
Cranfield University

Andrew John Bell

Temperatures in High
Efficiency Deep Grinding

School of Applied Sciences

PhD Thesis





Cranfield University

School of Applied Sciences

PhD Thesis

2009

Andrew John Bell

Temperatures in High
Efficiency Deep Grinding

Supervisors: Prof. D.J. Stephenson

&

Dr. T. Jin

February 2009

This thesis is submitted in partial fulfilment of the requirements for the
Degree of Doctor of Philosophy

© Cranfield University, 2009. All rights reserved. No part of this
publication may be reproduced without the written permission of the

copyright holder.





i

Abstract

This research considers the temperatures generated in the workpiece during profile and

cylindrical traverse grinding in the High Efficiency Deep Grinding (HEDG) regime.

The HEDG regime takes large depths of cut at high wheel and workpiece speeds to

create a highly efficient material removal process. This aggressive processing generates

high temperatures in the contact zone between the wheel and workpiece. However, the

beneficial contact angle and the rapid removal of the heated wheel – workpiece contact

zone results in low temperatures in the finished surface.

Temperatures in the ground surface can be predicted with knowledge of the specific

grinding energy and the grinding parameters used. Specific grinding energies recorded

at high specific material removal rates demonstrated a constant value of specific

grinding energy dependent on cutting and contact conditions, improving accuracy of the

predictive model. This was combined with a new approach to burn threshold modelling,

which demonstrated an improved division of damaged and undamaged surfaces.

Cutting and contact conditions in the grinding profile vary dependent on their position.

This thesis shows how temperatures vary with location and estimates the partitioning of

the heat flux to the regions of the grinding profile. This suggested a constant

partitioning of energy to each of the three surfaces considered independently of specific

material removal rates. Further a potential link was shown between the surface and the

sidewall of the grinding profile, which allows temperatures in a secondary surface to be

predicted given knowledge of that in the primary.

Finally, the work has demonstrated the feasibility of the Superabrasive Turning process.

Using small values of feed per turn and high workpiece feedrates promoted high values

of removal rate with low depths of thermal penetration in the as ground surface. Thus

the process has become viable for high speed cylindrical traverse grinding.
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1.0 Introduction

High Efficiency Deep Grinding (HEDG) is a relatively new and novel approach to the

requirement of reducing manufacturing costs and improving machining precision. As

with any new technology, the step from laboratory research to industrial application

requires thorough process prove-out. This thesis forms an integral part of the

development of an industrially viable HEDG process as part of the Cranfield Innovative

Manufacturing Research Centre (IMRC) funded SATURN project.

The SATURN project was developed to study the Superabrasive Turning process,

essentially cylindrical traverse grinding with electroplated CBN wheels when

undertaken with HEDG parameters. Of particular importance to the research was an

improved understanding of the thermal behaviour of the HEDG process and the ability

to predict accurately when and where thermal damage may occur. This required

consideration not only of the cylindrical traverse grinding process, but also of its surface

grinding counterpart, simple profile grinding.

The research has been supported by a number of industrial collaborators throughout the

supply chain, each with their own particular interest in one of the many fields of

grinding. Renold Precision Technologies and their subsidiary Holroyd are machine tool

manufacturers and produce the Edgetek range of machine tools; they are the supplier of

the Edgetek machine tools used for the development of the HEDG process. Saint-

Gobain manufactures the Cubic Boron Nitride abrasives and also their own ranges of

electroplated grinding wheels that were used exclusively throughout the grinding trials.

Castrol are one of a number of cutting fluids manufacturers and supplied all cutting

fluids for this research.

1.1 Background to the Research

Single set-up machining is highly desirable for controlling tolerances and reducing

manufacturing costs. Traditional process chains for high tolerance cylindrical

components often include a rough turning or turn-milling process, followed by finish

turning and grinding where required. Each process in the chain requires a different

machine tool tailored to the individual job for successful completion. If the machine

tool used for finish grinding could also be used for the stock removal process, several
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stages could potentially be removed from the process chain. Figure 1.1 demonstrates

this idea schematically.

Figure 1.1 Comparison of the process chain for a cylindrical process using High
Efficiency Deep Grinding versus a conventional process chain

The grinding process generates a high temperature in the workpiece as a result of the

complex cutting action. High temperatures in the workpiece can result in subsurface

damage. The effect of thermal damage on the life-cycle performance of a ground

component is adverse. Whilst it is desirable to avoid thermally damaged components, it

is also desirable to discard only those components which are truly damaged. Non-

destructive testing methods detect only when the surface has already been damaged and

they also require specialised equipment which may necessitate off-line testing of

components. Non-destructive testing is therefore a non value-added process.

Predictive models of grinding burn tend to overestimate the temperature achieved and

hence the effects experienced in the ground surface. Overestimation of the surface

temperature results in parts being unnecessarily discarded. In spite of this tendency to

overestimation, predictive models can be incorporated into the machine control system

giving immediate warning when damaging conditions are achieved. Further they can be

used to optimise machining in the process design phase. There is therefore a strong case

for the development of accurate models for the prediction of thermal damage in ground

surfaces.
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The Superabrasive Turning process creates complex contact geometry during grinding.

By both rotating and traversing the workpiece the process produces a helical form. This

generates a heat flux from the side of the wheel in addition to that from the wheel

periphery. This effect is similar in surface profile grinding where a shoulder feature is

also generated. Whilst it is possible to measure the power consumption and hence

indirectly estimate the grinding temperature, it is not possible to distinguish how that

thermal energy is distributed around the profile generated. There is therefore a need for

research to further the understanding of the energy partitioning and temperatures in

profile grinding.

1.2 Research Objectives

Given the background to the research, it is clearly desirable to be able to predict and

control grinding temperatures in real time in order that industry might take advantage of

the HEDG process for conditions where a profile or shoulder is required. In order to

achieve this, an understanding of the temperature profile at varying locations around the

profile was required. Thus the aim of the research is:

 To further our knowledge of the thermal characteristics of High Efficiency Deep

Grinding for conditions which include a profile or grinding shoulder

This led to the following objectives:

 To provide data on the thermal profile formed during simple surface profile and

cylindrical traverse grinding

 To provide data on the effect of the shoulder on the workpiece surface

temperatures, grinding energies and grinding power.

 To create a burn threshold diagram suitable for HEDG grinding and

appropriate to the removal rates to be experienced in SATURN

 To provide data on the behaviour of the grinding energy with increasing specific

material removal rate

These objectives have been achieved with a combination of surface and cylindrical

grinding trials. These trials have focussed on those relationships which are essential to

the development of a set of tools for the prediction of temperatures in High Efficiency

Deep Grinding.
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1.3 Structure of the Thesis

This thesis presents work aimed at an improved understanding of temperature prediction

in High Efficiency Deep Grinding. The work begins by considering background

material pertinent to the measurement and prediction of grinding temperatures and

thermal damage. This is presented in the literature review of chapter 2. The review

initially considers the grinding process as a background to the development of the High

Efficiency Deep Grinding process such that the relative behaviour of this compared to

other processes can be understood. This is followed by a study of temperature

measurement techniques suitable for the machine tool environment. The literature

review finishes with an overview of grinding burn and our ability to predict its

occurrence. Prediction of grinding burn leads directly to a review of the prediction of

grinding temperatures.

Chapter 3 presents details of the experimental methodology, establishing trials with a

view to an understanding of the thermal characteristics of the process. Trials designed to

highlight the trends in specific grinding energy are presented. These were used to assist

the development of more accurate grinding temperature prediction from given process

parameters. Details of the temperature measurement trials are also described in this

chapter. This considered both the method of temperature measurement and its

application to the processes under consideration.

Chapters 4 and 5 present the results of the experiments outlined in Chapter 3.

Relationships between specific material removal rate and specific grinding energy and

grinding powers are demonstrated leading to an example burn threshold diagram in

Chapter 4. This is followed by the results presented in Chapter 5, which consider the

temperature measurement process and the resulting thermal profiles generated during

the grinding process. Surface grinding, simple surface profile grinding and cylindrical

traverse grinding are also considered.

Chapter 6 is a discussion of the results of chapters 4 and 5 and provides examples of the

new approach to the burn threshold diagram. The discussion also presents a study of the

energy partitioning in the profile grinding process. Finally the conclusions of the thesis

and recommended further work are presented in Chapter 7.
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2 Review of the Literature

Manufacturing industry has experienced significant changes in recent years as

increasing material and labour costs have taken a necessary toll on its competitiveness.

Thus a drive exists for significant reductions in product touch and process time. An

effective response to these constraints in the metal cutting field can be to reduce

processing times with the use of advanced machining technologies.

Several emergent technologies exist in this field, based around the principle of single

set-up, high performance machining; examples of which would include Viper Grinding,

Prismatic Machining and High Efficiency Deep Grinding (HEDG), the latter being the

focus of this particular thesis.

The literature review will consider the fundamentals of the HEDG process and its

predecessors, creep and high speed grinding, as a precursor to the HEDG technology.

Following this, temperature measurement techniques employed in both grinding and

where relevant alternative metal cutting processes will be considered as a precursor to

understanding the development of a temperature measurement methodology for an

aggressive environment. Finally the review will consider models of burn threshold

applied to the process in terms of the development of the residual stress profile and its

prediction via thermal modelling techniques.

2.1 The Grinding Process

According to the U.S. Census Bureau (2006), 2005 saw the shipment of some 792

external cylindrical grinding machines and 564 surface grinding machines with

individual values of over $3,025 and a total combined value of over $80 million.

Grinding is a major aspect of the production industry, meeting the expectations of

Merchant (1971) in terms of both the requirement for grinding processes and the

technological advancements attained.

Broadly described by Armarego & Brown (1969), grinding is one of a number of

abrasive processes including honing, lapping and superfinishing. The authors describe

the abrasive process as a metal cutting process involving hard, sharp and friable

abrasive grains, which as a result of their ability to produce a fine surface finish are

often considered as finishing processes. It is stated that there are many instances in

which grinding is used for stock removal with the example of rough grinding in foundry



work being presented. They go on to consider the earliest forms of abrasive process,

which it is suggested began with the use of sandstone for the shaping of tools followed

by the use of emery which was found to be more efficient. Eme

been originally used as a loose material before it was eventually bonded with clay to

form a wheel.

Armarego & Brown (1969) discuss grinding in its role as the most common and best

known of the abrasive processes, abrasives

power driven. The process consists of a random dispersion of grains in the wheel, taking

very small but frequent cuts and producing very small chips. The authors divide

grinding operations into three major types as shown in f

considered in addition to the specialised regimes described in the following pages,

which include creep feed, high speed and high efficiency deep grinding primarily

utilised in the broad cylindrical and surface grinding operations

Figure 2.1 Suggested subdivision of grinding operations after A
(1969)

2.1.1 Creep Feed Grinding

Creep feed grinding exhibits a number of benefits over traditional grinding processes.

Slow rates of feed with large depths of cut and high levels of coolant application

promote a low temperature at the contact and a high quality finished surface.

The creep feed grinding process is described by Malkin (1989) as being characterised

by the use of slow workpiece velo
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the increase in depth of cut as a factor of a hundred or thousand times those encountered

in regular grinding processes. Shaw (1996) describes the creep feed grinding process in

comparison to the conventional pendulum grinding process and presents the schematic

comparison of figure 2.2. The author comments on the processes ability to remove the

required material in a single pass, when compared to the multiple passes of pendulum

grinding and highlights its use in the production of deep slots in hydraulic pumps and fir

tree patterns in turbine blade roots. Shaw (1996) continues to state that the most

important aspect of a successful creep feed grinding process is the application of

coolant. Coolant must be applied such as to provide uniform coverage of the wheel –

work contact zone in order to reduce the high contact zone temperatures generated. The

wheel is required to have an open structure such that pockets of fluid can be carried into

the contact zone, whilst the use of an air scraper to prevent the boundary layer of air

around the wheel deflecting the coolant is advised.

Figure 2.2 Comparison of pendulum and creep feed grinding processes after Shaw
(1996)

Describing the process Werner (1979) distinguishes creep feed grinding from

conventional grinding regimes by four characteristic features. The total grinding force

and wheel-work contact zone temperatures are increased, whilst the individual grit force

and work surface temperature are decreased. The increase in total grinding force is

described as the result of the increased depth of cut, this increase results in a contact

length which increases by a factor of 30 to 100 times. This results in an increased

number of grits in the contact zone and hence a decrease in the individual grit force. The

greater energy requirement of the creep feed process results in an increased heat influx

per unit contact area. However, the larger contact zone and low heat source velocity

result in a greater time for heat dissipation into the work surface, the greater volume

yielding a lower overall temperature. The author concludes that the creep feed process
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can be used to dramatically increase productivity when large amounts of stock have to

be removed and the surface requirements are high. It should be noted that in some

instances creep feed grinding does not create a greater energy requirement and the slow

movement of the heat source can also result in elevated temperatures if uncontrolled.

2.1.2 High Speed Grinding

For the purposes of this thesis, high speed grinding refers to those grinding processes in

which a wheel speed of 60 m/s is exceeded. Increasing the speed of the grinding wheel

for a given grinding process produces a number of desirable effects. König et al. (1971)

presents an early overview of work in the field compiling results from several authors

and presenting evidence (figure 2.3) of the decreasing cutting force, surface roughness

and wheel wear as a result of increasing wheel speeds.

Figure 2.3 Changes in cutting force, surface roughness and wheel wear with
increasing wheel speed after König et al. (1971)

High wheel speeds in modern grinding applications are largely the result of

improvements in grinding wheel technology. Wheel requirements for successful high

speed grinding are described by Jackson et al. (2001). The authors suggest a wheel

exhibiting good damping characteristics, high rigidity and good thermal properties

having a thin layer of abrasive material attached to a body of high mechanical strength.

The most suitable abrasive for high speed grinding applications is cubic boron nitride

(CBN), Tawakoli (1993) for example highlights the use of electroplated CBN steel



9

wheels, allowing wheel speeds to exceed 200m/s. Jackson et al. (2001) also comment

on the suitability of CBN considering its high hardness and thermal and chemical

stability to result in an ideal product for high speed ferrous machining. The authors

continue to describe the application of electroplating as the preferred bonding system

with steel wheels and consider cutting speeds in excess of 280m/s to be possible.

2.1.3 High Efficiency Deep Grinding

The High Efficiency Deep Grinding (HEDG) regime is the result of the development of

wheel and machine technologies capable of delivering both high wheel and workpiece

feedrates with a large depth of cut. The process is the product of the high speed and

creep feed grinding regimes utilising the benefits of high wheel speeds at large depths

of cut and feedrates to achieve high stock removal rates.

Described by Tawakoli (1993), the process readily achieves specific stock removal rates

in excess of 50mm3/mm·s whilst improving tool wear, specific energy requirement and

surface integrity. Table 2.1 demonstrates typical values associated with common

grinding techniques when compared to the HEDG regime.

Method

Machine
Settings

Reciprocating
Grinding

Creep-feed
Grinding

HEDG

Depth of Cut ae
Low 0.001 –

0.05mm
High 0.1-30mm High 0.1 – 30mm

Workpiece Speed
vw

High 1 – 30m/min
Low 0.05 –
0.5m/min

High 0.5 – 10m/min

Wheel Speed vs Low 20 – 60m/s Low 20 – 60m/s High 80 – 200m/s

Specific Removal
Rate

Low 0.1 –
10mm3/mm·s

Low 0.1 –
10mm3/mm·s

High 50 –
2000mm3/mm·s

Table 2.1 Typical grinding parameters for common grinding techniques after
Tawakoli (1993)

Tawakoli (1993) also highlights the low workpiece surface temperatures resulting from

the HEDG process. The beneficial contact conditions, high angle of inclination and high

wheel and workpiece speeds result in a low workpiece surface temperature and the
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temperature trend presented in figure 2.4. It is to be questioned whether the same profile

would exist in the sidewall, where no benefit from an angle of inclination is to be found.

Figure 2.4 Surface temperature trend in HEDG after Tawakoli (1993)

Research in the field of High-performance profile grinding by Werner and Tawakoli

(1988a), presents an example of the machine requirements for the HEDG process. The

higher grinding forces described call for a machine exhibiting:

 A rigid machine bed

 Strong and powerful spindle drives and bearings

 Guide members of adequate dimensions

 A good coolant supply and filtering system

 Suitable grinding wheels and dressing devices where applicable

Further, wheel requirements are specified for high wheel speeds (greater than 125m/s),

the high centrifugal forces requiring an electroplated steel wheel as the risk of wheel

burst with conventional abrasives is too high. Rowe and Jin (2001) support the use of

electroplated wheels describing the high wheel wear rate encountered during HEDG

trials with an alumina wheel and calling for the future use of stronger wheels at higher

wheel speeds.

Tawakoli (1993) considers the high speed grinding process as a prelude to the high

efficiency deep grinding process. Further to the demonstration of König (1971) (figure
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2.3), Tawakoli (1993) demonstrates the thermal benefit of high wheel speeds. Figure 2.5

shows the author’s work with increasing wheel speed on the workpiece surface

temperature. As wheel speed increases, there is an initial increase in frictional energy

resulting in a rise in surface temperature as a result of the wheel engaging the workpiece

more frequently. Temperatures continue to rise up to a given wheel speed before

decreasing with increasing wheel speed.

Figure 2.5 Surface temperature trends with increasing wheel speed after Tawakoli
(1993)

Tawakoli (1993) describes changes in workpiece surface temperature as the result of the

contact layer theory. The temperature at the cutting edge rises to a maximum (the chip-

formation equilibrium temperature) as the cutting edge penetrates and moves through

the contact zone. In HEDG, the high number of kinematic cutting edges and close

proximity of cutting paths raises the contact surface temperature to the equilibrium

temperature. The author goes on to describe the effects seen in pulse heating of surfaces

with an electron beam. In this case the temperatures were shown to spread more rapidly

across the surface than into the material core. As a result of this a rapid removal of the

contact layer in HEDG, described as of the order of 0.5ms for a wheel speed of 100m/s

at a specific material removal rate of 100mm3/mm·s, removes heated material from the

contact layer with the grinding chip. The high speed removal of the heated layer

therefore prevents excessive thermal penetration into the workpiece surface.
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The partitioning of heat energy in the HEDG regime plays a crucial role in the success

of the process. Investigated by Jin & Stephenson (2003), a theoretical analysis of the

heat partitioning shows the dominance of the grinding chip in heat removal from the

workpiece. Increasing material removal rates were shown to result in an increasing heat

partitioning ratio to the grinding chip (figure 2.6), with decreasing partition to the

coolant, wheel and workpiece.

Figure 2.6 Heat partitioning in HEDG after Jin & Stephenson (2003)

Further, the authors make a useful assumption in the modelling of the process,

demonstrating an exponential relationship between specific material removal rate (Q’w)

and specific grinding energy (ec) of the type:

t

wc QAe


 '

Where A and t are constants dependent on the workpiece material and grinding regime

and noting that increases in both workpiece feedrate and depth of cut can increase the

value of specific material removal rate. They reason that for similar wheel and coolant

conditions an approximation of this nature can be used to predict the energy

requirements. The valid range of this assumption may prove to be dependent on the

concept of minimum grinding energy presented by Malkin (1989), given his

demonstration that the minimum amount of energy required for material removal in

grinding is dependent upon material property. This intimates that the power relationship

would be limited to specific material removal rates where the minimum grinding energy

had not been achieved and would be independent of the coolant supply conditions.

More recent attempts at modelling the specific grinding energy in the HEDG regime

were made by Ghosh et al. (2008). The authors demonstrated a model of specific
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grinding energy derived from the summation of the individual grit interactions at low

values of specific material removal rate. This showed limited correlation between the

measured and predicted values, with result scatter attributed to the complex grinding

process.

Successful demonstrations of the use of HEDG in all the major grinding modes have

been shown in the literature. Stephenson et al. (2002) demonstrate the application of the

HEDG regime to the surface and cylindrical traverse grinding modes, presenting a

theoretical discussion of the surface temperature trend with variation in work speed

(figure 2.7) and also depth of cut (figure 2.8). The authors suggest that the increasing

workpiece speed in HEDG acts to reduce temperatures at the contact and finished

surface independently of coolant supply, with depths of cut beyond 2mm showing little

variation in the temperatures generated. Their theoretical predictions thus assume that

the effect of coolant for reducing grinding temperatures is in fact negligible at high

work speeds. This is supported by results presented in the work, which demonstrate a

limited variation in specific grinding energy with a decrease in fluid supply to the

contact zone.

Figure 2.7 Temperature trends with work speed for HEDG conditions after
Stephenson et al. (2002)
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Figure 2.8 Temperature trends with depth of cut for HEDG conditions after
Stephenson et al. (2002)

Comley et al. (2004) present a successful demonstration of the HEDG regime in the

cylindrical plunge grinding mode. The authors present results to support the claim that

high stock removal rates, in this case up to 2000mm3/mm·s, are achievable without

thermal damage. Comley (2005) again demonstrates the validity of the HEDG regime in

the cylindrical plunge grinding mode. Here, it is also shown that the trend of surface

temperatures with increasing removal rate is similar to that demonstrated for surface

grinding by Tawakoli (1993). The work of Comley (2005) also shows a clear peak in

temperature around values of specific material removal rate of 300 to 350mm3/mm·s

before falling away.

The integrity of a ground surface is primarily dependent on the thermal changes

undertaken in the grinding process. The application of process control and predictive

modelling to the HEDG regime is dependent on the successful modelling of the

temperatures generated in the finished surface during processing. Jin et al. (2001) and

Rowe (2001) presented the case for a moving inclined heat source for the modelling of

the HEDG regime. However, current best practice in thermal modelling of the regime is

presented by Rowe & Jin (2001) and describes a moving circular arc of heat source

model. The work concludes that the reduction of temperature transmission to the

finished surface in spite of high contact temperatures is the result of the large inclination

angle of the contact, driven by the large depth of cut, and the high work speeds.

Experimental data presented by the authors (figure 2.9) shows the high maximum

contact temperatures achieved, approaching the melting temperature of the material.
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Figure 2.9 Measured maximum contact temperatures in HEDG during fluid burn-
out after Rowe & Jin (2001)

A discussion of the results presented by Rowe & Jin (2001) suggests that the specific

grinding energy approached the melting energy of the chip material, similar to the

findings of Malkin (1989) for conventional grinding regimes. The concept of minimum

or limiting specific grinding energy in the grinding process is also discussed by Morgan

et al. (2004) and equated to the energy required to raise a grinding chip to the melting

temperature. The authors state that for steel this value is approximately 6 J/mm3, this is

as compared to a value of minimum chip formation energy of approximately 10.4

J/mm3 presented by Malkin (1989). If the minimum specific grinding energy is material

dependent, a minimum grinding energy will be achieved independently of coolant

supply and other factors and would be consistent for all applications.

2.1.4 Vertical Side Face Grinding

One of the most common applications for high performance grinding applications such

as creep feed and high efficiency deep grinding is the production of deep slots and

profiles. The production of a deep feature using the grinding process results in the

development of a vertical sidewall. This sidewall can experience a differing wear and

thermal profile to the axis parallel surface.

Both Mindek & Howes (1996) and Li et al. (1999) consider the effects of the presence

of a sidewall during the grinding process. Mindek & Howes (1996) discuss the effect of

the sidewall in creep feed grinding, they highlight the limitation of coolant access into

the sidewall and the wear on the wheel edge radius as detrimental to the heat flux into

the sidewall and the holding of tolerance in the bottom of the slot. The heat flux into the

sidewall is considered to increase as the wheel begins to gather debris and worn wheel

grits are not removed from the wheel.
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Li et al. (1999) develop a model of the thermal and stress considerations in the sidewall

for a creep feed grinding application. They suggest that for surface grinding conditions

the peak temperature position in the wheel work contact zone will leave a burn strip on

the sidewall. This is the result of the process not removing the sidewall material in

subsequent passes as would be experienced in cylindrical traverse grinding. Figure 2.10

shows schematically the anticipated location of this burn strip in creep feed grinding. It

may be expected that this burn strip exist in HEDG also, as a result of the similar depths

of cut and the known high contact zone temperatures experienced.

Figure 2.10 Anticipated location of burn in sidewall during creep feed grinding after
Li et al. (1999)

The application of deep grinding of narrow slots in the HEDG regime is discussed by

Werner & Tawakoli (1988b) and considers the application of an optimised wheel

geometry for slot grinding. The authors developed a solid wheel, with partial

electroplating of the CBN abrasive to the wheel flank or sidewall. This was shown to be

the result of experimentation with a fully electroplated wheel and a slotted wheel and

permits an improved flow of coolant into the sidewall and reduces sidewall friction. In

addition to the benefits of the wheel geometry, a cleaning nozzle arrangement was

added to the set-up to remove loaded metal particles from the wheel surface. The use of

the optimised wheel geometry is shown to successfully produce slots of 25mm depth by

1.5mm wide in testing.

Snoeys et al. (1978) consider the thermal effects of cut-off grinding, during the cut-off

process a vertical sidewall is created as the wheel penetrates the workpiece. The authors

suggest that in this case the majority of heat is concentrated in the layer to be

imminently ground away. Figure 2.11 shows a schematic of the theoretical heat flux

into the sidewall, the temperature in the sidewall is suggested to be dependent on the
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workpiece feedrate. The authors also present a theoretical analysis of the temperatures

in the workpiece sidewall. Figure 2.12 demonstrates the temperature curves in the

sidewall.

Figure 2.11 Theoretical heat flux to surface and sidewall during abrasive cut-off
process after Snoeys et al. (1978)

Figure 2.12 Sidewall temperature curves for the abrasive cut-off process after Snoeys
et al. (1978)

Sainz (2005) made attempts to record the thermal profile where a vertical sidewall was

present with the low melting point coating technique (discussed in section 2.3). He

successfully shows the possibility of recording a complete isotherm in a profile using

the technique with the grinding of thin samples and at small widths of cut in the HEDG

regime. However the 2mm wide sample was insufficient to contain the entire sidewall

isotherm and thermal gradients across the width of the sample due to the cooling at the

sidewall face were higher than may be expected. The author concludes that the depth of

cut increases the heat flux into the sidewall, with the trend similar for both creep and

high efficiency deep grinding regimes. Further no effect on the heat flux to the sidewall

as a result of changes in feed rate was found.
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2.1.5 Cylindrical Traverse Grinding

Cylindrical traverse grinding is described by Malkin (1989) as grinding with the

addition of a crossfeed motion of the workpiece relative to the grinding wheel in a

direction perpendicular to the plane of wheel rotation. The author demonstrates the

process schematically (figure 2.13) highlighting the issue of step wear in the wheel as

progressive wear is encountered across the wheel width. This may result in a form error,

which is cited as a primary reason for the preference of cylindrical plunge grinding in

the production environment. The presence of step wear should be limited however by

the application of advanced wheel technologies such as electroplated steel CBN wheels,

which should exhibit negligible surface wear.

Figure 2.13 Schematic of the cylindrical traverse grinding process after Malkin
(1989)

Nakayama et al. (2004) describe a ultra-high speed cylindrical traverse grinding process

using CBN wheels. The authors show by experimentation that reducing the traverse

feed per workpiece revolution improves the surface roughness. Increasing workpiece

speed was shown to suppress the effect of heat in the ground subsurface and could

generate compressive residual stress profiles. In conclusion the authors recommend that
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the increase in work speed allows higher traverse feeds with a small effective width of

cut providing an optimised solution for cylindrical traverse grinding. In keeping with

results for surface grinding with high wheel speeds, both surface roughness and

grinding forces are reduced in cylindrical traverse grinding. The work of Nakayama et

al. (2004) is limited to a maximum depth of cut of 0.3mm, this delivers a specific

material removal rate of 2600mm3/mm·s and is within the range of high efficiency deep

grinding. The work leaves scope for the investigation of larger depths of cut in keeping

with stock removal techniques and does not consider temperatures in the surface or

sidewall.

Further work in the field of cylindrical traverse grinding has been demonstrated by

Weck et al. (2001), Capello & Semeraro (2002) and Bianchi et al. (2003). These

reviews consider the application of the cylindrical traverse grinding process to the finish

grinding process and do not consider stock removal applications. Stephenson et al.

(2002) did however successfully demonstrate the application of the process in the

HEDG regime. They considered the use of high rotational speeds with low cross feeds,

suggesting that this resulted in a face grinding mode with grinding primarily occurring

at the shoulder face of the grinding wheel.

2.2 The Application of Grinding Fluid

In grinding, grinding fluids perform a number of functions within the process. Figure

2.14, presented by Brinksmeier et al. (1999) demonstrates the primary effects of

lubrication and cooling in the machining process, further to this however it is commonly

accepted that coolant also assists in the removal of grinding chips from both the

grinding wheel and grinding zone.
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Figure 2.14 Primary effects of lubrication and cooling in the machining process after
Brinksmeier et al. (1999)

Ye & Pearce (1984) consider the effect of the type of coolant in the creep feed grinding

of a Nickel-base alloy. They demonstrate through experimentation the benefit on

surface roughness and profile retention with the use of oil as a cutting fluid. However it

is suggested that in this process the use of oil is more likely to result in workpiece burn

and therefore if this is a primary consideration, water based coolants are preferred.

Further, it is commented that neat oil permitted a greater production rate; this is relevant

to the HEDG process as the high production rates possible with the process could be

facilitated by the coolant selection.

For the application of grinding fluid to be successful, the coolant must be able to reach

the required area of the grinding zone where its functionality is most required. Both

Brinksmeier et al. (1999) and Ebbrell et al. (1999) consider the application of coolant

into the grinding zone. Of particular importance to the HEDG regime is the boundary

layer of air, which occurs around the wheel periphery as a result of high wheel speeds.

Discussed by Ebbrell et al. (1999), conventional methods of fluid delivery are thought

to fail to penetrate the boundary layer, resulting in insufficient cooling in the grinding

zone. The authors suggest the use of a jet nozzle to avoid this problem, however the

application of coolant tangential to the wheel surface is suggested to result in deflection

by the boundary layer and thus an angular application of coolant is required, further

benefits may also be achieved with the use of a scraper plate to spoil the air flow and

minimise the effect of the boundary layer. Further to work relating to coolant selection,

Carmona Diaz (2002) presented an optimised geometry for nozzle positioning in the

HEDG regime using the Edgetek SAM at Cranfield University. The author suggests that



the leading edge nozzle should be

surface grinding, which ensures good application of coolant to the contact zone.

Considering high performance grinding, Brinksmeier & Minke (1993) suggest the

braking effect of the grinding fluid

the process. When wheel speeds approach 180

total grinding power is actually being used for cutting, the remainder being utilised to

drive the coolant (figure 2.15

supply on grinding force (figure

high performance grinding process is a trade off between the reduction in coolant

supply to minimise grinding forces and the minimum quantity of coolant required to

cool and lubricate the process.

Figure 2.15 The effect of grinding fluid on grinding power after Brinksmeier &
Minke (1993)
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should be inclined at a shallow angle to the horizontal for

surface grinding, which ensures good application of coolant to the contact zone.

Considering high performance grinding, Brinksmeier & Minke (1993) suggest the

grinding fluid on the grinding wheel is a major limiting factor on

When wheel speeds approach 180m/s, the authors note that only 25% of the

total grinding power is actually being used for cutting, the remainder being utilised to
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supply on grinding force (figure 2.16), concluding that the application of coolant in the
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y to minimise grinding forces and the minimum quantity of coolant required to

cool and lubricate the process.
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y to minimise grinding forces and the minimum quantity of coolant required to

The effect of grinding fluid on grinding power after Brinksmeier &
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Figure 2.16 The effect of grinding fluid on grinding forces after Brinksmeier & Minke
(1993)

Carmona Diaz (2002) studied the influence of grinding fluids on HEDG with a 51CrV4

low alloy steel. His research concluded that the most appropriate selection of grinding

fluid for the HEDG regime was neat or synthetic oil. This supports the work of Ye &

Pearce (1984), who, working in the creep feed regime, intimated the suitability of neat

oil for high stock removal rate processes. It is accepted that this would be true for

cylindrical grinding also, as the benefit appears to be the result of the favourable

lubrication qualities of oil.

2.3 Temperature Measurement

The measurement of temperature in any manufacturing process is complicated by issues

of accessibility to and the dynamics of the process in question. When considering

machining processes, the accurate measurement of temperature is further frustrated by

the addition of lubrication to and the removal of swarf from the cutting zone. This is of

particular concern for the grinding process, which in many cases floods the wheel

workpiece interface with coolant as in the creep feed grinding process or produces high

volumes of waste material as found in stock removal processes.

Reviewed by Komanduri and Hou (2001), a variety of temperature measurement

techniques are presently available to the researcher. The authors consider the application

of thermocouples, infra-red photography and optical pyrometry, thermal paints,

materials of known melting temperature and microstructural change. They conclude that

the application of a given temperature measurement technique is dependent on the



situation considered. Issues include accessibility, heat source size, dynamics of the

process, required accuracy, cost

The use of thermocouples for temperature measurement in grinding is commonplace.

Several examples are available of literature presenting results developed from the

process, for example temperature measu

(2001) utilised this method for verification of thermal models of HEDG. Tawakoli

(1993) presents an example of the use of thermocouples for the development of surface

temperatures in grinding regimes. He describ

temperature range and the ability to place them in or just below the contact zone via

drilled holes. It is also noted that the thermocouples require a reference temperature for

set-up. The author provides a schemati

extrapolating surface temperatures via a series of thermocouples placed at varying

depths from the contact surface.

Figure 2.17 Schematic of thermocouple technique for measuremen
temperatures during grinding after Tawakoli (1993)

Komanduri & Hou (2001) describe the embedded thermocouple technique process as

requiring elaborate preparation, given the requirement for accurate drilling of holes in

the surface of an often difficult to machine material. Further, they comment on the

disturbance of the heat flow when placed close to the contact surface. They consider

that the principal benefits of the system are the ease with which thermocouples can be

used and the relatively low cost of the sensors. Kato
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situation considered. Issues include accessibility, heat source size, dynamics of the

process, required accuracy, cost implications, sensor technology and data collection.

The use of thermocouples for temperature measurement in grinding is commonplace.

Several examples are available of literature presenting results developed from the

process, for example temperature measurements in Rowe et al. (1998) and Rowe & Jin

(2001) utilised this method for verification of thermal models of HEDG. Tawakoli

(1993) presents an example of the use of thermocouples for the development of surface

temperatures in grinding regimes. He describes advantages including accuracy, a wide

temperature range and the ability to place them in or just below the contact zone via

drilled holes. It is also noted that the thermocouples require a reference temperature for

up. The author provides a schematic (figure 2.17) of a thermocouple technique for

extrapolating surface temperatures via a series of thermocouples placed at varying

depths from the contact surface.

Schematic of thermocouple technique for measuremen
temperatures during grinding after Tawakoli (1993)

Hou (2001) describe the embedded thermocouple technique process as

requiring elaborate preparation, given the requirement for accurate drilling of holes in
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benefits of the system are the ease with which thermocouples can be

low cost of the sensors. Kato & Fujii (1997) agree that the
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Hou (2001) describe the embedded thermocouple technique process as

requiring elaborate preparation, given the requirement for accurate drilling of holes in

difficult to machine material. Further, they comment on the

disturbance of the heat flow when placed close to the contact surface. They consider

benefits of the system are the ease with which thermocouples can be

Fujii (1997) agree that the
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thermal distortion around the embedded thermocouple may be an issue for the

measurement of temperatures at the contact surface in grinding.

Hwang et al. (2003) present an example of the application of an infra-red imaging

system to the measurement of temperatures in the grinding process. Trials were

performed without the application of coolant by focusing the system onto the sidewall

of the grinding sample (figure 2.18). The authors suggest significant benefits are offered

as a result of the ability to consider temperature measurements over a broader area than

the wheel workpiece contact zone; this is highlighted as distinct from other techniques

which consider localised temperature measurement only. Issues raised by Komanduri &

Hou (2001) relating to the use of infra-red and its requirements for elaborate

instrumentation and the possibility of special environments, with the exception of an

intolerance for coolant application during trials, appear to have been resolved with

technological advancements.

Figure 2.18 Schematic of infra-red temperature measurement system for
measurement of grinding temperatures after Hwang et al. (2003)

Earlier measurements of grinding temperature with the use of an infrared radiation

pyrometer are presented by Ueda et al. (1986). An optical fibre is positioned such as to

record temperatures at the workpiece surface (figure 2.19), transferring the data to a

remotely located infra-red pyrometer. An experimental set-up utilising a thermocouple

for temperature measurement verification was also applied. The chief benefits of the

approach are described as the response time and the ability to accurately determine peak

temperatures. Response times of the pyrometer are sufficient to respond to the rapid

changes in temperature experienced and thus pick up peak temperatures as well as the
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average background temperature. More recent work by Müller & Renz (2003) considers

the application of an infra-red pyrometer with an optical fibre to a conventional turning

process. They agree that the speed of response and the accuracy of the technique are of

significant benefit.

Figure 2.19 Schematic of infra-red pyrometer with local optical fibre temperature
measurement system for measurement of grinding temperatures after
Ueda et al. (1986)

Wright & Trent (1973) describe a metallographic method for determining the

temperature gradient in a high speed steel cutting tool. The authors claim that the use of

thermocouples and infra-red pyrometry can only provide an indication of the character

of the temperature distribution in the tool and that this is inadequate. The use of the

metallographic technique allows for a complete temperature distribution (figure 2.20) to

be developed where applied. By the application of knowledge of the phase

transformation temperatures and hence metallographic changes in the material, the

temperature gradient can be determined. Figure 2.21 represents this process

schematically, demonstrating the structural changes in high-speed steel as a function of

tempering temperature and time. Komanduri & Hou (2001) highlight the limitations of

the technique as being the requirement for a suitable material and the increased

processing parameters to produce a suitable metallurgical isotherm.
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Figure 2.20 Complete temperature distribution shown in metallography of a cutting
tool after Wright & Trent (1973)

Figure 2.21 Sample time temperature transformation lines for analysis of cutting
tools with metallography after Wright & Trent (1973)

Materials of a known melting point have been applied to machining processes for the

measurement of the temperature distribution in cutting tools and surface temperatures in

grinding. Kato et al. (1976) present the use of powders of a constant melting point to

measure tool temperature distribution. The cutting tool was split parallel to the chip

flow direction, with the powder applied to the mating surfaces using an aqueous

solution of sodium silicate to aid adhesion. The authors conclude that the temperature

distributions were measured easily and accurately, with processing resulting in a typical

isotherm (figure 2.22) when surface temperatures were raised as a result of the cutting

process. Measurements were recorded graphically as depicted in figure 2.23, with the

technique demonstrated being typical for both powders and pure metals.
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Figure 2.22 Typical isotherms in cutting tools using powders of known melting point
after Kato et al. (1976)

Figure 2.23 Graphical representation of isotherms shown in figure 2.22 after Kato et
al. (1976)

Later work by Kato & Fujii (1996) highlighted the limitations of the powder route

suggesting the thickness of the powder resulted in a poor thermal response and formed a

thick layer preventing close contact with the surface. Again the split tool technique of

Kato et al. (1976) was employed with a coating applied by the Physical Vapour
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Deposition (PVD) technique and utilising the same measurement process. Varieties of

pure metals were used as depicted in table 2.2 and can be considered typical of those

used for these applications.

PVD Film Material Symbol Melting Point (K) Purity %

Germanium Ge 1211 99.999

Antimony Sb 904 99.999

Tellurium Te 723 99.999

Lead Pb 601 99.999

Bismuth Bi 545 99.999

Indium In 429 99.999

Table 2.2 Typical pure materials used by Kato & Fujii (1996) for development of
cutting tool isotherms

Kato & Fujii (1997 & 2000) present the use of a thin film deposited between mating

surfaces of a sample workpiece by the PVD process. Figure 2.24 describes the

experimental work undertaken by the authors, showing the relative location of the

coated surface to the grinding parameters. The benefits of the technique are described as

its applicability to any workpiece material without requirement for the drilling of holes

for the embedding of sensors. Further the technique is capable of profiling the

temperature at various depths from the surface. The work of Komanduri & Hou (2001)

considers the PVD process as an inexpensive and simple method of providing

information on the complete temperature distribution.
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Figure 2.24 Schematic of the PVD method of temperature measurement technique for
surface grinding after Kato & Fujii (2000)

The measurement of temperatures in the HEDG regime is complicated by the high feeds

and speeds and the aggressive coolant supply. Walton et al. (2005) presents the case for

the low melting point coating technique. The authors compare temperature and

subsurface hardness profiles to demonstrate changes in hardness at temperatures critical

to the phase transformation of the material. They conclude from experimentation that

the low melting point coating technique is a robust method of temperature

measurement. The high coolant pressures experienced had no detrimental effect on the

temperature measured and the thinness of the coating promoted an undisturbed thermal

field.

Batako et al. (2005) present a study of temperature measurement techniques in the

HEDG regime. Experimental data collected here presents a case for the use of grindable

thermocouples, concluding that the single pole grindable thermocouple technique was

the simplest and most reliable. This is as compared to the findings shown in previous

paragraphs considering low melting point coatings; the review does not consider the

effect of the excessive electrical noise experienced during the HEDG process.

2.4 Grinding Burn

Surface integrity is described by Field & Kahles (1971) as the study and control of both

surface roughness and surface metallurgy. They comment that conditions for developing

surface integrity need not be imposed unless the service requirements dictate. When

considering stock removal processes the issue of surface integrity is of lesser



importance, particularly the generated surface roughness as subsequent finishing passes

of the grinding wheel at more conventional rates can remov

effects. The depth of a surface effect is therefore critical if it is to be successfully

removed. This is particularly significant in the HEDG regime where very high

temperatures are generated during the process.

Grinding burn makes broad reference to the effects of temperature on the surface

integrity of the workpiece material

to refer to these issues. Several degrees of grinding burn are noted in the literature from

oxidation to rehardening burn. Badger & Torrance (2000) demonstrate schematically

the varying levels of burn experienced against a relative temperature profile (figure

2.25) the onset of oxidation burn occurring at relatively low temperatures. The authors

consider oxidation burn to be largely cosmetic; however it is clear that the presence of

oxidation burn may imply a deeper level of damage.

Figure 2.25 Schematic of degrees of grinding burn after Badger & Torrance (2000)

The importance of damage resulting from the grinding process, grinding burn, cannot be

underestimated. Field & Kahles (1971) comment on the importance of dynamic loading

as a principal factor for engineering design, where fatigue life failures initiate on

the surface. Further it is suggested that the surface condition is a primary factor in stress

corrosion problems. The author demonstrates the effect of grinding on the fatigue life

for three commonly employed engineering materials, summarised in ta

highlights significant reduction in fatigue life with abusive grinding conditions.
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importance, particularly the generated surface roughness as subsequent finishing passes

of the grinding wheel at more conventional rates can remove undesirable surface

effects. The depth of a surface effect is therefore critical if it is to be successfully

removed. This is particularly significant in the HEDG regime where very high

temperatures are generated during the process.

road reference to the effects of temperature on the surface

integrity of the workpiece material; this terminology will be used throughout the thesis

to refer to these issues. Several degrees of grinding burn are noted in the literature from

hardening burn. Badger & Torrance (2000) demonstrate schematically

the varying levels of burn experienced against a relative temperature profile (figure

) the onset of oxidation burn occurring at relatively low temperatures. The authors

ion burn to be largely cosmetic; however it is clear that the presence of

oxidation burn may imply a deeper level of damage.

Schematic of degrees of grinding burn after Badger & Torrance (2000)

The importance of damage resulting from the grinding process, grinding burn, cannot be

Kahles (1971) comment on the importance of dynamic loading

as a principal factor for engineering design, where fatigue life failures initiate on

the surface. Further it is suggested that the surface condition is a primary factor in stress

corrosion problems. The author demonstrates the effect of grinding on the fatigue life

for three commonly employed engineering materials, summarised in ta

significant reduction in fatigue life with abusive grinding conditions.
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e undesirable surface

effects. The depth of a surface effect is therefore critical if it is to be successfully

removed. This is particularly significant in the HEDG regime where very high

road reference to the effects of temperature on the surface

will be used throughout the thesis

to refer to these issues. Several degrees of grinding burn are noted in the literature from

hardening burn. Badger & Torrance (2000) demonstrate schematically

the varying levels of burn experienced against a relative temperature profile (figure

) the onset of oxidation burn occurring at relatively low temperatures. The authors

ion burn to be largely cosmetic; however it is clear that the presence of

Schematic of degrees of grinding burn after Badger & Torrance (2000)

The importance of damage resulting from the grinding process, grinding burn, cannot be

Kahles (1971) comment on the importance of dynamic loading

as a principal factor for engineering design, where fatigue life failures initiate on or near

the surface. Further it is suggested that the surface condition is a primary factor in stress

corrosion problems. The author demonstrates the effect of grinding on the fatigue life

for three commonly employed engineering materials, summarised in table 2.3, and

significant reduction in fatigue life with abusive grinding conditions.
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Alloy Machining Operation
Endurance Limit in Bending 107

Cycles (psi)

4340 Steel, 50 Rc

Gentle grinding 102,000

Abusive Grinding 62,000

Titanium 6Al-4V 32 Rc

Gentle grinding 62,000

Abusive Grinding 13,000

Inconel 718, Aged, 44 Rc

Gentle grinding 60,000

Conventional
Grinding

24,000

Table 2.3 Effect of grinding processes on fatigue life of common engineering
materials after Field & Kahles (1971)

The detrimental effect of a poorly controlled grinding process is qualified by Silva

(2003) describing the failure of a vehicle crankshaft due to thermal fatigue cracking,

whilst Eliaz et al. (2005) described the discovery of a crack in the main landing gear of

a cargo aircraft as a result of abusive grinding. Whilst both events will result in a

significant financial impact for the manufacturer, the failure described by Eliaz et al.

(2005) is of particular importance as landing gear are a safety critical element of the

aircraft. Their failure could have fatal implications.

Brinksmeier et al. (1982) demonstrate schematically the primary effects of residual

stresses (figure 2.26). They consider the residual stresses to be the result of combined

thermal and mechanical effects also discussed by Mahdi and Zhang (1999a & b) and

Snoeys et al. (1978). Further, consideration of residual stress as the result of phase

transformation is presented by Brinksmeier et al. (1982) Mahdi & Zhang (1999b) and

Snoeys et al. (1978). Brinksmeier et al. (1982) consider some of the elements which

result in a residual stress in the surface including machining conditions, wheel wear

behaviour and the type and construction of the wheel. The author also demonstrates the

beneficial effect of oil over emulsion on the residual stress; figure 2.27 shows results

after Althaus (1982) presented by Brinksmeier et al. (1982) where residual stress is

significantly reduced when using oil. Further the figure demonstrates the benefit of

using a CBN wheel, here in grinding with both oil and emulsion, CBN produces a

consistently lower residual stress than its corundum counterpart. Brinksmeier concludes
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that whilst the cooling effect of emulsion is significantly greater, oil has the more

beneficial effect on the tensile residual stress profile.

Figure 2.26 Primary effects of residual stress after Brinksmeier et al. (1982)

Figure 2.27 Effects of oil as a grinding fluid and the use of CBN wheels on residual
stress in the as ground surface after Althaus (1982) cited Brinksmeier et
al. (1982)

Of the forms of grinding burn commonly encountered, tensile residual stress is

considered to be the most significant. The presence of tensile residual stress will

promote fatigue failures, crack initiation and crack propagation. Chen et al. (2000)

describe the origins of residual stress as the result of three effects during the grinding
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process; thermal expansion and contraction, phase transformations when high

temperatures are encountered and plastic deformation due to the abrasive grains of the

wheel. They suggest that the most significant element in the generation of residual

stress is the effect of thermal expansion and contraction and that this allows the process

of predicting residual stress to be simplified to the prediction of temperature.

The focussing of the grinding burn problem on the generation of residual stress allows

for the application of several commonly available technologies for burn detection. The

effect of residual stress condition on hardness measurements has been demonstrated in

the literature. Frankel et al. (1993) show an example of autofrettaged cylinders

exhibiting a compressive internal diameter and a tensile outside diameter. Using

Rockwell C hardness measurements, the authors show a decreasing hardness value with

increasing tensile residual stress. This effect is also seen in the work of Blain (1957) in

which Rockwell C measurements of surface hardness were seen to be similarly reduced

by the presence of a tensile residual stress. The use of surface hardness as an indicator

of a residual stress profile should be easily established and with the use of non-

destructive ultrasonic contact impedance equipment can be tested in-situ.

Shaw et al. (1998) and Desvaux et al. (1999) show good results for the detection of

grinding burn with Barkhausen noise analysis. Both sets of authors comment on the

usability of the process, with Desvaux et al. (1999) commenting on its value as a

replacement for the existing x-ray diffraction technique, which is considered lengthy,

expensive and relatively inflexible for a more complex geometry. The authors agree that

the Barkhausen technique demonstrates a correlation to the residual stress condition;

however it is highlighted by Shaw et al. (1998) that the results require quantification

against actual material properties developed. More recently, Comley (2005) utilised the

Barkhausen technique for the detection of grinding burn, concluding that the set-up,

whilst comparative, provides a quick non-destructive method suitable for industrial

application.

The appearance of oxidation burn, i.e. the presence of temper colours on the workpiece

surface has been used by Johnstone (2002) as a simple method of detecting grinding

burn. McCormack et al. (2001) consider the use of temper colours for determination of

grinding burn claiming that temperatures at which oxidation occurs are increased as a
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result of the unusually short thermal pulse time in grinding. They consider the presence

of surface oxidation in a critical component to be completely unacceptable due to the

risk of sub-surface metallurgical damage, although comment on its acceptability on non

critical surfaces where it may be polished out.

2.4.1 Burn Threshold Studies

Given the relationship between thermal effects and tensile residual stress presented in

the literature, residual stress may be predicted by knowledge of the temperatures

generated in the finished surface. Work in the field is in agreement that the onset of

burn occurs at some critical surface temperature related to material properties. Therefore

several attempts have been made to produce a diagram, which presents a constant line

of temperature against grinding parameters and forms the basis of a threshold or limit of

grinding burn.

Malkin (1974) equates the onset of grinding burn with the austenite formation

temperature; however this approach does not consider the occurrence of tensile residual

stresses at lower temperatures. McCormack et al. (2001) present a critical damage

temperature, this is the temperature at which tensile residual stresses are formed in the

surface and is lower than the temperatures of temper burn and phase transformation.

The authors highlight that the critical damage temperature is dependent upon the type of

material being ground, the heat treatment history and the value of yield stress and its

relationship with temperature. Importantly for the HEDG regime, where feeds and

speeds are particularly high (table 2.1), the authors point out that workpiece speed can

affect the temperature of tensile residual stress onset.

The concept of a critical temperature for the onset of grinding burn gives the possibility

of burn prediction via thermal modelling. Malkin & Lenz (1978) and Malkin (1989)

demonstrates the application of this theory with the development of a burn threshold

diagram. This develops from the consistent power law relationship between Peclet

number and dimensionless temperature (figure 2.28) after Jaeger (1942) for Peclet

numbers to 50 and is used in conjunction with energy partitioning theory for

conventional grinding regimes. Peclet number can be considered as the ratio of the

speed of the heat source across the surface to the rate of heat conduction into the

surface.
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Figure 2.28 Power relationship between Peclet number and dimensionless
temperatures in the workpiece after Malkin & Lenz (1978)

Malkin assumes that all grinding energy, except for approximately 55% of the chip

formation energy is transferred to the workpiece. However section 2.1.3 has shown this

to be inappropriate for HEDG given work in the field by Jin and Stephenson (2003),

where as much as 95% of the total grinding energy can be removed by the grinding chip

(figure 2.6). Furthermore, typical Peclet numbers in the HEDG regime would be likely

to exceed the range considered by Malkin. The burn threshold diagram presented by

Malkin & Lenz (1978) is a development of the relationship presented in figure 2.28,

rearranging the equation of maximum dimensionless surface temperature where:

2
1

543.3 Lm 

Malkin develops a relationship for the specific grinding energy required to develop a

given temperature. Figure 2.29 shows a schematic after Malkin (1989) in which

increasing temperatures increase the gradient of the threshold line. An example of a

burn threshold diagram is presented in figure 2.30 after Malkin & Lenz (1978).
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Figure 2.29 Schematic burn threshold diagram showing increasing gradient of
threshold line with temperature after Malkin (1989)

Figure 2.30 Example of a burn threshold diagram after Malkin & Lenz (1978)

An application of the conventional burn threshold diagram presented by Malkin & Lenz

(1978) to the HEDG regime is presented by Stephenson et al. (2001). The authors plot a

burn threshold diagram for a Nickel based superalloy (figure 2.31) which demonstrates

a threshold temperature of greater than 2000°C. The unusually high threshold

temperature is reasoned to be the result of the assumption by Malkin that the majority of

the grinding energy enters the workpiece. In the HEDG regime it is known however,
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that the primary heat removal mechanism is via the grinding chip and energy partition

to the workpiece is low.

Figure 2.31 Example of a burn threshold diagram in HEDG with a threshold
temperature line of 2000ºC after Stephenson et al. (2001)

Chen et al. (2000) discuss a transitional temperature for the onset of tensile residual

stress in the workpiece. The authors show for grinding trials with EN9 medium carbon

steel a transitional temperature occurring at values of 200 to 235°C, with trends being

consistent for rectangular and triangular heat sources. A graphical representation of the

transitional temperature is shown in figure 2.32, with an increasing feedrate decreasing

the transition temperature.

Figure 2.32 Burn threshold diagram based on the temperature for the onset of tensile
residual stress after Chen et al. (2000)
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Results for the threshold of grinding burn in HEDG are presented by Stephenson et al.

(2002) for the surface grinding mode. The authors demonstrate an increasing burn

threshold level with increasing specific material removal rate. The burn threshold

diagram considered is presented in figure 2.33 and shows the described trend when

considering the threshold as a function of the total heat flux generated during grinding.

This trend is also presented by Jin et al. (2002); here high-carbon steel is subjected to

the HEDG regime in the surface down grinding mode. The research concludes that in

this case the onset of grinding burn is triggered by the film boiling of the coolant in the

contact zone at temperatures in the region of 400°C. As with Chen et al. (2000) the

threshold for grinding burn is suggested to occur over a range of temperatures.

Figure 2.33 Burn threshold diagram for HEDG based on the heat flux at which
grinding burn occurs after Stephenson et al. (2002)

Jones et al. (2004) present a statistical approach to the optimisation of the High

Efficiency Deep grinding process. Utilising a fuzzy fitness function, the authors

demonstrate three dimensional plots of feedrate and depth of cut against both specific

grinding energy and surface temperature. The authors conclude that the use of a fuzzy

expert system is an acceptable method for process optimisation. However, the use of

this kind of statistical approach appears to be limited by the initial data set provided.

When considering the HEDG regime in isolation, the system appears to suggest that

grinding parameters known to produce a low temperature give high temperature values.

The thermal modelling approach is considered by Snoeys et al. (1978) who discuss a

variety of grinding regimes and their thermal models. In consideration of cut-off

grinding and creep feed grinding, the authors note that much of the heat is actually

carried away with the grinding chip. The authors conclude that thermal damage in the
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workpiece can be predicted with application of the appropriate thermal model, however

it is noted that for applications such as cut-off and creep feed grinding the effect of heat

removal with the grinding chip must be taken into account.

The mechanics of grinding burn are considered in the series of papers presented by

Zhang & Mahdi (1995) and Mahdi & Zhang (1997, 1998 and 1999b). Utilising a

combination of numerical and finite element modelling techniques, the authors present a

description of the mechanism of phase transformation, thermal residual stress and the

residual stress and surface hardening by coupled thermo-plasticity and phase

transformation. Finally the process of residual stress formation as a result of mechanical

and thermal deformation and phase transformation (Mahdi & Zhang 1999b) is

considered. The authors conclude that the process of phase change results in all residual

stress profiles becoming tensile and whilst coolant application has an effect, the process

of phase transformation will be relatively unaffected by the presence of coolant.

2.4.2 Thermal Modelling as a Product of Burn Threshold Analysis

Given the relationship between the threshold of grinding burn and a threshold

temperature, the strength of the burn threshold diagram or model must be dependent on

the quality of the thermal model used to predict the grinding temperature.

The grinding process presents a moving heat source problem, considered by Jaeger

(1942) a series of equations for assessment of the temperature with moving heat sources

are presented. The author highlights the need for a series of equations to easily quantify

the temperature resulting from a sliding contact. Grinding processes present an

approximation of a rectangular or linear heat source moving across a surface and as

such the models presented by Jaeger (1942) are utilised extensively in the literature as

the basis of more recent thermal models.

Malkin & Anderson (1974) and Malkin (1974) present a model in which the total

energy required for grinding is split into chip formation, sliding and ploughing energy.

This follows on from Des Ruisseaux & Zerkle (1970) who calculated surface

temperatures on the basis of the shear plane temperature. The authors conclude that

calculating temperatures on the basis of chip formation is inhibited by the accuracy with

which chip formation process and shear plane temperatures can be estimated. Further
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they consider the effect of the grinding chip thermally insulating itself from the

workpiece surface during removal, thus temperatures may be lower than calculated.

Malkin (1974) considers grinding temperatures as the effect of a peak temperature rise

due to chip formation and an average grinding zone temperature due to the combined

action of all abrasive grains. The average grinding zone temperature acts as a

rectangular moving heat source with length equal to the contact length, width equal to

the width of cut and velocity equal to the workpiece velocity. This analysis showed a

peak temperature close to the melting point of the material at the cutting edge.

Models considering heat transfer to the wheel, workpiece and fluid are presented by

Lavine & Jen (1991) and Guo & Malkin (1992). Considering the coolant as a

convective heat transfer from the grinding interface, Lavine & Jen (1991) demonstrate

the use of a model of maximum grinding zone temperature to predict the onset of fluid

film boiling in the wheel workpiece contact occurring at some critical temperature. The

authors conclude that upon achieving some critical temperature, the heat transfer to the

grinding fluid becomes negligible and as such there is a sharp rise in workpiece

background temperature, often resulting in grinding burn. Lavine & Jen (1991) make

reference to the use of CBN grains on the grinding wheels, stating that their improved

thermal conductivity over conventional abrasives results in a higher grinding power

requirement to cause film boiling. This recognition of the improved thermal behaviour

of the CBN grain is crucial to the development of more aggressive processes such as the

HEDG regime.

Guo & Malkin (1992) also consider the application of CBN as a grinding medium and

its benefits over conventional abrasives in creep feed grinding on the energy partition to

the workpiece. Based on experimental data, the authors show a decreased energy

fraction entering the workpiece being only 20% as compared to conventional wheels

which experience between 70% and 90% energy fraction to the workpiece during

grinding. In their consideration of the grinding fluid, Guo & Malkin (1992) highlight the

fact that energy partition to the workpiece is greatly reduced when fluid boiling does not

occur. It is fair to assume therefore that the combination of a good coolant supply with

the use of CBN abrasives will give the most reduced heat partition to the workpiece for

creep feed grinding conditions.
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Given the extremely high contact temperatures in the wheel workpiece contact zone in

HEDG at large depths of cut as presented by Stephenson et al. (2002) and the work

presented by Lavine & Jen (1991) and Guo & Malkin (1992) a case is made for the use

of CBN abrasives in the HEDG regime.

The large depths of cut in high efficiency deep grinding present an unusually large angle

of inclination of the contact between wheel and workpiece. Rowe (2001) discusses the

effect of the angle of inclination of the heat source from the finished surface on the

temperature. Figure 2.34 demonstrates changes in the fraction of temperature in the

finished workpiece surface to the maximum temperature occurring in the contact zone

as contact angle is increased. This demonstrates that as the depth of cut and hence

contact angle is increased the energy entering the finished surface is significantly

reduced even at moderately low values of Peclet number.

Figure 2.34 Effect of angle of inclination on energy partitioned to the finished
workpiece surface from the wheel-workpiece contact after Rowe (2001)

Jin et al. (2001) consider an inclined moving heat source plane model for deep grinding

conditions. The authors conclude that the angle of inclination of the heat source has a

flattening effect on the temperature distribution in the wheel workpiece contact zone,

which should be accounted for in modelling of the HEDG regime.

The circular arc of heat contact model presented by Rowe and Jin (2001) considers the

thermal model in terms of heat flux partition to the various elements of the grinding

process and is the most significant model for estimating grinding temperatures when

considering the HEDG regime. The total heat flux to the workpiece (equation 2.1) is

represented as the summation of the heat fluxes to the grinding chip qch, fluid qf,
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workpiece qw and wheel qs. A simplified equation for the total heat flux in terms of

grinding parameters (equation 2.2) is presented by Rowe (2000).

fchswt qqqqq  Equation 2.1

blPq cnett  Equation 2.2

Heat flux to the chip is presented in terms of a limiting chip energy ech, which is the

energy required to elevate the grinding chip to its melting temperature. The heat flux to

the grinding chips is represented by the following equation:

cwechch lvaeq 

Where the limiting chip energy is described in terms of the workpiece material

properties and an estimation of the maximum temperature achieved in the grinding chip,

where:

mch Tce  

Heat flux to the fluid was estimated on the basis of experimental results, the following

value of 290,000 W/m2K for a water based fluid was used by Rowe & Jin (2001)

however Stephenson & Jin (2003) present a table collated from previous works,

summarised in table 2.4, in which a high degree of variation is experienced in the

convection coefficient values.

Grinding Fluid Hf (W/m2K) Data Sources

Mineral Oil 23,000 Rowe & Jin (2001)

Water Based 290,000 Rowe & Jin (2001)

Mineral Oil 100,000 – 160,000 Jin & Stephenson (2003)

Water Based 300,000 – 450,000 Jin & Stephenson (2003)

Water Based 15,000 – 20,000 Malkin

Table 2.4 Convection coefficients presented in the literature after Stephenson &
Jin (2003)
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The heat flux to the workpiece qw is assessed in terms of the fraction of the maximum

temperature generated entering the workpiece, where:

maxThq ww 

and

c

fw
w

l

v

C
h 



The factor C presented by Rowe & Jin (2001) represents the effects of the angle of

inclination on the contact zone temperature. The C-factor quantifies the contact layer

theory presented by Tawakoli (1993) for deep grinding. Figure 2.35 presents values of

the C-factor with increasing Peclet number for varying angles of inclination.

Figure 2.35 Sample C-factors for varying angles of inclination after Rowe & Jin
(2001)

The heat flux to the grinding wheel has particular significance for processes utilising

CBN wheels, due to their high thermal conductivity. Rowe & Jin (2001) assess the heat

flux to the workpiece in terms of the maximum contact temperature as follows:

maxThq ss 

Where hs is expressed as:









 1

1

ws

ws
R

hh

The factor Rws is the wheel workpiece partition ratio and is based on the model of

Hahn (1962) for a grain sliding on a workpiece, where:
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The constants kg, the thermal conductivity of the grain and r0, the abrasive grain radius

can have an effect on the error in the system, particularly the thermal conductivity. For

HEDG with CBN wheels, Stephenson & Jin (2003) assume a value of 240 W/mK for kg

and 10µm for r0.

The culmination of the model of Rowe & Jin (2001) is the development of the following

equations for the maximum temperature in the contact zone both with and without the

burnout of the grinding fluid. Equations 2.3 & 2.4 demonstrate the equations derived.

b
TT

h
R

h

Thq
T

f

ws

w

mpcht








max

max Equation 2.3

b
TTR

h

Thq
T

ws

w

mpcht






max

max Equation 2.4

The final aspect of the model presented by Rowe & Jin (2001) is to apply a factor

relating the temperature in the inclined contact surface to the finished surface. The

authors achieve this using a fractional factor presented in figure 2.36, which determines

the fraction of energy which enters the finished workpiece. The experimental work is

validated with a thermocouple test rig, showing good agreement between the theoretical

work and the temperatures recorded.
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Figure 2.36 Fraction of energy partitioned to the finished workpiece surface after
Rowe & Jin (2001)

Given that grinding presents a moving heat source and hence transient problem, Jin &

Stephenson (2004) demonstrate the use of a finite elements (FE) approach for a

transient 3D simulation. The authors consider the surface grinding of a thin steel plate

and the effect of the presence of a shoulder in a simple profile grind. The application of

HEDG conditions show a steady-state heat transfer condition after the wheel is fully

engaged with the workpiece, whilst predicted temperatures showed similar values to the

2D circular arc of heat source model presented by Rowe & Jin (2001). It is also

suggested that the use of an FE package can allow for 3D analysis of complex

geometries.

2.5 Summary and Hypothesis

The literature review has raised a number of questions relating to workpiece

temperatures and their prediction during High Efficiency Deep Grinding. Section 2.1.3

commented on the temperature profile with increasing specific material removal rates

(figure 2.4) in the workpiece surface. Figures 2.7 and 2.8 also showed further

temperature trends with workpiece speed and depth of cut again for the workpiece

surface. These reviews do not consider the temperature in the sidewall, which for profile

and cylindrical traverse grinding applications is a significant element.

Sainz (2005) successfully demonstrated the possibility of measuring the sidewall

temperature for very thin deep cuts, and demonstrated a trend of increasing temperature

in the sidewall with increasing depth of cut. However the limitations of the sample

width prevented a complete collection of data on the subject. Further, no work has been

found which considers the relationship between temperatures in the surface and those in

the sidewall.
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Section 2.1.3 also discusses the modelling of the specific grinding energy curve. Of

particular reference is the work of Jin & Stephenson (2003), which considers a power

law relationship between specific grinding energy and specific material removal rate.

The question is raised of the large scale applicability of this relationship given the

contention of Malkin (1989) and Morgan et al. (2004) that a minimum or constant value

of grinding energy is ultimately achieved and that this is based on material properties.

The possibility of grinding without the application of grinding fluids was raised by both

Jin & Stephenson (2003) and Stephenson et al. (2002) with the latter demonstrating

limited variation in specific grinding energy with changes in fluid supply. Given the

contention of a minimum specific grinding energy revisited in the previous paragraph,

there exists the possibility that specific grinding energies would be identical irrespective

of fluid supply strategy when minimum grinding energies have been achieved. This may

be limited by the effects described in section 2.2, in which the work of Brinksmeier et

al. (1999) considered the removal of grinding chips by the grinding fluid, thus

preventing a build up of unwanted waste material in the wheel-workpiece interface

which would increase workpiece temperatures

Burn threshold diagrams were considered in section 2.4.1 and highlighted the

difficulties of predicting the threshold of grinding burn. Models presented by Malkin &

Lenz (1978) and Malkin (1989) were applied by Stephenson et al. (2001) to the HEDG

regime and whilst offering a distinct separation between burnt and unburnt samples,

gave an inappropriately high temperature at which the onset of burn was to occur. This

was discussed as being the result of the energy partitioning in the models being

inappropriate to the HEDG regime. Whilst this model is not the only model available,

the ability to translate it to the HEDG regime is desirable in light of the work presented

by Jin & Stephenson (2003) in which specific grinding energies were predicted, thus

making it possible to predict parameters likely to fall into burn regions from basic

grinding parameters and knowledge of the phase change temperatures of the workpiece

material.

This thesis therefore addresses 3 important research questions in reflection of the

literature review, these are:
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 Does specific grinding energy reduce to a constant value as specific material

removal rates increase into the HEDG regime, and will this value be constant

independent of coolant supply

 Can the burn threshold diagram first presented by Malkin & Lenz (1978) be

adapted to the HEDG regime and hence be useful for process optimisation

 Will the temperature in the sidewall be linked to the temperature in the surface

and will the temperature between profile surfaces exhibit a common trend.
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3 Experimental Methodology

The experimental methodology describes the equipment, techniques and process

undertaken to achieve an overview of the thermal properties of the HEDG regime

during profile and cylindrical grinding. The research focuses on the development of four

key areas of understanding:

 The asymptotic form of the specific material removal rate versus specific

grinding energy curve, confirmation of its approximation with a power curve at

extreme parameters and varying wheel condition and the value of minimum

specific grinding energy determined

 The effect which coolant plays on the specific grinding energy and grinding

power, with the concept of minimum grinding energy independent of coolant

supply being explored in surface grinding and the effect of coolant type

variation explored in cylindrical traverse grinding

 The application of the burn threshold diagram presented by Malkin (1978) when

extreme parameters are used and aggressive specific material removal rates are

achieved

 The behaviour of the thermal profile around the form generated during HEDG

with the presence of a sidewall with recommendations for application to process

design

3.1 Experimental Equipment

Section 3.1 considers the Edgetek machine tools used in the research, the Saint Gobain

wheels and grinding fluid supplied for the grinding trials and the sources of error within

and calibration of the equipment. The two Superabrasive Edgetek machines in the

School of Applied Sciences (SAS) at Cranfield University are standard production

machines, manufactured in the UK by Holroyd Precision Limited, a company within

The Precision Technologies Group. The two machines are designed for the

Superabrasive machining of hard to machine and exotic aerospace materials. They have

the capability to achieve the aggressive removal rate characteristic of the HEDG

condition and meet the HEDG machine requirements presented in section 2.1.3 of the

literature review.



Grinding wheels were supplied by the Saint Gobain group and exhibited the

requirements highlighted in section 2.1.3 and 2.4.2 of the literature review. Wheels had

high thermal conductivity CBN grits with an electroplated bond to a strong steel

body. These were suited to the temperatures and aggressive grinding conditions

experienced during the HEDG regime.

3.1.1 Edgetek SAM

The Edgetek SAM is a high performance, 4 + 1 axis surface grinding machine and the

original machine with the capabi

shows the Edgetek SAM with the standard twin nozzle coolant arrangement and

workpiece fixture in place. These were used extensively throughout the course of this

research for the surface grinding

Figure 3.1 Edgetek SAM

The machine specifications as published by the manufacturer are shown in table

machine being capable of grinding at the rapid traverse rate

units of measurement.
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Grinding wheels were supplied by the Saint Gobain group and exhibited the

in section 2.1.3 and 2.4.2 of the literature review. Wheels had

high thermal conductivity CBN grits with an electroplated bond to a strong steel

body. These were suited to the temperatures and aggressive grinding conditions

experienced during the HEDG regime.

The Edgetek SAM is a high performance, 4 + 1 axis surface grinding machine and the

original machine with the capability for HEDG at Cranfield University. Figure

shows the Edgetek SAM with the standard twin nozzle coolant arrangement and

workpiece fixture in place. These were used extensively throughout the course of this

research for the surface grinding investigations.

Edgetek SAM 4 + 1 axis surface grinding machine

The machine specifications as published by the manufacturer are shown in table

machine being capable of grinding at the rapid traverse rate and being set

Grinding wheels were supplied by the Saint Gobain group and exhibited the

in section 2.1.3 and 2.4.2 of the literature review. Wheels had

high thermal conductivity CBN grits with an electroplated bond to a strong steel wheel

body. These were suited to the temperatures and aggressive grinding conditions

The Edgetek SAM is a high performance, 4 + 1 axis surface grinding machine and the

lity for HEDG at Cranfield University. Figure 3.1

shows the Edgetek SAM with the standard twin nozzle coolant arrangement and

workpiece fixture in place. These were used extensively throughout the course of this

4 + 1 axis surface grinding machine

The machine specifications as published by the manufacturer are shown in table 3.1, the

and being set-up in metric



50

Edgetek SAM Machine Specifications

Parameter Description

X-Axis Travel 18.6” (472 mm)

Y-Axis Travel 12.8” (325 mm)

Z-Axis Travel 12.0” (305 mm)

B-Axis Rotary 12.59” (317.5mm) Diameter

5th Axis A or rotary tilt version

Spindle HP 35 HP (27 kW)

Spindle RPM 14,000 RPM higher RPMs available

Way System Schneeberger Hi-precision Linear Roller Bearing Ways

Position Feedback Heidenhain Linear Scales on X,Y, Z

Feed Rate To 157 IPM 66 mm/sec

Rapid Traverse 0 to 300 IPM (126 mm/sec)

Voltage 200 – 230 volts, 3 Phase 60 Cycle

Table 3.1 Specification of the Edgetek SAM machine tool

The Edgetek SAM was retrofitted with a motor load sensor to measure the power at the

wheel spindle. Motor power was measured in preference to current drawn because of

the linear nature of the relationship between motor load and power giving rise to a

greater sensitivity at low load conditions (figure 3.2). The motor load sensor is

described as accurate to 0.5% over the full load of the motor, a specification sheet is

provided in Appendix A of the thesis. The output scale from the monitor was set to

150% of the full load; this could be achieved because of the linear nature of the

relationship between load and power and allowed for instantaneous overloading of the

motor up to approximately 40kW to be recorded.
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Figure 3.2 Comparison of curves for measurement of current versus measurement
of power

The HEDG regime produces high temperatures in the wheel workpiece contact zone as

well as a large volume of high temperature grinding chips. These may act as a source of

ignition for the cutting oil and as such a fire protection system has been fitted to the

machine. This system consists of an explosion vent to the roof of the machine to direct

conflagrant material away from the area occupied by the operator and an argon fire

suppression system. The argon system is designed to activate automatically upon a

critical temperature being reached inside the machine, or to be activated manually with

a simple glass-break switch by the operator.

3.1.2 Edgetek SAT

The Edgetek SAT (or SuperAbrasive Turner) is a purpose built cylindrical grinding

machine designed for the application of superabrasive technologies and with sufficient

capacity to achieve HEDG conditions. This was the second of the two machines suitable

for the application of HEDG acquired by Cranfield University as part of the SATURN

project. The SAT (figure 3.3) is shown here in standard cylindrical grinding

configuration as used extensively throughout this research. The live tailstock is shown,

with the later twin top nozzle and trough coolant system in place. This application was

developed as part of the SATURN project by Massam (2008).



Figure 3.3

The Edgetek SAT specifications as published by the manufacturer are shown in table

3.2. As for the Edgetek SAM

rate and set-up in metric units of measurement.

Similarly to the Edgetek SAM, the Edgetek SAT was retrof

sensor for measurement of spin

full load allowing for instantaneous overload of the spindle. The system was therefore

capable of recording power values up

Edgetek SAT was fitted with an identical fire suppression system to the Edgetek SAM.

In spite of the improved coolant application possible with the cylindrical traverse

grinding process, the preferred

requires the security of the fire suppression system.
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Edgetek SAT cylindrical grinding machine

specifications as published by the manufacturer are shown in table

As for the Edgetek SAM the machine was capable of grinding at a

up in metric units of measurement.

Similarly to the Edgetek SAM, the Edgetek SAT was retrofitted with a motor load

sensor for measurement of spindle power. Again this was set to measure to 150% of the

full load allowing for instantaneous overload of the spindle. The system was therefore

capable of recording power values up to a total of approximately 56

Edgetek SAT was fitted with an identical fire suppression system to the Edgetek SAM.

In spite of the improved coolant application possible with the cylindrical traverse

grinding process, the preferred grinding fluid, oil, is still highly volatile and therefore

requires the security of the fire suppression system.

Edgetek SAT cylindrical grinding machine

specifications as published by the manufacturer are shown in table

the machine was capable of grinding at a rapid traverse

itted with a motor load

to measure to 150% of the

full load allowing for instantaneous overload of the spindle. The system was therefore

ately 56kW. Further the

Edgetek SAT was fitted with an identical fire suppression system to the Edgetek SAM.

In spite of the improved coolant application possible with the cylindrical traverse

highly volatile and therefore
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Edgetek SAT Machine Specifications

Parameter Description

X-Axis Travel 472 mm

Z-Axis Travel 305 mm

B-Axis Rotary 12.59” (317.5mm) Diameter

5th Axis A or rotary tilt version

Spindle Power 37 kW (50 hp)

Spindle Drive Belt & Pulleys

Spindle RPM 9,000 RPM max.

CBN Wheel
Dia.

250 mm – 355 mm

Swing Per Application

Workhead
305 mm diameter workhead configured for chucking by fixture or

chuck.

X – Z Feedback Heidenhain MMS Linear Scales

Tailstock Manual and automatic quill. Tailstock body manually positioned

Coolant
Delivery

Two-Zone Programmable Valves

Voltage 200 – 230 volts, 3 Phase 60 Cycle

Table 3.2 Specification of the Edgetek SAT machine tool

3.1.3 Saint Gobain CBN Grinding Wheels

All grinding wheels used in the project were Saint Gobain electroplated CBN wheels.

The wheel designation in all cases was B213, which is the CBN designation for a grit

size of approximately 213μm. The grinding regimes of interest were simple surface

grinding, grinding with the presence of a shoulder otherwise termed simple profile

grinding and the cylindrical traverse grinding process. The presence of a shoulder in

both regimes required the application of abrasive to the side face of the wheel.
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Figures 3.4 & 3.5 describe the grinding wheel used for all surface grinding tests and

present the terminology used for the surfaces under consideration in the thesis. This

terminology will be used extensively throughout the work.

Figure 3.4 Schematic showing the geometry of the surface grinding wheel

Figure 3.5 Photographs showing the typical surface grinding wheels used

Wheels for cylindrical traverse grinding operations were marked by the presence of

significant leading and trailing edge radii. This was understood to facilitate the traverse

of the wheel during grinding. Figure 3.6 shows the grinding wheel used for cylindrical

traverse grinding schematically and its dimensions, with figure 3.7 showing the actual

wheel used. Again the figures present the terminology used to describe the surfaces

under consideration. Rudimentary measurements of the leading edge radius using a

shadowgraph suggested that the designated dimension presented in figure 3.6 was

accurate.
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Figure 3.6 Schematic showing the geometry of the cylindrical grinding wheel

Figure 3.7 Photographs showing the typical cylindrical grinding wheels used

3.1.4 Grinding Fluids

Castrol provided two types of grinding fluid for use in the HEDG trials. These were

Castrol Variocut G 600 SP neat grinding oil (referred to as oil based grinding fluid) and

Hysol X Chlorine free soluble cutting fluid (referred to as water base grinding fluid).

The Hysol X was diluted to 6% in water suitable for the high temperature application of

HEDG. Details of the two grinding fluids can be found in data sheets in Appendix B of

the thesis.

3.1.5 Calibration of the Machine Tool

The Edgetek machines were set-up by a trained machine setter for the trials undertaken.

Measurements of finished samples confirmed that the cut dimensions were to within

minus 10µm of the programmed value. This deviation was expected as a result of the
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aggressive nature of the grinding parameters and as the process was stock removal was

of no detriment to the results recorded.

Coolant supply was verified with the use of in-line volumetric flow metres with values

set by the in-line flow metres attached to the coolant hose as distinct from the

programmed value to ensure accurate and consistent coolant supply. Positions relative

to the wheel were established with the use of a laser line to ensure consistent and

accurate positioning.

The value of the power load sensor was set with 0V equal to no load and 10V equal to

150% of the motor power. The linear relationship described in figure 3.2 allowed for the

calculation of set points along the power line. Thus voltages were verified by

calculation against the motor power.

3.1.6 Sources of Error in the Equipment

All of the equipment required for the experimental phase exhibits some error in terms of

accuracy of measurement and precision of the machine tool. The Edgetek machine tool

slideways for example are accurate to ±0.005mm in every 300mm, with rotational axes

to ±20 ARC seconds. This is combined with the error listed by the motor load sensor

manufacturer and described as 0.5% over the full load of the motor. Additionally,

machine tools such as the Edgetek series, whilst being highly rigid, do exhibit some

flexibility under aggressive grinding conditions. As such the depth of cut, width of cut,

workpiece feedrate and wheel speed may not be as prescribed by the programme adding

further error to the system.

Given difficulties in the measurement of the error a 5% experimental error could be

applied to results of specific grinding energy recorded. This allowed for variation in the

system to be accounted for and deliver a result in which the author could be confident.

3.2 Assessment of the Specific Grinding Energy and Burn Threshold

Section 3.2 outlines the parameters and describes the methods used in the investigation

of specific grinding energy trends. Assessment of the specific grinding energy and

power curves was split into two sections, on the basis of verifying the asymptotic form

of the specific grinding energy curve at high material removal rates:

 Surface grinding of profiles
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 Cylindrical traverse grinding

Trials for the assessment of the burn threshold model were run concurrently with the

specific grinding energy trials and utilised samples of Spheroidal Grey Cast Iron (SGCI)

and 51CrV4, sourced from department stock. Cylindrical traverse grinding trials utilised

samples of 51CrV4, again available as stock material in the department.

3.2.1 Surface Grinding Trials

The assessment of the total and net grinding powers, specific grinding energy and the

application of HEDG parameters to the model of burn threshold presented by Malkin &

Lenz (1978) were achieved via the following trials.

 Profile grinding with application of grinding fluid (51CrV4 and SGCI)

 Profile grinding without the application of grinding fluid (SGCI)

3.2.1.1 Set-up of the Edgetek SAM

For all surface grinding trials, the Edgetek SAM was set up with a configuration

suitable for down grinding as shown in figure 3.8, which demonstrates the coolant

nozzle arrangement, clamping set-up and grinding wheel in-situ. The photograph

shows:

1) The rear coolant nozzle for spark suppression and cooling of the finished surface

at the right hand side of the machine, the grinding direction for trials was from

right to left

2) The front coolant nozzle for application of grinding fluid to the wheel –

workpiece interface at the left hand side of the machine

3) The typical workpiece clamping solution (inset shows detail)

4) The grinding wheel as per the details shown in figure 3.4 & 3.5
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Figure 3.8 Photograph of Edgetek SAM set-up

Table 3.3 describes the key parameters and measurements in the setting of the machine

tool fluid application, standard for all surface grinding trials.

Left Nozzle (2) Right Nozzle (1)

Height from horizontal tangent at wheel bottom 35mm 0mm

Angle from horizontal 11.5° 0°

Pressure at nozzle 6 Bar 6 Bar

Nozzle diameter 3 mm 3 mm

Table 3.3 Edgetek SAM fluid application set-up



3.2.1.2 Surface Grinding Sample Design and Preparation

The available SGCI was in the form of forged crankshaft sections as shown in figure

3.9. Samples were sectioned from the crankshaft to make surface grinding specimens

typical of those shown in figure

70mm long, height varied dependent on material available.

Figure 3.9 Photograph of typical crankshaft section from which SGCI surface
grinding samples were drawn

Figure 3.10 Photographs of typical SGCI samples in the as used condition noting
dark surface marks indicating grinding burn

The 51CrV4 was of the form of untreated bar stock approximately 80mm in di

Samples were drawn from the bar stock following the schematic demonstrated in figure

3.11 below. Samples were surface ground on all face

measured 15mm wide by 50mm deep by 80mm long.
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Surface Grinding Sample Design and Preparation

The available SGCI was in the form of forged crankshaft sections as shown in figure

. Samples were sectioned from the crankshaft to make surface grinding specimens

typical of those shown in figure 3.10. Sample dimensions were typically 16mm wide by

70mm long, height varied dependent on material available.

Photograph of typical crankshaft section from which SGCI surface
grinding samples were drawn

Photographs of typical SGCI samples in the as used condition noting
dark surface marks indicating grinding burn

The 51CrV4 was of the form of untreated bar stock approximately 80mm in di

were drawn from the bar stock following the schematic demonstrated in figure

Samples were surface ground on all faces to ensure square and parallel and

asured 15mm wide by 50mm deep by 80mm long.

The available SGCI was in the form of forged crankshaft sections as shown in figure

. Samples were sectioned from the crankshaft to make surface grinding specimens

Sample dimensions were typically 16mm wide by

Photograph of typical crankshaft section from which SGCI surface

Photographs of typical SGCI samples in the as used condition noting

The 51CrV4 was of the form of untreated bar stock approximately 80mm in diameter.

were drawn from the bar stock following the schematic demonstrated in figure

s to ensure square and parallel and
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Figure 3.11 Schematic of sample extraction from 51CrV4 bar stock

3.2.1.3 Surface grinding parameters

Tables 3.4 to 3.6 detail the grinding parameters selected for the surface grinding trials,

these trials were undertaken consecutively from low to high values of specific material

removal rate. The selection of parameters is based on the onset of HEDG conditions

around 50mm3/mm·s (Tawakoli, 1993) and was designed to ensure results were

available through the HEDG transition permitting the development of burn conditions.

Material SGCI

Fluid Application Yes

Grinding Direction Down

Parameter Symbol Values

Wheel speed (m/s) vs 50 – 150m/s

Workpiece speed (mm/s) vw 50 – 7500mm/min

Depth of Cut ae 0.5 – 9mm

Width of Cut b 5 – 2mm

Specific Material Removal Rate Q’w 0.5 – 1125mm3/mm·s

Table 3.4 Surface grinding parameters for trials in SGCI with grinding fluid
application
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Material SGCI

Fluid Application No

Grinding Direction Down

Parameter Symbol Values

Wheel speed (m/s) vs 50 – 150m/s

Workpiece speed (mm/s) vw 50 – 5000mm/min

Depth of Cut ae 0.5mm

Width of Cut b 5mm

Specific Material Removal Rate Q’w 0.5 – 40mm3/mm·s

Table 3.5 Surface grinding parameters for trials in SGCI without grinding fluid
application

Material 51CrV4

Fluid Application Yes

Grinding Direction Down

Parameter Symbol Values

Wheel speed (m/s) vs 50 – 200m/s

Workpiece speed (mm/s) vw 50 – 7500mm/min

Depth of Cut ae 0.5 – 4mm

Width of Cut b 5 – 1mm

Specific Material Removal Rate Q’w 0.5 – 375mm3/mm·s

Table 3.6 Surface grinding parameters for trials in 51CrV4 with grinding fluid
application
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3.2.1.4 Data Collection

Specific grinding energy ec was estimated from the measured net grinding power Pnet

using the following equation:

bQ
P

e
w

net
c 


'

Where:

wew vaQ '

The net grinding power was estimated via measurements from the motor load sensor

described in section 3.1 and is the power absorbed during material removal from the

surface of the workpiece. This was calculated by subtracting the measured sparkout

power from the measured total power required by the spindle during grinding of a test

piece.

The standard procedure for recording grinding power was as follows:

1. Hold the wheel at the end of the workpiece with test parameters applied, no

contact to be made

2. Start recording power

3. Move the wheel through the workpiece at the desired feedrate

4. Stop recording power

A typical grinding power measurement is shown in figure 3.12 and demonstrates the

region over which the measurement of grinding power actually takes place. Grinding

power is averaged across the area marked 2 and labelled Grinding Zone inset. The

figure demonstrates:

1) Ingress into the workpiece to full contact conditions

2) Full contact and area of grinding which can be used for measurement

3) Exit of the wheel from the workpiece



Figure 3.12 Typical grinding power curve for
motor during surface grinding

The sparkout power is described as all power requirements of the grinding machine that

do not directly contribute to material removal. Sparkout power was

machining trials with the following standard test procedure:

1. Form the wheel workpiece contact shape at the midpoint of the test block

2. Bring the wheel in to the contact zone

3. Start recording power

4. Move the wheel into the workpiece a fur

5. Extract wheel

6. Stop recording

This procedure resulted in a typical sparkout power graph

reading over section 3 of the

condition. The figure demonstrates

1) Build up of coolant pressure in the contact zone as full contact conditions are

approached

2) Wheel contact with workpiece and 0.5 mm ingress

3) Sparkout power due to contact conditions

4) Power required for wheel and coolant outside of contact
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Typical grinding power curve for grinding power recorded at the
during surface grinding

The sparkout power is described as all power requirements of the grinding machine that

do not directly contribute to material removal. Sparkout power was assessed prior to the

machining trials with the following standard test procedure:

Form the wheel workpiece contact shape at the midpoint of the test block

Bring the wheel in to the contact zone

Start recording power

Move the wheel into the workpiece a further 0.5mm and dwell for 5 seconds

This procedure resulted in a typical sparkout power graph, figure 3.13, of which

of the curve resulted in the sparkout power for the particular

ure demonstrates:

Build up of coolant pressure in the contact zone as full contact conditions are

Wheel contact with workpiece and 0.5 mm ingress

er due to contact conditions

Power required for wheel and coolant outside of contact condition

grinding power recorded at the spindle

The sparkout power is described as all power requirements of the grinding machine that

assessed prior to the

Form the wheel workpiece contact shape at the midpoint of the test block

ther 0.5mm and dwell for 5 seconds

, of which a mean

in the sparkout power for the particular

Build up of coolant pressure in the contact zone as full contact conditions are

condition



Figure 3.13 Typical sparkout power curve for grinding power as recorded at the
spindle motor

Investigations of burn threshold were undertaken in the surface grinding mode to allow

grinding burn to be verified visually. By taking a single pass, the workpiece surface was

left in the as ground condition preventing deterioration of the temper colours

characteristic of grinding burn by subsequent passes of the grinding wheel. Multiple

passes of the grinding wheel in the cylindrical traverse grinding regime, the result of the

feed per turn being less than the wheel width, resulted in the as ground surface being

cleaned multiple times, removing temper colours. As such only the surface grinding

regime was determined to be viable for assessment of the burn threshold.

The inspection of the surface was required to look for any discoloration from a very

pale yellow to a pale blue

approximately 220°C at the surface

temper discoloration seen on the surface of an as ground 51CrV4 sample block.

discoloration was typically brown/black to blue/black and could be seen towards

end of the ground sample.

1 For a full list of temper colours, see Machinery’s Handbook, Oberg et al. (2000)
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Typical sparkout power curve for grinding power as recorded at the
spindle motor during surface grinding

Investigations of burn threshold were undertaken in the surface grinding mode to allow

burn to be verified visually. By taking a single pass, the workpiece surface was

left in the as ground condition preventing deterioration of the temper colours

characteristic of grinding burn by subsequent passes of the grinding wheel. Multiple

he grinding wheel in the cylindrical traverse grinding regime, the result of the

feed per turn being less than the wheel width, resulted in the as ground surface being

cleaned multiple times, removing temper colours. As such only the surface grinding

e was determined to be viable for assessment of the burn threshold.

of the surface was required to look for any discoloration from a very

pale yellow to a pale blue1, indicative of temperatures having reached a minimum of

at the surface for steel. Figure 3.14 demonstrates

seen on the surface of an as ground 51CrV4 sample block.

discoloration was typically brown/black to blue/black and could be seen towards

For a full list of temper colours, see Machinery’s Handbook, Oberg et al. (2000)

Typical sparkout power curve for grinding power as recorded at the

Investigations of burn threshold were undertaken in the surface grinding mode to allow

burn to be verified visually. By taking a single pass, the workpiece surface was

left in the as ground condition preventing deterioration of the temper colours

characteristic of grinding burn by subsequent passes of the grinding wheel. Multiple

he grinding wheel in the cylindrical traverse grinding regime, the result of the

feed per turn being less than the wheel width, resulted in the as ground surface being

cleaned multiple times, removing temper colours. As such only the surface grinding

e was determined to be viable for assessment of the burn threshold.

of the surface was required to look for any discoloration from a very

, indicative of temperatures having reached a minimum of

demonstrates characteristic

seen on the surface of an as ground 51CrV4 sample block. This

discoloration was typically brown/black to blue/black and could be seen towards the
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Figure 3.14 Regions of temper discoloration on the as ground surface in 51CrV4

3.2.2 Cylindrical Traverse Grinding

The 1000RPM workhead capacity of the Edgetek SAT allowed for the development of

very high surface speeds. As such the assessment of the total and net grinding powers

and the specific grinding energy curve could be expanded in the regime to very high and

consistent stock removal rates. Further, this section provided the opportunity to explore

the process parameters for very high removal rate trials with low melting point coatings.

As previously stated, the interaction of the wheel and workpiece obliterating the initially

ground surface prevented the use of cylindrical traverse grinding results in burn

threshold analysis. The research strategy for cylindrical traverse grinding was therefore

simply:

 Cylindrical traverse grinding with the application of water based and neat oil

coolant to very high specific material removal rates with 51CrV4

3.2.2.1 Set-up of the Edgetek SAT

The Edgetek SAT was set up with a four jaw chuck and standard tailstock for the initial

range of cylindrical traverse grinding experiments. Coolant application was via a small

diameter convergent jet top nozzle, supplying grinding fluid directly into the nipping

point of the interface between wheel and workpiece and a large diameter bottom nozzle
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designed to suppress the grinding sparks. For grinding trials with water based coolant

the bottom nozzle was removed as the grinding fluid was not flammable. Both nozzles

were positioned such as the flow jet was centred on the wheel edge, figure 3.15

describes the machine set-up typical for the water based coolant with the blind arm for

the bottom coolant nozzle shown, with table 3.7 and 3.8 detailing the chuck and

tailstock type and the coolant parameters applied.

Figure 3.15 Detailed view of Edgetek SAT set-up for grinding with water based fluid,
for early oil based fluid trials a bottom nozzle was used

Top Nozzle Bottom Nozzle

Pressure 10 Bar 12 Bar

Nozzle Diameter 3 mm 6 mm

Extension Yes N/A

Tailstock Type Standard

Chuck Type 4 - Jaw

Table 3.7 Grinding fluid and machine tool parameters for trials with oil based
fluid
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Top Nozzle Bottom Nozzle

Pressure 4 Bar N/A

Nozzle Diameter 3 mm N/A

Extension Yes N/A

Tailstock Type Standard

Chuck Type 4 - Jaw

Table 3.8 Grinding fluid and machine tool parameters for trials with water based
fluid

The application of the cylindrical traverse grinding regime results in a load applied to

the wheel sidewall. For this reason at large depth of cut there is a necessity for coolant

to be applied to the wheel leading edge. The work of Massam (2008) considered the

application of grinding fluid in the cylindrical traverse grinding regime, developing a

combination of a top nozzle arrangement and a new design of spark arrestor to the

bottom. The nozzle arrangement on the top featured two nozzles applying grinding fluid

to the wheel edge radius and the leading edge and is shown in figure 3.16.

Figure 3.16 Detailed view of Edgetek SAT set-up for later cylindrical traverse
grinding trials
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The effect of the leading edge nozzle was measured by visual inspection. The inspector

was required to look for a change in the volume and intensity of grinding sparks

resulting from the application of the additional side nozzle. Power measurements were

ruled out as the grinding parameters were too aggressive to be run for long periods prior

to the operator becoming confident the machine could tolerate the aggressive cut with

the coolant application. Figures 3.17 and 3.18 demonstrate the change in volume and

luminosity of the grinding sparks with the change in grinding fluid application. Figure

3.18 shows a significantly reduced spark volume and luminosity with the application of

a fluid jet to the wheel leading edge. Conversely the spark volume and luminosity

demonstrated in figure 3.17 are shown to be higher. The results therefore show the

requirement for the application of a leading edge nozzle when considering cylindrical

traverse grinding in the high efficiency deep grinding regime.

Figure 3.17 Photograph of spark generation without the application of a leading
edge nozzle
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Figure 3.18 Photograph of spark generation with the application of a leading edge
nozzle showing significant spark reduction
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3.2.2.2 Cylindrical Traverse Grinding Samples

The investigation of the cylindrical traverse grinding regime was undertaken with

51CrV4 round bar available as department stock from a previous research programme.

This untreated round bar was ground to a 79mm outside diameter to ensure

concentricity with a small shoulder at 50mm outside diameter machined onto one end to

facilitate a locating surface for the chuck attached to the workhead. A range of typical

samples is shown in the as ground condition in figure 3.19 below.

Figure 3.19 Photograph of typical cylindrical grinding samples in the as ground
condition

3.2.2.3 Cylindrical Traverse Grinding Parameters

Experiments were undertaken following table 3.9 and 3.10, these were selected on the

basis of providing a range of specific material removal rates at varying values of width

of cut or feed per turn. Further the possibility of grinding at high removal rates with

water based fluid was considered. An additional trial described in table 3.11 was made

to study the capability of the machine at a high removal rate with the new twin top

nozzle arrangement in place.
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Parameter Symbol Values

Wheel speed vs 150m/s

Workpiece surface speed vw 2 to 96mm/s

Workpiece Traverse Speed vf 0.125 to 2 mm/s

Feed per Turn (mm) b 5 to 15mm

Depth of Cut ae 0.5 to 3mm

Specific Material Removal
Rate

Q’w 1 to 120mm3/mm·s

Nozzle Arrangement Standard nozzles

Grinding Direction Up

Table 3.9 Details of cylindrical traverse grinding trials with the application of oil
based grinding fluid

Parameter Symbol Values

Wheel speed vs 150m/s

Workpiece surface speed vw 25 to 90mm/s

Workpiece Traverse Speed vf 1mm/s

Feed per Turn b 2.5 to 5mm

Depth of Cut ae 0.5 to 6mm

Specific Material Removal
Rate

Q’w 18 to 415mm3/mm·s

Nozzle Arrangement Standard nozzles

Grinding Direction Up

Table 3.10 Details of cylindrical traverse grinding trials with the application of
water based grinding fluid
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Parameter Symbol Values

Wheel speed (m/s) vs 150m/s

Workpiece surface speed
(mm/s)

vw 4085mm/s

Workpiece Traverse Speed
(mm/s)

vf 3.3mm/s

Feed per Turn (mm) b 0.2mm

Depth of Cut ae 1mm

Specific Material Removal
Rate

Q’w 4085mm3/mm·s

Nozzle Arrangement Twin nozzle and trough

Grinding Direction Up

Table 3.11 Details of high material removal rate trial

3.2.2.4 Data Collection

Net Grinding power was estimated similarly to the surface grinding regime with

measurements being taken via the motor load sensor described in section 3.1.1. As for

surface grinding, the net grinding power is defined as the power required to remove

material from the workpiece. This was estimated by subtracting the sparkout power

from the total power required at the spindle during grinding. In cylindrical traverse

grinding, the standard procedure for recording the total grinding power was:

1. Hold the wheel at the end of the workpiece with test parameters applied, no

contact to be made

2. Start recording power

3. Move the wheel through the workpiece at the desired feedrate

4. Stop recording power



A typical grinding power graph is

described in figure 3.20 can be seen to be distinct from tho

grinding and demonstrates:

1) A slow ramp up to full grinding power as the wheel becomes fully engaged with

the workpiece

2) A lengthy steady state grindin

estimated

Figure 3.20 Typical grinding power curve for grinding power recorded at the spindle
motor during cylindrical traverse grinding

As for surface grinding, the sparkout pow

all aspects of the grinding machine that do not contribute directly to material removal.

Sparkout power was again assessed prior to the machining trials with the following test

procedure:

1. Form the wheel workpiec

2. Bring the wheel in to the contact zone

3. Start recording power

4. Move the wheel into the workpiece 5 degrees and dwell for 5 seconds

5. Extract wheel

6. Stop recording
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A typical grinding power graph is presented in figures 3.20. The power measurement

can be seen to be distinct from those recorded in surface

grinding and demonstrates:

A slow ramp up to full grinding power as the wheel becomes fully engaged with

A lengthy steady state grinding power region from which grinding power

Typical grinding power curve for grinding power recorded at the spindle
motor during cylindrical traverse grinding

As for surface grinding, the sparkout power was defined as the power requirements for

all aspects of the grinding machine that do not contribute directly to material removal.

Sparkout power was again assessed prior to the machining trials with the following test

Form the wheel workpiece contact shape at the midpoint of the test block

Bring the wheel in to the contact zone

Start recording power

Move the wheel into the workpiece 5 degrees and dwell for 5 seconds

. The power measurement

se recorded in surface

A slow ramp up to full grinding power as the wheel becomes fully engaged with

g power region from which grinding power can be

Typical grinding power curve for grinding power recorded at the spindle

er was defined as the power requirements for

all aspects of the grinding machine that do not contribute directly to material removal.

Sparkout power was again assessed prior to the machining trials with the following test

e contact shape at the midpoint of the test block

Move the wheel into the workpiece 5 degrees and dwell for 5 seconds



Figure 3.21 presents the typica

1) A sharp increase in power similar to the surface grinding process as the wheel

begins to interact with the workpiece

2) A steady state representing the power required to drive the coolant through the

interface

Figure 3.21 Typical sparkout power curve for grinding power recorded at the spindle
motor during cylindrical traverse grinding

Forming of the contact shape in the cylindrical surface was achieved via the accurate

control of the axes with the Edgetek SAT’s capacity for complete CNC control of the

workhead or C-axis. This full CNC control of the machine was accessed through the

PLC and allowed the machine’s

traversing in the Z-axis. In thi

Z-axis must therefore be instructed to move a precise distance over the number of

degrees rotated, in order that a desired feed per turn is maintained. To calculate the

movement of the relative axes

The CNC command console of the Edgetek SAT is accessed through the M27

command, followed by the activation code G91 in order to instruct the machine that:

1) CNC control is active

2) All movements are incremental
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presents the typical sparkout power curve recorded and demonstrates:

A sharp increase in power similar to the surface grinding process as the wheel

begins to interact with the workpiece

steady state representing the power required to drive the coolant through the

Typical sparkout power curve for grinding power recorded at the spindle
motor during cylindrical traverse grinding

Forming of the contact shape in the cylindrical surface was achieved via the accurate

the Edgetek SAT’s capacity for complete CNC control of the

axis. This full CNC control of the machine was accessed through the

PLC and allowed the machine’s C-axis to be moved by fractions of a degree, whilst

axis. In this set-up the machine can be moved by a precise angle. The

axis must therefore be instructed to move a precise distance over the number of

degrees rotated, in order that a desired feed per turn is maintained. To calculate the

movement of the relative axes required, the following process was used.

The CNC command console of the Edgetek SAT is accessed through the M27

command, followed by the activation code G91 in order to instruct the machine that:

CNC control is active

All movements are incremental

curve recorded and demonstrates:

A sharp increase in power similar to the surface grinding process as the wheel

steady state representing the power required to drive the coolant through the

Typical sparkout power curve for grinding power recorded at the spindle

Forming of the contact shape in the cylindrical surface was achieved via the accurate

the Edgetek SAT’s capacity for complete CNC control of the

axis. This full CNC control of the machine was accessed through the

axis to be moved by fractions of a degree, whilst

up the machine can be moved by a precise angle. The

axis must therefore be instructed to move a precise distance over the number of

degrees rotated, in order that a desired feed per turn is maintained. To calculate the

required, the following process was used.

The CNC command console of the Edgetek SAT is accessed through the M27

command, followed by the activation code G91 in order to instruct the machine that:
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The machine then calls for the parameters required for accurate machine movement,

namely:

1) Z-axis movement in mm

2) C-axis movement in total number of degrees turned

3) An F command related to the C-axis and instructing the machine to operate at

that value of degrees per min, the maximum available to the operator in CNC

mode is 25,000°/min

The feed per turn was determined by the operator and a ratio of traverse rate (movement

in the Z-axis) to rotational rate in the C-axis (RPM) was established in order to achieve

that value. The feed per turn is a function of the traverse feedrate (movement in the Z-

axis) and the RPM of the C-axis. The following formula allowed the feed per turn to be

calculated and can be considered similar to the width of cut in surface grinding.

RPM

Traverse
per turnFeed

For a given RPM i.e. 100RPM and a required feed per turn of 0.2mm, the traverse rate

in the Z-axis was calculated such that:

1min20

1002.0




mmTraverse

Traverse

The workhead then required a distance of travel in the Z-axis and to know the time that

this would take. Using an arbitrary value of 30mm required travel at 20mm/s to ensure

the full engagement of the grinding wheel, the time of travel was calculated, where:

min5.1

20

30



time

At the given 100RPM, the total number of degrees turned ‘C’ is equal to:

54000

3605.1100

360





 timeRPMC

The feedrate of the workhead in RPM, F, was calculated in °/min and was simply

assessed using the following:
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36000

360100

360





 RPMF

In real terms the feedrate cannot exceed 25,000°/min. The axis values were calculated

dependent on the feed per turn of the experiment undertaken. Where possible the

feedrate experienced in the trial was mimicked in the measurement of the sparkout

power, however when this was not possible, the equivalent ratio of feed per turn was

used.

3.3 Thermal Profiling with PVD Coatings

The selected parameters and methods used for the thermal profiling and temperature

measurement of the grinding process with 51CrV4 grinding samples are outlined in this

section. The investigation of the thermal profile formed around the wheel-workpiece

contact considered two main areas as determined by the literature review. These were

designed to reflect the need to understand the behaviour of the partition of heat flux

around the sidewall with the experimental phase consisting of:

 Thermal profiles in surface grinding

 Thermal profiles in cylindrical traverse grinding

The details of the investigation are summarised in the following sections.

3.3.1 Surface Grinding

The thermal profile of the form grinding process under surface grinding conditions and

the effect of the grinding parameters on the form were achieved with the following

grinding trials:

 Grinding of PVD samples with and without a shoulder

 Grinding of PVD samples with a shoulder under varying levels of width and

depth of cut and workpiece feedrate

3.3.1.1 Set-up of the Edgetek SAM

The surface grinding trials were performed on the Edgetek SAM. The machine was set

up in the standard down grinding configuration presented in section 3.2.1.1 table 3.3.

The vice used for the early surface grinding investigations was modified to accept an
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end plate holding two M4 grub screws. These grub screws could then be used to provide

additional clamping force and prevent undesirable movement of the split samples under

grinding. Figure 3.22 shows the vice arrangement.

Figure 3.22 Photograph showing detailed view of work-holding arrangement for
surface grinding trials

3.3.1.2 PVD Coated Surface Grinding Samples

Two test pieces were designed based on the work of Walton et al. (2005), the original

example is shown in figure 3.23. New samples were designed to simulate the

differences between basic surface and profile grinding. Thus samples were a

combination of solid and castellated blocks, solid blocks simulating profile grinding and

castellated blocks simulating surface grinding.



Figure 3.23 Photograph of t
with PVD coatings after Walton

Sample blocks are shown schematically in figure 3.24 and demonstrate:

1) Standard test block for profile grinding trials

2) Standard test block for surface grinding with no sidewall

3) Surfaces coated with low melting point coatings via the PVD method

Figure 3.

Coatings were aligned perpendicular to the grinding direction in order to produce an

isotherm perpendicular to the grinding direction. The test block was manufactured with

a large width of 15mm and hence surplus material was available in the sidewall

3

1

3

1
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Photograph of test rig previously used for measurement of temperatures
PVD coatings after Walton et al. (2005)

Sample blocks are shown schematically in figure 3.24 and demonstrate:

Standard test block for profile grinding trials

Standard test block for surface grinding with no sidewall

Surfaces coated with low melting point coatings via the PVD method

Figure 3.24 Schematic of PVD sample blocks

Coatings were aligned perpendicular to the grinding direction in order to produce an

isotherm perpendicular to the grinding direction. The test block was manufactured with

and hence surplus material was available in the sidewall

Grinding Direction

2

Grinding Direction

2

est rig previously used for measurement of temperatures

Surfaces coated with low melting point coatings via the PVD method

Coatings were aligned perpendicular to the grinding direction in order to produce an

isotherm perpendicular to the grinding direction. The test block was manufactured with

and hence surplus material was available in the sidewall

Grinding DirectionGrinding Direction
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allowing a complete isotherm to form. This was in response to issues highlighted in the

work of Sainz (2005) wherein isotherms had been drawn through the sidewall as a result

of the thickness of the workpiece. Photographs of the two sample types are shown in

figure 3.25 and 3.26 in the fully assembled condition.

Figure 3.25 Photograph of surface grinding sample block

Figure 3.26 Photograph of profile grinding sample block



80

The sample blocks were secured with a 5mm wide by 3mm deep key and keyway to

ensure the alignment and security of the separate test pieces. Detailed drawings of the

sample blocks are shown in figure 3.27 and 3.28, with table 3.12 and 3.13 describing

the values of the dimensions.

Figure 3.27 Detailed drawing of PVD coated profile grinding block

Section A B C D

Leading Edge 45 15 >35 To accept 5mm key

Trailing Edge 45 15 >35 To accept 5mm key

PVD section 5 15 >35 To accept 5mm key

Table 3.12 Table of dimensions for profile grinding blocks

Figure 3.28 Detailed drawing of PVD coated surface grinding block



Section A B

Leading
Edge

45mm 15mm

Trailing
Edge

45mm 15mm

PVD
section

5mm 15mm

Table 3.13

Low melting point coatings were applied to the desired surfaces using a Physical

Vapour Deposition technique. Described by

deposits a 200nm thick layer of material onto the surface of the test piece. The

deposition was achieved by a resistively heated thermal evaporation coating system and

measured by the change in resonant frequency of a quartz crystal within the deposition

chamber. The faces to which coatings were applied were prepared to a parallel mirror

finish in order to minimise thermal distortion through the interface. The preparation of

the surfaces was achieved with the Tetraform

samples checked visually for surface condition and physically by lapping together.

Figure 3.29 Tetraform face grinding machine as used in the preparation of surface
and profile grinding samples
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C D

mm >35mm
To accept
5mm key

3 Equidistant lands, 3mm wide
by 6mm deep

mm >35mm
To accept
5mm key

3 Equidistant lands, 3mm wide
by 6mm deep

mm >35mm
To accept
5mm key

3 Equidistant lands, 3mm wide
by 6mm deep

Table of dimensions for surface grinding block

Low melting point coatings were applied to the desired surfaces using a Physical

nique. Described by Walton et al. (2005), the PVD technique

a 200nm thick layer of material onto the surface of the test piece. The

deposition was achieved by a resistively heated thermal evaporation coating system and

measured by the change in resonant frequency of a quartz crystal within the deposition

The faces to which coatings were applied were prepared to a parallel mirror

finish in order to minimise thermal distortion through the interface. The preparation of

the surfaces was achieved with the Tetraform face grinding machine (figure 3.29

es checked visually for surface condition and physically by lapping together.

Tetraform face grinding machine as used in the preparation of surface
and profile grinding samples

E

3 Equidistant lands, 3mm wide
by 6mm deep

3 Equidistant lands, 3mm wide
by 6mm deep

3 Equidistant lands, 3mm wide
by 6mm deep

Table of dimensions for surface grinding block

Low melting point coatings were applied to the desired surfaces using a Physical

), the PVD technique

a 200nm thick layer of material onto the surface of the test piece. The

deposition was achieved by a resistively heated thermal evaporation coating system and

measured by the change in resonant frequency of a quartz crystal within the deposition

The faces to which coatings were applied were prepared to a parallel mirror

finish in order to minimise thermal distortion through the interface. The preparation of

face grinding machine (figure 3.29) with

es checked visually for surface condition and physically by lapping together.

Tetraform face grinding machine as used in the preparation of surface
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The low melting point coatings were selected on the basis of previous experience within

the department to cover a range of possible temperatures. Coatings used are described in

table 3.14 and achieve a range between 156 and 630°C.

Coating Symbol Melting Temperature °C

Indium In 156

Bismuth Bi 272

Zinc Zn 419

Antimony Sb 630

Table 3.14 Details of low melting point coatings applied to sample blocks for
temperature measurement trials

3.3.1.3 Parameters for Thermal Profiling Trials

Grinding trials were separated into two phases, phase one focussed on the effects of the

presence of a shoulder or profile on the thermal behaviour of the grinding process, table

3.15 depicts the experiments undertaken to achieve this. Tests were performed

consecutively first without and then with a shoulder present in order to minimise

variation in the wheel condition between trials.

Trial Number Block type ae (mm) vw mm/s vs (m/s) b (mm)
Q’w

(mm3/mm·s)

1 No Shoulder 1 125 200 3 125

2 Shoulder 1 125 200 3 125

3 No Shoulder 2 125 200 3 250

4 Shoulder 2 125 200 3 250

5 No Shoulder 3 125 200 3 375

6 Shoulder 3 125 200 3 375

7 No Shoulder 4 125 200 3 500

8 Shoulder 4 125 200 3 500

Table 3.15 Parameters for trials measuring the effect of the presence of a shoulder
on the thermal profile
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The second stage of the experimental phase considered a basic experimental design to

study the effect of the three major grinding parameters, width of cut, depth of cut and

workpiece feedrate on the maximum temperature into the sidewall and surface during

grinding. These experiments were randomised in order to minimise the effects of

variation in the wheel condition with details presented in table 3.16.

Trial
Number

Block
type

ae (mm) vw mm/s vs (m/s) b (mm)
Q’w

(mm3/mm·s)

9 Shoulder 4 75 200 3 300

10 Shoulder 2 75 200 1 150

11 Shoulder 4 125 200 1 500

12 Shoulder 2 125 200 3 250

13 Shoulder 2 125 200 3 250

14 Shoulder 4 125 200 1 500

15 Shoulder 4 75 200 3 300

16 Shoulder 2 75 200 1 150

Table 3.16 Parameters for the exploration of the effects of grinding parameters on
the thermal profile

For the above described trials 1 to 16, the parameters were selected in order to maximise

temperatures. In this way the isotherm was anticipated to be large and therefore ease of

measurement would be facilitated with a good contrast at the melt interface of the PVD

coating.

3.3.1.4 Collation of PVD Results

Temperature estimations based on the low melting point coating technique were realised

with the application of the exponential relationship demonstrated by Kato & Fujii

(2000) citing the approximation presented by Takazawa (1966). The approximation of

surface temperature is dependent upon the measured boundary of the isotherm falling

within the limits of the approximation described by Takazawa (1966) where:

wv
z

8
lim 



Figure 3.30 shows the limits of application for the temperature

for the selected 51CrV4 alloy.

that specific heat capacity and thermal conductivity will remain constant

various temperatures the material is exposed to.

Figure 3.30 Graphical representation of the limiting depth of the PVD isotherm in
51CrV4

Isotherms formed on the mating surfaces of the sample block described in section

3.3.1.2 were examined under a Nikon stereo

microscopes digital camera attachment. Figure

with the digital camera attached.

to deliver a composite image of the complete isotherm. A typical com

shown in figure 3.32, the level of magnification was dependent upon the individual

circumstances, however a 10
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shows the limits of application for the temperature measurement, calculated

for the selected 51CrV4 alloy. To simplify the calculations, the assumption was made

that specific heat capacity and thermal conductivity will remain constant

various temperatures the material is exposed to.

Graphical representation of the limiting depth of the PVD isotherm in

Isotherms formed on the mating surfaces of the sample block described in section

3.3.1.2 were examined under a Nikon stereo-microscope and photograp

microscopes digital camera attachment. Figure 3.31 shows the style of microscope used

with the digital camera attached. Software included with the digital camera was utilised

to deliver a composite image of the complete isotherm. A typical composite isotherm is

, the level of magnification was dependent upon the individual

10× magnification was typically used.

measurement, calculated

assumption was made

that specific heat capacity and thermal conductivity will remain constant through the

Graphical representation of the limiting depth of the PVD isotherm in

Isotherms formed on the mating surfaces of the sample block described in section

microscope and photographed with the

shows the style of microscope used

included with the digital camera was utilised

posite isotherm is

, the level of magnification was dependent upon the individual



Figure 3.

Figure 3.32 Typical surface grinding composite PVD micrograph

A Cartesian co-ordinate system was overlaid onto the composite micrograph in order to

facilitate measurement of the isotherm, the x and y

vertical as ground surfaces respectively. Information collated in this way was applied to

a graphical representation of the isotherm with graphs

depth of penetration perpendicular to the as ground surface
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Figure 3.31 Photograph of microscope set-up

Typical surface grinding composite PVD micrograph

ordinate system was overlaid onto the composite micrograph in order to

facilitate measurement of the isotherm, the x and y-axes being the horizontal and

l as ground surfaces respectively. Information collated in this way was applied to

a graphical representation of the isotherm with graphs adjusted to show the approximate

depth of penetration perpendicular to the as ground surface. A typical graph of

Typical surface grinding composite PVD micrograph

ordinate system was overlaid onto the composite micrograph in order to

axes being the horizontal and

l as ground surfaces respectively. Information collated in this way was applied to

to show the approximate

A typical graph of



penetration depth is shown

in melt depth around the profile consisting of

A) Side face

B) Edge Radius

C) Peripheral face

Figure 3.33 Typical graph of melt depth versus
surface

3.3.2 Cylindrical Traverse Grinding

The assessment of the thermal profile and temperature in the cylindrical traverse

grinding process was achieved with a series of axially split PVD coated samples. These

were then subjected to the following trials.

 Trials at low specific material removal rates and large values of feed per turn for

purposes of profiling the heat flux form

 Trials at high specific material removal rates and low values of feed per turn to

study the temperatures at the high removal rates reported by Nakayama et al.

(2004)
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for surface gridning in figure 3.33, highlighting the variation

around the profile consisting of:

Typical graph of melt depth versus relative location on ground profile

3.3.2 Cylindrical Traverse Grinding

The assessment of the thermal profile and temperature in the cylindrical traverse

grinding process was achieved with a series of axially split PVD coated samples. These

then subjected to the following trials.

Trials at low specific material removal rates and large values of feed per turn for

purposes of profiling the heat flux form

Trials at high specific material removal rates and low values of feed per turn to

temperatures at the high removal rates reported by Nakayama et al.

, highlighting the variation

relative location on ground profile

The assessment of the thermal profile and temperature in the cylindrical traverse

grinding process was achieved with a series of axially split PVD coated samples. These

Trials at low specific material removal rates and large values of feed per turn for

Trials at high specific material removal rates and low values of feed per turn to

temperatures at the high removal rates reported by Nakayama et al.
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3.3.2.1 Machine Set-up

For temperature measurement in the cylindrical traverse grinding regime, the Edgetek

SAT was set up with the earlier trialled twin nozzle and trough configuration described

in section 3.2.2.1 and figure 3.16. Nozzles were located using a laser pointing device,

and targeted such that they impacted on the centre of the leading edge radius (Nozzle B)

and touching the outer diameter of the leading edge (Nozzle A). Table 3.17

demonstrates the parameters used for the machine set-up.

Nozzle A Target Position Workpiece centre axis + 70 mm

Nozzle A Pressure 6 Bar

Nozzle B Target Position Workpiece centre axis

Nozzle B Pressure 6 Bar

Nozzle A Diameter 3 mm

Nozzle B Diameter 3 mm

Trough Pressure To maintain trough fill

Tailstock Type Live

Chuck Type 3 Jaw self-centring

Table 3.17 Table of machine tool parameters for temperature measurement grinding
trials

Figure 3.34 shows the fluid application set-up schematically demonstrating:

A) Leading edge nozzle

B) Leading edge radius nozzle

C) Coolant trough

Fluid application was designed to maintain a good flow of grinding fluid into the wheel

leading edge and wheel-workpiece contact zone.
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Figure 3.34 Schematic of the Edgetek SAT twin nozzle fluid application system for
temperature measurement

3.3.2.2 Preparation of Cylindrical Traverse Grinding Low Melting Point Coating

Samples

Low melting point coatings were aligned perpendicular to the principal grinding

direction as for surface grinding, again developing an isotherm perpendicular to the

principal grinding direction. For cylindrical traverse grinding, perpendicular to the

principal grinding direction is defined as perpendicular to the direction of rotation of the

workpiece. This equates to the coating lying parallel to the central axis of the workpiece

as described in figure 3.35 which demonstrates:

A) PVD coated mating faces

B) Recessed central section to improve parallelism of mating faces

C) Outer diameter turned to 79mm

D) Sample length of 100mm



Figure 3.35 Schematic of the cylindrical traverse grinding temperature measurement
block

Figure 3.36 shows an image of the cylindrical traverse gri

measurement sample used.

Figure 3.36 Photograph showing the axially split temperature measurement sample
in the as ground condition

89

Schematic of the cylindrical traverse grinding temperature measurement

Figure 3.36 shows an image of the cylindrical traverse grinding temperature

Photograph showing the axially split temperature measurement sample
in the as ground condition

Schematic of the cylindrical traverse grinding temperature measurement

nding temperature

Photograph showing the axially split temperature measurement sample
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The cylindrical PVD samples were prepared by a specialist flat lapping provider, Opus

Metrology2, who finished the samples by hand in pairs to fit. Finished pairs were

checked visually for a mirror finish and a sample touched together with engineer’s blue

to ensure good pick up and hence good surface mating. Once a good surface contact was

assured, the samples were coated with a variety of low melting point coatings as per the

description in section 3.3.1.2.

3.3.2.3 Parameters for Thermal Profiling of Cylindrical Traverse Grinding

The selection of grinding parameters was assisted with the use of a 2-dimensional finite

element analysis. The grinding process demonstrates an increase in power requirement

and hence heat flux with increasing specific material removal rate. Conversely there is a

beneficial effect to increasing the speed of a heat flux across a surface, which acts to

reduce thermal penetration. Given the very high workpiece feeds planned for the

cylindrical traverse grinding trials, an investigation of the dominant effect was

undertaken by simulation.

The simulation called for an investigation of the thermal penetration into the workpiece

surface to ensure temperatures were controlled and with a view to preventing damage to

the system; to achieve this a heat flux increasing with workpiece speed was applied. A

macro written in the ANSYS Parametric Design Language (APDL) was developed

using a cylindrical co-ordinate system to produce a two-dimensional moving heat

source model. The heat flux was applied to the surface lines.

The trend of the increasing heat flux to the workpiece was estimated from grinding trials

presented in section 3.2.2.3 tables 3.9 and 3.11 by estimation of the linear relationship

between specific material removal rate and total heat flux to the workpiece. An

increasing workpiece velocity was approximated by increasing the velocity of the heat

source over the surface. The programme was set in the cylindrical coordinate system

such that a two-dimensional circular object could be created with the heat flux moving

along the edge. The velocity of the heat source was calculated from the workhead RPM,

with the programme requiring the time frame for dwell on the surface nodes. Given

knowledge of the number of surface nodes, the velocity was readily translated into

dwell time and the velocity approximated.

2 Details of the services provided can be found at http://www.opus.co.uk/
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Figures 3.37 to 3.39 show the resulting 2D basic FEA models for an 80mm diameter

disc, predicting a very low thermal penetration despite high heat flux application.

Figure 3.37 Thermal profile estimation with FEA for a heat source of 200W/mm2 at
250RPM

Figure 3.38 Thermal profile estimation with FEA for a heat source of 900W/mm2 at
1000RPM
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Figure 3.39 Thermal profile estimation with FEA for a heat source of 360500W/mm2

at 4000RPM

For a given specific grinding energy and specific material removal rate, reducing the

width of cut reduces the net power requirement proportionally according to the specific

grinding energy equation where:

bQ

P
e

w

net
c




'

In order to minimise the power requirement on the machine at the planned very high

removal rates, it was suggested that the feed per turn (width of cut) was minimised. By

reducing the feed per turn in this way, the power available for grinding was maximised.

Feedrates for experiments investigating changes in the width of cut were significantly

reduced in order to allow large variations in width of cut to be considered. At the

extremely high removal rates this would not have been possible as a result of the

limitations of the table feed. The parameters used for the cylindrical traverse grinding

trials are presented in table 3.18.
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vw (RPM) vt (mm/min) b (mm) ae (mm) Dw (mm)
Q’w

(mm3/mm·s)

6 60 10 3 79 72

12 60 5 3 79 143

24 120 5 3 79 287

24 60 2.5 3 79 287

250 50 0.2 1 75 969

500 100 0.2 1 75 1937

750 150 0.2 1 75 2906

1000 200 0.2 1 75 3875

Table 3.18 Table of grinding parameters for temperature measurement trials in
cylindrical traverse grinding

3.3.2.4 Collation of Cylindrical Traverse Grinding Results with Low Melting Point

Coatings

Cylindrical traverse grinding samples were handled similarly to the surface grinding

samples described in section 3.3.1.4, using the same methodology to produce composite

micrographs. Again images were collated with the Nikon microscope photographing

images with the attached digital camera to produce the composite micrographs typical

of figure 3.40. Overlaying a Cartesian co-ordinate system in the cylindrical traverse

grinding trials was complicated by the flexibility in the grinding system. The grinding

wheel was found to lean over in the traverse direction, thus the axis parallel surface was

established as the x-axis with the y-axis drafted perpendicular to the x-axis at the

approximated intersection of the vertical and horizontal surfaces. Where multiple

isotherms were overlaid as in figure 3.40, the initial isotherm alone was considered.
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Figure 3.40 Typical cylindrical traverse grinding composite PVD micrograph
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4 Investigation of Specific Grinding Energy and Burn Threshold

Chapter 4 of the thesis shows the results of experiments detailed in section 3.2. These

trials considered the effect of high removal rates and contact conditions consistent with

the HEDG regime on the specific grinding energy, grinding power and burn threshold

diagram.

4.1 Trends in Specific Grinding Energy and Grinding Power

Stephenson and Jin (2003) suggested that the specific grinding energy can be

approximated given knowledge of the specific material removal rate by a power law

equation. Section 4.1 considers the fitting of a power law approximation to the specific

grinding energy curves over large ranges of specific material removal rate. By

predicting specific grinding energy from the grinding parameters, estimation of the

grinding power and hence heat flux and temperature from the same becomes possible.

This section also considers the trends of both net and total grinding powers for the

grinding parameters tested. The grinding power plays a pivotal role in the specification

of the grinding machine, by understanding the power trends for various grinding

parameters the optimum machine set-up can be highlighted.

4.1.1 Surface Grinding

Initial results for surface grinding experiments detailed in tables 3.4 & 3.6 of section

3.2.1.3 with the application of oil based grinding fluid showed an asymptotic form and

the achievement of a constant value of specific grinding energy as specific material

removal rates increased. Figure 4.1 shows the specific grinding energy curve for SGCI

trials with grinding parameters summarised in table 4.1, the power law curve was fitted

in Excel. It can be seen that the predicted power law curve deviates from the results set.

This deviation of the power law curve is greater than the potential error in the system,

assuming an experimental error of 5%. We could therefore be confident that a single

power law approximation was unsuitable in this instance.
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Figure 4.1 Specific grinding energy curve for simple surface profile grinding of
SGCI showing detailed view of low values of specific material removal
rate inset

ae (mm) b (mm) vw (mm/min) vs (m/s)

0.5 – 9 5 – 2 50 – 7500 50 – 150

Table 4.1 Summary of grinding parameters for results presented in figure 4.1

Figure 4.2 shows the specific grinding energy curve for trials with 51CrV4, grinding

parameters are presented in table 4.2, the power law curve was again fitted in Excel. In

this case the deviation of the power law approximation was more noticeable at lower

values of specific material removal rate. The direct fitting of a power law curve is

perhaps inappropriate, the accuracy of the approximation is critical given that small

changes at low values of specific grinding energy can result in large changes in the

finished temperature. Additionally, the tail of the specific grinding energy curve appears

to hold a constant value in both instances considered. This suggested that a split

relationship between specific material removal rate and specific grinding energy would

be more appropriate. Possible reasons for a constant specific grinding energy are

discussed in Chapter 6.
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Figure 4.2 Specific grinding energy curve for simple surface profile grinding of
51CrV4 with zoomed section showing low specific material removal
rates

ae (mm) b (mm) vw (mm/min) vs (m/s)

0.5 – 4 5 – 1 50 – 7500 50 – 200

Table 4.2 Summary of grinding parameters for results presented in figure 4.2

Deviation of the results recorded from the approximation proposed can have a

significant effect on the temperatures experienced in the finished workpiece surface. At

high values of specific grinding energy small increases in value give small variations in

temperature as the percentage rise is small. Approaching the HEDG regime when

specific grinding energies are reduced to low values, small variations in specific

grinding energy can result in a large change in the finished surface temperature. Thus

the case is made for a more accurate predictive tool when considering HEDG results.

Visual inspection of figures 4.1 and 4.2 demonstrated a constant value of specific

grinding energy from specific material removal rates of approximately 50mm3/mm·s.

These values were 13J/mm3 for SGCI and 16J/mm3 for 51CrV4. The power law

approximation was reapplied for values of specific material removal rate less than

50mm3/mm·s. Results in the range 0 to 50mm3/mm·s showed excellent agreement with

a power law approximation, where:
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t
wc QAe  ' Equation 4.1

Figures 4.3 to 4.5 show curves of specific material removal rate (Q’w) versus specific

grinding energy (SGE) for specific material removal rates to 50mm3/mm·s with

grinding parameters summarised in table 4.3. The results demonstrated a small increase

in specific grinding energy for SGCI and 51CrV4 (figures 4.3 and 4.5) with the

application of grinding fluid at low specific material removal rates with increasing

wheel speed. Results for grinding without fluid application are included here after trials

detailed in table 3.5 of section 3.2.1.3 (figure 4.4) and showed an indeterminable change

in the specific grinding energy curve. It is possible that increases in specific grinding

energy with wheel speed were a result of the braking effect of the grinding fluid or

possibly an effect of wheel wear. The limitation of the curve to values of specific

material removal rate to 50mm3/mm·s greatly improved the fit of the power law

approximation.

Figure 4.3 Trends in specific grinding energy for specific material removal rates up
to 50mm3/mm·s for trials in SGCI with the application of grinindg fluid
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Figure 4.4 Trends in specific grinding energy for specific material removal rates up
to 50mm3/mm·s for trials in SGCI without the application of grinding
fluid

Figure 4.5 Trends in specific grinding energy for specific material removal rate up
to 50mm3/mm·s for surface grinding trials in 51CrV4 with the
application of grinding fluid
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Figure ae (mm) b (mm) vw (mm/min) vs (m/s)

4.3 SGCI with grinding fluid 0.5 – 1 5 50 – 5000 50 – 150

4.4 SGCI without grinding fluid 0.5 5 50 – 5000 50 – 150

4.5 51CrV4 with grinding fluid 0.5 5 50 – 5000 50 – 150

Table 4.3 Summary of surface grinding parameters

Values for the constants A and t (equation 4.1) ascribed to the specific grinding energy

curves demonstrated in figures 4.3 to 4.5 by the Excel line fitting function are presented

in Table 4.4.

Material
Grinding Fluid

Application
A t

SGCI Yes 32 0.33

SGCI No 62 0.45

51CrV4 Yes 52 0.34

Table 4.4 Values of A and t for trials in spheroidal grey cast iron

Figure 4.6 combines results for the grinding of SGCI with the two fluid applications at a

wheel speed of 150m/s. The results showed that application of grinding fluid to the

grinding zone reduced the specific grinding energy when at low specific material

removal rates. As the removal rate tended towards 50mm3/mm·s results for trials with

and without the application of grinding fluid achieved a common value.
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Figure 4.6 Comparison of specific grinding energy curves for grinding of SGCI with
and without the application of grinding fluid for a constant wheel speed
of 150m/s

The effect of grinding fluid application on the total and net grinding power for the

specific grinding energy curves presented in figure 4.3 and 4.4 is demonstrated in

figures 4.7 and 4.8 for a wheel speed of 150m/s. The results show a consistently higher

net grinding power requirement for trials where no grinding fluid was applied.

Conversely the application of grinding fluid increases the total power requirement for

the machine tool.
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Figure 4.7 Change in net grinding power requirement with specific material
removal rate dependent on fluid application

Figure 4.8 Change in total grinding power requirement with specific material
removal rate dependent on fluid application

The results confirmed that the application of grinding fluid has a beneficial effect on the

energy consumed in the grinding process, particularly at low removal rates. However,

the grinding fluid application reduced the power available to the machine tool for the
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process. It is suggested that a high specific material removal rate is theoretically

achievable when no grinding fluid is applied, without detrimental effect to the specific

grinding energy.

4.1.2 Cylindrical Traverse Grinding

Cylindrical traverse grinding trials were undertaken with 51CrV4 sample blocks

exclusively and both oil and water based grinding fluids. As for surface grinding, values

of specific grinding energy achieved a constant value and had an asymptotical form

with increasing specific material removal rate.

The specific material removal rate for cylindrical traverse grinding was calculated using

the same methodology as for surface grinding, where:

wew vaQ ' Equation 4.2

Equation 4.2 refers to a straight surface grinding cut, however the cylindrical traverse

grinding process forms a helical path during the grinding process. To verify that the

equation was applicable to the cylindrical traverse grinding process, the specific

material removal rate was calculated geometrically from the contact conditions. This

suggested that a negligible difference existed between the two trials and as such the

approximation of equation 4.2 was acceptable for purposes of the calculations

undertaken.

Figure 4.9 shows a plot of specific material removal rate versus specific grinding energy

for trials with the two grinding fluid types, grinding parameters are summarised in table

4.5. The results showed that a constant value of grinding energy was rapidly approached

with the oil based Castrol Variocut G 600 SP. However the rate for the water based

Hysol X 6% suspension is seen to be more gradual and a constant value was not fully

achieved until specific material removal rates in excess of 175mm3mm·s were achieved.
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Figure 4.9 Comparison of specific grinding energy curves for oil and water based
grinding fluid application

Fluid Type ae vt vw b vs

Water 0.5 – 6mm 60mm/min 12 – 24RPM 2.5 – 5mm 150m/s

Oil 0.5 – 3mm 7.5 – 120mm/min 0.5 – 24RPM 5 – 15mm 150m/s

Table 4.5 Summary of cylindrical traverse grinding parameters for results shown
in figure 4.9

Recalling the relationship between specific grinding energy and specific material

removal rate shown in equation 4.1, table 4.6 presents values of the constants A and t

assigned by the Microsoft Excel line fitting function. It should be noted that initial trials

with oil based grinding fluid were performed with a new wheel, which was in an unused

and unconditioned state at the start of grinding trials.

Vs (m/s) Valid Range Grinding fluid Type A t

150 0 – 20 mm3/mm·s Oil: Castrol Variocut G600 SP 33 0.67

150 0 – 175 mm3/mm·s Water: Hysol XH 6% 34 0.28

Table 4.6 Values of A and t for approximation in cylindrical traverse grinding
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Figure 4.9 also demonstrates the variation in specific grinding energy with specific

material removal rate for those trials undertaken with oil (Castrol Variocut G 600 SP)

and water (Hysol X 6%). Values of specific grinding energy for Hysol X 6% are

significantly higher than for the Castrol Variocut G 600 SP over the range of specific

material removal rates considered. Unlike for trials in surface grinding, the minimum

specific grinding energy for the two grinding fluid applications does not appear to tend

to the same minimum value. It should be noted that the grinding wheel was in an

unconditioned state for the grinding trials with oil and thus was sharper than would

necessarily be the norm. The wheel had developed a normal grinding condition for the

water based grinding fluid experiments. Given opportunity to repeat experiments and

sufficient time to run trials, the wheel would have undergone a prolonged period of

conditioning and the experiments between grinding fluid types in this instance would

have been randomised. Figure 4.10 presents later results taken with oil based grinding

fluid after the grinding wheel had undergone significant conditioning. It should be noted

that the constant value of specific grinding energy is now more appropriate to the results

recorded with the water based grinding fluid with values tending towards 10.5J/mm3.

Figure 4.10 Specific material removal rate versus specific grinding energy for
grinding trials with oil based grinding fluid
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Figures 4.11 and 4.12 demonstrate the effect of grinding fluid choice on the total and

net grinding powers developed during the grinding process for a value of feed per turn

of 5mm with parameters summarised in table 4.7. The results show an insignificant

change in the total grinding power for trials undertaken. The net grinding power is

however shown to be reduced by the application of oil as the grinding fluid choice. This

trend in net grinding power is similar to that demonstrated for the surface grinding

trials, understanding that water has a lower lubricity than oil as dry grinding exhibits no

lubrication. However this benefit must be contrasted against the higher convection

coefficient of water based fluids, removing greater quantities of heat energy at its

operational temperatures than oil.

Figure 4.11 Trends in total grinding power with fluid type for increasing specific
material removal rate
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Figure 4.12 Trends in net grinding power with grinding fluid type

Fluid Type ae (mm) vt (mm/min) vw (RPM) vs (m/s)

Water 0.5 – 4 60 12 150

Oil 0.5 – 3 60 – 120 12 – 24 150

Table 4.7 Summary of grinding parameters for results shown in figures 4.11 and
4.12

Figure 4.13 demonstrates the effect of the feed per turn or width of cut on the total

grinding power. These results, recorded during both water oil based fluid trials

described in table 4.8, show a clear benefit to reducing the feed per turn to a small

value, effectively reducing the total power requirement for the grinding operation for an

equivalent specific material removal rate.
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Figure 4.13 Total power requirements with change in feed per turn with increasing
specific material removal rate for oil and water based grinding fluids

Fluid Type ae (mm) vt (mm/min) vw (RPM) vs (m/s)

Water 0.5 – 6 60 12 – 24 150

Oil 0.5 – 3 7.5 – 120 0.5 – 24 150

Table 4.8 Summary of grinding parameters for feed per turn comparison of figure
4.13

Decreasing the feed per turn by increasing the rotational velocity of the workpiece leads

to an increased chip thickness and hence lower grinding power. However this is not the

only mechanism at work here, with both traverse rate and workpiece speed being

adjusted within the same results set. Figure 4.14 shows a linear relationship between the

volumetric removal rate and the total grinding power for all values of feed per turn

considered. A high volumetric removal rate requires a high total grinding power. Figure

4.13 shows that for a given grinding power the reduction in the feed per turn permits a

higher specific material removal rate. The HEDG process is driven by achieving high

specific material removal rates which have been shown to reduce finished surface

temperatures. The results imply that a small feed per turn at a high total grinding power

will result in the highest possible volumetric removal rate with the highest possible

specific material removal rate and hence the best possible HEDG conditions.
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Figure 4.14 Volumetric removal rate versus total grinding power for cylindrical
traverse grinding with oil and water based grinding fluids

The results for surface and cylindrical traverse grinding have shown trends between the

specific material removal rate and the specific grinding energy and grinding powers.

These trends make it possible to predict the specific grinding energy and grinding power

given knowledge of the specific material removal rate. In this way the temperature at

the workpiece surface can ultimately be estimated and the burn threshold established.

4.1.3 The Effect of Wheel Wear on Results

The effect of wheel wear was considered at various stages of the experimental phase

with the addition of trials at constant grinding parameters to measure the changes in the

grinding powers and specific grinding energy that resulted. Figure 4.15 and 4.16 show

trends in specific grinding energy for surface and cylindrical traverse grinding for the

parameters summarised in table 4.9. It can be seen that the process of grinding has

resulted in wear of the wheel, which in turn has increased the specific grinding energy

required by the process.
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Figure 4.15 Effect of wear on the specific grinding energy over the course of surface
grinding with SGCI

Figure 4.16 Effect of wear on the specific grinding energy over the course of
cylindrical traverse grinding with 51CrV4
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Figure number ae (mm) vw b (mm) vs (m/s)

4.15 0.5 50mm/min 5 50

4.16 0.5/1 12RPM 5 150

Table 4.9 Summary of grinding parameters for wear trials

The changes in specific grinding energy over the course of the grinding trials

undertaken are significant to the development of the process. However, given that

grinding burn is expected to occur at a level of specific grinding energy does not create

issue with the analysis of the results.

4.2 Application of the Burn Threshold Diagram

Results demonstrating the effect of HEDG conditions on the process of burn threshold

analysis developed by Malkin & Lenz (1978) are presented in this section. The results

show the effect of the contact conditions and feedrates consistent with the HEDG

regime on plots of Peclet number versus maximum dimensionless temperature rise. This

section will show the results of a burn threshold diagram plotted using the results from

the HEDG trials and demonstrate how the diagram is affected by the HEDG process.

4.2.1 Evaluation of Peclet Number versus Maximum Dimensionless Temperature

Rise

Malkin & Lenz (1978) expressed the relationship between Peclet number and maximum

dimensionless temperature rise with the following relationship:

21

543.3 Lm  Equation 4. 3

This relationship forms the basis of Malkin’s burn threshold diagram allowing the

derivation of the burn threshold relationship. The maximum dimensionless temperature

rise for the results set was calculated using equation 4.4, where:
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Equation 4.4

Using the circular arc of heat contact model for the estimation of the maximum

temperature rise θm and heat flux partitioned to the finished workpiece surface qw values

of maximum dimensionless temperature rise were estimated.
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For the grinding fluid application parameters summarised in table 4.3, plots of Peclet

number versus maximum dimensionless temperature rise for SGCI and 51CrV4 are

shown in figures 4.17 and 4.18 respectively. This relationship is a fundamental

derivation of the moving heat source equations presented by Jaeger (1942). At a Peclet

number of approximately 40 the results deviate from the relationship expected, recalling

that equation 4.3 refers to a sliding heat contact which is not inclined. Separated by

common feedrate the onset of deviation appears to move to the right with increasing

feedrate. This effect was notably less when grinding 51CrV4, however lower Peclet

numbers were achieved with the material choice.

Figure 4.17 Deviation from predicted limit for SGCI



113

Figure 4.18 Deviation from predicted limit for 51CrV4

4.2.2 Example Burn Threshold Diagram

Using the visual inspection method for detection of grinding burn as described in figure

3.14 of section 3.2.1.4, a sample burn threshold diagram was developed with a visually

determined limit. Figure 4.19 demonstrates the burn threshold diagram for SGCI with a

limit of grinding burn of 750°C, a similar demonstration with 51CrV4 was not possible

as all results presented a burnt surface. The limit of grinding burn was developed by

calculation using visual inspection to confirm the fit to the data set in the burn threshold

diagram as the threshold temperature increased. This methodology was adapted from

figure 2.29 of section 2.4.1. The minimum specific grinding energy from results is

estimated to be approximately equal to 13J/mm3, giving a value of specific grinding

energy transferred to the workpiece3 u0 equal to 5.85J/mm3. The burn threshold diagram

therefore shows a much higher temperature for the limit of grinding burn than was

experienced in practice.

3 Malkin & Lenz (1978) and Malkin (1989) assume that all specific grinding energy is transferred to the
workpiece except for 55% of the chip formation energy during optimal cutting conditions



114

Figure 4.19 Burn threshold diagram limit 750ºC

Table 4.8 demonstrates the range of temperatures over which thermal damage occurs

based on temperature estimations calculated using the circular arc of heat contact model

of Rowe & Jin (2001). The results show that grinding burn in the finished surface

appears to occur over a range of temperatures, specifically an estimated temperature rise

between 75 and 120°C, which should be considered low for the onset of physical or

metallurgical change.

Surface Condition Estimated Temperature Rise

Unburnt 0 - 120°C

Burnt 75 - 950°C

Table 4.10 Typical surface temperature ranges for burnt and unburnt surface
condition with oil based grinding fluid

The burn threshold model of figure 4.19 is therefore shown to give some distinction

between a good surface and a burnt surface, however the temperature calculated as

required to achieve that limit is significantly larger than that determined by the circular

arc of heat contact model of Rowe and Jin (2001). The same results set of figure 4.19

are presented in figure 4.20 with the vertical axis replaced by the maximum surface

temperature rise. This results in a clear boundary at the lower end of the specific
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material rempoval rate spectrum towards the right of the horizontal axis, however as

specific material removal rates increase, the boundary is less clear.

Figure 4.20 Burn threshold with temperature

4.3 Summary

The results of the investigation of trends in specific grinding energy have shown an

asymptotic form of the specific grinding energy versus specific material removal rate

curve. However the approximation of a power law curve to the results sets recorded was

found to be inappropriate as results of specific grinding energy appeared to tend to some

constant value under increasing specific material removal rate. This constant value of

specific grinding energy was found to be consistent with or without the application of

grinding fluid for the limited results set considered.

The supply of grinding fluid to the workpiece has been shown in surface grinding to

result in an increased total power requirement. The net grinding power requirement is

however reduced when grinding fluid is supplied. For cylindrical grinding, the

differences between oil and water based grinding fluids showed a similar effect on the

total grinding power, yet the net grinding power was significantly reduced with the use

of oil based grinding fluid.
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In cylindrical traverse grinding, the tendency to a constant value of specific grinding

energy has been shown similarly to surface grinding. However the constant value for

cylindrical grinding was shown to occur at much higher values of specific material

removal rate than for the surface grinding process with the same material. This suggests

that the constant specific grinding energy is not material driven. Results recorded at

varying values of feed per turn have shown the benefit of reducing this value to a

minimum in terms of total grinding power and hence power available to the machine

tool.

Finally the application of the results recorded to a burn threshold diagram typical of

Malkin & Lenz (1978) showed an inappropriately high burn threshold temperature. The

threshold line was estimated visually so as to lie between burnt and unburnt samples

recorded during grinding trials and gave a value of 750ºC, a factor of 5 greater than the

predicted values of temperature calculated from the circular arc of heat contact model.
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5 Thermal Profiling in High Efficiency Deep Grinding

Chapter 5 presents the thermal profiles and associated data from trials with low melting

point coatings in both surface and cylindrical traverse grinding, building a picture of the

thermal profile around the contact surface. The results also consider variations present

in the thermal profile when a shoulder is present as in profile grinding when compared

to the identical parameters for a conventional surface grind.

5.1 Surface Grinding

Section 5.1 considers the effect of the change from surface to profile grinding on the

thermal profile in the contact surfaces. The section compares the estimated surface

temperatures to those measured by the low melting point coating technique where

possible.

Finally the results will consider the response of the thermal profile to changes in the

grinding parameters. This will involve a basic look at the effect of changing the three

significant process parameters, width and depth of cut, and workpiece velocity.

5.1.1 Comparison of Temperatures in Surface and Profile Grinding

Composite micrographs for surface and profile grinding were collated as per the

description in section 3.3.1.4 for the trials summarised in table 5.1. During this process

it was found that a number of isotherms had failed to form in completion. As a result of

this, comparisons between surface and profile grinding focussed on the Bismuth

isotherm, which was seen to form successfully in all cases. Figure 5.1 shows a typical

Bismuth micrograph for surface grinding.

Trial Number ae (mm) b (mm) vw (mm/s) vs (m/s)

1 1 3 125 200

2 2 3 125 200

3 3 3 125 200

4 4 3 125 200

Table 5.1 Summary of surface and profile grinding parameters, trials were
repeated for both surface and profile grinding



Figure 5.1 Example of a Bismuth isotherm for
direction is away from the reader

Figure 5.2 presents the surface grinding isotherms as plots of relative position versus

melt depth. The results show little variation in the value of melt depth as the depth of

cut increases from 1mm to 4mm; this is in agreement with results demonstrated by

Sainz (2005) who also showed a limited variation in melt depth with increasing depth of

cut. The isotherms should be noted to be asymmetric, having a melt depth which

increases slightly from left t

the fluid application nozzle, which as described in section

wheel edge radius. As a result of this, the coolant application was offset to the left of the

sample (left of the x-axis in figure 5.2)
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Example of a Bismuth isotherm for trial 3 from table 5.1
direction is away from the reader

Figure 5.2 presents the surface grinding isotherms as plots of relative position versus

melt depth. The results show little variation in the value of melt depth as the depth of

to 4mm; this is in agreement with results demonstrated by

Sainz (2005) who also showed a limited variation in melt depth with increasing depth of

cut. The isotherms should be noted to be asymmetric, having a melt depth which

increases slightly from left to right. This is likely to be the result of the positioning of

nozzle, which as described in section 3.2.1.1, was targeted at the

wheel edge radius. As a result of this, the coolant application was offset to the left of the

axis in figure 5.2) as looking along the direction of the grind.

trial 3 from table 5.1 the grinding

Figure 5.2 presents the surface grinding isotherms as plots of relative position versus

melt depth. The results show little variation in the value of melt depth as the depth of

to 4mm; this is in agreement with results demonstrated by

Sainz (2005) who also showed a limited variation in melt depth with increasing depth of

cut. The isotherms should be noted to be asymmetric, having a melt depth which

o right. This is likely to be the result of the positioning of

, was targeted at the

wheel edge radius. As a result of this, the coolant application was offset to the left of the

as looking along the direction of the grind.
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Figure 5.2 Plot of relative position versus melt depth for Bismuth isotherm
(parameters); the limiting depth for Takazawa’s approximation is
0.75mm

A typical composite micrograph for profile grinding trials is presented in figure 5.3 and

demonstrates the form of the isotherm recorded. To recall, measurement was achieved

via the overlay of a Cartesian co-ordinate system with the axis parallel surface selected

as the x-axis and the sidewall as the y-axis. The corner radius required a method of

measurement which would allow for the melt depth perpendicular to the surface to be

measured. This was achieved by geometrically estimating the centre point of the wheel

edge radius and developing a series of straight lines at 22.5º, 45º and 67.5º from the

vertical as shown in figure 5.3. These lines were perpendicular to the wheel edge radius

surface and their intersection with the isotherm provided the melt depth required.
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Figure 5.3 Typical Bismuth isotherm with Cartesian grid overlaid and highlighting
the method used for measurement of the isotherm perpendicular to the
corner radius

Profile grinding trials were again recorded as plots of relative position versus melt depth

of the isotherm. Figure 5.4 shows results for the Bismuth isotherms for trials

summarised in table 5.1. Results presented in this way are divided into the three

sections as marked. The plot shows an increasing melt depth as the relative position

moves down the side face contact surface, and approaches the edge radius contact

surface. The melt depth can then be seen to increase sharply around the edge radius as

the relative position moves towards the peripheral face contact surface before showing a

steady increase in melt depth as the edge of the sample is approached.
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Figure 5.4 Relative position versus melt depth for Bismuth isotherms recorded in
profile grinding of 51CrV4 with increasing depth of cut

Figures 5.5 to 5.8 combine results for surface and profile grinding trials for the grinding

parameters summarised in table 5.1. The results show there is an effect on the peripheral

face temperature when profile grinding compared to surface grinding with the same

grinding parameters. The melt depth of the Bismuth isotherm is seen to consistently

increase as a result of the presence of the profile or grinding shoulder. The increase in

melt depth between plain surface and profile grinding shown in figure 5.5 to 5.8 also

appears to be relatively consistent, ranging between 0.5mm towards the corner radius to

0.9mm at the sample side. This increase can be wholly attributed to the presence of the

shoulder as the effect of depth of cut on the axis parallel surface is understood to be

negligible with increasing depth of cut. However it is not possible from this trial to

determine whether there is an effect of coolant deflection and positioning.
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Figure 5.5 Comparison of changes in the Bismuth isotherm as a result of the
grinding shoulder for 1mm depth of cut

Figure 5.6 Comparison of changes in the Bismuth isotherm as a result of the
grinding shoulder for 2mm depth of cut
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Figure 5.7 Comparison of changes in the Bismuth isotherm as a result of the
grinding shoulder for 3mm depth of cut

Figure 5.8 Comparison of changes in the Bismuth isotherm as a result of the
grinding shoulder for 4mm depth of cut

The results presented in figures 5.6 to 5.8 also demonstrated the limited effect of depth

of cut on the surface temperature (by proxy of the melt depth). Shown in figure 5.9, the

depth of cut can be seen to increase the specific material removal rate whilst having a
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negligible effect on the maximum melt depth of the isotherm in surface grinding and the

peripheral face in profile grinding. For the side face in profile grinding, the increase in

depth of cut is shown to increase the melt depth in the side face.

Figure 5.9 Comparison of the surface and profile melt depths with increasing depth
of cut

Figures 5.10 to 5.12 consider the variation in the measured power and specific grinding

energy corresponding to the temperature measurement trials summarised in table 5.1.

Figure 5.10 shows a plot of specific material removal rate versus the total power

requirement of the grinding process. As specific material removal rates increase, the

shoulder appears to exert a consistent increase in power requirement on the machine

tool. The small variation in total grinding power between surface and profile grinding at

a value of 125mm3/mm·s is thought to be the result of the small depth of cut

encountered and hence minimal coolant deflection by the body of the workpiece.
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Figure 5.10 Specific material removal rate versus total power showing variation
between surface and profile grinding

Figure 5.11 shows a plot of specific material removal rate versus net grinding power.

The trend is similar to that shown for total grinding power in figure 5.10, again the

small variation in net grinding power at a value of 125mm3/mm·s is thought to be the

result of limited coolant deflection by the shoulder.

Figure 5.11 Specific material removal rate versus net grinding power showing
variation between surface and profile grinding
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The resulting plot of specific material removal rate versus specific grinding energy is

shown in figure 5.12. As may be expected the specific grinding energy requirement is

increased for profile grinding as compared to surface grinding. However the change in

specific grinding energy is only small varying between 3% to 10% and could fall within

the error of the system or be the result of wheel wear. It should be noted that this curve

differs from that presented in figure 4.2 showing a series of much higher specific

grinding energies. This is thought to be the result of wheel wear.

Figure 5.12 Specific material removal rate versus specific grinding energy for
surface and profile grinding

Figure 5.13 shows the estimated temperatures from the circular arc of heat contact

model and those estimated from the low melting point coatings. A clear increase in

temperature in the peripheral face surface is present in profile grinding when compared

to surface grinding. This is expected from the melt depth variation in figures 5.5 to 5.8

and the trends of the specific grinding energy curve of figure 5.12. A single line

represents values predicted from the circular arc of heat contact model. The model

consistently predicted temperature rises greater than the melting temperature of the

material. In this case the temperature was estimated to be close to the melting

temperature of the material at 1350ºC. This resulted in the temperature being equivalent

in both surface and profile grinding and further shows a temperature reduction as a
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result of the energy partitioned to the finished workpiece surface decreasing with the

increasing depth of cut.

Figure 5.13 Temperatures in the finished peripheral face surface for surface and
profile grinding and as predicted from the circular arc of heat contact
model

5.1.2 The Effect of Grinding Parameters on Temperatures around the Profile

Section 5.1.2 shows the effect of changes in grinding parameters on the temperature

around the profile, table 5.2 summarises the parameters used. Graphs of relative

position versus melt depth are shown in figure 5.14 to 5.17 with trial numbers

corresponding to table 5.2. These demonstrated the similarity between the forms for

similar parameters with the Indium low melting point coating. The results showed an

increase in the melt depth between the first (dotted line) and second (solid line) of the

repeat runs shown in the individual figures which is thought to be the product of wheel

wear. The results show that the trend of the isotherm is similar for similar grinding

parameters and also exhibits a series of similar trends between grinding parameters for

the three sections highlighted.
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Trial Number ae (mm) b (mm) vw (mm/s) vs (m/s)

1 4 3 75 200

2 2 1 75 200

3 4 1 125 200

4 2 3 125 200

5 2 3 125 200

6 4 1 125 200

7 4 3 75 200

8 2 1 75 200

Table 5.2 Summary of profile grinding trial parameters

Figure 5.14 Relative position versus melt depth for trial 4 & 5
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Figure 5.15 Relative position versus melt depth for trial 3 & 6

Figure 5.16 Relative position versus melt depth for trial 2 & 8
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Figure 5.17 Relative position versus melt depth for trial 1 & 7

Figures 5.18 and 5.19 show a basic study of the effects of the selected grinding

variables on the melt depth of the isotherm. Given the limited number of test pieces

available, a statistical validation of the results was not achievable, requiring a minimum

of 3 samples at each of the levels of the trial. However, the results do indicate the trend

established by changing the particular variable. For both the side face and the peripheral

face contact surfaces, the workpiece feedrate reduced the thermal penetration during

grinding contrary to the findings of Sainz (2005). The increase in the width of cut

resulted in an increase in the thermal penetration into the peripheral face contact

surface, whilst at the same time having no significant effect on the thermal penetration

into the sidewall. The depth of cut can be seen to produce a limited increase in the

thermal penetration into the sidewall; however there is no significant change in the

thermal penetration into the axis parallel surface.
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Figure 5.18 Effects of the variables on the melt depth in the peripheral face contact
surface during simple surface profile grinding

Figure 5.19 Effects of the variables on the melt depth in the side face contact surface
during simple surface profile grinding

The effect of the width of cut is seen to increase the temperature in the peripheral face

contact surface. This can be considered significant when taken in conjunction with

results from section 4.1.2, which suggested lower total grinding power requirements

with decreasing feed per turn in cylindrical traverse grinding. This confirms that a small

width of cut or feed per turn is desirable in the selection of grinding parameters for

processing at high specific material removal rates.

Results from the trials summarised in table 5.2 were also used to develop figures 5.20 to

5.22 considering the effects of the variables on the total and net grinding powers and the

specific grinding energy. Both figures 5.20 and 5.21 present similar forms and suggests

increases in power requirements for increasing both the depth of cut and the workpiece

feedrate. The width of cut suggests a neutral effect; however there is evidence of a high
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level of interactivity between the high and low values. This requires further analysis

before a conclusion can be drawn.

Figure 5.20 Effects of the variables on the total grinding power

Figure 5.21 Effects of the variables on the net grinding power

Figure 5.22 shows that increasing the workpiece feedrate resulted in a neutral effect on

the specific grinding energy although there is the potential for some interaction here.

The width of cut and depth of cut showed a reduction in specific grinding energy as

values were increased.



133

Figure 5.22 Effects of the variables on the specific grinding energy

During the testing of the variables on temperatures around the profile, a series of wear

tests were interspersed to test the effect of the wheel wear on the temperature profile.

Tests were standardised with the following parameters:

vw = 125mm/s

ae = 2mm

b = 2mm

vs = 200m/s

Figure 5.23 shows results for the melt depth for the Bismuth low melting point coating

in both the peripheral and side faces and suggests a negligible changes in the melt depth

in both surfaces. However, this requires further investigation to validate as results fall

within the error range of the system and the test range was small. Further it would

appear to contradict the changes in melt depth witnessed in figures 5.14 to 5.17, where

increases in melt depth were experienced as a result of wheel wear.
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Figure 5.23 Effect of wear on the temperature profile in surface grinding

5.2 Cylindrical Traverse Grinding

The study of cylindrical traverse grinding initially considered a high feed per turn under

conditions designed to generate a high grinding temperature with parameters

summarised in table 5.3. Composite micrographs for these conditions are presented in

figure 5.24 to 5.27 for the Indium low melting point coating isotherms. Unlike the

profile grinding trials presented in section 5.1.1, the continuation of the axis parallel

surface shows the isotherm in near completion.

Trial Number ae (mm) vt (mm/min) vw (RPM) b (mm) vs (m/s)

1 3 60 6 10 150

2 3 60 12 5 150

3 3 120 24 5 150

4 3 60 24 2.5 150

Table 5.3 Summary of cylindrical traverse grinding parameters

The profile of the isotherm in cylindrical traverse grinding was measured similarly to

the surface grinding trials. Results were again measured by overlaying a Cartesian

coordinate system, with the peripheral edge surface taken as the x-axis. There is

evidence of wheel lean shown under microscopy in figures 5.24 to 5.27. This effect was
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incorporated by measuring the surface in conjunction with the isotherm to allow an

accurate measure of depth from the ground surface.

Figure 5.24 demonstrates a complete isotherm in the ground surface for a feed per turn

of 10mm using the grinding parameters summarised in table 5.3. The length of the

isotherm was measured at approximately 12mm compared to the 10mm width of cut

specified by the grinding parameters. This is thought to be the effect of the wheel

contact being greater than the width of cut, thus the tail of the isotherm is extended

slightly beyond the width of cut.

Figure 5.24 Indium isotherm for trial 1
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The isotherms presented in figures 5.25 and 5.26 show a width of cut of 5mm and

demonstrate the first instance of the isotherms appearing to form a string of beads along

the workpiece surface.

Figure 5.25 Indium isotherm for trial 2

Figure 5.26 Indium isotherm for trial 3

The composite image shown in figure 5.27 demonstrates a series of well defined,

complete isotherms. Measuring between the intersections of the isotherms demonstrates

a length equivalent to the feed per turn or width of cut. In the case of figure 5.27, this

length is equal to 2.5mm. When considering cylindrical traverse grinding with a high
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feed per turn, this effect could be significant for non-destructive testing methods. The

variation in temperature across the finished surface may mean the temperature peak and

hence greatest damage level may not be fully detected.

Figure 5.27 Indium isotherm for trial 4

Figure 5.28 demonstrates a plot of relative position versus melt depth for trials in

cylindrical traverse grinding. As for surface grinding the depth of penetration into the

sidewall increases towards the leading edge radius, however the melt depth transitions

much more smoothly into the peripheral edge than for surface grinding. The smoother

transition from leading edge to peripheral edge is likely to be the result of both the

increased corner load and the apparent lean of the wheel. At this stage the highest heat

flux is still seen to be into the peripheral edge contact surface, indicating that the

traverse may not be creating the primarily face grinding conditions expected.
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Figure 5.28 Plot of relative position versus melt depth

The second stage of the study of cylindrical traverse grinding considered processing at

high RPM with the low widths of cut recommended from results in section 4.12. Figure

5.29 shows a typical isotherm for these high RPM trials with a Bismuth low melting

point coating. This was typical of the isotherms recorded throughout the high RPM

trials and is significant in the fact that the melt depth is extremely small, being of the

order of 50 to 200µm.
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Figure 5.29 Typical Bismuth isotherm taken during Superabrasive Turning process

Figure 5.30 shows a plot of relative position versus melt depth with the Bismuth

isotherm for parameters summarised in table 5.4, this demonstrates a small variation

between the leading edge radius and the peripheral edge. The melt depth in the leading

edge radius is also higher in value than the peripheral edge unlike previous results

where the trend was for an increase in the melt depth from sidewall to surface in both

simple surface profile grinding and cylindrical traverse grinding.
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Figure 5.30 Relative position versus melt depth

Trial Number ae (mm) vt (mm/min) vw (RPM) b (mm) vs (m/s)

1 1 50 250 0.2 150

2 1 100 500 0.2 150

3 1 150 750 0.2 150

4 1 200 1000 0.2 150

Table 5.4 Summary of grinding parameters at high values of RPM

Table 5.5 shows the maximum measured and predicted surface temperature rise (Ts)

where possible for the peripheral edge contact surface for all cylindrical grinding trials

undertaken. The results show a significant discrepancy in the value recorded and that

predicted with the circular arc of heat contact model for trials at specific material

removal rates between 70 and 300 mm3/mm·s. This is thought to result from the

assumption in the circular arc of heat contact model that the whole of the heat flux,

derived from the net grinding power, is passing through the axis parallel interface

between the wheel and workpiece.
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Q’w

(mm3/mm·s)
Ptot

(kW)
Pnet

(kW)
ec

(J/mm3)
Ts (ºC)

Estimated
Ts (ºC)

Measured

970 9.2 2.1 10.6 N/A 720min

1940 11.0 3.9 10.2 N/A 670min

2910 13.0 6.0 10.4 N/A 650min

3870 15.5 8.9 11.5 N/A 640min

72 19.0 11.1 15.5 870 1040

143 18.1 10.7 15.0 1080 420

287 25.8 18.3 12.8 990 460

287 17.4 10.1 14.1 990 550

Table 5.5 Comparison of measured and calculated temperatures for CTG

Section 3.3.2.3 considered the effect of high workpiece speeds with large heat fluxes on

the thermal profile in the surface using the ANSYS suite of software. This was

undertaken primarily to ensure that trials at high specific material removal rates were

viable. The trend of the thermal profile in this principal study suggested that although

heat fluxes and temperatures at the surface could be very high, the overriding effect of

the high workpiece speeds was to reduce the penetration of thermal effects into the

surface.

As predicted by the ANSYS software and shown in figure 5.30 above, the typical melt

depth is low in spite of a high heat flux across the section. Given the heat flux is a

derivative of the net grinding power and that the contact area and feed per turn remain

constant, figure 5.31 shows a plot of the net grinding power versus the maximum melt

depth in the peripheral edge contact surface. Whilst the net grinding power and hence

heat flux to the surface continue to increase, the melt depth is shown to decrease with

increasing specific material removal rate. Net grinding power was used here in favour of

heat flux as the precise partitioning of heat flux to the surface was unknown.
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Figure 5.31 Trends in melt depth in Bismuth with net grinding power

The resulting melt depth in the surface can be thought to represent the temperature

gradient in the workpiece surface, with low melt depths representing a high temperature

gradient. Table 5.4 highlighted high values of minimum surface temperature measured

in the peripheral edge contact surface at stock removal rates between 970 and

3870mm3/mm·s. These temperatures would undoubtedly result in grinding burn of the

workpiece surface. Figure 5.32 shows the melt depth achieved with the Indium low

melting point coating as specific material removal rates increase. As high specific

material removal rates are achieved, the melt depth becomes significantly reduced, with

actual values approaching 100µm. Given the melting temperature of the Indium

isotherm is 156ºC, the surface would be in excellent condition, with the full possibility

of damaged material being removed in subsequent finishing passes.
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Figure 5.32 Typical melt depth in surface with Indium isotherm for CTG showing a
power law relationship between specific material removal rate and melt
depth

5.3 Summary

The results for surface grinding trials have shown that the effect of the change from

surface to profile grinding is to increase the temperature in the peripheral face contact

surface. The surface grinding trials also compared the estimated surface temperatures to

those measured by the low melting point coating technique where applicable. Shown in

figure 5.13 the circular arc of heat contact model does not adequately differentiate

between surface and profile grinding. This is thought to be the result of the lack of

knowledge of partitioning between side face, edge radius and peripheral face contact

surfaces of the total grinding powers and energies.

The thermal profile responds to changes in the grinding parameters. Although requiring

further investigation, the results have demonstrated that the peripheral face contact

surface may be significantly affected by both the width of cut and the workpiece

feedrate. The side face contact surface appears to be affected by the feedrate alone.

It is unclear what effect the coolant plays on the variation in temperature between the

surface and shoulder grinding conditions. The changes in temperature can be attributed
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to the addition of a shoulder and the coolant is believed to be at a sufficient temperature

to have boiled out. The possibility must therefore be acknowledged that some of the

effect may have resulted from the deflection of the coolant from the contact zone when

grinding profiles.

The temperature at the finished surface appears to be no indicator of the depth of the

thermally affected layer. Results in section 5.2 have demonstrated that whilst

temperatures at the finished surface can be high, the penetration can be sufficiently low

for subsequent removal of the affected layer, recalling that the HEDG process is a stock

removal process and not a finishing process.
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6 Discussion

Chapter 6 provides analysis of the results presented in chapters 4 and 5 of the thesis.

The objective of this analysis was to demonstrate those trends and relationships which

would further the understanding of the temperatures and energy partitioning in the

process. The results of chapters 4 and 5 highlighted 3 key areas for further analysis,

these were:

1. Application of the power law relationship considered by Stephenson & Jin

(2003) to the results presented in chapter 4

2. Modelling of the threshold of grinding burn via a modification of the Malkin &

Lenz (1978) model

3. The relationship of the thermal effects between the sidewall and wheel-axis

parallel surface

6.1 Application of Power Law Relationships between Specific Material Removal

Rate and Specific Grinding Energy

Chapter 4 of the thesis demonstrated the application of a power law approximation to

graphs of specific material removal rate versus specific grinding energy after

Stephenson & Jin (2003). The power relationship for the limited specific material

removal rates demonstrated did not hold well for values outside the range of specific

material removal rates specified. This analysis will consider all values of specific

material removal rate, discussing methods of approximation for large removal rate

ranges.

6.1.1 Surface Grinding

Surface grinding trials considered the machining of two materials, a spheroidal grey cast

iron (SGCI) and a low alloy steel (51CrV4). Recalling results presented in section 4.1.1,

figures 4.1 & 4.2 showed the relationship between specific material removal rate and

specific grinding energy for SGCI and 51CrV4 and the tendency towards a constant

specific grinding energy.

A constant value of specific grinding energy was present beyond specific material

removal rates of approximately 50mm3/mm·s where the minimum specific grinding

energy for the process was achieved and therefore a different kind of approximation was
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required. Separating results for both SGCI and 51CrV4 by a specific material removal

rate of 50mm3/mm·s and applying results for all wheel speeds a new approximation was

proposed. Table 6.1 demonstrates that when constant values are present above

50mm3/mm·s, the specific grinding energy could be equated to a simple value.

Q’ range Type Material Approximation

0 – 50 Power law SGCI A= 38 t=0.34

50 – max Constant SGCI S.G.E.= 13

0 – 50 Power law 51CrV4 A=52 t=0.34

50 – max Constant 51CrV4 S.G.E.= 16

Table 6.1 Approximation of the Specific Grinding Energy curve for surface
grinding showing estimated constant values of Specific Grinding Energy

Analysis of the specific grinding energy curves suggested a constant grinding energy for

SGCI of 13J/mm3 and 16J/mm3 for 51CrV4. Section 4.1.1 considered the specific

grinding energy curves for the two materials and showed a difference in constant

grinding energy with material choice. SGCI whose high carbon content results in a free

cutting nature was shown to have a lower constant value of specific grinding energy

than 51CrV4. Further, the power law relationship showed a similar value for the

constant t, understood to be related to the chip formation process, and a variation in the

value of the constant A, understood to be related to the workpiece material properties.

Section 4.1.3 highlights variation in specific grinding energy with wheel wear. Figure

4.16 showed increases in the specific grinding energy for cylindrical traverse grinding at

values close to the constant specific grinding energy recorded. This supports the case for

constant values of specific grinding energy being primarily driven by contact and

cutting conditions rather than material property. The effect of the wheel wear moves the

grit action towards ploughing and sliding and away from cutting as the contact becomes

less sharp. This changes the cutting dynamic and increases the specific grinding energy

required to remove material.

Constant values of specific grinding could be explained by the chip formation process

theory. Shaw (1996) shows a relationship between the specific grinding energy ec and

the chip thickness t for metal cutting processes, where:
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Where n is a constant between 0 and 1 dependent on the material removal regime under

consideration.

If the removal rate has increased such that the abrasive grit achieves a full plunge depth

on each grinding pass, then theoretically the chip thickness approaches a constant value.

Thus the relationship shown in Shaw (1996) would tend to a constant value of specific

grinding energy.

6.1.2 Cylindrical Traverse Grinding

Unlike surface grinding, cylindrical traverse grinding trials only considered the low

alloy steel 51CrV4. A constant value of specific grinding energy was apparent for both

oil and water based grinding fluids as specific material removal rates were increased.

However, for cylindrical traverse grinding the change between power law and constant

regions occurred at a greater value than for surface grinding. Table 6.2 demonstrates

this transition occurring at a stock removal rate of approximately 175mm3/mm·s with a

constant specific grinding energy of 8J/mm3 for water based grinding fluids and

1000mm3/mm·s with a constant specific grinding energy of 11J/mm3 for oil based

grinding fluids. Values as low as 5J/mm3 were recorded in initial investigations with oil

based grinding fluid when wheel was very sharp.

Later results taken during the PVD coating trials, indicated a minimum specific grinding

energy close to 10J/mm3. This value is likely to be increased from earlier trials as a

result of the wheel experiencing significant wear during aggressive processing.

Fluid Type Q’w (mm3/mm·s) Type Material Approximation

Water 0 – 175 Power law 51CrV4 A=34 t=0.28

Water 175 – max Constant 51CrV4 S.G.E.= 8

Oil 0-1000 Power law 51CrV4 A=30 t=0.15

Oil 1000-max Constant 51CrV4 10.7

Table 6.2 Approximation of the Specific Grinding Energy curve for cylindrical
traverse grinding showing estimated constant values of Specific
Grinding Energy
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The apparent tendency to a constant value of grinding energy suggests that some

limiting effect has been approached. Malkin (1986) suggests that this is the result of the

shear energy during chip formation approaching the melting energy of the material.

However melting energy for pure iron approaches 11J/mm3, this would seem to

contradict results found in this research with minimum values recorded approaching

values as low as 8J/mm3 and early tests achieving 5J/mm3.

One possible explanation of this smaller than expected specific grinding energy is the

behaviour of the abrasive grit and the interaction of sliding, ploughing and cutting or

shearing energies at high removal rates. When moving towards high removal rates, the

abrasive grits behave like micro cutting tools, primarily cutting or shearing material

with less of the energy being consumed by ploughing and sliding. This allows a lower

value of specific grinding energy than first postulated to be approached. The constant

specific grinding energy is the result of the grit spacing on the surface. At high removal

rates the voids between the grits can become clogged with material, reducing their

ability to cut and increasing their tendency to plough and slide reducing wheel

performance.

Prediction of the specific grinding energy curve from grinding parameters is not

currently possible without the application of a series of trials to develop a grinding

curve for the process. By undertaking preliminary trials with a conditioned wheel, the

form of the curve can be established allowing the process developer to predict burn

thresholds. Given the link between material properties, the chip formation process and

the specific grinding energy, it is recommended that further investigation is undertaken

into the development of the specific grinding energy from the chip formation process.

6.2 Model of Burn Threshold

Results in chapter 4 presented a burn threshold diagram based on the theory presented

by Malkin & Lenz (1978) in which a limiting threshold temperature line was formed.

The temperature of the limiting threshold for results in SGCI demonstrated in figure

4.17 of section 4.2.2 was estimated according to the model of Malkin & Lenz (1978)

and assessed to be approximately 750°C. It is understood from the literature review that

the onset of tensile residual stress can begin from much lower values with Chen at al.

(2000) demonstrating values in EN9 between 200°C and 250°C.
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The assumptions upon which this threshold model is based were discussed in the

literature review and shown to be inappropriate for the assessment of the HEDG

condition. Rowe & Jin (2001) amongst others demonstrated a model which, unlike

Malkin & Lenz (1978), considered the effect of the wheel workpiece contact angle and

also the contact layer theory presented by Tawakoli (1993) to the grinding process.

These models demonstrated the possibility for a much higher quantity of energy to be

distributed to the grinding chip, whilst the increasing contact angles can result in a

lower than expected heat flux to the workpiece. It was therefore necessary to develop

the model of burn threshold to account for this change in modelling theory.

Malkin & Lenz’s (1978) modelling of the burn threshold demonstrated a relationship

between the function of grinding parameters 2
1

4
3

4
1 

 wee vad and the specific grinding

energy. This relationship is derived from the model of Jaeger (1942) describing the

relationship between the Peclet number and the dimensionless surface temperature for a

sliding heat source. Using the model presented by Rowe & Jin (2001) the approach of

Malkin & Lenz (1978) can be reconsidered to create a new model of burn threshold

dependent on the easily measured and predicted parameters of speeds, feeds and

specific grinding energy.

Following the equations presented by Malkin & Lenz (1978) and further in Malkin

(1989), the maximum dimensionless surface temperature m is a function of the

maximum surface temperature incurred, where:

m

w

w
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vk





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
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Equation 6.1

Where  is the thermal diffusivity of the workpiece material and is defined by:

c

k





 Equation 6.2

The maximum surface temperature m from the circular arc of heat contact model after

Rowe & Jin (2001) is of the form:
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 Equation 6.3

Where C is the temperature constant for workpiece conduction quantifying the effect of

contact angle on the contact zone temperature and:

ckw   Equation 6.4

Equation 1 can be rearranged in terms of the maximum surface temperature such that:
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Equation 6.5

Combining equations 6.3 and 6.5 to equate the maximum surface temperature equations

produces the following relationship:
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Equation 6.6

Equation 6.6 was then rearranged to give the dimensionless temperature in terms of the

grinding variables and thermal properties of the workpiece, where:
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Cancelling out like terms gives:

w

cw

w

m
v

lvk
C 













2

1
Equation 6.8

Given that Peclet number L is defined as:






4
cw lv

L Equation 6.9

Terms relating to thermal diffusivity  , workpiece speed wv and contact length cl

were gathered inside the square root to give:
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The formula for dimensionless temperature could then be represented in terms of Peclet

number L where:
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Equation 6.11

Recalling equations 6.2 and 6.4 w was first expanded to give:
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Folowed by  to give:
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Finally equation 6.13 was reduced to give the dimensionless temperature in simplest

terms corresponding to the relationship proposed by Malkin & Lenz (1978)

2
1

LCm   Equation 6.14

The relationship considered in equation 6.14 was compared to the graphical relationship

presented by Malkin & Lenz (1978). Figure 6.1 shows the original relationship

presented by Malkin compared to that newly developed in this thesis. Data points were

taken from the results described in section 4.1.1 for workpiece feedrates of 2500mm/s

and wheel speeds of 150m/s. It can be seen that the new model deviates from the

original as a result of the inclusion of the C-factor; this deviation becomes more

significant as the Peclet number is increased into the HEDG regime at values typically

in excess of 40.
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Figure 6.1 Comparison of the relationship between Peclet number and
dimensionless temperature for the new relationship presented in
equation 6.14 versus the original relationship considered by Malkin &
Lenz (1978)

Following the methodology suggested by Malkin (1989), equations 6.1 and 6.14 were

combined, such that:
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This was rearranged to give the maximum contact temperature in terms of Peclet

number L, where:
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Expanding the Peclet number into simplest terms, gave the dimensionless temperature

in terms of basic grinding parameters, where:
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Contact length was then expanded into simplest terms, to give:

  2
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And substituted such that:
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Simplifying equation 6.20 m can then be rewritten as:
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The mean heat flux in the contact zone in the circular arc of heat contact model is

described in terms of the total heat flux, where:

tww qRq  Equation 6.22

Where Rw is the wheel partition ratio and for purposes of this thesis is calculated using

the ratio developed in equation 6.22, substituting equation 6.22 into equation 6.21 gives:
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The total heat flux tq can be written in terms of the grinding parameters, where:

c
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v
aeq  Equation 6.24

And recalling, that:

  2
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eec dal 

substituting equation 6.24 into equation 6.23 gives:
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Grinding burn takes place in the finished workpiece surface. The above gives details of

equations leading to the maximum contact temperature, which is appropriate if

assuming all energy in the contact surface is transferred to the workpiece. The circular

arc of heat contact model assumes that there is a factor relating contact and finished

surface temperatures, which accounts for the angle of inclination of the contact surface.

Therefore the maximum surface temperature can be described as:
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Equation 6.26 was rearranged to give temperature changes in terms of specific grinding

energy, where:
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Where A is a dimensionless variable relating to contact and material condition and is

equal to:

wco
fi RCA  Equation 6.28

Values of C and fi/co were calculated using a Matlab model for prediction of their values

from the contact angle and Peclet number.

Recalling results for the comparison of Peclet number versus dimensionless temperature

(figures 4.17 & 4.18 of section 4.1.1), a deviation from the linear relationship proposed

by Malkin & Lenz (1978) occurs. The onset of deviation was determined by the

workpiece speed as may be expected given the contact layer theory presented by

Tawakoli (1993). However, the revised burn threshold diagram developed considers

results by common wheel speed as this value is not accounted for in the relationship.

Figure 6.2 applies the new approach to results for SGCI summarised in Table 6.3 and

demonstrates the variation between the two burn threshold processes for a limiting

temperature rise of 150°C. A fundamental change in the threshold condition is

experienced at the very high removal rates represented at the far left of the x-axis. This
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form is the result of the energy partitioning theory associated with the HEDG regime, as

specific material removal rates increase into HEDG conditions the temperature in the

finished surface is reduced by a process of increasing heat flux to the chip and the

favourable contact angle.

Figure 6.2 Limiting threshold curves for a temperature rise of 150ºC, comparing the
original Malkin model to the model described in equation 6.27

Material ae (mm) b (mm) vw (mm/s) vs (m/s) Q’w (mm3/mm·s)

SGCI 0.5 – 7 5 2500 150 20 – 300

Table 6.3 Grinding parameters for plot of 2
1

4
3

4
1 

 wee vad versus Specific Grinding

Energy

Application of the new burn threshold methodology to results for the grinding of SGCI,

revealed an excellent approximation of the burn threshold for a threshold temperature of

150°C. Figures 6.3 to 6.5 describe the burn threshold curve for values of grinding

parameters at wheel speeds of 50ms/, 100m/s and 150 m/s for the parameters

summarised in table 6.4. This demonstrates the curve separating the regions of burnt

and unburnt samples offers an improved approximation at an appropriate temperature

over the original straight line presented by Malkin & Lenz (1978).
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Figure 6.3 Burn threshold diagram demonstrating a limiting threshold for a
temperature rise of 150ºC for wheel speeds of 50m/s

Figure 6.4 Burn threshold diagram demonstrating a limiting threshold for a
temperature rise of 150ºC for wheel speeds of 100m/s
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Figure 6.5 Burn threshold diagram demonstrating a limiting threshold for a
temperature rise of 150ºC for wheel speeds of 150m/s

ae (mm) b (mm) vw (mm/min) vs (m/s)

0.5 – 9 5 – 2 0.83 – 125 50 – 150

Table 6.4 Summary of grinding parameters for burn threshold diagram trials

6.3 Temperature Ratios

Two analyses were undertaken relating to the low melting point coating results. These

were designed to explore the feasibility of a common rule set for prediction of

temperatures in the profile grinding process. This was initiated with an analysis of the

melt depth in the sidewall and surface, considering how changes in one affect the other.

The relative heat flux to the regions of the profile will also be considered, calculated

from the temperatures recorded with the low melting point coatings.

6.3.1 Melt Depth Ratios

Variation in the melt depth between the vertical and horizontal surfaces of the grinding

regimes considered in chapter 5 appeared to show a regular change in the melt depths

with increasing specific material removal rates. The ratio of the maximum melt depth in

the vertical surface to the horizontal was compared to selected grinding parameters in an
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effort to clarify this relatioship. Table 6.5 summarises the grinding parameters

considered.

Material ae (mm) b (mm) vw (mm/s) vs (m/s) Q’w (mm3/mm·s)

Surface 51CrV4 2 – 4 1 – 3 75 – 125 200 150 – 500

Cylindrical 51CrV4 1 – 3 0.2 – 10 20 – 3900 196 70 – 3900

Table 6.5 Grinding parameters used in analysis of melt depth ratios

Results for surface grinding are shown in figure 6.6, demonstrating a plot of the ratio of

width of cut to depth of cut versus the ratio of the maximum melt depth in the vertical

surface to the maximum melt depth in the horizontal surface. This suggested that as the

width of cut was reduced in comparison to the depth of cut, the ratio of melt depths

followed a power law relationship. As such the possibility exists of predicting the

partitioning of the temperatures from the grinding parameters. Furthermore if the

temperature in one surface is known, the temperature in the second can be predicted.

Figure 6.6 The ratio of width of cut to depth of cut versus the ratio of the maximum
melt depth in the vertical surface to the maximum melt depth in the
horizontal surface for surface grinding

Repeating the same analysis for the cylindrical traverse grinding results shown in figure

6.7, demonstrated a similar relationship to that shown in surface grinding. Again as
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width of cut was reduced in relation to the depth of cut, the ratio of maximum melt

depth in the vertical surface to the horizontal followed a power law relationship.

Figure 6.7 The ratio of width of cut to depth of cut versus the ratio of the maximum
melt depth in the vertical surface to the maximum melt depth in the
horizontal surface for cylindrical traverse grinding

Overlaying results for surface and cylindrical traverse grinding, figure 6.8 suggests that

there is a relationship between the two ratios, independent of the grinding regime under

consideration.
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Figure 6.8 The ratio of width of cut to depth of cut versus the ratio of the maximum
melt depth in the vertical surface to the maximum melt depth in the
horizontal surface for all regimes

The power law approximation applied to the results in figures 6.6 to 6.8 follows the

relationship:

nxMy 

Where M and n are constants as described in table 6.6. It can be seen that values of M

and n fall within a similar range.

Figure Number M n

Figure 6.6 0.63 0.29

Figure 6.7 0.74 0.34

Figure 6.8 0.69 0.29

Table 6.6 Values of the constants M and n for the relationship between melt depth
and grinding parameter ratios shown in figures 6.6 to 6.8

Recalling the discussion of cylindrical traverse grinding (section 2.1.5), Nakayama et al.

(2004) suggested that a small width of cut at high work speeds presented an optimum

solution for the process. The very small widths of cut demonstrated here suggest that the

temperature in the leading edge and leading edge radius will be greater than the

peripheral face. However depths of penetration are low and the expectation of the small
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increase in leading edge and leading edge radius temperature can be easily predicted

and hence controlled.

6.3.2 Energy Partitioning in Surface & Cylindrical Traverse Grinding

Results for temperature measurement with low melting point coatings suggested a

significant surface temperature rise in the grinding profile. Hence contact temperatures

and the heat flux to develop these could also be assumed to be large. However the

variation in contact conditions between surface, corner and sidewall indicates that the

heat flux may not be consistent over all surfaces. For example the contact angle varies

from 0° in the sidewall to an inclined angle in the axis parallel surface dependent on the

wheel radius and depth of cut.

The low melting point coatings also suggested that the change in heat flux with contact

region was similar for trials in the same grinding regime. Given that contact areas

change consistently with changes in grinding parameters, partitioning of the heat flux by

percentage of contact area was considered. Figure 6.9 shows the areas in the wheel-

workpiece interface for surface grinding, with nomenclature presented in figure 6.10.

Areas represented may be calculated using the equations described in equations 6.29 to

6.31.

Figure 6.9 Areas of contact in surface grinding
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Figure 6.10 Nomenclature for surface grinding contact area calculations
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 wecsurf rblA  Equation 6.31

Figures 6.11 and 6.12 and equations 6.32 to 6.34 show the methodology for calculating

the contact areas in the profile in cylindrical traverse grinding. This is differentiated

from the surface grinding process as a result of the geometric interaction between two

cylinders, which forms an intersection of two arcs.
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Figure 6.11 Areas of contact in cylindrical traverse grinding

Figure 6.12 Nomenclature for cylindrical traverse grinding contact area calculation
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Figure 6.13 shows the area by percentage in the sidewall, corner and surface of the

wheel-workpiece contact zone for surface grinding. The results suggest the edge radius

has the lowest percentage of heat partitioning, this does not agree with temperature

measurement results shown in chapter 5. These demonstrate that the highest melt depth

and hence temperature was in the peripheral face, followed by the edge radius and then

the side face. Therefore it would be unlikely that the highest heat flux would be to the

side face, in spite of having the largest contact area. For this reason, no further

discussion was undertakne regarding cylindrical traverse grinding and its relationship to

contact areas.

Figure 6.13 Percentage of energy partitioned to the contact surfaces of the workpiece
as calculated from contact areas in the workpiece for surface grinding
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In order to estimate the heat flux to the workpiece in the various contact regions, the

measured temperature was used with the equations presented by Rowe & Jin (2001) to

estimate the relative heat flux. Table 6.7 presents the grinding parameters used.

Trial Number. ae (mm) b (mm) vw (mm/s) vs (m/s) Q'w (mm3/mm·s)

S1 1 3 125 200 125

S2 2 3 125 200 250

S3 4 3 125 200 500

S4 4 3 75 200 300

S5 2 1 75 200 150

S6 4 1 125 200 500

S7 2 3 125 200 250

S8 4 3 75 200 300

Table 6.7 Grinding parameters selected for analysis of relative heat flux to the
surface for surface grinding

Heat flux to the workpiece qw is estimated from the maximum contact temperature rise

Tmax using equation 6.35, where:

maxThq ww  Equation 6.35

Given hw can be calculated using equation 6.36, where:

c
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v
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Equation 6.36

In the surface, the contact length can be considered consistent across the width of cut,

however the sidewall and corner have a variable contact length. The contact length lc

was estimated geometrically using the knowledge of the peak temperature regions from

the isotherms recorded in chapter 5. For the edge radius and the side face, the peak of

the isotherm was the point closest to the surface.

Table 6.8 shows results for the heat flux to the workpiece for the surface grinding trials.

Where temperatures could not be measured accurately estimations of the minimum

temperature achieved were used. This was acceptable as the minimum temperature
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predicted values close to the melting point of the material thought to be the limit of

temperature in the workpiece, these results are marked with an asterisk. It should be

noted that the total summation of heat flux to the workpiece was greater in value than

that calculated from the net grinding power. This is thought to be the result of the

maximum temperature points being used in the calculation of the heat flux as opposed

to the average surface temperature. Further the analysis makes no account for the spread

of energy from the peripheral face contact surface into the side face, given that energy is

known to travel parallel to the ground surface, it is logical to assume that some heat

generated in the edge radius and side face would be the result of the temperature in the

peripheral face.

Trial Number Side W/m2 Corner W/m2 Surface W/m2 Total W/m2

S1 16958000 30276000 *41145000 88379000

S2 15866000 33070000 *38102000 87038000

S3 *17902000 *38351000 *38351000 94604000

S4 14259000 *30912000 *30912000 76083000

S5 11123000 22261000 24381000 57766000

S6 17649000 35818000 *38351000 91818000

S7 12251000 33070000 *38102000 83423000

S8 12297000 *30912000 *30912000 74121000

Table 6.8 Heat flux to the relative surfaces as calculated from the surface
temperature

Values for the relative heat fluxes as a percentage of the total estimated are shown in

figure 6.14. The percentage of energy partitioned appears consistent by location and

could therefore be considered independent of the grinding parameters used. As such,

partitioning is thought to be the result of the contact and cutting conditions alone and

being consistent by location on the contact surface.
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Figure 6.14 Percentage of energy partitioned to the contact surfaces of the workpiece
as calculated from measured temperatures in the workpiece surface for
surface grinding

Results recorded for temperatures in the surface grinding regime suggested that

sufficient temperatures in the contact zone had been achieved to result in boil-out of the

grinding fluid. Partitioning was therefore divided between the wheel, workpiece and

grinding chip. Using the measured temperatures, the heat flux to the grinding chip and

wheel were also estimated. Equation 6.37 shows the method of estimating the heat flux

to the grinding chip whilst equation 6.38 shows the method of estimating the heat flux

to the wheel given knowledge of the estimated heat flux to the workpiece.

c

w
mpch l
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aTcq   Equation 6.37
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Assuming that:

chswt qqqq 

Figure 6.15 shows the percentage of energy partitioned to the wheel workpiece and chip

for each of the regions of the profile combined. The trend was similar independent of

the region under consideration. However, this assumes that the chip formation processes
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are equivalent for all regions of the contact, even though contact conditions will vary

dependent on relative position.

Figure 6.15 Percentage of energy partitioned to the workpiece, wheel and grinding
chip as calculated from surface temperatures recorded in the workpiece
surface for surface grinding

The cylindrical traverse grinding regime also generated high temperatures and hence

high heat fluxes. Recalling equations 6.35 & 6.36, the energy partitioning for the profile

in the cylindrical traverse grinding regime was estimated. Table 6.9 shows the

experiments from which results were taken.

Trial
Number

ae

(mm)
vt

(mm/min)
vw

(RPM)
b

(mm)
vs

(m/s)
Q'w (mm3/mm·s)

C1 3 60 6 10 196 72

C2 3 60 12 5 196 143

C3 3 120 24 5 196 287

C4 3 60 24 2.5 196 287

Table 6.9 Grinding parameters selected for analysis of relative heat flux to the
surface for cylindrical traverse grinding

Table 6.10 discusses the partitioning between the three regions of the contact for the

results recorded. At the low values of RPM in cylindrical traverse grinding trials it was
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possible to get acceptable temperature measurements for all results. Similarly to surface

grinding the summation of the three regions leads to a higher value than that calculated

from the net grinding power. Again this is thought to be the result of the maximum

temperature points being used in the calculation of the heat flux.

Test no. Side W/m2 Corner W/m2 Surface W/m2 Total W/m2

C1 6324000 10365000 13014000 29704000

C2 4142000 6379000 7862000 18383000

C3 7285000 11338000 13408000 32031000

C4 10014000 15870000 15681000 41565000

Table 6.10 Heat flux to the relative surfaces as calculated from the surface
temperature for cylindrical traverse grinding

Figure 6.16 shows the partitioning for the three regions of the contact by percentage.

Similarly to surface grinding the values appear to be relatively constant again leading to

the assumption that the energy partitioned is linked to contact and cutting conditions.

Figure 6.16 Percentage of energy partitioned to the contact surfaces of the workpiece
as calculated from measured temperatures in the workpiece surface for
cylindrical traverse grinding

Figure 6.17 shows Analysis of the energy partition between workpiece, chip and wheel

by percentage using equations 6.37 and 6.38. It should be noted that in this case energy
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partitioning to the workpiece was relatively constant, with variation in energy to the

chip and wheel showing a similar trend to that for surface grinding.

Figure 6.17 Percentage of energy partitioned to the workpiece, wheel and grinding
chip as calculated from surface temperatures recorded in the workpiece
surface for cylindrical traverse grinding

Section 6.3 has shown a relationship between the temperature in the sidewall and axis

parallel surface of the trials undertaken. The heat flux partition calculated from the

temperature measurements also shows a consistent partitioning to the three regions of

the ground profile. Given knowledge of the total heat flux to the workpiece and its

partitioning, hot spots can be isolated and the temperature which these achieve can be

predicted. This allows the process designer to understand likely regions of damage and

adjust feeds and speeds appropriately to leave sufficient material for controlled removal

of damaged layers in subsequent finishing processes or to avoid parameters resulting in

grinding damage.

This study of the partitioning allows for a more accurate prediction of the temperatures

in the surface of the profile. Further we can now predict given knowledge of the

temperature in the axis parallel surface and the grinding parameters used, what the

temperature in the sidewall will be. This allows us to use the burn threshold model

described in section 6.2 for the axis parallel surface and know how the sidewall behaves

relative to this.
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6.4 Summary

The results discussed in section 6.1.2 and 6.1.3 suggest a constant value of specific

grinding energy at high removal rates. It can be seen that this minimum value is not

related to the melting energy described by Malkin (1986) and is often significantly

lower. Further, there is a disparity between the constant values of specific grinding

energy between surface and cylindrical traverse grinding when the same material is

ground. For this reason it is believed that the constant specific grinding energy

witnessed is driven by the contact and cutting conditions in the surface.

Limiting temperature thresholds in the burn threshold diagram have been modified to

incorporate the effect of the contact angle and the energy partitioning consistent with

the HEDG regime. The result is a threshold line whose temperature fits with the results

set witnessed in experimentation. However, the technique is limited to a single wheel

speed and threshold lines would need recalculating whenever a change in wheel speed

was undertaken.

Plots examining the ratio of the width of cut to the depth of cut and the effect of

changes in this ratio on the melt depth in the two surfaces have shown that a thin width

of cut can allow for an increased temperature in the sidewall over the surface. Further it

is possible to predict the temperature in the vertical surface given knowledge of the

predicted temperature in the horizontal surface and the grinding parameters at which

this was achieved.

Finally, energy partitioned to the regions of the profile and the trend of the energy

partitioned between wheel, workpiece and grinding chip have been presented. The lack

of correlation between the geometrical areas present in both the surface and cylindrical

grinding regimes suggests the source of heat to the relative surfaces is more complex

than first thought. A consistency of value for the regions of the profile suggests that a

predictive model can be derived from this work. It also provokes the idea that the axis

parallel surface generates some proportion of the heat in the sidewall and corner radius

and perhaps accounts for the disparity between results from temperature based

calculations of heat flux and the calculations applied via the net grinding power.
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7 Conclusions and Further Work

The study of temperatures in High Efficiency Deep Grinding has shown that for

cylindrical traverse grinding very high specific material removal rates up to

4000mm3/mm·s are achievable. In spite of heat fluxes to the workpiece surface

increasing greatly, the net depth of penetration of the thermally affected zone is

relatively small and indeed decreases with increasing specific material removal rate and

heat flux. The result of this is a process where high temperatures in the workpiece

surface are managed by a good knowledge of the depth of penetration with subsequent

removal of heat affected regions during finishing operations.

 Curves of specific grinding energy have been shown to have an asymptotic form

with increasing specific material removal rate. The specific grinding energy

appears to reach a constant value in all examples described in the chapters 4 &5.

Results presented for trials in SGCI suggested the constant value was

independent of the application of grinding fluid, leading to the conclusion that

the constant value is dependent on the cutting and contact conditions of the

grinding process in question. Significantly, the results have shown the constant

value of specific grinding energy to vary between different applications,

indicating an independence of workpiece material, unlike the work presented by

Malkin (1986) in which a minimum grinding energy was presented and linked to

the melting energy of the workpiece material.

 The selection and positioning of coolant in the grinding process is critical to the

success of those parameters considered in the thesis. The choice of coolant oil

over water based fluids for cylindrical traverse grinding significantly reduces the

net grinding power requirement and hence allows for a higher removal rate for

the same specific grinding energy to be achieved. This allows for higher removal

rates to be achieved before damage to the workpiece surface takes place.

 A new method of determining the limit of burn threshold has been proposed

which corrects for the inappropriately high temperatures estimated for HEDG in

previous works. This has been shown to give a good limit at a reasonable

temperature for the limit of grinding burn.
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 The available grinding power is significantly improved when the width of cut or

feed per turn is reduced to a minimum. Chapter 4 demonstrated for cylindrical

traverse grinding showing a decreasing power requirement with decreasing

width of cut. Results considered a change in feed per turn from 15mm to 2.5mm,

with the trend suggesting the smaller the feed per turn, the better the grinding

solution. Results presented in Chapter 5 considered a feed per turn down to

200µm, which made sufficient power available to successfully approach specific

material removal rates of 4000mm3/mm·s.

 The circular arc of heat contact model was unsuitable for the very high speeds

and feeds and small values of feed per turn in the cylindrical traverse grinding

experiments at the higher removal rates.

 The initial study of the energy partitioning based on temperatures recorded in

the workpiece surface showed the potential for an accurate prediction of the

partitioning of energy between the various surfaces of the wheel-workpiece. The

heat flux to the surface was estimated from the known maximum temperature.

This suggested a consistent partitioning of heat flux to the three surfaces

considered.

 It has been demonstrated that the temperature in the sidewall in surface grinding

is higher than anticipated, yet the heat flux required to achieve this temperature

is low. This is a combination of the contact conditions in the sidewall reducing

the energy removed with the grinding chip and elongating the contact length and

time.

 Trials in cylindrical traverse grinding at removal rates in excess of

1000mm3/mm·s demonstrated high temperatures, yet penetration of the heat

affected zone is low. As the heat flux increased with the removal rate, the speed

of the heat source reduces the time available for thermal penetration and reduces

this value. This results in very high removal rates and heat fluxes but with a

thermally damaged layer sufficiently small to be removed with the finishing pass

of the wheel.

 The relationship between the temperature in the sidewall and the surface follows

a power law approximation. This approximation is valuable as a tool for
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assessing the temperature in the sidewall with only limited knowledge of the

surface temperature. The approximate relationship between width and depth of

cut and the temperature in the axis parallel surface being used to predict the

temperature in the sidewall.

These conclusions lead us to a number of preliminary recommendations for the

SATURN process, these being:

 The use of cutting oils during grinding with the addition of the application of

coolant to the wheel side to reduce net grinding power requirements

 A thin width of cut or feed per turn to maximise available machine power

 A very high workpiece speed to minimise temperature penetration in to the

ground surface

The conclusions drawn from the thesis leave a number of avenues for potential further

work. These are centred on further validation of the new relationships drawn in the burn

threshold diagram and an improved understanding of the energy partitioning with a full

breakdown of the temperature at multiple points on the surface. The recommendations

are therefore:

 A breakdown of the temperatures at the workpiece surface with a wider selection

of thermal coatings more suited to the high temperatures experienced in order to

develop a full partitioning range around the profile

 Extension into more complex geometries using the temperature measurement

technique for analysis of turbine blade root forms for example.

 A new analysis of the circular arc of heat contact model for very thin cuts at very

high Peclet numbers

 Modelling of the specific grinding energy curve from cutting principles to allow

for an improved understanding of the occurrence of the constant specific

grinding energy for the parameters used.
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UNIVERSAL POWER CELLS

GIVES YOU VALUABLE INFORMATION ABOUT
MACHINE AND PROCESS PERFORMANCE BY 
MONITORING MOTOR LOAD
 • Mixture Viscosity
 • Tool Condition
 • Optimum Feed Rate
 • Pump or Fan Flow
 • Beginning or End Process
 • Obstructions
 • Overloads
 • Loss of Load

THREE BALANCED HALL
EFFECT SENSORS

SAMPLE VOLTAGE DIRECTLY
 • Up to 600 Volts

BUILT-IN POWER SUPPLY
 • Powers the Analog Signals

BUILT-IN RESPONSE ADJUSTMENT
 •  Lets you slow the response of the  

Power Cell to average the readings

TWO ANALOG OUTPUTS
 • 4-20 MA
 • 0-10 Volts DC
 • Electrically isolated

THE UNIVERSAL POWER CELL 
SENSES TRUE MOTOR POWER—
THREE PHASE, VARIABLE 
FREQUENCY, SINGLE PHASE OR DC

53 Technology Park Road   |   Sturbridge, MA 01566   |   ph: 888-600-3247   |   fx: 508-347-2064   |   loadcontrols.com

DIMENSIONS

MODEL UPC
FULLY SELF CONTAINED
 • Easy to install
 • No Current Transformers
 • No Voltage Transformers

COMPACT
 • Only 1 3/4" x 5 3/8" x 8"

YOU CAN ADJUST FULL SCALE
TO MATCH YOUR MOTOR
 • Coarse and Fine Adjustment Pots
 • 5HP to 150HP
 • Take extra turns for small motors

VERSATILE
 •  Works on both Fixed and Variable 

Frequency Power
 • ALSO Single Phase & DC

FREE 30 DAY TRIAL AVAILABLE

Model UPC $650 – Immediate Shipment

SPECIFICATIONS

MODEL UPC UPC-E UPC-KWH UPC-FR UPC-230
ACCURACY .5% Full Scale * * * *

FULL SCALE
CAPACITY

5HP** to 150HP 4HP** to 125HP 3 KW** to 100 KW * *

OUTPUTS •  4-20 Milliamp, 500 
Ohm Max Connected 
Impedance

•  0-10 Volts DC 2000 
Ohm Minimum Load

•   Ethernet 10 Base T
• 10 Megabit
• 0-10 Volts DC

•  Relay: 30 Volts, 5 
Milliamp max, 
 50 MS duration 
pulse

• 0-10 Volts DC

* *

RESPONSE 
ADJUSTABLE

• .5 Sec. to 12 Sec. .050 Sec. to 16 Sec. KWH, KWM, KWS .050 Sec to 1.2 Sec. *

FREQUENCY 3HZ to 1KHZ * * * *

POWER
CONSUMPTION

6 VA @ 120 Volts * * * 3 VA @ 230 Volts

*Specifications same as UPC unless noted

**For smaller motors take extra “turns”
The Power Cell Uses Balanced Hall Effect Sensors
 • Sensitive at low and high frequencies
 • Fast Response
 • Linear output
 • Senses distorted waveforms
 • Noise immune
 •  Accuracy is improved by eliminating the large  

phase shift errors from the CTs and PCs at low 
power factors

Balanced Hall Effect sensors are used to measure power 
with odd shapes and frequencies (like on a Variable 
Frequency Drive). A Hall Effect sensor has these two 
characteristics:
 •  It senses a magnetic field which is proportional to 

the current flowing through the conductor.
 •  The Hall Effect semiconductor can multiply two 

signals. Each Hall Effect Sensor is powered by the 
signal that comes from the voltage sample for 
that phase. The Hall device multiplies these  
voltage and current signals. 

This is a vector multiplication which also calculates  
the lag of the current (power factor). The resulting  
output is then proportional to power (Volts x Amps x 
Power Factor).
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UPC-E Ethernet Universal Power Cell
EMBEDDED WEB SERVER
 • View with your browser 

WITH YOUR BROWSER
 • Set full scale horsepower
 •  Set response time to average the load for a  

smooth signal
 • Choose how often to receive data
 • Or, respond to UDP or HTTP request

TCP/IP AND UDP PROTOCOL

10 BASE T 10 MEGABIT ETHERNET  
CONNECTION

ALSO 10 VOLT DC ANALOG OUTPUT
 • Local display
 • Troubleshooting

CHANGE SETTING ON THE FLY
 • During a machine or process cycle
 • Either UDP or HTTP
 • Full scale 4HP to 125HP

UPC-KWH  Energy Measuring Universal 
Power Cell

 •  Accumulates Kilowatt Hours, Kilowatt  
Minutes, Kilowatt Seconds

 •  Accumulates total power into the mixing 
process for consistent batches.

 •  Accumulates power—indicative of throughput.

Field Scaleable - 3 to 100 KW
Pulse - Dry contact
Analog Output - 0-10 Volts

The UPC-KWH measures true power (KW) and  
momentarily pulses a relay contact every KWH,  
KWM, or KWS which is selectable. The pulse can  
signal a computer, meter or counter for power  
totalizing. An analog 0-10 Volt output reflects the  
instantaneous power and can input a meter or  
computer directly.

UPC-FR Fast Response Universal Power Cell
 • 0.050 Second Response Time
 • Ideal for Machine Tool Monitoring
 •  Also used together with “V” Series  

Load Controls

UPC-230 230 Volt Power Supply Input

The Universal Power Cell is a Motor Load Sensor that monitors 
power (HP or KW). It works on both fixed and variable frequency 
power and has two analog outputs. It also works on single phase, 
DC, and brushless DC. The Universal Power Cell has Three Bal-
anced Hall Effect Sensors, each with a flux concentrator. Each 
phase passes through a window. A voltage sample for each phase 
is also taken. The Hall Effect Semiconductor does a vector multi-
plication of the current flow and voltage which also calculates the 
power factor. The output is proportional to power (HP or KW).

INPUT CONNECTIONS
Pass each of the phases through the L1, L2, L3  
holes in the Cell. Be certain direction is correct.  
The Terminal side of the Cell faces the supply.  
Provide voltage sample for each phase. When a  
Variable Frequency Drive is being used, locate  
the Power Cell on the output side of the drive.  
Take the voltage samples on the output side also.
 L1 Volts  to  Terminal 7
 L2 Volts  to  Terminal 8
 L3 Volts  to  Terminal 9

ANALOG OUTPUTS
The Analog Output is powered by the Power Cell.
 4-20 Milliamp  Terminal 1
 0-10 Volts DC  Terminal 3
 Analog Common  Terminal 2

120 VOLT SUPPLY
Terminals 5 and 6

GROUND
Terminal 4

TO ADJUST FULL SCALE
The Full Scale can be adjusted to match your motor with
the Coarse and Fine Pots located under the Access Cover.
Put your Ohm meter on the test points.
 
 Convenient Scaling
 5K Ohm = 5HP (This is the minimum setting)
 10K Ohm = 10HP
 Etc.
 150K Ohm = 150HP (This is the maximum setting)
 (KW=HP x .746)

TYPICAL INSTALLATION–UPC
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WHY MONITOR POWER 
INSTEAD OF JUST AMPS?

FOR SMALL MOTORS
Reduce the capacity by taking additional “Turns”  
through each hole for each phase (Mount the Power  
Cell on Standoffs). Example: 5HP Full Scale is reduced  
to 1HP with 5 Turns. 

RESPONSE ADJUSTMENT
In some cases, the average power signal may be more  
useful than instantaneous power. The Response Adjust-
ment slows the response of the Universal Power Cell.  
Pot is located under Access Cover. Clockwise is fastest.  

SPECIAL PURPOSE  
UNIVERSAL POWER CELLS

SINGLE 
PHASE 
OR DC



UPC-E Ethernet Universal Power Cell
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momentarily pulses a relay contact every KWH,  
KWM, or KWS which is selectable. The pulse can  
signal a computer, meter or counter for power  
totalizing. An analog 0-10 Volt output reflects the  
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computer directly.

UPC-FR Fast Response Universal Power Cell
 • 0.050 Second Response Time
 • Ideal for Machine Tool Monitoring
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Load Controls

UPC-230 230 Volt Power Supply Input

The Universal Power Cell is a Motor Load Sensor that monitors 
power (HP or KW). It works on both fixed and variable frequency 
power and has two analog outputs. It also works on single phase, 
DC, and brushless DC. The Universal Power Cell has Three Bal-
anced Hall Effect Sensors, each with a flux concentrator. Each 
phase passes through a window. A voltage sample for each phase 
is also taken. The Hall Effect Semiconductor does a vector multi-
plication of the current flow and voltage which also calculates the 
power factor. The output is proportional to power (HP or KW).

INPUT CONNECTIONS
Pass each of the phases through the L1, L2, L3  
holes in the Cell. Be certain direction is correct.  
The Terminal side of the Cell faces the supply.  
Provide voltage sample for each phase. When a  
Variable Frequency Drive is being used, locate  
the Power Cell on the output side of the drive.  
Take the voltage samples on the output side also.
 L1 Volts  to  Terminal 7
 L2 Volts  to  Terminal 8
 L3 Volts  to  Terminal 9

ANALOG OUTPUTS
The Analog Output is powered by the Power Cell.
 4-20 Milliamp  Terminal 1
 0-10 Volts DC  Terminal 3
 Analog Common  Terminal 2

120 VOLT SUPPLY
Terminals 5 and 6

GROUND
Terminal 4

TO ADJUST FULL SCALE
The Full Scale can be adjusted to match your motor with
the Coarse and Fine Pots located under the Access Cover.
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 (KW=HP x .746)

TYPICAL INSTALLATION–UPC

Power is Linear
Equal Sensitivity at

Both Low and High Loads

No Load

Po
w

er

Full Load No Load Full Load

No Sensitivity
For Low Loads

Am
ps

POWER

CURRENT

POWER
FACTOR

MOTOR LOAD
0%              50%            100%

POWER FACTOR

No Load Full Load

.9

.1

AMPS

No Load Full Load

100%

50%

Amps

No Load Full Load

100%

50%

POWER

No Load Full Load

100%

50%

Power is Linear
Equal Sensitivity at

Both Low and High Loads

No Load

Po
w

er

Full Load No Load Full Load

No Sensitivity
For Low Loads

Am
ps

POWER

CURRENT

POWER
FACTOR

MOTOR LOAD
0%              50%            100%

POWER FACTOR

No Load Full Load

.9

.1

AMPS

No Load Full Load

100%

50%

Amps

No Load Full Load

100%

50%

POWER

No Load Full Load

100%

50%

WHY MONITOR POWER 
INSTEAD OF JUST AMPS?

FOR SMALL MOTORS
Reduce the capacity by taking additional “Turns”  
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Cell on Standoffs). Example: 5HP Full Scale is reduced  
to 1HP with 5 Turns. 
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UNIVERSAL POWER CELLS

GIVES YOU VALUABLE INFORMATION ABOUT
MACHINE AND PROCESS PERFORMANCE BY 
MONITORING MOTOR LOAD
 • Mixture Viscosity
 • Tool Condition
 • Optimum Feed Rate
 • Pump or Fan Flow
 • Beginning or End Process
 • Obstructions
 • Overloads
 • Loss of Load

THREE BALANCED HALL
EFFECT SENSORS

SAMPLE VOLTAGE DIRECTLY
 • Up to 600 Volts

BUILT-IN POWER SUPPLY
 • Powers the Analog Signals

BUILT-IN RESPONSE ADJUSTMENT
 •  Lets you slow the response of the  

Power Cell to average the readings

TWO ANALOG OUTPUTS
 • 4-20 MA
 • 0-10 Volts DC
 • Electrically isolated

THE UNIVERSAL POWER CELL 
SENSES TRUE MOTOR POWER—
THREE PHASE, VARIABLE 
FREQUENCY, SINGLE PHASE OR DC

53 Technology Park Road   |   Sturbridge, MA 01566   |   ph: 888-600-3247   |   fx: 508-347-2064   |   loadcontrols.com

DIMENSIONS

MODEL UPC
FULLY SELF CONTAINED
 • Easy to install
 • No Current Transformers
 • No Voltage Transformers

COMPACT
 • Only 1 3/4" x 5 3/8" x 8"

YOU CAN ADJUST FULL SCALE
TO MATCH YOUR MOTOR
 • Coarse and Fine Adjustment Pots
 • 5HP to 150HP
 • Take extra turns for small motors

VERSATILE
 •  Works on both Fixed and Variable 

Frequency Power
 • ALSO Single Phase & DC

FREE 30 DAY TRIAL AVAILABLE

Model UPC $650 – Immediate Shipment

SPECIFICATIONS

MODEL UPC UPC-E UPC-KWH UPC-FR UPC-230
ACCURACY .5% Full Scale * * * *

FULL SCALE
CAPACITY

5HP** to 150HP 4HP** to 125HP 3 KW** to 100 KW * *

OUTPUTS •  4-20 Milliamp, 500 
Ohm Max Connected 
Impedance

•  0-10 Volts DC 2000 
Ohm Minimum Load

•   Ethernet 10 Base T
• 10 Megabit
• 0-10 Volts DC

•  Relay: 30 Volts, 5 
Milliamp max, 
 50 MS duration 
pulse

• 0-10 Volts DC

* *

RESPONSE 
ADJUSTABLE

• .5 Sec. to 12 Sec. .050 Sec. to 16 Sec. KWH, KWM, KWS .050 Sec to 1.2 Sec. *

FREQUENCY 3HZ to 1KHZ * * * *

POWER
CONSUMPTION

6 VA @ 120 Volts * * * 3 VA @ 230 Volts

*Specifications same as UPC unless noted

**For smaller motors take extra “turns”
The Power Cell Uses Balanced Hall Effect Sensors
 • Sensitive at low and high frequencies
 • Fast Response
 • Linear output
 • Senses distorted waveforms
 • Noise immune
 •  Accuracy is improved by eliminating the large  

phase shift errors from the CTs and PCs at low 
power factors

Balanced Hall Effect sensors are used to measure power 
with odd shapes and frequencies (like on a Variable 
Frequency Drive). A Hall Effect sensor has these two 
characteristics:
 •  It senses a magnetic field which is proportional to 

the current flowing through the conductor.
 •  The Hall Effect semiconductor can multiply two 

signals. Each Hall Effect Sensor is powered by the 
signal that comes from the voltage sample for 
that phase. The Hall device multiplies these  
voltage and current signals. 

This is a vector multiplication which also calculates  
the lag of the current (power factor). The resulting  
output is then proportional to power (Volts x Amps x 
Power Factor).
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Product Data
Hysol X 

Premium Quality Chlorine Free Soluble Cutting Fluid 
 

DESCRIPTION 
 

Castrol Hysol X has been formulated using chlorine-free high performance 
additives to ensure exceptional cutting characteristics where the cutting 
process is particularly arduous eg. broaching and where the metal is difficult 
to machine eg.  Stainless Steel, nimonics etc.   

 
APPLICATION 

 
Castrol Hysol X contains specially developed extreme pressure and lubricity 
additives that are equal to the demands of creep feed grinding and may 
other arduous operations. It has such exceptional cutting properties that in 
some instances it is possible to replace some neat oil applications with it.  
The high performance additives also allow the product to be used for 
general purpose applications such as cutting of steel.  Castrol Hysol X 
incorporates advanced additive technology to control fungal and bacterial 
growth ensuring exceptional bath life and means the product can be used 
equally well in central systems or single sump machines and reduces the 
need for fluid maintenance. 

 
FEATURES BENEFITS 
S  High performance synthetic lubricity 
    additives   

S  Exceptional tool-life and surface finish
   

 S  Can replace neat oils in some 
applications  

S  Optimised surfactant package S  Inherently low foam   

S  Advanced additive technology S  Long bath life   

 S  Reduced need for maintenance 

S  Chlorine free S  Environmentally acceptable 
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Product Data
 
For maximum service life, coolant systems should be cleaned and sterilised 
by treatment with Castrol System Cleaner before changing to Hysol X.  
Treatment entails the addition of approximately 1% System Cleaner to the 
previous charge of coolant the day before it is due to be discarded. 

 

TYPICAL PHYSICAL CHARACTERISTICS 
 

Concentrate 

Appearance 

Density at 20ºC kg/m³ 

Emulsion 

Appearance 

pH at 3% Concentration 

Refractometer Correction Factor 

 

- 

- 

 

- 

- 

- 

 

 

Dark Amber 

0.990 

 

Milky emulsion 

9.0 - 9.5 

1.02 

 
RECOMMENDED CONCENTRATIONS 
 

Material Mild and 
Low Carbon 

Content 
Steels 

Stainless 
Steels 

Nimonic 
Alloys 

Heat 
Resistant 

Operation     
Multi-Tool Lathes 4% 5% 5% 5% 
Gear Cutting 4% 5% 6% 6% 
Deep Hole Drilling 5% 7% 7% 7% 
Creep feed grinding 5% 5% 5% 5% 
Broaching 5% 6-7% 8% 8% 
General Machining 4% 5% 5% 5% 

 
ADDITIONAL INFORMATION 
Note that if the concentration of Hysol X should become too 
 high, above a maximum of 10% not only will the emulsion become 
unstable but there is also the possibility of skin complaints among 
operators. 



 
 
 Product Data 
 

Castrol Variocut G 600 SP 
Neat Grinding Oil 

 
 

Description 
 
Castrol Variocut G600 SP is a low viscosity chlorine and zinc free neat grinding fluid. 
 
Application 
 
Castrol Variocut G600 SP is particularly suited to high speed, creep feed and especially gear grinding 
using. Its low viscosityalso gives it good performance in the process of belt or tape finishing where a 
thin oil with exceptional flushing properties is required. 
 
Advantages 
 
• Helps resist burning on gear teeth, gives good wheel life and oil life. 
• Backed by manufacturers 
• Even at high pressures and flow rates 
• Easier to dispose off, and more environmentally friendly 
 
Characteristics 
 

 Unit Test Method Value 

Appearance   Visual Clear yellow fluid 

Relative Density  @ 15 °C  0.833 – 0.853 

Viscosity  
cSt @ 40 °C  

(104 °F) 
CN-TM-101 9 - 11 

Flash Point  PMCC °C CN-TM-039 >173.89 

Flash Point  COC ° F  345 °F 

 
Castrol Variocut G600 SP 
03.09.2005, Version Number 2.0 
Variocut G600 SP and Castrol are trademarks of Castrol limited, used under licence.’ 
 
All reasonable care has been taken to ensure that the information contained in this publication is accurate as of 
the date of printing. However, such information may, nevertheless, be affected by changes in the blend formulation occurring 
subsequent to the date of printing. Material Safety Data Sheets are available for all Castrol Ltd products. The MSDS must be 
consulted for appropriate information regarding storage, safe handling and disposal of a product. 
 
Castrol Industrial North America Inc. 
150 W. Warrenville Road 
Naperville, IL 60563 
Tel (877) 641 1600  
Fax (877) 648 9801 
 
www.castrol.com/industrial  
 

 
 

http://www.castrol.com/industrial
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