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Abstract 

Platelets are small anucleate blood cells that plug holes in damage blood vessels.  They do so 

by adhering to exposed extracellular matrix proteins at sites of injury and aggregating 

together.  Platelet responsiveness to injury is controlled by a diverse repertoire of surface 

receptors that can be divided into two broad categories based on how they signal; the tyrosine 

kinased-linked receptors and the G protein-coupled receptors (GPCRs).  There has been much 

work on elucidating the functions of tyrosine kinases in platelets, whereas protein tyrosine 

phosphatases (PTPs) have been under-investigated.  To date, six non-transmembrane PTPs 

(NTPTPs), PTP-1B, Shp1, Shp2, MEG2-PTP, LMW-PTP and HePTP and a single receptor-

like PTP (RPTP), CD148, have been identified in platelets.  The main objective of this thesis 

was to determine the functional role of CD148 in platelets, which had never been studied in 

platelets.  Using a mouse model, I demonstrate that CD148 is a critical positive regulator of 

signalling from the main collagen activation receptor GPVI and the fibrinogen integrin 

αIIbβ3, and also plays a minor role in regulating thrombin and thromboxane A2 (TxA2) 

mediated aggregation and secretion via the PAR-4 and TP receptors, respectively.  The 

molecular mechanism of how CD148 regulates signalling from so many receptors is by 

maintaining a pool of active Src family kinases (SFKs) in platelets, which it does by 

dephosphorylating a tyrosine residue in the C-terminal of all SFKs.  In an attempt to identify 

other PTPs that perform a similar function to CD148 in platelets, I analyzed platelets from 

PTP-1B- and TC-PTP-deficient mouse models for functional and phosphorylation defects.  

PTP-1B-deficient platelets exhibited minor aggregation/secretion and phosphorylation defects 

relative to CD148-deficient platelets; and TC-PTP, which I show to be expressed in human 

and mouse platelets for the first time, is involved in platelet development.  My conclusion is 

that CD148, PTP-1B and TC-PTP have distinct functional roles in platelets. 
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1.1  Platelet Overview 
 
Platelets play a fundamental role in blood clotting and wound repair.  In the event of vascular 

injury, the sub-endothelial extracellular matrix (ECM) becomes exposed. Exposure of 

circulating platelets to the ECM triggers their activation and subsequent formation of a 

haemostatic plug, preventing excessive blood loss.  This process is crucial for normal 

haemostasis.  However, unwanted platelet activation can have severe, adverse affects on 

human health.  Uncontrolled thrombus formation in diseased vessels such as at the sites of 

ruptured atherosclerotic plaques, can lead to occlusion of the vessel resulting in myocardial 

infarction or stroke, which combined are the leading cause of death in the western world.  

Platelets are therefore a major target for current and new anti-thrombotic drugs. 

 
 
1.2  Platelet Formation 
 
Platelets are one of several types of blood cells that exist in the human body.  All blood cells 

are related by a common ancestry, the haematopoietic stem cell (HSC), which resides in the 

bone marrow of adults.  HSCs give rise to all the different types of blood cells and also have 

the capacity to self renew, so that there is always a pool of HSCs at sites of haematopoiesis.  

Blood cells are divided into two broad categories, the myeloid (macrophages, neutrophils, 

basophils, eosinophils, erythrocytes, platelets) and lymphoid (T and B cells) lineages (Figure 

1.1).  It is well established that platelets and erythrocytes (both of which are anucleate) are 

derived from a common progenitor, the colony forming unit-megakaryocyte/erythroid, which 

bifurcates into the megakaryocyte and erythroid lineages.  Megakaryocytes are large polyploid 

cells that reside in the bone marrow and produce platelets, which enter the peripheral 

circulation.  Immature megakaryocytes migrate along a SDF-1α gradient from the bone niche 

to the vascular niche in the bone marrow where they release platelets into the circulation 

(Avecilla et al. 2004).  Megakaryocytes seldom if ever enter the circulation.  The most well 
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established model of how platelets are formed is the proplatelet model (Italiano et al. 2003; 

Battinelli et al. 2007).  At the vascular niche, megakaryocytes extend long, dynamic 

protrusions called ‘proplatelets’ into microvessels and platelets bud off of these protrusions 

(Figure 1.2) (Italiano et al. 2003; Battinelli et al. 2007).  It is unclear how these bud-like 

structures that give rise to platelets are released from the proplatelet extensions.  Platelet 

formation is regulated by the cytokine thrombopoietin, which is synthesized by the liver and 

kidneys and signals through the c-Mpl receptor on megakaryoctyes (Kaushansky 2009).  It is 

estimated that each megakarycoyte produces between 5,000 – 10,000 platelets in its lifetime 

(Italiano et al. 2003).  The physiological concentration range of platelets in the circulation of a 

healthy adult human is 1.5 – 4 × 109/litre, which is approximately 2,000-fold lower than the 

concentration of erythrocytes (A. Michelson, Platelets, 2nd Edition).  The lifespan of a human 

platelet is 7 – 10 days.  Old and defective platelets are removed from the circulation by 

resident phagocytes in the spleen and liver (A. Michelson, Platelets, 2nd Edition).   
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Figure 1.1: Haematopoiesis. A schematic representation of the various blood cell lineages in 
the human body including the pathway of platelet formation. 
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Figure 1.2:  Proplatelet model of platelet formation from megakaryocytes.  A number of 
events occur during the transition of an immature megakaryocyte to the release of platelets. 
Firstly the immature megakaryocyte undergoes endomitosis and transcriptional activation. 
Organelle synthesis and platelet-specific protein amplification then follows before the 
formation of microtubules within the cell, which move towards the cortex. The next stage is 
the initiation of proplatelet formation. Large pseudopodia elongate from the megakaryocyte 
and organelles are moved individually over the microtubules into the proplatelet ends, where 
nascent platelets assemble. The entire cytoplasm of the megakaryocyte is transformed into a 
mass of proplatelets, which bud off into the microcirculation where new platelets are released. 
(figure adapted from A. Michelson, Platelets, 2nd Edition) 
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1.3  Platelet Structure 

Since platelets are sub-cellular fragments of megakaryocytes, they are composed of 

megakaryocyte membranes, cytoplasm, granules and organelles, but lack a nucleus.  Platelets 

are the smallest of the blood cells and have a discoid shape when they are quiescent or 

‘resting’.  The dimensions of a normal resting human platelet are 2 – 5 μm in diameter and 

approximately 0.5 μm in thickness (A. Michelson, Platelets, 2nd Edition).    The small size and 

discoid shape enables platelets to be pushed towards the vessel edge by larger blood cells 

(primarily erythrocytes) in flowing blood, positioning them close to the endothelium, ideally 

placed to detect and rapidly respond to any vascular damage (Ruggeri 2009).  The surface of 

the resting platelet appears featureless and lacks any protrusions.  High-resolution scanning 

electron microscopy shows that the platelet plasma membrane is made up of many tiny folds 

that provides additional membrane needed when platelets spread on surfaces (Hartwig 2006).  

The plasma membrane also has a large network of invaginations called the open canalicular 

system (OCS) that provides a large surface area between the cytoplasm and blood to facilitate 

exchange of small molecules, but restricts entry of larger proteins such as antibodies (Hartwig 

2006). 

            The cytoskeleton system of the platelet is essential for maintaining the discoid shape 

of the platelet as it encounters high fluid shear forces.  The cytoskeleton also mediates the 

morphological changes that a platelet undergoes after it becomes activated or comes into 

contact with a site of vascular injury.  The three layers of the platelet cytoskeletal system 

include: (1) a spectrin-based skeleton that is attached to the cytoplasmic surface of the plasma 

membrane; (2) a microtubule that is rolled into a coil and lines the circumference of the 

platelet; and (3) a rigid actin filament-based network that fills the cytoplasmic space of the 

cell (Italiano et al. 2003; Hartwig 2006).  Actin is the most abundant platelet protein.  Actin 

filaments are directly attached to the spectrin-based skeleton and are interconnected by filamin 
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and actinin (Italiano et al. 2003; Hartwig 2006).  Of importance to the structural organization 

of the resting platelet is the interaction between filamin and one of the most abundant platelet 

surface glycoproteins GPIb-IX-V, which mediates tethering to sites of vascular injury.  The 

microtubule coil beneath the plasma membrane is mainly composed of the β1 isoform of 

tubulin (Italiano et al. 2003; Hartwig 2006).  Platelet activation initiates remodelling of the 

cytoskeleton that is required for formation of filopodia and lamellipodia.  Actin-filament 

cleavage is mediated by gelsolin (Hartwig 2006).  Following platelet aggregation, platelets 

must generate a contractile force that acts to stabilize the aggregate and plug the site of 

inujury.  Platelets express non-muscle myosin IIA and B which are essential for generating the 

contractile force of platelets (Hartwig 2006).     

Since platelets lack a nucleus they have a limited ability to express new proteins and as 

such are equipped with a wide range of pre-synthesized molecules needed to exert their 

physiological responses.  The platelet cytoplasm contains typical cellular organelles such as 

mitochondria, lysosomes and endoplasmic reticulum as well as two types of platelet specific 

granules, α-granules and dense granules.  α-granules are the largest and most abundant 

platelet granules (~80 α-granules/human platelet) with a size of approximately 0.2 - 0.4 μm in 

diameter (Hartwig 2006; Italiano et al. 2009).  These granules store matrix adhesive proteins 

such as fibrinogen, fibronectin and VWF, and also have glycoprotein receptors embedded in 

their membranes, which promote adhesion between platelets and the ECM.  P-selectin, which 

is not expressed on the surface of resting platelets is stored in the membranes of α-granules as 

well as a proportion of the major platelet adherence receptors, GPIb-IX-V and the integrin 

αIIbβ3.  α-granules also contain coagulation factors, including prothrombin, factors V and 

XIII that promote thrombin generation and fibrin formation (Harrison et al. 1993). 

There are approximately 10-fold fewer dense granules than α-granules in platelets.  

Dense granules are also smaller in size than the α-granule with a diameter of approximately 
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0.15 μm.  Dense granules contain high concentrations of small molecules that play important 

roles in cell activation, including ADP, ATP, GDP, GTP, Ca2+ and the vasoconstrictor 

serotonin (Gunay-Aygun et al. 2004).  ADP is necessary for the ‘secondary’ platelet activation 

and platelet recruitment to the growing thrombi.  Dense and lysosomal granules also contain 

glycoproteins embedded in their membranes that are incorporated into the plasma membrane 

following granule fusion, including CD63, LAMP1, LAMP2 and CD68 (Nofer et al. 2004). 

There are a number of additional features which enable the platelet to carry out its 

physiological functions.  Platelets express high levels of glycoprotein receptors and signalling 

proteins in their plasma membrane that allow them to respond rapidly to vascular damage 

(described in detail below).  In addition, the surface of the activated platelet becomes enriched 

with negatively charged phosphatidylserine (PS), following membrane flipping, which 

provides a platform for assembly of clotting factors, thereby initiating increased thrombin 

production at the site of injury and enhancing platelet activation (Zwaal et al. 2004). 

 

1.4  Platelet Function 
 
The main physiological function of platelets is to plug holes in damaged blood vessels, thus 

preventing excessive blood loss.  There is a growing body of evidence that platelets are also 

involved in angiogenesis, inflammation and immunity.  Platelets rapidly adhere to exposed 

ECM, become activated and recruit other platelets from the circulation to form a haemostatic 

plug at a site of vascular injury.  The surface of activated platelets also accelerates thrombin 

generation at the site of injury that acts to consolidate the platelet plug.  The role of platelets 

in thrombus formation can be broken down into several stages described on the next page and 

in  Figure 1.3 (Ruggeri 2002; Auger et al. 2005; Bennett et al. 2009; Ruggeri 2009).  
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1) Tethering, rolling and adhesion.  Under high shear conditions (>500/s), such as 

those found in small arteries, arterioles and stenotic diseased arteries, platelets initially 

tether and role along the site of injury.  Tethering and rolling is mediated by the 

interaction between the high molecular weight plasma glycoprotein VWF that binds to 

exposed collagen at the site of injury, and the platelet surface receptor GPIb-IX-V.  

Platelet tethering and rolling on VWF occurs due to the rapid ‘on/off’ rates of 

association/dissociation and between GPIb-IX-V and immobilized VWF.  This 

interaction also generates a weak activatory signal within the platelets that is believed 

to prime them for further activation.  The VWF/GPIb-IX-V interaction is not required 

for platelet adhesion under low shear (<500/s) conditions, which are found in large 

arteries and veins.  Under these conditions, platelets bind directly to collagen and other 

ECM proteins via the integrins α2β1 (collagen), α5β1 (fibronectin), α6β1 (laminin) 

and αIIbβ3 (fibrinogen, fibronectin, VWF). 

  
2) Integrin activation and stable adhesion.  The initial tethering, rolling and non-firm 

adhesion of platelets with the ECM allows the low affinity collagen receptor GPVI to 

bind to collagen, cluster, and initiate a rapid, sustained activatory signal that triggers 

integrins (αIIbβ3 and α2β1) to undergo a conformational change from a low affinity to 

a high affinity state.  The platelets can then stably adhere to the exposed ECM and 

VWF. 

 
3) Spreading.  Platelet activation induces several dramatic morphological changes in the 

platelets mediated by cytoskeletal remodelling.  Firmly adherent, activated platelets 

extent long finger-like projections call ‘filopodia’ that then fill in with ‘lamellipodia’.  

Filopoida allow platelets to more firmly adhere to the damaged surface and also to trap 
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platelets flowing by in the bloodstream.  Spreading allows the platelets to cover a 

larger surface area of the vascular lesion. 

 
4) Secretion.  Activated platelets rapidly secrete the contents of their α- and dense 

granules, and synthesize and release the potent platelet agonist thromboxane A2 

(TxA2).  ADP and TxA2 released by activated platelets act synergistically to induce 

maximal platelet activation and also to recruit more platelets to the growing platelet 

plug.  The release of adhesion proteins such as fibrinogen and VWF contribute to 

formation and growth of the thrombus.  Released clotting factors (factors V, XIII and 

prothrombin) accelerate the localized generation of thrombin. 

 
5) Aggregation.  Plasma and platelet derived fibrinogen and VWF mediate platelet 

aggregation.  High affinity interactions are formed between αIIbβ3 and fibrinogen, 

and αIIbβ3 and VWF, leading to rapid thrombus growth. 

 
6) Thrombus stabilisation.  PS exposed on the activated platelet surface provides a 

platform for assembly of components of the coagulation cascade (factors V, VIII, XI 

and X) leading to thrombin generation (Figure 1.4).  Tissue factor exposed on 

damaged endothelial cells and smooth muscle cells in the vessel wall binds factor VIIa 

and initiates the extrinsic coagulation pathway, which also culminates in thrombin 

generation.  A high localized concentration of thrombin enhances platelet activation 

and converts fibrinogen to fibrin, stabilizing the thrombus and making it more resistant 

to embolization due to the shear forces. 

 
7) Clot retraction. The thrombus is stabilised by retraction of the platelet-

fibrinogen/fibrin aggregate.  Contractile forces are generated by non-muscule myosin 
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II pulling on the interlocking cytoskeletons of adjactent platelets.  The 

interconnections between platelets are mediated by fibrinogen-αIIbβ3 interactions. 

 

 

 

Figure 1.3: Platelet activation. A schematic representation of the various stages of platelet 
activation including: tethering, integrin activation and stable adhesion, spreading and 
secretion, aggregation and thrombus stability and clot retraction. 
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Figure 1.4: The coagulation cascade and platelet activation. Thrombin plays an essential 
role in both the coagulation cascade and platelet activation. Thrombin is generated on the 
surface of activated platelets. This greatly enhances the localised generation of thrombin. 
Surface thrombin is also protected from degradation and inhibition. 
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1.5  Platelet Receptors 

Platelets express a wide variety of surface receptors that regulate all aspects of platelet 

function.  They can be divided into two broad groups based on their signalling pathways: the 

tyrosine kinase-linked receptors and the G protein-coupled receptors (GPCRs).  A large 

proportion of these receptors have been well characterized, however, novel receptors/receptor-

like proteins continue to be discovered including CLEC-2, CD148 and CEACAM1 (Suzuki-

Inoue et al. 2006; Senis et al. 2009; Wong et al. 2009).  The functional roles and molecular 

functions of some of the most important and best characterized platelet receptors are described 

below. The focus is on tyrosine kinase-linked receptors as tyrosine 

phosphorylation/dephosphorylation is a major subject of investigation in this thesis, however, 

some of the main GPCRs will also be discussed. 

  

1.5.1  Tyrosine kinase-linked receptors 

Tyrosine kinase-linked receptors signal through a series of tyrosine phosphorylation events 

that culminate in specific cellular responses.  Some of the most important and well 

characterized tyrosine kinase-linked receptors in platelets are the collagen activation receptor 

GPVI/FcR γ-chain complex; the collagen adhesion integrin α2β1; the fibrinogen integrin 

αIIbβ3 and the VWF receptor GPIb-IX-V.  The distinguishing features of these receptors and 

their signalling pathways are described in detail in the following sections. 

 

1.5.1.1  Collagen receptors – GPVI and α2β1 

Collagen is the most abundant protein found in animals (Shoulders et al. 2009).  This fibrous 

structural protein is the main component of the ECM, lining all vessel walls.  Blood comes 

into contact with collagen following vessel injury.  There are many different forms of 
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collagen, but the more thrombogenic types are collagen I and III found in the most luminal 

regions of the subendothelial matrix (Shoulders et al. 2009).  Platelets express two receptors 

for collagen: the immunoreceptor GPVI and the integrin α2β1 (Nieswandt et al. 2003).  GPVI 

and α2β1 bind to different regions of collagen fibrils, GPVI binding to the GPO repeat and 

α2β1 binding to the GFOGER repeat with low and high affinities, respectively.  GPVI 

primarily mediates platelet activation through a rapid sustained signal and α2β1 primarily 

mediates firm adhesion (Nieswandt et al. 2003).   The two receptors act in a cooperative 

manner to reinforce each other’s activities, but also have distinct functions in regulating 

platelet adhesion and thrombus formation on collagen (Figure 1.6) (Holtkotter et al. 2002; 

Chen et al. 2003; Massberg et al. 2003; Auger et al. 2005; Sarratt et al. 2005). 

 

1.5.1.1.1  GPVI/FcR γ-chain complex 

GPVI is a 62 kDa type I transmembrane receptor composed of 2 IgG–like domains in its 

extracellular region, a mucin-like stalk, a transmembrane region, and a short 51-aa 

cytoplasmic tail that is expressed exclusively in platelets and megakaryocytes (Clemetson et 

al. 1999).  Resting human platelets express approximately 2,000 – 4,500 copies of GPVI on 

their surface, which does not increase following platelet activation (Best et al. 2003; Samaha 

et al. 2004).  However, it is shed from the surface of activated platelets as a means of 

regulating its signalling (Bergmeier et al. 2004; Gardiner et al. 2007).  Within the 

transmembrane region of GPVI is a positively charged arginine which mediates a constitutive 

noncovalent interaction with the FcR γ-chain (Watson et al. 2005).  The association of GPVI 

with the γ-chain is essential for expression of GPVI on the platelet surface and also critical for 

signalling (Gibbins et al. 1996; Poole et al. 1997).  GPVI exists partly as a dimer on the 

surface of resting platelets and ligand mediated clustering triggers signalling, as described 

below (Herr 2009; Horii et al. 2009; Jung et al. 2009).  Physiological ligands of GPVI include 
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collagen and laminin (Inoue et al. 2006).  Non-physiological ligands commonly used for 

research purposes include: the GPVI-specific collagen-derived synthetic peptide collagen-

related peptide (CRP) (Asselin et al. 1999); the snake toxin convulxin which also binds to 

GPIb-IX-V (Kanaji et al. 2003); and monoclonal antibodies which binds to the extracellular 

region of GPVI triggering signalling and shedding (Nieswandt et al. 2000; Nieswandt et al. 

2001; Boylan et al. 2004). 

The GPVI signalling pathway is essentially a hybrid of the T and B cell receptor 

signalling pathways sharing many of the same signalling molecules (Watson et al. 1998).  A 

critical early GPVI signalling event is phosphorylation of the conserved immunoreceptor 

tyrosine-based activation motif (ITAM) (YXX[L/I]X6-12YXX[L/I]) in the FcR γ-chain 

(Gibbins et al. 1996; Poole et al. 1997).  This is mediated by Fyn and Lyn which are 

constitutively associated with a proline-rich region in the cytoplasmic tail of GPVI via their 

SH3 domains (Figure 1.5) (Ezumi et al. 1998; Briddon et al. 1999).  Genetic evidence using 

Fyn and Lyn single and double-deficient mice demonstrated that Fyn positively regulates 

GPVI signalling; Lyn both positively and negatively regulates GPVI signalling; and other 

SFKs may compensate in the absence of Fyn and Lyn (Quek et al. 2000). 

The tyrosine kinase Syk subsequently binds to the phosphorylated FcR γ-chain ITAM 

via its tandem SH2 domains and undergoes autophosphorylation and phosphorylation by 

SFKs, which renders it maximally activated and also mediates interactions with other 

signalling proteins (Figure 1.5) (Sada et al. 2001; Watson et al. 2005).  Activated Syk, 

propagates the signal in lipid rafts, which involves the formation of the ‘LAT signalosome’ 

consisting of the adaptors LAT, SLP-76, Gads; Vav small GTPases; Tec family kinases; and 

effector proteins, including PI 3-kinase and PLCγ2 (Figure 1.5) (Watson et al. 2005).  PLCγ2 

induces formation of the second messengers 1,2-diacylglycerol (DAG) and inositol 1,4,5-

trisphosphate (IP3).  DAG activates PKC and IP3 induces the release of Ca2+ from intracellular 
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stores and subsequent Ca2+ entry.  GPVI signalling culminates in rapid integrin activation, 

secretion of α- and dense-granules, and the release of the secondary mediators ADP and 

TxA2, which play an important role in amplifying primary stimulatory signals and thrombus 

growth (Nieswandt et al. 2003; Offermanns 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: GPVI signalling cascade. Crosslinking of GPVI induces tyrosine 
phosphorylation of the FcRγ-chain ITAM by the Src family kinases, Fyn and Lyn, which are 
constitutively bound to the proline-rich region in the GPVI cytosolic tail. The phosphorylated 
ITAM recruits Syk and initiates a signalling cascade that leads to formation of the LAT 
signalosome and subsequent activation of PLCγ2. PLCγ2 associates directly with LAT, and 
indirectly via the adapters Gads and SLP-76. Members of the Tec and Vav families support 
activation of PLCγ2 (figure reproduced from Watson et al. 2005). 
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Patients with quantitative or qualitative defects in GPVI exhibit a mild bleeding 

tendency due to masking from various compensatory mechanisms.  Several patients have been 

identified with reduced levels of GPVI surface expression due to auto-antibodies which 

induce GPVI shedding (Boylan et al. 2004).  Two recent reports identified patients with 

genetic defects in GPVI resulting in mild bleeding diathesis (Dumont et al. 2009; Hermans et 

al. 2009).  GPVI-deficient mice (genetically modified or GPVI-depleted) phenocopy the 

condition reported in GPVI deficient humans and confirm the essential role of this receptor in 

collagen-induced platelet activation, thrombosis and haemostasis (Konishi et al. 2002; Kato et 

al. 2003; Massberg et al. 2003; Konstantinides et al. 2006; Lockyer et al. 2006). 

 

1.5.1.1.2  Integrin α2β1 

The integrin α2β1 (also known as GPIa/IIa) was the first collagen receptor identified on 

platelets and serves mainly as an adhesion receptor (Figure 1.6) (Holtkotter et al. 2002; 

Nieswandt et al. 2003).  It is widely expressed and binds with high affinity to collagen types I 

– V (Holtkotter et al. 2002; Leitinger et al. 2002).  It is expressed at approximately 2,000 – 

4,000 copies per resting human platelet, which varies considerably between individuals (Best 

et al. 2003; Samaha et al. 2004).  Its level of expression does not change following platelet 

activation.  The integrin α2β1 is normally in a ‘low-affinity’ state on the surface of resting 

platelets and undergoes a conformation change to a ‘high-affinity’ state in response to agonist-

induced ‘inside-out’ signalling (Jung et al. 2000; Lecut et al. 2004).  In addition to mediating 

platelet adhesion, α2β1 also reinforces the low affinity GPVI-collagen interaction and 

mediates weak ‘outside-in’ signalling (Figure 1.6) (Jung et al. 2000; Inoue et al. 2003; 

Nieswandt et al. 2003).  Although the α2β1 signalling pathway contains many of the same 

signalling molecules as the GPVI signalling pathway, including Src, Syk, SLP-76, and PLCγ2, 

α2β1 signalling is much weaker than GPVI signalling, and likely plays little role in thrombus 
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formation (Jung et al. 2000; Inoue et al. 2003; Nieswandt et al. 2003).  Genetic and 

pharmacological studies demonstrate that α2β1 plays a minor role in platelet aggregate 

formation on collagen under flow and has little or no protective effect in arterial thrombosis 

(Nieswandt et al. 2001; Holtkotter et al. 2002; He et al. 2003; Kuijpers et al. 2003; Auger et 

al. 2005; Kuijpers et al. 2007). 
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Figure 1.6:  GPVI and α2β1 act in a cooperative manner to reinforce each other’s 
activity.  Cross-linking of GPVI with the agonists collagen, collagen-related peptide (CRP 
[GPO]10) and the snake toxin convulxin triggers platelet activation via a SFK-mediated 
signalling pathway (‘outside-in’ signalling) and also initiates activation of α2β1 (‘inside-out’ 
signalling) to promote stable adhesion. Binding of collagen to α2β1 reinforces collagen-GPVI 
interactions and also plays a minor role in platelet activation. The synthetic peptide GFOGER 
can also be used to initiate α2β1 ‘outside-in’ signalling. 
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1.5.1.2  Fibrinogen receptor – integrin αIIbβ3 

The integrin αIIbβ3 (also known as GPIIb/IIIa) is the most abundant glycoprotein expressed 

on the platelet surface (60,000 – 80,000 copies per resting human platelet).  This increases by 

30 – 50% following activation as αIIbβ3 stored in the α-granules translocates to the platelet 

surface (Shattil et al. 1998; Shattil et al. 2004).  The αIIb subunit is expressed exclusively in 

the megakaryocyte/platelet lineage, whereas the β3 subunit is expressed in various other cell 

types where it interacts with other α subunits (Shattil et al. 2004).  αIIbβ3 binds several 

ligands including fibrinogen, fibronectin and VWF.  In resting platelets, αIIbβ3 exists 

primarily in a ‘low-affinity’ state and undergoes a conformational change to a ‘high-affinity’ 

state in response to agonist-induced inside-out signalling (Shattil et al. 2004).  Ligand-

mediated clustering of αIIbβ3 triggers outside-in signalling, filopodia and lamellipodia 

formation, secretion and clot retraction (Shattil et al. 1998).  αIIbβ3 is essential for adhesion 

and aggregate formation at sites of vascular injury (Shattil et al. 2004; Coller et al. 2008). 

Many similarities exist between the outside-in signalling events of αIIbβ3 and GPVI 

signalling (Watson et al. 2005; Kasirer-Friede et al. 2007).  Fibrinogen-mediated clustering of 

αIIbβ3 leads to the sequential activation of SFKs, Syk family kinases, recruitment of adapter 

proteins such as SLP-76 and activation of downstream effector enzymes, including PLCγ2, PI 

3-kinase and Vav small GTPases (Watson et al. 2005; Kasirer-Friede et al. 2007).  Similar to 

the GPVI receptor, SFKs (Src and Fyn) are constitutively associated with the β3 subunit and 

Syk gets recruited to the intergrin in response to clustering.  However, it is not clear whether 

Syk interacts directly with the β3 subunit, or whether an ITAM-containing protein mediates 

this interaction (Woodside et al. 2001; Abtahian et al. 2006; Mocsai et al. 2006).  Two 

significant differences between αIIbβ3 and GPVI are that αIIbβ3 is not localized to lipid rafts, 
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whereas GPVI is; and the transmembrane adapter protein LAT is essential for GPVI 

signalling, whereas it is dispensable for αIIbβ3 signalling (Watson et al. 2005). 

            The molecular mechanism that initiates outside-in integrin αIIbβ3 signalling has been 

studied extensively over the past several years (Figure 1.7A).  In resting platelets, integrin 

αIIbβ3-associated Src is maintained in an inactive conformation by Csk which phosphorylates 

an inhibitory tyrosine in the C-terminal tail of Src (Tyr-529) (Obergfell et al. 2002; Arias-

Salgado et al. 2005).  Upon integrin clustering, Csk dissociates from the αIIbβ3-Src complex 

and is replaced by the non-transmembrane protein tyrosine phosphatase, PTP-1B, which 

dephosphorylates the inhibitory tyrosine of Src and initiates the signalling pathway (Arias-

Salgado et al. 2005).  Syk is then recruited to the complex and becomes activated through 

phosphorylation by Src and autophosphorylated (Woodside et al. 2001; Abtahian et al. 2006; 

Mocsai et al. 2006).  Other SFKs including Fyn, Lyn and Yes have been hypothesized or 

shown to play a role in initiating outside-in integrin αIIbβ3 signalling (Obergfell et al. 2002; 

Arias-Salgado et al. 2003; Reddy et al. 2008; Senis et al. 2009).  Deletion of the two 

conserved tyrosines in the β3-tail prevents the interaction with Syk, as does tyrosine 

phosphorylation at these sites (Woodside et al. 2001).  

Phosphorylation of the two conserved tyrosine residues in the β3 subunit has been 

shown to be functionally important (Law et al. 1999).  The N-terminal tyrosine is found 

within a conserved NPXY motif that mediates binding to proteins with phosphotyrosine 

binding (PTB) domains, such as the Dok family of adapter proteins (Figure 1.7B) (Law et al. 

1999; Calderwood et al. 2002; Arias-Salgado et al. 2003; Garcia et al. 2004).  The second 

tyrosine lies within NXXY motif and has been shown to bind a distinct group of PTB domain 

containing proteins, including Shc (Phillips et al. 2001).  Mutation of these tyrosines to 

phenylalanines results in increased bleeding and impairment in clot retraction in a knockin 

mutant mouse model (Law et al. 1999).  The molecular basis of this defect is presently not 
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known, but has been proposed to be due to the loss of binding of myosin to the 

phosphorylated β3 tail (Figure 1.7B) (Jenkins et al. 1998; Phillips et al. 2001). 

Lack or dysfunction of αIIbβ3 gives rise to Glanzmann thrombasthenia, a severe 

bleeding disorder associated with impaired adhesion and abolished aggregation of platelets 

(Nurden 2006).  Similarly, mice lacking the β3 integrin subunit phenocopy Glanzmann 

thrombasthenia (Hodivala-Dilke et al. 1999).  αIIb-deficient mice have also been generated 

and have been used to study haematopoiesis as well as platelet function (Tropel et al. 1997; 

Emambokus et al. 2003; Jacquelin et al. 2005).  β3-deficient mice have markedly prolonged 

tail bleeding times and display spontaneous hemorrhage in all developmental stages.  

Intravital microscopy studies revealed that β3-deficient mice do not form thrombi at sites of 

vascular injury (Ni et al. 2000).  The importance of αIIbβ3 in platelet adhesion and 

aggregation has made it an attractive pharmacological target for the prevention of ischemic 

cardiovascular events.  Strategies to inhibit its function include antibodies (abciximab), 

peptides adapted from snake venom (eptifibitide), and analogues of an RGD peptide 

(lamifiban and tirofiban) that inhibit ligand binding (Coller et al. 2008).  These inhibitors have 

been beneficial in a clinical setting but are not used extensively because of adverse bleeding 

side effects (Quinn et al. 2003). 
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Figure 1.7:  Integrin αIIbβ3 regulates Syk-dependent and -independent cascades. (A) 
Outside-in signalling through ligand engagement and clustering of integrin αIIbβ3 triggers a 
Syk-dependent intracellular signalling cascade. Syk is recruited to the β3-tail where it 
undergoes phosphorylation by Src. Activation of Syk leads to the activation of PLCγ2 through 
a pathway dependent on SLP-76 and Vav. (B) Tyrosine phosphorylation of two conserved 
tyrosines, possibly by Fyn, leads to binding and tyrosine phosphorylation of the adapters Shc 
and Dok2, and also recruitment of myosin.  
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1.5.1.3   VWF receptor – GPIb-IX-V complex 

GPIb-IX-V is an abundant (25,000 copies per platelet) structurally unique receptor complex 

expressed exclusively in platelets and megakaryocytes (Berndt et al. 2001).  Four different 

genes encode the receptor complex which consists of GPIb α- and β-subunits, GPIX, and 

GPV, all of which belong to the leucine-rich repeat protein superfamily (Berndt et al. 2001).  

Historically the receptor has been thought to be comprised of 2 GPIbα subunits, 2 GPIbβ 

subunits, 2 GPIX subunits and 1 GPV subunit (Berndt et al. 2001).  More recent, Luo et. al. 

suggests a molar ratio of 2:4:2:1 of GPIbα,  GPIbβ, GPIX, and GPV subunits, respectively 

(Luo et al. 2007).  

The primary function of GPIb-IX-V is to recruit platelets to the site of injury by 

reducing their velocity to enable the interaction of other, higher affinity receptors with the 

damaged surface.  At the high shear rates found in small arteries, arterioles, and stenosed 

arteries the interaction between GPIbα and VWF immobilized on collagen or on the surface 

of activated platelets is crucial for the initial tethering of the flowing platelets (Savage et al. 

1998).  This interaction on its own is insufficient to support stable adhesion.  The activation of 

integrins is required to mediate stable adhesion. 

The rapid on/off rate between GPIb-IX-V and VWF was first thought to be too short to 

allow sufficient time for a signal to be initiated (Goto et al. 1995; Savage et al. 1996).  It was 

assumed that the GPIb-IX-V/VWF interaction only provides a physical interaction that tethers 

platelets to the sub-endothelial matrix (SEM), allowing sufficient time for collagen to 

associate with the collagen receptors to elicit intracellular activation signals.  However, a 

growing body of evidence is now emerging that suggests GPIb-IX-V mediates intracellular 

signalling through Src family kinase and PLCγ2-related pathways, leading to platelet 

activation and αIIbβ3-mediated aggregate formation (Yap et al. 2002; Mangin et al. 2003).  A 

hypothetical GPIb-IX-V signal transduction pathway was proposed to take place 
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predominantly in lipid rafts (Ozaki et al. 2005).  In line with this model, GPIb-IX-V is 

constitutively associating with the p85 subunit of PI 3-kinase through 14-3-3ζ (Mangin et al. 

2004; Mu et al. 2008).  The interaction between GPIb-IX-V and VWF induces the binding 

between PI 3-kinase and Src, which then elicits downstream signals, leading to PLCγ2 

activation. 

Humans lacking or expressing dysfunctional GPIb-IX-V have a condition known as 

Bernard-Soulier syndrome (Lopez et al. 1998).  This is a congenital bleeding disorder 

characterized by mild thrombocytopenia, giant platelets and the inability of platelets to 

aggregate in response to the antibiotic ristocetin (Lopez et al. 1998).  Interestingly, GPIb-IX-V 

has also been shown to bind several coagulation factors including thrombin and factors XI, 

XII and VII, which may contribute to the severe bleeding defect exhibited by Bernard-Soulier 

syndrome patients (Dumas et al. 2003; Vanhoorelbeke et al. 2007).  

 

1.5.2  G protein–coupled receptors 

Platelets express a variety of GPCRs that play a central role in regulating platelet activation 

and inhibition (Woulfe 2005; Offermanns 2006).  GPCRs signal in a different way to the 

tyrosine kinase-linked receptors described above.  Some of the most important platelet 

activation receptors are: (1) the thrombin protease-activated receptors (PAR)-1 and PAR-4; 

(2) the ADP receptors P2Y1 and P2Y12; and (3) the TxA2 receptor TP.  Interestingly, several 

of these GPCRs also have a SFK signalling component.  Below are brief descriptions of each 

of these receptors and their signalling pathways in platelets. 

 

1.5.2.1  Thrombin receptors - Protease Activated Receptors (PARs) 

Thrombin (also known as factor IIa) is a soluble plasma serine protease generated through a 

series of enzymatic reactions, commonly referred to as the ‘coagulation cascade’ that takes 
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place on the surface of activated platelets (Hoffman et al. 2001).  The inactive zymogen 

prothrombin gets converted to active thrombin, which in turn cleaves soluble fibrinogen to 

form insoluble fibrin polymers (Figure 1.4).  Fibrin forms a mesh like structure that stabilises 

the thrombus (Figure 1.3).  Thrombin is also a powerful platelet agonist and triggers platelet 

activation by cleaving PAR-1 and PAR-4 to expose a short activatory peptide sequence 

known as a tethered ligand (Coughlin 2000).  Human platelets express approximately 1,000 – 

2,000 copies of PAR-1 (Brass et al. 1992; Ramstrom et al. 2008).  PAR-1 and PAR-4 are 

coupled to heterotrimeric G proteins.  Human platelets express PAR-1 and PAR-4 whilst 

mouse platelets express PAR-3 and PAR-4.  PAR-1 and PAR-4 can couple to Gq, G12/13 and Gi 

G protein α-subunits (Coughlin 2000).  The Gq pathway is the main PAR-1 and PAR-4 

activation pathway and leads to activation of PLCβ and generation of IP3 and DAG, which in 

turn activate PKC and Ca2+ mobilization respectively; the G12/13 pathway leads to activation of 

Rho kinase and cytoskeletal rearrangements; and Gi inhibits adenylyl cyclase, which promotes 

platelet activation (Coughlin 2000).  Although G protein-coupled, there is also a minor Src 

kinase component to the signalling pathway downstream of the thrombin receptors (Coughlin 

2000; Murugappan et al. 2005; Harper et al. 2006).  PAR-3 does not signal, but acts as a 

cofactor that binds and localises thrombin in close proximity to PAR-4 receptor in mouse 

platelets (Coughlin 2000).  

 

1.5.2.2  ADP receptors -P2Y1 and P2Y12 

ADP is a platelet agonist that is released from the dense granules upon activation.  ADP is 

also released from damaged endothelial cells at the sites of vascular injury (Gachet 2006).  

The physiological function of ADP is to enhance platelet activation via a positive feedback 

mechanism and is essential for recruitment of platelets to the growing thrombus (Offermanns 

2006).  Platelets express two ADP receptors, P2Y1 and P2Y12 (Gachet 2006).  Human 
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platelets express very few copies of P2Y1 (150 copies) and approximate ten-fold more of 

P2Y12, however, together they induce rapid and strong platelet activation.  P2Y1 couples to Gq 

and G12/13 heterotrimeric G protein α-subunits, whereas P2Y12 couples to the Gi (Gachet 

2006).  PI 3-kinase also contributes to P2Y12 signalling and Src plays a minor role.  P2Y1 

receptor triggers Ca2+ mobilization, platelet shape change and weak, transient aggregation in 

response to ADP (Gachet 2006).  P2Y12 inhibits adenylyl cyclase, causing a decrease in 

intracellular cAMP levels, as well as activating PI3-kinase and Rap-1B (Gachet 2006).  The 

functional outcome of P2Y12 activation is sustained platelet aggregation and amplification of 

signals initiated by other agonists, including collagen, TxA2 and the integrin αIIbβ3 (Gachet 

2006).  Interestingly, although P2Y1 and P2Y12 receptors signal through distinct mechanisms, 

Src kinase has been reported to be activated downstream of both the P2Y1 and P2Y12 

receptors (Hardy et al. 2004; Shankar et al. 2006).  Coactivation of P2Y1 and P2Y12 is 

necessary for normal ADP-induced platelet activation as inhibition of either receptor results in 

a marked decrease in platelet aggregation (Gachet 2006).  

 

1.5.2.3  Thromboxane A2 receptor - TP 

TxA2 is a short-lived lipid mediator that is synthesized by activated platelets to amplify 

activation signals and recruit additional platelets to the site of thrombus formation (FitzGerald 

1991).  TxA2 also acts as a potent vasoconstrictor.  In activated platelets, TxA2 is generated 

from prostaglandin H2 (PGH2) by thromboxane-A synthase (Huang et al. 2004).  Aspirin 

irreversibly inhibits platelet cyclooxygenase-1 (COX1) that converts arachidonic acid (AA) 

into prostaglandin H2 (Huang et al. 2004).  TxA2 is lipid soluble and crosses the plasma 

membrane, exiting the platelet and binding to the TxA2 receptor (TP) on the surface of the 

same platelet or other platelets in the vicinity in a autocrine and paracrine manner, 

respectively (Shen et al. 1998).  Signalling through the TP receptor induces platelet activation 
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and secretion leading to platelet aggregation.  In platelets, the activated TP receptor 

predominantly couples to Gq and G12/13, similar to the thrombin receptors PAR-1 and PAR-4, 

and the P2Y1 ADP receptor (Djellas et al. 1999; Klages et al. 1999).  The TP receptor also has 

a minor Src signalling component (Huang et al. 2004). 

The importance of TxA2 as a positive feedback agonist is demonstrated by patients 

deficient in TxA2 production, which display a mild bleeding disorder (Lagarde et al. 1978) 

and by the TP knockout mouse, which has a prolonged bleeding time (Thomas et al. 1998).  

TxA2 works synergistically with released ADP to amplify platelet activation signals.  

Collagen in particular has a large dependency on the combined effects of TxA2 and ADP to 

enhance the activation signal and promote more powerful aggregation (Figure 1.8). 
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Figure 1.8: Aggregation by collagen is dependent on ADP and TxA2.  Released ADP and 
TxA2 contribute to a positive feedback mechanism that enhances collagen signalling and 
platelet aggregation. TxA2 signals through P2Y12, whilst ADP signals through P2Y1 and TP. 
 
 

1.5.3  ITIM receptors 

Platelets express several immunoreceptor tyrosine-base inhibition motif (ITIM)-containing 

receptors/receptor-like proteins including: PECAM-1 (CD31), TLT-1, G6b-B and 

CEACAM1.  ITIMs are typically defined by the consensus sequence (L/I/V/S)-XY-X-X-

(L/V) and are frequently found in pairs separated by 15 to 30 amino acid residues (Vivier et 

al, 1997; Ravetch et al, 2000).  The SH2 domain containing non-transmembrane protein 

tyrosine phosphatases (PTPs) Shp1 and Shp2 interact with phosphorylated ITIMs.  ITIM-
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containing receptors were originally identified by their ability to inhibit signalling by ITAM 

receptors, as demonstrated by the selective inhibition of the B-cell receptor when cross-linked 

by surface IgG to FcγRIIb (Bijsterbosch et al, 1985; Daeron et al, 1995).  However, this story 

was complicated by more recent evidence generated by studying platelets from PECAM-1-

deficient mice, which demonstrated that ITIM-containing receptors can also inhibit activation 

by G protein-coupled receptors and that PECAM-1 positively regulates integrin-mediated 

responses (Cicmil et al, 2002; Dhanjal et al, 2007; Jones et al, 2001; Newman 2003; Patil et 

al, 2001). 

PECAM-1 was the first ITIM-containing receptor identified in platelets and is the most 

well studied.  It is highly expressed in platelets (~10,000 copies on the surface of resting 

platelets) and endothelial cells (~1,000,000 copies/endothelial cell) (Muller et al. 1992).  

Cross-linking PECAM-1 has been shown to inhibit signalling from the collagen ITAM-

containing receptor GPVI-FcR γ-chain, the G protein-coupled receptor thrombin receptor 

PAR-4 and the VWF receptor GPIb-IX-V (Newman et al. 2003).  The ligand for PECAM-1 is 

itself (homophilic interaction).  It is hypothesised that the physiological function of PECAM-1 

is to maintain platelets in an inactive state in healthy blood vessels and limit thrombus size at 

sites of injury.  Work done using PECAM-1-deficient mice supports this model (Falati et al. 

2006).  However, the magnitude of the inhibitory function of PECAM-1 has been questioned 

by recent studies showing that PECAM-1 had only a minor inhibitory effect on platelet 

activation induced by ITAM signalling and that thrombus formation on collagen was not 

altered if PECAM-1 was absent (Dhanjal et al. 2007).  Furthermore, Wee et al reported 

potentiation of aggregation in PECAM-1-deficient platelets in response to CRP, 

demonstrating the complexity of the functional role of PECAM-1 in platelets (Wee et al. 

2005). 
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Work done on other ITIM-containing receptors in platelets supports their role as both 

activatory and inhibitory receptors and that they also regulate GPCR-mediated responses.  

TLT-1 which is stored in platelet α-granules and translocates to the surface upon platelet 

activation where it binds fibrinogen, positively regulates thrombosis (Washington et al. 2009); 

antibody-mediated cross-linking of G6b-B inhibits both GPVI- and ADP-mediated platelet 

aggregation (Newland et al. 2007); and work done using CEACAM1-deficient mice has 

shown that it negatively regulates most platelet responses mediated by tyroinse-kinase linked 

receptors (Wong et al. 2009). 

 

1.6  Platelet Inhibition 

Platelets must be maintained in a quiescent or ‘resting’ state in the peripheral circulation to 

prevent unwanted thrombus formation.  Three mechanisms that maintain platelets in a resting 

state are: (1) certain ITIM receptors (PECAM-1 and CEACAM1) have been shown to reduce 

platelet activation (described above); (2) PGI2 which is secreted from endothelial cells and (3) 

nitric oxide (NO), which is also released from endothelial cells.  Below I briefly describe the 

later two mechanisms, which are better defined and have a much greater effect on inhibiting 

platelet activation than ITIM-mediated inhibition. 

 

1.6.1  PGI2 receptor 

Prostaglandin I2 (PGI2) is a potent inhibitor of platelet activation, adhesion, aggregation and 

secretion.  PGI2 is synthesized in endothelial cells from PGH2 by prostacyclin synthase and 

constitutively released into the circulation.  PGI2 is released at relatively low concentrations 

and has a short half-life, exerting its effects on platelets in close proximity to the vessel wall 

(Mitchell et al. 2008).  PGI2 binds to and signals through the Gs-coupled PGI2 receptor.  Gs 

activates adenylyl cyclase, which in turn generates cAMP, which activates the cAMP-
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dependent Ser/Thr protein kinase A (PKA).  PKA phosphorylates numerous proteins in 

platelets that may mediate its inhibitory effects.  A major substrate of PKA in platelets is 

vasodilator-stimulated phosphoprotein (VASP), which interacts with various cytoskeletal 

proteins, focal adhesions, stress fibers and cell-cell contacts (Bundschu et al. 2006).  

Phosphorylation of VASP has been correlated with fibrinogen receptor inhibition.  

Phosphorylation of GPIb and the TxA2 receptor may contribute to inhibition of platelet 

activation by PGI2, whereas the effects of phosphorylation of the guanine nucleotide exchange 

factor Rap1B remain unknown.  

 

1.6.2  Nitric oxide 

NO is another potent inhibitor of platelet activation, adhesion, aggregation and secretion.  NO 

is constitutively produced and release by endothelial cells and is important in maintaining 

platelets in a resting state.  NO has a short half-life, having a high localised concentration near 

the vessel wall that drops off rapidly with increasing distance from the wall.  NO freely 

crosses the platelet plasma membrane and enters the cytosol where it exerts its effect on 

platelet function.  The inhibitory effects of NO are considered to be due to activation of 

soluble guanylyl cyclase resulting in production of cGMP.  Increased intracellular levels of 

cGMP activate the Ser/Thr protein kinase G (PKG) as well as increase intracellular levels of 

cAMP which activates PKA (Walter et al. 2009).  Both PKG and PKA phosphorylate VASP 

and inhibit platelet activation.  The intracellular signalling effects of NO are not fully 

understood, but also involves inhibition of phospholipase C and IP3-mediated mobilization of 

intracellular Ca2+. 
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1.7  Platelet Kinases and Phosphatases 

Protein phosphorylation on tyrosine residues is a fundamental cell-signalling mechanism, 

regulated by the combined activities of the protein-tyrosine kinases (PTKs) and protein-

tyrosine phosphatases (PTPs).  The actions of both the PTKs and PTPs are under tight control 

as they regulate important cellular and physiological processes including cell growth and 

proliferation, differentiation, migration, metabolism and signal transduction (Tonks et al. 

2001; Larsen et al. 2003).  Disruption of the fine balance of tyrosine phosphorylation within 

the cell can trigger the onset of several human diseases, including, diabetes, autoimmunity and 

cancer (Blume-Jensen et al. 2001; Tonks et al. 2001; Zhang 2001).  Therefore understanding 

the functional roles of these critically important enzymes has important implications for the 

development of novel therapies to treat disease. 

The human and mouse genomes code for approximately the same number of 

catalytically active PTPs and PTKs (approximately 90 of each).  However, PTPs in general 

are less well characterized and understood (Manning et al. 2002; Alonso et al. 2004).  This is 

in part due to the first PTK being purified (Czernilofsky et al. 1980) and studied almost ten 

years prior to the first PTP (Charbonneau et al. 1989).  In addition, PTPs were initially 

regarded as housekeeping enzymes that were constitutively active and dephosphorylated every 

substrate they encountered.  In recent years however, a large body of evidence has emerged 

demonstrating that PTPs play very specific, precise roles in regulating tyrosine 

phosphorylation and in the regulation of many physiological processes (Fischer et al. 1991; 

Walton et al. 1993; Tonks et al. 1996; Mustelin et al. 2003; Stoker 2005). 

 

1.7.1 Src family kinases  

The most well studied family of PTKs is the Src family kinases (SFKs).  Humans and mice 

express eight structurally-related SFKs (Blk, Fgr, Fyn, Hck, Lck, Lyn, Src and Yes), all of 
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which are between 53 – 61 kDa in size and consist of an N-terminal SH3 domain, followed by 

an SH2 domain, a proline-rich linker region and a kinase domain (Roskoski 2004).  The SH3 

and SH2 domains mediate both intra- and inter-molecular interactions.  SFKs also contain 

myristoylation and/or palmitoylation sequences in their N-terminus, which allow them to 

localize to the inner leaflet of the plasma membrane.  They have been linked to a variety of 

cellular processes.  One of their most well studied and important function is to initiate and 

propagate signals from surface receptors, including immunoreceptors, integrins and to a lesser 

extent G protein-couple receptors.  SFKs have high catalytic activity, so they are tightly 

regulated.  Aberrant SFK activity leads to various disease conditions including cancer and 

autoimmunity.  Regulation of platelet SFKs is a major component of this thesis and is 

discussed below. 

 

1.7.1.1  SFKs expressed in platelets 

Human platelets express five of the eight SFKs, namely Src, Fyn, Lyn, Yes and Fgr (Golden 

et al. 1986; Rendu et al. 1989; Horak et al. 1990; Pestina et al. 1997; Quek et al. 2000; 

Obergfell et al. 2002).  Src is the most abundant SFK in platelets, estimated to constitute 

~0.2% of total platelet protein (Golden et al. 1986).  Work done with cell lines, knockout 

mouse models and pharmacological inhibitors have clearly established SFKs as essential 

mediators of platelet activation, aggregation, adhesion and thrombosis (Ezumi et al. 1998; 

Gross et al. 1999; Quek et al. 2000; Obergfell et al. 2002).  Src is essential for initiating 

integrin αIIbβ3 signalling, whereas Fyn and Lyn are essential for initiating GPVI signalling 

(Ezumi et al. 1998; Obergfell et al. 2002).  The functions of Yes and Fgr in platelets are not 

clear.  Although SFKs are known to play important roles downstream of many other platelet 

receptors, it is presently not known which specific SFKs act downstream of each receptor.  It 
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is also not clear the extent of functional redundancy between the SFKs and unique functions 

performed by each. 

 

1.7.1.2  Regulation of SFK activity  

SFKs are tightly regulated by phosphorylation and intra-molecular interactions.  SFKs are 

maintained in an inactive conformation by two important intra-molecular interactions, one of 

which is between the SH3 domain and the proline-rich linker sequence between the SH2 and 

kinase domains; and the second is between the SH2 domain and the phosphotyrosine residue 

in the C-terminal tail of the kinase (Tyr-529 in Src) (Figure 1.9) (Roskoski 2005).  Both of 

these interactions must be disrupted in order for SFKs to be activated.  This is achieved by 

either dephosphorylation of the C-terminal inhibitory tyrosine, which releases the interaction 

with the SH2 domain and has a knock-on effect that also disrupts the SH3 interaction, or by 

out-competing the SH3 and SH2 interactions through inter-molecular interactions (Roskoski 

2005).  In the latter scenario, the C-terminal inhibitory site does not have to be 

dephosphorylated.  Dephosphorylation of the C-terminal inhibitory phosphotyrosine of SFKs 

‘primes’ the kinase.  Mutation of the C-terminal tyrosine residue of Src to a phenylalanine has 

been shown to increase its catalytic activity relative to wild-type Src (Cooper et al. 1986; 

Kmiecik et al. 1987).  Primed SFKs become fully activated by trans-autophosphorylation of a 

tyrosine residue located within the activation loop of the kinase domain (Tyr-418 in Src) (Su 

et al. 1999). Phosphorylation of the activation loop maintains it in an ‘open’ confirmation, 

such that it does not obstruct the catalytic site of the enzyme (Xu et al. 1999). 

SFKs are maintained in an inactive conformation by the structurally related tyrosine 

kinases Csk and Chk which phosphorylate the C-terminal inhibitory tyrosine of all SFKs 

(Okada et al. 1991; Zrihan-Licht et al. 1997; Cole et al. 2003).  Csk is expressed in all 

mammalian cells, whereas Chk expression is restricted to hematopoietic cells, neurons, breast 
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and testes (Brown et al. 1996).  Csk is maintained at the plasma membrane, in close proximity 

to the SFKs it regulates, by binding to phosphorylated Csk-binding protein also referred to as 

phosphoprotein associated with glycosphingolipid-enriched microdomains or paxillin 

(Roskoski 2004; Rathore et al. 2007).  

Several PTPs have been shown to dephosphorylate the C-terminal inhibitory tyrosine 

residue of SFKs, including the RPTPs CD45, PTPα, PTPε and PTPλ and the NTPTPs PTP-

1B, Shp1 and Shp2, whereas only CD45 and the PTP PTP-BAS have been shown to 

dephosphorylate the activation loop of SFKs (Roskoski 2005).  SFK activity can also be 

reduced by dephosphorylation of the activation loop phosphotyrosine.  CD45 and the NTPTP 

PTP-BL (PTP-BAS mouse homologue) are the only two PTPs to be shown to 

dephosphorylate this site to date.  Interestingly, Palmer et al. demonstrated that PTP-BL 

specifically dephosphorylates Src at Tyr 418 but not Tyr-529; whereas CD45 dephosphorylate 

both the inhibitory and activation loop tyrosines of Lck (Tyr-507 and Tyr-396, respectively) 

downstream of the TCR (McNeill et al. 2007).  CD45 has therefore been proposed to act as a 

switch modulating the sensitivity of cells to TCR signals by differentially regulating the two 

critical Lck tyrosine phosphorylation sites (McNeill et al. 2007).  
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Figure 1.9: Regulation of Src kinase by tyrosine phosphorylation. (A) The inactive 
configuration of Src showing the SH2 domain interacting with the phosphorylated C-terminal 
tyrosine (pY529), the SH3 domain interacting with the polyproline  SH2-linker region (PPP), 
and the dephosphorylated activation loop (Y418) folded back over the substrate binding site. 
(B) The active configuration of Src, showing SH2 and SH3 domains released from the 
intramolecular interactions and available for binding to substrates and regulatory molecules, 
the C-terminal tyrosine is dephosphorylated (Y529). (C) Src undergoes autophopshorylation 
of the activation loop (pY418) to become fully active. 
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1.7.2 Protein Tyrosine Phosphatases 
 
1.7.2.1 Classification of PTPs 

The defining feature of all PTPs is the presence of a PTP catalytic domain (~280 amino acids) 

containing an active-site signature motif HCX5R, where the cysteine functions as a 

nucleophile and is essential for catalysis (Tonks 2006).  Based on this definition, the human 

genome contains 107 genes that encode for PTPs (Alonso et al. 2004).  Mouse orthologs exist 

for essentially all of these genes.  The number of genes in the human genome that encode 

PTPs is surprisingly higher than the number of genes encoding PTKs (107 PTP genes 

compared with 90 PTK genes) (Manning et al. 2002; Alonso et al. 2004).  However, this is 

somewhat misleading as of the 107 PTPs, 11 have no catalytic activity, 2 dephosphorylate 

mRNA and 13 dephosphorylate inositol phospholipids (Alonso et al. 2004).  Consequently, 

only 81 of the PTPs are active protein phosphatases with the ability to dephosphorylate 

phosphotyrosines.  Of the 90 PTK genes, 85 are thought to be catalytically active (Manning et 

al. 2002).  Therefore, the number of active PTPs and PTKs are similar. 

PTPs are classified into four separate groups (Classes I – IV) based on the amino acid 

sequences of their catalytic domains and their substrate specificity (Figure 1.10) (Alonso et al. 

2004).  The largest group is the Class I cysteine-based PTPs of which there are 99.  Class I 

PTPs are divided into two broad categories, the ‘classical’ PTPs (38), which are strictly 

tyrosine-specific, and the ‘dual-specific’ PTPs (61), named for their broad substrate activity.  

The classical PTPs are further subdivided into the receptor-like PTPs (RPTPs) (21), and the 

non-transmembrane (NTPTPs) (17); and the dual-specific PTPs are subdivided into seven 

subgroups based on substrate specificity (Figure 1.10).  Low molecular weight PTP (LMW-

PTP) is the only Class II cysteine-based PTP, which appears to be more ancient than the Class 

I PTPs.  The Class III cysteine-based PTP family contains only three members, all of which 
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are cell cycle regulators.  In contrast to Class I – III cysteine-based PTPs, Class IV PTPs use a 

different catalytic mechanism, requiring a key aspartic acid and are cation-dependent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10: Classification and substrate specificity of the PTPs. Class I Cys-based PTPs 
(blue), class II Cys-based PTPs (green), class III Cys-based PTPs (orange), and Asp-based 
PTPs (pink). The substrate specificity of each class of PTP is listed (grey). Figure adapted 
from Alonso et al, 2004. 
 

 

1.7.2.2  The classical PTPs 

The classical PTPs, comprised of 21 RPTPs and 17 NTPTPs, are further divided into 

subgroups based on structural features and the extent of homology between their catalytic 

domains (Figure 1.11).    All members of the classical PTP family have at least one PTP 
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domain with the majority of the RPTP subfamily containing a second pseudo-PTP domain 

within their cytoplasmic region that has little or no catalytic activity (Figure 1.11) (Tonks 

2006).  Nevertheless, the structural integrity of the pseudo-PTP domain is important for the 

activity, specificity and stability of the RPTP as a whole and may provide docking sites for 

substrates and regulatory proteins (Streuli et al. 1990; Felberg et al. 1998; Tonks et al. 2001).  

The pseudo-PTP domain is also important for protein-protein interactions that regulate 

dimerization. 

The prototype and best studied RPTP is CD45.  In general, the cytoplasmic domains of 

the RPTPs are relatively well conserved (~35% sequence identity), however their extracellular 

regions are structurally diverse (Figure 1.11).  Extracellular regions of RPTPs are typically 

large (with the exception of PTPα and PTPε), highly glycosylated and contain domains 

present in receptors that regulate cell-cell and cell-ECM interactions, including fibronectin 

type III, immunoglobulin, MAM (Meprin/A4/µ domain) and carbonic anhydrase domains 

(Alonso et al. 2004).  There is a growing body of evidence that RPTPs regulate cell-cell and 

cell-ECM adhesion.  

The NTPTPs contain a wide variety of structural motifs flanking the catalytic domain 

that are important for regulating PTP activity, either directly by interaction with the active 

site, as shown for Shp2, or by controlling substrate specificity as demonstrated for PTP-PEST 

and p130cas (Figure 1.11) (Garton et al. 1997).  These non-catalytic regions also target 

NTPTPs to subcellular locations within the cell, thereby indirectly regulating activity by 

controlling access to a particular subset of substrates.  For example, Shp2 is targeted to the 

transmembrane protein PECAM-1 via its SH2 domain, following platelet activation and 

aggregation (Jackson et al. 1997). 
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Figure 1.11: The Classical Protein Tyrosine Phosphatases. Schematic representation of the 
classical PTPs showing their varied structural domains. 
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1.7.2.3  Catalytic mechansim of PTPs 

PTP-1B has been the prototype for understanding the reaction catalyzed by all PTPs.  It was 

the first PTP identified and the first to have the crystal structure of its PTP domain solved 

(Tonks et al. 1988; Charbonneau et al. 1989; Barford et al. 1994).  The crystal structures of 

the PTP-1B catalytic domain on its own and in complex with a peptide substrate were 

determined by the Tonks group (Barford et al. 1994).  Sequence alignments of PTP catalytic 

domains revealed several conserved residues.  The structure of PTP-1B illustrated that these 

residues were clustered in and around the active site and were demonstrated through site-

directed mutagenesis to facilitate enzyme-substrate recognition and catalysis (Jia et al. 1995).  

Recently, work by Barr et. al. revealed the PTP domains of the classical PTPs have many 

structural variations which regulate activity and specificity (Barr et al. 2009).  Other major 

findings from this study include: (1) a new atypical conformation for the WPD (Trp-Pro-Asp) 

catalytic loop; (2) a secondary substrate-binding pocket, initially reported for PTP-1B, can 

also be found in most other PTPs; and (3) a new ‘head-to-toe’ model to explain dimerization 

mediated inhibition of RPTP activity.   

The molecular mechanism of all PTP catalyzed reactions is a nucleophilic attack of the 

substrate phosphate by the PTP.  A schematic representation of the reaction catalyzed by PTP-

1B and the key residues involved is shown in Figure 1.12 (Tonks 2006).  Cys-215 in the PTP 

active site is fundamental for initiating catalysis (Figure 1.12A and B).  Asp-181 located on a 

flexible WPD catalytic loop is another key residue of the reaction.  Upon binding of substrate 

to the enzyme, the flexible WPD loop undergoes a conformational change, bringing Asp-181 

into the active site, so that it protonates the tyrosyl leaving group of the substrate (Figure 

1.12A and B).  A phosphoryl-cysteine intermediate (PTP-Cys-PO3) is subsequently formed 

(Figure 1.12C).  The second part of the reaction involves the hydrolysis of the phospho-

enzyme intermediate, which is stabilized within the catalytic cleft by Ser-222 (Figure 1.12D).  



Chapter 1  Introduction 

  42 

Hydrolysis is mediated by Asp-181, which now acts as a general base, and a Gln-262, which 

coordinates a water molecule in the active site (Figure 1.12D and E).  The phosphate is 

released from the active site and the enzyme is ready to dephosphorylate another substrate 

molecule (Figure 1.12F).  PTPs generally have a high catalytic activity that have been 

measured to be 3 orders of magnitude higher than PTKs (Zhang 2003). 

 

1.7.2.4  Identification of PTP substrates 

‘Substrate-trapping mutants’ have been important tools in the identification of physiological 

substrates and deciphering signalling pathways that PTPs regulate (Blanchetot et al. 2005; 

Tiganis et al. 2007).  They were developed following the elucidation of the PTP catalytic 

mechanism.  The basic principle of how they function is that they display impaired catalytic 

activity and bind substrates with higher affinity than their wild-type counter-parts (Garton et 

al. 1996; Flint et al. 1997).  The most successful substrate-trapping mutants generated to date 

have either the signature motif cysteine replaced by a serine (C/S), or the aspartatic acid in the 

WPD loop mutated to alanine (D/A).  The C/S mutation in the active site renders the PTP 

catalytically inactive, but still allows binding of the physiological substrate (S) leading to the 

formation of a stable enzyme-substrate interaction (PTP-Ser-PO3-S) (Blanchetot et al. 2005).  

The D/A mutant is generally regarded as the best mutant to pulldown PTP substrates, as in the 

majority of cases it has greater affinity for substrates compared to the C/S mutant (Buist et al. 

2000; Agazie et al. 2003).  This is because the D/A mutant not only has impaired catalytic 

activity, but has the added benefit of the WPD loop flipping over and locking the substrate in 

the catalytic pocket (Blanchetot et al. 2005). 

PTP substrate-trapping approaches have progressed to include double mutations as a 

means to improve trapping efficiency.  Double mutants are effective when single mutants are 

slightly active and do not display sufficiently high binding affinities to trap substrates.  Two 
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examples are the Shp2 C459S-D425A and PTP-1B D181A-Q262A double mutants, both of 

which proved to be much more effective in trapping substrates than either mutant alone (Xie 

et al. 2002; Agazie et al. 2003). 

Although substrate-trapping mutants have been used with great effect to target 

substrates of PTPs, the binding of a phosphoprotein to a substrate-trapping mutant on its own 

is not sufficient to prove that a protein is a physiological substrate of a PTP.  Therefore 

potential substrates are commonly validated by other means.  Typically the criteria that needs 

to be fulfilled include: (i) the substrate must bind to the substrate trapping mutant via the 

catalytic site; (ii) dephosphorylation of the substrate should be visible in vitro; and (iii) an 

increase in tyrosine phosphorylation of the substrate should be detectable in a cell line or 

mouse model where the PTP has been knocked out or knocked down by RNA interference 

(Tiganis et al. 2007). 
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Figure 1.12: PTP-1B catalytic mechanism. (A) The tyrosine-phosphorylated substrate enters 
the PTP active site. (B) Nucleophilic attack occurs between the sulphur atom of the essential 
cysteine (Cys215) and the phosphate on the substrate, coupled with protonation of the tyrosyl 
leaving group by the conserved aspartic acid (Asp181), resulting in the formation of the 
phospho-enzyme intermediate (C). (D) Asp181 then acts as a general base to hydrolyze the 
phospho-enzyme intermediate, culminating in the release of phosphate (E and F).  
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1.7.2.5  Regulation of PTP activity 

Disruption of the fine balance of tyrosine phosphorylation within a cell can severely effect 

functional responses of the cell.  It is therefore essential that both PTKs and PTPs are under 

precise control.  Below are outlined several ways in which PTPs are regulated (den Hertog et 

al. 2008): 

 

1) Expression.  The expression of PTPs is controlled at many different levels including: 

transcriptional regulation of mRNA, alternative mRNA splicing, mRNA stability, translation, 

post-translational modifications and protein stability.   Some PTPs, such as PTP-1B and Shp2, 

are widely expressed in almost all cell types, whilst others are more selectively expressed, 

such as HePTP and CD45 which are expressed exclusively in hematopoietic cells (Pao et al. 

2007).  Some cell types appear to express many of the 38 classical PTP genes such as 

endothelial cells, whereas other cell types such as neurons and platelets appear to express only 

a select few (Kappert et al. 2005).  The expression of certain PTPs can also be increased 

during development, such as PTPRO which is up-regulated during megakaryocyte 

differentiation (Taniguchi et al. 1999).  Expression of CD148, LAR and RPTPµ are increased 

with increasing cell density (Longo et al. 1993; Ostman et al. 1994; Campan et al. 1996). 

 

2)  Subcellular localisation.  The correct location within the cell is critical for a PTP to exert 

its physiological function.  PTPs are targeted to their required subcellular locations by 

compartment-specific targeting domains and protein-protein interactions (Tonks 2006).  

Several RPTPs have been shown to regulate tyrosine phosporylation at the plasma membrane 

in response to a cell-cell or cell-ECM contact (Ostman et al. 2001; Burridge et al. 2006; Sallee 

et al. 2006).  CD45 is expressed in the plasma membrane of lymphocytes where it regulates B- 

and T-cell receptor proximal signalling events (Hermiston et al. 2003).  Some cytoplasmic 
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NTPTPs are recruited to the plasma membrane in response to cell stimulation, such as Shp1 

and Shp2 which bind to phoshorylated ITIM receptors via their SH2 domains (Pao et al. 

2007).  PTP-1B is normally anchored to the cytosolic surface of the endoplasmic reticulum 

(ER) by a hydrophobic sequence in its C-terminus (Tonks 2003).  Cleavage of this sequence 

by calpain releases PTP-1B from the ER allowing it to access substrates in other parts of the 

cell and also increases its specific activity (Frangioni et al. 1993). 

 

3) Phosphorylation.  Several PTPs are known to be phosphorylated on Ser and Tyr residues, 

including RPTPα, CD45, PTP-1B, PTP-PEST, Shp1 and Shp2, however, relatively little is 

known about how phosphorylation regulates PTPs.  Phosphorylation of RPTPα at Ser-180 and 

Ser-204 increases catalytic activity, by a mechanism that is thought to inhibit dimer formation 

(den Hertog et al. 1995).  Phosphorylation of RPTPα at Tyr-789 has a completely different 

function, mediating activation of Src and also recruitment of Grb-2, which antagonizes Src 

activation (Su et al. 1999).  There is also evidence that PTPs can dephosphorylate other PTPs.  

For example, CD45 has been shown to dephosphorylate RPTPα at Tyr-789 in vitro and in T 

cells, implying that RPTPα is a direct substrate of CD45 (Maksumova et al. 2007).  This 

suggests the possibility of PTP signalling cascades similar to the well documented, much 

studied kinase cascades. 

 

4) Oxidation.  It is well established that PTPs are reversibly inhibited by reactive oxygen 

species (ROS) that transiently oxidize the active site cysteine (Salmeen et al. 2005; Rhee 

2006).  Many PTPs have been shown to be oxidized following activation of tyrosine kinase-

linked and G protein-coupled receptors, that elevate intracellular levels of ROS (Tonks 2005).  

Cell density, adhesion and migration also transiently affect levels of PTP oxidation (den 

Hertog et al. 2008).  The major sources of ROS appear to be the mitochondria or NADPH 
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oxidases.  The molecular mechanisms of PTP oxidation has been elucidated for some PTPs 

and involves formation of a covalent bond between the sulphur of the catalytic site cysteine 

and the nitrogen of the neighbouring serine (Salmeen et al. 2003; van Montfort et al. 2003; 

Yang et al. 2007).  There is some variability in the sensitivity of PTPs to oxidation, which 

correlates with the conformation of the active site arginine (Groen et al. 2005; Ross et al. 

2007).  For example, Shp2 becomes oxidized following T cell stimulation with H2O2, whereas 

Shp1 does not (Kwon et al. 2005).  Two commonly used general PTP inhibitors, vanadate and 

pervanadate, used throughout this thesis, work by oxidizing the active site cysteine of all 

classical PTPs (Huyer et al. 1997).  Vanadate is a reversible inhibitor of PTPs whilst 

pervanadate is irreversible (Figure 1.13) (Huyer et al. 1997). 

 

 

 

 

 

 

 

 

 

 

Figure 1.13. : Vanadate and pervanadate inhibition of PTPs. Figure adapted from Huyer et 
al. 1996. Inhibition by pervanadate is irreversible whilst inhibition by vanadate is reversible. 
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5) Ligands.  The extracellular regions of RPTPs are typically large, highly glycosylated, 

structurally diverse and evolutionarily conserved, implying that they regulate PTP function.  

However, very few ligands of RPTPs have been identified to date.  Table 1.1 summarizes our 

current knowledge of RPTP ligands.  Interestingly, several RPTPs display homophilic 

interactions and/or interact with ECM proteins, suggesting that they regulate cell adhesion 

(den Hertog et al. 2008).  The only RPTP extracellular region crystallized to date is that of 

RPTPµ, which was shown to form extended, rigid homophilic trans (anti-parallel) dimers 

through a ‘spacer-clamp’ mechanism (Aricescu et al. 2007).  RPTPµ dimers are hypothesized 

to act as a distance gauge between adjacent cells and maintain the phosphatase in the 

appropriate functional location.  RPTPζ is one of the best characterised RPTPs regulated by 

ligand binding.  RPTPζ is inhibited following binding of the growth factor pleiotrophin 

(PTN), leading to an increase in tyrosine phosphorylation of proteins that regulate cell 

adhesion and cytoskeletal function (Meng et al. 2000).  A size exclusion model predicts that 

some RPTPs are regulated by steric hinderance (Lin et al. 2003; Choudhuri et al. 2005).  

CD45 and CD148 are excluded from the tight immunological synapse between a lymphocyte 

and an antigen presenting cell due to the large size of their extracellular regions. 

 

6) Dimerisation.  Unlike receptor tyrosine kinases and tyrosine kinase-linked receptors which 

are activated by homodimerzation, several RPTPs have been shown to be inactivated 

following dimerzation.  The long held, yet controversial ‘inhibitory wedge’ model proposes 

that an helix-turn-helix wedge domain in the membrane-proximal region of one RPTP 

obstructs the active site of the partner RPTP (Bilwes et al. 1996) (Figure 1.14).  The prototype 

of this model is RPTPα.  CD45 has also been proposed to be inactivated by the same 

mechanism (Majeti et al. 1998).  However, recent work by Barr et. al. rejects the existence of 

an inhibitory wedge domain (Barr et al. 2009).  The crystal structure of the complete 
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intracellular region of RPTPγ reveals a different mode of homodimer-mediated inhibition that 

involves the interaction between the D1 catalytic domain of one of the partners in the dimer 

with the D2 catalytic domain of the other partner.  Barr et. al. recognize that the membrane-

proximal region where the inhibitory wedge is thought to lie acts as a linker region that 

provides sufficient flexibility to allow the head-to-toe interaction to occur (Barr et al. 2009). 

 

 

Figure 1.14.  Models of homodimer-mediated inhibition of receptor-like protein tyrosine 
phosphatases.  On the left is a schematic representation of a monomeric active R5 receptor-
like protein tyrosine phosphatase (RPTP) (either RPTPγ or RPTPζ).  The extracellular region 
consists of a carbonic anhydrase (CA) domain and a fibronectin type III (FN) domain.  The 
‘wedge’ model, based on studies of RPTPα and CD45, predicts that inhibition results from the 
wedge of one RPTP obstructing the catalytic domain (D1) of the partner RPTP.  The ‘head-to-
toe’ model, based on the crystal structure of the entire cytoplasmic region of RPTPγ (Barr et. 
al. Cell 2009), demonstrates that the D2 catalytic domain of one RPTP obstructs the D1 
catalytic domain of the partner RPTP.  (Figure from Tremblay et al, Cell 2009) 
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   Table 1.1: Ligands of receptor-like protein tyrosine phosphatases (RPTPs) 
 

RPTP Class Ligand(s) Effect on 
activity 

Comments References 

CD45 R1 - galectin-1 - inhibition - interaction based on 
recognition of CD45 
carbohydrates 

(Walzel et al. 
1999; Chen 
et al. 2007) 

RPTPδ R2A - homophilic - not known - promotes adhesion and 
neurite outgrowth 

(Wang et al. 
1999; 
Gonzalez-
Brito et al. 
2006) 

LAR R2A - LARFN5C 
 
 
- laminin- 
nidogen 

- activation 
 
 
- not known 

- homophilic interaction with 
LAR isoform 
- specific for LAR splice 
variant 

(O'Grady et 
al. 1998; 
Yang et al. 
2005) 

dLAR R2A - syndecan 
- dallylike 

- activation 
- inhibition 

- dLAR ligand 
- competitive binding with 
snydecan 

(Fox et al. 
2005; 
Johnson et al. 
2006) 

LAR2 R2A - homophilic - not known - induces repulsive responses 
in comb cells 

(Johnson et 
al. 2006) 

RPTPσ R2A - heparin sulphate 
proteoglycans 
(collagen XVIII, 
agrin) 
- nucleophilin 
- α-latrotoxin 
- unidentified 
component of 
developing muscle) 

- not known - ligand binding requires PTP 
dimerization 

(Aricescu et 
al. 2002; 
Sajnani-
Perez et al. 
2003; Alete 
et al. 2006; 
Lee et al. 
2007) 

RPTPκ R2B - homophilic - not known  (Sap et al. 
1994) 

RPTPµ R2B - homophilic - not known - ‘spacer-clamp’ mechanism in 
cell-cell adhesions; induces 
RPTPµ signalling in neurites 

(Ensslen-
Craig et al. 
2005; 
Aricescu et 
al. 2007) 

RPTPl R2B - homophilic - not known  (Cheng et al. 
1997) 

CD148 R3 - components in 
matrigel 

- activation - identity of ligand(s) not 
known 

(Sorby et al. 
2001) 

RPTPβ/ζ R5 - pleiotrophin 
 
 
 
 
- tenascin 
- contactin 
- TAG-1/axonin-1 

- inhibition 
 
 
 
 
- not known 
- not known 
- not known 

- may activate several 
signalling pathways; not 
known whether inhibition 
occurs by induction of dimer 
formation 

(Barnea et al. 
1994; Peles 
et al. 1995; 
Milev et al. 
1996) 

  dLAR, Drosophila LAR 
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1.7.2.6  PTPs in platelets 

Although it has been known for many years that PTPs play important roles in regulating cell 

functions in both health and disease, they have been under-investigated in megakaryocytes, 

platelets and thrombosis.  Significantly more emphasis has been placed on investigating PTKs 

in platelets.  To date, five NTPTPs (PTP-1B, Shp1, Shp2, MEG-2 and LMW-PTP) and a 

single RPTP (CD148) have been conclusively demonstrated to be expressed in platelets 

(Table 1.2).  However, this list is unlikely to be exhaustive as there are several PTPs which are 

widely expressed, such as PTP-PEST and TC-PTP.  PTP-1B was the first PTP identified in 

platelets and is the most well studied.  Far less is known about the other four NTPTPs in 

platelets.  Prior to starting this thesis, there had been no studies investigating the functional 

role of any RPTP in platelets, including CD148.  Below I provide a summary of each of the 

PTPs identified in platelets to date and what is known about their functions in platelets. 

 

1.7.2.6.1  Receptor like PTPs expressed in platelets 

1.7.2.6.1.1  CD148 

CD148, also commonly referred to as DEP-1, PTPRJ or rPTPη (rat homologue), is a member 

of the R3 group of RPTPs (Figure 1.11).  It is a large (180 – 250 kDa), surface glycoprotein 

consisting of an extracellular region containing 8 fibronectin type III (FNIII) repeats (~90 

amino acids each), a single transmembrane domain and a cytoplasmic region containing a 

single PTP domain (~280 amino acids).  It is expressed in hematopoietic cells, fibroblasts, 

endothelial cells, epithelial cells and smooth muscle cells (Borges et al. 1996; Autschbach et 

al. 1999).  At the start of this thesis, only two studies had reported expression of CD148 in 

platelets, but neither had addressed its functional role (Borges et al. 1996; de la Fuente-Garcia 

et al. 1998).  CD148 was also the only RPTP identified in platelets by multiple peptide hits 

using a proteomics-based approach (Senis et al. 2007; Lewandrowski et al. 2009).  
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Table 1.2:  Protein tyrosine phosphatases expressed in platelets 
 

Category/ 
Name 

Subcellular 
localization 

Function References 

Non-transmembrane PTPs 
MEG2 binds to PIP2 and 

PIP3 
modulates secretory vesicle 
genesis 

Wang et. al. JEM 2005 

PTP-1B - tethered to the 
cytosolic surface of 
the ER 
 
- calpain-mediated 
shedding from the ER 
and translocation to 
the PM upon platelet 
activation 

- first PTP identified in 
platelets 
 
- proposed to regulate the 
latter stages of platelet 
activation and aggregation 
 
- positive regulator of αIIbβ3 
proximal signalling 
 
- dephosphorylates LAT and 
Src inhibitory tyrosine 

Frangioni et. al. EMBO 1993 
Ragab et. al. JBC 2003 
Arias-Salgado et. al. Blood 
2005 
Kuchay et. al. MCB 2007 

LMW-
PTP 

-cytosolic in resting 
platelets 

- dephosphorylates the ITAM-
containing FcγRIIA receptor 
in vitro and in vivo  

Mancini et. al. Blood 2007 

Shp1 - cytosolic/inactive in 
resting platelets 
 
- translocates to the 
PM and becomes 
activated via 
interaction with ITIM 
receptors upon 
platelet activation 

- positive regulator of GPVI-
mediated activation 
 
- interacts with actinin and 
Src 
 
- dephosphorylates Src 
inhibitory tyrosine 

Somani et. al. JBC 1997 
Hua et. al. JBC 1998 
Pasquet et. al. JBC 2000 
Lin et. al. JBC 2004 
Senis et. al. MCP 2007 

Shp2 - cytosolic/inactive in 
resting platelets 
 
- translocates to the 
PM and becomes 
activated via 
interaction with ITIM 
receptors upon 
platelet activation 

implicated as positive and 
negative regulator of platelet 
activation 

Hua et. al. JBC 1998 
Cicmil et. al. Blood 2002 
Barrow et. al. JI 2004 
Washington et. al. Blood 
2004 
Wee et. al. Blood 2005 
Dhanjal et. al. Platelets 2007 

Receptor-like PTPs 
CD148 PM - first RPTP identified in 

platelets 
- positive regulator of all 
SFKs in resting and activated 
platelets 

Borgess et. al. Circ Res 1996 
Fuente-Garcia et. al. Blood 
1998 
Senis et. al. MCP 2007 
Senis et. al. Blood 2009 
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Studies on CD148 in non-haematopoietic cells have focused on its role as a negative 

regulator of cell growth and differentiation, as it is postulated to be a tumour suppressor 

(Ruivenkamp et al. 2002; Trapasso et al. 2004).  More recently, studies have focused on the 

involvement of CD148 in regulating cell-cell and cell-ECM interactions.  CD148 has been 

shown to inhibit PDGF-mediated cell migration and enhance cell-ECM adhesion of NIH3T3 

mouse fibroblasts that inducibly express CD148 (Jandt et al. 2003).  Similarly, rat fibroblasts 

stably expressing CD148 exhibit increased adhesion to substratum (Pera et al. 2005).  In 

contrast, CD148 has also been shown to negatively regulate cell-ECM interactions, motility 

and chemoxtaxis of NIH3T3 inducibly expressing CD148 (Kellie et al. 2004).  These 

contradictory findings suggest that CD148 can both positively and negatively regulate cell 

adhesion, depending on the cell type and level of expression.   

There is a growing body of evidence that CD148 plays an important role in regulating 

immune receptor signalling in haematopoietic cells.  Early studies suggested that CD148 was 

a negative regulator of signalling from the ITAM-containing T cell receptor (TCR) and the 

low affinity immune receptor FcγRIIA in lymphocytes and neutrophils, respectively (Hundt et 

al. 1997; de la Fuente-Garcia et al. 1998; Baker et al. 2001; Lin et al. 2003).  These early 

studies were performed using transient and stable CD148 expressing cell lines, primary 

leukocytes and antibody-mediated cross-linking of CD148.  A CD148 mutant mouse line in 

which the entire cytoplasmic region was replaced with green fluorescence protein led to 

embryonic lethality and severe defects in vascular development (Takahashi et al. 2003).  The 

same group also demonstrated that antibody-mediated cross-linking of CD148 inhibited 

endothelial-cell growth and angiogenesis in mouse cornea in vivo (Takahashi et al. 2006).  

More recently two different CD148 knock-out and knock-in mouse models have been 

generated to determine the physiological functions of CD148.  Trapasso and Fusco generated 

a CD148-deficient mouse model by deleting exons 3, 4 and 5 (Trapasso et al. 2006).  In 
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contrast to the CD148:GFP knockin mutant mice described above, these mice were viable and 

healthy demonstrating that CD148 is dispensable for growth and development.  However, this 

knockout mouse model was not studied in any detail for haematopoitic or immune system 

defects.  A third mutant CD148 mouse model generated by Zhu et. al. lacking the 

transmembrane domain of CD148 (CD148 TM-KO) also did not exhibit any obvious defects 

in growth and development; however, detailed analysis of haematopoietic cells revealed a 

function of CD148 in the immune system (Zhu et al. 2008).  It should be pointed out that the 

CD148 TM-KO mouse model expresses a truncated, soluble form of CD148. 

Analysis of the T cell lineage, which express low levels of CD148, in CD148 TM-KO 

mice, did not reveal any defects in T cell development or function (Zhu et al. 2008).  In 

contrast these mice exhibited almost an exact phenocopy of the block in B cell development 

observed in CD45-deficient mice.  CD45:CD148 double deficient mice displayed substantial 

alterations in B and myeloid lineage development and defective immunoreceptor signalling 

(Zhu et al. 2008).  B cell and macrophage functional responses were severally impaired, as 

were BCR- and Fc receptor-mediated signalling in CD45:CD148 double deficient B cells and 

macrophages, respectively.  Biochemical analysis of CD45:CD148 double deficient B cells 

and macrophages revealed hyperphosphorylation of the C-terminal inhibitory tyrosine of 

SFKs, suggesting that the C-terminal inhibitory tyrosine of SFKs is a common substrate of 

both CD45 and CD148 and that decreased SFK activity is likely the cause of at least some of 

the phenotypes observed in mutant mice.  These findings suggest a high level of redundancy 

between the two structurally distinct RPTPs in regulating SFKs (Zhu et al. 2008). 

Several receptors and signalling proteins have been suggested to be substrates of 

CD148 (Table 1.3).  The hepatocyte growth factor receptor MET, the adapter protein Gab1 

and the junctional component p120 catenin were identified as potential substrates of CD148 in 

a study of human breast cancer cell lines (Palka et al. 2003).  CD148 was also shown to 
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interact with p120 catenin in K562 erythroleukemia and A549 lung fibroblast cell lines 

(Holsinger et al. 2002).  CD148 expression was concentrated at sites of cell-cell contact and 

was found to be co-localised with p120 catenin further reinforcing the theory that CD148 

plays an important role in cell-cell contacts and adherens junctions.  CD148 has also been 

shown to dephosphorylate the PDGFβ-receptor in a site-selective manner that acts to modulate 

rather than attenuate signalling; and to preferentially dephosphorylate the C-terminal 

inhibitory tyrosine of Src in transiently transfected rat fibroblasts (Kovalenko et al. 2000; Pera 

et al. 2005). 

 

 

Table 1.3: Summary of substrates identified for CD148 

Substrate 
 

Cell type Reference 

MET 
 

Human breast tumour cell lines (Palka et al. 2003) 

Gab1 Human breast tumour cell lines 
 

(Palka et al. 2003) 

p120cat 
 
 

Human breast tumour cell lines, 
erythroleukemia and lung 
fibroblast cell lines 
 

(Palka et al. 2003) 

PDGFβ Porcine aortic endothelial cells (Kovalenko et al. 2000) 
 

SFKs Rat fibroblasts (Pera et al. 2005) 
 

PLCγ1 Jurkat T cell (Baker et al. 2001) 

LAT Jurkat T cell (Baker et al. 2001) 
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The presence of multiple FNIII domains in the extracellular region of CD148 suggests 

that it may be regulated by soluble ligands or adhesive molecules present on neighbouring 

cells or in the ECM, as FNIII domains are present in adhesion molecules and growth factor 

receptors (Patthy 1990).  In support of this hypothesis, CD148 expressing X23 porcine aortic 

endothelial cells stimulated with Matrigel exhibited a >2-fold increase in CD148 specific 

activity suggesting that the ligand for CD148 may present in Matrigel (Sorby et al. 2001).  It 

has also been suggested that CD148 localisation in the membrane may be regulated through a 

size exclusion model (Lin et al. 2003; Choudhuri et al. 2005).   

The crystal structure of the CD148 PTP domain was recently determined by Barr et al 

(Barr et al. 2009).  X-ray diffraction techniques and phosphatase activity assays were used to 

study the PTP domain structures and activities of a representative panel of classical PTPs.  

Interestingly, the CD148 WPD loop was found to be in a closed conformation and signifies a 

catalytically active state.  In kinetics studies, recombinant CD148 PTP domain had one the 

highest enzymatic actives compared with a panel of 21 other recombinant PTP domains (Barr 

et al. 2009). 

 

1.7.2.6.1.2  Other platelet RPTPs 

Another RPTP that may be expressed in platelets is PTPRO (also referred to as GLEPP1 and 

PTP-U2), which belongs to the same subgroup and is structurally related to CD148 (Figure 

1.11).  PTPRO is primarily expressed in the brain and kidney, but is also present in 

hematopoietic stem cells, lungs, lymph nodes, spleen and placenta (Avraham et al. 1997; 

Aguiar et al. 1999; Beltran et al. 2003).  It was recently shown to be expressed in human 

megakaryocytes and detected in a mouse megakaryocyte SAGE library (Taniguchi et al. 1999; 

Senis et al. 2007).  It has been implicated in megkaryocytopoeisis and that its role is regulated 

by the SCF receptor, Kit.  Importantly, knockdown of PTPRO expression in megakaryocytic 
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cell lines has been shown to significantly inhibit megakaryocyte progenitor proliferation.  

PTPRO knockout mice have defects in kidney function as a result of a change in podocyte 

structure, however, they have not been examined in detail for other physiological defects 

(Wharram et al. 2000). 

The structurally distinct RPTP CD45, which is highly and exclusively expressed in all 

hematopoietic cells, except platelets and erythrocytes, was also recently detected in a large 

immature population of murine megakaryocytes, suggesting that it may be involved in 

megakaryocyte development and switched off during megakaryocyte maturation and platelet 

formation (Matsumura-Takeda et al. 2007).   

 

1.7.2.6.2  Non-transmembrane PTPs 

1.7.2.6.2.1  PTP-1B 

PTP-1B is a small (50 kDa) NTPTP that is expressed in all tissues.  Structurally, PTP-1B is 

comprised of an N-terminal PTP domain, followed by two tandem proline-rich motifs that 

may allow the interaction with SH3-domain containing proteins, and a short C-terminal 

hydrophobic stretch of amino acids that localize it to the cytoplasmic surface of the ER 

(Figure 1.11) (Frangioni et al. 1992).  It is a major regulator of metabolism as demonstrated 

by two PTP-1B-deficient mouse models that are resistant to high fat-induced obesity and 

insulin hypersensitivity (Elchebly et al. 1999; Klaman et al. 2000).  The obesity phenotype is 

due to its role in dephosphorylating Jak-2 downstream of the leptin receptor, and the insulin 

hypersensitivity is due to its role in dephosphorylating the insulin receptor and possibly 

insulin receptor substrate-1 (IRS-1).  PTP-1B has also been linked to other diseases, including 

cancer and autoimmunity, through its role in regulating cytokine and growth factor receptor 

signalling in haematopoietic and lymphoid cells (Tonks 2006).   
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PTP-1B was the first PTP identified in platelets and is likely the most abundant, 

comprising ~0.2% of all soluble platelet proteins, comparable to that of Src kinase (Frangioni 

et al. 1993).  Platelet activation accompanied by integrin αIIbβ3 engagement causes cleavage 

of the C-terminal hydrophobic tail of PTP-1B by calpain, releasing it from the ER and 

increasing its specific activity (Frangioni et al. 1993).  Recent work using a PTP-1B:calpain-1 

double deficient mouse model confirmed that calpain is essential for this cleavage (Kuchay et 

al. 2007).  In support of PTP-1B being involved in outside-in αIIbβ3 integrin signalling, 

Ragab et al demonstrated that PTP-1B regulates FcγRIIA-mediated irreversible aggregation 

(Ragab et al. 2003). 

Platelets from PTP-1B-deficient mice exhibit a number of functional defects attributed 

to defective outside-in integrin αIIbβ3 signalling (Arias-Salgado et al. 2005).  These defects 

include: reduced spreading on fibrinogen, defective clot retraction, reduced aggregate 

formation on collagen under flow, and reduced thrombus formation in vivo.  Interestingly, 

convulxin-, ADP- and PAR-4 peptide-induced responses were normal, suggesting that GPVI, 

P2Y1, P2Y12 and PAR-4 receptor signalling were normal.  The molecular basis of the 

phenotype exhibited by PTP-1B-deficient platelets is a block in outside-in integrin αIIbβ3 

proximal signalling, caused by hyperphosphorylation of the C-terminal inhibitory tyrosine 

(Tyr-529) of Src.  Based on their findings, Arias-Salgado et. al. proposed a model whereby 

fibrinogen binding to αIIbβ3 triggers PTP-1B recruitment to the αIIbβ3-Src-Csk complex, 

dissociation of Csk, dephosphorylation of Src Tyr-529 resulting in Src activation and 

initiation of the signalling cascade (Arias-Salgado et al. 2005).  PTP-1B therefore is an 

essential positive regulator of the initiation of outside-in integrin αIIbβ3 signalling in 

platelets.  How PTP-1B gets activated downstream of the integrin αIIbβ3 remains to be 

answered.  Further, why PTP-1B specifically activate Src downstream of αIIbβ3 and not other 
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SFKs downstream of other platelet surface receptors, such as Fyn and Lyn downstream of 

GPVI also needs to be addressed. 

 

1.7.2.6.2.2  Shp1 and Shp2 
 
Shp1 and Shp2 are a subfamily of NTPTPs characterized by the presence of two tandem SH2 

domains, a classic PTP domain and a C-terminal tail containing two tyrosyl phosphorylation 

sites (Figure 1.11).  Expression of Shp1 is restricted, with the highest levels found in 

haematopoietic cells, whereas Shp2 is widely expressed in a number of cell types (Neel et al. 

2003).   The SH2 domains of Shp1 and Shp2 play a crucial role in regulating PTP activity 

through intra- and inter-molecular binding that obstructs the catalytic cleft and mediate 

protein-protein interactions, primarily with ITIM proteins. 

Shp1 is generally recognized as a negative regulator of tyrosine kinase-linked receptor 

signalling.  For example, it has been proposed that Shp1 maintains the BCR in a non-

signalling state by dephosphorylating the associated ITAMs and thereby controlling the 

threshold for receptor activation (Pani et al. 1995).  Similarly, it has been suggested that Shp1 

attenuates the earliest events in TCR signalling by dephosphorylating the SFK Lck and the 

tyrosine kinase ZAP-70 (Plas et al. 1996; Chiang et al. 2001).  Shp1 has also been shown to 

inhibit integrin signalling in macrophages and neutrophils (Roach et al. 1998; Kruger et al. 

2000; Griffiths et al. 2001; Peterson et al. 2001).  Collectively, these findings are interesting 

from a platelet perspective as several candidate substrates of Shp1 downstream of the BCR 

and TCR are also involved in GPVI and/or integrin αIIbβ3 signalling (Kon-Kozlowski et al. 

1996; Pani et al. 1996; Cuevas et al. 1999; Dustin et al. 1999; Mizuno et al. 2000; Stebbins et 

al. 2003; Mizuno et al. 2005).  Two naturally occurring point mutations exist in the murine 

Shp1 gene, resulting in no expression of Shp1 (motheaten allele) or expression of catalytically 

inactive Shp1 (motheaten viable allele).  The phenotypes of the two mutations differ only in 
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severity, with motheaten mice dying earlier (2 – 3 weeks) than motheaten viable mice (9 – 12 

weeks) due to severe inflammation and tissue damage (Van Vactor et al. 1998; Zhang et al. 

2000; Neel et al. 2003). Mechanistically, most of the abnormalities of motheaten mice can be 

explained by the loss of negative regulatory pathways in the absence of Shp1.  The functional 

role of Shp1 in platelets has been investigated using motheaten viable mice (Pasquet et al. 

2000).  This work demonstrated the surprising observation that Shp1 plays a positive role in 

supporting platelet activation through GPVI. 

Shp2 is predominantly regarded as a positive regulator of the Ras-Erk pathway 

(Noguchi et al. 1994; Shi et al. 2000).  It has also been implicated in regulating the PI-3 kinase 

and Rho pathways (Schoenwaelder et al. 2000; Zhang et al. 2002).  The role of Shp2 in ITAM 

receptor signalling is less well understood than for Shp1.  However, studies of TCR signalling 

and several inhibitory receptors implicate Shp2 as a negative regulator of immunoreceptor 

signalling pathways (Kwon et al. 2005).  Another mechanism by which Shp2 inhibits TCR 

signalling may involve its association with inhibitory ITIM receptors, including CEACAM1 

and PECAM-1 (Ilan et al. 2003; Gray-Owen et al. 2006).  Shp2-deficient mice die between 8 

and 10 weeks with a range of developmental defects (Van Vactor et al. 1998; Saxton et al. 

2000).  Interestingly, mice homozygous for the Shp2 D61G gain-of-function mutation die at 

mid-gestation, exhibiting a gross hemorrhagic phenotype, and heterozygotes develop a 

Noonan syndrome-like disorder with excessive bleeding (Araki et al. 2004).  The dramatically 

different phenotypes exhibited by Shp1- and Shp2-deficient mutant mice demonstrate that 

they have different biological functions (Van Vactor et al. 1998). 

It is presently not clear, whether Shp1 and Shp2 are predominantly negative or positive 

regulators of platelet activation.  Although Shp1 and/or Shp2 have been shown to interact with 

each of the known platelet receptor-like ITIMs, namely PECAM-1, TLT-1, G6b-B and 

CEACAM1, the relative contributions of Shp1 and Shp2 to signalling by each of these 
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receptors is not known (Jackson et al. 1997; de Vet et al. 2001; Barrow et al. 2004; Newland 

et al. 2007; Senis et al. 2007; Wong et al. 2009). 

 

1.7.2.6.2.3  MEG-2 

MEG-2 is a NTPTP and is distinguished from other mammalian PTPs by the presence of an 

N-terminal lipid-binding domain. MEG-2 resides on internal membranes, including secretory 

vesicles and granules in neutrophils and lymphocytes, and has been shown to modulate 

murine development and platelet and lymphocyte activation through secretory vesicle function 

(Wang et al. 2005).  Wang et al demonstrated that platelets from MEG-2-deficient mice did 

not aggregate when stimulated with a high dose of thrombin compared to wild-type platelets 

(Wang et al. 2005).  In contrast, ADP-induced aggregation was only slightly impaired in the 

MEG-2 deficient platelets.  The author suggests a link with defective release of α-granules 

however, the exact mechanism remains unclear.   

 

1.7.2.6.2.4  LMW-PTP 

LMW-PTP is a small (18 kDa) archaic PTP that consists of a single PTP domain containing 

the active-site signature motif HCX5R and no other known domains or motifs (Alonso et al. 

2004).  It is not classified as a classical PTP, but rather is the only class II NTPTP based on its 

unique structural features.  Although its physiological function is not known, it has been 

implicated in regulating cell adhesion and spreading (Chiarugi et al. 2000; Rigacci et al. 

2002).  One study reports the expression of LMW-PTP in platelets and DAMI human 

megakaryocytic cells (Mancini et al. 2007).  Mancini et. al. demonstrate that human platelets 

express high levels of LMW-PTP (~0.05% of total protein) and that it dephosphorylates the 

ITAM-containing FcγRIIA receptor in vitro and in cell lines (Mancini et al. 2007).  The 
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authors conclude that LMW-PTP plays an important role in regulating FcγRIIA receptor 

signalling in platelets.   
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1.8   Aims of this thesis 

The main objective of this thesis was to determine the expression, biochemical properties and 

function of CD148 in platelets.  The reason I focused on CD148 is because it was the only 

RPTP identified by multiple peptide hits in a global platelet membrane proteomics study 

conducted by my supervisor, Dr. Senis, and he hypothesized that platelets express a CD45-

like RPTP that is critical for initiating signalling from the ITAM receptor GPVI.  He also 

hypothesized that platelets express a PTPα-like RPTP that could initiate integrin αIIbβ3 

signalling.  These two hypotheses formed the basis of this thesis. 

 A third hypothesis which underpins the work on PTP-1B and TC-PTP in the final 

chapter of this thesis is that other PTPs compensate in the absence of CD148 in platelets.  

Since I was unable to conclusively demonstrate expression of another RPTP in platelets that 

could fulfil this functional redundancy, I turned my attention to PTP-1B and the structurally 

related TC-PTP.  PTP-1B was the primary candidate as recent work by Arias-Salgado et. al. 

showed that PTP-1B was essential for activating integrin αIIbβ3-associated Src in platelets, 

by a similar mechanism to the one we had discovered for CD148.  When we found that the 

aggregation, secretion and phosphorylation defects observed in PTP-1B-deficient platelets 

were much milder and complicated by strain variation compared with the defects observed in 

CD148-deficient platelets, we hypothesized that TC-PTP may have similar functional roles to 

CD148 in platelets, which is why I analyzed platelets from TC-PTP-deficient platelets for 

functional defects. 

 



 
 
 
 
 
 
 
CHAPTER 2 - 
 
MATERIALS AND METHODS 
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2.1  Materials 

2.1.1  Antibodies and chemicals 

All antibodies, agonists and inhibitors used in this thesis are detailed in Tables 2.1, 2.2 and 

2.3, respectively.  Alexa488-conjugated phalloidin was purchased from Molecular Probes.  

Bovine serum albumin (BSA) used for blocking western blots was purchased from First Link 

UK Ltd.  Fatty acid free BSA used for blocking slides and coating plates was purchased from 

Sigma.   Phosphopeptides corresponding to the activation loop and C-terminal inhibitory tail 

of SFKs were synthesized by GenScript (Piscataway, NJ, USA) (Table 2.5).  All other 

chemicals were purchased from Sigma, unless otherwise indicated. 

 

2.1.2  Molecular biology reagents 

All expression constructs used in this thesis are detailed in Table 2.4.  All cDNAs were 

sequenced at Alta Biosciences (University of Birmingham, UK), prior to use.  TOP10 DH5α 

competent bacteria were purchased from Invitrogen.  Mini-prep kits and maxi-prep kits were 

purchased from Sigma.  HEK 293T cells and DT40 chicken B cells were kindly provided by 

Dr. Mike Tomlinson.  RPMI, DMEM, foetal bovine serum, chicken serum, GlutaMAX, 

antibiotics and antimycotics were purchased from Gibco (Invitrogen). 

 

2.1.3  Genetically modified mice 

CD148 transmembrane knockout (CD148 TM-KO) mice on a C57BL/6 background were 

kindly provided by Professor Arthur Weiss (UCSF, California, USA) (Zhu et al. 2008).  PTP-

1B-deficient mice on a Balb/c and a C57BL/6 background were kindly provided by Professor 

Michel Tremblay (McGill University, Montreal, Canada) (Elchebly et al. 1999).  All 

procedures were undertaken with United Kingdom Home Office approval in accordance with 
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the Animals (Scientific Procedures) Act of 1986 (Project License No: 40/2212, 40/2803, 

40/2908 and 40/2749). 
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Table 2.1.  Antibodies 
 
Antigen 
(species) 

Species antibody 
raised in 
(clone or catalogue 
number) 

Source Working 
dilution 

αIIbβ3 
(m, resting) 

rat,  
PE-conjugated 
(Leo-H4) 

Emfret Analytics 
 

FC: 1/100 

αIIbβ3 
(m, high affinity) 

rat,  
PE-conjugated 
(JON/A) 

Emfret Analytics FC: 1/100 

actin 
(h, m) 

mouse monoclonal 
(ac-40) 

Sigma WB: 1/1,000 

CD148 
(h, m) 

mouse monoclonal 
(143-41) 

Biosource  
 

IP: 1/500  
WB: 1/1,000 

Csk 
(h) 

rabbit polyclonal 
(sc-286) 

Santa Cruz Biotechnology IP: 1/1,000  
WB: 1//1,000 

FcR γ-chain 
(h,m) 

rabbit polyclonal 
 

Millipore WB: 1/1,000 

Fyn  
(h, m) 

rabbit monoclonal 
(clone: 04-353) 

Millipore WB: 1/1,000 

Fyn  
(h, m) 

rabbit polyclonal 
(clone: BL90) 

Dr. Joseph Bolen 
(DNAX) 

IP: 1/1,000   
WB: 1/1,000 

Fyn p-Tyr 530 
(h, m) 

rabbit polyclonal 
(53690) 

Abcam  WB: 1/1,000 

goat IgG  
FITC-conjugate 

chicken 
(HAF019) 

R&D Systems 
 

WB: 1/5,000 

GPVI 
(m) 

rat, 
FITC-conjugated 
(JAQ1) 

Emfret Analytics IP: 1/1,000  
WB: 1//1,000 

GPVI 
(h) 

rabbit polyclonal 
 

Professor Masaki Moroi 
(Japan) 

FC: 1/100 
WB: 1//1,000 

LAT 
(h, m) 

rabbit polyclonal 
(AB4093) 

Millipore WB: 1/500 

Lyn  
(h, m) 

rabbit polyclonal 
(sc-15) 

Santa Cruz Biotechnology WB: 1/1,000 

Lyn p-Tyr 507 
(h, m) 

rabbit polyclonal 
(2731) 

Cell Signaling WB: 1/1,000 

mouse IgG 
FITC-conjugate 

sheep 
(26851) 

Amersham  
 

WB: 1/10,000 

non-immune 
mouse IgG1 

mouse 
(MOPC1) 

Sigma IP: 1/500 

non-immune 
rabbit IgG 

rabbit 
(12-370) 

Millipore  IP: 1/500 

PLCγ2 
(h, m) 

rabbit polyclonal 
(DN84) 

Dr. Joseph Bolen 
(DNAX) 

IP: 1/1,000   
WB: 1/1,000 

h, human; m, mouse; r, rat; p, phospho; FC, flow cytometry; IP: immunoprecipitation; WB: 
western blotting 
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Table 2.1 (continued) 
 
Antigen 
(species) 

Species antibody 
raised in 
(clone or catalogue 
number) 

Source Working 
dilution 

P-selectin 
(h) 

rat, FITC 
conjugated 
(AC1.2) 

BD Biosciences 
 

FC: 1/100 

P-selectin 
(m) 

rat, FITC 
conjugated 
(WUG.E4) 

Emfret Analytics FC: 1/100 

p-Tyr 
(h, m) 

mouse monoclonal 
(4G10) 

Millipore  WB: 1/1,000 

PTPRO 
(h, m) 

goat polyclonal 
(sc-33415) 

Santa Cruz Biotechnology IP: 1/1,000  
WB: 1/1,000 

rabbit IgG  
FITC-conjugate 

donkey 
(A50-201A) 

Amersham WB: 1/10,000 

RPTPσ 
(h,m) 

mouse monoclonal 
(17G7.2) 

Dr. M.L. Tremblay 
(McGill University) 

WB: 1/100 
 

Src pan 
(h, m) 

rabbit polyclonal 
(44656G) 

Invitrogen IP: 1/500 
WB: 1/1,000 

Src p-Tyr 418 
(h, m) 

rabbit polyclonal 
(44660G) 

Invitrogen WB: 1/1,000 

Src p-Tyr 529 
(h, m) 

rabbit polyclonal 
(44-662G) 

Biosource WB: 1/1,000 

Syk 
(h, m) 

rabbit polyclonal 
(BR15) 

Dr. Joseph Bolen 
(DNAX) 

WB: 1/1,000 

TC-PTP 
(h,m,r) 

mouse monoclonal 
(252294) 

R & D systems 
 

WB: 1/1,000 
 

h, human; m, mouse; r, rat; p, phospho; FC, flow cytometry; IP: immunoprecipitation; WB: 
western blotting 
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Table 2.2.  Agonists 
 
Agonist Target receptor Source 
ADP P2Y1, P2Y12 Sigma 
collagen (HORM; equine; 
primarily types I and III) 

GPVI, α2β1 Nycomed 

convulxin (snake toxin) GPVI, 
GPIb-IX-V 

Latoxan 

collagen-related peptide 
(CRP; GCO-[GPO]10-
GCOG-NH2) chemically 
cross-linked as previously 
described (Morton et al, 
Biochem J, 1995; Asselin et 
al, Biochem J, 1999) 

GPVI Department of Biochemistry, 
Cambridge, UK 

fibrinogen (human) αIIbβ3 Enzyme Research 
Laboratories 

ionomycin Ca2+ ionophore Sigma 
PMA PKC Sigma 
thrombin (bovine) PAR-1, PAR-4 Sigma 
U46619 TP Sigma 
prostacyclin (PGI2) PGI2 receptor Camen Chemicals 
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Table 2.3.  Inhibitors 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Inhibitor Target Final 
concentration 

Source 

apyrase ADP/ATP scavenger 2 U/ml Sigma  
indomethacin cyclooxygenase 10 µM Sigma 
integrilin αIIbβ3 9 µM Sigma 
EDTA divalent cation 

chelator 
1 µM Sigma 

EGTA divalent cation 
chelator – primarily 
Ca2+ 

1 µM Sigma 

pervanadate protein tyrosine 
phosphatases 

100 µM Sigma 

PP1 Src family kinases 10 µM Calbiochem  
PP2 Src family kinases 10 µM Calbiochem  
AEBSF serine proteases 200 µg/ml Sigma 
leupeptin serine proteases 10 µg/ml Sigma 
aprotinin serine proteases 10 µg/ml Sigma 
pepstatin serine proteases 10 µg/ml Sigma 
heparin acts as a cofactor for 

anti-thrombin III, 
which inhibits 
coagulation factors,  
including thrombin 

10 U/ml Sigma 
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       Table 2.5: Phosphopepetides used in in vitro phosphatase assay. 
 
 

 

 

 

Peptides custom manufactured by Genscript 

 

 

 

 

 

 

 

 

 

 

 

 

 

SFK peptide peptide sequence

Lyn activation loop VIEDNEpY397TAREGA

Lyn inhibitory site TATEGQpY508QQQP

Src activation loop LIEDNEpY419TARQGA

Src inhibitory site TSTEPQpY530QPGENL

Fyn inhibitory site TATEPQpY531QPGENL

SFK peptide peptide sequence

Lyn activation loop VIEDNEpY397TAREGA

Lyn inhibitory site TATEGQpY508QQQP

Src activation loop LIEDNEpY419TARQGA

Src inhibitory site TSTEPQpY530QPGENL

Fyn inhibitory site TATEPQpY531QPGENL
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2.2 Methods 

2.2.1 Platelet preparation 

2.2.1.1 Washed human platelets 

Blood was drawn on the day of experiment from healthy, drug-free volunteers into 1:10 (v:v) 

sterile sodium citrate and 1:9 (v:v) acid citrate dextrose (ACD: 120 mM sodium citrate, 110 

mM glucose, 80 mM citric acid).  Platelet rich plasma (PRP) was obtained by centrifugation 

at 200 ×g for 20 minutes.  Platelets were isolated from PRP by centrifugation at 1000 ×g in 

the presence of 10 μg/ml PGI2.  The platelet pellet was washed in 25 ml modified Tyrodes-

HEPES buffer (134 mM NaCl, 0.34 mM Na2HPO4, 2.9 mM KCl, 12 mM NaHCO3, 20 mM 

HEPES, 5 mM glucose, 1 mM MgCl2 pH 7.3) and 3 ml ACD followed by centrifugation at 

1,000 ×g for 10 minutes in the presence of 10 μg/ml PGI2.  Platelets were counted using a 

Coulter Z2 Particle Count and Size Analyzer (Beckman Coulter Ltd), and resuspended to a 

concentration of 2 × 108/ml for aggregation studies or 5 × 108/ml for protein studies in 

Tyrodes-HEPES buffer.  Washed platelets were rested for at least 30 minutes prior to use to 

allow the effects of PGI2 to wear off. 

 

2.2.1.2 Washed mouse platelets 

Blood samples were drawn from terminally CO2-narcosed mice by cardiac puncture.  

Approximately 900 µl blood was collected from each mouse into 100 µl ACD.  Subsequent to 

collection, anti-coagulated blood was further diluted with 200 μl modified Tyrodes-HEPES 

buffer.  Blood was centrifuged at 180 ×g for 5 minutes and then the supernatant and the top 

third of the erythrocyte layer were removed and centrifuged at 200 ×g for 6 minutes.  The 

PRP layer was transferred into a new tube and 300 μl of modified Tyrodes-HEPES buffer was 

added to the remaining erythrocyte layer.  The diluted erythrocyte layer was centrifuged at 

200 ×g for 6 minutes, the PRP layer was removed and pooled with the previously collected 
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PRP.  Modified Tyrode’s-HEPES buffer was added to the PRP to a final volume of 1 ml.  

Washed platelets were prepared by centrifugation of the diluted PRP at 1000 ×g for 6 minutes 

in the presence of 10 µg/ml PGI2.  The platelet pellet was resuspended in modified Tyrodes-

HEPES buffer, platelets were counted using a Coulter Z2 Particle Count and Size Analyzer, 

and platelets were diluted to 2 × 108/ml for aggregation studies or 5 × 108/ml for protein 

studies.  All washed platelets were rested for at least 30 minutes prior to use to allow the 

effects of PGI2 to wear off. 

 

2.2.1.3 Preparation of ADP-sensitive mouse platelets 

Blood samples were drawn from terminally CO2-narcosed mice by cardiac puncture.  

Approximately 900 µl of blood was collected from each mouse into 100 µl 100 U/ml heparin 

diluted in modified Tyrodes-HEPES buffer.  Anti-coagulated blood was further diluted with 

200 μl of 10 U/ml heparin in modified Tyrodes-HEPES buffer.  Blood was centrifuged at 180 

×g for 5 minutes and the platelet-rich plasma (PRP) was collected.  Platelets were counted 

using a Coulter Z2 Particle Count and Size Analyzer and diluted to a concentration of 2 × 

108/ml with modified Tyrodes-HEPES buffer for aggregation studies. 

 

2.2.1.4 Preparation of platelet poor plasma  

Platelet poor plasma (PPP) was prepared by centrifuging the remaining erythrocyte layer 

following collection of PRP at 1000 ×g for 6 minutes.  PPP was collected and diluted with 

Tyrodes-HEPES buffer to the same extent as PRP. 
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2.2.2  Platelet Functional Assays 

2.2.2.1  Platelet Aggregation and ATP secretion 

Platelet aggregation and ATP secretion were measured simultaneously, in real-time as a 

change in optical density and luciferase/luciferin generated luminescence, respectively, using 

a Born lumi-aggregometer (Chronolog, Labmedics).  Samples (washed platelets or PRP at 2 × 

108/ml) were maintained at 37°C with constant stirring at 1,200 rpm throughout the 

experiment.  The optical density and luminescence of the each platelet suspension were 

recorded in real-time using a pen recorder over a 6 minute period (Chronolog, Labmedics).  

Modified Tyrodes-HEPES buffer and PPP were used as blanks for washed platelets and PRP, 

respectively.  Glass tubes and stir bars in which samples were stimulated were siliconized.  

Samples were pre-warmed at 37°C for 2 minutes without stirring followed by 30 seconds at 

37°C with continuous stirring at 1,200 rpm prior to addition of agonists.  Inhibitors were 

added to platelets 5 – 10 minutes prior to addition of agonists. 

 

2.2.2.2  Platelet spreading 

Coverslips were coated with 200 µl of either 100 μg/ml fatty acid free BSA (control), 100 

μg/ml collagen or 100 μg/ml fibrinogen and incubated overnight at 4°C.  Coated coverslips 

were washed twice with phosphate buffered saline (PBS: 0.01 M phosphate buffer, 0.0027 M 

potassium chloride and 0.137 M sodium chloride, pH 7.4) and blocked with 200 µl of 

denatured (10 minutes at 100°C) 5 mg/ml fatty acid free BSA for 60 minutes at room 

temperature.  Coverslips were washed twice with PBS prior to addition of platelets (200 µl at 

2 × 107/ml) pre-treated with 2 U/ml apyrase and 10 µM indomethacin.  Platelets were 

incubated on protein-coated slides for 45 minutes at 37°C.  Non-adherent platelets were 

washed away with modified Tyrode’s-HEPEs  buffer, platelets were fixed for 10 minutes with 

3.7% paraformaldehyde (Sigma) then permeabilized with 0.2% Trition-X 100 for 5 minutes at 
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room temperature.  Platelets were washed with 3 × 300 µl of PBS then actin filaments were 

stained with 300 µl of 0.5 µg/ml Alexa488-phalloidin in PBS at room temperature for 1 hr in 

the dark.  Cover-slips were washed with 3 × 300 µl of PBS, mounted on microscope slides 

with Immuno Fluore Mounting Media (ICN Biomedicals, CA, USA) and platelets viewed 

using a Zeiss Axiovert 200M microscope with a 63 × oil immersion lens.  Images were 

captured using a Hamamatsu Orca 285 cool digital camera (Cairn, UK).  Images were 

analyzed using ImageJ software (NIH, Maryland, USA).  Individual platelets (25 – 50 

platelets per image; at least three images per slide) platelets were outlined and surface area 

quantified by determining the number of pixels within the outlined area.  Imaging a graticule 

under the same conditions allowed the conversion of pixels to microns.  For platelet adhesion 

analysis, the number of platelets per image were counted (at least three images per slide). 

 

2.2.2.3  Flow cytometry 

Washed human or mouse platelets (1 × 107/ml) in modified Tyrodes-HEPES buffer 

containing 1 mM EGTA were incubated with primary antibody (or isotype control antibody at 

the same concentration) for 20 minutes at room temperature in the presence and absence of 1 

U/ml thrombin.  Platelets were subsequently centrifuged at 1000 ×g for 6 minutes and 

resuspended in modified Tyrodes-HEPES buffer containing FITC-conjugated secondary 

antibody for 20 minutes at room temperature in the dark.  The final volume was increased to 

500 µl and platelets were analyzed using a FACScaliber instrument (Becton Dickinson) and 

Cell-Quest software.  For P-selectin staining, washed platelets (1 × 107/ml) were stimulated 

with 1 U/ml thrombin (without stirring) for 10 minute at room temperature then stained with 

100 μg/ml FITC-conjugated P-selectin antibody (or 100 μg/ml FITC-conjugated isotype 

control antibody) for 10 minutes.  Two-hundred 200 µl of modified Tyrodes-HEPES buffer 

was added to samples prior to flow cytometric analysis.  The same method was used to stain 
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active integrin αIIbβ3 PE-conjugated JON/A antibody, which only recognises the active, high 

affinity conformation of the integrin αIIbβ3.  Total intergrin αIIbβ3 was stained using a PE-

conjugated antibody that recognizes both active and inactive forms of the integrin. 

 

2.2.3  Platelet biochemistry 

2.2.3.1  Sample preparation of platelets in suspension 

Washed platelets (5 × 108/ml) in modified Tyrodes-HEPES were pre-treated with: 100 μM 

EGTA or 9 µM integrillin, to inhibit outside-in integrin αIIbβ3 signalling; 10 μM 

indomethacin, to inhibit TxA2 production; and 2 U/ml apyrase, to degrade released ADP.  

Platelets were stimulated with various agonists for various lengths of time (as indicated in the 

Results Chapters).  Stimulations were performed in siliconized cuvettes at 37°C with constant 

stirring at 1,200 rpm.  Following stimulation, platelets were lysed with an equal volume of 2 × 

lysis buffer containing protease and phosphatase inhibitors (300 mM NaCl, 20 mM Tris, 

2mM EGTA, 2 mM EDTA, 2% NP-40 pH 7.4 with 2.5 mM Na3VO4, 100 μg/ml AEBSF, 5 

μg/ml leupeptin, 5 μg/ml aprotinin and 0.5 μg/ml pepstatin). 

 

2.2.3.2  Sample preparation of spread platelets  

Ten centimetre diameter bacterial grade plastic plates were coated with 100 μg/ml fatty acid 

free BSA (control), 100 μg/ml collagen or 100 μg/ml fibrinogen and incubated overnight at 

4°C.  Plates were washed 2 × 5 ml PBS.  Plates were subsequently blocked with 5 mg/ml 

denatured (10 minutes at 100°C) fatty acid free BSA for 1 hour at room temperature.  Washed 

platelets (1.5 ml of 5 × 108/ml) in the presence of 10 μM indomethacin and 2 U/ml apyrase 

were placed on the various surfaces for 45 minutes at 37°C.  Non-adherent platelets were 

removed from BSA-coated plates and lysed in an equal volume of ice cold 2× lysis buffer 

containing protease and phosphatase inhibitors (same as above).  Adherent platelets were 
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washed from collagen- and fibrinogen-coated platelets with 2× 5 ml modified Tyrodes-

HEPES buffer, and adherent platelets were lysed with 1× lysis buffer containing protease and 

phosphatase inhibitors.  Plates were incubated on ice for 15 minutes following addition of 

lysis buffer to ensure complete lysis of platelets. 

 
 
2.2.3.3  Immunoprecipitation 
 
Platelet lysates generated as described above were pre-cleared by addition of 25 µl of a 50% 

slurry of protein-A or protein-G sepharose (PAS and PGS, respectively) hydrated in TBS-T 

(137 mM NaCl, 20 mM Tris, 0.1 % Tween-20, pH 7.6) for 30 minutes at 4°C with constant 

mixing.  PAS, PGS and insoluble platelet debris were pelleted at 13,000 ×g for 10 minutes at 

4°C.  Supernatants were collected and protein concentrations determined using the BioRad-

Detergent Compatible Protein Assay Kit according to the manufacturer’s instructions.  Whole 

cell lysates (WCLs) were prepared by adding 50 µl of 2× reducing Laemmli sample buffer (4 

% SDS, 10 % 2-mercaptoethanol, 20 % glycerol, 50 mM Tris, trace Brilliant Blue R) to 50 µl 

aliquots of the pre-cleared platelet lysate and heating to 100°C for 5 minutes.  Specific 

proteins were immunoprecipited (IP’d) from the remaining WCLs by adding 1 – 5 µg of 

antibody, incubating for 30 minutes at 4°C with constant mixing then adding 20 µl of a 50% 

slurry of either PAS (to IP rabbit antibodies) or PGS (to IP mouse and goat antibodies) and 

incubating overnight at 4°C with constant mixing.  The following day, beads were pelleted at 

9,000 ×g for 30 seconds and washed 4 × 1 ml ice cold TBS-T.  Proteins were eluted from 

beads by adding 2× Laemmli sample buffer under reducing conditions and heating to 100°C 

for 5 minutes. 
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2.2.3.4  SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting 

Proteins were resolved on either 10% or pre-cast 4 – 12 % gradient SDS-PAGE gels 

(Invitrogen).  Pre-stained molecular weight markers (Bio-Rad) were run on all 10% gels. 

Non-stained molecular weight markers (Bio-Rad) were run on all 4 – 12 % gradient gels. 

Proteins were transferred from SDS-PAGE gels to polyvinylidene diflouride membranes 

(PVDF) using a Semi-Dry Transfer apparatus (Bio-Rad).  Gels and PVDF membranes were 

soaked in transfer buffer (48 mM Tris, 39 mM glycine, 1.3 mM SDS pH 9 containing 20% 

methanol) for 15 minutes prior to transferring at 110 mAmp per gel for 35 minutes.  

Membranes were blocked overnight at 4ºC in blocking buffer (TBS-T containing 5% [w/v] 

bovine serum albumin [BSA] and 0.1 % [w/v] sodium azide).  Blocked membranes were 

immunoblotted with primary antibodies diluted in blocking buffer for 1 hour at room 

temperature or overnight at 4°C.  Membranes were washed 3 times with 50 ml TBS-T for 15 

minutes per wash and subsequently incubated for 1 hour with HRP-conjugated secondary 

antibodies in TBS-T.  Membranes were washed 3 more times as described above.  Bands were 

visualized by enhanced chemiluminescence according to the manufacturer’s protocol 

(Amersham Bioscience, Bucks, UK).  Blots were stripped by incubating in stripping buffer 

(TBS-T, 2% SDS) containing 1% 2-mercaptoethanol for 20 minutes at 80ºC followed by 20 

minutes in stripping buffer alone without 2-mercaptoethanol; re-blocked (TBS-T, 5% BSA, 

0.1% azide) overnight; and re-blotted using the same protocol described above.  For 

densitometry analysis, band intensities were calculated using Photoshop cs version 8.0. 
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2.2.4  Functional studies in DT40 cells 

2.2.4.1  Cell culture 

DT40 chicken B cells were cultured in RPMI supplemented with 10% foetal bovine serum, 

1% chicken serum, 100 units/ml penicillin, 100 μg/ml streptomycin, 50 μM mercaptoethanol 

and 20 mM GlutaMAX. 

 

2.2.4.2  DT40-NFAT luciferase assay 

DT40 cells were transfected in a volume of 400 µl non-supplemented RPMI by 

electroporation using a GenePulser II (Bio-Rad) set at 350 V, 500 µF.  DT40 cells were 

transfected with either 10 μg of CD148 wild-type or 10 μg CD148 catalytically inactive 

expression constructs and 2 μg GPVI and 2 μg FcR γ-chain constructs, in addition to 15 μg of 

the luciferase reporter construct and 2 μg of pEF6-lacZ to control for transfection efficiency. 

Twenty hours after transfection, live cells were counted by trypan blue exclusion, and samples 

were divided into three parts for luciferase assay, β-galactosidase assay and flow cytometry.  

Luciferase assays were performed in triplicate with 105 live cells in a total volume of 100 μl.  

Cells were stimulated for 6 hours with 10 μg/ml collagen, then lysates were prepared by 

adding 11 μl of harvest buffer (1 M potassium phosphate buffer pH 7.8 containing 12.5% 

Triton X-100 and 1 M DTT).  90 μl of lysate was added to 90 μl of assay buffer (1M 

potassium phosphate buffer pH 7.8 containing 0.1 M MgCl2 and 0.1 M ATP).  Following the 

addition of 50 μl of 1 mM luciferin (MP Biomedicals, UK), luciferase activity was measured 

with a Centro LB 960 microplate luminometer (Berthold Technologies, Germany).  Data is 

expressed as either luminescence units normalised to β-galactosidase activity or as the fold 

increase in luminescence units over basal as indicated.  All luciferase data is averaged from 3 

readings and shown ± standard deviation.  All experiments were performed 3 – 5 times. 
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2.2.4.3  β-galactosidase assay 

β-galactosidase activity was measured in 5 × 105 cells using the Galacto-Light 

Chemiluminescent Reporter Assay according to the manufacturer’s instructions (Applied 

Biosystems).  Samples were measured in triplicate using a Centro LB960 Microplate 

luminometer Centro (Berthold Technologies, Wildbad, Germany).  All luciferase 

measurements were normalised to β-galactosidase activity/5 × 105 cells. 

 

2.2.4.4  Quantification of surface expression of receptors 

Surface expression of GPVI and CD148 on transiently transfected DT40 cells was measured 

by flow cytometry.  Half a million cells in 50 μl PBS were stained with 10 μg/ml of either 

anti-CD148 antibody or anti-GPVI antibody that recognize the extracellular regions of CD148 

and GPVI, respectively, for 20 minutes.  As negative controls, cells were stained with equal 

amounts of isotype control antibodies under the same conditions.  Cells were washed and 

incubated for 20 minutes with 15 μg/ml FITC-conjugated secondary antibodies.  Stained cells 

were analysed using the FACScalibur flow cytometer and CellQuest software. 

 
 
2.2.5  In vitro substrate trapping   

2.2.5.1  Bacterial transformation 

Precast agar plates containing 100 µg/ml ampicillin and SOC medium (Invitrogen) were 

warmed at 37 °C.  Competent DH5α bacteria (Invitrogen) were thawed on ice.  Two 

microlitres of CD148 expression constructs (Table 2.4) were mixed with 50 µl of DH5α 

bacteria and incubated on ice for 30 minutes.  Bacteria were heat shocked for 30 seconds at 

42°C to induce take up of plasmids, then placed on ice for a further 5 minutes.  Two-hundred 

and fifty microlitres of warm SOC medium was added to bacteria, which were incubated at 

37°C for 30 minutes to allow expression of the ampicillin resistance gene.  Bacteria were then 
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spread on the pre-warmed agar/ampicillin plates using sterile technique and grown overnight 

at 37°C.  Colonies were picked the next day and expanded in 250 ml liquid broth (1% 

tryptone, 0.5% yeast extract, 1% sodium chloride, pH 7.0 containing 100 µg/ml ampicillin) 

overnight at 37°C.  The following day 50% glycerol stocks of each construct culture were 

prepared and the remaining culture maxipreped using standard protocols. 

 

2.2.5.2  Expression and purification of recombinant proteins 

Pilot experiments were initially performed to determine optimal conditions for expression of 

MBP.CD148 fusion proteins, according to the vector manufacturer’s protocol (pMAL Protein 

Fusion and Purification System, New England BioLabs).  Five samples were collected at 

various stages of the expression/purification protocol to monitor expression levels of fusion 

proteins: (1) non-induced bacteria; (2) IPTG-induced bacteria; (3) total bacterial crude extract; 

(4) insoluble material from the crude extract; and (5) protein bound to amylose resin 

(Appendix - Figure 1). 

Based on results from pilot experiments, the following protocol was devised for the 

expression and purification of the MBP.CD148 fusion proteins.  Five millilitres of Liquid 

Broth (LB) containing 0.2 % glucose and 100 µg/ml ampicillin was inoculated with either 

MBP, MBP:CD148 wild-type, MBP:CD148 catalytically inactive or MBP:CD148 substrate 

trapping glycerol stocks and grown up overnight at 37°C with constant mixing.  The 

following day, 1 ml of each culture was used to inoculate 250 ml LB containing glucose and 

ampicillin.  Bacteria were cultured at 37°C until they reached an optical density of ~0.5 at an 

absorbance of 600 nm, corresponding to ~2 × 108 bacteria at the exponential growth phase.  

Expression of the fusion proteins was induced by the addition of 1 mM IPTG and incubation 

for 3 hours.  Cultured bacteria were then pelleted at 4,500 ×g at 4 °C for 30 minutes, 

supernatant was discarded and pellets frozen at -20°C.  Bacterial pellets were suspended in 20 
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ml ice cold column buffer containing protease inhibitors (20 mM Tris-HCl pH 7.4, 200 mM 

NaCl ,1 mM EDTA, 200 μg/ml AEBSF, 10 μg/ml leupeptin, 10 mM β-ME).  Bacteria were 

lysed using a Vibra-Cell ultrasonic processor model VC130PB (Sonics & Materials, Inc., 

Newtown, CT, USA) for 15 second bursts for 2 minutes on ice.  Samples were centrifuged at 

9,000 ×g at 4°C for 30 minutes to remove insoluble bacterial debris.  Crude supernatant was 

diluted 1:5 with column buffer. 

Four 2.5 × 10 cm amylose resin columns were prepared.  Columns were washed with 

8 column volumes of column buffer prior to the addition of samples.  Diluted crude extract 

was loaded on the columns and the flow rate adjusted to 10× (diameter of column in cm)2 

ml/hr (approximately 1 ml/minute for a 2.5 cm diameter column).  Columns were then 

washed with 12 column volumes of column buffer.  Fusion proteins were eluted from the 

columns with column buffer containing 10 mM maltose.  Ten to twenty 3 ml fractions (1/5th 

column volume) were collected for each fusion protein.  Fusion protein expression in 

fractions was monitored by measuring the absorbance at 280 nm of each fraction.  Fractions 

with high fusion protein expression were pooled and concentrated to approximately 1 mg/ml 

using a Centriprep concentrator according to the manufacturer’s protocol (Millipore). 

 

2.2.5.3  Protein pull-down and elution 

Substrate-trapping/pull-downs were performed using a similar protocol to that desribed by 

Palka et al (Palka et al, 2003).  Washed human platelets (5 × 108/ml) in modified Tyrodes-

HEPES buffer containing 1 mM EGTA, 10 µM indomethacin and 2 U/ml apyrase were 

stimulated with 100 µM pervanadate for 3 minutes at 37ºC with constant stirring.  Platelets 

were washed with modified Tyrodes-HEPES buffer containing 1 mM EGTA then lysed with 

an equal volume of 2× lysis buffer containing protease and phosphatase inhibitors as 

described above (section 2.2.3.1), with the exception that 2.5 mM Na3VO4 was replaced with 
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2.5 mM iodoacetic acid.  Following incubation on ice for 15 minutes dithiothreitol was added 

to a final concentration of 10 mM to inactivate any unreacted iodoacetic acid.  Samples were 

pre-cleared with 1 µg recombinant MBP bound to amylose resin per 1 ml of platelet lysate, by 

incubating at 4°C for 30 minutes with constant stirring, then pelleting cell debris and beads at 

13,000  ×g for 15 minutes.  Either MBP or MBP:CD148 fusion proteins bound to amylose 

resin (20 µl of a 50% slurry) was added to platelet lysates at a ratio of 1 µg of fusion protein 

to 500 µg of platelet lysate and incubated at 4°C for 2 hours.  Resins were then washed 4 

times with column buffer.  Proteins were eluted from resins by boiling for 5 minutes in 2× 

Laemmli sample buffer under reducing conditions. 

 

2.2.5.4  Sample preparation for mass spectrometry 

Samples generated using the substrate-trapping/pull-down assay were resolved on 4 – 20% 

SDS-PAGE gradient gels (Invitrogen) and proteins stained with ProtoBlue Safe Colloidal 

Coomassie blue (Geneflow, Fradley, UK).  Bands of interest were excised from gels using a 

clean scalpel blade in a laminar flow hood and prepared for mass spectrometry analysis 

according to the in-gel trypsinization protocol of Shevchenko et. al. (Shevchenko et al. 1996).  

Gel slices were put into 1.5 ml snap-cap tubes rinsed with 0.1% formic acid/50% acetonitrile; 

washed twice with 500 µl of 50% acetonitrile in 50 mM ammonium bicarbonate for 45 

minutes/wash at 37°C with constant mixing; and dried using a SpeedVac Plus AR model 

SC110AR (Savant Instruments, Inc., Holbrook, NY, USA) connected to a Universal Vacuum 

System Plus model UVS400A (Long Island City, NY, USA).  Gel slices were rehydrated in 

50 µl of 50 mM DTT in 10% acetonitrile in 50 mM ammonium bicarbonate at 56°C for 1 hr.  

Any remaining supernatant was removed and 50 µl of 100 mM iodoacetamide in 10% 

acetonitrile in 50 mM ammonium bicarbonate was added and incubated at room temperature 

in the dark for 30 minutes.  Any remaining supernatant was removed; gel slices were washed 
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three times with 10% acetonitrile in 40 mM ammonium bicarbonate for 15 minutes/wash at 

room temperature with constant mixing; and gel slices were dried using the SpeedVac (details 

above).  Gel slices were rehydrated with 20 µl or 1.5× the gel volume if greater than 20 µl of 

12.5 µg/ml sequence grade trypsin (Promega) in 10% acetonitrile in 40 mM ammonium 

bicarbonate for 1 hr at room temperature.  A further 20 µl of 10% acetonitrile in 40 mM 

ammonium bicarbonate was added and incubated overnight at 37°C.  The supernatant was 

collected, replaced with 30 µl of 3% formic acid and incubated for a further 1 hr at 37°C. This 

final step was repeated once more.  Mass spectrometric analysis (peptide mass fingerprinting) 

and database searches were performed by Dr. Ángel García (University of Santiago de 

Compostela, Spain).  Mass spectra of tryptic fragments were measured using a Bruker 

Autoflex Matrix-Assisted Laser Desorption/Ionization – Time-of-Flight (MALDI-TOF) mass 

spectrometer.  Database searches were performed using the Mascot v2.1 search tool (Matrix 

Science, London, UK) screening SwissProt and MSDB databases. 

 

2.2.6  In vitro dephosphorylation assays 

2.2.6.1  Dephosphorylation of SFKs 

WCLs were prepared of pervanadate (100 µM) stimulated human platelets as described 

above.  Equal amounts (1 µg) of recombinant MBP, wild-type recombinant CD148 PTP 

domain and catalytically inactive MBP-CD148 cytoplasmic domain fusion protein were 

added to equal amounts (75 µg) of platelet lysates and incubated at 37°C for 30 minutes.  

Reactions were terminated by addition of an equal volume of 2× lysis buffer and boiling for 5 

minutes at 100°C.  Samples were resolved by SDS-PAGE and western blotted with phospho-

specific antibodies. 
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2.2.6.2  Dephosphorylation of SFK-derived phosphopeptides 

Rates of dephosphorylation of SFK-derived phosphopeptides (Table 2.5) by recombinant 

CD148 and PTP-1B PTP domains were measured using the EnzChek Phosphatase Assay Kit 

(Molecular Probes).  The kit is based on the purine nucleoside phosphorylase (PNPase)-

coupled assay developed by Webb (Webb 1992).  Phosphopeptides were reconstituted to 3 

mM in 10 mM HEPES buffer pH 7.5.  Recombinant CD148 and PTP-1B PTP domains 

(kindly provided by Dr. Alistair Barr, Structural Genomics Consortium, Oxford) were diluted 

in gel filtration buffer (250 mM NaCl, 10 mM DTT in 10 mM HEPES pH 7.5).  Reactions 

were performed in 384-well clear bottom plates at room temperature.  Reactions consisted of: 

125 µM substrate phosphopeptide and 20 ng of CD148 or PTP-1B PTP domain, in reaction 

buffer (100 mM NaCl, 1 mM DTT, 200 μM 2-amino-6-mercapto-7-methylpurine 

ribonucleoside [MESG] and 1 U/ml purine nucleoside phosphorylase [PNPase]).  MESG and 

PNPase concentrations were optimized to ensure that the phosphatase activity was rate-

limiting.  The plate was read in a SpectraMax microplate reader (Molecular Devices, 

Sunnyvale, CA, USA) at an absorbance of 360 nm at 20 second intervals for 3 minutes. 

 

2.2.8  Statistical analysis 

Data shown throughout this thesis is representative of 2 – 5 separate experiments.  Where 

experiments were performed in triplicate (e.g. DT40/NFAT luciferase assay) results were 

averaged for each experiment.  Mean ± standard deviation or standard error of the mean are 

indicated.  Statistical analysis was carried out using unpaired Student’s t-test, with P values < 

0.05 taken as significant.  All graphs were generated using GraphPad Prism version 4 

software (GraphPad Software, Inc., San Diego, CA). 

 

 
 



 
Table 2.4  Expression constructs and uses  
 
Expression 
construct 

Backbone Source Protein expressed Mutation Use Reference 

CD148 catalytically 
inactive 

pEF.BOS AW full length CD148 C1239S 
 

DT40/NFAT 
luciferase assay 

(Baker et al. 2001) 

CD148 substrate 
trapping 

pEF.BOS AW full length CD148 D1205A DT40/NFAT 
luciferase assay 

(Baker et al. 2001) 

CD148 wild type pEF.BOS AW full length CD148 none DT40/NFAT 
luciferase assay 

(Baker et al. 2001) 

FcR γ-chain pEF6 MT FcR γ-chain none DT40/NFAT 
luciferase assay 

(Tomlinson et al. 2007) 

GPVI pRC MT GPVI none DT40/NFAT 
luciferase assay 

(Tomlinson et al. 2007) 

LacZ pEF6 Invitrogen 
 

LacZ none DT40/NFAT 
luciferase assay 

(Tomlinson et al. 2007) 

MBP.CD148 
catalytically inactive 

pMAL.c2E NT cytoplasmic tail of 
CD148 as MBP fusion 

C1239S in vitro substrate 
trapping 

(Palka et al. 2003) 

MBP.CD148 
substrate trapping 

pMAL.c2E NT cytoplasmic tail of 
CD148 as MBP fusion 

D1205A in vitro substrate 
trapping 

(Palka et al. 2003) 

MBP.CD148 wild 
type 

pMAL.c2E NT cytoplasmic tail of 
CD148 as MBP fusion 

none in vitro substrate 
trapping 

(Palka et al. 2003) 

NFAT reporter pEF6 MT NFAT reporter none DT40/NFAT 
luciferase assay 

(Tomlinson et al. 2007) 

NT, Professor Nicholas Tonks (Cold Spring Harbour Laboratory, NY, USA); AW, Professor Art Weiss (UCSF, CA, USA);  
MT, Dr. Michael Tomlinson (University of Birmingham, UK) 
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3.1  Aim 

In this chapter, I checked for expression of CD148 in human and mouse platelets by western 

blotting and flow cytometry.  CD148 was quantified in resting human platelets and changes in 

surface expression following platelet activation were investigated.  Expression of PTPRO, 

RPTPσ and CD45 was also investigated in human and mouse platelets by either western 

blotting or flow cytometry. 
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3.2  Introduction 

Pioneering work to elucidate the functional roles of PTPs in platelets relied heavily on the use 

of non-selective PTP inhibitors, such as pervanadate (Pumiglia et al. 1992).  These studies 

demonstrated that PTPs were important for maintaining basal levels of phosphorylation in 

platelets (Pumiglia et al. 1992).  PTPs were shown to regulate several important platelet 

functions including aggregation, clot retraction and microvesicle formation (Chiang 1992; 

Pumiglia et al. 1992; Pasquet et al. 1998; Osdoit et al. 2001; Ragab et al. 2003). 

To date five non-transmembrane PTPs and a single RPTP have been identified in 

platelets.  The non-transmembrane PTPs include: Shp1, Shp2, PTP-1B, PTP-MEG and the 

non-classical PTP, LMW-PTP (Frangioni et al. 1993; Somani et al. 1997; Hua et al. 1998; 

Wang et al. 2005; Xing et al. 2007).  The lone RPTP is CD148 (Borges et al. 1996; de la 

Fuente-Garcia et al. 1998; Senis et al. 2007).  Other RPTPs that may be expressed in platelets 

include PTPRO, RPTPσ and CD45.  PTPRO was first identified in human megakaryocytes 

(Taniguchi et al. 1999).  Forty-one SAGE tags of PTPRO were also identified in a mouse 

megakaryocyte SAGE library, suggesting that it is highly expressed (Senis et al. 2007).  

However, it has yet to be identified in human or mouse platelets.  A single peptide from 

RPTPσ was recently identified in human platelets using a mass spectrometry approach, 

suggesting that it may be expressed at low levels (Senis et al. 2007).  It is widely accepted that 

CD45 is not expressed in platelets, however it has been detected in megakaryocytes at a low 

level of expression (Stelzer et al. 1993; Qiao et al. 1996; Dahlke et al. 2004; Li et al. 2007).  

We therefore speculated that it may be expressed in platelets at a low level. 

CD148 and PTPRO are structurally related classical PTPs that belong to the R3 

subfamily of transmembrane PTPs (Tonks 2006).  They consist of a large extracellular region 

composed of 8 fibronectin type III (FNIII) repeats, a single transmembrane segment and a 

single intracellular PTP domain.  CD148 is expressed in all hematopoietic lineages, 
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endothelial cells, fibroblasts, epithelial cells and smooth muscle cells (Borges et al. 1996; 

Autschbach et al. 1999).  The majority of research on CD148 has focused on its role in 

negatively regulating cell growth and differentiation.  Recently, it has been demonstrated that 

CD148 negatively regulates cell-extracellular matrix contacts in fibroblasts by modulating Src 

and FAK activation (Jandt et al. 2003; Kellie et al. 2004; Pera et al. 2005).  Knockin mice 

expressing a mutant CD148 that lacks the cytoplasmic phosphatase domain die at embryonic 

day 11.5 and have severe defects in vascular development (Takahashi et al. 2003).  More 

recently, CD148 and the structurally distinct RPTP CD45 have been shown to have positively 

regulate B cell receptor signalling and Fcγ receptor signalling, in B cells and macrophages 

respectively, using single and double knockout mouse models (Zhu et al. 2008). 

PTPRO is primarily expressed in the brain and kidney, but is also found in 

hematopoietic stem cells, lungs, lymph nodes, spleen and placenta (Avraham et al. 1997; 

Beltran et al. 2003).  Alternatively spliced PTPRO transcripts are expressed in a tissue-

specific manner (Aguiar et al. 1999).  PTPRO has been studied primarily as a receptor 

involved in glomerulus function and axon guidance.  The only paper describing its expression 

in megakaryocytes suggested that it is involved in megakaryocytopoeisis and that its role is 

regulated by the SCF receptor, c-Kit, which is a tyrosine kinase receptor (Taniguchi et al. 

1999).  PTPRO knockout mice have defects in kidney function as a result of a change in 

podocyte structure, however, they have not been examined in detail for other physiological 

defects (Wharram et al. 2000).  

RPTPσ is structurally distinct from CD148 and PTPRO, belonging to the R2A 

subfamily of RPTPs.  It consists of a large extracellular domain containing several 

immunoglobulin-like and FNIII repeats, a single transmembrane domain and a cytoplasmic 

tail containing a PTP catalytic domain and a pseudo-catalytic domain.  It is predominantly 

expressed in the nervous system, with some expression also detected in the kidney and in 
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selected epithelial cells (Pulido et al. 1995).  RPTPσ-deficient mice display severe 

neuroendocrine and neuronal defects, pituitary dysfunction, as well as central and peripheral 

nervous system abnormalities (Elchebly et al. 1999; Wallace et al. 1999; Batt et al. 2002). 

CD45 is the prototypical RPTP belonging to the R1/R2 subfamily of RPTPs.  The 

extracellular domain exists as multiple isoforms due to alternative splicing.  It has a single 

transmembrane domain and a cytoplasmic region containing a PTP domain and a pseudo-PTP 

domain.  CD45 is highly and specifically expressed in all nucleated haematopoietic cells.  

Different splice variants of CD45 are expressed in the different haematopoietic lineages.  The 

lowest molecular weight form is termed CD45RO and the highest molecular weight form is 

CD45ABC.  Naive T cells express primarily the RB isoform then switch to the RO isoform 

upon activation.  B-cells primarily express the highest molecular weight isoform RABC, 

while the myeloid lineage cells generally express the RO isoform then switch to RA isoforms 

upon activation.  There is a large body of research on the role of CD45 in immune cells, as it 

plays a central role in immune receptor signalling (Hermiston et al. 2003).  It has redundant 

functions with CD148 in immune cells (Zhu et al. 2008).  CD45 deficiency results in severe 

combined immunodeficiency phenotype in mouse and humans (Byth et al. 1996; Mee et al. 

1999).  More recently it has been implicated as a potential genetic modifier in autoimmune, 

infectious and malignant diseases (Tchilian et al. 2006).  

It has been known for many years that CD45 is essential for initiating B and T cell 

receptor signalling.  It has also been known that structurally distinct RPTP PTPα plays an 

important role in initiating integrin signalling in fibroblasts.  Based on these findings, we 

hypothesized that platelets express a CD45-like RPTP that is required to initiate signalling 

from the collagen receptor GPVI.  The GPVI signalling pathway is essentially a hybrid of the 

B and T cell receptor signalling pathways.  We also hypothesized that this platelet RPTP also 
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initiates integrin receptor signalling, similar to PTPα in fibroblasts.  The primary candidate 

was CD148, followed by PTPRO, RPTPσ and CD45. 
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3.3  Results 

3.3.1  Expression of CD148 in human platelets 

I initially detected CD148 in human platelets by western blotting.  Whole cell lysates prepared 

of washed human platelets were resolved by SDS-PAGE and western blotted with an anti-

CD148 antibody.  A single band was detected at approximately 220 kDa, which is the correct 

size for CD148 (Figure 3.1A).  Flow cytometry was subsequently used to determine if CD148 

was expressed on the surface of human platelets.  Washed human platelets were stained with a 

monoclonal antibody to the extracellular region of CD148 followed by a FITC-conjugated 

anti-mouse secondary antibody prior to flow cytometric analysis (Figure 3.1B).  Platelets 

were stained with an isotype control antibody instead of the primary antibody in parallel as a 

control for non-specific binding of the primary antibody.  Platelets stained with the anti-

CD148 monoclonal antibody showed a clear shift to the right in FITC fluorescence relative to 

platelets stained with the isotoype control antibody, demonstrating that CD148 was expressed 

on the platelet surface.  

 

3.3.2  Quantification of surface expression of CD148 on resting human platelets 

A commercially available flow cytometry-based assay was used to quantify surface 

expression of CD148 on resting human platelets.  Washed human platelets from 6 healthy 

volunteers were stained with a monoclonal antibody to the extracellular region of CD148 

followed by a FITC-conjugated anti-mouse secondary antibody prior to flow cytometric 

analysis.  The expression level of CD148 on the platelet surface was quantified by plotting the 

geometric mean fluorescence intensities (GMFI) of immunostained platelets on a standard 

curve generated using calibration beads coated with a known number of binding sites for the 

secondary antibody (Figure 3.2A and B).  The GMFI of platelets stained with the isotype 

control antibody was subtracted from the GMFI of platelets stained with the anti-CD148 
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antibody before the number of surface molecules per platelet was calculated.  Human platelets 

were found to express 2,834 ± 90 (mean ± standard error of the mean) copies of CD148 on 

their surface using this method (Figure 3.2C).  GPVI surface levels were quantified in parallel 

to CD148 levels on the same platelets as a positive control of the assay.  GPVI surface 

expression was calculated to be 6,081 ± 252 copies per platelet, which is slightly higher than 

published levels of GPVI (3,500 – 5,000 copies/platelet) (Best et al. 2003).  We suspect this 

discrepancy is related to a variety of reasons, which will be discussed later in this chapter.  

Based on these results, CD148 is expressed at approximately half the level of GPVI.  This is 

an intermediate/low level of expression relative to other platelet surface glycoproteins.  

Interestingly, there was very little variability in surface levels of CD148 in the six individuals 

tested, suggesting that it may has an important functional role in platelets. 
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Figure 3.1:  Expression of CD148 in human platelets.  (A) Whole cell lysate (WCL) 
prepared from human platelets was western blotted for CD148 using a mouse anti-CD148 
monoclonal antibody.  A band at approximately 220 kDa was detected. (B) Resting human 
platelets were incubated with either anti-CD148 (green line) or an isotype control antibody 
(IgG, purple histogram) for 15 minutes, then stained for 15 minutes with a FITC-conjugated 
anti-mouse antibody before being analyzed by flow cytometry. n=6. 
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Figure 3.2: Expression level of CD148 on the surface of resting human platelets 
measured by quantitiative flow cytometry. (A) Calibration beads coated with a known 
number of antibody binding sites (490, 13,000, 38,000 and 96,000) were stained with FITC-
conjugated anti-mouse antibody for 15 minutes and analysed by flow cytometry. (B) A 
calibration curve was obtained by plotting the geometric mean fluorescence intensity (GMFI) 
of the peaks in panel (A) against the known number of antibody binding sites for each peak.  
(C) The mean number of copies of CD148 on the surface of resting human platelets was 
calculated to be 2,834 ± 90 (± standard error of the mean).  Each dot represents an individual 
and the horizontal line represents the mean. The number of copies of GPVI was also 
quantified. 
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3.3.3  Surface levels of CD148 in activated human platelets 

Having established that CD148 is expressed on the surface of human platelets, I next wanted 

to investigate whether surface levels of CD148 are altered following platelet activation.  

There are several examples of platelet surface proteins that are up-regulated upon platelet 

activation including the integrin αIIbβ3, GPIb-IX-V, P-selectin and TLT-1 (Wagner et al. 

1996; Berndt et al. 2001; Washington et al. 2004).  Intracellular pools of these and other 

surface proteins are found in the open canalicular system and the platelet α-granules.  

Conversely, there are several examples of platelet surface glycoproteins that are shed from the 

surface of activated platelets, including GPVI and GPIb-IX-V (Bergmeier et al. 2004; 

Gardiner et al. 2007). 

Surface levels of CD148 were compared between resting and thrombin activated 

platelets by flow cytometry.  Platelets were stimulated with a high concentration (1U/ml) of 

the physiological agonist thrombin, which signals through PAR-1 and PAR-4 receptors in 

human platelets.  A high dose of thrombin was used in order to induce maximal platelet 

activation and α-granule secretion.  Under these conditions, surface expression of CD148 was 

not altered following thrombin stimulation (Figures 3.3A and B), suggesting the absence of 

any intracellular pool and that it does not get shed from the surface of platelets.  P-selectin 

expression was used as a marker of α-granule secretion (Figures 3.3C and D). 

 

3.3.4  Expression of CD148 in mouse platelets 

I next checked for expression of CD148 in mouse platelets in order to establish the mouse as a 

model for studying the functional role of CD148 in platelets.  CD148 had never before been 

shown to be expressed in mouse platelets.  CD148 was detected on the surface of resting 

wild-type (WT) mouse platelets by flow cytometry.  Washed mouse platelets were 

immunostained with a hamster anti-mouse CD148 monoclonal antibody to the extracellular 
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region of CD148 followed by a FITC-labelled anti-hamster secondary antibody prior to being 

analyzed by flow cytometry.  The primary antibody was replaced with an isotype control 

antibody as a negative control.  There was a clear shift to the right in FITC fluorescence of 

CD148 stained platelets relative to the isotype control antibody stained platelets, 

demonstrating that CD148 is expressed in mouse platelets (Figure 3.4A). 

Western blotting was then used to confirm the expression of CD148 in wild-type 

mouse platelets.  Platelets from CD148 transmembrane knockout (TM-KO) mice were used as 

a negative control.  Platelet lysates were resolved by SDS-PAGE and immunoblotted with an 

anti-CD148 antibody.  A band migrating at approximately 220 kDa was detected in the WT 

platelets, but not in platelets from CD148 TM-KO platelets, demonstrating that WT mouse 

platelets express CD148 and validating the CD148 TM-KO model (Figure 3.4B). 
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Figure 3.3: Subcellular localisation of CD148 in human platelets.  Flow cytometry was 
used to investigate whether CD148 expression is restricted to the platelet surface. Resting (A) 
or thrombin stimulated human platelets (B) were incubated with 10 µg/ml of either anti-
human CD148 monoclonal antibody (CD148, green peak), that recognises the extracellular 
region of CD148 or the same amount of isotype control antibody (IgG, purple histogram) for 
15 minutes, then stained for 15 minutes with a FITC-conjugated anti-mouse antibody.  As a 
positive marker for platelet activation and secretion, resting (C) and thrombin (D) stimulated 
human platelets were stained with 10 µg/ml anti-CD62P antibody (P-selectin, red peak)  or 
the same amount of control antibody (IgG, purple histogram). n=3. 
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Figure 3.4: Expression of CD148 in mouse platelets.  (A) Resting wild-type mouse platelets 
were incubated with either hamster anti-mouse CD148 (green line), that recognizes the 
extracellular region of mouse CD148, or an isotype control antibody (IgG, black line) for 15 
minutes, then stained for 15 minutes with a FITC-conjugated anti-hamster antibody before 
being analyzed by flow cytometry.  (B) Whole cell lysates (WCLs) prepared of wild-type 
(WT) and CD148 transmembrane-knockout (CD148 TM-KO) mouse platelets were western 
blotted for CD148 using the same monoclonal antibody used for flow cytometry in panel (A).  
A 220 kDa band was detected in the WT sample which was absent from the CD148 TM-KO 
sample.  (Note: FACS data was initially generated by Mike Tomlinson and repeated by 
myself). n=3. 
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3.3.5  Expression of PTPRO in mouse platelets 

Since PTPRO has been previously identified on the platelet progenitor cell, the 

megakaryocyte, I wanted to check for its expression on platelets (Taniguchi et al. 1999; Senis 

et al. 2007).  Whole cell lysates of mouse platelets, mouse foetal liver-derived 

megakaryocytes, mouse splenocytes (positive control) and mouse brain (positive control) 

were resolved by SDS-PAGE and western blotted with a goat anti-PTPRO polyclonal 

antibody (Figure 3.5).  PTPRO has been reported to migrate at 200 and 158 kDa, and a 

truncated splice variant, PTPROt, expressed in B cells migrates at 44 kDa (Aguiar et al. 

1999).  A prominent band at 158 kDa was detected in mouse brain, as expected (Figure 3.5).  

Similar size bands were also detected in the spleen and platelet WCLs, which could 

potentially be PTPRO.  However, due to the large number of background bands present in all 

of the samples it is difficult to conclude which of these bands are PTPRO or its splice 

variants.  A prominent band of the expected size for PTPRO was not detected in 

megakaryocytes.  This is somewhat surprising as several tags for PTPRO were detected in a 

mouse megakaryocyte SAGE library, suggesting that they express high levels of the protein 

(Senis et al. 2007).   

 

3.3.6  Expression of RPTPσ in human and mouse platelets 

Whole cell lysates prepared from human platelets, mouse platelets, mouse foetal liver-derived 

megakaryocytes, mouse splenocytes and mouse brain were resolved by SDS-PAGE and 

western blotted with an anti-RPTPσ monoclonal antibody (Figure 3.6).  RPTPσ is reported to 

migrate at 220 kDa and a splice variant at 75 kDa (Pulido et al. 1995).  The prominent 75 kDa 

band detected in brain WCL is presumably RPTPσ.  Although similar size band was also 

detected in the human platelet lysate, it resembled a background band rather than a 
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specifically labelled band.  A prominent 220 kDa was also detected in the human platelet 

WCL that may represent RPTPσ. 

 

 

 

Figure 3.5: PTPRO may be expressed in mouse platelets.  Whole cell lysates prepared of 
mouse platelets, mouse foetal liver-derived megakaryocytes, mouse splenocytes and mouse 
brain were western blotted with a goat anti-PTPRO polyclonal antibody. 10-20 µg of protein 
was loaded per lane. PTPRO has been reported to migrate at 200 and 158 kDa.  A truncated 
splice variant, PTPROt, expressed in B cells migrates at 44 kDa. n=2. 
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Figure 3.6: PTPRσ may be expressed in human platelets.  Whole cell lysates prepared of 
human platelets, mouse platelets, mouse foetal liver-derived megakaryocytes, mouse 
splenocytes and mouse brain were western blotted with an anti-PTPRσ monoclonal antibody 
(courtesy of Professor Michel Tremblay, McGill University). 10-20 µg of protein was loaded 
per lane. PTPRσ has been reported to migrate at 220 and 75 kDa.  A prominent band 
migrating at 75 kDa in brain lysate is PTPRσ.  The high molecular band in the human platelet 
lysate may represent PTPRσ. n=2. 
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3.3.7  CD45 expression in human and mouse platelets 

Although it is widely accepted that platelets do not express CD45, a recent study 

demonstrated that mouse megakaryocytes express low levels of CD45 (Dahlke et al, 2004).  I 

therefore wanted to confirm whether CD45 is express in human and mouse platelets.  

Peripheral blood leukocytes which express high levels of CD45 were stained with a FITC-

conjugated anti-CD45RA antibody as a positive control (Figure 3.7A).  CD45RA is primarily 

found on cells of the myeloid lineage.  Unstimulated or thrombin (1 U/ml) stimulated washed 

human platelets were stained with FITC-conjugated anti-CD45RA antibody prior to being 

analysed by flow cytometry (Figure 3.7B and C).  Leukocytes, and resting and activated 

platelets were stained with an FITC-conjugated isotype antibody in parallel as a negative 

control.  Leukocytes were strongly labelled for CD45 compared with the isotype control 

stained leukocytes, demonstrating that the antibody was working in this assay (Figure 3.7A).  

In contrast, both resting and thrombin stimulated platelets did not stain for CD45RA, 

demonstrating that platelets do not express this isoform of CD45 (Figures 3.7B and C 

respectively).  The experiment was repeated with an antibody for CD45RO isoform, which is 

primarily expressed on T cells and myeloid cells, with the same result (data not shown). 

The same experiment described above was also performed on mouse platelets.  Mouse 

thymocytes were used as a positive control.  Thymocytes showed a large shift to the right in 

CD45RA staining compared to control cells stained with the isotype control antibody, 

indicating very high levels of CD45 expression in thymocytes (Figure 3.8A).  In contrast, 

unstimulated and thrombin stimulated mouse platelets exhibited comparable, relatively small 

shifts to the right relative to control stained platelets, suggesting mouse platelets may express 

very low levels of CD45RA (Figure 3.8B and C).  Similar results were observed for CD45RO 

isoform (data not shown). 
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Figure 3.7: CD45 is not expressed on human platelets.  Flow cytometry was used to 
investigate CD45 expression on human platelets. (A) As a positive control human leukocytes 
were stained with a FITC-conjugated anti-CD45 RA antibody (CD45, orange line) or an 
isotype matched IgG control antibody which was then detected with a secondary FITC 
antibody (IgG, purple peak). (B and C) Resting and thrombin stimulated human platelets were 
then analysed for CD45 expression using the same antibodies as in (A).  n=2. 
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Figure 3.8: CD45 maybe expressed on mice platelets at low levels. Flow cytometry was 
used to investigate CD45 expression on mouse platelets. (A) As a positive control mouse 
thymocytes were stained with a FITC-conjugated anti-CD45 RA antibody (CD45, orange 
line) or an isotype matched IgG control antibody which was then detected with a secondary 
FITC antibody (IgG, purple peak). (B and C) Resting and thrombin stimulated mouse 
platelets were then analysed for CD45 expression using the same antibodies as in (A). n=2. 
 
 
 
 



Chapter 3  CD148 Expression in Platelets 

105 

3.4  Discussion 

To date, CD148 is the only RPTP identified in platelets by immunological-based techniques.  

It is a large glycoprotein that migrates at approximately 220 kDa by SDS-PAGE.   Resting 

human platelets express approximately 2,800 copies on their surface.  Surface levels are not 

altered upon platelet activation, demonstrating that platelets do not contain an intracellular 

pool of CD148 and that it does not get shed under the conditions tested.  The very tight intra-

individual surface levels on human platelets, suggests that it may play an important role in 

regulating platelet function.  We suspect the discrepancy in the levels of GPVI I quantified on 

resting platelets (~6,000 copies) compared with published levels (3,500 – 5,000 copies) is due 

to a number of factors, including: different methods used to quantify GPVI levels; different 

batches of anti-GPVI antibody used to quantify; different numbers of secondary antibody 

binding sites on the calibration beads; different fluorescence intensities of the secondary 

antibodies; and sample size and variation. 

The number of copies of CD148 on human platelets is intermediate/low relative to 

other surface glycoproteins and its expression is tightly regulated.  The most abundant surface 

glycoprotein is the integrin αIIbβ3, which is present at approximately 80,000 copies on the 

surface of resting platelets (Wagner et al. 1996).  Surface levels of other platelet glycoproteins 

are: 25,000 copies for GPIb-IX-V and 45,000 copies for CD9 (Hato et al. 1988); 10,000 

copies for PECAM-1 (Newman et al. 1990); and 1,000 – 2,000 for the integrin α2β1 (Bennett 

1990).  In contrast, the copy number of CD148 is approximately 20 fold greater than the ADP 

receptor, P2Y1, which is amongst the least abundant platelet receptors expressed on the 

surface of resting human platelets at approximately 150 copies (Baurand et al. 2001).   

To date no other RPTPs have been identified in human or mouse platelets by western 

blotting or flow cytometry.  However, PTPRO and CD45 have been reported to be expressed 

in megakaryocytes, and a single peptide for RPTPσ was identified in human platelets by mass 
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spectrometry (Avraham et al. 1997; Tomer 2004; Senis et al. 2007).  Presumably, PTPRO and 

CD45 are involved in regulating megakarycoyte function and/or development and their 

expression is turned off during differentiation and platelet formation.  Based on findings 

presented in this chapter, I cannot conclude with any certainty whether PTPRO, RPTPσ or 

CD45 are expressed in human or mouse platelets.  It may be that platelets express low levels 

or alternatively spliced isoforms of all three of these RPTPs.  Further characterisation with 

better antibodies and positive control lysates are required in the case of PTPRO and RPTPσ.  

Although my findings suggest that mouse platelets may express low levels of CD45RA and 

RO, I believe that they probably do not.  This is based on previously published findings and 

on a follow-up study performed by our collaborators in which they could not detect CD45 on 

mouse platelets (personal communication, Dr. Jing Zhu and Professor Arthur Weiss, UCSF, 

USA).  Therefore, I suspect the minor shift in CD45RA and RO stained mouse platelets is 

likely due to lower fluorescence labelling of the isotyped control antibody relative to the anti-

CD45 antibodies. 

Collectively, these findings suggest that CD148 is the most abundant and possibly the 

only RPTP expressed on platelets.  This is the opposite to other blood cells, with the 

exception of erythrocytes, which express high levels of CD45 and lower levels of CD148.  

The following chapters in this thesis focus on elucidating the biological and biochemical 

functions of CD148 in platelets. 
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4.1 Aim 

In this chapter, CD148 transmembrane knockout (CD148 TM-KO) mice, which lack cell 

surface expression of CD148, were utilized to investigate the functional role of CD148 in 

platelets.  We hypothesized that CD148 plays a fundamental role in ITAM receptor signalling 

and integrin-mediated functional responses, as it has previously been shown to be involved in 

regulating ITAM and integrin receptor signalling in other cell types (Hundt et al. 1997; 

Tangye et al. 1998; Zhu et al. 2008).  
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4.2  Introduction 

It has been known for many years that CD45 is essential for initiating ITAM receptor 

signalling in haematopoietic cells (Hermiston et al. 2003).  In the case of the B and T cell 

receptors (BCR and TCR, respectively), it does so by modulating Lck downstream of the 

TCR and Lyn downstream of the BCR, leading to the recruitment and activation of Syk and 

PLCγ (McNeill et al. 2007; Zhu et al. 2008).  Similarly, CD148 has been shown to play a 

fundamental role in regulating lymphocyte signal transduction, in particular CD148 is able to 

regulate BCR and TCR signalling pathways (Tangye et al. 1998; Baker et al. 2001).  

Recently, CD45 and CD148 have been shown to play redundant functions in activating SFKs 

downstream of BCRs and Fc receptors in B cells and macrophages, respectively (Zhu et al. 

2008).  Since the collagen activation receptor complex GPVI/FcR γ-chain signals in a similar 

way to the BCR and TCR, we hypothesized that CD148 plays a similar role in initiating GPVI 

signalling in platelets. 

Work done in other cell types has shown that CD148 regulates cell adhesion and 

spreading (Jandt et al. 2003; Kellie et al. 2004; Pera et al. 2005; Dave et al. 2009).  It has been 

hypothesized to do so by regulating key components of integrin signalling complexes, 

including SFKs, FAK and paxillin (Kellie et al. 2004; Pera et al. 2005).  Similarly, the 

structurally distinct RPTP PTPα has been shown to positively regulate outside-in signalling 

from the fibronectin integrin α5β1 in fibroblasts (Chen et al. 2006).  We therefore 

hypothesized that CD148 plays a similar function in regulating integrin signalling in platelets.  

Interestingly, GPVI and the fibrinogen integrin αIIbβ3 share the same backbone signalling 

pathway, consisting of the sequential activation of SFKs, Syk and PLCγ2 (Watson et al. 

2005).  SFKs have also been shown to play a minor role in signalling from various G protein-

couple receptors (GPCRs), including the thrombin receptors PAR-1 and PAR-4, the 

thromboxane A2 receptor TP and the ADP receptor P2Y1 (Jarvis et al. 2000; Harper et al. 
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2006; Minuz et al. 2006).  We therefore speculated that CD148 may also play a minor role in 

regulating signalling from various GPCRs in platelets. 

The generation of a CD148 TM-KO mouse model that lacks any cell surface 

expression of CD148 has been an invaluable tool to study the functional role of CD148 in 

platelets (Zhu et al. 2008).  In this chapter I utilised platelets from these mice to study the 

biological function of CD148 in platelets.  I measured the ability of platelets from C148 TM-

KO mice to aggregate together, secrete their contents and spread on collagen- and fibrinogen-

coated surfaces.  From these findings, I demonstrate that CD148 is an essential positive 

regulator of ITAM-, integrin- and to a lesser extent GPCR-mediated functional responses. 
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4.3  Results 

4.3.1  CD148-deficient platelets exhibit impaired aggregation and secretion 

The ability of platelets to aggregate and secrete was measured simultaneously, in real-time, 

using a lumi-aggregometer.  Platelet aggregation was measured as a change in light 

transmission, through a platelet suspension (2 × 108/ml), following addition of an agonist.  

ATP secretion from platelet dense granules was measured as an increase in luminescence.  

This is mediated through luciferin, which is added to the platelet suspension, prior to 

stimulation. 

Washed platelets from litter-matched WT and CD148 TM-KO mice were stimulated 

with low, intermediate and high doses of the GPVI-specific agonist, CRP (1, 3 or 10 μg/ml). 

CD148-deficient platelets exhibited marked impairment in aggregation and secretion 

responses to CRP compared with wild-type platelets (Figure 4.1A).  Inhibition of platelet 

aggregation and secretion was observed even at the highest concentration of CRP tested (10 

μg/ml), demonstrating that CD148 is an essential, positive regulator of GPVI-mediated 

aggregation and dense granule secretion.  Aggregation and ATP secretion of CD148-deficient 

platelets were also inhibited in response to low and intermediate concentrations (1 and 3 

μg/ml) of the physiological agonist collagen, which acts through both GPVI and the integrin 

α2β1 (Figure 4.1B).  This effect was largely overcome at a higher concentration of collagen 

(10 μg/ml), which induced almost full aggregation and ATP secretion (Figure 4.1B). The 

selective recovery of response to high concentrations of collagen, but not CRP reflects the 

role of the integrin α2β1 in mediating activation to collagen (Chen et al. 2003). 

Collagen-mediated aggregation and ATP secretion are heavily dependent on the 

release of the secondary mediators ADP and TxA2 from platelets.  The release of ADP from 

dense granules and synthesized TxA2 amplifies the process of platelet activation by a positive 

feedback mechanism (FitzGerald 1991; Gachet 2006).  To eliminate the contribution of these 
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secondary mediators to the collagen-induced aggregation and secretion responses, platelets 

were treated with the ADP scavenger, apyrase, and the cyclooxygenase inhibitory 

indomethacin prior to stimulation (Figure 4.1C).  Under these conditions, CD148-deficient 

platelets exhibited impaired aggregation at all three concentrations of collagen tested (1, 3 and 

10 μg/ml).  The magnitude of the defects was enhanced in the presence of apyrase and 

indomethacin, demonstrating that ADP and indomethacin were masking defects in the 

collagen response.  The greatest difference between WT and CD148-deficient platelet 

aggregation was observed at the highest dose of collagen (10 μg/ml).  ATP secretion was 

effectively abolished in the presence of the inhibitors of secondary mediators. This data 

provides further evidence that CD148 is a positive regulator of GPVI- and α2β1-mediated 

signalling.   

Aggregation and ATP secretion of CD148-deficient platelets were also tested in 

response to various GPCRs, which act through distinct receptors and signalling pathways.  

We initially investigated the ability of CD148-deficient platelets to aggregate and secrete ATP 

in response to the powerful GPCR agonist thrombin, which acts through the PAR-4 receptor 

in mouse platelets.  Aggregation and ATP secretion were marginally reduced in response to 

low, intermediate and high doses of thrombin (0.03, 0.09 and 0.3 U/ml respectively) (Figure 

4.1D), suggesting CD148 may play a minor role downstream of PAR-4.  Platelets were then 

pre-treated with the Src kinase inhibitor PP1 before stimulation with thrombin to determine if 

SFKs were getting activated in mutant platelets.  PP1 blocked the aggregation and secretion 

responses of CD148-deficient platelets to the same extent as WT platelets, demonstrating that 

SFKs are not completely inactive in mutant platelets.  The only exception was at the 

intermediate does of thrombin (0.03 U/ml), where PP1 had more of an effect on the mutant 

platelets, suggesting that CD148 may regulate other components of the thrombin signalling 

pathway besides SFKs (Figure 4.1E). 
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We next investigated aggregation and ATP secretion in response to the TxA2 analogue 

U46619, which signals through the TP receptor.  CD148-deficient platelets exhibited a minor 

aggregation defect to all doses of U46619 (1, 3 and 10 μM) tested (Figure 4.1F).  A minor 

delay in the secondary wave of aggregation and ATP secretion was also observed at 10 µM 

U46619 (Figure 4.1F).  In contrast, CD148-deficient platelets exhibited normal aggregation 

and ATP secretion responses to ADP, which signals through the P2Y1 and P2Y12 receptors 

(Figure 4.1G).  Together, these results demonstrate that CD148 is essential for tyrosine 

kinase-linked receptor-mediated aggregation and secretion responses, and also plays a minor 

role in selective GPCR-mediated responses. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1. CD148-deficient platelets exhibit impaired GPVI-mediated platelet 
aggregation and ATP secretion. Washed platelets (2 × 108/ml) prepared from littermatched 
wild-type (WT) and CD148 transmembrane-knockout (CD148-/-) mice were stimulated with 
low, intermediate and high doses of: A) collagen- related peptide (CRP) (3, 10 and 30 μg/ml); 
B) collagen (1, 3 and 10 μg/ml); C) collagen (1,3 and 10 μg/ml) in the presence of secondary 
mediator inhibitors apyrase and indomethacin, D) thrombin (0.009, 0.03 and 0.09 U/ml) and 
E) thrombin in the presence of PP1. Platelet rich plasma prepared from litter-matched WT and 
CD148 TM-KO mice were stimulated with low, intermediate and high doses of: F) 
thromboxane A2 analogue U46619 (1, 3 and 10 μM) and G) ADP (1, 3 and 10 μM). Platelet 
aggregation was measured as a change in light transmission and ATP secretion was measured 
as luciferin/luciferase-mediated luminescence, using a lumi-aggregometer. Representative 
images are shown (n = 3 – 6 mice per condition). 
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4.3.2  Impaired spreading of CD148-deficient platelets 

We next investigated the ability of CD148-deficient platelets to adhere to and spread on a 

collagen-coated surface under static conditions.  As with collagen-mediated aggregation, the 

spreading response is mediated through GPVI and the integrin α2β1.  Released ADP and 

TxA2 enhance the response.  WT and CD148-deficient platelets were placed on collagen-

coated coverslips for 45 minutes.  Adherent platelets were subsequently fixed, permeabilized 

and actin filaments stained with Alex 488-conjugated phalloidin.  Although the same number 

of WT and CD148-deficient platelets adhered to the collagen-coated surface (data not shown), 

CD148-deficient platelets did not spread to the same extent as WT platelets (Figure 4.2A).  

There was approximately a 20% reduction in the surface area of collagen-adherent CD148-

deficient platelets compared with WT control platelets (Figure 4.2B).  Morphologically, 

mutant platelets looked the same as WT platelets, exhibiting filopodia and lamellipodia, 

except that they did not spread to the same extent as WT platelets.  This demonstrated that 

CD148 positively regulates platelet spreading on collagen. 

The same spreading experiment described above was also performed on fibrinogen-

coated coverslips to investigate whether CD148 contributes to outside-in signalling by the 

integrin αIIbβ3.  The same number of CD148-deficient platelets adhered to the fibrinogen-

coated surface however, mutant platelets exhibited a marked reduction in spreading on the 

fibrinogen-coated surface (Figure 4.3A). The fibrinogen spreading defect was more 

pronounced compared with the collagen spreading defect.  CD148-deficent platelets exhibited 

a 30% reduction in spreading on fibrinogen compared with WT platelets under the same 

conditions (Figure 4.3B).  Morphologically, mutant platelets had fewer filopodia and no 

lamellipodia, whereas all WT platelets had extended filopodia and several had formed 

lamellipodia. This data suggested that CD148 positively regulates αIIbβ3 signalling in 

platelets. 
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Figure 4.2: CD148-deficient mouse platelets have a spreading defect on collagen.  
Washed platelets (2 × 107/ml) were placed on collagen-coated cover slips for 45 mins at 37°C.  
Adherent platelets were permeabilized with 0.2% Triton-X 100 and actin filaments stained 
with Alex 488-conjugated phalloidin.  (A) Representative images of wild-type and CD148-
deficient platelets spread on collagen.  (B) The surface area of 50 - 100 platelets from 3 wild-
type and 2 CD148-/- mice was quantified using ImageJ software (mean ± SEM). 
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Figure 4.3: CD148 deficient mouse platelets do not spread properly on fibrinogen.  
Washed platelets (2 × 107/ml) were placed on fibrinogen-coated cover slips for 45 mins at 
37°C.  Adherent platelets were permeabilized with 0.2% Triton-X 100 and actin filaments 
stained with Alex 488-conjugated phalloidin.  (A) Representative images of wild-type and 
CD148 deficient platelets spread on fibrinogen.  (B) The surface area of 50 - 100 platelets 
from 3 wild-type and 2 CD148-/- mice was quantified using ImageJ software (mean ± SEM). 
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4.4  Discussion 
 
Results from this Chapter demonstrate for the first time that CD148 is an essential positive 

regulator of platelet function.  GPVI- and αIIbβ3-mediated functional responses were 

severely inhibited in CD148-deficient platelets.  In contrast, thrombin- and TxA2-mediated 

responses were minor, and ADP-mediated responses were normal.  Impaired responsiveness 

of CD148-deficient platelets to collagen was less apparent at high concentrations of collagen.  

Conversely, it was enhanced in the presence of inhibitors of the secondary mediators ADP 

and TxA2, demonstrating that these agonists were getting released and masking any defects in 

GPVI and α2β1 signalling.  The more severe spreading defect exhibited by CD148-deficient 

platelets on a fibrinogen- rather than a collagen-coated surface is also probably due to 

masking by released ADP and TxA2.  The spreading defects suggest defects in outside-in 

integrin αIIbβ3 and α2β1 signalling.  This is the first time that a RPTP has been shown to 

inhibit such a broad range of functional response to a variety of ITAM, integrin and GPCR 

agonists. 

A potential explanation for the CRP- and collagen-mediated functional defects of 

CD148-deficient platelets is a reduction in GPVI and/or α2β1 integrin levels.  GPVI levels 

were in fact reduced by 42 ± 1.5% (mean ± standard error; n = 9) of controls, whereas integrin 

α2β1 and αIIbβ3 levels were normal on platelets from CD148-deficient mice (appendix: 

Senis et al. 2009).  However, despite this almost 60% reduction in GPVI levels on the surface 

of CD148-deficient platelets, CD148-deficient platelets exhibited more severe aggregation 

and secretion defects compared with FcR γ-chain heterozygous-deficient (γ-chain+/-) platelets, 

which express comparable surface levels of GPVI (Snell et al. 2002; Senis et al. 2009). 

The reduction in ATP release from CD148-deficient platelets may be due to reduced 

dense granule secretion as thrombin-mediated ATP secretion was not as severely reduced.  A 
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similar reduction in P-selectin expression on the surface of CRP- and thrombin-stimulated 

CD148-deficient platelets, suggesting a concomitant reduction in α-granule secretion from 

mutant platelets (appendix: Senis et al. 2009).  Integrin αIIbβ3 activation on the surface of 

CRP-stimulated CD148-deficient platelets was also reduced in mutant platelets.  Collectively, 

these findings provide further evidence suggesting that CD148 positively regulates GPVI 

signalling. 

Platelet adhesion and spreading are complex processes that require bi-directional 

integrin signalling.  Platelets undergo a series of characteristic morphological changes during 

adhesion and spreading on collagen- and fibrinogen-coated surfaces.  These include initially 

extending filopodia that then firmly adhere to the surface and subsequently fill in with 

lamellipodia.  Failure of CD148-deficient platelets to spread properly on these surfaces 

suggested defective ITAM and integrin receptor signalling.  Spreading on collagen is 

mediated by GPVI, which triggers inside-out signalling to the integrin α2β1 causing it to 

undergo a conformational change to a high affinity state.  GPVI and α2β1 recognize different 

amino acid sequences in collagen fibrils (GPO repeats and GFOGER repeats, respectively).  

GPVI also triggers release of the secondary mediators ADP and TxA2, which act in a 

paracrine and autocrine manner to enhance platelet activation.  Spreading on fibrinogen is 

mediated primarily by the integrin αIIbβ3, without the need of an activation receptor and less 

of a contribution from secondary mediators.  The less severe spreading defect exhibited by 

CD148-deficient platelets on a collagen-coated surface is likely due to synergy between GPVI 

and α2β1 signalling and amplification by released ADP and TxA2.  The pronounced 

spreading defect exhibited by mutant platelets on a fibrinogen-coated surface suggests CD148 

also plays an important role in regulating outside-in integrin αIIbβ3 signalling.  Interestingly, 

real-time imaging demonstrated that CD148-deficient platelets take longer and extend fewer 

filopodia than WT control platelets on fibrinogen (appendix: Senis et al. 2009).  Filopodia 
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extended by mutant platelets did not remain firmly attached to the fibrinogen surface, but 

retract with time (appendix: Senis et al. 2009).  Taken together, these findings demonstrate an 

essential, positive regulatory role of CD148 in ITAM and integrin receptor signalling. 

Minor aggregation and secretion responses of CD148-deficient platelets were also 

detected in response to thrombin and TxA2, which signal through the GPCRs PAR-4 and TP 

receptors in mouse platelets, respectively.  This is the first time that a RPTP has been shown 

to regulate GPCR-mediated functional responses in any cell type, to our knowledge.  In 

contrast, ADP receptor responses were normal in CD148-deficient platelets, demonstrating 

that platelet responses were differentially affected by deletion of CD148.  We hypothesize this 

is due to a minor SFK component that is required for optimal thrombin- and TxA2-mediated 

responses, but not for ADP responsiveness.  This will be discussed in further detail in the 

General Discussion.  

The physiological relevance of the above functional defects have been characterized 

by several members of the Watson and Senis groups and were recently published in Blood 

(appendix: Senis et al. 2009).  CD148-deficient mice had a minor but significant prolongation 

of tail bleeding time and exhibited reduced thrombus formation and stability using two 

separate models of arterial thrombosis, namely the ferric chloride- and laser-induced injury 

models (appendix: Senis et al. 2009).  
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5.1  Aim 

In the previous chapter, I demonstrated that CD148 positively regulates ITAM and integrin 

receptor mediated platelet responses.  The aim of this chapter was to investigate the molecular 

mechanism underlying these defects.  Experiments were designed to investigate differences in 

collagen- and fibrinogen-mediated signalling between wild-type and CD148-deficient 

platelets.  Previous reports have demonstrated that CD148 regulates ITAM receptor signalling 

and SFK phosphorylation (Pera et al. 2005; Zhu et al. 2008).  Our hypothesis was that CD148 

would regulate proximal ITAM and integrin receptor signalling events, similar to CD45 and 

PTPα in lymphocytes and fibroblasts, respectively (Zeng et al. 2003; McNeill et al. 2007).  I 

therefore focussed my attention on investigating the phosphorylation status of three of the 

main platelet SFKs, Fyn, Lyn and Src, as well as other key signalling proteins downstream of 

GPVI and αIIbβ3. 
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5.2   Introduction 

SFKs are critical for initiating and propagating signalling from most platelet tyrosine kinase-

linked receptors.  They have also been shown to play a minor role in propagating signalling 

from some platelet GPCRs, including the thrombin receptors PAR-1 and PAR-4, and the 

TxA2 receptor TP.  To date, platelets have been demonstrated to express five of the eight 

SFKs, namely Fyn, Lyn, Src, Fgr and Yes with Src being the most abundant (Huang et al. 

1991; Pestina et al. 1997).  

The earliest identified GPVI signalling event is the activation of SFKs.  Previous 

studies using mutant mouse models and transfected cell lines have shown that the SFKs Fyn 

and Lyn are constitutively associated with the proline-rich region of GPVI via their SH3 

domains (Ezumi et al. 1998; Suzuki-Inoue et al. 2002).  Similarly, Src is constitutively 

associated with the carboxy-terminal tail of the β3 integrin cytoplasmic tail (Obergfell et al. 

2002; Arias-Salgado et al. 2003; Watson et al. 2005).  It is thought that by having 

constitutively associated SFKs, GPVI and αIIbβ3 can signal more rapidly in response to 

ligand mediated cross-linking. 

The activity of SFKs is tightly regulated by tyrosine phosphorylation and intra-

molecular interactions, as described in the General Introduction.  Activation of SFKs requires 

disruption of the intra-molecular SH2 and SH3 interactions, allowing substrates to access the 

catalytic site.  Phosphorylation of the C-terminal tail inhibitory tyrosine residue by Csk and 

the related kinase Ctk/Chk maintains the molecule in an inactive conformation, whereas 

dephosphorylation of this site allows the SFK to adopt an open, active conformation (Okada 

et al. 1991; Murphy et al. 1993).  SFKs can also be activated by out-competing the SH2 and 

SH3 interactions through inter-molecular interactions (Xu et al. 1999).  Maximal SFK 

activation also requires trans-autophosphorylation of the activation loop tyrosine residue, 

which locks it in an open conformation (Xu et al. 1999).  
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Several PTPs have been shown to dephosphorylate the C-terminal inhibitory tyrosine 

residue of SFKs, including the RPTPs CD45, PTPα, PTPε and PTPλ and the non-

transmembrane PTPs PTP-1B, Shp1 and Shp2.  In the case of the B and T cell receptors this 

action is primarily carried out by the RPTP CD45, with the structurally distinct CD148 also 

playing a minor role in B cells (Lin et al. 2003; McNeill et al. 2007; Zhu et al. 2008).  To 

date, only CD45 and the non-transmembrane PTP PTP-BAS have been shown to 

dephosphorylate the activation loop of SFKs (Roskoski 2005).  Recently, CD148 was also 

shown to interact directly with Src and to dephosphorylate both of its regulatory 

phosphorylation sites in vitro (Pera et al. 2005). The interaction was also observed in 

transfected cells, however, CD148 only dephosphosphorylated the inhibitory site and not the 

activation site in transfected cells (Pera et al. 2005). 
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5.3  Results 

This section is divided in the following three sub-sections: (1) Regulation of collagen-

mediated signalling by CD148; (2) Regulation of fibrinogen-mediated signalling by CD148; 

and (3) Tyrosine phosphorylation of CD148 in human platelets. 

 

5.3.1  Regulation of collagen-mediated signalling by CD148 

5.3.1.1  CD148 positively regulates GPVI proximal signalling in mouse platelets 

In the previous chapter, CD148-deficient mouse platelets were shown to have severely 

reduced responses to CRP.  Western blotting was used as a way of identifying signalling 

defects in resting and CRP-stimulated CD148-deficient platelets.  Washed platelets in 

suspension from wild-type and CD148-deficient mice were stimulated with a high 

concentration (10 µg/ml) of CRP, in the presence of inhibitors of the secondary mediators 

TxA2 and ADP, and the integrin αIIbβ3, in order to focus specifically on GPVI signalling.  

There was a striking inhibition of the increase in tyrosine phosphorylation of most proteins to 

CRP in the CD148-deficient platelets throughout a 300 second time course (Figure 5.1).  This 

included a loss of tyrosine phosphorylation of the 12 kDa doublet that has been previously 

identified as FcR γ-chain, thereby establishing a proximal signalling defect in the GPVI 

pathway (Gibbins et al. 1996; Poole et al. 1997).  Consistent with this observation, there was a 

marked reduction in inducible tyrosine phosphorylation of important downstream signalling 

molecules, such as Syk and PLCγ2 (Figure 5.2A and B). 

Since FcR γ-chain phosphorylation was decreased, we turned our attention to the 

GPVI-associated SFKs, Lyn and Fyn, which directly phosphorylate the FcR γ-chain (Ezumi et 

al. 1998; Quek et al. 2000).  Lyn exhibited increased phosphorylation at its C-terminal 

inhibitory tyrosine residue (Tyr-507) in resting and CRP-stimulated CD148-deficient 

platelets, suggesting that higher proportions of Lyn were in an inactive conformation in 
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resting and activated CD148-deficient platelets (Figure 5.3A).  Fyn and Src also showed a 

slight increase in phosphorylation at their C-terminal inhibitory tyrosine residues (Tyr-530 

and Tyr-529 respectively) which was fully reproducible, suggesting they too are in an inactive 

conformation in resting and activated CD148-deficient platelets (Figure 5.3B and C).  In line 

with this, SFKs were hypo-phosphorylated at their respective activation loop tyrosine residues 

in CD148-deficient platelets (Figure 5.3C). Since this is a trans-autophosphorylation event, it 

indicates a general reduction in SFK activity in the absence of CD148.  Together, these results 

demonstrate that SFKs are in a state of reduced activation in both resting and CRP-stimulated 

CD148-deficient platelets. 
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Figure 5.1. Reduced whole cell phosphorylation in CD148-deficient platelets.
Whole cell lysates (WCL) of resting and collagen-related peptide (CRP) activated
platelets from wild-type (WT) and CD148 transmembrane-knockout (KO) mice were
prepared and western blotted with an anti-phosphotyrosine antibody (p-Tyr). Platelets
were stimulated with 10 µg/ml CRP for 90 and 300 seconds (sec). Bands corresponding
to Src family kinases (SFKs) and FcR γ-chain are indicated. Blots are representative of
4 – 6 experiments.  
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Figure 5.2. Reduced Syk and PLCγ2 tyrosine phosphorylation in CRP-stimulated
CD148-deficient platelets. (A) Syk and (B) PLCγ2 were immunoprecipitated (IP)
from equal amounts of whole cell lysates prepared from both wild-type (WT) and
CD148 transmembrane-knockout (KO) mouse platelets. Platelets were stimulated with
10 µg/ml collagen-related peptide (CRP) for 90 and 300 seconds (sec). Membranes
were blotted with an anti-phosphotyrosine (p-Tyr) antibody, and subsequently stripped
and re-blotted with anti-Syk (Syk) and anti-PLCγ2 (PLCγ2) antibodies. Blots are
representative of 4 – 6 experiments.
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Figure 5.3. Reduced Src family kinase (SFK) activation in resting and CRP-
stimulated CD148-deficient platelets. Whole cell lysates (WCLs) prepared from
resting and collagen-related peptide (CRP)-stimulated wild-type (WT) and CD148
transmembrane-knockout (KO) platelets were western blotted with phosphospecific
anti-SFK antibodies. Platelets were stimulated with 10 μg/ml CRP for 90 and 300
seconds. Membranes were blotted with: (A) anti-Lyn p-Tyr-507 and anti-Lyn-pan
antibodies; (B) anti-Fyn p-Tyr-530 and anti-Fyn-pan antibodies; and (C) anti-SFK
activation loop p-Tyr, anti-Src p-Tyr-529 and anti-Src-pan antibodies. Blots are
representative of 4 – 6 experiments.
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5.3.1.2  CD148 positively regulates collagen-mediated signalling in mouse platelets 

In the previous chapter I demonstrated that defects in collagen-mediate responses of CD148-

deficient platelets could be partially overcome at high concentrations of collagen (Chapter 4).  

Here I checked for signalling defects in collagen-stimulated CD148-deficient platelets.  

Unlike CRP, which is GPVI-specific, collagen binds to and signals through both GPVI and 

the integrin α2β1 simultaneously (Jarvis et al. 2002; Snell et al. 2002).  Further, collagen-

mediated responses are heavily dependent on positive feedback from released secondary 

mediators, ADP and TxA2 (Atkinson et al. 2003).  Initially, I checked whole cell 

phosphorylation in collagen-stimulated CD148-mutant platelets in the presence of an integrin 

αIIbβ3 antagonist to prevent platelet aggregation and outside-in integrin αIIbβ3 signalling.  A 

dramatic reduction in the number and intensity of most bands was observed in CD148-

deficient platelets compared with wild-type platelets, suggesting a block in GPVI and integrin 

α2β1 proximal signalling (Figure 5.4).  Phosphorylation of the FcR γ-chain was marginally 

reduced in mutant platelets under these conditions (Figure 5.4). 

SFKs were hypo-phosphorylated at their activation loop tyrosine in resting and 

collagen-stimulated CD148-deficient platelets relative to control platelets (Figure 5.5).  

Collagen-stimulated mutant platelets did however show a slight increase in phosphorylation 

of the activation loop of SFKs with time, suggesting a marginal increase in activity (Figure 

5.5, top panel).  Lyn, Fyn and Src were concomitantly hyper-phosphorylated at their C-

terminal inhibitory tyrosines Tyr-507, Tyr-530 and Tyr-529, respectively, suggesting that 

these may be substrates of CD148 (Figure 5.5).  Interestingly, Lyn was more highly 

phosphorylated at its inhibitory site than Fyn or Src, suggesting that CD148 may 

preferentially dephosphorylate the Lyn inhibitory tyrosine. 

Experiments similar to those described above were performed in the presence of ADP 

and TxA2 antagonists.  Platelets were initially stimulated with 10 µg/ml collagen, but this was 
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subsequently increased to 100 µg/ml in order to better visualize weak staining bands, such as 

the FcR γ-chain (Figure 5.6).  A dramatic reduction in tyrosine phosphorylation of most 

proteins was observed in CD148-deficient platelets stimulated with 10 µg/ml collagen 

compared with wild-type platelets throughout a 300 second time course (Figure 5.6A).  

Reduced whole cell phosphorylation in both mutant and control platelets the presence of ADP 

and TxA2 antagonists (Figures 5.4 and 5.6A), demonstrated that released ADP and TxA2 

enhance collagen-mediated signalling.  Interestingly, stimulation of mutant platelets with a 

10-fold higher dose of collagen (100 µg/ml) induced more phosphorylation in mutant platelets 

compared with the lower dose (10 µg/ml collagen) (Figures 5.6A and B), indicating a partial 

block in collagen signalling in mutant platelets.  This was supported by a marginal 

enhancement of tyrosine phosphorylation of the SFK activation loop (middle bands) over time 

in the CD148-deficient platelets, suggesting a very slight increase in SFK activity (Figure 

5.7B).  Although slight, this marginal increase in phosphorylation was fully reproducible, 

however to support this conclusion gel scanning should be performed. This observation 

correlated with increased phosphorylation of the FcR γ-chain with time (Figure 5.6A and B). 

A critical early event in GPVI signalling is the recruitment and activation of Syk 

tyrosine kinase to the phosphorylated FcR γ-chain (Watson et al. 2005).  This interaction is 

mediated by the tandem SH2 domains of Syk and the ITAM of the FcR γ-chain.  Syk 

activation is also important for α2β1 signalling (Keely et al. 1996).  Using a phospho-specific 

antibody, Syk was found to be hypo-phosphorylated at Tyr-352 in collagen-stimulated 

CD148-deficient platelets.  This was clearly observed at 100 µg/ml collagen (Figure 5.7B).  

Phosphorylation of Syk Tyr-352 is a SFK-mediated event that enhances activation of 

PLCγ (Law et al. 1994). 
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Figure 5.4. Reduced whole cell phosphorylation in CD148-deficient platelets.
Whole cell lysates (WCL) prepared from resting and collagen-stimulated platelets from
wild-type (WT) and CD148 transmembrane-knockout (KO) mice were western blotted
with an anti-phosphotyrosine antibody (p-Tyr). Platelets were stimulated with 10
µg/ml collagen in the presence of 9 µM integrillin for 30, 90 and 300 seconds (sec).
Blots are representative of 3 experiments.
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Figure 5.5. Impaired collagen-mediated Src family kinase activation in CD148-
deficient platelets. (A) Platelet whole cell lysates (WCLs) prepared from wild-type
(WT) and CD148 transmembrane knockout (KO) mice stimulated with 10 µg/ml
collagen for 30, 90 and 300 seconds in the presence of 9 µM integrillin. WCLs were
western blotted with phosphotyrosine-specific anti-Src family kinase (SFK), -Lyn, -
Fyn, -Src antibodies, and anti-Lyn-pan antibody. Blots are representative of 3
experiments.  
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Figure 5.6. Reduced whole cell phosphorylation in CD148-deficient platelets.
Whole cell lysates (WCL) prepared from resting and collagen-stimulated platelets
from wild-type (WT) and CD148 transmembrane-knockout (KO) mice were western
blotted with an anti-phosphotyrosine antibody (p-Tyr). Platelets were stimulated with
either (A) 10 µg/ml or (B) 100 µg/ml collagen in the presence of 9 µM integrillin for
30, 90 and 300 seconds (sec). The bands corresponding to the FcR γ-chain are shown
in the lower panels. Blots are representative of 3 experiments.  
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Figure 5.7. Impaired collagen-mediated Src family kinase and Syk kinase
activation in CD148-deficient platelets. Platelet whole cell lysates (WCLs)
prepared from wild-type (WT) and CD148 transmembrane knockout (KO) mice
stimulated with 10 µg/ml collagen for 30, 90 and 300 seconds. Platelets were treated
with 10 µM indomethacin (cyclooxygenase inhibitor) and 2 U/ml apyrase (ADP
scavenger) prior to being stimulated with either (A) 10 µg/ml or (B) 100 µg/ml
collagen. WCLs were western blotted with phosphotyrosine specific anti-Src family
kinase (SFK), -Lyn, -Fyn, -Src antibodies, anti-Lyn-pan antibody. and
phosphotyrosine specific anti-Syk antibody. Blots are representative of 3 experiments.  
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5.3.2  Regulation of fibrinogen-mediated signalling by CD148 
 
5.3.2.1  CD148 positively regulates αIIbβ3 proximal signalling in mouse platelets 
 
We next investigated the molecular mechanism underlying the fibrinogen spreading defect 

exhibited by CD148-deficient platelets described in Chapter 4.  We hypothesized that this was 

due to a signalling defect as platelets from mutant mice expressed normal levels of integrin 

αIIbβ3 (Senis et al. 2009).  Consistent with this theory, western blotting of whole cell lysates 

prepared of fibrinogen-spread WT and mutant platelets revealed a significant reduction in 

phosphorylation of most proteins in CD148-deficient platelets, including Syk and PLCγ2, 

both of which are essential components of the αIIbβ3 signalling cascade (Figure 5.8A – C).  

Both Src and Lyn were hyper-phosphorylated at their C-terminal inhibitory sites (Tyr-529 and 

Tyr-507, respectively) in fibrinogen-spread CD148-deficient platelets relative to control 

platelets (Figure 5.8D).  In line with the result GPVI signalling results, SFKs were 

concomitantly hypo-phosphorylated at their activiaton loops relative to controls in BSA non-

adherent and fibrinogen-spread CD148-deficient platelets (Figure 5.8D).  Together, these 

results demonstrate that CD148 positively regulates SFKs downstream of αIIbβ3, providing a 

molecular explanation for the fibrinogen spreading defect exhibited by CD148-deficient 

platelets. 
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Figure 5.8. Defective αIIbβ3 signalling in CD148-deficient platelets. Wild-type
(WT) and CD148-deficient (KO) platelets were plated on BSA- and fibrinogen-coated
surfaces for 45 minutes at 37°C. Whole cell lysates (WCLs) were prepared from BSA
(BSA) non-adherent and fibrinogen (fib) adherent platelets. (A) Equal amounts of
total protein were resolved by SDS-PAGE and western blotted with an anti-
phosphotyrosine antibody. (B and C) Syk and PLCγ2 were immunoprecipitated from
equal amounts of WCLs and blotted with an anti-phosphotyrosine antibody.
Membranes were subsequently stripped and re-blotted with anti-Syk and anti-PLCγ2
antibodies. (D) WCLs were western blotted with an anti-Src family kinase (SFK)
activation loop p-Tyr antibody, an anti-Src p-Tyr-529 antibody and an anti-Lyn p-Tyr-
507 antibody. Results are representative of three experiments.
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5.3.3  Tyrosine phosphorylation of CD148 
 
Tyrsoine phosphorylation has been shown to regulate the activity of some RPTPs, including 

PTPα and PTPε (Chen et al. 2006; Berman-Golan et al. 2007).  In this sub-section, I 

investigated tyrosine phosphorylation of CD148 in resting and activated platelets, the 

rationale being that this information may provide some insight into the regulation of CD148 

in platelets. 

 

5.3.3.1  Tyrosine phosphorylation of CD148 in suspended platelets  

Immunoprecipitation and western blotting was used to check the phosphorylation status of 

CD148 in resting and activated human platelets in suspension.  CD148 was found to be 

constitutively phosphorylated in resting platelets and this did not change in response to 

stimulation with 10 μg/ml CRP and 5 U/ml thrombin for 3 minutes (Figure 5.9Ai and ii).  A 

significant increase in tyrosine phosphorylation of CD148 was however observed in platelets 

treated with 100 µM of the general PTP inhibitor pervanadate, demonstrating that it was 

submaximally phosphorylated in resting, CRP and thrombin activated platelets (Figure 5.9Ai 

and ii). 

Pre-treatment of platelets with the general Src kinase inhibitor PP2, prior to 

stimulation with CRP and thrombin, abolished tyrosine phosphorylation of CD148 in resting, 

CRP and thrombin activated platelets, demonstrating that this is SFK-dependent event (Figure 

5.9Ai).  PP2 significantly blocked, but did not completely inhibit pervandate-induced tyrosine 

phophorylation of CD148, demonstrating that CD148 can also be phosphorylated by other 

kinases besides SFKs (Figure 5.9Ai).  
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5.3.3.2  Tyrosine phosphorylation of CD148 in spread platelets 

Tyrosine phosphorylation of CD148 was also investigated in fibrinogen-spread platelets, in 

order to determine whether outside-in integrin αIIbβ3 signalling alters its phosphorylation.  

Washed human platelets were placed on either a BSA- or fibrinogen-coated surface for 45 

minutes.  BSA non-adherent (control) or fibrinogen adherent platelets were subsequently 

lysed, CD148 was immunoprecipitated and western blotted.  CD148 was constitutively 

phosphorylated to a similar extent in BSA non-adherent and fibrinogen adherent platelets 

(Figure 5.9B).  
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Figure 5.9. CD148 is constitutively tyrosine phosphorylated by Src kinases. (Ai)
CD148 was immunoprecipitated (IP) from lysates prepared of washed human platelets
under the following conditions: unstimulated (basal), stimulated with 10 µg/ml CRP,
5 U/ml thrombin and 100 µM pervanadate for 3 minutes. IP’s were western blotted
with an anti-phosphotyrosine antibody (p-Tyr). Membranes were subsequently
stripped and re-blotted with an anti-CD148 antibody (CD148). Pre-treatment of
platelets with 20 µM PP2 (Src kinase inhibitor) inhibited tyrosine phosphorylation of
CD148 under all conditions tested. (Aii) Band intensities were quantified. (B) CD148
was IP’d from lysates prepared of BSA non-adherent (BSA) and fibrinogen adherent
(fib) washed human plateles. IP’s were western blotted with an anti-phosphotyrosine
antibody (p-Tyr). Membranes were subsequently stripped and re-blotted with an anti-
CD148 antibody (CD148). n=2.
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5.4  Discussion 

In this chapter I demonstrate proximal signalling defects downstream of both the collagen 

receptor GPVI and the integrin αIIbβ3 in CD148-deficient platelets.  In both cases this 

appears to be due to a global reduction in SFK activity in resting and activated platelets.  The 

C-terminal inhibitory sites of Lyn, Fyn and Src appear to be substrates of CD148, as all three 

proteins were hyper-phosphorylated at their respective inhibitory sites in CD148-deficient 

platelets.  Without this pool of active SFKs in resting CD148-deficient platelets, ligand-

mediated cross-linking of GPVI and αIIbβ3 does not elicit optimal signalling. 

 Until now, the earliest characterized signalling event downstream of GPVI was the 

activation of constitutively associated SFKs Lyn and Fyn (Ezumi et al. 1998; Quek et al. 

2000; Suzuki-Inoue et al. 2002).  However, the molecular mechanism of how SFKs are 

activated in platelets had yet to be addressed.  Biochemical data presented in this chapter 

demonstrated a GPVI proximal signalling defect in the absence of CD148 as tyrosine 

phosphorylation of the FcR γ-chain, Syk and PLCγ2 were all substantially reduced in 

response to CRP.  Additionally, SFKs exhibited markedly reduced phosphorylation of their 

activation loop tyrosines in parallel with increased phosphorylation of their C-terminal 

inhibitory tyrosines in the absence of CD148.  Similar findings were observed in collagen-

stimulated platelets, however these defects were less severe than those observed with CRP 

and could be partially overcome with high dose collagen.  These differences can be explained 

by the contributions of α2β1, ADP and TxA2 to collagen signalling (Inoue et al. 2003; 

Nieswandt et al. 2003).  SFK activation-loop phosphorylation did not appear to change 

significantly following stimulation of wild type platelets with collagen.  A potential reason for 

this is the contribution of α2β1 to collagen signalling.  A higher dose of collagen maybe 

required to replicate the increase in SFK activation-loop phosphorylation observed with the 

GPVI specific agonist CRP.  Collectively, these findings demonstrate that CD148 plays a 
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critical role in activating SFKs in resting platelets and downstream of GPVI.  CD148 would 

therefore appear to play a similar role to that of the structurally distinct RPTP CD45 in B and 

T cell receptor signalling (Hermiston et al. 2003; Zhu et al. 2008).  

Defective spreading of CD148-deficient platelets on a fibrinogen-coated surface can 

also be explained by altered tyrosine phosphorylation of SFKs, resulting in reduced SFK 

activity and signalling downstream of the integrin αIIbβ3.  The Shattil group recently 

demonstrated a critical role for the non-transmembrane tyrosine phosphatase, PTP-1B, in 

activating Src specifically downstream of the integrin αIIbβ3.  Interestingly, their work 

suggests that PTP-1B acts specifically downstream of the integrin and is not involved in 

regulating collagen-, thrombin- or ADP-mediated responses (Arias-Salgado et al. 2005).  

Therefore, CD148 appears to be a global regulator of SFKs in platelets, whereas PTP-1B acts 

specifically on αIIbβ3-associated Src. 

The biochemical explanation why CD148 is constitutively tyrosine phosphorylated in 

platelets is presently not known.  This is a SFK-dependent event and does not change in 

response to various platelet agonists, including CRP, thrombin and fibrinogen.  Tyrosine 

phosphorylation may alter activity, protein-protein interactions or the half-life of CD148.  

Tyrosine phosphorylation has previously been shown to regulate the activity of other RPTPs, 

such as PTPα and PTPε, however, this does not seem to be a general mechanism that applies 

to all RPTPs (Chen et al. 2006; Berman-Golan et al. 2007).  

The major finding of this chapter is that global SFK activity is significantly reduced in 

resting and activated CD148-deficient platelets compared with wild-type platelets.  This 

appears to be due to hyperphosphorylation of SFKs at their C-terminal inhibitory tyrosine 

residues, so they are in an inactive conformation.  A pool of active SFKs is therefore essential 

for initiating a rapid and optimal response when platelets come in contact with the ECM at 

sites of vascular injury. 
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6.1  Aim 
 
The three objectives of this chapter were: (1) to confirm that CD148 is a positive regulator of 

GPVI using a cell line model; (2) to confirm that Lyn, Fyn and Src are substrates of CD148; 

and (3) to identify physiological substrates of CD148 in platelets using an in vitro substrate-

trapping approach. 
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6.2  Introduction 

Results from the previous two chapters demonstrate that CD148 is a critical positive regulator 

of platelet function, and that it does so by maintaining a pool of active SFKs in platelets by 

dephosphorylation their C-terminal inhibitory tyrosines.  However, several important 

questions arise from these findings and conclusions I have made thus far, including: (1) Are 

the functional defects observed in CD148-deficient mouse platelets due to developmental or 

signalling defects?; (2) Does CD148 have other substrates in platelets besides SFKs?; and (3) 

Are SFKs direct substrates of CD148? 

 Although genetically modified mice are the model of choice for studying protein 

function in platelets, one of their limitations is developmental defects masking the functional 

role of a protein.  It is therefore important to validate functions observed in platelets from 

mouse models in a cell-based system.  To address this point, I used the DT40 chicken B 

cell/NFAT luciferase assay to measure the effects of CD148 on GPVI signalling.  This assay 

has been used extensively by immunologists to dissect the B cell receptor signalling pathway 

(Yasuda et al. 2004).  More recently this assay has been adapted by the Watson group for 

studying GPVI, CLEC-2 and G6b-B signalling (Fuller et al. 2007; Tomlinson et al. 2007; 

Mori et al. 2008).  One of the main strengths of this assay is that it is particularly good for 

measuring weak, sustained signals.    

I also wanted to confirm and build on the finding that SFKs are substrates of CD148 in 

platelets; and identify other substrates of CD148 in platelets.  Several phosphatases have been 

demonstrated to have a broad range of substrate specificity in vitro and in vivo (Blanchetot et 

al. 2005).  Comparing the GPVI and the integrin αIIbβ3 signalling pathways provides 

potential CD148 targets.  Some of the signalling molecules common to both receptors are: (1) 

the tyrosine kinases Btk, Tec, and Syk; (2) the lipid kinase PI 3-kinase; (3) the phospholipase 

PLCγ2; and (4) the small GTPases Vav1, Vav3, and Rac1 (Watson et al. 2005).  There are 
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also some important differences between the GPVI and αIIbβ3 signalling pathways, including 

the adaptor protein LAT, which nucleates formation of an essential signalling complex 

downstream of GPVI, but is not required for αIIbβ3 signalling (Watson et al. 2001; Wonerow 

et al. 2002). 

Potential physiological substrates of CD148 identified in other cell systems including: 

(1) the tyrosine kinase-linked receptors Met and PDGFβ; (2) the adapter proteins LAT and 

Gab1; (3) the adherens junction protein p120catenin; (4) PLCγ1; and (5) more recently the 

p85 subunit of PI 3-kinase (Kovalenko et al. 2000; Baker et al. 2001; Holsinger et al. 2002; 

Palka et al. 2003; Tsuboi et al. 2008).  Interestingly, LAT, PLCγ1 and PI 3-kinase all lie 

downstream GPVI signalling cascade, raising the possibility that CD148 regulates multiple 

points in the same signalling cascade (Pasquet et al. 1999; Suzuki-Inoue et al. 2003; 

Watanabe et al. 2003). 

In this chapter I confirmed that CD148 plays a positive regulatory role in GPVI 

signalling using the DT40/NFAT luciferase reporter assay and showed that its catalytic 

activity is essential for this function.  In addition, using in vitro biochemical assays, I 

demonstrate that the SFKs, Src, Lyn and Fyn interact with and are dephosphorylated on their 

activation and inhibitory sites by CD148.  Finally, using a mass spectrometry-based approach, 

I identified myosin heavy chain 9 (MYH9 protein) as a potential novel substrate of CD148. 
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6.3  Results 

6.3.1 CD148 positively regulates GPVI signalling in a cell line model 

In order to determine whether CD148 catalytic activity is required to enhance GPVI signalling 

I used a nuclear factor of activated T-cells (NFAT)–luciferase transcriptional reporter assay, 

which provides a highly sensitive readout and is widely used to study signalling through the 

ITAM-containing B-cell and T-cell receptors.  The NFAT reporter contains three copies of a 

combined NFAT– activator protein-1 (AP-1) element from the human interleukin-2 (IL-2) 

gene promoter, and is maximally activated by mutual Ca2+ elevation and RAS/mitogen-

activated protein kinase (MAPK) signalling, which activate NFAT and AP-1, respectively.  

NFAT-driven luciferase generation over a period of six hours provides a direct readout for 

sustained ITAM signalling (Tomlinson et al. 2007). 

DT40 chicken B cells were transiently transfected with the GPVI/FcR γ-chain 

complex on its own or in combination with either wild-type or catalytically inactive CD148, 

and the NFAT-luciferase reporter.  Cells were grown overnight and stimulated the following 

day with 1 µg/ml collagen for 6 hrs.  Luciferase activity was measured in lysates and used as 

a direct readout of GPVI signalling.  Co-expression of wild-type CD148 with the GPVI/FcR 

γ-chain complex enhanced collagen-induced NFAT reporter activity by approximately 2.5-

fold compared with the GPVI/FcR γ-chain complex alone (Figure 6.1).  Interestingly, basal 

GPVI signalling was also marginally enhanced in the presence of catalytically active CD148.  

In contrast, catalytically inactive CD148 had no effect on GPVI signalling in the same assay 

(Figure 6.2).  These findings correlated with the platelet results from Chapters 4 and 5, 

demonstrating that catalytically active CD148 enhances GPVI signalling. 
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Figure 6.1: CD148 positively regulates GPVI in transiently transfected DT40
cells. An NFAT luciferase reporter assay was used to investigate whether CD148
regulates GPVI signalling. DT40 B cells were transiently transfected with wild-type
CD148 (CD148) on its own, the GPVI-FcR γ-chain complex (GPVI/FcRγ) on its
own, or CD148 and GPVI/FcRγ together. The NFAT luciferase reporter gene was co-
transfected in all cases. Transfected cells were stimulated with either 0.2, 1 or 5
µg/ml collagen for 6 hrs at 37°C and subsequently lysed. Luciferase activity was
measured in a luminometer by addition of luciferin. Luminenscence is directly
proportional to the amount of GPVI signalling. The assay demonstrated that CD148
positively regulates GPVI signalling. Data shown is representative of 3 separate
experiments.
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Figure 6.2. CD148 catalytic activity is essential for regulating GPVI signalling
in transiently transfected DT40 cells. DT40 B cells were transiently transfected
with various combinations of the following expression plasmids: wild-type CD148
(CD148[WT]), catalytically inactive CD148 (CD148[C/S]), GPVI and FcR γ-chain
(GPVI/FcRγ), and the NFAT luciferase reporter. Transfected cells were stimulated
with 1 µg/ml collagen for 6 hrs at 37°C and subsequently lysed. Luciferin was added
to lysates and luciferase activity was measured in a luminometer. Luminenscence is
directly proportional to the amount of GPVI signalling (mean ± standard error of the
mean, n = 4).
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6.3.2 Identification of CD148 substrates in platelets 
 
Since CD148 enzyme activity is essential to positively regulate GPVI signalling, I next 

wanted to identify substrates of CD148 in platelets.  To do this, I used an in vitro substrate-

trapping pulldown assay.  Variations of this assay have been used to identify substrates of 

various PTPs including CD148 (Palka et al. 2003).  Wild-type and mutant forms of the 

cytoplasmic tail of CD148 were N-terminally tagged with maltose-binding protein (MBP) and 

used to pull down potential substrates and interacting proteins from pervanadate stimulated 

platelet lysates.  A mutant form of CD148 (D1205A) was used to trap substrates (MBP-

CD148[D/A]) (Figure 6.3).  This mutation within the catalytic pocket of CD148 blocks 

catalysis and results in a more stable enzyme and substrate complex (Flint et al. 1997; Palka et 

al. 2003; Blanchetot et al. 2005).  Wild-type (MBP-CD148[WT]) and catalytically inactive 

(C1239S; MBP-CD148[C/S]) were also used as controls to distinguish between substrates and 

interacting proteins (Figure 6.3).  Bacterially expressed recombinant proteins were purified 

and coupled to amylose-coated beads, which were then used to pulldown CD148 interacting 

proteins (Figure 6.4).  Expression and purification of mutant proteins can be found in the 

appendix. 

Platelets were treated with the general PTP inhibitor pervanadate, so that intracellular 

proteins would be maximally phosphorylated.  Optimal conditions for pervanadate 

stimulation were determined by performing a dose response and time course of pervanadate 

stimulation of platelets.  Washed human platelets were stimulated with either, 1, 3, 10, 30 or 

100 µM pervanadate for 3 minutes (Figure 6.5A), or with 100 µM pervanadate for 0, 30, 60, 

90 or 180 seconds (Figure 6.5B).  Platelets were subsequently lysed, proteins were resolved 

by SDS-PAGE and western blotted with an anti-phosphotyrosine antibody.  The optimal 

concentration and time for pervanadate stimulation was determined to be 100 µM pervanadate 

for 3 minutes, and was used for all subsequent substrate-trapping experiments.  
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Figure 6.3: Recombinant MBP-tagged versions of CD148 cytoplasmic tail used in
in vitro substrate-trapping pull down assay. (A) Full length wild-type CD148
protein consists of a 975 amino acid (aa) extracellular region, a 21 aa transmembrane
domain and a 341 aa cytoplasmic region. The cytoplasmic tail consists of a 20 aa
juxtamembrane region, followed by a 284 aa catalytic PTP domain (red box labelled
‘PTP’) and a 16 aa cytoplasmic tail. (B) Three recombinant maltose-binding protein
(MBP)-tagged versions of the entire CD148 cytoplasmic region were used in the
substrate-trapping pulldown assay: (1) wild-type (MBP-CD148[WT]); (2) catalytically
inactive (MBP-CD148[C/S]), in which cysteine 1239 is replaced with a serine; and (3)
substrate trapping mutant (MBP-CD148[D/A]), in which aspartic acid 1205 is
replaced with an alanine. Expression plasmids for all recombinant proteins were
kindly provided by Professor Nicholas Tonks (Palka et al. 2003) .
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Figure 6.4: Flow diagram of substrate-trapping pulldown assay used to identify
substrates and interacting proteins of CD148 in platelets.
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Figure 6.5. Pervanadate dose response and time course. (A) Washed human
platelets (5 × 108/ml) were stimulated with either 1, 3, 10, 30 or 100 µM pervanadate
for 3 minutes, or (B) 100 µM pervanadate for 0, 30, 60, 90 or 180 seconds. Platelets
were subsequently lysed with 1% NP-40. Whole cell lysates (WCL) were resolved
by SDS-PAGE and western blotted with an anti-phosphotyrosine antibody (p-Tyr).
Blots are representative of 3 experiments.
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6.3.3  SFKs interact with CD148 in platelets 

An initial screen to identify interacting proteins of CD148 in platelets using the above assay 

was implemented.  Recombinant bacterially expressed MBP-tagged CD148 fusion proteins 

were not purified from bacterial lysates prior to coupling to amylose-resin.  Rather, an equal 

amount of amylose-resin was incubated with equal amounts of crude bacterial lysate 

expressing the different wild-type and mutant version of CD148 cytoplasmic region.  Using 

this approach, Lyn and Src were found to preferentially interact with the substrate-trapping 

form of CD148 by western blotting, suggested that they may be substrates of CD148 (Figure 

6.6).  Interestingly, Csk interacted equally well with all three versions of the cytoplasmic 

region of CD148, suggesting that it may be constitutively associated with CD148 (Figure 6.6). 

We next wanted to confirm these interactions using a cleaner, more well-defined 

assay.  This was accomplished by purifying recombinant MBP-tagged fusion proteins from 

bacterial lysates by affinity chromatography, quantifying and coupling equal amounts of 

recombinant proteins to equal amounts of amylose-resin.  Using this refined approach, we 

could now only detect interactions with phosphoproteins using the substrate-trapping 

recombinant protein (Figure 6.7).  Prominent bands migrating at 90, 56, 43 and 40 kDa were 

specifically pulled down with MBP-CD148[D/A] (Figure 6.7).  Several minor bands were 

also identified at 160, 130 and 100 kDa (Figure 6.7).  Bands at 90 and 56 kDa co-migrated 

with MBP-CD148[D/A] and SFKs, respectively.  Lyn, Fyn and Src were now only detected 

with the CD148 substrate-trapping mutant by western blotting (Figure 6.7).  Re-blotting the 

membranes for MBP demonstrated equal amounts of each MBP-tagged recombinant protein 

in each lane (Figure 6.7).  These results supported the hypothesis that Lyn, Fyn and Src are 

substrates of CD148. 

Pulldown samples shown in Figure 6.7 were also immunoblotted for other signalling 

proteins that we hypothesized may be substrates of CD148.  LAT, PLCγ2, as well as other 
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components of the GPVI signalling pathway, including Syk, SLP-76 and the FcR γ-chain 

were not detected, suggesting they are not substrates of CD148. 
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Figure 6.6. Crude screening approach reveals SFKs and Csk interactions with
CD148 cytoplasmic region. Pulldowns were performed from pervandate stimulated
platelets lysates (100 µM pervanadate for 3 minutes) using amylose-resin coated with
equal amounts of crude lysates prepared of bacteria expressing MBP-tagged wild-
type, catalytically inactive or substrate-trapping versions of the cytoplasmic region of
CD148 (MBP-CD148[WT], MBP-CD148[C/S] or MBP-CD148[D/A], respectively).
Non-specifically bound proteins were removed by washing with column buffer.
Specifically bound proteins were eluted from resin and western blotted with: anti-
phosphotyrosine (p-Tyr), anti-Lyn (Lyn), anti-Src (Src) and anti-Csk (Csk)
antibodies. Blots are representative of 3 experiments.
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Figure 6.7. SFKs interact specifically with CD148 substrate-trapping mutant in
vitro. Equal amounts of purified recombinant MBP-tagged fusion proteins of the
cytoplasmic tail of wild-type, catalytically inactive and substrate-trapping forms of
CD148 (MBP-CD148[WT], MBP-CD148[C/S] and MBP-CD148[D/A]) were coupled
to amylose-resin and used to pulldown interacting proteins from pervanadate
stimulated human platelet lystates. Specifically bound proteins were western blotted
with: anti-phosphotyrosine (p-Tyr), anti-Lyn (Lyn), anti-Fyn (Fyn), anti-Src (Src) and
anti-MBP (MBP) antibodies. Major phosphotyrosine bands were only observed with
the MBP-CD148[D/A] substrate-trapping mutant. Prominent bands at 90 and 56 kDa
likely correspond to MBP-CD148[D/A] and SFKs, respectively. The identity of the
prominent doublet below 43 kDa is not known (?). Lyn, Fyn and Src were only pulled
down with MBP-CD148[D/A]. Blots are representative of 5 experiments.
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6.3.4  Src, Lyn and Fyn bind to the active site of CD148 

A vanadate competition assay was used to confirm that Lyn, Fyn and Src interact with the 

catalytic site of CD148.  Recombinant MBP-CD148[D/A] was treated with 2 mM vanadate 

before being incubated with pervanadate treated platelet lysate.  Vanadate binds to the 

catalytic site of all PTPs and blocks any interactions with substrates.  In the absence of 

vanadate the SFKs Lyn, Fyn and Src were pulled down from pervanadate-treated platelet 

lysates.  However, in the presence of 2 mM vanadate, Src, Lyn and Fyn were not pulled 

down, demonstrating that these SFKs interact directly with the active site of CD148 and are 

likely substrates (Figure 6.8). 

 

6.3.5  Recombinant CD148 dephosphorylates platelet-derived SFKs in vitro 

I next investigated whether recombinant CD148 PTP domain could dephosphorylate Src, Lyn 

and Fyn in vitro.  Lysates were prepared in the same way as for the substrate-trapping assay 

before being incubated with either purified recombinant MBP, MBP-CD148[WT] or 

catalytically inactive MBP-CD148[C/S].  Lysates were subsequently western blotted with 

phospho-specific antibodies that recognize either the activation loop tyrosine residues of all 

SFKs or the C-terminal inhibitory tyrosine residues of Src, Lyn and Fyn (Tyr-529, Lyn-507 

and Fyn-530, respectively) (Figure 6.9).  These findings demonstrate that CD148 can 

dephosphorylate both the activation loop tyrosines of SFKs and the inhibitory tyrosines of 

Lyn, Fyn and Src in vitro.  Catalytically inactive CD148 did not dephosphorylate any of these 

sites.  These findings suggest that CD148 preferentially dephosphorylates the activation loop 

tyrosine of SFKs and differentially dephosphorylates the C-terminal inhibitory tyrosines of 

SFKs, preferring the Lyn inhibitory tyrosine over those of Src and Fyn. 
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Figure 6.8: Vanadate out-competes interaction of CD148 substrate-trapping
mutant with Lyn, Fyn and Src. Washed human platelets (5 × 108/ml) were treated
with 100 µM pervanadate and lysed with 1% NP-40 lysis buffer. MBP-tagged CD148
substrate trapping fusion protein (MBP-CD148[D/A]) was pre-incubated with (+) or
without (−) 2 mM vanadate prior to being incubated with the platelet lysates.
Proteins were pulled down using amylose-resin and eluted off of the beads by boiling
in 2× Laemmeli buffer. Samples were western blotted with either anti-
phosphotyrosine antibody (p-Tyr), anti-Lyn (Lyn), anti-Fyn (Fyn) or anti-Src (Src)
antibodies. Blots are representative of 3 experiments.
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Figure 6.9. CD148 dephosphorylates both the activation loop and inhibitory site
tyrosines of SFKs in vitro. Washed human platelets were treated with 100 μM
pervanadate with stirring for 3 minutes prior to lysis. Lysates were incubated with
MBP, wild-type CD148 PTP catalytic domain (CD148[WT]) or catalytically inactive
MBP-CD148 (MBP-CD148[CS]) fusion proteins for 30 minutes at room temperature.
Lysates were subsequently western blotted with phosphospecific antibodies that
recognized either the Lyn inhibitory site tyrosine (Lyn p-Tyr 507), Src inhibitory site
tyrosine (Src p-Tyr 529), Fyn inhibitory site tyrosine (Fyn p-Tyr 530) or the
activation loop tyrosines of all SFKs (SFKs activation loop p-Tyr). Band intensities
(arbitrary units) indicated below each panel were quantified using Adobe Photoshop
cs version 8.0. Representative data from 2 experiments.
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6.3.6  Kinetics of dehosphorylation of SFK-derived phopho-peptides 

The kinetics of dephosphorylation of a panel of synthetic SFK-derived phospho-peptides by 

recombinant CD148 PTP domain was measured in real-time using the EnzCheck 

spetrophotometric assay.  This work was done in collaboration with Dr. Alastair Barr 

(Structural Genomics Consortium Oxford).  Phosphopeptides are shown in Table 2.5.  The 

assay is based on a method originally described by Webb for measuring inorganic phosphate 

(Pi) released from enzymatic reactions (Webb 1992).  In the presence of Pi, the substrate 2-

amino-6-mercapto-7-methylpurine-riboside (MESG) is converted enzymatically by purine 

nucleoside phosphorylase (PNP) to ribose 1-phosphate and 2-amino-6-mercapto-7-

methylpurine.  Enzymatic conversion of MESG results in a spectrophotometric shift in 

maximum absorbance from 330 nm for the substrate to 360 nm for the product.   Absorbances 

were measured continuously at 360 nm using a Spectramax plate reader and initial reaction 

rates were calculated over a 5 min period.  Using this assay, recombinant CD148 PTP domain 

was found to dephosphorylate phosphopeptides corresponding the activation loop and 

inhibitory site of SFKs in the following order: Lyn activation loop = Src activation loop > Lyn 

inhibitory site > Src inhibitory site = Fyn inhibitory site (Figure 6.10A).  These findings 

correlated with what was observed in the in vitro dephosphorylation assay (Figure 6.9). 

PTP-1B catalytic domain was also tested in this assay as PTP-1B is highly expressed 

in platelets and has been shown to be an essential positive regulator of αIIbβ3-associated Src 

in platelets (Figure 6.10B).  Interestingly, the PTP-1B catalytic domain had the opposite 

specificity to that of CD148, preferentially dephosphorylated SFK C-terminal inhibitory 

peptides rather than activation loop peptides (Figure 6Aii).  These findings suggest that 

CD148 and PTP-1B differentially regulate SFK activity. 

The calculated Vmax (absorbance [Abs] 360 nm/sec) of dephosphorylation of Lyn 

phospho-peptides by CD148 PTP domain was comparable for the activation loop and 
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inhibitory sites (5.6 ± 0.5 Abs 360 nm/sec versus 5.3 ± 0.7 Abs 360 nm/sec, respectively) 

(Figure 6.11).  However, the Km for the Lyn activation loop phospho-peptide was half of that 

for the Lyn inhibitory site phospho-peptide (301 ± 56 µM versus 621 ± 144 µM, 

respectively), demonstrating a two-fold higher affinity for the activation loop phospho-peptide 

compared with the inhibitory site phospho-peptide (Figure 6.11). 

Together these results suggest that CD148 has a marginal preference for 

dephosphorylating the activation loop of SFKs rather than the inhibitory site and that Lyn is a 

preferred substrate over Src and Fyn. 
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A) CD148

Blank
Lyn activation loop
Src activation loop
Lyn inhibitory site
Src inhibitory site
Fyn inhibitory site

B) PTP-1B

Figure 6.10. CD148 differentially dephosphorylates SFK phosphorylation sites in
vitro. The kinetics of dephosphorylation of phosphopeptides, corresponding to the
activation loop and inhibitory site of Src family kinases by recombinant CD148 and
PTP-1B PTP domains, were measured using the EnzCheck spectrophotometric
continuous assay. The reaction contained: 2-amino-6-mercapto-7-methylpurine-
riboside (MESG), purine nucleoside phosphorylase (PNP), phosphopeptides and
either: (A) recombinant CD148 PTP domain or (B) PTP-1B PTP domain. Inorganic
phosphate released from the phosphopeptide was measured as an increase in
absorbance at 360 nm using a Spectramax plate reader over 5 minutes. Data generated
in collaboration with Dr.Alistair Barr, SGC, Oxford.  



Chapter 6  Identification of CD148 Substrates 

164 

 

5.3±0.7621±144Lyn inhibitory siteCD148

5.6±0.5301±56Lyn activation loopCD148

VmaxKmPhosphopeptideEnzyme

Lyn activation loop

Lyn inhibitory site

Figure 6.11. CD148 PTP domain has a higher affinity for the Lyn activation loop
phosphopeptide compared with the inhibitory site phosphopeptide in vitro. The
initial rates of dephosphorylation of phosphopeptides corresponding to the activation
loop and inhibitory site of Lyn were measured using the EnzCheck
spectrophotometric continuous assay. The reaction contained: 2-amino-6-mercapto-
7-methylpurine-riboside (MESG), purine nucleoside phosphorylase (PNP), SFK
phosphopeptide and recombinant CD148 PTP domain. Inorganic phosphate released
from the phosphopeptide was measured as an increase in absorbance at 360 nm using
a Spectramax plate reader over 5 minutes. Calculated Vmax (Abs 360 nm/sec) and
Km (µM) for each peptide are shown. Data generated in collaboration with
Dr.Alistair Barr, SGC, Oxford.
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6.3.7  Identification of CD148 substrates in platelets 

I next wanted to identify other substrates of CD148 in platelets besides SFKs.  The same 

substrate-trapping/pulldown assay described above was used for this purpose.  Samples were 

resolved by SDS-PAGE and stained with colloidal Coomassie blue to visualize the proteins 

(Figure 6.12).  Several proteins were pulled down specifically with the MBP-CD148(D/A) 

mutant, suggesting these may be substrates.  The most prominent bands migrated at 

approximately 160, 90, 60 and 43 kDa (Figure 6.12).  The diffuse band at 60 kDa may be 

SFKs.  The 160, 90 and 43 kDa bands were excised and protein identification was attempted 

by MALDI-TOF.  CD148 was identified in the 90 kDa band.  This probably represents the 

fusion protein.  Presumably other highly phosphorylated co-migrating substrates are also 

present in this region.  Unfortunately, the 43 kDa protein could not be identified due to 

sample degradation.   

The protein corresponding to the 160 kDa band was found to be non-muscle myosin 

heavy chain IIa (Swiss-Prot: P35579), also referred to a myosin heavy chain 9 or MYH9 

protein (Figure 6.13).  Twenty-nine unique peptides were identified, giving 22% coverage of 

the protein.  There are two isoforms of non-muscle myosin heavy chain IIa.  Isoform 1 is 

1,960 amino acids and has a predicted molecular mass of 226,532 Da, and isoform 2 is 1,382 

amino acids and has a predicted molecular weight of 159,864 Da.  Non-muscle myosin heavy 

chain IIa was recently shown to be phosphorylated at Tyr-754 and Tyr-1408 (Rikova et al. 

2007). 

 

 

 

 

 



Chapter 6  Identification of CD148 Substrates 

166 

 

Figure 6.12: Nonmuscle myosin heavy chain IIa interacts with a substrate-
trapping form of CD148 in vitro. Potential substrates of CD148 were pulled down
from pervandate-stimulated platelet samples as in Figure 6.9. Samples were resolved
by SDS-PAGE and proteins stained with Colloidal Coommassie blue. Bands were
subsequently excised and proteins sent for analysis by electronstray ionization-liquid
chromatography-tandem mass spectromety. Non-muscle myosin heavy chain IIa
(Swiss-Prot no: P35579) was identified in the high molecular weight band, indicated
by the arrow. CD148 was identified in the doublet where the MBP-CD148 fusion
protein migrates. Proteins have yet to be identified in the other bands. n=2.
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1 AQQAADKYLY VDKNFINNPL AQADWAAKKL VWVPSDKSGF EPASLKEEVG
51 EEAIVELVEN GKKVKVNKDD IQKMNPPKFS KVEDMAELTC LNEASVLHNL

101 KERYYSGLIY TYSGLFCVVI NPYKNLPIYS EEIVEMYKGK KRHEMPPHIY
151 AITDTAYRSM MQDREDQSIL CTGESGAGKT ENTKKVIQYL AYVASSHKSK
201 KDQGELERQL LQANPILEAF GNAKTVKNDN SSRFGKFIRI NFDVNGYIVG
251 ANIETYLLEK SRAIRQAKEE RTFHIFYYLL SGAGEHLKTD LLLEPYNKYR
301 FLSNGHVTIP GQQDKDMFQE TMEAMRIMGI PEEEQMGLLR VISGVLQLGN
351 IVFKKERNTD QASMPDNTAA QKVSHLLGIN VTDFTRGILT PRIKVGRDYV
401 QKAQTKEQAD FAIEALAKAT YERMFRWLVL RINKALDKTK RQGASFIGIL
451 DIAGFEIFDL NSFEQLCINY TNEKLQQLFN HTMFILEQEE YQREGIEWNF
501 IDFGLDLQPC IDLIEKPAGP PGILALLDEE CWFPKATDKS FVEKVMQEQG
551 THPKFQKPKQ LKDKADFCII HYAGKVDYKA DEWLMKNMDP LNDNIATLLH
601 QSSDKFVSEL WKDVDRIIGL DQVAGMSETA LPGAFKTRKG MFRTVGQLYK
651 EQLAKLMATL RNTNPNFVRC IIPNHEKKAG KLDPHLVLDQ LRCNGVLEGI
701 RICRQGFPNR VVFQEFRQRY EILTPNSIPK GFMDGKQACV LMIKALELDS
751 NLYRIGQSKV FFRAGVLAHL EEERDLKITD VIIGFQACCR GYLARKAFAK
801 RQQQLTAMKV LQRNCAAYLK LRNWQWWRLF TKVKPLLQVS RQEEEMMAKE
851 EELVKVREKQ LAAENRLTEM ETLQSQLMAE KLQLQEQLQA ETELCAEAEE
901 LRARLTAKKQ ELEEICHDLE ARVEEEEERC QHLQAEKKKM QQNIQELEEQ
951 LEEEESARQK LQLEKVTTEA KLKKLEEEQI ILEDQNCKLA KEKKLLEDRI
1001 AEFTTNLTEE EEKSKSLAKL KNKHEAMITD LEERLRREEK QRQELEKTRR
1051 KLEGDSTDLS DQIAELQAQI AELKMQLAKK EEELQAALAR VEEEAAQKNM
1101 ALKKIRELES QISELQEDLE SERASRNKAE KQKRDLGEEL EALKTELEDT
1151 LDSTAAQQEL RSKREQEVNI LKKTLEEEAK THEAQIQEMR QKHSQAVEEL
1201 AEQLEQTKRV KANLEKAKQT LENERGELAN EVKVLLQGKG DSEHKRKKVE
1251 AQLQELQVKF NEGERVRTEL ADKVTKLQVE LDNVTGLLSQ SDSKSSKLTK
1301 DFSALESQLQ DTQELLQEEN RQKLSLSTKL KQVEDEKNSF REQLEEEEEA
1351 KHNLEKQIAT LHAQVADMKK KMEDSVGCLE TAEEVKRKLQ KDLEGLSQRH
1401 EEKVAAYDKL EKTKTRLQQE LDDLLVDLDH QRQSACNLEK KQKKFDQLLA
1451 EEKTISAKYA EERDRAEAEA REKETKALSL ARALEEAMEQ KAELERLNKQ
1501 FRTEMEDLMS SKDDVGKSVH ELEKSKRALE QQVEEMKTQL EELEDELQAT
1551 EDAKLRLEVN LQAMKAQFER DLQGRDEQSE EKKKQLVRQV REMEAELEDE
1601 RKQRSMAVAA RKKLEMDLKD LEAHIDSANK NRDEAIKQLR KLQAQMKDCM
1651 RELDDTRASR EEILAQAKEN EKKLKSMEAE MIQLQEELAA AERAKRQAQQ
1701 ERDELADEIA NSSGKGALAL EEKRRLEARI AQLEEELEEE QGNTELINDR
1751 LKKANLQIDQ INTDLNLERS HAQKNENARQ QLERQNKELK VKLQEMEGTV
1801 KSKYKASITA LEAKIAQLEE QLDNETKERQ AACKQVRRTE KKLKDVLLQV
1851 DDERRNAEQY KDQADKASTR LKQLKRQLEE AEEEAQRANA SRRKLQRELE
1901 DATETADAMN REVSSLKNKL RRGDLPFVVP RRMARKGAGD GSDEEVDGKA
1951 DGAEAKPAE

Figure 6.13. Tryptic fragments of non-muscle myosin heavy chain IIa identified
by mass spectrometry. The entire amino acid sequence of non-muscle myosin
heavy chain IIa (Swiss-Prot no: P35579) is shown. Tryptic fragments identified by
mass spectrometry are highlighted in bold and red. Tyrosine phosphorylation sites at
positions Tyr-754 and Tyr-1,408 are highlighted in bold, blue and underlined.
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6.4 Discussion  

The main findings of this chapter were: (1) CD148 positively regulates GPVI signalling in 

DT40 cells; (2) SFKs are direct substrates of CD148; (3) CD148 differentially 

dephosphorylates the activation loop and inhibitory tyrosine residues of SFKs; and (4) Non-

muscle myosin heavy chain IIa may be a novel substrate of CD148 in platelets.  These 

findings provide additional information of the molecular mechanism of how CD148 regulates 

GPVI-mediated platelet activation.  

Here I build on data presented in the previous chapter that CD148 is a positive 

regulator of GPVI signalling, by demonstrating that CD148 positively regulates GPVI 

signalling in transiently transfected DT40 cells.  I show that CD148 up-regulates basal and 

collagen-induced GPVI signalling by approximately 2 – 3 fold.  I also demonstrate that 

CD148 catalytic activity is essential for mediating this effect.  These findings also establish 

this DT40 NFAT-luciferase report assay as a good tool for studying the role of CD148 in 

GPVI signalling.  The DT40 chicken B cell line has been used extensively for studying B cell 

receptor signalling (Yasuda et al. 2004).  There a large panel of mutant DT40 cells that have 

been generated which lack expression of specific signalling molecules, including Shp1, Shp2, 

SHIP-1 and Dok-3, making it possible to investigate the importance of particular molecules 

downstream of specific receptors (Ono et al. 1997; Maeda et al. 1998; Stork et al. 2007).  It 

can also be used for structure function analysis of CD148. 

In this chapter I demonstrate that Lyn, Fyn and Src interact directly with the active site 

of CD148 and undergo dephosphorylation by recombinant CD148 in vitro, providing further 

evidence that these SFKs are physiological substrates of CD148 in platelets.  I also show that 

recombinant CD148 is able to dephosphorylate both the inhibitory and activation loop 

tyrosines of Lyn, Fyn and Src. Furthermore, our data indicates that CD148: (1) has a 

preference for dephosphorylation of the activation loop tyrosine over the inhibitory site in 
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vitro, and (2) favours dephosphorylation of Lyn over Fyn and Src.  In a recent study of T cell 

receptor signalling, the RPTP, CD45, was proposed to act as a rheostat, modulating the 

sensitivity of cells to TCR signals by differentially regulating the two critical Lck inhibitory 

and activation loop tyrosine phosphorylation sites (McNeill et al. 2007).  We propose a 

similar mechanism may exist for the regulation of SFKs by CD148 in platelets, whereby 

CD148 firstly triggers SFK activation by dephosphorylation of the inhibitory tyrosine, 

following GPVI or αIIbβ3 stimulation, and then prevents prolonged signalling by 

dephosphorylation of the activation loop tyrosine. 

Several phosphoproteins besides SFKs were specifically pulled down with the 

substrate trapping mutant form of CD148.  Their sizes ranged from 160 – 43 kDa.  Attempts 

to identify these proteins by western blotting were not successful.  Based on the literature and 

sizes of the bands we immunblotted for PLCγ2, Syk, Csk, LAT, SLP-76 and the FcR γ-chain.  

Csk appeared to be constitutively associated with CD148 cytoplasmic tail in a crude version 

of the pull down assay.  However, subsequent attempts to pull down Csk from pervanadate 

treated platelets using purified recombinant CD148 substrate trapping mutant were 

unsuccessful.  Attempts to co-immunprecipitated Csk with anti-CD148 antibody from resting 

and CRP-activated platelets were inconclusive.  These negative results may be due to the lack 

of an interaction or sub-optimal conditions for the interaction to occur.  Interestingly, Csk has 

been previously shown to interact with the non-transmembrane PTP Lyp using a yeast 2-

hybrid system (Cloutier et al. 1996).  The same group also demonstrated that the association 

was highly specific and speculated that Lyp may be an effector and/or regulator of Csk in T 

cells and other hematopoietic cells. 

Non-muscle myosin heavy chain IIa isoform 2 was identified as a potential novel 

substrate of CD148 in platelets using an in vitro substrate-trapping/pulldown assay and mass 

spectrometry.  Human platelets exclusively express myosin IIa, which is an important 
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component of the intracellular cytoskeleton (Maupin et al. 1994; Sellers 2000).  In resting 

platelets, the cytoskeleton is mainly comprised of polymerized actin and actin cross-linking 

proteins.  Upon stimulation with a variety of agonists, actin undergoes further polymerization, 

and interacts with myosin and other contractile proteins to promote platelet shape change and 

granule secretion (Blockmans et al. 1995).  Outside-in integrin αIIbβ3 signalling promotes the 

association of the actin-myosin filaments with membrane glycoproteins, including αIIbβ3 

itself, and other signal transduction components such as tyrosine kinases, lipid metabolizing 

enzymes, and small GTP-binding proteins (Grondin et al. 1991; Jackson et al. 1994; Torti et 

al. 1999).  Tyrosine phosphorylation of myosin heavy chain IIa has been implicated as an 

early event in human platelet activation following thrombin stimulation (Harney et al. 2003).  

Interestingly, Tyr-1408 is within a consensus immunoreceptor tyrosine-based inhibitory motif 

(ITIM), which has been shown to bind Shp1 (Baba et al. 2003).  Mutations in the gene 

encoding non-muscle heavy chaing IIa, MYH9, cause May-Hegglin anomaly, characterized by 

thrombocytopenia, giant platelets and leukocyte inclusions (Kelley et al. 2000; Seri et al. 

2000; Heath et al. 2001).  The interaction between CD148 and mysosin IIa may provide 

further insight into how CD148 regulates platelet function.  However, further work is required 

to validate the interaction. 

 Unfortunately, the identities of the phosphoproteins comprising the most prominent 

bands (90 and 40 kDa doublet) eluded identification.  The broad band at 90 kDa appears to be 

composed of multiple overlapping bands representing several highly phosphorylated proteins 

that maybe substrates of CD148.  Two attempts at identifying the constituents of this broad 

band by mass spectrometry only revealed CD148, likely representing the MBP-CD148 

substrate trapping fusion protein, which co-migrates at this size.  This finding does however 

raise the possibility that CD148 dephosphorylates itself.  Another explanation is that it is 

hyperphosphorylated CD148 trapping mutant.  In previous chapters I demonstrated that SFKs 
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phosphorylate CD148.  Perhaps the CD148 trapping mutant is getting hyperphosphorylated 

by trapped SFKs? 
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7.1  Aims 
 
The non-transmembrane PTP, PTP-1B, has previously been shown to be an essential positive 

regulator of outside-in integrin αIIbβ3 signalling in platelets (Arias-Salgado et al. 2005).  It 

does so by dephosphorylating the C-terminal inhibitory tyrosine of αIIbβ3-associated Src, at 

position Tyr-529, activating the kinase, initiating integrin signalling (Arias-Salgado et al. 

2003).   However, its role in GPVI signalling has not been thoroughly investigated.  In 

Chapters 5 and 6 I demonstrated that the RPTP, CD148 is a global regulator of SFK activity 

in platelets and that it positively regulates both GPVI and αIIbβ3 signalling in mouse platelets 

through a mechanism that involves activating SFKs by dephosphorylating the C-terminal 

inhibitory tyrosine of SFKs.  Therefore, CD148 and PTP-1B positively regulate SFK activity 

by an apparently similar mechanism.  The main aim of this chapter was to investigate the role 

of PTP-1B in GPVI and integrin αIIbβ3 signalling and to start to address the question of 

possible functional redundancy between CD148 and PTP-1B in platelets.  Since I found that 

PTP-1B-deficient platelets had minor functional and phosphorylation defects that were 

influenced by strain variation, we asked the question whether the structurally related NTPTP, 

TC-PTP, was playing a similar function in platelets and could possibly compensate in its 

absence (Figure 1.11).  I checked for expression of TC-PTP in human and mouse platelets and 

tested platelets from TC-PTP-deficient mice for functional defects. 
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7.2  Introduction 

PTP-1B is a ubiquitously expressed non-transmembrane PTP that is localized to the outer 

surface of the endoplasmic reticulum (Frangioni et al. 1992).  Being the prototypic PTP, PTP-

1B has been extensively studied and is best known for its role in insulin signalling (Elchebly 

et al. 1999).  PTP-1B has been implicated as a negative regulator of insulin action and as an 

important mediator in the pathogenesis of insulin-resistance and non-insulin dependent 

diabetes mellitus (Byon et al. 1998; Shi et al. 2004; Bodula et al. 2005).  Other roles for PTP-

1B include down regulation of cytokine receptor signalling and as a negative regulator of 

macrophage development through CSF-1 signalling (Cheng et al. 2002; Gu et al. 2003; 

Heinonen et al. 2006). 

In platelets, PTP-1B has been shown to get cleaved from the ER surface by the 

calcium-dependent protease calpain, following agonist-induced platelet activation (Frangioni 

et al. 1993; Ragab et al. 2003; Kuchay et al. 2007).  This results in translocation of PTP-1B 

from the ER membrane to the cytosol.  Recent work by Arias-Salgado et. al. demonstrated 

that fibrinogen-binding to αIIbβ3 triggers PTP-1B recruitment to the αIIbβ3-Src-Csk 

complex.  Platelets lacking PTP-1B expression exhibited reduced integrin αIIbβ3-mediated 

signalling (Arias-Salgado et al. 2003; Arias-Salgado et al. 2005).  The molecular basis of this 

defect was shown to be a lack of dissociation of Csk from the αIIbβ3-Src-Csk complex, and 

concomitant hyper-phosphorylation and inactivation of Src at its inhibitory tyrosine (Arias-

Salgado et al. 2005).  The functional consequences included reduced spreading on fibrinogen, 

clot retraction and calcium signalling.  PTP-1B-deficient mice also exhibited reduced 

thrombus formation in vivo.  Interestingly, GPVI signalling was reported to be normal in PTP-

1B-deficient platelets.  This was somewhat surprising, as the SFKs Fyn and Lyn, are essential 

for initiating GPVI signalling.  This suggests that PTP-1B specifically regulates Src in 

platelets, perhaps through enzyme specificity or compartmentalization.  However, one 
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limitation of the GPVI signalling data in the Arias-Salgado et. al. study was that GPVI 

signalling was being initiated by a high concentration of the snake toxin convulxin, which is 

not GPVI-specific, but also signals through the receptor for VWF, GPIb-IX-V (Andrews et al. 

2000; Andrews et al. 2003). 

Two PTP-1B knockout (KO) mouse models have been generated by two separate 

groups in order to determine the physiological function of PTP-1B.  One was generated in the 

Tremblay laboratory and the other in the Neel laboratory by homologous recombination using 

slightly different strategies (Elchebly et al. 1999; Klaman et al. 2000).  The PTP-1B KO 

mouse model generated in the Tremblay laboratory was made by deleting a portion of the 

gene that includes exon 5 and the tyrosine phosphatase active site in exon 6 (Elchebly et al. 

1999).  This mouse model (PTP-1B Ex5/6 KO) was bred onto a Balb/c background.  The 

PTP-1B KO mouse model generated in the Neel laboratory was made by deleting exon 1 of 

the gene.  This mouse model (PTP-1B Ex1 KO) was bred onto a mixed C57BL/6 × 129SvJ 

background.  Both knockout strategies generated mice that lacked any expression of PTP-1B 

protein.  Despite the strain variations, both knockout mouse models exhibited similar 

phenotypes, including: resistance to weight gain, insulin sensitivity and glucose tolerance 

(Elchebly et al. 1999; Klaman et al. 2000).  Both models exhibited increased phosphorylation 

of the insulin receptor and the adaptor protein IRS-1, demonstrating that PTP-1B negatively 

regulates insulin receptor signalling.  They also exhibited enhanced basal metabolic rate and 

total energy expenditure (Klaman et al. 2000).   

The PTP-1B mouse model used by Arias-Salgado et. al. to show that PTP-1B is an 

essential positive regulator of platelet integrin αIIbβ3 signalling was the PTP-1B Ex1 KO.  

Whereas the PTP-1B Ex5/6 KO backcrossed onto a C57BL/6 background were used to 

generate compound PTP-1B/calpain-1 double-deficient mice and demonstrate that PTP-1B is 

a physiological substrate of calpain in platelets (Kuchay et al. 2007).  PTP-1B activity was 
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significantly increased in calpain-1-deficient mouse platelets and correlated with reduced 

tyrosine phosphorylation of platelet proteins, platelet aggregation, and impaired clot retraction 

(Kuchay et al. 2007).  Interestingly, these defects were rescued in the PTP-1B/calpain-1 

double knockout mice (Kuchay et al. 2007).  

TC-PTP belongs to the same subfamily as PTP-1B.  It is ubiquitously expressed, with 

high levels in hematopoietic cells, however, it has not previously been shown to be expressed 

in platelets.  Although structurally similar, PTP-1B and TC-PTP are not functionally 

redundant, regulating both common and distinct signalling pathways.  A common pathway 

both proteins are involved in regulating is the insulin signalling pathway.  TC-PTP has been 

mainly implicated in negatively regulating the Jak/STAT signalling pathway downstream of 

cytokine and growth factor receptors (Simoncic et al. 2002; Shields et al. 2008).  TC-PTP-

deficient mice are of normal size and health following birth, however, after approximately 2 

weeks begin to display signs of runting, and by 3 to 5 weeks of age exhibit closed eyes, 

hunching, decreased mobility and diarrhoea followed by death (You-ten et al. 1997).  Low 

hematocrit levels in these mice indicate they also suffer from severe anaemia contributing to 

their early death (You-Ten et al. 1997). 

In this chapter, I test two hypotheses through the use of mouse models: (1) PTP-1B 

regulates GPVI and integrin αIIbβ3 signalling in platelets; and (2) TC-PTP regulates GPVI 

signalling in platelets.  Findings presented in this chapter demonstrate that PTP-1B plays a 

minor role in GPVI and integrin αIIbβ3 signalling, that is influenced by strain variation or 

modifier loci.  This demonstrates that CD148 and PTP-1B have fundamentally different 

functions in platelets.  Finally, I show that TC-PTP is expressed in human and mouse platelets 

and that it plays a role in platelet development. 
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7.3  Results 
 
7.3.1  PTP-1B 
 
7.3.1.1  PTP-1B-deficient platelets on a Balb/c background exhibit minor aggregation 

and secretion defects to low concentration CRP 

It has previously been reported that PTP-1B is a selective positive regulator of αIIbβ3-

associated Src kinase, with no role downstream of the collagen activation receptor GPVI 

(Arias-Salgado et al. 2005).  However, we question this conclusion as it was based on work 

done using a high concentration of the snake toxin convulxin, which is a non-specific GPVI 

agonist (Andrews et al. 2000).  To test our hypothesis that PTP-1B positively regulates GPVI 

signalling, we measured the ability of platelets from PTP-1B Ex5/6 KO mice on a Balb/c 

background to aggregate to the GPVI-specific agonist, CRP.  PTP-1B-deficient platelets were 

stimulated with either low (0.3 µg/ml) or intermediate (1 µg/ml) concentrations of CRP and 

aggregation was measured as a change in light transmission using an optical aggregometer.  

Platelets from PTP-1B-deficient mice did not aggregate in response to low concentration CRP 

(Figure 7.1Ai).  This block in aggregation was partly overcome at a higher concentration of 

CRP (1 μg/ml) (Figure 7.1Aii).  PTP-1B-deficient platelets responded normally to an 

intermediate concentration of thrombin (0.06 U/ml), demonstrating that this was a GPVI-

specific aggregation defect (Figure 7.1B).  This was the first evidence that that PTP-1B has a 

positive regulatory role downstream of GPVI signalling.  

 
 
7.3.1.2  PTP-1B-deficient platelets on a Balb/c background have impaired P-selectin 

expression and αIIbβ3 activation in response to CRP 

Flow cytometry studies were carried out to investigate the role of PTP-1B in α-granule 

secretion and integrin αIIbβ3 activation.  P-selectin expression on the surface of platelets was 

used as a measure of α-granule secretion and inside-out activation of αIIbβ3 was detected 
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using JON/A antibody binding, which only recognizes the active, high-affinity conformation 

of the integrin.  Platelets were stimulated with either 10 μg/ml CRP or 1 U/ml thrombin for 10 

minutes then stained with either FITC-conjugated anti-P-selectin or JON/A antibodies.  

Samples were subsequently analyzed by flow cytometry. CRP-mediated P-selectin expression 

and integrin αIIbβ3 activation were reduced in PTP-1B-deficient platelets compared with 

wild-type (WT) control platelets (Figure 7.2A and B), whereas thrombin-mediated responses 

were normal (Figure 7.2C and D).  These findings provided further evidence of a positive 

regulatory role of PTP-1B downstream of GPVI. 

Surface expression of GPVI and αIIbβ3 in resting PTP-1B deficient and WT platelets 

were also analysed by flow cytometry.  GPVI levels were reduced by approximately 33% 

(Figure 7.3A and B), whereas integrin αIIbβ3 levels were normal (Figure 7.3C and D).  This 

reduction in GPVI expression may partially explain the functional defects, as platelets 

expressing 50% of GPVI levels were previously reported to exhibit a two-fold shift in the 

dose response curve in aggregation to collagen, convulxin and the anti-GPVI antibody JAQ1 

(Snell et al. 2002). 
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Figure 7.1: Platelets from PTP-1B-deficient mice (Balb/c background) exhibit
impaired GPVI-mediated platelet aggregation. Washed platelets (2 × 108/ml)
prepared from litter-matched wild-type (WT) and PTP-1B-deficient (PTP-1B KO)
mice on a Balb/c background were stimulated with either (Ai) 0.3 µg/ml CRP, (Aii) 1
µg/ml CRP or (B) 0.06 U/ml thrombin. Platelet aggregation was measured as a change
in light transmission using a lumi-aggregometer. Representative images are shown (n
= 2-3 mice per condition).
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Figure 7.2: GPVI-mediated P-selectin expression and integrin αΙΙbβ3 activation
are impaired in PTP-1B-deficient platelets (Balb/c background). Platelets from
wild-type (WT) and PTP-1B-deficient (PTP-1B KO) mice on a Balb/c background
were unstimulated (purple histograms), or stimulated with 10 µg/ml collagen-related
peptide (CRP) or 0.06 U/ml thrombin (green and red lines respectively), stained with a
FITC-conjugated P-selectin antibody (A and B) or JON/A antibody (C and D) and
analysed by flow cytometry. Results are representative of three mice per genotype.
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Figure 7.3: Reduced GPVI and normal integrin αIIbβ3 expression on PTP-1B-
deficient platelets (Balb/c background). Wild-type (WT) and PTP-1B-deficient
platelets (PTP-1B KO) on a Balb/c background were immunostained with either a
FITC-conjugated GPVI (green lines-panels A and B) and αIIbβ3 antibodies (orange
lines-panels C and D). Purple histograms represent platelets stained with FITC-
conjugated IgG isotype control antibody.
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7.3.1.3  GPVI signalling is normal in PTP-1B-deficient platelets on a Balb/c 

background 

Although less severe than the GPVI-mediated functional defects reported in CD148-deficient 

platelets (Senis et al. 2009), the above observations demonstrated that PTP-1B positively 

regulates GPVI-mediated functional responses.  We therefore wanted to investigate the 

molecular basis of this functional defect.  Since PTP-1B has been shown to be a positive 

regulator of Src tyrosine kinase in platelets (Arias-Salgado et al. 2005), we hypothesized that 

it also regulates Fyn and Lyn SFKs, which are essential for initiating and propagating GPVI 

signalling (Watson et al. 2005).  We started by analysing protein tyrosine phosphorylation in 

resting and CRP-stimulated platelets.  The pattern of whole cell phosphorylation was near 

identical between WT and PTP-1B-deficient platelets stimulated with 10 μg/ml CRP for 0, 90 

and 300 seconds (Figure 7.4).  This was in stark contrast to the overall decrease in protein 

tyrosine phosphorylation observed in CRP-simulated CD148-deficient platelets (Chapter 5, 

Figure 5.1).  Tyrosine phosphorylation of the FcR γ-chain was normal in CRP-stimulated 

PTP-1B-deficient platelets, suggesting that Fyn and Lyn were getting properly activated 

following GPVI engagement and cross-linking.  This was confirmed by immunoblotting with 

phospho-specific antibodies for the SFK activatory and inhibitory tyrosine phosporylation 

sites.  Fyn, Lyn and Src were all found to be phosphorylated to the same extent at both their 

activatory and inhibitory sites in resting and CRP-stimulated mutant platelets compared with 

WT control platelets (Figure 7.5).  These findings demonstrated that PTP-1B is not involved 

in regulating these SFKs in resting or CRP-stimulated platelets.  This was in complete 

contrast to the observation in CD148-deficient platelets, demonstrating that CD148 and PTP-

1B have fundamentally different functions in platelets (Senis et al. 2009). 

We next wanted to determine if there was a signalling defect further downstream in 

the GPVI signalling pathway.  We investigated tyrosine phosphorylation of Syk and PLCγ2 as 
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they are essential components of the GPVI signalling pathway and lie downstream of the FcR 

γ-chain (Watson et al. 2005).  Syk and PLCγ2 were immunoprecipitated from CRP-stimulated 

wild-type and PTP-1B-deficient platelets, resolved by SDS-PAGE and western blotted with 

an anti-phosphotyrosine antibody.  Consistent with the whole cell lysate data, there was no 

reduction in CRP-induced tyrosine phosphorylation of Syk and PLCγ2 in PTP-1B-deficient 

platelets (Figure 7.6).  This result suggested the defect may lie further downstream of PLCγ2 

or in a different biochemical process. 
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Figure 7.4: Normal GPVI signalling in PTP-1B-deficient platelets (Balb/c
background). Washed platelets (5 × 108/ml) from wild-type (WT) and PTP-1B-
deficient (PTP-1B KO) mice on a Balb/c background were stimulated with 10 μg/ml
CRP for 0, 90 and 300 seconds. Whole cell lysates (WCLs) were resolved on a 10%
SDS-PAGE gel then western blotted with an anti-phosphotyrosine antibody (p-Tyr).
The doublet corresponding to the FcR γ-chain is indicated at the bottom of the gel.
Blot representative of 3 experiments.
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Figure 7.5: Normal Src family kinase phosphorylation in resting and CRP-
activated PTP-1B-deficient platelets (Balb/c background). Washed platelets (5 ×
108/ml) from wild-type (WT) and PTP-1B-deficient (PTP-1B KO) mice on a Balb/c
background were stimulated with 10 μg/ml CRP for 0, 90 and 300 seconds. Whole
cell lysates (WCLs) were resolved on a 10% SDS-PAGE gel then western blotted with:
(i) an anti-Src family kinase (SFK) activation loop p-Tyr antibody; (ii) an anti-Src p-
Tyr 529 antibody; (iii) an anti-Fyn p-Tyr 530 antibody; (iv) an anti-Lyn p-Tyr 507
antibody and (v) an anti-Lyn antibody as a control for protein loading. Blot
representative of 3 experiments.
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PTP-1B-deficient platelets (Balb/c background). Washed platelets (5 × 108/ml)
from wild-type (WT) and PTP-1B-deficient (PTP-1B KO) mice on a Balb/c
background were stimulated with 10 μg/ml CRP for 0, 90 and 300 seconds. (i) Syk
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anti-PLCγ2 antibodies, respectively. Blot representative of 2 experiments.
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7.3.1.4  PTP-1B-deficient platelets on a C57BL/6 background aggregate normally in 

response to  low concentration CRP 

One possible explanation for the discrepancy in our findings with those of Arias-Salgado et. 

al. regarding GPVI-mediated functional defects in PTP-1B-deficient platelets is that the 

mouse models that were analyzed are different.  These differences may be due to strain 

variation or modifier loci.  In our study, we used PTP-1B Ex5/6 KO mice on a Balb/c 

background, whereas Arias-Salgado et. al. used PTP-1B Ex1 KO mice on a mixed C57BL/6-

129SvJ background.  Neither mouse model generated a truncated version of PTP-1B.  To test 

the possibility that strain variation can alter the phenotype, PTP-1B Ex5/6 KO mice 

backcrossed on a C57BL/6 background (>12 generations) were analyzed for functional and 

biochemical defects. 

 Unlike PTP-1B-deficent platelets on a Balb/c background which exhibit aggregation 

and secretion defects to low concentration (0.3 and 1 µg/ml) CRP, PTP-1B-deficient platelets 

on a C57BL/6 background exhibited normal aggregation and a reduction in ATP secretion to 

the same concentrations of CRP (Figures 7.1 and 7.7).  This finding suggests that modifier 

loci in different strains of mice can alter the GPVI-mediated aggregation/secretion phenotype.  

It should be noted that PTP-1B-deficient platelets on a C57BL/6 background 

aggregated/secreted normally to low dose thrombin stimulation (data not shown). 

  

7.3.1.5  GPVI signalling is normal in PTP-1B-deficient platelets on a C57BL/6 

background 

PTP-1B-deficient platelets on a C57BL/6 background were next examined for GPVI 

signalling defects.  Platelets were stimulated with an intermediate concentration of CRP (5 

µg/ml) for 0, 30, 60, 120 and 240 seconds in the presence of apyrase (ADP scavenger), 

indomethacin (cyclooxygenase inhibitor) and lotrafiban (αIIbβ3 antagonist).  Whole cell 
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phosphorylation was almost identical between WT and mutant platelets pre- and post-CRP 

stimulation (Figure 7.8i).  Some bands, including a prominent band at approximately 25 kDa, 

were marginally hyperphosphorylated in mutant platelets, suggesting they may be substrates 

of PTP-1B (Figure 7.8i).  Phosphorylation of the FcR γ-chain was normal in resting and 

activated mutant platelets, as was phosphorylation of Syk at its activation loop (Tyr525/526) 

(Figure 7.8ii and iv), demonstrating normal GPVI proximal signalling in PTP-1B-deficient 

platelets on a C57BL/6 background. 

 The same experiments described above were repeated in the absence of lotrafiban to 

allow platelets to aggregate following CRP stimulation.  The purpose of these experiments 

was to test whether PTP-1B was involved in aggregation-dependent signalling via the integrin 

αIIbβ3.  Whole cell phosphorylation was normal in mutant platelets under these conditions 

(Figure 7.9i).  Further, phosphorylation of the FcR γ-chain and the activation loop of Syk 

were also normal, demonstrating that PTP-1B is not involved in aggregation-dependent 

signalling. 
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Figure 7.7: Platelets from PTP-1B-deficient mice (C57BL/6 background)
aggregate normally and have an ATP secretion defect to CRP. Washed platelets (2
× 108/ml) prepared from litter-matched wild-type (WT) and PTP-1B-deficient (PTP-
1B KO) mice on a C57BL/6 were stimulated with 0.3 and 1 µg/ml CRP. Platelet
aggregation was measured as a change in light transmission using a lumi-aggregometer.
Representative images are shown (n = 2 mice per condition).
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Figure 7.8: Normal GPVI signalling in PTP-1B-deficient platelets (C57BL/6
background) in suspension. Washed platelets (2 × 108/ml) pooled from three wild-
type (WT) and three PTP-1B-deficient (PTP-1B KO) mice on a C57BL/6 background
were stimulated with 5 µg/ml collagen-related peptide (CRP) in the presence of 2
U/ml apyrase, 10 µM indomethacin and 10 µM lotrafiban for 30, 60, 120 and 240
seconds (sec). Whole cell lysates (WCL) prepared at the indicated times were
resolved on 4 – 12% SDS-PAGE gels and western blotted with: (i) anti-
phosphotyrosine (p-Tyr); (iv) anti-Syk-phosphotyrosine 525/526 (Syk-p-Tyr525/526)
antibodies. (ii) Longer exposure of the region of membrane (i) where FcR γ-chain
migrates (~12 kDa). (iii) Membrane (i) was re-blotted with an anti-actin antibody. (v)
Membrane (iv) was re-blotted with an anti-Syk antibody. Representative images are
shown (n = 2 separate experiments).
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Figure 7.9: Normal GPVI signalling in aggregated PTP-1B-deficient platelets
(C57BL/6 background). Washed platelets (2 × 108/ml) pooled from three wild-type
(WT) and three PTP-1B-deficient (PTP-1B KO) mice on a C57BL/6 background were
stimulated with 5 µg/ml collagen-related peptide (CRP) in the presence of 2 U/ml
apyrase and 10 µM indomethacin for 30, 60, 120 and 240 seconds (sec). Whole cell
lysates (WCL) prepared at the indicated times were resolved on 4 – 12% SDS-PAGE
gels and western blotted with: (i) anti-phosphotyrosine (p-Tyr); (iv) anti-Syk-
phosphotyrosine 525/526 (Syk-p-Tyr525/526) antibodies. (ii) Longer exposure of the
region of membrane (i) where FcR γ-chain migrates (~12 kDa). (iii) Membrane (i) was
re-blotted with an anti-actin antibody. (v) Membrane (iv) was re-blotted with an anti-
Syk antibody. Representative images are shown (n = 2 separate experiments).
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7.3.1.6  Integrin αIIbβ3 signalling in PTP-1B-deficient platelets on a C57BL/6 

background 

The main finding of the study by Arias-Salgado et. al. is that PTP-1B is essential for initiating 

outside-in integrin αIIbβ3 signalling by dephosphorylating the inhibitory site of αIIbβ3-

associated Src, which activates the kinase.  These findings are based on observations made 

using PTP-1B-deficient platelets (Ex 1 deleted on a mixed C57BL/6-129SvJ background) 

(Arias-Salgado et al. 2005).  To test this finding, we investigated outside-in integrin αIIbβ3 

signalling in fibrinogen spread PTP-1B-deficient platelets (Ex 5/6 deleted on a C57BL/6 

background).  Whole cell phosphorylation was found to be virtually identical in BSA non-

adherent and fibrinogen-adherent WT and mutant platelets (Figure 7.10).  Further, the SFKs 

Src, Fyn and Lyn were all found to be phosphorylated to the same extent at their activation 

and inhibitory sites in non-adherent and adherent WT and mutant platelets (Figure 7.11).  

Contrary to the findings reported by Arias-Salgado et. al., our findings suggest that PTP-1B is 

not required for initiating outside-in integrin αIIbβ3 signalling.  This contradiction may 

reflect differences in the mouse models used by the two groups or differences in the 

experimental protocols. 

 The only potential biochemical difference in integrin signalling identified between 

WT and mutant platelets was in the phosphorylation and interacting proteins associated with 

the signalling molecules Syk and PLCγ2.  Both Syk and PLCγ2 lie downstream of Src in the 

αIIbβ3 signalling pathway, and both were found to be marginally hyper-phosphorylated in 

fibrinogen adherent mutant platelets compared with WT platelets (Figures 7.12 and 7.13).  In 

addition, differences were observed in both Syk and PLCγ2 co-associated phosphoproteins 

before and/or after adhesion to fibrinogen. 

 Taken together, these findings demonstrate that PTP-1B is not essential for initiating 

integrin αIIbβ3 signalling, but it may be involved in regulating signalling further downstream. 
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Figure 7.10: Normal integrin αIIbβ3 signalling in fibrinogen-adherent PTP-1B-
deficient platelets (C57BL/6 background). Washed platelets (5 × 108/ml) pooled
from five wild-type and five PTP-1B-deficient (KO) platelets on a C57BL/6
background were placed on BSA- and fibrinogen-coated surfaces for 45 minutes at
37°C. (i) Whole cell lysates (WCLs) prepared of BSA-non-adherent and fibrinogen-
adherent platelets were resolved on 4 – 12% SDS-PAGE gels and western blotted
with an anti-phosphotyrosine antibody (p-Tyr). (ii and iii) Membrane (i) was
stripped and re-blotted with an anti-PLCγ2 antibody, then stripped and re-blotted a
second time with an anti-PTP-1B antibody. Results are representative of 2 separate
experiments.
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Figure 7.11: Normal Src family kinase (SFK) phosphorylation in BSA non-
adherent and fibrinogen adherent PTP-1B-deficient platelets (C57BL/6
background). Washed platelets (5 × 108/ml) pooled from five wild-type and five
PTP-1B-deficient (KO) platelets on a C57BL/6 background were placed on BSA- and
fibrinogen-coated surfaces for 45 minutes at 37°C. Whole cell lysates (WCLs)
prepared of BSA non-adherent and fibrinogen adherent platelets were resolved on 4 –
12% SDS-PAGE gels and western blotted with: (i) an anti-SFK activation loop
phosphotyrosine antibody (SFK activation p-Tyr); (ii) an anti-Src inhibitory p-Tyr
antibody; (iii) an anti-Fyn inhibitory p-Tyr antibody; and (iv) an anti-Lyn inhibitory p-
Tyr antibody. Membranes (i – iv) were stripped and re-blotted with an anti-Src pan,
and-Fyn pan and anti-Lyn pan antibodies, respectively. Results are representative of 2
separate experiments.
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Figure 7.12: PLCγ2 phosphorylation and interacting proteins in BSA non-
adherent and fibrinogen adherent PTP-1B-deficient platelets (C57BL/6
background). Washed platelets (5 × 108/ml) pooled from five wild-type and five
PTP-1B-deficient (KO) platelets on a C57BL/6 background were placed on BSA- and
fibrinogen-coated surfaces for 45 minutes at 37°C. PLCγ2 was immunoprecipitated
(IP) from whole cell lysates (WCLs) prepared of BSA non-adherent and fibrinogen
adherent platelets. IPs were resolved on 4 – 12% SDS-PAGE gels and western blotted
with an anti-phosphotyrosine antibody (p-Tyr) then stripped and re-blotted with an
anti-PLCγ2 antibody. Blot representative of 2 experiments.
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Figure 7.13: Syk phosphorylation and interacting proteins in BSA non-adherent
and fibrinogen adherent PTP-1B-deficient platelets (C57BL/6 background).
Washed platelets (5 × 108/ml) pooled from five wild-type and five PTP-1B-deficient
(KO) platelets on a C57BL/6 background were placed on BSA- and fibrinogen-coated
surfaces for 45 minutes at 37°C. Syk was immunoprecipitated (IP) from whole cell
lysates (WCLs) prepared of BSA non-adherent and fibrinogen adherent platelets. IPs
were resolved on 4 – 12% SDS-PAGE gels and western blotted with an anti-
phosphotyrosine antibody (p-Tyr) then stripped and re-blotted with an anti-Syk
antibody.
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7.3.2  TC-PTP expression and functional characterization in platelets 

TC-PTP and PTP-1B are structurally similar PTPs, sharing 74 % sequence homology in their 

catalytic domains (Romsicki et al. 2003; Doody et al. 2009).  They also display similar 

enzyme kinetics (Iversen et al. 2002; Romsicki et al. 2003).  We therefore hypothesized that 

TC-PTP may compensate in the absence of PTP-1B.  In this section I confirmed expression of 

TC-PTP in mouse and human platelets, and analyzed GPVI-mediated functional responses in 

TC-PTP-deficient platelets. 

 
 
7.3.2.1  TC-PTP is expressed in human and mouse platelets 
 
Whole cell lysates prepared from human and WT mouse platelets were immunoblotted with 

an anti-TC-PTP antibody.  Jurkat T cells and mouse thymocytes, which express high levels of 

TC-PTP, were used as positive controls.  Faint bands migrating at the correct size for TC-PTP 

(45 kDa), were observed in both the human and mouse platelet (Figure 7.14A).  Two C-

terminal end splice variants of TC-PTP (45 and 48 kDa) are known to be expressed in various 

cell types.  Each has distinctly different subcellular localizations and substrate preferences.  

The 45 kDa variant of TC-PTP tends to associate with proteins at the plasma membrane 

whereas the 48 kDa variant is localized to the endoplasmic reticulum (Tiganis et al. 1998; 

Tiganis et al. 1999).  Our data suggests the 45 kDa splice variant is expressed in human and 

mouse platelets. 

 

7.3.2.2  TC-PTP-deficient platelets have impaired P-selectin expression in response to 

CRP and thrombin 

I next investigated the functional responses of TC-PTP-deficient platelets.  TC-PTP-deficient 

mice exhibit an assortment of developmental defects and die within weeks of birth, making it 

difficult to collect sufficient amounts of blood for aggregation studies.  Due to the poor 
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platelet recovery from mutant mice, flow cytometry was used to measure P-selectin 

expression on the surface of CRP- and thrombin-activated TC-PTP-deficient platelets.  TC-

PTP-deficient mice exhibited severely reduced levels of P-selectin on their surface in 

response to high doses of both CRP and thrombin (10 µg/ml and 1 U/ml, respectively) 

compared with litter-matched wild-type platelets (Figure 7.14B).  Surface expression of GPVI 

was also severely reduced in resting TC-PTP-deficient platelets, whereas expression of the 

integrin αIIbβ3 was normal (Figure 7.15) 
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Figure 7.14. TC-PTP-deficient platelets exhibit decreased P-selectin expression
in response to synthetic collagen peptide and thrombin. (A) Whole cell lysates
prepared of washed human and mouse platelets, Jurkat T cells and mouse thymocytes
were western blotted with an anti-TC-PTP antibody. (B) Washed platelets obtained
from wild-type (WT) and TC-PTP-deficient (TC-PTP-/-) mice were stimulated with 10
µg/ml of the GPVI-specific agonist collagen-related peptide (CRP) or 1 U/ml of
thrombin. Surface expression of P-selectin was measured using FITC-conjugated
anti-mouse P-selectin antibody and is directly proportional to the amount of α-granule
secretion. Results are representative of 2 mice of each genotype.
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Figure 7.15. TC-PTP-deficient platelets do not express GPVI on their surface,
but express normal levels of the integrin αIIbβ3. Resting, washed platelets from
wild-type (WT) and TC-PTP-deficient (TC-PTP-/-) mice were stained with either
FITC-conjugated anti-mouse GPVI antibody or FITC-conjugated anti-mouse αIIbβ3
antibody. Results are representative of 3 mice of each genotype.
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7.4 Discussion 
 
In this chapter I demonstrate that PTP-1B plays little or no role in regulating GPVI or integrin 

αIIbβ3 signalling in platelets.  However, this conclusion is complicated by strain variation 

which alters the platelet phenotype of PTP-1B-deficient mouse models.  Platelets from PTP-

1B-deficient mice on a Balb/c background exhibit minor CRP-mediated aggregation and 

secretion defects, whereas platelets from PTP-1B-deficient mice on a C57BL/6 background 

aggregated normally to CRP with a reduction in secretion.  Neither PTP-1B mouse model 

exhibited any overt phosphorylation defects to CRP or fibrinogen, demonstrating that CD148 

and PTP-1B have fundamentally different functions in platelets.  I also demonstrate for the 

first time that the structurally related PTP, TC-PTP, is expressed in human and mouse 

platelets at relatively low levels and that platelets from TC-PTP-deficient mice have severely 

reduced P-selectin expression in response to CRP and thrombin stimulation.  The cause of the 

CRP-mediated defect is likely the almost complete absence of GPVI on the surface of TC-

PTP-deficient platelets.  TC-PTP-deficient mice also appear to be severely thrombocytopenic, 

suggesting that TC-PTP is involved in platelet formation. 

 We chose to investigate the functional role of PTP-1B in platelets in parallel with 

CD148 because we hypothesized that these two structurally distinct phosphatases have 

redundant functions in platelets.  This is based on the fact that the functional and biochemical 

defects exhibited by CD148-deficient platelets were partial and could be overcome with high 

doses of agonists (Chapters 4 and 5).  CD45 is the main RPTP that regulates immune receptor 

function in B and T cells, however they also express CD148 which has been shown to have 

some redundant functions with CD45 (Zhu et al. 2008).  Since we could not conclusively 

identify another RPTP in platelets, we speculated that a non-transmembrane PTP could 

perform this function.  The most obvious candidate was PTP-1B because it was recently 

shown to be an important positive regulator of Src downstream of the integrin αIIbβ3 (Arias-
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Salgado et al. 2005).  Interestingly, PTP-1B selectively regulates Src downstream of αIIbβ3, 

but not Fyn and Lyn downstream of GPVI, which was different to what we were observing in 

CD148-deficient platelets.   We speculated that this may be due to masking resulting from use 

of high concentration of the powerful GPVI agonist convulxin (Arias-Salgado et al. 2005).  

Further, convulxin is not GPVI-specific, but also binds to and activates GPIb-IX-V on 

platelets (Kanaji et al. 2003). 

 Collectively, results presented in this chapter demonstrate that PTP-1B and CD148 

have fundamentally different roles in platelets.  Functional defects observed in both PTP-1B-

deficient mouse models were minor compared to those observed in CD148-deficient platelets 

(Chapter 4).  Moreover, there were no major phosphorylation defects in PTP-1B-deficient 

platelets, whereas dramatic defects were observed in CD148-deficient platelets (Chapter 5).  It 

should be pointed out that both the PTP-1B- and CD148-deficient mouse models were on a 

C57BL/6 background, eliminating the possibility of strain variation between the two models. 

One of the most interesting findings of this chapter that demonstrates the different 

biochemical functions of CD148 and PTP-1B in platelets was that SFK activity was normal in 

resting PTP-1B-deficient platelets, whereas it was significantly reduced in CD148-deficient 

platelets.  SFK activity was indirectly measured as phosphorylation of the SFK activation 

loop, which is a trans-autophosphorylation event, and phosphorylation of the FcR γ-chain, 

which is also mediated by SFKs.  These findings demonstrate that CD148 is critical for 

maintaining a pool of active SFKs in platelets, which keeps platelets primed, so that they can 

respond rapidly when they come into contact with ECM proteins at sites of vascular injury. 

We suspect the reason for the discrepancy between our findings and those previously 

reported by Arias-Salgado et. al. on the functional role of PTP-1B in platelets reflects strain 

variation and the effects of modifier loci on the PTP-1B-deficient mouse models studied by 

the two groups.  Strain variation may be compounded by differences in experimental 
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conditions.  We studied PTP-1B Ex5/6 KO mice on either a Balb/c or a C57BL/6 background, 

whereas Arias-Salgado et. al. studied PTP-1B Ex1 KO mice on a mixed C57BL/6-129SvJ 

mice.  Neither the PTP-1B Ex5/6 KO mouse nor the PTP-1B Ex1 KO mouse express 

truncated forms of PTP-1B and the metabolism phenotypes previously reported in these mice 

were very similar.  Therefore, it seems unlikely that either mouse model accidentally acquired 

other mutations besides ablation of the PTP-1B gene during generation.  However, the 

possibility exists that the models drifted apart with time due to naturally occurring mutations.  

Another possibility for the different findings between ours and the Arias-Salgado groups is 

differences in experimental protocols. 

Better understanding the functional role of PTP-1B in platelets will require identifying 

its substrates and interacting proteins.  Some of the known substrates expressed in platelets 

are Src and the adaptor protein Dok-1, which is also involved in regulating outside-in integrin 

αIIbβ3 signalling (Calderwood et al. 2003).  Another important question that needs to be 

addressed is how PTP-1B translocates from the outer surface of the ER to the plasma 

membrane following caplain-mediated cleavage.  Further, how does PTP-1B dock to or near 

GPVI and αIIbβ3?  One hypothesis is that Dok-1 and -2 may mediate docking of PTP-1B to 

the β3-subunit (Arias-Salgado et al. 2005).  Recent work has demonstrated that PTP-1B is 

targeted to newly formed cell-matrix adhesion complexes (Hernandez et al. 2006).  Live cell 

imaging has also been used to investigate trafficking of PTP-1B to the plasma membrane 

(Yudushkin et al. 2007). 

Although structurally similar, TC-PTP and PTP-1B have distinct physiological 

functions, as knockout mouse models exhibit dramatically different phenotypes (You-Ten et 

al. 1997; Elchebly et al. 1999; Doody et al. 2009).  PTP-1B-deficient mice live to adulthood, 

but have dramatic glucose and fat metabolism defects, whereas TC-PTP-deficient mice die 3 

– 5 weeks after birth of erythropoietic and lymphopoietic deficits, indicating a critical role for 
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TC-PTP in bone marrow maturation (You-Ten et al. 1997).  The two phosphatases have also 

been implicated in regulating different components of the insulin signalling pathway (Dube et 

al. 2005). 

Our hypothesis that TC-PTP compensates for the lack of PTP-1B or CD148 in 

platelets does not appear to be correct.  Preliminary findings presented in this chapter suggest 

that TC-PTP plays a role in platelet formation, which correlates with other haematopoietic 

defects previously reported in TC-PTP-deficient mice (Doody et al. 2009).  Our flow 

cytometry data demonstrated that platelets isolated from these mice were unresponsive to 

CRP and thrombin agonists.  The reduced responsiveness to CRP is likely due to the very low 

levels of GPVI expressed in TC-PTP-deficient platelets.  Interestingly, αIIbβ3 levels were 

normal in mutant platelets, demonstrating that TC-PTP does not regulate expression of all 

surface proteins.  The lack of GPVI expression may be due to a defective in development, 

trafficking or shedding. 

  In summary, PTP-1B plays little role GPVI or integrin αIIbβ3 signalling in platelets, 

that is influenced by modifier loci.  PTP-1B has little or no role in regulating SFK activity in 

resting or activated platelets, whereas CD148 is a global regulator of SFK activity in platelets.  

TC-PTP and PTP-1B also appear to have fundamentally different roles in platelets.  One of 

the main functions of TC-PTP appears to be in platelet development.  Interestingly, CD148, 

PTP-1B and TC-PTP all positively regulate surface expression of GPVI on platelets however, 

we suspect this is through different mechanisms. 
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8.1  Summary of findings 

The main objective of this thesis was to investigate the functional role of CD148 in platelets.  

Findings from this thesis establish CD148 as a key regulator of platelet responsiveness to 

collagen and fibrinogen.  I also demonstrate that CD148 plays a minor role in regulating 

platelet responsiveness to thrombin and TxA2.  We believe the molecular mechanism 

underlying how CD148 regulates platelet responsiveness to such a diverse array of agonists is 

through regulation of SFK activity.  We demonstrate that CD148 is a global regulator of SFKs 

in platelets, maintaining a pool of primed/active SFKs in resting platelets.  Subsequent ligand 

mediated cross-linking of the collagen activation receptor GPVI and the fibrinogen receptor 

αIIbβ3 triggers receptor signalling.  Although no other RPTPs were identified in platelets, I 

identified the non-transmembrane TC-PTP in platelets for the first time and work was 

initiated to investigate functional redundancy between CD148, PTP-1B and TC-PTP in 

platelets.  I focused on PTP-1B as recent work by the Shattil group demonstrated that that 

PTP-1B is essential for activating Src kinase specifically downstream of the integrin αIIbβ3 

(Obergfell et al. 2002; Arias-Salgado et al. 2003; Arias-Salgado et al. 2005).  However, my 

results demonstrate that unlike CD148, PTP-1B does not maintain a pool of active SFKs in 

platelets and it is not involved in initiating GPVI or integrin αIIbβ3 signalling in platelets.  

PTP-1B plays a minor role relative to CD148 in regulating GPVI-mediated platelet 

aggregation and secretion, and αIIbβ3 signalling, however these functions are strain-

dependent, suggesting that modifier loci influence its activity.  We speculate that the 

discrepancies between our findings and those of the Shattil group are due to strain variation of 

PTP-1B-deficient mouse models.  TC-PTP appears to play a developmental role in platelets.  

Therefore, I conclude that CD148, PTP-1B and TC-PTP have distinct functional roles in 

platelets. 
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8.2 Functional roles of CD148 in platelets 

In this thesis, I demonstrated that CD148 positively regulates several important platelet 

functional responses, including aggregation, secretion and spreading.  The most dramatic 

defects observed in CD148-deficient platelets were downstream of GPVI and the integrin 

αIIbβ3, both of which are tyrosine kinase-linked receptors.  Minor defects were also detected 

to thrombin and TxA2, which signal through the G protein-coupled receptors PAR-4 and TP 

in mouse platelets, respectively.  ADP-mediated responses were however normal. 

 Platelet aggregation and ATP secretion of CD148-deficient platelets were abolished to 

the GPVI-specific agonist CRP at the concentrations tested.  Platelet spreading on collagen 

was also attenuated, as was platelet adhesion to collagen under physiological flow conditions 

(Senis et al. 2009).  These defects cannot be explained by reduced GPVI expression alone as 

FcR γ-chain heterozygous-deficient platelets, which express comparable levels of GPVI to 

CD148-deficient platelets, respond better to CRP and collagen (Senis et al. 2009).  This result 

provided strong evidence that CD148-deficient platelets had a concomitant signalling defect.  

The reduction in surface levels of GPVI may be due to a reduction in expression, reduced 

trafficking or enhanced shedding from the platelet surface.  This change in surface expression 

appeared to be specific to GPVI, as α2β1 and αIIbβ3 levels were normal (Senis et al. 2009). 

 Platelet adhesion and spreading on fibrinogen is mediate by the integrin αIIbβ3.  The 

molecular mechanism involves αIIbβ3 clustering, leading to outside-in integrin signalling 

(Shattil et al. 2004).  Platelets placed on a fibrinogen-coated surface initially extend filopodia, 

which become firmly attached to the fibrinogen.  The spaces between filopodia subsequently 

fill in with lamellipodia.  CD148-deficient platelets took longer and extended fewer filopodia 

than WT platelets (Senis et al. 2009).  Moreover, filopodia did not remain firmly attached to 

the surface, compared with WT platelets.  As a result, CD148-deficient platelets could not 

maintain filopodia extensions, and therefore did not form lamellipodia that WT platelets 
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eventually partially developed on fibrinogen (Senis et al. 2009).  Since CD148-deficient 

platelets expressed normal levels of αIIbβ3 on their surface, these findings suggested that 

outside-in integrin αIIbβ3 signalling was abrogated. 

 The defects described above in CD148-deficient platelets contribute to a mild bleeding 

tendency, delayed thrombus formation and thrombus instability in vivo (Senis et al. 2009).  

These findings demonstrate a novel and vital role of CD148 in mediating haemostasis and 

thrombus formation in vivo (Senis et al. 2009).  However, it should be noted that because 

CD148 is also expressed in endothelial cells, these defects may be partly due to defective 

endothelial cell function.  The lack of evidence for a severe bleeding disorder in CD148 

mutant mice makes it a potentially promising anti-thrombotic drug target.  Structural and 

functional features of CD148 also lend it to drug targeting, including its large extracellular 

domain that could be targeted by small molecule inhibitors without the need to cross the 

plasma membrane. 

 

8.3  CD148 regulates global SFK activity in platelets 

SFKs are essential for initiating and propagating signalling from several major platelet 

tyrosine kinase-linked receptors.  They also contribute to signalling downstream of a number 

of stimulatory GPCRs (Harper et al. 2006; Minuz et al. 2006).  SFK activity is tightly 

regulated by tyrosine phosphorylation and two intramolecular interactions, that maintain the 

kinases in an inactive conformation (Xu et al. 1997; Xu et al. 1999).  These weak interactions 

can be disrupted through inter-molecular interactions or by dephosphorylation of the 

inhibitory site of SFKs.  One of the main findings of this thesis was that global SFK activity, 

as detected using phospho-specific antibodies, was significantly reduced in both resting and 

activated CD148-deficient platelets compared with WT platelets.  We hypothesize that the 

pool of active SFKs in resting WT platelets is required to initiate a rapid and maximal 



Chapter 8  General Discussion 

207 

response following contact with ECM proteins at a site of vessel injury.  Without this pool of 

active SFKs, clustering of GPVI and αIIbβ3 does not trigger sufficiently rapid or strong 

activatory signals (Figure 8.1).  This model would predict that there is a small amount of basal 

signalling from GPVI and αIIbβ3 receptors in resting WT platelets. Recent work 

demonstrates that this is the case for GPVI signalling (Mori et al. 2008).  Residual signalling 

from GPVI and αIIbβ3 in CD148-deficient platelets may be due to other PTPs compensating 

in the absence of CD148 or to activation of SFKs through inter-molecular interactions with 

proline-rich and phosphotyrosine-containing proteins.   

We believe the global reduction in SFK activity in CD148-deficient platelets also 

explains the reduced responsiveness of CD148-deficient platelets to thrombin and TxA2.  This 

is because both the PAR-4 and TP receptors have a minor Src signalling component 

(Offermanns 2006).  We speculate the reason for the normal ADP response of CD148-

deficient platelets is because ADP signals through two receptors one of which has no SFK 

component.  The Gq-coupled P2Y1 receptor, is responsible for shape change and initiation of 

aggregation and has a small SFK component; whereas the Gi-coupled P2Y12 receptor, which 

is required for sustain platelet aggregation does not signal through SFKs (Gachet 2006).  I 

also demonstrate that the normal ADP response partially masks the reduced collagen 

responsiveness of CD148-deficient platelets.  
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Figure 8.1: CD148 maintains a pool of active SFKs in platelets that are essential for 
initiating GPVI signalling. (A) SFKs are maintained in a primed/active state by 
dephosphorylation of their inhibitory C-terminal tyrosine (Y1) by CD148. SFKs then become 
fully active by trans-autophosphorylation of the tyrosine residue in the active loop (Y2). (B) 
The pool of activated SFKs is required to initiate a strong activatory signal following GPVI 
clustering. This model also holds true for αIIbβ3 signalling. 
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Findings from this study support the hypothesis that SFKs are direct substrates of 

CD148 (Senis et al. 2009).  Here I show that CD148 interacts with and dephosphorylates both 

the activation and inhibitory sites of Fyn, Lyn and Src.  Interestingly, the in vitro data 

demonstrates that recombinant CD148 marginally favours dephosphorylating the activation 

sites of Fyn, Lyn and Src rather than their inhibitory sites.  Of the three inhibitory site 

phospho-peptides tested, CD148 had a marginal preference for the Lyn-derived phospho-

peptide.  These in vitro findings appear paradoxical to our platelet findings as the net effect of 

deleting CD148 from platelets reduces responsiveness to collagen and fibrinogen.  To unify 

these findings, we hypothesize that CD148 initially activates SFKs, by dephosphorylating 

their C-terminal inhibitory tyrosine and subsequently attenuates their activity by 

dephosphorylating their activation loop tyrosine.  In this way, CD148 both positively and 

negatively regulates SFK activity.  Co-ordinated increased phosphorylation of the inhibitory 

sites of SFK, by Csk or its related kinase Ctk/Chk, effectively inhibit prolonged SFK-

mediated signalling.  The proposed model is illustrated in Figure 8.2.  CD45 is thought to 

regulate Lck and Fyn downstream of the TCR via a similar mechanism (Hermiston et al. 

2003).  Therefore, the activation status of SFKs is tightly regulated by the opposing activities 

of CD148 and Csk. 
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Figure 8.2: Model of how CD148 modulates SFK activity. CD148 initially activates SFKs, 
by dephosphorylating their C-terminal inhibitory tyrosine (Y1) (left of figure) and 
subsequently attenuates their activity by dephosphorylating their activation loop tyrosine (Y2) 
(right of figure). Co-ordinated increased phosphorylation of the inhibitory sites of SFK, by 
Csk or its related kinase Ctk/Chk, effectively inhibit prolonged SFK-mediated signalling . 
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8.4 Physiological substrates of CD148 in platelets 

Other potential physiological substrates of CD148 include: the tyrosine kinase-linked 

receptors Met and PDGFβ, the adapter proteins LAT and Gab1, the adherens junction protein 

p120catenin, PLCγ1 and more recently the p85 subunit of PI 3-kinase, although the latter is 

not tyrosine phosphorylated in platelets (Gibbins et al. 1998; Kovalenko et al. 2000; Baker et 

al. 2001; Holsinger et al. 2002; Palka et al. 2003; Tsuboi et al. 2008).  Interestingly, LAT, 

PLCγ1 and PI 3-kinase all lie downstream of SFKs in the GPVI signalling cascade, therefore 

CD148 may be regulating multiple points of the GPVI signalling pathway (Pasquet et al. 

1999; Pasquet et al. 1999; Suzuki-Inoue et al. 2003; Watanabe et al. 2003). 

Using a substrate trapping-pull down approach in conjunction with mass spectrometry, 

protein bands with molecular weights of 160, 90, 60 and 43 (doublet) kDa were isolated from 

pervanadate stimulated platelet lysates.  Identification of proteins in the broad band at 90 kDa 

was complicated by the co-migrating recombinant MBP-CD148 fusion protein.  The intensity 

and large size of this band may be due to several, highly phosphorylated, co-migrating 

proteins.  It may also be due to the MBP-CD148 trapping mutant being hyper-phosphorylated 

by trapped SFKs.  We suspect the 60 kDa band may be SFKs.  The 43 kDa band was 

particularly prominent and warrants further investigation. 

The identity of the 160 kDa protein pulled down from platelet lysate with the MBP-

CD148 trapping mutant was determined to be non-muscle myosin heavy chain IIa (Swiss-Prot 

no: P35579), whereas the 60 and 43 kDa bands remain unknown.  Non-muscle myosin heavy 

chain IIa is a novel and unexpected candidate substrate that requires further validation by 

other means.  It was recently shown to be phosphorylated at Tyr-754 and Tyr-1,408, however, 

the functional consequences of phosphorylating these sites is not known (Rikova et al. 2007).  

Interestingly, the latter of these tyrosine residues is within a consensus ITIM, what has been 

shown to bind Shp1 (Baba et al. 2003).  Indentifying non-muscle myosin heavy chain IIa as a 
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potential substrate of CD148 is an interesting finding as defects in the gene encoding this 

protein, namely MYH9, cause May-Hegglin anomaly, characterized by thrombocytopenia, 

giant platelets (Chen et al. 2007; Althaus et al. 2009). 

 

8.5  Regulation of CD148 activity 

Regulation of CD148 activity and localization in the platelet plasma membrane are now 

critical to understanding how CD148 regulates platelet function.  A question that arises from 

our proposed mechanism is how ~2,800 copies of CD148 molecules can maintain the entire 

platelet pool of SFKs in an active conformation.  We believe the explanation partly lies in the 

high catalytic activity of PTPs, which have kcat values up to three orders of magnitude greater 

than those of protein tyrosine kinases (Zhang 2003).  We also hypothesize that expression of 

low levels of CD148 relative to SFKs may serve to have more of an activatory role rather than 

an inhibitory role.  This hypothesis is largely based on recent work by McNeill et. al. 

investigating the effects of expressing various amounts of CD45 in transgenic mice  (McNeill 

et al. 2007).  They showed that expression of a low amount of CD45 (3 – 10%) is required to 

dephosphorylate the inhibitory site of Lck (Tyr-505) and allow T cell receptor signalling to 

occur.  Conversely, expression of higher levels of CD45, as seen in wild-type T cells are 

required to attenuate TCR signalling by dephosphorylating the activation loop tyrosine of Lck 

(Tyr-394).  It has also been suggested that net activation of an SFK by CD45 and other RPTPs 

requires a degree of separation between the RPTP and the SFK to promote dephosphorylation 

of the C-terminal tail whilst simultaneously allowing autophosphorylation of the activation 

loop tyrosine (Roach et al. 1997; Thomas et al. 1999; Johnson et al. 2000). Conversely, a high 

amount of a RPTP or close proximity to a SFK will have a net inhibitory effect on SFK 

activity by dephosphorylating the activation loop tyrosine.  The fact that CD148 is membrane 
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localised and has a relatively low copy number in platelets may explain why it has a positive 

regulatory role on SFKs rather than an inhibitory one. 

The ligand for CD148 is presently not known.  Very few ligands for RPTPs have been 

identified to date.  The most well established ligands for RPTPs are quite diverse and include: 

homophilic interactions of RPTPµ, pleitrophin for PTPλ and heparin sulphate and collagen 

for RPTPσ (Maeda et al. 1998; Aricescu et al. 2002; Sajnani-Perez et al. 2003; Ulbricht et al. 

2003; Fox et al. 2005).  The first study of CD148 demonstrated that cell-cell contact causes an 

increase in its surface expression and activity, suggesting that its ligand may be a counter 

receptor on an adjacent cell (Ostman et al. 1994).  Another report suggested that its ligand 

may be an extracellular matrix protein.  Sorby et. al. demonstrated that cells ectopically 

expressing CD148 exhibited increased CD148 catalytic activity when placed on Matrigel 

(Sorby et al. 2001).  This hypothesis is supported by the fact that the extracellular domain of 

CD148 contains eight fibronectin type III repeats found in a variety of receptors and 

extracellular matrix proteins.  An Arg-Gly-Asp (RGD) module within the FNIII domain 

conveys cell adhesion properties to proteins (Main et al. 1992).  A recent biophysical study by 

Matozo et. al. suggests that dimerization of CD148 catalytic domains would auto-inhibit, 

according to the inhibitory wedge model defined in PTPα (Matozo et al. 2006).  However, a 

recent large-scale structural study of all classical PTP catalytic domains argues strongly 

against the long-held inhibitory wedge model (Barr et al. 2009).  Another possibility is that 

CD148 does not have a ligand, but rather moves freely about the cell surface due to 

electrostatic forces or steric hindrance according to the size-exclusion model (Lin et al. 2003; 

Choudhuri et al. 2005).  This can be tested in a cell line model using mutant forms of CD148 

lacking specific regions of the extracellular domain or containing point mutations disrupting 

glycosylation sites. 
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8.6  Redundancy between CD148 and other platelet PTPs 

Residual GPVI and αIIbβ3 signalling in CD148-deficient platelets raises the possibility that 

one or more PTPs partially compensating in its absence.  Attempts to identify other RPTPs 

expressed in platelets were either negative or inconclusive.  Recent evidence suggests that 

megakaryocytes express low levels of CD45; PTPRO is expressed in human and mouse 

megakaryocytes; and RPTPσ may be expressed in human platelets (Taniguchi et al. 1999; 

Matsumura-Takeda et al. 2007; Senis et al. 2007).  However, I could neither detect CD45 in 

human and mouse platelets nor conclusively demonstrate expression of PTPRO and RPTPσ 

on human and mouse platelets.  This may be due to low levels of expression of these RPTPs 

in platelets, as well as questionable quality of the antibodies used for detection. 

Since I did not conclusively detect another RPTP in platelets, as is the case in most 

other haematopoietic cell lines that express CD45 and CD148 (with the exception of 

erythrocytes), we speculated that perhaps a non-transmembrane PTP may have redundant 

functions with CD148 in platelets.  The primary candidate was PTP-1B as recent evidence 

showed that PTP-1B dephosphorylates and activates Src downstream of αIIbβ3 (Obergfell et 

al. 2002; Arias-Salgado et al. 2003; Arias-Salgado et al. 2005).  Other candidates include the 

SH2 domain-containing PTPs, Shp1 and Shp2, as they have been previously shown to 

regulate proximal ITAM receptor signalling events in immune cells (Shi et al. 2000; Zhang et 

al. 2000).  Shp1 has also been shown to interact with Src in platelets and to positively regulate 

Src activation by preferentially dephosphorylating inhibitory Tyr-529 (Somani et al. 1997). 

 Findings presented in this thesis demonstrate that CD148 and PTP-1B have distinct 

functions in platelets.  CD148 is essential for maintaining a pool of active SFKs in platelets, 

whereas PTP-1B plays little or no role in activating SFKs in resting or activated platelets.  

This may be due to redundancy with another PTP.  We suspect the reason for the discrepancy 

between our findings and those of the Shattil group, regarding the function of PTP-1B in 
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GPVI and αIIbβ3 signalling, is strain variation of the mouse models.  Another possibility is 

that another phosphatase compensates in the absence of PTP-1B, which is why we 

investigated TC-PTP in platelets.  Although structurally similar, TC-PTP and PTP-1B appear 

to have distinct functional roles in platelets.  Severely reduced platelet counts and GPVI 

expression in platelets from TC-PTP-deficient mice suggest that TC-PTP may be involved in 

platelet development (You-Ten et al. 1997).  Collectively, these findings demonstrate that 

PTPs have distinct functional roles in platelets. 
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Appendix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Confirmation of MBP.CD148 fusion protein expression  
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