine, 287 

t-Bu

t-Bu

OBn

N
H

Me OBn
t-Bu

t-Bu  

According to general procedure G, amine (R)-279 (80 mg, 0.24 mmol), potassium 

carbonate (100 mg, 0.72 mmol), 4Å MS (400 mg) dissolved in DMF (1.6 mL) was 

reacted with bromide 280 (230 mg, 0.59 mmol). Analysis of the 1H NMR spectrum 

of the crude mixture revealed that the ratio of tertiary amine (R)-286 to secondary 

amine (R)-287 was 2:1. The crude mixture was purified by column chromatography 

(SiO2, 85:15 Petrol:CH2Cl2) to afford both tertiary amine (R)-286 (70 mg, 0.07 

mmol, 30% yield) and the title compound as a white powder (26 mg, 0.04 mmol, 

18% yield): mp 103-104 °C; 1H-NMR (300 MHz, CDCl3) δ 7.47 (1H, d, J = 2.3 Hz, 

Ar-H), 7.36-7.20 (13H, m, 3 × Ar-H and Ph), 5.05 (1H, d, J = 12.1 Hz, PhCHAHBO), 

4.83 (2H, s, PhCH2O), 4.80 (1H, d, J = 12.1 Hz, PhCHAHBO), 4.24 (1H, q, J = 6.4 

Hz, CH(CH3)N), 3.87 (1H, d, J = 15.0 Hz, CHAHBN), 3.57 (1H, d, J = 15.0 Hz, 

CHAHBN), 1.40 (9H, s, t-Bu), 1.39 (9H, s, t-Bu), 1.37 (3H, d, J = 6.4 Hz, CH(CH3)N), 

1.32 (9H, s, t-Bu), 1.28 (9H, s, t-Bu); 13C-NMR (75.5MHz, CDCl3) δ 154.0, 153.7, 

146.3, 145.8, 141.9, 141.6, 138.0, 137.9, 128.4, 127.4, 127.4, 127.4, 126.8, 126.6, 

125.1, 123.2, 122.9, 121.8, 76.0, 75.2, 50.8, 47.0, 35.4, 35.4, 34.7, 34.5, 31.6, 31.5, 

31.3, 31.2, 23.8; MS (CI+, NH3) m/z (%) 648 (20, [M+H]+), 558 (35, 

[M+H-CH2(C6H5)]
+); HRMS m/z (ES+) [M+H]+ - C45H62NO2 requires 648.4775, 

found 648.4778. 
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(R)-N,N-bis(2-(Hydroxy)-3,5-di-tert-butylbenzyl)-1-(2-(hydroxy)-3,5-di-tert-
butylphenyl)ethylamine, 278 

N

Me OH

HO

t-Bu

t-Bu

t-But-Bu

OH

t-Bu

t-Bu

 

According to general procedure D, 10% palladium on carbon was added to amine 

(R)-286 (1.69 g, 1.77 mmol) dissolved in EtOAc (20 mL). The title compound was 

obtained as a white powder (1.17 g, 1.71 mmol, 98% yield): mp 177-178 °C; [ ]25
Dα  

-58.2 (c 0.98, CH2Cl2); 
1H-NMR (300 MHz, CDCl3) δ 7.24 (1H, d, J = 2.3 Hz, Ar-

H), 7.23 (2H, d, J = 2.4 Hz, 2 × Ar-H), 7.11 (1H, d, J = 2.3 Hz, Ar-H), 6.98 (2H, d, J 

= 2.4 Hz, 2 × Ar-H), 6.59 (3H, br s, 3 × OH), 4.28 (1H, q, J = 6.8 Hz, CH(CH3)N), 

3.93 (2H, d, J = 13.5 Hz, 2 × CHAHBN), 3.49 (2H, d, J = 13.5 Hz,  2 × CHAHBN), 

1.53 (3H, d, J = 6.8 Hz, CH(CH3)N), 1.39 (9H, s, t-Bu), 1.38 (18H, s, 2 × t-Bu), 1.28 

(9H, s, t-Bu), 1.26 (18H, s, 2 × t-Bu); 13C-NMR (75.5MHz, CDCl3) δ 151.6, 151.0, 

142.0, 141.5, 136.7, 136.4, 125.6, 125.6,123.9, 123.6, 122.0, 121.7, 52.0, 51.4, 35.0, 

34.9, 34.4, 34.2, 31.7, 31.6, 29.7, 29.7, 8.0; νmax/cm-1(Nujol) 3521 (OH); MS (CI+, 

NH3) m/z (%) 686 (10, [M+H]+), 454 (40, [M+H-C16H25O]+), 233 (100, [M+H-

C30H46NO2]
+); HRMS m/z (ES+) [M+H]+ - C46H72NO3 requires 686.5507, found 

686.5509. 

 

5.4.8 Preparation of Titanium Complexes (R,M)-287 and 
(R,M)-288 

 

Titanium tris(phenolate) iso-propoxide complex, (R,M)-287 

Hz

O

t-Bu

t-Bu
Hb

t-Bu

t-Bu

N t-Bu

t-BuOO

Me

Hx

Ha

Hy

Ti

O

 

Titanium (IV) iso-propoxide (0.30 mL, 1.05 mmol) was added to a suspension of 

ligand (R)-278 (720 mg, 1.05 mmol) in toluene (20 mL) under an argon atmosphere. 

The resulting yellow solution was heated to reflux for 1 hour and concentrated under 
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vacuum to afford the crude product as a yellow powder which was recrystallised 

from hexane to afford the title compound as a yellow solid (534 mg, 0.68 mmol, 

65% yield): [ ]20
Dα  -124.2 (c 0.91, CHCl3); 

1H-NMR (400 MHz, CDCl3) δ 7.23 (1H, 

d, J = 2.4 Hz, Ar-H), 7.21 (1H, d, J = 2.4 Hz, Ar-H), 7.17 (1H, d, J = 2.4 Hz, Ar-H), 

7.14 (1H, d, J = 1.8 Hz, Ar-H), 7.06 (1H, d, J = 2.1 Hz, Ar-H), 6.95 (1H, d, J = 2.4 

Hz, Ar-H), 5.25 (1H, sept, J = 6.0 Hz, CH(CH3)2), 4.00 (1H, q, J = 6.9, CH
x(CH3)N), 

3.77 (1H, d, J = 14.0 Hz, CH
zHbN), 3.56 (1H, d, J = 13.3 Hz, CH

yHaN), 3.22 (1H, d, 

J = 14.0 Hz, CHz
H

bN), 3.17 (1H, d, J = 13.3 Hz, CHy
H

aN), 1.54 (3H, d, J = 6.9 Hz, 

CHx(CH3)N), 1.51 (6H, d, J = 6.0 Hz, CH(CH3)2), 1.48 (18H, s, 2 × t-Bu), 1.44 (9H, 

s, t-Bu), 1.30 (9H, s, t-Bu), 1.29 (9H, s, t-Bu), 1.28 (9H, s, t-Bu); 13C-NMR (75.5MHz, 

CDCl3) δ 161.0, 160.8, 160.5, 142.2, 141.9, 141.9, 135.0, 134.9, 134.8, 128.0, 124.9, 

124.3, 124.2, 124.1, 122.7, 122.6, 122.5, 121.7, 79.5, 54.4. 53.5, 51.6, 35.0, 35.0, 

34.9, 34.6, 34.3, 34.3, 31.7, 31.7, 31.7, 29.7, 29.6, 29.5, 26.6, 26.4, 9.6; MS (EI) m/z 

(%) 789 (100, [M]+); HRMS m/z (EI) [M]+ - C49H75NO4Ti requires 789.5170, found 

789.5174. 

 

Titanium tris(phenolate) triflate complex, (R,M)-288 

Hz

O

t-Bu

t-Bu
Hb

t-Bu

t-Bu

N t-Bu

t-BuOO

Me

Hx

Ha

Hy

Ti

O

S

O

O

F3C

 

Titanium tris(phenolate) iso-propoxide complex, (R,M)-287 (500 mg, 0.63 mmol) in 

toluene (7 mL) was treated with trimethylsilyltriflate (0.11 mL, 0.63 mmol) under an 

argon atmosphere. The resulting suspension was heated to reflux and concentrated 

under vacuum to yield the product as a red solid (551 mg, 0.63 mmol, 99% yield): 
1H-NMR (300 MHz, CDCl3) δ 7.31 (1H, d, J = 2.3 Hz, Ar-H), 7.29 (1H, d, J = 2.3 

Hz, Ar-H), 7.25 (1H, d, J = 2.3 Hz, Ar-H), 7.20 (1H, d, J = 2.3 Hz, Ar-H), 7.16 (1H, 

d, J = 2.3 Hz, Ar-H), 7.05 (1H, d, J = 2.3 Hz, Ar-H), 4.13 (1H, q, J = 6.8 Hz, 1H, 

CH
x(CH3)N), 3.93 (1H, d, J = 14.7 Hz, CH

zHbN), 3.72 (1H, d, J = 13.9 Hz, 

CH
yHaN), 3.51 (1H, d, J = 14.7 Hz, CHz

H
bN), 3.44 (1H, d, J = 13.9 Hz, CHy

H
aN), 

1.69 (3H, d, J = 6.8 Hz, CHx(CH3)N), 1.45 (9H, s, t-Bu), 1.43 (9H, s, t-Bu), 1.40 (9H, 

s, t-Bu), 1.31 (9H, s, t-Bu), 1.30 (9H, s, t-Bu), 1.29 (9H, s, t-Bu); 13C-NMR (75.5MHz, 
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CDCl3) δ 161.9, 161.6, 161.2, 145.3, 145.0, 145.0, 135.9, 135.8, 135.7, 126.3, 124.6, 

124.0, 123.9, 123.8, 123.6, 123.1, 121.9, 55.3, 54.7, 51.8, 35.0, 35.0, 34.9, 34.8, 

34.8, 34.6, 31.6, 31.5, 31.5, 29.6, 29.5, 29.5, 10.4; MS (EI) m/z (%) 879 (20, [M]+); 

HRMS m/z (EI) [M]+ - C47H68NO6SF3Ti requires 879.4193, found 879.4188; CHN 

found C, 64.7, H, 7.38, N, 1.31 - C47H68NO6SF3Ti requires C, 64.15, H, 7.79, N, 

1.59. 
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5.5 RESULTS AND DISCUSSION III 
 

5.5.1 Aza-Diels Alder Reaction Catalysed by (rac)-195b and 
(R,M)-288 

 

1-Benzyl-2-phenyl-2,3-dihydropyridin-4-one, 206a 

N

O

Ph

Ph  

To a solution of the titanium catalyst (0.1 equiv.) in DCM (1 mL) was added 

�-benzylidene(phenyl)methanamine 204a. The reaction mixture was cooled to 0 °C 

before Danishefsky’s diene 205 (3 equiv.) was added. After stirring at 0 °C for 4 

hours the reaction mixture was warmed to room temperature and stirred overnight. 

The reaction mixture was quenched with saturated ammonium chloride solution (8 

mL) and the aqueous layer extracted with DCM (3 × 15 mL). The combined organic 

layers were dried (MgSO4) and concentrated in vacuo to afford the crude product as 

a yellow oil. Column chromatography (SiO2, 50:50 PE:EtOAc) resulted in the 

product as a yellow oil. The enantiomeric excess of the product was determined by 

chiral HPLC as described earlier. 

 

The reaction of benzylidene(phenyl)methanamine 204a (50 µL, 0.27 mmol) and 

Danishefsky’s diene 205 (170 µL, 0.81 mmol) in the presence of titanium 

tris(phenolate) triflate (rac)-195b (26 mg, 0.027 mmol) yielded the title compound 

(42 mg, 0.16 mmol, 60% yield): Data as before. 

 

The reaction of benzylidene(phenyl)methanamine 204a (43 µL, 0.23 mmol) and 

Danishefsky’s diene 205 (150 µL, 0.69 mmol) in the presence of titanium 

tris(phenolate) triflate (R,M)-288 (20 mg, 0.023 mmol) yielded the title compound 

(25 mg, 0.10 mmol, 41% yield, 0% ee): Data as before. 
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5.5.2 Synthesis of Racemic Benzyl Phenyl Sulfoxide (rac)-292q 

 

Benzyl phenyl sulfoxide, (rac)-292q166 

S Ph
Ph

O

 

According to general procedure J, benzyl phenyl sulfide (400 mg, 2.0 mmol) was 

treated with aqueous hydrogen peroxide (0.66 mL, 8.0 mmol), SDS (29 mg, 0.1 

mmol) and 1M aqueous hydrochloric acid (0.2 mL, 0.2 mmol). The product was 

isolated after column chromatography (SiO2, 70:30 to 50:50 PE:EtOAc) as a white 

powder (387 mg, 1.8 mmol, 90% yield): 1H-NMR (300MHz, CDCl3) δ 7.42-7.26 

(5H, m, 5 × Ar-H), 7.24-7.13 (3H, m, 3 × Ar-H), 6.93-6.88 (2H, m, 2 × Ar-H), 4.02  

(1H, d, J = 12.4 Hz, CHAHBPh), 3.93  (1H, d, J = 12.4 Hz, CHAHBPh); 13C-NMR 

(75.5MHz, CDCl3) δ 142.7, 131.1, 130.3, 129.1, 128.8, 128.4, 128.2, 124.4, 63.5; 

HRMS m/z (ES+) [M+Na]+ - C13H12NaOS requires 239.0507, found 239.0486. 

The spectroscopic data is in agreement with the literature data 

 

5.5.3 Screening of (rac)-195b in the Oxidation of Benzyl Phenyl 
Sulfide 291q 

 

A solution of the catalyst and benzyl phenyl sulfide (50 mg, 0.25 mmol) in 

dichloromethane (3 mL) under nitrogen was stirred at the required temperature 

before cumene hydroperoxide (88% in cumene) was added (Table 67). The reaction 

was stirred at the temperature stated for 24 hours before the reaction was quenched 

with the addition of saturated aqueous sodium sulphite (8 mL) to the reaction 

mixture. The reaction mixture was extracted with dichloromethane (× 3) and the 

combined organic layers dried over magnesium sulphate. After evaporation of the 

solvent under reduced pressure the crude product was analysed by 1H NMR 

spectroscopy. 
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Table 67 

Entry Catalyst Conditions Temp /°C Conversiona 
/% 

Ratioa 
292:293 

3 none CHP  72 (2 eq.) -30 <5 no sulfone 

1 (rac)-195b (10mol %) CHP  72 (1 eq.) -30 16 no sulfone 

2 (rac)-195b (10mol %) CHP  72 (2 eq.) -30 29 no sulfone 

4 (rac)-195b (10mol %) CHP  72 (2 eq.) rt 61 93:7 

a Conversion and ratio of 292:293 measured via 1H NMR spectroscopic analysis 

 

5.5.4 Screening of (R,M)-287 and (R,M)-288 in the Oxidation of 
Benzyl Phenyl Sulfide 291q 

 

A solution of the catalyst (20 mg, equivalent to 0.023 mmol for (R,M)-288 or 0.025 

mmol for (R,M)-287) and benzyl phenyl sulfide (46 or 51 mg, equivalent to 0.23 or 

0.25 mmol respectively) in dichloromethane (3 mL) under nitrogen was stirred at -30 

°C before cumene hydroperoxide (88% in cumene) or tert-butyl hydroperoxide (5M 

in decane) was added (see Table 68). The reaction was stirred for 24 hours before 

the reaction was quenched with the addition of saturated aqueous sodium sulphite (8 

mL) to the reaction mixture. The reaction mixture was extracted with 

dichloromethane (× 3) and the combined organic layers dried over magnesium 

sulphate. After evaporation of the solvent under reduced pressure the crude product 

was analysed by 1H NMR spectroscopy. The crude product was purified via column 

chromatography (SiO2, 70:30 to 50:50 PE:EtOAc) to yield the product as an off-

white solid. The enantiomeric excess of benzyl phenyl sulfoxide 292q was 

determined via chiral HPLC analysis. The sample was run through a Daicel Chiralcel 

OD-H column using a mixed n-hexane/i-PrOH (90:10) solvent system at a flow rate 

of 1 mL/min with the enantiomers of 292q having retention times of 13 min (R) and 

15 min (S) (detection at 254 nm). The configuration of the sulfoxide was determined 

by the order of elution of the enantiomers compared with the literature,168 and by 

comparison of the optical rotation with the literature - for entry 1, (R)-benzyl phenyl 

sulfoxide 292q, 23% ee: [ ]25
Dα  +42 (c 0.51, acetone) [Lit.167 [ ]24

Dα  -91 (c 1.0, 

acetone) for (S)-292q, 36% ee]. 
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Table 68 

Entry Catalyst Oxidant Conv.a 
/% 

Ratioa 
292:293 

Mass of 
292q /mg 

Yield of 
292q /% 

eeb /% 

1 
(R,M)-288 
(10mol %) 

CHP 72   
(2 eq.) 

100 85:15 37 74 23(R) 

2 
(R,M)-287 
(10mol %) 

CHP 72   
(2 eq.) 

63 90:10 25 46 18(R) 

3 
(R,M)-288 
(10mol %) 

TBHP 290 
(2 eq.) 

25 
trace 

sulfone 
8 16 3(R) 

4 
(R,M)-288 
(10mol %) 

CHP 72   
(2 eq.) 

100c 91:9 40 80 23(R) 

5 
(R,M)-288  
(5mol %) 

CHP 72   
(2 eq.) 

25 no sulfone - - - 

6 
(R,M)-288 
(50mol %) 

CHP 72   
(2 eq.) 

90d 91:9 - - 10(R) 

7 
(R,M)-288 
(10mol %) 

CHP 72   
(1 eq.) 

54 97:3 14 28 8(R) 

a Conversion and ratio of 292:293 measured via 1H NMR spectroscopic analysis; b Enantiomeric 
excess determined via chiral HPLC analysis; c  Reaction run at -78 °C for 10 hours, then -30 °C for 14 
hours; d Reaction run for 18 hours 

 

 

5.5.5 Solvent Screen in the Oxidation of Benzyl Phenyl Sulfide 
291q Catalysed by (R,M)-288 

 

(R,M)-288 (15 or 20 mg, equivalent to 0.017 or 0.023 mmol respectively) and benzyl 

phenyl sulfide (34 or 46 mg, equivalent to 0.17 or 0.23 mmol respectively) were 

dissolved in the desired solvent (2.25 or 3 mL) under nitrogen and stirred at -30 °C 

before cumene hydroperoxide (88% in cumene, 2 equiv.) was added (Table 69). The 

reaction was stirred for 24 hours before the reaction was quenched with the addition 

of saturated aqueous sodium sulphite (8 mL) to the reaction mixture. The reaction 

mixture was extracted with dichloromethane (× 3) and the combined organic layers 

dried over magnesium sulphate. After evaporation of the solvent under reduced 

pressure the crude product was analysed by 1H NMR spectroscopy. The crude 

product was purified via column chromatography (SiO2, 70:30 to 50:50 PE:EtOAc) 

to yield the product as an off-white powder. The enantiomeric excess of benzyl 

phenyl sulfoxide 292q was determined via chiral HPLC analysis as described earlier. 
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Table 69 

Entry Solvent Mass of 
291 /mg 

Conv.a 
/% 

Ratioa 
292:293 

Mass of 
292q /mg 

Yield of 
292q /% 

eeb /% 

1 DCM 46 100 85:15 37 74 23(R) 

2 DCE 34 100 86:14 24 65 23(R) 

3 MeCN 46 70 94:6 30 60 9(R) 

4 Toluene 46 100 89:11 39 78 37(R) 

5 
Benzene/DCM 

(ratio 2:1) 
34 100 65:35 21 57 7(R) 

6 
Hexane/DCM 

(ratio 5:1) 
34 100 59:41 15 41 7(R) 

a Conversion and ratio of 292:293 measured via 1H NMR spectroscopic analysis; b Enantiomeric 
excess determined via chiral HPLC analysis 

 

5.5.6 Addition of 4Å Molecular Sieves to the Oxidation of Benzyl 
Phenyl Sulfide 291q 

 

(R,M)-288 (15 mg, 0.017 mmol), 4Å molecular sieves (125 mg) and benzyl phenyl 

sulfide (34 mg, 0.17 mmol) were dissolved in the desired solvent (2.25 mL) under 

nitrogen and stirred at -30 °C before cumene hydroperoxide (88% in cumene, 57 µL, 

0.34 mmol) was added. The reaction was stirred for 24 hours before the reaction was 

quenched with the addition of saturated aqueous sodium sulphite (8 mL) to the 

reaction mixture. The reaction mixture was extracted with dichloromethane (× 3) and 

the combined organic layers dried over magnesium sulphate. After evaporation of 

the solvent under reduced pressure the crude product was analysed by 1H NMR 

spectroscopy (Table 70). The crude product was purified via column 

chromatography (SiO2, 70:30 to 50:50 Petrol:EtOAc) to yield the product as an 

off-white powder. The enantiomeric excess of benzyl phenyl sulfoxide 292q was 

determined via chiral HPLC analysis as described earlier. 

 

Table 70 

Entry Solvent Conversiona 
/% 

Ratioa 
292:293 

Mass of 
292q /mg 

Yield of 
293q /% 

eeb /% 

1 DCM 100 78:22 22 59 32(R) 

2 Toluene 100 50:50 11 30 11(R) 

a Conversion and ratio of 292:293 measured via 1H NMR spectroscopic analysis; b Enantiomeric 
excess determined via chiral HPLC analysis 
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5.5.7 Kinetic Resolution of Racemic Benzyl Phenyl Sulfoxide 
(rac)-292q 

 

A solution of (R,M)-288 (15 mg, 0.017 mmol) and benzyl phenyl sulfoxide 

(rac)-292q (37 mg, 0.170 mmol) in toluene (3 mL) under nitrogen was stirred at -30 

°C before cumene hydroperoxide (88% in cumene, 28 µL, 0.170 mmol) was added. 

The reaction was stirred at -30 °C for 8 hours before the reaction was quenched with 

the addition of saturated aqueous sodium sulphite (8 mL) to the reaction mixture. 

The reaction mixture was extracted with dichloromethane (× 3) and the combined 

organic layers dried over magnesium sulphate to leave the crude product. Analysis of 

the crude mixture by 1H NMR spectroscopy revealed that the reaction had gone to 

55% completion. The remaining benzyl phenyl sulfoxide was isolated after column 

chromatography (SiO2, 70:30 to 50:50 PE:EtOAc) as a off-white solid (14 mg, 0.065 

mmol, 37% yield, 16% ee): Data as before. 

 

5.5.8 Monitoring the Oxidation of Benzyl Phenyl Sulfide 291q 
Catalysed by (R,M)-288 

 

(R,M)-288 (15 mg, 0.017 mmol) and benzyl phenyl sulfide (34 mg, 0.17 mmol) were 

dissolved in toluene (2.25 mL) under nitrogen and stirred at -30 °C before cumene 

hydroperoxide (88% in cumene, 3 equiv.) was added. The reaction was stirred over 

32 hours with aliquots (ca. 0.3 mL) taken after 24 hours and 32 hours. Each aliquot 

was diluted with dichloromethane (10 mL) and quenched with the addition of 

saturated aqueous sodium sulphite (8 mL). The layers were separated and the 

aqueous layer extracted with dichloromethane (× 2). The combined organic layers 

dried over magnesium sulphate. After evaporation of the solvent under reduced 

pressure the crude product was analysed by 1H NMR spectroscopy (Table 71). The 

crude product was purified via small scale column chromatography (SiO2, 70:30 

PE:EtOAc) to yield the product as an off-white powder. The enantiomeric excess of 

benzyl phenyl sulfoxide 292q was determined via chiral HPLC analysis as described 

earlier. 
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Table 71 

Entry Time /h Conversiona /% Ratioa 292:293 eeb /% 

1 24 100 83:17 35 

2 32 100 33:67 47 

a Conversion and ratio of 292:293 measured via 1H NMR spectroscopic analysis; b Enantiomeric 
excess determined via chiral HPLC analysis 

 

5.5.9 Synthesis of Sulfides 291 

 

4-Methylthioanisole 291a175 

S

 

According to general procedure I, 4-methylbenzenethiol (0.50 g, 4.58 mmol) in 

ethanol (30 mL) was treated with methyl iodide (0.29 mL, 4.58 mmol) and 

potassium hydroxide (0.26 g, 4.58 mmol). The product was isolated without the need 

for further purification as a colourless oil (0.62 g, 4.49 mmol, 98% yield): 1H-NMR 

(300MHz, CDCl3) δ 7.21 (2H, d, J = 8.3 Hz, 2 × Ar-H), 7.12 (2H, d, J = 8.3 Hz, 2 × 

Ar-H), 2.48 (3H, s, SCH3), 2.34 (3H, s, CH3); 
13C-NMR (75.5MHz, CDCl3) δ 135.0, 

134.6, 129.5, 127.2, 20.8, 16.5 

The spectroscopic data is in agreement with the literature data 

 

Methyl-2-naphthyl sulfide 291c176 

S

 

According to general procedure I, 2-naphthalenethiol (0.57 g, 3.56 mmol) in ethanol 

(22 mL) was treated with methyl iodide (0.22 mL, 3.56 mmol) and potassium 

hydroxide (0.20 g, 3.56 mmol). The product was isolated without the need for further 

purification as a white powder (0.59 g, 3.42 mmol, 96% yield): 1H-NMR (300MHz, 

CDCl3) δ 7.90-7.79 (3H, m, 3 × Ar-H), 7.73 (1H, d, J = 1.9 Hz, Ar-H), 7.61-7.48 

(3H, m, 3 × Ar-H), 2.64 (3H, s, SCH3); 
13C-NMR (75.5MHz, CDCl3) δ 136.8, 133.7, 

131.1, 128.0, 127.5, 126.6, 126.3, 125.4, 125.0, 123.1, 15.4. 

The spectroscopic data is in agreement with the literature data 
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4-Methoxythioanisole 291d177 

S

MeO  

According to general procedure I, 4-methoxybenzenethiol (0.71 g, 5.06 mmol) in 

ethanol (30 mL) was treated with methyl iodide (0.32 mL, 5.06 mmol) and 

potassium hydroxide (0.28 g, 5.06 mmol). Following purification by column 

chromatography (SiO2, 95:5 PE:EtOAc) the product was isolated as a pale yellow 

solid (0.71 g, 4.60 mmol, 91% yield): 1H-NMR (300MHz, CDCl3) δ 7.28 (2H, d, J = 

9.0 Hz, 2 × Ar-H), 6.87 (2H, d, J = 9.0 Hz, 2 × Ar-H), 3.80 (3H, s, OCH3), 2.45 (3H, 

s, SCH3); 
13C-NMR (75.5MHz, CDCl3) δ 158.1, 130.1, 128.7, 114.5, 55.3, 18.0. 

The spectroscopic data is in agreement with the literature data 

 

Methyl-(4-nitrophenyl)-sulfide 291e178 

S

O2N  

According to general procedure I, 4-nitrobenzenethiol (0.83 g, 4.28 mmol) in ethanol 

(30 mL) was treated with methyl iodide (0.27 mL, 4.28 mmol) and potassium 

hydroxide (0.24 g, 4.28 mmol). Following purification by column chromatography 

(SiO2, 95:5 PE:EtOAc) the product was isolated as a yellow solid (0.59 g, 3.51 

mmol, 82% yield): 1H-NMR (300MHz, CDCl3) δ 8.01 (2H, d, J = 9.0 Hz, 2 × Ar-H), 

7.19 (2H, d, J = 9.0 Hz, 2 × Ar-H), 2.48 (3H, s, SCH3); 
13C-NMR (75.5MHz, CDCl3) 

δ 148.7, 144.3, 124.6, 123.5, 14.4. 

The spectroscopic data is in agreement with the literature data 
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Benzyl-tert-butyl sulfide 291y179 

S Ph

 

According to general procedure I, tert-butyl thiol (1.00 mL, 9.34 mmol) in ethanol 

(45 mL) was treated with benzyl bromide (1.12 mL, 9.34 mmol) and potassium 

hydroxide (0.53 g, 9.34 mmol). The product was isolated after column 

chromatography (SiO2, 85:15 Petrol:EtOAc) as a colourless oil (1.33 g, 7.38 mmol, 

79% yield): 1H-NMR (300MHz, CDCl3) δ 7.30-7.10 (5H, m, 5 × Ar-H), 3.70 (2H, s, 

CH2Ph), 1.29 (9H, s, t-Bu); 13C-NMR (75.5MHz, CDCl3) δ 138.6, 128.9, 128.4, 

126.7, 42.8, 33.4, 30.9. 

The spectroscopic data is in agreement with the literature data 

 

5.5.10 Synthesis of racemic sulfoxides (rac)-292 

 

(rac)-Methyl-p-tolyl sulfoxide, (rac)-292a166 

S

O

 

According to general procedure J, 4-methylthioanisole 291a (412 mg, 3.0 mmol) 

was treated with aqueous hydrogen peroxide (0.99 mL, 11.9 mmol), SDS (43 mg, 

0.15 mmol) and 1M aqueous hydrochloric acid (0.30 mL, 0.30 mmol). The product 

was isolated after column chromatography (SiO2, 70:30 to 50:50 PE:EtOAc) as a 

colourless oil (399 mg, 2.6 mmol, 87% yield): 1H-NMR (300MHz, CDCl3) δ 7.43 

(2H, d, J = 8.3 Hz, 2 × Ar-H), 7.22 (2H, d, J = 8.3 Hz, 2 × Ar-H), 2.59 (3H, s, 

SCH3), 2.30 (3H, s, CH3); 
13C-NMR (75.5MHz, CDCl3) δ 142.1, 141.1, 129.7, 

123.2, 43.6, 21.0; HRMS m/z (ES+) [M+H]+ - C8H11OS requires 155.0531, found 

155.0527. 

The spectroscopic data is in agreement with the literature data 

 

(rac)-Methyl-2-naphthyl sulfoxide, (rac)-292c180 

S

O

 

According to general procedure J, methyl-2-naphthyl sulfide 291c (464 mg, 2.7 

mmol) was treated with aqueous hydrogen peroxide (0.9 mL, 10.7 mmol), SDS (38 
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mg, 0.13 mmol) and 1M aqueous hydrochloric acid (0.27 mL, 0.27 mmol). The 

product was isolated after column chromatography (SiO2, 70:30 to 50:50 PE:EtOAc) 

as a white powder (410 mg, 2.15 mmol, 81% yield): 1H-NMR (300MHz, CDCl3) δ 

8.11 (1H, d, J = 1.5 Hz, Ar-H), 7.88-7.76 (3H, m, 3 × Ar-H), 7.52-7.43 (3H, m, 3 × 

Ar-H), 2.67 (3H, s, SCH3); 
13C-NMR (75.5MHz, CDCl3) δ 142.4, 134.0, 132.5, 

129.2, 128.1, 127.7, 127.4, 126.9, 123.6, 119.1, 43.4; HRMS m/z (ES+) [M+H]+ - 

C11H11OS requires 191.0531, found 191.0527. 

The spectroscopic data is in agreement with the literature data 

 

(rac)-Methyl-(4-methoxyphenyl)-sulfoxide, (rac)-292d166 

S

MeO

O

 

According to general procedure J, 4-methoxythioanisole 291d (128 mg, 0.83 mmol) 

was treated with aqueous hydrogen peroxide (0.27 mL, 3.32 mmol), SDS (12 mg, 

0.04 mmol) and 1M aqueous hydrochloric acid (0.08 mL, 0.08 mmol). The product 

was isolated after column chromatography (SiO2, 70:30 to 50:50 PE:EtOAc) as a 

colourless oil (118 mg, 0.70 mmol, 84% yield): 1H-NMR (300MHz, CDCl3) δ 7.55 

(2H, d, J = 8.7 Hz, 2 × Ar-H), 6.98 (2H, d, J = 8.7 Hz, 2 × Ar-H), 3.80 (3H, s, 

OCH3), 2.65 (3H, s, SCH3); 
13C-NMR (75.5MHz, CDCl3) δ 161.8, 136.4, 125.3, 

114.7, 55.4, 43.8; HRMS m/z (ES+) [M+H]+ - C8H11O2S requires 171.0480, found 

171.0475. 

The spectroscopic data is in agreement with the literature data 

 

 (rac)-Methyl-(4-nitrophenyl)-sulfoxide, (rac)-292e166 

S

O2N

O

 

According to general procedure J, methyl-(4-nitrophenyl)-sulfide 291e (123 mg, 0.73 

mmol) was treated with aqueous hydrogen peroxide (0.24 mL, 2.91 mmol), SDS (11 

mg, 0.04 mmol) and 1M aqueous hydrochloric acid (0.07 mL, 0.07 mmol). The 

product was isolated after column chromatography (SiO2, 70:30 to 50:50 PE:EtOAc) 

as a pale yellow solid (105 mg, 0.57 mmol, 78% yield): 1H-NMR (300MHz, CDCl3) 

δ 8.35 (2H, d, J = 8.7 Hz, 2 × Ar-H), 7.81 (2H, d, J = 8.7 Hz, 2 × Ar-H), 2.77 (3H, s, 



Chapter 5: Experimental 

216 
 

SCH3); 
13C-NMR (75.5MHz, CDCl3) δ 153.2, 149.3, 126.6, 124.3, 43.7; HRMS m/z 

(ES+) [M+H]+ - C7H8NO3S requires 186.0225, found 186.0216. 

The spectroscopic data is in agreement with the literature data 

  

(rac)-tert-Butylphenylmethyl sulfoxide, (rac)-292y169 

S Ph

O

 

According to general procedure J, benzyl-tert-butyl sulfide 291y (0.99 g, 4.93 mmol) 

was treated with aqueous hydrogen peroxide (1.64 mL, 19.7 mmol), SDS (71 mg, 

0.25 mmol) and 1M aqueous hydrochloric acid (0.47 mL, 0.47 mmol). The product 

was isolated after column chromatography (SiO2, 70:30 to 50:50 PE:EtOAc) as a 

white powder (0.89 g, 4.55 mmol, 92% yield): 1H-NMR (300MHz, CDCl3) δ 

7.37-7.30 (5H, m, 5 × Ar-H), 3.83 (1H, d, J = 12.8 Hz, CHAHBPh), 3.63 (1H, d, J = 

12.8 Hz, CHAHBPh), 1.32 (9H, s, t-Bu); 13C-NMR (75.5MHz, CDCl3) δ 138.6, 128.9, 

128.4, 126.7, 42.8, 33.4, 30.9; HRMS m/z (ES+) [M+H]+ - C11H17OS requires 

197.1000, found 197.0994. 

The spectroscopic data is in agreement with the literature data 

 

5.5.11 Screening of Sulfides 291 in the Sulfoxidation Reaction 

 

(R,M)-288 (15 or 20 mg, equivalent to 0.017 or 0.023 mmol respectively) and sulfide 

291 (0.17 or 0.23 mmol respectively) were dissolved in either DCM or toluene (2.25 

or 3 mL) under nitrogen and stirred at -30 °C before cumene hydroperoxide (88% in 

cumene, 2 equiv.) was added. The reaction was stirred for 24 hours before the 

reaction was quenched with the addition of saturated aqueous sodium sulphite (8 

mL) to the reaction mixture. The reaction mixture was extracted with 

dichloromethane (× 3) and the combined organic layers dried over magnesium 

sulphate. After evaporation of the solvent under reduced pressure the crude product 

was analysed by 1H NMR spectroscopy (Table 72). The crude product was purified 

via column chromatography (SiO2, 70:30 to 50:50 PE:EtOAc) to yield the desired 

product. The enantiomeric excesses of the sulfoxide products 292 were determined 

via chiral HPLC analysis. For (R)-292a, (R)-292c and (R)-292d, the configuration of 
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the sulfoxide was determined by the order of elution of the enantiomers compared 

with the literature.168 

For methyl-p-tolyl sulfoxide 292a, the sample was run through a Daicel Chiralcel 

OD-H column using a mixed n-hexane/i-PrOH (90:10) solvent system at a flow rate 

of 1 mL/min with the enantiomers of 292a having retention times of 40 min (R) and 

45 min (S) (detection at 254 nm). 

For methyl-2-napthyl sulfoxide 292c, the sample was run through a Daicel Chiralcel 

OD-H column using a mixed n-hexane/i-PrOH (90:10) solvent system at a flow rate 

of 1 mL/min with the enantiomers of 292c having retention times of 19 min (R) and 

21 min (S) (detection at 254 nm). 

For methyl-(4-methoxyphenyl)-sulfoxide 292d, the sample was run through a Daicel 

Chiralcel OD-H column using a mixed n-hexane/i-PrOH (95:5) solvent system at a 

flow rate of 0.5 mL/min with the enantiomers of 292d having retention times of 71 

min (R) and 76 min (S) (detection at 220 nm). 

For methyl-(4-nitrophenyl)-sulfoxide 292e, the sample was run through a Daicel 

Chiralcel OJ column using a mixed n-hexane/i-PrOH (90:10) solvent system at a 

flow rate of 1 mL/min with the enantiomers of 292e having retention times of 56 min 

(R) and 67 min (S) (detection at 254 nm). 

For tert-butylphenylmethyl sulfoxide 292y, the sample was run through a Daicel 

Chiralcel OD-H column using a mixed n-hexane/i-PrOH (90:10) solvent system at a 

flow rate of 1 mL/min with the enantiomers of 292y having retention times of 25 

min (R) and 30 min (S) (detection at 225 nm). 
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Table 72 

Entry Sulfoxide Solvent Mass of 
sulfide 
/mg 

Conv.a 
/% 

Ratioa 
292:293 

Mass of 
sulfoxide 
/mg 

Yield of 
292 /% 

eeb /% 

1 

292q 

DCM 46 100 85:15 37 74 23(R) 

2 Toluene 46 100 89:11 39 78 37(R) 

3 292a DCM 32 100 28:72 15 14 13(R) 

4 

292c 

DCM 40 100 32:68 12 28 10(R) 

5 Toluene 30 100 79:21 20 61 20(R) 

6 292d Toluene 26 88 90:10 19 65 17(R) 

7 292e Toluene 29 100 56:44 15 47 0 

8 292y Toluene 34 90 
trace 

sulfone 
24 71 0 

a Conversion and ratio of 292:293 measured via 1H NMR spectroscopic analysis; b Enantiomeric 
excess determined via chiral HPLC analysis 
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7 Appendix 
 

7.1 SELECTED NMR SPECTRA 
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Titanium iso-propoxide complex (R,M)-271 
1H NMR spectrum (300 MHz, CDCl3) 
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Titanium triflate complex (R,M)-272 
1H NMR spectrum (300 MHz, CDCl3) 
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Titanium iso-propoxide complex (R,M)-287 
1H NMR spectrum (300 MHz, CDCl3) 
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Titanium iso-propoxide complex (R,M)-287 

NOE NMR spectrum (400 MHz, CDCl3) 
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Titanium triflate complex (R,M)-288 
1H NMR spectrum (300 MHz, CDCl3) 
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Titanium triflate complex (R,M)-288 + benzyl phenyl sulfide 291q (2.5 eqiuv.) 
1H NMR spectrum (300 MHz, CDCl3) 
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Titanium triflate complex (R,M)-288 + cumene hydroperoxide 72 (4 eqiuv.) 
1H NMR spectrum (300 MHz, CDCl3) 
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Benzyl phenyl sulfoxide (rac)-292q 
1H NMR spectrum (300 MHz, CDCl3) 
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Sulfoxidation reaction after 48 hours [benzyl phenyl sulfide 291q, cumene 
hydroperoxide 72 (2 equiv.) and (R,M)-288 (0.5 equiv.)] 

1H NMR spectrum (300 MHz, CDCl3) 
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Sulfoxidation reaction after addition of Na2SO3(aq) 

1H NMR spectrum (300 MHz, CDCl3) 
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Titanium triflate complex (R,M)-288 + benzyl phenyl sulfoxide (rac)-292q (2 
eqiuv.) 

1H NMR spectrum (300 MHz, CDCl3) 
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Titanium triflate complex (R,M)-288 + benzyl phenyl sulfoxide (rac)-292q (2 
eqiuv.) 

COSY NMR spectrum (300 MHz, CDCl3) 
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7.2 CRYSTAL STRUCTURE DATA FOR (R,M)-271 AND THE 
CO-CRYSTALLISED TRIMETALLIC AMINE 
(TRISPHENOLATE)-OXO-ALKOXIDE COMPLEX 

 
Figure 64. Crystal structure of (R,M)-271 and the co-crystallised trimetallic amine (trisphenolate)-

oxo-alkoxide complex 

 

Table 73. Crystal data and structural refinement 

Empirical formula C49.50H66N1.50O7.50Ti2 

Formula weight 897.84 

Temperature 150(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group P21 

Unit cell dimensions 

a = 12.0620(2) Å 

b = 31.1510(5) Å 

c = 13.3950(2) Å 

α= 90° 

β= 105.5180(10)° 

γ = 90° 

Volume 4849.61(13) Å3 

Z 4 

Density (calculated) 1.230 Mg/m3 

Absorption coefficient 0.380 mm-1 

F(000) 1910 

Crystal size 0.20 x 0.20 x 0.15 mm3 

Theta range for data collection 3.57 to 27.65°. 

Index ranges -15<=h<=15, -40<=k<=40, -17<=l<=16 

Reflections collected 59337 

Independent reflections 19464 [R(int) = 0.0995] 

Completeness to theta = 27.65° 91.1 % 

Max. and min. transmission 0.9452 and 0.9279 
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Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 19464 / 2 / 1141 

Goodness-of-fit on F2 1.064 

Final R indices [I>2sigma(I)] R1 = 0.0914, wR2 = 0.2259 

R indices (all data) R1 = 0.1218, wR2 = 0.2466 

Absolute structure parameter -0.01(3) 

Largest diff. peak and hole 1.063 and -0.770 e.Å-3 

 

Table 74. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

 x y z U(eq)6 

Ti(1) 8322(1) 5958(1) 8572(1) 44(1) 

Ti(2) 5052(1) 2664(1) 5400(1) 29(1) 

Ti(3) 6507(1) 3656(1) 6844(1) 28(1) 

Ti(4) 6583(1) 2709(1) 7710(1) 32(1) 

O(1) 8146(5) 5485(2) 7721(4) 52(1) 

O(2) 8079(5) 6485(2) 7925(4) 53(1) 

O(3) 9284(6) 5930(2) 9905(4) 59(2) 

O(4) 7014(5) 5909(2) 8914(5) 68(2) 

O(5) 4132(4) 2215(2) 4722(4) 36(1) 

O(6) 4620(4) 3074(1) 4360(3) 32(1) 

O(7) 5334(4) 2338(1) 6823(3) 29(1) 

O(8) 6347(4) 2472(2) 5119(4) 38(1) 

O(9) 7356(4) 4135(1) 7456(3) 32(1) 

O(10) 7474(4) 3263(2) 8032(3) 33(1) 

O(11) 5835(4) 3885(1) 5533(3) 31(1) 

O(12) 5331(4) 3763(2) 7422(4) 33(1) 

O(13) 5958(4) 3059(1) 6491(3) 28(1) 

O(14) 7757(4) 2354(2) 7840(5) 49(1) 

O(15) 6087(5) 2678(2) 8825(4) 56(2) 

N(1) 10133(5) 6007(2) 8138(4) 37(1) 

N(12) 8155(4) 3543(2) 6200(4) 28(1) 

N(26) 3315(5) 2869(2) 5822(4) 30(1) 

C(1) 10497(7) 5568(2) 7912(6) 43(2) 

C(2) 9994(9) 6298(2) 7209(6) 50(2) 

C(3) 11028(7) 6198(2) 9035(6) 45(2) 

C(4) 11740(20) 5541(11) 7810(30) 101(11) 

 

 

 

                                                 
6 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
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Table 74 (cont) 

 x y z U(eq) 

C(4') 11100(30) 6294(7) 6730(20) 54(9) 

C(4") 12120(30) 6301(12) 8770(30) 78(14) 

C(5) 5817(10) 5848(5) 8680(11) 100(4) 

C(6) 5495(14) 5512(6) 9350(20) 175(10) 

C(7) 5205(12) 6272(6) 8603(14) 125(6) 

C(11) 8534(9) 5332(2) 6947(6) 57(2) 

C(12) 9695(9) 5372(2) 6965(6) 49(2) 

C(13) 10056(11) 5215(3) 6130(7) 67(3) 

C(14) 9233(13) 5023(3) 5269(7) 75(3) 

C(15) 8114(13) 4988(3) 5311(8) 79(4) 

C(16) 7718(9) 5132(2) 6099(7) 59(2) 

C(17) 9647(18) 4876(4) 4344(9) 125(7) 

C(18) 6512(10) 5082(4) 6121(10) 88(4) 

C(21) 8673(7) 6824(2) 7720(6) 46(2) 

C(22) 9676(7) 6752(2) 7415(5) 44(2) 

C(23) 10317(9) 7103(2) 7245(6) 54(2) 

C(24) 9978(9) 7519(3) 7385(6) 53(2) 

C(25) 8969(10) 7579(2) 7654(6) 62(3) 

C(26) 8310(8) 7238(3) 7841(6) 54(2) 

C(27) 10687(10) 7901(3) 7209(8) 75(3) 

C(28) 7188(11) 7299(3) 8124(9) 84(3) 

C(31) 10378(8) 5802(3) 10352(6) 54(2) 

C(32) 11273(8) 5906(2) 9967(6) 49(2) 

C(33) 12394(9) 5761(3) 10430(7) 62(2) 

C(34) 12588(10) 5488(3) 11312(8) 71(3) 

C(35) 11677(11) 5396(3) 11694(7) 69(3) 

C(36) 10574(10) 5531(3) 11258(7) 65(3) 

C(37) 13781(13) 5309(4) 11768(10) 116(6) 

C(38) 9586(13) 5425(4) 11677(8) 88(4) 

C(51) 3305(6) 1955(2) 4921(5) 34(2) 

C(52) 2403(6) 2138(2) 5231(5) 34(1) 

C(53) 1622(7) 1865(2) 5503(5) 39(2) 

C(54) 1705(7) 1424(2) 5463(6) 44(2) 

C(55) 2576(7) 1255(2) 5093(6) 45(2) 

C(56) 3384(6) 1512(2) 4808(5) 38(2) 

C(57) 2278(5) 2624(2) 5183(5) 32(1) 

C(58) 885(11) 1140(3) 5821(8) 75(3) 

C(59) 4331(7) 1318(3) 4385(8) 56(2) 

C(59) 4331(7) 1318(3) 4385(8) 56(2) 

C(60) 1152(7) 2768(2) 5383(6) 45(2) 
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Table 74 (cont) 

 x y z U(eq) 

C(61) 3724(6) 3326(2) 3911(5) 32(1) 

C(62) 2943(6) 3445(2) 4448(5) 29(1) 

C(63) 1994(6) 3702(2) 3954(5) 35(1) 

C(64) 1841(6) 3842(2) 2944(5) 37(2) 

C(65) 2649(6) 3731(2) 2437(5) 36(2) 

C(66) 3613(6) 3477(2) 2890(5) 32(1) 

C(67) 3183(5) 3331(2) 5589(5) 30(1) 

C(68) 836(6) 4131(3) 2433(6) 47(2) 

C(69) 4524(6) 3364(2) 2355(5) 38(2) 

C(71) 4534(5) 2143(2) 7262(4) 27(1) 

C(72) 3623(5) 2384(2) 7382(5) 33(1) 

C(73) 2866(6) 2207(2) 7903(5) 37(2) 

C(74) 2995(6) 1784(3) 8260(6) 42(2) 

C(75) 3904(6) 1545(2) 8061(6) 42(2) 

C(76) 4665(6) 1715(2) 7544(6) 38(2) 

C(77) 3453(5) 2837(2) 6967(5) 31(1) 

C(78) 2183(8) 1590(4) 8826(8) 68(3) 

C(79) 5598(7) 1443(3) 7339(7) 53(2) 

C(81) 6751(9) 2154(3) 4570(9) 72(3) 

C(82) 6389(12) 2257(7) 3436(9) 145(8) 

C(83) 8091(9) 2148(4) 4934(10) 88(4) 

C(91) 8454(6) 4246(2) 7869(5) 33(1) 

C(92) 9286(6) 4134(2) 7386(5) 32(1) 

C(93) 10427(7) 4239(2) 7859(6) 39(2) 

C(94) 10751(6) 4453(2) 8810(6) 39(2) 

C(95) 9890(7) 4574(2) 9257(6) 43(2) 

C(96) 8742(6) 4483(2) 8818(5) 37(2) 

C(97) 8921(6) 3941(2) 6283(5) 33(1) 

C(98) 11998(7) 4552(3) 9332(8) 63(3) 

C(99) 7820(8) 4631(3) 9280(7) 54(2) 

C(100) 9949(7) 3887(3) 5824(6) 44(2) 

C(101) 8642(6) 3265(2) 8445(5) 36(2) 

C(102) 9372(6) 3192(2) 7805(5) 35(2) 

C(103) 10530(6) 3174(2) 8220(5) 35(2) 

C(104) 11047(6) 3235(2) 9278(6) 42(2) 

C(105) 10316(7) 3321(2) 9896(6) 44(2) 

C(106) 9128(7) 3345(3) 9516(5) 41(2) 

C(107) 8813(6) 3152(2) 6661(5) 31(1) 

C(108) 12331(7) 3209(3) 9701(7) 58(2) 

C(109) 8344(7) 3448(3) 10173(6) 59(2) 
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Table 74 (cont) 

 x y z U(eq) 

C(111) 6118(6) 3993(2) 4658(5) 33(1) 

C(112) 7061(5) 3799(2) 4406(5) 30(1) 

C(113) 7366(6) 3917(2) 3524(5) 38(2) 

C(114) 6715(7) 4233(3) 2857(6) 45(2) 

C(115) 5791(6) 4415(3) 3106(6) 43(2) 

C(116) 5449(6) 4302(2) 3981(5) 34(1) 

C(117) 7654(6) 3433(2) 5063(5) 32(1) 

C(118) 7077(9) 4362(3) 1884(7) 64(2) 

C(119) 4414(6) 4492(2) 4211(6) 40(2) 

C(121) 4986(6) 4131(2) 7893(6) 44(2) 

C(122) 3819(9) 4292(3) 7198(8) 69(3) 

C(123) 4900(9) 4012(4) 8958(7) 67(3) 

C(141) 8614(13) 2053(4) 8257(12) 125(7) 

C(142) 8809(11) 1717(4) 7704(11) 96(4) 

C(143) 9407(7) 2180(3) 9262(7) 60(2) 

C(151) 5729(9) 2481(4) 9653(6) 67(3) 

C(152) 5442(9) 2840(5) 10307(9) 94(4) 

C(153) 6631(13) 2183(5) 10247(9) 105(5) 
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Table 75. Bond lengths 

Bond Length /Å Bond Length /Å 

Ti(1)-O(4)  1.763(6) N(1)-C(3)  1.507(9) 

Ti(1)-O(1)  1.841(6) N(1)-C(2)  1.511(9) 

Ti(1)-O(2)  1.844(6) N(12)-C(107)  1.495(8) 

Ti(1)-O(3)  1.853(6) N(12)-C(117)  1.520(8) 

Ti(1)-N(1)  2.411(7) N(12)-C(97)  1.533(8) 

Ti(2)-O(8)  1.803(5) N(26)-C(67)  1.473(8) 

Ti(2)-O(6)  1.859(5) N(26)-C(77)  1.501(8) 

Ti(2)-O(5)  1.864(4) N(26)-C(57)  1.518(8) 

Ti(2)-O(13)  1.998(4) C(1)-C(12)  1.503(12) 

Ti(2)-O(7)  2.104(4) C(1)-C(4)  1.55(3) 

Ti(2)-N(26)  2.398(5) C(1)-H(1A)  0.9900 

Ti(2)-Ti(4)  3.1533(15) C(1)-H(1B)  0.9900 

Ti(3)-O(12)  1.819(4) C(2)-C(22)  1.511(11) 

Ti(3)-O(11)  1.868(4) C(2)-C(4')  1.62(3) 

Ti(3)-O(9)  1.869(4) C(2)-H(2A)  0.9900 

Ti(3)-O(13)  1.988(4) C(2)-H(2B)  0.9900 

Ti(3)-O(10)  2.097(4) C(3)-C(4")  1.49(4) 

Ti(3)-N(12)  2.395(5) C(3)-C(32)  1.508(11) 

Ti(3)-Ti(4)  3.1620(16) C(3)-H(3A)  0.9900 

Ti(4)-O(15)  1.755(5) C(3)-H(3B)  0.9900 

Ti(4)-O(14)  1.769(5) C(4)-H(4A)  0.9800 

Ti(4)-O(13)  1.940(4) C(4)-H(4B)  0.9800 

Ti(4)-O(7)  2.015(4) C(4)-H(4C)  0.9800 

Ti(4)-O(10)  2.018(5) C(4')-H(4'A)  0.9800 

O(1)-C(11)  1.333(11) C(4')-H(4'B)  0.9800 

O(2)-C(21)  1.344(10) C(4')-H(4'C)  0.9800 

O(3)-C(31)  1.355(11) C(4")-H(4"A)  0.9800 

O(4)-C(5)  1.406(13) C(4")-H(4"B)  0.9800 

O(5)-C(51)  1.365(8) C(4")-H(4"C)  0.9800 

O(6)-C(61)  1.341(8) C(5)-C(6)  1.49(2) 

O(7)-C(71)  1.396(7) C(5)-C(7)  1.50(2) 

O(8)-C(81)  1.397(9) C(5)-H(5)  1.0000 

O(9)-C(91)  1.337(8) C(6)-H(6A)  0.9800 

O(10)-C(101)  1.369(8) C(6)-H(6B)  0.9800 

O(11)-C(111)  1.347(8) C(6)-H(6C)  0.9800 

O(12)-C(121)  1.423(8) C(7)-H(7A)  0.9800 

O(14)-C(141)  1.397(10) C(7)-H(7B)  0.9800 

O(15)-C(151)  1.431(10) C(7)-H(7C)  0.9800 

N(1)-C(1)  1.492(9) C(11)-C(12)  1.399(14) 
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Table 75 (cont) 

Bond Length /Å Bond Length /Å 

C(11)-C(16)  1.432(12) C(34)-C(37)  1.512(16) 

C(12)-C(13)  1.393(11) C(35)-C(36)  1.368(15) 

C(13)-C(14)  1.437(16) C(35)-H(35)  0.9500 

C(13)-H(13)  0.9500 C(36)-C(38)  1.484(16) 

C(14)-C(15)  1.370(17) C(37)-H(37A)  0.9800 

C(14)-C(17)  1.525(14) C(37)-H(37B)  0.9800 

C(15)-C(16)  1.347(15) C(37)-H(37C)  0.9800 

C(15)-H(15)  0.9500 C(38)-H(38A)  0.9800 

C(16)-C(18)  1.471(16) C(38)-H(38B)  0.9800 

C(17)-H(17A)  0.9800 C(38)-H(38C)  0.9800 

C(17)-H(17B)  0.9800 C(51)-C(52)  1.386(10) 

C(17)-H(17C)  0.9800 C(51)-C(56)  1.393(10) 

C(18)-H(18A)  0.9800 C(52)-C(53)  1.387(10) 

C(18)-H(18B)  0.9800 C(52)-C(57)  1.522(10) 

C(18)-H(18C)  0.9800 C(53)-C(54)  1.381(11) 

C(21)-C(26)  1.386(11) C(53)-H(53)  0.9500 

C(21)-C(22)  1.395(12) C(54)-C(55)  1.380(12) 

C(22)-C(23)  1.392(12) C(54)-C(58)  1.499(12) 

C(23)-C(24)  1.387(12) C(55)-C(56)  1.391(11) 

C(23)-H(23)  0.9500 C(55)-H(55)  0.9500 

C(24)-C(25)  1.370(14) C(56)-C(59)  1.529(11) 

C(24)-C(27)  1.520(13) C(57)-C(60)  1.521(10) 

C(25)-C(26)  1.388(13) C(57)-H(57)  1.0000 

C(25)-H(25)  0.9500 C(58)-H(58A)  0.9800 

C(26)-C(28)  1.512(15) C(58)-H(58B)  0.9800 

C(27)-H(27A)  0.9800 C(58)-H(58C)  0.9800 

C(27)-H(27B)  0.9800 C(59)-H(59A)  0.9800 

C(27)-H(27C)  0.9800 C(59)-H(59B)  0.9800 

C(28)-H(28A)  0.9800 C(59)-H(59C)  0.9800 

C(28)-H(28B)  0.9800 C(60)-H(60A)  0.9800 

C(28)-H(28C)  0.9800 C(60)-H(60B)  0.9800 

C(31)-C(32)  1.354(13) C(60)-H(60C)  0.9800 

C(31)-C(36)  1.445(12) C(61)-C(62)  1.380(9) 

C(32)-C(33)  1.403(12) C(61)-C(66)  1.419(9) 

C(33)-C(34)  1.422(14) C(62)-C(63)  1.408(9) 

C(33)-H(33)  0.9500 C(62)-C(67)  1.520(9) 

C(34)-C(35)  1.363(16) C(63)-C(64)  1.386(10) 
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Table 75 (cont) 

Bond Length /Å Bond Length /Å 

C(63)-H(63)  0.9500 C(83)-H(83A)  0.9800 

C(64)-C(65)  1.373(10) C(83)-H(83B)  0.9800 

C(64)-C(68)  1.519(10) C(83)-H(83C)  0.9800 

C(65)-C(66)  1.402(10) C(91)-C(92)  1.377(10) 

C(65)-H(65)  0.9500 C(91)-C(96)  1.430(10) 

C(66)-C(69)  1.506(10) C(92)-C(93)  1.391(10) 

C(67)-H(67A)  0.9900 C(92)-C(97)  1.546(9) 

C(67)-H(67B)  0.9900 C(93)-C(94)  1.397(10) 

C(68)-H(68A)  0.9800 C(93)-H(93)  0.9500 

C(68)-H(68B)  0.9800 C(94)-C(95)  1.383(11) 

C(68)-H(68C)  0.9800 C(94)-C(98)  1.512(10) 

C(69)-H(69A)  0.9800 C(95)-C(96)  1.381(10) 

C(69)-H(69B)  0.9800 C(95)-H(95)  0.9500 

C(69)-H(69C)  0.9800 C(96)-C(99)  1.485(11) 

C(71)-C(72)  1.375(9) C(97)-C(100)  1.533(10) 

C(71)-C(76)  1.383(10) C(97)-H(97)  1.0000 

C(72)-C(73)  1.402(9) C(98)-H(98A)  0.9800 

C(72)-C(77)  1.513(10) C(98)-H(98B)  0.9800 

C(73)-C(74)  1.394(11) C(98)-H(98C)  0.9800 

C(73)-H(73)  0.9500 C(99)-H(99A)  0.9800 

C(74)-C(75)  1.408(11) C(99)-H(99B)  0.9800 

C(74)-C(78)  1.517(11) C(99)-H(99C)  0.9800 

C(75)-C(76)  1.394(10) C(100)-H(10A)  0.9800 

C(75)-H(75)  0.9500 C(100)-H(10B)  0.9800 

C(76)-C(79)  1.491(11) C(100)-H(10C)  0.9800 

C(77)-H(77A)  0.9900 C(101)-C(102)  1.403(10) 

C(77)-H(77B)  0.9900 C(101)-C(106)  1.418(10) 

C(78)-H(78A)  0.9800 C(102)-C(103)  1.360(10) 

C(78)-H(78B)  0.9800 C(102)-C(107)  1.506(9) 

C(78)-H(78C)  0.9800 C(103)-C(104)  1.400(10) 

C(79)-H(79A)  0.9800 C(103)-H(103)  0.9500 

C(79)-H(79B)  0.9800 C(104)-C(105)  1.388(11) 

C(79)-H(79C)  0.9800 C(104)-C(108)  1.503(10) 

C(81)-C(82)  1.498(18) C(105)-C(106)  1.389(10) 

C(81)-C(83)  1.558(15) C(105)-H(105)  0.9500 

C(81)-H(81)  1.0000 C(106)-C(109)  1.489(11) 

C(82)-H(82A)  0.9800 C(107)-H(10D)  0.9900 

C(82)-H(82B)  0.9800 C(107)-H(10E)  0.9900 

C(82)-H(82C)  0.9800 C(108)-H(10F)  0.9800 
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Table 75 (cont) 

Bond Length /Å Bond Length /Å 

C(108)-H(10G)  0.9800 C(121)-H(121)  1.0000 

C(108)-H(10H)  0.9800 C(122)-H(12A)  0.9800 

C(109)-H(10I)  0.9800 C(122)-H(12B)  0.9800 

C(109)-H(10J)  0.9800 C(122)-H(12C)  0.9800 

C(109)-H(10K)  0.9800 C(123)-H(12D)  0.9800 

C(111)-C(112)  1.405(10) C(123)-H(12E)  0.9800 

C(111)-C(116)  1.418(9) C(123)-H(12F)  0.9800 

C(112)-C(113)  1.378(10) C(141)-C(142)  1.338(17) 

C(112)-C(117)  1.500(9) C(141)-C(143)  1.482(15) 

C(113)-C(114)  1.416(10) C(141)-H(141)  1.0000 

C(113)-H(113)  0.9500 C(142)-H(14A)  0.9800 

C(114)-C(115)  1.369(11) C(142)-H(14B)  0.9800 

C(114)-C(118)  1.536(11) C(142)-H(14C)  0.9800 

C(115)-C(116)  1.387(10) C(143)-H(14D)  0.9800 

C(115)-H(115)  0.9500 C(143)-H(14E)  0.9800 

C(116)-C(119)  1.487(10) C(143)-H(14F)  0.9800 

C(117)-H(11A)  0.9900 C(151)-C(153)  1.489(16) 

C(117)-H(11B)  0.9900 C(151)-C(152)  1.516(16) 

C(118)-H(11C)  0.9800 C(151)-H(151)  1.0000 

C(118)-H(11D)  0.9800 C(152)-H(15A)  0.9800 

C(118)-H(11E)  0.9800 C(152)-H(15B)  0.9800 

C(119)-H(11F)  0.9800 C(152)-H(15C)  0.9800 

C(119)-H(11G)  0.9800 C(153)-H(15D)  0.9800 

C(119)-H(11H)  0.9800 C(153)-H(15E)  0.9800 

C(121)-C(123)  1.505(12) C(153)-H(15F)  0.9800 

C(121)-C(122)  1.550(12)   
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Table 76. Bond angles 

Bond Angle /° Bond Angle /° 

O(4)-Ti(1)-O(1) 97.4(3) O(9)-Ti(3)-O(10) 90.26(19) 

O(4)-Ti(1)-O(2) 99.1(3) O(13)-Ti(3)-O(10) 73.53(18) 

O(1)-Ti(1)-O(2) 116.4(3) O(12)-Ti(3)-N(12) 175.44(19) 

O(4)-Ti(1)-O(3) 96.9(3) O(11)-Ti(3)-N(12) 84.85(19) 

O(1)-Ti(1)-O(3) 119.9(3) O(9)-Ti(3)-N(12) 82.22(18) 

O(2)-Ti(1)-O(3) 118.3(3) O(13)-Ti(3)-N(12) 91.85(18) 

O(4)-Ti(1)-N(1) 178.3(3) O(10)-Ti(3)-N(12) 80.82(18) 

O(1)-Ti(1)-N(1) 82.1(2) O(12)-Ti(3)-Ti(4) 87.94(15) 

O(2)-Ti(1)-N(1) 82.6(2) O(11)-Ti(3)-Ti(4) 131.57(15) 

O(3)-Ti(1)-N(1) 82.0(2) O(9)-Ti(3)-Ti(4) 128.65(15) 

O(8)-Ti(2)-O(6) 99.0(2) O(13)-Ti(3)-Ti(4) 35.87(12) 

O(8)-Ti(2)-O(5) 95.0(2) O(10)-Ti(3)-Ti(4) 38.87(13) 

O(6)-Ti(2)-O(5) 98.0(2) N(12)-Ti(3)-Ti(4) 92.82(13) 

O(8)-Ti(2)-O(13) 91.2(2) O(15)-Ti(4)-O(14) 109.1(3) 

O(6)-Ti(2)-O(13) 96.50(19) O(15)-Ti(4)-O(13) 127.1(3) 

O(5)-Ti(2)-O(13) 163.1(2) O(14)-Ti(4)-O(13) 123.7(2) 

O(8)-Ti(2)-O(7) 95.2(2) O(15)-Ti(4)-O(7) 95.7(2) 

O(6)-Ti(2)-O(7) 162.67(19) O(14)-Ti(4)-O(7) 98.8(2) 

O(5)-Ti(2)-O(7) 90.6(2) O(13)-Ti(4)-O(7) 76.42(18) 

O(13)-Ti(2)-O(7) 73.18(17) O(15)-Ti(4)-O(10) 98.5(2) 

O(8)-Ti(2)-N(26) 176.0(2) O(14)-Ti(4)-O(10) 98.5(2) 

O(6)-Ti(2)-N(26) 84.59(19) O(13)-Ti(4)-O(10) 76.36(18) 

O(5)-Ti(2)-N(26) 82.57(19) O(7)-Ti(4)-O(10) 152.65(18) 

O(13)-Ti(2)-N(26) 90.26(18) O(15)-Ti(4)-Ti(2) 126.13(18) 

O(7)-Ti(2)-N(26) 81.64(17) O(14)-Ti(4)-Ti(2) 108.2(2) 

O(8)-Ti(2)-Ti(4) 84.67(16) O(13)-Ti(4)-Ti(2) 37.44(12) 

O(6)-Ti(2)-Ti(4) 132.65(15) O(7)-Ti(4)-Ti(2) 41.10(13) 

O(5)-Ti(2)-Ti(4) 128.90(16) O(10)-Ti(4)-Ti(2) 112.76(13) 

O(13)-Ti(2)-Ti(4) 36.17(12) O(15)-Ti(4)-Ti(3) 112.3(2) 

O(7)-Ti(2)-Ti(4) 39.01(12) O(14)-Ti(4)-Ti(3) 124.32(18) 

N(26)-Ti(2)-Ti(4) 94.36(13) O(13)-Ti(4)-Ti(3) 36.91(12) 

O(12)-Ti(3)-O(11) 98.0(2) O(7)-Ti(4)-Ti(3) 112.03(13) 

O(12)-Ti(3)-O(9) 93.8(2) O(10)-Ti(4)-Ti(3) 40.72(13) 

O(11)-Ti(3)-O(9) 99.0(2) Ti(2)-Ti(4)-Ti(3) 74.35(4) 

O(12)-Ti(3)-O(13) 91.40(19) C(11)-O(1)-Ti(1) 139.5(6) 

O(11)-Ti(3)-O(13) 95.74(19) C(21)-O(2)-Ti(1) 140.3(5) 

O(9)-Ti(3)-O(13) 163.49(19) C(31)-O(3)-Ti(1) 136.4(5) 

O(12)-Ti(3)-O(10) 97.1(2) C(5)-O(4)-Ti(1) 153.0(8) 

O(11)-Ti(3)-O(10) 161.71(19) C(51)-O(5)-Ti(2) 136.2(4) 
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Table 76 (cont) 

Bond Angle /° Bond Angle /° 

C(61)-O(6)-Ti(2) 140.3(4) C(4)-C(1)-H(1A) 102.2 

C(71)-O(7)-Ti(4) 119.5(4) N(1)-C(1)-H(1B) 109.1 

C(71)-O(7)-Ti(2) 129.0(4) C(12)-C(1)-H(1B) 109.1 

Ti(4)-O(7)-Ti(2) 99.89(18) C(4)-C(1)-H(1B) 6.4 

C(81)-O(8)-Ti(2) 142.0(6) H(1A)-C(1)-H(1B) 107.8 

C(91)-O(9)-Ti(3) 139.0(4) C(22)-C(2)-N(1) 112.9(6) 

C(101)-O(10)-Ti(4) 121.5(4) C(22)-C(2)-C(4') 110.6(10) 

C(101)-O(10)-Ti(3) 127.4(4) N(1)-C(2)-C(4') 113.5(12) 

Ti(4)-O(10)-Ti(3) 100.41(19) C(22)-C(2)-H(2A) 109.0 

C(111)-O(11)-Ti(3) 140.0(4) N(1)-C(2)-H(2A) 109.0 

C(121)-O(12)-Ti(3) 133.6(4) C(4')-C(2)-H(2A) 7.0 

Ti(4)-O(13)-Ti(3) 107.2(2) C(22)-C(2)-H(2B) 109.0 

Ti(4)-O(13)-Ti(2) 106.39(19) N(1)-C(2)-H(2B) 109.0 

Ti(3)-O(13)-Ti(2) 146.4(2) C(4')-C(2)-H(2B) 101.0 

C(141)-O(14)-Ti(4) 161.3(9) H(2A)-C(2)-H(2B) 107.8 

C(151)-O(15)-Ti(4) 157.7(7) C(4")-C(3)-N(1) 112.7(16) 

C(1)-N(1)-C(3) 109.7(6) C(4")-C(3)-C(32) 109.7(15) 

C(1)-N(1)-C(2) 110.9(5) N(1)-C(3)-C(32) 111.2(6) 

C(3)-N(1)-C(2) 108.5(6) C(4")-C(3)-H(3A) 104.2 

C(1)-N(1)-Ti(1) 109.0(4) N(1)-C(3)-H(3A) 109.4 

C(3)-N(1)-Ti(1) 109.5(4) C(32)-C(3)-H(3A) 109.4 

C(2)-N(1)-Ti(1) 109.1(5) C(4")-C(3)-H(3B) 4.2 

C(107)-N(12)-C(117) 104.7(5) N(1)-C(3)-H(3B) 109.4 

C(107)-N(12)-C(97) 112.7(5) C(32)-C(3)-H(3B) 109.4 

C(117)-N(12)-C(97) 109.0(5) H(3A)-C(3)-H(3B) 108.0 

C(107)-N(12)-Ti(3) 111.8(4) C(1)-C(4)-H(4A) 109.5 

C(117)-N(12)-Ti(3) 104.4(4) C(1)-C(4)-H(4B) 109.5 

C(97)-N(12)-Ti(3) 113.4(4) H(4A)-C(4)-H(4B) 109.5 

C(67)-N(26)-C(77) 104.8(5) C(1)-C(4)-H(4C) 109.5 

C(67)-N(26)-C(57) 110.2(5) H(4A)-C(4)-H(4C) 109.5 

C(77)-N(26)-C(57) 113.1(5) H(4B)-C(4)-H(4C) 109.5 

C(67)-N(26)-Ti(2) 105.2(4) C(2)-C(4')-H(4'A) 109.5 

C(77)-N(26)-Ti(2) 111.0(4) C(2)-C(4')-H(4'B) 109.5 

C(57)-N(26)-Ti(2) 111.9(4) H(4'A)-C(4')-H(4'B) 109.5 

N(1)-C(1)-C(12) 112.6(6) C(2)-C(4')-H(4'C) 109.5 

N(1)-C(1)-C(4) 114.4(13) H(4'A)-C(4')-H(4'C) 109.5 

C(12)-C(1)-C(4) 108.9(14) H(4'B)-C(4')-H(4'C) 109.5 

N(1)-C(1)-H(1A) 109.1 C(3)-C(4")-H(4"A) 109.5 

C(12)-C(1)-H(1A) 109.1 C(3)-C(4")-H(4"B) 109.5 
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Table 76 (cont) 

Bond Angle /° Bond Angle /° 

H(4"A)-C(4")-H(4"B) 109.5 C(11)-C(16)-C(18) 120.3(10) 

C(3)-C(4")-H(4"C) 109.5 C(14)-C(17)-H(17A) 109.5 

H(4"A)-C(4")-H(4"C) 109.5 C(14)-C(17)-H(17B) 109.5 

H(4"B)-C(4")-H(4"C) 109.5 H(17A)-C(17)-H(17B) 109.5 

O(4)-C(5)-C(6) 112.2(13) C(14)-C(17)-H(17C) 109.5 

O(4)-C(5)-C(7) 110.6(12) H(17A)-C(17)-H(17C) 109.5 

C(6)-C(5)-C(7) 117.1(14) H(17B)-C(17)-H(17C) 109.5 

O(4)-C(5)-H(5) 105.3 C(16)-C(18)-H(18A) 109.5 

C(6)-C(5)-H(5) 105.3 C(16)-C(18)-H(18B) 109.5 

C(7)-C(5)-H(5) 105.3 H(18A)-C(18)-H(18B) 109.5 

C(5)-C(6)-H(6A) 109.5 C(16)-C(18)-H(18C) 109.5 

C(5)-C(6)-H(6B) 109.5 H(18A)-C(18)-H(18C) 109.5 

H(6A)-C(6)-H(6B) 109.5 H(18B)-C(18)-H(18C) 109.5 

C(5)-C(6)-H(6C) 109.5 O(2)-C(21)-C(26) 120.3(8) 

H(6A)-C(6)-H(6C) 109.5 O(2)-C(21)-C(22) 119.0(7) 

H(6B)-C(6)-H(6C) 109.5 C(26)-C(21)-C(22) 120.6(8) 

C(5)-C(7)-H(7A) 109.5 C(23)-C(22)-C(21) 119.0(7) 

C(5)-C(7)-H(7B) 109.5 C(23)-C(22)-C(2) 121.8(8) 

H(7A)-C(7)-H(7B) 109.5 C(21)-C(22)-C(2) 119.1(7) 

C(5)-C(7)-H(7C) 109.5 C(24)-C(23)-C(22) 121.0(9) 

H(7A)-C(7)-H(7C) 109.5 C(24)-C(23)-H(23) 119.5 

H(7B)-C(7)-H(7C) 109.5 C(22)-C(23)-H(23) 119.5 

O(1)-C(11)-C(12) 120.8(7) C(25)-C(24)-C(23) 118.5(8) 

O(1)-C(11)-C(16) 117.5(9) C(25)-C(24)-C(27) 120.7(8) 

C(12)-C(11)-C(16) 121.7(9) C(23)-C(24)-C(27) 120.7(10) 

C(13)-C(12)-C(11) 118.8(9) C(24)-C(25)-C(26) 122.4(8) 

C(13)-C(12)-C(1) 123.4(9) C(24)-C(25)-H(25) 118.8 

C(11)-C(12)-C(1) 117.8(7) C(26)-C(25)-H(25) 118.8 

C(12)-C(13)-C(14) 119.6(11) C(21)-C(26)-C(25) 118.4(9) 

C(12)-C(13)-H(13) 120.2 C(21)-C(26)-C(28) 118.6(9) 

C(14)-C(13)-H(13) 120.2 C(25)-C(26)-C(28) 122.9(8) 

C(15)-C(14)-C(13) 118.4(9) C(24)-C(27)-H(27A) 109.5 

C(15)-C(14)-C(17) 123.4(12) C(24)-C(27)-H(27B) 109.5 

C(13)-C(14)-C(17) 118.1(13) H(27A)-C(27)-H(27B) 109.5 

C(16)-C(15)-C(14) 124.5(10) C(24)-C(27)-H(27C) 109.5 

C(16)-C(15)-H(15) 117.7 H(27A)-C(27)-H(27C) 109.5 

C(14)-C(15)-H(15) 117.7 H(27B)-C(27)-H(27C) 109.5 

C(15)-C(16)-C(11) 117.0(11) C(26)-C(28)-H(28A) 109.5 

C(15)-C(16)-C(18) 122.7(10) C(26)-C(28)-H(28B) 109.5 
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Table 76 (cont) 

Bond Angle /° Bond Angle /° 

H(28A)-C(28)-H(28B) 109.5 C(53)-C(52)-C(57) 123.6(6) 

C(26)-C(28)-H(28C) 109.5 C(54)-C(53)-C(52) 122.4(7) 

H(28A)-C(28)-H(28C) 109.5 C(54)-C(53)-H(53) 118.8 

H(28B)-C(28)-H(28C) 109.5 C(52)-C(53)-H(53) 118.8 

C(32)-C(31)-O(3) 122.8(8) C(55)-C(54)-C(53) 117.7(7) 

C(32)-C(31)-C(36) 119.4(9) C(55)-C(54)-C(58) 121.3(8) 

O(3)-C(31)-C(36) 117.7(10) C(53)-C(54)-C(58) 121.0(8) 

C(31)-C(32)-C(33) 121.8(8) C(54)-C(55)-C(56) 122.3(7) 

C(31)-C(32)-C(3) 117.4(7) C(54)-C(55)-H(55) 118.9 

C(33)-C(32)-C(3) 120.8(9) C(56)-C(55)-H(55) 118.9 

C(32)-C(33)-C(34) 119.0(11) C(55)-C(56)-C(51) 117.9(7) 

C(32)-C(33)-H(33) 120.5 C(55)-C(56)-C(59) 121.4(7) 

C(34)-C(33)-H(33) 120.5 C(51)-C(56)-C(59) 120.7(7) 

C(35)-C(34)-C(33) 117.9(9) N(26)-C(57)-C(60) 113.1(5) 

C(35)-C(34)-C(37) 123.1(11) N(26)-C(57)-C(52) 114.8(5) 

C(33)-C(34)-C(37) 119.0(13) C(60)-C(57)-C(52) 111.6(6) 

C(34)-C(35)-C(36) 124.3(9) N(26)-C(57)-H(57) 105.4 

C(34)-C(35)-H(35) 117.8 C(60)-C(57)-H(57) 105.4 

C(36)-C(35)-H(35) 117.8 C(52)-C(57)-H(57) 105.4 

C(35)-C(36)-C(31) 117.5(10) C(54)-C(58)-H(58A) 109.5 

C(35)-C(36)-C(38) 123.9(10) C(54)-C(58)-H(58B) 109.5 

C(31)-C(36)-C(38) 118.7(10) H(58A)-C(58)-H(58B) 109.5 

C(34)-C(37)-H(37A) 109.5 C(54)-C(58)-H(58C) 109.5 

C(34)-C(37)-H(37B) 109.5 H(58A)-C(58)-H(58C) 109.5 

H(37A)-C(37)-H(37B) 109.5 H(58B)-C(58)-H(58C) 109.5 

C(34)-C(37)-H(37C) 109.5 C(56)-C(59)-H(59A) 109.5 

H(37A)-C(37)-H(37C) 109.5 C(56)-C(59)-H(59B) 109.5 

H(37B)-C(37)-H(37C) 109.5 H(59A)-C(59)-H(59B) 109.5 

C(36)-C(38)-H(38A) 109.5 C(56)-C(59)-H(59C) 109.5 

C(36)-C(38)-H(38B) 109.5 H(59A)-C(59)-H(59C) 109.5 

H(38A)-C(38)-H(38B) 109.5 H(59B)-C(59)-H(59C) 109.5 

C(36)-C(38)-H(38C) 109.5 C(57)-C(60)-H(60A) 109.5 

H(38A)-C(38)-H(38C) 109.5 C(57)-C(60)-H(60B) 109.5 

H(38B)-C(38)-H(38C) 109.5 H(60A)-C(60)-H(60B) 109.5 

O(5)-C(51)-C(52) 119.2(6) C(57)-C(60)-H(60C) 109.5 

O(5)-C(51)-C(56) 119.4(6) H(60A)-C(60)-H(60C) 109.5 

C(52)-C(51)-C(56) 121.4(6) H(60B)-C(60)-H(60C) 109.5 

C(51)-C(52)-C(53) 118.1(7) O(6)-C(61)-C(62) 120.3(6) 

C(51)-C(52)-C(57) 118.2(6) O(6)-C(61)-C(66) 118.9(6) 
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Table 76 (cont) 

Bond Angle /° Bond Angle /° 

C(62)-C(61)-C(66) 120.8(6) C(73)-C(72)-C(77) 120.6(6) 

C(61)-C(62)-C(63) 119.3(6) C(74)-C(73)-C(72) 120.9(7) 

C(61)-C(62)-C(67) 119.2(6) C(74)-C(73)-H(73) 119.5 

C(63)-C(62)-C(67) 121.2(6) C(72)-C(73)-H(73) 119.5 

C(64)-C(63)-C(62) 121.1(6) C(73)-C(74)-C(75) 117.1(7) 

C(64)-C(63)-H(63) 119.4 C(73)-C(74)-C(78) 121.4(7) 

C(62)-C(63)-H(63) 119.4 C(75)-C(74)-C(78) 121.5(8) 

C(65)-C(64)-C(63) 118.4(6) C(76)-C(75)-C(74) 122.9(7) 

C(65)-C(64)-C(68) 120.9(6) C(76)-C(75)-H(75) 118.5 

C(63)-C(64)-C(68) 120.6(7) C(74)-C(75)-H(75) 118.5 

C(64)-C(65)-C(66) 123.0(6) C(71)-C(76)-C(75) 117.3(6) 

C(64)-C(65)-H(65) 118.5 C(71)-C(76)-C(79) 122.3(6) 

C(66)-C(65)-H(65) 118.5 C(75)-C(76)-C(79) 120.4(7) 

C(65)-C(66)-C(61) 117.2(6) N(26)-C(77)-C(72) 113.8(5) 

C(65)-C(66)-C(69) 123.6(6) N(26)-C(77)-H(77A) 108.8 

C(61)-C(66)-C(69) 119.2(6) C(72)-C(77)-H(77A) 108.8 

N(26)-C(67)-C(62) 114.9(5) N(26)-C(77)-H(77B) 108.8 

N(26)-C(67)-H(67A) 108.5 C(72)-C(77)-H(77B) 108.8 

C(62)-C(67)-H(67A) 108.5 H(77A)-C(77)-H(77B) 107.7 

N(26)-C(67)-H(67B) 108.5 C(74)-C(78)-H(78A) 109.5 

C(62)-C(67)-H(67B) 108.5 C(74)-C(78)-H(78B) 109.5 

H(67A)-C(67)-H(67B) 107.5 H(78A)-C(78)-H(78B) 109.5 

C(64)-C(68)-H(68A) 109.5 C(74)-C(78)-H(78C) 109.5 

C(64)-C(68)-H(68B) 109.5 H(78A)-C(78)-H(78C) 109.5 

H(68A)-C(68)-H(68B) 109.5 H(78B)-C(78)-H(78C) 109.5 

C(64)-C(68)-H(68C) 109.5 C(76)-C(79)-H(79A) 109.5 

H(68A)-C(68)-H(68C) 109.5 C(76)-C(79)-H(79B) 109.5 

H(68B)-C(68)-H(68C) 109.5 H(79A)-C(79)-H(79B) 109.5 

C(66)-C(69)-H(69A) 109.5 C(76)-C(79)-H(79C) 109.5 

C(66)-C(69)-H(69B) 109.5 H(79A)-C(79)-H(79C) 109.5 

H(69A)-C(69)-H(69B) 109.5 H(79B)-C(79)-H(79C) 109.5 

C(66)-C(69)-H(69C) 109.5 O(8)-C(81)-C(82) 109.5(10) 

H(69A)-C(69)-H(69C) 109.5 O(8)-C(81)-C(83) 108.9(9) 

H(69B)-C(69)-H(69C) 109.5 C(82)-C(81)-C(83) 108.5(10) 

C(72)-C(71)-C(76) 122.0(6) O(8)-C(81)-H(81) 110.0 

C(72)-C(71)-O(7) 118.4(6) C(82)-C(81)-H(81) 110.0 

C(76)-C(71)-O(7) 119.5(5) C(83)-C(81)-H(81) 110.0 

C(71)-C(72)-C(73) 119.4(7) C(81)-C(82)-H(82A) 109.5 

C(71)-C(72)-C(77) 120.0(6) C(81)-C(82)-H(82B) 109.5 
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Table 76 (cont) 

Bond Angle /° Bond Angle /° 

H(82A)-C(82)-H(82B) 109.5 H(98B)-C(98)-H(98C) 109.5 

C(81)-C(82)-H(82C) 109.5 C(96)-C(99)-H(99A) 109.5 

H(82A)-C(82)-H(82C) 109.5 C(96)-C(99)-H(99B) 109.5 

H(82B)-C(82)-H(82C) 109.5 H(99A)-C(99)-H(99B) 109.5 

C(81)-C(83)-H(83A) 109.5 C(96)-C(99)-H(99C) 109.5 

C(81)-C(83)-H(83B) 109.5 H(99A)-C(99)-H(99C) 109.5 

H(83A)-C(83)-H(83B) 109.5 H(99B)-C(99)-H(99C) 109.5 

C(81)-C(83)-H(83C) 109.5 C(97)-C(100)-H(10A) 109.5 

H(83A)-C(83)-H(83C) 109.5 C(97)-C(100)-H(10B) 109.5 

H(83B)-C(83)-H(83C) 109.5 H(10A)-C(100)-H(10B) 109.5 

O(9)-C(91)-C(92) 120.3(6) C(97)-C(100)-H(10C) 109.5 

O(9)-C(91)-C(96) 118.7(6) H(10A)-C(100)-H(10C) 109.5 

C(92)-C(91)-C(96) 121.0(6) H(10B)-C(100)-H(10C) 109.5 

C(91)-C(92)-C(93) 118.9(6) O(10)-C(101)-C(102) 119.9(6) 

C(91)-C(92)-C(97) 119.4(6) O(10)-C(101)-C(106) 120.8(7) 

C(93)-C(92)-C(97) 121.4(6) C(102)-C(101)-C(106) 119.3(7) 

C(92)-C(93)-C(94) 121.9(7) C(103)-C(102)-C(101) 120.1(6) 

C(92)-C(93)-H(93) 119.1 C(103)-C(102)-C(107) 123.0(7) 

C(94)-C(93)-H(93) 119.1 C(101)-C(102)-C(107) 116.9(6) 

C(95)-C(94)-C(93) 117.8(6) C(102)-C(103)-C(104) 122.6(7) 

C(95)-C(94)-C(98) 120.9(7) C(102)-C(103)-H(103) 118.7 

C(93)-C(94)-C(98) 121.4(7) C(104)-C(103)-H(103) 118.7 

C(96)-C(95)-C(94) 122.9(7) C(105)-C(104)-C(103) 116.7(7) 

C(96)-C(95)-H(95) 118.6 C(105)-C(104)-C(108) 122.7(7) 

C(94)-C(95)-H(95) 118.6 C(103)-C(104)-C(108) 120.6(8) 

C(95)-C(96)-C(91) 117.5(7) C(104)-C(105)-C(106) 123.3(7) 

C(95)-C(96)-C(99) 122.4(7) C(104)-C(105)-H(105) 118.3 

C(91)-C(96)-C(99) 120.0(6) C(106)-C(105)-H(105) 118.3 

N(12)-C(97)-C(100) 114.8(5) C(105)-C(106)-C(101) 117.9(7) 

N(12)-C(97)-C(92) 113.3(5) C(105)-C(106)-C(109) 123.4(7) 

C(100)-C(97)-C(92) 111.8(6) C(101)-C(106)-C(109) 118.7(7) 

N(12)-C(97)-H(97) 105.3 N(12)-C(107)-C(102) 113.3(5) 

C(100)-C(97)-H(97) 105.3 N(12)-C(107)-H(10D) 108.9 

C(92)-C(97)-H(97) 105.3 C(102)-C(107)-H(10D) 108.9 

C(94)-C(98)-H(98A) 109.5 N(12)-C(107)-H(10E) 108.9 

C(94)-C(98)-H(98B) 109.5 C(102)-C(107)-H(10E) 108.9 

H(98A)-C(98)-H(98B) 109.5 H(10D)-C(107)-H(10E) 107.7 

C(94)-C(98)-H(98C) 109.5 C(104)-C(108)-H(10F) 109.5 

H(98A)-C(98)-H(98C) 109.5 C(104)-C(108)-H(10G) 109.5 
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Table 76 (cont) 

Bond Angle /° Bond Angle /° 

H(10F)-C(108)-H(10G) 109.5 H(11D)-C(118)-H(11E) 109.5 

C(104)-C(108)-H(10H) 109.5 C(116)-C(119)-H(11F) 109.5 

H(10F)-C(108)-H(10H) 109.5 C(116)-C(119)-H(11G) 109.5 

H(10G)-C(108)-H(10H) 109.5 H(11F)-C(119)-H(11G) 109.5 

C(106)-C(109)-H(10I) 109.5 C(116)-C(119)-H(11H) 109.5 

C(106)-C(109)-H(10J) 109.5 H(11F)-C(119)-H(11H) 109.5 

H(10I)-C(109)-H(10J) 109.5 H(11G)-C(119)-H(11H) 109.5 

C(106)-C(109)-H(10K) 109.5 O(12)-C(121)-C(123) 109.0(7) 

H(10I)-C(109)-H(10K) 109.5 O(12)-C(121)-C(122) 108.8(6) 

H(10J)-C(109)-H(10K) 109.5 C(123)-C(121)-C(122) 111.6(7) 

O(11)-C(111)-C(112) 120.8(6) O(12)-C(121)-H(121) 109.2 

O(11)-C(111)-C(116) 119.5(6) C(123)-C(121)-H(121) 109.2 

C(112)-C(111)-C(116) 119.7(6) C(122)-C(121)-H(121) 109.2 

C(113)-C(112)-C(111) 120.7(6) C(121)-C(122)-H(12A) 109.5 

C(113)-C(112)-C(117) 120.7(6) C(121)-C(122)-H(12B) 109.5 

C(111)-C(112)-C(117) 118.3(6) H(12A)-C(122)-H(12B) 109.5 

C(112)-C(113)-C(114) 119.7(7) C(121)-C(122)-H(12C) 109.5 

C(112)-C(113)-H(113) 120.1 H(12A)-C(122)-H(12C) 109.5 

C(114)-C(113)-H(113) 120.2 H(12B)-C(122)-H(12C) 109.5 

C(115)-C(114)-C(113) 119.0(7) C(121)-C(123)-H(12D) 109.5 

C(115)-C(114)-C(118) 122.2(7) C(121)-C(123)-H(12E) 109.5 

C(113)-C(114)-C(118) 118.8(7) H(12D)-C(123)-H(12E) 109.5 

C(114)-C(115)-C(116) 123.1(7) C(121)-C(123)-H(12F) 109.5 

C(114)-C(115)-H(115) 118.5 H(12D)-C(123)-H(12F) 109.5 

C(116)-C(115)-H(115) 118.5 H(12E)-C(123)-H(12F) 109.5 

C(115)-C(116)-C(111) 117.8(6) C(142)-C(141)-O(14) 121.6(11) 

C(115)-C(116)-C(119) 122.0(6) C(142)-C(141)-C(143) 123.1(10) 

C(111)-C(116)-C(119) 120.2(6) O(14)-C(141)-C(143) 114.3(9) 

C(112)-C(117)-N(12) 114.6(5) C(142)-C(141)-H(141) 93.3 

C(112)-C(117)-H(11A) 108.6 O(14)-C(141)-H(141) 93.3 

N(12)-C(117)-H(11A) 108.6 C(143)-C(141)-H(141) 93.3 

C(112)-C(117)-H(11B) 108.6 C(141)-C(142)-H(14A) 109.5 

N(12)-C(117)-H(11B) 108.6 C(141)-C(142)-H(14B) 109.5 

H(11A)-C(117)-H(11B) 107.6 H(14A)-C(142)-H(14B) 109.5 

C(114)-C(118)-H(11C) 109.5 C(141)-C(142)-H(14C) 109.5 

C(114)-C(118)-H(11D) 109.5 H(14A)-C(142)-H(14C) 109.5 

H(11C)-C(118)-H(11D) 109.5 H(14B)-C(142)-H(14C) 109.5 

C(114)-C(118)-H(11E) 109.5 C(141)-C(143)-H(14D) 109.5 

H(11C)-C(118)-H(11E) 109.5 C(141)-C(143)-H(14E) 109.5 
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Table 76 (cont) 

Bond Angle /° Bond Angle /° 

H(14D)-C(143)-H(14E) 109.5 C(151)-C(152)-H(15B) 109.5 

C(141)-C(143)-H(14F) 109.5 H(15A)-C(152)-H(15B) 109.5 

H(14D)-C(143)-H(14F) 109.5 C(151)-C(152)-H(15C) 109.5 

H(14E)-C(143)-H(14F) 109.5 H(15A)-C(152)-H(15C) 109.5 

O(15)-C(151)-C(153) 110.7(8) H(15B)-C(152)-H(15C) 109.5 

O(15)-C(151)-C(152) 107.2(9) C(151)-C(153)-H(15D) 109.5 

C(153)-C(151)-C(152) 113.5(9) C(151)-C(153)-H(15E) 109.5 

O(15)-C(151)-H(151) 108.5 H(15D)-C(153)-H(15E) 109.5 

C(153)-C(151)-H(151) 108.5 C(151)-C(153)-H(15F) 109.5 

C(152)-C(151)-H(151) 108.5 H(15D)-C(153)-H(15F) 109.5 

C(151)-C(152)-H(15A) 109.5 H(15E)-C(153)-H(15F) 109.5 
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Table 77. Anisotropic displacement parameters (Å2x 103) for (R,M)-271. The anisotropic 
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 

 U11 U22 U33 U23 U13 U12 

Ti(1) 49(1)  47(1) 39(1)  -1(1) 14(1)  5(1) 

Ti(2) 26(1)  35(1) 23(1)  -2(1) 5(1)  1(1) 

Ti(3) 26(1)  37(1) 20(1)  0(1) 4(1)  0(1) 

Ti(4) 27(1)  45(1) 23(1)  6(1) 2(1)  -1(1) 

O(1) 57(4)  50(3) 48(3)  -7(3) 14(3)  -4(3) 

O(2) 60(4)  51(3) 46(3)  2(2) 11(3)  16(3) 

O(3) 79(4)  70(4) 29(3)  -6(3) 20(3)  2(3) 

O(4) 49(4)  88(5) 72(5)  -5(4) 23(3)  1(3) 

O(5) 23(2)  47(3) 36(3)  -9(2) 6(2)  -4(2) 

O(6) 27(2)  45(3) 24(2)  2(2) 7(2)  1(2) 

O(7) 21(2)  41(2) 27(2)  3(2) 7(2)  1(2) 

O(8) 38(3)  42(3) 37(3)  2(2) 18(2)  8(2) 

O(9) 27(2)  44(3) 26(2)  -7(2) 9(2)  -4(2) 

O(10) 28(2)  49(3) 17(2)  1(2) 0(2)  -4(2) 

O(11) 24(2)  41(2) 26(3)  5(2) 4(2)  2(2) 

O(12) 21(2)  49(3) 29(3)  -6(2) 5(2)  -1(2) 

O(13) 26(2)  35(2) 21(2)  1(2) 3(2)  0(2) 

O(14) 20(2)  54(3) 66(4)  11(3) -3(2)  5(2) 

O(15) 61(3)  89(4) 17(2)  2(3) 7(2)  -28(3) 

N(1) 49(4)  38(3) 19(3)  -1(2) 2(3)  3(3) 

N(12) 26(3)  35(3) 22(3)  2(2) 3(2)  -1(2) 

N(26) 32(3)  43(3) 14(3)  -2(2) 5(2)  0(2) 

C(1) 57(5)  39(4) 33(4)  1(3) 12(4)  3(3) 

C(2) 77(6)  45(4) 22(4)  2(3) 1(4)  -2(4) 

C(3) 49(5)  42(4) 33(4)  -2(3) -7(3)  -1(3) 

C(4) 57(17)  85(19) 150(30)  -20(20) 6(18)  4(14) 

C(4') 100(20)  38(13) 45(16)  -5(10) 65(17)  8(12) 

C(4") 37(18)  80(20) 90(30)  7(19) -36(17)  -25(15) 

C(5) 55(7)  138(12) 99(10)  -22(9) 8(6)  -7(7) 

C(6) 97(12)  110(12) 350(30)  37(16) 124(17)  -3(9) 

C(7) 62(8)  169(15) 133(14)  23(11) 6(8)  28(9) 

C(11) 97(7)  35(4) 31(4)  3(3) 2(4)  -1(4) 

C(12) 90(7)  30(3) 33(4)  -1(3) 27(4)  1(4) 

C(13) 124(9)  41(4) 55(6)  -4(4) 57(6)  -5(5) 

C(14) 164(12)  36(4) 31(5)  -9(3) 37(6)  -5(6) 

C(15) 144(12)  50(5) 31(5)  -3(4) 4(6)  -13(6) 

C(16) 86(7)  36(4) 41(5)  7(3) -9(5)  -5(4) 

C(17) 280(20)  69(7) 50(7)  -22(5) 82(10)  -29(10) 

C(18) 82(8)  67(6) 81(8)  -2(5) -37(6)  -2(5) 
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Table 77 (cont) 

 U11 U22 U33 U23 U13 U12 

C(21) 54(5)  43(4) 30(4)  0(3) -8(3)  4(3) 

C(22) 63(5)  44(4) 14(3)  2(3) -9(3)  6(3) 

C(23) 81(6)  43(4) 30(4)  0(3) 0(4)  -4(4) 

C(24) 78(6)  47(4) 24(4)  4(3) -6(4)  1(4) 

C(25) 101(8)  35(4) 31(4)  -4(3) -18(5)  8(4) 

C(26) 63(5)  59(5) 26(4)  0(3) -12(4)  19(4) 

C(27) 114(9)  44(5) 50(6)  4(4) -6(6)  -12(5) 

C(28) 115(10)  58(6) 76(8)  2(5) 22(7)  32(6) 

C(31) 70(6)  48(4) 29(4)  -6(3) -11(4)  12(4) 

C(32) 58(5)  41(4) 39(4)  0(3) 0(4)  3(3) 

C(33) 65(6)  62(5) 43(5)  -6(4) -14(4)  10(4) 

C(34) 89(8)  56(5) 49(6)  2(4) -15(5)  20(5) 

C(35) 113(9)  47(5) 31(5)  4(4) -10(5)  13(5) 

C(36) 113(9)  50(5) 35(5)  -2(4) 23(5)  -2(5) 

C(37) 140(12)  97(9) 64(8)  5(6) -55(8)  41(8) 

C(38) 155(12)  70(7) 50(6)  -7(5) 45(7)  -3(7) 

C(51) 30(3)  49(4) 22(4)  -1(3) 1(3)  -3(3) 

C(52) 32(3)  50(4) 16(3)  -6(3) 2(3)  -5(3) 

C(53) 45(4)  49(4) 24(4)  -4(3) 8(3)  -10(3) 

C(54) 49(4)  50(4) 31(4)  -2(3) 7(3)  -13(3) 

C(55) 57(5)  41(4) 32(4)  -6(3) -1(4)  -9(3) 

C(56) 31(4)  53(4) 24(4)  -2(3) -3(3)  -3(3) 

C(57) 25(3)  50(4) 16(3)  1(3) -3(2)  -4(3) 

C(58) 109(9)  58(5) 59(6)  -6(4) 26(6)  -32(5) 

C(59) 48(5)  49(5) 71(6)  -13(4) 17(4)  3(4) 

C(60) 45(4)  49(4) 39(4)  -1(3) 6(3)  -4(3) 

C(61) 43(4)  27(3) 23(3)  1(2) 6(3)  0(3) 

C(62) 32(3)  33(3) 24(3)  -2(2) 11(3)  -5(2) 

C(63) 34(3)  35(3) 36(4)  1(3) 11(3)  3(3) 

C(64) 40(4)  36(3) 28(4)  1(3) -1(3)  3(3) 

C(65) 37(4)  47(4) 17(3)  4(3) -2(3)  -6(3) 

C(66) 36(4)  39(3) 19(3)  -3(2) 4(3)  -5(3) 

C(67) 22(3)  43(3) 26(3)  -8(3) 11(3)  1(2) 

C(68) 34(4)  65(5) 39(4)  9(4) 4(3)  10(3) 

C(69) 34(4)  55(4) 22(4)  -3(3) 4(3)  -6(3) 

C(71) 14(3)  58(4) 11(3)  -3(3) 7(2)  -5(2) 

C(72) 16(3)  56(4) 25(4)  -5(3) 5(3)  -6(3) 

C(73) 26(3)  59(4) 26(4)  2(3) 5(3)  -3(3) 

C(74) 23(3)  70(5) 33(4)  2(3) 4(3)  -4(3) 

C(75) 37(4)  54(4) 32(4)  12(3) 5(3)  -4(3) 
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Table 77 (cont) 

 U11 U22 U33 U23 U13 U12 

C(76) 29(3)  50(4) 32(4)  1(3) 4(3)  -2(3) 

C(77) 20(3)  49(4) 24(3)  -2(3) 5(3)  0(2) 

C(78) 48(5)  94(7) 59(6)  26(5) 11(4)  -8(5) 

C(79) 41(4)  54(5) 63(6)  15(4) 13(4)  8(3) 

C(81) 80(7)  51(5) 103(9)  -20(5) 59(7)  -3(5) 

C(82) 90(10)  270(20) 56(8)  -75(10) -18(7)  72(12) 

C(83) 64(7)  124(10) 87(8)  2(7) 38(6)  38(6) 

C(91) 33(4)  41(4) 23(3)  2(3) 4(3)  -4(3) 

C(92) 35(4)  38(3) 20(3)  -1(2) 5(3)  -6(3) 

C(93) 45(4)  39(4) 36(4)  2(3) 16(3)  3(3) 

C(94) 26(3)  47(4) 35(4)  -1(3) -7(3)  6(3) 

C(95) 45(4)  48(4) 33(4)  -3(3) 4(3)  -2(3) 

C(96) 43(4)  38(3) 25(4)  -3(3) 3(3)  -5(3) 

C(97) 32(3)  39(3) 25(4)  0(3) 4(3)  2(3) 

C(98) 44(5)  68(6) 65(6)  -23(5) -10(4)  5(4) 

C(99) 56(5)  70(5) 39(5)  -17(4) 19(4)  -17(4) 

C(100) 42(4)  52(4) 39(4)  0(3) 14(3)  -8(3) 

C(101) 36(4)  39(4) 25(4)  6(3) -3(3)  -3(3) 

C(102) 43(4)  29(3) 29(4)  3(3) 4(3)  -2(3) 

C(103) 26(3)  45(4) 28(4)  2(3) 0(3)  -1(3) 

C(104) 34(4)  45(4) 37(4)  4(3) -9(3)  2(3) 

C(105) 40(4)  57(5) 26(4)  2(3) -5(3)  -2(3) 

C(106) 40(4)  64(5) 14(3)  2(3) 0(3)  -2(3) 

C(107) 28(3)  38(3) 28(4)  3(3) 7(3)  0(3) 

C(108) 38(4)  78(6) 46(5)  -5(4) -10(4)  0(4) 

C(109) 41(5)  109(7) 24(4)  -5(4) 2(3)  -4(4) 

C(111) 35(4)  38(3) 21(3)  1(3) -1(3)  -5(3) 

C(112) 27(3)  44(3) 17(3)  -1(2) 2(3)  -2(2) 

C(113) 40(4)  47(4) 25(4)  0(3) 6(3)  -2(3) 

C(114) 47(4)  59(5) 27(4)  11(3) 8(3)  3(3) 

C(115) 38(4)  55(4) 32(4)  12(3) 0(3)  3(3) 

C(116) 31(3)  40(4) 27(4)  6(3) 1(3)  -2(3) 

C(117) 36(4)  38(3) 22(3)  -5(3) 11(3)  -1(3) 

C(118) 70(6)  94(7) 31(5)  21(4) 19(4)  11(5) 

C(119) 32(4)  42(4) 38(4)  3(3) -1(3)  1(3) 

C(121) 36(4)  53(4) 44(5)  -14(3) 14(3)  1(3) 

C(122) 63(6)  76(6) 67(6)  -7(5) 14(5)  31(5) 

C(123) 59(6)  102(8) 41(5)  -19(5) 15(4)  9(5) 

C(141) 114(11)  94(9) 114(11)  -29(8) -59(9)  70(8) 

C(142) 82(8)  92(8) 101(10)  6(7) 0(7)  37(7) 
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Table 77 (cont) 

 U11 U22 U33 U23 U13 U12 

C(143) 38(4)  71(6) 67(6)  27(5) 7(4)  8(4) 

C(151) 59(6)  120(8) 25(4)  8(5) 19(4)  -10(5) 

C(152) 58(6)  164(13) 74(8)  9(7) 43(6)  24(7) 

C(153) 137(12)  139(11) 63(8)  37(8) 69(8)  25(9) 

 

 



Chapter 7: Appendix 

263 
 

7.3 CRYSTAL STRUCTURE DATA FOR (R,M)-287 

 
Figure 65. Crystal structure of (R,M)-287 

 

Table 78. Crystal data and structural refinement 

Empirical formula C55H89NO4Ti 

Formula weight 876.17 

Temperature 150(2) K 

Wavelength 0.71073 Å 

Crystal system Tetragonal 

Space group P43 

Unit cell dimensions 

a = 14.5840(2) Å 

b = 14.5840(2) Å 

c = 25.3740(4) Å 

α= 90° 

β= 90° 

γ = 90° 

Volume 5396.87(13) Å3 

Z 4 

Density (calculated) 1.078 Mg/m3 

Absorption coefficient 0.200 mm-1 

F(000) 1920 

Crystal size 0.40 x 0.30 x 0.25 mm3 

Theta range for data collection 3.69 to 27.48° 

Index ranges -18<=h<=15, -18<=k<=14, -30<=l<=32 

Reflections collected 21199 

Independent reflections 11331 [R(int) = 0.0279] 

Completeness to theta =  27.48° 98.6 % 

Max. and min. transmission 0.9517 and 0.9243 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11331 / 1 / 573 

Goodness-of-fit on F2 1.024 

Final R indices [I>2sigma(I)] R1 = 0.0560, wR2 = 0.1464 

R indices (all data) R1 = 0.0709, wR2 = 0.1578 
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Absolute structure parameter 0.02(3) 

Largest diff. peak and hole 0.531 and -0.371 e.A-3 

 

Table 79. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) 

 x y z U(eq)7 

Ti(1)         2536(1)        7502(1)        7499(1)        26(1) 

O(1)  1607(1)        7231(1)        7068(1)        35(1) 

N(1) 3757(1)        7872(1)        8066(1)        26(1) 

C(1) 813(4) 7183(6) 6780(2) 125(3) 

O(2)          3467(1)                    7447(1) 7006(1) 33(1) 

C(2)           119(3)        6564(4)        7001(2)       73(1) 

O(3) 2140(1)        8652(1)        7684(1)        34(1) 

C(3)           819(3)        7397(4)        6254(2)        76(1) 

O(4)          2364(1)        6556(1)        7974(1)        35(1) 

C(4)          4347(2)        7716(2)        6919(1)        29(1) 

C(5)          4939(2)        7713(2)        7353(1)        30(1) 

C(6)    5846(2)        7991(2)        7287(1)        32(1) 

C(7)     6182(2)        8265(2)        6797(1)        35(1) 

C(8)    5564(2)        8239(2)        6373(1)        33(1) 

C(9)          4654(2)        7972(2)        6417(1)        30(1) 

C(10)         4006(2)        7949(2)        5938(1)        34(1) 

C(11)         3235(2)        8640(3)        6009(1)        46(1) 

C(12)         3628(2)        6975(2)        5868(1)        45(1) 

C(13)         4512(2)        8202(2)        5425(1)        41(1) 

C(14)         7166(2)        8588(2)        6716(1)        43(1) 

C(15)     7726(3)        8566(5)        7217(2)        91(2) 

C(16)    7160(3)        9575(3)        6495(2)        54(1) 

C(17)     7636(3)        7963(3)        6302(2)        63(1) 

C(18)         4591(2)        7384(2)        7874(1)        31(1) 

C(19)         3905(2)        8899(2)        8064(1)        30(1) 

C(20)         4817(2)        9192(2)        8317(1)        40(1) 

C(21)         2220(2)        9259(2)        8090(1)        29(1) 

C(22)         3087(2)        9385(2)        8312(1)        29(1) 

C(23)    3179(2)        9963(2)        8745(1)        32(1) 

C(24)     2426(2)       10436(2)        8954(1)        32(1) 

C(25)    1585(2)       10320(2)        8714(1)        31(1) 

C(26)  1444(2)        9728(2)        8282(1)        30(1) 

C(27)   495(2)        9614(2)        8029(1)        34(1) 

C(28)       156(2)        8626(2)        8106(2)        48(1) 

 
 

                                                 
7 U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 
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Table 79 (cont) 

 x y z U(eq) 

C(29)  541(2)        9845(2)        7437(1)        43(1) 

C(30)         -217(2)       10254(2)        8278(1)        44(1) 

C(31)         2568(2)       11050(2)        9438(1)        36(1) 

C(32)     2819(4)       10415(3)        9908(2)        82(2) 

C(33)      1715(3)       11593(3)        9582(2)        71(1) 

C(34)     3346(3)       11704(3)        9339(2)        74(1) 

C(35)   3552(2)        7549(2)        8608(1)        31(1) 

C(36)     2832(2)        6069(2)        8339(1)        32(1) 

C(37)   3477(2)        6521(2)        8651(1)        30(1) 

C(38)         4028(2)        6037(2)        8995(1)        33(1) 

C(39)         3933(2)        5093(2)        9061(1)        37(1) 

C(40)              3231(2) 4664(2)        8766(1)        37(1) 

C(41)              2677(2) 5117(2)        8410(1)        32(1) 

C(42)         1902(2)        4622(2)        8113(1)        37(1) 

C(43)          979(2)        5072(3)        8233(2)        48(1) 

C(44)         1829(2)        3605(2)        8288(2)        47(1) 

C(45)         2084(3)        4623(2)        7515(2)        50(1) 

C(46)     4540(2)        4534(2)        9431(2)        44(1) 

C(47)    5259(4)        5113(3)        9711(3)        93(2) 

C(48)      5012(3)        3758(4)        9128(2)        82(1) 

C(49)    3932(3)        4105(3)        9875(2)        60(1) 

C(50)   1229(4)        7623(4)        9267(2)        96(2) 

C(51)   1595(4)        7124(4)        9716(2)        82(2) 

C(52)    1330(4)        6127(4)        9702(2)        81(1) 

C(53)         1600(4)        5516(4)       10143(2)        88(2) 

C(54)         1375(5)        4558(4)       10127(3)       122(3) 

C(55)         1571(6)        3946(5)       10542(4)       148(4) 
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Table 80. Bond lengths 

Bond Length /Å Bond Length /Å 

Ti(1)-O(1)                    1.7861(19) C(12)-H(12B)                  0.9800 

Ti(1)-O(3)                    1.836(2) C(12)-H(12C)                  0.9800 

Ti(1)-O(2)                    1.848(2) C(13)-H(13A)                  0.9800 

Ti(1)-O(4)                    1.848(2) C(13)-H(13B)                  0.9800 

Ti(1)-N(1)                    2.351(2) C(13)-H(13C)                  0.9800 

O(1)-C(1)                     1.371(4) C(14)-C(15)                   1.511(5) 

N(1)-C(35)                    1.486(3) C(14)-C(16)                   1.545(5) 

N(1)-C(18)                    1.491(3) C(14)-C(17)                   1.552(5) 

N(1)-C(19)                    1.513(3) C(15)-H(15A)                  0.9800 

C(1)-C(3)                     1.372(7) C(15)-H(15B)                  0.9800 

C(1)-C(2)                    1.467(6) C(15)-H(15C)                  0.9800 

C(1)-H(1)                     1.0000 C(16)-H(16A)                  0.9800 

O(2)-C(4)                     1.360(3) C(16)-H(16B)                  0.9800 

C(2)-H(2A)                    0.9800 C(16)-H(16C)                  0.9800 

C(2)-H(2B)                    0.9800 C(17)-H(17A)                  0.9800 

C(2)-H(2C)                    0.9800 C(17)-H(17B)                  0.9800 

O(3)-C(21)                    1.363(3) C(17)-H(17C)                  0.9800 

C(3)-H(3A)                    0.9800 C(18)-H(18A)                  0.9900 

C(3)-H(3B)  0.9800 C(18)-H(18B)                  0.9900 

C(3)-H(3C)                    0.9800 C(19)-C(22)                   1.522(4) 

O(4)-C(36)             1.353(3) C(19)-C(20)                   1.538(4) 

C(4)-C(5)                     1.398(4) C(19)-H(19)                   1.0000 

C(4)-C(9)                     1.401(4) C(20)-H(20A)                  0.9800 

C(5)-C(6)                     1.394(4) C(20)-H(20B)                  0.9800 

C(5)-C(18)                    1.496(4) C(20)-H(20C)                  0.9800 

C(6)-C(7)              1.396(4) C(21)-C(22)                   1.396(4) 

C(6)-H(6)                     0.9500 C(21)-C(26)                   1.409(4) 

C(7)-C(8)                     1.404(4) C(22)-C(23)                   1.391(4) 

C(7)-C(14)  1.525(4) C(23)-C(24)                   1.402(4) 

C(8)-C(9)                     1.389(4) C(23)-H(23)                   0.9500 

C(8)-H(8)  0.9500 C(24)-C(25)                   1.380(4) 

C(9)-C(10)                    1.541(4) C(24)-C(31)                   1.533(4) 

C(10)-C(11)                   1.522(4) C(25)-C(26)                   1.409(4) 

C(10)-C(12)                   1.533(4) C(25)-H(25)                   0.9500 

C(10)-C(13)                   1.541(4) C(26)-C(27)                   1.535(4) 

C(11)-H(11A)                0.9800 C(27)-C(30)                   1.532(4) 

C(11)-H(11B)                  0.9800 C(27)-C(28)                   1.536(4) 

C(11)-H(11C)                  0.9800 C(27)-C(29)                   1.541(5) 

C(12)-H(12A)                  0.9800 C(28)-H(28A)                  0.9800 
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Table 80 (cont) 

Bond Length /Å Bond Length /Å 

C(28)-H(28B)                  0.9800 C(43)-H(43C)                  0.9800 

C(28)-H(28C)                  0.9800 C(44)-H(44A)                  0.9800 

C(29)-H(29A)                  0.9800 C(44)-H(44B)                  0.9800 

C(29)-H(29B)                  0.9800 C(44)-H(44C)                  0.9800 

C(29)-H(29C)                  0.9800 C(45)-H(45A)                  0.9800 

C(30)-H(30A)                  0.9800 C(45)-H(45B)                  0.9800 

C(30)-H(30B)                  0.9800 C(45)-H(45C)                  0.9800 

C(30)-H(30C)                  0.9800 C(46)-C(47)                   1.523(5) 

C(31)-C(34)                  1.504(5) C(46)-C(48)                   1.532(6) 

C(31)-C(33)                   1.519(5) C(46)-C(49)                   1.566(6) 

C(31)-C(32)                   1.554(5) C(47)-H(47A)                  0.9800 

C(32)-H(32A)                  0.9800 C(47)-H(47B)                  0.9800 

C(32)-H(32B)                  0.9800 C(47)-H(47C)                  0.9800 

C(32)-H(32C)                  0.9800 C(48)-H(48A)                  0.9800 

C(33)-H(33A)                  0.9800 C(48)-H(48B)                  0.9800 

C(33)-H(33B)                  0.9800 C(48)-H(48C)                  0.9800 

C(33)-H(33C)                  0.9800 C(49)-H(49A)                  0.9800 

C(34)-H(34A)                  0.9800 C(49)-H(49B)                  0.9800 

C(34)-H(34B)                  0.9800 C(49)-H(49C)                  0.9800 

C(34)-H(34C)                  0.9800 C(50)-C(51)                   1.452(8) 

C(35)-C(37)                   1.507(4) C(50)-H(50A)                  0.9800 

C(35)-H(35A)                  0.9900 C(50)-H(50B)                  0.9800 

C(35)-H(35B)                  0.9900 C(50)-H(50C)                  0.9800 

C(36)-C(37)                   1.394(4) C(51)-C(52)                   1.505(7) 

C(36)-C(41)                   1.419(4) C(51)-H(51A)                  0.9900 

C(37)-C(38)                   1.381(4) C(51)-H(51B)                  0.9900 

C(38)-C(39)                   1.393(4) C(52)-C(53)                   1.484(7) 

C(38)-H(38)                   0.9500 C(52)-H(52A)                  0.9900 

C(39)-C(40)                   1.416(4) C(52)-H(52B)                  0.9900 

C(39)-C(46)                   1.526(4) C(53)-C(54)                   1.435(9) 

C(40)-C(41)                   1.380(4) C(53)-H(53A)                  0.9900 

C(40)-H(40)                   0.9500 C(53)-H(53B)                  0.9900 

C(41)-C(42)                   1.538(4) C(54)-C(55)                   1.410(10) 

C(42)-C(43)                   1.528(5) C(54)-H(54A)                  0.9900 

C(42)-C(45)                   1.540(5) C(54)-H(54B)                  0.9900 

C(42)-C(44)                   1.552(4) C(55)-H(55A)                  0.9800 

C(43)-H(43A)                  0.9800 C(55)-H(55B)                  0.9800 

C(43)-H(43B)                  0.9800 C(55)-H(55C)                  0.9800 
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Table 81. Bond angles 

Bond Angle /° Bond Angle /° 

O(1)-Ti(1)-O(3) 96.90(9) O(2)-C(4)-C(9) 121.7(2) 

O(1)-Ti(1)-O(2) 97.67(10) C(5)-C(4)-C(9) 121.3(2) 

O(3)-Ti(1)-O(2) 116.35(10) C(6)-C(5)-C(4) 119.4(3) 

O(1)-Ti(1)-O(4) 97.52(9) C(6)-C(5)-C(18) 121.4(2) 

O(3)-Ti(1)-O(4) 118.19(10) C(4)-C(5)-C(18) 119.2(2) 

O(2)-Ti(1)-O(4) 120.60(10) C(5)-C(6)-C(7) 121.5(3) 

O(1)-Ti(1)-N(1) 179.51(9) C(5)-C(6)-H(6) 119.2 

O(3)-Ti(1)-N(1) 82.64(8) C(7)-C(6)-H(6) 119.2 

O(2)-Ti(1)-N(1) 82.40(8) C(6)-C(7)-C(8) 116.8(2) 

O(4)-Ti(1)-N(1) 82.84(8) C(6)-C(7)-C(14) 122.5(3) 

C(1)-O(1)-Ti(1) 168.1(4) C(8)-C(7)-C(14) 120.6(3) 

C(35)-N(1)-C(18) 108.4(2) C(9)-C(8)-C(7) 123.9(3) 

C(35)-N(1)-C(19) 110.1(2) C(9)-C(8)-H(8) 118.0 

C(18)-N(1)-C(19) 110.8(2) C(7)-C(8)-H(8) 118.0 

C(35)-N(1)-Ti(1) 109.99(15) C(8)-C(9)-C(4) 117.0(3) 

C(18)-N(1)-Ti(1) 107.98(16) C(8)-C(9)-C(10) 121.9(3) 

C(19)-N(1)-Ti(1) 109.52(15) C(4)-C(9)-C(10) 121.1(2) 

C(3)-C(1)-O(1) 120.1(4) C(11)-C(10)-C(12) 111.2(3) 

C(3)-C(1)-C(2) 121.1(4) C(11)-C(10)-C(13) 107.2(3) 

O(1)-C(1)-C(2) 114.2(4) C(12)-C(10)-C(13) 107.2(3) 

C(3)-C(1)-H(1) 97.2 C(11)-C(10)-C(9) 110.2(2) 

O(1)-C(1)-H(1) 97.2 C(12)-C(10)-C(9)            109.4(2) 

C(2)-C(1)-H(1) 97.2 C(13)-C(10)-C(9) 111.6(2) 

C(4)-O(2)-Ti(1) 142.24(18) C(10)-C(11)-H(11A) 109.5 

C(1)-C(2)-H(2A) 109.5 C(10)-C(11)-H(11B) 109.5 

C(1)-C(2)-H(2B) 109.5 H(11A)-C(11)-H(11B) 109.5 

H(2A)-C(2)-H(2B) 109.5 C(10)-C(11)-H(11C) 109.5 

C(1)-C(2)-H(2C) 109.5 H(11A)-C(11)-H(11C) 109.5 

H(2A)-C(2)-H(2C) 109.5 H(11B)-C(11)-H(11C) 109.5 

H(2B)-C(2)-H(2C) 109.5 C(10)-C(12)-H(12A) 109.5 

C(21)-O(3)-Ti(1) 139.43(18) C(10)-C(12)-H(12B) 109.5 

C(1)-C(3)-H(3A) 109.5 H(12A)-C(12)-H(12B) 109.5 

C(1)-C(3)-H(3B) 109.5 C(10)-C(12)-H(12C) 109.5 

H(3A)-C(3)-H(3B) 109.5 H(12A)-C(12)-H(12C) 109.5 

C(1)-C(3)-H(3C) 109.5 H(12B)-C(12)-H(12C) 109.5 

H(3A)-C(3)-H(3C) 109.5 C(10)-C(13)-H(13A) 109.5 

H(3B)-C(3)-H(3C) 109.5 C(10)-C(13)-H(13B) 109.5 

C(36)-O(4)-Ti(1) 140.38(18) H(13A)-C(13)-H(13B) 109.5 

O(2)-C(4)-C(5) 117.0(2) C(10)-C(13)-H(13C) 109.5 
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Table 81 (cont) 

Bond Angle /° Bond Angle /° 

H(13A)-C(13)-H(13C) 109.5 C(19)-C(20)-H(20B) 109.5 

H(13B)-C(13)-H(13C) 109.5 H(20A)-C(20)-H(20B) 109.5 

C(15)-C(14)-C(7) 112.9(3) C(19)-C(20)-H(20C) 109.5 

C(15)-C(14)-C(16) 109.3(4) H(20A)-C(20)-H(20C) 109.5 

C(7)-C(14)-C(16) 109.3(3) H(20B)-C(20)-H(20C)  109.5 

C(15)-C(14)-C(17) 108.5(4) O(3)-C(21)-C(22) 117.9(2) 

C(7)-C(14)-C(17) 109.0(3) O(3)-C(21)-C(26) 120.5(2) 

C(16)-C(14)-C(17) 107.7(3) C(22)-C(21)-C(26) 121.6(3) 

C(14)-C(15)-H(15A) 109.5 C(23)-C(22)-C(21) 119.0(3) 

C(14)-C(15)-H(15B) 109.5 C(23)-C(22)-C(19) 122.2(2) 

H(15A)-C(15)-H(15B) 109.5 C(21)-C(22)-C(19) 118.8(2) 

C(14)-C(15)-H(15C) 109.5 C(22)-C(23)-C(24) 121.5(3) 

H(15A)-C(15)-H(15C) 109.5 C(22)-C(23)-H(23) 119.2 

H(15B)-C(15)-H(15C) 109.5 C(24)-C(23)-H(23) 119.2 

C(14)-C(16)-H(16A) 109.5 C(25)-C(24)-C(23) 117.9(3) 

C(14)-C(16)-H(16B) 109.5 C(25)-C(24)-C(31) 123.1(3) 

H(16A)-C(16)-H(16B) 109.5 C(23)-C(24)-C(31) 119.1(3) 

C(14)-C(16)-H(16C) 109.5 C(24)-C(25)-C(26) 123.2(3) 

H(16A)-C(16)-H(16C) 109.5 C(24)-C(25)-H(25) 118.4 

H(16B)-C(16)-H(16C) 109.5 C(26)-C(25)-H(25) 118.4 

C(14)-C(17)-H(17A) 109.5 C(21)-C(26)-C(25) 116.7(2) 

C(14)-C(17)-H(17B) 109.5 C(21)-C(26)-C(27) 121.8(3) 

H(17A)-C(17)-H(17B) 109.5 C(25)-C(26)-C(27) 121.5(2) 

C(14)-C(17)-H(17C) 109.5 C(30)-C(27)-C(28) 107.5(3) 

H(17A)-C(17)-H(17C) 109.5 C(30)-C(27)-C(26) 111.9(2) 

H(17B)-C(17)-H(17C) 109.5 C(28)-C(27)-C(26) 109.8(2) 

N(1)-C(18)-C(5) 114.3(2) C(30)-C(27)-C(29) 107.3(3) 

N(1)-C(18)-H(18A) 108.7 C(28)-C(27)-C(29) 110.0(3) 

C(5)-C(18)-H(18A) 108.7 C(26)-C(27)-C(29) 110.2(2) 

N(1)-C(18)-H(18B) 108.7 C(27)-C(28)-H(28A) 109.5 

C(5)-C(18)-H(18B) 108.7 C(27)-C(28)-H(28B) 109.5 

H(18A)-C(18)-H(18B) 107.6 H(28A)-C(28)-H(28B) 109.5 

N(1)-C(19)-C(22) 110.4(2) C(27)-C(28)-H(28C) 109.5 

N(1)-C(19)-C(20) 113.5(2) H(28A)-C(28)-H(28C) 109.5 

C(22)-C(19)-C(20) 112.1(2) H(28B)-C(28)-H(28C) 109.5 

N(1)-C(19)-H(19) 106.8 C(27)-C(29)-H(29A) 109.5 

C(22)-C(19)-H(19) 106.8 C(27)-C(29)-H(29B) 109.5 

C(20)-C(19)-H(19) 106.8 H(29A)-C(29)-H(29B) 109.5 

C(19)-C(20)-H(20A) 109.5 C(27)-C(29)-H(29C) 109.5 
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Table 81 (cont) 

Bond Angle /° Bond Angle /° 

H(29A)-C(29)-H(29C) 109.5 O(4)-C(36)-C(41) 121.4(3) 

H(29B)-C(29)-H(29C) 109.5 C(37)-C(36)-C(41) 120.0(3) 

C(27)-C(30)-H(30A) 109.5 C(38)-C(37)-C(36) 120.6(3) 

C(27)-C(30)-H(30B) 109.5 C(38)-C(37)-C(35) 120.8(2) 

H(30A)-C(30)-H(30B) 109.5 C(36)-C(37)-C(35) 118.6(3) 

C(27)-C(30)-H(30C) 109.5 C(37)-C(38)-C(39) 121.6(3) 

H(30A)-C(30)-H(30C) 109.5 C(37)-C(38)-H(38) 119.2 

H(30B)-C(30)-H(30C) 109.5 C(39)-C(38)-H(38) 119.2 

C(34)-C(31)-C(33) 109.1(3) C(38)-C(39)-C(40) 116.4(3) 

C(34)-C(31)-C(24) 109.8(3) C(38)-C(39)-C(46) 123.0(3) 

C(33)-C(31)-C(24) 112.8(3) C(40)-C(39)-C(46) 120.6(3) 

C(34)-C(31)-C(32) 109.2(4) C(41)-C(40)-C(39) 124.0(3) 

C(33)-C(31)-C(32) 108.6(4) C(41)-C(40)-H(40) 118.0 

C(24)-C(31)-C(32) 107.3(3) C(39)-C(40)-H(40) 118.0 

C(31)-C(32)-H(32A) 109.5 C(40)-C(41)-C(36) 117.2(3) 

C(31)-C(32)-H(32B) 109.5 C(40)-C(41)-C(42) 121.8(3) 

H(32A)-C(32)-H(32B) 109.5 C(36)-C(41)-C(42) 121.0(3) 

C(31)-C(32)-H(32C) 109.5 C(43)-C(42)-C(41) 110.4(3) 

H(32A)-C(32)-H(32C) 109.5 C(43)-C(42)-C(45) 110.3(3) 

H(32B)-C(32)-H(32C) 109.5 C(41)-C(42)-C(45) 110.9(2) 

C(31)-C(33)-H(33A) 109.5 C(43)-C(42)-C(44) 107.0(3) 

C(31)-C(33)-H(33B) 109.5 C(41)-C(42)-C(44) 111.0(3) 

H(33A)-C(33)-H(33B) 109.5 C(45)-C(42)-C(44) 107.1(3) 

C(31)-C(33)-H(33C) 109.5 C(42)-C(43)-H(43A) 109.5 

H(33A)-C(33)-H(33C) 109.5 C(42)-C(43)-H(43B) 109.5 

H(33B)-C(33)-H(33C) 109.5 H(43A)-C(43)-H(43B) 109.5 

C(31)-C(34)-H(34A) 109.5 C(42)-C(43)-H(43C) 109.5 

C(31)-C(34)-H(34B) 109.5 H(43A)-C(43)-H(43C) 109.5 

H(34A)-C(34)-H(34B) 109.5 H(43B)-C(43)-H(43C) 109.5 

C(31)-C(34)-H(34C) 109.5 C(42)-C(44)-H(44A) 109.5 

H(34A)-C(34)-H(34C) 109.5 C(42)-C(44)-H(44B) 109.5 

H(34B)-C(34)-H(34C) 109.5 H(44A)-C(44)-H(44B) 109.5 

N(1)-C(35)-C(37) 113.4(2) C(42)-C(44)-H(44C) 109.5 

N(1)-C(35)-H(35A) 108.9 H(44A)-C(44)-H(44C) 109.5 

C(37)-C(35)-H(35A) 108.9 H(44B)-C(44)-H(44C) 109.5 

N(1)-C(35)-H(35B)      108.9 C(42)-C(45)-H(45A) 109.5 

C(37)-C(35)-H(35B) 108.9 C(42)-C(45)-H(45B) 109.5 

H(35A)-C(35)-H(35B) 107.7 H(45A)-C(45)-H(45B) 109.5 

O(4)-C(36)-C(37) 118.7(2) C(42)-C(45)-H(45C) 109.5 
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Table 81 (cont) 

Bond Angle /° Bond Angle /° 

H(45A)-C(45)-H(45C) 109.5 H(50B)-C(50)-H(50C) 109.5 

H(45B)-C(45)-H(45C) 109.5 C(50)-C(51)-C(52) 111.8(5) 

C(39)-C(46)-C(47) 113.0(3) C(50)-C(51)-H(51A) 109.3 

C(39)-C(46)-C(48) 110.3(3) C(52)-C(51)-H(51A) 109.3 

C(47)-C(46)-C(48) 109.6(4) C(50)-C(51)-H(51B) 109.3 

C(39)-C(46)-C(49) 109.1(3) C(52)-C(51)-H(51B) 109.3 

C(47)-C(46)-C(49) 105.9(4) H(51A)-C(51)-H(51B) 107.9 

C(48)-C(46)-C(49) 108.8(3) C(53)-C(52)-C(51) 119.7(5) 

C(46)-C(47)-H(47A) 109.5 C(53)-C(52)-H(52A) 107.4 

C(46)-C(47)-H(47B) 109.5 C(51)-C(52)-H(52A) 107.4 

H(47A)-C(47)-H(47B) 109.5 C(53)-C(52)-H(52B) 107.4 

C(46)-C(47)-H(47C) 109.5 C(51)-C(52)-H(52B) 107.4 

H(47A)-C(47)-H(47C) 109.5 H(52A)-C(52)-H(52B) 106.9 

H(47B)-C(47)-H(47C) 109.5 C(54)-C(53)-C(52) 120.2(6) 

C(46)-C(48)-H(48A) 109.5 C(54)-C(53)-H(53A) 107.3 

C(46)-C(48)-H(48B) 109.5 C(52)-C(53)-H(53A) 107.3 

H(48A)-C(48)-H(48B) 109.5 C(54)-C(53)-H(53B) 107.3 

C(46)-C(48)-H(48C) 109.5 C(52)-C(53)-H(53B) 107.3 

H(48A)-C(48)-H(48C) 109.5 H(53A)-C(53)-H(53B) 106.9 

H(48B)-C(48)-H(48C) 109.5 C(55)-C(54)-C(53) 123.3(9) 

C(46)-C(49)-H(49A) 109.5 C(55)-C(54)-H(54A) 106.5 

C(46)-C(49)-H(49B) 109.5 C(53)-C(54)-H(54A) 106.5 

H(49A)-C(49)-H(49B) 109.5 C(55)-C(54)-H(54B) 106.5 

C(46)-C(49)-H(49C) 109.5 C(53)-C(54)-H(54B) 106.5 

H(49A)-C(49)-H(49C) 109.5 H(54A)-C(54)-H(54B) 106.5 

H(49B)-C(49)-H(49C) 109.5 C(54)-C(55)-H(55A) 109.5 

C(51)-C(50)-H(50A) 109.5 C(54)-C(55)-H(55B) 109.5 

C(51)-C(50)-H(50B) 109.5 H(55A)-C(55)-H(55B) 109.5 

H(50A)-C(50)-H(50B) 109.5 C(54)-C(55)-H(55C) 109.5 

C(51)-C(50)-H(50C) 109.5 H(55A)-C(55)-H(55C) 109.5 

H(50A)-C(50)-H(50C) 109.5 H(55B)-C(55)-H(55C) 109.5 
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Table 82. Anisotropic displacement parameters (Å2x 103 ) for (R,M)-287. The anisotropic 
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 

 U11 U22 U33 U23 U13 U12 

Ti(1)     24(1)       27(1)       25(1)       -2(1)       -3(1)       -2(1) 

O(1)      31(1)       43(1)       32(1)      -6(1)      -7(1)       -5(1) 

N(1)      26(1)       26(1)       27(1)       -2(1)       -1(1)       -1(1) 

C(1)      71(3)      245(8)       60(3)       65(4)          -42(3) -101(4) 

O(2)      29(1)       40(1)       29(1)       -3(1)       -2(1)       -5(1) 

C(2)      44(2)      117(4)       57(2)       15(2)      -15(2)      -39(2) 

O(3)      32(1)       34(1)       35(1)       -6(1)       -8(1)        2(1) 

C(3)      69(3)       97(3)       62(3)       27(2)      -31(2)      -31(3) 

O(4)      31(1)       37(1)       36(1)        2(1)       -2(1)       -6(1) 

C(4)      27(1)       29(1)       30(2)       -5(1)        0(1)        0(1) 

C(5)      25(1)       29(1)       34(2)        2(1)       -1(1)        2(1) 

C(6)      29(1)       37(1)       31(1)        1(1)       -5(1)        0(1) 

C(7)      28(1)       41(2)       35(2)        8(1)        0(1)       -1(1) 

C(8)      36(2)       33(1)       28(2)        3(1)        3(1)       -1(1) 

C(9)      33(1)       29(1)       29(1)       -1(1)       -3(1)        5(1) 

C(10)     36(1)       39(2)       28(2)       -1(1)       -2(1)        3(1) 

C(11)     38(2)       56(2)       44(2)        5(2)       -5(1)       14(1) 

C(12)     52(2)       43(2)       41(2)       -5(1)       -6(2)      -11(2) 

C(13)     48(2)       49(2)       26(2)        0(1)       -1(1)        3(1) 

C(14)     32(2)       58(2)       39(2)       10(2)        0(1)       -8(1) 

C(15)     38(2)      185(6)       50(3)       30(3)      -10(2)      -40(3) 

C(16)     47(2)       59(2)       56(2)        5(2)        8(2)      -12(2) 

C(17)     37(2)       69(3)       81(3)        4(2)       13(2)        5(2) 

C(18)     28(1)       32(1)       32(2)        0(1)       -4(1)        2(1) 

C(19)     31(1)       27(1)       32(1)        2(1)       -4(1)       -4(1) 

C(20)     32(1)       37(2)       51(2)        0(1)       -4(1)       -7(1) 

C(21)     36(1)       24(1)       25(1)        0(1)        3(1)       -2(1) 

C(22)     32(1)       23(1)       33(1)        3(1)       -3(1)       -2(1) 

C(23)     33(1)       26(1)       37(2)        0(1)       -5(1)       -3(1) 

C(24)     42(2)       23(1)       31(2)       -2(1)      -2(1)       -1(1) 

C(25)     33(1)       28(1)       33(2)      -1(1)        1(1)        2(1) 

C(26)     31(1)       26(1)       33(2)        2(1)       -2(1)       -2(1) 

C(27)     25(1)       38(2)       39(2)       -4(1)       -1(1)        0(1) 

C(28)     35(2)       48(2)       60(2)        0(2)      -1(2)      -13(1) 

C(29)     35(2)       56(2)       38(2)       -3(1)       -5(1)        6(1) 

C(30)     28(1)       57(2)       48(2)      -7(2)       -1(1)        6(1) 

C(31)     43(2)       31(1)       34(2)          -5(1) -6(1)        4(1) 

C(32)    126(4)       73(3)       47(3)      -5(2)     -23(3)       25(3) 

C(33)     80(3)       71(3)       62(3)     -28(2)     -13(2)       22(2) 
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Table 82 (cont) 

 U11 U22 U33 U23 U13 U12 

C(34)     75(3)       59(2)       89(4)      -25(2)      -5(2)      -13(2) 

C(35)     36(1)       31(1)       25(1)      -1(1)        0(1)       -5(1) 

C(36)     32(1)       32(1)       31(2)        1(1)        3(1)       -1(1) 

C(37)     30(1)       29(1)       32(2)       -1(1)        3(1)       -5(1) 

C(38)     34(1)       33(1)       33(2)        2(1)       -3(1)       -8(1) 

C(39)     35(2)       33(1)       43(2)        6(1)       -4(1)       -4(1) 

C(40)     37(2)       27(1)       47(2)        3(1)       -2(1)       -6(1) 

C(41)     28(1)       31(1)       37(2)            -3(1) 2(1)       -5(1) 

C(42)     35(2)       35(2)       41(2)       -1(1)       -1(1)      -12(1) 

C(43)     32(2)       57(2)       54(2)      -3(2)       -1(1)       -9(1) 

C(44)     53(2)       36(2)       54(2)        0(1)       -6(2)      -16(1) 

C(45)     54(2)       51(2)       43(2)      -10(2)        2(2)      -15(2) 

C(46)     38(2)       36(2)       59(2)        9(1)      -10(2)       -4(1) 

C(47)     80(3)       65(3)      134(5)       42(3)      -71(3)     -21(2) 

C(48)     66(3)       80(3)       99(4)       11(3)        1(3)       26(2) 

C(49)     63(2)       55(2)       63(3)       17(2)     -16(2)       -3(2) 

C(50)     97(4)      107(4)       84(4)        4(3)       23(3)       25(3) 

C(51)     82(3)       80(3)       85(4)       -1(3)       26(3)       13(3) 

C(52)     81(3)       99(4)       62(3)       -2(3)       10(2)        2(3) 

C(53)     88(3)       91(4)       84(4)        7(3)       31(3)       19(3) 

C(54)    127(5)       97(4)      143(6)       47(4)       72(5)       41(4) 

C(55)    155(7)      106(5)      184(8)       50(5)       94(7)       39(5) 

 

 


