
CRANFIELD UNIVERSITY

SYED ADEEL HUSSAIN

RISK BASED RELIABILITY ALLOCATION AT

COMPONENT LEVEL IN NON-REPAIRABLE

SYSTEMS BY USING EVOLUTIONARY

ALGORITHM

SCHOOL OF APPLIED SCIENCES

PhD THESIS

CRANFIELD UNIVERSITY

SCHOOL OF APPLIED SCIENCES

PhD THESIS

Academic Period – May 2004 to May 2007

Syed Adeel Hussain

Risk based reliability allocation at component level in

non-repairable systems by using evolutionary algorithm

Supervisor: M. Todinov & R. Allwood

April 2007

This report is submitted in fulfilment of the requirements for the Degree
of Doctor of Philosophy

© Cranfield University, 2007.
All rights reserved. No part of this publication may be reproduced without the written permission of

the copyright holder.

Risk Based Reliability Allocation At Component Level In Non-Repairable Systems By Using
Evolutionary Algorithm

i-1

ABSTRACT

The approach for setting system reliability in the risk-based reliability allocation

(RBRA) method is driven solely by the amount of ‘total losses’ (sum of reliability

investment and risk of failure) associated with a non-repairable system failure. For a

system consisting of many components, reliability allocation by RBRA

method becomes a very complex combinatorial optimisation problem particularly if

large numbers of alternatives, with different levels of reliability and associated cost,

are considered for each component. Furthermore, the complexity of this problem is

magnified when the relationship between cost and reliability assumed to be non-

linear and non-monotone. An optimisation algorithm (OA) is therefore developed in

this research to demonstrate the solution for such difficult problems.

The core design of the OA originates from the fundamental concepts of

basic Evolutionary Algorithms which are well known for emulating Natural process

of evolution in solving complex optimisation problems through computer simulations

of the key genetic operations such as 'reproduction', ‘crossover’ and ‘mutation’.

However, the OA has been designed with significantly different model of evolution

(for identifying valuable parent solutions and subsequently turning them into even

better child solutions) compared to the classical genetic model for ensuring rapid and

efficient convergence of the search process towards an optimum solution. The vital

features of this OA model are 'generation of all populations (samples) with unique

chromosomes (solutions)', 'working exclusively with the elite chromosomes in each

iteration' and 'application of prudently designed genetic operators on the elite

chromosomes with extra emphasis on mutation operation'. For each possible

combination of alternatives, both system reliability and cost of failure is computed by

means of Monte-Carlo simulation technique.

For validation purposes, the optimisation algorithm is first applied to

solve an already published reliability optimisation problem with constraint on some

target level of system reliability, which is required to be achieved at a minimum

system cost. After successful validation, the viability of the OA is demonstrated by

showing its application in optimising four different non-repairable sample systems in

Risk Based Reliability Allocation At Component Level In Non-Repairable Systems By Using
Evolutionary Algorithm

i-2

view of the risk based reliability allocation method. Each system is assumed to have

discrete choice of component data set, showing monotonically increasing cost and

reliability relationship among the alternatives, and a fixed amount associated with

cost of failure. While this optimisation process is the main objective of the research

study, two variations are also introduced in this process for the purpose of

undertaking parametric studies. To study the effects of changes in the reliability

investment on system reliability and total loss, the first variation involves using a

different choice of discrete data set exhibiting a non-monotonically increasing

relationship between cost and reliability among the alternatives. To study the effects

of risk of failure, the second variation in the optimisation process is introduced by

means of a different cost of failure amount, associated with a given non-repairable

system failure.

The optimisation processes show very interesting results between system

reliability and total loss. For instance, it is observed that while maximum reliability

can generally be associated with high total loss and low risk of failure, the minimum

observed value of the total loss is not always associated with minimum system

reliability. Therefore, the results exhibit various levels of system reliability and total

loss with both values showing strong sensitivity towards the selected combination of

component alternatives. The first parametric study shows that second data set (non-

monotone) creates more opportunities for the optimisation process for producing

better values of the loss function since cheaper components with higher reliabilities

can be selected with higher probabilities. In the second parametric study, it can be

seen that the reduction in the cost of failure amount reduces the size of risk of failure

which also increases the chances of using cheaper components with lower levels of

reliability hence producing lower values of the loss functions.

The research study concludes that the risk-based reliability allocation

method together with the optimisation algorithm can be used as a powerful tool for

highlighting various levels of system reliabilities with associated total losses for any

given system in consideration. This notion can be further extended in selecting

optimal system configuration from various competing topologies. With such

information to hand, reliability engineers can streamline complicated system designs

in view of the required level of system reliability with minimum associated total cost

Risk Based Reliability Allocation At Component Level In Non-Repairable Systems By Using
Evolutionary Algorithm

i-3

of premature failure. In all cases studied, the run time of the optimisation algorithm

increases linearly with the complexity of the algorithm and due to its unique model

of evolution, it appears to conduct very detailed multi-directional search across the

solution space in fewer generations - a very important attribute for solving the kind

of problem studied in this research. Consequently, it converges rapidly towards

optimum solution unlike the classical genetic algorithm which gradually reaches the

optimum, when successful. The research also identifies key areas for future

development with the scope to expand in various other dimensions due to its

interdisciplinary applications.

Contents

LIST OF CONTENTS

ABSTRACT.. i-1
ACKNOWLEDGEMENT... ii
NOTATIONS .. iii
LIST OF FIGURES.. iv

...1. CHAPTER ONE..
1.1 INTRODUCTION .. 1-2
1.2 GENERAL APPROACH FOR SETTING QUANTITATIVE

RELIABILITY REQUIREMENTS.. 1-3
1.3 RISK BASED APPROACH FOR SETTING QUANTITATIVE

RELIABILITY REQUIREMENTS.. 1-6
1.3.1 Statement of the Optimisation Problem ... 1-8
1.3.2 Optimisation Diagram.. 1-8

1.4 RESEARCH AIMS... 1-10
1.4.1 Mathematical Formulation .. 1-10
1.4.2 Objective Function.. 1-12

1.5 RESEARCH OBJECTIVES.. 1-13
1.6 RESEARCH METHODOLOGY .. 1-15

...2. CHAPTER TWO...
2.1 SYSTEM RELIABILITY .. 2-2

2.1.1 Basic Configurations of Reliability Systems..................................... 2-3
2.1.2 System Reliability Computation of Complex System...................... 2-6
2.1.3 Common Probability Distributions for Modelling Time to Failure2-8

2.1.3.1 Exponential Distribution.. 2-8
2.1.3.2 Weibull Distribution ... 2-10
2.1.3.3 Other Distributions... 2-11

2.2 RELIABILITY OPTIMISATION .. 2-13
2.2.1 Modes of Optimisation ... 2-14
2.2.2 Optimisation Models... 2-15
2.2.3 Classification of System Reliability Optimisation.......................... 2-15
2.2.3.1 Category One - by System configuration.. 2-16
2.2.3.2 Category Two - by Problem Type ... 2-16
2.2.3.3 Category Three - by Optimisation Techniques.............................. 2-17
2.2.4 Computational Methods of Optimisation 2-17

2.3 REVIEW OF OPTIMISATION PROCESSES USING THE RISK
BASED RELIABILITY ALLOCATION METHOD............................ 2-20

2.4 GENERAL REVIEW OF RELIABILITY OPTIMISATION 2-26
2.4.1 Heuristics for Redundancy Allocation.. 2-26
2.4.2 Meta-heuristic Algorithms for Redundancy Allocation (Genetic
Algorithms, Simulated Annealing and Tabu Search)..................................... 2-27

Contents

2.4.3 Exact Methods for Redundancy Allocation.................................... 2-28
2.4.4 Heuristics for Reliability-Redundancy Allocation......................... 2-28
2.4.5 Multiple Objective Optimisation in Reliability Systems 2-29
2.4.6 Optimal Assignment of Interchangeable Components in Reliability
Systems .. 2-30
2.4.7 Effort Function Optimisation .. 2-31

...3. CHAPTER THREE...
3.1 INTRODUCTION .. 3-2
3.2 GENERAL STRUCTURE... 3-3
3.3 FEATURES OF EVOLUTIONARY ALGORITHM.............................. 3-4

3.3.1 Biological Overview of Evolutionary Algorithm.............................. 3-4
3.3.2 Terminologies and Concepts in Evolutionary Algorithms.............. 3-6

3.3.2.1 Chromosome Representation... 3-6
3.3.2.2 Global and Local Optimum Results.. 3-7
3.3.2.3 Population Structure .. 3-9
3.3.2.4 Fitness Function .. 3-10

3.3.3 Processes of Variations in Evolutionary Algorithm 3-12
3.3.4 Selection & Replacement Process – The Model of Evolution 3-24

3.4 DESIGNING EVOLUTIONARY ALGORITHMS 3-27
3.4.1 Genotype & Phenotype Representation...................................... 3-27
3.4.2 Population Structure .. 3-28
3.4.3 Fitness Function .. 3-29
3.4.4 Variation Operators ... 3-29
3.4.5 Model of Evolution.. 3-30
3.4.6 Termination Criteria .. 3-30

3.5 TYPES OF EVOLUTIONARY ALGORITHMS.................................. 3-31

...4. CHAPTER FOUR..
4.1 INTRODUCTION .. 4-2
4.2 GENERAL FRAMEWORK OF GENETIC ALGORITHMS............... 4-3
4.3 FEATURES OF GENETIC ALGORITHM .. 4-6

4.3.1 Terminologies and Concepts in Genetic Algorithm......................... 4-6
4.3.1.1 Types of Chromosome Coding... 4-6
4.3.1.2 Similarity Templates or Schemata .. 4-12
4.3.1.3 Niche Specialisation .. 4-17

4.3.2 Strength and Weaknesses of Genetic Algorithms.......................... 4-18
4.3.2.1 Convergence of Genetic Algorithms ... 4-19
4.3.2.2 Feasibility of Solutions.. 4-20

4.3.3 Comparative Analysis of Genetic Algorithms with Other EC
Methods .. 4-21

4.4 TYPES OF GENETIC ALGORITHMS... 4-23
4.5 APPLICATION OF GENETIC ALGORITHMS IN RELIABILITY

OPTIMISATION.. 4-24

Contents

...5. CHAPTER FIVE...
5.1 INTRODUCTION .. 5-2

5.1.1 Epistasis Phenomenon .. 5-2
5.1.2 Extremely Large Search Space.. 5-3

5.2 THE OPTIMISATION ALGORITHM.. 5-10
5.3 FEATURES OF THE OPTIMISATION ALGORITHM..................... 5-11

5.3.1 Structure of the Chromosome ... 5-12
5.3.2 Population Structure .. 5-14
5.3.3 Crossover Operation... 5-15

5.3.3.1 First Stage Crossover Operation (FSCO)................................... 5-16
5.3.3.2 Second Stage Crossover Operation (SSCO)............................... 5-18
5.3.3.3 Third Stage Crossover Operation (TSCO)................................. 5-20
5.3.3.4 Numerical Example .. 5-22

5.3.4 Mutation Operation.. 5-26
5.3.4.1 First Stage Mutation Operation (FSMO) 5-26
5.3.4.2 Second Stage Mutation Operation (SSMO) 5-29
5.3.4.3 Third Stage Mutation Operation (TSMO) 5-29
5.3.4.4 Numerical Example .. 5-32

5.3.5 Improvement Procedures... 5-34
5.3.5.1 Types of Improvement Procedures ... 5-35

5.3.6 Termination Criteria .. 5-41
5.3.7 Process Diagram ... 5-41

...1. CHAPTER SIX..
6.1 METHODOLOGY DEVELOPMENT... 6-2

6.1.1 Component Characteristic ... 6-2
6.1.2 System Reliability ... 6-3
6.1.3 Exploring the Search Space ... 6-3
6.1.4 Exploiting the Search Space... 6-4
6.1.5 Complexity of the Method.. 6-4

6.2 APPLICATION OF THE METHODOLOGY .. 6-5
6.2.1 Reliability Allocation Model .. 6-6
6.2.2 The Optimisation Algorithm (OA).. 6-7
6.2.3 Monte Carlo Method For Determining System Reliability And
Total Loss.. 6-8

6.3 RELIABILITY OPTIMISATION PROBLEM 6-11
6.3.1 Application of the Optimisation Algorithm.................................... 6-13

6.4 RISK-BASED RELIABILITY ALLOCATION.................................... 6-18
6.4.1 Optimisation Results For System A .. 6-21
6.4.2 Optimisation Results For System B .. 6-28
6.4.3 Optimisation Results For System C .. 6-31
6.4.4 Optimisation Results For System D .. 6-33

6.5 PARAMETRIC STUDY USING THE RISK BASED RELIABILITY
ALLOCATION METHOD AND OPTIMISATION ALGORITHM 6-35

6.5.1 Optimisation Process Using Data Set Showing A Non-
Monotonically Increasing Relationship Between Cost And Reliability..... 6-37

Contents

6.5.1.1 Optimisation Results For System A .. 6-38
6.5.1.2 Optimisation Results For System B .. 6-39
6.5.1.3 Optimisation Results For System C .. 6-40
6.5.1.4 Optimisation Results For System D .. 6-41

6.5.2 Optimisation Process Using Lower Cost Of Failure................... 6-43
6.5.3 Parametric Study .. 6-44

6.5.3.1 Comparisons Of Results From The Two Cost-Reliability Data
Tables .. 6-44
6.5.3.2 Comparisons Of Results From Two Different Costs Of Failure
Amount .. 6-46
6.5.3.3 Comparisons Of Results For Establishing The Best System
Topology .. 6-47

...7. CHAPTER SEVEN..
7.1 OBSERVATIONS FROM THE OPTIMISATION PROCESS 7-2

7.1.1 Fundamental Process of Optimisation.. 7-3
7.1.2 Second Process of Optimisation... 7-5
7.1.3 Third Process of Optimisation... 7-7

7.2 COMPARATIVE ANALYSIS OF THE OPTIMISATION
ALGORITHM... 7-10

7.2.1 Risk Based Reliability Allocation .. 7-10
7.2.2 Optimisation using Evolutionary Algorithm.................................. 7-11

7.2.2.1 Population Structure .. 7-12
7.2.2.2 Chromosome Structure .. 7-12
7.2.2.3 Embedded Improvement Procedures ... 7-13
7.2.2.4 Software Implementation... 7-15

...8. CHAPTER EIGHT..
8.1 CONCLUSIONS ... 8-1
8.2 FUTURE RECOMMENDATIONS .. 8-3

..APPENDIX I...
I.1 RELIABILITY & RISK ALGORITHMS...I-1

I.1.1 Method One ..I-1
Main Features ..I-2

I.1.2 Method Two..I-2
I.1.3 The Algorithm..I-3

I.1.3.1. Reliability of a complex lattice..I-5
I.2 APPLICATION OF THE CUT-SET AND TIE-SET SOFTWARE.......I-7

I.2.1 Basic Concepts..I-7
I.2.1.1 Cut Set and Minimal Cut Set..I-8
I.2.1.2 Minimal Tie Set ..I-9
I.2.1.3 Connection Matrix (Adjacency Matrix) ..I-9

Contents

I.2.1.4 Reliability Evaluation of Bridge Network Using Cut Sets and Tie
Sets ...I-10
I.2.1.5 A Real Life Production System...I-14

I.3 RESEARCH PUBLICATIONS..I-17

..APPENDIX II..
OPTIMISATION RESULTS FOR SYSTEM B (FROM SECTION 7.3.2) II-1

...APPENDIX III...
OPTIMISATION RESULTS FOR SYSTEM C (FROM SECTION 7.3.2) ... III-1

..APPENDIX IV..
OPTIMISATION RESULTS FOR SYSTEM D (FROM SECTION 7.3.2)IV-1

..APPENDIX V..
OPTIMISATION RESULTS FOR SYSTEM A (FROM SECTION 7.4.1.1) .. V-1

..APPENDIX VI..
OPTIMISATION RESULTS FOR SYSTEM B (FROM SECTION 7.4.1.2) .VI-1

...APPENDIX VII..
OPTIMISATION RESULTS FOR SYSTEM C (FROM SECTION 7.4.1.3)VII-1

...APPENDIX VIII..
OPTIMISATION RESULTS FOR SYSTEM D (FROM SECTION 7.4.1.4)

...VIII-1

...APPENDIX IX...
OPTIMISATION RESULTS FOR SYSTEM B (FROM SECTION 7.4.2)IX-1

System A ..IX-2
System B ..IX-4
System C ..IX-6
System D ..IX-8

...APPENDIX X...
COMPUTER PROGRAM ..CP-1

References & Bibliography..R&B-I

Acknowledgement

ii

ACKNOWLEDGEMENT

Sincere thanks to Professor Michael Todinov for offering me the opportunity to

undertake this challenging research degree at Cranfield University, and for his

continuous support, assistance and widely accepted expertise in the field of reliability

engineering and risk management. Michael has been an inspiration to me through out

this doctorate degree both academically and socially; his supervision developed me

into a more competitive individual with good thinking and problem solving skills.

Also, his encouragements and can-do attitude really helped me to finish my degree

on a high note despite experiencing very difficult times of my life which were

encountered during my research. Thanks Michael !

I would like to offer my gratitude to Robert Allwood for accepting to supervise my

work after Michael’s departure and taken the time out from his demanding schedule

to read and understand my thesis. Special thanks to Jo Mosca for proof reading my

thesis and informing me with his valuable comments for improvements.

To my family, particularly my parents and my wife, Oumna, I would like to thank

them for their support and encouragement they have given me, especially after the

unfortunate circumstances in the final stages of the research. Finally, the love for my

four little boys, Sharjeel, Eshbeel, Rosheel and Yasheel has also been a strong

motivating factor throughout my research period.

Notations

iii

NOTATIONS

M = Number of component in a system

N = Number of alternatives of each component

 = Total search space

Q = Reliability Investment (total cost of components)

K = Risk of Failure

LT = Total loss from system failure

fp = Probability of failure

sR = System Reliability

C = Expected cost given failure of a system

ifi cp = Risk of failure of the thi component

ji = Reliability of the thi component with thj alternative

jic = Cost of the thi component with thj alternative

i = M,.......3,2,1

j = N,.......3,2,1

kp = Population Number,),......2,1(RUNpk 

RUNp = Total number of populations

sizep = Size of the population

1 = Optimal chromosome

2 = Near optimal chromosome

RUNC = Total number of crossover runs

RUNM = Total number of mutation runs

)(1_IMPROVE = Improvement function for crossover operation

)(2_IMPROVE = Improvement function for mutation operation

EA = Evolutionary algorithm (optimisation algorithm)

List of Figures

iv

LIST OF FIGURES

Figure 1.1 Cost of Failure When Failure occurs before time interval ‘a’................ 1-2

Figure 1.2 Risk Based Reliability Allocation Method... 1-7

Figure 1.3 Before Optimisation: System with M Components with N alternatives

.. 1-9

Figure 1.4 After Optimisation: System with M Components with N alternatives

.. 1-9

Figure 1.5 Risk of Failure and System Reliability.. 1-13

Figure 1.6 Reliability Investment and System Reliability...................................... 1-14

Figure 2.1 Simple Block Diagram with one component, connected by points a and b

.. 2-3

Figure 2.2 Reliability Block Diagram of a System in Series Configuration 2-4

Figure 2.3 Reliability Block Diagram of a System in Parallel Configuration.......... 2-4

Figure 2.4 Example of a Complex System ... 2-6

Figure 2.5 Exponenetial Distribution.. 2-9

Figure 2.6 Risk Based Reliability Allocation Method.. 2-21

Figure 3.1 A simple evolutionary algorithm... 3-3

Figure 3.2 Genotype decoding into phenotype... 3-5

Figure 3.3 Chromosome Representation .. 3-6

Figure 3.4 Genotype and Phenotype Transition ... 3-7

Figure 3.5 Global Optimum And Local Optimum of a Function, F(X) 3-9

Figure 3.6 Fitness of organism with respect to its environment 3-10

Figure 3.7 Fitness evaluation of chromosome in evolutionary algorithm 3-12

Figure 3.8 Roulette Wheel Selection Mechanism .. 3-25

Figure 4.1 A simple Genetic Algorithm ... 4-5

Figure 5.1 A system consisting of M components with N alternatives each............ 5-4

Figure 5.2 Component Surface Showing Coordinates of Cost and Reliability 5-5

List of Figures

v

Figure 5.3 Surface of the ith Component with N Alternatives Showing

Monotonically Increasing Cost-Reliability Relationship 5-6

Figure 5.4 Surface of the ith Component with N Alternatives Showing

Non-Monotonically Increasing Cost-Reliability Relationship 5-7

Figure 5.5 System Configuration Domain with Choice of M Components,

Represented as Surfaces. Also Shown are the Points in the Search Space

Representing the Values of the Loss Function with Coordinates Located in Each

of the M Component Surfaces .. 5-9

Figure 5.6 Optimisation Algorithm .. 5-10

Figure 5.7 Chromosome Structure and Domain Mapping...................................... 5-13

Figure 5.8 Example Chromosome with Real Value Mapping of Cost and Reliability

.. 5-14

Figure 5.9 First Stage Crossover Operation.. 5-17

Figure 5.10 Second Stage Crossover Operation ... 5-19

Figure 5.11 Third Stage Crossover Operation .. 5-21

Figure 5.12 First Stage Mutation Operation ... 5-28

Figure 5.13 Second Stage Mutation Operation... 5-30

Figure 5.14 Third Stage Mutation Operation.. 5-31

Figure 5.15 Structure of the First Improvement Procedure 5-35

Figure 5.16 Structure of the Second Improvement Procedure................................ 5-40

Figure 5.17 Pictorial Demonstration of the Optimisation Process 5-42

Figure 6.1 Structure of the Optimisation Algorithm... 6-10

Figure 6.2 Reliability System with Nine Components .. 6-11

Figure 6.3 Total Search Area Explored By the Optimisation Algorithm 6-15

Figure 6.4 Effect of the Improvement Procedure In Crossover Process 6-16

Figure 6.5 Area Search by the Improvement Procedure Based On Random Mutations

.. 6-16

Figure 6.6 Convergence of the Optimisation Toward Optimum Solution Using

Improvement Procedures .. 6-17

Figure 6.7 Total Search Space And the Optimisation Process 6-17

Figure 6.8 Monotonically increasing relationship of cost-reliability from Table 7.1....

List of Figures

vi

.. 6-19

Figure 6.9 Four Reliability Systems with Nine Components Each 6-20

Figure 6.10 Optimisation Process of System Reliability and Total Loss in System A

.. 6-22

Figure 6.11 Total Effect of Optimisation Process on System A............................ 6-22

Figure 6.12 Crossover Process of System A... 6-23

Figure 6.13 Effect of Mutation Process on Total Loss in System A 6-23

Figure 6.14 Region of the Search Space Examined By the Mutation Process in

System A... 6-24

Figure 6.15 Total Search Space examined by the optimisation algorithm for System

A.. 6-24

Figure 6.16 Monotonically Increasing Relationship of Cost-Reliability for Data in

Table 7.5 ... 6-33

Figure 6.17 Topology Comparison Using the First Cost-Reliability Data Set....... 6-48

Figure 6.18 Topology Comparison Using the Second Cost-Reliability Data Set .. 6-49

Figure 6.19 Topology Comparison Using the Lower Cost of Failure Amount...... 6-50

Figure 6.20 Run Time of the Optimisation Algorithm ... 6-48

Figure 7.1 Structure of the Optimisation Process ... 7-2

Figure 7.2 Effects of the Two Cost-Data Tables on Total Loss and System Reliability

Values in All Four Systems .. 7-6

Figure 7.3 Effects of the Two Cost of Failure Amounts on Total Loss and System

Reliability Values in all Four Systems ... 7-9

Figure I.1 Bridge network..I-7

Figure I.2 System Failure – Second Order Cut Set..I-12

Figure I.3 System Failure – Third Order Cut Set ..I-12

Figure I.4 Minimal Cut Sets of Bridge Network ...I-13

Figure I.5 Minimal Tie Sets of Bridge Network..I-13

Figure I.6 Reliability Network of a Real Life Production SystemI-14

Figure I.7 Connection Matrix of the Real Life Reliability SystemI-15

Figure I.8 Minimal Tie Sets of the Real Life Reliability SystemI-15

Figure I.9 Minimal Cut Sets of the Real Life Reliability System............................I-16

List of Figures

vii

Figure II.1 Structure of System B.. II-1

Figure II.2 Effect of Optimisation Process on System Reliability and Total Loss in

System B.. II-3

Figure II.3 Optimisation Process of System B .. II-3

Figure II.4 Crossover Process of System B ... II-4

Figure II.5 Effect of Mutation Process on Total Loss in System B......................... II-4

Figure II.6 Mutation Process in System B... II-5

Figure II.7 Total Search Space Examined By the Optimisation Algorithm for System

B... II-5

Figure III.1 Structure of System C.. III-1

Figure III.2 Effect of Optimisation Process on System Reliability and Total Loss in

System C... III-3

Figure III.3 Optimisation Process of System C .. III-3

Figure III.4 Crossover Process of System C... III-4

Figure III.5 Effect of Mutation Process on Total Loss in System C III-4

Figure III.6 Mutation Process in System C... III-5

Figure III.7 Total Search Space Examined By the Optimisation Algorithm for

System C... III-5

Figure IV.1 Structure of System D ... IV-1

Figure IV.2 Effect of Optimisation Process on System Reliability and Total Loss in

System D... IV-3

Figure IV.3 Optimisation Process of System D.. IV-3

Figure IV.4 Crossover Process of System D .. IV-4

Figure IV.5 Effect of Mutation Process on Total Loss in System D IV-4

Figure IV.6 Mutation Process in System D .. IV-5

Figure IV.7 Total Search Space Examined By the Optimisation Algorithm for

System D... IV-5

Figure V.1 Structure of System A ... V-1

Figure V.2 Effect of Optimisation Process on System Reliability and Total Loss in

System A.. V-3

Figure V.3 Optimisation Process of System A.. V-3

List of Figures

viii

Figure V.4 Crossover Process of System A... V-4

Figure V.5 Effect of Mutation Process on Total Loss in System A V-4

Figure V.6 Mutation Process in System A .. V-5

Figure V.7 Total Search Space Examined By the Optimisation Algorithm for System

A... V-5

Figure VI.1 Structure of System B ...VI-1

Figure VI.2 Effect of Optimisation Process on System Reliability and Total Loss in

System B...VI-3

Figure VI.3 Optimisation Process of System B..VI-3

Figure VI.4 Crossover Process of System B...VI-4

Figure VI.5 Effect of Mutation Process on Total Loss in System BVI-4

Figure VI.6 Mutation Process in System B ..VI-5

Figure VI.7 Total Search Space Examined By the Optimisation Algorithm for

System B...VI-5

Figure VII.1 Structure of System C...VII-1

Figure VII.2 Effect of Optimisation Process on System Reliability and Total Loss in

System C..VII-3

Figure VII.3 Optimisation Process of System C..VII-3

Figure VII.4 Crossover Process of System C ..VII-4

Figure VII.5 Effect of Mutation Process on Total Loss in System C....................VII-4

Figure VII.6 Mutation Process in System C..VII-5

Figure VII.7 Total Search Space Examined By the Optimisation Algorithm for

System C..VII-5

Figure VIII.1 Structure of System D ... VIII-1

Figure VIII.2 Effect of Optimisation Process on System Reliability and Total Loss in

System D.. VIII-3

Figure VIII.3 Optimisation Process of System D .. VIII-3

Figure VII.4 Crossover Process of System D .. VIII-4

Figure VIII.5 Effect of Mutation Process on Total Loss in System D VIII-4

Figure VIII.6 Mutation Process in System D .. VIII-5

List of Figures

ix

Figure VIII.7 Total Search Space Examined By the Optimisation Algorithm for

System D.. VIII-5

Figure IX.1 Structure of System A ... IX-2

Figure IX.2 Effect of Optimisation Process on System Reliability and Total Loss in

System A... IX-2

Figure IX.3 Structure of System B ... IX-4

Figure IX.4. Effect of Optimisation Process on System Reliability and Total Loss in

System B... IX-4

Figure IX.5 Structure of System C ... IX-6

Figure IX.6 Effect of Optimisation Process on System Reliability and Total Loss in

System C... IX-6

Figure IX.7 Structure of System D ... IX-8

Figure IX.6 Effect of Optimisation Process on System Reliability and Total Loss in

System D... IX-8

Chapter No. 1 Research Introduction

1-1

RESEARCH
INTRODUCTION

This chapter provides an introduction to the research study by detailing the various

approaches for system reliability optimisation. The first half describes the two

general approaches which are commonly found in the reliability literature along with

their mathematical formulation. The second part of this chapter introduces the risk

based reliability allocation method and emphasises its viability for using as an

appropriate optimisation method for systems associated with high cost of failure by

presenting the statement of the optimisation problem studied in this research. The

final part of chapter highlights the research aim, objective and methodology.

Chapter No. 1 Research Introduction

1-2

1.1 INTRODUCTION

A product (system) associated with unacceptably large investment cost and high risk

of premature failure before some specified time interval ‘ a ’ (Fig. 1.1), can have

detrimental impacts on overall business performance due to the extremely high losses

from failures. For this reason, product reliability is of great importance to both

manufacturers and buyers. The losses can be more expensive yet damaging for the

reputation (and existence) of a manufacturer, if they are generated by the lost

production time, amount of lost production, mass of released harmful chemicals in

the environment, number of fatalities, lost customers, warranty payments, costs of

mobilisation of emergency resources, insurance costs etc. For example, in sub sea oil

and gas production systems, major components of the losses from failures are the

amount of lost production time that is directly related to the volume of lost

production, the cost of intervention and the cost of repair/replacement. Additionally,

in an event of released harmful chemicals and oil in the sea, the cost of failure can be

enormous. Similarly, in the aerospace industry for example, the cost of failure is also

very high and in most instances, impossible to recover; therefore, reliability

allocation must be driven in view of these critical failures and associated costs.

Premature Failure

Time

Time Interval, a

Cost of Failure

Figure 1.1 Cost of failure when failure occurs before time interval ‘a’

“For industries characterised by a high cost of failure, the process of setting
quantitative reliability requirements should be driven by the cost of failure”

(Todinov, 2004)

Chapter No. 1 Research Introduction

1-3

1.2 GENERAL APPROACH FOR SETTING

QUANTITATIVE RELIABILITY

REQUIREMENTS

The traditional approach for setting the quantitative reliability requirements in

engineering systems (oil and gas production units, for example) is based mainly on

achieving high availability targets. As a result, it does not necessarily guarantee a

small risk of failure associated with premature system failures, as shown by Todinov

(2004). Even at a very high availability, associated with a particular time interval

‘ a ’, the probability of a premature failure can be very large, consequently,

increasing the cost of the failure or total losses (warranty costs, for example). The

reliability requirements must therefore guarantee not only a high availability target,

but also a low probability of premature failure and, consequently, a low risk of

failure for minimising the amount of total losses.

Traditionally, the ‘cost’ factor is often considered as a parameter in terms of ‘price

for achieving the required level of reliability’ for a given system. In other words, it is

an allocated capital cost (budget) which includes the cost of implementing and

operating a reliability program in addition to the overall development and production

cost associated with the product. It mainly consists of direct material and labour costs

as well as indirect costs such as taxes, insurance, energy, production facilities &

equipment, and overhead costs such as administrative, marketing and product

development costs. Allocated capital cost is generally (but not always) an increasing

function of reliability, not only because more organisational resources must be

committed to achieve a higher reliability, but also because the material and

production costs of the product must increase as well. This my be a result of more

costly parts selection, added redundancy, stricter tolerances, excess strength, and

increased quality control and inspection sampling during the manufacturing process.

As a result, allocated capital cost can be considered as an investment towards

achieving the desired reliability.

Chapter No. 1 Research Introduction

1-4

In mathematical terms, system reliability ‘ sR ’ is related to component reliabilities

‘ iR ’, through a function given by,

),.....,,(21 Ms RRRR  (1.1)

(Where Mi 1 for ‘ M ’number of components in a system)

Let ‘)(ii RC ’ denote the cost of component ‘ i ’, which has reliability ‘ iR ’. This is

generally (not always) an increasing function of ‘ iR ’, implying that the cost

increases with increasing component reliability. The total system cost can be shown

as,

)(
1

i

M

i
i RCC 


 (1.2)

where,

},.....,,{}{ 211 M
M

s RRRR  (1.3)

In view of the above relationships in equations (1.1-1.3), the common objectives of

the existing reliability optimisation approaches appear to be:

 For a pre-defined level of system reliability, minimize the total cost of

resources, required to achieve this reliability level

The objective here is to determine the optimal reliability allocation so that the

system reliability is at least ‘ MinR ’ and the total system cost ‘ C ’ is minimised.

Thus we have the following optimisation problem,

Chapter No. 1 Research Introduction

1-5


M

ii
R

RCJ
M

1}{
)(min

1

(1.4)

subject to the constraints

10

),.....,,(21





i

MinM

R

RRRR
(1.5)

 For a given budget allocated for a particular project, achieve maximum

level of system reliability

In the second case, the objective is to determine the optimal reliability allocation

that maximises the system reliability ‘ sR ’ subject to the total cost ‘C ’ not

exceeding some pre-specified budget value ‘ MaxC ’. This results in the following

optimisation problem,

),....,,(max 21
}{ 1

M
R

RRRJ
M

 (1.6)

subject to the constraints

10

)(
1





i

Max

M

ii

R

CRC
(1.7)

The fundamental notion of system reliability is described in the next chapter along

with other approaches for system reliability optimisation besides the two very

common types mentioned above. A very highly regarded literature review on this

topic is provided by Kuo et al. (2000, 2001).

Chapter No. 1 Research Introduction

1-6

1.3 RISK BASED APPROACH FOR SETTING

QUANTITATIVE RELIABILITY

REQUIREMENTS

It is often seen that removing a failure mode at a design stage is significantly less

expensive compared to removing it during service. Thus, it is vital that reliability is

integrated early into the design of complex systems associated with high risk of

failure. In order to achieve this, reliability engineers must be able to estimate the total

losses from system failure or the cost of unreliability. This creates the opportunity to

identify the inappropriate design solutions associated with large risk of failure and

select an optimal solution characterised by minimum total losses from premature

system failures.

This requires a system reliability analysis based on the total losses from failures. A

powerful approach is proposed by Todinov (2004, 2006) for system reliability

analysis based on minimising the total loss ‘ LT ’ which is the sum of the reliability

investment ‘Q ’ and the risk of failure ‘ K ’ and also known as the risk based

reliability allocation method.

)(KQT L  (1.8)

This approach is very useful for comparing the expected risk of failures associated

with the competing solutions along with the capital and operational costs associated

with them, as shown in Fig. 1.2. The point ‘ *X ’ represents the optimal value of the

system reliability as it is connected with the minimum value which exists on the total

loss curve.

Chapter No. 1 Research Introduction

1-7

Figure 1.2 Risk Based Reliability Allocation Method

The risk based reliability allocation method is not about setting the highest level of

system reliability (or availability), as observed in the conventional methods to date.

Instead, the crux of this approach is to allocate reliabilities to the components of a

system such that the total losses are minimised. The optimisation process is driven

solely by the amount of total losses because maximising the reliability of the system

does not necessarily mean minimum expected losses from failures. Increasing the

reliability inappropriately can also increase the losses from failures despite reducing

the probability of failure. (Todinov, 2004)

In view of the recently published work of Todinov (2004, 2006), it can be seen that

the novel risk based reliability analysis offers a new generation of modelling

technique for allocating system reliability particularly for industries associated with a

high cost of failure. The aim of this research is to extend this work by demonstrating

its application on complex, large scale non-repairable engineering systems, with a

large choice of components alternatives. The statement of the optimisation problem

is stated next.

Total Losses KQTL 

Risk of failure
K

System
Reliability

X
*

Reliability Investment
Q

Chapter No. 1 Research Introduction

1-8

1.3.1 Statement of the Optimisation Problem

For a system with specified reliabilities and corresponding costs for all alternatives,

as in matrices ‘ ’ and ‘C ’ respectively, the problem is to select an optimal set of

alternatives such that the total loss from system failure is minimum. The statement of

this problem was first presented in Todinov (2005) and is yet to be solved by

developing a risk-based reliability allocation method for a non-repairable system.





























MNMMM

N

N

N









,,,
......
......

,,,
,,,
,,,

...............321

3..........333231

2..........232221

1...........131211





























MNMMM

N

N

N

CCCC

CCCC
CCCC
CCCC

C

,,,
......
......

,,,
,,,
,,,

...............321

3...........333231

2..........232221

1...........131211

For a given system, the problem reduces to selecting ‘ M ’ optimal alternatives from

each row of the reliability matrix,),...,,(,2,21,1


NM such that the total loss

function, ‘ LT ’ is minimised.

1.3.2 Optimisation Diagram

The optimisation process has also been shown diagrammatically in Fig. 1.3 and 1.4.

Chapter No. 1 Research Introduction

1-9

Figure 1.3 Before Optimisation: System with M Components with N alternatives

Figure 1.4 After Optimisation: System with M Components with N alternatives

A3 B5 C2

D1 E2 M3

Optimally Selected
Alternatives of Each Component

A1-N

E1-ND1-N

B1-N C1-N

M1-N

Component A with N
alternatives
(A1,A2...AN)

Component B with N
alternatives
(B1,B2...BN)

jthComponent, M with
N alternatives
(M1,M2...MN)

Chapter No. 1 Research Introduction

1-10

1.4 RESEARCH AIMS

In view of the recently published work of Todinov (2004, 2006), it can be seen that

the novel risk based reliability analysis offers a new generation of modelling

technique for allocating system reliability particularly for industries associated with a

high cost of failure. The aim of this research is to extend this work by demonstrating

its application on complex, large scale non-repairable engineering systems. The types

of systems which are considered in this research are assumed to be consisting of

many components such that each component has a large choice of distinctive

alternatives with different reliabilities and corresponding costs, which makes the

application process to be a very difficult combinatorial optimisation problem.

Consequently, for a given reliability system, consisting of many subsystems, the

problem is to allocate appropriate level of system reliability by selecting optimal

combination of alternatives from the available choices such that the amount of total

losses ‘ LT ’, sum of the reliability investment ‘Q ’ and the risk of failure ‘ K ’,

associated with a non-repairable system failure, is minimum.

)(KQT L  (1. 9)

The formal statement of the optimisation problem has already been presented in

Chapter 1, Section 1.3.1. The mathematical formulation of the optimisation problem

is, however, presented in the next section.

6.1.1 Mathematical Formulation

According to a commonly accepted equation (Henley & Kumamoto, 1981), the risk

of failure ‘ K ’, has been defined as the product of the probability of failure ‘ fp ’ and

the loss ‘C ’, given that failure has occurred.

Chapter No. 1 Research Introduction

1-11

CpK f (1.10)

For ‘ M ’ components in a system with ‘ N ’ alternatives for each component, the aim

is to allocate the system reliability, ‘ sR ’ through the function,

 )...()(2),(1 ,1,,21,2,111
,........,,)(

NMMNN Ms RRRROpt   (1.11)

by minimising the total loss function from equation (1.9).

In equation (1.11), the system reliability ‘ sR ’ is a function of ‘ M ’ components, each

with ‘ N ’ number of given alternatives, such that ‘ ji ’ is the reliability of the ‘ thi ’

component with ‘ thj ’ alternative, ‘ LT ’ is the total loss from system failure before

some specific time interval ‘ a ’.

),...,,(,3,32,21,11 NMccccfQ  (1.12)


M

i
icQ (1.13)

),...,,(,3,32,21,12 NMfK  (1.14)

In above equations, ‘ Q ’ is the cost of reliability investment towards risk reduction

and is a function of component costs for all selected alternatives (equation, 1.1), such

that ‘ jic ’ is the cost of the ‘ thi ’ component with ‘ thj ’ alternative, where

 Mi3,2,1 ,  Nj3,2,1 , and ‘ Q ’ is equal to the sum of the cost of selected

alternatives - equation (1.13). ‘ K ’ in equation (1.14) represents the risk of failure

and is a function of the component reliabilities for all selected alternatives.

Chapter No. 1 Research Introduction

1-12

Using equation (1.14), we can rewrite equation. (1.10) as,

CPK NMf ),...,,(,3,32,21,1  (1.15)

  CRK NMs ),...,,(1 ,3,32,21,1  (1.16)

where,

MfMff cpcpcpC 2211 (1.17)

and ‘ fp ’ is the probability of failure, ‘ sR ’ is the system reliability, ‘ C ’ is the

expected cost given failure of the system & ‘ ifi cp ’ is the risk of failure of the ‘ thi ’

component.

6.1.2 Objective Function

The objective function can thus be derived by substituting the values of equation

(1.13) and equation (1.16) into equation (1.9). As a result, we get,

  







  CRcMinT NMs

M

i
iL),...,,(1 ,2,21,1  (1.18)

Where ‘


M

i
ic

1

’ is the total cost of the selected alternatives, ‘),...,,(,2,21,1


NMsR  ’

is the reliability of the system with optimal (*) set of selected alternatives and ‘ C ’ is

the expected cost given failure before a specified time interval ‘ a ’ associated with

the selected alternatives.

Chapter No. 1 Research Introduction

1-13

1.5 RESEARCH OBJECTIVES

The optimisation function in equation (1.18) shows that the total losses can be

minimised, fundamentally by either decreasing the probability of failure ‘ fP ’ of the

system for reducing the risk of failure amount (equation 1.15. Fig. 1.5) or by using

cheaper components in order to reduce the cost towards reliability investment, as

shown in equation (1.12-1.13) and Fig. 1.6. The two options makes the optimisation

process very interesting since reducing the probability of failure requires the use of

components with higher reliabilities which automatically increases the cost towards

reliability investment, in general. Similarly, opting for cheaper components would

imply the complete opposite of the first option since it will increase the probability of

failure due to a decrease in component reliability with the individual component cost

(if a monotonically increasing function is assumed between cost and reliability).

The process of loss function minimisation becomes even more complex when the

relationship between cost-reliability is considered to be non-monotonically

increasing and when a very large choice of components alternatives is available. This

System Reliability

Risk of Failure

Figure 1.5 Risk of Failure and System Reliability

Chapter No. 1 Research Introduction

1-14

is because many combinations of components can exist which can produce minimum

values of the loss function when selected together without showing any obvious

pattern to the ones depicted in Fig, 1.5 and 1.6.

Since the aim of this research study is to demonstrate the risk based reliability

allocation method at component level in non-repairable systems, consisting of many

components with a large choice of available alternatives (irrespective of cost-

reliability relationship), the primary objective is to develop an efficient optimisation

technique which can be used effectively to minimise the loss function from equation

(1.18) for such systems. This can be outlined in the following points:

 Allocate reliability at a component level in order to minimise the total losses:

the sum of the cost of the component and the risk of premature failure.

 Be able to search for optimum solution in all instances, particularly when the

evaluation of all possible solutions is impractical by using enumerative

techniques, such as exhaustive search method.

 Perform loss function minimisation for all relationships between cost and

reliability which may exist among the alternatives of the components.

System Reliability

Reliability Investment

Figure 1.6 Reliability Investment and System
Reliability

Chapter No. 1 Research Introduction

1-15

 Perform optimisation of the topology of systems with respect to the risk

based reliability allocation method.

The overall objective of the optimisation process is to ensure that the given system is

both economically reliable and reliably safe. Economically reliable means the

system’s observed reliability has been established with consideration of the

minimum total losses from premature failure. Reliably safe means designing

sufficient reliability into the system to ensure that the probability of premature failure

is within an acceptable limit. How much reliability should be designed into a system

depends significantly on the level of the acceptable amount of total loss.

1.6 RESEARCH METHODOLOGY

For ‘ M ’ components with ‘ N ’ alternatives each, the search space ‘)( ’ can be

very large (MN) even for small and moderately sized problems. Additionally, the

non-linear relationship between cost and reliability, as explained in Guikema and

Pate-Cornell (2002) and in Chapter 6, demands efficient exploration of the solution

space for these types of optimisation problems since any combination of component

can produce optimal or near optimal solution without demonstrating any obvious and

straightforward pattern. In the context of solving reliability optimisation problems,

the method of using genetic search (detailed in Chapter 3 & 4) has been widely

employed due to its robustness and capability to efficiently explore and exploit the

search space (Gen and Cheng, 1997, 2000; Levitin, 2006; Smith, 2006). A solution

for the optimisation problem studied in this research is therefore, proposed by using

an efficient optimisation technique (detailed in chapter 5), which is inspired by the

notion of the evolutionary algorithms (EA), detailed in chapter 3. Being a population

based method with embedded variation operators mimicking the phenomenon of

evolution of life in the natural science, the selected methodology provides a very

useful tool in studying the very large search space of the optimisation process and

evaluating the complex structures of the cost-reliability combinations for possible

Chapter No. 1 Research Introduction

1-16

exploration of the optimum solutions. While chosen method does not guarantee the

absolute optimum, the quality of the results generally obtained deserve the title of

‘optimal’ or ‘near optimal’. The core features of the proposed methodology are listed

below:

 The methodology has the ability to estimate system reliability of complex

reliability networks and risk of failures, by means of a software tool based

predominantly on a powerful method designed by Todinov (2006, 2006a).

Using the state of the art Monte Carlo simulation technique, the algorithm

provides generic applicability for all types of complex systems and is fully

capable of determining the reliability of any given system with associated

amount of total losses. It is useful to point out that all optimisation problems

studied in this research have also been tested with another reliability

estimation method (Appendix I) which is similar to the method introduced by

Todinov. However, it has not been tested for problems which exist outside

the scope of this research but given the excellent quality of the comparative

results, it is deemed as having great potential for future studies.

 The methodology is capable of skilfully selecting an optimal combination of

alternatives which best minimises the total loss function. This process

consists of randomly selecting possible solutions from the large search space

and competently exploiting the good solutions for exploring even better

solutions. Besides the optimum solution, the methodology is able to produce

a list of other sub-optimal results which can be used to effectively undertake

parametric studies for future studies.

Chapter 2 System Reliability Optimisation

2-1

SYSTEM
RELIABILITY
OPTIMISATION
(CONCEPTS AND MODELS)

This chapter reviews some of the important concepts used in this research along with

the literature found in the field of reliability optimisation. The first half of the chapter

details the fundamentals of system reliability, system configurations, methods for

estimating system reliability and some widely known probability distributions. The

remaining half of the chapter conducts a concise review of the reliability optimisation

process using various models and techniques along with the specific literature review

of risk based reliability allocation method. The final section of the chapter provides

general review of some of the widely known areas of reliability optimisation.

Chapter 2 System Reliability Optimisation

2-2

2.1 SYSTEM RELIABILITY

The reliability of a system (or a component) is generally referred to as its ability to

perform specified task, under specific conditions of use and during a specified interval

of time, ‘ t ’. In other words, system reliability, being a function of time,’)(tR ’,

articulates the notion of dependability, successful operation or performance and most

importantly, the absence of failures. Because the process of deterioration (e.g. crack

occurrence and propagation in a surface of a component) leading to system failure

arises in an uncertain manner, the notion of reliability necessitates a dynamic and

probabilistic framework. Thus, it can be measured in terms of a probability,

‘)(tTP  ’ that a system or a component will continue to work during the specified

time interval, ‘ t ’ before failing eventually in time, ‘T ’, such that ‘T ’, is a

continuous random variable and ‘ tT  ’; for this reason, it is also known as survival

function (Kaufmann et al., 1977).

)()(tTPtR  (2.1)

For non-repairable systems, the above relationship is restricted to the time interval to

the first failure of the system, whilst for those that can be repaired, all time intervals

between successive failures must be considered. The reliability function is a

monotone non-increasing function which is unity at start of life and gradually reduces

towards zero as the time increases to infinity. The complement of ‘)(tR ’ is the

cumulative distribution function of failures ‘)(tF ’ which is associated with reliability

by the following relationship,

)(1)(tRtF  (2.2)

Using the similar approach as in equation (2.1) and continuous random variable ‘T ’,

the ‘)(tF ’ gives the probability that the time to failure ‘T ’ will be smaller than the

specified time interval ‘ t ’,

)()(tTPtF  (2.3)

The probability density function of the time to failure is denoted by ‘)(tf ’, which

describes how the failure probability is spread over time. In the infinitesimal interval

Chapter 2 System Reliability Optimisation

2-3

‘ t ’, ‘ dtt  ’, the probability of failure is ‘ dttf)(’. For any specified time interval

‘ 21 tTt  ’, the probability of failure can be estimated as,

 2

1
)()(21

t

t
dttftTtP (2.4)

Because ‘)(tf ’ is a probability distribution, the values of ‘)(tf ’ are always non-

negative and the total area beneath ‘)(tf ’ is always equal to one. Also, it is related to

the cumulative distribution function ‘)(tF ’ by the following relationship,

dttdFtf /)()( (2.5)

A comprehensive discussion related to the basic reliability functions has been

provided by Kaufmann et al. (1977) and Grosh (1989). Also, the mathematically

oriented explanations of the reliability theory are detailed in Barlow and Proschan

(1965, 1975) and Catuneanu et al. (1989).

2.1.1 Basic Configurations of Reliability Systems

Most often, a system is found to be composed of more than one component (i.e. a

multi-component system). In these cases, the reliability of the system becomes the

function of the individual components reliabilities and the method in which these

components are arranged for assembling the system. There are two fundamental

configurations in which a system can be constructed. These are series configuration

and parallel (or redundant) configuration. Each of these can be shown by means of a

reliability block diagram (RBD). Each component in a RBD is represented by a block

with two end points or nodes, ‘ a ’ (source) & ‘b ’ (sink), which are connected only if

the component is in its working state, otherwise this connection is broken, when the

component is in failed state - Fig. 2.1.

Figure 2.1 Simple Block Diagram with one component, connected by points a and b

Component
a b

Chapter 2 System Reliability Optimisation

2-4

A multi-component system can be represented as a network of such blocks with two

end points. The system is considered in working state if there is a connection between

the source and sink nodes, otherwise, it is considered in the failed state because of no

path between the two nodes. Therefore, using RBDs, a system with ‘ M ’ number of

components in series configuration can be shown in Fig. 2.2, whereas, the parallel

configuration of the system with the same number of components, is shown in Fig.

2.3.

Figure 2.2 Reliability Block Diagram of a System in Series Configuration

Figure 2.3 Reliability Block Diagram of a System in Parallel Configuration

In series configuration, all ‘ M ’ components in a system must be in working state in

order for the system to be in operation. If each component is represented by ‘ iA ’

such that Mi 1 , then the reliability of the system with series configuration can be

represented as, sR = Probability(All components are working).

Mathematically,

1
a b

2 M

1

a b

2

M

Chapter 2 System Reliability Optimisation

2-5

)(

)(

1

21

i

M

i
s

Ms

APR

AAAPR




 
(2.6)

Where ‘)(iAP ’ is the probability that component ‘ iA ’ is in working state.

On the other hand, a system with parallel configuration will be in a failed state if all

‘ M ’ components in the system are not working (failed). Using the same notation of

‘ iA ’ for components, the reliability of the system with parallel configuration can be

represented as, sR = Probability(All components are failed).

Mathematically,

)](1[1

)(

1

21

i

M

i
s

Ms

APR

AAAPR








(2.7)

Using these two fundamental configurations, a reliability system can also be

consisting of the combined structures of both series-parallel and parallel-series

configurations. The system reliability for such system is computed by breaking the

system down to smaller units of series and parallel structures. Additionally, there are

many other types of configurations (Kuo et al., 2001) among which the two

commonly known in the reliability literature are ‘ Mofoutk  ’ systems and

‘complex systems’. The former is a configuration in which a system is in working

state only if at least ‘ k ’ of its ‘ M ’ components are operating without failure (similar

to parallel systems). In ‘complex configuration’, the structure of the arrangement of

components is neither in series nor in parallel. An example of such a system is shown

in Fig. 2.4. The reliability of a complex system can be computed using various

analytical techniques such as Inspection Method, Event Space Method, Path Tracing

Method, Decomposition Method, Adjacency Matrix Method, Matrix Multiplication

Method, Tree Based Method, and most commonly known Tie-Set and Minimal Cut-

Set Methods. An excellent overview of these methods is provided by Billinton &

Allan (1992), Ramakumar (1993), Ebeling (1997), Blischke & Murthy (2000) and

Chapter 2 System Reliability Optimisation

2-6

Todinov (2006a). Also, a practical demonstration of the Tie-Set and Cut-Set method

has also been shown in Appendix I for an example bridge system and software using

the algorithm from Fotuhi-Firuzabad et al. (2004), who also provide comparative

review of various methods listed above.

Figure 2.4 Example of a Complex System

2.1.2 System Reliability Computation of Complex System

For a large scale system with more complex configurations (than the system shown in

Fig 2.4, for example) the analytical method for computing system reliability can be a

very difficult and cumbersome process with a strong possibility that these methods

may not even work with great success because of the computation times which can

grow exponentially with the size of the reliability system. There are many alternative

methods proposed by researchers for counteracting this problem which is found in the

literature. Among these, are the methods of Hanzhong & Dongkui (1994) for

computing complex system reliability using advancements in cut sets approach, Ball

A

B

D

E
C

H

G

F

K

J

I

1

3

4

5

2

6

L

M

Chapter 2 System Reliability Optimisation

2-7

& Van Slyke (1977) introduced modified cut-set enumeration method by backtracking

to compute the system reliability, Mandaltsis & Kontolen (1987) provided a method

for calculating system reliability using hierarchical routing strategies and Liu et al.

(1995), who also suggested a different approach for computing system reliability.

Another interesting type of solution for computing reliability of complex systems

adopted by the researcher in recent years is the use of Monte-Carlo (MC) simulation

technique. Simulation methods are appropriate for large scale reliability systems

because the computation time does not grow as steeply as observed for analytical

methods for the same systems and also due to the latest advancements in computer

technology; faster processing machines are available which can be used to optimise

the runtime of the simulation algorithm. There are many publications in this field

detailing the use of this simulation method with many variations in the individual

approaches. Among many, some of the commonly found methods are Kamat & Riley

(1975); used even based MC simulation for determining the system reliability,

Kumamoto et al. (1977); suggested an evaluation method for determining the system

reliability, Fishman (1986(a)(b)); studied the use of MC in depth and provided four

methods for establishing the path between the source and sink nodes of a reliability

system, Yeh et al. (1994); provided a new approach for using MC for evaluating

system reliability and Cancela & Khadiri (1995) studied the communication network

and suggested recursive variance-reduction technique with MC for computing system

reliability. A simple yet very powerful method using MC for evaluating reliability of

system consisting of components which are not arranged logically in series or parallel

configuration is proposed by Todinov (2006, 2006a). The method is generic, uses

adjacency matrix and node-stacking technique for exploring the valid path between

the source and sink nodes and is very easy to program. In Appendix–I, another

method for estimating system reliability is introduced in this research which is very

similar to Todinov’s approach. Both methods use adjacency matrix for representing a

reliability network however the process of navigating through the matrix are different

in the two methods. While the second method has been used successfully for many

complex reliability system evaluations during this research, it is important to point out

that it is not thoroughly investigated in view of the generic application of this method

across all networks. However, given the excellent results obtained using this method

Chapter 2 System Reliability Optimisation

2-8

to date, it is very probable that it can be used with greater success in other areas of the

reliability system analysis. A comprehensive literature on various new methods is

provided by Todinov (2006a).

2.1.3 Common Probability Distributions for Modelling
Time to Failure

The computation of system reliability is about estimating the time to failure, ‘T ’,

which is a continuous random variable. The uncertainty associated with ‘T ’ can be

described by using an appropriate cumulative probability distribution function of

system failures ‘)(tF ’ which characterise the probability ‘)(tTP  ’, as defined in

section 2.1 above. There are many probability distributions which are found in the

literature for modelling the descriptive characteristics of the continuous random

variable ‘T ’. Some of the most widely known distributions are detailed briefly in this

section.

2.1.3.1 Exponential Distribution

This distribution is also known as negative exponential distribution in reliability

literature and used for modelling the assumption of constant failure rate or hazard

rate, ‘ ’ which is an instantaneous rate of failure such that (0). This means, that

the probability that a system (or component), having survived time ‘ t ’ will fail within

a short time interval, ‘ ttt , ’ is constant. The probability of failure is therefore

‘ t ’ and is independent of the age of the system. The probability distribution

modelling the life of the system can be shown to have the exponential distribution

(negative) using this assumption of constant failure rate (t).

ttF  exp1)((2.8)

Using equation (2.2), the above relationship can also be shown for the survival

function or the system reliability, ‘)(tR ’

ttR  exp)((2.9)

Chapter 2 System Reliability Optimisation

2-9

The probability density function of the time to failure using the equation (2.5) would

therefore be equal to,

ttf   exp)((2.10)

Figure 2.5 Exponential Distribution

The mean of the distribution is  /1 , also known as mean time to failure (MTTF),

for constant hazard rate and standard deviation is 22 /1   . If the hazard rate

increases with age of the system instead of being constant, the cumulative distribution

function of the time to failure is referred to as increasing failure rate (IFR). For

instances where the failure rate decreases with time, it is categorised as decreasing

failure rate (DFR). Reliability can be increased by decreasing the failure rate which

can also be presented in terms of the probability density function of time to failure,

‘)(tf ’. From equation (2.10), it can be deduced that the hazard rate ‘ ’ can be

interpreted as the ratio of the ‘)(tf ’ and ‘)(tR ’. This relationship also highlights the

ttf   exp)(

Probability Density

Time, t



Chapter 2 System Reliability Optimisation

2-10

fundamental difference between the hazard rate and the failure density,)(tf . The

former is associated with the proportion of components in service that fail per unit

interval while the latter is associated with the percentage of the initial number of

components that fail per unit interval. The exponential distribution is one of the most

widely used failure distributions and is appropriate for instances where the occurrence

of failure is random and not age dependent. It is also mathematically tractable in most

applications and found to be linked with the Poisson process and distribution as

shown explicitly in Todinov (2005).

2.1.3.2 Weibull Distribution

The Weibull distribution was first proposed by Weibull (1951) and it is used

universally for modelling the times to failure of systems which fail when the weakest

component in the system fails. The cumulative distribution of the Weibull distribution

is given by

)/(exp1)(ttF  (2.11)

‘ ’ is called the scale parameter or characteristic lifetime (Todinov, 2005) and ‘ ’

is called shape parameter such that both 0,  . This distribution is known for its

flexibility since by selecting different values of the shaper parameter‘ ’ and by

varying the scale parameter ‘  ’, a number of shapes can be obtained to fit

experimental data; ‘shape’ defines the graph of the failure rate function, for example,

IFR, DFR, bath-tub curve etc. A detailed text on this subject is provided by Blischke

& Murthy (2000).

When 1 , and  /1 , the Weibull distribution transforms into exponential

distribution, shown previously in equation (2.8). Also, when 3 , the distribution is

approximately normal. Using equation (2.2), the above relationship can also be shown

for the survival function or the system reliability, ‘)(tR ’

)/(exp)(ttR  (2.12)

Chapter 2 System Reliability Optimisation

2-11

The probability density function of the time to failure by using the equation (2.5) and

differentiating equation (2.11) with respect to ‘ t ’ would therefore be equal to,








)/()1(exp
)(

tt
tf


 (2.13)

2.1.3.3 Other Distributions

The distributions briefly detailed in the previous sections are the two most widely

known and used methods for estimating the probability of failure in the industry.

Besides these there are many other distributions which are found in the literature. For

example, binomial distribution, which is classified as a discrete distribution, extends

the Bernoulli distribution (where a random variable takes only two values either ‘0’ or

‘1’ with equal probability) by providing the sum of a certain number (say ‘ n ’) of

independent Bernoulli random variables (trials) so that its distribution can be obtained

as the n-fold convolution of the Bernoulli distribution (Blischke & Murthy, 2000).

While the modelling of the failed item in reliability analysis at component level (for

example) can be carried out using the Bernoulli distribution such that the random

variable is ‘0’ when the component is failed and ‘1’ otherwise for a single trial, the

random variable represented by the binomial distribution is generally used to model

the number of failed items in ‘ n ’ size Bernoulli trials. There are a fixed number of

identical trials, which are statistically independent and each of which can result in

either success or failure with equal probability. If ‘ X ’ is the discrete random variable

representing the number of successes in ‘ n ’ trials with probability ‘ p ’ and failures

with probability ‘ p1 ’, the binomial distribution can be stated as,

),...,2,1,0(

)1(
)!(!

!
)(

nx

pp
xnx

n
xXf xnx






 

(2. 14)

The mean and variance of the distribution are np and)1(2 pnp  ,

respectively. Generally, if 5np and 5)1( pn , the binomial distribution can be

approximated by a normal distribution using the mean and variance detailed above.

Chapter 2 System Reliability Optimisation

2-12

Another commonly known distribution is Poisson distribution which is in fact a

limiting case of a binomial experiment with parameters ‘ n ’ and ‘ ntp / ’

(‘ ’ is the number of occurrences (e.g. successes) per unit interval of time ‘ t ’); a

binomial experiment with a large number of trials and a small probability ‘ p ’ in each

trial can be approximated appropriately by a homogeneous Poisson process with

intensity ‘ tnp / ’ (Todinov, 2005). The probability density function of the

Poisson distribution can be derived from the binomial distribution stated in equation

(2.14)

xn
x

p
n
t

xnx
n

xXf 








)1(

)!(!
!

)(


(2.15)

Since ‘ n ’ and ‘ p ’ is small, the above equation can be transformed into,

...2,1,0
!

)exp()(
)(






x
x

tt
xXf

x 
(2.16)

The Poisson distribution is used generally to model the random event such as random

failures in non-overlapping intervals of times. The probability of the occurrence of the

random event in intervals of the same length is identical and does not depend on the

location. The mean and variance values of the distribution are the same in that

tnp   and tpnp  )1(2 , respectively because of the large value of

‘ n ’ and very small value of ‘ p ’.

Besides binomial and Poisson distribution, there are other well known and inter-

related distributions which are used in the field of reliability engineering, such as

uniform distribution, normal distribution, log normal distribution etc. Two very good

sources which provide excellent descriptions of these distributions along with the

ones highlighted in the previous section and many others are Blischke & Murthy

(2000) and the recently published books of Todinov (2005, 2006a).

Chapter 2 System Reliability Optimisation

2-13

2.2 RELIABILITY OPTIMISATION

Reliability engineering came into view in the late 1940s and early 1950s and was first

applied to communication and transportation systems (Kuo et al., 2001). Much of the

early work during those times was limited to the analysis of performance aspects of

reliability systems. However, due to the advancement in technology (software and

hardware) in the present era, the structure of reliability systems has become highly

complex and reliability engineering has, therefore, become increasingly important.

Generally, the primary goal of a reliability analyst is to find the best ways to increase

system reliability in view of the commonly accepted principles such as,

 Simplicity - keeping the system as simple as is compatible with performance

requirements

 Component Reliability - Increasing the reliability of the components in the

system in order to improve the overall system reliability

 Redundancy Allocation - Using standby redundancy which is activated to

replace the failed unit(s).

 Repair - Using repair maintenance where failed components are replaced but

not automatically switched in, as in the redundancy allocation principle.

 Maintenance - Using preventive maintenance such that components are

replaced by new ones whenever they fail, or at some fixed periodical interval,

whichever comes first.

Besides these principles, using better improvement management programs and

performing burn-in testing on components that have high infant-mortality also provide

opportunities among possibly various other principles, for improving the level of

system reliability. Because implementation of these principles normally consumes

resources, a balance between system reliability and resource consumption is essential

in order to increase profits while improving the stability of a given system. This

process leads to the natural problem of system reliability optimisation, which has been

a very popular subject among researchers in the past few decades. A comprehensive

Chapter 2 System Reliability Optimisation

2-14

source detailing the work in this field is provided by Tillman et al. (1977, 1980, 1985)

and Kuo et al. (2000, 2001) along with Jensen (1970), Tzafestas (1980), Misra (1986,

1992), Aggarwal (1993), Gen & Cheng (1997, 2000), Cantoni & Zio (1999), Zio

(2000), Kuo & Prasad (2000), Levitin (2007) and Smith (2007), are the most

commonly known.

2.2.1 Modes of Optimisation

There are various modes of optimisation which are presented in the sizeable reliability

literature for dealing with the main issues concerning reliability improvement and

controlling the cost of system resources. Among them, below are the most commonly

found modes which have been the centre of attention for most of the researchers in

this field:

 Improve (maximise) system reliability by adding the redundant components in

each specified subsystem.

 Maximise systems reliability by improving the individual components

reliabilities in each specified subsystem.

 Minimise the cost of the system while meeting the minimum target of some

specified level of system reliability.

 Similarly, minimise the cost of a multi-function system while meeting the

minimum target of some specified level of individual components reliabilities.

The term ‘cost’ in the above points is used to represent individual constraints such as

cost of sub-systems (components), weight, volume, or some combination of these

which are the key factors imposed on systems with series, parallel or complex

configurations for performing appropriate system reliability optimisation. A very

good source of the general review is provided by Kuo et al. (2000, 2001). Each of the

above cost constraints is generally considered as an increasing function of the

component reliability and/or number of components.

Chapter 2 System Reliability Optimisation

2-15

2.2.2 Optimisation Models

In view of the optimisation modes listed above, there appear to be many optimisation

models which are derived due to the given diversity of system configurations,

resource constraints and growing demand for reliability improvements. The majority

of these reliability optimisation models can be presented in the following general

framework.

1. Allocation of continuous component reliabilities

2. Allocation of discrete and continuous component reliabilities

3. Redundancy allocation

4. Reliability-redundancy allocation

5. Allocation of discrete component reliabilities and redundancies

6. Redundancy allocation for cost minimisation

7. Component assignment

8. Multiple objective optimisation

The objective in all of the above models, except 6 and 8 is to maximise system

reliability. These two models are different in that they deal with objectives such as

cost, weight, volume etc. A comprehensive list of references for each of the eight

optimisation models, along with many others, is provided exclusively in Kuo et al.

(2001).

2.2.3 Classification of System Reliability Optimisation

The importance of the quantitative aspects of reliability arises from the increasing

interest resulted from the growing need for highly reliable systems and components

which are both safer and cheaper. Reliability experts have focused a great deal of their

efforts in allocation of reliability and redundancy of components for maximising the

overall system reliability. This approach is essential when there is no possibility for

Chapter 2 System Reliability Optimisation

2-16

replacement or repair of failed components during system operation. Nevertheless, in

the event of a failure, the catastrophic financial and environmental impacts could

easily have disastrous repercussions – hence the approach for ‘maximum reliability

without taking into account the cost-of-failure’ would appear to be inappropriate.

Based on Tillman et al. (1980) and a recent review by Kuo and Prasad (2000), an

overview of system-reliability optimisation can be presented quite comprehensively.

In their review, Tillman et al. presented a classification of papers on reliability

optimisation by system structure, problem type, and solution method. In Kuo and

Prasad (2000), the contributions that have been made to the literature since the

publication of Tillman et al. (1977) are discussed. With reference to Kuo et al. (2001),

all of the articles on optimisation methods for system reliability can be categorised

into three sections:

2.2.3.1 Category One - by System configuration

In solving reliability optimisation problems, ‘system configuration’ appears to

influence a great deal. All of the articles on reliability optimisation, grouped by

system configuration (Kuo et al. 2001) include systems such as series, parallel, series-

parallel, standby & parallel-series. Also included are general network systems

together with bridge networks, non-series-non-parallel structures, k-out-of-n system

and other complex system configurations

2.2.3.2 Category Two - by Problem Type

The Bulk of the mathematical formulations for representing reliability optimisation

problems are covered in the eight optimisation models, listed above. The methods

developed for solving these system reliability optimisation problems target the

underlying mathematical structure of the given problem. Each model serves a

particular goal such as optimum reliability and/or redundancy allocation,

maximisation of system reliability subject to cost constraints, cost minimisation

subject to the minimum requirement of system reliability, maximisation of system

profit etc. (Kuo et al., 2001)

Chapter 2 System Reliability Optimisation

2-17

2.2.3.3 Category Three - by Optimisation Techniques

As indicated by Kuo et al. (2001), the development of heuristic methods and meta-

heuristic algorithms for redundancy allocation problems appear to be the major

objectives of the recent work of the researchers compared to the work which has been

directed toward exact solution methodologies for such problems. Most, if not all,

reliability systems considered in this area belong to the class of coherent systems (A

system is coherent, when the component reliability improvement doest not degrade

the system reliability; e.g. a simple series or parallel system. A coherent system has a

structure function that is monotonically increasing)

A detailed overview of each of the three categories along with the references of the

research works is presented in the widely recognised literature of Kuo et al. (2001).

2.2.4 Computational Methods of Optimisation

There are a number of computational techniques which are used by the researchers in

the field of reliability optimisation. Some of the most commonly known techniques

are:

 Geometric Programming

 Integer Programming

 Dynamic Programming

 The Discrete Maximum Principle

 The Sequential Unconstrained Minimisation Technique (SUMT)

 The Generalised Reduced Gradient Method (GRG)

 Method Of Lagrange Multipliers And The Kuhn-Tucker Conditions

 The Generalised Lagrangian Functions Method

 Heuristic And Meta-Heuristic Approaches

 And Others (A Classical Approach, Parametric Method, Linear Programming

And Separable Programming)

Chapter 2 System Reliability Optimisation

2-18

According to Kuo et al. (2001), the general set of assumptions made while using these

optimisation techniques are:

 Each subsystem is considered essential for the overall operational success of

the mission, if all the subsystems are operational in series.

 All the subsystems in series, parallel, or complex configuration are statistically

independent. In parallel redundancy, all units have the same probability of

failure whether they are spares or active.

 Before the requirement of linearisation for some specific optimisation

techniques, the constraints of ‘cost’ do not need to be in a linear form.

 Good/bad is a sufficient description for each component, sub-system, and the

whole system. In parallel cases, unless specified, only one component needs to

be good for the subsystem to be good, this is considered to be a one out of m:

G configuration. No assumptions are made about the hazard rates of the

components, except that they are reflected in the reliability of the components

 Without the specific optimisation knowledge of the mission requirements,

realistic decisions on redundancy, design change, and other aspects of

reliability improvement cannot be reached. Tradeoffs can be considered only

between optimal redundancy components and ‘cost’ measures.

 The constraints are additive between subsystems.

 The redundant models are based on the assumption that individual component

or path failure has no effect on the operation of the surviving paths.

 The connection nodes may accrue some ‘cost’, but are assumed to function

perfectly given the system is working.

Recent developments are based on the following methods as indicated by Kuo et al.

(2001):

 Heuristics for redundancy allocation, special techniques developed for

reliability problems.

 Meta-heuristic algorithms for redundancy allocation, perhaps the most

attractive development in the last ten years.

Chapter 2 System Reliability Optimisation

2-19

 Exact algorithms for redundancy allocation or reliability allocation (most are

based on mathematical programming techniques, e.g. the reduced gradient

methods presented in Hwang et al. (1979).

 Heuristics for reliability–redundancy allocation, a difficult but realistic

situation in reliability optimisation.

 Multiple objective optimisations in system reliability, an important problem in

reliability optimisation.

 Optimal assignment of interchangeable components in reliability system, a

unique scheme that often takes no effort.

 Others including decomposition, fuzzy apportionment and effort function

minimisation.

Most of the system-reliability optimisation problems listed are nonlinear integer

programming problems. They are more difficult to solve than general nonlinear

programming problems because their solutions must be integer numbers. Several

optimisation methods are available in the literature – see (Kuo et al.; 2001) – for

solving such problems: each of the technique listed has had some success in solving

particular reliability optimisation problems. It is impossible to select a single method

applicable to solve all reliability optimisation problems since each method can be very

different and indeed difficult to configure and customise for all types of optimisation

problems. For example, dynamic programming has dimensionality constraints which

increase with increasing the number of state variables, and it is hard to solve problems

with more than three constraints. While integer programming yields integer solutions,

transforming nonlinear objective functions and constraints into linear forms so that

integer programming methods can be applied can be a very difficult task. Also, the

various integer programming techniques do not guarantee that an optimal solution can

be obtained in a reasonable time. Similarly, for branch-and-bound and other implicit

enumeration techniques most often require significant computational effort to

determine an exact optimal solution particularly for large scale optimisation problems.

Discrete reliability optimisation problems are sometimes solved by continuous

versions and rounding off the optimal values. Although many algorithms have been

proposed for nonlinear programming problems, only a few, such as The Sequential

Chapter 2 System Reliability Optimisation

2-20

Unconstrained Minimisation Technique (SUMT), The Generalised Reduced Gradient

Method (GRG), The Modified Sequential Simplex Pattern Search, and The

Generalised Langrangian Function Method, have proved to be effective when applied

to large-scale nonlinear programming problems (Kuo et al.; 2001). The maximum

principle generally has difficulty solving problems with more than three constraints.

Likewise geometric programming is restricted to problems that can be formulated by

polynomial functions. Meta-heuristics such as Genetic Algorithms, Tabu Search and

Simulated Annealing methods can be used to solve complex discrete optimisation

problems. These methods provide more flexibility and require fewer assumptions on

the objective as well as the constraint functions with a little exception to the Tabu

Search method (TS); since development of an effective TS method requires ingenuity

and thorough understanding of the problem. They can be effective particularly when

the objective function is not available in a closed form and the underlying

mathematical model is very complex. While these methods are relatively easier to

implement on computers they are also known for involving significant computational

effort and providing only the heuristic solutions. Due to latest advancement in

technology and introductions of powerful computer processors, the computational

issue related to these methods is diminished to some extent and the efficiency of

converging to better solutions is subsequently improved, particularly for genetic

algorithms. For this reason, reliability literature has seen great proportion of

contribution through genetic algorithm application on many optimisation problems in

the last decade alone. A comprehensive literature on this is provided by Levitin

(2007).

2.3 REVIEW OF OPTIMISATION PROCESSES

USING THE RISK BASED RELIABILITY

ALLOCATION METHOD

This research extends the recently published work of Todinov (2004, 2006) on risk-

based reliability allocation method, by demonstrating its application for selecting an

optimal system configuration from a discrete choice of components. For a reliability

system, consisting of many subsystems, the problem is to allocate system reliability

Chapter 2 System Reliability Optimisation

2-21

by selecting an optimal combination of components such that the total loss: the sum of

the reliability investment and risk of failure, associated with a non-repairable system

failure is minimum – Fig. 2.6. These alternatives have different reliabilities and costs

hence resulting in a difficult combinatorial optimisation problem. The statement of

this problem first appeared in Todinov (2005).

As such, the area of this research is new and relatively fresh since the type of

optimisation problem studied here is derived from the recently published work of

Todinov (2004, 2006) which introduces a novel and one of the most innovative

methods of risk based reliability allocation. For this reason, no new literature

currently exists outside Todinov’s publications, particularly in the context of dealing

with the optimisation problem studied in this research. However, the nature of this

optimisation problem can be interpreted to fit all eight models of optimisation,

discussed in section 2.2.2, specifically models 5-8 which are involved with discrete

components, cost minimisation, component assignment and multi-objective

optimisation problems. For this reason, some of the interesting work in this area based

on reliability optimisation with cost constraints is reviewed in this section, despite

having disparate characteristics to the risk based reliability allocation method.

Figure 2.6 Risk Based Reliability Allocation Method

Minimum Value on

the Total Loss Curve

Risk of Failure

Units of Cost

Reliability

Reliability Investment

Optimal
Reliability

Chapter 2 System Reliability Optimisation

2-22

In general, the conventional approach of reliability optimisation methods to-date

appears to be driven mostly by the principle of setting the highest level of system

reliability for a given cost. The objective of the risk-based reliability allocation

technique is not about setting the highest level of system reliability. Instead, the

reliability allocation is driven solely by the amount of ‘total losses associated with a

system failure’. Many of the popular reliability allocation strategies do not take into

account the total losses from failures during reliability allocation. Since 1977, there

have been a significant number of articles and books such as, Tillman et al. (1977,

1980), Jensen (1970), Tzafestas (1980), Misra (1986, 1992), Xu et al. (1990),

Aggarwal (1993), Brown et al. (1997), Yang et al. (1999), Cantoni & Zio (1999), Kuo

& Prasad (2000b), Zio (2000), Guikema and Pate-Cornell (2002), Elegbede et al.

(2003), Pham (2003), Wattanapongsakorn & Levitan (2004), Meziane et al. (2005)

and Yalaoui et al. (2004, 2005), related to reliability optimisation involving costs.

Most of the methods described in these sources, however, are related to either

maximising the reliability of a system given an overall budget constraint (a maximum

acceptable total cost of resources toward the reliability maximisation) or minimising

the total cost of resources necessary to achieve a specified level of system reliability.

For rare instances where a balance between cost and reliability is targeted, the

objective has not been to minimise the risk of failure, as in the risk based reliability

approach. In both Cantoni et al. (1999) and Zio (2000), an excellent methodology

based on Monte Carlo simulation and genetic algorithm is proposed for solving

complex plant (e.g. Shale oil) design problems. With choices on the type of

components to be used and the assembly configurations, the optimisation process is

subject to conflicting interaction of reliability/availability objectives with the

economic costs associated to the design implementations, system construction and

future operation. They introduce a profit function optimisation by taking into account

various different costs into the optimisation process (for repairable systems) but no

risk of failure is considered, as in the risk based reliability allocation method, for

setting reliability targets. Similarly, Guikema and Pate-Cornell (2002) introduce three

different models of risk-cost relationship for determining the values of the optimal

allocation of funds among the various risk mitigation projects in order to minimise the

probability of system failure (for a satellite system) but not the amount of total losses

Chapter 2 System Reliability Optimisation

2-23

associated with premature failures. According to Kuo et al. (2001), there exists no

method dedicated to the problem of reliability and redundancy allocation in parallel-

series systems where components must be chosen among a finite set. Yalaoui et al.

(2005) address the reliability and redundancy allocation problem (optimisation model

4 from section 2.2.2) in parallel-series systems where the reliability of the

components (from a finite set) and the redundancy levels have to be simultaneously

determined in order to minimise the consumption of resources under a minimum

reliability constraint. They developed a dynamic programming method for solving the

cost minimisation problem, which could also be formulated as an integer linear

programming problem. They have also shown that their method was equivalent to a

one dimensional knapsack problem for optimising the profit under maximum volume

constraint. While the method proposed in this article appears useful and flexible, the

optimisation process undertaken does not take into account the losses from failure for

allocating optimal level of system reliability by selecting appropriate components

from the finite set. For series-parallel systems, Yalaoui et al. (2004) propose

theoretical and practical results for reliability allocation problem, in which the

reliability of the components have to be determined in order to minimise the

consumption of a resource under a minimum reliability constraint. Once again, the

allocation process is not driven with the view of losses from failure.

Using the optimisation model of reliability and redundancy allocation for parallel-

series systems, Elegbede et al. (2003) present an efficient algorithm for allocating

reliability and redundancy in each subsystem for achieving some target level of

system reliability while minimising the cost of the system. In this paper, they prove

that the components in each stage of a parallel-series system must have identical

reliability under some non-restrictive condition on the component’s reliability cost

function. The algorithm appears to produce considerably better results than an already

published algorithm. While considered as the increasing function of cost, the

reliabilities of the components in Elegbede et al. (2003) are also assumed to be any

real value between 0 & 1. In practice only a few types of components which have the

same function in a system are available in the market. Very few studies have

considered this assumption (Yalaoui et al. 2005). For example, Coit & Smith (1996)

worked on the redundancy allocation problem in parallel-series systems in which each

Chapter 2 System Reliability Optimisation

2-24

subsystem was a k-out-of-n:G system, using methodology based on genetic algorithm

when the components were chosen from a finite set, assuming different types of

redundancy levels such as active, standby and k/n. They also considered the problem

of minimising the cost, subject to a minimum requirement of system reliability and

other constraints such as weight. Kuo & Prasad (2000a) propose an exact resolution

method for similar problems for coherent systems.

In Meziane et al. (2005), the problem of electrical network reliability where redundant

electrical devices are included for a multi-state system, is studied by using an ant

colony algorithm (ACA) and the system reliability maximisation in their formulation

is subject to performance and cost constraints. The optimisation process considered in

their work belongs to the models 4 & 8 from section 2.2.4. The objective of the

optimisation technique, ACA, is to select and evaluate the best configurations with

maximum reliability under cost and performance constraints, which shows very

interesting results for power system optimisation. However, the reliability allocation

method is not driven by the total loss function as in this research.

A very interesting work has been communicated by Kumral (2005) regarding

reliability optimisation of a mine production system using genetic algorithm. The

optimisation process is required to estimate the minimum level of reliability for each

sub-system along with incorporating a cost minimisation criterion for the risk

associated with these uncertain estimates in order to avoid critical losses from the

standpoints of safety, quality, health, environment and finance, as described by

Kumral. Analogous to this approach, Yang et al. (1998) also use genetic algorithm for

reliability allocation in nuclear power plant while minimising the total plant costs

subject to the overall plant safety goal constraint with a different approach than

Kumral by using fault trees and probabilistic safety assessments for evaluating target

reliabilities of individual subsystems. The optimisation processes in the last two

sources, despite being conceptually similar in some ways to the risk based reliability

allocation method, are however, significantly different because of the minimum

reliability requirements and no consideration of the amount of total losses from failure

in allocating the optimal level of system reliability. Similarly, Brown et al. (1997)

Chapter 2 System Reliability Optimisation

2-25

provide useful information about designing an automated primary distribution system

by optimising both cost and reliability. The objective function (total cost of reliability)

is the sum to two costs, utility cost of reliability and customer cost of reliability. By

using methods such as integer programming, genetic algorithm and simulated

annealing along with some hybrid methods, the authors minimise the objective

function for demonstrating its use as a tool for helping engineers design a reliable

distribution system while minimising costs. The optimisation process however is

different to risk based reliability allocation method in all aspects.

In Pham (2003), for a parallel system consisting of ‘ n ’ components, the optimal

subsystem size ‘ *n ’ was determined that minimises the average system cost which

included the cost of the components and the cost of system failure. For parallel-series

systems, the optimal subsystem size was determined that maximise the average

system profit. Optimum reliability minimising the sum of cost of failure and cost of

reliability has been discussed by Hecht (2004), who acknowledged that the total user

cost has a minimum and the failure probability at which the minimum is reached

represents the optimum reliability in economic terms. For systems characterised by a

constant hazard rate, a model for determining the optimum hazard rate of the system

at which the minimum total cost is attained has been proposed in Todinov (2004). For

embedded systems, Wattanapongsakorn and Levitan (2004), for example, presented

models for maximising reliability while meeting cost constraints and minimising

system cost under multiple reliability constraints. Their optimisation method is based

on simulated annealing meta-heuristic technique and the objective is to select both

software and hardware components and the degree of redundancy to optimise the

overall system reliability under cost constraints but no losses from failure is

considered in their optimisation process. There exists also work related to reliability

optimisation based on fuzzy techniques, dealing with the cost of the system and the

costs of the separate components (Ravi et al., 2000). The optimal redundancy

allocation, however, is again oriented toward maximising the system reliability by

minimising the system cost, not minimising the losses from failures. These models do

not incorporate the losses from failures, and it is implicitly assumed that once

reliability is maximised, the losses from failures will automatically be minimised.

Chapter 2 System Reliability
Optimisation

2-26

2.4 GENERAL REVIEW OF RELIABILITY

OPTIMISATION

The system-reliability optimisation literature was reviewed by Tillman et al. (1977)

for the period before 1980 while Misra (1986) presented a survey of the literature on

system-reliability design pre year 1986. Several interesting papers and, more

recently, books on reliability optimisation have been published thereafter which are

efficiently reviewed by Kuo et al. (2000, 2001). According to them, recent

developments in system-reliability optimisation can be classified into seven

categories:

2.4.1 Heuristics for Redundancy Allocation

It appears that the heuristic methods developed for optimisation model three, as

mentioned in section 2.2.4, in the period before 1980 have the common approach

where a solution in an iteration is obtained from the solution of a preceding iteration

by increasing one of the variables (selected via sensitivity factor) by ‘1’. Nakagawa

and Miyazaki (1981) numerically compared the heuristic methods of Nakagawa and

Nakashima (1977), Kuo et al. (1978), Gopal et al. (1978) and Sharma and

Venkateswaran (1971) for a redundancy allocation problem with nonlinear

constraints. On the other hand, the heuristics presented after 1980 are based on

distinct approaches. Dinghua Shi (1987) developed a heuristic method with

separable, monotonic non-decreasing constraint functions following the approach of

adjusting unit increment with time. Dinghua’s method requires determination of all

minimal path sets of the reliability system. Kohda and Inoue (1982) developed a

method which was applicable even when the constraints did not involve all the non-

decreasing functions. Kim and Yum (1993) developed a similar algorithm for

redundancy allocation. The algorithm makes excursions to a bounded subset of

infeasible solutions while improving a feasible solution. Based on the Branch-and-

bound strategy and the Lagrange multiplier method, Kuo et al. (2001) also presented

a heuristic method for redundancy allocation. The bound associated with any node is

the optimal value of the corresponding optimisation problem and the nonlinear

programming problem associated with each node is solved by the Lagrangian

Chapter 2 System Reliability
Optimisation

2-27

multipliers method. Additionally, Jianping (1996) developed the bounded heuristic

method for optimal redundancy allocation. It assumed that the constraint functions

were increasing in each variable. The method has some similarity with the method of

Kohda and Inoue (1982) in the sense that an addition and a subtraction are

simultaneously done at two stages in some iterations.

2.4.2 Meta-heuristic Algorithms for Redundancy
Allocation (Genetic Algorithms, Simulated Annealing
and Tabu Search)

In recent years, meta-heuristics have been selected and successfully applied to handle

a number of reliability optimisation problems. The meta-heuristics based more on

artificial reasoning than classical mathematics based optimisation, include genetic

algorithms, simulated annealing and tabu search. Genetic algorithms (GA) seek to

imitate the biological phenomenon of evolutionary production through the parent-

children relationship. Holland (1975) and later Goldberg (1989) made pioneering

contributions to the development of GA. Gen and Cheng (1997, 2000) described the

application of GA to combinatorial problems including reliability optimisation

problems – a good overview of genetic algorithms is provided in Chapter 5.

Concerning the design of a personal computer, Painton and Campbell (1995) adopted

a genetic algorithm approach to solve a reliability optimisation problem for a system

with series-parallel configuration. Ida et al. (1994) and Yokota et al. (1995) designed

a genetic algorithm for optimal redundancy allocation in a series system in which the

components of each subsystem were also subject to two classes of failure modes.

Majety and Rajagopal (1997) developed an evolution strategy based on an adoptive

penalty function to solve some reliability optimisation problems. Dengiz et al. (1997)

designed a genetic algorithm for cost-optimal network design. A similar algorithm

was developed by Deeter and Smith (1998) for cost-optimal network design but

without the assumptions used by Dengiz et al. (1997).

The concept of simulated annealing (SA) method is based on a physical process in

metallurgy and used generally to solve combinatorial optimisation problems.

Chapter 2 System Reliability
Optimisation

2-28

Metropolis et al. (1953) developed a method which was further modified by Cardoso

et al. (1994). They introduced the non-equilibrium simulated annealing algorithm

(NESA). The method was further developed by Ravi et al. (1997) who denoted this

variant of NESA as I-NESA and applied to optimisation problems.

The process in tabu search (TS) guides the heuristic method to expand its search

beyond the local optimality. It is an artificial intelligence technique which utilises

memory at every stage to provide an efficient search for optimality. It was introduced

by Fred Glover (Glover and Laguna1997). Tabu search for any complex optimisation

problem combines the merits of artificial intelligence with those of optimisation

procedures. The most prominent feature of TS is the design and use of memory-

based strategies for exploration by imposing restrictions on the search at every stage

based on memory structures. Similar to GA and SA, TS is useful for solving large

complex optimisation problems that are very difficult to solve by exact methods.

2.4.3 Exact Methods for Redundancy Allocation

The purpose of exact methods is to obtain an exact optimal solution to a problem.

Many exact methods were developed before 1980 and documented in Tillman et al.

(1977). Nakagawa and Miyazaki (1981) adopted the surrogate constraints method to

solve the optimisation model 3 (from section 2.2.4) with exactly two constraints.

Misra (1972) has proposed an exact algorithm for optimal redundancy allocation.

The method was later implemented by Misra and Sharma (1991) and Misra and

Misra (1994) for solving various redundancy allocation problems. This algorithm

does not always give an exact optimal solution (Kuo et al. (2001). For large systems

with a good modular structure, Li and Haimes (1992) proposed a three-level

decomposition method for reliability optimisation subject to resource constraints.

2.4.4 Heuristics for Reliability-Redundancy Allocation

This is the approach used in the model 4, mentioned previously in section 2.2.4.

Tillman et al. (1977) were among the first to solve the problem using a heuristic and

search technique. Gopal et al. (1980) developed a heuristic method using the stage

sensitivity factor approach. The branch-and-bound method of Kuo et al. (1987) is

Chapter 2 System Reliability
Optimisation

2-29

also useful for solving this type of optimisation problem. They demonstrated the

method for a series system with five subsystems. Xu et al. (1990) offered a similar

method with separable constraints. Hikita et al. (1992) developed a surrogate

constraints method to solve model 4 with separable constraints. The method is based

on the theory developed by Luenberger (1962) for minimising a quasi-convex

function subject to convex constraints. In this method, a series of surrogate

optimisation problems, each consisting of a single constraint, is solved. Chi and Kuo

(1990) formulated mixed integer nonlinear programming problems for reliability-

redundancy allocation in software systems and systems involving both software and

hardware.

2.4.5 Multiple Objective Optimisation in Reliability
Systems

While designing a reliability system, it is always desirable to simultaneously

maximise system reliability and minimise resource consumption; a key concept

behind the single object optimisation problems. However, when the limits on

resource consumption are flexible or cannot be determined clearly, it is useful to

employ an optimisation approach with multiple objectives. While such approach

usually involves determination of all Pareto optimal (non-dominated) solutions, it is

possible not to find a single solution which is optimal with respect to each objective.

For example, an aircraft design engineer is often required to consider other objectives

such as minimisation of cost, volume, weight etc. It may not be feasible to define

limits on each objective, treated as constraints while maximising the highly desirable

reliability. In such situations, the designer comes across the problem of optimising all

objectives simultaneously. A general approach for solving multiple objective

optimisation problems is to find a set of non-dominated feasible solutions and make

interactive decisions based on this set (Kuo et al. (2001). Sakawa (1981) developed a

large-scale multiple objective optimisation method to deal with the problem of

determining optimal levels of component reliabilities and redundancies. He provided

a theoretical framework for the sequential proxy optimisation technique (SPOT),

which is an interactive, multiple objective decision-making technique for selection

among a set of Pareto optimal solutions. Misra and Sharma (1991) adopted an

Chapter 2 System Reliability
Optimisation

2-30

approach which involves the Misra integer programming algorithm and a multi-

criteria optimisation method based on the min-max concept for obtaining Pareto

optimal solutions. Misra and Sharma (1991) also presented a similar approach to

solve multiple objective reliability redundancy allocation problems in reliability

systems. Their methods take into account two objectives: maximisation of system

reliability and minimisation of total cost subject to resource constraints. Dhingra

(1992) used a goal programming approach and demonstrates the multiple objectives

approach for a four-stage series system with constraints on cost, weight and volume.

Similarly, Gen et al. (1990) also solve reliability optimisation using goal

programming.

2.4.6 Optimal Assignment of Interchangeable Components
in Reliability Systems

When a system has interchangeable components with different reliabilities, the

system reliability depends on the assignment of such components to required

positions. El-Neweihi et al. (1986, 1987) solved the problem analytically for series-

parallel structures assuming that the component reliabilities were invariant of

position. For parallel-series structures, they suggested a linear programming

approach. Prasad et al. (1991) developed the algorithm to solve the problem for

series-parallel structures by assuming the separability condition. They also provided

two greedy algorithms for this problem. If both algorithms yield the same solution,

then that solution is considered optimal. Prasad et al. (1991) also developed a

heuristic method to solve the problem for series-parallel structures involving some of

the classical assignment problems. Baxter and Harche (1992) presented a heuristic

for optimal component assignment in parallel-series system showing that the system

reliability calculated using their heuristic, converges to the optimal value since the

number of components and subsystem sizes tend to infinity. Prasad and

Raghavachari (1998) developed a heuristic method for parallel-series structures.

Using important results of El-Neweihi et al. (1986), they approximated the problem

as a mixed integer linear programming problem. The problem of allocating

‘ m ’types of components to a general assembly of ‘ n ’ series system was considered

by El-Neweihi et al. (1987). Under certain conditions, they derived an allocation that

Chapter 2 System Reliability
Optimisation

2-31

stochastically maximises the number of functioning systems. As a consequence, this

allocation also maximises the probability that at least k-out-of-n systems function.

Malon (1990) presented a greedy rule to assemble modules of a coherent system out

of a collection of available components. The greedy rule assembles modules one by

one using best available components. Procedure using pair-wise interchange of

components for obtaining optimal component assignment in coherent system was

suggested by Boland et al. (1989). They introduced the notion of comparison of

criticality of two positions in the system and used it to improve system reliability

through pair-wise interchange of components. Lin and Kuo (1996) presented a

greedy method for optimal component assignment in a general coherent structure

when the component reliabilities are invariant of positions. Zuo and Kuo (1990) have

summarided the results available for the invariant optimal design of consecutive k-

out-of-n systems. They have also identified invariant optimal designs for such

systems and proved that invariant optimal designs for other consecutive k-out-of-n

systems do not exist. Zhang at el. (1991) have applied the invariant optimal design

concept to a railway management system.

2.4.7 Effort Function Optimisation

One of the standard approaches for enhancing system reliability is to increase the

reliability of the components. However, an increase in component reliability requires

some effort, which may be cost, volume, weight, power consumption etc and thus

system-reliability enhancement also requires such effort. Assume that the effort to

increase the reliability of any component from one level to another is measurable by

a mathematical function. Such functions, called effort functions, are not necessarily

explicit. Reliability engineers usually formulate the effort functions based on

knowledge of the development process. The problem under consideration is to

minimise the total effort required to increase the reliability of a general coherent

system from an existing level to a desired level through incremental increases in

component reliabilities. Albert (1958) solves this problem for series systems when

the effort functions are the same for all components. Lloyd and Lipow (1962)

provided a good description of this method. Dale and Winterbottom (1986) provide a

solution approach for a general coherent structure.

Chapter 2 System Reliability
Optimisation

2-32

The above listed general review of the reliability optimisation for the seven

categories is only the brief extract from the widely accepted literature review

provided by Kuo et al. (2001). For complete and thorough details of the literature in

the field of reliability optimisation, it is suggested to consult all publications

produced by Tillman et al. (1977, 1980,) , Kuo et al. (2000, 2001) and Kuo and Wan

(2007).

Chapter No. 3 Evolutionary Algorithms

3-1

EVOLUTIONARY
ALGORITHMS

This chapter details one of the most recognised optimisation techniques for solving

complex scientific problems involving very large search spaces, called ‘Evolutionary

Algorithms’. The chapter begins by first introducing the theory of evolutionary

algorithms in section one, followed by its general structure which is defined in

section two. The detailed overview of the features of an evolutionary algorithm

including basic terminologies and concepts are explained in section three. With

section four explaining the steps for designing evolutionary algorithms, the chapter

concludes at section five which describes the various types of this optimisation

technique.

Chapter No. 3 Evolutionary Algorithms

3-2

3.1 INTRODUCTION

Similar to development of life in a natural system, an evolutionary process

continuously changes the individuals of a population by varying their attributes and

characteristics using the fundamental properties such as reproduction, recombination

(crossover, mutation) and replacement. These properties of the evolution process

motivated researchers from different fields to implement computer based algorithms

(simulations) of evolution for solving difficult problems in their research areas.

Evolutionary algorithms are therefore types of stochastic search algorithms which

emulate the evolution properties and characteristics.

This idea of taking the techniques used by nature to produce diverse complex

systems and use them as an algorithm for making scientific computation has been of

interest to the researchers since 1950s. However, before the availability of large

powerful computers, these biologically derived ideas could not be implemented since

even extremely simplified versions of such evolutionary computations were too slow

for most applications. By the late 1980s, computer power had vastly increased and

combined with human intelligence, caused a sudden increase in research activities

which resulted in a large number of publications in the area of computation based on

evolutionary algorithms. For this reason and the interdisciplinary characteristics of

computations based on evolutionary algorithms, there appear to be many originators

and many names (types) associated with this method. The interdisciplinary

characteristic means that different researchers from different fields had the idea

independently of using evolution as an algorithm but they never read each others

publications because of the immense diversities in the respective research fields. This

weakness in the research platforms is somehow reduced by the arrival of the internet

which can facilitate the review of all the latest publications based on research

methodology (e.g. evolutionary algorithm) as well as the field it is implemented in

(e.g. medical research, engineering research etc); therefore, allowing researchers

from all different disciplines to at least search and compare for a possible duplication

of their work. A concise summary of the origins of evolutionary computation can be

found in Back et al. (1997). Another good source detailing the introduction to

Chapter No. 3 Evolutionary Algorithms

3-3

evolutionary computation, its historical background and references of early papers in

this area is available in Fogel (1998) along with the broad overview of evolutionary

computation in Ashlock (2006).

3.2 GENERAL STRUCTURE

The general structure of an EA consists of generating an initial set of potential

solutions, called population. Each individual in the population is called chromosome

which represents a possible solution to a given problem in the form of a data

structure. The population is generated at random (mostly) and the fitness of each

chromosome in the population is evaluated with respect to an objective function

(Fogel and Ghozeil, 1996). The measure of fitness determines the quality of the

chromosome; i.e. increased fitness levels will correspond to better solutions. Based

on these fitness levels, appropriate chromosomes are selected for reproduction as

parents by using evolution operations (e.g. crossover, mutation) expecting to form

new chromosomes (offspring) with better fitness levels. If a specified termination

criterion is not reached, the next population is generated using the existing parents

and new offspring depending on the probabilistic selection and fitness levels of the

individuals. A simple evolutionary algorithm is shown in Fig.3.1.

Figure 3.1 A simple evolutionary algorithm

SIMPLE EVOLUTIONARY ALGORITHM

Generate a population of possible solutions

Repeat

Evaluate the solutions for quality

Select BEST quality solutions for procreation

Produce new variations of these selected solutions

Replace solutions with new & even better solutions

Until termination criteria

Chapter No. 3 Evolutionary Algorithms

3-4

3.3 FEATURES OF EVOLUTIONARY ALGORITHM

3.3.1 Biological Overview of Evolutionary Algorithm

Evolutionary algorithms can be best understood with good knowledge of biological

evolution and its fundamental concepts. A brief introduction to these can be started

from ‘Deoxyribo-Nucleic-Acid’ (DNA) which forms the ‘chromosomes’ present in

every living organisms and determines in many ways the properties of the organism

that carries them. The DNA drives the highly complex physicochemical processes

responsible for the growth of the organism from the fertilised egg up to the adult

stage. In other words, DNA is composed of all the necessary instructions for forming

an organism and is also referred to as ‘genetic code’. A chromosome is made up of

‘genes’ which are the sequences of DNA bases that code for the traits, e.g. eye

colour, height, hair colour etc. Although genes are thought of as the basic units of

information, in a pure biological context, each gene is formed of a number of amino

acids from the four-member set ‘TCGA’ (i.e. Thymine, Cytosine, Guanine and

Adenine). The value of each trait represented by the gene is called ‘allele’ and its

position within the chromosome is called ‘locus of the gene’. A good reference for

understanding genes can be found in Lewin (2000).

Each gene is responsible for a trait of the future individual; the acquired trait will

depend on the locus of the gene with corresponding allele of the gene. For example,

if a gene with locus ‘eye colour’ has the allele ‘blue’, and the gene with locus ‘hair

colour’ has the allele ‘blonde’, the new organism will be created containing blue eyes

and blonde hair. The complete information contained in a chromosome in the form of

a genetic code is called the ‘genotype’. It is interpreted (decoded) by the various

enzymes (in a biological context) in order to actually construct the particular

organism it describes. That decoded value of the particular organism is called the

‘phenotype’ whose physical representation is contained in the DNA. Figure 4.1

shows the decoding process of a sample chromosome (genotype) into its visible

appearance describing one of many frog species (phenotypes).

Chapter No. 3 Evolutionary Algorithms

3-5

Figure 3.2 Genotype decoding into phenotype

A quick snap-shot of the biological terms used in the evolutionary computation is

highlighted in Table 3.1.

Terms Explanation

Chromosome Coded structure (solution) containing full
information about the organism and its properties

Genes Units of information (trait)

Locus Position of the gene in a chromosome

Alleles Value of the gene

Genotype Genetically coded solution

Phenotype Decoded value of the solution

Model of
Evolution

Method for selecting parents and inserting children
in a population

Coadaptation
of Genes

Noticeable impact formed by the combination of
genes which is null otherwise

Disruption The process of destroying the coadapted genes

Epsitais Non-linearity factor in forming new traits

Table 3.1 Terminologies used in Evolutionary Algorithm

Chromosome
(Genotype)

Organism
(Phenotype)Decoding

Encoding

Chapter No. 3 Evolutionary Algorithms

3-6

3.3.2 Terminologies and Concepts in Evolutionary
Algorithms

3.3.2.1 Chromosome Representation

In evolutionary algorithms, chromosomes are used to represent solution of a problem

in the form of data structures. Traditionally, chromosomes have been coded as binary

strings or arrays containing ‘0’ and ‘1’ (Goldberg, 1989). For combinatorial

optimisation problems, an encoding using integer values can be more efficient

(Holland, 1975). For example, consider a reliability system consisting of six

components such that for every component, there are ten available choices of

alternatives each. These alternatives are different in terms of the reliability levels and

associated cost. Having the discrete choice of available alternatives, the optimisation

problem is to find an optimal combination of components with minimum system cost

(i.e. total cost of all components) while satisfying some target level of system

reliability. A chromosome representing one possible solution can be represented as:

)3|1|6|4|8|7(
10

6






Chromosome
geneperallelespossibleofNumber

GenesofNumber

Figure 3.3 Chromosome Representation

The data structure in the form of a string used for the example chromosome above is

consisted of six units of information (genes), each representing the individual

component position (locus). For each unit in the chromosome, there are ten possible

values (alleles) which can be selected as the choice of component alternatives.

Therefore, every position in the chromosome string above represents the selected

alternative value of the respective component. In other words, the encoded solution

(genotype) can be decoded to a system (phenotype) containing alternative seven for

component one, alternative eight for component two, alternative four for component

three and so on – see Figure 3.4.

Chapter No. 3 Evolutionary Algorithms

3-7

ealternativjthwithcomponentithrepresentsCWhere,

ion)configurat(systemPhenotype

solution)(codedGenotype

j
i

},,,,,{

)3|1|6|4|8|7(
3
6

1
5

6
4

4
3

8
2

7
1 CCCCCC



Figure 3.4 Genotype and Phenotype Transition

The representation of a chromosome depends on the nature of the problem in hand

and can not be generalised for all problems. While this is the main reason for the

recent advancements in the field of evolutionary algorithm, a good general theory

regarding the representation of chromosome is yet to be specified (Ashlock, 2006).

The type of chromosome representation selected drives the mechanism of placing the

problem specific knowledge in designing the evolution algorithms which explains

the reason for the advancement in the field of evolutionary computation. A good

survey of successfully applied chromosome representations can be found in Back et

al. (2000a) and Michaelwicz (1996). The latter also proposed using arbitrary data

structures capable of giving a complete description of a problem solution without

additional coding. More on chromosomes representation along with the issues

surrounding the types of encoding and the cardinalities of the sets involved in the

mapping between genotype and phenotype spaces are efficiently detailed in Gen and

Cheng (1997, 2000) and Falkenauer (1998).

3.3.2.2 Global and Local Optimum Results

The general purpose of an optimisation process is to find the best value of a function

after taking into account all relevant parameters and constraints. The best value

achieved as a result of this optimisation process dominates all other possible values

of the function depending on the nature of the optimisation process. If the purpose of

an optimisation process is to minimise some function value, the best value achieved

from optimisation is exceeded by all other values of the function. Similarly, if the

goal of the optimisation process is to maximise a function, the best value derived

from the optimisation process exceeds all other possible values which may exist on

the solution space of the function.

Chapter No. 3 Evolutionary Algorithms

3-8

Therefore, an outcome of an optimisation process which represents such extreme

characteristics of being either minimum or maximum is referred to as ‘global

optimum’ of a function. In generic terms, a global optimum is a point in a search

space where all other points are either worse or equal to this value. The latter part of

the statement represents circumstances when a function might possibly have more

than one global optimum. For very large scale optimisation problems, the search

space is generally too large to be explored thoroughly. One way of exploring the

search space like these, is to randomly select various regions of the search space and

attempt to find acceptable solutions. An excellent literature on search techniques and

methodologies can be found in Burke and Kendall (2005).

If a search space is divided into many regions, the global optimum for each region

may differ from the global optimum of the other neighbouring regions. In order to

simply this confusion, the best result for each region is termed as ‘local optimum’

instead of global optimum. It is, therefore, a point in search space which represents

the best current solution applicable only to the selected local region. However, the

best found overall value of the local optimum results, by taking into account all

regions of the divided search space, will be the true global optimum; it is this reason

which creates the possibility of having more than one global optimum since more

than one region of a search space can have similar values of the respective local

optimum. Figure 4.5 demonstrates the types of optimum values for some function,

)(XF . If the objective of the optimisation process is to find the maximum of this

function, it would appear that the global optimum is found in three different regions

of the search space, each with different values of the underlying variable, X .

Similarly, if the goal of the optimisation process is to find the minimum of the

function,)(XF , the figure shows that there are two instances of finding the required

value for the global optimum. Also highlighted in the figure, are the various

instances of local optimum results (optima) representing both maximum and

minimum values of the optimised function for the respective search region.

Chapter No. 3 Evolutionary Algorithms

3-9

Figure 3.5 Global Optimum And Local Optimum of a Function, F(X)

3.3.2.3 Population Structure

One of the main reasons which make evolutionary algorithms different from the

conventional mathematical or heuristic optimisation methods is its ability to perform

parallel search over a set of points (potential solutions) from the total search space.

This set is called a ‘population’ and the selection of this population in each iteration

of the evolutionary algorithm is referred to as ‘generation’. An ‘initial population’,

therefore, represents an initial set of chromosomes (encoded solutions) selected in

the very first generation of the algorithm and the total of these chromosomes makes

up the actual ‘size of the population’. These chromosomes represent the potential

solutions of the problem in hand and are often selected randomly in order to provide

a scattered sample over the available search space. The reason for the blind

formation of the initial population is because at the early stage of the algorithm, no

knowledge is generally available regarding the optimisation problem or the region of

the search space where a global optimal may be found for the problem. Therefore,

each chromosome in a population is required to be evaluated in order to establish its

viability as a good solution. This process is carried out using a ‘fitness function’. The

Global Optimum (max)

Global Optimum (min)

Local Optimum (max)

Local Optimum (min)

F(X)

X

Max
F(X)

Min
F(X)

Chapter No. 3 Evolutionary Algorithms

3-10

size of the initial population generally depends on the scale of the optimisation

problem and the method used for representing chromosomes in the population.

3.3.2.4 Fitness Function

In the context of biology, the ‘fitness’ of an organism is its ability to survive and

produce progeny depending on the environment it is developed in. It is therefore, a

measure of success with which an organism contends with its environment. In a

given population, each individual organism possesses its own properties for

surviving in the environment; an organism which flourishes in one environment

could easily fail in another. Figure 3.6 demonstrates the fitness measure of frog

specie with respect to its environment; although the developed organism in this case,

is also a frog, it does not belong to the same class of frog species which is found in

its developed environment, due to some of its different traits.

Figure 3.6 Fitness of organism with respect to its environment

In evolutionary computation, a fitness function, also known as ‘objective function’ in

the literature, is an assessment of the potential solution based on a quantitative or

(and) qualitative approach. In other words, it is used to establish the numerical

quality of the competing solution (chromosome) and in some cases, it decides which

of two chromosomes is better without assigning an actual numerical quality. For a

given population of potential solutions, a fitness function value with respect to given

system properties or conditions (similar to ‘environment’ in biological context) is

evaluated for each individual in the population in order to identify the quality of the

solution it represents. For example, the fitness of the potential solutions for the

Chromosome
(Genotype)

Organism
(Phenotype)

Decoding

Encoding

EnvironmentFitness of
Organism

Chapter No. 3 Evolutionary Algorithms

3-11

problem stated in 3.3.2.1 is demonstrated in Figure 3.7. Each solution string from its

encoded data structure is first decoded into its real life state showing the actual

configuration of components in the reliability system. After identifying the

components of the systems, the next step is to apply the fitness function by

calculating the total system cost. It is achieved by simply adding the individual costs,

iC of all six components, and can be shown as:

  6
1Cost)System(TotalFunctionFitness i iC .

This process is repeated for every chromosome in the population and the results are

compared in order to identify the solutions with minimum system costs.

In large scale optimisation problems, the search space can be very large and finding

the optimum solution becomes a very difficult task. For the same example of the

reliability system above, the search space is consisted of 610 combinations of

possible solutions for six components with ten alternatives each. Since the initial

population is generated containing a very small proportion of the total search space

(one million possible solutions in this case) selected randomly, it is crucial to identify

which individuals in the population are nearer to the optimum with respect to the

specified condition of minimum system cost.

Thus, fitness function evaluation separates all possible solutions which are better

suited (strong fit) to the required environment from the rest of the other less suitable

solutions (weak fit) in a given population. Based on these fitness evaluations, a

‘selection’ mechanism is applied which facilitates on average, a continuous breeding

of the strong fit chromosomes while allowing the weaker individuals to drop out of

the population.

Chapter No. 3 Evolutionary Algorithms

3-12

Figure 3.7 Fitness evaluation of chromosome in evolutionary algorithm

3.3.3 Processes of Variations in Evolutionary
Algorithm

Evolution algorithms simulate the development of life in the natural system using the

fundamental processes such as reproduction, recombination, mutation, and inversion.

3.3.3.1 Recombination Process (Crossover Operation)
Recombination or crossover process operates generally on two parent chromosomes

at a time and is also known as binary variation. This operation simulates sexual

reproduction by mapping a pair of genes from one parent chromosome to the other.

According to the definition provided by Ashlock (2006),

‘A crossover operator for a set of genes G is a map

GGGGCross :

or

GGGCross : .

Chromosome
(Genotype)

)3|1|6|4|8|7(

)7|1|8|3|4|1(

)4|2|3|4|2|5(

Organism
(Phenotype)

},,,,,{

},,,,,{

},,,,,{

4
6

2
5

3
4

4
3

2
2

5
1

7
6

1
5

8
4

3
3

4
2

1
1

3
6

1
5

6
4

4
3

8
2

7
1

CCCCCC

CCCCCC

CCCCCC

....................

Decoding

Encoding

Minimum
System Cost
Environment

535
510
500

...........

Fitness
Function

Chapter No. 3 Evolutionary Algorithms

3-13

The point making up the pairs in the domain space of the crossover operator are

termed parents, while the points either in or making up the pairs in the range space

are termed children. The children are expected to preserve some part of the parents’

structure’.

In other words, the crossover operation generates offspring by combining the

features of both parents through exchange of genes. Since child chromosomes are

expected to inherit some features of the parent chromosomes, the crossover process

is applied in the hope of producing better versions of the existing parents with even

stronger fitness (depending on the environment). For example, suppose, one parent

has exceptional aptitude for mathematics whereas, the other parent has excellent

drawing skills. When the chromosomes of these two parents are combined, the

progeny will be produced consisting of the features from both parents and it would

be expected that at least one of the children will have both mathematical and drawing

skills as good as the parents. If the level of fitness is judged on the basis of these

acquired skills (environment), the new child will be superior to either of its parents.

In evolutionary algorithm, the inheritance of the promising genes from parents to

child chromosomes drives the effective exploration of the search space since each

new and better fit child chromosome is in fact, a new point (solution) in the total

search space.

The transfer of traits from parents to child chromosome is one of the key features of

natural evolution which motivates the use of evolutionary algorithm. Although the

acquired traits in child chromosomes are not new since they already exist in either or

both parents, the combination of these traits in a new chromosome is of most interest.

This is one reason in Nature for the best (strong) fit chromosomes for living the

longest and yielding the most progeny. As mentioned in the beginning of this section,

a crossover process operates generally on two parents for producing offspring and

not more which is similar to Nature. An interesting explanation is provided by

Falkenauer (1998) regarding this statement, according to which the reason for

selecting two chromosomes for parenting, is because of the ‘epistasis’ and

‘coadaptation’ of alleles of the genes inside the chromosomes of the living creatures.

Chapter No. 3 Evolutionary Algorithms

3-14

The epistasis phenomenon describes the notion of a gene’s impact which is

influenced by one or many other genes of the future organism. In other words, the

traits or the visible properties of a future organism are mostly results of a joint

influence of many genes. In the context of evolutionary computation, this represents

the non-linear behaviour of a function showing a complex and difficult to predict

relationship of the function with its parameters (independent variables). With regards

to coadaptation, Faulkenauer describes, ‘two alleles are coadapted when the genes

‘cooperate’: some (possibly just one) combinations of their two alleles are beneficial,

but changing one of them nullifies the effect of the other gene, i.e. the influence of

the alleles is not additive.’ For the crossover process applied for combining the genes

from distinct parents (more than one, for example), there is a good chance that the

coadapted alleles will be inherited in the new child however, if the parents do not

agree on the alleles of those genes, the most likely outcome will be the destruction of

the coadapted alleles which may produce undesirable consequences given the

epistasis relative to those genes. The destruction of the coadapted set of alleles is

called ‘disruption’.

In general, a crossover process always carries the risk of disruption of coadapted sets

of alleles which grows with the number of parents taking part in the gene

recombination process for creating a new child; because the possibility of many

parent chromosomes not agreeing with a set of different alleles increases,

understandably. For this reason, it would be obvious to use just one parent, but this

will mean choosing not to use information from diverse sources at all. Therefore, it

appears that the best choice will be to use two individuals as parents for producing

new versions (children) of these parents with reasonable diversity. While this

explanation by Faulkenauer regarding the development of just two sexes (for most

higher organisms) is based only on the computational aspects of the process, it is

possible that there may be other possible justification for this development in Nature.

Nevertheless, the most efficient approach to procreation which the Nature has settled

to (leaping from asexual breeding) appears to be the sexual one involving two sexes,

possibly explaining why it is also the case with the world of scientific computation

using evolutionary algorithms.

Chapter No. 3 Evolutionary Algorithms

3-15

There is a large variety of different types of crossover operations depending on the

type of chromosome representation. For typical strings or array representation of

chromosomes, the following types of crossover are most commonly used:

Single-point crossover

This is the simplest type of crossover operation used for producing variations of

parents. The process involves randomly generating a locus, called the crossover point

over the length of the chromosome string and then swapping the genes from the

parents from one side of the crossover point in order to produce two new child

chromosomes. The information for each child comes from both parents before and

after the generated crossover point.

Using the reliability system example introduced in section 3.3.2.1, consider two

parent solutions representing a reliability system consisting of six components such

that for every component, there are ten available choices of alternatives each.

Parent 1:

3 5 7 9 2 1

Parent 2:

2 7 4 1 9 8

The data structure in the form of a string used for the example chromosomes above is

consisted of six units of information (genes), each representing the individual

component position (locus). For each unit in the chromosome, there are ten possible

values (alleles) which can be selected as the choice of component alternatives.

Therefore, every position in the chromosome string above represents the selected

alternative value of the respective component.

Chapter No. 3 Evolutionary Algorithms

3-16

The one point cross over operation can be applied on the two parents by first

selecting a random crossover point. In this case, let this value be locus position three

and then swapping all the genes from the right hand sides of both parents.

Therefore,

Parent 1:

3 5 7 9 2 1

Parent 2:

2 7 4 1 9 8

This process creates two new versions of these chromosomes each of which

containing information from both parents.

Child 1:

3 5 7 1 9 8

Child 2:

2 7 4 9 2 1

The phenomenon of disruption introduced at the beginning of this chapter can also be

demonstrated using the two newly produced child chromosomes. Suppose in the first

parent, the genes ‘ 3’ and ‘ 2 ’ form a promising combination when exist together but

inefficient individually; i.e. these genes are coadapted. Because of the crossover at locus

three, none of the two child chromosomes has inherited these coadapted genes together

as a result the coadapted genes are destroyed.

Chapter No. 3 Evolutionary Algorithms

3-17

Multi-point crossover

The single point crossover exhibits stronger possibility of disruption since it does not

appear to treat all loci of the genes equally. For instance, if all the promising genes

are unevenly scattered such that their positions are located nearer to the two ends of

the chromosomes string or further apart from each other (see example above), the

probability of their disruption becomes higher with the single point crossover

operation compared to the case where these genes are evenly spread across the length

of the chromosome and are much closer together. A simple way of reducing this is to

use multiple-point crossover operation. One common type of this crossover operation

is a two point crossover which involves randomly generating two crossover points

first and then exchanging the alleles of the selected parents which are located in

between the two crossover points. The two child chromosomes created as a result of

this process contain genes from both parents such that one child contains genes

which are swapped between the two crossover points from the first parent while the

second child chromosome is created from genes which are swapped from the second

parent. Using the previous example of chromosome, the two point crossover can be

demonstrated as below:

Parent 1:

3 5 7 9 2 1

Parent 2:

2 7 4 1 9 8

This process creates two new versions of these chromosomes each of which contains

information from both parents.

Chapter No. 3 Evolutionary Algorithms

3-18

Child 1:

3 5 4 1 2 1

Child 2:

2 7 7 9 9 8

The multiple crossover operation can be extended to k -point crossover, where k
crossover points are used similar to two point crossover detailed above.

Uniform crossover

Uniform crossover is another common type of operation in which allele is exchanged

between the two selected genes of the parents depending on the swapping

probability, up for all loci. This probability is usually predefined and is taken to be

0.5. While this type of crossover effectively deals with the disruption process, it is

however, computationally expensive because of the need for generating a large

number of random crossover points. Further details of this method can be found in

Syswerda (1989) and Spears and De Jong (1994).

Parent 1:

3 5 7 9 2 1

Parent 2:

2 7 4 1 9 8

Random

selection with

probability up

Test for random

selection at each

locus of the gene

Chapter No. 3 Evolutionary Algorithms

3-19

Child 1:

2 5 7 9 9 8

Child 2:

3 7 4 1 2 1

A crossover operator can be further customised using any of the above mentioned

types and depending on the nature of the optimisation problem in hand. It is for these

reasons there exist many forms of this operator in the literature. A comprehensive

survey can be found in Burke and Kendall (2005)

3.3.3.2 Reproduction Process
As the name suggests, reproduction is simply a copy of a chromosome from one

generation to the next without any variation in the genes structure. In Nature, this

process is demonstrated by the production of offspring through asexual breeding

where each child is generally an exact copy of the parent. Similarly, a strong fit

individual who is well adapted to its environment can survive and carry over to

further generations its capacity to produce offspring. The process is applied in the

field of evolutionary computation with the same objective as Nature for preserving

the strong fit individuals for continued survival (i.e. search for optimal solution) by

including them in the next population. However, like crossover operation,

reproduction does not introduce new genes or traits in the next population despite

demonstrating strong fitness to the given environment. Due to this reason, this

process is used at a lesser extent (if at all anymore) in evolutionary algorithms, where

the real objective is to find optimal solutions by exploiting the current best solutions

for diverse exploration of the search space.

Chapter No. 3 Evolutionary Algorithms

3-20

3.3.3.3 Mutation Process
As described in the previous section, an evolutionary algorithm strengthens its ability

to effectively explore the total search space through crossover operations due to the

variations introduced by these processes. These variations are however limited since

recombining information (alleles) from parents produces offspring with the same

alleles which are already present in either of the two (or both) parents. As a result of

this, none of the individuals from the new set of offspring are expected to contain

fresh alleles; in the context of evolutionary algorithm, this means, no solutions are

found with new information which may assist in directing the search towards more

promising solutions, a feature strongly required for problems with infinitely large

search spaces. Another concerning issue is the loss of alleles which may be important

for directing the search towards optimal solution but inadvertently destroyed during

the recombination process. Because it is generally not possible to ascertain which

alleles are parts of the best solution, it is necessary to implement another method for

recovering the discarded alleles as well as some new ones for the purpose of

streamlining the current solutions. This new method is called ‘mutation’ which

performs random modifications on an individual by altering the alleles for producing

newer versions of the same individual. According to the definition provided by

Ashlock (2006),

‘A mutation operator on a population of genes G is a function

GGMutation :

that takes a gene to another similar but different gene. Mutation operators are also

called unary variation operators.’

The main purpose of the mutation is to facilitate local search and gradually introduce

new ideas into the current population by making small changes in the individuals.

Like crossover operations, mutation can also be performed in number of ways. Some

of the most common types found in literature are detailed below:

Chapter No. 3 Evolutionary Algorithms

3-21

Single Point Mutation

In this type of mutation, a random position of the gene in a chromosome is selected,

called ‘mutation point’ and the allele of this gene is altered. The gene alteration is

generally carried out using Boolean operator of true or false especially for

chromosome representation in binary ‘0’ and ‘1’ format. The allele is flipped from

one binary value to other in order to create a new child chromosome. Therefore,

single point mutation depends on the type of representation and the problem

receiving attention. For example use in section 3.3.2.1, the single point mutation will

involve changing any random gene (component) value with any other value from the

given choice of ten alternatives for this component.

Parent 1:

3 5 7 9 2 1

Child 1:

3 5 7 5 2 1

The new child is therefore, created with an alternative choice of five for the fourth

component, which is different from the parent chromosome for which the alternative

choice was in fact nine for the same component.

Multiple Point Mutations

The single point mutation operation can be extended to k -point mutation, where k

mutation sites are used for altering the gene alleles. For 3k and using the same

example above, the multiple points mutation process can be applied by selecting

three random mutation points in the chromosome string and varying the genes

(components) with respect to the given choice of available alternatives. The new

child chromosome created using this process contains different combination of

Randomly selected gene

Chapter No. 3 Evolutionary Algorithms

3-22

components compared to it parent chromosome. Thus, the new chromosome is a new

solution for the optimisation problem and the fitness of this solution can be evaluated

as described in section 3.3.2.4.

Parent 1:

3 5 7 9 2 1

Child 1:

1 5 8 3 2 1

Uniform Mutation

In this type of mutation operation, every gene of the chromosome is selected one at a

time and the alteration is made with respect to some predefined level of probability

similar to ‘swapping probability’ as in uniform crossover operation. Because of this

reason, this type of mutation is also known as probabilistic mutation.

3.3.3.4 Inversion Process
A gene in a chromosome is recognised by means of its locus and corresponding

allele (value). The inversion operation is yet another method along with crossover

and mutation which is used to introduce variation in the chromosome structure. It is

carried out by inverting the order of genes on a randomly selected segment of the

chromosome. The important aspect of this process is the dual change in the structure

of a parent chromosome due to the simultaneous changes in both positions (loci) and

the alleles (values) of the inverted genes. This interesting feature of this type of

variation operation can be observed easily in the structure of the newly created child

chromosomes.

Randomly selected genes

Chapter No. 3 Evolutionary Algorithms

3-23

Using the same example of a reliability system with six components and ten

alternatives each, the inversion process is applied on a sample parent chromosome

and inverting the genes between loci two and five. The result of this process

produces a new child chromosome containing genes which are identical to parent

chromosome, however, the positions of these two genes are significantly different.

At first, this type of variation appears pointless since no new information has

appeared to be transferred in the child chromosome which is the requirement of a

successful evolutionary algorithm. Looking closely, it will become clear that this

type of variation is in fact very useful for some complex optimisation problems.

Using the reliability system example above, it can be shown that the structure of the

child chromosome is indeed different from its parent since at locus ‘three’, a new

alternative ‘nine’ has been selected instead of alternative ‘seven’ which was the case

with the parent chromosome. Similar observation can be made for locus four. Also

worth mentioning is the phenomenon of disruption introduced in section 3.3.2.5.1, in

the context of inversion operation. The disruption of the coadapted genes can be

reduced by applying the inversion operator which alters the structures of the parent

chromosome by only inverting the genes loci without removing them completely.

Therefore, the child chromosome represents a new solution of the optimisation

problem and can be tested for fitness.

Parent 1:

3 5 7 9 2 1

Child 1:

3 5 9 7 2 1

Randomly selected

segment in a chromosome

Inverted genes

Chapter No. 3 Evolutionary Algorithms

3-24

3.3.4 Selection & Replacement Process – The Model of
Evolution

Evolutionary algorithms are also known as stochastic optimisation techniques for

finding an optimum solution based on the probabilistic selection which increases

with the fitness of the individual solutions in a population with respect to the given

condition (environment). As detailed in the 3.3.2.4, the selection process is applied to

update the current version of a population by making probabilistically biased

decisions of selecting individual solutions with strong fitness compared to the

solutions with weak fitness in the same population. In other words, a selection

process is a mechanism consisting of two main steps: firstly, it is used for choosing

individuals with strong fitness as parents form the given population and aspiring for

new versions of these individuals (offspring) with even better fitness and secondly, it

is used to replace weaker individuals of the population by inserting the new children

back in to the population which are formed as a result of the genetic variation

processes explained in section 3.3.2.5. This two step process is also known as the

model of evolution. There are many ways in which a selection process can be

applied for selecting strong individuals; some of the strategies commonly known in

the literature are detailed below:

3.3.4.1 Proportional Selection or Stochastic Sampling
This type of selection is widely known as ‘roulette-wheel’ strategy for selecting the

strong individuals from a population and was introduced by Holland (1975).

According to this strategy, an individual with higher levels of fitness subsequently,

has higher chances of surviving in the next population. The selection process

simulates a roulette wheel having one section allocated for each individual in the

population and the size of each of this allocated section is proportional to the fitness

of the corresponding individual. For a population consisting of ‘ m ’ number of

individuals, the roulette wheel is divided into ‘ m ’ sections and if the size of each

section is identical, the selection probability of each individual will be identical and

uniformly distributed. On the other hand, if the size of the section allocated for one

individual is twice the size of other, the selection probability of the first individual

will be doubled as a result of covering wider area on the roulette wheel. If an

Chapter No. 3 Evolutionary Algorithms

3-25

individual ‘ i ’ has fitness ‘ i ’, its probability of selection, ‘ iP ’ can be evaluated

using the following equation:





m

1j
jii Ω/ΩΡ

The selection of all individuals is probabilistic and having higher fitness does not

guarantee an automatic selection. However, on average, it appears that the rates at

which individuals are selected are generally proportional to fitness levels of these

individuals. Because of this reason, there are possibilities of selecting individuals

with weak fitness levels causing the evolutionary algorithm to slow down as this

process requires extra computation and processing time especially for large scale

problems. While this appears to be a valid shortcoming of this strategy, it is also an

essential feature of the algorithms working with random search spaces; the

uncertainty associated with the direction of the search using evolutionary algorithm

towards optimum solution using only the strong individuals can be reduced with

random inclusion of weaker individuals. This process diversifies the exploration of

the search space and decreases the risk of premature convergence of the algorithm

(this is explained in more detail later in the chapter).

Figure 3.8 Roulette Wheel Selection Mechanism

1

2
3

m

4

5

m-2

m-1

Individual
Solution

Fitness
Levels

1 20%

2 10%

3 7%

4 11%

5 32%

....

m-2 %

m-1 %

m %

Chapter No. 3 Evolutionary Algorithms

3-26

3.3.4.2 Deterministic Selection
This strategy is similar to proportional selection and differs mainly because the

selection of the individuals is completely biased towards the solutions with strong

fitness levels. This type of selection allows the algorithm to perform faster without

spending extra computing time on weaker solutions unlike in the previous strategy.

While this appears to be an encouraging feature, this type of selection, however,

possesses the high risk of converging prematurely to a local optimum instead of the

required global optimum for the problem in hand. Since an initial population is

created using blind search in the total solution space of an optimisation problem, it is

possible for the deterministic selection strategy to select individuals from this

population which are associated with strong fitness levels yet they represent points in

the search space which are far away from the required global optimum. This

phenomenon is called ‘sampling error’ and it represents solutions which are located

in the suboptimal region of the search space.

3.3.4.3 Tournament Selection
The tournament selection strategy, as the name suggests, simulates competitions

among the individuals of a population during random encounters. This approach

contains the features of both stochastic and deterministic selection strategies. The

method randomly selects a set of potential solutions (chromosomes) and identifies

the best one from the set for generating a new population by entering them into a

tournament against each other. The total number of chromosomes in the set is called

the ‘tournament size’ with two chromosomes set commonly known as ‘binary

tournament’. Using this selection scheme, n tournaments are needed for producing

n individuals for the next population.

3.3.4.4 Elitist Selection
This type of selection process ensures that the best chromosomes are passed to the

next population if not already selected by another mechanism; it is the reason for this

method to be part of the deterministic selection process which also favours the best

solutions. These members of the population which are guaranteed to survive are

called the elite chromosomes. These chromosomes ensure that the fitness function of

Chapter No. 3 Evolutionary Algorithms

3-27

the population remains high by producing more offspring with elite genes which

increases the domination in the overall population. The latter can also be ineffective

if the elite genes are part of the local optimum and considerably far away from the

required global optimum.

In addition to the above, there are other less common selection strategies such as,

Truncation Selection, Block Selection, Rank Selection, and Selection by

Normalisation. The details of these methods are profusely documented in the

literature of evolutionary computation; along with world wide web, some of the

excellent resources are Holland (1975); Goldberg (1989), Faulkenauer (1998), Gen

and Cheng (1997, 2000) and Ashlock (2006).

3.4 DESIGNING EVOLUTIONARY ALGORITHMS

There are many ways in which an evolutionary algorithm can be designed, due to its

interdisciplinary application in various research fields. However, there exist some

basic steps which designers should carefully consider for developing robust

evolutionary algorithms capable of efficiently exploring complex search spaces by

exploiting all good solutions. These steps are explained below with a view of the

optimisation problem (where necessary) introduced in section 3.3.2.1, in which an

optimal configuration of components is required for a reliability system, such that the

total cost of the selected component is minimum for a predefined target reliability

level.

3.4.1 Genotype & Phenotype Representation

Choosing the type of chromosome representation is an important step towards

designing efficient evolutionary algorithms. Correct representation of chromosomes

ensures accurate transfer of information between genotype and phenotype which

essentially drives the search mechanism in evolutionary algorithms. Therefore, a

chromosome should be simple and less computationally intensive with the ability to

clearly detail the type of solution it represents taking into account all constraints of

Chapter No. 3 Evolutionary Algorithms

3-28

the optimisation problem. For the above example, the objective is to find an optimal

configuration of ‘ m ’ components in a reliability system from the given discrete

choice of ‘ n ’ alternatives (for each component) with the constraint on minimum

system cost for a target reliability level.

An acceptable representation of chromosome for this problem can be created using

string based data structure containing ‘ m ’ partitions (genes), each representing the

component in the system. Also, for correctly displaying the appropriate alternative

(allele) of each component (gene), the alleles are able to take any value between 1

and n from the given set of alternatives of the respective component – See Figure

3.3 for an example of this chromosome representation. Because, the constraint of the

optimisation problem requires the sum of each configuration of components

(genotype) for establishing the total system cost of the constituted system

(phenotype), the selected representation of the chromosome is adequate for

converting the genotype information into phenotype for evaluating this constraint.

3.4.2 Population Structure

The productivity of an evolutionary algorithm depends significantly on the structure

of its population involving its size and the method of its generation. The size of a

population generally reflects the scale of the optimisation problem however, larger

size introduces more diversity in the search space but it can be very computationally

expensive. Similarly, having too few individuals in the population encourages the EA

to converge prematurely on local optimum.

A general approach in the literature appears to be the use of population of size fifty,

though it can be varied depending on the individual problem. Another important

aspect of the population is to do with its maintenance during each generation.

Depending on the model of evolution used in a given EA, it is possible to maintain

more than one population, simultaneously in the search algorithm, as seen typically

with Genetic Algorithms; one population is for randomly selected parent individuals

while the second one is used for breeding offspring. This is different from the steady-

Chapter No. 3 Evolutionary Algorithms

3-29

state population (also used for example above) where only one population is

maintained throughout and individuals with weaker fitness are instantly replaced by

the new progeny with better fitness.

3.4.3 Fitness Function

A fitness function is a measure for evaluating the quality of each random solution

found by the evolutionary algorithm. Having a simplified and clear version of this

function reduces the complexity of an evolutionary algorithm while improving its

ability to find optimum solution. If a fitness function is flawed with incomplete and

inaccurate structure, it is very likely that the evaluation of the solution will also be

incorrect which could easily lead to a premature convergence of evolutionary

algorithm to a suboptimal solution.

The fitness function for the example above is relatively simple in nature since it is

designed to compute the sum of all selected alternatives of the components

represented in every instance of the random solution (chromosome) which satisfies

the target reliability level. Correct evaluation of the chromosomes in each generation

of the evolutionary algorithm determines the accurate selection of promising

solutions requiring further attention, which generally leads to an optimum solution.

3.4.4 Variation Operators

Given the enormous choice of variation operators found in the literature (section

4.3.2.5), it is important that the selected operators are pertinent to the nature of the

optimisation problem under consideration. A common reason for the large choice of

these operators is the problem specific nature of these operators; one type of such

operator may not be suitable for two different problems. In the context of the

example being discussed so far, the choice of uniform crossover and both single and

multi-point mutation operators appear to be the best. This is because of the very

complex and non-linear relationship between cost and reliability; having one point

crossover will introduce greater variation than desired (due to disruption

phenomenon) which will make the search for the optimum solution very difficult

Chapter No. 3 Evolutionary Algorithms

3-30

because of the destruction of the coadapted genes. This is explained more intuitively

in chapter 5.

3.4.5 Model of Evolution

The nature of the optimisation problem influences the type of model required for

selecting individuals with stronger fitness for procreation and introducing the new

found solutions back in to the population for further breeding. Therefore, the model

of evolution selected while designing an evolutionary algorithm should closely

investigate the quality of each random solution and make all possible efforts to

streamline good solutions into even better ones. The latter can be achieved in many

ways in the literature, some of which are exploiting the local optimum though hill-

climbing using Lamarckian approach (Gen and Cheng, 1997, 2000; and Ashlcok,

2006), introducing penalty function for corrupting the fitness of the similar solutions

(Coit et al. 2000), using niche specialisation for reducing the fitness of the

coevolving solutions (Goldberg, 1989) and using repair methods for correcting the

infeasibility of the solution (Schonberger, 2005).

3.4.6 Termination Criteria

An evolutionary algorithm generally begins with a blind search in the total search

space and utilizes various techniques for searching the optimum solution, as

explained in section 3.3.2. However, the search can not guarantee the discovery of

the global optimum and can continue ad infinitum particularly for very large scale

optimisation problems with complex and infinite search spaces. It is therefore

imperative to specify termination criteria for the algorithm such that it either finds

the optimum solution within a reasonable length of time or ceases the search with the

current best solution. Besides run time, other commonly used termination criteria are

pre-defined tolerance level of the expected result, total number of generations and the

structure of the population (showing no change in the fitness levels of the population

members, for example).

Chapter No. 3 Evolutionary Algorithms

3-31

3.5 TYPES OF EVOLUTIONARY ALGORITHMS

The most promising application of evolutionary algorithms appears to be the field of

optimisation (Yao, 2002). It has proven to outperform conventional optimisation

methods when applied to difficult real-world problems (Back et al., 1997 & 2000(a)

(b); Schwefel, 1994). In comparison with conventional mathematical or heuristic

optimisation methods, the evolutionary algorithms are different in two ways; first

they are population based and secondly they possess the feature of continuously

exchanging the communication and information among the individual in the

population (Schonberger, 2005). Despite continuous growth in the field of

computation using evolutionary algorithms, there appear to be four main types of

such algorithms commonly found in the literature, these are: Evolutionary

Programming (EP), Evolution Strategies (ES), Genetic Algorithms (GA) and Genetic

Programming (GP).

Among the four types of evolutionary algorithm (EA), Evolutionary Programming

(EP) tends to follow the general framework of a standard EA. The method of

chromosome representation is usually a vector containing real numbers. Each

chromosome represents a point in the search space (potential solution). In this type of

evolutionary algorithm, the crossover functionality is not employed, instead all

variations in the chromosomes are carried out using a mutation operator at random

and the selection of parent individuals is made using a probabilistic selection process.

A comprehensive literature on EP can be found in Porto (2000).

The structure of Evolution Strategies (ES) is similar to EP and the differences appear

to be the use of the deterministic selection process for generating new individuals.

Also, unlike in EP, in this method, both crossover and mutation operators are utilised

for introducing variations in the parent chromosomes. A good literature on this

method is available in Rudolph (2000).

Chapter No. 3 Evolutionary Algorithms

3-32

Genetic Programming (GP) is a type of evolutionary algorithm which uses a

variable-sized data structure for chromosome representation, most commonly in the

form of parse trees. GP is essentially a method for producing small pieces of

computer codes by utilising the framework of an EA. A comprehensive survey of

this method is conducted in Ashlock (2006).

In a conventional Genetic Algorithm (GA), a point in the search space is represented

by strings (usually binary) of fixed length, also known as chromosomes (genotypes).

The new binary strings are produced by employing both crossover and mutation

operators on one or more parental individuals. Both variation operators and the

model of evolution are probabilistic. Being the most common implementation of

evolutionary algorithms, this method is introduced in more details in the next

chapter. Among the large available literature on genetic algorithms, Eshelman

(2000), Michaelewicz (1996), Goldberg (1989) and Holland (1975) are the most

popular among the scientific world.

Chapter No. 4 Genetic Algorithms

4-1

GENETIC
ALGORITHMS

This chapter presents the basic framework of the most commonly known types of

evolutionary algorithms called, ‘Genetic Algorithms (GAs)’ which are extensively

recognized as one of the most powerful and broadly applicable stochastic search and

optimisation techniques by researchers from various fields. The first half of the

chapter introduces the notion of classical GA along with its general structure and

common features. The later half of the chapter compiles the strengths and

weaknesses of GAs, their various types currently found in literature and finally the

review of their application in the field of system reliability optimisation.

Chapter No. 4 Genetic Algorithms

4-2

4.1 INTRODUCTION

The idea of Genetic Algorithms (GAs) in computer science is inspired by the

observations of the natural process of evolution of species including plants and

animals. As described in the previous chapter, the mechanism for generating new

creatures within an organism skilfully utilises the knowledge accumulated in the

current population of living organism in order to produce new offspring with the

same or even better fitness than the parents. The transmission of information (traits)

from parent to offspring is commonly known as ‘heredity’ which is biologically

performed by the complex structure of the DNA in all living creatures and is the

cornerstone of Genetic Algorithms. The rules of inheritance of traits in plants were

established in the beginning of the nineteenth century by Gregor Mendel. His

observations were specific to the inheritance phenomenon in only one species which

were further extended in 1859 by Charles Darwin through his highly controversial

theory of new species which essentially described the human race on the same

footing as animals. The theories of inheritance and speciation by both Mendel and

Darwin were investigated by many researchers for many years and nearly a century

later, the actual physical mechanism underlying those theories were identified by

physicist Erwin Schrodinger in 1944 which led to the discovery of DNA in 1953 by

James Watson and Frances Crick. The principles of natural selection and genetics

were employed by Fraser (1957) and Bremermann (1958) in their research areas.

However in scientific literature, the first formal introduction to Genetic Algorithms

appear to be attributed to John Holland through his revolutionary book, Adaptation in

Natural and Artificial Systems which was published in 1975 and the theory was

further extended by Goldberg (1989). Due to this reason, the research world refers to

the structure of the GA provided by Holland and Goldberg as the ‘classical’ GA.

GAs can easily be implemented on a computer for a wide spectrum of problems

across various fields. These algorithms are computationally simple yet powerful in

their search for improvement and are not fundamentally limited by restrictive

assumption about the search space making them particularly useful for solving very

complex optimisation problems which are normally cumbersome for direct

Chapter No. 4 Genetic Algorithms

4-3

mathematical treatment. A comprehensive bibliography on Genetic Algorithms has

been compiled by Alander (1999).

4.2 GENERAL FRAMEWORK OF GENETIC

ALGORITHMS

Usually the structure of a GA varies with the scale of the optimisation problem it is

applied to but on the whole it consists of the following generic steps:

1. An appropriate chromosome representation is selected such that each point in

the search space is represented by this chromosome. The search space of all

possible solutions of the problem is mapped onto a set of finite chromosome

strings over a finite length having fixed data structures. The GA works with

the encoded solutions (chromosomes) rather than the actual solutions

themselves.

2. Having chosen the chromosome structure, an initial population)(tP , of these

chromosomes is selected at iteration stage ‘ 0t ’ which is the tht generation

or population. The initial population)0(P is usually filled at random; this is

because, unlike ordinary optimisation methods, GA performs a parallel search

over a set of random points in the search space which reduces the probability

of converging to a local optimum.

3. Each member in the population)(tP represents the potential solution of the

problem in consideration and is subsequently evaluated for the level of its

fitness using appropriate fitness function

4. For generating next population)1(tP , several individuals are selected as

parents from the current population)(tP , using probabilistic selection which

is biased towards higher fitness (e.g. roulette wheel) hence forming a separate

population which is also known as mating pool,)(tM .

5. The parent individuals are expected to transmit their genetic information into

the next population and therefore undergo stochastic transformation by means

Chapter No. 4 Genetic Algorithms

4-4

of crossover operation to form two new individuals. The new individuals are

also maintained in a separate population,)(tC which is different from both

)(tP and)(tM .

6. In the next stage, another variation by means of mutation operator is applied

with a very small probability on the parent individuals in)(tM . This process

introduces very small random changes in a few randomly selected individuals

hence forming new progeny of these individuals, which are maintained

in)(tC . In some Genetic Algorithms, this small randomly chosen proportion

of the population also endures an additional variation process called inversion

which brings alteration in the chromosome string by changing the positions of

all the genes. The reason for this step in the algorithm is to introduce diversity

in the search space since crossover operator, despite producing new offspring,

does not introduce any new traits in the offspring.

7. Depending on the fitness levels of individuals from)(tM and)(tC , a new

population)1(tP is formed by probabilistically selecting individuals with

the best fitness levels. The main reason for this step is to replace weaker

individuals from the current population)(tP with the offspring individuals

with stronger fitness levels developed in)(tC .

8. Each offspring in the population)(tC contains genetic information of at least

one parent from the mating pool,)(tM and is also evaluated for its fitness

using the same fitness function which was used for the parent individuals.

9. The new population)1(tP is formed at this stage by probabilistically

selecting the best individuals from both)(tM and)(tC by replacing the

weaker individuals from)(tP . This new population)1(tP is ready to

continue with the search from step (3). The temporal population)(tM and

)(tC are destroyed and the iteration counter ‘ t ’ is increased such that

1 tt .

10. The above process continues until the iteration counter stops increasing due

to any of the following reasons: if either the given number of iterations has

Chapter No. 4 Genetic Algorithms

4-5

reached, or the given time span is passed or even if no improvements have

been observed within the last few iterations. After several iterations, the

population is expected to converge if the frequency of the solutions does not

significantly change any more and no new solutions are produced. If the

leading genotype contained in the converged population represents high

quality phenotype, the Genetic Algorithm is deemed successful.

The general framework of Genetic Algorithms can also be demonstrated via the

Figure 4.1.

Figure 4.1 A simple Genetic Algorithm

FRAMEWORK OF BASIC GENETIC ALGORITHM

Begin

t:=0;

Initialise P(t);

Evaluate Fitness of P(t);

While (termination condition not satisfied)

do

{

Create mating pool M(t);

Apply crossover operator on individuals in M(t) to form C(t);

Apply mutation operator and/or inversion operator on M(t) and append C(t);

Evaluate C(t);

Create P(t+1) from P(t) and C(t);

Destroy M(t) and C(t);

t:= t+1;

}

Highlight Result;

end;

Chapter No. 4 Genetic Algorithms

4-6

4.3 FEATURES OF GENETIC ALGORITHM

The principal use of Genetic Algorithms appears to be in the field of function

optimisation however, they are also used effectively in many other fields. As

mentioned in (Spall, 2003), GAs are used to study the social systems of human

populations in order to investigate the evolution of societies, impact of government

policies, resource shortages and human interaction with the environment. GAs can

also be used to design simulation based methods for making policy

recommendations, as stated in the preface of the 1992 update to the seminal Holland

(1975), “Genetic Algorithms are a tool for investigating the phenomena generated by

complex adaptive systems, a collective designation for nonlinear systems defined by

interactions of large numbers of adaptive agents (economics, political, systems,

ecologies, immune systems, developing embryos, brains and the like)”. Some of the

main features of Genetic Algorithms are detailed in this section.

4.3.1 Terminologies and Concepts in Genetic
Algorithm

The terminologies across Genetic Algorithms are similar to Evolutionary Algorithms

and the details of these can be found in the previous chapter. Likewise, the concepts

in GAs are also effectively the same however the application of these concepts is

essentially what makes GAs different from any other forms of EAs. For instance, the

crossover operation is one backbone feature of the GA and is therefore applied

extensively in the algorithm as compared to the mutation operator which is

implemented only slightly. The reasons for this approach will be explained later in

the chapter. Despite sharing many similarities with EAs, there are some concepts

which are found in the literature mainly in the context of the Genetic Algorithms.

Some of these concepts are defined in this section.

4.3.1.1 Types of Chromosome Coding

The types of chromosome encoding can be best explained in the context of

minimising a loss function ‘ ()L L v ’; the optimisation problem is to find the best

Chapter No. 4 Genetic Algorithms

4-7

values for vector ‘ v ’ belonging to the domain of all permissible values, ‘ ’, which

minimises the ‘ ()L v ’. This can be formulated as,

 * * min ()L


  
v

v v

where, ‘ ()L v ’ defines the losses of the system for the given composition of the

‘ *v ’ which is a N - dimensional vector of parameters (components) with optimal

combination of selected parameters, and N   is the domain for ‘ v ’ representing

constraints on all acceptable values for this vector. The ‘ * ’ is the set of values
*v v that minimises ()L v subject to ‘ *v ’satisfying the constraints in the set ‘ ’.

In order to apply the GA operation on the given optimisation problem, the important

step is to decide the type of chromosome structure which can be used effectively for

encoding and decoding the values of ‘ v ’. Generally in GAs, the structure of the

chromosome consists of string representation, in the form of a sequence of numbers

each representing the corresponding value of the parameters. These strings of

numbers can be selected in many ways for representing the given structure of vector

‘ v ’. Among these, standard ‘binary’ bit strings (0,1) appear to be the most common

type of numbering found in the literature (Goldberg, 1989; Mitchell, 1996; Davis,

1996). The main reasons for extensive use of this type of coding, as indicated in

Spall (2003), appear to be the continuation of the classical approach of Holland

(1975), relative simplicity of implementing the genetic operations (such as selection,

crossover, mutation etc), similarity of binary ‘0’ & ‘1’ manipulation with computer

data processing, and the compatibility of binary coding when using with the popular

schema theory (detailed in the next section). An excellent apporach of binary bit

string coding for a scalar v is presented in Spall (2003). According to this,

encoding/decoding procedures for a scalar v can be applied to individual parameters

of a vector v , in which case the procedures will be associated with one gene in the

chromosome. The sample approach also shows the standard feature of the GA where

the number of bits representing each gene can also be different. The details of the

approach presented by Spall are stated below:

Chapter No. 4 Genetic Algorithms

4-8

Let ‘ b ’ be the number of bits representing one of the scalar elements in vector v ,

then the minimum value of this scalar v is represented by all zeros in each of the bit

positions as in [0,0,0,...0] and the maximum value with ones in all bit positions, i.e.

[1,1,1,...1] . If the total number of bits in the chromosome are represented by ‘ B ’,

then‘ B ’ will be greater than ‘b ’ since it corresponds to all N elements in vector v .

Steps for encoding (scalar v)

1. Let minv and maxv be such that min max v v v and let ‘ m ’ represent the

maximum number of positions after the decimal point such that 0m 

symbolises positions before the decimal. Select number of bits ‘b ’ such that

it is the smallest number satisfying the relationship
0 1 2 1 1

max min10 () 2 2 2 ... 2 2 1m b b        v v , for the number of possible

representation for a string of length b - bits.

2. Let max min() /(2 1)bd   v v . Each increase in v by an amount d increases

the bit representation by one unit.

3. Round off the given v to the nearest integer using the operator

min[() /]round dv v and represent it using the standard binary format

1 2 3[, , ,...]ba a a a where the members ia are either 0 or 1.

Steps for decoding (scalar v)

1. Assuming a b -bit representation 1 2 3[, , ,...]ba a a a derived as in the encoding

steps above.

2. The value of v , to specified accuracy (m) is given by,

1max min
min

1

2
2 1

b
i

ib
i

a 




 

 v v
v v

Chapter No. 4 Genetic Algorithms

4-9

Numerical Example by Spall

The approach of using the binary bit representation is shown using a v with two

components (i.e. 2N ).

Let 1 2[,]Tt tv

Such that

1 2[4 .0 0,1 0 .0 0] & [1 0 00, 45 0 0]t t   .

For the first component of v , 2m  and 11b  , since

1 0

2
m ax m in

1 1

2 1 1 0 2 3

1 0 () 1 0 (1 0 .0 0 (4 .0 0)) 1 4 0 0

2 1 2 0 4 7
1 0 2 3 1 4 0 0 2 0 4 7

m

 

    

 
  

v v

For the second element, 2m   and 6b  , since

5

2
m ax m in

6

2 1 3 1

1 0 () 1 0 (4 5 0 0 1 0 0 0) 3 5

2 1 6 3
3 1 3 5 6 3

m 

 

   

 
  

v v

if [2 .3 1, 4 3 0 0]T v , an encoding would be

[0 0 0 1 1 1 1 0 1 1 1 ; 1 1 1 0 1 1] where the semicolon separates the two genes for

the two elements of v . The value of d for the first gene is 0.00684 and integer value

0 1 2 3 4 5 6 7 8 9 10

[(2.31 (4.00) / 0.00684] 247
encoding [0 0 0 1 1 1 1 0 1 1 1] with b=11

2 2 2 0 2 2 2 2 0 0 0 247

round
for

   

          

Similarly, the values of v can be decoded using the steps above.

1max min
min

1

0 1 2 4 5 6 7 11

2
2 1

4.00 (10.00 (4.00))(2 2 2 2 2 2 2) /(2 1)
2.311

b
i

ib
i

a 




 



           
 

v v
v v

v
v

Chapter No. 4 Genetic Algorithms

4-10

0 1 3 4 5 6

,

1000 (4500 1000)(2 2 2 2 2) /(2 1)
4277.8

Similarly

       


v
v

The decoded values of v are identical to the target values with specified level of

accuracy, expressed in terms of m .

An alternative to binary bit style coding is ‘gray coding’, which also uses the (0,1)

alphabets in the string representation but differs in the way in which bits (i.e. binary

digit) are arranged. As described in Spall (2003), it is an alternative coding scheme

which attempts to closely match the bit representation with the natural characteristics

of the optimisation problem space, particularly when the decimal accuracy between

the adjacent values is required. Because the adjacent floating point values differ by

only one bit in the chromosome string, it is expected that in gray coding, small

changes in v can be accomplished more easily compared to binary representation.

The latter may have a very different representation when moving from one adjacent

value to another, for example, if v is an integer valued scalar quantity, then a move

of one unit from 7 to 8 v v would require all four bits [0 1 1 1] to change to

[1 0 0 0] . Therefore, the probability of simultaneously changing several bits to

produce a small change will also be small since GA operates by flipping the

individual bits in the chromosome string for carrying out genetic tasks such as

crossover and mutation. There appears to be no strict criteria for forming gray code

as indicated in Spall (2003). However, a good source for understanding the

translation between binary and gray coding can be found in Michalewicz (1996). A

short sample of this is demonstrated in Table 4.1 where it can be seen that the gray

code changes more gradually than standard binary code with the changes in the

integer representation. Also, in most cases, this change in gray code is limited to only

one bit for each one unit change of the integer value.

Chapter No. 4 Genetic Algorithms

4-11

Along with binary and gray coding, ‘multiple character encoding’, which contain

more than two elements in the string alphabet is yet another type of chromosome

encoding which is found in the literature. This type of encoding includes the

complete ten character representation and is also known as ‘real number coding’ and

works directly with the parameters of v since each value of the parameter is

represented as a real number in the string. Due to this feature, the real number

encoding appears to be growing in use and is found in many successful numerical

implementations (Spall, 2003).

Integer

Value

Binary Code

Representation

Gray Code

Representation

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1

3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 0

5 0 1 0 1 0 1 1 1

6 0 1 1 0 0 1 0 1

7 0 1 1 1 0 1 0 0

8 1 0 0 0 1 1 0 0

9 1 0 0 1 1 1 0 1

10 1 0 1 0 1 1 1 1

Table 4.1 Comparison of Binary and Gray Coding (Spall, 2003)

Chapter No. 4 Genetic Algorithms

4-12

4.3.1.2 Similarity Templates or Schemata

One of the most important concepts behind the theory of GAs is similarity templates

or schemata (plural for schema). As defined by Holland (1975) and Goldberg (1989),

a schema is a pattern matching device containing a subset of strings with similarities

at certain string positions. In other words, a schema represents the constant values of

some of the genes in the chromosome which are identified among highly fit strings in

order to help guide the search towards best possible solution. For example, a

chromosome string of length six using binary representation can contain either ‘0’ or

‘1’ as an allele for any of the six genes of the chromosome – see below.

Let’s imagine, the chromosome strings producing promising solutions have the

following alleles of the genes

1 0 1 1 1 0

0 1 1 1 0 0

1 1 1 1 0 1

Then it can be seen from the three chromosomes strings that loci three and four in

each string has common allele of ‘1’ for each respective gene. This information can

therefore be utilised to form a template for evaluating all possible combinations of

strings matching this pattern.

? ? 1 1 ? ?

1 0 1 1 1 0

Chapter No. 4 Genetic Algorithms

4-13

In the above template, the ‘?’ or ‘don’t care symbol’ represent any combination of

‘0’ or ‘1’ in the chromosome string with fixed values of ‘1’ at locus three and four.

There are two important characteristics associated with the concept of schema. First

is the order and the second is its defining length. The order of the schema represents

the number of genes with fixed values of the alleles in a schema definition.

Therefore, the order of the similarity template defined above is two since it has two

genes out of six with fixed values of the respective alleles. The defining length of the

schema represents the distance on the chromosome, measured in number of genes,

between the first and the last gene that defines the schema. For the above example,

the length of the schema is one which is the difference of position 4 and position

three)134( .

4.3.1.2.1 Use of Schemata in Genetic Algorithms
In the literature, the schemata also appear to be referred to as the building blocks of

Genetic Algorithms because of their ostensible ability to guide the search towards the

optimal solution; a claim which is not commonly agreed by the researchers (Spall,

2003). In general, schemata are found to be associated with two primary theoretical

results first of which is known as Schema Theorem while the second is cited as

Implicit Parallelism (also known as intrinsic parallelism in Holland, 1975).

4.3.1.2.1.1 Schema Theorem
For a given optimisation problem, a search space is a collection of all possible

solutions of this problem and thus an arbitrary solution can be considered as a point

in this search space. A chromosome encoding of this point (genotype) contains genes

which can be used to represent the dimension (identified by its locus) and its value

(allele) to the coordinate along this dimension therefore, making this a vector in the

multidimensional search space, where each dimension can be considered as a

hyperplane in the search space. For the example chromosome structure above, the

vector represents six genes each corresponding to a dimension in the total search

space with their values representing the respective coordinates. Therefore, each point

in the sample space lies at the intersection of many hyperplanes and constitutes a

sample of all the hyperplanes that contain it – the quality of this solution will

determine the quality of each of the genes representing the respective hyperplane.

Chapter No. 4 Genetic Algorithms

4-14

For this reason, the search for optimum can be imagined as the search for the best

intersection of hyperplanes. The concept can be extended to represent each

hyperplane by a schema on a chromosome and vice-versa (Falkenauer, 1998) which

leads to the hypothesis that searching for an optimum is about searching for the best

schemata. Each chromosome can be a sample consisting of various schemata (with

different schema orders). Thus, a GA can utilise this information for searching the

optimum and by targeting only the high-order schemata where the defined area of the

search space is smaller. This is because, a schema of the highest order with

maximum number of coordinates (hyperplanes) of the search space, can almost

certainly define a single point as the global optimum if it performs better than all

other schemata. However, there may be substantially large numbers of high order

schemata for a given optimisation problem and evaluating each one of them can be

unfeasible given the size of the search space. It is important to mention that high

order schemata are in fact comprised of lower-order schemata themselves. For

example, the two order schema

? ? 1 1 ? ?

contains the following two schemata each with order one:

? ? 1 ? ? ?

? ? ? 1 ? ?

If both of the lower order schemata perform better with the combination of genes

made up of these templates, then the higher order schema would automatically

contain all solutions derived from these lower order schemata. As a result, the higher

order schema will be selected for further evaluation with a higher probability for

searching the global optimum of the optimisation problem. Thus, lower order

schemata provide the building blocks for constructing the promising higher order

Chapter No. 4 Genetic Algorithms

4-15

schemata but once again, the total number of these schemata can be very large and

certainly impractical to be evaluated rigorously (e.g. using and enumerative search).

In GAs, this issue of finding the promising schemata is resolved through evaluation

of the optimisation function using random trials and finding the best balance between

identifying the promising schemata (exploration) and searching for the best solutions

derived from these schemata (exploitation). A common known strategy for trial

allocation found in the GA literature (Holland, 1975; Goldberg, 1989; Michaelwicz,

1996) is one that allocates an exponentially increasing number of trials to the best

found schemata, which will dominate across generations, as depicted in Equation 5.4

below.

Under the basic GA operation with proportional selection (roulette wheel) with basic

genetic operators (reproduction, crossover, mutation), the strategy for the trial

allocation can be defined using the following assumptions, as defined in

Falkenauer(1998). Let ‘ ’ be a schema template, such that the members of this

schema consistently perform better than the non-members by an amount ‘ c ’.

Therefore, if the average performance of the whole of the population is ‘ f ’ then the

average performance of the members of ‘ ’ can be represented as,

cfcHf  1)1()(
f

f(H)
or (4. 1)

Also, if there are ‘ NkHm ),(’ number of chromosomes at generation ‘ k ’, which

are the instances of the template ‘ ’ in the population of size ‘ N ’, then the

expected number of these chromosomes in ‘ 1k ’ generation can be estimated by,

),()1(
)(

),()1,(kHmc
f
Hf

kHmkHm  (4. 2)

Chapter No. 4 Genetic Algorithms

4-16

which is the survival rate of this schema from one generation to the next, following a

geometric progression with exponential rate of growth. The above relationship can

be extended by adding the crossover and mutation operators and assuming zero

selection of elite chromosomes:





 


)(

1
)(

1
)(

),()1,(Hop
l

H
p

f
Hf

kHmkHm mc


(4. 3)

In the above relationship, the ‘ cp ’ is the probability of crossover such that

10  cp , ‘)(H ’ is the defining length of the schema ‘ ’, ‘ l ’ is the length of

the chromosome, ‘ mp ’ is the mutation probability (which is generally very low ; i.e.

0mp), and ‘)(Ho ’ is the order of the schema, ‘ ’. Using this relationship, the

lower bound to the rate at which the domination will occur across generations under

the schema theorem for the basic GA from Section 5.2, above, can be stated as,

NkHmNHop
l

H
p

f
Hf

kHm mc 














 


)1,(,)(

1
)(

1
)(

),(min


(4. 4)

As mentioned in Spall (2003), the ‘min’ operator ensures that the expected number

of chromosomes (which are the instances of the template ‘ ’ in the population of

size ‘ N ’) in ‘ 1k ’ generation are equal to ‘ N ’ if the bound would otherwise be

larger than the population size. As the order of the schema ‘ ’ increases, the

number of ‘don’t care symbols’, ‘?’, decreases as a result of this, the products of the

terms, ‘ 1/)( lHp c  ’ and ‘)(Hop m  ’ will be nearly zero in most

circumstances. Therefore, equation (5.4) implies that a schema ‘ ’ with consistently

higher fitness value than the possibly increasing average of all the chromosomes (i.e.

1/)(ff ) will dominate the new generations by continuously producing

chromosomes based on ‘ ’. The Equation also shows that short, low-order with

above average schemata are propagated from one generation to another, being

represented by an exponentially growing number of chromosomes, which verifies the

Chapter No. 4 Genetic Algorithms

4-17

use of trial allocation strategy used in the GA, to be optimal for exploring extremely

large search spaces (Falkenauer, 1988). To all intents and purposes, this equation

represents the schema theorem, also known as the fundamental theorem of generic

algorithms and provides useful insight into the underlying mechanics of the classical

GA described in Section 4.2, above.

4.3.1.2.1.2 Implicit Parallelism

This is the second most referenced schema result found in the GA literature and also

referred as intrinsic parallelism in Holland (1975). As stated in Spall (2003), an

implicit parallelism states that the number of schemas processed in one generation of

the GA is much larger than the actual size of the population suggesting that the

algorithm is capable of processing more information at each generation than would

be suggested by the population size alone. What’s more, this implicit information is

available without additional storage and/or processing requirements. The reason for

processing a greater number of schemata than the size of the population is because a

given chromosome can be associated with various schemata alone. Therefore, each

chromosome can be used to assess the quality of many specific schemata. Detailed

review of many derivations of implicit parallelism bound on schemata can be found

in Spall (2003).

To summarise the two schema results above, there appears to be a considerable

controversy about the implications of these results on practical implementations of

GAs, as indicated by Spall. Because many promising schemata are processed in a

particular generation of a GA which may or may not be significant for reaching an

optimum solution, the concept of schema is not absolutely appealing (and reliable)

for solving large scale complex optimisation problems. Nevertheless, schema theory

has historical significance in the development of evolutionary computation and to an

extent, provides some intuitive justification for the good performance that is

frequently observed. An excellent source for one of the most up to date literatures on

genetic algorithm is provided in Burke and Kendall (2005).

4.3.1.3 Niche Specialisation

The concept of niche specialisation was first introduced by Goldberg (1989) and is

inspired by the concept of biological niches. He suggests reducing (dividing) the

Chapter No. 4 Genetic Algorithms

4-18

fitness of a member of an evolving population in proportion to the number of other

solutions that are essentially the same. In a real function optimisation, this might be

the number of solutions which are found in the very close proximity of each other in

the domain space. The effect of this is to make solutions less promising once they

have been discovered by several members of the population. As detailed in Ashlock

(2006), niche specialisation reduces the accumulation of solutions onto a good, but

suboptimal, solution found near the beginning of the GA search. In theory, once the

niche is filled, it becomes hard for new species to enter the niche. This is because the

existing members of the niche are already using the resources it contains. There are

many in which niche specialisation can be applied depending on the details of how

clearly and accurately similarity measure is defined among solutions and how the

number of similar solutions is transformed into a fitness penalty. According to

Ashlock, there exits two obvious similarity measures for real functions optimisation.

First of these is called the Domain Niche Specialisation (DNS), which measures

similarity by comparing the chromosomes of population members. Whereas, the

Range Niche Specialisation (RNS) is the second type which measures similarity by

comparing fitness. The DNS is used to make the optimum less attractive by dividing

this solution by a penalty function based on the number of solutions existing in the

nearby population. The method employed in RNS is similar to DNS with exception

to the way in which penalty function is applied – it measures the difference between

the fitness of the optimum solution with respect to the fitness of the neighbouring

solutions within a specific tolerance level (similarity radius). In other words, RNS

simply computes the number of solutions that have found roughly the same function

value. The two types of niche specialisation have different strengths and weaknesses;

for this reason, it is sensible to use them sporadically. More details on the two

methods along with their applications on real functions optimisation problems can be

found in Ashlock (2006).

4.3.2 Strength and Weaknesses of Genetic Algorithms

Genetic Algorithms are powerful stochastic search techniques which have been

applied successfully in many optimisation problems across various fields. GAs are

different from other search techniques mainly because they are population based

Chapter No. 4 Genetic Algorithms

4-19

algorithms and are well suited for parallel processing. Working with the population

of solutions instead of a single solution, strengthens the capabilities of the GAs

because the search process begins by evaluating different initial points (solutions),

selected randomly (generally) from the search space, and then gradually converges

(if successful) towards optimal solution by eliminating the infeasible solutions using

genetic operations. Also, the final population contains the best found solution along

with other suboptimal solutions which can be considered alternatively if the best

solution can not be implemented for some reason. GAs can easily be implemented on

a computer for a wide spectrum of problems across various fields. These algorithms

are computationally simple yet powerful in their search for improvement and are not

fundamentally limited by restrictive assumption about the search space making them

particularly useful for solving very complex optimisation problems which are

normally cumbersome for direct mathematical treatment.

Despite many attractive features of genetic algorithms there appears to be some

weaknesses associated with this method which need to be taken into consideration

when applying the GA methodology. Few of the most commonly found weaknesses

in the GA literature (Schonberger, 2005) are briefly explained below:

4.3.2.1 Convergence of Genetic Algorithms

Genetic Algorithms are population based methods and generally deemed successful

when the population after a specific number of iterations, converges to an optimum

solution. If the size of a chromosome is very large, the progress of GA can be

adversely affected due to the large number of different genes requiring extra

additional efforts for experiencing the key genetic operations such as crossover and

mutation. Consequently, it increases the processing time of the GA computation

which in turn decelerates the rate of convergence or causes the genetic search to miss

the convergence completely. This is because the promising solutions are not able to

dominate the population since the frequency of occurrence of such solutions gets too

small for a statistical dominance and for undergoing genetic operations. Besides the

large numbers of genes in a chromosome, the other important factor which causes

GA to miss convergence is the epistasis phenomenon (Naudts et al., 1997; Mattfeld,

Chapter No. 4 Genetic Algorithms

4-20

1996). As mentioned in Schonberger, epistasis contradicts the building block

hypothesis of Goldberg (1989) which assumes that most promising solutions are

derived from low order with above average fitness schemata. Similar to missing

convergence, another shortcoming of the GA is a premature convergence of the

genetic search on a suboptimal solution. One of the reasons for this can be associated

to an inadequate method for measuring the fitness function. Encoded solutions

having similar phenotypes but with slightly different genotypes, are sometimes

overestimated and subsequently selected more favourably for transmitting their

genetic information into the next population. This deficiency in the fitness measure

can promote the abundance of such genotypes in the population which can lead to a

premature convergence of the genetic search due to reduced diversity in the search

space. Another reason for premature convergence as explained by Schonberger, is

the type of chromosome representation used in a GA. On occasions, it is not possible

to find bijective string coding of solution instances due to one-to-many relationships

between phenotype and genotype; different genotypes with the same phenotype

structuring as explained in Falkenauer (1998) who referred to this type of coding as

‘redundant encoding’. With this type of encoding structure, there is a high

probability of assigning the offspring to the same phenotype and for a large level of

such redundancy can potentially invalidate the use of genetic operators for making

variations in the genetic code.

4.3.2.2 Feasibility of Solutions

In addition to convergence issues, other known weaknesses of genetic algorithms is

to do with solutions which are found to be unacceptable with respect to the

constraints of the optimisation problem in hand. According to Schonberger, these

constraints separate the set of genotypes into two main categories: feasible

genotypes, which can be decoded into feasible phenotype and infeasible genotypes,

in which the decoded phenotype violates some or all of the constraints. A detailed

overview of feasibility issues and ideas for handling infeasibilities including

repairing and improving of the genetic code, is presented in Schonberge (2005) and

Coello (2002).

Chapter No. 4 Genetic Algorithms

4-21

4.3.3 Comparative Analysis of Genetic Algorithms
with Other EC Methods

Genetic algorithms belong to the class of Evolutionary Algorithms which also has

many other types among which the two most commonly known methods are,

Evolutionary Strategy (ES) and Evolutionary Programming (EP). Like GA, both ES

and EP are population based methods and despite having many similarities, all of the

three approaches can be compared distinctively.

Evolutionary Strategies were originally designed by Rechenberg (1965) for dealing

with constrained continuous variable optimisation problems whereas, GAs were

essentially proposed to target machine learning and studying adaptive systems and

subsequently proven to be equally useful for both discrete and continuous variable

optimisation problems (Spall, 2003). ES are generally known for working directly

with function parameters unlike in GAs where solutions are evaluated in the form of

a genotype (encoded representation of parameters) and phenotype (decoded

solution). There appears to be two commonly known notations associated with ES,

which are found in the literature. The first of which is referenced as ESN )(

while the second one is represented by the form, ESN ),( where ‘ ’

corresponds to the offspring produced in the initial population of the ES and ‘ N ’ is

the size of the population. The basic steps of ES for both of the two notations are

similar in the sense that for both versions, the first step is to create an initial

population of potential solutions (selected randomly, in general) and evaluating the

objective function with constraints, the second step is to generate offspring ‘ ’ from

the current population size of ‘ N ’ solutions which satisfy the objective function.

However, it is the next step where the algorithm differs for the two versions of the

ES. For ESN )( , the algorithm generates a new population by selecting N

best solutions from the combined populations of old and new ( -offspring)

solutions. Similarly for ESN ),( , the next population is generated by selecting

N best solutions from the population of N offspring only. The life of each

Chapter No. 4 Genetic Algorithms

4-22

population member in this version of ES is limited to only one generation this is

because the solutions for the next population are selected only from the  offspring.

The final step in the ES algorithm defines the appropriate stopping criteria. More

details of the processes in ES can be found in Spall (2003) and Rudolph (2000).

Evolutionary Programming, introduced by L.Fogel et al. (1966), was intended for

evolving artificial intelligence by creating finite-state machines that are adept at

prediction (Spall, 2003). These machines can be represented as directed graphs for

predicting the next symbol in the sequence of symbols. As detailed by Spall, if some

real system has generated output ‘ ,,..., 21 nsss ’, then the machine can be used to

predict the next sequence, ‘ 1ns ’. In EP, the population is generally composed of

these finite state machines, where each one of them is represented in matrix form.

The fitness of each machine is evaluated by comparing the predictions from the

machine with real outcomes using an appropriate fitness function. Using only the

mutation operator, EP generates offspring and selects individuals for the next

population until termination criteria is achieved. A comprehensive survey of

literature on EP along with its applications in real function optimisation is available

in Fogel (2000).

As discussed above, the comparison of GAs with other EC methods such as ES and

EP can be done by highlighting the main differences in the three algorithms. These

being: the method of chromosomes encoding (e.g. binary bit structure in GA) and the

order in which the genetic operators are applied on the respective populations. In

GA, parents are generally selected before applying the genetic operators such as

crossover, mutation and reproduction unlike in ES where crossover operator is used

first to create parent and then mutation is employed to produce)(N or N

offspring. Another interesting comparison is outlined by Spall (2003) referring to the

emphasis on general constrained problems in the ES and EP. According to him,

‘these algorithms allow for a direct check on constraint violation and the exclusion of

an offspring that violates the constraints. The coefficients of the algorithms may

automatically be adjusted if the constraints are violated too frequently. In contrast,

Chapter No. 4 Genetic Algorithms

4-23

the GA is largely used with simple hypercube constraints, although it is possible to

modify the fitness function to include a penalty function as a way of handling more

general constraints’. Spall also indicates that the differences between all EC methods

are gradually reducing because of the introduction of many hybrid versions which

combine attractive features from different evolutionary methods. A comprehensive

literature in this area includes resources such as Schwefel (1995), Michalewicz

(1996), and Fogel (2000).

4.4 TYPES OF GENETIC ALGORITHMS

There are many versions of GA which can be found in the literature and while they

seem to possess the basic framework of a classical GA (Holland, 1975; Goldberg,

1989), there are slight variations depending on the research area of their application.

These differences are, for example, the way genotype population is selected and

maintained (Falkenauer, 1998), the probability of applying the genetic operators

(Goldberg, 1989, 2002; Booker et al., 1997; Spears, 1997; Syswerda, 1989; Spears

and De Jong, 1994; Back et. al, 2000(a) & (b); Goldberg and Sastry, 2002) and the

methods of improving the infeasible solutions by employing kind of repair

procedures on local optima.

In the literature, the latter modified versions of the classical GA are also known as,

‘Memetic Algorithm’ (Moscato, 1989, 1999, 2001; Krasnogor and Smith, 2005;

Krasnoger et al., 2004; Moscato and Cotta 2003; Schonberger, 2005; Burke et al.

1996, 1999, 2001) or more popularly, ‘Hybrid GA (HGA) ’ (Joines and Kay, 2002;

Louis and Mcdonnell, 2004; Burke and Newall, 1999 and Ibraki, 1997 who called

this Genetic Local Search). An excellent review of genetic search can be found in

Burke and Kendall (2005) and Ashlock (2006) along with a comprehensive

bibliography on Genetic Algorithms, compiled by Alander (1999).

Chapter No. 4 Genetic Algorithms

4-24

4.5 APPLICATION OF GENETIC ALGORITHMS IN

RELIABILITY OPTIMISATION

In the context of solving reliability optimisation problems, the method of using

genetic search has been widely employed due to its robustness and capability to

efficiently explore and exploit the search space (see also, Chapter 2).

Painton and Campbell (1995) adopted a genetic algorithm approach to solve a

reliability optimisation problem for a system with series-parallel configuration. The

objective of the optimisation was to maximise system reliability for a linear cost

constraint. For an additional constraint of weight along with cost, Coit & Smith

(1996) worked on the redundancy allocation problem in parallel-series systems in

which each subsystem was a k-out-of-n:G system, using methodology based on

genetic algorithm when the components were chosen from a finite set, assuming

different types of redundancy levels such as active, standby and k/n. Their method

found feasible solutions for all 33 problems presented previously in the referenced

article. The latter had managed 30 solutions. Additionally, the level of reliability for

a given cost constraint was improved in most of the highlighted problems. With an

objective of maximising the lowest percentile of the system time to failure, modelled

by Weibull distribution, Coit and Smith (1998) also solved the redundancy allocation

problem in the series-parallel system by using genetic algorithm along with bisection

search method for searching the potential solution space. Their findings in this paper

and also in 2002 show that the Weibull scale parameters are uniformly distributed

random variables, different to the shape parameters which can be estimated exactly.

The Ida et al. (1994) and Yokota et al. (1995) designed a genetic algorithm for

optimal redundancy allocation in a series system in which the components of each

subsystem were also subject to two classes of failure modes. Majety and Rajagopal

(1997) developed an evolution strategy based on an adoptive penalty function to

solve some cost optimisation problems for a minimum level of required system

reliability. They applied this strategy on both series-parallel and parallel-series

Chapter No. 4 Genetic Algorithms

4-25

systems. Dengiz et al. (1997) designed a genetic algorithm for cost-optimal network

design. A similar algorithm was developed by Deeter and Smith (1998) for cost-

optimal network design but unlike Dengiz et al. (1997), they assumed that multiple

choices for each link in a network exist. The problem considered was to design a

network using all available links to minimise the total cost of the links for a given

constraint of a minimum reliability.

In both Cantoni et al. (1999) and Zio (2000), an excellent methodology based on

Monte Carlo simulation and genetic algorithm is proposed for solving complex plant

(e.g. Shale oil) design problems. With choices on the type of components to be used

and the assembly configurations, the optimisation process is subject to conflicting

interaction of reliability/availability objectives with the economic costs associated to

the design implementations, system construction and future operation.

A very interesting work has been communicated by Kumral (2005) regarding

reliability optimisation of a mine production system using genetic algorithm. The

optimisation process is required to estimate the minimum level of reliability for each

sub-system along with incorporating a cost minimisation criterion for the risk

associated with these uncertain estimates in order to avoid critical losses from the

standpoints of safety, quality, health, environment and finance, as described by

Kumral.

Analogous to this approach, Yang et al. (1998) also use genetic algorithm for

reliability allocation in nuclear power plant while minimising the total plant costs

subject to the overall plant safety goal constraint with a different approach than

Kumral by using fault trees and probabilistic safety assessments for evaluating target

reliabilities of individual subsystems. The optimisation processes in the last two

sources, despite being conceptually similar in some ways to the risk based reliability

allocation method, are however, significantly different because of the minimum

reliability requirements and no consideration of the amount of total losses from

failure in allocating the optimal level of system reliability. Similarly, Brown et al.

Chapter No. 4 Genetic Algorithms

4-26

(1997) provide useful information about designing an automated primary distribution

system by optimising both cost and reliability. The objective function (total cost of

reliability) is the sum to two costs, utility cost of reliability and customer cost of

reliability. By using methods such as integer programming, genetic algorithm and

simulated annealing along with some hybrid methods, the authors minimise the

objective function for demonstrating its use as a tool for helping engineers design a

reliable distribution system while minimising costs.

Genetic algorithms are also generating a great deal of interest in optimisations of

multistate systems (MSS). Characterised by availability, cost and nominal

performance rate, the state of the components in such systems facilitate various

performance levels at which these systems can carry out their operations. Lisnianski

et al. (2000), solves structured optimisation of MSS in reference to time redundancy

using a GA based strategy. Another strategy, combined with GA, is also used to

solve survivability optimisation by Levitin & Lisnianski (2001) in a series-parallel

system with a constraint on separation cost for separating the elements of the system.

Levitin (2007) also provide a comprehensive list of all GA based publication in the

filed of reliability on his website.

An interesting recent development in the application of GAs is the combination of

these algorithms with other optimisation methods (heuristics) for producing even

more powerful search techniques. These are referred as hybrid GAs and are generally

combined with some local search methods in order to improve both solution quality

and computational efficiency while preserving the major properties of classical GA

such as robustness and feasibility. The optimisation algorithm produced in this

research also designed on the same platform, which combines the exploration

capabilities of genetic search with exploiting hill climbing procedures in order to

resolve the optimisation problem presented in this thesis. Among various

publications, the Hsieh and Hsieh (2003) use GA with steepest decent method to

optimise system cost during the period of task execution for a cycle-free computer

distribution system. Using hybrid GA, Hsieh (2003) also solves similar optimisation

problem based on the constraints on the hardware redundancy level. By

Chapter No. 4 Genetic Algorithms

4-27

incorporating neural networks, fuzzy logic and local search with classical GA, Lee et

al. (2001, 2002a, 2002b), show the reliability design optimisation which

considerably improves the computational time.

An excellent resource for the review of reliability optimisation with the view of

genetic algorithms can be found in the two books published by Gen and Cheng in

1997 and 2000. Their work described many GA approaches for solving reliability

design problems in the areas such as network reliability design, tree-based network

reliability design, bi-criteria reliability design (multi-objective optimisation) of

redundant system formulated as nonlinear integer programming problems and

problems with fuzzy goals. Most of these problems with constraints on reliability can

be applied in the fields of telecommunications and computer networking along with

other important networks such as gas, power and sewer networks. Additional

resources detailing the application of genetic algorithms in the field of reliability

optimisation include Kuo et al. (2001), Smith (2006), Kuo & Wan (2007), Ken &

Kim (1999) and an outstanding list of all GA based publication in the field of

reliability by Levitin (2007).

Chapter No. 5 Optimisation Algorithm

5-1

OPTIMISATION
ALGORITHM
(THE RESEARCH METHODOLOGY)

This chapter details the proposed optimisation algorithm (OA) used as the research

methodology for optimising engineering systems using the risk-based reliability

allocation approach. The algorithm is a member of a class of evolutionary algorithms

and is specific to the reliability optimisation problems examined in this research. The

OA employs a different model of evolution compared to classical GA in order to ensure

quick and efficient convergence to an optimal or near optimal solution. The chapter

details the optimisation algorithm, its main features and finally the process diagram

detailing the full cycle of operation.

Chapter No. 5 Optimisation Algorithm

5-2

5.1 INTRODUCTION

The optimisation algorithm (OA) presented in this chapter is used as the research

methodology for solving the risk based reliability allocation problem detailed in the

earlier chapters. The OA is yet another modified member of the class of evolutionary

algorithms and resembles the approach of ‘Memetic Algorithms’ or some ‘Hybrid

Genetic Algorithms’ for improving the local optimum (Chapter 4, Section 4). However,

the processes of solution improvement as well as the selection of the genotype

populations are significantly different in this methodology.

The optimisation algorithm combines the exploration abilities of genetic search with

skilful exploitation of hill climbing procedures and is specific to the reliability

optimisation problems considered in this research. In the context of solving these types

of reliability optimisation problems, the developed algorithm (OA) introduces a

different model of evolution compared to classical GA. The main features of this model

are the generation of populations with unique chromosomes, working exclusively with

the elite chromosomes and introducing genetic variations in the elite chromosomes

using prudently designed genetic operators for ensuring rapid and efficient convergence

to optimum or near optimum region of the search space. The two main reasons for

implementing these notions in the optimisation algorithm are detailed below:

5.1.1 Epistasis Phenomenon

The effect of the combined influence of the genes in a chromosome on the visible trait

of an organism is described by the ‘epistasis phenomenon’ (Chapter 3, Section 3). In

other words, epistasis portrays the impact of one or more genes on the appearance of a

particular property (or solution) which may not occur if the relevant genes are existed

separately. In evolutionary computation, epistasis can be interpreted to explain the very

complex and non-linear relationship between parameters. For example, the relationship

between cost and reliability is non-linear and very difficult to predict. While cost is

generally considered as the monotonically increasing function of reliability, there are

possibilities where increased reliability does not incur higher costs (non-monotonic) and

Chapter No. 5 Optimisation Algorithm

5-3

can also appear to have a discontinuous relationship – For example, a plain and simple

version of a particular component may be cheaper in cost yet it may offer greater

reliability compared to a version with the same or lower reliability having many extra

‘nice to have’ features hence making it more expensive. Another example can be

derived from the fiercely growing competition among retailers for dominating the

respective market by means of offering greater discounts and choice of alternatives for

many off-the-shelf products hence, attracting a large proportion of consumers. Thus,

given the availability, a product with identical or similar specifications may be

purchased at different costs from different retailers. While this may offer greater

flexibility in choosing from the available varieties of the same product, the actual

selection can be very challenging and cumbersome significantly for the reliability

optimisation problems of large scale complex systems because of the difficult to predict

overall effects of the selected product (or combination of these products) on the loss

function (introduced in the preceding chapters) due to the non-linear cost-reliability

relationship. An excellent survey of relationship is presented in Guikema and Pate-

Cornell (2002) and Majety et al. (1996). A comprehensive list of articles in the field of

warranty analysis by studying various cost-reliability models can be found in Pham

(2007).

5.1.2 Extremely Large Search Space

In the context of the optimisation problems examined in this research, the absolute

combination of components appears to closely dictate the optimal reliability allocation

process. For a large system with many choices of available alternatives for each

component, the possibility of reaching the optimum can be very difficult due to the

sheer size of the search space. Therefore, in order to converge to the optimal region of

the total search space, a guiding process exploring large search areas with efficient

exploitation of both feasible and infeasible solutions is pivotal. This concept is

implemented in the OA by continuously loading the genotype population with unique,

non-duplicating chromosomes in each iteration of the algorithm and retaining only the

two best solutions from each generation (elitist selection). Working with the two best

Chapter No. 5 Optimisation Algorithm

5-4

solutions along with a unique selection of non-duplicated chromosomes in each

generation, introduces increased diversity in the search space. This weakens the

possibilities of premature convergence and increases the performance of the computer

program at the same time (because of running a smaller number of generations).

For the reasons described above, it is extremely difficult to minimise the loss function in

the absence of any obvious correlation between cost and reliability particularly when

cost is not considered as a monotonically increasing function of reliability; any

combination of components from the infinitely large search space will have equal

probability of producing the optimum solution and will subsequently require an

enumerative search method for exhausting all combinations. The latter is, however,

impractical for systems with a large choice of components and respective alternatives.

For example, a system consisting of ‘ M ’ components with ‘ N ’ alternatives each, as

represented in Fig. 5.1, there will exist ‘ MN ’ combination of components.

1,11,1 , C 2,12,1 , C 3,13,1 , C 4,14,1 , C NN C ,1,1 ,

1,21,2 , C 2,22,2 , C 3,23,2 , C 4,24,2 , C NN C ,2,2 ,

1,31,3 , C 2,32,3 , C 3,33,3 , C 4,34,3 , C NN C ,3,3 ,

1,41,4 , C 2,42,4 , C 3,43,4 , C 4,44,4 , C NN C ,4,4 ,

.......

.......

......

......

......

.......

1,1, , MM C 2,2, , MM C 3,3, , MM C 4,4, , MM C NMNM C ,, ,

Figure 5.1 A System Consisting of M Components With N Alternatives Each

Chapter No. 5 Optimisation Algorithm

5-5

If each row of the table in Fig 5.1, is considered as a surface defined by an individual

component of the system, then the surface can be divided into many co-ordinates

representing individual values of cost with a corresponding value for reliability – see

Fig. 5.2.

For the purpose of representing all available alternatives of a given component (i.e.

‘ thi ’ row of the table from Fig. 5.1), the coordinates of the component surface can,

therefore, be populated in accordance with the individual value of the cost and

reliability of the ‘ thj ’ alternative. If the cost of the alternatives is monotonically

Figure 5.2 Component Surface Showing Coordinates of Cost and Reliability

Individual
coordinates

Chapter No. 5 Optimisation Algorithm

5-6

increasing with the reliability, then the surface of the component can be populated using

the pattern shown in Fig. 5.3.

On the other hand, if the cost-reliability relationship is not monotonically increasing

among the alternatives of the component, then the plotting of the component surface

will show a pattern similar to the one demonstrated in Fig 5.4.

Figure 5.3 Surface of the ‘ thi ’Component with ‘ N ’Alternatives Showing

Monotonically Increasing Cost-Reliability Relationship

1,i

2,i

ji,

3,i
4,i

 1,1, , ii C

 4,4, , ii C

 jiji C ,, ,

Chapter No. 5 Optimisation Algorithm

5-7

Using the concept of a multi-coordinated surface for representing the ‘ thi ’ individual

component with ‘ N ’ available alternatives, the search for an optimal combination of

‘ M ’ components from the system (shown in Fig. 5.1) which defines the best

(minimum) value of the loss function, can be understood as finding an optimal point in

the search space comprising of ‘ M ’ coordinates where each coordinate is selected from

the ‘ thj ’ coordinate of the ‘ thi ’ component surface. This process is depicted in Fig. 5.5

Figure 5.4. Surface of the ‘
thi ’Component with ‘ N ’Alternatives Showing Non-

Monotonically Increasing Cost-Reliability Relationship

1,i

3,i
2,i

4,i

ji,

 1,1, , ii C

 3,3, , ii C

 jiji C ,, ,

Chapter No. 5 Optimisation Algorithm

5-8

for ‘ M ’ component surfaces each showing monotonically increasing cost-reliability

relationship in the given choice of alternatives.

In order to effectively search the solution space particularly for a complex reliability

optimisation problem involving a large number of components with an even larger

number of alternatives for each component, an effective strategy for dealing with the

non-linear relationship between cost and reliability is de rigueur. This may involve

cleverly examining a large number of components combinations for feasibility without

wasting too much computational effort in exploring infeasible solutions and at the same

time, exploiting good solutions (e.g. local optimum) in the hope of transforming them

into even better solutions. This approach is developed in the research methodology by

introducing two ‘improvement procedures’ (section 5.3.5), each demonstrating the

capability of efficiently testing a large number of samples with a good mixture of

component combinations. The mixing process is carried out by means of skilfully

structured crossover and mutation operations and using a uniform random number

generator. These operations are detailed in sections 5.3.5.1.1 and 5.3.5.1.2, respectively.

For clarification, the reason for referring to the research methodology as an

‘optimisation algorithm’ or as an ‘evolutionary algorithm’ instead of ‘Hybrid GA’ or

‘Memetic Algorithm’ is because the population in the optimisation algorithm is not

subject to any probabilistic alteration imposed by any of the genetic operators for

mating and selection. In other words, there are no parameters such as crossover

probability or mutation probability. Even the selection and maintenance of the

populations, in each iteration of the algorithm, is not probabilistic as in the conventional

GA, where the common approach is to use a roulette wheel strategy (see Chapter 3 & 4

for more details). Additionally, while retaining the benefits of the crossover operation

(e.g. Falkenauer, 1998), extra emphasis is wielded on the mutation operation which is

applied more frequently than crossover, unlike in the classical GA where it is usually

applied to a very small proportion of the individuals in the population (i.e. low mutation

probability).

Chapter No. 5 Optimisation Algorithm

5-9

Individual component

surfaces with ‘N’

alternatives showing

monotonically

increasing cost with

reliability

System configuration
Domain

jN ,1
....
....

3,1
2,1
1,11Component

2Component

3Component

jMComponent 

Loss Function

Points in the search space

representing the values of the

loss function. The coordinates of

a single point contains one

element from each of the M

component surfaces

Figure 5.5 System Configuration Domain With Choice of M Components, Represented As Surfaces. Also Shown Are

the Points In the Search Space Representing The Values of The Loss Function With Coordinates Located In Each of

the M Component Surfaces.

Cost

Chapter No. 5 Optimisation Algorithm

5-10

5.2 THE OPTIMISATION ALGORITHM

The framework of the optimisation algorithm along with the improvement procedures is

shown in Fig.6.6, below.

FRAMEWORK OF THE OPTIMISATION ALGORITHM

(1) i := 0;

(2) Initialize ip [sizep] ;

(3) Evaluate all individuals, sizep ;

(4) Store two best individuals),(21  & destroy)2(sizep individuals from ip ;

(5) While (termination criterion not satisfied) do

a. Apply crossover on two individuals),(21  in ip ;

b. Evaluate new individuals as a result of (6)

c. Store the two best individuals),(21 

d. Improve feasibility by using IMPROVE_1),(21  process

e. Store two best individuals),(21 

f. Apply mutation operator on the best individual, 1

g. Improve feasibility using IMPROVE_2)(1 process

h. Store the two best individuals),(21  ;

i. i := i + 1;

j. ip [sizep] :=]),([
121 


ipsizei pp  ;

k. GO TO step (3);

(6) End;

Figure 5.6 Optimisation Algorithm

Chapter No. 5 Optimisation Algorithm

5-11

Where,

kp = Population Number,),......2,1(RUNpk 

RUNp = Total number of populations

sizep = Size of the population

1 = Optimal solution

2 = Near optimal solution

RUNC = Total number of crossover runs

RUNM = Total number of mutation runs

)(1_IMPROVE = Improvement function for crossover operation

)(2_IMPROVE = Improvement function for mutation operation

5.3 FEATURES OF THE OPTIMISATION

ALGORITHM

The objective of this research is to solve complex systems consisting of ‘ M ’

components with ‘ N ’ alternatives each, by using the risk-based reliability allocation

method, detailed in the first chapter. The alternatives have different reliabilities and

costs hence resulting in difficult combinatorial optimisation problem. For a given

system, the problem reduces to selecting M optimal (*) alternatives from each row of

the reliability matrix,),...,,(,2,21,1


NM with corresponding cost values,

),...,,(,2,21,1


NMCCC from the cost matrix, such that the total loss function,

‘ LT ’ is minimised. The reliability and cost matrices along with the loss function ‘ LT ’

have already been defined explicitly in the earlier chapters. However, a brief overview

of these is shown in the equations below, since this will be used in explaining the key

concepts of the proposed optimisation algorithms (OA) such as chromosome encoding,

crossover operation and mutation operation.

Chapter No. 5 Optimisation Algorithm

5-12





























MNMMM

N

N

N









,,,
......
......

,,,
,,,
,,,

...............321

3..........333231

2..........232221

1...........131211

(5. 1)





























MNMMM

N

N

N

CCCC

CCCC
CCCC
CCCC

C

,,,
......
......

,,,
,,,
,,,

...............321

3...........333231

2..........232221

1...........131211

(5. 2)

1 ,1 2 , 2 ,1 (, , . . . ,)
M

L i s M N
i

T M in c R C            
 (5. 3)

5.3.1 Structure of the Chromosome

Traditionally, chromosomes have been coded as binary strings (Goldberg, 1989) but for

combinatorial optimisation problems, an encoding using integer values can be more

efficient (Holland, 1975; Spall 2003). The optimisation algorithm therefore uses the

same approach of representing the chromosomes with a real number encoding method

as introduced in section 3 of the previous chapter. The general structure of the

chromosome in this algorithm therefore consists of a string containing ‘ M ’ loci for

genes (equal to the total number of components) with ‘ N ’ alleles representing the

integer value up to the available number of alternatives, for corresponding genes

(component). The value (allele) of each component (gene) in the encoding mechanism

is filled randomly by using a uniformly distributed random numbers generator and in

Chapter No. 5 Optimisation Algorithm

5-13

General structure of chromosome with M components and N alternatives each

Locus 1 2 3 4 5 . . M
Allele j,1 j,2 j,3 j,4 j,5 . . NM ,

Mapping of the general chromosome to the respective domains of reliability & cost

Locus 1 2 3 4 5 . . M
Allele-Rel j,1 j,2 j,3 j,4 j,5 . . NM ,

),,(,3,2,1, NMiii  

Locus 1 2 3 4 5 . . M
Allele-Cost jC ,1 jC ,2 jC ,3 jC ,4 jC ,5 . . NMC ,

),,(,3,2,1, NMiii CCCC  Nj
Mi

,...2,1
,....2,1




Figure 5.7 Chromosome Structure and Domain Mapping

accordance with the parameters ‘ M ’ and ‘ N ’. The general structure of the

chromosome can be further explained in terms of the real number values of the

randomly selected alternatives by mapping the alleles to the domain of reliability and

cost, depicted in equation 5.1 and equation 5.2. This process is shown in the Fig. 5.7,

where two subsets of the general chromosomes are decoded in terms of the

corresponding values of reliability and associated cost from the encoded genotype.

Chapter No. 5 Optimisation Algorithm

5-14

Using the general structure of the chromosome defined above, an example system

consisting of eight components with six alternatives is shown in Fig.5.8.

Each position in the chromosome string above represents the selected alternative of the

corresponding component. Thus, at locus one, the allele of the gene is one which

represents the first alternative of the first component. Similarly, at locus two, the gene

represents the fourth alternative for the second component and so on.

5.3.2 Population Structure

The initial population, ‘ 0p ’ is constructed randomly with unique ‘ sizep ’ number of

genotypes (chromosomes) selected for genetic search. Although the chromosomes are

selected randomly, it is ensured that only unique chromosomes are part of the

General structure of chromosome with M=8 and N=6

Locus 1 2 3 4 5 6 7 8
Allele 1 4 1 6 3 5 2 4

Mapping of the general chromosome to the respective domains of reliability & cost

Locus 1 2 3 4 5 6 7 8
Allele 1,1 4,2 1,3 6,4 3,5 5,6 2,7 4,8

Locus 1 2 3 4 5 6 7 8
Allele 1,1C 4,2C 1,3C 6,4C 3,5C 5,6C 2,7C 4,8C

Figure 5.8 Example Chromosome With Real Value Mapping of Cost and Reliability

Chapter No. 5 Optimisation Algorithm

5-15

population and no duplicates are chosen. This introduces greater diversity in the search

mechanism of the algorithm by sampling more potential solutions. This feature of the

OA also eliminates the possibilities of examining the same individual chromosome

multiple numbers of times, which saves the extra computational efforts of the algorithm.

Once the population is formed, each member of the population is evaluated for the

feasible solution of the phenotype using the objective function (for example, equation

5.3). Only the two best (elite) chromosomes,)&(21  with minimum values of the

loss function, ‘ cT ’, are stored from the whole population. These two elite chromosomes

are ordered according to the lowest value of the loss cost function (if being minimised)

such that)(21   . This method of selection is similar to tournament selection

sampling approach (Goldberg et al., 1989), discussed in chapter four.

The two elite chromosomes are automatically selected as the parents for undergoing the

genetic operations (explained in the next sections). These chromosomes also represent

the local optimum (Chapter 3) and local sub-optimum solutions, respectively. This is a

good enough reason for justifying their selection as the parents for breeding in the next

population and allowing them to contribute their genetic information with the hope of

producing progeny with an even better fitness value of the objective function. If no

better solutions are found after these genetic operations and termination criteria is not

reached, the same pair of the elite chromosomes is injected in the next population for

competing with the new group of potential solutions. On the other hand, if better

versions of these parents are formed as a result of the genetic operations, the offspring

instantly replace the parents with the view of the respective fitness level and enter the

next population for competing once again. For example, if a new chromosome is not as

good as the first parent, ‘ 1 ’ but better than the second parent ‘ 2 ’, it instantly replaces

the second parent.

5.3.3 Crossover Operation

The essence of the crossover operation is similar to what has previously been explained

in the preceding chapters. However, in this optimisation algorithm, the format of this

Chapter No. 5 Optimisation Algorithm

5-16

operation is considerably different. Detailing this, there are three different stages in

which the crossover operation is applied on the parent individuals. Each of these stages

is explained below:

5.3.3.1 First Stage Crossover Operation (FSCO)
The first stage crossover operation proceeds by initially selecting a crossover site (locus

of the gene) using a uniform random number generator between ‘1 ’ and ‘ M ’, where

M is the length of the chromosome string, representing the total number of genes

(components) in the solution string. The same crossover site is used for both parents and

the FSCO continues by swapping the alleles of the genes (components) from the two

parent chromosome, at the randomly selected crossover site. This process produces two

new offspring and the genes from the parent chromosomes are inherited in the new

chromosomes. The structure of the chromosome along with the domain of its reliability

and cost values used in operation is already shown in Fig. 5.7 above. The first stage

crossover process is demonstrated in Fig.5.9 where the genes of the two best

chromosomes)&(21  , also in different colour coding, are exchanged at a random

crossover site, using an example reliability system with eight components (8M)

with six alternatives each (6N), see Fig. 5.8. The position of the locus selected in the

FSCO example, shows the crossover site to be the fifth gene or the fifth component of

the reliability system in consideration (Fig. 5.9). After the completion of the first stage

crossover operation, the figure details the two offspring showing the structure of the

inherited genes from the two parents; the colour coding scheme embellishes the

contributions of the parent genes. The alleles exchanged at the random crossover point,

‘ ̂ ’ are represented by the symbols, ‘ k

ji


 ,

̂ ’ and ‘ k

jiC



,
̂ ’ for the respective reliability

and cost values from the ‘ thk ’ parent, with ‘ thi ’ component (gene) and ‘ thj ’

alternative (allele), where ‘ }2,1{k ’, depending on either of the two parents.

The progeny resulting from the first stage crossover operation is evaluated for the level

of their fitness with respect to the objective function. If the fitness of either or both of

the new chromosomes is better than the two parents, the two elite chromosomes

‘),(21  ’ are updated accordingly and consequently, advance to the second stage of the

Chapter No. 5 Optimisation Algorithm

5-17

crossover operation. All other individuals are discarded. The crossover only swaps

alleles of the selected gene from the two parents instead of exchanging the values of all

genes either sides of the crossover point as seen in the conventional evolutionary

algorithms (e.g. GA). Selecting only one gene at a time for crossover reduces the risk of

loosing the good solution given the complex, nonlinear relationship between cost &

reliability and the high epistasis, which is generally found among the respective genes.

The risk would have been higher if all alleles either sides of the crossover point were

swapped simultaneously.

Before First Stage Crossover (M=8, N=6)

Parent One, 1
Locus 1 2 3 4 5 6 7 8
Allele-Rel j,1 j,2 j,3 j,4 j,5 j,6 j,7 j,8

Allele-Cost jC ,1 jC ,2 jC ,3 jC ,4 jC ,5 jC ,6 jC ,7 6,8C

Parent Two, 2
Locus 1 2 3 4 5 6 7 8
Allele-Rel j,1 j,2 j,3 j,4 j,5 j,6 j,7 j,8

Allele-Cost jC ,1 jC ,2 jC ,3 jC ,4 jC ,5 jC ,6 jC ,7 6,8C

After First Stage Crossover
Offspring One
Locus 1 2 3 4 5 6 7 8
Allele-Rel j,1 j,2 j,3 j,4 2

,5

ˆ 
 j

 j,6 j,7 j,8

Allele-Cost jC ,1 jC ,2 jC ,3 jC ,4 2

,5

ˆ 
jC

 jC ,6 jC ,7 6,8C

Offspring Two
Locus 1 2 3 4 5 6 7 8
Allele-Rel j,1 j,2 j,3 j,4 1

,5

ˆ 
 j

 j,6 j,7 j,8

Allele-Cost jC ,1 jC ,2 jC ,3 jC ,4 1

,5

ˆ 
jC

 jC ,6 jC ,7 6,8C

Figure 5.9 First Stage Crossover Operation

Random
Crossover site

Chapter No. 5 Optimisation Algorithm

5-18

5.3.3.2 Second Stage Crossover Operation (SSCO)
Similar to the FSCO, the second stage crossover operation carries on by selecting two

crossover sites (loci of the genes) using a uniform random number generator between

‘1 ’ and ‘ M ’, where M is the length of the chromosome string, representing the total

number of genes (components) in the solution string. The two crossover sites are

identical for both parents and the SSCO continues by swapping the alleles of the genes

(components) from the two parent chromosome at each of the two crossover sites. This

process produces two new offspring and the genes from the parent chromosomes are

inherited in the new chromosomes as shown in Fig.5.10. The figure shows the exchange

of the genes between the two best chromosomes)&(21  at two random crossover

sites by using the same example reliability system with eight components (8M) &

six alternatives each (6N) as in FSCO.

The positions of the locus selected in the figure 5.10, shows the crossover sites to be at

the third and the fifth genes. After the completion of the second stage crossover

operation, the figure details the two offspring showing the structure of the inherited

genes from the two parents. The alleles exchanged at each random crossover point,

‘ ̂ ’, are represented by the symbols, ‘ k

ji


 ,

̂ ’ and ‘ k

jiC



,
̂ ’ for the respective reliability

and cost values from the ‘ thk ’ parent, with ‘ thi ’ component (gene) and ‘ thj ’

alternative (allele), where ‘ }2,1{k ’, depending on either of the two parents. The

progeny resulting from this operation is evaluated for the level of their fitness with

respect to the given objective function. If the fitness of either or both of the new

chromosomes is better than the two parents, the two elite chromosomes ‘),(21  ’ are

updated accordingly and progress to the third stage of the crossover operation. All other

individuals are discarded.

The main purpose of the two stage crossover operation is to gradually increase the

complexity of the FSCO by swapping only two alleles of the selected genes from the

two parents instead of exchanging the values of all genes either side of the crossover

points as seen in the conventional evolutionary algorithms. Selecting two genes at a

time in the crossover process carefully introduces the variations in the elite solutions

Chapter No. 5 Optimisation Algorithm

5-19

while lowering the risk of loosing the good solution because of the nonlinear

relationship between cost & reliability and the high epistasis. Understandably, the risk

will be higher if all alleles either side of the crossover points are swapped concurrently.

Before Second Stage Crossover (M=8, N=6)

Parent One, 1
Locus 1 2 3 4 5 6 7 8
Allele-Rel j,1 j,2 j,3 j,4 j,5 j,6 j,7 j,8

Allele-Cost jC ,1 jC ,2 jC ,3 jC ,4 jC ,5 jC ,6 jC ,7 6,8C

Parent Two, 2
Locus 1 2 3 4 5 6 7 8
Allele-Rel j,1 j,2 j,3 j,4 j,5 j,6 j,7 j,8

Allele-Cost jC ,1 jC ,2 jC ,3 jC ,4 jC ,5 jC ,6 jC ,7 6,8C

After Second Stage Crossover
Offspring One
Locus 1 2 3 4 5 6 7 8
Allele-Rel j,1 j,2 2

,3

ˆ 
 j

 j,4 2

,5

ˆ 
 j

 j,6 j,7 j,8

Allele-Cost jC ,1 jC ,2 2

,3

ˆ 
jC

 jC ,4 2

,5

ˆ 
jC

 jC ,6 jC ,7 6,8C

Offspring Two
Locus 1 2 3 4 5 6 7 8
Allele-Rel j,1 j,2 1

,3

ˆ 
 j

 j,4 1

,5

ˆ 
 j

 j,6 j,7 j,8

Allele-Cost jC ,1 jC ,2 1

,3

ˆ 
jC

 jC ,4 1

,5

ˆ 
jC

 jC ,6 jC ,7 6,8C

Figure 5.10 Second Stage Crossover Operation

Random
Crossover sites

Chapter No. 5 Optimisation Algorithm

5-20

5.3.3.3 Third Stage Crossover Operation (TSCO)
The TSCO is the final stage of the crossover operation in which the crossover operation

selects three random crossover sites by using a uniform random number generator

between ‘1 ’ and ‘ M ’, where M is the length of the chromosome string, representing

the total number of genes (components) in the solution string. The three crossover sites

are common for both parents and the TSCO progresses by swapping the alleles of the

genes (components) from the two parent chromosome at each of the three crossover

sites. This process produces two new offspring and the genes from the parent

chromosomes are inherited in the new chromosomes as shown in Fig.5.11. The figure

shows the exchange of the genes between the two best chromosomes)&(21  at three

random crossover sites by using the same example reliability system with eight

components (8M) & six alternatives each (6N) as in the previous section.

The random positions selected in the figure shows the crossover sites to be at the

second, third and the fifth genes of the chromosome string. After the end of the third

stage crossover operation, the figure also shows the two offspring displaying the

structure of the inherited genes from the two parents. The alleles exchanged at each

random crossover point, ‘ ̂ ’, are represented by the symbols, ‘ k

ji


 ,

̂ ’ and ‘ k

jiC



,
̂ ’ for

the respective reliability and cost values from the ‘ thk ’ parent, with ‘ thi ’ component

(gene) and ‘ thj ’ alternative (allele), where ‘ }2,1{k ’, depending on either of the two

parents. The progeny resulting from this operation is evaluated for the level of their

fitness with respect to the given objective function. If the fitness of either or both of the

new chromosomes is better than the two parents, the two elite chromosomes ‘),(21  ’

are updated accordingly. The best of the two elite chromosomes, ‘ 1 ’, is then selected to

undergo mutation operation while ‘ 2 ’ is stored and updated accordingly. All other

individuals are discarded.

The objective of the three stage crossover operation is to continue with the steady

increase in the complexity of the SSCO by exchanging only three alleles of the selected

genes from the two parents. This way, the two elite solutions (parents) are prudently

Chapter No. 5 Optimisation Algorithm

5-21

examined without disrupting the combined effect of the genes (epistasis) which

constitute the good solution as a whole. Of course, achieving this objective will be very

difficult if the entire subset of the chromosome string from either side of the crossover

points is exchanged, causing bigger disruption in the gene structure.

Before Third Stage Crossover (M=8, N=6)

Parent One, 1
Locus 1 2 3 4 5 6 7 8
Allele-Rel j,1 j,2 j,3 j,4 j,5 j,6 j,7 j,8

Allele-Cost jC ,1 jC ,2 jC ,3 jC ,4 jC ,5 jC ,6 jC ,7 6,8C

Parent Two, 2
Locus 1 2 3 4 5 6 7 8
Allele-Rel j,1 j,2 j,3 j,4 j,5 j,6 j,7 j,8

Allele-Cost jC ,1 jC ,2 jC ,3 jC ,4 jC ,5 jC ,6 jC ,7 6,8C

After Third Stage Crossover
Offspring One
Locus 1 2 3 4 5 6 7 8
Allele-Rel j,1 2

,2

ˆ 
 j

 2

,3

ˆ 
 j

 j,4 2

,5

ˆ 
 j

 j,6 j,7 j,8

Allele-Cost jC ,1 2

,2

ˆ 
jC

 2

,3

ˆ 
jC

 jC ,4 2

,5

ˆ 
jC

 jC ,6 jC ,7 6,8C

Offspring Two
Locus 1 2 3 4 5 6 7 8
Allele-Rel j,1 1

,2

ˆ 
 j

 1

,3

ˆ 
 j

 j,4 1

,5

ˆ 
 j

 j,6 j,7 j,8

Allele-Cost jC ,1 1

,2

ˆ 
jC

 1

,3

ˆ 
jC

 jC ,4 1

,5

ˆ 
jC

 jC ,6 jC ,7 6,8C

Figure 5.11 Third Stage Crossover Operation

Random
Crossover sites

Chapter No. 5 Optimisation Algorithm

5-22

5.3.3.4 Numerical Example
The crossover stages defined above can be shown by a numerical example. For a

reliability system consisting of eight components (8M) & six alternatives each

(6N), as in the previous section, lets assume the cost and reliability data as defined

in equation (5.4) and equation (5.5).



































95.090.080.070.065.050.0
95.090.080.075.060.055.0
95.090.080.075.060.055.0
95.090.085.070.065.055.0
95.090.085.070.060.050.0
95.090.080.075.065.050.0
95.090.080.075.06.050.0
95.090.080.070.060.050.0

 (5. 4)



































1115890300270200100
1100750300300100115
1000690400305215100
775650385310210105
850750400300200100
950800405310205110

1100650400300250100
1000700400300200100

C (5. 5)

Using the chromosome structure as depicted in Fig. 5.3, lets imagine the two best
chromosomes ‘),(21  ’ are:

Chromosome ‘ 1 ’:

Locus 1 2 3 4 5 6 7 8
Allele 1 4 1 6 3 5 2 4

Chapter No. 5 Optimisation Algorithm

5-23

Chromosome ‘ 2 ’:

Locus 1 2 3 4 5 6 7 8
Allele 2 6 3 2 4 1 5 6

The mapping of the two best chromosomes to the respective domains of reliability &
cost can be carried out by using equations (5.4) and (5.5).

Chromosome ‘ 1 ’:

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.5 0.8 0.5 0.95 0.7 0.9 0.6 0.8
Allele-Cost 100 400 110 850 310 690 100 300

Chromosome ‘ 2 ’:

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.6 0.95 0.75 0.6 0.85 0.55 0.9 0.95
Allele-Cost 200 1100 310 200 385 100 750 1115

Having ascertained the two best chromosomes, they can be selected as parents for

undergoing all three stages of the crossover operations. The steps of these processes are

shown below:

First Stage Crossover Operation

If random crossover site = 3, then,

Chromosome ‘ 1 ’:

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.5 0.8 0.5 0.95 0.7 0.9 0.6 0.8
Allele-Cost 100 400 110 850 310 690 100 300

Chromosome ‘ 2 ’:

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.6 0.95 0.75 0.6 0.85 0.55 0.9 0.95
Allele-Cost 200 1100 310 200 385 100 750 1115

Chapter No. 5 Optimisation Algorithm

5-24

The new offspring chromosomes produced in the first stage mutation operation will be,

Chromosome ‘ 1 ’:

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.5 0.8 0.75 0.95 0.7 0.9 0.6 0.8
Allele-Cost 100 400 310 850 310 690 100 300

Chromosome ‘ 2 ’:

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.6 0.95 0.5 0.6 0.85 0.55 0.9 0.95
Allele-Cost 200 1100 110 200 385 100 750 1115

Second Stage Crossover Operation

If random crossover sites = 2 and 6, then,

Chromosome ‘ 1 ’:

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.5 0.8 0.5 0.95 0.7 0.9 0.6 0.8
Allele-Cost 100 400 110 850 310 690 100 300

Chromosome ‘ 2 ’:

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.6 0.95 0.75 0.6 0.85 0.55 0.9 0.95
Allele-Cost 200 1100 310 200 385 100 750 1115

The new offspring chromosomes produced in the first stage mutation operation will be,

Chapter No. 5 Optimisation Algorithm

5-25

Chromosome ‘ 1 ’:

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.5 0.95 0.5 0.95 0.7 0.55 0.6 0.8
Allele-Cost 100 1100 110 850 310 100 100 300

Chromosome ‘ 2 ’:

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.6 0.8 0.75 0.6 0.85 0.9 0.9 0.95
Allele-Cost 200 400 310 200 385 690 750 1115

Third Stage Crossover Operation

If random crossover sites = 4, 7 and 8, then,

Chromosome ‘ 1 ’:

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.5 0.8 0.5 0.95 0.7 0.9 0.6 0.8
Allele-Cost 100 400 110 850 310 690 100 300

Chromosome ‘ 2 ’:

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.6 0.95 0.75 0.6 0.85 0.55 0.9 0.95
Allele-Cost 200 1100 310 200 385 100 750 1115

The new offspring chromosomes produced in the first stage mutation operation will be,

Chapter No. 5 Optimisation Algorithm

5-26

Chromosome ‘ 1 ’:

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.5 0.8 0.5 0.6 0.7 0.9 0.9 0.95
Allele-Cost 100 400 110 200 310 690 750 1115

Chromosome ‘ 2 ’:

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.6 0.95 0.75 0.95 0.85 0.55 0.6 0.8
Allele-Cost 200 1100 310 850 385 100 100 300

5.3.4 Mutation Operation

The best found local optimum solution ‘ 1 ’ from the previous step of the algorithm is

selected exclusively to undergo the mutation operation. The sub-optimum solution,

‘ 2 ’, on the other hand, is only updated if the new variations of the ‘ 1 ’ are better than

the current values of the ‘ 2 ’. Like crossover operation, the fundamental nature of the

mutation operation is similar to what has previously been explained in the context of

evolutionary algorithms. However, in this optimisation algorithm, the configuration of

this operation is considerably different. Detailing this, there are three different stages in

which the mutation operation is applied on the best found solution, ‘ 1 ’ such that the

number of genes undergoing the mutation process are increased gradually in each stage.

This process is similar to the crossover process and indeed employed for the same

reasons as explained previously. All three stages of mutation are described below:

5.3.4.1 First Stage Mutation Operation (FSMO)
The first stage mutation operation is carried out by initially selecting a mutation site

(locus of the gene) by means of a uniform random number generator between ‘1 ’ and

‘ M ’, where M is the length of the chromosome string, representing the total number

of genes (components) in the solution string. Having established the gene (component)

Chapter No. 5 Optimisation Algorithm

5-27

location in the chromosome string, the allele is varied by replacing the current value of

this gene with the ‘ thj ’ alternative from the given choice of ‘ N ’ alternatives for the

selected component. The selection of the ‘ thj ’ alternative is performed by using a

uniform random number generator between ‘1 ’ and ‘ N ’, where ‘ N ’ is the total

number of available alternatives for a particular component, ‘ i ’ as defined in equations

5.1 and 5.2 above.

The first stage mutation operation along with the structure of the chromosome and the

domain of its reliability and cost values are demonstrated in Fig.5.12. As can be seen in

the figure, the gene value of the best chromosomes‘ 1 ’, is altered at a randomly selected

mutation site, using an example reliability system with eight components (8M) with

six alternatives each (6N), see Fig. 5.8. The position of the locus selected in the

FSMO example, shows the mutation site to be the fifth gene or the fifth component of

the reliability system in consideration. After the completion of the first stage mutation

operation, the figure reveals the new offspring with details of the inherited genes from

its parent chromosome.

In general, the alleles which are exchanged at the random mutation point, ‘ M


’ are

represented by the symbols, ‘ k

ji
M 

 ,


’ and ‘ k

jiC
M 

,


’ for the respective reliability and cost

values from the ‘ thk ’ parent, with ‘ thi ’ component (gene) and ‘ thj ’ alternative

(allele), where ‘ 1k ’, since only the best of the two elite solutions is selected to

endure the mutation operation..

The mutation operation is applied in the hope of creating a new offspring with better

fitness than the current best solutions, ‘),(21  ’ with particular emphasis on ‘ 1 ’. If the

new chromosome is better in fitness than either ‘ 1 ’ or ‘ 2 ’, it instantly replaces them

in accordance with the respective fitness levels. Otherwise, it is discarded for being a

poor solution. At the end of the first stage mutation operation, the current best solution

‘ 1 ’ is deemed as the local optimum and considered for the second stage of the mutation

operation; details of this process is explained in the next section.

Chapter No. 5 Optimisation Algorithm

5-28

Chromosome with M components and N alternatives each

Locus 1 2 3 4 5 . . M
Allele-Rel j,1 j,2 j,3 j,4 j,5 . . NM ,

),,(,3,2,1, NMiii  

Locus 1 2 3 4 5 . . M
Allele-Cost jC ,1 jC ,2 jC ,3 jC ,4 jC ,5 . . NMC ,

),,(,3,2,1, NMiii CCCC  Nj
Mi

,...2,1
,....2,1




First Stage Mutation Operation

Before Mutation

Locus 1 2 3 4 5 6 7M
Allele j,1 j,2 j,3 j,4 j,5 j,6 j,7 NM ,

Allele jC ,1 jC ,2 jC ,3 jC ,4 jC ,5 jC ,6 jC ,7 NMC ,

After Mutation

Locus 1 2 3 4 5 6 7M
Allele j,1 j,2 j,3 j,4 k

j
M 

 ,5


j,6 j,7 NM ,

Allele jC ,1 jC ,2 jC ,3 jC ,4 k

jC
M 

,5


jC ,6 jC ,7 NMC ,

Example: For M = 8 & N = 6

Before Mutation

Locus 1 2 3 4 5 6 7 8
Allele 4 1 6 2 3 6 2 5

After Mutation

Locus 1 2 3 4 5 6 7 8
Allele 4 1 6 2 1 6 2 5

Figure 5.12 First Stage Mutation Operation

Random
Mutation
Site

Random
Mutation
Site

Chapter No. 5 Optimisation Algorithm

5-29

5.3.4.2 Second Stage Mutation Operation (SSMO)
In the second stage mutation operation, two mutation sites (loci of the genes) are

selected by using a uniform random number generator between ‘1 ’ and ‘ M ’, where

M is the length of the chromosome string, representing the total number of genes

(components) in the solution string. Having selected the two genes (components)

locations for performing the mutation operation in the chromosome string, the alleles of

‘ 1 ’ are varied by replacing the current values of the selected genes with the ‘ thj ’

alternatives from the given choice of ‘ N ’ alternatives for the respective components.

The selection of the ‘ thj ’ alternative is performed by using a uniform random number

generator between ‘1 ’ and ‘ N ’, where ‘ N ’ is the total number of available alternatives

for a particular component ‘ i ’, as defined in the equations 5.1 and 5.2. The process of

second stage mutation operation is shown in Fig. 5.13, by using the same chromosome

structure as highlighted previously in Fig. 5.12 above. If the new chromosomes

produced in the SSMS are weaker in fitness than either ‘ 1 ’ or ‘ 2 ’, they are

immediately discarded for being inadequate solutions. Otherwise, they replace either of

the two best solutions, depending on their fitness levels. At the end of the second stage

mutation operation, the current best solution ‘ 1 ’ is considered as the local optimum

and subsequently presented for the final stage of the mutation operation.

5.3.4.3 Third Stage Mutation Operation (TSMO)
In the third stage of the mutation operation, three mutation sites (loci of the genes) are

selected by using a uniform random number generator between ‘1 ’ and ‘ M ’, where

M is the length of the chromosome string, representing the total number of genes

(components) in the solution string. Having selected the three genes (components)

locations for performing the mutation operation in the chromosome string, the alleles of

the best chromosome, ‘ 1 ’, are varied by replacing the current values of the three

selected genes with the ‘ thj ’ alternatives from the given choice of ‘ N ’ alternatives for

the respective components. The selection of the ‘ thj ’ alternative is performed by using

a uniform random number generator between ‘1 ’ and ‘ N ’, where ‘ N ’ is the total

Chapter No. 5 Optimisation Algorithm

5-30

Second Stage Mutation Operation

Before Mutation

Locus 1 2 3 4 5 6 7M
Allele j,1 j,2 j,3 j,4 j,5 j,6 j,7 NM ,

Allele jC ,1 jC ,2 jC ,3 jC ,4 jC ,5 jC ,6 jC ,7 NMC ,

After Mutation

Locus 1 2 3 4 5 6 7M
Allele j,1 j,2 k

j
M 

 ,3


j,4 k

j
M 

 ,5


j,6 j,7 NM ,

Allele jC ,1 jC ,2 k

jC
M 

,3


jC ,4 k

jC
M 

,5


jC ,6 jC ,7 NMC ,

Example: For M = 8 & N = 6

Before Mutation

Locus 1 2 3 4 5 6 7 8
Allele 4 1 6 2 3 6 2 5

After Mutation

Locus 1 2 3 4 5 6 7 8
Allele 4 1 5 2 1 6 2 5

Figure 5.13 Second Stage Mutation Operation

number of available alternatives for a particular component ‘ i ’, as defined previously in

the equations 5.1 and 5.2. The process of third stage mutation operation is shown in Fig.

5.14. Similar to the previous stages of mutations, if the new chromosomes produced in

the TSMS are better in fitness than either ‘ 1 ’ or ‘ 2 ’, they immediately replace the

respective best solutions for being more promising solutions. Otherwise, these new

offspring are culled because of the weak fitness levels. At the end of this final stage of

the mutation operation, the current best solution ‘ 1 ’ is regarded as the local optimum

and subsequently presented as the best solution of the optimisation problem in hand, if

the termination criteria is reached.

Random Mutation Sites

Chapter No. 5 Optimisation Algorithm

5-31

Random Mutation Sites

Third Stage Mutation Operation

Before Mutation

Locus 1 2 3 4 5 6 7M
Allele j,1 j,2 j,3 j,4 j,5 j,6 j,7 NM ,

Allele jC ,1 jC ,2 jC ,3 jC ,4 jC ,5 jC ,6 jC ,7 NMC ,

After Mutation

Locus 1 2 3 4 5 6 7M
Allele j,1 j,2 k

j
M 

 ,3


j,4 k

j
M 

 ,5


j,6 k

j
M 

 ,7

 NM ,

Allele jC ,1 jC ,2 k

jC
M 

,3


jC ,4 k

jC
M 

,5


jC ,6 k

jC
M 

,7

 NMC ,

Example: For M = 8 & N = 6

Before Mutation

Locus 1 2 3 4 5 6 7 8
Allele 4 1 6 2 3 6 2 5

After Mutation

Locus 1 2 3 4 5 6 7 8
Allele 4 1 5 2 1 6 3 5

Figure 5.14 Third Stage Mutation Operation

Three Random
Mutation Sites

Three Random
Mutation Sites

Chapter No. 5 Optimisation Algorithm

5-32

5.3.4.4 Numerical Example
The mutation stages defined above can be shown by a numerical example, using the

same reliability system as used in section 5.3.3.4, which consists of eight components

(8M) & six alternatives each (6N). The cost and reliability data is defined in

equations (5.4) and (5.5), above.

First Stage Mutation Operation

From the chromosome structure as depicted in Fig. 5.7, let’s assume the best

chromosomes ‘ 1 ’ is given by:

Chromosome ‘ 1 ’:

Locus 1 2 3 4 5 6 7 8
Allele 4 1 6 2 3 6 2 5

The mapping of the best chromosome to the respective domains of reliability & cost can
be carried out using equations (5.4) and (5.5).

Chromosome ‘ 1 ’ (Decoded Value):

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.80 0.50 0.95 0.60 0.70 0.95 0.60 0.90
Allele-Cost 100 400 950 200 310 1000 100 890

If random mutation site = 5, then,

Chromosome ‘ 1 ’ before FSMO:

Locus 1 2 3 4 5 6 7 8
Allele 4 1 6 2 3 6 2 5

Chromosome ‘ 1 ’ after FSMO:

Locus 1 2 3 4 5 6 7 8
Allele 4 1 6 2 1 6 2 5

The mapping of the new chromosome to the respective domains of reliability & cost can
also be carried out using equations (5.4) and (5.5).

Chapter No. 5 Optimisation Algorithm

5-33

New Chromosome (Decoded Value):

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.80 0.50 0.95 0.60 0.55 0.95 0.60 0.90
Allele-Cost 100 400 950 200 105 1000 100 890

Second Stage Mutation Operation

Similar o the first stage, the second stage mutation can be demonstrated using the elitist

chromosome, ‘ 1 ’.

If random mutation site = 3 and 5, then,

Chromosome ‘ 1 ’ before SSMO:

Locus 1 2 3 4 5 6 7 8
Allele 4 1 6 2 3 6 2 5

Chromosome ‘ 1 ’ after SSMO:

Locus 1 2 3 4 5 6 7 8
Allele 4 1 5 2 1 6 2 5

Chromosome ‘ 1 ’ (Decoded Value):

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.80 0.50 0.95 0.60 0.70 0.95 0.60 0.90
Allele-Cost 100 100 950 200 310 1000 100 890

New Chromosome (Decoded Value):

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.80 0.50 0.90 0.60 0.55 0.95 0.60 0.90
Allele-Cost 100 100 800 200 105 1000 100 890

Third Stage Mutation Operation

Similarly, the third stage mutation operation can be demonstrated using the elitist

chromosome, ‘ 1 ’.

Chapter No. 5 Optimisation Algorithm

5-34

If random mutation site = 3, 5, and 7, then,

Chromosome ‘ 1 ’ before TSMO:

Locus 1 2 3 4 5 6 7 8
Allele 4 1 6 2 3 6 2 5

Chromosome ‘ 1 ’ after TSMO:

Locus 1 2 3 4 5 6 7 8
Allele 4 1 5 2 1 6 3 5

Chromosome ‘ 1 ’ (Decoded Value):

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.80 0.50 0.95 0.60 0.70 0.95 0.60 0.90
Allele-Cost 100 100 950 200 310 1000 100 890

New Chromosome (Decoded Value):

Locus 1 2 3 4 5 6 7 8
Allele-Rel 0.80 0.50 0.90 0.60 0.55 0.95 0.75 0.90
Allele-Cost 100 100 800 200 105 1000 300 890

5.3.5 Improvement Procedures

An ‘improvement process’ as mentioned in the framework of the optimisation algorithm

(Fig. 5.6), combines the exploration abilities of genetic search with hill-climbing

procedures and is introduced in the hope of further streamlining the fitness of the best

chromosomes,),(21  . Given the nature of the optimisation problem discussed in this

research and the complex relationship between cost and reliability (section 5.1), the

objective of the improvement function is to explore large search areas with skilful

exploitation of all feasible solutions. This involves testing large samples of component

combinations quickly and efficiently and at the same time, examining the local region

of the current best solution (local optimum) for possibly discovering an improved

version of this solution; for this reason, the improvement procedure can be considered

as the corner stone of the optimisation algorithm.

Chapter No. 5 Optimisation Algorithm

5-35

5.3.5.1 Types of Improvement Procedures
There are two types of improvement procedures implemented in the optimisation

algorithm, depending on the steps in which they are used in the algorithm. The first

instance of the procedure is introduced in step 5(a) of the algorithm and is called

‘)(1_IMPROVE ’ whereas, the second procedure is implemented in step 5(g) and is

called ‘)(2_IMPROVE ’. The details of the two procedures are described below.

5.3.5.1.1 First Improvement Procedure ()(1_IMPROVE)

This improvement procedure is applied after the first stage crossover operation as

defined in section 5.3.3.1 above and made up of the two additional crossover operations

(Fig. 5.15), which are defined in section 5.3.3.2 and 5.3.3.3, respectively.

The reason for designing additional stages of the crossover operation is to develop an

efficient technique for exploring the search space while exploiting the current two best

solutions. Thus, the paradigm of the first improvement procedure is to skilfully use the

genetic information of the current best solutions),(21  by introducing additional

FIRST IMPROVEMENT PROCEDURE

Second
Stage

Crossover
Operation

Third
Stage

Crossover
Operation

Figure 5.15 Structure of the First Improvement Procedure

Chapter No. 5 Optimisation Algorithm

5-36

crossover operations. These operations exhausts these solutions by randomly generating

multiple crossover points (loci of the genes) and producing progeny by swapping the

corresponding alleles of only the selected genes in the hope of finding even better

solutions. For a system consisting of eight components with six alternatives each, lets

imagine the two best solutions),(21  found in a particular iteration of the algorithm

are:

1- Optimum Solution (1)

1 2 3 4 5 6 7 8

4,14,1 , C 2,22,2 , C 4,34,3 , C 6,46,4 , C 4,54,5 , C 2,62,6 , C 4,74,7 , C 5,85,8 , C

1,11,1 , C 2,12,1 , C 3,13,1 , C 4,14,1 , C 5,15,1 , C 6,16,1 , C

1,21,2 , C 2,22,2 , C 3,23,2 , C 4,24,2 , C 5,25,2 , C 6,26,2 ,C

1,31,3 , C 2,32,3 , C 3,33,3 , C 4,34,3 , C 5,35,3 , C 6,36,3 , C

1,41,4 , C 2,42,4 , C 3,43,4 , C 4,44,4 , C 5,45,4 , C 6,46,4 , C

1,51,5 , C 2,52,5 , C 3,53,5 , C 4,54,5 , C 5,55,5 , C 6,56,5 , C

1,61,6 , C 2,62,6 , C 3,63,6 , C 4,64,6 , C 5,65,6 , C 6,66,6 , C

1,71,7 , C 2,72,7 , C 3,73,7 , C 4,74,7 , C 5,75,7 , C 5,75,7 , C

1,81,8 , C 2,82,8 , C 3,83,8 , C 4,84,8 , C 5,85,8 , C 5,85,8 , C

2- Optimum Solution (2)

1 2 3 4 5 6 7 8

1,11,1 , C 2,22,2 , C 4,34,3 , C 2,42,4 , C 1,51,5 , C 4,64,6 , C 1,71,7 , C 4,84,8 , C

1,11,1 , C 2,12,1 , C 3,13,1 , C 4,14,1 , C 5,15,1 , C 6,16,1 , C

1,21,2 , C 2,22,2 , C 3,23,2 , C 4,24,2 , C 5,25,2 , C 6,26,2 ,C

1,31,3 , C 2,32,3 , C 3,33,3 , C 4,34,3 , C 5,35,3 , C 6,36,3 , C

1,41,4 , C 2,42,4 , C 3,43,4 , C 4,44,4 , C 5,45,4 , C 6,46,4 , C

1,51,5 , C 2,52,5 , C 3,53,5 , C 4,54,5 , C 5,55,5 , C 6,56,5 , C

1,61,6 , C 2,62,6 , C 3,63,6 , C 4,64,6 , C 5,65,6 , C 6,66,6 , C

1,71,7 , C 2,72,7 , C 3,73,7 , C 4,74,7 , C 5,75,7 , C 5,75,7 , C

1,81,8 , C 2,82,8 , C 3,83,8 , C 4,84,8 , C 5,85,8 , C 5,85,8 , C

Chapter No. 5 Optimisation Algorithm

5-37

The improvement procedure exploits the two best chromosomes by gradually

interchanging the genes and steadily exploring the local search region of both of the

good solutions. Consequently, the algorithm is able to perform multi-directional search

while retaining the best solution in the population. The shaded area in the table below

represents the components which can be used to construct random combinations in each

iteration; combinations can have one component from every row of the matrix.

1,11,1 , C 2,12,1 , C 3,13,1 , C 4,14,1 , C 5,15,1 , C 6,16,1 , C

1,21,2 , C 2,22,2 , C 3,23,2 , C 4,24,2 , C 5,25,2 , C 6,26,2 ,C

1,31,3 , C 2,32,3 , C 3,33,3 , C 4,34,3 , C 5,35,3 , C 6,36,3 , C

1,41,4 , C 2,42,4 , C 3,43,4 , C 4,44,4 , C 5,45,4 , C 6,46,4 , C

1,51,5 , C 2,52,5 , C 3,53,5 , C 4,54,5 , C 5,55,5 , C 6,56,5 , C

1,61,6 , C 2,62,6 , C 3,63,6 , C 4,64,6 , C 5,65,6 , C 6,66,6 , C

1,71,7 , C 2,72,7 , C 3,73,7 , C 4,74,7 , C 5,75,7 , C 5,75,7 , C

1,81,8 , C 2,82,8 , C 3,83,8 , C 4,84,8 , C 5,85,8 , C 5,85,8 , C

Table 5.1. Domain of Reliability and Cost for A Sample System Showing Selected Number

of Components Which Can Be Used To Form Combinations Per Iteration in the First

Improvement Procedure

The improvement process is configured according to the complexity of the optimisation

problem. In the context of this research, the improvement function is configured to

perform at first, a two-stage crossover operation (selecting two random genes for

swapping alleles) and secondly, a three-stage crossover operation which selects three

random genes for swapping corresponding alleles in the two best fit chromosomes (Fig.

5.10 & Fig. 5.11). All crossover operations run for ‘ RUNC ’ number of times. During

these operations, the objective is to evaluate the progeny from each iteration (up to a

maximum of ‘ RUNC ’) and anticipating improvement of fitness levels in the existing best

solutions),(21  , by means of recombining their features and forming new versions of

these solutions. If the new found solution is better than either of the two parent

chromosomes,),(21  , it instantly replaces the corresponding parent and the

improvement procedure continues. At the end of this process, only the two best

Chapter No. 5 Optimisation Algorithm

5-38

chromosomes survive and the rest are discarded. If either or both),(21  are updated in

the improvement process, they are available for inheritance (Lamarckian Evolution –

(Jones and Kay, 2002)) and the only the best of the two, (1 , also the local optimum

until the termination criterion is met) is used for the second improvement procedure.

5.3.5.1.2 Second Improvement Procedure (_ 2 ()IMPROVE)

Although the crossover operation is a very powerful technique for exploring the search

space, it also has a significant weakness. Since it proceeds by recombining information

(alleles) from parents, the progeny produced ideally contains only alleles that were

already present in either or both of the parents. In other words, it never produces new

alleles which can be a big problem for genetic search involving very large search space,

(Falkenauer, 1998). This is where mutation operation is applied in order to introduce

diversity in the solution space and avoid a premature convergence of the optimisation

algorithm.For a system consisting of eight components with six alternatives each, lets

imagine the best solutions ‘ 1 ’ found in a particular iteration of the algorithm is:

Optimum Solution (1)

1 2 3 4 5 6 7 8

4,14,1 , C 2,22,2 , C 4,34,3 , C 6,46,4 , C 4,54,5 , C 2,62,6 , C 4,74,7 , C 5,85,8 , C

1,11,1 , C 2,12,1 , C 3,13,1 , C 4,14,1 , C 5,15,1 , C 6,16,1 , C

1,21,2 , C 2,22,2 , C 3,23,2 , C 4,24,2 , C 5,25,2 , C 6,26,2 ,C

1,31,3 , C 2,32,3 , C 3,33,3 , C 4,34,3 , C 5,35,3 , C 6,36,3 , C

1,41,4 , C 2,42,4 , C 3,43,4 , C 4,44,4 , C 5,45,4 , C 6,46,4 , C

1,51,5 , C 2,52,5 , C 3,53,5 , C 4,54,5 , C 5,55,5 , C 6,56,5 , C

1,61,6 , C 2,62,6 , C 3,63,6 , C 4,64,6 , C 5,65,6 , C 6,66,6 , C

1,71,7 , C 2,72,7 , C 3,73,7 , C 4,74,7 , C 5,75,7 , C 5,75,7 , C

1,81,8 , C 2,82,8 , C 3,83,8 , C 4,84,8 , C 5,85,8 , C 5,85,8 , C

The improvement procedure exploits the best chromosome by gradually altering the

genes and steadily exploring the local search region of the solution. Consequently, the

Chapter No. 5 Optimisation Algorithm

5-39

algorithm is able to perform multi-directional search while retaining the best solution in

the population. This process effectively deals with the epistasis found in the cost-

reliability relationship since the local region of the best solution is evaluated by

introducing gradual and minimum variation in the genes in the successive iterations.

The shaded area in the table below represents all the new genes which can be selected

randomly by moving either side of the selected genes (mutation sites) in the

chromosome string of the best solution. The optimisation algorithm therefore introduces

greater diversity in the search space while directing the search towards optimum

solution.

1,11,1 , C 2,12,1 , C 3,13,1 , C 4,14,1 , C 5,15,1 , C 6,16,1 , C

1,21,2 , C 2,22,2 , C 3,23,2 , C 4,24,2 , C 5,25,2 , C 6,26,2 ,C

1,31,3 , C 2,32,3 , C 3,33,3 , C 4,34,3 , C 5,35,3 , C 6,36,3 , C

1,41,4 , C 2,42,4 , C 3,43,4 , C 4,44,4 , C 5,45,4 , C 6,46,4 , C

1,51,5 , C 2,52,5 , C 3,53,5 , C 4,54,5 , C 5,55,5 , C 6,56,5 , C

1,61,6 , C 2,62,6 , C 3,63,6 , C 4,64,6 , C 5,65,6 , C 6,66,6 , C

1,71,7 , C 2,72,7 , C 3,73,7 , C 4,74,7 , C 5,75,7 , C 5,75,7 , C

1,81,8 , C 2,82,8 , C 3,83,8 , C 4,84,8 , C 5,85,8 , C 5,85,8 , C

Table 5.2 Domain of Reliability and Cost for A Sample System Showing Selected Number

of Components Which Can be Used to Form Combinations Per Iteration in the Second

Improvement Procedure

The second improvement procedure is applied after the first stage mutation operation as

defined in section 5.3.4.1 above and composed of the two additional mutation

operations (Fig. 5.16), which are defined in section 5.3.4.2 and 5.3.4.3, respectively.

The reason for designing additional stages of the mutation operation is to develop an

effective technique for exploring the search space while exploiting the local region of

the current best solution. Thus, the paradigm of the second improvement procedure is to

competently use the genetic information of the current best solution ‘ 1 ’ by introducing

additional mutation operations. These operations exhaust the best solution by randomly

Chapter No. 5 Optimisation Algorithm

5-40

generating multiple mutation points (loci of the genes) and producing progeny by

altering only the corresponding allele of the selected genes in the hope of discovering an

even better version of the current solution.

The ‘)(2_IMPROVE ’ procedure introduces new ideas for better solutions by

accommodating a multidirectional search in the search space and is therefore applied

more frequently than the first improvement procedure. After the standard mutation

process as in step 5(f) of the algorithm, the ‘)(2_IMPROVE ’ procedure is applied

which exhausts ‘ 1 ’ by randomly generating various loci of genes, and altering only the

corresponding alleles. This process produces modified versions of the best

chromosome, ‘ 1 ’, which are evaluated in the hope of finding even better solutions. The

improvement process is configured according to the complexity of the optimisation

problem. In the context of this research, the improvement function is configured to

perform at first, a two-point mutation operation (selecting two random genes for altering

alleles), Fig. 5.13 and secondly, a three-point mutation operation, Fig. 5.14, which

selects three random genes for altering corresponding alleles in the best fit chromosome

(1), while running both operations for ‘ RUNM ’ number of times each.

SECONE IMPROVEMENT PROCEDURE

Second
Stage

Mutation
Operation

Third
Stage

Mutation
Operation

Figure 5.16 Structure of the Second Improvement Procedure

Chapter No. 5 Optimisation Algorithm

5-41

During these two mutation operations, the objective is to evaluate the progeny in each

iteration (up to a maximum of ‘ RUNM ’ for each operation) expecting to reveal more

promising solutions by streamlining the existing best chromosome ‘)(1 ’. At the end of

the improvement process, only the two best chromosomes survive and the rest are

discarded. If the termination criterion is achieved, the best of the two solutions, (1) is

highlighted as the optimum solution of the optimisation problem being considered.

Otherwise, both),(21  are automatically selected to join the next population.

5.3.6 Termination Criteria

The algorithm is repeated for ‘ RUNp ’ number of times depending on the values of

‘ sizep ’, ‘ RUNC ’ and ‘ RUNM ’. For higher values of these parameters, the total number of

generations, ‘ RUNp ’, can be very small as more sampling of the search space will be

carried out without having to run a large number of population cycles (generations).

This is because, more potential solutions will be examined due to the large number of

genetically modified solutions, produced as the result of the crossover, mutation and the

two improvement procedures. Generally, good quality solutions are found with smaller

value of the ‘ RUNp ’ but higher values of ‘ RUNC ’ and in particular ‘ RUNM ’. However,

the absolute values of these parameters will change in line with the scale and

complexity of the optimisation problem in hand.

5.3.7 Process Diagram

A pictorial demonstration of the algorithm is also outlined in Fig. 5.17.

Chapter No. 5 Optimisation Algorithm

5-42

Initial Sample with
unique chromosome

Two Best
Chromosomes,

1 & 2
Crossover operation
chamber

Improvement processing
chamber one

Exploitation of
search space using

1 & 2

Local Optimum, 1

Improvement processing
chamber Two

Mutation operation
chamber

Near local
Optimum

2

Exploration of
search space

using 1

Global Optimum
Near Global Optimum

1

2

Local Optimal, 1

Figure 5.17 Pictorial Demonstration of the Optimisation Process

Chapter No. 6 Applications and Results

6-1

APPLICATIONS &
RESULTS
(RESEARCH METHODOLOGY)

The optimisation algorithm (OA) introduced in this research has been applied to

study several non-repairable engineering systems, using the risk-based reliability

allocation method. The details of these systems and the results of the algorithm are

described in this chapter. The first half demonstrates the validity of the optimisation

algorithm by applying it to solve an example system from an already published

article. The later half of this chapter shows the application of the optimisation

algorithm on a number of reliability systems using a discrete choice of components

exhibiting both monotonically and non-monotonically increasing relationships

between costs and reliabilities among the alternatives. The algorithm is also used to

study the effect of different levels of cost of failure for each system and the results

are presented in the form of graphs and tables. The detailed discussion on the

observations and findings of the optimisation algorithm by comparing systems

individually and as a whole will be discussed in the next chapter.

Chapter No. 6 Applications and Results

6-2

6.1 METHODOLOGY DEVELOPMENT

An optimisation algorithm has been developed as the research methodology which

provides a structured approach for allocating optimal system reliability by using the

risk based reliability method when a large choice of component alternatives is

available. The approach is based on the realisation that the relationship between the

component cost and reliability is generally very complex and unpredictable

particularly for estimating the amounts of total loss (sum of reliability investment and

risk of failure) associated with non-repairable system failures.

The optimisation problem studied in this research belongs to the class of

combinatorial optimisations, which are well known for their complexity when the

number of parameters involved in the underlying problem is large. For systems

consisting of a large number of components with many choices of alternatives for

each component, finding the optimal combination of components alternatives which

minimises the loss function is therefore a very challenging problem, significantly in

the presence of a non-linear and unpredictable relationship between cost and

reliability parameters. Based on this understanding, the methodology developed in

this research focuses attention on the need to skilfully evaluate this relationship

between the two parameters when performing the optimisation process and choosing

the optimal combination of alternatives. The underlying thoughts in designing the

evaluation process can be explained in the following steps:

6.1.1 Component Characteristic

Assuming availability, many versions of a particular component can be found at

different cost and reliability levels. Generally, the cost is considered as the

monotonically increasing function of reliability but this is not always the case as

explained in Chapter 5; a simplified version of the same component may be even

cheaper while meeting the required reliability level, for example. Selecting the best

component from the given choices is already a very difficult task for large scale

Chapter No. 6 Applications and Results

6-3

optimisation problems, assuming the non-monotone structure in the cost-reliability

relationship, therefore, makes this optimisation problem even harder even for the non-

analytical methods.

6.1.2 System Reliability

Increasing the reliability of the components in a system generally increases the overall

system reliability along with the cost of the system (sum of the cost of all

components). While increasing the reliability reduces the probability of failure and

subsequently, the risk of failure, the loss function will not be minimised efficiently

since the increased cost of components will reduce the effect of decrease in the risk of

failure. This process will be even more convoluted for non-monotonically increasing

cost-reliability relationship among the alternatives of the system due to the presence

of extreme uncertainty; cheaper components might be available in higher reliability or

vice-versa. Besides this intricacy, the other difficulty is associated with the actual

estimation of system reliability for large scale problems with complex configurations

(e.g. combination of series and parallel configuration). The general practice of using

the cut-set and tie-sets (Appendix –I) obtained from the reliability block diagrams in

estimating the system reliability, can be very cumbersome due to the large quantity of

these sets. Using commercial software is another approach which is expensive,

impractical for the purpose of the system optimisation due to the large number of

possible combinations of components and it does not guarantee the correct estimation

of reliability for all systems.

6.1.3 Exploring the Search Space

For a large number of components and respective alternatives, finding the optimal

combination of alternatives which minimise the loss function will require evaluation

of all combinations using the enumerative search method. This exhaustive search is

however, unfeasible despite using the new and powerful computation technology (if

available) due to the sheer size of the search space. An effective technique is therefore

required to explore the search space efficiently for these combinatorial optimisation

problems.

Chapter No. 6 Applications and Results

6-4

6.1.4 Exploiting the Search Space

Similar to exploring the search space, utilising the information of the current best

solution in the hope of finding an even better version of this solution can be very

effective in the optimisation process carried out by using the risk based reliability

allocation method. This requires skilfully searching the local region of the current best

found solution.

6.1.5 Complexity of the Method

The method for optimisation based on risk based reliability allocation approach is

required to be practical, programmable in a computer language and most importantly

with linear complexity; a solution taking hours of computer processing time is not

deemed as an efficient solution for the type of reliability optimisation considered in

this research. Additionally, the method is expected to be generic for all types of

systems (non-repairable) using the commonly known exponential distribution for

estimating the failure probability.

Based on the principal of genetic search, the research methodology is therefore

designed by taking into account all of the above points in order to successfully

carrying out the reliability optimisation of systems with a large choice of components

by using the risk based reliability allocation method. It combines the exploration

abilities of genetic search with skilful exploitation of hill climbing procedures and

introduces a different model of evolution compared to classical GA. The main

features of this model are the generation of populations with unique chromosomes,

working exclusively with the elite chromosomes and introducing genetic variations in

the elite chromosomes using prudently designed genetic operators for ensuring rapid

and efficient convergence to optimum or near optimum region of the search space.

The two main reasons for implementing these notions in the optimisation algorithm

are the non-linear cost-reliability relationship and the extremely large search space. A

comprehensive detail of this method is presented in Chapter 5. The application of the

methodology is demonstrated in this chapter (along with appendix II-IX) by using

Chapter No. 6 Applications and Results

6-5

four types of system configurations which are commonly found in the reliability

literature and the results are discussed in detail in the next chapter.

6.2 APPLICATION OF THE METHODOLOGY

The research methodology developed in the previous chapter can be applied to

optimise various engineering systems along with the risk based reliability allocation

method. The mathematical model of the reliability allocation method is shown in

equation (6.1). For validation purposes, the optimisation algorithm is first applied to

solve an already published reliability optimisation problem with constraint on some

target level of system reliability, which is required to be achieved at a minimum

system cost (i.e. total cost of all components in the system). This process is detailed in

section 6.3. The risk based reliability allocation method is demonstrated in the next

section by using the optimisation algorithm on four different reliability systems with

discrete choice of component data set (Table 6.1), showing monotonically increasing

cost and reliability relationship among the alternatives, and a fixed amount of cost

associated with a given failure of a system (cost of failure).

For the purpose of undertaking parametric studies, the same four systems are studied

individually, in section 6.4, with two variations in the optimisation process. The first

of which involves using a different choice of discrete data set of components (Table

6.13) and allocating optimal system reliability with minimum total loss. The new data

set is different because it exhibits a non-monotonically increasing relationship

between cost and reliability among the alternatives. The second variation in the

optimisation process is introduced by means of a different cost of failure amount,

associated with a given system failure. Using this amount, the risk based reliability

allocation is performed on all four systems using Table 6.1. The results obtained from

the applications of the optimisation algorithm on all four systems with two different

data sets and cost of failure amounts, will be discussed in the next chapter for

accentuating the findings.

Chapter No. 6 Applications and Results

6-6

There are three principles which act as the main constituents of the text detailed in

this chapter and the knowledge of these is an important requisite for making the most

of the described information. These three principles being, the model of risk based

reliability allocation, the research methodology (optimisation algorithm) and the

distinctive yet most innovative Monte-Carlo simulation method for determining

system reliability and estimating the total amounts, associated with a given system

failure. The first two principles are explained comprehensively in Chapter 1 and

Chapter 5, respectively, whereas, the third principle is described in Appendix I. For

the benefit of the reader, a brief explanation of the three principles is detailed next.

6.2.1 Reliability Allocation Model

The model of the risk based reliability allocation defines a loss function, which

consists of the sum of reliability investment and risk of failure:

KQT L  (6. 1)

where,

),...,,(,3,32,21,11 NMccccfQ  (6. 2)

  CRK NMs ),...,,(1 ,3,32,21,1  (6. 3)

such that,


M

i
icQ (6. 4)

MfMff cpcpcpC 2211 (6. 5)

and






)...()(2),(1 ,1,,21,2,111

,........,,
NMMNN

Ms RRRR   (6. 6)

Chapter No. 6 Applications and Results

6-7

Where, ‘ sR ’ is a function of ‘ M ’ components, each with ‘ N ’ number of given

alternatives, such that ‘ ji ’ is the reliability of the ‘ thi ’ component with ‘ thj ’

alternative ‘ LT ’ is the total loss from system failure before some specific time

interval ‘ a ’, ‘Q ’ is the cost of reliability investment towards risk reduction and is a

function of component costs for all selected alternatives (equation 6.2), such that ‘ jic ’

is the cost of the ‘ thi ’ component with ‘ thj ’ alternative where  Mi3,2,1 ,

 Nj3,2,1 , therefore, ‘Q ’ is equal to the sum of the cost of selected alternatives,

as in equation (6.4). Also, ‘ fp ’ is the probability of failure, ‘ sR ’ is the system

reliability, ‘C ’ is the expected cost given failure of the system & ‘ ifi cp ’ is the risk

of failure of the ‘ thi ’ component. Therefore, the model of risk based reliability

allocation can be formulated in the form of an objective function below,

   









 


CRcMinT NMs

M

i
iL

*
,

*
1,2

*
1,1

1
,...,,1  (6. 7)

Where 


M

i
ic

1

represents the reliability investment and consists of the total cost of the

selected alternatives, ‘),...,,(*
,

*
1,2

*
1,1 NMsR  ’ is the reliability of the system

with optimal (*) set of selected alternatives and ‘C ’ is the expected cost given failure

before some specified time interval, associated with the selected alternatives.

6.2.2 The Optimisation Algorithm (OA)

The optimisation process in the OA begins by randomly generating an initial

population, ‘ kp ’, (where 1i) containing ‘ sizep ’ many solutions of the given

optimisation problem and then evaluating each solution from the population for the

Chapter No. 6 Applications and Results

6-8

respective level of fitness in accordance with the objective function defined in

equation (6.7). The two best found solutions from the whole population are stored and

then selected to contribute their characteristics in the new solutions through genetic

operations such as crossover and mutation. The new solutions obtained as the result of

these operations, are also evaluated for their fitness levels and if they perform better

in the fitness test then they instantly replace either of the two best solutions,

previously stored. An important feature of the optimisation algorithm is to introduce

improvement procedures during each of the two genetic operations. The object of

these procedures is to search the local region of the two best solutions by randomly

altering the structures of these solutions in the hope of discovering an even better

version of these solutions. If the objective is achieved, the new solutions instantly

replace the current best solutions depending on the level of their fitness. After the

improvement procedures the two best solutions are automatically included in the next

population, ‘ 1kp ’. The process continues until ‘ RUNp ’ many generations are

executed and the best found result is highlighted as the optimum solution. The

optimisation algorithm is also shown in Fig. 6.1. (See Chapter 5 for full details on

OA).

6.2.3 Monte Carlo Method For Determining System
Reliability And Total Loss

During the optimisation process, the OA is required to compute the system reliability

and total loss amount for each combination of component evaluated for fitness using

the given objective function. This is achieved by using either of the two Monte Carlo

(MC) simulation methods explained in Appendix I. The first of these two methods

was originally introduced by Todinov (2006, 2006a) and involves randomly

simulating the number of failures using a MC based node-stacking technique in an

adjacency matrix. The matrix represents the reliability system and during each sample

run of the MC simulation, the objective is to find a valid path between the start node

and the end node of the adjacency matrix. The search of the path begins by checking

the immediate neighbouring nodes of the start node and continuing in the direction of

the nodes where the connection between the two corresponding nodes exists

Chapter No. 6 Applications and Results

6-9

uninterrupted until the end node is found. If no path exists, the system is deemed in a

failure mode and the cost of failures of each of the failed component is determined.

The number of system failures and the total cost of failures of all components are

aggregated across all sample runs. At the end of the MC simulations, the system

reliability and risk of failure are obtained from the total number of failures and the

cumulative cost of failures.

The second method for determining the system reliability and risk of failure is very

similar to Todinov’s method and differs in the sense that the path between start node

and end node is established without using the node-stacking technique. Also, the

search of the path in the adjacency matrix is performed in reverse order by checking

the existence of the immediate valid path between start and end node and gradually

moving backward until a full connection is established. If no connection is found, the

system is considered in a fail state. The calculation method of system reliability and

risk of failure amount is similar to the first method.

It is important to point out that all the calculations performed in the next sections are

conducted using the second method as listed above. This MC based method for

calculating system reliability and total loss is programmed in C/C++ language and the

code is also provided in Appendix X. The results obtained are based on fewer

numbers of Monte Carlo generations because of large number of analysis conducted

through out. However, increasing the sample size can further refine results, such as

system reliability estimation, which appears to be acceptable even with the smaller

number of samples used in this research. However, it has not been tested for problems

which exist outside the scope of this research but given the excellent quality of the

comparative results with the first method, it is deemed as a great potential for future

studies.

Chapter No. 6 Applications and Results

6-10

Figure 6. 1 Structure of the Optimisation Algorithm

GENERATE initial sample of Unique
Chromosomes

SELECT
&

STORE
two best fit chromosomes

SELECT
&

STORE
One best fit chromosomes

Carryout Cross-over Process
Crossover Operation

First Order
Second Order
Third Order

Carryout Mutation Process
Mutation Operation

First Order
Second Order
Third Order

If Termination
Criteria?

Highlight OPTIMUM solution

No Yes

Chapter No. 6 Applications and Results

6-11

6.3 RELIABILITY OPTIMISATION PROBLEM

The application of the optimisation algorithm is first validated against a reliability

optimisation problem, previously solved by using the Simulated Annealing (SA)

method in Majety et al. (1996). The optimal reliability allocation problem is NP-hard

and focuses on a situation where a system with a certain configuration is required to

be assembled from a given choice of components with different levels of cost and

reliability. Therefore, the same level of system reliability can be achieved by using

different combinations of components with various levels of associated system costs.

For this reason and given the discrete choice of available components, the process of

finding the optimal combination of components with minimum system cost for

achieving some target level of system reliability understandably develops into a

difficult combinatorial optimisation problem. The example reliability system from the

referenced optimisation problem consists of nine components with twelve alternatives

each. Additionally, the configuration of the reliability system portrays three

subsystems in series arrangement, each containing three, four and two components,

connected in parallel, respectively. The system is depicted in Fig.6.2 and cost-

reliability data used in the example is detailed in Table 6.1.

Figure 6. 2 Reliability System with Nine Components

1

3

2

7

6

5

9

4

8

Chapter No. 6 Applications and Results

6-12

Table 6.1 Cost and Reliability Data (Majety et al., 1996)

Component

No.

Reliability

0.001 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99

1 0 4.05 16.3 40.4 67.35 95.7 135.75 186.05 251.05 339.8 440.45 598

2 0 3.65 17.75 36 59.35 78.5 169.6 224.45 303.8 391.95 505.3 654

3 0 9.1 22.35 44.45 71.55 105.1 148.85 198.1 276.75 374.25 496.8 634

4 0 4.35 14.1 29.15 50.45 78.2 117.55 170.9 248.55 347.9 663.75 609

5 0 3.15 10.8 31.95 52 183.25 222.1 278.8 350.3 434.15 539.3 699

6 0 7.8 22.85 43.85 70.8 101.45 143.7 202.05 276.7 370.2 495.15 629

7 0 8.75 18.8 42.8 72.05 106.25 151.2 210.95 289.95 370 482.75 637

8 0 5.45 16.45 36.45 60.7 191.2 230.75 282 354 449.5 572.75 703

9 0 2.05 7.67 23.87 101.9 128.81 164.35 207 271.25 362.8 480.95 623

Chapter No. 6 Applications and Results

6-13

In view of the given data set for the available components, the search space of the

reliability optimisation problem consists of 912 possible solutions. The objective of

the problem is to find the best combination of alternatives for the given series-parallel

system, such that the system reliability is 85% and the total cost of the alternatives

selected to compose the system is at a minimum. The objective function in equation

(6.7), can be modelled for this example problem by assuming the value of ‘ K ’ equal

to zero and finding an optimal combination of alternatives for ‘Q ’ such that the total

loss, ‘ LT ’ is minimum for the target level of reliability (85%).

Mathematically, the statement of the problem can be expressed as:

  %85,........,,)()...(9)(2),(1 12,91,912,21,212,111
  RRRROpt s  (6. 8)

by minimising the total cost function,









 

9

i
iL cMinT (6. 9)

6.3.1 Application of the Optimisation Algorithm

The global optimum of this problem is actually known from enumeration search,

which takes approximately six hours of computer processing time, as reported in the

published paper of Majety et. al. (1996) and the best result they found for this

particular problem was 533.90 by using only 20,000 out of 129 possible solutions, in

30 different independent runs. This is a very good result, within 6.65% of the global

optimum solution of 500.60, obtained by enumeration. The optimisation algorithm

introduced in this research, however, calculates an optimal solution of 506.70 units.

This is only 1.22% within the global optimum solution obtained by enumeration

method. Also, the OA used only 4469 solutions from the total search space before

Chapter No. 6 Applications and Results

6-14

converging to the optimal result. Additionally, there are many suboptimal values

calculated by the OA which satisfy the minimum reliability requirement of 85%, as

detailed in Table 6.2.

Results
Total
Loss

System
Reliability

Best
Configurations

1 506.70 85.02% 3-6-5 3-4-2-3 5-8

2 508.03 85.02% 3-6-5 4-2-3-3 5-8

3 508.85 85.05% 4-6-4 5-3-2-2 5-8

4 509.50 85.03% 5-6-4 3-3-2-3 5-8

5 510.45 85.01% 2-6-4 3-3-2-3 5-9

6 509.85 85.17% 3-6-4 5-3-3-3 5-8

7 516.70 85.12% 2-6-5 3-5-2-2 5-8

8 517.10 85.02% 3-6-4 5-2-2-2 4-9

9 522.20 85.09% 3-6-4 5-2-3-3 3-9

10 523.80 85.20% 3-6-3 5-4-2-2 4-9

11 525.90 85.13% 3-6-4 5-4-2-2 3-9

Table 6.2 Quick Snap-Shot of the Results from the OA

This information can be used to understand the complexity of the optimisation

problem driven by the variation in the system cost for the same level of system

reliability with different combinations of system configurations. It is interesting to

note that the configuration of the reliability system with global optimum (Table 6.3) is

not much different from the configuration of the optimal solution found by the OA

(Table 6.2). In the context of the optimisation problem discussed here, this

observation can be used to further streamline the OA’s optimum result since swapping

the fourth and fifth components in the second sub-system will not change the system

Chapter No. 6 Applications and Results

6-15

reliability, however, it will decrease the total system cost hence making the result

identical to the global optimal found by the enumeration method.

Results
Total
Loss

System
Reliability

Best
Configurations

From SA 533.9 85.03% 4-5-4 2-5-3-4 5-8

From Enumeration 500.6 85.02% 3-6-5 4-3-2-3 5-8

Table 6.3 Results from the Published Article

Figure 6. 3 Total Search Area Explored By the Optimisation Algorithm

Optimal Region!!

Total Search Space of the Optimisation Algorithm

Chapter No. 6 Applications and Results

6-16

Figure 6. 4 Effect of the Improvement Procedure In Crossover Process

Figure 6. 5 Area Search by the Improvement Procedure Based On Random Mutations

Chapter No. 6 Applications and Results

6-17

Figure 6. 6 Convergence of the Optimisation Toward Optimum Solution Using

Improvement Procedures

Figure 6. 7 Total Search Space And the Optimisation Process

Search Space of the OA and Convergence to Optimum Solution

Chapter No. 6 Applications and Results

6-18

6.4 RISK-BASED RELIABILITY ALLOCATION

In this section, the application of the optimisation algorithm using the risk-based

reliability allocation method is demonstrated on four example systems. These systems

are characterised as ‘A’, ‘B’, ‘C’ and ‘D’; every system is comprised of nine

components with twelve choices of alternatives each and possesses a unique

configuration, detailed in Table 6.4 and graphically in Fig 6.9. The configurations of

these systems are commonly known in the engineering world because of the

embedded series-parallel and parallel-series connection among the sub-systems. The

data set used for the optimisation process is identical to the one detailed in Table 6.1

with components generally possessing a monotonically increasing relationship

between cost and reliability parameters (Fig. 6.8).

System

No

Sub system

1

Sub system

2

Sub system

3

A 3-Components (in parallel) 4-Components (in parallel) 2-Components (in parallel)

B 2-Components (in parallel) 5-Components (in parallel) 2-Components (in parallel)

C 3-Components (in parallel) 3-Components (in parallel) 3-Components (in parallel)

D 2-Components (in parallel) 2-Components (in series)

+

2-Components (in parallel)

2-Components (in series)

+

1-Component (in parallel)

Table 6.4 System Configuration of Four Example Systems

The objective of the optimisation process is to allocate an optimal level of system

reliability by selecting an appropriate combination of component alternatives from the

given choices, such that the total loss from system failure, ‘ LT ’, is minimum by using

the relationship specified in equation (6.7). The risk of failure amount, ‘ K ’ is derived

from equation (6.3) by using the probability of system failure, ‘ fp ’ and the cost

Chapter No. 6 Applications and Results

6-19

given failure, ‘C ’, which is assumed to be a fixed cost ‘ 1C ’, (2500 units) plus the

random replacement cost of each failed component. The latter is imagined to be 25%

of the cost of each failed component and is accumulated together with ‘C ’, in every

event of a system failure (equation 6.5) during Monte Carlo simulations. The

probability of failure is computed from the system reliability which is a function of

the individual reliabilities of all selected alternatives in a given combination (equation

6.6). The reliability investment, ‘Q ’, towards risk reduction is the total cost of

components selected for building the system and is computed from equation (6.4) by

taking into account the cost of all individual alternatives selected in a given

combination.

The optimal reliability allocation process is detailed for each of the four systems in

the next sub-sections.

Component Alternatives Showing Monotonically Increasing Relationship
Between Cost and Reliability

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

1 2 3 4 5 6 7 8 9 10 11 12
Component Alternatives

C
o

m
p

o
n

en
tC

o
st

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

m
p

o
n

en
tR

el
ia

b
ili

ty

Component One Component Two Component Three Component Four Component Five

Component Six Component Seven Component Eight Component Nine Component Reliability

Figure 6. 8 Monotonically increasing relationship of cost-reliability from Table 6.1

Chapter No. 6 Applications and Results

6-20

Figure 6. 9 Four Reliability Systems with Nine Components Each

1

2

6

5

4

9

3

7 8

SYSTEM D

1

3 6

2 5

9

4 7

8

SYSTEM C

1

2

7

5

4

9

3

6

8

SYSTEM B

1

3

7

2

5

9

4

6

8

SYSTEM A

Chapter No. 6 Applications and Results

6-21

6.4.1 Optimisation Results For System A

The results for system A are detailed in Table 6.5. In light of these results, it is found

that the reliability of 80.5% is optimum for this system when using the cost-

reliability data from Table 6.1 since it is associated with the lowest amount of total

loss, ‘LOpt’ which is 877 units found by the optimisation algorithm. Also interesting

to note are the types of other observations detailed in the result table. The maximum

value of the total loss or the loss function, ‘LMax’ is associated with the maximum

level of system reliability, ‘RMax’ and vice-versa. This is expected but not always the

case as it will be demonstrated in the results from the other systems. The most found

value, ‘LMode’, of the loss function is very close to the optimum value, ‘LOpt’.

System Type A

Optimum value of total loss - LOpt 877

Optimum value of system reliability 80.5%

Maximum value of total loss - LMax 3482

Maximum value of system reliability associated with LMax 99.9%

Mode value of total loss - LMode 879

Mode value of System Reliability for LMode 82.1%

Maximum value of system reliability - RMax 99.9%

Maximum value of total loss associated with RMax 3482

Average value of total loss - LAvg 1305

Standard Deviation of total loss 276

Coefficient of Variance total loss 21.2%

Average value of System Reliability 87.1%

Standard Deviation of System Reliability 4.9%

Coefficient of Variance System Reliability 5.6%

Table 6.5 Optimisation Results for System A

Chapter No. 6 Applications and Results

6-22

The snap-shot of the loss function optimisation process, showing the hill climbing

ability of the optimisation algorithm, is highlighted in Fig. 6.10 while the changes

in the values of reliability investment and risk of failure with respect to system

reliability and associated total loss is shown in Fig. 6.11.

Figure 6. 10 Optimisation Process of System Reliability and Total Loss in System A

Figure 6. 11 Total Effect of Optimisation Process on System A

Chapter No. 6 Applications and Results

6-23

The improvement processes introduced in the optimisation algorithm (Chapter 5)

using the crossover and mutation operations, enhance the capability of the

optimisation algorithm to converge towards optimal results while efficiently

exploiting the search space. These effects of the improvement processes are

demonstrated in Fig. 6.12 & 6.13 for crossover and mutation processes, respectively.

Figure 6. 12 Crossover Process of System A

Figure 6. 13 Effect of Mutation Process on Total Loss in System A

Chapter No. 6 Applications and Results

6-24

The region of the search space exploited by the mutation process with the view of

reliability investment and risk of failure is shown in Fig. 6.14. Also, the total search

space examined by the optimisation algorithm in accordance with the objective

function from equation (6.7) is detailed explicitly in Fig. 6.15.

Figure 6. 14 Region of the search space examined by the Mutation Process in System A

Figure 6. 15 Total Search Space examined by the optimisation algorithm for System A

Chapter No. 6 Applications and Results

6-25

While Table 6.5 highlights the optimum result for system A, the optimisation

algorithm, being a population based search method, also produces a list of other sub-

optimal solutions which can be of great interest to a reliability analyst, see Table 6.6.

The results detailed in this table are helpful in studying different levels of reliability

for respective values of the total loss function along with the important information

concerning the actual configuration of the system by illustrating the precise

description of the chosen alternatives of all components. A quick overview of these

observations can be categorised in the following points:

I) Decreasing Amount of Total Loss with Increasing Level of System Reliability

It is generally expected for an engineering system to have a higher reliability level

which seems appropriate as seen in the results table where higher reliability has lower

values of total loss (results 1- 3 compared to result 4). However, it can also be seen

from the same table that increasing the reliability further produces a drastic

increase in the total loss (e.g. results 15 onwards).

II) Increasing Amount of Total Loss with Constant and/or Increasing Level of

System Reliability

The amount of total loss can vary tremendously for the same level of system

reliability when an inappropriate combination of components is selected. For

example, results 3, 11 and 13: the total loss increases around 27% for the system

reliability of 82%, results 7 & 14: the total loss increases 24% for system

reliability of 83%, results 5, 9, 10 & 12: the total loss increases 25% for the same

system reliability of 84% and so on. Similarly, it can be seen from the result table

that higher levels of system reliabilities are associated with larger values of total

loss function.

III) Increasing Amount of Total Loss with Decreasing Level of System Reliability

It is understandable to expect higher losses with decreasing level of system reliability

as shown in Table 6.6 where results 2, 4, 6, 9, 11, 13, 16 & 18 shown increases in

loss values with relative decreases in the system reliability. However, this is not

Chapter No. 6 Applications and Results

6-26

always the case as stated previously in points - I & II above, where the loss also

increased with system reliability.

IV)Decreasing Amount of Total Loss with Decreasing Level of System Reliability

Similar to point III, it can be surmised that the loss function also decreases with the

diminution of system reliability as seen from the relative positions of results 19, 16,

14, 13, 11, 7, 6, 4 and 2 by moving in the upward direction of Table 6.6.

In view of these observations, the importance of the improvement procedures

designed within the optimisation process (Chapter 5, section 5.3.5) appears more

significant for risk based reliability optimisation problems involving a large

choice of component alternatives. Since these procedures operate on one gene

(component) at a time for applying the genetic operations such as crossover and

mutation and then gradually increasing to two and three components later in the

optimisation cycle, the chances for evaluating good solutions with better fitness can

be carefully organised. This process is shown in Table 6.6, when reading it

backwards. For example, the total loss amount in result no.18 is improved by 7%

from the amount in result no. 19 (found by the random search) through first stage

mutation operation at position seven. The result no. 17 is an improved version of

result no. 18 obtained by performing a two stage mutation operation (Chapter 5,

section 5.3.4) at position nos. 2 and 7 (mutation sites). Similarly, result no.16 is

obtained by the combination of a two stage crossover operation (Chapter 5, section

5.3.3) at position 2 and 6 from results 18 & 17 and then a single stage mutation

operation at position 7 (result no. 16 could have also been found by a three stage

mutation alone on these positions also), and so on.

The above optimisation process is repeated for systems B, C and D in the next

sections and only the statistical results are shown for each of the three systems. The

graphical results, similar to Fig. 6.10 – 6.15, showing the optimisation process by

improving the local result, the effects of optimisation process on total loss, effects of

improvement procedures using genetic operators such as crossover and mutation and

Chapter No. 6 Applications and Results

6-27

the total area search by the optimisation algorithm for all three systems are presented

in Appendix II, III and IV.

No.
Total
Loss

System
Reliability

Reliability
Investment

Risk of
Failure

Sub-System
One

Sub-System
Two

Sub-System
Three

1 877 80.5% 342 535 3 4 3 3 2 2 3 3 8

2 884 79.7% 330 554 2 4 3 3 2 2 3 3 8

3 890 82.4% 406 484 3 4 3 3 2 2 3 3 9

4 896 72.1% 164 732 3 4 3 4 2 2 2 3 4

5 898 84.5% 464 434 3 6 3 4 2 2 3 3 9

6 906 80.4% 366 540 2 4 3 5 2 2 3 3 8

7 968 83.2% 497 471 3 4 2 4 2 4 5 3 9

8 1015 85.7% 603 411 3 4 4 4 2 7 4 3 9

9 1030 84.4% 589 441 3 4 3 2 2 2 8 3 9

10 1039 84.1% 589 450 3 4 2 5 2 7 4 3 9

11 1130 82.5% 637 492 2 4 3 5 2 2 9 3 8

12 1130 84.0% 674 457 4 4 3 5 2 2 9 3 8

13 1137 82.4% 641 496 4 2 3 5 2 2 9 3 8

14 1203 83.7% 739 463 3 3 2 5 2 7 8 3 9

15 1275 86.8% 887 387 5 4 2 5 2 7 9 3 9

16 1277 85.9% 869 408 5 3 2 5 2 7 9 3 9

17 1318 87.0% 944 374 5 4 2 5 2 2 11 3 9

18 1351 86.1% 949 402 5 3 2 5 2 7 10 3 9

19 1458 86.3% 1062 396 5 3 2 5 2 7 11 3 9

20 1961 95.0% 1792 168 3 5 10 9 5 2 11 10 5

Table 6.6 List of Various Results for System A

Chapter No. 6 Applications and Results

6-28

6.4.2 Optimisation Results For System B

The results for system B are detailed in Table 6.7. In light of these results, it is found

that the reliability of 73.7% associated with 992 units towards the ‘LOpt’ is optimum

for this system when using with the cost-reliability data from Table 6.1. Also

interesting to note are the types of other observations detailed in the result table.

Unlike system A, the maximum value of the total loss or the loss function, ‘LMax’

found in the optimisation process, is not associated with the maximum level of

system reliability, ‘RMax’. The latter is associated with a lower amount of total loss

(2979 units) which is still three times the ‘LOpt’ amount for being 35% more than

the optimum reliability. The most found value, ‘LMode’, of the loss function is

although higher than the optimum value, ‘LOpt’, it is around 8% better than the

optimum reliability.

System Type B

Optimum value of total loss - LOpt 992

Optimum value of system reliability 73.7%

Maximum value of total loss - LMax 3683

Maximum value of system reliability associated with LMax 93.0%

Mode value of total loss - LMode 1008

Mode value of System Reliability for LMode 79.2%

Maximum value of system reliability - RMax 99.7%

Maximum value of total loss associated with RMax 2979

Average value of total loss - LAvg 1436

Standard Deviation of total loss 263

Coefficient of Variance total loss 18.4%

Average value of System Reliability 81.2%

Standard Deviation of System Reliability 6.3%

Coefficient of Variance System Reliability 7.8%

Table 6.7 Optimisation Results for System B

Chapter No. 6 Applications and Results

6-29

The list of other sub-optimal results is enclosed in Table 6.8 which can be used for the

comparative analysis similar to section 6.3.1. and are discussed in the points below:

I) Decreasing Amount of Total Loss with Increasing Level of System Reliability

It can be seen from the result table above that some combinations of components

produce higher reliability with lower values of total loss. For instance, results 18,

14, 13, 11, 9, 8, 7, 5, 4 & 3 relatively increase in reliability but decrease in total

loss. However, it can also be seen from the same table that increasing the reliability

(with respect to‘LOpt’) through inappropriate selection of component alternatives

can also cause a significant increase in the total loss (e.g. results 16 onwards).

II) Increasing Amount of Total Loss with Constant and/or Increasing Level of

System Reliability

The amount of total loss varies enormously for the same level of system reliability

when an inappropriate combination of components is selected. For example,

results 3, 11 and 20: the total loss increases over two and a quarter times for the

same level of system reliability (81%) results 13, 17 & 18: the total loss increases

21% for system reliability of 85% and so on. Similarly, it can be seen that results

such as, 2, 3, 7, 11, 13, 16, 17 & 20 increase in reliability with a corresponding

increase in total loss values.

III) Increasing Amount of Total Loss with Decreasing Level of System Reliability

The results 4, 6, 8, 9, 10, 12, 14, 15 & 19 shown increases in loss values with relative

decrease in system reliability. However, this is not always the case as stated in the

points above, where the loss also increased with system reliability.

IV) Decreasing Amount of Total Loss with Decreasing Level of System Reliability

Similar to point III, it can be surmised that the loss function also decreases with the

diminution of system reliability as seen from the relative positions of results 19, 16,

15, 12, 10, 6 and 2 by looking upwards in Table 6.8.

Chapter No. 6 Applications and Results

6-30

No. Total
Loss

System
Reliability

Reliability
Investment

Risk of
Failure

Sub-
System

One

Sub-System

Two

Sub-System

Three

1 992 73.7% 283 708 5 6 2 2 4 3 2 4 4

2 1008 80.2% 450 558 7 5 3 2 3 2 2 4 7

3 1019 81.6% 500 520 5 6 2 2 4 3 2 2 9

4 1037 76.8% 394 643 3 6 2 2 4 4 2 4 7

5 1133 72.0% 366 767 3 4 4 2 4 4 2 3 7

6 1161 70.0% 348 813 3 3 4 2 4 4 2 3 7

7 1193 85.3% 772 420 11 3 4 2 4 4 2 3 7

8 1234 79.5% 641 593 8 4 2 2 6 4 2 2 7

9 1259 77.8% 623 636 5 6 2 2 6 6 2 2 7

10 1267 75.4% 572 696 3 6 2 2 6 6 2 2 7

11 1279 81.7% 741 537 8 6 2 2 6 6 2 2 7

12 1291 74.0% 559 731 2 6 2 2 6 6 2 2 7

13 1343 85.7% 924 419 11 3 4 2 6 4 2 3 7

14 1387 74.3% 660 727 2 6 2 2 6 8 2 2 7

15 1456 69.8% 617 839 2 4 2 2 6 8 2 2 7

16 1457 74.4% 735 723 2 6 2 2 6 9 2 2 7

17 1590 85.7% 1171 419 11 6 2 2 6 9 2 2 7

18 1624 85.9% 1206 418 11 6 4 2 6 9 2 2 7

19 1658 79.0% 1062 596 5 3 2 5 2 7 11 3 9

20 2327 81.8% 1792 535 3 5 10 9 5 2 11 10 5

Table 6.8 List of Various Results for System B

Chapter No. 6 Applications and Results

6-31

6.4.3 Optimisation Results For System C

The results for system C are detailed in Table 6.9. In light of these results, it is found

that the system reliability of 79.8% is optimal for this system since it is associated

with the lowest value of the total loss, 782 units, when using with the cost-reliability

data from Table 6.1. Unlike system B and similar to system A, the maximum value

of the total loss function, ‘LMax’ found in the optimisation process, is associated with

the maximum level of system reliability, ‘RMax’. The former is approximately four

and a half times more than the ‘LOpt’ amount with 25% more associated reliability

than the optimum reliability. The most found value, ‘LMode’, of the loss function is

25% higher than the ‘LOpt’ with around 8% higher associated reliability value than

the optimum.

System Type C

Optimum value of total loss - LOpt 782

Optimum value of system reliability 79.8%

Maximum value of total loss - LMax 3482

Maximum value of system reliability associated with LMax 99.9%

Mode value of total loss - LMode 971

Mode value of System Reliability for LMode 85.9%

Maximum value of system reliability - RMax 99.9%

Maximum value of total loss associated with RMax 3482

Average value of total loss - LAvg 1175

Standard Deviation of total loss 295

Coefficient of Variance total loss 25.2%

Average value of System Reliability 86.4%

Standard Deviation of System Reliability 3.6%

Coefficient of Variance System Reliability 4.1%

Table 6.9 Optimisation Results for System C

Chapter No. 6 Applications and Results

6-32

The list of other sub-optimal results is enclosed in Table 6.10 which can be used for a

similar kind of analysis as detailed in section 6.3.1 and 6.3.2 for systems A and B.

NO.

Total

Loss

System

Reliability

Reliability

Investment

Risk of

Failure

Sub-System

One

Sub-System

Two

Sub-System

Three

1 782 79.8% 242 540 3 4 3 4 3 4 4 3 4

2 798 81.3% 293 505 3 6 2 5 2 3 5 3 4

3 825 79.9% 285 540 3 4 3 3 2 7 2 3 4

4 909 86.5% 529 379 3 6 3 3 2 7 8 3 4

5 916 85.9% 520 396 3 6 3 2 2 7 8 3 4

6 961 86.6% 582 379 3 6 3 5 3 4 5 3 9

7 968 85.7% 568 400 3 6 2 6 2 3 5 3 9

8 969 86.0% 574 395 3 6 3 5 2 4 5 3 9

9 970 83.5% 515 455 3 3 4 5 2 3 5 3 9

10 974 83.6% 520 453 3 3 3 6 2 3 5 3 9

11 974 86.9% 602 372 3 6 3 6 2 4 5 3 9

12 979 81.5% 475 504 3 4 3 3 2 3 5 3 9

13 981 87.4% 624 356 3 4 4 5 2 7 9 3 4

14 989 85.7% 589 400 3 4 2 5 2 7 9 3 4

15 1000 85.6% 595 404 3 4 3 3 2 7 5 3 9

16 1001 86.1% 610 391 3 4 3 4 2 7 5 3 9

17 1146 88.9% 833 313 5 4 2 5 2 7 11 3 4

18 1378 90.1% 1093 285 5 4 3 5 2 7 11 3 9

19 1388 88.5% 1062 327 5 3 2 5 2 7 11 3 9

20 1920 96.0% 1792 128 3 5 10 9 5 2 11 10 5

Table 6.10 List of Various Results for System C

Chapter No. 6 Applications and Results

6-33

6.4.4 Optimisation Results For System D

The results for system D are detailed in Table 6.11. In light of these results, it is

found that the system reliability of 74.3% is optimal for this system since it is

associated with the lowest value of the total loss, 1356 units. Like system B, the

maximum value of the total loss function, ‘LMax’ found in the optimisation process, is

higher compared to the corresponding amount associated with the ‘RMax’. The

total loss amount of ‘RMax’ is approximately just under two and a half times more

than the ‘LOpt’ amount with 33% more associated reliability than the optimum

reliability. The most found value, ‘LMode’, of the loss function is 11% higher than

the ‘LOpt’ with only 3% improvement in associated reliability value than the

optimum.

System Type D

Optimum value of total loss - LOpt 1356

Optimum value of system reliability 74.3%

Maximum value of total loss - LMax 3964

Maximum value of system reliability associated with LMax 97.0%

Mode value of total loss - LMode 1511

Mode value of System Reliability for LMode 77.1%

Maximum value of system reliability - RMax 98.9%

Maximum value of total loss associated with RMax 3166

Average value of total loss - LAvg 1647

Standard Deviation of total loss 249

Coefficient of Variance total loss 15.1%

Average value of System Reliability 75.9%

Standard Deviation of System Reliability 4.9%

Coefficient of Variance System Reliability 6.4%

Table 6.11 Optimisation Results for System D

Chapter No. 6 Applications and Results

6-34

The list of other sub-optimal results is enclosed in Table 6.12 which can be used for

the similar kind of analysis as detailed in section 7.3.1 & 7.3.2 for systems A and B.

NO.

Total

Loss

System

Reliability

Reliability

Investment

Risk of

Failure

Sub-System

One

Sub-System

Two

Sub-System

Three

1 1356 74.3% 620 736 5 6 2 2 3 7 3 3 9

2 1362 66.4% 434 928 3 6 2 2 2 6 2 2 8

3 1364 69.8% 513 850 6 6 2 2 2 6 2 2 8

4 1368 75.5% 669 699 6 6 2 2 2 6 2 2 10

5 1377 73.8% 639 738 6 6 2 2 2 5 2 2 10

6 1379 70.3% 559 820 3 6 2 2 2 5 2 2 10

7 1399 74.3% 659 740 5 6 2 5 2 7 3 3 9

8 1411 75.2% 694 718 6 6 2 2 3 6 6 3 9

9 1426 66.7% 517 909 3 4 2 2 2 5 2 2 10

10 1448 64.9% 498 950 3 3 2 2 2 5 2 2 10

11 1451 74.9% 725 727 5 6 2 4 2 7 6 3 9

12 1478 63.0% 484 994 3 2 2 2 2 5 2 2 10

13 1521 66.9% 616 906 3 2 2 2 2 8 2 2 10

14 1535 87.3% 1158 377 11 2 2 2 2 8 2 2 11

15 1560 87.8% 1193 366 11 2 4 2 2 8 2 2 11

16 1592 89.5% 1268 324 11 2 4 2 2 9 2 2 11

17 1627 76.1% 930 697 5 6 2 5 2 7 9 3 9

18 1704 76.5% 1026 678 11 6 4 2 2 9 2 2 7

19 1843 72.4% 1062 781 5 3 2 5 2 7 11 3 9

20 2467 77.3% 1792 675 3 5 10 9 5 2 11 10 5

Table 6.12 List of Various Results for System D

Chapter No. 6 Applications and Results

6-35

6.5 PARAMETRIC STUDY USING THE RISK

BASED RELIABILITY ALLOCATION METHOD

AND OPTIMISATION ALGORITHM

The optimisation algorithm along with the risk-based reliability allocation method is

applied on all four systems detailed in Table 6.4 and in Fig 6.9 with two variations in

the overall optimisation process from section 6.3. These variations are introduced in

order to perform parametric studies on all four systems individually and as a whole.

The first variation involves using a different choice of a discrete data set of

components, depicted in Table 6.13, and allocating optimal system reliability with

minimum total loss on each of the four systems. The new data set is different because

it exhibits a non-monotonically increasing relationship between cost and reliability

among all alternatives of the nine components, which is shown in Fig 6.16. The two

sets of data are used in order to expound the high level of complexity in selecting an

optimal combination of components, from the large choice of available alternatives

with the aim of efficiently minimising the loss function from equation (6.7). The level

of this already high complexity increases further when the components choice exhibits

a non-monotonically increasing relationship between cost-reliability parameters, as

the results will demonstrate later in the chapter.

The second variation in the optimisation process is introduced by means of using a

different value of the cost of failure amount, ‘C ’, associated with a given system

failure; it is assumed to be a fixed cost ‘C2’ of 1000 units, which is a reduced value

from section 6.3. Using this amount, the risk based reliability allocation is performed

on all four systems by utilising the data from Table 6.1. This type of parametric study

is carried out in the hope that it will benefit engineering systems associated with lower

cost of system failure by closely evaluating the effects of the risk based reliability

allocation process on individual systems, when a large choice of component data is at

hand.

Chapter No. 6 Applications and Results

6-36

Table 6.13 Cost and Reliability Data with non-monotonically increasing values

Component

No.

Reliability

0.001 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99

1
0 14.05 16.3 40.4 67.35 60.7 135.75 137.75 251.05 219.8 390.45 598

2
0 23.65 17.75 32 59.35 48.5 119.6 224.45 303.8 391.95 355.3 554

3
0 9.1 22.35 44.45 71.55 105.1 84.85 168.1 236.75 201.25 396.8 634

4
0 24.35 19.1 29.15 50.45 78.2 117.55 170.9 148.55 247.9 463.75 609

5
0 9.15 21.8 31.95 52 183.25 222.1 158.8 350.3 434.15 539.3 499

6
0 37.8 42.85 63.85 50.8 101.45 243.7 202.05 276.7 370.2 295.15 529

7
0 8.75 28.8 42.8 72.05 66.25 151.2 210.95 189.95 370 482.75 437

8
0 5.45 16.45 36.45 60.7 191.2 230.75 282 354 449.5 572.75 503

9
0 42.05 57.67 83.87 101.9 128.81 164.35 207 210.25 362.8 480.95 423

Chapter No. 6 Applications and Results

6-37

Component Alternatives Showing Non-Monotonically Increasing Relationship
Between Cost and Reliability

0

50

100

150

200

250

300

350

400

450

500

550

600

1 2 3 4 5 6 7 8 9 10 11 12

Component Alternatives

C
o

m
p

o
n

en
tC

o
st

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

m
p

o
n

en
tR

el
ia

b
ili

ty

Component One Component Two Component Three Component Four Component Five

Component Six Component Seven Component Eight Component Nine Component Reliability

Figure 6. 16 Monotonically Increasing Relationship of Cost-Reliability for Data in

Table 6.13

6.5.1 Optimisation Process Using Data Set Showing A
Non-Monotonically Increasing Relationship
Between Cost And Reliability

For each of the four systems, only the core optimisation results are detailed in this

section. All other results including the graphical representation of the effects of

optimisation algorithm on system reliability, total loss, reliability investment and risk

of failure along with the list of sub-optimal results are shown in Appendix V – VIII.

Chapter No. 6 Applications and Results

6-38

6.5.1.1 Optimisation Results For System A

The results for system A are detailed in Table 6.14. In light of these results, it is found

that the reliability of 86.8% is optimum for this system when using the cost-

reliability data from Table 6.13 since it is associated with the lowest amount of total

loss, ‘LOpt’ which is 815 units found by the optimisation algorithm. The maximum

value of the total loss or the loss function, ‘LMax’ is slightly higher than the

corresponding value associated with the maximum level of system reliability, ‘RMax’

found by the algorithm. The most found value, ‘LMode’, of the loss function is very

close to the optimum value, ‘LOpt’ with a very little difference in the respective

level of system reliabilities.

System Type A

Optimum value of total loss - LOpt 815

Optimum value of system reliability 86.8%

Maximum value of total loss - LMax 3008

Maximum value of system reliability associated with LMax 99.0%

Mode value of total loss - LMode 845

Mode value of System Reliability for LMode 86.2%

Maximum value of system reliability - RMax 99.5%

Maximum value of total loss associated with RMax 2901

Average value of total loss - LAvg 1079

Standard Deviation of total loss 241

Coefficient of Variance total loss 22.3%

Average value of System Reliability 89.3%

Standard Deviation of System Reliability 3.5%

Coefficient of Variance System Reliability 3.9%

Table 6.14 Optimisation Results for System A

Chapter No. 6 Applications and Results

6-39

6.5.1.2 Optimisation Results For System B

The results for system B are detailed in Table 6.15. In light of these results, it is found

that the reliability of 85.5% associated with 905 units towards the ‘LOpt’ is

optimum for this system when using with the cost-reliability data from Table 6.13.

Also interesting to note are the types of other observations detailed in the result table.

The maximum value of the total loss function, ‘LMax’ found in the optimisation

process, is significantly higher (16%) than the corresponding value associated

with ‘RMax’. The latter is associated with total loss of 2588 units, which is still nearly

three times the ‘LOpt’ amount for being 16% more than the optimum reliability. The

most found value, ‘LMode’, of the loss function is about 13% higher than the

optimum value, ‘LOpt’, and is associated with around 6% worse reliability than the

optimum solution.

System Type B

Optimum value of total loss - LOpt 905

Optimum value of system reliability 85.5%

Maximum value of total loss - LMax 3096

Maximum value of system reliability associated with LMax 93.1%

Mode value of total loss - LMode 1031

Mode value of System Reliability for LMode 80.0%

Maximum value of system reliability - RMax 99.7%

Maximum value of total loss associated with RMax 2588

Average value of total loss - LAvg 1259

Standard Deviation of total loss 246

Coefficient of Variance total loss 19.5%

Average value of System Reliability 85.9%

Standard Deviation of System Reliability 5.6%

Coefficient of Variance System Reliability 6.5%

Chapter No. 6 Applications and Results

6-40

Table 6.15 Optimisation Results for System B

6.5.1.3 Optimisation Results For System C

The results for system C are detailed in Table 6.16. In light of these results, it is found

that the system reliability of 84.2% is optimal for this system since it is associated

with the lowest value of the total loss, 813 units, when used with the cost-reliability

data from Table 6.13. Similar to system A, the maximum value of the total loss

function, ‘LMax’ found in the optimisation process, is slightly higher (4%) than the

corresponding value of the loss function for ‘RMax’. In comparison with ‘LOpt’, the

amount of ‘LMax’ is around four times higher with 16% increased in associated

reliability than the optimum. The most found value, ‘LMode’, of the loss function is

only 4% higher than the ‘LOpt’ with around 3% lower associated reliability value

than the optimum.

System Type C

Optimum value of total loss - LOpt 813

Optimum value of system reliability 84.2%

Maximum value of total loss - LMax 3038

Maximum value of system reliability associated with LMax 97.9%

Mode value of total loss - LMode 851

Mode value of System Reliability for LMode 81.5%

Maximum value of system reliability - RMax 99.9.0%

Maximum value of total loss associated with RMax 2901

Average value of total loss - LAvg 1076

Standard Deviation of total loss 241

Coefficient of Variance total loss 22.4%

Average value of System Reliability 87.7%

Standard Deviation of System Reliability 3.9%

Coefficient of Variance System Reliability 4.5%

Chapter No. 6 Applications and Results

6-41

Table 6.16 Optimisation Results for System C

6.5.1.4 Optimisation Results For System D

The results for system D are detailed in Table 6.17. In light of these results, it is found

that the system reliability of 86.2% is optimal for this system since it is associated

with the lowest value of the total loss, 1184 units. The maximum value of the total

loss function, ‘LMax’ found in the optimisation process, is higher compared to the

corresponding amount associated with the ‘RMax’. The total loss amount of ‘RMax’ is

approximately just under two and a half times more than the ‘LOpt’ amount with

15% more associated reliability than the optimum reliability. The most found

value, ‘LMode’, of the loss function is very close to ‘LOpt’ and the associated

reliability is not very different from the optimum.

System Type D

Optimum value of total loss - LOpt 1184

Optimum value of system reliability 86.2%

Maximum value of total loss - LMax 3293

Maximum value of system reliability associated with LMax 76.3%

Mode value of total loss - LMode 1209

Mode value of System Reliability for LMode 85.0%

Maximum value of system reliability - RMax 99.5%

Maximum value of total loss associated with RMax 2751

Average value of total loss - LAvg 1504

Standard Deviation of total loss 266

Coefficient of Variance total loss 17.7%

Average value of System Reliability 82.5%

Standard Deviation of System Reliability 8.3%

Coefficient of Variance System Reliability 10.0%

Chapter No. 6 Applications and Results

6-42

Table 6.17 Optimisation Results for System D

Chapter No. 6 Applications and Results

6-43

6.5.2 Optimisation Process Using Lower Cost Of
Failure

In this section, the results from the optimisation process are presented using a lower

cost of failure amount, ‘C2’ (1000 units) for all four systems by utilising the data

from Table 6.1. For each of the four systems, the core optimisation results are detailed

jointly in this section (Table 6.18). All other results including the graphical

representation of the effects of optimisation algorithm on total loss and system

reliability along with the list of sub-optimal results are shown in Appendix IX, for

each of the four systems.

System Type A B C D

Optimum value of total loss - LOpt 453 553 413 682

Optimum value of system reliability 70.2% 64.3% 70.0% 44.2%

Maximum value of total loss - LMax 3699 3579 3481 3584

Maximum value of system reliability associated with LMax 99.3% 93.1% 100.0% 92.8%

Mode value of total loss - LMode 522 644 1215 1429

Mode value of System Reliability for LMode 68.8% 63.1% 88.5% 72.4%

Maximum value of system reliability - RMax 99.9% 99.7% 100.0% 99.2%

Maximum value of total loss associated with RMax 3481 2975 3481 2648

Average value of total loss - LAvg 966 1085 988 1189

Standard Deviation of total loss 353 323 336 310

Coefficient of Variance total loss 36.5% 29.8% 34.1% 26.1%

Average value of System Reliability 80.1% 74.9% 83.3% 62.8%

Standard Deviation of System Reliability 7.5% 7.5% 4.0% 9.3%

Coefficient of Variance System Reliability 9.4% 10.0% 4.8% 14.8%

Table 6.18 Optimisation Results for All Systems Using Lower Cost of Failure

Chapter No. 6 Applications and Results

6-44

6.5.3 Parametric Study

The results obtained from the applications of the optimisation algorithm on all four

systems with the two variations, as stated above, are discussed together with the set of

results from section 6.3. The structure of the parametric study is therefore based on

the following grounds:

6.5.3.1 Comparisons Of Results From The Two Cost-Reliability
Data Tables

The results for all four systems are compared from the two data sets in Table 6.19.

Each column represents the proportional change in the values of a system by taking

into account the values from the appropriate results tables (detailed in the second row)

for this system.

System Type A B C D

Source Tables 6.5 & 6.14 6.7 & 6.15 6.9 & 6.16 6.11 & 6.17

Optimum value of total loss - LOpt -7.1% -8.7% 4.1% -12.7%

Optimum value of system reliability 7.9% 16.1% 5.5% 16.1%

Mode value of total loss - LMode -3.9% 2.2% -12.4% -20.0%

System Reliability for LMode 5.0% 1.1% -5.1% 10.2%

Average value of total loss- LAvg -17.3% -12.3% -8.4% -8.7%

Standard Deviation of total loss -13.0% -6.8% -18.4% 7.0%

Coefficient of Variance total loss 5.2% 6.2% -10.9% 17.2%

Average value of System Reliability 2.5% 5.7% 1.5% 8.7%

Standard Deviation of System Reliability -28.4% -11.9% 10.9% 69.1%

Coefficient of Variance System
Reliability -30.1% -16.7% 9.3% 55.6%

Table 6.19 Proportional Changes in Results of All Systems from the Two Data Sets

Chapter No. 6 Applications and Results

6-45

The proportional changes specified in the above table are interpreted in Table 6.20 in

order to explain the underlying changes in the values of each of the four systems.

System Type A B C D

Optimum value

of total loss - LOpt

Reduction in

Total Loss

Reduction in

Total Loss

Increment in

Total Loss

Reduction in

Total Loss

Optimum value

of system reliability

Improvement in

Reliability

Improvement in

Reliability

Improvement

in Reliability

Improvement

in Reliability

Mode value

of total loss - LMode

Reduction in

LMode

Increment in

LMode

Reduction in

LMode

Reduction in

LMode

System Reliability

for LMode

Improvement in

Reliability

Improvement in

Reliability

Deterioration

in Reliability

Improvement

in Reliability

Average value

of total loss- LAvg

Reduction in

LAvg

Reduction in

LAvg

Reduction in

LAvg

Reduction in

LAvg

Standard Deviation

of total loss

Reduction in

Value

Reduction in

Value

Reduction in

Value

Reduction in

Value

Coefficient of Variance

total loss

Increment in

Value

Increment in

Value

Reduction in

Value

Increment in

Value

Average value

of System Reliability

Improvement in

Reliability

Improvement in

Reliability

Improvement

in Reliability

Improvement

in Reliability

Standard Deviation of

System Reliability

Reduction in

Value

Reduction in

Value

Increment in

Value

Increment in

Value

Coefficient of Variance

System Reliability

Reduction in

Value

Reduction in

Value

Increment in

Value

Increment in

Value

Table 6.20 Explanations of the Proportional Change in the Values of each System

Chapter No. 6 Applications and Results

6-46

6.5.3.2 Comparisons Of Results From Two Different Costs Of
Failure Amount

The results for all four systems generated from two different costs of failure amounts

(section 6.4.1-4 and section 6.5.2) compared in Table 6.21. Each column represents

the proportional change in the values of a system by taking into account the values

from the appropriate results tables (detailed in the second row) for this system.

System Type A B C D

Source Tables 6.5 & 6.18 6.7 & 6.18 6.9 & 6.18 6.11 & 6.18

Optimum value of total loss - LOpt -48.3% -44.2% -47.2% -49.7%

Optimum value of system reliability -12.8% -12.8% -12.3% -39.1%

Mode value of total loss - LMode -40.6% -36.1% 25.2% -5.4%

System Reliability for LMode -16.2% -20.3% 3.0% -6.1%

Average value of total loss- LAvg -26.0% -24.4% -15.9% -27.8%

Standard Deviation of total loss 27.6% 22.6% 13.8% 24.8%

Coefficient of Variance total loss 72.4% 62.1% 35.4% 72.8%

Average value of System Reliability -8.0% -7.8% -3.6% -17.3%

Standard Deviation of System Reliability 54.4% 18.9% 12.9% 90.5%

Coefficient of Variance System
Reliability 67.8% 29.0% 17.1% 130.2%

Table 6.21 Proportional Changes in Results of All Systems from the Two Cost of Failure
Amounts

An interesting observation is the proportional change in the optimum result with

respect to the mode and average values of the total loss, depicted in Table 6.22. All

results from this section are discussed in detail in the next chapter..

Chapter No. 6 Applications and Results

6-47

C1 C2

A
LMode -0.18% -13.14%

LAvg -32.76% -53.05%

B
LMode -1.66% -14.14%

LAvg -30.93% -49.02%

C
LMode -19.51% -66.03%

LAvg -33.46% -58.20%

D
LMode -10.25% -52.30%

LAvg -17.65% -42.68%

Table 6.22 Proportional Changes in Optimum with respect to Mode and Average Values

6.5.3.3 Comparisons Of Results For Establishing The Best
System Topology

Given a choice of various system designs and large selection of components for each

sub-system, the risk-based reliability allocation method together with the optimisation

algorithm can be used to select optimal system design (topology) from all available

choices. This section provides analysis of such nature using the optimisation results

acquired for all four systems (Fig. 6.9) by utilising the two different cost-reliability

data tables (Table 6.1 & 6.13) and cost of failure amounts (section 6.5.2) for

determining the optimal system topology.

With the view of the structure of this chapter, the optimal topology selection process

is presented in the following three steps:

 Optimal Topology Selection Using First Data Table

 Optimal Topology Selection Using Second Data Table

 Optimal Topology Selection Using Lower Cost of Failure

Chapter No. 6 Applications and Results

6-48

Optimal Topology Selection Using First Data Table

The results for each system highlighted in Table 6.25 and in Fig. 6.17 show that the

system C is associated with the least amount of total loss in comparison to all other

systems in the table. Therefore, if a choice is available, system C can be selected as

the optimal topology.

System Type A B C D

Optimum value of total loss 877 992 782 1356

Optimum value of system reliability 80.5% 73.7% 79.8% 74.3%

Table 6.23 Optimal Topology Selection Using First Data Table

Topology Comparison Using the First Cost-Reliability Data Set

C

D

B

A

D

A

B

C

0

200

400

600

800

1000

1200

1400

1600

System A System B System C System D

O
p

ti
m

u
m

A
m

o
u

nt
o

fT
o

ta
lL

o
ss

70.0%

72.0%

74.0%

76.0%

78.0%

80.0%

82.0%

O
pt

im
u

m
L

ev
el

o
fS

ys
te

m
R

el
ia

b
ili

ty

Optimum Amount of Total Loss Optimum Level of System Reliability

Figure 6. 17 Topology Comparison Using the First Cost-Reliability Data Set

Chapter No. 6 Applications and Results

6-49

Optimal Topology Selection Using Second Data Table

The results for each system highlighted in Table 6.24 and in Fig. 6.18 show that both

system A and system C are competing very closely for the optimal spot. The amount

of total loss associated with each of the two systems is lower than the

corresponding amounts of system B and system D and differs only slightly from

each other. Using this information only, either of the two systems can be selected as

optimal with bias decision toward system A for being slightly better in the level of

reliability.

System Type A B C D

Optimum value of total loss 815 905 813 1184

Optimum value of system reliability 86.8% 85.5% 84.2% 86.2%

Table 6.24 Optimal Topology Selection Using the Second Data Table

Topology Comparison Using the Second Cost-Reliability Data Set

A

B

D

C

C

B

A

D

600

700

800

900

1000

1100

1200

1300

System A System B System C System D

O
p

ti
m

u
m

A
m

o
u

n
t

o
f

T
o

ta
lL

o
ss

79.5%

80.5%

81.5%

82.5%

83.5%

84.5%

85.5%

86.5%

87.5%

88.5%

89.5%

O
p

ti
m

u
m

L
ev

el
o

f
S

ys
te

m
R

el
ia

b
ili

ty

Optimum Amount of Total Loss Optimum Level of System Reliability

Figure 6. 18 Topology Comparison Using the Second Cost-Reliability Data Set

Chapter No. 6 Applications and Results

6-50

Optimal Topology Selection Using Lower Cost Of Failure Amount

The results for each system highlighted in Table 6.25 and in Fig. 6.19 show that

system C is associated with the least amount of total loss in comparison to all other

systems in the table. Therefore, if a choice is available, system C can be selected as

the optimal topology.

System Type A B C D

Optimum value of total loss 453 553 413 682

Optimum value of system reliability 70.2% 64.3% 70.0% 45.2%

Table 6.25 Optimal Topology Selection Using Lower Cost of Failure Amount

Topology Comparison Using Lower Cost of Failure Amount

A

B

D

C

C
B

A

D

300

350

400

450

500

550

600

650

700

750

System A System B System C System D

O
p

ti
m

u
m

A
m

o
u

n
t

o
f

T
o

ta
lL

o
ss

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

O
p

ti
m

u
m

L
ev

el
o

f
S

ys
te

m
R

el
ia

b
ili

ty

Optimum Amount of Total Loss Optimum Level of System Reliability

Figure 6. 19 Topology Comparison Using the Lower Cost of Failure Amount

The topology optimisation can be further extended by assuming a situation where a

selection of the best system design across all available results (derived from the two

Chapter No. 6 Applications and Results

6-51

data sets and the different cost of failure amounts), is required. Understandably, the

solution for this would also be system C. With this view in mind, Table 6.26 is

presented with yet more useful information about the different levels of total cost

associated with various system designs, right to the point of the selected

alternatives for all components with corresponding levels of system reliability. This

information can be of great interest to reliability engineers in analysing various

competing topologies with the view of system reliability levels with corresponding

total cost associated with system failures. Various adaptation of Table 6.26, which

is specific to the results from section 6.5.2, can be generated using the research

methodology including all combinations of the parametric studies discussed in this

section. For example, Table 6.27 which is created for set of results in section 6.5.1.

No.
Results

Topology
Type

System
Reliability

Total
Loss

Best
Configuration

1 C 70.0% 412.8 2-2-2 2-2-2 4-3-2

2 C 74.4% 435.6 3-2-2 5-2-2 4-3-2

3 C 77.8% 464.5 2-4-3 3-2-5 3-3-4

4 C 79.6% 507.4 3-2-4 3-2-6 4-3-4

5 C 81.3% 707.4 3-2-2 3-2-6 4-3-9

6 A 83.8% 742.1 2-6-2 4-3-4-6 4-8

7 C 84.3% 771.9 3-3-2 5-2-7 4-3-9

8 C 86.3% 804.0 5-3-2 5-2-7 4-3-9

9 C 88.5% 948.0 6-3-5 5-2-8 4-6-5

10 C 89.0% 960.8 6-4-5 5-2-8 4-6-5

11 A 90.1% 1056.9 7-5-2 3-2-2-3 6-11

12 C 95.9% 1859.8 3-5-10 9-5-2 11-10-15

13 A 94.9% 1885.4 3-5-10 9-5-2-11 10-5

Table 6.26. Best results for risk-based reliability allocation on all topologies

Chapter No. 6 Applications and Results

6-52

Result

No.

System

Type

Total

Loss

System

Reliability

Reliability

Investment

Risk of`

Failure

System

Configuration

1 C 813 84.2% 377 437 6 6 3 5 4 2 6 3 2

2 A 815 86.8% 446 369 6 6 3 3 2 5 2 3 9

3 C 821 87.9% 479 342 6 6 3 4 4 6 6 3 5

4 C 829 86.0% 436 393 6 6 3 5 4 2 6 3 5

5 C 841 83.5% 384 457 6 6 3 4 4 4 2 3 5

6 A 843 87.8% 498 345 3 6 7 3 2 5 4 3 9

7 C 843 88.3% 513 330 6 6 3 5 4 4 2 3 9

8 C 843 87.5% 492 351 6 6 3 4 4 4 2 3 9

9 C 849 80.7% 321 528 3 6 3 4 4 4 2 3 4

10 C 849 83.3% 387 463 6 6 3 5 4 4 2 3 4

11 A 854 84.7% 427 427 6 4 3 4 2 2 2 3 9

12 C 856 84.6% 424 432 6 6 3 5 4 2 5 3 4

13 A 859 86.8% 484 374 6 6 3 5 2 2 3 3 9

14 A 876 85.5% 468 408 6 4 3 5 2 2 3 3 9

15 A 885 84.3% 447 438 3 4 4 2 2 5 4 3 9

16 C 886 81.1% 363 523 3 4 3 5 4 2 5 3 4

17 A 886 81.9% 389 497 3 3 3 5 2 2 2 3 9

18 A 888 82.8% 411 476 3 3 4 5 2 2 2 3 9

19 C 890 77.5% 280 609 3 3 3 3 4 4 2 3 4

20 C 895 78.3% 304 591 4 3 3 3 4 4 2 3 4

21 B 905 85.5% 496 409 8 6 2 4 2 2 2 2 9

22 C 914 76.5% 278 635 2 3 3 3 4 4 2 3 4

23 B 943 92.1% 722 221 8 6 2 4 3 2 2 2 12

24 B 955 84.7% 518 437 6 7 2 2 2 5 3 2 9

25 B 955 91.4% 717 238 8 6 2 2 3 2 2 2 12

Table 6.27 Best results for risk-based reliability allocation on all topologies from section
6.5.1

Chapter No. 6 Applications and Results

6-53

It is useful to point out that the results produced in this chapter are a snap-shot of only

five executions on average per system, of the computer program with the optimisation

algorithm. Each time the program was executed, it ran with different and at times

increasing values of the OA parameters. For example, the final run in system A was

executed with parameter values: ;4RUNp (No. of generations) ;100sizep (No. of

unique solutions in a population) ;100RUNC (No. of crossover cycles) and

;400RUNM (No. of mutation cycles), performing 6000 simulations on average (out

of 129 possible solutions) in around seven minutes. In all the five executions per

system, the run time increased linearly with the increased complexity of the

optimisation algorithm which demonstrates the efficiency of this algorithm. Figure

6.20 details the execution times of the computer program using all four systems.

Run Time of the Optimisation Algorithm - Linear Curve

150

200

250

300

350

400

450

500

2900 3400 3900 4400 4900 5400 5900 6400 6900 7400 7900

Number of Simulations

T
im

e
in

S
ec

o
n

d
s

Rum Time Graph of OA

Figure 6. 20 Run time of the optimisation algorithm

Chapter No. 7 Discussion

7-1

DISCUSSION

This chapter provides discussion on the methodology developed in this research
along with its application and results, as detailed in the previous chapter. Based on
the principal of genetic search, the research methodology combines the exploration
abilities of genetic search with skilful exploitation of hill climbing procedures and
introduces a different model of evolution compared to classical GA. The main
features of this model are the generation of populations with unique chromosomes,
working exclusively with the elite chromosomes and introducing genetic variations
in the elite chromosomes using prudently designed genetic operators for ensuring
rapid and efficient convergence to optimum or near optimum region of the search
space. The two main reasons for implementing these notions in the optimisation
algorithm are the non-linear cost-reliability relationship and the extremely large
search space. A comprehensive detail of this method is presented in Chapter 5. The
application of the methodology is demonstrated in Chapter 6 (along with appendix
II-IX) by using four types of system configurations which are commonly found in the
reliability literature and the results are discussed in detail in this chapter.

Chapter No. 7 Discussion

7-2

7.1 OBSERVATIONS FROM THE OPTIMISATION

PROCESS

The results obtained in the previous chapter from the application of the research

methodology together with the risk based reliability allocation method, on the four

systems, from Fig. 6.9, are discussed in this section. There are three main categories

of these results depending on the amount assumed towards the cost of failure and the

type of cost-reliability data set used (Table 6.1 and Table 6.13), as shown in Fig 7.1.

Figure 7.1 Structure of the Optimisation Process

Optimisation Process

(Fundamental Process)

First
Cost-Reliability Table

&

First
Cost of Failure Amount

(Fundamental Process)

(Second Process of
Optimisation)

Second
Cost-Reliability Table

&

First
Cost of Failure Amount

(To Study Changes in
Reliability Investment)

(Third Process of
Optimisation)

First
Cost-Reliability Table

&

Second
Cost of Failure Amount

(To Study Changes in
Risk of Failure)

Chapter No. 7 Discussion

7-3

7.1.1 Fundamental Process of Optimisation

The first optimisation process using Table 6.1 and cost of failure amount, ‘ 1C ’, is

the fundamental process for showing the viability of the research methodology for

optimising the four systems using the risk based reliability allocation method in the

presence of a large choice of component alternatives, available for each system. The

optimisation process, described in section 6.3, therefore, details the optimal

combination of alternatives selected for each system associated with the minimum

total cost, ‘LOpt’.

Tables 6.5, 6.7, 6.9 and 6.11 are the main results table showing the statistic of the

optimisation process for all systems, respectively. The values such as maximum total

loss, ‘LMax’, mode value of the total loss, ‘LMode’, and average total loss, ‘LAvg’,

along with the corresponding values of the reliabilities, are detailed in each of the

four tables in order to highlight the variations in these results for important reasons

such as:

 To show that maximum reliability can be associated with maximum total loss

(system A and C) and maximum total loss is not always associated with

maximum system reliability; systems such as B and D reveal that maximum

system reliability, ‘RMax’ is in fact linked with lower values of the total loss

compared to ‘LMax’.

 To understand how close is the value of ‘LOpt’ identified by the optimisation

algorithm, in proportion with the most found value of the total loss, ‘LMode’.

This is useful in working out the complexity of the system and also reflects

the efficiency of the algorithm in exploring the optimal solution.

Chapter No. 7 Discussion

7-4

 For a general expectation of the total loss associated with the system

reliability, the average values of the total loss, ‘LAvg’ and system reliability

are also computed in the optimisation process for each system. These results

along with the standard deviations for the two values can be used for

performing many statistical analyses on the sample population and for

generating probabilistic distributions. These analysis are not part of this

research however, the value of ‘LAvg’ for each system is taken into account

for comparing the corresponding value of the ‘LOpt’ (Table 6.21 – 6.24).

While Tables 6.5, 6.7, 6.9 and 6.11 highlight the optimum result for systems A – D

respectively, the optimisation algorithm, being a population based search method,

also produces a list of other sub-optimal solutions which can be of great interest to a

reliability analyst for gaining better understanding of the current system. The results,

shown in Tables 6.6, 6.8, 6.10 & 6.12, are useful in studying different levels of

reliability for respective values of the total loss function along with the important

information concerning the actual configuration of the system by illustrating the

precise description of the chosen alternatives of all components. Hence, with a

possible flexibility in the overall budget constraint, the required level of system

reliability can be adjusted with the view of the associated total loss from system

failure.

However, it is very important for a reliability analyst to understand the complex

nature of cost-reliability relationship before choosing the right combination of

components from the given alternatives. As can be seen in these result tables (e.g.

Table 6.6), the amount of total loss is different for different levels of system

reliability and both values fluctuate throughout without showing any obvious trend.

Furthermore, it can be observed from the same tables that highest levels of system

reliability can also be associated with the highest amount of total loss (systems A &

B); increasing the reliability inappropriately can also increase the losses from failures

despite reducing the probability of failure, as mentioned in Todinov (2004). It is,

therefore, very difficult and challenging to analytically estimate the optimum level of

Chapter No. 7 Discussion

7-5

system reliability while keeping the amount of total loss down to a minimum

possible value for a system consisting of many components with a large choice of

available alternatives.

7.1.2 Second Process of Optimisation

The observations from the first optimisation process emphasise the difficulty in

estimating the minimum value of the total loss function because of the complexity in

the relationship between cost and reliability. In order to have a closer look at the

level of difficulty in minimising the loss function, the optimisation process is

repeated twice, with two variations as detailed in section 6.4.

The first variation involves using a different data set (Table 6.13), showing a non-

monotonically increasing relationship between cost and reliability, among the given

alternatives of the components. The table is one example of many arbitrary ways in

which such data can be created for experimental purposes. The objective of using

such data is to observe the impact of reliability investment, ‘Q ’, on the loss function,

as stated in equation (6.7). Because ‘Q ’ is the total cost of the selected alternatives

of the components which is added to the risk of failure amount, ‘ K ’, for producing

the total loss figure, using the second data set creates more opportunities for the

optimisation process for producing better values of the loss function since cheaper

components with higher reliabilities can be selected with higher probabilities when

using the second data table. As a result, the total cost of the selected components will

generally not increase in the same proportion as it would if a first data set is used. At

the same time, the system reliability will be improved in most cases, because of the

increase in the individual reliability of the components, which will subsequently

decrease the risk of failure amount; the total loss figure will therefore, be smaller in

more occurrences than observed previously in the first optimisation process.

Chapter No. 7 Discussion

7-6

The results generated in the parametric study detailed in section 6.4.1, reflect this

change in the values of the loss function. Table 6.19 shows that the values of the

optimum losses for most of the systems from section 6.3 are decreased when the

second cost-reliability data is used (Table 6.13). This is also shown graphically in

Fig. 7.2. The corresponding values of the system reliabilities also appeared to be

improved with significant reduction in the values of ‘LMode’ and ‘LAvg’, in general.

Values of Total Loss and System Reliability in All Systems
Using Two Different Data Tables

700

1100

1500

1900

System A System B System C System D

T
o

ta
l

L
o

ss

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

S
ys

te
m

R
el

ia
b

il
it

y

Total Loss From Table One Total Loss From Table Two

System Reliability From Table One System Reliability From Table Two

Figure 7.2 Effects of the Two Cost-Data Tables on Total Loss and System
Reliability Values in All Four Systems

Because of the non-linear relationship between cost and reliability, the coefficient of

variances for both average total loss and average system reliability appears to

fluctuate consistently. A possible reason for this may be the slightly less cost of

extremely reliable alternatives in the second data table which allows more flexibility

in choosing better components (more reliable) without increasing the cost associated

towards reliability investment (Q) in the same proportion as seen in the results from

the first data table. As a result, the total loss function from equation (6.7) can have a

number of good solutions for higher levels of system reliabilities, as observed in the

comparison table. An interesting observation is the proportional change in the

Chapter No. 7 Discussion

7-7

optimum result with respect to the mode and average values of the total loss as

shown in Tables 7.1 & 7.2.

System Type A B C D

Proportion change in LOpt w.r.t LMode -0.18% -1.66% -19.51% -10.25%

Proportion change in LOpt w.r.t LAvg -32.76% -30.93% -33.46% -17.65%

Table 7.1 Proportional Change in Optimum Result from the First Data Table

System Type A B C D

Proportion change in LOpt w.r.t LMode -3.48% -12.18% -4.37% -2.06%

Proportion change in LOpt w.r.t LAvg -24.43% -28.10% -15.86% -39.82%

Table 7.2 Proportional Change in Optimum Result from the Second Data Table

These results show that it is very difficult to predict optimal combination of

component for minimising the loss function as the optimum value is generally too far

below the average values of the total loss in all systems using the two different cost-

reliability data tables. However, the mode values of the loss function are generally

closer to the optimum value, which reflects the efficiency of the optimisation

algorithm for effectively searching the search space for promising solutions.

7.1.3 Third Process of Optimisation

The second variation in the fundamental optimisation process of section 6.3 is

introduced by means of using a different value of the cost of failure amount, ‘ 2C ’,

Chapter No. 7 Discussion

7-8

associated with a given system failure; it is assumed to be 1000 units, which is a

reduced value from the one used in section 6.3 (1 2500C  units). The objective of

using different cost of failure amounts is to observe the impact of risk of failure,

‘ K ’, on the loss function stated in equation (6.7). From equation (6.3), it can be seen

that ‘ K ’ is derived from the product of the probability of failure and the cost given

failure ‘ 2C ’. Therefore, the reduction in the ‘ 2C ’ amount will reduce the size of ‘ K ’

and since the latter constitutes to the value of the total loss directly, along with the

reliability investment, ‘ Q ’, the effect of reduced cost associated with a given failure

will reflect the effect of ‘ K ’ on the loss function. In view of this notion, using ‘ 2C ’

will increase the chances of using cheaper components with lower levels of

reliability (Table 6.1) for minimising the objective function from equation (6.7). This

is because lower cost of the components along with the lower risk of failure will

produce lower values of the loss functions.

The result Table 6.21 from section 6.4.3.2 is produced by taking into account the

combined results of section 6.3 and 6.4.2. The table shows that using a lower value

of the cost of failure amount indeed decreases the total losses from system failures,

also presented graphically in Fig. 7.3. All four systems, therefore show significant

reduction in the optimum values of the total loss compared to the corresponding

values calculated using a higher cost of failure amount. The other noticeable result is

the reduction in the values of system reliabilities associated with the optimum values

of total loss for each of the four systems. This can be explained by the same notion as

stated above; cheaper less reliable component alternatives have relatively higher

chances of selection because of the reduced amount. ‘ 2C ’, associated with a given

system failure, which reduces the overall system reliability.

The same observations generally hold for the values of ‘LMode’ and ‘LAvg’ and the

associated reliabilities. The coefficient of variances for both average total loss and

average system reliability appears to be very high in the above result table. This can

be justified by the explanation that the average values of these variables are lower

when lower cost of failure is used but the corresponding standard deviations are

proportionally higher. The average values, ‘LAvg’, of loss function are lower in all

Chapter No. 7 Discussion

7-9

systems because of the reduced risk of failure amount associated with a given failure;

the use of cheaper components alternatives with lower reliability levels offers more

flexibility in producing lower values of the loss function without increasing the cost

associated with the reliability investment (Q) and in particular the risk of failure.

The latter will be in lower proportion compared to the corresponding amount used in

the results from section 6.3 because of less cost of failure associated with each

failure. As a result, the total loss function can have a number of good solutions with

lower levels of system reliabilities, as observed in the comparison Table 6.21.

Values of Total Loss and System Reliability in All Systems
Using Different Cost of Failure Amounts

200

700

1200

1700

System A System B System C System D

T
o

ta
l

L
o

ss

-8.0%

2.0%

12.0%

22.0%

32.0%

42.0%

52.0%

62.0%

72.0%

82.0%

S
ys

te
m

R
el

ia
b

il
it

y

Total Loss From C1 Total Loss From C2

System Reliability From C1 System Reliability From C2

Figure 7.3 Effects of the Two Cost of Failure Amounts on Total Loss and
System Reliability Values in all Four Systems

An interesting observation is the proportional change in the optimum result with

respect to the mode and average values of the total loss, depicted in Table 6.22.

These results show that it is very difficult to select an optimal combination of

component for minimising the loss function as the optimum value is generally two

far below both the average and mode values of the total loss in all systems using two

Chapter No. 7 Discussion

7-10

different values for cost of failure amounts (1C > 2C). The problem is compounded

for optimisation process using ‘ 2C ’, with the view of the mode values of the loss

function; for systems C and D, the optimum value is well below the commonly found

solution of the loss function, for example. The optimisation of such reliability

systems using a large selection of component alternatives can therefore be deemed as

a very difficult process, requiring efficient techniques for exploring the optimum

solution in a complex search space; for that reason, the methodology presented in

this research provides this opportunity.

7.2 COMPARATIVE ANALYSIS OF THE

OPTIMISATION ALGORITHM

The aim of this research has been to extend the recently published work of Todinov

(2004, 2006) on risk based reliability allocation, by demonstrating its application on

complex, large scale non-repairable engineering systems. Therefore, being part of a

relatively new research, it is very difficult to perform the comparative analysis of the

results obtained in the preceding sections with other published work in the field of

risk based reliability allocation. The optimisation performed here is fundamentally

composed of two blocks.

7.2.1 Risk Based Reliability Allocation

First of which is to estimate components reliability in view of the risk based

reliability allocation approach for a given system. In general, the conventional

approach of reliability optimisation methods to-date appears to be driven mostly by

the principle of setting the highest level of system reliability for a given cost.

However, the objective of the risk-based reliability allocation technique is driven

solely by the amount of ‘total losses associated with a system failure’. Many of the

popular reliability allocation strategies do not take into account the total losses from

Chapter No. 7 Discussion

7-11

failures during reliability allocation. Since 1977, there have been a significant

number of articles and books such as, Tillman et al. (1977, 1980), Jensen (1970),

Tzafestas (1980), Misra (1986, 1992), Xu et al. (1990), Aggarwal (1993), Brown et

al. (1997), Yang et al. (1999), Cantoni & Zio (1999), Kuo & Prasad (2000b), Zio

(2000), Guikema and Pate-Cornell (2002), Elegbede et al. (2003), Pham (2003),

Wattanapongsakorn & Levitan (2004), Meziane et al. (2005), Yalaoui et al. (2004,

2005) and Kuo & Wan (2007), related to reliability optimisation involving costs.

Most of the methods described in these sources, however, are related to either

maximising the reliability of a system given an overall budget constraint (a

maximum acceptable total cost of resources toward the reliability maximisation) or

minimising the total cost of resources necessary to achieve a specified level of

system reliability. For occasional instances where a balance between cost and

reliability is targeted, the objective has not been to minimise the risk of failure, as in

the risk based reliability approach. A comprehensive comparison of the risk based

reliability allocation method with other published work is provided in section 2.3.

7.2.2 Optimisation using Evolutionary Algorithm

The second block is to use an evolutionary algorithm as the research methodology

which provides a structured approach for allocating optimal system reliability by

using the risk based reliability method when a large choice of component alternatives

is available. The approach is based on the realisation that the relationship between

the component cost and reliability is generally very complex and unpredictable

particularly for estimating the amounts of total loss (sum of reliability investment

and risk of failure) associated with non-repairable system failures. As explained in

section 4.5, genetic search has been gaining wide interests from the researchers in

solving difficult optimisation problems especially in the field of reliability

engineering and system designs. Being based on the genetic search principle, the

method of optimisation presented in this research is fundamentally similar to the

articles listed in section 4.5; however, there are some significant variations which

make it considerably different. These are explained below:

Chapter No. 7 Discussion

7-12

7.2.2.1 Population Structure

There is only one population maintained in this method at all times unlike traditional

genetic algorithms where at least two populations are used. Examples of some of

these populations are, an initial population of randomly (in general) selected

chromosomes, separate populations for holding parent and offspring chromosomes,

population in the form of a breeding pool and so on (Goldberg, 1989; Alander,

1999). The format of the population used in OA is similar to the model of steady

state population used by Faulkenauer (1998) for solving difficult grouping problems.

He also used the tournament selection method for determining the order of replacing

the worst solutions with the newly formed offspring with better fitness, instead of

using the common approach of proportional selection (see Chapter 3). Despite

possessing similarities with the population structure used by Faulkenauer, the

population structure in the research methodology is still considerably different in that

it begins with a predefined number of chromosomes (population size) and by the end

of an iteration, it is left with only two best solutions. Both members of the population

experience genetic variations unlike Faulkenauer where only some of the randomly

selected members of the population are genetically modified. The similarities of the

population structure of the OA can also be compared with the method used by

Syswerda (1989) because of the steady state format utilised in both methods.

However, the approach used by Syswerda is different in the sense that in his method,

proportional selection is used for selecting parents and replacing worst solutions with

new offspring which are found as the result of applying genetic operation on only

two individuals per generation. The key benefit of using just one population in the

OA besides simplicity is the reduction in computational effort required by the

algorithm for processing the search in shorter span of time with less memory

requirements.

7.2.2.2 Chromosome Structure

The optimisation algorithm uses the approach of representing the chromosomes with

a real number encoding method. Traditionally, chromosomes have been coded as

binary strings (Goldberg, 1989) but for combinatorial optimisation problems, an

Chapter No. 7 Discussion

7-13

encoding using integer values can be more efficient (Holland, 1975; Spall 2003). The

general structure of the chromosome in OA consists of a string containing ‘ M ’ loci

for genes (equal to the total number of components) with ‘ N ’ alleles representing

the integer value up to the available number of alternatives, for corresponding genes

(component). This approach is similar to Coit and Smith (1996) however, the

interpretation of the chromosome string is different. The components are ordered and

not divided into subsystems and a particular allele greater than ‘ N ’ is not used to

represent the empty selection. The value (allele) of each component (gene) in the

encoding mechanism of OA is filled randomly by using a uniformly distributed

random numbers generator and in accordance with the parameters ‘ M ’ and ‘ N ’.

This structure is specific to the nature of the optimisation problem presented in this

research and simplifies both coding and decoding of the string. See section 5.4.2 for

an example.

7.2.2.3 Embedded Improvement Procedures

As shown in section 5.2, the application of the improvement procedures in step 5(d)

and 5(g) of the optimisation algorithm strengthens the capability of the genetic

search for comprehensively exploring the search space and exploiting many feasible

solutions of the given optimisation problem with a built in diversity mechanism. The

diversity in the search space is further complemented by the selection of the next

population containing unique non-duplicate random genotypes, not evaluated in any

of the previous generations; the addition of the fresh set of unique chromosomes in

the next population boost the multi-directional search ability of the OA.

Unlike the usual practices of using crossover and mutation probabilities shown in the

literature (Alander, 1999; Kendall, 2005; Ashlock, 2006 and Goldberg, 1989, 2002)

the embedded improvement procedures of the OA, operate on one gene (component)

at a time for applying the genetic operations such as crossover and mutation and then

gradually increasing to two and three components later in the optimisation cycle, the

chances for evaluating good solutions with better fitness can be carefully organised.

An instance of this process is shown in Table 6.6, when reading it backwards. For

Chapter No. 7 Discussion

7-14

example, the total loss amount in result no.18 is improved by 7% from the amount in

result no. 19 (found by the random search) through first stage mutation operation at

position seven. The result no. 17 is an improved version of result no. 18 obtained by

performing a two stage mutation operation at position nos. 2 and 7 (mutation sites).

Similarly, result no.16 is obtained by the combination of a two stage crossover

operation at position 2 and 6 from results 18 & 17 and then a single stage mutation

operation at position 7 (result no. 16 could have also been found by a three stage

mutation alone on these positions also), and so on.

The improvement procedures effectively deal with the epistatis phenomenon found

in the cost and reliability relationship using simple hill-climbing process carried out

by randomly sampling the local regions of the feasible solutions and turning the good

solutions into even better ones. Consequently, it increases the chances of converging

to a promising solution significantly while avoiding a premature convergence and

other basic weaknesses of classical GAs such as limited ability to exploit promising

regions of the genetic search space and effective treatment of infeasibilities

originating from restrictions belonging to (combinatorial) optimisation problems

(Schoneberger, 2005).

Similar approaches of using hybrid GAs are appearing to be very popular among

researchers. For example, Hsieh and Hsieh (2003) use GA with steepest decent

method to optimise system cost during the period of task execution for a cycle-free

computer distribution system. Using hybrid GA, Hsieh (2003) also solves similar

optimisation problem based on the constraints on the hardware redundancy level. By

incorporating neural networks, fuzzy logic and local search with classical GA, Lee et

al. (2001, 2002a, 2002b), show the reliability design optimisation which

considerably improves the computational time. It is important to point out the

improvement procedures introduced in OA are designed in view of the risk based

reliability allocation problem introduced in this research and for the reasons

explained in section 7.1.

Chapter No. 7 Discussion

7-15

7.2.2.4 Software Implementation

The optimisation algorithm is simple to program and does not contain confusing

mathematical calculations. This is because there are no parameters such as crossover

probability or mutation probability as commonly found in the literature. Even the

selection and maintenance of the populations, in each iteration of the algorithm, is

not probabilistic as in the conventional GA, where the common approach is to use a

roulette wheel strategy (see Chapter 3 & 4 for more details).

Another interesting statistic associated with the performance of the optimisation

algorithm is the value of the standard error. For every execution of the program, the

standard error has appeared to be very similar for each system. Additionally, not all

statistical results highlighted in the respective result tables in sections 6.3 to 6.5 are

directly related to the work undertaken in this research. For example, results such as

the mean, standard deviation and coefficient of variance are only provided to show

the outstanding performance of the optimisation algorithm and the viability of the

embedded improvement procedures based on crossover and mutation operations.

While these results are useful in evaluating the OA, it is currently outside the scope

of this research to analyse them in details.

Since the objective of this research is to demonstrate the risk-based reliability

allocation method on the specific problem presented in this research, and given the

excellent quality of the results already obtained, it was not deemed necessary to

increase the number of executions of the optimisation algorithm or even the

complexity of the OA parameters in the computer program. Nevertheless, through

the extension of this research in future, it is aimed that such modifications will be

explored in the hope of improving the solutions and carrying out more interesting

parametric studies with in-depth statistical analysis of all the results.

Chapter No. 8 Conclusions And Future Recommendations

8-1

CONCLUSIONS AND
FUTURE
RECOMMENDATIONS

8.1 CONCLUSIONS

In light of the methodology developed and used in this research, the following

conclusions are made:

Chapter No. 8 Conclusions And Future Recommendations

8-2

 Risk-based reliability allocation method together with the proposed

optimisation algorithm can be used as an excellent decision making tool for

estimating optimal level of system reliability by selecting an appropriate

combination of components, from a given choice of alternatives, for a given

non-repairable reliability system.

 Risk-based reliability allocation method together with the optimisation

algorithm can be used to highlight various levels of system reliability with

associated total cost of system failure. This information can help reliability

engineers in streamlining system design and total cost of failure.

 Given a choice of various system designs and large selection of components

for each sub-system, the risk-based reliability allocation method together with

the optimisation algorithm can be used to select optimal system topology

from all available choices. Information similar to Table 6.27, can further

assist reliability engineers in analysing various competing topologies with the

view of system reliability levels with corresponding total cost of system

failure.

 With reference to the optimisation algorithm, every new population in the

algorithm is a fresh sample of randomly generated but unique non-duplicate

chromosomes. This introduces multi-directional search diversity in the

solution space and also improves the chances of rectifying the main

deficiencies of the classical GA method. The population does not converge in

any region of the search space prematurely, thereby, producing a feasible

solution.

 The proposed optimisation algorithm effectively deals with the epistasis

phenomenon found in the cost-reliability relationship by appropriately

employing improvement procedures for searching the local region of the best

Chapter No. 8 Conclusions And Future Recommendations

8-3

solutions, during the crossover and mutation operations. As a result, the

optimisation process converges rapidly towards the optimal solution without

running too many generations.

 The proposed optimisation algorithm is simple to program and does not

contain confusing mathematical calculations. It conducts more detailed search

in each generation than the classical genetic algorithm which gradually

reaches the optimum, when successful.

 The run time of the optimisation algorithm increases linearly with the

complexity of the algorithm.

 The optimisation algorithm possesses a generic structure which can be

configured for very large systems with a complex arrangement of

components and is able to estimate minimum total loss with a corresponding

level of reliability.

8.2 FUTURE RECOMMENDATIONS

In view of the excellent quality of statistical results obtained by the optimisation

algorithm, there appears a lot of scope for enhancing this method and configuring

this for a number of other combinatorial optimisation problems. During this research

activity, below are some of the key areas identified for future development for this

work:

 The optimisation process can be extended for a repairable system by taking

into account the cost associated with given random failures in the

optimisation algorithm. For a multivariate system consisting of many

Chapter No. 8 Conclusions And Future Recommendations

8-4

alternatives, the risk based reliability allocation can be a very difficult

optimisation process which will require in-depth analysis of the failure

processes and sophisticated means for modelling risk. A good source of

information on this subject is provided by Todinov (2006a).

 The optimisation process can be configured to deal with multiple objectives

optimisation problems for both repairable and non-repairable systems by

taking into account large number of individual constraints while allocating

optimum level of system reliability.

 The optimisation algorithm together with the risk based reliability can be

applied to solve component assignment problems in large scale reliability

systems with complex structures and many choices of available alternatives.

 The model of evolution (method of selecting parents and children) in the

proposed optimisation algorithm can be analysed in greater details for

streamlining the variation operators such as crossover and mutation. It may

be possible to design yet more sophisticated technique for searching the local

region of the best solution by integrating a more structured process of genes

evaluations. This, however, can be an intricate process as it may involve

testing large number of different optimisation problems and introducing

complex calculations possibly using computer programming in the

optimisation algorithm.

 The optimisation algorithm can be configured to solve many other widely

known combinatorial optimisation problems such as ‘Knapsack Problem’,

‘Travelling Sales Man Problem’ and more importantly, in the supply-chain

and demand-chain environments where optimisation of the process life-cycle

is pivotal for the future growth and profitability. The algorithm can be used

for optimal selection of suppliers and designing distribution networks.

Chapter No. 8 Conclusions And Future Recommendations

8-5

Similarly for a finance industry, the structure of the optimisation algorithm

renders the potential of solving complex portfolio optimisation problems

where a portfolio is consisting of large number of trades belonging to various

different asset classes with different levels of associated risks. The

optimisation technique along with Monte Carlo simulations can also be

configured to possibly price complex financial products which are used in

derivative trading environment. For example, a CDO (Collateralised Debt

Obligation) consisting of a pool of various individual securities (bonds, loans

etc.), which is a very difficult instrument to price and hedge due to its

complex structure which resembles the type of optimisation problems solved

in this research.

The conjectures listed above as the future recommendations of the research work

require detailed analysis for their evaluations. The interdisciplinary application of

the research methodology provides great flexibility in assessing these conjectures

and it is hoped that many useful and interesting results based on the proposed

optimisation method, will be highlighted in the future publications.

Appendix I General Results & Algorithms

I- 1

APPENDIX

I
GENERAL RESULTS &
ALGORITHMS

I.1 RELIABILITY & RISK ALGORITHMS

I.1.1 Method One

The algorithm which is used principally in this research for the purpose of evaluating

system reliability and associated amount of total losses (sum of reliability investment

and risk of failure) is designed by Todinov (2006, 2006a). Based on the sophisticated

technique of Monte Carlo sampling, the algorithm provides powerful approach for

dealing generically with all kinds of complex reliability systems. Besides, it is very

easy to program and runs in non-exponential time with linear complexity.

I.1.1.1 Main Features

 The reliability system which is studied using this algorithm is first

transformed from a reliability block diagram into an adjacency matrix,

which details the number of nodes and the types of connection which

may be associated with these nodes. The accuracy of the algorithm

depends significantly on the correct construction of this matrix.

 A very clever technique of using node-stacking is implemented which

orchestrates the navigation through the adjacency matrix in searching

Appendix I General Results & Algorithms

I- 2

for a valid path. The process provides control by keeping the log of all

nodes which have already been visited and those which are still in a

queue for examination.

 A Monte Carlo simulation is conducted which estimates the failure of

components, risk of failure and the total loss amount, in each sample

run. During each sample run of the MC simulation, the objective is to

find a valid path between the start node and the end node of the

adjacency matrix. The search of the path begins by checking the

immediate neighbouring nodes of the start node and continuing in the

direction of the nodes where the connection between the two

corresponding nodes exists uninterrupted until the end node is found. If

no path exists, the system is deemed in a failure mode and the cost of

failures of each of the failed component is determined. The number of

system failures and the total cost of failures of all components are

aggregated across all sample runs. At the end of the MC simulations,

the system reliability and risk of failure are obtained from the total

number of failures and the cumulative cost of failures. The latter is also

used to estimate the amount of total losses by simply adding the cost of

reliability investment into this amount.

I.1.2 Method Two

The second method, found incidentally, for determining the system reliability and

total losses is very similar to the method provided by Todinov. However it is different

in the sense that the path between start node and end node is established without using

the node-stacking technique. Also, the search of the path in the adjacency matrix is

performed in reverse order by checking the existence of the immediate valid path

between start and end node and gradually moving backward until a full connection is

established. If no connection is found, the system is considered in a fail state. The

procedures for computing the system reliability and total loss amount are similar to

the first method. The detail of this method is provided in the next section.

Appendix I General Results & Algorithms

I- 3

I.1.3 The Algorithm

The method for tracing path is explained below:

Let Rowi  , Columnj  of the adjacency matrix such that Zi ,...2,1 and

Zj ,...2,1 where systemainnodesofnumberTotalZ .

Set ZEND_NODE1,START_NODE  .

Step (1): Initialise ;0_ RunSample

Step (2): Make Copy of the original Adjacency Matrix

Step (3): Start by initialising, ;_ NODESTARTi  and ;_ NODEENDJ 

Step(4): Set ;1__  RunSampleRunSample

Step(5): Store);,(jiMatrixVarOne 

IF ;0VarOne (No connection Found)

{ ;1 jj

IF)START_NODE(i&)START_NODE(j 

{System Failure Counter ++;

Terminate and return Zero (System Failure);

Goto step (6) ;}

ELSE IF)_(NODESTARTj 

{ ;1j (To search other nodes connected to start node)

;_ NODESTARTi 

Goto step (5) ;}

ELSE

Goto step (5);

}

Appendix I General Results & Algorithms

I- 4

ELSE

{

SET ;0),(jiMatrix ; (setting the current node to zero)

SET ;0),(ijMatrix (setting the opposite node to zero)

CHECK Component Failure at Current Node (),(jiMatrix);

IF (FAILED) (Remove inactive node)

{SET ;0),( jZiMatrix (set all value of column j to zero)

;1 jj ;

Goto step (5) ;}

IF)_(NODEENDj  (Path is found)

{System Success Counter ++;

Terminate and return One (System Success);

Goto step (6) ;}

ELSE

{ ;ji 

;_ NODEENDj 

Goto step (5) ;}

}

Step (6): Repeat Simulation Run at (2) until Sample Size (total number of

simulations)

Step (7): Deduce system reliability from the failure or success counters.

It is useful to point out that all optimisation problems studied in this research have

also been tested with this method. However, it has not been tested for problems which

exist outside the scope of this research but given the excellent quality of the

comparative results with the first method, it is deemed as a great potential for future

studies.

Appendix I General Results & Algorithms

I- 5

I.1.3.1. Reliability of a complex lattice

The algorithm detailed above has been applied on a complex lattice for verifying the

system reliability values. Detailing this, for a given hazard rate of 0.5/yr and

reliability period of 2 yr, system reliability of a complex lattices is calculated as

below,

Lattice with 16 Nodes

SYSTEM CALCULATIONS

Sample

Size

Number of

Nodes

Hazard Rate

(Per Years)

Reliability

Period

System

Reliability

Failure

Probability

100,000 16 0.5 2.0 years 39.6% 60.4%

1

16
4

13

8 12

5 9

Appendix I General Results & Algorithms

I- 6

Lattice with 25 Nodes

SYSTEM CALCULATIONS

Sample

Size

Number of

Nodes

Hazard Rate

(Per Years)

Reliability

Period

System

Reliability

Failure

Prob

100,000 25 0.5 2.0 years 37.7% 62.3%

These results have been verified by TOTAL Ltd (France). An excellent text on

various system reliability computation methods is provided in Todinov (2006a).

1
21

252015105

6 11 16

Appendix I General Results & Algorithms

I- 7

I.2 APPLICATION OF THE CUT-SET AND TIE-SET

SOFTWARE

I.2.1 Basic Concepts

A typical system not having a series/parallel structure is the bridge-type network as

shown in Fig.I.1. It is a common system that is frequently used to demonstrate

techniques for complex systems and one that can occur often in many engineering

applications (Billinton et al., 1992; Ramakumar, 1993)

Figure I.1 Bridge network

Clearly, the components are not connected in a simple series/parallel arrangement. In

order to determine the reliability of this type of network, there are a number of

techniques available such as conditional probability approach, cut and tie set analysis,

tree diagrams, logic diagrams and connection matrix techniques (Billinton et al.,

1992; Ramakumar, 1993; Todinov, 2006a).

The software developed in this research uses the cut and tie set analysis approach

based on the algorithms of Fotuhi-Firuzabad et al (2004) and Allan et al. (1976),

respectively.

A

E

D

C

B

Appendix I General Results & Algorithms

I- 8

I.2.1.1. Cut Set and Minimal Cut Set

A cut set is a set of system components in a given reliability network or block

diagram which, when failed, causes failure of the system. The minimum subset of any

given set of components which causes system failure is known as a ‘minimal cut set’.

Therefore, a minimal cut set is a set of system components which, when failed, causes

failure of the system but when any one component of the set has not failed, failure

does not occur.

The cut set method is a powerful method for evaluating the reliability of a system.

The main advantages being:

 It can be programmed for fast and efficient solution of many general

networks but can be computationally intensive for very large systems

with complex structures.

 Most importantly, many distinct ways in which a system could fail

(modes of failure) can be evaluated using the cut sets approach

Assuming component statistical independence, and denoting the probability of failure

of a cut set ‘ ic ’ by ‘)(icP ’, the probabilities of the system failure for ‘ m ’ minimal cut

sets can be expressed as:

)............(321 mf ccccPP  (I. 1)

And the reliability is

)............(11 321 mf ccccPPR  (I. 2)

Appendix I General Results & Algorithms

I- 9

I.2.1.2. Minimal Tie Set

A minimal tie set is a group of components which forms a connection between the

input and the output node of a reliability network, when traversed in the direction of

the flow, with no node encountered more than once. The tie set method is essentially

the complement of the cut set method. It is used less frequently, as it does not directly

identify the failure modes of the system. Assuming component statistical

independence and denoting the probability of occurrence of the tie set ‘ iT ’ by

‘)(iTP ’, the reliability of the system with ‘ n ’ minimal tie-sets can be expressed as:

)............(321 nTTTTPR  (I. 3)

I.2.1.3. Connection Matrix (Adjacency Matrix)

A connection matrix (adjacency matrix) is a formal method of representing reliability

network or block diagram. It defines which components are connected between the

nodes of the network. A zero in the matrix indicates no connection between

corresponding nodes, and unity represents a connection between a node and itself, this

being the value of the elements on the principal diagonal. For the network above, the

connection matrix can be constructed as below:

Nodes To



















1000
10

10
01

4
3
2
1

4321

DE
CE

BA

Nodes From

Appendix I General Results & Algorithms

I- 10

The software developed in this research, takes such a connection matrix as an input in

order to produce the required tie-sets and cut-sets of the system. For comprehensive

literature on the above topics, refer to Billinton et al., (1992), Ramakumar, (1993) and

Andrews & Moss (2002).

I.2.1.4. Reliability Evaluation of Bridge Network Using Cut Sets
and Tie Sets

Using the bridge network from Fig. I.1, the software tool can be used to calculate

system tie-sets and cut-sets. Firstly, a connection matrix is constructed using the

reliability block diagram of the given system. The matrix is then entered in a file

which is read by the software program.

Upon successfully reading the input file, the program outputs the following data:

 File containing the tie sets of the system

Input Connection Matrix

Appendix I General Results & Algorithms

I- 11

 File detailing the full summary of the cut sets, up to and including order nine

The output result can be easily verified manually from the given network. There

appear to be two second order minimal cut sets. In other words, there are two cuts

sets, each with two components. If both components of any of the two cut sets, fail at

once, the system will also stop working. For example, for a cut set, ‘A B’, if both A

and B, fail simultaneously, there will be no possibility of traversing from input node

to the output node.

Appendix I General Results & Algorithms

I- 12

Figure I.2 System Failure – Second Order Cut Set

Similarly, if all of the components in the third order cut set ‘A D E’ are failed, the

system will also encounter the failure state.

Figure I. 3 System Failure – Third Order Cut Set

A

E

D

C

B

Output
Input

A

E

D

C

B

Input

Output

Appendix I General Results & Algorithms

I- 13

Reliability Calculation – Cut Set Method

Having obtained the cut set of the given system, the reliability of the given system can

now be calculated easily.

Figure I.4 Minimal Cut Sets of Bridge Network

Reliability Calculation – Tie Set Method

Similarly, the reliability of the bridge network can also be calculated using Eq. (9) and

the minimal tie sets, obtained from the computer program.

Figure I.5 Minimal Tie Sets of Bridge Network

A

B

C

D

E

A

D

E

C

B

A C

B D

D

C

E

B E

A

Appendix I General Results & Algorithms

I- 14

I.2.1.5. A Real Life Production System

The software tool has also been successfully used to deduce minimal paths and

minimal cut sets of a real production system. The reliability block diagram is sketched

below:

Figure I.6 Reliability Network of a Real Life Production System

A B C D

E F G H

I

J

K

L

M

N

Appendix I General Results & Algorithms

I- 15

The connection matrix of the system is below

Figure I.7 Connection Matrix of the Real Life Reliability System

After reading the connection matrix, the software program produces the following

data set:

 File containing the minimal tie sets of the system

Figure I.8 Minimal Tie Sets of the Real Life Reliability System

Connection Matrix

Appendix I General Results & Algorithms

I- 16

 File containing the summary of the minimal cut sets of the system

Figure I.9 Minimal Cut Sets of the Real Life Reliability System

Appendix I General Results & Algorithms

I- 17

I.3 RESEARCH PUBLICATIONS

Publication One: Reliability Optimization Based on Minimizing the Total Losses,

International Conference on Reliability and Safety Engineering (INCRESE 2005),

Indian Institute of Technology Kharaghpur (India) in December 2005.

Publication Two: Reliability Optimisation based on minimising the total cost using

genetic algorithm, Accepted for publication in the 17th AR2TS (Advances in Risk and

Reliability Technology Symposium), Burleigh Court Conference Centre,

Loughborough University, April 2007.

Publication Three: An Efficient Evolutionary Algorithm for Solving Complex

Reliability Optimisation Problems with Cost Constraint and Discrete Choice of

Alternative Components, International Journal of Evolutionary Optimisation

(Accepted - awaiting publication)

Publication Four: Risk Based Reliability Allocation in a complex system using

evolutionary algorithm, International Journal of Computers and Industrial

Engineering. (Being revised)

Publication Five: Optimal Topology Analysis Using Risk Based Reliability

Allocation Method, International Journal of Quality and Reliability Management.

(Being revised)

.

Appendix II Optimisation of System B

II-1

APPENDIX

II
OPTIMISATION RESULTS OF
SYSTEM-B
(FROM SECTION 6.3.2)

The topology of System B consists of three subsystems each containing two, five and

two components, connected in parallel, respectively – Fig. II.1. The application of the

optimisation algorithm using the data from Table 6.1 is described by means of various

graphs showing the actual optimisation process, the effect of the genetic operations

(crossover and mutation) on total loss associated with the optimal reliability allocated

for this system and table detailing various sub-optimal results found along with the

optimum solution.

Figure II.1 Structure of System B

1

2

7

5

4

9

3

6

8

Appendix II Optimisation of System B

II-2

No. Total
Loss

System
Reliability

Reliability
Investment

Risk of
Failure

Sub-
System

One

Sub-System

Two

Sub-System

Three

1 992 73.7% 283 708 5 6 2 2 4 3 2 4 4

2 1008 80.2% 450 558 7 5 3 2 3 2 2 4 7

3 1019 81.6% 500 520 5 6 2 2 4 3 2 2 9

4 1037 76.8% 394 643 3 6 2 2 4 4 2 4 7

5 1133 72.0% 366 767 3 4 4 2 4 4 2 3 7

6 1161 70.0% 348 813 3 3 4 2 4 4 2 3 7

7 1193 85.3% 772 420 11 3 4 2 4 4 2 3 7

8 1234 79.5% 641 593 8 4 2 2 6 4 2 2 7

9 1259 77.8% 623 636 5 6 2 2 6 6 2 2 7

10 1267 75.4% 572 696 3 6 2 2 6 6 2 2 7

11 1279 81.7% 741 537 8 6 2 2 6 6 2 2 7

12 1291 74.0% 559 731 2 6 2 2 6 6 2 2 7

13 1343 85.7% 924 419 11 3 4 2 6 4 2 3 7

14 1387 74.3% 660 727 2 6 2 2 6 8 2 2 7

15 1456 69.8% 617 839 2 4 2 2 6 8 2 2 7

16 1457 74.4% 735 723 2 6 2 2 6 9 2 2 7

17 1590 85.7% 1171 419 11 6 2 2 6 9 2 2 7

18 1624 85.9% 1206 418 11 6 4 2 6 9 2 2 7

19 1658 79.0% 1062 596 5 3 2 5 2 7 11 3 9

20 2327 81.8% 1792 535 3 5 10 9 5 2 11 10 5

Table II.1 List of Results Found by the Optimisation Algorithm for System A

Appendix II Optimisation of System B

II-3

Figure II.2 Effect of Optimisation Process on System Reliability and Total Loss in
System B

Figure II.3 Optimisation Process of System B

Appendix II Optimisation of System B

II-4

Figure II.4 Crossover Process of System B

Figure II.5 Effect of Mutation Process on Total Loss in System B

Appendix II Optimisation of System B

II-5

Figure II. 6 Mutation Process in System B

Figure II.7 Total Search Space examined By the Optimisation Algorithm for
System B

Appendix III Optimisation Process of System C

III-1

APPENDIX

III
OPTIMISATION RESULTS OF
SYSTEM-C
(FROM SECTION 6.3.3)

The topology of System C consists of three subsystems each containing two, five and

two components, connected in parallel, respectively – Fig. III.1. The application of the

optimisation algorithm using the data from Table 6.1 is described by means of various

graphs showing the actual optimisation process, the effect of the genetic operations

(crossover and mutation) on total loss associated with the optimal reliability allocated

for this system and table detailing various sub-optimal results found along with the

optimum solution.

Figure III.1 Structure of System C

1

3 6

2 5

9

4 7

8

Appendix III Optimisation Process of System C

III-2

NO. Total

Loss

System

Reliability

Reliability

Investment

Risk of

Failure

Sub-System

One

Sub-System

Two

Sub-System

Three

1 782 79.8% 242 540 3 4 3 4 3 4 4 3 4

2 798 81.3% 293 505 3 6 2 5 2 3 5 3 4

3 825 79.9% 285 540 3 4 3 3 2 7 2 3 4

4 909 86.5% 529 379 3 6 3 3 2 7 8 3 4

5 916 85.9% 520 396 3 6 3 2 2 7 8 3 4

6 961 86.6% 582 379 3 6 3 5 3 4 5 3 9

7 968 85.7% 568 400 3 6 2 6 2 3 5 3 9

8 969 86.0% 574 395 3 6 3 5 2 4 5 3 9

9 970 83.5% 515 455 3 3 4 5 2 3 5 3 9

10 974 83.6% 520 453 3 3 3 6 2 3 5 3 9

11 974 86.9% 602 372 3 6 3 6 2 4 5 3 9

12 979 81.5% 475 504 3 4 3 3 2 3 5 3 9

13 981 87.4% 624 356 3 4 4 5 2 7 9 3 4

14 989 85.7% 589 400 3 4 2 5 2 7 9 3 4

15 1000 85.6% 595 404 3 4 3 3 2 7 5 3 9

16 1001 86.1% 610 391 3 4 3 4 2 7 5 3 9

17 1146 88.9% 833 313 5 4 2 5 2 7 11 3 4

18 1378 90.1% 1093 285 5 4 3 5 2 7 11 3 9

19 1388 88.5% 1062 327 5 3 2 5 2 7 11 3 9

20 1920 96.0% 1792 128 3 5 10 9 5 2 11 10 5

Table III.1 Optimisation Results of System C

Appendix III Optimisation Process of System C

III-3

Figure III. 2 Effect of Optimisation Process on System Reliability and Total Loss in
System C

Figure III.3 Optimisation Process of System C

Appendix III Optimisation Process of System C

III-4

Figure III.4 Crossover Process of System C

Figure III.5 Effect of Mutation Process on Total Loss in System C

Appendix III Optimisation Process of System C

III-5

Figure III.6 Mutation Process in System

Figure III.7 Total Search Space Examined By the Optimisation Algorithm for System C

Appendix IV Optimisation Process of System D

IV-1

APPENDIX

IV
OPTIMISATION RESULTS OF
SYSTEM-D
(FROM SECTION 6.3.4)

The topology of System D consists of three subsystems each containing two, five and

two components, connected in parallel, respectively – Fig. IV.1. The application of

the OA using the data from Table 6.1 is described by means of various graphs

showing the actual optimisation process, the effect of the genetic operations

(crossover and mutation) on total loss associated with the optimal reliability allocated

for this system and table detailing various sub-optimal results found along with the

optimum solution.

Figure IV.1 Structure of System D

1

2

6

5

4

9

3

7 8

Appendix IV Optimisation Process of System D

IV-2

NO.

Total

Loss

System

Reliability

Reliability

Investment

Risk of

Failure

Sub-System

One

Sub-System

Two

Sub-System

Three

1 1356 74.3% 620 736 5 6 2 2 3 7 3 3 9

2 1362 66.4% 434 928 3 6 2 2 2 6 2 2 8

3 1364 69.8% 513 850 6 6 2 2 2 6 2 2 8

4 1368 75.5% 669 699 6 6 2 2 2 6 2 2 10

5 1377 73.8% 639 738 6 6 2 2 2 5 2 2 10

6 1379 70.3% 559 820 3 6 2 2 2 5 2 2 10

7 1399 74.3% 659 740 5 6 2 5 2 7 3 3 9

8 1411 75.2% 694 718 6 6 2 2 3 6 6 3 9

9 1426 66.7% 517 909 3 4 2 2 2 5 2 2 10

10 1448 64.9% 498 950 3 3 2 2 2 5 2 2 10

11 1451 74.9% 725 727 5 6 2 4 2 7 6 3 9

12 1478 63.0% 484 994 3 2 2 2 2 5 2 2 10

13 1521 66.9% 616 906 3 2 2 2 2 8 2 2 10

14 1535 87.3% 1158 377 11 2 2 2 2 8 2 2 11

15 1560 87.8% 1193 366 11 2 4 2 2 8 2 2 11

16 1592 89.5% 1268 324 11 2 4 2 2 9 2 2 11

17 1627 76.1% 930 697 5 6 2 5 2 7 9 3 9

18 1704 76.5% 1026 678 11 6 4 2 2 9 2 2 7

19 1843 72.4% 1062 781 5 3 2 5 2 7 11 3 9

20 2467 77.3% 1792 675 3 5 10 9 5 2 11 10 5

Table IV.1 Optimisation Results for System D

Appendix IV Optimisation Process of System D

IV-3

Figure IV. 1 Effect of Optimisation Process on System Reliability and Total Loss in System D

Figure IV.2 Optimisation Process of System D

Appendix IV Optimisation Process of System D

IV-4

Figure IV.3 Crossover Process of System D

Figure IV.4 Effect of Mutation Process on Total Loss in System D

Appendix IV Optimisation Process of System D

IV-5

Figure IV.5 Mutation Process in System D

Figure IV.6 Total Search Space Examined By the Optimisation Algorithm for System D

Appendix V Optimisation of System A (TABLE 7.13)

V-1

APPENDIX

V
OPTIMISATION RESULTS OF
SYSTEM-A
(FROM SECTION 6.4.1.1, USING TABLE 6.13)

The topology of System A consists of three subsystems each containing three, four

and two components, connected in parallel, respectively – Fig. V.1. The application of

the optimisation algorithm using the data from Table 6.13 is described by means of

various graphs showing the actual optimisation process, the effect of the genetic

operations (crossover and mutation) on total loss associated with the optimal

reliability allocated for this system and table detailing various sub-optimal results

found along with the optimum solution.

Figure V.1 Structure of System A

1

3

7

2

5

9

4

6

8

Appendix V Optimisation of System A (TABLE 7.13)

V-2

No
Total

Loss

System

Reliability

Reliability

Investment

Risk of

Failure

Sub-System

One

Sub-System

Two

Sub-System

Three

1 815 86.8% 446 369 6 6 3 3 2 5 2 3 9

2 843 87.8% 498 345 3 6 7 3 2 5 4 3 9

3 854 84.7% 427 427 6 4 3 4 2 2 2 3 9

4 859 86.8% 484 374 6 6 3 5 2 2 3 3 9

5 876 85.5% 468 408 6 4 3 5 2 2 3 3 9

6 885 84.3% 447 438 3 4 4 2 2 5 4 3 9

7 886 81.9% 389 497 3 3 3 5 2 2 2 3 9

8 888 82.8% 411 476 3 3 4 5 2 2 2 3 9

9 1013 83.0% 540 473 3 3 2 5 2 8 2 3 9

10 1015 85.0% 591 424 5 3 2 5 2 8 2 3 9

11 1023 85.7% 614 410 5 4 2 2 2 8 4 3 9

12 1071 84.7% 633 438 5 3 2 5 2 7 2 3 9

13 1089 85.9% 681 407 5 4 2 5 2 7 4 3 9

14 1147 86.0% 749 398 3 4 3 5 2 8 9 3 9

15 1208 87.5% 842 366 5 4 3 5 2 7 9 3 9

16 1389 86.9% 1007 382 5 3 3 5 2 7 10 3 9

17 1394 87.8% 1036 358 5 5 2 5 2 7 10 3 9

18 1496 87.0% 1120 376 5 3 3 5 2 7 11 3 9

19 1503 86.3% 1107 396 5 3 2 5 2 7 11 3 9

20 1714 95.0% 1549 165 3 5 10 9 5 2 11 10 5

Table V.1 List of Results Found By the Optimisation Algorithm for System A

Appendix V Optimisation of System A (TABLE 7.13)

V-3

Figure V.2 Effect of Optimisation Process on System Reliability and Total Loss

Figure V.3 Optimisation Process of System A

Appendix V Optimisation of System A (TABLE 7.13)

V-4

Figure V.4 Crossover Process of System A

Figure V.5 Effect of Mutation Process on Total Loss in System A

Appendix V Optimisation of System A (TABLE 7.13)

V-5

Figure V.6 Mutation Process in System A

Figure V.7 Total Search Space Examined By the Optimisation Algorithm for System A

Appendix VI Optimisation of System B (TABLE 7.13)

VI-1

APPENDIX

VI
OPTIMISATION RESULTS OF
SYSTEM-B
(FROM SECTION 6.4.1.2, USING TABLE 6.13)

The topology of System B consists of three subsystems each containing two, five and

two components, connected in parallel, respectively – Fig. VI.1. The application of

the optimisation algorithm using the data from Table 6.13 is described by means of

various graphs showing the actual optimisation process, the effect of the genetic

operations (crossover and mutation) on total loss associated with the optimal

reliability allocated for this system and table detailing various sub-optimal results

found along with the optimum solution.

Figure VI. Structure of System B

1

2

7

5

4

9

3

6

8

Appendix VI Optimisation of System B (TABLE 7.13)

VI-2

No. Total
Loss

System
Reliability

Reliability
Investment

Risk of
Failure

Sub-System

One

Sub-System

Two

Sub-System

Three

1 905 85.5% 496 409 8 6 2 4 2 2 2 2 9

2 943 92.1% 722 221 8 6 2 4 3 2 2 2 12

3 955 84.7% 518 437 6 7 2 2 2 5 3 2 9

4 955 91.4% 717 238 8 6 2 2 3 2 2 2 12

5 999 90.8% 741 258 6 7 2 2 5 2 2 2 12

6 1038 88.7% 713 326 3 11 3 2 4 2 2 2 9

7 1076 88.7% 749 327 11 3 3 2 4 2 2 2 9

8 1085 95.6% 956 129 2 11 2 2 5 4 2 2 12

9 1156 90.1% 865 291 7 11 2 2 5 4 2 2 9

10 1180 89.7% 876 304 11 3 3 2 8 2 2 2 9

11 1215 82.1% 700 515 3 10 2 2 2 5 3 2 7

12 1219 96.5% 1111 108 11 3 4 2 8 2 2 2 12

13 1250 96.0% 1126 124 11 3 2 2 6 4 2 2 12

14 1368 96.7% 1265 104 11 3 2 2 6 8 2 2 12

15 1400 96.8% 1300 100 11 3 4 2 6 8 2 2 12

16 1470 97.0% 1375 95 11 3 4 2 6 9 2 2 12

17 1529 85.7% 1111 418 11 6 2 2 6 9 2 2 7

18 1563 85.9% 1146 417 11 6 4 2 6 9 2 2 7

19 1939 93.2% 1733 206 8 11 5 6 11 11 2 4 9

20 2080 81.8% 1549 531 3 5 10 9 5 2 11 10 5

Table VI.1 List of Results Found by the Optimisation Algorithm for System B

Appendix VI Optimisation of System B (TABLE 7.13)

VI-3

Figure VI.2 Effect of Optimisation Process on System Reliability and Total Loss in
System B

Figure VI.3 Optimisation Process of System B

Appendix VI Optimisation of System B (TABLE 7.13)

VI-4

Figure VI. 4 Crossover Process of System B

Figure VI. 5 Effect of Mutation Process on Total Loss in System B

Appendix VI Optimisation of System B (TABLE 7.13)

VI-5

Figure VI. 6 Mutation Process in System B

Figure VI. 7 Total Search Space Examined By the Optimisation Algorithm for System B

Appendix VII Optimisation Process of System C (Table 7.13)

VII-1

APPENDIX

VII
OPTIMISATION RESULTS OF
SYSTEM-C
(FROM SECTION 6.4.1.3, USING TABLE 6.13)

The topology of System C consists of three subsystems each containing two, five and

two components, connected in parallel, respectively – Fig. VII.1. The application of

the optimisation algorithm using the data from Table 6.13 is described by means of

various graphs showing the actual optimisation process, the effect of the genetic

operations (crossover and mutation) on total loss associated with the optimal

reliability allocated for this system and table detailing various sub-optimal results

found along with the optimum solution.

Figure VII.1 Structure of System C

1

3 6

2 5

9

4 7

8

Appendix VII Optimisation Process of System C (Table 7.13)

VII-2

No. Total
Loss

System
Reliability

Reliability
Investment

Risk of
Failure

Sub-system
One

Sub-System
Two

Sub-System
Three

1 813 84.2% 377 437 6 6 3 5 4 2 6 3 2

2 821 87.9% 479 342 6 6 3 4 4 6 6 3 5

3 829 86.0% 436 393 6 6 3 5 4 2 6 3 5

4 841 83.5% 384 457 6 6 3 4 4 4 2 3 5

5 843 88.3% 513 330 6 6 3 5 4 4 2 3 9

6 843 87.5% 492 351 6 6 3 4 4 4 2 3 9

7 849 80.7% 321 528 3 6 3 4 4 4 2 3 4

8 849 83.3% 387 463 6 6 3 5 4 4 2 3 4

9 856 84.6% 424 432 6 6 3 5 4 2 5 3 4

10 886 81.1% 363 523 3 4 3 5 4 2 5 3 4

11 890 77.5% 280 609 3 3 3 3 4 4 2 3 4

12 895 78.3% 304 591 4 3 3 3 4 4 2 3 4

13 914 76.5% 278 635 2 3 3 3 4 4 2 3 4

14 974 87.0% 611 362 3 4 4 3 4 11 5 3 4

15 1010 88.6% 693 317 3 3 3 3 4 11 9 3 4

16 1037 87.5% 691 346 2 3 3 3 4 11 9 3 4

17 1276 93.8% 1086 190 2 10 3 3 4 11 8 3 4

18 1409 91.2% 1146 263 11 6 4 2 6 9 2 2 7

19 1440 88.5% 1107 333 5 3 2 5 2 7 11 3 9

20 1672 96.0% 1549 122 3 5 10 9 5 2 11 10 5

Table VII.1 Optimisation Results of System C found by the optimisation algorithm

Appendix VII Optimisation Process of System C (Table 7.13)

VII-3

Figure VII.2 Effect of Optimisation Process on System Reliability and Total Loss in
System C

Figure VII.3 Optimisation Process of System C

Appendix VII Optimisation Process of System C (Table 7.13)

VII-4

Figure VII.4 Crossover Process of System C

Figure VII.5 Effect of Mutation Process on Total Loss in System C

Appendix VII Optimisation Process of System C (Table 7.13)

VII-5

Figure VII.6 Mutation Process in System

Figure VII.7 Total Search Space Examined By the Optimisation Algorithm for System C

Appendix VIII Optimisation Process of System D (Table 6.13)

VIII-1

APPENDIX

VIII
OPTIMISATION RESULTS OF
SYSTEM-D
(FROM SECTION 6.4.1.4, USING TABLE 6.13)

The topology of System D consists of three subsystems each containing two, five and

two components, connected in parallel, respectively – Fig. VIII.1. The application of

the OA using the data from Table 6.13 is described by means of various graphs

showing the actual optimisation process, the effect of the genetic operations

(crossover and mutation) on total loss associated with the optimal reliability allocated

for this system and table detailing various sub-optimal results found along with the

optimum solution.

Figure VIII.1 Structure of System D

1

2

6

5

4

9

3

7 8

Appendix VIII Optimisation Process of System D (Table 6.13)

VIII-2

NO.

Total

Loss

System

Reliability

Reliability

Investment

Risk of

Failure

Sub-System

One

Sub-System

Two

Sub-System

Three

1 1184 86.2% 799 386 8 6 3 3 4 6 2 2 12

2 1205 79.9% 663 542 6 6 3 3 4 3 2 2 12

3 1209 87.1% 850 359 10 6 2 3 5 4 2 2 12

4 1219 90.9% 957 262 10 6 2 3 8 4 2 2 12

5 1225 85.2% 812 413 6 6 4 3 8 3 2 2 12

6 1231 90.7% 962 269 10 6 2 2 8 4 2 2 12

7 1238 88.6% 910 328 8 6 4 3 8 4 2 2 12

8 1263 89.9% 971 292 10 6 4 2 8 2 2 2 12

9 1316 94.1% 1136 180 10 6 4 2 8 8 2 2 12

10 1316 83.3% 850 467 4 6 3 6 8 4 2 2 12

11 1345 96.2% 1229 116 10 6 4 2 8 11 2 2 12

12 1370 91.3% 1115 255 11 3 3 2 8 4 2 2 12

13 1382 95.8% 1253 129 10 6 4 2 6 11 2 2 12

14 1427 94.4% 1253 173 11 3 3 2 8 8 2 2 12

15 1447 85.7% 1050 397 3 6 4 2 6 11 2 2 12

16 1499 93.3% 1292 207 11 4 3 2 6 8 2 2 12

17 1544 94.9% 1383 161 11 6 3 2 6 9 2 2 12

18 1642 66.9% 695 947 2 6 4 2 6 8 2 2 7

19 2066 88.9% 1733 333 8 11 5 6 11 11 2 4 9

20 2215 77.3% 1549 666 3 5 10 9 5 2 11 10 5

Table VIII.1 Optimisation Results for System D

Appendix VIII Optimisation Process of System D (Table 6.13)

VIII-3

Figure VIII.2 Effect of Optimisation Process on System Reliability and Total Loss in
System D

Figure VIII.3 Optimisation Process of System D

Appendix VIII Optimisation Process of System D (Table 6.13)

VIII-4

Figure VIII.4 Crossover Process of System D

Figure VIII.5 Effect of Mutation Process on Total Loss in System D

Appendix VIII Optimisation Process of System D (Table 6.13)

VIII-5

Figure VIII.6 Mutation Process in System D

Figure IV.7 Total Search Space Examined By the Optimisation Algorithm for System D

Appendix IX Optimisation Process of Systems (C2, Table 6.1)

IX-1

APPENDIX

IX

OPTIMISATION RESULTS OF
SYSTEMS USING LOWER
COST OF FAILURE

(FROM SECTION 6.4.2, USING TABLE 6.1)

The results from the optimisation process detailed in section 6.4.2 are presented in this

appendix, using a lower cost of failure amount, ‘C2’ (1000 units) for all four systems

by utilising the data from Table 6.1. For each of the four systems, the optimum

solution along with a list of various sub-optimal solutions is presented in a result

table, showing also the configurations of the selected components for each system.

Appendix IX Optimisation Process of Systems (C2, Table 6.1)

IX-2

System A

The structure of System A, consists of three subsystems each containing three, four

and two components, connected in parallel, respectively, as shown in Fig. IX.1.

Figure IX.1 Structure of System A

System A - Optimisation Process

0

200

400

600

800

1000

1200

1400

1600

1800

2000

No of iterations

U
n

it
s

o
f

C
o

st

40.0%

55.0%

70.0%

85.0%

100.0%

S
ys

te
m

R
el

li
ab

il
it

y

Total Loss Reliability Investment Risk of Failure System Reliability

Figure IX.2 Optimisation Process of System A

1

3

7

2

5

9

4

6

8

Appendix IX Optimisation Process of Systems (C2, Table 6.1)

IX-3

No
Total

Loss

System

Reliability

Reliability

Investment

Risk of

Failure

Sub-System

One

Sub-System

Two

Sub-

System

Three

1 453 70.2% 127 327 2 2 4 2 2 2 3 3 4

2 468 69.0% 129 339 2 2 2 3 2 2 4 4 3

3 577 68.6% 223 354 2 2 2 3 2 4 6 4 2

4 590 76.3% 307 283 2 2 2 2 3 4 3 2 8

5 600 68.9% 245 354 2 2 2 4 3 4 6 4 2

6 641 77.0% 360 281 2 2 2 2 3 4 5 2 8

7 737 79.6% 477 259 2 2 2 4 3 5 6 4 8

8 741 80.6% 491 250 2 3 2 4 3 5 6 4 8

9 742 83.8% 525 217 2 6 2 4 3 4 6 4 8

10 771 84.9% 564 207 3 6 2 4 3 5 6 4 8

11 807 86.6% 617 190 6 6 2 4 3 4 6 4 8

12 809 80.6% 562 247 2 2 2 2 2 7 6 3 9

13 831 86.9% 644 187 6 6 2 4 3 5 6 4 8

14 954 82.8% 725 229 3 2 2 5 2 7 8 3 9

15 1057 90.2% 920 137 7 5 2 3 2 2 3 6 11

16 1067 85.9% 869 197 5 3 2 5 2 7 9 3 9

17 1106 83.1% 884 222 3 2 2 5 2 7 10 3 9

18 1215 83.2% 997 218 3 2 2 5 2 7 11 3 9

18 1246 85.5% 1048 198 5 2 2 5 2 7 11 3 9

20 1885 95.0% 1792 93 3 5 10 9 5 2 11 10 5

Table IX.1 List of Results Found by the Optimisation Algorithm for System A

Appendix IX Optimisation Process of Systems (C2, Table 6.1)

IX-4

System B

The topology of System B consists of three subsystems each containing two, five and

two components, connected in parallel, respectively – Fig. IX.3.

Figure IX.3 Structure of System B

System B - Optimisation Process

0

500

1000

1500

2000

2500

No of iterations

U
n

it
s

o
f

C
o

st

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
ys

te
m

R
el

ia
b

il
it

y

Total Loss Reliability Investment Risk of Failure SystemReliability

Figure IX.4 Optimisation Process of System B

1

2

7

5

4

9

3

6

8

Appendix IX Optimisation Process of Systems (C2, Table 6.1)

IX-5

No. Total
Loss

System
Reliability

Reliability
Investment

Risk of
Failure

Sub-System

One

Sub-System

Two

Sub-System

Three

1 553 64.3% 157 396 3 3 3 2 3 4 2 2 4

2 648 64.7% 238 410 3 3 2 2 3 5 2 2 5

3 671 69.8% 311 360 3 3 2 2 3 5 2 2 5

4 708 70.1% 346 362 3 3 4 2 3 5 2 2 5

5 725 79.6% 465 261 3 6 2 2 6 3 2 2 3

6 747 75.1% 434 313 3 6 2 2 6 7 2 2 7

7 810 75.9% 509 301 3 4 2 2 4 7 2 2 7

8 855 80.5% 598 258 3 6 2 5 6 7 5 5 7

9 877 76.8% 574 303 3 6 2 2 6 5 2 2 5

10 928 75.7% 613 314 4 3 2 5 3 7 5 5 7

11 934 77.9% 640 294 5 3 2 5 3 7 5 5 7

12 951 76.9% 647 304 3 6 2 2 6 7 2 2 7

13 982 78.0% 678 304 5 6 3 2 6 7 2 2 7

14 1096 85.2% 893 203 11 6 4 2 6 7 2 2 7

15 1173 84.9% 965 207 11 3 4 2 3 9 2 2 9

16 1226 85.6% 1026 200 11 6 4 2 6 9 2 2 9

17 1271 69.1% 892 380 2 3 2 5 3 7 5 5 7

18 1281 85.6% 1073 208 11 6 4 2 6 7 2 2 7

19 1292 78.9% 1016 276 5 3 2 2 3 7 2 2 7

20 2053 81.8% 1792 261 3 5 10 9 5 2 9 9 2

Table IX.2 List of Results Found by the Optimisation Algorithm for System B

Appendix IX Optimisation Process of Systems (C2, Table 6.1)

IX-6

System C

The topology of System C consists of three subsystems each containing two, five and

two components, connected in parallel, respectively as shown in Fig. IX.5.

Figure IX.5 Structure of System C

System C - Optimisation Process

0

200

400

600

800

1000

1200

1400

1600

1800

2000

No of Iterations

U
ni

ts
of

C
os

t

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ys

te
m

R
el

ia
b

ili
ty

Total Loss Reliability Investment Risk of Failure System Reliability

Figure IX.6 Effect of Optimisation Process on System Reliability and Total Loss in
System C

1

3 6

2 5

9

4 7

8

Appendix IX Optimisation Process of Systems (C2, Table 6.1)

IX-7

No. Total
Loss

System
Reliability

Reliability
Investment

Risk of
Failure

Sub-system
One

Sub-System
Two

Sub-System
Three

1 413 70.1% 93 319 2 2 2 2 2 2 4 3 2

2 436 74.4% 152 284 3 3 3 3 3 3 4 3 3

3 465 77.9% 210 255 2 2 2 2 2 2 3 3 2

4 491 77.6% 232 259 2 2 2 2 2 2 4 3 2

5 504 78.7% 254 250 2 2 2 2 2 2 4 3 2

6 621 77.9% 357 264 2 2 2 2 2 2 3 2 2

7 714 81.4% 487 228 3 3 3 3 3 3 3 3 3

8 804 86.4% 622 182 5 5 5 5 5 5 4 3 5

9 840 83.8% 639 201 2 2 2 2 2 2 10 3 2

10 888 85.6% 685 203 2 2 2 2 2 2 4 6 2

11 939 84.6% 751 187 2 2 2 2 2 2 11 3 2

12 948 88.6% 777 172 6 6 6 6 6 6 4 6 6

13 978 83.6% 770 208 2 2 2 2 2 2 9 3 2

14 1004 84.6% 806 198 2 2 2 2 2 2 9 3 2

15 1033 87.9% 869 164 5 5 5 5 5 5 9 3 5

16 1080 84.7% 886 194 2 2 2 2 2 2 10 3 2

17 1158 84.1% 962 196 2 2 2 2 2 2 11 3 2

18 1190 87.4% 1026 164 5 5 5 5 5 5 11 3 5

19 1215 88.5% 1062 153 5 5 5 5 5 5 11 3 5

20 1860 96.0% 1792 67 3 3 3 3 3 3 11 10 3

Table IX.3 Optimisation Results of System C found by the optimisation algorithm

Appendix IX Optimisation Process of Systems (C2, Table 6.1)

IX-8

System D

The topology of System B consists of three subsystems each containing two, five and

two components, connected in parallel, respectively – Fig. IX.7.

Figure IX.7 Structure of System D

System D - Optimisation Process

0

500

1000

1500

2000

2500

No of Iterations

U
n

it
s

o
f

C
o

st

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
ys

te
m

R
el

ia
b

il
it

y

Total Loss Reliability Investment Risk of Failure System Reliability

Figure IX.8 Optimisation Process of System D

1

2

6

5

4

9

3

7 8

Appendix IX Optimisation Process of Systems (C2, Table 6.1)

IX-9

NO.

Total

Loss

System

Reliability

Reliability

Investment

Risk of

Failure

Sub-System

One

Sub-System

Two

Sub-System

Three

1 682 44.2% 91 591 2 2 2 3 2 2 2 3 4

2 734 50.4% 180 554 3 3 2 3 2 5 2 3 4

3 777 51.5% 232 545 3 3 2 2 2 7 2 2 4

4 876 63.1% 428 449 3 3 2 3 2 5 2 3 9

5 879 59.7% 386 492 3 3 3 2 2 7 2 2 7

6 911 65.1% 480 431 3 3 2 2 2 7 2 2 9

7 915 63.3% 468 447 2 3 2 2 2 7 2 2 9

8 930 65.6% 501 430 3 3 2 3 2 7 2 3 9

9 961 63.9% 514 447 2 3 2 5 2 7 2 2 9

10 967 65.9% 537 430 3 3 2 5 2 7 2 3 9

11 971 64.1% 525 447 2 3 2 5 2 7 2 3 9

12 988 69.6% 588 400 5 3 2 5 2 7 2 3 9

13 1062 61.9% 566 496 3 3 3 2 6 7 2 2 7

14 1085 62.1% 588 497 3 3 4 2 6 7 2 2 7

15 1232 65.8% 795 438 2 3 2 5 2 7 9 2 9

16 1245 71.4% 858 387 5 3 2 5 2 7 9 2 9

17 1359 75.7% 1013 347 11 3 4 2 6 7 2 2 7

18 1414 76.4% 1073 341 11 6 4 2 6 7 2 2 7

19 1429 72.4% 1062 367 5 3 2 5 2 7 11 3 9

20 2127 77.3% 1792 334 3 5 10 9 5 2 11 10 5

Table IX.4 Optimisation Results for System D

APPENDIX X COMPUTER PROGRAM

CP-1

APPENDIX

X

COMPUTER PROGRAM

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include "math_cla.h"

class random_generator rg;

#define sizeComp 25

#define ctrSearchValue 5 //2

#define size 200

#define FACTOR 0.25

#defne CrossOverRun 10

#define MutationRun 10

define InitialSampleSize 20 //2.1

define PRINTDATA 0

void GetData(void);

void GetComponentData(void);void GetAlternativesData(void);void ComponentSelection(void);int
BuildCombinations(void);void ProcessData(void);

APPENDIX X COMPUTER PROGRAM

CP-2

double CalculateReliability(double SelectionMatrixRel[sizeComp][sizeComp-23],double
SelectionMatrixCost[sizeComp][sizeComp-23]) ;

void PrintData(void);

int CrossOverProcess(void);int FirstOrderCrossOverProcess(void);int
SecondOrderCrossOverProcess(void);

int ThirdOrderCrossOverProcess(void);int MutationProcess(void);int FirstOrderMutation(void);

int SecondOrderMutation(void);int ThirdOrderMutation(void);double GenerateRandomNumber(void);

int GetCrossOverSite(void);int GetDiffCrossOverSiteTwo(int a, int b);int GetDiffCrossOverSite(int a);

void PrintParameters(double Rel[sizeComp], double Cost[sizeComp], double HRate[sizeComp]);

void PrintParametersToFile(double Rel[sizeComp], double Cost[sizeComp], double HRate[sizeComp],
double Loss_Fn,double REL);

void PrintDataBeforeCrossOver(void);void PrintDataAfterCrossOver(void);void
PrintDataBeforeMutation(void);

void PrintDataAfterMutation(void);void PrintOptimalResult(void);

int CompareChromosomes(void);

FILE *file1, *file2, *file3, *file4, *file5, *file6, *fileXoverOprt, *fileMutOprt;

char InputData[] = text file to provide input parameters,

AllComb[] = text file for dumping out all combination built in the program,

UniqComb[] = text file for dumpoing out all unique combinations built in the program,

InputData2[] = text file to input cost data of the reliability system,

UniqCostComb[]= text file for dumping out cost data produced by the program,

OptProcess[] = text fiel for dumping out the optimisation process,

XoverProcess[] = text fiel for dumping out crossover process,

MutProcess[] = text fiel for dumping out mutation process,

char startTime[9], endTime[9], todayDate[9];

double rand_num, CompDataReliability[sizeComp][sizeComp - 13],
CompDataCost[sizeComp][sizeComp - 13], SelectionMatrixRel[sizeComp][sizeComp-23],

SelectionMatrixCost[sizeComp][sizeComp-23], rel_time;

time_t start_time, end_time, processing_time;

float rand_value;

int ValueNumVar, AltData[sizeComp][sizeComp-23], numAlt=0, iRowAltData=0,
CompDataRow=0, CompDataCol=0, CompDataColLimit, SelectionMatrixRow=0, simRun=0,
sample_size, numVar, comb_ctr=0, FILEcomb_ctr=0, fileRow, fileCol, rowMatch,
EXPcomb_ctr=0, No_Nodes=0,,START_node=1, END_node=0, S_size=0,No_Cost=2, s_run=0,
ctrSearch=0, ChromSource=0, TRACEindicator=0;

unsigned long int EXPcomb_ctr=0;

int hr=0,row=0,col=0,
SYSTEM_FAILURE=0,SYSTEM_SUCCESS=0,CRITICAL_failure=0,CLEAN_FCompNo_

ctr=0, CompNo=0,FCompNo_ctr=0,LatticeRow=0,LatticeCol=0,
LatticeValue=0,NodeMatrixRow=0, NodeMatrixCol=0,
NodeMatrixCol2=0,NodeMatrixValue=0,FCompNo=0,FCompValue=0,
NodeCompFailCtr=0,SUCCESS_CTR=0,MaxLINK=0,MaxLINK2=0,
NodeMatrix[sizeComp][sizeComp][sizeComp],LatticeCOPY[sizeComp][sizeComp],

Lattice[sizeComp][sizeComp];

double CostVec[size],CHROMOSOME_1_R[sizeComp],CHROMOSOME_2_R[sizeComp],
CHROMOSOME_1_C[sizeComp],CHROMOSOME_2_C[sizeComp],RepCost,COF_temp=0.

0,
COF_Prod_Interv=0.0,COF_CompCost=0.0,COF_CompCost_OPT=0.0,COF=0.0,COF_OPT

APPENDIX X COMPUTER PROGRAM

CP-3

=0.0,
COF_perComp=0.0,COF_AllComp=0.0,COF_sys=0.0,REL=0.0,REL2=0.0,REL_OPT=0.99,

Loss_Fn=0.0,TARGET_RELIABILITY=0.85,LOSS_OPT=20000.0,
LOSS_OPT2=5000000.0;

int ChromRow,CrossOverRow,CrossOverSite,a,CrossOverSite2,CrossOverSite3,retVal,
iTEST=0,iTestVal=0,RelCtr=0;

double CHROMOSOME_1_R_MASTER[sizeComp][sizeComp-23],
CHROMOSOME_1_C_MASTER[sizeComp][sizeComp-23],
CHROMOSOME_2_R_MASTER[sizeComp][sizeComp-23],
CHROMOSOME_2_C_MASTER[sizeComp][sizeComp-23],
CHROMOSOME_1_R_COPY[sizeComp][sizeComp-23],
CHROMOSOME_1_C_COPY[sizeComp][sizeComp-23],
CHROMOSOME_2_R_COPY[sizeComp][sizeComp-23],
CHROMOSOME_2_C_COPY[sizeComp][sizeComp-

23],rand_num2=0.0,rand_value,iTestVal=1.0, CrossOverRelVal1, CrossOverRelVal2,
CrossOverCostVal1,CrossOverCostVal2,RelTest1, RelTest2, RelTest3,
RelTest4;

int main(void)

{

start_time = time(NULL);

_strtime(startTime);

_strdate(todayDate);

if ((file1 = fopen(InputData,"r"))==NULL)

printf("Error opening DataInput.TXT\n");

else if ((file4 = fopen(InputData2,"r"))==NULL)

printf("Error opening CostData.TXT\n");

else if ((file2 = fopen(AllComb,"w+t"))==NULL)

printf("Error opening AllCombination.TXT\n");

else if ((file3 = fopen(UniqComb,"w+t"))==NULL)

printf("Error opening UniqueReliabilityData.TXT\n");

else if ((file5 = fopen(UniqCostComb,"w+t"))==NULL)

printf("Error opening UniqueCostData.TXT\n");

else if ((file6 = fopen(OptProcess,"w+t"))==NULL)

printf("Error opening OptimisationProcess.TXT\n");

else if ((fileXoverOprt = fopen(XoverProcess,"w+t"))==NULL)

printf("Error opening XoverProcess.TXT\n");

else if ((fileMutOprt = fopen(MutProcess,"w+t"))==NULL)

printf("Error opening MutationProcess.TXT\n");

else

{

GetData();

printf("\n\tSYSTEM OPTIMISATION IN PROGRESS..................\n");

for(ctrSearch=0;ctrSearch<ctrSearchValue;ctrSearch++)

{

comb_ctr=0;

APPENDIX X COMPUTER PROGRAM

CP-4

if(PRINTDATA)

printf("\n Acquiring Sample Population: %d\n", ctrSearch+1);

if((ctrSearch==0)||(ctrSearch==24)||(ctrSearch==49)||(ctrSearch==74))

printf("\n Counter Search Number: %d\n", ctrSearch+1);

ProcessData();iTestVal = time(NULL); srand(iTestVal);iTEST =
rand();

rg.set_new_seed(iTEST);

retVal = CrossOverProcess();//cmm-cm-ccmmm

MutationProcess();

}

PrintOptimalResult();PrintData();getchar();getchar();

}

printf("\n**** Finishing Program*****\n ");return 0;

}

void GetData(void)

{

int i;

fscanf(file1,"%d", &sample_size);

printf("\n **** Sample size ****: %d\n\n", sample_size);

fscanf(file1,"%d", &numVar);

printf("\n Number of Components: %d\n\n", numVar);

GetAlternativesData();GetComponentData();

printf("\n variables have been added \n");

fseek(file1,0L,SEEK_CUR); fscanf(file1,"%d", &No_Nodes);

fscanf(file1,"%lf",&rel_time);fscanf(file1,"%d",&S_size);

for(i=0;i<No_Cost;i++)

fscanf(file1,"%lf",&CostVec[i]);

for(LatticeRow=0;LatticeRow<No_Nodes;LatticeRow++)

for(LatticeCol=0;LatticeCol<No_Nodes;LatticeCol++)

{fscanf(file1,"%d",&Lattice[LatticeRow][LatticeCol]);}

fscanf(file1,"%d",&MaxLINK);

//NodeMatrix[NodeMatrixRow][NodeMatrixCol][NodeMatrixCol2]=0;

for(NodeMatrixRow=0;NodeMatrixRow<No_Nodes;NodeMatrixRow++)

for(NodeMatrixCol=0;NodeMatrixCol<No_Nodes;NodeMatrixCol++)

{//fscanf(file1,"%d",&MaxLINK2);

MaxLINK = Lattice[NodeMatrixRow][NodeMatrixCol];

if(!MaxLINK)

{fscanf(file1,"%d",&MaxLINK2);continue;}

else

{
for(NodeMatrixCol2=0;NodeMatrixCol2<MaxLINK;NodeMatrixCol2++)

APPENDIX X COMPUTER PROGRAM

CP-5

{fscanf(file1,"%d",&MaxLINK2);

if(!MaxLINK2)

{NodeMatrixCol2=0;break;}

else{

NodeMatrix[NodeMatrixRow][NodeMatrixCol][NodeMatrixCol2] = MaxLINK2;

//NodeMatrixCol2++;}

}}}

}

void GetAlternativesData(void)

{for(iRowAltData=0;iRowAltData<numVar;iRowAltData++)

{numAlt=0;fscanf(file1,"%d",&AltData[iRowAltData][numAlt]);}

for(iRowAltData=0;iRowAltData<numVar;iRowAltData++)

{numAlt=0;printf("\nNumber of Alternatives for Component: %d = ", iRowAltData+1);

printf("\t%d",AltData[iRowAltData][numAlt]);}

printf("\n");EXPcomb_ctr=1;

for(iRowAltData=0;iRowAltData<numVar;iRowAltData++)

{numAlt=0;EXPcomb_ctr = EXPcomb_ctr * AltData[iRowAltData][numAlt];}}

void GetComponentData(void)

{for(CompDataRow=0;CompDataRow<numVar;CompDataRow++)

{CompDataColLimit = AltData[CompDataRow][0];

for(CompDataCol=0;CompDataCol<CompDataColLimit;CompDataCol++)

{fscanf(file1,"%lf",&CompDataReliability[CompDataRow][CompDataCol]);
fscanf(file4,"%lf",&CompDataCost[CompDataRow][CompDataCol]);}}

for(CompDataRow=0;CompDataRow<numVar;CompDataRow++)

{CompDataColLimit = AltData[CompDataRow][0];

printf("\n*** Set of Alternatives for Component: %d ***", CompDataRow+1);

printf("\n\n");

for(CompDataCol=0;CompDataCol<CompDataColLimit;CompDataCol++)

{printf("%lf\t",CompDataReliability[CompDataRow][CompDataCol]);

//fscanf(file1,"%lf",&CompDataReliability[CompDataRow][CompDataCol]);

//fscanf(file1,"%lf",&CompDataCost[CompDataRow][CompDataCol]);}

printf("\n");

for(CompDataCol=0;CompDataCol<CompDataColLimit;CompDataCol++)

{printf("%lf\t",CompDataCost[CompDataRow][CompDataCol]);}

printf("\n");}}

void ProcessData(void)

{//printf("\n Acquiring Sample Population\n");int iBCresult;double mathValue;

iTEST = rand();rg.set_new_seed(iTEST);simRun=0;

do{ComponentSelection();iBCresult = BuildCombinations();if(iBCresult==99)

{simRun++;continue;}

APPENDIX X COMPUTER PROGRAM

CP-6

mathValue = pow(numVar,InitialSampleSize);}

while (comb_ctr<InitialSampleSize);//while (comb_ctr<pow(numVar,InitialSampleSize));}

void ComponentSelection(void)

{int SelectionRow,AltValue;

for(SelectionRow=0;SelectionRow<numVar;SelectionRow++)

{rand_num=GenerateRandomNumber();//rg.real_random();numAlt=0;AltValue=AltData[Sele
ctionRow][numAlt]; rand_value=(AltValue * rand_num) + 1;ValueNumVar =rand_value;

SelectionMatrixRel[SelectionRow][numAlt]=
CompDataReliability[SelectionRow][ValueNumVar-1];

SelectionMatrixCost[SelectionRow][numAlt] =
CompDataCost[SelectionRow][ValueNumVar-1];}}

int BuildCombinations(void)

{int TempValueRow=0,CheckCtr=0,CheckRow=0,NoMatchFound=0;

double TempValue[sizeComp][sizeComp-22], CheckTempValue,
CheckSelectionValue,dRel;

/* TRACEindicator=1;

dRel = CalculateReliability(SelectionMatrixRel,SelectionMatrixCost);

comb_ctr++;

*/ if(!comb_ctr) {//printf("\n selection no: %d \n",simRun+1);

TRACEindicator=1;dRel =
CalculateReliability(SelectionMatrixRel,SelectionMatrixCost);

for(SelectionMatrixRow=0;SelectionMatrixRow<numVar;SelectionMatrixRow++)

{

fprintf(file3,"%lf ",SelectionMatrixRel[SelectionMatrixRow][numAlt]);

fprintf(file5,"%lf ",SelectionMatrixCost[SelectionMatrixRow][numAlt]);

}

//fprintf(file3,"(%lf) ",REL); fprintf(file3,"\n");fprintf(file5,"\n");
FILEcomb_ctr++;

comb_ctr++;return 99;}fclose(file3);

if ((file3 = fopen(UniqComb,"r+w+t"))==NULL)

printf("Error opening UniqueCombination.TXT\n");

else

fseek(file3,0L,SEEK_SET);

//for(fileRow=0;fileRow<comb_ctr;fileRow++)

for(fileRow=0;fileRow<FILEcomb_ctr;fileRow++)

{numAlt=0;

for(TempValueRow=0;TempValueRow<numVar;TempValueRow++)

{//fscanf(file3,"%lf",&TempValue[fileRow][numAlt]);
fscanf(file3,"%lf",&TempValue[TempValueRow][numAlt]);}

CheckCtr=0;

for(CheckRow=0;CheckRow<numVar;CheckRow++)

{CheckTempValue
=TempValue[CheckRow][numAlt];CheckSelectionValue=SelectionMatrixRel[CheckRow][nu

mAlt];

if(CheckTempValue==CheckSelectionValue)

APPENDIX X COMPUTER PROGRAM

CP-7

CheckCtr++;

else

break;}

if(CheckCtr >= numVar)

break;

if(fileRow==FILEcomb_ctr-1)

{NoMatchFound=1;break;}

else continue; }

if(NoMatchFound)

{NoMatchFound=0;TRACEindicator=1;

dRel = CalculateReliability(SelectionMatrixRel,SelectionMatrixCost);

//CalculateLosses(); fseek(file3,0L,SEEK_END);
fseek(file5,0L,SEEK_END);

fprintf(file3,"\n");fprintf(file5,"\n");
for(SelectionMatrixRow=0;SelectionMatrixRow<numVar;SelectionMatrixRow++)

{ fprintf(file3,"%lf
",SelectionMatrixRel[SelectionMatrixRow][numAlt]);

fprintf(file5,"%lf
",SelectionMatrixCost[SelectionMatrixRow][numAlt]);}

//fprintf(file3,"(%lf) ",REL); fprintf(file3,"\n");fprintf(file5,"\n");

fclose(file3);fclose(file5);comb_ctr++; FILEcomb_ctr++;

if ((file3 = fopen(UniqComb,"r+w+t"))==NULL)

printf("Error opening UniqueCombination.TXT\n");

else

fseek(file3,0L,SEEK_CUR);

if ((file5 = fopen(UniqCostComb,"r+w+t"))==NULL)

printf("Error opening UniqueCostComb.TXT\n");

else

fseek(file5,0L,SEEK_CUR); }

simRun++;return 1;}

void PrintData(void)

{ if(comb_ctr==EXPcomb_ctr)

{printf("\n Results found in '%d' simulation runs from total sample size of '%d'\n",
simRun,sample_size);

fseek(file2,0L,SEEK_END);

numAlt=0;}

printf("\nExpected Number of unique combinations (Analytical): %lf\n", (float)
EXPcomb_ctr);

printf("\nTotal number of unique combinations found (Monte-Carlo Simulation): %d\n",
FILEcomb_ctr);

printf("\n Total amount of search space used: %d\n", RelCtr);

fseek(file3,0L,SEEK_END); fseek(file5,0L,SEEK_END);

numAlt=0;

APPENDIX X COMPUTER PROGRAM

CP-8

fprintf(file3,"\nNumber of Alternatives for '%d' Components are: ",numVar);

for(iRowAltData=0;iRowAltData<numVar;iRowAltData++)

fprintf(file3,"\t%d",AltData[iRowAltData][numAlt]);

fprintf(file3,"\nTotal number of expected unique combinations (Analytical) : %ld\n",
EXPcomb_ctr);

fprintf(file3,"\nTotal number of actual unique combinations found (Monte-Carlo Simulation):
%d\n", comb_ctr);

fprintf(file3,"\nAllocated Sample size was '%d', but results were found in '%d' runs",
sample_size, simRun); fcloseall();end_time = time(NULL);_strtime(endTime);

printf("\n Start time of the program : %s\t%s", todayDate, startTime);

printf("\n End time of the program : %s\t%s", todayDate,endTime);

processing_time = end_time - start_time;printf("\n Processing time of the program : %ld
seconds or %.3lf minutes \a", processing_time, (double)processing_time/60);}

double CalculateReliability(double SelectionMatrixRel[sizeComp][sizeComp-23],double
SelectionMatrixCost[sizeComp][sizeComp-23])

{

double
Rel[sizeComp],Cost[sizeComp],HRate[sizeComp],F_time[sizeComp],RelVal,rand_num,

SYSTEM_Fp,SYSTEM_RELIABILITY;CompOne,CompTwo,

CompThree,CompFour,CompFive,CompSix,CompSeven,CompEight,

CompNine,RelSubSysOne,RelSubSysTwo,RelSubSysThree;

int i, FAIL_comp, TESTctr=0, Comp_Failed[sizeComp];

RelCtr++;

for (hr=0;hr<numVar;hr++)

{ Rel[hr] = SelectionMatrixRel[hr][0];

Cost[hr]= SelectionMatrixCost[hr][0];;

RelVal = Rel[hr];HRate[hr] = -log(RelVal)/rel_time;}
CompOne = Rel[0];CompTwo = Rel[1];CompThree = Rel[2];CompFour = Rel[3];

CompFive = Rel[4];CompSix = Rel[5]; CompSeven = Rel[6];CompEight =
Rel[7]; CompNine = Rel[8];RelSubSysOne = 1-((1-CompOne)*(1-CompTwo)*(1-
CompThree));

RelSubSysTwo = 1-((1-CompFour)*(1-CompFive)*(1-CompSix)*(1-
CompSeven));

RelSubSysThree = 1-((1-CompEight)*(1-CompNine));

//production cost and intervention cost

COF_Prod_Interv=0;

for(i=0;i<No_Cost;i++)

{COF_temp=CostVec[i];COF_Prod_Interv=COF_Prod_Interv+COF_temp;}

//cost of REPLACEMENT for each component = FACTOR * cost of
component

COF_CompCost=0.0;

for(i=0;i<numVar;i++)

{COF_temp=Cost[i];COF_CompCost =COF_CompCost
+COF_temp;}

APPENDIX X COMPUTER PROGRAM

CP-9

SUCCESS_CTR=0;SYSTEM_FAILURE=0;rg.set_new_seed(1651);

SYSTEM_FAILURE = 0;CRITICAL_failure =0; TESTctr=0;

for(s_run=0;s_run<S_size;s_run++)

{
for(CLEAN_FCompNo_ctr=0;CLEAN_FCompNo_ctr<FCompNo_ctr;CLEAN_FCompNo_ct

r++)

Comp_Failed[CLEAN_FCompNo_ctr]=NULL; FCompNo_ctr=0;

for(row=0;row<No_Nodes;row++)

for(col=0;col<No_Nodes;col++)

{LatticeCOPY[row][col]=Lattice[row][col];}

for (CompNo=1;CompNo<=numVar;CompNo++)

{rand_num = rg.real_random();

F_time[CompNo-1] = -log(rand_num)/HRate[CompNo-1];

if(F_time[CompNo-1] < rel_time)

{Comp_Failed[FCompNo_ctr] = CompNo;
FCompNo_ctr++;} }

if(!FCompNo_ctr)

{SYSTEM_SUCCESS = 1;}

else

{TESTctr++;;LatticeRow=0;
for(LatticeCol=No_Nodes-1;LatticeCol>=0;LatticeCol--)

{LatticeValue = LatticeCOPY[LatticeRow][LatticeCol];

if (!LatticeValue)
continue;

if(LatticeValue)
{ LatticeCol;
LatticeCOPY[LatticeRow][LatticeCol]=0;
LatticeCOPY[LatticeCol][LatticeRow]=0;NodeMatrixRow = LatticeRow;

NodeMatrixCol = LatticeCol; NodeCompFailCtr=0;

for(NodeMatrixCol2=0;NodeMatrixCol2<LatticeValue;NodeMatrixCol2++)

if(!FCompNo_ctr)
break;

NodeMatrixValue =
NodeMatrix[NodeMatrixRow][NodeMatrixCol][NodeMatrixCol2];

if(!NodeMatrixValue)
break;

for(FCompNo=0;FCompNo<FCompNo_ctr;FCompNo++)

FCompValue = Comp_Failed[FCompNo];
if(FCompValue ==NodeMatrixValue)

{
NodeCompFailCtr++;break; }

else
continue; }}}

if(NodeCompFailCtr>=LatticeValue)
continue; if(LatticeCol == No_Nodes - 1)

{SYSTEM_SUCCESS = 1;break;}

else{LatticeRow = LatticeCol;LatticeCol = No_Nodes ;continue;}}}
if(SYSTEM_SUCCESS){SUCCESS_CTR++;;SYSTEM_SUCCESS = 0;}

APPENDIX X COMPUTER PROGRAM

CP-10

else{SYSTEM_FAILURE++;COF_AllComp = 0;//cost of
each failure

for(i=0;i<FCompNo_ctr;i++)

{FAIL_comp = Comp_Failed[i];
RepCost = Cost[FAIL_comp-1] * FACTOR;
COF_perComp = Cost[FAIL_comp-1] + RepCost;
COF_AllComp = COF_AllComp + COF_perComp;}

COF_sys = COF_sys + COF_AllComp + COF_Prod_Interv; }}

SYSTEM_RELIABILITY = (double)SUCCESS_CTR /(double) S_size;

SYSTEM_Fp = (double) SYSTEM_FAILURE / (double)S_size;

REL = 1 -SYSTEM_Fp; COF = COF_sys/S_size;COF_sys=0.0;

Loss_Fn = COF_CompCost + COF;

REL2 = RelSubSysOne*RelSubSysTwo*RelSubSysThree;

fprintf(file2, "\nReliability, %lf,Reliability(Analytical), %lf, Loss Fn, %lf,
Comp Cost, %lf, Risk(K), %lf, Counter No, %d\n", REL,
REL2,Loss_Fn,COF_CompCost,COF,ctrSearch+1);

if(TRACEindicator)

{if(Loss_Fn<LOSS_OPT)

{printf("\n\t\t***** close match found - Reliability: %lf AND Loss Fn: %lf(Counter No:
%d)\n", REL, Loss_Fn,ctrSearch+1);fprintf(file6, "\nReliability, %lf, AND Loss Fn, %lf, Q,%lf,K,%lf,
Counter No, %d\n", REL, Loss_Fn,COF_CompCost,COF,ctrSearch+1);

PrintParametersToFile(Rel,Cost,HRate,Loss_Fn,REL);LOSS_OPT2=LOSS_OPT;
for(i=0;i<numVar;i++)

{CHROMOSOME_2_R[i]= CHROMOSOME_1_R[i];
CHROMOSOME_2_C[i] = CHROMOSOME_1_C[i];}

LOSS_OPT=Loss_Fn;REL_OPT = REL;COF_OPT=COF;

COF_CompCost_OPT = COF_CompCost;

for(i=0;i<numVar;i++)

{CHROMOSOME_1_R[i]=Rel[i];
CHROMOSOME_1_C[i]=Cost[i];}}

if((Loss_Fn<LOSS_OPT2)&&(Loss_Fn>LOSS_OPT)) //if(Loss_Fn>LOSS_OPT)

{LOSS_OPT2=Loss_Fn;for(i=0;i<numVar;i++)

{CHROMOSOME_2_R[i]=Rel[i];CHROMOSOME_2_C[i]=ost[i];} }

TRACEindicator=0;}

else{if(Loss_Fn<LOSS_OPT)

{if(ChromSource==1)

{printf("\n\t\t F.O.C. close match found - Reliability: %lf AND Loss_Fn:
%lf (Counter No: %d)\n", REL, Loss_Fn,ctrSearch+1);fprintf(file6, "\nReliability, %lf, AND Loss_Fn,
%lf, Q,%lf,K,%lf, Counter No, %d\n", REL,
Loss_Fn,COF_CompCost,COF,ctrSearch+1);PrintParametersToFile(Rel,Cost,HRate,Loss_Fn,REL);}

if(ChromSource==2){printf("\n\t\t S.O.C. close match found - Reliability:
%lf AND Loss_Fn: %lf (Counter No: %d)\n", REL, Loss_Fn,ctrSearch+1);fprintf(file6, "\nReliability,
%lf, AND Loss_Fn, %lf, Q,%lf,K,%lf, Counter No, %d\n", REL,
Loss_Fn,COF_CompCost,COF,ctrSearch+1);

PrintParametersToFile(Rel,Cost,HRate,Loss_Fn,REL);}

if(ChromSource==3)

{printf("\n\t\t T.O.C. close match found - Reliability: %lf AND Loss_Fn:
%lf (Counter No: %d)\n", REL, Loss_Fn,ctrSearch+1);fprintf(file6, "\nReliability, %lf, AND Loss_Fn,

APPENDIX X COMPUTER PROGRAM

CP-11

%lf, Q,%lf,K,%lf, Counter No, %d\n", REL, Loss_Fn,COF_CompCost,COF,ctrSearch+1);
PrintParametersToFile(Rel,Cost,HRate,Loss_Fn,REL);}

if(ChromSource==4)

{printf("\n\t\t F.O.M. close match found - Reliability: %lf AND Loss_Fn: %lf (Counter No: %d)\n",
REL, Loss_Fn,ctrSearch+1);fprintf(file6, "\nReliability, %lf, AND Loss_Fn, %lf, Q,%lf,K,%lf,
Counter No, %d\n", REL, Loss_Fn,COF_CompCost,COF,ctrSearch+1);

PrintParametersToFile(Rel,Cost,HRate,Loss_Fn,REL);}

if(ChromSource==5)

{printf("\n\t\t S.O.M. close match found - Reliability: %lf AND Loss_Fn:
%lf (Counter No: %d)\n", REL, Loss_Fn,ctrSearch+1);fprintf(file6, "\nReliability, %lf, AND Loss_Fn,
%lf, Q,%lf,K,%lf, Counter No, %d\n", REL, Loss_Fn,COF_CompCost,COF,ctrSearch+1);

PrintParametersToFile(Rel,Cost,HRate,Loss_Fn,REL);}

if(ChromSource==6)

{printf("\n\t\t T.O.M. close match found - Reliability: %lf AND Loss_Fn: %lf (Counter No: %d)\n",
REL, Loss_Fn,ctrSearch+1);fprintf(file6, "\nReliability, %lf, AND Loss_Fn, %lf, Q,%lf,K,%lf,
Counter No, %d\n", REL, Loss_Fn,COF_CompCost,COF,ctrSearch+1);

PrintParametersToFile(Rel,Cost,HRate,Loss_Fn,REL);}

ChromSource=0; LOSS_OPT2=LOSS_OPT;

for(i=0;i<numVar;i++)

{CHROMOSOME_2_R[i]=CHROMOSOME_1_R[i];CHROMOSOME_2_C[i]=CHROMOSOME_1_
C[i];} LOSS_OPT=Loss_Fn;REL_OPT = REL;COF_OPT=COF; COF_CompCost_OPT =
COF_CompCost;

REL,SYSTEM_Fp,LOSS_OPT,COF_CompCost,COF);for(i=0;i<numVar;i++)

{CHROMOSOME_1_R[i]=Rel[i];CHROMOSOME_1_C[i]=Cost[i]; }

fprintf(file2,"\n");}

if((Loss_Fn<LOSS_OPT2)&&(Loss_Fn>LOSS_OPT))//<=?

{LOSS_OPT2=Loss_Fn;

for(i=0;i<numVar;i++)

{CHROMOSOME_2_R[i]=Rel[i];CHROMOSOME_2_C[i]=Cost[i]; }}}

return REL;}

int CrossOverProcess(void)

{int retValue=0;retValue = FirstOrderCrossOverProcess();

if(retValue==999)

return retValue;

SecondOrderCrossOverProcess();

if(retValue==999)

return retValue;

ThirdOrderCrossOverProcess();

if(retValue==999)

return retValue;

return 0;}

int FirstOrderCrossOverProcess(void)

APPENDIX X COMPUTER PROGRAM

CP-12

{

int iCOS, cosTEST, IDENTICAL_CROSSOVERSITE=0, cosLIST[size];

iTEST = rand();

for(ChromRow=0;ChromRow<numVar;ChromRow++)

{CHROMOSOME_1_R_MASTER[ChromRow][0]=CHROMOSOME_1_R[ChromRow];

CHROMOSOME_1_C_MASTER[ChromRow][0]=CHROMOSOME_1_C[ChromRow];

CHROMOSOME_2_R_MASTER[ChromRow][0]=CHROMOSOME_2_R[ChromRow];

CHROMOSOME_2_C_MASTER[ChromRow][0]=CHROMOSOME_2_C[ChromRow];}

for(CrossOverRow=0;CrossOverRow<CrossOverRun;CrossOverRow++)

{for(ChromRow=0;ChromRow<numVar;ChromRow++)

{CHROMOSOME_1_R_COPY[ChromRow][0]=CHROMOSOME_1_R[ChromRow];
CHROMOSOME_1_C_COPY[ChromRow][0]=

CHROMOSOME_1_C[ChromRow];
CHROMOSOME_2_R_COPY[ChromRow][0]= CHROMOSOME_2_R[ChromRow];

CHROMOSOME_2_C_COPY[ChromRow][0]=
CHROMOSOME_2_C[ChromRow];}

if(PRINTDATA)

PrintDataBeforeCrossOver();

iTEST = rand();rg.set_new_seed(iTEST);

CrossOverSite = GetCrossOverSite();//rand_value;

if(PRINTDATA)

printf("\n CrossOver Site: %d\n", CrossOverSite);

for(iCOS=0;iCOS<numVar;iCOS++)

{cosTEST = cosLIST[iCOS];

if(cosTEST)

{if(CrossOverSite==cosTEST)

{IDENTICAL_CROSSOVERSITE = 1;break;}}

else

break;}

if(IDENTICAL_CROSSOVERSITE)

{IDENTICAL_CROSSOVERSITE=0; continue; }

else

cosLIST[CrossOverRow]=CrossOverSite;

CrossOverRelVal1 = CHROMOSOME_1_R_COPY[CrossOverSite-
1][0];

CrossOverRelVal2 = CHROMOSOME_2_R_COPY[CrossOverSite-
1][0];

CHROMOSOME_1_R_COPY[CrossOverSite-1][0] = CrossOverRelVal2;

CHROMOSOME_2_R_COPY[CrossOverSite-1][0] = CrossOverRelVal1;

if(CrossOverRelVal1==CrossOverRelVal2)

{ continue; }

APPENDIX X COMPUTER PROGRAM

CP-13

CrossOverCostVal1 = CHROMOSOME_1_C_COPY[CrossOverSite-
1][0];

CrossOverCostVal2 = CHROMOSOME_2_C_COPY[CrossOverSite-
1][0];

CHROMOSOME_1_C_COPY[CrossOverSite-1][0] = CrossOverCostVal2;

CHROMOSOME_2_C_COPY[CrossOverSite-1][0] = CrossOverCostVal1;

if(PRINTDATA)

PrintDataAfterCrossOver();

ChromSource = 1;

RelTest1 = CalculateReliability(CHROMOSOME_1_R_COPY,CHROMOSOME_1_C_COPY);

fprintf(fileXoverOprt, "\nReliability, %lf, AND Loss_Fn, %lf, Q,%lf,K,%lf,Counter
No, %d, X-over Type, %d, Generaton NO,%d\n", RelTest1,
Loss_Fn,COF_CompCost,COF,ctrSearch+1,1,RelCtr);

ChromSource = 1;

RelTest2 =
CalculateReliability(CHROMOSOME_2_R_COPY,CHROMOSOME_2_C_COPY);

fprintf(fileXoverOprt, "\nReliability, %lf, AND Loss_Fn, %lf,Q,%lf,K,%lf,Counter
No, %d, X-over Type, %d, Generaton NO,%d\n", RelTest2,
Loss_Fn,COF_CompCost,COF,ctrSearch+1,1,RelCtr);

if(LOSS_OPT==LOSS_OPT2)

{return 999;}

if (CompareChromosomes())

return 999;}return 0;}

int SecondOrderCrossOverProcess(void)

{ int noCHECK1=0,noCHECK2=0;

for(CrossOverRow=0;CrossOverRow<CrossOverRun;CrossOverRow++)

{for(ChromRow=0;ChromRow<numVar;ChromRow++)

{CHROMOSOME_1_R_COPY[ChromRow][0]
=CHROMOSOME_1_R[ChromRow];

CHROMOSOME_1_C_COPY[ChromRow][0]
=CHROMOSOME_1_C[ChromRow];

CHROMOSOME_2_R_COPY[ChromRow][0]
=CHROMOSOME_2_R[ChromRow];

CHROMOSOME_2_C_COPY[ChromRow][0]
=CHROMOSOME_2_C[ChromRow]; }

if(PRINTDATA)

PrintDataBeforeCrossOver();

iTEST = rand();rg.set_new_seed(iTEST);

CrossOverSite = GetCrossOverSite();//rand_value;

if(PRINTDATA)

printf("\n CrossOver Site: %d\n", CrossOverSite);

CrossOverRelVal1 = CHROMOSOME_1_R_COPY[CrossOverSite-
1][0];

CrossOverRelVal2 = CHROMOSOME_2_R_COPY[CrossOverSite-
1][0];

APPENDIX X COMPUTER PROGRAM

CP-14

CHROMOSOME_1_R_COPY[CrossOverSite-1][0] = CrossOverRelVal2;

CHROMOSOME_2_R_COPY[CrossOverSite-1][0] = CrossOverRelVal1;

if(CrossOverRelVal1==CrossOverRelVal2)

noCHECK1=1;

else

noCHECK1=0;

CrossOverCostVal1 = CHROMOSOME_1_C_COPY[CrossOverSite-
1][0];

CrossOverCostVal2 = CHROMOSOME_2_C_COPY[CrossOverSite-
1][0];

CHROMOSOME_1_C_COPY[CrossOverSite-1][0] = CrossOverCostVal2;

CHROMOSOME_2_C_COPY[CrossOverSite-1][0] = CrossOverCostVal1;

CrossOverSite2 = GetCrossOverSite();//rand_value;

if(CrossOverSite2==CrossOverSite)

CrossOverSite2=GetDiffCrossOverSite(CrossOverSite);

if(PRINTDATA)

printf("\n CrossOver Site: %d\n", CrossOverSite2);

CrossOverRelVal1 = CHROMOSOME_1_R_COPY[CrossOverSite2-
1][0];

CrossOverRelVal2 = CHROMOSOME_2_R_COPY[CrossOverSite2-
1][0];

CHROMOSOME_1_R_COPY[CrossOverSite2-1][0]= CrossOverRelVal2;

CHROMOSOME_2_R_COPY[CrossOverSite2-1][0]= CrossOverRelVal1;

if(CrossOverRelVal1==CrossOverRelVal2)

noCHECK2=1;

else

noCHECK2=0;

CrossOverCostVal1 = CHROMOSOME_1_C_COPY[CrossOverSite2-
1][0];

CrossOverCostVal2 = CHROMOSOME_2_C_COPY[CrossOverSite2-
1][0];

CHROMOSOME_1_C_COPY[CrossOverSite2-1][0]= CrossOverCostVal2;

CHROMOSOME_2_C_COPY[CrossOverSite2-1][0]= CrossOverCostVal1;

if(PRINTDATA)

PrintDataAfterCrossOver();

if(noCHECK1==noCHECK2)

{noCHECK1=0; noCHECK2=0; continue; }

ChromSource = 2;

RelTest3 =
CalculateReliability(CHROMOSOME_1_R_COPY,CHROMOSOME_1_C_COPY);

fprintf(fileXoverOprt, "\nReliability, %lf, AND Loss_Fn, %lf,Q,%lf,K,%lf, Counter
No, %d, X-over Type, %d , Generaton NO,%d\n", RelTest3,
Loss_Fn,COF_CompCost,COF,ctrSearch+1,2,RelCtr);

APPENDIX X COMPUTER PROGRAM

CP-15

ChromSource = 2;

RelTest4 =
CalculateReliability(CHROMOSOME_2_R_COPY,CHROMOSOME_2_C_COPY);

fprintf(fileXoverOprt, "\nReliability, %lf, AND Loss_Fn, %lf,Q,%lf,K,%lf, Counter
No, %d, X-over Type, %d, Generaton NO,%d\n", RelTest4,
Loss_Fn,COF_CompCost,COF,ctrSearch+1,2,RelCtr);

if (CompareChromosomes())

return 999;}return 0;}

int ThirdOrderCrossOverProcess(void)

{

int noCHECK1=0,noCHECK2=0,noCHECK3=0;

for(CrossOverRow=0;CrossOverRow<CrossOverRun;CrossOverRow++)

{for(ChromRow=0;ChromRow<numVar;ChromRow++)

{CHROMOSOME_1_R_COPY[ChromRow][0]
=CHROMOSOME_1_R[ChromRow];
CHROMOSOME_1_C_COPY[ChromRow][0] =CHROMOSOME_1_C[ChromRow];

CHROMOSOME_2_R_COPY[ChromRow][0]
=CHROMOSOME_2_R[ChromRow];
CHROMOSOME_2_C_COPY[ChromRow][0] =CHROMOSOME_2_C[ChromRow];}

if(PRINTDATA)

PrintDataBeforeCrossOver();

CrossOverSite = GetCrossOverSite();//rand_value;

if(PRINTDATA)

printf("\n CrossOver Site: %d\n", CrossOverSite);

CrossOverRelVal1 = CHROMOSOME_1_R_COPY[CrossOverSite-
1][0];

CrossOverRelVal2 = CHROMOSOME_2_R_COPY[CrossOverSite-
1][0];

CHROMOSOME_1_R_COPY[CrossOverSite-1][0] = CrossOverRelVal2;

CHROMOSOME_2_R_COPY[CrossOverSite-1][0] = CrossOverRelVal1;

if(CrossOverRelVal1==CrossOverRelVal2)

noCHECK1=1;

else

noCHECK1=0;

CrossOverCostVal1 = CHROMOSOME_1_C_COPY[CrossOverSite-
1][0];

CrossOverCostVal2 = CHROMOSOME_2_C_COPY[CrossOverSite-
1][0];

CHROMOSOME_1_C_COPY[CrossOverSite-1][0] = CrossOverCostVal2;

CHROMOSOME_2_C_COPY[CrossOverSite-1][0] = CrossOverCostVal1;

CrossOverSite2 = GetCrossOverSite();//rand_value;

if(CrossOverSite2==CrossOverSite)

CrossOverSite2=GetDiffCrossOverSite(CrossOverSite);

if(PRINTDATA)

APPENDIX X COMPUTER PROGRAM

CP-16

printf("\n CrossOver Site: %d\n", CrossOverSite2);

CrossOverRelVal1 = CHROMOSOME_1_R_COPY[CrossOverSite2-
1][0];

CrossOverRelVal2 = CHROMOSOME_2_R_COPY[CrossOverSite2-
1][0];

CHROMOSOME_1_R_COPY[CrossOverSite2-1][0]= CrossOverRelVal2;

CHROMOSOME_2_R_COPY[CrossOverSite2-1][0]= CrossOverRelVal1;

if(CrossOverRelVal1==CrossOverRelVal2)

noCHECK2=1;

else

noCHECK2=0;

CrossOverCostVal1 = CHROMOSOME_1_C_COPY[CrossOverSite2-
1][0];

CrossOverCostVal2 = CHROMOSOME_2_C_COPY[CrossOverSite2-
1][0];

CHROMOSOME_1_C_COPY[CrossOverSite2-1][0]= CrossOverCostVal2;

CHROMOSOME_2_C_COPY[CrossOverSite2-1][0]= CrossOverCostVal1;

CrossOverSite3 = GetCrossOverSite();//rand_value;

if((CrossOverSite3==CrossOverSite)||(CrossOverSite3==CrossOverSite2))

CrossOverSite3=GetDiffCrossOverSiteTwo(CrossOverSite,
CrossOverSite2);

if(PRINTDATA)

printf("\n CrossOver Site: %d\n", CrossOverSite3);

CrossOverRelVal1 = CHROMOSOME_1_R_COPY[CrossOverSite3-
1][0];

CrossOverRelVal2 = CHROMOSOME_2_R_COPY[CrossOverSite3-
1][0];

CHROMOSOME_1_R_COPY[CrossOverSite3-1][0]= CrossOverRelVal2;

CHROMOSOME_2_R_COPY[CrossOverSite3-1][0]= CrossOverRelVal1;

if(CrossOverRelVal1==CrossOverRelVal2)

noCHECK3=1;

else

noCHECK3=0;

CrossOverCostVal1 = CHROMOSOME_1_C_COPY[CrossOverSite3-
1][0];

CrossOverCostVal2 = CHROMOSOME_2_C_COPY[CrossOverSite3-
1][0];

CHROMOSOME_1_C_COPY[CrossOverSite3-1][0]= CrossOverCostVal2;

CHROMOSOME_2_C_COPY[CrossOverSite3-1][0]= CrossOverCostVal1;

if(PRINTDATA)

PrintDataAfterCrossOver();

if((noCHECK1==noCHECK2)&&(noCHECK2==noCHECK3))

{noCHECK1=0; noCHECK2=0; noCHECK3=0;continue;}

ChromSource = 3;

APPENDIX X COMPUTER PROGRAM

CP-17

RelTest3 =
lculateReliability(CHROMOSOME_1_R_COPY,CHROMOSOME_1_C_COPY);

fprintf(fileXoverOprt, "\nReliability, %lf, AND Loss_Fn, %lf,Q,%lf,K,%lf, Counter
No, %d, X-over Type, %d, Generaton No, %d\n", RelTest3,
Loss_Fn,COF_CompCost,COF,ctrSearch+1,3,RelCtr);

ChromSource = 3;

RelTest4 =
CalculateReliability(CHROMOSOME_2_R_COPY,CHROMOSOME_2_C_COPY);

fprintf(fileXoverOprt, "\nReliability, %lf, AND Loss_Fn, %lf, Q,%lf,K,%lf, Counter No, %d,
X-over Type, %d, Generaton No, %d\n", RelTest4,
Loss_Fn,COF_CompCost,COF,ctrSearch+1,3,RelCtr);

if (CompareChromosomes())

return 999;}return 0;}

int MutationProcess(void)

{ FirstOrderMutation();

SecondOrderMutation();

ThirdOrderMutation(); return 0;}

int FirstOrderMutation(void)

{int AltValue=0, ctr=0;double chrmValue, DataValue;

for(CrossOverRow=0;CrossOverRow<MutationRun;CrossOverRow++)

{for(ChromRow=0;ChromRow<numVar;ChromRow++){
CHROMOSOME_1_R_COPY[ChromRow][0] =CHROMOSOME_1_R[ChromRow];

CHROMOSOME_1_C_COPY[ChromRow][0]
=CHROMOSOME_1_C[ChromRow];}

if(PRINTDATA)

PrintDataBeforeMutation();

iTEST = rand();rg.set_new_seed(iTEST);

CrossOverSite = GetCrossOverSite();

if(PRINTDATA)

printf("\n MUTATION Site: %d\n", CrossOverSite);

numAlt = 0; AltValue=AltData[CrossOverSite-1][numAlt];

rand_value=(AltValue * rand_num) + 1; ValueNumVar = rand_value;

chrmValue= CHROMOSOME_1_R_COPY[CrossOverSite-1][0];

DataValue= CompDataReliability[CrossOverSite-1][ValueNumVar-1];

if(chrmValue==DataValue)

{ for(ctr=0;ctr<=MutationRun;ctr++)

{ if(chrmValue==DataValue) {

rand_num = GenerateRandomNumber();

rand_value = (AltValue * rand_num) + 1;

ValueNumVar = rand_value;

chrmValue = CHROMOSOME_1_R_COPY[CrossOverSite-1][0];

DataValue = CompDataReliability[CrossOverSite-1][ValueNumVar-
1];}

else

APPENDIX X COMPUTER PROGRAM

CP-18

break; } }

CHROMOSOME_1_R_COPY[CrossOverSite-1][0]= CompDataReliability[CrossOverSite-
1][ValueNumVar-1];

CHROMOSOME_1_C_COPY[CrossOverSite-1][0]= CompDataCost[CrossOverSite-
1][ValueNumVar-1];

if(PRINTDATA)

PrintDataAfterMutation();

ChromSource = 4;

RelTest1 = CalculateReliability(CHROMOSOME_1_R_COPY,CHROMOSOME_1_C_COPY);

fprintf(fileMutOprt, "\nReliability, %lf, AND Loss_Fn, %lf,Q,%lf,K,%lf, Counter No, %d, Mutation
Type, %d, Generation No, %d\n", RelTest1, Loss_Fn,COF_CompCost,COF,ctrSearch+1,1,RelCtr);

} return 0;}

int SecondOrderMutation(void)

{int AltValue=0,ctr=0;double chrmValue, DataValue;

for(CrossOverRow=0;CrossOverRow<MutationRun;CrossOverRow++)

{for(ChromRow=0;ChromRow<numVar;ChromRow++)

{CHROMOSOME_1_R_COPY[ChromRow][0]
=CHROMOSOME_1_R[ChromRow];
CHROMOSOME_1_C_COPY[ChromRow][0] =CHROMOSOME_1_C[ChromRow];
}

if(PRINTDATA)

PrintDataBeforeMutation();

iTEST = rand();rg.set_new_seed(iTEST);

CrossOverSite = GetCrossOverSite();

if(PRINTDATA)

printf("\n MUTATION Site: %d\n", CrossOverSite);

numAlt = 0;

AltValue = AltData[CrossOverSite-1][numAlt];

rand_value = (AltValue * rand_num) + 1;

ValueNumVar = rand_value;

chrmValue = CHROMOSOME_1_R_COPY[CrossOverSite-1][0];

DataValue = CompDataReliability[CrossOverSite-1][ValueNumVar-1];

if(chrmValue==DataValue)

{ for(ctr=0;ctr<=MutationRun;ctr++) { if(chrmValue==DataValue)

{ rand_num = GenerateRandomNumber(); rand_value = (AltValue *
rand_num) + 1;

ValueNumVar = rand_value;

chrmValue = CHROMOSOME_1_R_COPY[CrossOverSite-1][0];

DataValue = CompDataReliability[CrossOverSite-1][ValueNumVar-
1]; } else break; } }

CHROMOSOME_1_R_COPY[CrossOverSite-1][0]= CompDataReliability[CrossOverSite-
1][ValueNumVar-1];

CHROMOSOME_1_C_COPY[CrossOverSite-1][0]= CompDataCost[CrossOverSite-
1][ValueNumVar-1];

APPENDIX X COMPUTER PROGRAM

CP-19

CrossOverSite2 = GetCrossOverSite();

if(CrossOverSite2==CrossOverSite)

CrossOverSite2=GetDiffCrossOverSite(CrossOverSite);

if(PRINTDATA)

printf("\n MUTATION Site: %d\n", CrossOverSite2);

AltValue = AltData[CrossOverSite2-1][numAlt];

rand_value = (AltValue * rand_num) + 1;

ValueNumVar = rand_value;

chrmValue = CHROMOSOME_1_R_COPY[CrossOverSite2-1][0];

DataValue = CompDataReliability[CrossOverSite2-1][ValueNumVar-1];

if(chrmValue==DataValue)

{ for(ctr=0;ctr<=MutationRun;ctr++)

{ if(chrmValue==DataValue)

{ rand_num = GenerateRandomNumber();

rand_value = (AltValue * rand_num) + 1;

ValueNumVar = rand_value;

chrmValue = CHROMOSOME_1_R_COPY[CrossOverSite2-1][0];

DataValue = CompDataReliability[CrossOverSite2-
1][ValueNumVar-1];

}

else

break; } }

CHROMOSOME_1_R_COPY[CrossOverSite2-1][0]= CompDataReliability[CrossOverSite2-
1][ValueNumVar-1]; CHROMOSOME_1_C_COPY[CrossOverSite2-1][0] =
CompDataCost[CrossOverSite2-1][ValueNumVar-1];

if(PRINTDATA)

PrintDataAfterMutation();

ChromSource = 5;

RelTest1 = CalculateReliability(CHROMOSOME_1_R_COPY,CHROMOSOME_1_C_COPY);

fprintf(fileMutOprt, "\nReliability, %lf, AND Loss_Fn, %lf,Q,%lf,K,%lf, Counter No, %d, Mutation
Type, %d, Generation No, %d\n", RelTest1, Loss_Fn,COF_CompCost,COF,ctrSearch+1,2,RelCtr);

}

return 0;}

int ThirdOrderMutation(void)

{int AltValue=0,ctr=0;double chrmValue, DataValue;

for(CrossOverRow=0;CrossOverRow<MutationRun;CrossOverRow++)

{for(ChromRow=0;ChromRow<numVar;ChromRow++)

{CHROMOSOME_1_R_COPY[ChromRow][0]
=CHROMOSOME_1_R[ChromRow];
CHROMOSOME_1_C_COPY[ChromRow][0] =CHROMOSOME_1_C[ChromRow];
}

if(PRINTDATA)

PrintDataBeforeMutation();

APPENDIX X COMPUTER PROGRAM

CP-20

iTEST = rand(); rg.set_new_seed(iTEST);

CrossOverSite = GetCrossOverSite();

if(PRINTDATA)

printf("\n MUTATION Site: %d\n", CrossOverSite);

numAlt = 0;

AltValue=AltData[CrossOverSite-1][numAlt];

rand_value=(AltValue * rand_num) + 1;

ValueNumVar = rand_value;

if(chrmValue==DataValue)

{ for(ctr=0;ctr<=MutationRun;ctr++)

{ if(chrmValue==DataValue)

{ rand_num = GenerateRandomNumber(); rand_value = (AltValue *
rand_num) + 1;

ValueNumVar = rand_value;

chrmValue = CHROMOSOME_1_R_COPY[CrossOverSite-1][0];

DataValue = CompDataReliability[CrossOverSite-1][ValueNumVar-
1]; }

else

break; } }

CHROMOSOME_1_R_COPY[CrossOverSite-1][0]= CompDataReliability[CrossOverSite-
1][ValueNumVar-1];

CHROMOSOME_1_C_COPY[CrossOverSite-1][0]= CompDataCost[CrossOverSite-
1][ValueNumVar-1];

CrossOverSite2=GetCrossOverSite();

if(CrossOverSite2==CrossOverSite)

CrossOverSite2=GetDiffCrossOverSite(CrossOverSite);

if(PRINTDATA)

printf("\n MUTATION Site: %d\n", CrossOverSite2);

AltValue =AltData[CrossOverSite2-1][numAlt];

rand_value=(AltValue * rand_num) + 1;

ValueNumVar = rand_value;

chrmValue= CHROMOSOME_1_R_COPY[CrossOverSite2-1][0];

DataValue= CompDataReliability[CrossOverSite2-1][ValueNumVar-1];

if(chrmValue==DataValue)

{ for(ctr=0;ctr<=MutationRun;ctr++)

{ if(chrmValue==DataValue)

{ rand_num = GenerateRandomNumber();

rand_value = (AltValue * rand_num) + 1;

ValueNumVar = rand_value;

chrmValue = CHROMOSOME_1_R_COPY[CrossOverSite2-1][0];

DataValue = CompDataReliability[CrossOverSite2-
1][ValueNumVar-1];

}

APPENDIX X COMPUTER PROGRAM

CP-21

else

break; } }

CHROMOSOME_1_R_COPY[CrossOverSite2-1][0]= CompDataReliability[CrossOverSite2-
1][ValueNumVar-1]; CHROMOSOME_1_C_COPY[CrossOverSite2-1][0] =
CompDataCost[CrossOverSite2-1][ValueNumVar-1]; CrossOverSite3 =

GetCrossOverSite();//rand_value;

if((CrossOverSite3==CrossOverSite)||(CrossOverSite3==CrossOverSite2))

CrossOverSite3=GetDiffCrossOverSiteTwo(CrossOverSite, CrossOverSite2);

if(PRINTDATA)

printf("\n MUTATION Site: %d\n", CrossOverSite3);

AltValue =AltData[CrossOverSite3-1][numAlt];

rand_value=(AltValue * rand_num) + 1;

ValueNumVar = rand_value; chrmValue =
CHROMOSOME_1_R_COPY[CrossOverSite3-1][0];

DataValue = CompDataReliability[CrossOverSite3-1][ValueNumVar-1];

if(chrmValue==DataValue)

{ for(ctr=0;ctr<=MutationRun;ctr++)

{ if(chrmValue==DataValue)

{ rand_num = GenerateRandomNumber();

rand_value = (AltValue * rand_num) + 1;

ValueNumVar = rand_value;

chrmValue = CHROMOSOME_1_R_COPY[CrossOverSite3-1][0];

DataValue = CompDataReliability[CrossOverSite3-
1][ValueNumVar-1];

}

else

break; } }

CHROMOSOME_1_R_COPY[CrossOverSite3-1][0] =
CompDataReliability[CrossOverSite3-1][ValueNumVar-1];
CHROMOSOME_1_C_COPY[CrossOverSite3-1][0]= CompDataCost[CrossOverSite3-
1][ValueNumVar-1];

if(PRINTDATA)

PrintDataAfterMutation();

ChromSource = 6; RelTest1 =
alculateReliability(CHROMOSOME_1_R_COPY,CHROMOSOME_1_C_COPY);

fprintf(fileMutOprt, "\nReliability, %lf, AND Loss_Fn, %lf, Q,%lf,K,%lf, Counter No, %d, Mutation
Type, %d, Generation No, %d\n", RelTest1, Loss_Fn,COF_CompCost,COF,ctrSearch+1,3,RelCtr);

} return 0;}

double GenerateRandomNumber(void)

{int a;for(a=1;a<25;a++)

rand_num = rg.real_random();return rand_num;}

int GetCrossOverSite(void)

{rand_num=GenerateRandomNumber();rand_value=(numVar * rand_num) + 1;return rand_value;}

int GetDiffCrossOverSite(int a)

APPENDIX X COMPUTER PROGRAM

CP-22

{int rnd_val;iTEST = rand(); rg.set_new_seed(iTEST);

rand_num=GenerateRandomNumber(); rnd_val=(numVar * rand_num) + 1;

if(rnd_val==a)

{iTEST = rand();rg.set_new_seed(iTEST);

GetDiffCrossOverSite(a);return rnd_val;}

else

return rnd_val;}

int GetDiffCrossOverSiteTwo(int a, int b)

{ int rnd_val2;iTEST = rand(); rg.set_new_seed(iTEST);

rand_num=GenerateRandomNumber();

rnd_val2=(numVar * rand_num) + 1;

if((rnd_val2==a)||(rnd_val2==b))

{iTEST = rand();rg.set_new_seed(iTEST);GetDiffCrossOverSiteTwo(a,b);}

else

return rnd_val2;}

void PrintParameters(double Rel[sizeComp], double Cost[sizeComp], double HRate[sizeComp])

{printf("\n");for (hr=0;hr<numVar;hr++)

{printf("%lf\t", Rel[hr]);}

printf("\n");

for (hr=0;hr<numVar;hr++)

{printf("%lf\t", Cost[hr]);}

printf("\n");

for (hr=0;hr<numVar;hr++)

{printf("%lf\t", HRate[hr]);}}

void PrintParametersToFile(double Rel[sizeComp], double Cost[sizeComp], double
HRate[sizeComp],double Loss_Fn,double REL)

{double RelValueTEST,RelAnalytical=1.0;

fprintf(file6,"%lf, %lf, %lf, %lf, %lf, %lf, %lf, %lf, %lf, %lf, %lf,
%lf,\n",LOSS_OPT,Loss_Fn,REL,Rel[0],Rel[1],Rel[2],Rel[3],Rel[4],Rel[5],Rel[6],Rel[7],Rel[8]);

fprintf(file6,"%lf, %lf, %lf, %lf, %lf, %lf, %lf, %lf, %lf, %lf, %lf,
%lf,\n",LOSS_OPT,Loss_Fn,REL,Cost[0],Cost[1],Cost[2],Cost[3],Cost[4],Cost[5],Cost[6],Cost[7],Co
st[8]);}

void PrintDataBeforeCrossOver(void)

{int i;printf("\n Before Cross Over\n");

for(i=0;i<numVar;i++)

printf("%lf\t",CHROMOSOME_1_R_COPY[i][0]);printf("\n");

for(i=0;i<numVar;i++)

printf("%lf\t",CHROMOSOME_2_R_COPY[i][0]);printf("\n");

for(i=0;i<numVar;i++)

printf("%lf\t",CHROMOSOME_1_C_COPY[i][0]);printf("\n");

for(i=0;i<numVar;i++)

APPENDIX X COMPUTER PROGRAM

CP-23

printf("%lf\t",CHROMOSOME_2_C_COPY[i][0]);printf("\n");}

void PrintDataAfterCrossOver(void)

{int i;printf("\n After Cross Over\n");

for(i=0;i<numVar;i++)

printf("%lf\t",CHROMOSOME_1_R_COPY[i][0]);printf("\n");

for(i=0;i<numVar;i++)

printf("%lf\t",CHROMOSOME_2_R_COPY[i][0]);printf("\n");

for(i=0;i<numVar;i++)

printf("%lf\t",CHROMOSOME_1_C_COPY[i][0]);printf("\n");

for(i=0;i<numVar;i++)

printf("%lf\t",CHROMOSOME_2_C_COPY[i][0]);printf("\n");}

void PrintDataBeforeMutation(void)

{ int i;printf("\n Before Mutation\n");

for(i=0;i<numVar;i++)

printf("%lf\t",CHROMOSOME_1_R_COPY[i][0]);

printf("\n");for(i=0;i<numVar;i++)

printf("%lf\t",CHROMOSOME_1_C_COPY[i][0]);printf("\n");}

void PrintDataAfterMutation(void)

{int i;printf("\n After Mutation\n");for(i=0;i<numVar;i++)

printf("%lf\t",CHROMOSOME_1_R_COPY[i][0]);printf("\n");

for(i=0;i<numVar;i++)

printf("%lf\t",CHROMOSOME_1_C_COPY[i][0]);printf("\n");}

void PrintOptimalResult(void)

{int i; printf("\n***\n");

printf("\n Optimal Selection of Components is Highlighted Below:\n");

for(i=0;i<numVar;i++)

printf("%lf\t",CHROMOSOME_1_R[i]);printf("\n");

for(i=0;i<numVar;i++)

printf("%lf\t",CHROMOSOME_1_C[i]);printf("\n");

printf("\n Optimal System Reliability : %lf \n Optimal Losses :%lf \n Optimal (Q) : %lf \n Optimal (K)
: %lf\n\a", REL_OPT,LOSS_OPT,COF_CompCost_OPT,COF_OPT);

printf("\n***\n");}

int CompareChromosomes(void)

{int cmpGENE=0,cmpCTR=0;

double cmpCHROM1, cmpCHROM2;

for(cmpCTR=0;cmpCTR<numVar;cmpCTR++)

{cmpCHROM1=CHROMOSOME_1_R[cmpCTR];cmpCHROM2=CHROMOSOME_2_R[c
mpCTR]; if(cmpCHROM1==cmpCHROM2){cmpGENE++;continue;}

else break;}

if(cmpGENE>=numVar)

APPENDIX X COMPUTER PROGRAM

CP-24

{printf("\n\t IDENTICAL CHROMOSOMES\n");return 999;}

else return 0;}

References & Bibliography

R&B-I

References & Bibliography

Ahuja, S. (1997), Performance based reliability optimisation for computer networks,
‘Southeastcon 97 Engineering new New Century', Proceedings. IEEE, pages 121-
125.

Alander, J. (1994), An indexed bibliography of Genetic Algorithms, Art of CAD Ltd., Espoo,
Finland, 1957-1993.

Albert, A. (1958), A Measure of the Effort Required to Increase Reliability, Technical
Report 43, Applied Mathematics and Statistic Laboratory; Stanford University,
Stanford

Allan, R., Billinton, R. and De Oliveira, M. (1976), An efficient algorithm for deducing the
minimal cuts and reliability indices of a general network configuration, IEEE
Transactions on Reliability, Vol. 25(4), pages 226-232.

Amstadter, B.L. (1971), Reliability Mathematics, New York: McGraw-Hill.

Andrews, J.D. and Moss, T.R. (2002), Reliability and Risk Assessment, Professional
Engineering Publishing.

Ashlock, D. (2006), Evolutionary Computation for Modeling and Optimisation, Springer.

Back, T., Fogel, D. and Michaelewicz, Z. (1997), The handbook of evolutionary
computation, Publishing and Oxford University Press, Philadelphia, PA.

Back, T., Fogel, D. and Michaelewicz, Z..(2000a), Evolutionary Computation 1 - Basic
Algorithms and Operators, Institute of Physics Publishing.

Back, T., Fogel, D. and Michaelewicz, Z. (2000b), Evolutionary Computation 2 - Basic
Algorithms and Operators, (Eds.), Institute of Physics Publishing.

Back, T. Hammel, U and Schewefel, H (1997), Evolutionary Computation: Comments on
the history and current state. IEEE Transaction on Evolutionary Computation,
Vol.1(1), pages 3– 17.

Bai, D., Yun W. and Chung, S. (1991), Redundancy optimization of k-out-of-n:G system
with common-cause failures, IEEE Transactions on Reliability, Vol.40, pages 56-59.

Barlow, R. and Proschan, F. (1965), Mathematical Theory of Reliability, Wiley.

References & Bibliography

R&B-II

Barlow, R. and Proschan, F. (1975), Statistical Theory of Reliability and Life Testing,
Rinehart and Winston, Inc.

Baxter, L. & Harche, F. (1992), On the optimal assembly of series-parallel systems,
Operations Research Letters, Vol.11, pages 153-157.

Billinton, R. and Allan, R. (1992), Reliability Evaluation of Engineering Systems – concepts
and technique, Plenum Press, New York & London.

Blischke, W. and Murthy, D. (2000), Reliability Modelling, Prediction and Optimisation,
Wiley.

Boland, P., Proschan, F. and Tong, Y. (1989), Optimal arrangement of components via
pairwise rearrangements, Naval Research Logistics, Vol.36, pages 807-815.

Booker, D., Fogel, B., Whitley, D. and Angeline, P. J. (1997), Recombination In Back et al.
(1997), Chapter E3.3, IOP Publishing and Oxford University Press, Philadelphia,
PA. pp. C3.3:1-C3.3:27.

Bremermann, H.. (1958), The evolution of intelligence. The nervous system as a model of its
environment, Technical Report No. 1, Department of Mathematics, University of
Washington, Seattle, WA.

Brown, R., Gupta, S., Christie, R., Venkata, S. and Fletcher, R. (1997), Automated Primary
Distribution System Design: Reliability and Cost Optimisation, IEEE Transactions
on Power Delivery, Vol. 12 (2), pages1017-1022.

Burke, E. and Smith, A. (1999), A memetic algorithm to schedule planned maintenance,
ACM journal of Experitmental Algorithm, Vol. 41.

Burke, E. and Kendall, G. (2005), Search Methodologies - Introductory Tutorials in
Optimisation and Decision Support Techniques, Springer.

Burke, E. and Newall, J. P. (1999), A multi-stage evolutionary algorithm for the timetable
problem, IEEE Transactions on Evolutionary Computation, Vol. 3, pages 63 - 74.

Burke, E., Newall, J. P. and Weare, R. F. (1996), A memetic algorithm for university exam
timetabling, In Burke, E. and Ross, P. The Practice and Theory of Auomated
TImetabling 1, Lecture Notes in Computer Science, Vol. 1153, Springer, Berlin,
pages 241-250.

Burke, E., Cowling, P., De Causmaecker, P. and Vanden Berghe, G. (2001), A memetic
approach to the nurse rosering problem, Appl. Intell., Vol. 15, pages 199-214.

Cancela, H. and Khadiri, M. (1995), A recursive variance-reduction algorithm for estimating
communication-network reliability, IEEE Transactions on Reliability, Vol. 44, pages
595-602.

Cantoni, M., Marseguerra, M. and Zio, E. (1999), Genetic algorithms and monte carlo
simulation for optimal plant design, Reliability Engineering and System Safety, Vol.
68(2000), pages 29-38.

Catuneanu, V. and Mihalache, A. (1989), Reliability fundamentals, Elsevier.

References & Bibliography

R&B-III

Chen M.S. (1992), On the computational complexity of reliability redundancy allocation in
a series system, Operations Research Letters, Vol.11, pages 309-15.

Chi, D. and Kuo, W. (1990), Optimal design for software reliability and development cost,
IEEE Journal on Selected Areas in Communications, Vol.8, pages 276-281.

Cho, N., Papazoglou, I. and Bari, R. (1986), A methodolgoy for allocating reliability and
risk, Technical Report: NUREG/CR -4048, Brookhaven National Lab., Upton, NY
(USA).

Coello, C.C. (2002), Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art. Computational methods in
applied mechanics and engineering 191, 1245-1287.

Coit, D.W. & Smith, A.E. (1996), Reliability optimization of series-parallel system using
genetic algorithm, IEEE Transactions on Reliability, Vol.45, pages 254 - 260.

Coit, D.W. & Smith, A.E. (1996), Solving the redundancy allocation problem using a
combined neural network/genetic algorithm approach, Computers and Operations
Research, Vol.23, pages 515 - 526.

Coit, D.W. and Smith, A.E. (1996), Penalty guided genetic search for reliability design
optimization, Computers and Industrial Engineering, Vol.30, pages 895-904.

Coit, D.W. & Smith, A.E. (1998), Redundancy allocation to maximise a lower percentile of
the system time to failure distribution, IEEE Transactions on Reliability, Vol 47(1),
pages 79-87.

Coit, D.W. and Smith, A.E. (2002), Genetic algorithm to estimate a lower bound for system
time to failure with uncertain component Weibull parameters , Computers and
Industrial Engineering, Vol.41(4), pages 423-440.

Dale, C.J. & Winterbottom, A. (1986), Optimal allocation of effort to improve system
reliability, IEEE Transactions on Reliability, Vol.35, pages188-191.

Davis, L. (1996), Handbook of Genetic Algorithms, International Thomson Computer Press,
London.

De Jong and Spears. (1994) On the virtues of parameterized uniform crossover, Proc. 4th
Int. Conf. on Genetic Algorithms.

Dimitris, N. and Chorafas, P. (1960), Statistical Processes and Reliability Engineering, D.
Van Nostrand Company Princeton, NJ.

Dengiz, B., Altiparmak, F., and Smith, A.E. (1997), Efficient optimization of all-terminal
reliable networks using an evolutionary approach, IEEE Transactions on Reliability,
Vol.46, pages18-26.

Dhillon, B. (2005), Reliability, Quality and Safety for Engineers, CRC Press.

Dhingra, A.K. (1992), Optimal apportionment of reliability and redundancy in series
systems under multiple objectives, IEEE Transactions on Reliability, Vol.41, pages
576-582.

Doty, L. (1985), Reliability for the technologies, Industrial Press Inc.

References & Bibliography

R&B-IV

Ebeling C.E. (1997), An Introduction To Reliability and Maintainability Engineering,
McGraw-Hill Inc.

Elegbede, A.O.C., Chu, C., Adjallah, K.H. & Yalaoui, F. (2003), Reliability allocation
through cost minimisation, IEEE Transactions on Reliability, Vol.52, pages 106-
111.

El-Neweihi, E., Proschan, F. and Sethuraman, J. (1986), Optimal allocation of components
in parallel-series and series-parallel systems, Journal of Applied Probability, Vol.23,
pages 770-777.

Eshelman, L. (2000), Genetic Algorithms, In Back et al. (2000a), pages 64-80.

Falkenauer, E. (1998), Genetic Algorithms and Grouping Problems, Wiley.

Fishman, G.S. (1986), A comparison of four Monte Carlo methods for estimating the
probability of of s-t connectedness, IEEE Transaction on Reliability, Vol. 35(2),
pages 145-55.

Fishman, G.S. (1986) A Monte Carlo sampling plan for estimating network reliability,
Annals of Operations Research, Vol. 34, pages 581–584.

Fogarty, T. (1994), Evolutionary Computing, Springer-Verlag, Berlin.

Fogel, D. and Ghozeil, A. (1996), Using fitness distributions to design more efficient
evolutionary computations, In: Fogel,D. Proceedings of the Third IEEE Conference
on Evolutionary Computation, IEEE Press, Nagoya, Japan, pages 11-19.

Fogel, D., (1998), Evolutionary Computation, the Fossil Record. IEEE Press, Piscataway,
New Jersey.

Fogel, D.B. (2000), Evolutionary Computation: Towards a New Philosophy of Machine
Intelligence (2nd ed.), IEEE Press, Piscataway, NJ.

Fogel, L.J., Owens, A.J. and Walsh, M.J. (1996), Artificial Intelligence through Simulated
Evolution, Wiley, New York.

Fotuhi-Firuzabad, M., Munian, T.S. and Vinayagam, B. (2004), A novel approach to
determine minimal tie-sets of complex network, IEEE Transactions on Reliability,
Vol. 53 (1), pages 61-70.

Fraser, A.S. (1957), Simulation of genetic systems by automatic digital computers. II:
Effects of linkage on rates under selection, Australian Journal of Biological Science,
Vol. 10, pages 492-499.

Gen, M. and Cheng, R. (1997), Genetic Algorithms and Engineering Design, Wiley.

Gen, M. and Cheng, R. (2000), Genetic Algorithms and Engineering Optimisation, Wiley.

Gen, M., Ida, K. and Lee, J.U. (1990), A computational algorithm for solving 0-1 goal
programming with GUB structures and its application for optimization problems in
system reliability, Electronics and Communications in Japan, Vol.73, pages 88-96.

Gen, M. and Kim, J. (1999), GA-based reliability design: State-of-the-art survey, Comp. Ind.
Eng, Vol.37(1), pages 151-155.

Glover, F. and Laguna, M. (1997), Tabu Search, Kluwer Academic Publishers, Boston, MA.

References & Bibliography

R&B-V

Goldberg, D. and Sastry, K. (2001), A practical schema theorem for genetic algorithm
design and tuning, Proceedings of the Genetic and Evolutionary Computation
Conference, pages. 328-335.

Goldberg, D., Korb, B. and Deb, K. (1989), Messy Genetic Algorithms: motivation, analysis
and first results, Complex Systems, Vol.3, pages 493-530.

Goldberg, D. (1989) Genetic Algorithms in Search, Optimisation and Machine Learning,
Addison-Wesley.

Goldberg, D. (2002) Design of Innovation: Lessons From and For Competent Genetic
Algorithms, Kluwer, Boston, MA.

Gopal, K, Aggarwal, K.K. and Gupta, J.S. (1980), A new method for solving reliability
optimization problem, IEEE Transactions on Reliability, Vol.29, pages 36-38.

Gopal, K., Aggarwal, K.K. and Gupta, J.S (1978), An improved algorithm for reliability
optimization, IEEE Transactions on Reliability, Vol.-27, pages 325-328.

Guikema, S. and Pate-Cornell, E. (2002), Component choice for managing risk in
engineered systems with generalized risk/cost functions, Reliability Engineering and
System Safety, Vol.78, pages 227-238.

Hecht, H. (2004), Systems Reliability and Failure Prevention, Boston, MA: Artech House.

Henley E.J. and Kumamoto, H. (1981), Reliability Engineering and Risk Assessment,
Prentice-Hall.

Holland, J. (1975), Adaptiation in Natural and Artificial Systems, In Ann Arbor, University
of Michigan Press.

Hwang, C.L., Tillman, F.A. and Kuo, W. (1979), Reliability optimization by generalized
Lagrangian-function and reduced-gradient methods, IEEE Transaction on
Reliability, Vol.28, pages 316-319.

Hussain, A. and Murthy, D. (2003), Warranty and optimal reliability improvement through
product development, Journal of Mathematical and Computer Modelling, Vol.38,
pages 1211-1217.

Hsieh, C. and Hsieh, Y. (2003), Reliability and cost optimisation in distributed computing
systems, Computers and Operations Research, Vol.30(8), pages 1103-1119.

Hsieh, C. (2003), Optimal task allocations and hardware redundancy policies in distributed
computing sytem, European Journal of Operational Research, Vol. 147(2), pages
430-447.

Ibaraki, T. (1997), Combination with other optimisation methods, In Bristol and New York,
Institute of Physics Publishing and Oxford University Press.

Ida, K., Gen, M. and Yokota, T. (1994), System reliability optimization with several failure
modes by genetic algorithm’. In Gen, M. and Kobayashi,T., editors, Proceedings of
the 16th International Conference on Computers and Industrial Engineering,
Ashikaga, Japan, pages, 349-352.

References & Bibliography

R&B-VI

Jianping, L. (1995), A bound heuristic algorithm for solving reliability redundancy
optimisation , Microelectronics and Reliability, Vol.36, pages 335-339

Jianping, L. (1996), A bound dynamic programming for solving reliability redundancy
optimisation, Microelectronics and Reliability, Vol.36(10), pages 1515-1520.

Jianping, L. (1996), A bound heuristic algorithm for solving reliability redundancy
optimization, Microelectronics and Reliability, Vol.36, pages 335-339.

Jianping, L. (1996), A new partial bound enumeration technique for solving reliability
redundancy optimisation, Microelectronics and Reliability, Vol.37, pages 237-242.

Joines, J. and Kay, M. (2002), Utilizing hybrid genetic algorithms. In Sarker et al., pages.
199-228.

Kamat, S and Riley, M (1975), Determination of reliability using event based Monte Carlo
simulation, IEEE Transactions on Reliability, Vol. 24 (1), pages 73–75.

Kaufmann, A., Grouchko, D. and Cruon, R. (1977), Mathematical models for the study of
the reliability systems, Academic press.

Kim, J.H.& B.J.Yum. (1993), A heuristic method for solving redundancy optimization
problems in complex systems, IEEE Transactions on Reliability, Vol.24, pages 572-
578.

Kohda, T. & Inoue, K. (1982), A reliability optimization method for complex systems with
the criterion of local optimality, IEEE Transactions on Reliability, Vol.31, pages
109-111.

Kleyner, A. and Sandborn, P. (2005), A warranty forecasting model based on piecewise
statistical distributions and stochastic simulation, Reliability Engineering and System
Safety, Vol.88, pages 207-214.

Krasnogor, N. and Smith, A.J. (2005) A tutorial for competent memetic algorithms: model,
taxonomy and design issues, IEEE Transactions on Evolutionary Computation.

Krasnogor, N., Hart, W. and Smith, J. (2004), Recent Advances in Memetic Algorithms,
Studies in Fuzziness and Soft Computing, Vol.166, Springer.

Kumamoto, H., Tanaka, K. and Inoue, K. (1977), Efficient evaluation of system reliability
by Monte Carlo method, IEEE Transactions on Reliability, Vol. 26(5), pages 311–
315.

Kumral, M. (2005), Reliability-based optimisation of a mine production system using
genetic algorithms, Journal of Loss Prevention, Vol.18, pages 186-189.

Kuo, W., Prasad, V. R., Tillman, F.A. and Hwang, C. (2001), Optimal Reliability Design -
fundamental and applications, Cambridge University Press.

Kuo, W. & Prasad, V.R. (2000), An annotated overview of system reliability optimization,
IEEE Transactions on Reliability, Vol.49, pages176-191.

Kuo, W., Hwang, C.L. and Tillman, F.A. (1978), A note on heuristic methods in optimal
system reliability, IEEE Transactions on Reliability, Vol.27, pages 320-324.

References & Bibliography

R&B-VII

Kuo, W., Lin, H., Xu, Z. and Zhang, W. (1987), Reliability optimization with the Lagrange
multiplier and branch-and-bound technique, IEEE Transactions on Reliability,
Vol.36, pages 624-630.

Kuo, W., and Wan, R. (2007), Recent advances in optimal reliability allocation, IEEE
Transactions on Systems, Vol.37(2), pages 143-156.

Lee, C., Yun, Y. and Gen, M., (2002a), Reliability optimisation design using hybrid genetic
algorithm with a neural network technique, IEICE Transaction on Fund. Electr.
Comm. Comp. Sc., Vol. E84-A(2), pages 627-637.

Lee, C., Gen, M., and Kuo, W. (2001), Reliability optimisation design using hybrid NN-GA
with fuzzy logic controller, IEICE Transaction on Fund. Electr. Comm. Comp. Sc.,
Vol. E85-A(2), pages 432-447.

Lee, C., Gen, M., and Tsujimura, Y. (2002b), Reliability optimisation design for complex
systems by hybrid GA with fuzzy logic controller and local search, IEICE
Transaction on Fund. Electr. Comm. Comp. Sc., Vol. E85-A(4), pages 880-891.

Levitin, G. (2007), Genetic Algorithm in Reliability Engineering [Homepage of Dr. Gregory
Levitin]. http://iew3.technion.ac.il/~levitin/GA+Rel.html.

Levitin, G and Lisnianski, A., Optimal separation of elements in vulnerable multi-state
systems, Reliability Engineering and System Safety, Vol. 73(1), pages 55-66.

Lewin, B. (2000), Genes VII. Oxford University Press, New York.

Li, D. &.Haimes, Y.Y. (1992), A decomposition method for optimization of large-system
reliability, IEEE Transactions on Reliability, Vol.41, pages 183- 188.

Lin, F. & Kuo, W. (1996), Reliability Importance and Invariant Optimal Allocation,
Technical Report, Texas A&M University, College Station, TX.

Lloyd, D.K and Lipow, M. (1962), Reliability: Management, Methods and Mathematics,
Prentice-Hall, Englewood Cliffs, NJ.

Louis, S. and McDonnell, J. (2004), Learning with case injected genetic algorithms, IEEE
Transactions on Evolutionary Computation, Vol. 8, pages. 316-328.

Luenberger, D.G. (1962), Quasi-convex programming, SIAM Journal of Applied
Mathematics, Prentice-hall, Englewood Cliffs, NJ.

Hikita, M., Nakagawa, Y., Nakashima, K. and Narihisa, H. (1992), Reliability optimization
of systems by a surrogate-constraints algorithm, IEEE Transactions on Reliability,
Vol. 41, pages 473-480.

Majety, S., Venkatasubramanian, S. and Smith, A.E. (1996), Optimal Reliability Allocation
in series-parallel systems from components' discrete cost-reliability data sets: A
nested simulated annealing apporach, Proceedings of the Fifth International
Industrial Engineering Reseach Conference, pp. 435-440.

References & Bibliography

R&B-VIII

Majety, S. & Rajagopal, J. (1997), Dynamic Penalty Function for Evolutionary Algorithms
with an Application to Reliability Allocation, Technical Report, Department of
Industrial Engineering, University of Pittsburgh, Pittsburgh, PA.

Malon, D.M. (1990), When is greedy module assembly optimal?, Naval Research Logistics
Quarterly, Vol.37, pages 847-854.

Mattfeld, D. (1996), Evolutionary Search and the Job Shop, Physica-Verlag.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A. and Teller, E. (1953),
Equation of state calculations by fast computing machines’, Journal of Chemical
Physics, Vol.21, pages 1087-1092.

Meziane, R., Massim, Y., Zeblah, A., Ghoraf, A. and Rahili, R. (2005), Reliability
optimisation using ant colony algorithm under performance and cost constraints,
Electric Power System Research, Vol. 76, pages 1-8.

Michaelewicz, Z. (1996), Genetic Algorithms + Data Structures = Evolution Programs, 3rd
Edition, Springer.

Michaelewicz, Z. (2000a), Decoders. In: Back et al. (2000b), pages. 49-55.

Michaelewicz. Z. (2000b), Repair Algorithms. In: Back et al. (2000b), pages 56-61.

Misra, K.B. (1972), A simple approach for constrained redundancy optimisation problems,
IEEE Transactions on Reliability, Vol.21, pages, 30-34.

Misra K.B. (1986), On optimal reliability design: a review, System Science, Vol.12, pages 5-
30.

Misra, K.B. (1991), An algorithm to solve integer programming problems: an efficient tool
for reliability design’, Microelectronics and Reliability, Vol.31, pages 285-294.

Misra, K.B.(1992) ‘Reliability analysis and predictions’, Elsevier.

Misra, K. & Misra, V. (1994), A procedure for solving general integer programming
problems, Microelectronics and Reliability, Vol.34, pages 157-163.

Misra, K.B. & Sharma, U. (1991), Multicriteria optimization for combined reliability and
redundancy allocation in systems employing mixed redundancies, Microelectronics
and Reliability, Vol.31, pages 323-335.

Misra, K.B. & Sharma, U. (1991), An efficient approach for multiple criteria redundancy
optimization problems, Microelectronics and Reliability, Vol.31, pages 303-321.

Mitchell, M. (1996), An introduction to Genetic Algorithms, MIT Press, Cambridge, MA.

Mohan, C. &.Shanker, K. (1988), Reliability optimization of complex systems using random
search technique, Microelectronics and Reliability, Vol.28, pages 513-518.

Moscato, P. and Cotta, C. (2003), A gentle introduction to memetic algorithms, In Norwell,
MA, Kluwer.

Moscato, P. (1989), On evoluton, search, optimisation , genetic algorithms and martial
arts,Technical Report C3P 826, California Institute of Technology, Pasadena, CA.

References & Bibliography

R&B-IX

Moscato, P. (1999), Part 4: Memetic Algorithms, In: New ideas in optimisation, Corne, D,
Dorigo, M, and Glover, F, eds,, McGraw-Hill, New York, pages. 217-294.

Moscato. (2001) Memetic algorithms, In: section 3.6.4, Handbook of applied optimisation,
Pardalos, P. and Resende, M., eds., Oxford University Press.

Nakagawa Y. & Nakashima, K. (1977), A heuristic method for determining optimal
reliability allocation, IEEE Transactions on Reliability, Vol.26, pages 156-161.

Nakagawa, Y. and Miyazaki, S. (1981), Surrogate constraints algorithm for reliability
optimization problem with two constraints, IEEE Transactions on Reliability,
Vol.30, pages 175-180.

Nakagawa, Y. & Miyazaki, S. (1981), An experimental comparison of the heuristic methods
for solving reliability optimization problems, IEEE Transactions on Reliability,
Vol.30, pages 181-184.

Naudts, B., Suys, D., Verschoren, A. (1997), Epistasis as a basic concept in formal
landscape analysis. In: Back, T. (Ed.), Proceedings of the Seventh International
Conference on Genetic Algorithms, Morgan Kaufmann.

O’Connor, P. (2002), Practical Reliability Engineering, Wiley.

Pham, H. (2007), list of articles in the field of cost-reliability analysis and warranty,
http://www.rci.rutgers.edu/~hopham/recentpublications.html

Pham, H. (2003), Handbook of Reliability Engineering, London: Springer.

Painton, L. & Campbell, J. (1995), Genetic algorithms in optimization of system reliability,
IEEE Transactions on Reliability, Vol.44, pages 172-178.

Park, K.S. (1987), Fuzzy apportionment of system reliability, IEEE Transactions on
Reliability, Vol.36, pages 129-132.

Porto, V. (2000), Evolutionary Programming, In:Back et al., pages 89-102.

Prasad, V.. & Raghavachari, M. (1998), Optimal allocation of interchangeable components
in a series-parallel system, IEEE Transactions on Reliability, Vol.47, pages 255-260.

Prasad, V.. & Kuo, W. (2000), Reliability optimization of coherent systems, IEEE
Transactions on Reliability, Vol.49, pages 176-187.

Prasad, V.., Nair, K. and Aneja, Y. (1991), Optimal assignment of components to parallel-
series and series-parallel systems, Operations Research, Vol.39, pages 407-414.

Prasad, V.., Nair, K. and Aneja, Y. (1991), A heuristic approach to optimal assignment of
components to a parallel-series network, IEEE Transactions on Reliability, Vol.40,
pages 555-558.

Radcliffe, N. and Surry, P. (1994), Formal Memetic Algorithms, In: Fogarty, pages. 1-16.

Ravi, V. Murty, V. and Reddy, P. (1997), Nonequilibrium simulated-annealing algorithm
applied to reliability optimization of complex systems, IEEE Transactions on
Reliability, Vol.46, pages 233-239.

Ravi, V., Reddy, P. and Zimmermann, H. (2000), Fuzzy global optimisation of complex
system reliability, IEEE Transaction on Fuzzy Systems, Vol.8, pages 241-248.

References & Bibliography

R&B-X

Rudolph, G. (2000a), Evolution Strategies, In: Back et al., pages 81-88.

Sakawa, M. (1981), Optimal reliability-design of a series-parallel system by a large-scale
multi-objective optimization method, IEEE Transactions on Reliability, Vol.30,
pages 173-174.

Sanker, V. and Prasad, V (1993), Comment on: Enumeration of all minimal cutsets for a
node pair in graph, IEEE Transaction on Reliability, Vol.42(1), pages 44-45.

Sarker, R., Mohammadian, M. and Yao, X. (2002) Evolutionary Optimisation. Kluwer
Academic Publishers.

Schaffer, D. (1989) Proceedings of the Third International Conference on Genetic
Algorithms, San Mateo, CA, Morgan Kaufmann.

Schonberger, J. (2005) Operational Freight Carrier Planning- Basic Concepts,
Optimisation Models and Advanced Memetic Algorithms,Springer.

Schwefel, H.P. (1995), Evolution and Optimum Seeking, Wiley, New York.

Sharma, J. and. Venkateswaran, K. (1971), A direct method for maximising the system
reliability, IEEE Transactions on Reliability, Vol.20, pages 256-259.

Sharma, U.,.Misra, K. and Bhattacharjee, A. (1991), Application of an efficient search
technique for optimal design of a computer communication network,
Microelectronics and Reliability, Vol.3192-3, pages 337-341.

Shi, D.H. (1987), A new heuristic algorithm for constrained redundancy-optimization in
complex system, IEEE Transactions on Reliability, Vol.36, pages 621-623.

Smith, A. (2006), Journal articles on reliability (Homepage of Dr A. Smith),
http://www.eng.auburn.edu/~aesmith/index_files/page0004.htm.

Dengiz, B., Altiparmak, F. and Smith, A. (1997) Local Search Genetic Algorithm for
optimal design of reliability networks, IEEE Transactions on Evolutionary
Computation, Vol.1, pages 179-183.

Smith, D. (2005), Reliability Maintainability and Risk, Elsevier.

Smith, C.O. (1976), Introduction to Reliability in Design, New York, McGraw-Hill.

Spears, W. (1997), Recombinaiton parameters, In Back el al. (1997), Chapter E1.3, pages
E1.3:1-E1.3:13.

Syswerda, G. (1989), Uniform Crossover in genetic algorithms, In Schaffer, pages 2-9.

Tillman F.A., Hwang, C. and Kuo, W. (1980), Optimization of system reliability, Marcel
Dekker, New York.

Tillman F.A., Hwang, C. and Kuo, W. (1977), Optimization techniques for system reliability
with redundancy – a review, IEEE Transactions on Reliability Vol.26, pages 148 -
155.

Tillman, F.A. (1969), Optimization by integer programming of constrained reliability
problems with several modes of failure, IEEE Transactions on Reliability, Vol.18,
pages 47-53.

References & Bibliography

R&B-XI

Tillman F.A., Hwang, C. and Kuo, W. (1977), Determining component reliability and
redundancy for optimum system reliability’, IEEE Transactions on Reliability,
Vol.26, pages 162-165.

Todinov M.T. (2004), Reliability analysis and setting reliability requirements based on the
cost of failure, International Journal of Reliability, Quality and Safety Engineering,
Vol.11, pages 1-27.

Todinov M.T. (2005), Reliability and Risk Models, Wiley.

Todinov, M.T. (2006), Reliability analysis based on the losses from failures, Risk Analysis,
Vol. 26(2), pages. 311-335.

Todinov, M.T. (2006a), Risk based reliability analysis and generic principles for risk
reductions, Elsevier.

Todinov M.T. (2006b), Reliability analysis of the complex systems based on the losses from
failure, International Journal of Reliability, Quality and Safety Engineering,
Vol.13(2), pages 1-22.

Tzafestas, S.G. (1980), Optimisation of system reliability: a survey of problems and
techniques, International Journal of Systems and Science, Vol.11, pages 455-486.

Wattanapongsakorn, N. & Levitan, S.P. (2004), Reliability optimisation models for
embedded systems with multiple applications, IEEE Transactions on Reliability,
Vol.53 pages, 406-410.

Winter, G., Periaux, J., Galan, M. and Cuesta, P. (1995) Genetic Algorithms in Engineering
and Computer Science, Wiley.

Xu, Z., Way Kuo, and H.Lin. ‘Optimization limits in improving system reliability’, IEEE
Transactions on Reliability, Vol.39 (1990) 51-60.

Yalaoui, A., Chatelet, E. and Chu, C. (2005), A new dynamic programming method for
reliability and redundancy allocation in a parallel-series system, IEEE Transaction
on Reliability, Vol. 54(2), pages 254-261.

Yalaoui, A., Chatelet, E. and Chu, C. (2005) Reliability allocation problem in a series-
parallel system, Reliability Engineering and System Safety, Vol.90, pages 55-61.

Yang, J., Hwang, M., Sung, T and Jin, Y. (1999), Application of genetic algorithm for
reliability allocation in nuclear power plants, Reliability Engineering and System
Safety, Vol. 65 , pages 229-238.

Yao, X. (2002), Evolutionary Computation. In Sarker et al., pages 27-53.

Yeh, M.S., Lin, J.S. and Yeh, W.C. (1994), A new Monte Carlo method for estimating
network reliability, In: Gen, M. and Kobayashi, T. Proceedings of the 16th

International Conference on Computers and Industrial Engineering, Ashikaga,
Japan.

Yokota, T., Gen, M. and Ida, K. (1995) System reliability of optimization problems with
several failure modes by genetic algorithm, Japanese Journal of Fuzzy Theory and
Systems, Vol.7, pages 117-135.

References & Bibliography

R&B-XII

Zhang, W., Miller, C. and Kuo, W. (1991), Application and analysis for consecutive k-out-
of-n: G structure, Reliability Engineering and System Safety, Vol.33, pages 189-197.

Zio, E. (2000), System design optimisation by genetic algorithm, IEEE Proceedings, Annual
Reliability and Maintainability Symposium, pages 222-227.

Zuo, M. and Kuo, W. (1990), Design and performance analysis of consecutive k-out-of-n
structure, Naval Research Logistics Quarterly, Vol.37, pages 203-230.

