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The Use of Magnetic Nanoparticles to Enhance
Biodesulfurization

ABSTRACT

Biodesulfurization (BDS) is an alternative to hydrodesulfurization (HDS) as a method

to remove sulfur from crude oil. Dibenzothiophene (DBT) was chosen as a model

compound for the forms of thiophenic sulfur found in fossil fuels; up to 70% of the

sulfur in petroleum is found as DBT and substituted DBTs; these compounds are

however particularly recalcitrant to hydrodesulfurization, the current standard industrial

method. My thesis deals with enhancing BDS through novel strains and through

nanotechnology. Chapter highlights are:

Chapter 2. My first aim was to isolate novel aerobic, mesophilic bacteria that can grow

in mineral media at neutral pH value with DBT as the sole sulfur source. Different

natural sites in Iran were sampled and I enriched, isolated and purified such bacteria.

Twenty four isolates were obtained that could utilize sulfur compounds. Five of them

were shown to convert DBT into HBP. After preliminary characterization, the five

isolates were sent to the Durmishidze Institute of Biotechnology in Tbilisi for help with

strain identification. Two isolates (F2 and F4) were identified as Pseudomonas strains,

F1 was a Flavobacterium and F3 belonged to the strain of Rhodococcus. The definite

identification of isolate F5 was not successful but with high probability it was a known
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strain. Since no new strains were apparently discovered, I did not work further in this

direction.

Chapter 3. In a second approach I studied the desulfurization ability of Shewanella

putrefaciens strain NCIMB 8768, because in a previous investigation carried out at

Cranfield University, it had been found that it reduced sulfur odour in clay. I compared

its biodesulfurization activity profile with that of the widely studied Rhodococcus

erythropolis strain IGTS8. However, S. putrefaciens was not as good as R.

erythropolis.

Chapter 4 and 5. I then turned to nanotechnology, which as a revolutionary new

technological platform offers hope to solve many problems. There is currently a trend

toward the increasing use of nanotechnology in industry because of its potentially

revolutionary paths to innovation. I then asked how nanotechnology can contribute to

enhancing the presently poor efficiency of biodesulfurization. Perhaps the most

problematic difficulty is how to separate the microorganisms at the end of the

desulfurization process. To make BDS more amenable, I explored the use of

nanotechnology to magnetize biodesulfurizing bacteria. In other words, to render

desulfurizing bacteria magnetic, I made them magnetic by decorating their outer

surfaces with magnetic nanoparticles, allowing them to be separated using an external

magnet. I used the best known desulfurizing bacterial strain, Rhodococcus erythropolis

IGTS8.
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The decoration and magnetic separation worked very well. Unexpectedly, I found that

the decorated cells had a 56% higher desulfurization activity compared to the

nondecorated cells. I proposed that this is due to permeabilization of the bacterial

membrane, facilitating the entry and exit of reactant and product respectively.

Supporting evidence for enhanced permeabilization was obtained by Dr Pavel

Grigoriev, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino.

In Chapter 6, to optimize attachment of the nanoparticles to the surface of the bacteria I

created thin magnetic nanofilms from the nanoparticles and measured the attachment of

the bacteria using a uniquely powerful noninvasive optical technique (Optical

Waveguide Lightmode Spectroscopy, OWLS) to quantify the attachment and determine

how the liquid medium and other factors influence the process.

Keywords:

Biodesulfurization; Dibenzothiophene; Shewanella putrefaciens; biodesulfurization;

dibenzothiophene; Rhodococcus erythropolis; magnetic Fe3O4; nanoparticles, black

lipid membrane; optical waveguide lightmode spectroscopy; monolayer; polyethylene

glycol; adsorption.
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Chapter 1 : Introduction and literature review

1.1 The need for enhancement of biodesulfurization

Clean fuels research including desulfurization has become an important subject of

environmental catalysis studies worldwide. Sulfur content in diesel fuel is an

environmental concern because sulfur is converted to (sulfur oxides) SOx during

combustion, which not only contributes to acid rain, but also poisons the catalytic

converter for exhaust emission treatment. The problem of sulfur removal has become

more apparent due to the increasing high sulfur contents in remaining reservoirs of

crude oils and the low limit of sulfur content required in finished fuel products by

regulations specified by the authorities. It is impossible to have clean atmospheric air, or

in particular to reduce air pollution from the transport sector, without removing sulfur

from fuels. No significant air pollution reduction strategy can work successfully without

reducing sulfur to near-zero level. The Environmental Protection Agency of the United

States (EPA) has set a target to reduce the sulfur content of diesel from 500 ppm (2006

regulation) to 15 ppm for the year 2012 (EPA 2005) .

Hydrodesulfurization (HDS) involves the catalytic reaction of hydrogen and the organic

matter in the feed, at pressures ranging from 5 up to 10 MPa and temperatures between

300 and 350 C, depending on the oil fraction and the required level of desulfurization

(Gary et al., 2001; Shafi et al., 2000 ). Due to the high costs and inherent chemical

limitations associated with HDS, alternatives for this technology are of great interest to

the petroleum industry. The benefits of sulfur reduction would be more important than

the costs, even though required refinery investments continue to be significant. The U.S.
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EPA found human health benefits and environmental profits due to sulfur reduction ten

times higher than the costs (Blumberg et al., 2003). Furthermore, a European study

showed that ultralow sulfur fuels significantly reduce total fuel costs by increasing fuel

economyfrom which the considerable potential for greenhouse gas emission

reductions adds further payback to the health, environmental, and social benefits of

sulfur reduction.

The global refining industry has spent about $37 billion on new desulfurization

equipment and an additional $10 billion on annual operating expenditures for sulfur

removal through the last 10 years to meet the new sulfur regulations. More than 70

million barrels of crude are worldwide produced each day, of which half is considered

to be "high sulfur" (>1%). This concern will become more serious owing to the

decreasing availability of low-sulfur fuels (Monticello, 1998).

So in many areas of the world industry needs new technologies to reduce sulfur to the

ultralow levels now acceptable in use. Current costs might be reasonable; the refining

industry continues to develop more active catalysts and novel processes for the removal

of sulfur in order to reduce costs even more.

Figure 1.1: Evolution of permissible sulfur content of diesel fuel (Keaveney 2008).
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1.2 Sulfur

Sulfur has been used in small quantities for thousands of years and known as brimstone,

"the stone that burns". By 2000 before Christ, the Egyptians began using sulfur in linen

textile bleaching. The Greeks used burning sulfur and pitch in order to produce

suffocating gases. The Romans combined brimstone with tar, pitch, and other

combustible materials in order to produce the first incendiary weapons. Sulfur is a

necessary ingredient in gunpowder, which was developed in China in the 10th century.

Introduction of gunpowder into Europe led to its use in warfare in the 14th century and

made sulfur an important mineral product (Wilburn et al., 2005).

Sulfur is nearly ubiquitous in fossil fuels, where it arises both as inorganic (e.g.,

elemental sulfur, hydrogen sulfide and pyrites) and as organic sulfur (e.g., sulfur atom

or moiety present in a wide variety of hydrocarbon molecules, including for example,

mercaptans, disulfides, sulfones, thiols, thioethers, thiophenes, and other more complex

forms) that can account for near to 100% of the total sulfur content of petroleum liquids,

such as crude oil and many petroleum distillate fractions. Crude oils can typically range

from close to about 5 wt % down to about 0.1 wt % organic sulfur (Monticello, 1995).

The presence of sulfur in oil has been related to the corrosion of pipeline, pumping, and

refining equipment, and with premature breakdown of combustion engines. Sulfur also

contaminates many catalysts which are used in the refining and combustion of fossil

fuels. Burning of gasoline and diesel emits sulfur dioxide (SO2) or sulfate particulate

matter leading to acid rain, which has harmful effects on aquatic and forest ecosystems,

as well as on agricultural areas (Monticello, 1998).
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Any reduction in fuel sulfur straightaway reduces these sulfur compounds and leads to

benefits including reduction in total pollutant emissions. There were several reasons

why this reduction became attractive:

(i) Hydrogen sulfide is an odorous and toxic substance for which incidental human

contact should be limited;

(ii) Hydrogen sulfide, if left during the refining operation, causes corrosion and

produces foul smelling products;

(iii) The general increase in gasoline consumption increases the need for lower sulfur

levels in the final product in order to keep pollution at an acceptable level.

1.2.1 Sulfur compounds in oil

The sulfur content and types of sulfur compounds vary significantly within a crude

supply. With the increase of density in the crude oil, sulfur levels and the difficulty of

sulfur removal also tend to increase. Generally, refineries are built to process either

premium priced “sweet” (with lower sulfur content), or “sour” (with higher sulfur

content) crude oil. While refiners gain some advantage in using higher quality crude, the

price premium more than cancels the cost advantage for low-sulfur fuel refining

(Blumberg et al., 2003).

Since there are many different sulfur-containing compounds in petroleum-derived fuels,

the sulfur content is usually expressed as the weight percent (wt%) of sulfur in the fuel

and ranges from 0.03 wt% to values as high as 8 wt% (demonstrated on 78 different

crude oil types (Rall et al., 1972). As mentioned before, the most important constituents

are organic sulfur compounds, but inorganic sulfur can also be present. An overview of



Chapter 1

5

0

1

2

3

4

5

6

7

Arg
en

tin
a

Aus
tra

lia

Can
ad

a

Den
m

ar
k

Egy
pt

In
done

si
a

Ira
n

Ira
q

Ita
ly

Kuw
ait

Lib
ya

Mex
ico

Nig
er

ia

Nor
way

Rus
si

a

Sau
di A

ra
bi

a
UK

USA

Ven
ez

uela

the range of organic sulfur contents in crude oils found in different countries over the

world is given in Figure 1.2.

Figure 1.2: Average organic sulfur contents in crude oils (Marcelis, 2003).

Sulfur compounds in crude oil include thiols, sulfides, polysulfides, thiophenic and

alkyl-substituted isomers of thiophenic compounds containing a variety of aromatic

rings (i. e. polycyclic aromatic sulfur heterocycles such as thiophene, benzothiophene,

dibenzothiophene, and benzonaphthothiophene) which are carcinogenic (Monot et al.,

2002). The molecular structures of some of these sulfur components are presented in

Scheme 1.1.
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Scheme 1.1: Types of sulfur-containing organic compound identified in crude oils

The distribution and amount of organic sulfur compounds reflect the reservoir and

maturity of the oil. Chemically immature oils are rich in sulfur and often have a high

content of non-thiophenic sulfur compounds (Schulz et al., 1999). Mercaptans in crude

oils are generally of low molecular weight (less than eight carbon atoms). They are

readily removed from crude oil during refinery processing and are negligible in
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petroleum products. Aliphatic sulfides (cyclic or acyclic) are major components of the

sulfur-containing fraction of petroleum products, e.g. diesel fuels and heating oils.

Aromatic sulfides are of lower concentration in the heavier cuts. Thiophenic sulfur is

normally the most plentiful form but as mentioned before, depending on the reservoir

history of the oil, other sulfur compounds are often present in appreciable quantities.

The unsaturated five member heterocyclic ring, thiophenes, is an important constituent

of high-sulfur oils and its derivatives are the most abundant sulfur compound in

distillates and residues, including heavy fuel oils and bitumens.

1.3 Hydrodesulfurization processes

The ability of refiners to reduce the sulfur levels depends on a number of factors: the

refinery organization and amount of excess desulfurization equipment on hand, the

sulfur level in the fuels currently produced, the quality of crude oil being used, and the

quality and types of products being produced.

Hydrodesulfurization (HDS) is a physico-chemical technology based on a reductive

chemical change to remove organic-bound sulfur to specified levels. The removal of

sulfur present in gas/oil is conventionally performed by hydrotreatment with co-current

flow of hydrogen gas and hydrocarbon over a catalyst bed. Although many different

hydrotreater designs are in use, they all work according to the same principle. Figure 1.3

presents a typical process layout of this technique.
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Figure 1.3: Typical hydrodesulfurization plan of refining technology showing the

desulfurization processing sequence.

The feed stream is mixed with hydrogen and heated to a temperature between 260-430

ºC and pressures from 5 up to 10 MPa, depending on the desulfurization degree

required. The gas mixture is made to flow over a catalyst bed of metal oxides (mostly

cobalt or molybdenum oxides on different metal carriers). The catalysts help the

hydrogen to react with sulfur and nitrogen to form hydrogen sulfide (H2S) and

ammonia. The reaction product leaves the reactor and is then cooled, and the oil feed

and gas mixture is then separated in a stripper column. H2S is a corrosive gaseous

product, which is removed from the fossil fuel by stripping. By elevating the levels of

H2S in the reactor, it inactivates or poisons the chemical HDS catalyst and complicates

the desulfurization of high-sulfur fossil fuels (Cyr, 2000).
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For particular types of fossil fuels, the efficiency of HDS treatment varies due to the

broad chemical diversity of hydrocarbons (Worrell et al., 2005). Some classes of

organic sulfur molecules can be readily desulfurized by HDS because of instability,

which includes the classes of organic molecules consisting of mercaptans, thioethers,

and disulfides, but this technique is not suitable to get deep desulfurization levels and

separate some of the sulfur molecules in oil, particularly the polyaromatic sulfur

heterocyclies (PASHs) found in the heavier fractions, and which are the main class of

HDS-refractory organic sulfur-containing molecules. Up to 70% of sulfur in fuels is

found as refractory molecules like dibenzothiophene (DBT) and substituted DBTs

(Monticello, 2000). HDS is capable of removing these refractory molecules only at

temperatures and pressures so extreme that valuable hydrocarbons in the fossil fuel

would be damaged in the process (Monticello, 1995). As the HDS units are expensive to

build and control, therefore the application of novel catalyst types and innovations on

HDS process configurations are needed to achieve desired levels. Therefore researchers

are attempting to move to biological methods, which present many advantages.

1.4 Biodesulfurization

Since 1935, when an early account of microbial desulfurization of crude oil was

published (Maliyantz, 1935; Shennan, 1996), there have been expended lots of interest

in applying biodesulfurization (BDS) processes in the oil industry to demonstrate this

ability of microorganisms. In the early 1950s, a series of U.S. patents were issued

covering the use of bacteria to reduce the sulfur content of petroleum. However, early

attempts were not fount to work because of inability to control the bacteria (Monticello,

1998). From 1970s to 1980s, the U.S. Department of Energy (DOE) and other
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organisations have sponsored work to explore this technology. The isolated bacteria

were not appropriate for commercial BDS technologies at that time, because they attack

the hydrocarbon portion (Kodama et al., 1973). In the late 1980s, bacteria that could

liberate sulfur from DBT (as the model sulfur compound) without attacking the

hydrocarbon were identified (Kilbane, 1990; Campbell, 1993). During these decades

significant contributions have been made to construct and operate a large scale oil

biodesulfurization process that involve many challenges and in order to develop

biological desulfurization processes numerous attempts have been made up until the

present time.

Biological processes require relatively mild conditions (low pressures and low

temperatures), which could be a major advantage of BDS. It can be noticed that

biocatalytic desulfurization offers the petroleum industry several benefits over

hydrodesulfurization (HDS) processes: capital cost savings, operating cost saving,

flexibility to handle a wide range of petroleum streams, more rapid engineering and

construction time, safer and milder conditions. Testimonies of Naser (1999) have

indicated that by BDS technology, the small refinery at Woodlands (Texas) achieved

capital cost savings of approximately 50 percent and operating cost saving of 10-20

percent. In addition to cost savings, BDS will result in up to 80 percent less greenhouse

gas emissions over HDS, because bioprocess operates at essentially room temperature

and pressure.

The scheme of the biocatalytic desulfurization process is presented in Figure 1.4. The

biocatalyst is mixed with water/media and transferred to the bioreactor. The biocatalyst
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slurry and petroleum containing sulfur compounds are mixed with oxygen and stirred

continuously in a tank reactor. The petroleum is desulfurized and separated from the

aqueous/biocatalyst output stream. The biocatalyst and water are separated and the sufur

by-product is removed from the process in the aqueous phase as sulfate, which can be

disposed of sodium sulfate or ammonium sulfate. After the spent biocatalyst is removed

the biocatalyst/water mixture is recycled to the bioreactor.

Figure 1.4: Scheme of oil biodesulfurization process (Monticello, 1998).

Basic microbiological researches have been done on the BDS mechanisms which have

made a lot of progress in the recent years. Whereas significant removal of organic sulfur

compounds from oil has not been demonstrate to date. To enable technological

applications, to improve in knowledge on this field, the flux through this pathway must

be enlarged considerably on activity, selectivity and stability of microorganisms applied

in the process. For commercial applications, mixtures of microorganisms may be
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needed (Marcelis, 2003). Therefore, currently genetic and metabolic engineering efforts

are applied by researchers. They tried to identify and clone the genes involved in the

sulfur removal pathway, therefore efficiency of biological process could be enhanced by

increasing the number of copies of the genes, altering the gene to produce a more active

or efficient product and increasing the amount of expression from each gene. (Arensdorf

et al., 2002; Hirasawa et al., 2001; Matsui et al., 2001a; Kertesz and Wietek 2001; Li et

al., 1996). For example recombinants of Rhodococcus erythropolis containing multiple

copies of the dsz-genes were used to study the conversion of sulfur compound

(Kobayashi et al., 2001; Folsom et al., 1999).

1.4.1 Microbial reaction pathways

It seems that bacteria can be considered promising candidates for microbial enhanced

oil recovery and improve the quality of fuel without changing the calorific value. Algae,

moulds, yeasts, and protozoa are not suitable due to their size or inability to grow under

the conditions present in reservoirs. Many petroleum reservoirs have high

concentrations of NaCl and it seems that bacteria are able to tolerate these conditions by

autoproduction of biosurfactants and polymers (Van Hamme et al., 2003).

Research on the reaction mechanism of BDS has concentrated on the study of the

desulfurization of model compound like dibenzothiophene (DBT). DBT constitutes a

major fraction of the residual post-HDS sulfur in fuel products and is refractory to HDS

treatment. Alkyl-substituted DBT derivatives (Scheme 1.2) are even more refractory to

HDS treatment, and even by repeated HDS processing cannot be removed. DBT is

ubiquitous in almost all crude oils. In Texas it accounts for 70% of total sulfur
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compounds, and in the Middle East it accounts for more than 40% (Krishna, 2001).

Hence DBT is considered as model refractory sulfur compound of a large group of

heterocyclic compounds in the development of new desulfurization methods

(Monticello, 1998), the microbial desulfurization of DBT can be considered to represent

the degradation pattern of other such compounds. Therefore initial attention has focused

on removal of sulfur from DBT to represent a major proportion of thiphenic sulfur

found in most fuels.

Scheme 1.2: Structural formulas of refractory dibenzothiophene (DBT) and

methylated dibenzothiophenes, methyldibenzothiophene (MDBT) and

dimethyldibenzothiophene (DMDBT).

From extensive investigations two alternative pathways have emerged as contender for

the biodesulfurization. Kodama pathway is the first reported pathway for

biodesulfurization of DBT (McFarland et al., 1998). It involves initial oxidative attack

and ring cleavage of one of the aromatic rings of DBT, and in some cases the formation

of sulfoxide or sulfone (Kodama et al., 1973) which leads to a reduced caloric value of

the fuel and is therefore unacceptable. In addition, formyl benzothiophene remains as a

dead end metabolite and a specific sulfur release is not found at the end of reaction
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(Scheme 1.3). In addition, a specific sulfur release is not found since formyl

benzothiophene remains as a dead end metabolite (McFarland et al., 1998).

Scheme 1.3: Kodama pathway for the degradation of DBT. The product, hydroxyl

formyl benzothiophene, retains the sulfur moiety (Kodama et al., 1973), so should

properly not be considered a biodesulfurization mechanism.

In 1990 Kilbane proposed a sulfur specific pathway, sometimes called 4S pathway by

which bacteria selectively oxidise the sulfur atom in DBT without cleavage of C-C

bonds and therefore preserves the fuel value and has therefore been explored for the

purpose of biodesulfurization of petroleum products (Bressler et al., 1998).

4S pathway is a sulfur-selective oxidative pathway involving the sequential oxidation of

the sulfur moiety followed by cleavage of the carbon–sulfur bond to form 2-hydroxy

biphenyl (HBP), leaving the carbon skeleton intact (Labana et al., 2005). This pathway

involves four sequential enzymatic steps and is therefore called the 4S pathway; the

enzymes selectively attack the sulfur fraction of the fuel and leave the hydrocarbon
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fraction unchanged. The whole reaction is presented in Scheme 1. 4. DBT is

desulfurized using three enzymes DszA, DszB and DszC. This reaction can be divided

into three stages: (i) activation of the thiophene ring for cleavage by oxidation of the

sulfur moiety; (ii) cleavage of the thiophene ring to give an aromatic sulfinate, and (iii)

removal of the sulfinate group. The end products, HBP and sulfate, (McFarland, 1998

and Gray et al., 2003), which are released in the cytoplasm and assimilated. HBP is not

further metabolised by R. erythropolis and this compound accumulates in the medium

when R. erythropolis is grown with DBT as the sole source of sulfur.

Scheme 1.4: Proposed (so called 4S) pathway for DBT desulfurization by R.

erythropolis IGTS8.

The DBT desulfurization pathway results in the formation of 2-hydroxybiphenyl (2-

HBP) and sulfate; via the Dsz enzymes (cf. Van Hamme et al., 2003). A mono-

oxygenase (DszC) catalyses the stepwise S-oxidation of DBT, first to dibenzothiophene

5-oxide (DBTO) and then to dibenzothiophene 5,5-dioxide (DBTO2). The second



Chapter 1

16

mono-oxygenase (DszA), catalyses the conversion of DBTO2 to 2- (2’-hydroxyphenyl)

benzene sulfinate (HBPS). The last step is catalyzed by a sulfinase (DszB) and yields 2-

HBP and sulfate as the end products.

1.5 Degradation pathway

The first and rate-limiting step in the oxidative desulfurization of DBT and other sulfur

compounds in living organisms is apparently transfer of DBT from the oil to the cell

(Setti et al., 1999). In support of this, Folsom et al. (1999) found that the overall rate

kinetics was affected by the concentration and distribution of the DBT. It is then

oxidized to HBP in several steps by desulfurizing (Dsz) enzymes as illustrated in

Scheme 1.4. These enzymes are soluble and presumably found in the cytoplasm

(Marcelis, 2003).

On the other hand, there is no evidence that the DBT molecules are actively transported

into the cell (Monticello, 2000). Patel et al. (1997) attributed the mass transfer of the

very hydrophobic DBT to the hydrophobic nature of the Rhodococcus erythropolis

IGTS8 surface, because of their finding that desulfurization activity is correlated to the

external surface hydrophobicity of the IGTS8 wall/membrane. It might therefore be

supposed that at least some of the enzymes are located in the wall/membrane region1.

It is not presently known how the product, HBP, leaves the cells (Monticello, 2000) —

assuming it is produced in the cytoplasm, not on the bacterial surface. At any rate the

1 This suggests that some of the desulfurization enzymes should function in nonaqueous
solvents, which consequently would facilitate contact with the oil phase and enhance mass
transfer during biodesulfurization. In the other words, the Rhodococcus strains should be able to
access to DBT directly from the oil (Monticello, 2000). This is consistent with the large body of
work reporting growth of R. erythropolis IGTS8 on hydrocarbons such as hexadecane (Solano
et al., 1999).
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HBP released into the oil maintains fuel value (Gray et al., 1996). However, this

compound is toxic to bacterial cells; hence growth and biodesulfurization activity

become inhibited by its accumulation (Zhang et al., 2005). The sulfate formed during

the 4S pathway remains in the aqueous phase and will combine with any ions — e.g.

sodium, ammonium, calcium — that are present in the medium (McFarland et al.,

1998), and might be assimilated by other microorganisms (Kilbane and Bielaga, 1990).

1.6 BDS as a complementary technique to HDS

HDS is not effective in desulfurizing all classes of sulfur compounds present in fossil

fuels. Thiols, sulfides and thiophenes are readily removed by HDS. However, BT, DBT

and especially derivatives bearing alkyl substitutions are considerably more resistant to

HDS and represent a significant barrier to obtain very low sulfur levels in fuels because

of steric hindrance (Marcelis 2003). Hence HDS alone is unable to achieve targets for

deep desulfurization levels, but a separate BDS could reach this target. Bacteria do well

in the water phase, consequently the organic sulfur compounds, e.g. benzo- and

dibenzothiophenes, must be transferred from the oil bulk phase to the oil/water interface

(Wilborn et al., 2005).

Because of the mild process conditions (low pressure and temperature), BDS is

considered as an environmentally benign process. Therefore, with respect to these

advantages, placing the BDS unit downstream of an HDS unit can be considered to use

as a complementary process, after the main bulk sulfur is removed using HDS

techniques. Monticello (1996) suggested a multistage process in order to desulfurise oil
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products. Moreover Fang et al., (2006) showed that by combination of BDS and HDS

the sulfur content of catalytic diesel oil could reach to ≈20 µg/g.

1.7 Methods for identifying oil hydrocarbons and other

compounds

The current techniques used for analysis of petroleum hydrocarbons can be generally

grouped by their measurement outcome: the concentration of different groups of

hydrocarbons; total amount of petroleum hydrocarbons; or the concentration of a

specific target. Compound-specific methods frequently require samples to be diluted to

keep the most concentrated analytes within the calibration range, or to protect the

detectors from difficult-to-remove contamination. These requirements often cause low

concentration analytes to fall below detection limits. Remedies for this problem may

include analyzing the sample at more than one concentration or choosing a detection

method with a wider dynamic range. In some cases, the detection limit problem cannot

be resolved without risking potential contamination of the instrumentation (Weisman

1998).

A wide variety of specific and non- specific techniques are currently used in the analysis

of oil hydrocarbons, including gas chromatography (GC), gas chromatography-mass

spectrometry (GC-MS), high-performance liquid chromatography (HPLC), infrared

spectroscopy (IR), supercritical fluid chromatography (SFC), thin-layer chromatography

(TLC), ultraviolet (UV) fluorescence spectroscopy, gravimetric methods and isotopic

ratio mass spectrometry (IRMS) ( Wang et al., 1999; Alimi et al., 2003).
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Each technique has advantages and disadvantages. UV spectrometries are very sensitive

to aromatic hydrocarbons, but results may be influenced by the presence of other

compounds e.g. lipids. IR-based methods have been widely used in the past because

they are simple, quick and inexpensive. However, their use is currently decreasing due

to the worldwide ban on Freon production (needed for sample extraction and

measurement), the poor accuracy and precision and also a clean-up procedure which

must be carried out preliminarily with great care to avoid contamination (the potential

risk). Gravimetric-based methods are also simple, quick, and inexpensive, but they

suffer from the same limitations as IR-based methods. Gravimetric-based methods are

not suitable for measurement of light hydrocarbons but they may be useful for very oily

sludge, which present analytical difficulties for other more sensitive methods.

Immunoassay methods are gaining popularity for field testing because they offer a

simple, quick technique for in situ quantification (Weisman, 1998; Brassington, 2007).

In recent years, GC/selective detector, HPLC, or GC/MS technique has been widely

used in petroleum analysis. GC and HPLC techniques identify hydrocarbons based on

their retention times which can be subject to interferences. The retention time is a time

which a compound spends on a specific column and it is characteristic of a compound

under given experimental parameters and specified column. As the separated

components elute from the column, they are detected (Swallow et al., 1988). The

detector signal is proportional to the amount of compound present. So these techniques

involve use of selective detectors. GC techniques typically require a second column

confirmation. GC/MS provides confirmation of the identity of an analyte through both

its retention time and unique mass spectral pattern (Weisman, 1998).
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Techniques such as GC-based methods may require additional technical

skills/experience compared to other available methods and also requires that samples

are volatile at the operating temperature of the column (Dean, 1995). Such techniques

can not quantify hydrocarbons below C6. Also petroleum hydrocarbons are made up of

many isomers that often have very similar/the same boiling point and thus they have

very similar retention times within a GC column.

Gas chromatography coupled with mass spectrometry detection (GC-MS) can identify

and measure the concentration of targeted individual petroleum hydrocarbons. These

methods have a high level of selectivity, with the ability to confirm compound identity

though the use of retention time and unique spectral patterns. However GC-MS requires

relatively complex operation and interpretation of the data output, as such GC-MS

methods tend to be a more expensive and time consuming technique for identifying the

individual petroleum hydrocarbons (Brassington et al., 2005).

1.7.1 High performance liquid chromatography (HPLC)

HPLC is used to measure concentrations of target semivolatile and nonvolatile

petroleum constituents. Unlike GC systems that require complete volatilization of the

sample so that it can then pass into the chromatograph, HPLC systems only require that

the sample be dissolved in a solvent compatible with those used in the separation. The

HPLC detector most often used in petroleum environmental analysis is the fluorescence

detector. A UV detector is used to measure compounds that do not fluoresce. Many

modern detectors can tune excitation and emission wavelengths to maximize sensitivity

and/or selectivity for each analyte during a chromatographic run.
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HPLC methods measure any compounds that elute in the appropriate retention time

range and which fluoresce at the targeted emission wavelength(s) as compounds are

identified based on their retention times and the excitation wavelength excites most

aromatic compounds. These include the target PAHs but also many derivative

aromatics, such as alkylaromatics, phenols, anilines, and heterocyclic aromatic

compounds containing pyrrole (indole, carbazole, etc.), pyridine (quinoline, acridine,

etc.), furan (benzofuran, naphthofuran, etc.), and thiophene (benzothiophene,

naphthothiophene, etc.) structures (Weisman, 1998).

1.8 Conclusion

The current technology, HDS, which is now used to reduce the sulfur content in oil, has

many disadvantages: it is enormously costly to install and operates, it needs extremely

energy intensive so leads to large greenhouse gas emissions. Thus, necessity dictates to

enhance this technology by use of biodesulfurization ability of bacteria and to date,

some microorganisms have been identified which can remove sulfur from oil but the

commercial development still needs to be accelerated and biodesulfurization needs to be

more efficient. To date, the most important challenges in the biodesulfurization area is

to isolate a strain with higher desulfurization activity or design a recombinant strain

with a stable activity to improve the efficiency of biodesulfurization. Therefore, more

work is required to achieve higher desulfurization activity by the bacteria.
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1.9 Research objectives, methodology and accomplishments

The main objectives of my research project are to develop a biosystem for sulfur

removal from oil. Secondly, I wished to develop an assay with which I could readily

quantify the adhesion between bacteria and particles in order to optimize the process.

Thirdly, to elucidate why decorated2 bacteria have enhanced desulfurization ability, I

wished to understand how the nanoparticles modify the bacterial physiology. Fourth, I

have exploited a uniquely powerful non-invasive optical nanometrology technique

(OWLS) to fabricate magnetic nanofilm and monitor cell attachment on the nanofilm.

The accomplishments of this following are:

 Isolation of new strains of bacteria

 Fabrication of magnetic nanoparticles

 Develop a bioprocess to desulfurize organic sulfur compounds using bacteria

decorated by magnetic nanoparticles and propose a novel mechanism for

biodesulfurization enhancement.

 Self-assembly of Fe3O4 magnetic nanoparticles on Si(Ti)O2 to form magnetic

nanofilms.

 Measure the kinetics of bacterial adhesion to the particles.

2 Decorated bacteria not completely covered with the nanoparticles.
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Figure 1.5 : Flow diagram to show structure of work in this thesis.
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Chapter 2 : Attempts to biologically enhance
biodesulfurization

2.1 Search for new strains

In order to develop biologically enhanced desulfurization technology, a range of

bacteria have been previously isolated which have been shown to be able to remove

sulfur from organic compounds that commonly exist in petroleum (Mohebali and Ball,

2008). However, this activity is unlikely to be sufficient for commercial applications

where the requirement is for microorganisms with high activity and selectivity for

different sulfur compounds (Yang and Marison, 2005). To achieve this requirement,

there needs to be about a 500–fold increase in the rate of biodesulfurization of currently

used bacteria (Kilbane, 2006). Therefore due to a range of problems (one of which is the

low desulfurization capability of the bacteria employed, which makes the process

uneconomical) this technology area needs to be enhanced by new developments.

Bacteria, which exist in the oil fields, have a great potential to degrade sulfur

compounds in fuel (Lee and Levy, 1991). Research over the last few years has shown

that oil fields contain microbial communities that influence the petroleum quantity and

yield of petroleum produced and its quality. Professionals in the petroleum industry

today clearly understand the critical role that regulating microbial activity has in

enhancing the beneficial effects. Accordingly newly isolated strains of bacteria continue

to attract attention for their potential application to desulfurization. Since DBT is a

typical recalcitrant organic sulfur compound in petroleum, it has been a model reactant

in the treatment of oil (Kilbane, 1990; Monticello, 1995). In 1985 a strain of
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Psedomonas that could desulfurize DBT was described by Isbister and Koblynski, but

unfortunately before the metabolic pathway could be fully characterized, this strain was

lost (Gallagher et al., 1993). After 40 years of research effort, Kilbane (1990) isolated a

suitable bacterium named Rhodococcus erythropolis IGTS8. Since then many

researchers have isolated bacteria capable of degrading DBT via the 4S pathway and a

variety of DBT- desulfurizing bacteria have been reported a list of which by Mohebali

and Ball, 2008 (table 2.1). This list is however incomplete, omitting for example

Shewanella putrefaciens.

Table 2.1: List of isolated bacteria that are capable of selectively degrading DBT

and its derivatives via the 4S pathway (Mohebali & Ball, 2008).

Bacterium Reference

Agrobacterium sp. strain MC501
Arthrobacter sp. strain ECRD-1
Arthrobacter sulfureus
Bacillus subtilis strain WU-S2B
Bacillus brevis strain R-6
Bacillus sphaericus strain R-16
Bacillus subtilis strain Fds-1
Corynebacterium sp. strain SY1
Corynebacterium sp. strain P32C1
Corynebacterium sp. strain ZD-1
Desulfovibrio desulfuricans
Gordona sp. strain CYKS1
Gordona sp. strain WQ-01
Gordonia alkanivorans strain 1B
Gordonia sp. strain F.5.25.8
Gordonia sp. strain ZD-7
Gordonia alkanivorans RIPI90A
Klebsiella sp.
Mycobacterium sp. strain G3
Mycobacterium sp. strain X7B
Mycobacterium sp. strain ZD-19
Mycobacterium goodii strain X7B
Mycobacterium phlei strain SM120-1
Mycobacterium phlei strain GTIS10

Constanti et al. (1994)
Lee et al. (1995)
Labana et al. (2005)
Kirimura et al. (2001)
Jiang et al. (2002)
Jiang et al. (2002)
Ma et al. (2006c)
Omori et al. (1992)
Maghsoudi et al. (2000)
Wang et al. (2006)
Yamada et al. (1968)
Rhee et al. (1998)
Jia et al. (2006)
Alves et al. (2005)
Duarte et al. (2001)
Li et al. (2006)
Mohebali et al. (2007)
Dudley & Frost (1994)
Nekodzuka et al. (1997)
Li et al. (2003)
Chen et al. (2008)
Li et al. (2007c)
Srinivasaraghavan et al. (2006).
Kayser et al. (2002)
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Nocardia globelula
Nocardia asteroids
Nocardia globerula strain R-9
Paenibacillus sp. strain A11-2
Pseudomonas abikonensis strain DDA109
Pseudomonas jianii strain DDC279
Pseudomonas jianii strain DDE27
Pseudomonas sp. strain ARK
Pseudomonas delafieldii strain R-8
Pseudomonas putida strain CECT5279
Rhodococcus erythropolis strain IGTS8
Rhodococcus sp. strain UM3
Rhodococcus sp. strain UM9
Rhodococcus erythropolis strain D-1
Rhodococcus sp. strain ECRD-1
Rhodococcus erythropolis strain H-2
Rhodococcus sp. strain SY1
Rhodococcus sp. strain X309
Rhodococcus sp. strain B1
Rhodococcus erythropolis strain I-19
Rhodococcus erythropolis strain KA2-5-1
Rhodococcus sp. strain P32C1
Rhodococcus sp. strain T09
Rhodococcus sp. strain IMP-S02
Rhodococcus sp. strain FMF
Rhodococcus sp. strain DS-3
Rhodococcus sp.
Rhodococcus erythropolis strain XP
Rhodococcus sp. strain 1awq
Rhodococcus erythropolis strain XP
Rhodococcus erythropolis strain DS-3
Rhodococcus erythropolis strain DR-1
Rhodococcus erythropolis strain NCC-1
Rhodococcus erythropolis strain LSSE8-1
Rhodococcus erythropolis strain FSD-2
Sphingomonas sp. strain AD109
Sphingomonas subarctica strain T7b
Xanthomonas sp.
Several unidentified bacteria

Wang & Krawiec (1994)
Olson (2000)
Jiang et al. (2002); Luo et al. (2003)
Konishi et al. (1997)
Yamada et al. (1968)
Yamada et al. (1968)
Yamada et al. (1968)
Honda et al. (1998)
Jiang et al. (2002)
Alcon et al. (2005)
Kilbane (1992)
Purdy et al. (1993)
Purdy et al. (1993)
Izumi et al. (1994)
Lee et al. (1995)
Ohshiro et al. (1995)
Omori et al. (1995)
Denis-Larose et al. (1997)
Denis-Larose et al. (1997)
Folsom et al. (1999)
Kobayashi et al. (2000)
Maghsoudi et al. (2000)
Matsui et al. (2001)
Castorena et al. (2002)
Akbarzadeh et al. (2003)
Ma et al. (2006d)
Labana et al. (2005)
Yu et al. (2006)
Ma et al. (2006a)
Yu et al. (2006)
Ma et al. (2006b)
Li et al. (2007a)
Li et al. (2007b)
Xiong et al. (2007)
Zhang et al. (2007)
Darzins & Mrachko (1998)
Gunam et al. (2006)
Constanti et al. (1994)
Abbad-Andaloussi et al. (2003)

2.2 Genetic engineering

Even with this number of isolated bacteria, the desulfurization activity of naturally

occurring bacterial cultures is not high enough for the requirements of industry and a

successful commercial process is still awaited. To achieve this, therefore we need to
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isolate new species and identify the genes responsible for desulfurization and

manipulate the system involved by genetic engineering techniques and it is highly likely

that future biodesulfurization research will focus on development of this promising

research area along these lines. One of the popular strategies in metabolic engineering

of the bacteria is to change host strains in order to take advantage of another strain’s

properties to get a higher metabolic rate. For example, several research studies have

focused on over expression of the enzymes involved in microbial desulfurization. The

DNA encoding the Dsz enzymes can be transferred into a host cell (Squires et al., 1999)

or the gene amplified with designed primers (Matsubara et al., 2001). Matsui et al.

(2001) used a recombinant strain capable of desulfurizing both DBT and BT as the sole

source of sulfur. To improve the uptake of sulfur compounds in oil fractions, Watanabe

et al. (2003) transferred the dsz genes from Rhodococcus erythropolis KA2-5-1 into the

Rhodococcus erythropolis MC1109. The desulfurization activity of the new strain was

about twice that of the previous strain. In order to enhance the expression of the genes

involved, the dsz genes from Rhodococcus erythropolis DS-3 were integrated into the

Bacillus subtilis and yielded recombinant strains with higher desulfurization efficiency

(Ma et al., 2006). Li et al. (2007) enhanced the desulfurization ability of Rhodococcus

erythropolis DR-1 by transferring the gene overlap in the operon.

As mentioned above, changing the genes of the host cell for those involved in

desulfurization is a popular strategy in metabolic engineering to take advantages of

desirable properties another strain such as its physical properties, growth properties or

higher intrinsic metabolic rate. Since these are not yet understood, a better

understanding of the factors that contribute to the biodesulfurization pathway is needed



Chapter 2

28

so as to achieve high level expression of the gene (Kilbane, 2006) and future research to

isolate new strains and identify the biocatalyst would be helpful to develop this

promising research area.

2.3 Experimental part of the research

2.3.1 Soil samples

Soils contaminated by crude oil were collected from four different sites around oil fields

(Iran) and were placed in polyethylene bags, closed tightly and stored at 4 ± 1 °C.

2.3.2 Preparation of basic salt medium (BSM)

In order to avoid precipitation and turbidity of the medium, the preparation of BSM was

performed in 2 parts separately and then these two parts were mixed together to get one

litre of BSM.

Part a: The chemicals listed in table 2.2 were dissolved in 850 mL of deionised water in

a rotary shaker.

Part b: The chemicals listed in table 2.3 were dissolved in 150 mL of water in a shaker.

After mixing these two parts, the pH was adjusted to 7.0.
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Table 2.2: Composition of BSM (part a).

Component Amount

KH2PO4

Na2HPO4

NH4Cl

Glycerol

2.44 g

5.57 g

2.00 g

1.84 g

Water

pH

850 mL

7.0 ± 0.2

Table 2.3: Composition of BSM (part b).

Component Amount

MgCl2.6H2O

CaCl2.2H2O

FeCl3.6H2O

MnCl2.4H2O

0.20 g

0.001 g

0.001 g

0.004 g

Water

pH

150 mL

7.0 ± 0.2

2.3.3 Isolation of bacterial strains from soil contaminated with oil

The bacteria in this investigation were collected from oil contaminated soils and thus

they have been growing with the help of compounds found in oil fields. Since crude oil

had been present at those sites for a long time, bacteria have been adapting to survive in

this polluted area and probably have developed the necessary enzymes to metabolize

sulfur compounds. To isolate mixed bacterial cultures from natural fields, in order to
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increase the precision of the experiment I opted to use two different methods to ensure

that the bacteria were identified correctly as the only bacteria in the samples.

2.3.3.1 Enrichment of cultures able to grow on DBT

Enrichment is a technique to isolate microorganisms from their natural environment by

inoculating natural sources of bacteria into a selective media and then growing under

physiological conditions optimum for the desired organisms (Christopher et al., 1995).

Initial enrichment cultures were prepared by adding 10 g soil samples to 150 mL BSM

in a 250 mL flask supplemented with 0.5 mM of DBT and incubating in a shaker at 100

rpm at 30 °C for 7 days. The flasks were then allowed to stand for 5 min. A 10% aliquot

of the supernatant was transferred to 100 mL of BSM in a 250 mL flask containing

DBT. Enrichment was continued for one month. These cultures are mixed bacterial

cultures, some of which may utilize DBT.

2.3.3.2 Dilution method

Sub samples of 1g of soil were suspended in sterile deionised water (containing 9 mL of

NaCl 10% and Tween 0.05%), agitated in a shaker at 100 rpm for 60 min at 30 °C and

since the bacteria in natural samples are too numerous to count directly, these must be

diluted to obtain an accurate count. Samples were serially diluted up to a factor of 10–3.

Figure 2.1 shows a three-fold dilution series of a soil sample. In the first tube on the left,

1 gram of soil was added to 9 mL of water to make a 1:10 (1×10-1) dilution of soil. One

mL from the 1:10 tube was then added to 9 mL of water in the second tube from the left

to make a 1:100 (1×1-2) dilution of soil. This process was repeated for the last tube to
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1.0 ml transfer

10-1 10-2 10-3

1.0 ml transfer

10-1 10-2 10-3

make a 1:1000 (1×10-3) dilution of soil. After preparing the dilutions, aliquots of 0.1 mL

from each dilution were spread over the surface of agar plates (petri dish-triple vented).

Figure 2.1: A three-fold dilution series of the soil sample. Soil dilutions range from

1:10 (1×10-1) on the left to 1:1000 (1×10-3) on the right.

Microorganism isolation was carried out using a selective medium (BSM).This medium

contained 1 Litre BSM, 15 g agar (1.5% agar) and DBT as a sulfur source which was

added aseptically to sterile BSM at a final concentration of 0.5 mM. After preparation

of dilutions (10–1– 10–3), selective agar media were inoculated and incubated at 30 °C.

2.3.4 Preparation of pure cultures

For bacterial strain selection, the colonies were transferred to separate selective media.

In this way each strain was spread on to a separate plate. To do this a loop of culture

was first streaked on to the BSM agar plates and these plates were incubated for 48–72

hours at 30 °C. After identifying different colony forms, individual colonies were

transferred on to individual plates all having the same medium. The procedure streaking

out on to plates was repeated to isolate different purified colonies.
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2.3.5 Selection of isolates able to convert DBT to HBP

To identify the bacterial colonies using DBT as sole source of sulfur the Gibb’s assay

technique was used. This technique is able to identify the bacterial colonies that

desulfurize DBT by the specific oxidative pathway (4S) to HBP (Omori et al., 1992).

Flasks containing BSM with 0.5 mM of DBT as sole sulfur source were inoculated by

isolated strains, three flasks per strain. Then they were shaken at 100 rpm for two weeks

at 30 °C. To investigate the growth of bacteria, the absorbance change (turbidity) of the

mineral medium was measured by spectrophotometry at a wavelength of 600 nm. This

absorbance change was used as the evaluation criteria for microorganism adaptation in

the media used. In order to carry out the Gibb’s assay, aliquots (5 mL) from each flask

were taken daily and production of 2-HBP as the results of biodesulfurization was

determined by spectrophotometery at a wavelength of 610 nm. Rhodococcus was used

as the control organism and its activity was compared against the activity of the isolated

strains. Uncontaminated BSM was used as a blank.

2.3.6 Gibbs assay

The 2-hydroxybiphenyl (2HBP) produced as a consequence of the BDS of DBT was

determined using Gibbs reagent (2, 6-dichloroquinone-4-chloroimide). The media must

be adjusted to pH 8.0 before the Gibb’s reagent is added. Gibb’s reagent, the principle

reagent of this assay, can react with the aromatic hydroxyl groups at pH of 8.0 to form a

blue-coloured complex which can then be monitored spectrophotometerically at 610 nm

after 30 min incubation at room temperature. Thus, the assay can be summarized as

follows:
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Aliquot (5 mL) of supernatant culture broth was put into the tubes and centrifuged

(1200 rpm, 10 min) to remove cells. The supernatant (2 mL) was then transferred to an

Eppendorf tube. Gibb's reagent (0.1 g) (2,6-dichloro-quinone-4-chloroimide) was

dissolved in 10 mL absolute ethanol in a test tube, and quickly protected from light by

wrapping the tube in foil. Each Eppendorf tube contained 2.0 mL supernatant adjusted

to pH 8.0, and each of these 20 μL Gibb's reagent was added. The assays were

incubated at 30 °C for 30 min to complete the colour development. The optical density

at 610 nm was measured on a Jenway-6505 UV/vis. Spectrophotometer and absorbance

changes were converted to HBP concentration with the aid of a 2-HBP-generated

standard curve.

HBP + Gibb’s reagent →  Blue colour   (1)

2.3.6.1 Gibb’s assay calibration

Gibb’s assays were undertaken to detect 2-hydroxybiphenyl (2-HBP), which is

produced from DBT degradation. The absorbance of the supernatant determined at 610

nm was converted to concentration (mg/L) with the aid of 2-HBP generated standard

curve. The standard curve was prepared from the development of the blue colour

produced by the reaction between Gibb’s reagent and aromatic hydroxyl group (2-HBP)

in the range of 0 - 0.4 mM which gave the absorbance curve presented in Figure 2.2.
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Figure 2.2: Standard curve of 2HBP obtained by Gibb’s assay. Each point is a

mean of 3 replicates and the error bar is one standard deviation.

2.3.7 General characterization of isolated strains

Traditionally the first steps in the identification of unknown bacteria, are based on

phenotypic properties of the isolates such as cell shape and colony morphology. Various

staining methods are then applied to obtain information about the bacterial cell wall and

to monitor cell structures. After this, genotypic characterization (determination of the

DNA and RNA characteristics of the bacteria) is becoming more widely practiced, to

characterize and identify bacteria. The general characterization of bacteria refers to

determination the shape, Gram reaction, motility etc by use of microbiological

techniques and light microscopy was carried out in the follows manner.

2.3.7.1 Colony morphology

Colonies of the isolated strains that produce HBP were grown on BSM agar plates.

Observation using a stereomicroscope (magnification 50X) was used to identify the

different colony shapes, sizes, colours and textures (dry or wet).
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2.3.7.2 Cell shape and arrangement

Individual cells were observed in the light microscope (magnification 100x with oil

immersion) to identify the overall shape of the cells e.g. coccus, bacillus (rod shape),

coccobacillus, curved or “V” shaped rod.

2.3.7.3 Motility: the hanging drop test

One drop from a freshly prepared culture was added to a microscope cover slip. A

plasticine ring was placed on a microscope slide and then the slide inverted over the

cover slip so that the drop is in the centre of the plasticine ring and the coverslip sealed

in position by the plasticine. The microscope slide with the coverslip is reinverted so

that the bacterial cells are freely moving in the drop and motility can be observed by

using phase contrast microscope (magnification 40X) as a darting motion.

2.3.7.4 Catalase test

Approximately 0.2 mL of hydrogen peroxide solution was placed in a test tube. A

colony of the bacteria to be tested was placed inside the tube and rubbed against the

wall of the tube. The tube was then capped and tilted to allow the hydrogen peroxide

solution to cover the colony. If the colony forms bubbles, the organism is said to be

catalase-positive and if not, the organism is catalase-negative.

2.3.7.5 Staining procedure

Bacterial smears were prepared, air dried and heat fixed on a microscope slide using

standard procedures. The smears were stained for Gram reaction (Carter and Wise,
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2003): Gram staining allows bacteria to be divided into two major groups, gram-

positive and gram-negative. The two groups have different cell wall structures, as well

as other different characteristics. Cell wall contains either a thick peptidoglycan layer or

a thin peptidoglycan layer with an additional lipopolysaccharide layer. The gram stain

method can be summarized as follows:

The prepared smear was stained with a drop of 0.5% methyl violet for 60 seconds and

rinsed with water. Then the bacteria were stained with a drop of 2%KI/1%I (Lugol’s

iodine) for one minute. The slide was rinsed with water and immediately decolorized

with ethanol for a short time until the violet colour no longer ran out. The slide was

rinsed with water and the sample was counterstained with 0.1% saffranin for a minute.

Then the slide was rinsed briefly with water and allowed to dry. The slide was observed

under the microscope (Olympus BH2 Microscope) by using UplanFI 100*/1.30 oil lens

2.3.8 Identification of isolates

After colony characterisation and Gram staining the isolates, screw capped bottles (20

mL) containing BSM agar as a solid slant were prepared and streaked with isolated

strains under sterile conditions and sent to George Kvesitadze, Durmishidze Institute of

Biochemistry and Biotechnology, Tbilisi.

2.3.9 Bacterial growth and population density of isolates

Growth of isolates was measured from their optical densities at 600 nm (A600) using a

Jenway- 6505 UV/Visible (Paterson Scientific, UK) spectrophotometer. A 10 mL

solution of BSM was inoculated with the bacteria Using sterilized conditions (flaming
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under a laminar flow hood and incubated at 100 rpm at 25 ºC for two days. Bacteria

growing on these plates were then harvested. The bacterial isolates were cultured by

using 1 ml inoculum added to a 100 mL of basic salt medium (BSM) in a 250-mL flask.

Flasks were then incubated on an orbital shaker (Luckham model R300, UK) at 100 rpm

at 25 ºC. Samples were taken every three hours and monitored for the optical density of

these suspensions by UV spectrophotometery at 600 nm until a stable optical density

was reached (All the experiments were run in triplicate).

2.4 Results and discussion

At the end of enrichment, bacteria inherent in the soil were isolated by plating the

enrichment cultures on BSM agar plates with DBT. By repeating streak out on plates of

the same medium the different colonies were obtained (Fig. 2.3).

Figure 2.3: Photograph of typical spread plates produced by culturing on BSM

agar plates. This figure shows the growth of a range of microorganisms on an agar

plate containing 0.5 mM DBT as the sole sulfur source.
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Production of 2-HBP, caused by desulfurization of the isolated bacteria was determined

by spectrophotometery at 610 nm and typical results are presented in Table 2.4.

Table 2.4: Gibb's assay results. Coloration observed after addition of Gibb’s

reagent. Control (contained HBP). Blue coloration identifies HBP production;

brown coloration identifies complete degradation of DBT.

Sample No. Coloration
Blue Brown

1 – +
2 – +
3 – +
4 + –
5 – +
6 – +
7 – +
8 – +
9 – +
10 – +
11 – +
12 – +
13 – +
14 + –
15 – +
16 + –
17 – +
18 + –
19 – +
20 – +
21 – +
22 – +
23 + –
24 – +

R. erythropolis + –
Control (HBP) + –

The selected colonies were transferred to a separate BSM agar supplied with DBT at a

final concentration of 0.5 mM. This method was used for two reasons: (1) to confirm
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that only one bacterial species was transferred to a medium, thus creating a pure culture,

and (2) to assess the specific characteristics of isolated colonies and eliminate the

similar colonies which lead to select 5 strains among the isolates. The streak-plate

method was used to transfer the micro-organisms. Selected plates are shown in Fig. 2.4.

All agar plates were 90 mm Petri dishes and were on BSM agar contain 0.5 mM DBT.

Figure 2.4: The streak plates of micro-organisms used to isolate pure cultures.

The Gram stain results of selected isolates are shown in Figure 2.5. The blue/violet

coloration indicates that F3 and F5 are Gram positive while Gram negative cells (F1, F2

and F4) show the pink colour of the counter stain.
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(F1) (F3)(F2)

(F4) (F5)

(F1) (F3)(F2)

(F4) (F5)

Figure 2.5: Gram stains of isolated bacteria.

The growth of isolated bacteria was measured using a dilution series and typical results

are shown in Figure 2.6. As can be seen the growth rate of isolates in BSM liquid

cultures is slow at first, and then after 10-15 h becomes rapid. Of the isolates studied

here, F3 had the shortest lag period, approximately six hrs and that of isolate F5 was

twenty hrs longer. The exponential phase was From 10 h to 20 h.
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Figure 2.6: Growth of isolates in BSM at 30 ºC over a 40 hr incubation period.

Each point is the mean of three experiments. To avoid overcrowding the graph,

one representative error bar giving the standard deviation is shown for each curve.

To identify the characteristics of the unknown bacteria – phenotypic properties of the

isolates – techniques were applied to obtain general information about the isolated

bacterial. The characterization results for five isolates are summarised in Table 2.5.
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Table 2.5: General characteristics of HBP producing isolates. All the cultures were

freshly cultured on BSM containing DBT as the sulfur source at 30 ºC.
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For the genotypic characterization (determination of the DNA and RNA characteristics

of our bacteria), the five isolates were sent to Institute of Biochemistry and

Biotechnology, Tbilisi. The results showed strain F2 and F4 were isolates of

Psedomonas, strain F1 was a Flavobacterium and F3 belonged to the genus of

Rhodococcus. But the identification of F5 was not successful however with high

probability it was a known strain.

2.5 Summary

Soil samples were collected from different natural sites around oil contaminated fields

in Iran. Enrichment, isolation and purification were applied under aerobic mesophilic

conditions in minimal medium containing DBT as the sole source of sulfur. 24 colonies

isolated were obtained from these samples. The purity of the bacteria was confirmed by

subculturing the colonies a few times. To identify the bacterial colonies using DBT as

sole source of sulfur by the specific oxidative pathway (4S) the Gibb’s assay was used.

The results showed that only five out 24 isolated colonies gave a blue coloration

indicating that DBT had been oxidised to HBP and 19 gave a brown coloration

indicating that in these isolates which completely degrade DBT they are not be able to

produce HBP (Table 2.2). The five colonies shown to produce HBP were named as F1,

F2, F3, F4 and F5. In all five isolates, DBT was degraded and they show the ability to

produce HBP which demonstrates similar pathways of R. erythropolis to desulfurize

DBT. The ability of the selected isolated microbes to convert organic sulfur compound

to sulfate without degrading the calorific value of the fuel but the isolates were not

reported as new strains. Therefore I continued by focusing on processes for the

deliberate development of biodesulfurization by the known bacteria.



Chapter 2

44

2.6 Conclusion

In view of the disappointing results (failure to have discovered a novel strain), I decided

to turn to finding ways of enhancing the best presently known biodesulfurization agent.
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Chapter 3 : Biodesulfurization by R.
erythropolis and S. putrefaciens

3.1 Desulfurizing bacteria

Several kinds of microorganisms have been suggested to metabolize sulfur compounds.

In the development of a BDS process the most important (in number and diversity) is

bacteria that have the ability to consume DBTs as their energy source. However, the

first attempt for BDS failed because these species could not specifically remove sulfur.

Some of the microorganisms could use DBT as carbon and sulfur sources

(Kirshenbaum, 1961; Malik, 1980) and metabolized them into products which

significantly inhibited microbial growth and DBT oxidation (Kodama et al., 1973,

Monticello, 1985). Several different genera have been reported that attack carbon atoms

in the DBT phenyl ring, known as the Kodama pathway, and the majority of

investigations have focused on Psedomonas cultures (Hartdegen et al., 1984).

Monticello in 1985, showed the Kodama pathway in Psedomonas alcaligenes and P.

putida. In this oxidation pathway one of the phenyl rings is attacked by bacteria and

results in the breakage of a phenyl ring. This pathway could not specifically remove

sulfur from the molecule; therefore it is not considered a sulfur removal approach. After

this attempts were made to isolate a variety of strains that could remove sulfur from

DBT without ring cleavage and resulted in Kilbane, in 1990, proposing the 4S pathway

that implied consecutive oxidation of DBT by Rhodococcus erythropolis. Researchers

tried to isolate bacteria that could remove sulfur non-destructively. Brevibacterium,

(Van Afferdin et al., 1990) and Arthrobacter sp. K3b (Dahlberg et al., 1993) was also

reported to act similarly to Rhodococcus. Although the reported desulfurization pathway
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was partly similar to the 4S pathway, but still the aromatic compounds were still

degraded during the process.

Several microorganisms have been suggested for the BDS process but the majority of

the studies have been conducted on the selective removal of organosulfur compounds

with R. erythropolis and other microorganisms as the biological catalyst. To date,

several genera have been reported to selectively remove sulfur from several model

compounds however; most of them belong to the Rhodococcus genus. A number of

DBT-desulfurizing Rhodococcus species have been reported, including R. rhodochrous

IGTS8 (Kayser et al., 1993), R. erythropolis I-19 (Folsom et al., 1999), Rhodococcus

strain P32C1 (Maghsoudi et al., 2000), R. erythropolis rKA2-5-1 (Kobayashi et al.,

2000), R. erythropolis strain T09 (Matsui et al.,2000), Rhodococcus strain WU-K2R

(Kirimura et al., 2002) and Rhodococcus strain ECRD-1 (Grossman et al., 1999) which

was initially classified as Arthrobacter (Lee et al., 1995) and sometimes classified as R.

erythropolis X310 (Denis-Larose et al., 1997). The American Type Culture Collection

(ATCC) assesses that they have compared these closely related strains and R.

erythropolis IGTS8 has the highest desulfurization capabilities.

Several bacterial species can utilize the organic sulfur compounds in crude oil yet

preserve fuel value and have therefore been explored for the purpose of desulfurization.

The most employed microorganisms belong to genus Rhodococcus, such as

Rhodococcus erythropolis IGTS8. Rhodococcus strain IGTS8 is able to utilize a wide

range of organic sulfur compounds as the sole source of sulfur, i.e. thiophenes, sulfides,
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disulfides, mercaptans, sulfoxides and sulfones (Kayser et al., 1993). Therefore this

bacterial strain has been used in this work in the first instance.

3.1.1 The importance of Rhodococcus erythropolis

The value of Rhodococci is clearly revealed in its diverse range of metabolic

capabilities and these features are presented in various environments. Rhodococci,

because of their environmental persistence, tolerance to starvation, frequent lack of

catabolite repression are ideal candidates for bioremediation of contaminated sites.

These bacteria possess the capability for degrading a large number of organic

compounds including various chemical pollutants such as aromatic hydrocarbons,

simple hydrocarbons, nitroaromatics, chlorinated polycyclic aromatics such as

polychlorinated biphenyls (PCBs), and other refractory toxicants (Bell et al., 1998;

Larkin et al., 2005). Another class of hazardous chemicals that are persistent in the

environment are polychlorinated biphenyls, which are widely used in industry, are

known to be degradable by Rhodococci and may also help in the bioremediation process

(Bell et al., 1998). Rhodococcus species could be considered the ideal candidates to

enhance the bioremediation of contaminated sites because of the following

characteristics which they possess: tolerance to starvation; environmental persistence

and their frequent lack of catabolite repression (Vellore, 2001). Some species of

Rhodococcus can grow using gaseous hydrocarbons including butane, acetylene and

propane (Bell et al., 1998). R. erythropolis strain IGTS8 has the ability to remove

organic sulfur compounds from fossil fuels such as coal and petroleum. This strain

specifically breaks the carbon-sulfur bonds in DBT without degrading the aromatic ring.
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This biocatalytic desulfurization of IGTS8 does not affect the fuel value of the

compound so is being developed by the biotechnology industry (Gray et al. 1996).

3.2 Experimental

3.2.1 Bacterial strains

Rhodococcus erythropolis IGTS8 (ATCC 53968) was obtained from the American

Type Culture Collections. Shewanella putrefaciens (NCIMB 8768) was obtained from

the National Collections of Industrial and Marine Bacteria Ltd (Aberdeen, UK).

3.2.2 Media

The compositions of nutrient agar and nutrient broth are presented in Table 3.1 and 3.2

The basic salt medium was prepared in two solutions as shown in Table 2.2 and 2.3

(Patel et al., 1997). All media were sterilised by autoclaving at 121 C for 15 min.

Table 3.1: Composition of nutrient agar.

Component Amount

Peptone

Meat extract

Agar-agar

Water

pH

5.0 g

3.0 g

12.0 g

1.0 L

7.0 ± 0.2
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Table 3.2: Composition of nutrient broth.

Component Amount

Lab- Lemco powder

Yeast extract

Peptone

Sodium chloride

Water

pH

1.0 g

22 2.0 g

5.0 g

5.0 g

1.0 L

7.4 ± 0.2

3.2.3 Bacterial revival

Freeze-dried cultures were rehydrated and revived according to the instructions of The

National Collections of Industrial and Marine Bacteria Ltd. (Aberdeen, UK). An opened

vial was rehydrated with 0.5 mL of medium (nutrient medium). The contents were

mixed without frothing. The suspension was divided into two aliquots and each aliquot

was sub-cultured into 5 mL of medium in a Universal bottle. The Universal bottles were

incubated on an orbital shaker (L.H. Engineering Co. Ltd., UK) at 100 rpm and 25 C

for 24 hours. The cultures were then transferred to 250 mL flasks containing 100 mL of

medium and incubated at 100 rpm and 25 C.

3.2.4 Bacterial growth

Growth of S. putrefaciens and R. erythropolis under their optimal conditions were

measured from their optical densities at 600 nm (A600) using a Jenway- 6505 UV/Visible

(Paterson Scientific, UK) spectrophotometer.
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A 10 mL of solution prepared liquid media (Nutrient broth) was transferred to a

universal using sterilized conditions (flaming under a laminar flow hood) and inoculated

with the bacteria and incubated at 100 rpm at 25 ºC for 12 hours to reach the

exponential growth phase. Both bacterial strains were cultured by using 1 ml inoculum

added to a 100 mL of nutrient broth in a 250-mL flask. Flasks were then incubated in an

orbital shaker (Luckham model R300, UK) at 100 rpm at 25 ºC. Samples were taken

every three hours and monitored for bacterial growth by a spectrophotometer at 600 nm

until a stable optical density was reached (All the experiments were run in triplicate).

3.2.5 Population density of bacteria

The inoculum (1 mL) prepared as in Section 3.2.5 was added to 100 mL nutrient broth

and incubated at 100 rpm. The procedure was carried out for subsequent incubation

periods of 1, 3, 5, 7, 9, 12, 15, 18, 22, 25 and 30 hours. After each incubation period, the

harvested cells were resuspended in Ringer’s solution, the optical density (600 nm)

measured, spread plates prepared using the 1×10-5, 1×10-6, 1×10-7, 1×10-8 and 1×10-9

suspensions of the ten-fold dilution series, 0.1 mL of each dilution of cell suspension

pipetted onto separate BSM agar plates, and then spread across the surfaces of the

plates. Three replicates were made of each dilution. All plates were incubated at 25 ºC

for 2-3 days, or until colonies were countable, i.e. large enough to be visible, but not so

large as to make distinction between colonies difficult. Then, the colonies of each plate

were counted. Using the dilution factor and volume of suspension added to each plate,

the number of colony forming units (CFU) was then calculated. Once the population

density of the original suspension had been calculated, so that the dilution factor and

turbidity displays the population density value.
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3.2.6 Dry weight detection

The cells (10 mL) prepared as in Section 3.2.5 were washed twice with sterile distilled

water by centrifugation at 12000 g for 10 min. Cells were resuspended in a small

volume (1 mL) of sterile distilled water and transferred to pre-weighed cups. The

centrifuge tubes were washed with a further volume of water (1 mL) and the water plus

cells was added to the cups. The cups were placed in the oven and set at 110 °C

overnight. After this the cups were cooled in a desicator, and then reweighed and the

average dry weight of the cells (g/L) calculated.

3.2.7 Bacterial harvest

The cultures were grown until the mid-exponential growth phase in a liquid medium

and then centrifuged (Hettick-EBA 20-Germany Centrifuge) at 1400 g for 10 min. The

supernatant was discarded and the cell pellets were washed twice with Ringer’s

solution. The Ringer’s solution was prepared by dissolving 1 tablet (Fisher) in 500 mL

of water. The cells were then resuspended in the same solution to A600 = 1.0 and used on

the day of harvesting.

3.2.8 Bacterial maintenance and storage

The bacteria were maintained by sub-culturing into a liquid medium or plating on a

solid medium (nutrient agar) weekly. For long-term storage, 0.85 ml of culture was

transferred to 0.15 ml of sterile glycerol (sterilized by autoclave at 121 C for 15 min) in

a screw cap tube. All tubes were mixed by vortex to ensure that the glycerol was evenly

dispersed. The tubes were kept in a labelled airtight gasket and frozen at 80 C. The

bacteria can be recovered by scraping the frozen surface of the cultures with a sterile
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inoculating needle, and then immediately streaking the cells that adhere to the needle

onto the surface of a nutrient agar plate or transferring the defrosted cells to fresh liquid

medium.

3.2.9 Biodesulfurization of DBT by S. putrefaciens

In a previous investigation carried out at Cranfield University, it has been found that

using the bacterium S. putrefaciens in clay desulfurization, sulfur odour was reduced.

Experiments have also been carried out to examine the use of this bacterium for coal

desulfurization (Prayuenyong, 2001). The present study is therefore also aimed at

studying the desulfurization ability of the bacterium S. putrefaciens strain NCIMB 8768

and comparing its biodesulfurization activity profile with those achieved using the

widely studied strain R. erythropolis (strain IGTS8).

3.2.10 Bacterial enhancement

The original culture of S. putrefaciens did not grow using DBT as a sole source of

sulfur. Therefore, to enhance bacterial growth on DBT, experiments were carried out by

enrichment of bacteria. A sulfur source (DBT) was added aseptically to a 250 mL flask

containing 100 mL BSM. One mL of inoculum which contains bacteria grown in

nutrient medium was added into the flask at 30 ºC and 100 rpm. After 3 days a further 2

mL of inoculum was added to the same flask and it was left for 3 more days so as to get

a good growth of the culture.
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After enhancement of the bacteria the capabilities of R. erythropolis IGTS8 and S.

putrefaciens NCIMB 8768 for desulfurization with DBT as the sulfur model compound

were investigated.

3.2.11 DBT desulfurization capability

In this study of desulfurization capability of S. putrefaciens (NCIMB) and R.

erythropolis IGTS8, DBT was the sole sulfur source in BSM.

Cells were grown until the mid-exponential growth phase and harvested by

centrifugation at 6000 rpm for 15 min. The cells were then resuspended in the same

solution to A600 = 1.0 and used on the day of harvesting. One mL of inoculum was

added to 250 mL flasks containing 100 mL of BSM with 0.3 mM of DBT-ethanol

solution and incubated at 30 C (100 rpm).

3.2.12 Effect of DBT concentration

To study DBT degradation by the two bacteria, S. putrefaciens (NCIMB) and R.

erythropolis IGTS8, the bacteria grown in BSM with DBT were harvested as described

in the experimental section, and resuspended back in BSM to A600 = 1.0. One mL of

inoculum was added to 250 mL flasks containing 100 mL of BSM with DBT at a final

concentration of 0.3, 0.6 and 0.9 mM and incubated at 30 C (100 rpm). Control flasks

without bacterial cells were also incubated. Samples (5 mL) were taken daily and

monitored for bacterial growth at A600 and analysed DBT and HBP concentration using

high-pressure liquid chromatography (HPLC) (details in 3.3.1).



Chapter 3

54

3.3 Analytical methods

3.3.1 Measurement of hydrocarbons by HPLC

Due to the high resolution of the stationary phase, HPLC is an effective technique for

identification of compounds in a mixture. The concentrations of DBT and HBP were

analyzed by high-performance liquid chromatography (HPLC) using a HPLC Model

LC-10AD VP (Shimadzu) equipped with a Nova Pak phenyl column (3.9150 mm)

with a Restek guard column, (Thames Restek, UK Ltd). An isocratic elution with 60%

acetonitrile and 40% water at 1.5 mL/ min was used and detection was realized with a

117 UV detector fixed at 233 nm wavelength. The mobile phase, a mixture of HPLC

grade water and acetonitrile was sonicated for 10 min and further deaerated with helium

before use.

A high-pressure liquid chromatography (HPLC) method was developed to analyse the

concentrations of DBT, and HBP. Samples from experiments described in Sections

3.2.12 and 3.2.13 (1.0 mL) were transferred to ependorf tubes. The bacterial cells were

removed by centrifugation at 13000 rpm for 15 min by microcentrifuge (SANYO-MSE

micro centowr-UK). The supernatant from each tube was kept in a vial (Fisher, UK)

stored at -4 C until analysed.

3.3.1.1 HPLC calibration

HPLC was carried out by isocratic elution with 60% acetonitrile and 40% water at a

flow rate of 1.5 mL/min. Retention times of DBT and its derivatives detected using UV

detector at 233 nm are shown in Table 3.3.
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Table 3.3: Retention times of DBT and 2-HBP under gradient elution.

Compound TR (min)

DBT

2-HBP

9.21

5.57

A chromatogram of DBT and 2-HBP added to the sterile medium growth is shown in

Figure 3.1.

Figure 3.1: HPLC chromatogram of DBT and 2-HBP in sterile medium growth

without bacterial inoculum. Concentration of each of compound was 0.1 mM.

To plot the calibration curves of DBT, for HPLC chromatograms, 1 mM of DBT was

prepared as stock solution and used for preparing different dilutions. However, this
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concentration was too high and so for optimum results it was reduced to 0.1 mM. Table

3.4 shows the dilutions used to prepare the standard curves.

Table 3.4: Preparation dilutions of DBT for plotting calibration curve of HPLC

analysis.

DBT (0.1 mM) in

ethanol (mL)

Acetonitrile

(mL)

1

2

3

4

5

6

0

0.4

0.8

1.2

1.6

2

2

1.6

1.2

0.8

0.4

0

The same preparation was carried out for 2-HBP and the calibration curves are

presented in Figures 3.2 and 3.3 respectively.
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Figure 3.2: Calibration curve of DBT by HPLC analysis. The mean area

(calibration units) of the HPLC chromatogram was converted to DBT

concentration. Each point is a mean of 3 replicates and the error bar is one

standard deviation.

Figure 3.3: Calibration curve of 2-HBP by HPLC analysis. The mean area

(calibration units) of the HPLC chromatogram was converted to 2-HBP

concentration. Each point is a mean of 3 replicates and error bar is one standard

deviation.
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3.4 Results

In this study two aerobic bacterial strains were investigated: Rhodococcus erythropolis

IGTS8 (ATCC 53968) and Shewanella putrefaciens (NCIMB 8768). R. erythropolis

IGTS8 have been patented by the Institute of Gas Technology and licensed for

commercial development to Energy Biosystem Corporation (McFarland, 1998).

Colonies formed by R. erythropolis have a distinct orange, salmon pink or cream

pigmentation (which is caused by the presence of carotenoids) and they are smooth and

large with a diameter of 2-4 µm. Shewanella putrefaciens (NCIMB 8768) formerly

called Pseudomonas rubescens, has been isolated by Pivnick (1955) and in both solid

and liquid media is often recognizable by its bright pink colour. S. putrefaciens is the

only non-fermentative Gram-negative rod that produces hydrogen sulfide (Tsai and

You, 2006) but not been proved to possess the capacity to degrade the thiophenic

compounds present in oil. Some of the characteristics of these microorganisms are

summarised in Table 3.5.

Table 3.5: Characteristics of the bacteria

Description R. erythropolis IGTS8
(Kilbabe, 1990)

S. putrefaciens NCIMB 8768
(Pivnick, 1955)

Gram stain + -
Motility - +
Catalase + +
Oxidase - +
Shape Rod (2-3 µm) Rod(1.5-2 µm)
Colony Round (diameter: 2-4 mm) Round (diameter: 1-1.5 mm)
Isolation source Soil Oil emulsion

The Gram stain performed in this study is described in section 2.3.5.5. As shown in

Figure 3.4, R. erythropolis IGTS8 has a thick wall of peptido peptidoglycan overlaying
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the cytoplasmic membrane which presents a purple colour-a gram positive reaction. S.

putrefaciens with a multilayered structure composed of a thin layer of peptidoglycan

surrounded by an outer layer of protein and lipopolysaccharide presents a pink colour-a

gram negative reaction: the cell wall of S. putrefaciens is thus rich in lipids compared to

the cell wall of R. erythropolis.

Figure 3.4: Gram stain culture of R. erythropolis (left) and S. putrefaciens (right)

(4000X).

Growth curves of S. putrefaciens and R. erythropolis in nutrient medium at their optimal

temperature are shown in Figure 3.5. Growth patterns of these two bacteria under their

respective optimal condition were typical for bacterial growth. An initial lag phase

before growth accelerated was observed. After the lag phase they enter to the

exponential phase. Cells in exponential growth are usually in their healthiest state, and

thus in the mid exponential phase it is often desirable to use then for further studies. The

mid exponential phase for R. erythropolis and S. putrefaciens was after around 12 hours

incubation time. As figure 3.5 shows, the growth rate of R. erythropolis is slightly faster

than S. putrefaciens and the deceleration phase of both organisms was seen after

approximately 24 hours.
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Figure 3.5: Growth of R. erythropolis IGTS8 and S. putrefaciens in nutrient

medium monitored via optical observation at 600nm. Cell grown in nutrient

medium and incubated at 30 ºC, 100 rpm. Samples taken every 3 hours and were

monitored for bacteria growth. Each point is a mean of triplicate, and error bar is

a standard deviation.

Figure 3.6: Number of cells calculated by colony forming unit for R. erythropolis

and S. putrefaciens cultured in nutrient broth at 25 ºC.
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Dibenzothiophene (DBT) as a sole sulfur source in BSM in three concentrations (0.3

mM, 0.6 mM and 0.9 mM) was supplied to study the growth of R. erythropolis and S.

putrefaciens separately. Growth patterns of these two strains in different concentration

of DBT were not the same (Fig. 3.7). For R. erythropolis an initial lag phase before

growth accelerated was observed and after the lag phase it grew slightly faster than S.

putrefaciens. Growth of R. erythropolis declined in the higher concentration of DBT.

S. putrefaciens also grew in BSM+DBT but there was a significant decrease in growth

and as is shown, its growth was slower than R. erythropolis. The results indicated that

these two bacteria are sensitive to high concentration of DBT. There was no DBT

degradation in the control flasks (incubated without bacteria cells).
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Figure 3.7: Growth of R. erythropolis IGTS8 (a) and S. putrefaciens (b) in BSM

with three concentration of DBT, as the sole source of sulfur. Each value is a mean

of three replicate.

Production of 2-HBP from DBT degradation at the concentration of 0.3 mM by growing

R. erythropolis and S. putrefaciens was monitored by HPLC analysis and are presented
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in Figures 3.8 and 3.9 respectively. The DBT concentration was halved after 3 days,

incubation. 2-HBP analysis confirmed that similarly to R. erythropolis, S. putrefaciens

desulfurized DBT through the selective cleavage of the C-S bonds, resulting in the

accumulation of 2-HBP. The detection of 2-HBP, when Shewanella utilized DBT as the

sole sulfur source indicates that the DBT-desulfurizing pathway is the 4S pathway as

reported by Kilbane et al. (1992). This type of reaction is desirable for practical

desulfurization since the sulfur atom is removed without C-C bond cleavage, that is,

without the loss of calorific energy. The amounts of 2-HBP produced and DBT

degraded of R. erythropolis were not equivalent (Fig. 3.10) ( (Kayser et al., 1993).

It has been reported that 2-HBP is toxic to bacterial cells, hence biodesulfurization is

inhibited by accumulation of 2-HBP (Zhang et al., 2005). A complicating factor in this

experiment that the end product 2-HBP is somewhat inhibitory to cell growth and

possibly to desulfurization activity.
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Figure 3.8: DBT degradation by R. erythropolis IGTS8 (a) and S. putrefaciens

NCIMB (b) at the final concentration of 0.3 mM as the sole sulfur source.
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Figure 3.9: HBP production by R. erythropolis IGTS8 (a) and S. putrefaciens

NCIMB (b) in DBT at the final concentration of 0.3 mM as the sole sulfur source.
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Figure 3.10: Comparison of the desulfurization capability of R. erythropolis (a)

IGTS8 and S. putrefaciens NCIMB (b) in DBT at the final concentration of 0.3 mM

as the sole sulfur source.
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Figure 3.11 compares the production of 2-HBP by growth of R. erythropolis and S.

putrefaciens in different concentration of DBT. Bacterial growth at higher concentration

of DBT is inhibited and a significant decrease of HBP production was observed at 0.6,

or 0.9 mM of DBT, presumably because the bacteria could not tolerate high

concentration of the sulfur source.

Figure 3.11: Production of HBPby R. erythropolis (upper) and S. putrefaciens

(lower) in different concentration of DBT: 0.3 mM, 0.6 mM, 0.9

mM
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3.5 Summary

S. putrefaciens has shown high activity and stability to remove sulfur from organic

compounds that commonly exist in crude oil. However, this activity is unlikely to be

sufficient for the design of commercial applications and microorganisms with high

activity and selectivity for thiophenes are required. So development of bacteria for

sulfur removal and design of new biodesulfurization processes by improvement of the

permeabilization of the bacteria are required. This is the topic of the rest of the thesis.

In order to avoid confusion due to the wide variety of conditions found in the literature,

I compared S. putrefaciens with what is considered to be the best known BDS strain, R.

erythropolis IGTS8, under my identical conditions, and found S. putrefaciens to be

inferior.
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Chapter 4 : Magnetic nanomaterials

In order to render desulfurizing bacteria magnetic, I have explored decorating their

outer surfaces with magnetic nanoparticles. Biocompatible magnetic nanoparticles have

a wide range of applications in bioscience and they are also able to solve many

separation problems in industry. Therefore in the next chapter I describe the synthesis of

these nanoparticle coated bacteria.

4.1 Magnetism

From the atomic view of matter, the source of magnetic phenomena in materials is

electron motion. Each electron has both angular momentum orbital (from motion

around the nucleus) and spin angular (around its own momentum axis) which combine

to give the resultant magnetic moment of an atom. Most materials have magnetic

properties which are small. Overall, the magnetic behaviour of materials is classified

into five types depending on the magnetic response to an external applied magnetic

field: ferromagnetism, ferrimagnetism, antiferromagnetism, paramagnetism and

diamagnetism. All materials exhibit at least one of these types of magnetism.

Ferromagnetic materials can be permanently magnetized upon application of an external

magnetic field for which the susceptibility is positive (χ >0). Iron, cobalt and nickel are

typical ferromagnetic elements. Ferrimagnetism is another type of magnetic ordering in

which the unequal magnetic moments of atoms on different sublattices produce

spontaneous magnetization in the material below the Currie temperature. Magnetite,
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Fe3O4, is a common example of a ferrimagnetic mineral in which sublattices consist of

different ions (Fe2+ and Fe3+). Ferrimagnetism is similar to ferromagnetism and exhibits

the same hallmarks of ferromagnetic behaviour. In antiferromagnetic materials the spin

moments of neighbouring atoms or ions are in exactly opposite directions and the

sublattice moments are exactly equal but opposite, so they cancel one another and result

in zero net magnetization of the material (Li et al., 1997; Cullity, 1972). Manganese

oxide (MnO) is an example of an antiferromagnetic material. In paramagnetic materials

some of the atoms or ions have a net magnetic moment due to unpaired electrons in

partially filled orbits, so the individual magnetic moments don’t interact magnetically.

In the presence of a field, they possess a net positive magnetization but when the field is

removed the net magnetization is zero. The coupling of atomic magnetic moment is

disrupted by heating and above a certain temperature (called Neel temperature) it

disappears entirely. So the susceptibility in this case is inversely proportional to the

absolute temperature. Above the Neel temperature a material may possess a small

positive magnetic susceptibility (χ ≈ 0). Conduction electrons which form an energy

band in metallic crystals also exhibit paramagnetism. Since, in this case, the excitation

of minus spins to the plus spin band is opposed by an increase of kinetic energy of

electrons irrespective of temperature; the susceptibility is independent of temperature.

Examples of paramagnets are aluminium, platinum and manganese. Diamagnetism is

usually very weak and is a fundamental property of all matter. The origin of this

magnetism is the orbital rotation of electrons about the nuclei induced

electromagnetically by the application of an external field. When all electron orbits are

filled, noncooperative orbital behaviour between electrons when exposed to an external

magnetic field results in diamagnetism. Diamagnetic material does not support
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spontaneous magnetization and displays a negative magnetic susceptibility (χ < 0) (Li,

2000). Examples of diamagnets are copper, silver, gold, bismuth and beryllium.

4.2 Magnetite

Magnetite (Fe3O4) is a natural magnet and was the first magnetic material known

(Cornell et al., 1996). Today magnetite is commonly found in igneous, metamorphic,

and sedimentary rocks. Magnetite is also found in living organisms, such as bacteria

(Aquaspirillum magnetotacticum), in the brain of bees, termites, birds (e.g. pigeons) and

humans (Liong 2005).The presence of this magnetic mineral provides the organisms

with natural navigation capability. A picture of magnetite in its natural form is shown in

Figure 4.1.

Figure 4.1: Natural magnetite

4.3 Superparamagnetism

The magnetic properties of ferromagnetic particles depend on their size. The large

magnetic materials have a multidomain structure and display magnetic properties
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regardless of the existent of an applied magnetic field. These magnetic domains interact

with each other and spin in a single particle coupled together. When the magnetic

materials are composed of very small crystallites, i.e. below a critical diameter,

depending on the particle material, they contain only one magnetic domain. These

particles are at a position of uniform magnetization at any field without interaction with

neighbouring domains in one particle or a wall dispersed suspension. If an external

magnetic field is applied, the particles will align producing a net moment and display

magnetic properties, but when the applied magnetic field is removed, permanent

magnetization does not remain. The reason for this phenomenon, superparamagnetism,

is that the single domains return to their disordered status. This behaviour in a manner is

similar to pararamagnetic materials, but the difference is that each molecule has a large

net moment i.e. instead of influencing each atom independently by external magnetic

field; the magnetic moment of the entire crystallite tends to align with the magnetic

field (Fried et al., 2001; Harris et al., 2003).

Morrish and Yu (1956) determined that Fe3O4 particles are single domains when the

diameter is 50 nm or less; this threshold is approximately 8 nm for Fe2O3 particles

(Schmidt 2001). In fact, the critical diameter is the single domain size of the materials.

Therefore, these nanosized particles display magnetic properties under an applied

magnetic field, but permanent magnetization does not remain when the applied

magnetic field has been removed (Harris et al., 2003).



Chapter 4

73

4.4 What is nanotechnology?

Nanotechnology is defined as the design and fabrication of devices and materials with

nanometer dimensions (Ramsden, 2005a). Nanotechnology literally means any

technology process on a nanoscale that has applications in chemical, physical, and

biological systems at scales ranging from individual atoms or molecules to

submicrometer dimensions, as well as the combination of the resulting nanostructures

into macroscopic systems. According to the NNI (National Nanotechnology Institute)

definition, any structure less than 100 nm is a true nanostructure (Grabar et al., 1997)

and unique phenomena are expected at that scale.

There are some general factors that interact with most of the nanoparticulate systems;

depending on their own physical and chemical properties; these include pH, surface

charge (forces of attraction/repulsion), vibration, centrifugation, stirring etc that can

easily and effectively impact on a nanoparticulate system. A notable and important

aspect of such systems is that of atomic granularity. The system is granular at atomic

dimensions; one cannot expect smooth surfaces or interfaces between different particles.

The atom–atom interaction determines the nanoparticles shape, size, geometry, and

orientation. All the above-mentioned features greatly contribute to the “self-assembly”

property of certain nanoparticulate systems, mostly observed in proteins and nature’s

biomachines (Goodsell 2004; Zharov et al., 2005).

Nanotechnology is a new way of thinking for a set of technologies, techniques and

processes of science or engineering (Ramsden, 2005a). Similar to electronics and
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biotechnology which have created their own technological revolutions, it is expected

that nanotechnology will have a similar impact, in some areas sooner rather than later.

Nanotechnology is already affecting our lives, and its effects will shortly become even

more remarkable. We are all now familiar with the results of miniaturisation and there

are daily evidences of how small have become our computers, cameras and telephones.

Nanotechnology already has some input here in the silicon chips which are the “brains”

of these tools; and the application of nanotechnology is also in evidence in ink jet

printers, medical applications and so many other applications. Nanotechnology is trying

to alter the properties of substances to furnish a new world of products. These product

opportunities will be cheaper, less wasteful of precious resources, non-polluting and all

are money spinners. And certainly nanotechnology is the revolution of information

processing, whether it is the fast decipherment of our genetic 'fingerprint', to the rapid

analysis of drug libraries.

4.5 Nanotechnology and industry

Nanotechnology has potentially a vast influence on industry and it is a radically new

approach to manufacturing (Taylor, 2002). Faster computers, drug delivery, advanced

pharmacology, biocompatible materials, tissue repair, surface coatings, catalysts,

sensors, telecommunications and magnetic materials are just some areas where

nanotechnology will have a major impact.

Nanotechnology is likely to have an effective impact on our economy and society in the

early twenty-first century, comparable to that of semiconductor technology, information
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technology, or cellular and molecular biology and healthcare, energy, biotechnology,

information technology, and national security. It is broadly felt that nanotechnology will

be the next industrial revolution (Baumberg et al., 2007). Science continues to move

forward in making the fabrication of nanodevices and systems possible for a variety of

applications in chemistry, interfacial science, material science, molecular biology and

medicine (Ramsden, 2005a).

4.6 Nanotechnology and bioscience

For several reasons, biological systems are relevant to nanotechnology. First, lots of

examples of nanotechnological devices could be found in the living world (Drexler,

1981). However, a second key point is that nanotechnology has been driven and

inspired by the example of biological systems and the need (for example, in medicine)

to influence biological systems at the scale of a single cell (Phillips et al., 2006). In

addition, preliminary steps have been taken to harness the nanotechnology of biological

systems and use it to perform useful functions.

The size of one to several nanometers is of central importance to life, justifying the term

“nature’s yardstick” for this dimension. The size of cellular organelles and other

interesting objects with regard to nanotechnology is summarized in the following graph

(Fig. 4.2). It is then easy to understand that interacting, controlling, and altering cellular

and subcellular organelles can be achieved best with structures at the same size level as

the biomolecular components of interest.
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Figure 4.2: Examples of various nanostructures compared with nanostructures

and microstructures in biology (Papazoglou & Parthasarathy 2007).

4.7 Applications of magnetic & superparamagnetic

nanoparticles

Magnetic nanoparticles are of special interest for their unique magnetic properties due

to their reduced size and have potential use in many technological applications (Hyeon

2003). Magnetite is used in a wide range of applications, including data storage (Hyeon,

2003), magnetic fluids (Chikazumi et al., 1987), biotechnology (Gupta, 2004), catalysis

(Lu et al., 2004), Magnetic resonance imaging (MRI) (Mornet et al., 2006) and

environmental remediation (Elliot et al., 2001; Takafuji et al., 2004) which in all of

these applications magnetite is typically used in the form of particles. There are three

common magnetite iron oxides, FeO, Fe2O3 and Fe3O4. From these compounds,

magnetic Fe3O4 is one of the common iron oxides which has many important

technological applications.
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The importance of magnetic nanoparticles is the applications of MNPs in separation of

biomolecules for characterization or purification and they are a well established

alternative to centrifugal separation of biological solutions (Pankhurst et al., 2003), so

they can be easily manipulated by permanent magnets or electromagnets, independent

of normal microfluidic or biological processes. Therefore the most advantage of the

magnetic separation in biotechnology is ease of manipulation of biomolecules that are

coated by magnetic particles. Another advantage is a large surface area of particles,

which results in a high population of target biomaterials due to a large binding site and

high detection signal.

MNPs can resolve many separation problems in industry and are being investigated for

a number of different chemical separations applications. The catalysts are easily

separated by utilizing the magnetic interaction between the magnetic nanoparticle and

an external applied magnetic field that can be easily conjugated with biomolecules

(Olsvik et al., 1994; Meza, 1997). The nanoscale particles afford very high surface areas

without the use of porous absorbents and can be recovered for reuse. There have been

wide studies of magnetic separation techniques of cells, proteins, viruses, bacteria and

other biomolecules which achieved enormous success (Prestvik et al., 1997; Olsvik et

al., 1994; Neuberger et al., 2005).

Moreover batch magnetic isolation may be faster than other separation methods e.g.

standard liquid chromatography procedures. The isolation of biological active

compounds, subcellular organelles, and cells composed have been used for many years,

therefore the addition of ferrofluids to these systems is useful to speed up the phase
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separation and the magnetic field of such as additives will induce a faster phase

separation (Safarik et al., 2002). On the other hand iron oxide nanoparticles can be

easily encased in a biocompatible coating and then functionalized with a biological

target agent (Arshady, 2001). Upon placing the MNPs in solution, any target cells can

be captured by the functionalized surfaces. By use of a magnet at the side of the

solution, a magnetic moment is induced in each of the freely floating particles and sets

up a field gradient across the solution. The magnetized particles will move along the

field lines and aggregate towards the permanent magnet, separating their bound target

from the solution (Fig. 4.3).

Figure 4.3: Magnetic separation of substances using nanoparticles.

MNPs have several advantages compared to magnetic microparticles, such as high

magnetization per unit weight and faster velocities in solution (Moller et al., 2003).

Moreover using MNPs in biological applications require compatibility with surface

modifireres (Punkhurst 2003). Here I demonstrate the synthesis of nanoparticles that

could be utilized in any of these aforementioned applications.
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4.8 Fabrication of Fe3O4 magnetic nanoparticles

Since the beginning of 19th century, science has had an increasing interest in materials at

the nanoscale. Within the field of nanomaterials, the subset of magnetic nanomaterials is

of great interest for researchers in a wide range of disciplines and a large amount of

research has been dedicated to the synthesis of MNPs. During the last few years

particularly many publications have described highly stable, efficient synthetic routes to

shape-controlled, and monodisperse MNPs. There are many techniques for the synthesis

of MNPs and they have been synthesized with a number of different compositions and

phases, including iron oxides, pure metals, spinal type ferromagnets, as well as alloys

(Lu et al., 2007).

Although there are many kind of interesting magnetic nanoparticles such as ferrites,

cobalt and iron, my study focused on iron oxide magnetic nanoparticles, because they

are non toxic, highly magnetic and less susceptible to change due to oxidation. There

are three main methods for synthesis magnetic nanoparticles in solution: decomposition

of metal organic salts (Park et al., 2004; Sun et al., 2003), microemulsion (Vestal et al.,

2002; Christy et al., 2004; Li et al., 2003) and chemical coprecipitation (Gee et al.,

2003; Rajendran et al., 2001; Yeong et al., 2003; Yeh et al., 2004). The coprecipitation

method is the least expensive, for example iron salts when mixed with a precipitating

agent such as sodium hydroxide can form nanoparticles and this is the simplest

approach to synthesize them. Decomposition methods need an organic medium at

temperatures (200 ºC to 340 ºC) much higher than the coprecipitation method (Sun et

al., 2003). Microemulsion reactions are usually the same as for coprecipitation but they

require a much larger reaction volumes than the chemical coprecipitation method for

equivalent levels of productivity.
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For these reason chemical methods of synthesis was examined in the lab and the co-

precipitation technique was selected for optimization for the present study. This method

is much simpler, cost effective for bulk quantity production and shows great promise for

proreducing the high quality nanoparticles needed for future applications. The most

significant advantage is that chemical methods have considerable control of particle size

distribution, composition and even the particle shape (Gupta 2004).

Moreover, surface modification of the particles during synthesis is easily achieved,

providing additional functionality to the nanoparticles (Willard et al., 2004). Whereas,

the application of other methods, such as the non-aqueous system, even with excellent

particle size distribution, shape, dispersion status and simpler synthesis procedure, have

been limited by poorly engineered surfaces. Hence chemical routes often provide the

best method for preparation of magnetic nanoparticles, due to their molecular

homogeneity and cost effective bulk quantity production and so in this research work,

chemical synthesis has been chosen.

4.8.1 Chemical synthesis

In order to use magnetic nanoparticles in magnetobioscence the chemical method could

control the morphology, composition and particle size. Moreover the agglomeration

could be reduced by different particle coating which is necessary for reliable for

reproducibility. Therefore, the chemical method is controllable for different conditions

without compromise. However, in practice the difficult task is design the process to

achieve the proper characteristics and this needs careful control with subsequent well

though out.
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One of the chemical techniques for the synthesis of magnetic nanoparticles is the

precipitation of products from solution. Coprecipitation was first reported by Welo and

Baudisch in 1925 with a study of phase transformations in iron oxide with temperature.

Early research on coprecipitation focused on the magnetic behaviour of single domain

structures (Slaten, 1960; Kaiser and Miskolczy, 1970; Coey, 1971), but current studies

of the synthesis of magnetic nanoparticles concentrate on the improvement of

nanoparticle quality and potential applications. This method, because of its simplicity

and versatility, is one of the preferred techniques for synthesis of nanoparticles.

Synthesis of other types of ferrites, such as CoFe2O4 and MnFe2O4 merely requires

changing the metal salt.

In this technique, the metal salts are dissolved in water, and a precipitating agent is

added to form an insoluble solid. Co-precipitation is a simple and convenient way to

synthesize iron oxide nanoparticles and is carried out under an inert atmosphere at room

temperature or at elevated temperature. The overall reaction is described by the

following equations (1):

Fe2+ + 2Fe3+ + 8OH─ Fe3O4 + 4H2O (1)

Fe3O4 + 0.25O2 + 4.5H2O 3Fe(OH)3 (2)

As Fe3O4 contains ferrous cations it may oxidise in an oxygen rich environment. This

reaction is shown in equation (2). The major advantage of this technique is that large

quantities of particles can be synthesized. The size, shape, and composition of the
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magnetic nanoparticles very much depend on the type of salt used in the reaction, the

Fe2+/Fe3+ratio, the temperature of the reaction, the pH value and ionic strength of the

media. The iron salts commonly used in chemical coprecipitation are FeCl3 and FeCl2.

However, several groups selected iron sulfate and iron nitrate in place of FeCl3 and

FeCl2. For the precipitating agent, the majority of works have used NaOH or NH4OH.

The range of reaction temperature reported are from room temperature to 100 ºC with

reported the nanoparticle diameters from 2 – 51 nm. The temperature is the major factor

in controlling the particle size: increasing the temperature of the reaction, leads to larger

particle size (Liong, 2005).

4.8.2 Surface modifications

The synthesised nanoparticles have large surface areas and form agglomerates as a

result of attractive van der Waals forces, and of the tendency of the system to minimize

the total surface area or interfacial energy. Agglomeration can occur during any of the

following stages: synthesis, drying, handling or post-processing (Willard et al., 2004).

In many applications where dispersed particles are required, undesirable agglomeration

must be prevented and strong repulsive force are needed to counteract the surface-

related attraction (Yang et al., 2008; Shan et al., 2004) because it render to reduce the

energy associated with the high surface area to volume ratio of the nanoparticles (Lu et

al., 2007). On the other hand, for some of my experiments I need a stabilized particle

solution in order to make nanofilms. In these the strong repulsive forces between

particles lead to agglomeration of particles and increase the thicknesses of the layers.
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Therefore I needed to develop protection strategies to chemically stabilize the naked

particles so as to get valid data for making nanofilms and investigate the attachment

requirements. This stabilization can be achieved by use of surfactant (a synonym for

‘surface-active agent’). Coating the surface of particles with ionic compounds increases

electrostatic repulsion when the particles are close together, but coating particles with

large molecules, such as polymers with long chains of hydrocarbons offers more

efficient stabilization. Recent studies have revealed that coating with hydrocarbons will

greatly enhance the stability of the particles (Lu et al., 2007). Several polymers have

previously been reported for the surface modification of NPs, because they are

ampiphilic and compatible in organic and aqueous media (Wu et al., 2003; Dubertret et

al., 2002; Gao et al., 2004; Pellegrino et al., 2004). It must be considered that the

selection of a proper surfactant is an important issue for the stabilization of the particles.

4.8.2.1 Surface modification by polymers

A surfactant is a substance which affects the surface or interfacial tension of the

medium in which it is dissolved. Surfactants are any substances that lower the surface or

interfacial stress of the medium in which they are dissolved. Thus, surfactants by

spreading over a surface or interface may decrease or increase surface tension.

Recently, major advances in preparing monodisperse magnetite nanoparticles, of

different sizes, have been made by the use of organic additives as surfactants. During

nanoparticles synthesis surfactants are used in order to reduce interactions between the

particles through an increase in repulsive forces.
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There are a number of different polymer matrices, which could be utilized for bio-

applications. However dextran and poly ethylene glycol (PEG) are more attractive for

bioapplication researches because of their proven resistance to protein adsorption and

their functional derivatization (Arshady, 2001; Shi, 2006). These are the reasons for the

popularity of dextran or PEG coated magnetic nanoparticles for bio-applications. PEG

is broadly used to coat nanoparticles bio-applications for the following reasons:

1) It has a low interfacial free energy in water so PEG improve the uptake of

nanoparticles and result of solubilisation of the particles in the cell membrane (Gupta

and Curtis 2004).

2) Surfaces covered with PEG can improve biocompatibility and reduce non-specific

binding, i.e. nonantigenic and nonimmunogenic (Andrade et al., 1996; Golander et al.,

1992). Because PEG has high surface mobility and uncharged hydrophilic residues lead

to high steric exclusion (Zhang et al., 2002).

3) Nanoparticles coated with PEG can dissolve in both polar and nonpolar solvents and

can interact with cell membranes resulting in enhanced cellular response (Golander et

al., 1992).

Amphiphilic polymers like PEG contain both hydrophobic and hydrophilic segments in

which the hydrophobic domain interacts with the alkyl chain of the ligands on the

surface of the nanoparticle, whereas the hydrophilic group faces outwards and renders

the nanoparticle water soluble. The amphiphilic polymer coating is generally thin and

can be made from biocompatible polymers; in contrast, the crosslinked dextran coating
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layer increases the particle radius significantly (Yang et al., 2008). Therefore magnetic

nanopaticles coated by PEG may be more compact because the polymer coating is thin

and well defined and they should be more favourable in binding kinetics.

Hence the -COOH groups on PEG may lead to undesirable problem, crosslinking,

giving rise to massive aggregation of the nanoparticles and destruction of the stable

suspension. PEG has two or more –COOH groups on the long chain of the molecule

which may lead to binding with two or more particles surrounding it. A possible way

out of this problem is to increase the separation between the particles by use of a high

concentration surfactant solution during the coating process. Thus, the chance of one

surfactant molecule reduce to meet two or more particles before the –NH2 groups were

replaced with –COOH groups on the molecule.

Figure 4.4: The schematic growth of Fe3O4/PEG superparamagnetic nanoparticles.

For bioapplications, the size, surface chemistry and charge of the magnetic

nanoparticles is important and strongly effective (Chouly et al., 1996). So, in order to

produce particles without agglomeration, we used surfactants to control the dispersion

during synthesis.
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4.9 Experimental procedure for chemical synthesis

In this study, two chemical methods for producing magnetic ferrofluid have been

selected based on the criteria that the techniques are accessible. The materials used are

commercially available and the least expensive to produce in large quantities (of the

order of grams). They have successfully been utilized to synthesize magnetic nano-

particles. In the first method, the magnetic fluid was prepared at room temperature and

in the second approach a stable dispersion of magnetite fluid was obtained at higher

temperature with non-polar diameters of 50 nm. Details of the second method will

provide further understanding of the work that has been carried out. The main

characteristics of these methods are to obtain an ultrafine magnetic oxide by a chemical

reaction from an aqueous solution containing ferrous (Fe2+) and ferric (Fe3+) ions, and to

achieve strong adsorption of cells on the magnetic particles in a water solution. These

methods do not require a long preparation time as in the grinding method and they are

suitable for mass production of magnetic fluids. A disadvantage suffered by all the

techniques is heterogeneity in the size distribution of the resulting magnetic particles.

4.9.1 Synthesis of Fe3O4 nanoparticles at room temperature

Magnetic nanoparticles were synthesized using the procedure described by Yeh et al.,

(2004) to obtain Fe3O4 nanoparticles: briefly, 25 mL of 0.2 M ferrous chloride (FeCl2)

was mixed with 100 mL of 0.1 M ferric chloride (FeCl3) solution in a flask at room

temperature and then 3 mL of 2 M HCl solution was added to make the solution slightly

acidic. Then 1 g of glycine was added, and 11 mL 5 M NaOH solution was slowly

dripped into the mixture to increase its pH to over 10, to provide an alkaline

environment for Fe3O4 to precipitate; next, an additional 3 g of glycine was added, and
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the mixture agitated with an FB15024 vortexer (Topmix, UK) for 10–15 min and then

sonicated for 30 min; subsequently 5 mL acetone was added and agitated. The resulting

precipitate (Fe3O4) was isolated with a permanent magnet and the supernatant discarded

by decantation. The precipitate was washed twice with ultrapure water followed by

centrifugation at 2500 g for 5 min to remove excess ions in the suspension and obtain

water-dispersible nanoparticles. Finally, the washed precipitate was dispersed in

ultrapure water for further investigation.

4.9.2 Synthesis of 50 nm Fe3O4 nanoparticles at 75 °C

Ferric salt, Fe(NO3)3, was dissolved in 12.5 mL of ultrapure water in a 100 mL 3-neck

flask to make a 0.9 mM solution and purged with nitrogen for at least 30 min. Ferrous

salt, FeSO4, was then added to give the same concentration, and the nitrogen purge was

continued. NaOH was dissolved in 125 mL of ultrapure water in a 500 mL 3-neck flask

at a concentration of 0.5 M, purged with nitrogen and then heated to 75 °C. The iron

solution was added dropwise into the basic solution. Black precipitates formed

immediately (Fig. 4.5). The reaction solution was mixed vigorously for a further 30

min, after which the contents were emptied and centrifuged for 15 min at 3000 g. The

nanoparticles were separated using an external permanent magnet. The supernatant was

discarded by decantation (Fig. 4.6) and the particles were rinsed a few times with

deoxygenated water followed by centrifugation at 3000 g for 10 min to remove excess

ions in the suspension. Finally the particles were rinsed with approximately 100 mL of

0.01 M HCl. The particles were collected and dried overnight in an oven at 80 °C. Their

concentration is henceforth expressed in terms of dry weight per volume of suspension

medium. The pH of a suspension in ultrapure water was 7.0.
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Figure 4.5: Dispersing of ferrite nanoparticles and embedding them in a three neck

flask under nitrogen. The displacement of air by N2 gas during preparation

prevented oxidation of ferrous ion in the aqueous solution and also controlled the

particle size.

Figure 4.6: Photograph of fabricated nanoparticles. Nanoparticles were gradually

concentrated and collected on one side of the vessel by an external permanent

magnet.
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4.9.3 Surface modification by coating the particles with PEG

Magnetic nanoparticles coated with PEG were prepared and characterized as reported in

section 4.9.2. In the first step, 20% solution of PEG was mixed with an equal volume of

the iron salts and added dropwise into the caustic soda and then purged with nitrogen

for at least 30 min. The prepared iron solution was added dropwise into 125 mL NaOH

(0.5 M) which had been preheated to 75 °C. Black precipitates formed immediately

upon addition of the iron salt solution (Fig. 4.5). The reaction solution was mixed

vigorously for 30 min while the black precipitates formed. The flask was removed and

the washing procedure was repeated to get nanoparticles coated with PEG.

4.10 Results and discussion

4.10.1 Transmission & scanning electron microscopy

Ttransmission electron microscopy (TEM) and scanning electron microscopy (SEM)

were used to characterize the particles. TEM has the ability to view nanostructures

because the wavelength of an electron beam can be adjusted to a few hundredths of an

angstrom. In order to prepare TEM samples, the final nanoparticle slurry was sonicated

for approximately 5 min to better disperse the nanoparticles. A drop was placed with a

carbon-coated copper TEM grid (200–300 mesh) and then left to dry in air. The particle

diameters were determined directly from the TEM images to be in the range of 45–55

nm (Fig. 4.7). Further characterization of the synthesised Fe3O4 nanoparticles was

obtained using a FEI XL30 field emission SEM (Fig. 4.10). Since SEM uses the

reflection properties of surfaces for imaging it should be possible to visualize the

binding of nanoparticles on various surfaces. In order to prepare SEM samples, the
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particle suspension was washed several times in deionized water to remove any salt

residue, diluted using deionized water, and finally, using a pipette, a drop of it was

placed on an Al-stub and left to dry overnight, before mounting the stub on the SEM

sample holder. The operating voltage was in the range of 10–20 kV to minimize

charging of the sample. The SEM image were not subjected to quantitative analysis, but

merely served to gain a visual impression.

Figure 4.7: TEM images of the 50 nm. Capillary forces during drying of the

suspension on the grid result in the aggregation visible on the micrographs.
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50 nm50 nm

Figure 4.8: Bar chart of the particle sizes from a typical preparation determined

from TEM images (a total of 100 particles were measured). Mean size is 47.22 ±

0.96 nm (s.d.)

Figure 4.9: SEM images of the 50 nm synthesized Fe3O4 nanoparticles.

4.10.2 X-ray diffraction (XRD)

In order to understand the chemical composition of synthesized nanoparticles, XRD

analysis was performed. The output from XRD analysis yields a plot, which shows
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intensity versus diffraction angle and it can determine the crystallographic planes that

are being diffracted. Since the wavelength and diffraction angle is known, using Bragg’s

law the repeat distance, d, can be calculated, which can be utilized to create a map of the

crystal structure. Alternatively, a collection of standards can be utilized to compare the

diffractogram of the sample with database and allowing one to identify crystal planes

(Fig. 4.11).

Figure 4.10: Black powder of synthesised Fe3O4 nanoparticles.

Figure 4.11: XRD pattern of iron oxide (Fe3O4).
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In my studies powder X-ray diffraction (XRD) studies were performed between 10 °

and 85 ° using a Copper Kα x-ray source (Siemens). The XRD pattern of dark brown

powder collected from the vessel indicates the presence of predominantly Fe3O4

crystals. The discernible peaks which can be clearly identified in the scan in Figure 4.12

can be matched to, the (220), (311), (400), (422), (511) and (440) planes of a cubic

Fe3O4 unit cell, and it reflected by the well matching of the diffraction peaks with the

magnetic pattern and it corresponds to that of magnetite structure.

Figure 4.12: X-ray diffraction pattern of the nanoparticles. The numbers in

parenthesis are reference standard pattern of Fe3O4 and give the Miller indices of

pure Fe3O4 (NBS, 1976) assigned to the observed peaks.
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The mean crystallite size is determined by Scherrer’s equation:

Crystallite size (Å) ~ 0.9 λ / (FWHM cos θ)   (3)

Where λ is the radiation wavelength (which in this case is 1.54 Å), and FWHM is the

full width half maximum of the peak. This calculation determined the mean size of the

synthesized particles to be 80 nm.

4.10.3 Magnetization study

Magnetic hysteresis loops of the samples were measured using a magnetic

measurements (Peterson Instruments, UK) variable field translation balance

(MMVFTB). High field conditions were used to assure that saturation magnetization

was achieved and measured. Saturation magnetization (9.9 emu/g) was obtained from

the hysteresis loop resulting from applying a magnetic field from -8 to +8 kOe at room

temperature. Figure 4.13 shows the magnetization (M) versus applied field (H)

magnetization of the Fe3O4 nanoparticles. The hysteresis loop of synthesized magnetite

indicates superparamagnetic behavior at room temperature, as evidenced by zero

coercivity and remanence on the magnetization loop.

The paramagnetic component was removed by assessing the gradient of the

magnetization curve (B vs H) once saturation had been reached. It should be

emphasized that the residual magnetization is almost negligible for these particles,

which is very likely important for achieving good dispersibility of the nanoparticles in a

fluid.
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Figure 4.13: Magnetic hysteresis loop of the 50 nm Fe3O4 nanoparticles measured

at room temperature. The paramagnetic component of the magnetization has been

removed according to a standard procedure. Saturation magnetization; emu,

electromagnetic unit; Oe, Oersted.

The temperature dependent magnetization of the sample was measured in an applied

field of 8000 Oe measured with the VFTB. Figure 4.14 shows the plot of temperature

versus normalized magnetization in an applied magnetic field. It can be seen that the

heating and cooling curves are different. This shows that the sample is not stable to

heat. This is probably showing alteration of magnetite to maghaemite.
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Figure 4.14: Temperature dependence of the magnetization under heating ---- and

cooling — conditions for the sample.

The iron oxide magnetic nanoparticles show superparamagnetic behavior at high

temperature (---), however with cooling of the sample, the magnetization increased and

show ferromagnetic behavior.

4.11 Evaluation of the radius of the PEG coated particles

In order to measure the radius of the PEG coated nanoparticles, the refractive index

increment is an essential parameter to evaluate quantitatively the surface coated by

polymer (Haynes and Norde, 1994).
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The percentage of PEG was obtained by measuring the refractive index (n) of the

nanoparticles suspended in water at 25 ºC, 633 nm was measured without and with PEG

using a J357 automatic refractometer (Rudolph Research Analyticals, Hackettstown,

USA). dn/dc was determined from the best fit slope on refractive index against bulk

concentration (c) plots with the slop of the fit equating to the dn/dc (Ball and Ramsden,

1998). Then from the variation of refractive index with concentration results straight

lines were fitted to the using linear regression as shown in Figure 4.15.

Figure 4.15: Refractive indices of pure PEG (green points), Fe3O4 nanoparticles

without PEG (red points) and Fe3O4 nanoparticles with PEG (blue points) at 25 ºC

in water. All measurements were repeated ten times and the average is plotted.

The refractive index increments dn/dc are the scopes of the linear repressions

which are 0.0001, 0.0004, 0.0002 for PEG, Fe3O4 and coated Fe3O4 respectively.
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From the above calculations the average value of mass concentrations for the

nanoparticles and with and without PEG are determined to be 33% and 67%

respectively. Then by use of the calculated mass percentage of nanoparticles to PEG,

the radius of a particle coated by PEG is determined as follow:

When we add coated nanoparticles to water we increase the refractive index n by

pmt nnn   (4)

where subscripts t, m, p represent coated (hybrid) particle, uncoated particle and pure

polymer respectively. Using the refractive index increments we can write:

( )m p m p
t m p

dn dn dn
c c c c

dc dc dc
       (5)

Where the c are the concentrations, and end up with the following equation

(1 )
t m p

dn dn dn
dc dc dc

  
(6)

where φ is the mass fraction of the magnetite in the hybrid nanoparticles.

From our refractive index increments data (Fig. 1) we determine φ = 0.33. Taking the

densities of PEG and magnetite as ρp=1.1 and ρm=5.17 g/cm3 respectively (Lidle, 2005),
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we have the mass of one nanoparticle mm = vmρm= 4/3 πr3
mρm = 3.34 × 10-10 μg. The mass

of one Fe3O4 nanoparticle with PEG mt = mm / φ = 1.01 × 10-9 μg. Hence the volume of

the PEG surrounding the magnetite is: vp = mp / ρp = (mt – mm) / ρp= 6.16 × 105 nm3, and

the total volume of a hybrid particle is vt = vm + vp = 6.8 × 105 nm3. Hence the radius of

a hybrid particle, given by

 

31

34 










t

t

v
r

Equals 55nm, implying that the thickness of the coating is about 30 nm.

I have developed a chemical method to synthesize nanoparticles using ferrous and ferric

ions in the presence of nitrogen gas. The synthesis of magnetic nanoparticles in an

oxygen-free environment not only protects iron oxide particles from oxidation but also

bubbling nitrogen (N2) gas through the solution during the process could control the

reaction kinetics in order to reduce the particle size as compared with methods that do

not remove oxygen (Kim et al., 2001).

In the first step, I prepared nanoparticles by a solution-phase metal salt reduction (Yeh

et al., 2004) at room temperature and this led to synthesis of nanoparticles which were

suitable for coating bacteria for biodesulfurization application. The bacterial coating

procedure was effectively applied immediately after preparation of the nanoparticles

solution (explained in section 1.13.2.9). Since magnetic nanoparticles have a large ratio

of surface area to volume and tend to agglomerate, they were not very appropriate for

the next studies. Therefore an appropriate surface chemistry is needed to coat the

nanoparticles.
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Coating of nanoparticles with different functional surfactants has potential for various

applications (Gupta, 2004). The colloidal suspension of magnetite particles, however,

can be stabilized by coating the particle surfaces with high molecular weight polymers

such as PEG, polyvinylalcohol (PVA), dextran, etc. Such coatings have been postulated

as necessary for effective stabilization for ferrofluids (Zaitsev et al., 2007). Colloidal

solution of magnetic particles coated with PEG showed very high stability at neutral pH

and no sedimentation was observed even after two months of storage at room

temperature, whereas uncoated magnetic particles did not form a stable colloidal

suspension and sedimented within a week. Therefore in the next step I decided to coat

the iron oxide nanoparticles with PEG, in order to increase the colloidal stability,

improve bio-interfacial properties and as a result increase attachment.

4.12 Summary

Since the Fe3O4 nanoparticles needed for this project were not commercially available;

therefore this part of work was developed to synthesis and characterization of magnetic

nanoparticles using chemical coprecipitation. This method is easy, the least expensive

and most convenient way to synthesize iron oxides from aqueous Fe2+/Fe3+ salt

solutions by the addition of a base at room temperature or at elevated temperature, and

is therefore suitable for large scale industrial applications. In this technique, the size,

shape, and composition of the particles greatly depend on the iron salts counterion (e.g.

chloride, sulfate, nitrate), Fe 2+/Fe 3+ ratio, temperature of the reaction, pH and ionic

strength of the medium.



Chapter 5

101

Chapter 5 : Enhancing biodesulfurization by
nanomagnetic particles

In any industrial process using freely dispersed microorganisms as catalysts, they need

to be separated from the products after catalysis has taken place and the reaction has

reached its conclusion. This is the first step of the downstream processes required to

purify the product. Although the free dispersal of microorganisms in a fluid reaction

volume optimizes mass transport, it is sometimes difficult to carry out the necessary

separation afterwards, and usually the separation procedure compromises viability, i.e.

the organisms die.

Therefore it seems that designing new biodesulfurization processes with exchange

between biology and nanotechnology and illustrating the role of nanoparticles in this

field for enhancing the efficiency of the biocatalysts during this process are crucial

factors in maintaining the process. Magnetic nanosized particles are attractive because

at this scale atoms and molecules interact and assemble into structures that possess

unique chemical, physical, electronic and magnetic properties resulting from their

quantum size (Singh et al., 2006). At these scales molecular interactions, processes, and

phenomena can be controlled and directed with desirable properties, and due to the high

ratio of surface area to volume (Tang et al., 1999), superparamagnetic nanoparticles

have significantly different magnetic performance, among magnetic materials.

Therefore, these particles have the potential for applications in various fields of industry

and science. Furthermore the possibility of synthesizing nanoparticles and the utilization
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of commercially available mass-produced nanoparticles with properties on demand is

taken into account. Simplicity of production would be a main criterion in this case.

5.1 Bacterial membrane and Gram-positive vs. Gram-negative

The bacterial membrane controls many responses of the cells, including environmental

stresses. Bacteria can be classified as either Gram-positive or Gram-negative, based on

their cell wall structure and their response to the Gram stain. The bacteria that can retain

the special dyes during Gram’s staining procedure are called Gram-positive bacteria

(Beveridge, 1988). The cell wall in Gram-positive bacteria is a thick layer (20-80 nm)

consisting of peptidoglycan (PG). The PG consists of secondary polymers like

polysaccharids, teichoic acids, teichuronic acids and lipoteichoic acids. In Gram-

negative bacteria the PG is significantly thinner (≈7 nm) and it is devoid of secondary

polymers, but a special additional layer, the outer membrane (OM) encapsulates the PG.

The OM is essentially composed of lipopolysacharides (LPS), which are rich in

carboxyl groups (Cabeen Jacobs-Warner, 2005, Beveridge, 1988).

The cell wall surrounds a lipid/protein bilayer called the cytoplasmic membrane (CM).

The CM regulates the translation of metabolites and solutes in to and out of the cell and

is selectively permeable (Holland, 2004). The CM is associated with several enzymes

involved in various metabolic functions of the cell in order to maintain the membrane

potential and ion gradients (Stenberg et al., 2005; Ruiz et al., 2006) (Fig. 5.1).



Chapter 5

103

SP

CM

PG

P
P

P

Outside

Inside

a)

SP

CM

PG

P
P

P

Outside

Inside

a)

Outsideb)

Inside

CM

PG

OM

P
P

P

Outsideb)

Inside

CM

PG

OM

P
P

P

Figure 5.1: Cell wall in a) Gram-positive bacteria and b) Gram-negative bacteria.

Cytoplasmic membrane (CM), peptidoglycan (PG), outer membrane (OM),

secondary polymers (SP), protein (P).

5.2 Immobilization

Microorganisms used in any industrial process need to be separated from the product,

either by filtration or centrifugation (Luo and Sirkar, 2000). Thus the removal of the

organisms can be the first instance of the downstream processes required to purify the

product. A good solution is to immobilize the cells to enable easy recovery of the cells

and reuse of immobilized cells. Immobilization is defined as the ability to physically
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confine or localise in a defined region or space cells or enzymes or molecules whilst

retaining the catalytic activities, for repeated and continuous use.

Although the free dispersal of microorganisms in a fluid reaction volume optimizes

mass transport, it is sometimes difficult to carry out the necessary separation afterwards,

and usually the separation procedure compromises viability, i.e. the organisms die.

Therefore, efforts have been made to immobilize bacteria, typically in the form of

biofilms coating reaction vessels with high surface to volume ratios.3 The starting

materials must then simply be made to flow over the biofilm, and no separation is

subsequently required (Naito et al., 2001). Furthermore, biofilms offer protection to the

cells against adverse environmental conditions, and to some extent at least they are self-

renewing and may therefore be used for many production cycles, or even for continuous

rather than batch processes. On the other hand, mass transport is much slower than with

freely dispersed microorganisms.

Since the microbial enzymes can be immobilized, it seems the immobilization of

bacterial cells is more preferable: When enzymes are isolated from their natural

environmental source, they are generally unstable and are easily denatured under

operating conditions. Therefore by direct immobilization of microbial cells containing

3 Three major techniques are used for immobilizing bacteria: entrapment, adsorption and
coupling (Corcoran, 1985). To achieve entrapment, the microbial cells are mixed with a gel-
forming polymer, yielding pores smaller than the size of the cells. This ensures retention of the
cells, but permits movement of nutrients, starting reagents and products. Adsorption means
allowing the bacteria to form weak chemical bonds to the substrate; electrostatic interactions
between a charged support and charged cells have been made use of (Yang and Albayrak,
2006). However, the forces involved in cell attachment are then so weak that cells are readily
lost from the adsorbent (Shan et al., 2004). To overcome this problem, cells can be covalently
bonded (coupled) to an activated support (Hulst and Trumper, 1989).



Chapter 5

105

the desired activities, this problem may be obviated. Furthermore, when bacterial cells

are immobilized, the higher yield of activity are obtained rather than free enzymes

(Corcoran, 1985) and also the costs are decreased significantly, because it is no longer

needs enzyme extraction and purification.

5.3 Decoration of bacteria

Microorganisms used in any industrial process need to be separated from the product,

either by filtration or centrifugation. Thus the removal of the organisms would be the

first step of the downstream processes required to purify the product. Also it enables the

cells to be easily recovered and reused. Researchers have used immobilized cells in

order to manage this problem. Immobilization is defined here as the ability to physically

confine or localise in a defined region of space cells whilst retaining their activities.

Using immobilized cells is not a new idea since in the 18th century immobilized cells

were used for production of acetic acid. (Marshall and Rogers, 1941). Similarly in the

19th century sewage treatment utilised a natural film of organisms adsorbed to beds of

sand and gravel to convert organic materials in sewage to water, CO2 and other gases

(Marshall, 1948). Ever since, immobilized microbial cells have been used in

bioconversions, biotransformation, and biosynthesis processes due to their stability,

easier separation from products for possible reuse, and satisfactory efficiency in

catalysis compared to free cells (Pakula 1996, Ohshiro 1999, Naito 2001, Luo 2003,

Gill 2000). Nevertheless, there are major drawbacks to apply this technique: diffusional

limitations, mass transfer involved in diffusion of a substrate to a reaction site, also this

technique is generally limited by biomass loading, strength of adhesion, biocatalytic

activity, and operational stability. This is because immobilization involves attachment



Chapter 5

106

of cells to the surface of an adsorbent like Celite, and the forces involved in cell

attachment are so weak which they are not strongly adsorbed and are readily lost from

the surface of the adsorbent.

In this investigation, a new technique was developed in which microbial cells were

decorated with MNPs by adsorption. The cells could be separated by applying an

external magnetic field. The NPs were strongly adsorbed on the surfaces of bacteria.

Application of a magnetic field enabled us to concentrate the coated cells and to get

clear media, and minimal mass transfer problems were experienced with the decorated

cells. Thus, this technique has advantages over conventional immobilization.

Furthermore, it can overcome drawbacks such as limitations in biomass loading and in

the loss of cells from the carrier associated with conventional immobilization.

5.4 Methods to detect permeability of the bacterial membrane

The membrane surrounding the bacterial cell serves several functions such as control of

solute permeability and recognition events. In order to investigate the process occurring

at the cell membrane, artificial lipid membranes are useful models and many different

model systems have been developed to elucidate the properties of lipid bilayers and

various methods have been used to create artificial lipid membranes such as liposomes,

supported bilayer lipid membranes (sBLM), polymer-supported bilayer lipid

membranes (psBLM), tethered bilayer lipid membranes (tBLM) and black lipid

membranes (BLM).
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Liposomes can be modified in a desired manner (Lasic, 1998); however, the

accessibility to one side of the membrane limits the usefulness of liposomes for our

investigation. Solid supported membranes in sBLM can be accessed by a variety of

sensitive surface analysis techniques, but the lack of a well defined ionic reservoir on

the bilayer is a major drawback when studying transmembrane transport due to ion

carriers and channels (Guidelli et al., 2001). On the other hand, the polymer-supported

BLMs have low impedance, which is insufficient to match the electrical properties of a

biological membrane; therefore it may also prevent the incorporation of the channel

peptides and proteins (Tien et al., 2003, Kiessling et al., 2003). Tethered bilayer lipid

membranes can be formed with high insulation electrical properties similar to the

biological natural membrane (Raguse et al., 1998), however, the decreased bilayer

fluidity possesses a problem particularly for the incorporation of large peptides and

channel proteins. Thus, an alternative approach should be found so that all the channels

could be incorporated. Unlike liposomes, black lipid membranes are formed by

spreading a lipid solution in a small hole of a wall separating two aqueous

compartments. BLMs are very suitable for electrochemical measurements, since there is

easy electrochemical access to both sides of the membrane. The ability to control the

constituents of each side of the membrane and both the membrane and incorporated

functionalities are likely to be close to their native state. Even though the physical

stability of these BLMs is low (Tien et al., 2003) and because of the size limitation, it is

impossible to form large area BLMs (Purrucker et al., 2001), nonetheless they have

been extremely valuable in the history of membrane research.
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5.4.1 Black lipid membrane technique

In order to better understand the basic mechanism of biological systems, it is often

necessary to reduce the number of parameters. The black lipid membrane (BLM) a

model system were devised almost 45 years ago Mueller et al. (1962) and since then

applied enormously to understand biological membranes, mass transport in and out of

cells, and so forth. This model is reasonably similar to an actual cell membrane, because

it permits simultaneous access to the solution and electrical control on both sides of

bilayer, allowing for the mimicking of physiological conditions.

BLMs consist of three components: lipid bilayers, a thicker annulus that forms at the

interface between the supporting substrate and the bilayer, and microlenses (pockets of

decane), which all participate in this evolution. Cell membranes are a fluid system that

temporally evolves according to the phase behaviour of the lipids. Since the thickness of

the lipid bilayer is only a few nanometers, optical images of BLMs tend to appear black

or grey. BLMs depend not only on the lipids and supporting material but also on the

process used to create the bilayer; consequently, even simple observables such as the

membrane capacitance are not always straightforward to interpret because of changes in

the bilayer area and solvent content within the bilayer. Bacterial membrane permeability

measurements are fundamental to studies of the effect of nanomaterials. NPs may

perturb the membrane structure, leading to the formation of channels in the CM, leading

to permeabilization.



Chapter 5

109

5.5 Experimental part of research

5.5.1 Decoration of Rhodococcus with magnetic nanoparticles

The bacteria were grown in BSM until the mid-exponential growth phase and harvested

by centrifugation at 1400 g for 10 min. The cell pellets were washed twice with

Ringer’s solution and resuspended back in BSM to A600 = 1.0. The cells were then

decorated with MNPs as follows: 10 mL of a suspension containing 100 µg/mL Fe3O4

nanoparticles per mL of water were mixed with 100 mL of the cell suspension in BSM

with DBT at a final concentration of 0.5 mM. The ratio of NPs to bacterial biomass was

1.78 w/w.

5.5.2 Batch biodesulfurization of DBT by decorated bacteria

Biodesulfurization was carried out using the cells in 100 mL of BSM containing DBT at

a final concentration of 0.5 mM, in a 250 mL flask incubated on a rotary shaker at 120

rpm and 30 ºC (0.5 mM of DBT are equivalent to 0.092 g DBT/L). For analysing the

supernatant using HPLC it should not have any contamination (like free bacteria) which

would damage the HPLC column. Therefore, the cells were separated from the reaction

mixture by centrifugation at 6600 g for 10 min, and the supernatant analysed. So that

the same procedure could be used for decorated & nondecorated controls. Nondecorated

cells were used as controls.
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5.5.3 Nanoparticle-induced membrane permeability assay

(P. Grigoriev)

Lipid bilayer membranes were formed by the method of Mueller et al. (1962) from a

cardiolipids: phosphatidylcholine 5:95 mixture mimicking the bacterial membrane. The

membrane current was measured by an OPA 129 operational amplifier (Burr-Brown)

used as a current-to-voltage converter. In this method a lipid solution is spanned over a

hole between two aqueous compartments as shown schematically in figure 5.2.

Figure 5.2: Formation of a biomolecular lipid membrane (Benz et al., 1982). First

a thick lamella (A) is formed and within seconds or min black dots appear in the

membrane (B), and finally grow together until the whole membrane appears black

because of destructive optical interference (C).

In this state the membrane consists of an oriented biomolecular film (Mueller et al.,

1962) formed by self-organization of the amphiphile molecules as described above.

These model systems are most commonly used to study the electrical properties of
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membranes and the effects of incorporation of carriers in membranes. Even single

molecules such as gramicidin or natural porins (Benz et al., 1982) embedded in the

plane of the membrane can be detected by these sensitive measurements.

After formation of BLM, NPs are added at one side of the membrane. After about 1

minute required for the diffusion and adsorption of NPs to the BLM interface

fluctuations of the membrane current are observed, reflecting that pathways for ions

across the lipid bilayer are being formed. It is suggested that transmembrane NP form

structures resembling classical model ion channels formed, for example, by the

polypeptide antibiotic alamethicin (Angelova et al., 2000). Molecules of alamethicin

forming the channel are in such a conformation when one side (which faces the polar

interior of the formed oligomer channel structure) is polar and the other is hydrophobic

(facing the hydrophobic interior of the lipid bilayer). In a case of the NP, probably the

Fe-part can be considered as hydrophobic and the O part as polar. Van der Waals

molecular forces stabilise alamethicin channels, but magnetic forces could stabilise the

ion-conducting transmembrane structure formed by NP.

Figure 5.3: Schematic diagram of the BLM current setup. The current is measured

with the voltage clamp method.
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5.6 Results

5.6.1 Bacteria characterisation by scanning electron microscopy

The cultures were grown until the mid-exponential growth phase in liquid medium and

harvested. The cell pellets were washed and resuspended back in water at a. A typical

microbe is shown in Figure 5.4.

Figure 5.4: SEM image of Rhodococcus erythropolis IGTS8 bacteria before coating

with nanoparticles. (dimension ≈ 3500 nm x 500 nm).

The cells were then decorated with magnetic nanoparticles as mentioned in

experimental section. The ratio of nanoparticle mass to biomass was 1.78 w/w. this ratio

makes sufficient particles available per bacterium to yield a suitable level of decoration

(Fig. 5.5).
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Figure 5.5: SEM images of two different Rhodococcus erythropolis IGTS8 bacteria

decorated with magnetic nanoparticles. The bacterium shown on the right panel is

about to undergo division.

5.6.2 How many particles are able to coat the surface of one
bacterium?

Diameter: 50 nm Length: L= 3000 nm
r=25 Diameter: D = 500 nm

R = 250

The area of one bacterium can be calculated by:

5102500)250(14.32)25014.32(3000)(2)2( 22
0  RRLA 

nm2 (1)

And the area of one particle is:

7850)25(14.344 22
0  rA  nm2 (2)
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Using these values the number of particles covers the surface of one bacterium

calculated as follow:

Particles 650
7850

5102500


5.6.3 Magnetic separation

Figure 5.6 shows a suspension of bacteria coated by NPs in a holder equipped with a

removable slide-out magnet: the decorated cells in the liquid culture medium could

easily be separated by bringing an external magnet into their vicinity.

Figure 5.6: Photograph of nanoparticle-coated cells (Rhodococcus erythropolis

IGTS8) in Eppendorf tubes showing, successively: (A) dispersed cells coated with

MNPs; (B and C) coated cells were gradually concentrated and collected towards

the rear of the tube by an external permanent magnet (within the white housing

behind the tubes); (D) liquid medium free of suspended NPs, which are visible as a

thin dark stripe at the back of the tube.
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5.6.4 Biodesulfurization with coated Rhodococcus by magnetic
nanoparticles

Figure 5.7 and 5.8 compare the degradation of DBT with nondecorated and

nanoparticle-coated cells. The results show that the production of HBP was significantly

higher in the latter. It can be seen that whereas the production rate of the nondecorated

cells falls off to almost zero after about 70 hours, the decorated bacteria continue

producing more vigorously until at least 100 hours, with a concomitant increase in DBT

HBP conversion.
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Figure 5.7: Degradation of DBT by R. erythropolis IGTS8 without (up) and with

(down) decoration by NPs, in BSM with DBT at the initial (t = 0) concentration of

0.5 mM as the sole sulfur source.
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Figure 5.8: HBP production by R. erythropolis IGTS8 without (up) and with

(down) decoration by NPs, in BSM with DBT at the initial (t = 0) concentration of

0.5 mM as the sole sulfur source.
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Figure 5.9: Comparison of DBT degradation of R. erythropolis IGTS8 without (up)

and with (down) decoration by nanoparticles, in BSM with DBT at the initial (t =

0) concentration of 0.5 mM as the sole sulfur source.
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5.7 Membrane permeabilization

The observation of significantly increased HBP production in the decorated cells

suggests that the MNPs somehow facilitate transport of HBP out of the cells —

assuming that it is produced in the cytoplasm. A possible mechanism for the

enhancement is then that the NPs bound to the bacteria make their membranes more

permeable. In order to investigate this hypothesis, the possible effect of NPs on

membrane permeability was assessed in a model membrane system mimicking the

bacterial membrane (Grigoriev, 2002). Figure 5.10 shows typical results. They provide

evidence for nanoparticle-induced permeabilization, supporting the proposed enhanced

ingress of DBT into the decorated bacterial cells.

Figure 5.10: Temporal change of membrane current (ordinate), in the presence of

NPs. The sensitivity of the current recording device was changed during the

recording (at the moments marked by arrows) from 1 nA/V at the start of the trace

to 1 A/V at the end. Conditions: NP concentration 300 g/mL, 200 mM KCl, pH

6, transmembrane voltage 60 mV. The plane of the lipid bilayer was vertical and it

was situated about 10 mm above the floor of the glass chamber. Calibrations:

vertical 5 pA (initially), horizontal 10 s.
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In the model experiments, the added NPs diffuse to the surface of the membrane and are

adsorbed. The adsorbed particles diffuse within the membrane, and self-assemble into a

conducting transmembrane system, resulting in an increased transmembrane current.

Step by step the membrane conductance is increased: it is a dynamic, reversible process,

the pore-forming substance can also leave the membrane and the conductance then

decreases. The step-like fluctuations of the membrane current at the start of the trace

probably correspond to the formation of discrete ion-conducting 20 pS pores.

5.7.1 Analysis of the biodesulfurization kinetics

The overall biodesulfurization reaction is:

DBT HBP (3)

Writing D and H for the concentrations of DBT and HBP respectively, the

corresponding kinetic equation is

kDB
dt

dH
 (4)

where B is the concentration of the bacteria and k the rate coefficient. The integrated

form is

kBt
D
H











0

1ln (5)
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where D0 is the initial DBT concentration (0.5 mM). Linear regression of the data from

Figures according to eqn (2) yields k (Table 5.1). It can be seen that decoration

increases the biodesulfurization activity by 56%.

Table 5.1: Rate coefficient for biodesulfurization (eqn 4)

k / cm3s-1(means ± s.d.)

Nondecorated 1.01 x 10-10 ± 5.92 x 10-12

Decorated 1.58 x 10-10 ± 6.85 x 10-12

5.8 Discussion

In order to combine the advantages of immobilization—i.e. ease of separation and

microbial longevity—with those of free diffusion—i.e. good mass transport—another

approach is possible, namely to decorate the bacterial cells with magnetic nanoparticles.

After completion of the reaction, the bacterial cells can be separated from the products

using a magnetic field. This is a much milder and more cost-effective process than

centrifugation, and allows the bacteria to be reused many times and magnetic separation

is compatible with any automated platform that can be equipped with a magnet.

The reason of choosing 50 nm for my experiments was for primary aim of this

investigation that was to study the effect of attachment of magnetic particles to the
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bacteria, in order to enable convenient post-reaction separation, and not to optimize

every experimental parameter.

If the particles are large, their Brownian energy overwhelms the relatively weak

attachment forces. Preliminary experiments using iron oxide particles with a diameter of

1 μm (Dynabeads, Dynal Biotech) showed that they did not attach to the bacteria

(Figure 5.11). Furthermore, the particles should be small enough to be

superparamagnetic, i.e. smaller than the critical magnetic domain size (Morrish et al.,

1956; Schmidt 2001; Zhang et al., 2006). This critical diameter is around 50 nm for our

material.

Figure 5.11: Dynabeads with the diameter of 1 µm did not attach to the surface of

bacteria.

So the bacteria were decorated with Fe3O4 nanoparticles to facilitate cell separation at

the end of the desulfurization process; decoration is facilitated by electrostatic attraction

between the nanoparticles and the bacteria.
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I found that I could thereby achieve a 56% higher rate of desulfurization. I favour the

view that the rate limiting step of the process is transport of DBT into the cell, where it

undergoes desulfurization. The results shows increase the permeability of a model black

lipid membrane, thereby enhancing ingress of the DBT into the cell. The use of

Rhodococcus decorated by magnetic nanoparticles also facilitates its recovery and

reuse; hence it offers a number of advantages for industrial applications compared to

nondecorated cells. The generation of stable, inexpensive and nontoxic adjunct

materials for use with microbial cells greatly facilitates the separation of the cells from

the products during bioreactor process development, and the removal of the cells from

the medium at any time via magnetic decantation.

5.9 Conclusion

The main discovery emerging from these experiments is that the decorated bacteria are

significantly more active in desulfurization–could thereby achieve a 56% higher rate of

desulfurization. Here I discussed possible reasons, starting with the open issue that if the

biodesulfurization takes place within the cytoplasm the bacterial surface constitutes the

rate limiting barriers to the process (transport of DBT into the cell or HBP out). I

proposed that permeabilization of the bacterium is improved through decoration by

nanoparticles, and some supporting evidence in a model system was obtained.
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Chapter 6 : A novel assay for optimizing
nanoparticle-bacterium interactions

From previous experiments I have found that biodesulfurization activity is enhanced if

bacteria are decorated with ferrous nanoparticles but appraisal of particle adhesion to

bacteria had been largely qualitative, based on visual assessment of decorated bacteria

(e.g., Fig. 5.5). In order to develop this quantitatively, I investigated the adhesion of

bacteria to the nanoparticles by first depositing a thin layer of Fe3O4 magnetic

nanoparticles onto a planar Si(Ti)O2 waveguide surface. The rationale is that we can use

high resolution molecular microscopy (HRMM) to determine with great precision the

adhesion of an object to a planar surface (Fig. 6.1). Therefore the objectives of my

work in this chapter are to understand the attachment of bacteria to the magnetic

nanofilm; the nanofilm fabrication also required me to gain further understanding of the

kinetics of deposition of the particles. An overview of the techniques and the

experimental procedures used is given. Finally the effect of pH on the surface potential

of the nanoparticles is presented.
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Figure 6.1: Diagram showing idealised adsorbed nanoparticle layer (B), cover

medium (C) containing bacterial cells in solution and the substrate (A) onto which

the particles adsorb.

Previously reported work has focused mainly on identifying particular bacterial surface

molecules whose presence is correlated with adhesion and biological aspects of

adhesion (Fletcher 1996). Very little work on kinetics has been reported; Wiencek and

Fletcher 1995 have presented a low resolution study and the measurement of adhesion

processes had been hitherto mostly achieved by use of optical or scanning electron

microscopy (SEM) but these methods requires the cell to be killed and the force of

adhesion can be obtained by determining the centrifugal force necessary to dislodge the

cells (Guarnaccia and Schnaar, 1982). The study of attachment of biomolecules is one

of the most effective methods for extracting further parameters which characterise the

biomolecular environment. For example, Ramsden’s studies in 1995 led to a better

understanding of cell attachment at solid-liquid interfaces. McColl et al. (2008) have

demonstrated the ability to manipulate the surface characteristics providing a

mechanism for directly influencing cell behaviour, monitored by optical waveguide

lightmode spectroscopy (OWLS), also known as HRMM. Their results show the

application of surfaces for controlling cell behaviour.
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In the present work, in order to optimize the decoration of bacteria, it was necessary to

investigate in detail the actual adhesion process, under hydrodynamic conditions that

are amenable to exact analysis. OWLS is extremely powerful for investigation of

kinetics of attachment of bacterial cells to the surfaces. It was used as the principle

method of monitoring the creation of magnetic nanofilms and investigating the

attachment of particles on surfaces. Hence, to simulate the adhesion process (in which,

in practice, suspensions of the nanoparticles and the bacteria are simply mixed), I have

deposited a monolayer of the particles on a planar optical waveguide, and flowed the

bacterial suspension above it under laminar flow conditions.

6.1 Bacterial adhesion to minerals

Bacterial adhesion is probably a very complicated process with many different

physicochemical factors involved such as environment, temperature, van der Waals

attraction forces, Brownian motion, gravitational forces, hydrophobic interactions and

the electrostatic charge of the surface (Dankert et al., 1986; Krekeler et al., 1989).

Adhesion of bacteria to minerals has already been widely investigated (Somasundaran,

2006). These studies have highlighted the importance of both the characteristics of the

bacteria (cell wall, growth phase and metabolic state) and environmental composition

(pH, ionic strength, sorbent concentration and temperature). Many of these variables are

known to affect adsorption by a variety of electrically charged particles (Stumm and

Morgan 1996), but a few are especially relevant to biological sorbents. It is presumed

that bacterial adhesion is strongly dependent on the environmental situation and the
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ability of the bacteria to adhere to mineral surfaces directly depends chiefly on their

electrostatic properties.

6.2 Background

It is known that the orientation and conformation of bacterial coat biomolecules (e.g.,

proteins, polymers, lipids) are important in determining how bacteria sense the surface

of an artificial material and there is an enormous literature to support the contention that

the behaviour of bacteria in aqueous environments is mainly related to surfaces

(Costerton et al., 1987; Lachlan et al., 2004).

Bacterial interaction with different surfaces may explain differences in their internal

metabolism behaviour but it is complex and the vast array and diversity of bacteria

makes the field poorly understood (Haynes et al, 1994) and a lot of question still remain

unanswered. To gain insight into these interactions a logical approach is to investigate

the media on which bacteria attach. Bacterial adhesion to a surface can be illustrated by

two-phase process, which was first proposed by Marshall, 1985: i. an initial, immediate

and reversible phase (deposition) and ii. a time-dependent and irreversible phase

(adsorption) (Fig. 6.2). Once adsorbed, the bacteria are attached.
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Figure 6.2: Bacterial deposition (left) and adsorption (right).

6.3 Controlling the stickiness of the bacteria to the surfaces

Bacteria when attached to surfaces appear to differ metabolically from their free living

counterparts (Melo et al., 1992). And there are also metabolic differences when they

approach to the surface, and on post-approach (An and Friedman, 1998). This is because

bacterial surface attachment leads to changes in physicochemical conditions at the

interface, which influence bacterial metabolism through environmental effects. The

effect of ions on the solution/solid interface is considerable and the structure of the cell

membrane is expected to depend on the nature of the surfaces with which they are in

contact (Cacace et al., 1997).

Numerous studies have been carried out to investigate ways in which solid surfaces

influence bacterial activity and influence the ‘stickiness’ of the bacterial surfaces to the

solid interface. However because of the diversity of bacteria it has been impossible to

formulate a general principle to describe the influence of surfaces on bacterial

physiology (Dankert et al., 1986). Hence the relative significance of influential factors

are dependent not only the physiological capabilities of the bacteria, but also on ambient

conditions such as salt concentrations, pH, nature of the solid surface (e.g. surface

charges) and many other factors and consequently bacterial adhesion excites our interest

to design surfaces to control adhesion and so contribute to the development of bio-

active nanofilms.
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6.4 Surface charge

Since many of the important properties of systems concern directly or indirectly the

electrostatic charge on the particles, which determines the adsorption of ions and dipolar

molecules, hence the interaction energy between the particles can be determined by the

potential distribution and in many cases this is responsible for the stability of particles

(e.g., nonaggregation).

On the other hand, the ability of the bacteria to adhere to mineral surfaces directly

depends on their electrostatic properties. To date, adhesion of bacteria to the minerals

have been widely investigated and discussed with reference to the characteristics of the

bacteria (cell wall, growth phase and metabolic state) and environmental composition

(pH, ionic strength, sorbent concentration and temperature). Many of these variables are

known to affect ionic adsorption by a variety of electrically charged particles (Stumm

and Morgan 1996), but some are especially relevant to biological sorbents. The

bacterial cell membrane always has negatively charged surfaces and these are

influenced by bacterial age, growth medium and the structure of the bacterial surface

(Dankert, 1986) and the negatively charged particles could not be attached to the

bacterial membrane with ease. Therefore as input data for predictive physiochemical

models of bacterial adhesion to surfaces, the zeta potentials of their surface are

frequently measured (Rodriguez et al., 2003).



Chapter 6

130

6.5 Bacterial adsorption kinetics

One of the most effective methods for further understanding the parameters involved is

to study the kinetics of bacterial adhesion/adsorption. Therefore, high sensitivity

techniques (involving monolayer coverage) which allow the in situ, real time

monitoring of such surface processes are valuable in potentially contributing to a better

understanding of the attachment of particles or materials under conditions as close to

biological environments as possible (Ramsden 1993; Brash and Wojciechowski 1996,;

Ulman and Fitzpatrick 1996).

6.6 Attachment measurement techniques

To measure the interaction of biomolecules with a surface, there are a variety of known

techniques that can be used to determine biomolecule adsorption processes: enzyme-

linked immunoassay (ELISA), solution depletion, gravimetric, surface acoustic wave,

spectroscopic (IR, fluorescence), ellipsometry, radiolabeling, electric, hydrodynamic

and other techniques. However, none has the required sensitivity to follow the

monolayer adsorption process, or they are not suitable for in situ, real time

measurements, which reduces their value for dynamic studies. There are number of

techniques used to measure the amount of mass deposited onto a surface in a several

nanometers thick layer (Malmsten 2003). Among these techniques, optical and acoustic

methods are widely used to obtain continuous measurement of macromolecular

adsorption on variously modified surfaces and study the deposition process and the

structure of thin films (Ramsden 1994a; Potyrailo et al. 1998; Ramsden 1999). These

methods are consistent with the requirements for high surface and high detection



Chapter 6

131

sensitivity and can be applied to study in real time the dynamics of molecular processes

at solid surfaces such as: optical waveguide lightmode spectroscopy (OWLS), total

internal reflection florescence (TIRF), scanning angle reflectometry (SAR), surface

plasmon resonance (SPR), resonant mirror (RM), and ellipsometry (ELM). These

techniques by providing in situ characterization of the films are extremely useful on a

small scale. Non optical methods also exist, such as quartz crystal microbalance (QCM)

which is based on measuring the change of the piezoelectric quartz crystal frequency

when a small amount of mass is attached. Each of these methods or techniques offers

various advantages and of course, disadvantages (Brusatori 2001). For example, TIRF

requires a particle with both a natural or attached fluorescent label and the QCM

technique requires careful accounting of viscous drag of the contacting liquid. In

contrast, OWLS does not have any of these problems (Brusatori 2001), and has been

shown to provide precise and accurate kinetic adsorption data for several

particle/surface systems (Kurrat et al., 1997; Ramsden and Máté 1998).

Since in my investigation I needed an appropriate technique to provide precise and

continuous kinetic measurements of biomacromolecular adsorption, I used OWLS to

obtain continuous measurements of particle attachment (Horvath et al., 2005; Ramsden

et al., 1995b; Li et al., 1994). Optical waveguide lightmode spectroscopy (OWLS) is an

optical biosensor which is suitable for monitoring of continuous adsorption processes on

the surfaces and provides the required high-accuracy kinetic data required with

excellent time resolution. This has enabled me to probe the processes involved in

bacterial adhesion with nanometric precision.
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On the other hand, OWLS is a very sensitive method which can measures the effective

refractive index above a solid surface within a sensing distance of about hundreds nm

(Ramsden 1994b). Changes in electronic polarizability in the evanescent field of an

optical waveguide change the phase velocity of guided waves. This change can be

interpreted as the change of mass and/or shape of adherent bacteria. Interaction of the

cell body with the evanescent field produces a significant change in the waveguide

propagation parameters. From the above consideration the aim of this work has been to

investigate whether interaction energies determined by average physicochemical

properties of bacterial and adsorbing nanomagnetic surfaces play a determining role in

adhesion. The OWLS technique enables kinetic information on cell response to different

pH of substrata to be obtained. Thus, the optical waveguide is a powerful biological

sensor for the detection of cell adherence.

6.7 Optical waveguide lightmode spectroscopy (OWLS)

OWLS is an extremely powerful technique for measuring thin films at liquid/solid

interfaces and it is sensitive to the effective refractive index and the thickness of the

adsorbed layer, and so it can be used to calculate the mass adsorbed onto a thin film

(Kurrat et al., 1994; 1997; Ramsden, 1997). OWLS is based on the confinement of light

in a high refractive index layer (Ramsden 1994a), and can be used for studying

adsorption and adhesion of macromolecules onto surfaces and biospecific binding

processes (Ramsden 1993; Kurrat et al., 1998; Ramsden 1999).

An optical waveguide in the form of a thin slab of high refractive index material

surrounded by lower refractive index material (usually a glass substrate) exhibits a
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discrete spectrum of modes when for example the polarized light from a He-Ne laser is

coupled to it, discrete incident angles: transverse electric (TE) and transverse magnetic

(TM) mode. The evanescent field extends a few hundred nanometers above the surface

of the waveguide and it probe changes in the refractive index upon mass adsorption at

the waveguide surface (Fig. 6.3). The evanescent field will interact with cells or indeed

anything else sitting on the waveguide. Any change at the waveguide surface results in a

change to the measured propagation constants of the guided modes and results in a shift

in the incoupling angles (Ramsden 1995a).

Figure 6.3: Diagram of OWLS principle. OWLS flow-through deposition cuvette

placed on the top of the waveguide, which forms its bottom. The polarized laser

beam is incident on the bottom with coupling angle α. The whole system is rotating

left and right and the light is diffracted, incoupled and made to reflect and

propagate along the waveguide at certain angles. The resonance peaks are

recorded by detectors on the ends of the waveguide.
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Figure 6.3 illustrates a waveguide with a cover medium (C) which can be modified, film

F with grating and optical glass support (S). The incoming laser beam makes an angle α

termed the coupling angle with the normal of the grating. The laser beam is coupled into

the waveguide by frustrated total internal reflections is then diffracted by the grating

and out put peaks are detected by the detector at the end of the waveguide while the

coupling angle of the laser beam is scanned with high precision. During this procedure

sample suspension under test flows through a cuvette, with the incident polarized laser

beam entries from underneath and at the same time the whole system rotates left-right

(Horvath et al., 2001).

At the interface, light penetrates approximately 100 nm into the sample medium, which

corresponds to the penetration depth of the evanescent wave. If species type such as

molecules, nanoparticles or cells are adsorbed at the interface (Hug et al., 2002) (within

the penetration dept of the evanescent wave), the extent of the phase-shift depends on

the total amount of adsorbed molecules. Due to this phase-shift the light intensities of

both the transverse electric (TE) and transverse magnetic (TM) modes reach their

individual maxima at certain coupling angles.

6.7.1 OWLS principle

This method is a common approach to measuring the propagation constants of the

guided lightmodes (Ramsden 1993). As shown in Figure 6.4 in a planar dielectric

waveguide light from an external beam (typically a highly monochromatic, wavelength

λ, linearly polarized laser) is guided in the waveguide film by total internal reflection
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(TIR) at the film/cover- and the film/substrate-boundaries. For more detail about the

principle and equations of this technique see appendix A.

Figure 6.4: Sensor with illustration of light guided in the waveguide. A He–Ne laser

beam propagates through the glass support S (refractive index nS), α is the

incoupling angle, F the waveguiding film (refractive index nF ≈ 1.8, thickness dF ≈

200 nm), the intensity of the light being monitored via the detector. The right hand

drawing sketches a typical electromagnetic field distribution for a zeroth guided

light mode.

The planar waveguide measures the refractive index (RI) of the cover medium and in

fact it is a refractometer where it is possible to change the cover medium. Light is

coupled into the waveguide at the near end facet of the film over a range of coupling

angles, α, guided in the film range of over a equivalent internal incidence angles, θ, and 

then coupled out at the far end edge, where the detector measures the output light. The

effective refractive indices (N) of the waveguide can be calculated from the measured α.
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In the other word, N is the average effective refractive index of the different waveguide

layers and of the medium above, and can be related to the incoupling angles (Ramsden

1993).

N = nsinα + kλ/Λ (1)

Where n is the refractive index of air, α the angle of the incoupled light, k the diffraction

order, λ the wavelength of the laser and Λ the period of the diffraction grating. If 

particles deposited, the refractive index changes at the interface and the incoupling

angles shift. Monitoring the shift of the incoupling angles of the guided modes allows

for the simultaneous determination of the thickness and the refractive index of the

adsorbed layer. Therefore this technique enables the direct real time monitoring of any

changes on the surface. For more details about the governing equations for this

technique see appendix A.
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Figure 6.5: Experimental setup of OWLS, BIOS-1 integrated optics scanner (ASI,

Switzerland). A, computer, B, injection system, C, temperature control units, D,

goniometer and cuvette.

A schematic of the flow through cuvette mounted on the goniometer is presented in

Figure 6.6. Before starting the experiment the waveguide is cleaned and inserted into a

holder and the cuvette secured on top of the waveguide.
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Figure 6.6: Goniometer

OWLS’s sensing principle is based on the evanescent electromagnetic field

associated with the guided light, which extends a few hundred nanometers above

the waveguide. The grating incouples light into a planar optical waveguide in

which the light then propagates, generating an evanescent field. This evanescent

field is used to probe the optical properties of the solution in the area of the surface

zone. This is the basis for the sensitivity of the method to changes in the refractive

index when deposition of macromolecules, cells or nanoparticles occurs.

The refractive index of all solutions have been measured by a J357 refractometer

(Rudolph Research Analytical, Hackettstown, USA) which has a sapphire prism onto

which a 633 nm laser is focused (Fig. 6.7).
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Figure 6.7: Rudolph J537 refractometer

6.7.2 Planar waveguide

A schematic of the waveguide is shown in Figure 6.7. This sensor chip is used to sense

the adhesion or adsorption of particles or cells. In order to introduce light into the

waveguide, the laser beam could be focused onto one end. Since the waveguide is only

100-200 nm thick, however, this is very difficult. It is more convenient to use a

diffraction grating to couple the light into the waveguide as shown in Figure 6.4. A

planar waveguide can be used to measure the refractive index of the cover medium and

consists of a three-layer dielectric structure (Fig. 6.8):

a. optical glass substrate S

b. waveguide film F supported on the glass substrate

c. cover medium C, which it is possible to change
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Figure 6.8: Sketch of the optical waveguide grating coupler sensor chip (made by

Microvacuum Ltd, Budapest).

6.8 Experimental part of the research

6.8.1 Waveguide sensor chips

Silica-titania sensors Si0.6Ti0.4O2, the original planar waveguide chips used for OWLS

measurements, are made from amorphous silica-titania in the ratio of approximately 2:1,

with a penetration depth of the evanescent field of the order of 100 nm. These

waveguides, obtained from MicroVacuum Ltd (Budapest, Hungary), have a Si(Ti)O2

waveguiding surface layer, with thicknesses dF ≈ 200 nm and refractive index nF ≈ 1.80,

and are provided with an embossed surface relief grating of 1/Λ = 2400 lines per mm 

(grating constant Λ = 417 nm). These chips were optimized for a wavelength λ = 633 

nm.

Before starting an experiment, extended soaking is necessary to avoid a drift in the

effective refractive index during the experiments. This effect is attributed to the gradual

filling of the porous waveguiding film with solvent (Ramsden, 1994a). This is an

essential procedural step, which is needed to improve the adhesion of nanoparticles on

the surface. Therefore for each experiment the waveguides were pre-equilibrated
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overnight in ultra pure water at 25 ºC and then inserted into the flow cell assembly

which is mounted by a cuvette into the system.

6.8.2 Substratum waveguide cleaning

Cleaning of the waveguide prior to the experiment is an important factor for obtaining

reliable results. Waveguides were cleaned after each experiment and could be reused

several times to reduce costs. There are a few methods can be used for cleaning

depending on the experimental parameters. For example, bacterial cells attached on an

uncoated waveguide can be removed easily using a weak acid solution whereas

magnetic nanoparticles adhere more strongly and required more aggressive detergent. In

this work a number of cleaning methods were used. (The rinse step involves filling the

centrifuge tube with fresh water and then it pouring out).

6.8.3 Cleaning off the bacteria

To remove bacteria from the waveguide surfaces Roche “COBAS Integra” cleaning

solution was used. The method for cleaning bacterial cells from waveguides was

sonication in Roche cleaning solution for 15 min, rinsing with ultrapure water, and

treating with O2 plasma (20mW for 2 min at 0.5 mbar O2) (Bio-Rad Barrel Asher) (Fig.

6.9).
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Figure 6.9: Plasma cleaning apparatus (placed in the clean room).

6.8.4 Cleaning off the magnetic nanoparticles

Magnetic nanoparticles adsorbed on the waveguides are extremely well bonded and

cannot be removed by the Roche treatment. The protocol used instead comprises full

submersion of waveguides in chromic acid for 3 min at room temperature and then

immediate rinsing with KOH (2M) for 1 min and then sonicating in ultra pure water for

30 min to remove the entire residue, rinsing with ultra pure water, and treating with O2

plasma for 2 min (Fig. 6.10).

Figure 6.10: Chromic acid cleaning in the clean room.
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6.8.5 Determination of surface potential

The zeta potential is the electrostatic potential at the slipping shell, which is a certain

distance out from the particle surface into the solution (Somasundaran, 2006). The zeta

potentials of the prepared nanoparticles suspended in ultrapure water (100 μg/mL) were

measured at room temperature using a Beckman Culture USA Delsa NanoC Particle

Analyzer. The pH of the as-prepared particles in suspension was 7.0. To generate zeta

potentials versus pH curves, the pH of the suspensions was adjusted using dilute HCl

and KOH solutions followed by stirring to equilibrium (Fig. 6.11).

Figure 6.11: Surface charge on Fe3O4 magnetic nanoparticles coated with PEG

(blue) and without PEG (red), suspended in water at 25 °C as a function of pH,

(pH changed by appropriate additions of HCl or NaOH). The isoelectric point is

the pH at which the zeta potential is zero. The isoelectric points of the oxides

constituting the substratum are also marked (Cacace et al., 1997).



Chapter 6

144

-80

-60

-40

-20

0

20

0 2 4 6 8 10 12 14

pH

Z
et

a
p

ot
en

tia
l[

m
V

]

The zeta potentials of bacteria suspended in deionised water (5.6 mg/L) were measured.

Bacteria in aqueous suspensions always have a negative charge (Fig. 6.12). For our

experiments in order to keep the bacteria alive the pH had to be kept to 7. At pH 7, the

bacteria are negatively charged and hence they will electrostatically attract the

nanoparticles.

Figure 6.12: Surface charge of Rhodococcus erythropolis suspended in water at 25

°C as a function of pH, (pH changed by appropriate additions of HCl or NaOH).

Symbols are centred as the mean, with the range marked. The bacteria are

expected to be alive at pH ranging from 5.7–7.5 (middle point only).

6.9 Creation of a layer of magnetic nanoparticles on the

waveguide (adsorption/desorption)

For my experiments I wanted to investigate the adhesion of magnetic nanoparticles to

the surface of bacteria, by depositing a thin layer of Fe3O4 magnetic nanoparticles onto a

Si(Ti)O2 waveguide surface and firstly the experiments were carried out to reveal the

effect of PEG deposition with nonPEG-coated and PEG-coated particles to create the
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layer. Therefore initial work was to investigate the adsorption/desorption characteristics

of magnetic nanoparticles using OWLS. The effective refractive indices N of the

transverse magnetic TM0 and transverse electric TE0 modes were continuously and

repeatedly determined using a flow rate of 0.4 mm3/s while:

(i) ultrapure water flowed through the cuvette until a stable baseline was achieved and

then (ii) a Fe3O4 magnetic nanoparticles solution, at a concentration of 50 μg/mL in

water, and finally (iii) ultrapure water again drawn into the cuvette to wash out the

excess particles which were not adsorbed on the surface of the waveguide for measuring

the desorption kinetics. During the entire sequence of flowing water, the effective

refractive indices (propagation constants) of the zeroth order transverse magnetic and

transverse electric lightmodes were measured. The solution of magnetic nanoparticles

was made up and sonicated for 20 minutes before use. The temperature was maintained

at 25 ºC and the pH of the solution was 7.0. The refractive index increment (dn/dc) (Ball

and Ramsden, 1998) of the nanoparticles in water required for the calculations was

determined by use of a refractometer at different concentrations. The determined value

of dn/dc was 0.558 cm3/g for bare nanoparticles and 0.244 cm3/g for the coated

particles with PEG (Section 4.11).

6.9.1 Experimental results and discussion

The comparison of the total mass surface concentration and refractivity calculated

shows that the surface was seeded by aggregates of non PEG coated particles and has

reasonable aggregates. This is clearly shown in Figure 6.13 which particles gradually

make the aggregates on the surface of waveguide. Since the adsorbed mass kept

increasing while the resonant peak intensities reduced (data is not shown), so we could
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not continue the experiment after around 2000 s. The aggregation could even be seen in

an ordinary optical microscope.

Whilst the self–assembly of the uncoated resulted in massive aggregates deposited on

the waveguide, which increased the noise relative to the signal (because the aggregates

absorb too much light), the measurement had to be discontinued and cannot be used to

assemble thin films (Fig. 6.13).

Figure 6.13: Effective refractive index changes during self-assembly of uncoated

(red) and PEG-coated (black) nanoparticles at pH=7 on the surface of the

waveguide at concentration of 50 µg/mL. The initiation of nanoparticle flow is

marked by the open-headed arrow. The replacement of the nanoparticle

suspension by ultrapure water is marked by the solid-headed arrow. The asterisk

marks where the measurement had to be discontinued due to excessive noise (too

much guided light was absorbed by the particles).
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Therefore we decided to use coated particles by PEG. Because this polymer does not

effect on the surface charge of particles and prevent of agglomeration.

6.9.2 Microscopy of adsorbed nanoparticles on the waveguide

Careful and detailed study of the adsorption desorption behaviour is essential to

achieving a deeper understanding of the nanofilm functional behaviour, Atomic force

microscopy (AFM) was used to visualize the nanoparticles attached onto the solid/liquid

interface. AFM has the ability to obtain topographical information of the waveguide

surface coated by nanoparticles and it has several advantages over the electron

microscope (Bogue, 2007). Unlike the electron microscope images which are two

dimensional, the AFM provides a true three dimensional surface profile. Moreover

samples viewed by AFM do not need special preparation that would destroy the sample

and can work perfectly in an ambient environment. While the electron microscope

needs expensive vacuum environment. Therefore AFM was used to scan the surface of

waveguides coated by magnetic nanofilms.

AFM images were collected in tapping mode with a SPM 3000 Dimensions equipped

with a silicon cantilever (Nanosensore PPP-NCH) with a sharpened tip (radius < 10

nm). Samples were transferred to the AFM from the OWLS experiments while in

contact with. 2µm × 2 µm height images were captured using a scan speed of 0.5 Hz

and a maximum resolution of 512 × 512 pixels. Images were flattened to remove

background slopes. Each sample was scanned at several randomly chosen locations, but

no difference was observed among these locations on a given sample. Figure 6.14

shows a typical example.
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Figure 6.14: AFM image of Fe3O4 particles deposited on a waveguide. The

diagonal features are the grating. The nanoparticles are the small points and the

bigger objects are presumably dust contamination. From the height difference

between the substratum and nanoparticle top we deduce that the particles have a

diameter of 50 nm.

6.10 pH dependence of nanoparticles adsorption

The zeta potential results illustrated that the surface charge of the nanoparticles is

dependent on the pH of the solution. Therefore pH 3 and 7 were chosen for the

experiments to demonstrate the different charges of particles. These experiments were

similar to the previous work except that the pH of the entire system (water and

nanoparticle solution) was maintained at pH 3 and pH 7 whilst (i) water, (ii)

nanoparticles solution at the concentration of 50 μg/mL, (iii) pure water again was

followed through the cuvette. These experiments were carried out using nanoparticles

coated with PEG.
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6.10.1 Determination of dn/dc for nanoparticle solutions in
water at pH 3 and pH 7

The variation of refractive index with concentration, dn/dc, at pH 3 and pH 7 has been

calculated and the results show the same value of 0.0002 for both pH (Fig. 15)

Figure 6.15: Variation of refractive index with concentration of nanoparticles

coated with PEG in water at pH 3 (up) and pH 7 (down) at 25 ºC (dn/dc= 0.0038

cm3/g).

6.10.2 Adsorption/desorption kinetics

Optical waveguide lightmode spectroscopy (OWLS) applied to provide the kinetic

adsorption and desorption data. The experimental curves after calculation of the mass is

shown in Figure 6.16.
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Figure 6.16: Self-assembly of PEG-coated nanoparticles suspended in ultrapure

water calculated from the OWLS data, adsorbed on Si(Ti)O2 in a concentration of

50 µg/mL at pH 3 (up) and pH 7 (down) at temperature 25 ºC. See Appendices A.2

and B.2 for details of calculations. The pumping speed was 0.4 mL/h. The smooth

lines represent Mrev: reversibly adsorbed particles, Mirrev: irreversibly adsorbed

particles, M: total mass of adsorbed particles obtained by fitting a model to the

kinetics (see text). Vertical line 1 marks initiation of nanoparticle adsorption and 2

marks the start of desorption. The peak fractional surface coverage θ = Ma / m = 

0.034 / 0.25 = 14% in this experiment.
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It is immediately seen that a significant proportion of particles desorbs during the

washing step. On the basis of this observation, we have postulated two possible modes

of nanoparticle adsorption, reversible and irreversible (Fig 6.17), as has previously been

used to interpret protein adsorption (Kurrat et al., 1994).

Figure 6.17: Diagram of the processes involved for particle self-assembly at the

waveguide surface, with corresponding rate coefficients. Note the change of state

undergone by the particle due to its residence on the surface.

The kinetic equations corresponding to Figure 6 are:

irrevrev MMM  (2)

  revsrevdirrevsa
rev MkMkaMck

dt
dM

  (3)

revs
irrev Mk

dt
dM


(4)

where M is the total mass of reversible (Mrev) and irreversible (Mirrev) mass deposited on

the substratum, φ is the available area function, kd is the desorption and ka the adsorption

rate coefficient, cs is the effective particle concentration in the vicinity of the adsorbent

surface; φ is the available area function ks is the rate coefficient for transformation from
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the reversible to the irreversible form and a is the area occupied by one particle,

assumed to be the same for the two modes of adsorption.

We used the Schaaf-Talbot interpolation formula for φ (Schaaf and Talbot, 1989). The

diffusion coefficient of the nanoparticles was calculated from the Stokes-Einstein

equation:

r
Tk

D B

6


(5)

where T is the absolute temperature (298.15 K), η the viscosity of the medium (water,

1.0 × 10-3 kg m-1 s-1), and kB is Boltzmann’s constant (1.38× 10-23 J K-1), giving D = 4.0

× 10-8 cm2 s-1 . Eqn. 2 was fitted to the experimental data and the fitted parameters are

gathered in Table 1.

The diffusion coefficient for the bacteria in water was calculated as 1.2 × 10-8 cm2/s

using Perrin’s formula for prolate ellipsoids approximated as:

D = kBT / [12ηR(g / h)1/3] (6)

where T is the absolute temperature (298.15 K), η the dynamic viscosity of the water

(1.0 × 10-3 kg/ms), kB is Boltzmann’s constant (1.38× 10-23 J/K), r the diameter of the

particles (50 nm), R the equivalent radius (0.52 μm), g mean diameter (0.5 μm) and h
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mean length (3 μm) of the bacteria.. The fitted parameters or the particularly useful

quantities derived from them are gathered in Table 6.1.

Table 6.1: Adsorption parameters calculated from the OWLS data for the

nanoparticles solution in a concentration of 50 μg/mL at pH 3 & 7 and

temperature 25 ºC. The units of M are μg cm-2. ka: reversible adsorption, ks:

Irreversible adsorption, m/a: total mass adsorbed particle, kd: desorption.

Parameter Units pH 3 pH 7

ka

kd

kS

m/a

cm/s

s-1

s-1

µg / cm2

5.83 × 10-7 ± 0.1 × 10-7

5.2 × 10-4 ± 0.1 × 10-4

2.4 × 10-5 ± 0.5 × 10-5

5.7 ± 1

1.98 × 10-6 ± 0.03 × 10-6

2.4 × 10-3 ± 0.05 × 10-3

0.3 × 10-3 ± 0.01 × 10-3

0.25 ± 0.005

The predicted value of m/a for spherical nanoparticles from the data in section 2.5 is

8.102 tt rm  μg cm-2. Comparison with the fitted value (0.25 μg cm-2) suggest that

the particles have a greatly expanded effective radius re, due to Lewis acid/base and

electrostatic repulsions (Cacace et al., 1997), equal to 360
25.0
5.10

2

2


et

tt

rm

rm




nm.

It is rather remarkable that despite the simplicity of our hybrid nanoparticles, which

only contain two types of molecule and four types of atom, they have a complex
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behaviour with memory that has otherwise been observed only with seemingly

incomparably more complex nano-objects, namely proteins, which are constituted from

up to twenty different amino acids and at least five different atoms. This suggests that

our hybrid could be used as a cheap and robust surrogate for a protein under certain

circumstances.

From these results it is clear that nanoparticles adsorbed on the surface of waveguide

dependent to the pH of the solution. It seems that the nanoparticles stick more to the

surface at lower pH which could be contributed to the surface charges of particles. On

the other hand as the pH increases the adsorbed molecule reduces which could be

attributed to increase of negatively charged of the particles at higher pH, therefore the

molecules would not be sited on the surface of waveguide, hence the charges of the

waveguide is negative.

6.10.3 Experimental results and discussion

The adsorption and desorption of the nanoparticles at the solid/liquid (i.e. buried)

interface is relatively straightforward and well understood (Máté and Ramsden, 1998;

Ramsden and Máté, 1998). Here we investigate the adsorption characteristics of

spherical magnetic nanoparticles. Irrespective of the composition of the system such as

concentration, controlling the adsorption of the minerals is strongly depending on the

pH (Fein et al., 1997; Daughney and Fein, 1998). The pH dependence adsorption of the

particles to the surfaces is result of electrostatic attraction between them. Figure 6.18

shows mass calculated for magnetic nanoparticles and it is a typical plot of adsorption

and desorption of aqueous nanoparticles (The mass calculation is fully described in
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appendix B). Adsorption of nanoparticles was typically continued until a definite

plateau was reached, at which for all practical purposes the amount of adsorbed

nanoparticles was no longer increasing. We have seen that the approximation of a layer

of PEG coated particles can give reasonable results in the optical analysis of such layers

at which the particles have positive charge.

Figure 6.18: Representative plots of the mass of the nanoparticles coated with

PEG, calculated from OWLS data, adsorbed onto the waveguide at pH 3 (up) and

pH 7 (down) on the surface of the waveguide at the concentration of 50 µg/mL

bulk solution against time. The arrow ‘a’ indicates the start of nanoparticle flow

(adsorption phase) and ‘b’ the start of water flow (desorption phase).
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The most reasonable interpretation of the behaviour of the mass adsorption in our

experiments is that at lower pH (3 and 7) the particles are adsorbed. In the higher pH

regime interactions between adsorbed particles and the surface of the waveguide

prevent the formation of the film and a fairly dense nanoparticles monolayer is formed.

When the pH of the nanoparticle solution is higher than the isoelectric point, the

particles are not bound on the negatively charged waveguide and therefore they are not

able to form a monolayer. The particles are likely to be close to the surface of the

support but due to their negatively charged surfaces, they are readily washed away from

the waveguide. The nanoparticles at lower pH form a monolayer structure. The

positively charged particles attach to the surface and after washing still remain on the

surface (Fig. 6.19) as a monolayer.

Figure 6.19: Nanoparticles coated with PEG adsorption/desorption model at pH 7

leads to form a monolayer of the particles. Due to their positively charged surface

the particles become attached to the negatively charged surface of the waveguide

(Fig. 6.11) (Ramsden and Máté 1998) and form a monolayer structure.



Chapter 6

157

6.11 Bacteria adsorption/desorption to nanoparticles layer

R. erythropolis was chosen for further investigation. The experiments with bacteria

were undertaken at pH 7 and 25 ºC, because at pH 7 and room temperature are optimal

conditions for the growth of aerobic mesophilic bacteria (Finnerty, 1992).

The nanoparticles solution was made up at pH=7 and sonicated for 20 min before use.

The bacteria were grown until the mid-exponential growth phase and harvested by

centrifugation at 1400 g for 10 min. The cell pellets were washed twice with Ringer’s

solution and resuspended back in the solution. After making a monolayer of magnetic

nanoparticles on the OWLS waveguide the adsorption/desorption characteristics of

bacteria onto coated waveguides were determined whilst the bacterial solution was

drawn into the flow cell and the final step is washing, which provides information about

the stability of the formed layer and possible desorption kinetics. The dn/dc was

calculated as the best linear fit to be 0.0038 for the bacteria (Figure 6.20). The

concentration was determined based on dry weight of bacteria which is 0.00563 g/L.
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Figure 6.20: Variation of refractive index with concentration of bacteria in water

at 25 ºC (dn/dc= 0.0038 cm3/g).

6.11.1 Experimental results and discussion

The attachment of bacteria was investigated on the bare waveguide and coated

waveguide with a monolayer of magnetic nanoparticles and the curves were fitted

shown in Figure 6.21.
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Figure 6.21: Plot of amount of bacteria, calculated from the OWLS data, adsorbed

on the waveguide (up) and nanofilm (down) in a concentration of 50 μg/mL at pH 7

and temperature 25 ºC. The pumping speed was 0.4 mL/h. Mrev: reversibly

adsorbed bacteria, Mirrev: Irreversibly adsorbed bacteria, M: total mass adsorbed

particles, obtaining by fitting a model for the bacterial attachment. Vertical line 1,

initiation of bacterial flow, vertical line 2, washing (see equ. 2).
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Table 6.2: Adsorption parameters calculated from the OWLS data for the

bacterial solution on the surface of waveguide and nanofilm in a concentration of

50 μg/mL at pH 7 and temperature 25 ºC. The units of M are μg cm-2. Ka:

reversible adsorption, Ks: Irreversible adsorption, m/a: total mass adsorbed

bacteria, Kd: desorption.

Parameters Units Bacteria on the waveguide Bacteria on the nanofilm

ka

kd

kS

m/a

cm/s

s-1

s-1

µg / cm2

5.93 × 10-7 ± 0.06 × 10-7

0.43 × 10-3 ± 0.008× 10-3

1.0 × 10-8 ± 0.03 × 10-8

0.13 ± 0.003

5.23 × 10-5 ± 0.05 × 10-5

0.01 ± 0.0002

1.0× 10-7 ± 0.03 × 10-7

0.37 ± 0.01

Our results clearly suggest that the nanofilm facilitates the adsorption of the bacteria

(see table 6.2 values).

6.12 Conclusions

The PEG-coated magnetic nanoparticles allow well-defined thin films to be deposited

on planar substrata.

The hybrid particles, although ostensibly uniform, morph into two types at the

substratum: reversibly adsorbable and irreversibly adsorbable. Thus their behaviour is

comparable to that of a very much more complex protein molecule (e.g.) serum

albumin, Kurrat et al., 1997).
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The PEG coating, which so successfully prevents the 25 nm-radius particles from

aggregating, while physically only 30 nm thick, creates a strong interparticle repulsion

that increases their effective radius more than tenfold to 360 nm. This may limit their

ability to adsorb on bacteria.

The summarized conclusions from this chapter are:

1. Pure magnetic nanoparticles aggregate.

2. PEG prevents the aggregation of particles.

3. Charges of particles can be tuned by pH.

4. Neutral pH results in good nanofilms on silica–titania.

5. The positively charged nanoparticles facilitate the bacterial adsorption
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7: Future work

This brief final chapter suggests some possible future areas for research on bacterial

attachment for enhancing the biodesulfurization process and highlights the areas that

may support this study. It is now clearly demonstrated that bacteria in aqueous

environments are mainly associated with surfaces (Costerton et al., 1987) and there are

various kinds of dynamical studies on the surfaces of bacteria while they are adhering to

the surfaces; they are able to change themselves or drive chemical reactions. Since the

attachment of nanoparticles on the surface of bacteria is affected by their environment,

more detailed investigations into the implicated physicochemical properties (and the

dynamics of the bacterial membrane structure) would be of interest. Moreover

membrane fluidity in media with different salt concentrations and at different

temperatures would be pertinent here.

The attachment of bacteria to magnetic particles needs further investigation by OWLS

to analyse the kinetics of bacterial attachment on the nanomagnetic film in more detail.

In order to get more information about the process one could use thicker waveguides

capable of supporting additional modes, each are of which enables an additional

parameter to be determined.

There are many possibilities to synthesise different kinds of nanoparticles and indeed

some of them are easy and inexpensive for industrial proposes. This work has shown

that Fe3O4 magnetic nanoparticles could enhance the biodesulfurization ability;
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therefore following from these experiments is to investigate other kinds of magnetic

nanoparticles, to see whether the same or better enhancement is obtained.

Shewanella putrefaciens showed desulfurization activity and detection of HBP in the

culture medium confirmed that this strain desulfurised DBT via the 4S pathway.

Therefore, S. putrefaciens is a potentially useful desulfurizing bacterium. At present, we

consider it necessary to confirm the rate-limiting step in DBT desulfurization by S.

putrefaciens. This is required to determine whether the genes encoding the DBT

desulfurizing enzymes of Shewanella are different from those of other desulfurizing

bacteria such as R. erythropolis IGTS8.

The experiments in this thesis used a model BDS system (organosulfur compound in

water). The next step towards making this into an industrial process would be to

investigate BDS in actual crude oil.
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APPENDIX A

Principle of optical waveguide lightmode spectroscopy

A.1 Reflection, refraction and total internal reflection

When light travels across medium of differing refractive indices (for example F and C)

some light will be reflected back and some will be refracted. This is commonly known as

Snell’s law although Herriot had initially discovered it sometime before Snell (Fig. A.1).

nF sin θF = nC sin θC (C1)

where nF and nC are the refractive indices of media F and C respectively where nC > nF.

θF is the angle of incidence, θC the angle of refraction, and θR the angle of reflexion,

θR= θF.
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Figure A.1: Refraction, reflection and total internal reflection. Light travelling into

media F (dark arrow) will refract into medium C and reflect back into medium F

with the C/F relationship dependent on the angle of incidence αF. Total internal

reflection (red arrow) will occur above a critical incidence angle, here no light is

refracted. The penetration of the evanescent field is shown as the dotted red lines.

Above a critical angle (α), total internal reflection will occur. This only occurs when the

light is travelling from a high to low refractive index material. The light confined within

two reflecting interfaces will travel as a standing wave between the surfaces and as an

evanescent wave beyond (Fig. A.2). The light penetrates evanescently into C before

returning to F, resulting the Goos-Hänchen shift, D (Tien, 1977).
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Figure A.2: Laser light travelling through an optical waveguide. Light is confined

within a high refractive index film (F) and will penetrate into the surrounding low

refractive index material (S and C). A denotes an adsorbed adlayer, D the Goos-

Hänchenshift and α the angle of incidence.

A.2 Waveguide and adlayer parameter calculations

A three layer model is used to calculate the waveguide parameters
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p=0 and N=NTE for transverse electric (TE) mode.

Adsorption of material onto the surface will form an adlayer with the parameters

characterised using the four layer mode equation (Ramsden, 1995a). The refractive

index of the adlayer, nA is calculated using:
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and the thickness, dA calculated using
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APPENDIX B

B.1 Random sequential adsorption

As molecules adsorb onto a surface their shape will impact on the available surface for

further adsorption. After a time adsorption will stop as the surface becomes jammed–

this is the jamming limit (θJ) (e.g. a sphere has θJ ~ 0.547). The bacterial available area

φ is at first close to one but as the molecules start to adsorb the surface becomes more

occupied (Ricci et al., 1992). At a certain point the surface cannot accommodate further

adsorption, despite there being apparent space available, and the jamming limit is

reached (Ramsden, 1993; Evans, 1993; Ramsden et al., 1994; Lavalle et al., 2000).The

equation used for fitting is

     323 0845.02336.0812.01/1, xxxxaM  (C 8)

where
J

x



 ,  , the fractional occupied area being related to M by M =  m/a,

where m is the mass per molecule.

B.2 Mass calculation

In the situation where a specific protein with known polarisability adsorbs, forming an

isotropic monolayer, the adsorbed mass can be calculated from the refractive indices
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(Ramsden, 1993; Tiefenthaler and Lukosz, 1998). The mass of the molecules in the

adlayer is then given as:

  dzczcM bulks



0

(C9)

For an adlayer with a uniform concentration cA and dA,

  AbulkA dccM  (C10)

AAdcM  (C11)

Where cA is the concentration of molecules in the adlayer (molecules per unit area) and

cbulk the bulk (liquid) concentration. The refractive index nA of the adsorbed layer is

related to cA according to this equation:

dc
dn

cnn AcA  (C12)

where nc is the refractive index of the medium in which the molecules are dissolved, i.e.

the buffer. The coefficient dn/dc depends on the polarisability of the molecules and

finally, eliminating cA, the mass can be calculated as:

dcdn
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
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