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 Abstract 

A simulation matrix population model of a small population of wrens (Troglodytes 

troglodytes) is presented. The field work methods used to obtain and analyse the 

demographic rates are provided. This includes a description of the use of miniature 

radio tags to track juvenile (post-fledging) survival and dispersal, and capture mark 

recapture analysis of an eight year dataset to estimate adult survival rates, taking into 

account environmental variation and density dependence. Age related reproductive 

rates were obtained from detailed nest surveys. Using these demographic rates (means 

and variances), and information on density dependence in survival and breeding, a 

simulation matrix model was developed using Matlab (The MathWorks, Inc.). The 

operation of this model and its outputs are explained in detail, with particular 

reference to the methods employed to incorporate both density dependent survival and 

reproduction and environmental and demographic stochasticity. This model is then 

used to illustrate how, under plausible conditions of density dependence and 

stochasticity, large discrepancies are obtained between the deterministic, density 

independent elasticities of the population growth rate (λ) and the stochastic, density 

dependent elasticities of the equilibrium population size, extinction probability and 

invasion exponent. Since the elasticities of λ are often used to guide the management 

of endangered species, these results are particularly relevant to workers in the field of 

rare species conservation. While the importance of including environmental variation 

in the form of stochastic population simulations seems to now be generally accepted, 

the role of density dependent population regulation is still infrequently considered. 

Since one of the most common causes of population decline is habitat destruction, 



leading to an increase in population density within the remaining areas of habitat, this 

omission may rarely be justified. It is recommended that when elasticity analysis is 

conducted as part of species conservation efforts, both density dependence and 

stochasticity are included. Failure to do so may result in the misguided management of 

endangered species. 
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Chapter 1 
 
 

Introduction 
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The rapid expansion of the human population during the last few hundred years from an 

estimated world-wide total of 600 million in 1700AD to over 6 billion in the year 2000 

(source: US Census Bureau) has brought large scale change to almost all natural 

habitats on the planet. In addition to the modification, pollution and destruction of 

ecosystems brought about through the increasing requirements of the human population 

for food, energy and other natural resources, there is growing evidence that our actions 

are influencing the climate on a global scale (source: IPCC). There is little doubt that 

the conditions thus created have led to a rate of species extinction between 100 and 

1000 times greater than the estimated background rate (source: IUCN). It appears that 

the scale of these man-induced changes is such that we are now in the midst of the 6th 

mass extinction of species (Akcakaya et al, 1999; Chapin et al, 2000). Current estimates 

suggest that 24% of all mammal species and 12% of all bird species are threatened with 

extinction (IUCN red list, 2002). While birds and mammals are the best documented 

groups, the threats are not confined to them. All the major vertebrate taxonomic groups 

have been at least partially assessed, and show similar, or worse, trends: 30% of fish 

species; 25% of reptile species and 21% of amphibians are threatened with extinction, 

and similar proportions are reported for invertebrate groups and plants. For the level and 

range of threats to be reduced, major alterations to the way we utilise natural resources 

and manage the natural environment are required. For example recent research suggests 

that many fisheries currently have a biomass of only about 10% of their pre-industrial 

fishing levels (Myers and Worm, 2003), and recovery will only come about through 

considerable reductions in fishery effort (Pauly et al, 2002). With approximately 40-

50% of the ice-free land surface transformed by humans (Chapin, et al, 2000), loss and 
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fragmentation of natural terrestrial habitats is perhaps the greatest contributor to species 

declines (Opdam and Wiens, 2002). Presently there appears to be insufficient political 

will to take the large steps needed to slow and reverse the current trends in resource use, 

and even if such changes are made there will inevitably be delays before their effects 

are felt. The status of many species is such that they will almost certainly be extinct (at 

least in the wild) long before such changes can take effect, and there is thus a need for 

immediate intervention, often on a case by case basis. The necessity for urgent action to 

monitor, and if necessary attempt to reverse, population declines has seen an increase in 

the application of ecological theory, and in particular population modelling, to 

conservation problems. Through analysis of population models developed using a 

species’ demographic rates, the outcomes of alternative management strategies can be 

considered. Often these theoretical experiments would be impossible, impractical or 

simply take too long, to perform on field populations. Thus the growth in population 

modelling theory and application has provided an extremely valuable additional tool for 

conservation managers, who previously may have had to base important decisions on 

little more than their own intuition. Population projections can also play a part in 

guiding policy makers, who might otherwise only have information on past declines on 

which to base decisions.  

 

Matrix population models have become established in the last 20 years as the most 

common form of population model for studying endangered species (Beissinger and 

Westphal, 1998). A typical matrix model consists of a series of difference equations 

presented in matrix form for convenience (fig. 1). Population studies are often conducted 
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by regular censusing of a population with the data categorised by age or stage. Data 

collected in this way usually requires little additional analysis for the calculation of mean 

demographic rates (e.g. fecundity, survival and growth rates), which are then entered into 

a population matrix. If this matrix of mean vital rates is multiplied by a vector containing 

the number of individuals in each age (or stage) class then the result is a second vector of 

the numbers present in each class after the time period (typically one year) over which 

the rates operate (fig. 1b). Repetition of this process will yield a sequence of such vectors 

and thus a projection for the population into the future (hence population matrices are 

sometimes referred to as ‘projection’ matrices). After an initial period of fluctuation, a 

constant (λ) defining the rate of population growth (whether positive or negative) can be 

calculated from such a projection. λ may also be derived analytically through 

eigenanalysis of the population matrix (performed using a software package such as 

MATLAB); λ is the dominant eigenvalue of the matrix. Two additional characteristic 

values for the matrix can also be found in this way: the right  and left eigenvectors 

represent the stable age distribution and the reproductive values for each age class 

respectively (Caswell, 2001). The value of λ provides valuable information about the 

status of the population. A decreasing population has a λ value less than one, while an 

increasing population has a λ value greater than one. This is not the limit of such a 

model’s usefulness however. The contribution (either absolute or proportional) which 

each of the mean demographic rates within the matrix makes to the overall rate of 

population growth can also be calculated. Such proportional contributions are known as 

elasticities (de Kroon et al. 1986), and these can be used to rank a species demographic 

rates according to their relative contributions to population growth. The theory of 
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Figure 1. Post-breeding matrix model presented in 3 different formats. a) difference 
equations for the age structured population; b) matrix model formulation of (a) with 
population vectors and transition matrix; c) life cycle graph of (a). In each diagram ‘t’ 
represents the time step interval (e.g. annual) and there are 3 age classes: n1 (0 year 
olds, representing e.g. fledglings); n2 (1 year olds); n3 (2 year olds and older). In each 
case PX  are survival transitions and FX are fecundity rates (fecundity rates are 
composites of the age class survival and fertility rates (mx), e.g. F1 = P1m1; F2 = P2m2, 
etc.).  
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elasticity analysis states that a proportional increase in the vital rate with the highest 

corresponding elasticity value will produce the greatest subsequent increase in 

λ (Caswell, 2001). Clearly this type of information is of great appeal to conservation 

managers, and elasticity analysis has played a significant role in promoting the use of 

matrix models in conservation. 

 

However, all models make assumptions about the form of data used and how it is 

analysed, and these assumptions must be borne in mind during interpretation of their 

results. A deterministic, density independent calculation of λ and its associated elasticity 

values, as described above, makes two important assumptions: that the environment is 

unchanging and that the rate of population growth is unaffected by population density. 

Neither of these assumptions can be justified from the point of view of real population 

processes, only from that of model simplification. While models should be kept as simple 

as possible (Starfield, 1997), it is also important that, where data permit, assumptions 

made during an analysis are investigated. Techniques for calculating elasticities for 

density dependent, stochastic matrix models have recently been developed (Grant, 1997; 

Grant and Benton, 2000; Grant and Benton, 2003), and thus it is now possible to test the 

assumptions of traditional elasticity analysis.  

 

Grant and Benton, using both theoretical models (Grant and Benton, 2000) and one 

previously developed by Dennis et al. (1995) for experimental populations of the flour 

beetle (Tribolium castaneum; Grant and Benton, 2003) have shown that under certain 

conditions, density dependent, stochastic elasticities can be significantly different from 
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the deterministic, density independent elasticities of λ, even to the extent of having the 

opposite sign. There are, however, no published accounts of the application of these 

techniques to models developed using data from field populations. This study was 

undertaken in order to address this issue.  

 

An ideal candidate species from a modelling point of view would be one for with a long 

time series of data, comprising of good quality information for all demographic rates 

across all age classes, and showing wide variations in population density. We would also 

have detailed information on exchange rates between different populations and the 

relationship between demographic parameters and habitat quality indices. This would 

enable us to have a high degree of confidence in model structure and performance. 

Unfortunately the wren dataset used in this study does not fall into this description. 

However, since data of such a high quality is rarely available, particularly in the case of 

rare and endangered species, the use of a more limited dataset for the purposes of 

illustrating what can still be achieved in such circumstances is still extremely useful.  

 

The data for this study was derived from a population of wrens (Troglodytes troglodytes). 

Wrens lend themselves to this task because, despite being one of the commonest bird 

species in Britain, their populations show large fluctuations in size between years and 

thus data for modelling stochasticity in vital rates is readily obtained. In addition, studies 

of wren populations have found evidence that both winter weather and population density 

influence survival rates (Greenwood and Baillie, 1991; Newton et al, 1998; Peach et al, 

1995) and population density also limits reproduction (Wesolowski, 1983). Thus wrens 
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appear to be an ideal candidate species for investigating the roles of density dependence 

and stochasticity in elasticity analysis. The study population chosen peaked at around 120 

in mid summer and was modelled as an isolated population, despite the fact that it was 

not actually an island population. In effect the model started from the premise that this 

was the last population of wrens, and the modelling was undertaken to identify the most 

appropriate management for this situation. This approach was chosen in order to make 

the results as applicable as possible to a hypothetical rare bird scenario.  

 

Since wren populations experience both density dependent regulation and fluctuations 

between years due to environmental variation, a wren population model without these 

features would omit vital components of wren population dynamics. The fact that in 

addition these two features may combine in their population dynamic effects, as 

described for an increasing range of other systems (Higgins et al, 1997; Leirs et al, 1997; 

Grenfell et al, 1998; Coulson et al, 2001), provides a further incentive for performing this 

research. 

 

Thesis overview 

The main aim of this study was to compare the results of elasticity analysis for a wild 

population performed with and without density dependence and stochasticity, in order to 

assess the importance of their inclusion in demographic studies, with particular reference 

to rare and endangered species conservation. The data collection and the model 

development and analysis are described in the remaining chapters of this thesis, as briefly 

described in the following section. 
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Chapter 2 

To develop and parameterise a simulation model, demographic rates from a suitable 

population were required. A population of wrens in a wood near to the Stirling university 

campus were selected for this purpose (fig. 2). Adult survival rates were estimated using 

leg rings (BTO and colour), capture – mark – recapture techniques, and analysis using 

program MARK. Reproductive rates were obtained by mapping individual territories, 

carrying out intensive nest searches within each territory and subsequently monitoring 

active nests through to completion.  

 

Chapter 3 

Juvenile survival rates were investigated using a combination of observation, capture – 

mark – recapture methods and radio tracking using miniature tags with a maximum life 

span of 8 weeks. A sample of nestlings were selected for radio-tracking, and were fitted 

with tags at or around the date of fledging. In addition to investigating the post-fledging 

survival period the tags were also used to study juvenile survival rates during their first 

winter. All fledglings were leg ringed, and return rates as adults were used in conjunction 

with the radio tracking data. 

 

Chapter 4 

A simulation matrix population model was written in Matlab (The Mathworks, Inc), 

using the demographic rates and variances collected from the study population, along 

with additional parameters derived from the field  study (e.g. the number of territories 

and the breeding bird sex-ratio). The model explicitly incorporates environmental and 
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demographic stochasticity, vital rate covariance and density dependent survival and 

reproduction. Model outputs are presented for a range of density dependent and 

stochastic settings, and these are discussed with relevance to their roles in real 

populations. 

 

Chapter 5 

Density dependent, stochastic elasticity analysis using the model described above was 

carried out using three alternative methods. Each method uses a different population 

metric to calculate the elasticity values (invasion rate of a mutant type, mean equilibrium 

population size, extinction probability). The results from each of these techniques, and 

those derived by the traditional analytical approaches, are compared and contrasted 

across a range of density dependent and stochastic model scenarios. The causes of both 

agreements and disagreements between the methods are discussed in relation to their 

suitability to different applications and requirements. 

 

Chapter 6 

The conclusions of the work carried out are summarised, the implications of the main 

results discussed and possible directions for future work building on this study will be 

suggested.
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Fig. 2. Ordnance survey map of Bridge of Allan, Stirlingshire, showing the Mine 
wood study site (centre). The wood lies on a south facing slope and is bordered to 
the south and west by roads, houses and gardens, to the north by a golf course and 
to the east by rough pasture.  
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2.1 Introduction 

The European wren (Troglodytes troglodytes) is the only representative of the wren 

family outside of the Americas and is widely distributed through middle latitudes in 

the western Palearctic. In the UK wrens are one of the most numerous bird species 

and are most commonly found in woodland and hedgerows, although they have also 

been recorded in many other habitats (Armstrong, 1955). The aim of this study was 

to collect demographic data from a small population of wrens, occupying an area of 

woodland near to the Stirling University campus, Bridge of Allan, Scotland, with 

which to parameterise population models. After a brief description of the wren 

breeding season (March – September covering the main period during which data 

was collected), the methods used to analyse the data will be described. This chapter 

deals with the survival and reproduction data collected for adult wrens, defined here 

as birds aged one year and older. The next chapter considers data for juveniles, 

comprising the period from leaving the nest to the commencement of breeding at 

one year old. 

 

 

Wren life cycle 

During spring, males surviving their first winter establish themselves on suitable, 

available territories. Previous observations have found that, with rare exceptions, 

males in possession of a territory in one season will remain there until they die 

(Armstrong, 1955). Spring is thus also the time when older males, surviving into 

their second or later years, re-establish the boundaries of their territories. Singing 

and territory defence increase during the spring reaching a peak in May and June. 

No formal measurements of territory size were made in this study, but territories 
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were typically in the region of 1-2 ha in size. The main determinant of territory size 

in woodland appears to be the density of understorey vegetation (Evans, 1997a). 

Territory sizes in the more open, primary forests of Bialowieza National Park in 

Poland are reported to be up to 5 times as large as those in the secondary woodland 

of the UK (Wesolowski, 1981). The total area of the study site was approximately 25 

hectares, and the average adult numbers for the whole study site in the spring was 32 

(s.d 3.7, n=4). This gives an approximate adult pre-breeding population density of 

1.28/ha. During April and May males begin to build nests on their territories, only a 

small proportion of which will be selected for nesting by females (Armstrong, 1955). 

The males’ ‘cock’ nests are an important component of the display for females 

(Evans and Burn, 1996), and the number built by any particular male is determined 

through a combination of the availability of suitable nest sites and the individual’s 

nest-building ability (Evans, 1997b). Once a female has selected a male and a nest, 

she lines it with feathers prior to egg-laying. The first clutches are laid around the 

beginning of May, incubation of the eggs lasts for 16 days and the nestlings fledge 

after a further 14 days. The female incubates the eggs and feeds the young on her 

own, while the male continues to build nests until June or July and attempts to 

recruit more females to use these nests for breeding. Most females which have 

successfully raised an early first brood to independence or lost their first clutch 

through predation or poor weather, undertake a second breeding attempt. The last 

nests are initiated in early July with the latest broods fledging in early August. 

Brood size is highly variable, with anywhere between 2 and 7 young fledging 

successfully. The female, often with the male in attendance continues to feed the 

young for up to two weeks post-fledging, after which the family groups break up and 

the juveniles begin to disperse. While most of the features of the wren life cycle 
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remain the same throughout their range, the extent to which males successfully 

recruit more than one female with which to breed appears to depend on the 

productivity of the habitat (Wesolowski, 1983). Latitude plays a part both in the 

timing of events, and also in determining the extent to which wrens are year round 

residents or undergo seasonal migration. In the UK wrens are near to the northern 

limit of their permanent resident range. At higher latitudes within continental Europe 

they show an increasing degree of southerly winter migration as the minimum 

temperature declines, with the cut-off point for residency found around the –70C 

January isotherm (Armstrong, 1955).  

 

 

2.2 Methods 

Data collection – population census and breeding  

Male wrens have a loud and distinctive song, making mapping of territories in the 

spring a relatively straightforward operation. The wren population used in this study 

had been studied since 1995, and thus most individuals present in previous seasons 

had already been fitted with leg rings - both a unique metal BTO ring and also 

individual colour ring combinations to permit identification with binoculars. After 

the commencement of territorial behaviour in the spring the study area was surveyed 

to identify which of the territory holding males possessed colour rings (survivors 

from previous years with a known history) and which did not. The latter, un-ringed 

individuals were caught in mist nets using a recording of male song as a lure to 

assist in their capture, since territory holders respond vigorously to the apparent 

presence of another male. Once a bird was caught it had leg rings fitted and was 

aged as either being in its first year or older (this is the only age distinction which is 
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possible, based on plumage characteristics; birds in their first year can be identified 

as such until the end of summer moult in the year after they hatched, when they are 

approximately 14 months old, see Svensson, 1992 for details). In addition the 

following morphological measurements were taken (tarsus (to the nearest 0.1 mm), 

tail length (0.1 mm), wing length (1 mm), weight (0.1 gm)). Males and females have 

identical plumage and, since birds other than the specifically targeted territory owner 

were also caught, a means to distinguish the sexes was required. Sweeney and 

Tatner (1996) developed a discriminant analysis for sexing wrens based on 

morphological measurements which they report had a 96% success rate. Using their 

methods, morphological measurements were used to assign sex. Once all the 

territory holding males were colour ringed, observations enabled territory maps to be 

drawn up. These were used and updated for the remainder of the season as guides for 

nest searching. Each male territory was visited every 5 to 7 days between April and 

July and a thorough search for nests was carried out. Male wrens build small dome 

nests (c. 15 cm diameter) in a wide range of possible locations. Typically nests are 

built within dense vegetation, beneath root-plates, under loose tree bark and below 

logs. Nests were also located through observation of males actively engaged in 

building. Each nest was plotted on a map and visited every few days for the 

remainder of the breeding season to check for signs of breeding activity. Once a 

breeding attempt was identified, efforts were made to catch the female in mist nets 

placed near the nest. Once caught, measurements were taken and, if necessary, leg 

rings (BTO and colour rings) were fitted. Chicks in the nest were weighed and 

ringed at around 11 days after hatching. One day before the expected fledging date 

all the chicks from each brood were removed from the nest and placed in a catching 

bag. One (in 2000) or two (in 2001) individuals from each brood were then removed 
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randomly from the bag and had a radio tag attached. After tag attachment all the 

nestlings were placed back in the nest or released to fledge together depending on 

the stage of development of the birds and their willingness to be returned to the nest 

(the details of radio tagging and juvenile data collection are discussed in chapter 3).  

 

M Evans, as part of on-going research into mate choice decisions, recorded 

demographic data for the wrens in the study population from 1995 until 1999. The 

area covered varied slightly between years, as did the level of detail:  

Conducted by M Evans: 

1995 - all males, all females, all breeding attempts 

1996 - all males, all females, all breeding attempts 

1997 - all males, some females, some breeding 

1998 - males in half the wood only 

1999 -  males in half the wood only; 

Conducted by M Trinder: 

2000  - all males, all females, all breeding attempts (as 1995/96) 

2001 - all males, all females, all breeding attempts (as 1995/96) 

2002 - all males only 

 

Survival analysis 

Ideally demographic rate estimates for the study population would be calculated for 

both sexes independently, using the data collected over the full span of years. 

However males were recorded to a much greater extent than females, due in large 

part to difficulties in surveying for females. With the exception of 2 years (1998 and 

1999, when a reduced area was surveyed), the same area of the wood was surveyed 
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for territorial males in each year of the study, providing a good time series for 

survival analysis. Females were only recorded in detail for 4 of the 8 years, in 2 

separate blocks of 2 years (1995-96 and 2000-01). Thus analysis of female survival 

is severely compromised, due to difficulties in separating emigration from death. A 

survival analysis for both sexes combined, using all of the available data could be 

carried out, but in order for this approach to be valid it is necessary to be confident 

that both sexes experience the same survival and re-capture probabilities. If the 

sexes differ then estimates will be affected and we should therefore treat each sex 

separately in our analysis. Although bird ringers throughout the UK commonly catch 

and ring wrens, very few workers sex them, so we cannot use national data to look 

for sex related differences in survival or movement. For many bird species females 

show lower site fidelity between years (and therefore lower re-trap rates) than males 

(Greenwood, 1980). There is some evidence of this in wrens from a Dutch study 

which found that males were more faithful to breeding territories both within and 

between years than females (Kluijver et al., 1940). If this is the case for the 

population studied here, then an analysis combining males and females could lead to 

an underestimation of survival rates, due to the inclusion of female emigration. For 

this reason survival was estimated for males only. 

 

Survival rate estimation  

Program MARK (White and Burnham, 1999) incorporates a range of survival rate 

estimation methods, allowing different formats of data to be analysed. The standard 

Cormack-Jolly-Seber (CJS) capture, mark, recapture model which calculates 

apparent survival (phi) and recapture probability (p) from live recaptures or re-

sightings was selected from the range of survival models available, and an arbitrary 
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annual census date set as a point at the beginning of the breeding season. Survival in 

the CJS model is estimated as apparent survival (phi), which is a combination of 

permanent movement out of the study area along with true mortality, and so has a 

tendency to underestimate the true survival probability (White and Burnham, 1999). 

If emigration rates are high this can significantly influence survival estimation, 

however male wrens exhibit a high degree of site fidelity and movements between 

territories between years are uncommon (Armstrong, 1953; Kluijver, 1940; Peach et 

al, 1995). In this study 74 territory holding males (counting each male only once) 

were monitored over 8 years and only 2 were recorded moving to different territories 

within the wood between breeding seasons. In addition, all new territory holders 

were birds in their first year, thus we have no reason to reject the hypothesis that 

recording of presence or absence of territorial males is a good proxy for survival. A 

table representing the territories and their owners over the course of the study is 

provided in fig 1.  
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Data entry into MARK is in the form of individual encounter histories. For the CJS 

model an individual has just one character for each year, either a ‘1’ – alive and 

caught/seen, or a ‘0’ – not seen. Thus a male wren first caught on a territory as a 1yr 

old at the start of the study (1995) and remaining on that territory for the next 2 

seasons (1996/7) before disappearing over the following winter would have the 

following capture history:   

1 1 1 0 0 0 0 0 

(for further details see Program MARK: A gentle introduction, Cooch and White, 

1998). 

Each line of an encounter history file contains the capture history for one individual. 

Adult wrens were aged as either one year olds or older on the basis of plumage 

characteristics (Svensson, 1984). In the standard data entry formulation as described, 

individuals can only enter the dataset as 1 year olds. This would lead to the 

exclusion of all birds older than 1 in the first year of the study (approximately half 

the territory holders in 1995 were older than one), and similarly exclude those males 

occupying the area of the wood which was re-surveyed in 2000 after two years of 

omission. In order to incorporate these older birds it was necessary to divide the 

input data into two groups. One group consists of birds caught for the first time at 1 

year old, the other of birds first caught when older than 1. Through a combination of 

this grouping and manipulation of the parameter estimation matrices all individuals 

could be incorporated into the analysis and could contribute to the survival rate 

estimates. In this study we make the assumption that all adult mortality occurs over 

the winter, however it is extremely unlikely that this is the case. While more regular 

censusing of the population would provide further details of the variation in seasonal 

survival, the most reliable period for the male census is in the spring when they are 
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exhibiting their peak territorial behaviour, and censuses at other times of year would 

suffer from a significantly reduced detection rate. Since the majority of population 

models are based on an annual time step, this simplification in survival analysis does 

not present subsequent problems in terms of model parameterisation.  

 

 

Goodness of fit testing 

When the CJS model is used for analysing capture-mark-recapture data it is essential 

to be aware of the four underlying assumptions which the technique makes about the 

data: 

1. all marked animals have the same recapture probability (for the period: t - t+1); 

2. all marked animals have the same survival probability (for the period: t - t+1); 

3. marks are not lost; 

4. sampling is instantaneous relative to the intervals between samples. 

Loss of leg rings in small passerines occurs at a very low rate, and for the purposes 

of this study we consider assumption 3 is met. Although trapping and monitoring of 

territory holding males was conducted over a course of 2-3 weeks, this is short 

compared to the year time step over which rates were estimated, thus assumption 4 

is also of little concern. However few wild populations are likely to satisfy the 

conditions of equal recapture (assumption 1) and/or survival rates (assumption 2) 

due to trap avoidance or age structure (Cooch and White, 1998). MARK can identify 

violations of these assumptions by performing tests for the goodness of fit of a 

model to the data. Goodness of fit is performed on the fully parameterised, time 

dependent (saturated) model. If an acceptable fit to the data is established then 

models with improved precision are sought by simplifying the parameter structure 
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and thus increasing model parsimony. The first step is to compare the deviance for 

the observed, saturated model with that obtained by parametric bootstrap simulation. 

The next stage depends on the outcome of this procedure. If the observed data 

satisfy the CJS assumptions (i.e. the observed model deviance does not lie within the 

significant ‘tail’ of deviances from the simulated models), then it is simply a matter 

of running biologically plausible models of survival and recapture, and comparing 

their fit to the data with that for the saturated model. However, if the observed 

model’s deviance is sufficiently large that it falls within the statistically significant 

region of the bootstrap results, this suggests over-dispersed data, and an important 

lack of fit requiring further investigation. Clearly if age does influence survival 

and/or recapture rates in the study population then a model structure which does not 

take this into account has a high probability of failure. MARK incorporates another 

test program, RELEASE (Burnham et al, 1987), to use when this is suspected. 

RELEASE also performs goodness of fit tests on the time-dependent CJS model. 

However rather than simply providing a measure of fit to the data, RELEASE breaks 

down the fitting process, providing greater insight into the causes of poor model fit 

to the data, and identification of the CJS assumptions which are being violated. The 

tests use chi-squared contingency tables to compare expected and observed numbers 

of survivors. Small sample sizes can present complications, since if the expected 

value in a contingency table is very low (e.g. < 0.1) then a single observation (i.e. 

one bird) can produce a large discrepancy in the observed and expected values, and a 

highly significant chi-squared value. There does not appear to be a solution to this 

problem (White, 2000) and thus a pragmatic approach towards interpretation of 

model outputs is necessary. 
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Mark-recapture data are commonly over-dispersed and it is therefore important to 

check for its presence prior to model fitting so that any necessary adjustments can be 

made. The bootstrap simulation results, as well as measuring goodness of fit, also 

provide a method to correct for over dispersion in the observed data. If the time 

dependent model fits the data perfectly then the over-dispersion quasi-likelihood 

parameter ĉ (c-hat), has a value of 1.0 (the default value). If the data are over 

dispersed then a value of ĉ > 1.0 can be expected. The size of the corrected ĉ value 

can have important implications both for assessing relative model fit and in extreme 

cases, the applicability of the CJS technique. There are two methods to calculate the 

adjusted ĉ value, the first is based on model deviance:  

 

Where the observed deviance is that from the model {phi(t) p(t)} and the expected is 

the mean deviance value from the bootstrapped simulations. The alternative method 

is based on ĉ itself and is derived thus: 

ĉ expected
ĉ observed ĉ adjusted =  

 

Where the observed ĉ is found be dividing the model deviance by the deviance 

degrees of freedom (df=1) and the simulated ĉ again comes from the averaged 

bootstrap value. There has been no formal work to establish which technique is more 

valid and in most cases the current recommendation is to accept the larger of the two 

values (Cooch and White, 1998). However the calculated values of ĉ can differ quite 

markedly when small sample sizes are analysed, caused by high variability in the 

deviance degrees of freedom across the bootstrap simulations (White, 2000). If this 

deviance expected
deviance observed ĉ adjusted =
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is encountered it is preferable to use the ĉ calculated from model deviance. Values of 

ĉ much greater than one (e.g. ĉ > 3) indicate substantial lack of model fit to the data, 

and even at intermediate levels (ĉ > 2) model fit must be considered carefully 

(Lebreton et al 1992). 

 

 

Model fitting 

The model building process in MARK is extremely flexible and models can be 

constructed with the parameters (phi and p) varying with age or time, or remaining 

constant, or combinations of all three. Each model is assessed for its fit to the data 

using Akaike’s information criterion (AIC), balancing model deviance against the 

number of fitted parameters. The difference in AIC value between each candidate 

model and the current best-fit model (delta AIC), is used to rank model fit. To 

calculate the AIC weights, first the delta AIC for each model is divided by the delta 

AIC summed for all the candidate models (specifically: for model i, = exp(-1/2*delta 

AIC for model i)/[sum for all models of exp(-1/2*delta AIC)]). This gives a 

proportional measure of the fit of each model given the data, and the AIC weights 

are simply these values normalised (to sum to 1),  thus providing a straightforward 

means of comparing fit across all considered models. Likelihood ratio testing can 

also be performed to look for the presence of significant differences in model fit. 

Tests are carried out between pairs of nested models with a significant result 

indicating poorer fit for the reduced model than the more parameterised one, due to a 

significant increase in model deviance with a decrease in the number of parameters 

(Cooch and White, 1998). 
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It is sensible when fitting models to be guided by the biology of the study species 

and the conditions under which the data has been collected. As previously 

mentioned, wrens can be aged as either 1-year-olds or older using characteristics of 

the plumage retained until the end of summer moult at age one. A few known age 

individuals older than 2 are present in these data with which age specific survival 

beyond the age of 2 could be estimated (i.e. 2-3, 3-4 years etc.). However these 

estimates would be of little practical value outside of similarly intensive studies. In 

addition the actual number of known age wrens older than 2 is very small (four 

survived from 2 years to 3, one from 3 to 4) and thus confidence in the precision of 

survival estimates would not be high. For this reason age related survival was 

considered for only two age groups: one year olds surviving to two years old and 

individuals aged two or older surviving to the following year. 

 

Male census data runs from 1995 to 2002, giving 7 transition periods for survival 

estimation. Analysis began with the time dependent (t), single age class model 

{phi(t) p(t)}, with both survival (phi) and recapture (p) probabilities calculated 

independently for each estimation period. This (saturated) model is the basis for 

comparisons with less parameterised versions: constant (c) survival and recapture 

for all ages in all years {phi(c) p(c)}; two age classes (as described above) each with 

either constant or time dependent survival and recapture across all years {phi(1c, 2c) 

p(1c 2c), to phi(1t 2t) p(1t 2t)}}; and various combinations of the above.  

 

Winter survival 

There is much anecdotal, and some more rigorous, evidence suggesting that 

passerines, and wrens in particular, experience elevated mortality rates during severe 
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winter weather (Cawthorne & Marchant, 1980; Marchant et. al 1990; Armstrong, 

1955; Greenwood and Baillie, 1991). Peach et. al (1995) used weather variables 

covering the whole year in their analysis of wren survival. They concluded that the 

number of winter snow days was the best predictor of wren survival rates. For this 

study, winter weather data recorded at a permanent station on the University of 

Stirling’s campus (5609’N, 3055’ W) which is approximately 2 km SE of the Mine 

wood study site was used. Since Peach et al (1995) only found evidence for an effect 

on survival of winter weather, and the population was only censused in the spring, it 

was decided that only winter variables would be used in this analysis. The variables 

and their values are listed in table 1. Monthly means for each variable in each winter 

(1995-2002) were calculated and summed into a 6 month (October-March) total. 

Figures for the 3 month period December-February were also calculated, but during 

subsequent analysis it was found that this failed to provide any additional 

explanation of survival beyond that from the 6 month totals and thus these have been 

omitted. Principle component analysis (PCA) of the weather variables identified 

those factors contributing most to the between year variation and also produced an 

overall weather score for each winter, derived from the data and the principal 

component coefficient values. By entering either the weather data or the PCA scores 

into the design matrix in MARK, survival (and/or recapture) rates are constrained to 

be linear functions of the variable entered. To investigate combined effects multiple 

co-variates can be added to the design matrix. It is important to scale the variables 

entered to lie between 0 and 1 prior to testing to ensure the numerical optimisation 

algorithm finds the correct parameter estimates.  
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Reproduction 

The number of young fledged per nest in each year of nest monitoring (1995,1996, 

2000, 2001) was considered in various ways. Number of offspring was considered 

separately for each sex, with either two age classes (1 year olds and 2 years or older, 

as used for survival estimation) or all ages combined. Using the same age and sex 

divisions, investigations of the rate either per individual or per breeding attempt 

were also conducted. The data was analysed for trends within and between the 

groupings using Residual maximum likelihood testing (REML) in the statistical 

package Genstat. The mean and standard deviation across all years for each group 

was then calculated to provide fecundity parameters for population modelling. 

 

 



 30

2.3 Results 

Goodness of fit testing 

The observed deviance for the starting model {phi(t) p(t)} was 42.74. This 

corresponds to the 753rd model of 1000 bootstrapped simulations. Thus there was no 

reason to reject the time dependent, non-age structured model (P = 0.247), as there is 

a reasonable likelihood of observing a deviance this large. However with the aim of 

obtaining age class survival rates (violating CJS assumption 2) for parameterisation 

of age-structured population models in mind, further tests of the CJS assumptions 

using RELEASE was carried out. A small number of the individual tests gave 

significant results for lack of fit, however these were all attributable to occasions 

where single observations for small expected values result in large chi-square values 

and the overall test statistic failed to reject the saturated model. Thus while there is 

no statistical support to justify adopting age structure in the survival rate analysis, 

the small sample size limits the power of the tests to detect structure in the data. 

 

Over-dispersion 

The deviance based adjustment calculation yields a ĉ value of:  

 

Where the observed deviance (42.74) is that from the model {phi(t) p(t)} and the 

expected (36.71) is the mean deviance value from the bootstrapped simulations.  The 

deviance calculated using ĉ itself was found thus:  

164.1
36.71
42.74

=

283.3
13.01
42.74

=
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Where the observed ĉ (42.74) is found be dividing the model deviance by the 

deviance degrees of freedom (df=1) and the simulated ĉ (13.01) comes from the 

averaged bootstrap value.  

 

Because of the small sample size in this study, rather than use the larger of the two ĉ 

values, the deviance based method is preferred, therefore the  adjusted value of ĉ 

used for the remainder of the model fitting was 1.164. This is substantially lower 

than the critical values of ĉ indicating substantial lack of fit (ĉ > 3), and also lower 

than the intermediate level (ĉ > 2) when model fit must be considered carefully 

(Lebreton et al 1992). Thus in this study it appears that model fit is not an area of 

concern. 

 

 

Model fitting 

Single age class models 

Table 2a presents the results of the initial adult survival analysis. Models 1 to 4 

consider survival and recapture rates for all individuals together, with all possible 

combinations of time dependent and constant rates. The best fitting model (no. 4: 

phi(t) p(c)) has time-dependent survival, and constant recapture probabilities and 

receives almost twice the support of the next best, constant rates model {phi(c) 

p(c)}. The degree of relative support inferred from the AICc weight is reduced 

slightly due to a ĉ value slightly greater than 1.  
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Two age class models 

The next step in the analysis was to investigate age related survival. As previously 

stated, known age wrens older than two are not well represented in the data. 

Therefore a two age class structure was adopted, with the first class containing one 

year old males (estimating survival from one to two) and the second all males aged 

two or older (estimating survival from two to three, and all subsequent survival). 

The results of this analysis can be seen in table 2b. The starting point is the previous 

best-fit model ({phi(t) p(c)}, model 4, table 2a) against which models with a range 

of age specific parameter structures (nos. 5-12) were compared. Three age-specific 

models (5,6,7) have higher AICc weightings than the single age starting model. 

Model 5 {phi(1t 2c) p(1c 2c)} has the highest AIC weight, with over 4 times the 

support of the next best model, {phi(1c 2c) p(1c 2c)}.  
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 Winter weather and population density 

Table 2c lists the results of adding weather and population density co-variates to the 

design matrix prior to model fitting. The starting model was the best-fitting 2 age 

class time dependent model ({phi(1t 2c) p(1c 2c)}, model 5, table 2b). The 

explanatory variable is treated as a linear constraint on survival. None of the 

variables investigated improved model fit above the starting model, indeed all the 

co-variate models receive limited AIC support. The highest ranking weather co-

variate model (total winter raindays) is over 40 times less supported than the starting 

model based on AIC weight. Combinations of weather co-variates and weather and 

density co-variates were also tested, but model fit was not improved. Likelihood 

ratio testing of nested models provides further support for age structure in the study 

population. These tests were not performed on the weather analysis as the lack of fit 

based on AIC values was such that Likelihood ratio tests for significance of fit were 

unnecessary. 

 

Survival rate estimation 

The rates generated by the survival analysis were needed for development of 

structured population models and this first required selection of the most 

representative age structure. Both AIC and LRT support the 2 age class structure 

adopted in this analysis above that of a single age class. Model 10 {phi(1t 2c) p(1c 

2c)} receives a substantially higher AIC weight (0.64/0.07 = 9.1 times the support) 

and fits significantly better (χ2=9.3, d.f.=2, p=0.009) than the best fitting single age 

class model {phi(t) p(c)}.  
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Before adopting mean rates from any particular model it is important to consider 

uncertainty in model selection (Buckland et al, 1997). In MARK this is achieved 

through model averaging of common parameters using AIC weights taken from the 

candidate models. Weighted parameter estimates are calculated which are not 

conditional on any particular model. Lebreton et al (1992) suggest that candidate 

models should lie within one AIC unit of the optimal model. However the best-fit 

model has an AIC value considerably larger (3.08 AIC units) than the next best 

model indicating that model averaging is both unsupported by AIC values and also 

unlikely to substantially alter parameter estimates because of the strong weighting in 

favour of the optimal model. Thus vital rates were taken just from the optimal 

model.  

 

The high degree of support for the optimal model suggests its parameter structure is 

very important. The contrast of time dependent survival from ages 1 to 2 with a 

constant rate for the older age class is an indication of greater variability in survival 

of the younger class than the older and leads to careful consideration of how to best 

derive mean age class rates and variances. The overall mean rate for the first age 

class was calculated from the 7 estimates in the model {phi(1t 2c) p(1c 2c)}, each 

one representing a single survival period. The second age class rate was taken 

straight from the model output as this is already a mean value across the years. The 

standard deviation of the two mean values thus derived can be calculated from the 

standard errors provided by the survival analysis. However these standard error 

values over-estimate the true temporal variation as they include both sampling error 

and process error (Gould and Nichols, 1998). The contribution to the overall error 

value from each source is calculated using variance component analysis of the rates 
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from time dependent models (note: this procedure requires multiple estimates and is 

therefore not possible with constant rate models). Due to problems related to the 

small number of older (>2 years) birds in this study this could only be carried out on 

the combined age model {phi(t) p(c)} and for the first age transition (from age 1 to 

2) in the 2 age class model {phi(1t 2c) p(1c 2c)}. The proportion of total error 

attributable to sampling error for the combined age model is 17.6% and in the 2-age 

class model for the first age class is 14.8%. The close agreement of these two 

estimates suggested that the adoption of an error reduction of 15% in the subsequent 

calculations would be appropriate. Table 3 lists the analysis output and calculated 

mean rates. Survival is slightly higher for the first transition (mean: 0.52; s.d. 0.25) 

than the second (mean: 0.46; s.d. 0.21), although not significantly so. As would be 

expected for a detailed study of a territorial species, the recapture (re-sighting) 

probabilities are high (estimated by MARK to be 1.0 for age 1; 0.62 for age 2+). The 

lower value for re-sighting older birds is a consequence of the reduced surveying 

carried out in 1998 and 1999, and is unlikely to represent a real difference in 

detection rate between the age classes. 

 

Reproduction 

Tests for significant differences in reproductive output between age groups were 

conducted using REML testing in the statistics package Genstat, which permits 

multiple random terms to be entered into the analysis. Thus year and individual can 

be entered as random terms in the model and the non-independence introduced 

through the repeated measurements of a few individuals in more than one year can 

be accounted for. Age and number of breeding attempts were entered as fixed factors 

with offspring number the response variable. 



Table 3. Male survival (a,b) and recapture (c) rates from model {phi(1t 2c) p(1c 2c)}. 
Corrected standard deviation found by reducing the standard error estimate by 15%
to account for process error. See text for details.

a) time dependent annual survival probabilities (phi) from 1 to 2 years
Estimate SE Lower CI Upper CI

-----------------------------------------------------------------------------------------------------------------
1995 - 1996 0.13 0.13 0.015 0.578
1996 - 1997 0.56 0.18 0.232 0.838
1997 - 1998 0.27 0.14 0.082 0.611
1998 - 1999 1.00 0.00 1.000 1.000
1999 - 2000 0.75 0.23 0.207 0.972
2000 - 2001 0.50 0.27 0.108 0.892
2001- 2002 0.44 0.18 0.162 0.768
-----------------------------------------------------------------------------------------------------------------
mean 0.52
std 0.29
se 0.11
process se 0.09
corrected std 0.25

b) constant annual survival (phi) from 2+ years
-----------------------------------------------------------------------------------------------------------------
all years 0.46 0.09 0.286 0.636
-----------------------------------------------------------------------------------------------------------------
mean 0.46
se 0.09
process se 0.08
corrected std 0.21

c) recapture probabilities (p)
-----------------------------------------------------------------------------------------------------------------
from 1-2 1.00 0.00 1.000 1.000
for 2+ 0.62 0.17 0.291 0.871
-----------------------------------------------------------------------------------------------------------------

37
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Each sex was analysed separately as the range in the number of breeding attempts 

was not evenly partitioned between the sexes (male range: 0-5; female range: 1-2). 

The random terms (individual and year) were found to be non-significant and thus 

removed from the analysis, leaving only age and breeding attempt. Dropping 

individual from the analysis could have introduced pseudo-replication into the 

calculations, but the actual number of individuals for which fecundity data was 

recorded in successive years was sufficiently low (<10%) that this was considered to 

be of little concern. Because the term for individuals has been removed, there is no 

longer any need to perform a mixed-effects model and we can carry out a standard 

GLM, testing for an influence of age and number of breeding attempts on the 

number of offspring per individual. Of these only number of breeding attempts has a 

detectable significant effect (males: F = 9.22, P < 0.001; females: F = 8.79, P = 

0.004). An analysis with the number of breeding attempts set as the response 

variable was also conducted. Year and individual were again found to be non-

significant and removed from the model. Male age is found to be significant, with 

older (2+ years) males having a higher number of breeding attempts than one year 

old males (F = 5.93; P = 0.018), but this is not found for females (F = 1.07, P = 

0.306).  Table 4 lists the summary statistics for wren fecundity. The values are 

averaged across all years and are divided into age and sex groups and presented per 

individual or per breeding attempt. The number of fledged young is given as both 

the total number fledged and also half the total, as a measurement of same sex 

reproductive rates (i.e. female production of females). These sex specific values 

were calculated for use in two-sex population models, with an assumed fledging sex 

ratio of 0.5. The number of breeding attempts is averaged across years for each age 

class.  
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2.4 Discussion 

Census techniques - reliability 

Performing a census of male wrens is relatively straightforward. This is in large part 

due to their loud and frequent singing during the spring and summer as part of their 

territorial behaviour. Catching singing males is assisted through the use of  tapes of 

male song played next to mist nets, taking advantage of their willingness to confront 

potential rivals. Subsequent identification by observation of coloured leg rings is 

similarly assisted because males tend to sing from obvious perches. As a result 

confidence in the completeness of each years’ survey is high, despite the change in 

observer between the first five years and the last three. Female wrens on the other 

hand present much greater difficulties. Apart from the occasional capture of females 

in mist nets set for males, the presence and capture of females tended only to be 

possible once active nests were found. Females have no need to spend time 

advertising their presence from obvious locations but instead spend much time in 

dense vegetation, thus even when colour-ringed, females are difficult to locate and 

identify. Allied with a tendency to range over larger areas than males (Kluijver et al, 

1940) this makes studying female wren population dynamics very difficult. In one of 

the few other published studies where wrens were sexed, Peach and co-workers 

(1995) were similarly unable to analyse female survival due to low numbers of 

female re-traps. They suggest the reason for this is the greater distances reported for 

female movement, which accounts for the observed disparity in re-capture rates 

between the sexes. The ‘active’ approach adopted here of catching females engaged 

in breeding, through intensive nest monitoring, addresses some of the problems of 

their inconspicuous nature, however the time and effort required meant that this was 
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impractical to carry out in all years. Additionally only breeding females are found 

and it is very likely that some nests will be missed. 

 

 

CJS survival Modelling  

Despite the limitations imposed by its assumptions, live re-sighting data as presented 

here is still most appropriately analysed using the standard CJS model approach. 

Indeed violation of the assumptions can sometimes lead to interesting observations 

about the study in question (Cooch and White, 1998). However small sample sizes 

present difficulties in analysis. This is evident in the results of the RELEASE 

goodness of fit tests, which do not provide reliable guidance due to the presence of 

single observations in several of the chi-squared tests (White and Burnham, 1999). 

Importantly, however, there is no consistent pattern of significant results, which 

might otherwise indicate lack of model fit. The advantage of testing goodness of fit 

using the bootstrap procedure is that sample size problems are of less concern, and 

in addition we are provided with a means to correct for over-dispersed data through 

the provision of an adjusted value of the quasi-likelihood parameter ĉ. The bootstrap 

results provide a high degree of confidence in the data because the observed 

deviance does not lie within the significant tail of the simulated model deviances and 

after adjusting for over dispersion we can have further confidence in the model 

fitting procedure.  

 

Although the larger of the two estimated ĉ values of 3.283 is high enough to suggest 

that we might be concerned about a substantial lack of model fit (Lebreton et al 

1992, recommend reconsidering model suitability with ĉ >>3), the lower estimate of 
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1.164 does not appear to indicate a severe lack of fit. One consequence of a ĉ >1.0 is 

that MARK becomes more ‘conservative’ in its model support, based on AIC 

weights. Less parameterised models receive proportionately greater support, and the 

interpretation of AIC weights is affected: for any given magnitude of relative 

difference between models the support inferred by the difference decreases with 

increasing values of ĉ (Cooch and White, 1998). For example, if we consider a 

hypothetical situation, with a ĉ = 1.0 and an AIC weight value of 0.8 for our best 

model and 0.1 for the next best we can state that the best model receives 8 times the 

support of the next model. However, when ĉ is greater than 1.0 the relative degree of 

model support decreases with increasing ĉ, and we could no longer make the same 

assertion. The exact reduction is not a straightforward one, but the result is grounds 

for careful consideration of the results from model fitting. In this case changing ĉ 

from 1.0 to 1.164 makes only a slight change to the rank order of models (with ĉ = 

1.164, models 6 and 7 swap places) and the AIC weight for the best fit models is 

reduced by approximately 25%. Thus overall the goodness of fit testing lends 

acceptable support to the starting (saturated {phi(t) p(t)}) model and subsequent 

adjustment of ĉ corrects for the small degree of over-dispersion in the observed data, 

but does not alter the final outcome.  
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Winter weather and survival 

No aspect of winter weather was found to explain the observed inter annual variation 

in survival rates. This is an unexpected result, considering the strong relationship 

between harsh conditions and wren survival previously reported (Cawthorne and 

Marchant, 1980; Peach et al 1995; Newton et al, 1998). One explanation for the 

current failure to identify any significant factors is the short time series for analysis 

(8 years). Both Peach et al (1995) and Newton et al, (1998) used datasets comprising 

over 20 years for their survival analyses, and thus will have been able to include a 

wider range of both survival rates and weather conditions. Extended periods of cold 

temperatures over winter are commonly cited as causing low passerine survival 

(Marchant et al, 1990), with a particular emphasis for wrens on occasions of snow 

lying for several days. The variable in this study which comes closest to predicting 

survival is the number of rain days between October and March, with survival 

apparently increasing as the number of days with greater than 0.1 mm of rain 

recorded increased. It seems unlikely that this is a reflection of a real relationship 

between wren survival and the frequency of rain in winter. What seems more 

plausible is that the same sensitivity to harsh weather exists in the study population, 

but that the best ‘indicator’ of a mild winter (and therefore one promoting improved 

wren survival) is one during which precipitation falls more often as rain than as 

snow. Another possibility is that longer term studies, covering a greater number of 

severe winters than this study, are better able to detect trends relating to weather. 

Thus with a series of mostly mild winters promoting intermediate levels of survival 

as experienced in this case, other, less obvious variables become more important for 

determining observed survival rates.  
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Sex differences in survival 

One of the consequences of being unable to calculate female survival directly from 

the data is that in order to develop population models which include both sexes, it is 

necessary to derive female rates from those estimated for males. Thus we must 

decide what, if any, is the relationship between male and female survival. Dobson 

(1987) reported that there was no detectable difference in survival between males 

and females for 13 species of passerine, while seasonal analysis of ring recoveries 

indicated the presence of two annual peaks of passerine mortality; during the 

breeding season and over the winter. During breeding male and female wrens 

perform quite distinct roles, which could lead to differential predation risk. The male 

contribution to reproduction is through territory defence and nest building, both of 

which may lead to an increase in their conspicuousness to predators. The female is 

less conspicuous during early stages of the breeding cycle than the male, but may 

come to the attention of predators over the course of the more than 30 days spent 

visiting a nest site (covering the period for nest-lining, egg laying, incubation and 

provisioning of the young). Quantifying and comparing the predation risks 

associated with these different activities was beyond the scope of this study and 

indeed, as Peach et al (1995) state “there is little evidence to suggest that small 

passerines experience significant mortality during the breeding season”. Analysis of 

carcasses from Sparrowhawk nests found that wren remains were greatly under-

represented in relation to their abundance in the habitat (Tinbergen, 1946). Mustelid 

predation of passerines is well documented (Akande, 1972; McDonald et al, 2000; 

King, 1980), although identification of avian bones to species level has not proved 

practical, and thus the extent to which wrens suffer from this form of predation is 

unknown. It seems plausible that the wren’s terrestrial foraging habits would bring it 
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into contact with stoats and weasels, but at the same time adult wrens are 

presumably well adapted to avoid capture whilst foraging in dense undergrowth. 

There are also suggestions that during the summer wrens tend to feed higher off the 

ground in the available foliage than during the winter (Armstrong 1955), and thus 

perhaps distance themselves from immediate contact with mammalian predators. In 

Hawthorn and Mead’s (1975) report of monthly recoveries of dead wrens the lowest 

values are found over the summer months (May – September), and their highest 

during mid to late winter (January – April), although this information may reflect 

variation in the probability of detection between seasons. Thus we are left without 

consistent agreement between the various sources of information. Until better 

understanding of wren survival during breeding can be gained, and in the absence of 

evidence to the contrary, the most parsimonious course is to assume that survival 

rates at this time of year are low (relative to over winter rates) and the same for both 

sexes. 

 

 However, the different roles of males and females with regards to nest building 

(males) and provisioning young (females) may be of more importance in 

determining the condition in which adult wrens enter the winter. Most studies which 

have looked for differential mortality rates brought on as a consequence of biased 

parental investment have considered monogamous species (Owens and Bennett, 

1994) in which parental investment is, superficially at least, shared equally. The 

division of labour between male and female wrens makes the assessment of each 

sex’s breeding effort very difficult, and consequently the extent to which each sex 

suffers from breeding induced reductions of body condition remains unknown. 

Against this we should note that the last traces of behaviour associated with breeding 
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have been observed by the middle of September, leaving three or more months 

recovery period before the onset of the winter weather (snow) most closely 

associated in other studies with wren mortality (Greenwood and Baillie, 1991; 

Newton et al 1998; Peach et al, 1995). Taking all of these pieces of information 

together, and until evidence can be collected to the contrary, the most parsimonious 

course of action is to assume that male and female survival rates are comparable. 
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Age structure, reproduction and life history effects 

Support for age structure is strong with the three best fitting models all incorporating 

age structure. A larger study might detect a more defined adult age structure than the 

two age classes described here, although in this population at least, very few male 

wrens survive beyond the two years of age. Although the time averaged first rate is 

slightly higher than the second (0.52 c.f. 0.46), it is the variability between years 

which is more striking. The fully time dependent survival model {phi(1t 2t) p(1c 

2c)} receives almost 1000 times less support (from AIC weights) than the optimum 

model. Thus we have overwhelming support for a model of constant survival rate for 

older birds, and time dependent survival for younger ones, with a degree of support 

large enough to suggest this is not just a product of the smaller sample of older birds. 

One mechanism which might lead to this pattern would be that in most years 

survival is low for all ages giving rise to an underlying survival curve based on the 

survival of only the fittest individuals, leading to low numbers of birds aged two and 

older. In years with milder winter conditions survival rates are elevated across all 

ages, but a greater increase is seen for younger birds simply because there are more 

one year old birds present, and thus the scope for increase is greater, with the extra 

survivors being those individuals unlikely to survive in an average or below average 

winter. 

 

One possible explanation for the lower survival of birds older than two is that this 

indicates the onset of senescence. Further support for this comes from the 

observation that of 49 males first caught as one year olds between 1995-2001, 22 

survived to their second year, but only 4 to their third and just one (known age) bird 

was recorded alive at four and then five years old. Thus we can see a marked age 
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related decline in survival rate appears to set in before birds reach their 3rd year. This 

pattern of age related survival has previously been recorded for many bird groups 

(Martin, 1995), although the early onset seen for this study population is an extreme 

example, perhaps reflecting the marginal status of wrens as year round residents in 

northern Britain. However the likelihood of recording birds older than two is partly 

compromised by the fact that censuses of the whole wood were only conducted for 

maximum consecutive periods of three years. We can at least be relatively confident 

that this pattern is not caused by older wrens becoming more adept at avoiding 

capture, since ‘re-captures’ are actually re-sightings of individual colour ring 

combinations. 

 

If we consider together the results of the survival and reproduction analyses 

presented here, along with the conclusions of previous studies of wren ecology it 

becomes possible to suggest some interesting theories regarding wren life histories. 

There are three significant trends in the reproduction analysis. For both males and 

females the only predictor of the number of offspring per individual is the number of 

breeding attempts in a season and for males this increases significantly with age. 

While this study failed to detect an increase in the number of young fledged (by 

males) with age (probably due to the small sample size), other studies have provided 

evidence that male reproductive success increases with age. Evans (1997b) found 

that individual males tended to build more nests as they got older and individuals 

with more nests attracted more females (Evans and Burn, 1996). Thus we have 

evidence that older males build more nests, attract more females and have greater 

numbers of breeding attempts than males in their first year, and it seems reasonable 

to suppose that this additional effort results in higher numbers of fledged young. If 
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this is the case it does not appear to come without a cost however, as evidenced by 

the lower survival of older males. 

 

Why don’t we see similar age related breeding effects in females? The most likely 

answer is that females are much more constrained by time within a season than 

males, with respect to the numbers of breeding attempts per year. The polygynous 

breeding system commonly seen in wren populations allows males to make multiple 

breeding attempts with different females overlapping in time, whereas a female can 

only raise one brood at a time and has to leave a period of 1-3 weeks between 

attempts. Therefore it is not surprising that detecting an increase in the number of 

female breeding attempts with age has proved difficult, although it is possible that 

females do increase their reproductive effort with age, by other means (e.g. raise 

larger broods, increase food provisioning). This hypothesis does cast some doubt on 

the proposed use of the male derived survival rates for females in population models. 

However this remains the most reasonable course of action until female survival 

rates can be estimated directly. 



 50

 
 

Chapter 3 
 
 

Estimation of juvenile wren  

demographic rates 
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3.1 Introduction 

The first few weeks post-fledging are an extremely important period for avian 

survival and it is generally believed that mortality rates at this time are very high 

(Korschgen et al, 1996; Naef-Daenzer et al, 2001; Perrins, 1965). Because of the 

difficulty in measuring juvenile survival directly during this period most data on the 

subject has come from analysing return rates of birds (usually to their natal areas) at 

some point in the future, often as breeding adults, or in a few cases from observing 

colour marked individuals for a short period post-fledging (Krementz et al, 1989; 

Magrath, 1991). The use of such approaches has in the main been prompted by the 

difficulty of making repeated observations of highly mobile, newly fledged birds, 

along with the problem of distinguishing death from permanent emigration. In the 

case of passerines, while much of their ecology and behaviour is well documented, it 

is only comparatively recently that studies of early survival have become possible. 

Radiotags provide a means to closely monitor juvenile birds during this critical 

period, but until recently have been too large to use on birds weighing less than 20-

30g. Thus data are available on the patterns of juvenile movement and survival for 

large birds such as buzzard (Buteo buteo; Walls et al, 1998), imperial eagle (Aquila 

adalberti; Ferrer et al 1997) and burrowing owl (Athene cunicularia hypugaea; King 

and Belthoff, 2001), but only a handful of passerines have been studied this way, 

and amongst bird species weighing less than 20 gm the only published studies are 

for great and coal tits (Parus major, Parus ater; Naef-Daenzer et al, 2001) and lark 

buntings (Calamospiza melanocorys; Adams et al, 2001). Because the aim of this 

study was to use demographic parameters derived from the study population to 

develop simulation models, it was important to obtain high quality estimates of 

juvenile survival rates. This objective was greatly assisted by recent advances in 



 52

radio tag and battery technology which permits the use of radio-tags with small (c. 

10g) passerines. When deciding the appropriate size of radio tag for a study, an often 

quoted guide is that tags should weigh no more than 5% of the animals’ body mass 

(Cochran, 1980). However, an investigation of the energetic costs of carrying radio 

transmitters has found that use of this weight guideline will tend to lead to an 

overestimation of the cost of carrying tags for small birds and an underestimation for 

large birds (Caccamise and Hedin, 1985). They provide a means to select transmitter 

load using estimates of the flight costs involved for any given species, using the 5% 

rule as a starting point. Using this method we can have reasonable confidence that 

tagging 10g wrens with the minimum weight 0.5g tags available at the time of this 

study was an acceptable practice. It is also important to consider the behaviour and 

ecology of the study species when selecting radio tags (Naef-Daenzer et al, 2001), 

since the energetic cost of carrying a tag is likely to be greater for bird species which 

hunt on the wing than for those which feed on the ground. In this respect the wren’s 

terrestrial habits are not a cause of serious concern with regard to the impact of 

carrying radiotags.  

 

 

3.2 Methods 

Study site 

The study was carried out in an area of woodland near the Stirling University 

campus, Bridge of Allan. The wood lies on a south facing slope, and contains mostly 

mature broad-leaved trees: beech (Fagus sylvatica), ash (Fraxinus excelsior) and 

sycamore (Acer pseudoplatanus), with a few smaller continuous blocks of mature 

pine. The understorey is dominated by large areas of fern, with patches of 
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regenerating ash trees. To the south and west the wood is bordered by gardens and 

large houses and to the north and east by a golf course and farmland. Of these the 

golf course and farmland probably represent the most significant barriers to wren 

movements, although several hedgerows do provide potential corridors to other 

areas of nearby woodland.  

 

 

Radio tags 

Radio telemetry of juvenile wrens was carried out in 2000 and 2001. Nests were 

located as part of an on-going demographic study of adult survival and reproduction 

(see chapter 2). The progress of active nests was monitored closely in order that an 

accurate assessment of fledging date could be made. At around 10 days nestlings 

were weighed and had a BTO (British Trust for Ornithology) leg ring fitted. Juvenile 

wrens fledge at around 16 days, although they will leave earlier if disturbed by a 

predator. Catching newly fledged birds is obviously much more difficult and time 

consuming than taking birds out of a nest, therefore it was decided that nests would 

be visited the day before the expected fledging date (day 15) so that radio-tags could 

be fitted. In some cases the nestlings were successfully placed back in the nest after 

tagging, but on most occasions the disturbance was sufficient to trigger the impulse 

to leave the nest and all nestlings fledged. This early fledging may have put the birds 

at a slightly elevated risk of predation for a short period. However, this was 

considered to be an acceptable trade-off since mist netting newly fledged wrens is 

difficult and could lead to the fledglings becoming split up, which was also likely to 

increase the risk of predation.  In 2000 one bird per brood and in 2001 two birds per 

brood were chosen at random for tagging. The tags were supplied by Biotrack UK 
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Ltd., and had maximum dimensions  of 13 * 7 * 3 mm, with a total weight in the 

range 0.51-0.53g (including the transmitter, cell and 10 cm wire aerial). In order to 

maximise battery life the tags had a slow pulse rate (approximately 20 per minute) 

and a short pulse duration (12 ms.). With these settings the tag battery life was 

extended to up to eight weeks, at the expense of lowered detectability in the field. 

This set-up was chosen to permit tracking of individuals for a longer post-fledging 

period, and the ability to rapidly pinpoint individuals was not important in this 

respect. Tag reception range was highly variable, being strongly influenced by an 

individual’s location and behaviour. Maximum detection distances were around 3-

400m.  

 

 

Tag attachment 

A range of tag attachment methods have been used with birds (e.g. Sykes et al, 

1990). In many studies there has been the time and resources available to conduct 

detailed  investigations into the relative merits of different techniques, however for 

this study only a very limited test was possible and a review of tag attachment 

techniques was conducted to assist in the selection process. Harnesses have often 

been used on large birds (Walls et al, 1998) and sometimes on smaller birds (Hill et 

al, 1999), particularly in studies when tag retention periods of longer than 1-2 

months are sought. After a period of fine-tuning to perfect the fitting process they 

rarely fall off (Naef-Daenzer et al, 2001) which maximises data collection, but they 

can also present a high risk to the long-term health of tagged individuals, 

particularly if recapture is uncertain. In this respect the wren’s terrestrial habits raise 

the possibility of harnesses becoming snagged on vegetation. For these reasons 
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harness attachment was rejected. Tags can also be mounted to either the legs or tail 

feathers, but neither of these is appropriate for a bird as small as a wren. The 

remaining possibility is to fix the tag directly to the bird’s back with glue (a range of 

adhesives have been tried in other studies e.g. surgical cement, eyelash adhesive, 

cyanoacrylate – ‘superglue’), and of these cyanoacrylate provides the strongest 

attachment. Johnson et al (1991) in an investigation of the efficacy of glue 

techniques for radiotags reported no ill effects from the use of superglue. Tags can 

be glued either onto, or for improved retention, beneath the outer feathers, which can 

then lie over the tag, reducing its profile and associated drag effects. Sykes et al 

(1990) compared harness and gluing methods for common yellowthroats (Geothlypis 

trichas) and found that gluing was preferred for both the birds’ welfare and for 

maximising tag retention times. Glued tags were naturally shed after around 30 days, 

pulling out the attached feathers and stimulating visible feather growth within 2 to 4 

days. They also found that using a fabric layer between the tag and the bird 

improved the retention times.  

 

A test tag was fitted to an adult territorial male in the spring of 2000, using the 

following method. First the outer feathers on the spinal tract in the intrascapular 

region of the bird’s back were lifted and pushed forward. These were held out of the 

way while a patch of feathers the same size as the tag was trimmed down to leave a 

‘stubble’ about 1 mm long. Using cyanoacrylate a piece of velcro (the ‘soft’ half) the 

same size as the tag was glued ‘furry’ side up to the trimmed feathers and then the 

tag was glued to the fabric. The outer feathers were then allowed to lie back over the 

tag. This bird was monitored closely over the next few hours for indications of ill-

effects, but none were observed and it appeared to adapt rapidly to the tag. After 3 
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weeks the bird was recaptured to check its condition and to remove the tag. No 

adverse skin reaction was visible at this or subsequent recapture occasions and full 

feather re-growth was seen within a few weeks. This procedure was therefore used 

for fitting tags to juveniles, although it was decided that the tag would be glued 

directly to the bird, omitting the velcro layer. As well as reducing the total weight, 

this allowed the tag to fit underneath the outer feathers much more neatly, and there 

is no apparent reduction in tag retention times (plate 1). 

 

If a tag came off after only a few days post fledging and observations of the brood 

suggested that the tagged individual was still alive, efforts were made to re-catch 

either the originally tagged bird or one of its siblings in order to extend data 

collection. Once the brood had begun to split up (around 10-14 days post fledging), 

locating and catching brood members was rarely possible and further attempts to re-

capture and re-attach prematurely shed tags were made only occasionally. In the first 

year of the study the aim was to tag one bird per brood and in the second year two 

birds per brood (although this was not always possible). Thus in 2000, 19 juveniles 

(from 16 broods) were tagged and tracked for 1 to 63 days and in 2001, 18 juveniles 

(from 11 broods) were followed from 1 to 54 days. Radio-tagged individuals were 

also fitted with a unique colour ring combination on one leg to enable positive 

identification in the absence of a radio signal should the tag fail or be shed. 
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Plate 1. (a) Juvenile wren with radiotag glued to back, the tag lies close to the body 
underneath the outer contour feathers, and the aerial is visible extending backwards 
from the rear of the tag. (b) Type of radiotag used for the wren radiotracking study. 
Each tag weighed approx. 0.5g, with dimensions 12*7*2mm, and an aerial of 100mm. 

a 

b 
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Radio tracking 

Because of the tags’ short transmission range and the expectation that the juvenile 

birds would leave the natal area at some point during the life of the tags regular 

checks were made in order to minimise the risk of losing individuals due to 

extensive movements. In 2000 each bird was located 3 times per day (morning, 

afternoon and evening), the last occasion being at or just after roosting. Based on the 

data collected in the first year of the study, in the second year only two daily 

locations (morning and afternoon) were collected, as the additional roosting 

information collected in 2000 did not significantly enhance bird re-location the 

following morning. During the day detected birds were approached until visible 

contact was made to confirm the bird’s status and the location was recorded using a 

GPS receiver. Birds suspected to be roosting were not closely approached in order to 

minimise disturbance, but instead had their location estimated (through a 

combination of rough triangulation and listening to the signal characteristics) and 

noted down for position recording at a later date. 

 

Juvenile wrens continue to be fed by the female (and occasionally the male) for 

several days after leaving the nest and may remain in their parent’s territories for up 

to 3 weeks, often in close association with brood mates (Armstrong, 1955). This 

made locating tagged birds relatively simple for the first few days as movements 

tended to be quite limited. When a tag was not detected in the expected area (based 

on previous fixes) an extensive search was conducted, first throughout the remainder 

of the woodland study site and then in the surrounding areas. This was conducted as 

soon as possible after a tag had failed to be detected in its previous location to 

minimise the time for possible further movement out of the study area. Once a 
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missing bird had been re-located it was monitored closely over the next few days for 

indications of continuing dispersal and if the signal was lost again immediate efforts 

were made to relocate it.  

 

 

Home range and dispersal monitoring 

In this study natal home range is defined as the area used by a juvenile until the 

initiation of dispersal (Anders et al, 1998). To identify the time at which dispersal 

occurred, the distance between each positional fix and that individual’s ‘focal’ point 

(usually its nest site, or regularly used roosting location) was calculated. Dispersal 

was judged to have taken place when there a marked increase, relative to the 

previously recorded distances, in the distance between the bird and its focal point 

(i.e. a movement away from the focal point which was >3 times the previous average 

distances), followed by a return to shorter movements in the new area. Fixes 

collected before dispersal were used to plot natal home range size using a minimum 

convex polygon method (outer points were connected unless the distance between 

two consecutive edge points was greater than ¼ of the maximum range width, in 

which case the next inner point was taken as the next point). Where possible, points 

collected after dispersal were similarly analysed to measure the post-fledging 

dispersal range. As a measure of the distance travelled during dispersal, the shortest 

distance between the centres of the natal range and the post-dispersal range was 

calculated. The arithmetic mean position of each range was used as the central 

location, calculated as the average of all the ‘x’ co-ordinates and the average of all 

the ‘y’ co-ordinates. 
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Post-fledging survival 

During the study period tagged birds became classified as either dead (body or 

remains recovered) or censored (fate unknown). Birds were recorded as censored for 

one of several possible reasons as follows: the tag was found undamaged with no 

indication of injury to the bird (probably due to tag removal by the bird); the bird 

disappeared with no trace of its radio-signal (potentially due to: tag destruction by a 

predator; failure of the tag; a fully discharged battery: or undetected dispersal). The 

expected life of the tag batteries based on the pulse strength and frequency was 

around 56 days, which closely matched the maximum duration recorded in the field 

(57 days). Survival was estimated from day 0 (fledging) to day 44 (earliest apparent 

battery expiration) for all tagged wrens. Analysis was conducted using the non-

parametric Kaplan-Meier failure time estimator which avoids the need to choose a 

specific probability distribution and is also reasonably robust to the high levels of 

censoring encountered in this study.  

 

 

 

 

Independence of observations 

In the first year only three out of sixteen broods had more than one juvenile tagged, 

as a result of the first tag being shed. The original tags were shed in these cases at 2, 

5 and 13 days. In each case the brood was observed within the natal area, the 

previously tagged individual was identified and a second brood member was 

successfully caught. The three extra birds were included as extra individuals in the 

survival analysis, since it was not felt that their inclusion would have a major impact 
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on the estimated survival rate. In the second year the tagging of multiple brood 

members could have given rise to higher levels of dependence. However, there was 

no detectable relationship between the death (or suspected death related censoring) 

of one brood member and that of its sibling (indeed only 3 birds were recorded as 

dead in 2001, all from different broods). Thus all tagged birds were entered into the 

analysis and treated as independent data points.  

 

 

Survival covariates 

In other species a combination of fledging body mass and date have been found to 

predict individual survival (Naef-Daenzer et al, 2001; Krementz et al, 1989). The 

existence of variables explaining the variance in juvenile wren survival was 

investigated here using regression with life data (Minitab). This technique fits one of 

a range of common distributions to the data and looks for predictors of ‘failure 

time’, in this case death. The exponential distribution was found to be a reasonable 

fit to the survival data, and the predictive variables tested were: fledging body mass 

(on day of tagging), early or late fledging date. In addition the body mass of parents 

was tested to see if body condition or size might also predict fledgling survival. It 

was not possible to fit tags at exactly the same time of day nor the same stage of 

development, and this must be borne in mind when considering this aspect of the 

study. 
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Annual survival 

One of the main aims of the field data collection was to derive annual survival rate 

estimates to be used in the parameterisation of population models. Thus, while the 

post-fledging period is generally accepted as being the most critical time for juvenile 

survival, in order to calculate wren survival for the whole of the first year (from 

fledging to one year of age) a means to extrapolate from the end of the radio-tag 

period until the following breeding season was required. Several long-term studies 

have obtained this parameter for other species using the return rate of one year old 

birds previously ringed on the study site as juveniles (e.g. Perrins, 1965). 

Preliminary analysis of the Mine Wood data suggested that this approach was likely 

to underestimate the true survival rate by a considerable margin, due to apparently 

high levels of emigration. Two alternatives means to calculate survival from 

fledging to one year old were used instead. By 6 to 8 weeks post-fledging juveniles 

are fully independent and known age birds observed at this time were 

indistinguishable in general behaviour from older wrens, thus the first approach 

calculates an annual rate as the product of 12 monthly survival rates, the first two 

months of which were derived from the radio tracking analysis reported here, and 

the remaining 10 come from the mean monthly estimates of survival of birds in their 

second year of life (see chapter 2 for adult survival estimates). Variance around this 

mean value was estimated by calculating the annual rate using the survival values at 

the upper and lower 95% confidence intervals for both the post-fledging period and 

the adult rate. The second method makes the assumption that the study site lies 

within a larger area of similarly suitable (and therefore equally productive) wren 

habitat. This leads to an assumption of balanced immigration and emigration of first 

year birds across the boundaries of the study area. Survival was thus estimated as the 
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total number of first year birds present within the wood in year t+1 divided by the 

total number fledged in the wood in year t. It was expected that the first method 

would be a more robust estimate of survival, but that the second would provide a 

general indicator of the range of values within which the actual survival rate would 

lie. As an additional attempt to gain information on survival from fledging to one 

year of age, a further period of fieldwork was undertaken during the autumn and 

winter of 2001-2. This work aimed to extend the radio tracking of juveniles through 

their first winter, so that weekly or monthly survival rates could be obtained for 

comparison with those derived from method one above. Thus, beginning in October 

attempts were made to catch juveniles using mist nets and to then fit them with radio 

tags. Little is known about the movements and ranging behaviour of wrens 

(particularly juveniles) during autumn and winter. They are at their least 

conspicuous at this time of year, as they exhibit minimal territorial behaviour and 

their plumage makes them ideally camouflaged for foraging amongst fallen leaves. 

Consequently the capture rates of juveniles was extremely low, with only 5 juveniles 

tagged between October 2001 and February 2002, and this was not assisted by poor 

weather restricting opportunities for mist-netting. Daily tracking followed the same 

protocol as that described above.  
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3.3 Results 

Tag retention 

Table 1 summarises the post-fledging tag data. In both years there was a high rate of 

tag loss (50% and 58% respectively) due to premature shedding, which in most 

cases appeared to be caused by removal of the tag by the bird itself (in such cases 

there was no evidence of tag damage and only feather shafts were attached to the 

tag). Although this is obviously a disappointing result, there is currently no 

alternative attachment method which offers a combination of improved retention 

times with an acceptable level of animal welfare. It was thus decided to be 

preferable to err on the side of the birds welfare rather than ensuring that data was 

collected for the complete length of the tag battery life. Since censored observations 

can be incorporated into the survival analysis this need not detract from the 

information gained. 

 

 

Home range size and dispersal 

Measurements of dispersal were only possible for those individuals which retained 

their tags for three or more weeks and which also moved into readily accessible 

locations, thus only five birds in 2000 and one in 2001 could be analysed (table 2). 

Dispersal occurred on average after 23.8 days (s.d. 5.4), often took less than half a 

day (n=3), with a mean distance travelled of 431m (s.d. 178m). Two of the 

individuals in 2000 moved a second time, one further away (further distance of 

1823m from initial post-dispersal range, 11 days after first dispersal) and the other 

returned to an area close to its natal  



Table 1. Tag attachment and retention times for juvenile wrens in Mine wood, 
summers 2000 and 2001. 
* observations of remainder of brood strongly suggest predation resulting in tag destruction

----------------------------------------------------------------------------------------------------------------
Tag/individual fate No. Number of days since fledging of last contact

2000 ----------------------------------------------------------------------------------------------------------------
Battery expired (presumed) 3 44,53,57
Found dead 3 3,9,16
Disappeared, presumed dead * 3 1,7,8
Disappeared 1 27
Tag shed 10 1,2,3,4,11,12,13,13,15,31
Total 20

2001 ----------------------------------------------------------------------------------------------------------------
Battery expired (presumed) 1 47
Found dead 2 1,3
Disappeared, presumed dead * 1 3
Disappeared 4 8,8,17,27
Broken 2 18,18
Tag shed 14 4,6,6,7,10,10,12,12,12,12,12,14,16,33
Total 24
----------------------------------------------------------------------------------------------------------------
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Table 2. Dispersal measurements for juvenile wrens in Mine wood. 
The distance is calculated as the minimum between the arithmetic mean 
locations of the pre- and post- dispersal ranges.

* - initial dispersal distance. Bird moved a second time after 1-2 weeks. 
See text for details

--------------------------------------------------------------------------------------------------
Dispersal No. days Duration of

distance (m) post-fledging dispersal (days)
--------------------------------------------------------------------------------------------------

2000 593 19 <1
256* 21 <0.5
572* 29 <0.5
375 31 <0.5
204 18 <1

2001 552 25 <1
--------------------------------------------------------------------------------------------------

average 431.0 23.8
sd 178.47 5.4

--------------------------------------------------------------------------------------------------
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range (return distance of 619m after 16 days). The distances reported are possibly 

biased on the low side since an individual travelling further than a few hundred 

metres within the space of a few hours would be unlikely to be located before it had 

time to move outside of the searchable area, due to the short detection range of the 

tags. The only way to minimise this problem was to carry out extensive searches of 

the surrounding area. There was no consistent direction in dispersal movement 

(Rayleigh’s z test: P > 0.5, n = 7) across individuals. Two individuals were observed 

making ‘exploratory forays’ one day prior to their dispersal, each moving a little less 

than half their subsequent dispersal distance. These movements were in the same 

direction as their subsequent dispersal, but the birds returned to roost in their natal 

areas before leaving permanently on the following day. Figure 1 plots typical 

representations of the daily movements of two individual birds for 35 (fig 1a) and 56 

(fig 1b) days. An exploratory movement can be seen in fig. 1b, occurring the day 

before the individual dispersed. For birds which retained their tags long enough to 

cover the dispersal period, it was possible to compare the home range size before 

(natal home range) and after dispersal (post-dispersal home range). When 

considering these ranges however, it is important to note that in no cases did the 

home range size reach an asymptote before either dispersal or censoring occurred. 

Table 3 gives the sizes for all measured ranges, calculated using the maximum 

convex polygon method. If a bird became censored prior to dispersal, but had a 

similar number of natal position fixes as others which retained their tags for longer, 

then a natal home range estimate is included. The average natal range area was 1.38 

ha (s.d. 1.0). There is considerable variation in the natal range areas between birds 

(from 0.38 to 3.57 ha), which is possibly a reflection of variation in habitat 

suitability. Previous studies of  



Figure 1. Plots representing the movements of two juvenile wrens in Mine wood.
The axes use Ordnance Survey grid references. Dots provide daily position estimates 
and the lines indicate the order in which they were recorded. The arithemetic mean 
positions for the pre- and post- range are also marked.
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Table 3. Areas for natal and post-dispersal home ranges, calculated using the minimum 
convex polygon method. Individuals 2 and 4 moved twice, and an area estimate is given
for each post-dispersal range.

----------------------------------------------------------------------------------------------------------------------------------

Individual Area Days Fixes Area Days Fixes
----------------------------------------------------------------------------------------------------------------------------------

1 1.07 16 35 2.19 35 74
2 0.38 20 45 1.61 13 27

3.13 9 19
3 0.71 17 30 -
4 2.55 28 63 1.26 15 33

1.37 20 47
5 3.57 30 62 3.26 12 26
6 0.53 15 32 -
7 0.57 16 37 -
8 0.57 13 34 4.94 18 39
9 1.55 25 40 -
10 1.43 30 44 1.71 24 33
11 2.49 24 30 0.41 8 11
12 1.12 17 21 -

----------------------------------------------------------------------------------------------------------------------------------
mean 1.38 20.92 39.42 2.21 17.11 34.33
s.d. 1.00 6.17 12.59 1.36 8.46 18.24

----------------------------------------------------------------------------------------------------------------------------------

Natal home range Post-dispersal home range
Number of: Number of:
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wrens have found that adult male territory size is related to the vegetation structure 

(Wesolowski, 1981), and the natal area used by juvenile birds is likely to be strongly 

influenced by the parents’ territory size. The average post-dispersal area was 2.21 ha 

(s.d. 1.36), which is larger than for the natal areas, although not significantly so 

(two-sample t-test, P = 0.16), probably due to the small sample size.  

 

 

Survival analysis 

Post-fledging survival 

Nineteen juveniles were tagged in 2000, and eighteen in 2001. Comparison of the 

Kaplan-Meier survival curves by year showed no detectable difference in survival 

between the two years (log rank test, P = 0.34), so the years were combined for rate 

estimation. The Kaplan-Meier combined survival curve is presented in fig. 2. There 

were no recorded deaths after 16 days in either year, which may partly be a 

reflection on the high level of censoring encountered. The overall survival 

probability for the 2 month post fledging period is taken as the final rate from the 

graph (0.704, s.e. 0.087). Of the nine deaths across both years, only three could be 

assigned to known causes, two to predation by birds and one by a mammal. The 

other six were due to unknown losses, but for which there was a sufficiently high 

probability of predation that they were treated as deaths rather than censored 

observations. In these cases the individuals disappeared within a few days of 

fledging, while their brood mates were still present in the natal area. At this age they 

were judged to have been too immature to have successfully 
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Fig 2. Kaplan-Meier post-fledging survival curve for juvenile wrens from 0-60 days, data 
combined for 2000 and 2001. Mean survival (solid line), and upper and lower 95% 
confidence intervals (dotted lines) shown. 
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dispersed and the failure to either detect the tag’s radio frequency or observe the 

tagged individual directly led to the conclusion that tag had been destroyed by a 

predator. 

 

Regression with life data was used to investigate the influence of a range of possible 

co-variates in juvenile survival. None of the variables tested (fledging body mass, 

father’s body mass, mother’s body mass, early or late fledging date) were found to 

explain the observed variation in survival. This is probably due to the small sample 

sizes in this study as previous passerine studies of survival rates have found strong 

relationships, particularly with body mass at fledging and date of fledging (Naef-

Daenzer et al, 2001). It did not prove possible to fit tags at the same time of day or 

on the same day of development, and this may also account for the lack of 

relationship.  

 

 

Annual survival rate estimation 

Method 1 

Observation of the behaviour of radio-tagged juveniles towards the end of the radio 

tracking period (5-8 weeks post-fledging) led to the decision that application of the 

next older age class survival rate (1-2 years) would be appropriate from the age of 2 

months. Table 4 gives the starting parameter values and the calculations performed 

to derive an average juvenile annual survival rate of 0.43 (s.d. = 0.11). Although this 

is quite a high estimate for a small passerine, note that it is bound by wide 

confidence intervals due to the limited sample size.  

 



Table 4a. Survival rates estimated from radio tracking data and capture-mark-recapture
data (see chapter 2)

--------------------------------------------------------------------------------------------------------------------------------

Survival period Mean s.e. lwr 95% c.i. uppr 95% c.i.
--------------------------------------------------------------------------------------------------------------------------------
Juvenile 0-2 months 0.704 0.087 0.533 0.874

Adult 1-2 years 0.521 0.0934 0.338 0.704
--------------------------------------------------------------------------------------------------------------------------------

Table 4b. Annual juvenile survival estimated using the rates in (a) above.
The monthly adult survival rates (upper and lower) are calculated by raising the annual 
rate to the power 1/12. The monthly rates are raised to the power 10 and multiplied by 
the juvenile rates for 2 months, to give upper and lower estimates of the juvenile 
annual survival rate.

Survival period Calculation Rate
--------------------------------------------------------------------------------------------------------------------------------
Estimates of adult monthly survival:
lower (0.338 1/12) 0.913
upper (0.704 1/12) 0.971

(annual rate)1/12

Estimates of adult survival for 10 months:
lower (0.338 10) 0.404
upper (0.704 10) 0.746

(monthly rate)10

Estimates of juvenile annual survival:
lower (0.533*0.404) 0.215
upper (0.874*0.746) 0.652

(adult 10 month rate * juvenile 2 month rate)

mid 0.215+(0.652-0.215)/2 0.434
s.e. (0.434-0.215)/1.96 0.111

(mid-point between upper and lower annual rate estimates)
--------------------------------------------------------------------------------------------------------------------------------

Survival rate
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Method 2 

For the years 1996 and 2001 the total number of first year breeders present in the 

wood could be compared to the total number of birds fledged in the previous year, 

and for 1997 and 2002 the number of first year male breeders in the wood could be 

compared to half the total number fledged in the previous year. Tables 5a and b lists 

the data and the estimated survival rates, 5a for all first years (assuming emigration 

and immigration are balanced) and 5b for recruits only (birds ringed the year before 

in the wood as fledglings). The mean annual survival rate for all birds is 0.3 (s.d. 

0.06). This is lower than the mean rate calculated using method 1 above, but lies 

within the estimated range of values. We might expect this value to be lower than 

the empirically derived one if our assumption of balanced immigration and 

emigration is not in fact the case, particularly if the more likely scenario of the wood 

being a ‘source’ relative to the surrounding area’s  ‘sink’. If only first year recruits 

within the population are considered then much lower values are obtained, with a 

mean survival of 0.07 (s.d. 0.04). This is a reflection of the low number of recruits 

recorded during the study, with a maximum number in any one year of 3. 

 

Over winter radio tracking 

Five juveniles were caught between 11th October 2001 and 14th February 2002. The 

tagging was staggered through the period to maximise the duration of observations. 

Two of the birds had been radio-tagged during the preceding summer in their natal 

areas. Both birds had moved from those areas, distances of 680m and 303m, 

calculated from  



Table 5. Juvenile survival rates estimated from the return rates of first year birds. 
Table (a) calculates the survival rate based on the total number of first year birds 
recorded in the wood, and makes the assumption that immigration and emigration 
are equal. Table (b) makes the same calculations but only returning recruits 
(i.e. birds born in the wood) are counted. 

a) All first years

Year Fledged First years in Survival rate
young following spring

Male Female
-------------------------------------------------------------------------------------------------------------

1995 93 11 10 0.23
1996 68 11 0.32
2000 73 9 11 0.27
2001 56 10 0.36

-------------------------------------------------------------------------------------------------------------
mean 72.50 10.25 10.50 0.30
s.d. 15.42 0.96 0.71 0.06

-------------------------------------------------------------------------------------------------------------

b) Recruits only

Year Fledged First years in Survival rate
young following spring

Male Female
-------------------------------------------------------------------------------------------------------------

1995 93 1 2 0.03
1996 68 3 0.09
2000 73 1 2 0.04
2001 56 3 0.11

-------------------------------------------------------------------------------------------------------------
mean 72.50 2.00 2.00 0.07
s.d. 15.42 1.15 0.00 0.04

-------------------------------------------------------------------------------------------------------------
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their arithmetic mean positions in the summer and winter as described for dispersal 

measurements. No mortality was recorded during the tracking period and analysis of 

the birds locations gave no indication of any continuing dispersal movements. No 

tags were found shed by the birds, with all tags simply failing to be located after 

tracking periods for the five birds of: 18,22,29,37 and 43 and 9 days. The last two 

were for the same bird, covering a total period of 77 days with a gap of 25 days 

between initial tag failure and subsequent re-capture and re-tagging. On re-capture 

the bird was found to have shed the first tag and was growing new feathers. This 

bird and one of the other tagged birds (both males) held territories in the spring 

following the tracking period in the same respective areas of the wood as they were 

tracked during the winter. The tags used during this work probably had reduced 

battery life compared to those used for the summer tracking, since they were up to 6 

months old and some had been partly used and recovered. Thus all of these censored 

results could have resulted from expired batteries. Since no mortality was recorded 

survival analysis was not possible, however the adult monthly survival rate estimates 

(lower = 0.913, upper = 0.971, table 4) are sufficiently close to the effective survival 

rate of 1 recorded here for this to be a valid result. 

 

 

Winter home range size 

Two of the birds did not have their range sizes estimated, one because it had an 

almost entirely linear home range (most of the fixes came from along two 

perpendicular hedgerows) the other because very few precise locations were 

obtained. The three home range areas calculated were 0.41 ha, 0.53 ha and 2.95 ha. 

The variation in home range size for these birds does not appear to be related to the 
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number of fixes as each one covers a period of at least 30 days. However, the time of 

year is not consistent for each of these estimates, although it is of interest that the 

range areas decrease with progress towards mid-winter. As mentioned previously 

habitat factors play an important role in determining foraging areas, and the range 

contraction may be a reflection of the vegetation in the wood dying back.  

 

 

3.4 Discussion 

Radio-tag attachment methods and influence on survival 

A serious concern with any radio tracking study is that the tags themselves may 

influence the results, and this could be expected to be particularly true of small, 

newly fledged passerines. Previous research comparing the survival of tagged 

fledglings (great and coal tits) with their un-tagged siblings (Naef-Daenzer et al 

2001) found there were no differences in survival attributable to the presence of the 

radiotags. They also report no detectable reduction in the flight performance of the 

tagged individuals. It was not possible to conduct a similar test for tag effects in this 

study and this must be kept in mind when considering the results obtained. However, 

observation of tagged birds (both the adult male used to test the attachment method 

and the tagged juveniles) revealed no apparent differences in behaviour from 

untagged individuals and thus provides a reasonable level of confidence in the 

study’s results. Birds that had been radio-tagged were among the one year old 

recruits in both years which followed summer tracking periods, and two birds which 

were tagged both in the summer and the winter of their first year went on to hold 

territories in the following spring. Thus there is no evidence to suggest that wrens 
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which carried a radio tag (for periods of up to several weeks) experienced reduced 

survival. 

 

Tag retention times in this study were probably shorter than those which might have 

been possible using a harness. However the potential for adverse effects of harnesses 

(e.g. possibility of snagging, increased weight, difficulty of bird re-capture for tag 

removal) compared to those from gluing tags (temporary feather loss and possible 

skin irritation), suggests that, in the absence of field tests of alternative methods, the 

gluing method (erring on the side of animal welfare) is preferable. While tag losses 

after 10-12 days were higher in the second year of the study than the first, this is of 

less concern than it might have been since the results from the first year of study 

indicate that most of the post-fledging mortality occurs within two weeks of leaving 

the nest, and thus this critical period is covered by the data. Naef-Daenzer et al 

(2001) report a similarly concentrated period of high mortality in great tits and coal 

tits, with a third of all post-fledging mortality occurring in the first 4 days. Thus 

despite the high level of censoring we have a good degree of confidence in our 

estimate of post-fledging survival.  

 

 

Post-fledging survival 

The survival of juvenile wrens until eight weeks post-fledging found in this study 

(0.704) is higher than that reported for many other passerines (table 6). Only two of 

these studies made use of radio tags, for the wood thrush (Anders et al, 1997) and 

Naef-Danzer et al’s (2001) study of great and coal tits. It is interesting to note that 

both these studies report rates higher than the rest, and importantly the rate for great 
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tits derived from the radio tracking study (0.47; Naef-Daenzer et al, 2001) is almost 

twice that from the passive observation and mark-recapture study (0.252; Dhondt, 

1979). Thus we could reconsider the statement that the results from this study are 

high, with the contrary suggestion that those from some of the other studies are low, 

possibly underestimating survival due to unaccounted losses through emigration. 

Another explanation could be that wrens generally suffer lower levels of predation 

than the other species considered, particularly from avian predators (because of their 

small size and  terrestrial habits). We would expect newly fledged wrens to be more 

vulnerable than adults, but this distinction may only last for a relatively short time 

after which low juvenile mortality is seen. Although the low number of birds tagged 

beyond 4 weeks could lead to a situation where any mortality occurring during the 

second half of the tagging period (i.e. weeks 5-8) is missed purely by chance. 

However, Tinbergen (1946) reported that wren remains were greatly under 

represented in the remains associated with sparrowhawk nests, whereas larger and 

more conspicuous species such as great tits were over represented. A possible 

explanation for why these apparently higher post-fledging survival rates do not 

result in considerably larger wren populations than those of other species of 

woodland passerine, is that their small size causes them to experience much lower 

over-winter survival. Obviously caution should be exercised when comparing results 

from different studies and different species, but as more radio-tracking studies are 

undertaken it is possible that a reappraisal of post-fledging survival rates may be 

necessary.  

 



Table 6. Examples of passerine post-fledgling survival. 

Species
Survival 
estimate Duration Authors

-----------------------------------------------------------------------------------------------------------------
Wood thrush 0.423 8 weeks Anders et al (1997)
Yellow eyed junco 0.321 10 weeks Sullivan (1989)
Zebra finch 0.33 5 weeks Zann and Runciman (1994)
Starling 0.429 7 weeks Krementz et al (1989)
Great tit 0.252 10 weeks Dhondt (1979)
Great tit/Coal tit 0.47 3 weeks Naef-Daenzer et al (2001)
-----------------------------------------------------------------------------------------------------------------
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Annual survival rate 

Estimating survival for the period of life from independence to the first breeding 

attempt is extremely difficult for most animals. This is often the time during which 

dispersal occurs, with permanent emigration compounding estimates of survival 

based on mark recapture techniques. Until such time that the individual fates of an 

entire population can be monitored it will remain necessary to derive estimates of 

vital rates from a combination of available data and reasonable extrapolation. In this 

case we took the approach that the period of elevated mortality risk experienced by 

juvenile wrens is relatively short-lived, after which they achieve a level of 

competence equivalent to that of birds one year older, and survive accordingly. 

Additionally the post-fledging survival curve has a reasonable fit to an exponential 

decline, and therefore we can feel justified in the use of the adult monthly survival 

rate (0.947) as an extension of this curve. Dividing up a population into distinct age 

classes can in some ways be regarded as an artificial structure, and thus our 

approach could be re-interpreted more in terms of a period of high mortality 

immediately post-fledging, followed by an improved survival probability (the period 

from juveniles through to young adult) before a final decline in the survival rate with 

the possible onset of senescence. Obviously this too is a simplification, since most 

mortality will occur seasonally (over winter) rather than as a gradual reduction. 

However, qualitative observations of juvenile wrens from 4 weeks after fledging, 

through their first winter, suggest this is a reasonable pattern to adopt.  

 

The difference between our 12 month estimate of survival calculated by method 1 

(mean 0.43, s.d. 0.11) and that from method 2 (mean 0.3, s.d. 0.06) is probably a 

reflection of several factors. Firstly method 2 assumes that immigration and 
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emigration balance each other out across the borders of the wood, however we have 

no evidence for this. If it was the case that the study site is in fact better quality wren 

habitat than the surrounding areas then a ‘source-sink’ situation might be seen, with 

the wood producing a surplus of wrens which disperse from the wood, but the less 

productive surrounding areas cannot produce sufficient numbers to match it. In order 

to address this question more information on the range of wren dispersal distances 

and the relative productivity of different habitat types would be needed. Another 

explanation for the lower estimate is that surviving males are only recorded if they 

become territory holders. Juvenile males only become territory holders if vacant 

territories become available through the death of the previous occupier. Thus 

survival measured this way is in fact a combination of juvenile survival and adult 

(territory holder) survival. The result of this is that the estimates are biased on the 

low side, since in years of high survival for all age classes, fewer territories will 

become available, less first year birds will be present and thus survival will be 

underestimated. The failure to identify any explanatory covariates for juvenile 

survival is again probably due to the small sample size. Studies of post-fledging 

survival which have found relationships between nestling body mass and survival 

have typically had sample sizes 5-10 times that for this study (Naef-Daenzer, 2001, 

Krementz et al, 1989).  

 

 

Home range size and dispersal 

During the period in which natal home range areas were defined (up to an average of 

20 days from leaving the nest), observations indicated that the juveniles were 

becoming less dependent on their parents and were also seen less often in 
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association with their siblings. There was no detectable consistency of direction 

between dispersing individuals, although the distance travelled initially was broadly 

similar (204-593m). Although two of the birds settled within the boundaries of the 

study wood, most of the known locations where dispersing birds settled tended to be 

of a less high quality than the natal woodland. This included gardens, woodland 

edges, hedgerows and an area of gorse scrub within a field. This variation in post-

dispersal habitat is reflected in the range of different sizes for the post-dispersal 

home range areas. Adult male territorial behaviour is maintained throughout the 

breeding season, and this may be directed at their own offspring once they are no 

longer recognised as such and have become independent. Most territories in the 

study site shared boundaries with others, thus a dispersing juvenile in most cases has 

to pass through areas defended by other males. The observation that most birds 

settled in apparently marginal areas perhaps indicates that these were the first places 

the juveniles encountered in which they were not subjected to antagonistic behaviour 

from a resident bird.  

 

It is possible that the dispersal distances recorded are biased on the low side due to 

the difficulty of re-locating birds which moved rapidly out of the study area. Efforts 

were made to control for this through extensive searching of the area around the 

wood to a distance of up to 3 km, but the limited tag detection range imposed by the 

small tag size meant that birds moving over 1 km from the study site would have a 

high probability of avoiding detection. Of 8 birds which were suspected of moving 

away from their natal areas and were initially lost, 5 were re-located outside the 

wood within 1-2 days. Of the 3 which were not re-located, 2 had tags which could 

have run out of battery life (40 and 54 days), leaving one bird with an unknown fate. 
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Thus we can feel confident that in most cases dispersing birds which remained alive 

were detected during the initial stages of dispersal. The locations of the 2 birds re-

tagged during the winter lend further support to the idea that wrens from the study 

area were not travelling distances over which re-location was compromised by the 

short tag range. The distances travelled from their natal areas (303m and 680m) are 

similar to those recorded for initial dispersal movements during the summer tracking 

period, although it is possible that these birds had travelled more widely during the 

intervening period (2-3 months).  
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4.1 Introduction 

Population modelling 

Demographic models have become a common component of wildlife management techniques 

over the last twenty years (Beissinger and Westphal, 1998). Population models are employed 

in a variety of situations where the goals of management may be: in the case of rare and 

endangered species, to minimise extinction risk (e.g. Inchausti and Weimerskirch, 2001) or 

increase the population’s size or growth rate (λ; e.g. Wisdom and Mills, 1997); for exploited 

species, to maximise the potential harvest (e.g. Hamilton and Moller, 1995) or in the case of 

pest species, to reduce the size of a population in order to minimise detrimental effects (e.g. 

Brooks and Lebreton, 2001). Population models provide a means to investigate questions 

which might otherwise be impossible or impractical to address. No model is ever ‘right’ or 

‘wrong’ in terms of the outputs provided (McCarthy et al, 2001), and indeed an approach to 

model development based on these assessments is misplaced. Instead models should be chosen 

for their ability to act as problem solving tools (Starfield, 1997) and as a means for comparing 

alternative management options.  

 

The aim of a simple form of population model is to provide an estimate of the population size 

or growth to be expected at some point in the future based on the current population size and 

estimates of the rates of survival and reproduction (e.g. Jones, 2002; Velando and Freire, 2002; 

Inchausti and Weimerskirch, 2001). These demographic rates are usually obtained from census 

data (typically annual), with the rates often categorised by sex and age (or size). Matrix models 

are ideally suited to make use of this age or (stage) based, discrete time data, and in their 

simplest form require little additional data manipulation. Consequently they have become a 

common tool in population management. The application of matrix algebra methods for 
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modelling populations was first proposed by Leslie (1945) and their popularity increased 

following the publication of ‘Matrix Population Models’ (Caswell, 1989). This coincided with 

a general increase in the application of modelling in the management of threatened and 

endangered species. A central feature in the popularity of matrix models is the simplicity with 

which it is possible to derive analytical results. For example a common form of analysis is to 

calculate the sensitivity of the population growth rate to change in a species’ demographic 

rates (e.g. Martien, et al 1999; Wisdom and Mills, 1997; Crowder et al, 1994). Sensitivities, 

and their proportional equivalents, elasticities, are a measure of each demographic rate’s 

contribution to λ, the population growth rate: the larger the elasticity value, the greater the 

contribution of that vital rate to population growth (Caswell, 2001). Thus management for a 

rare species can be directed at the demographic rates which will yield the greatest return in 

terms of population growth. Clearly this makes matrix modelling and elasticity analysis in 

particular, extremely attractive to conservation managers. 

 

 

Matrix model assumptions 

Analysis of a matrix model at its simplest assumes each parameter has a constant value, 

population growth is density independent and deterministic, and elasticity analysis is 

conducted with reference to a single value of λ. The insights thus provided into population 

processes are extremely valuable. However, the omission of density dependence and 

environmental variation has prompted concerns about the technique’s validity for populations 

where these factors play an important part in the population dynamics (Benton and Grant, 

1996; Mills et al, 1999; De Kroon et al, 2000; Grant and Benton, 2000). For example a 

management assessment based only on λ and the factors which affect it, calculated using a 
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matrix of constant mean rates, will be of limited value if density dependence acts to constrain 

the population’s actual long-term growth rate to lie around 0. It is sometimes argued that 

species of conservation concern are experiencing either population declines or have 

sufficiently small population sizes that density dependence is unimportant and therefore an 

analysis based on λ is justified (e.g. Weilgus et al, 2001) . However, simply because a 

population is declining or small does not mean that density dependent processes are absent or 

can be ignored. Indeed, once the causes of a population’s decline are understood it may be 

found that density dependent processes are operating at elevated levels, and their inclusion in 

the modelling process may become even more important. For example reduction in a species’ 

available habitat will lead to greater competition for resources and thus a period of increased 

density dependence, until such time as the population re-establishes itself at a new, lower level. 

Similarly, environmental variability plays an important role in determining optimum life 

history strategies, and the relationship between environmental variation and the optimum 

reproductive effort has been found to be highly dependent on a host of population dynamic 

factors (Benton and Grant, 1999). A consideration of life history strategies may not be of 

immediate concern when management is concerned with maximising total population size, but 

in other situations (e.g. commercial harvesting, or maximising output of individuals to ‘seed’ 

new populations), such factors are of considerable relevance. Thus the implementation of 

management prescriptions with the intention of reducing the risk of population extinction, but 

derived from a density independent, deterministic sensitivity or elasticity analysis, conducted 

with reference to λ, may not produce the desired results.  

 

If elasticity analysis is used to guide management, it is critically important to assess the 

techniques’ performance under a range of conditions. Various tests of the robustness of linear 
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elasticity predictions to realistic natural variations have been conducted (e.g. Mills et al 1999; 

van Tienderen, 2000; Silvertown et al, 1996), and there have been reviews of the outputs and 

predictions of alternative commercial Population Viability Analysis packages (PVA - e.g. 

RAMAS, GAPPS, Vortex), which can incorporate stochasticity and density dependence (Mills 

et al, 1996; Brook et al, 2000). Some studies have used the observed variation in vital rates to 

perform stochastic simulations  (e.g. Doak, et al, 1994; Wisdom and Mills, 1997; Cuthbert et 

al, 2001), and a few have included density dependence in survival or fecundity (Jensen, 1995; 

Escos et. al, 1994), but applied studies combining both stochasticity and density dependence in 

vital rates (excepting the use of ‘black-box’ PVA tools where the methods employed are not 

generally clear to the end-user) are notable by their absence. This, in spite of the fact that to 

produce accurate projections of fluctuating populations both density dependent and stochastic 

effects should be included (Saether et al, 2002).  

 

Methods for calculating density dependent, stochastic elasticity values using data derived from 

population simulations have recently been developed (Grant, 1997; Grant and Benton, 2000) 

and applied to a population model of Tribolium (Grant and Benton 2003). This work has 

demonstrated that under certain density dependent and stochastic conditions, the density 

dependent elasticities of population size can be quite different from the elasticities of λ, even 

to the extent of having the opposite sign. This work suggests that under some conditions 

manipulation of a species vital rates might be undertaken with the expectation of a positive 

response (in terms of population growth or size), but the actual result could be a decline in the 

size or growth rate of the population. The work presented in this thesis is the first to use data 

collected from a wild population to parameterise a simulation model suitable for comparing 

elasticity analyses with and without density dependence and stochasticity. The results of the 
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elasticity analyses will be presented in the next chapter, but here the model will be introduced 

in detail. The methods section will describe the model structure and approach taken to 

incorporate density dependence and stochasticity, while the results section will discuss the 

outputs obtained for a range of density dependent and stochastic scenarios. The discussion will 

highlight those aspects of the model which are of particular importance for the system studied 

here, and the implications for population modelling in conservation. The models are based on 

data collected during a study of a small population of wrens (Troglodytes troglodytes), 

conducted over a period of eight years in an area of woodland near the Stirling University 

campus, Bridge of Allan, Scotland. They are short lived, small passerines found throughout the 

northern temperate regions and are common in woodland and hedgerow habitats. Wrens, 

particularly males during the breeding season, are highly territorial and their small size 

(approx. 10g.) causes their survival rates to be highly sensitive to the severity of over-winter 

weather. Further details of the wren life cycle, data collection and analysis are presented in 

chapters two and three.  

 

 

4.2 Methods  

Basic matrix model construction 

To construct a typical matrix model a species’ average survival and reproductive rates, 

subdivided by age or stage, are entered into a square projection matrix, A, with fecundity rates 

in the top row and survival rates in the sub-diagonal. For this study a simplified form of the 

age-based 3*3 matrix is as shown: 
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[1] 

Where the Fi terms are measures of the mean fecundity for age class i at time t and the Pi terms 

are measures of the mean survival probability for age class i, for the transition period t-1 to t. 

In this model, the final age class (P3) contains all individuals aged 3 years and older. 

Multiplying the matrix A of mean rates by a vector nt of the numbers in each age class at initial 

time t, produces a second vector nt+1 of the numbers in each class after the transition period 

defined by t:  

 [2] 

or alternatively:   

Ant = nt+1 

[3] 

A population projection is obtained by repeating this procedure. The timing of the annual 

census (either pre- or post- breeding) determines the method used to calculate the fecundity 

rates. If, as in this study, an annual census is performed post-breeding, the first entry in the 

population vector (N1) is the number of newly fledged individuals, and the transition period t 

comprises the survival period (P), followed by breeding (F) and then the census. Thus only 

surviving birds breed, and consequently the Fi terms in the population matrix are the product of 

the Pi survival rates and the i class reproductive rates (mi fertility rates in life table notation). It 

should be noted that the matrix used in the simulation model corresponds to a 6*6 matrix, 

which includes both sexes, subdivided into the 3 age classes. The age specific demographic 

rates are provided in table 1. 
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Table 1. Summary vital rate data for wrens of Mine Wood, 1995-2002. All data comes from a 
small population of wrens, Mine Wood, Bridge of Allan, Stirlingshire. 
a) 0-1 survival estimated from radio-tracking data, (see chapter 3 for details); 1-2/2+ 
survival estimated from colour ring data using capture-mark-recapture methods (CJS) in 
program MARK (chapter 2). 
b) Fecundity estimates and breeding attempt data calculated from 4 years of detailed nest 
surveys and monitoring (chapter 2). 
c) Breeding territory data calculated from six years of complete census data (chapter 2). 

 
a) Survival probabilities     
--------------------------------------------------------------     
   Age transition (years)  
   0-1 1-2 2+ 
--------------------------------------------------------------     
Male  mean 0.43 0.52 0.46 
(and female) s.d. 0.11 0.25 0.21 
--------------------------------------------------------------     
 
 
b) Fecundity rates     
---------------------------------------------------     
   Age   
   1 2 / 2+ 
---------------------------------------------------     
Per individual    
Male  mean 2.04 2.16 
  s.d. 0.3 0.88 
 
Female  mean 2.38 1.69 
  s.d. 0.54 0.91 
---------------------------------------------------     
Per breeding attempt    
Male  mean 1.61 1.25 
  s.d. 0.27 0.48 
 
Female  mean 1.78 1.4 
  s.d. 0.34 0.79 
---------------------------------------------------     
Number of breeding attempts    
Male  mean 1.19 1.7 
  s.d. 0.14 0.11 
    
Female  mean 1.32 1.21 
  s.d. 0.05 0.21 
---------------------------------------------------     
 
 
c) Number of breeding territories   
----------------------------------------- 
  mean 17.67 
  s.d. 1.97 
---------------------------------------- 
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The long run population growth rate can be calculated both numerically from a population 

projection and also by eigenanalysis of the projection matrix itself. The dominant eigenvalue 

of the matrix is λ, and the vectors of the stable age distribution and reproductive value are the 

right and left eigenvectors respectively. The sensitivity and elasticity of λ to change 

(respectively absolute or proportional) in each of the matrix elements can be calculated either 

numerically (see next chapter) or analytically using the eigenvectors (see Caswell, 2001).  

 

 

Density dependent survival and reproduction in the study population 

Previous workers have reported that wren survival is particularly sensitive to winter weather 

(Armstrong, 1955; Cawthorne and Marchant, 1980), causing wide variations in survival (and 

subsequently population size) between years. A similar result was also found in this study, for 

example the estimate of over-winter survival for one-year-old males varied between 0.13 

(1995-96) and 1.0 (1998-99). During survival analysis (using Program MARK) covariates 

coding for weather variables and population density were investigated, but no factors improved 

model fit. However, further attempts to detect the presence of density dependence in survival 

rates were performed during the model development and parameterisation described here. 

These tests were complicated because in two of the study years only a partial census was 

conducted. While the survival rate estimation procedure in MARK can take account of this, it 

meant it was not possible to use population counts to test for the presence of density 

dependence. Male wren territories within the study site maintained approximately the same 

size and boundaries between years, despite both changes of ownership and seasons of non-

occupation. It was also apparent that certain ‘core’ territories were occupied in all years, while 

other, ‘peripheral’, ones were only filled in years of higher population size. Thus it was 

possible to estimate the number of territories that the wood could support (under the conditions 
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encountered during the study period) and the number of these that were occupied in any one 

year. Using these estimates an index of population density was derived, defined in any 

particular year as the number of occupied territories divided by the number of available 

territories, within the area of wood surveyed. The presence of density dependence was 

investigated by testing this index (of the proportion occupied) against the subsequent change in 

proportion (i.e. prop. occupied in year A vs. prop. occupied in year B/prop. occupied in year 

A). The potential drawback of this approach is that it relies on consistency in the observer’s 

ability to identify a wren’s territorial requirements and the censuses were conducted by two 

different individuals. However, this risk is minimised by the presence of territory maps for 

each year. Further discussion on the mechanisms employed in the model for the action density 

dependent survival are included below. 

 

The territorial behaviour of wrens during the breeding season limits the number of birds which 

are able to obtain viable breeding territories (for a discussion of wren territoriality see chapter 

2), and this regulates the population’s overall reproductive output. It is possible that there is a 

decline in the suitability of territories for reproduction, which will lead to a form of ‘buffer 

effect’ (Brown, 1969) as the population increases and all the best territories become full. 

However, there was insufficient data on reproduction in relation to territory quality for this 

hypothesis to be tested in this case, and it was decided that for the purposes of modelling, the 

whole study site would be treated as being of comparable quality. It was also decided to omit 

any functional decline in reproductive output with increasing population density. Therefore 

density dependence operated on breeding by the imposition of a limit to the number of 

territories available in any one year. Although woods are obviously not static in terms of their 
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structure and how this is translated into the number of territories available for wrens, it was 

assumed that the average number would remain the same for the duration of each simulation. 

 

Model structure  

The model incorporates both sexes, divided into 3 age classes; age class one (zero to one year 

old), age class two (one to two year olds) and age class three (all individuals older than two 

years), totalling twelve demographic rates. This division was based on the ability to age wrens 

in the field and the nature of the data thus collected. The 6*6 matrix, incorporating both sexes 

is therefore: 

[4] 

where the coding is as for equation [1], with the addition of the lower case ‘f’ and ‘m’ 

signifying female or male. The population vector has 6 entries, for the 2 sexes and 3 age 

classes. The model code was written in Matlab (The MathWorks Inc.) using the built-in 

functions (see appendix 1). A global flow chart of the model structure is provided in fig. 1. The 

annual cycle begins at the point immediately after the population census. The first age group is 

made up of newly fledged individuals, the second and third, birds which have just bred and had 

a birthday: either their first (age class two) or their second or later (age class three). There 

follows a period of survival encompassing all of the non-breeding portion of the year (survival 

subroutine, fig. 2). Surviving individuals in each age group then progress through three stages 

of breeding: territory allocation (fig. 3), pairing (fig. 4) and reproduction (fig. 5). The end of 
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the year occurs with a population census and then each breeding age class moves into the next 

age category and the fledglings enter the first age group. The model can be run with or without 

stochasticity (environmental and demographic), covariance between vital rates and density 

dependent survival and breeding. The points at which vital rates are perturbed during elasticity 

analysis are marked on the diagrams and this aspect of the model performance will be 

discussed in the next chapter. 

 

 

Model subroutines: survival 

A flow chart of the survival subroutine is provided in fig. 2. Input variables are the vectors of 

males, females and that year’s vital rates (calculated in accordance with settings governing 

stochasticity, rate covariance and density dependence). If demographic stochasticity is selected 

the number of surviving birds is sampled from a binomial distribution. If not then the number 

surviving in each age class is simply the product of the population size and survival rate, 

rounded to the nearest integer.  

 

 

Model subroutines: territory allocation 

Only territory holders breed, with the number of territories either a constant value at each time 

step of a simulation, or varying randomly between years (using a function described below). 

Male territories are allocated in reverse age order, since it was observed that the majority of 

males in the study wood remained on the territory they obtained as 1 year olds until their 

apparent death (<3% of males in the study moved to a different territory between years). Thus 

surviving males in age classes two and three automatically obtain territories and first years fill 
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any remaining spaces. The survival rates estimated from the field data take all apparent 

mortality into account, whether it occurred over-winter or during the breeding season. While 

most mortality does take place over-winter, with a breeding season which lasts for six to seven 

months there clearly may be mortality and replacement of territory holders during this time 

too. However, for convenience the model treats survival and breeding separately, with 

breeding effectively an instantaneous event. Thus no distinction is made in the model between 

a first year male who obtains a territory in November and another who obtains one in May: 

both contribute to the overall reproductive output. However, no males were recorded becoming 

territory holders within the wood for the first time aged two years or older. Thus first years 

who fail to obtain a territory in their first breeding season are considered to have emigrated and 

are removed from the population. The situation for females is less well understood, although 

females appear to be less fiercely territorial (female ranges tend to show a greater degree of 

overlap, M. Evans, pers. comm.). However, it is likely that the mechanisms determining 

territory numbers and acquisition will be similar to those for males (Wesolowski, 1983), thus 

female territory allocation follows the same format.  

 

 

Model subroutines: pairing 

Wrens do not form pairs in the traditional passerine sense (at least not in heavily modified 

western European habitats, see Wesolowski, 1983). Instead each male builds several nests and 

encourages as many females as possible to mate with him, and use one of his nests (Evans and 

Burn, 1996). Similarly females normally have more than one breeding attempt, often with 

different males. This is not a simple system to model, however, records from the study site 

suggest that the number of breeding males and females was very similar in most years. Without 
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better data on the adult sex ratio therefore, the numbers of each sex are constrained to be the 

same, and breeding only occurs from ‘pairs’ of birds. Whichever sex is in greater number has 

its first year breeder numbers reduced to match the minority sex, and the excess are considered 

as emigrants. 

 

 

Model subroutines: reproduction 

The number of offspring is calculated as the product of the number of breeding birds, the 

number of breeding attempts per individual and the number of offspring produced per breeding 

attempt (fig. 5). The sex and age specific number of breeding attempts is either constant in all 

years (observed mean values) or randomly generated at each time step (using the observed 

means and variances and distributions matching the field data). The total number of female 

breeding attempts for the population is calculated as the number of breeding females multiplied 

by the per individual number of breeding attempts. Since the total number of male breeding 

attempts must match this figure the following adjustment routine is employed. First, an 

‘unadjusted’ total number of male breeding attempts is calculated in the same way as for 

females, and then divided into the total female number to produce a correction factor. The 

original age specific male breeding attempt rates are then multiplied by the correction factor to 

produce a set of adjusted breeding attempt rates. These adjusted rates are used to calculate the 

total male reproductive output. The young produced by both sexes are combined and the 

offspring sex ratio is found either by sampling from a binomial distribution with a probability 

of 0.5 (demographic stochasticity) or the sexes are assigned equally.  



Figure 1. Global flow chart for Wren simulation model. The population loop 
contains subroutines for survival, territory allocation, pairing and 
reproduction (detailed in figs. 2-5) which make up the annual time step. 

Start

Enter model
control parameters

Derive random
vital rates

Survival

Territory
allocation

Pairing

Reproduction

Update population
vectors

Set up initial
population vector

Simulation
run

complete?

Save data

N

Y

Stop

All
simulation

runs
complete?

YN

Environmental
stochasticity?

N

Y

Population loop
Simulation loop

99



Figure 2. Survival subroutine. In baseline run conditions no vital rates are 
perturbed. Perturbation runs can be to find either elasticities of invasion, 
population size or extinction probability. 
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Figure 3. Territory allocation subroutine. Only males are shown but the female 
routine is identical. The allocation of territories changes depending on whether 
or not elasticities are being calculated, and if so which kind (invasion, 
population size, extinction risk). Excess individuals are removed from the 
population. In a baseline run no vital rates are perturbed, these runs are used for 
comparison with elasticity runs (when individual vital rates are perturbed). 
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Figure 4. Pairing subroutine. Only an equal number of males and females can 
breed,  excess individuals of  either sex which fail to obtain a partner are 
removed from the population. If elasticities of invasion are being calculated 
pairing occurs first between same types (i.e. resident with resident, invader 
with invader), before any excess of either  sex of each type pairs with excess 
of the opposite sex of the other type. Offspring from ‘mixed’ pairs are 
assigned equally to resident and invader types.
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Figure 5. Reproduction subroutine. The number of offspring produced by  each sex is 
calculated separately, with the proviso that only territory holding pairs can breed (see 
previous sub-routines).
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Modelling environmental stochasticity 

Simulating environmental stochasticity requires that vital rates are picked from probability 

distributions, ideally defined by field data. Identification of the study population’s vital rate 

distributions was not possible, making it necessary to select the most appropriate distributions. 

Fieberg and Ellner (2001) state that in many cases there is no significant difference in the 

probability densities produced by commonly used alternative distributions for vital rates (e.g. 

for survival: beta, uniform; for fecundity: lognormal, gamma), and conclude that the choice of 

distribution is unlikely to have a significant impact on model predictions. However, Benton 

and Grant (1996) found that, in highly variable environments, different sampling distributions 

can have marked effects on the range of vital rates produced, and this was particularly true of 

truncated distributions. Thus the distributions selected for the model were those with the most 

favourable characteristics: for survival the beta distribution, as this can take a range of shapes 

while still being constrained to lie between 0 and 1; and for fecundities the lognormal 

distribution.  

 

 

Modelling vital rate covariance 

Covariance is incorporated in each years’ demographic rates following the method of Gross et 

al (1998), employing modified versions of functions provided by Dan Doak 

(doak@biology.ucsc.edu). Correlation coefficients defining the relationship between each of 

the demographic rates are entered into the upper right triangle of a 12*12 matrix (12 = no. of 

demographic rates). This is transformed into a symmetrical matrix (about the diagonal), and 

then singular value decomposition is used to turn this matrix into a covariance matrix. In each 

year of a simulation a set of twelve standard normal random numbers are multiplied by the 
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covariance matrix to produce twelve correlated random normal numbers. These normally 

distributed values are transformed into uniformly distributed values, which are used to pick a 

set of demographic rates from their respective cumulative distributions. Todd and Ng (2001) 

have shown that under some circumstances the transformation process can alter the correlation 

coefficients of the final values. However comparison of the vital rates generated using this 

method with the original correlation matrix indicated that the changes were sufficiently small 

(less than 10%) to be of minor concern.  

 

There is little available information on the degree of covariance which exists between the vital 

rates of wild populations. In two studies where such relationships were analysed (red deer, 

Cervus elephas, (Benton, et al, 1995) and desert tortoise, Gopherus agassizii, (Doak, et al, 

1994)) general trends were found for survival rates to be positively correlated with each other, 

while survival and reproduction (deer) and survival and growth (tortoise) were negatively 

correlated. Although no consistent trends could be identified for the wren population data, 

since variations in demographic rates from year to year are likely to be correlated, with 

potentially important consequences for the population dynamics (Tuljapurkar, 1990), a 

background low level of covariance between the vital rates was incorporated into the model. 

This was based on the assumption that a ‘good’ year for survival will be good for all age 

classes (positive correlation between survival rates in any one year = 0.33), and likewise for 

fecundity rates (positive correlation of 0.33). However, fecundity and survival are expected to 

be traded off against one another, and are negatively correlated by –0.33. In this way rate 

covariance was incorporated into the model without large assumptions being made about either 

its direction or strength. When density dependent survival is applied only to juveniles there can 

be a conflict with the positive survival correlation between juveniles and adults as described 
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here. This could arise because in a good year for survival less territories become available and 

so we would expect lower juvenile survival. However this does not have any affect on the 

overall population size, since non-territory holders do not contribute to the production of the 

next generation.  

 

 

Modelling density dependent survival 

Density dependent survival was modelled using a flexible, two parameter function (Maynard 

Smith and Slatkin, 1973), chosen to enable comparisons to be made not only of linear and non-

linear models, but also of different forms of density dependent feedback. The function takes 

the form: 

[5] 

where f(N) is a function of population density which acts to modify the Pi survival rates, a and 

b are the density dependent control parameters and N is the total population size. The scaling 

parameter, a, determines the population size at which proportional mortality reaches a fixed 

level, while parameter b determines the strength of the density dependence. Bellows (1981) 

conducted a comparison of the descriptive properties of seven different density dependent 

functions and recommended this one based on its combination of flexibility and good 

descriptive properties. The population dynamics produced by different response curves can be 

investigated (by independent adjustment of parameters a and b), and thus the role of density 

dependent survival in population regulation can be more fully explored. Male and female 

survival can be treated either independently or together.  

 

-1)N)((1(N) baf +=
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Density dependence, acting through survival rates, may affect subsets of real populations 

differentially (Coulson et al, 2001; Clutton-Brock et al, 2002). Over winter survival of wrens is 

greatly affected by weather conditions, as obtaining sufficient invertebrate food during periods 

of severe weather is critical for survival. It is possible, therefore, that during these periods 

territory holders (i.e. age classes 2 and 3) have an advantage over non-territory holders (i.e. 

juveniles, age class 1) through exclusive access to the resources on their territories. This could 

offer older individuals a degree of protection from the density mediated resource competition 

to which juveniles are more prone. Thus the density dependent function can be applied in one 

of two ways, either to all survival rates equally or, to mimic this scenario, just to juvenile 

survival. Although it is unlikely that density dependent survival would apply across age classes 

in such a strict ‘on-off’ manner, this format permits exploration of how differentially regulated 

survival may affect population dynamics. 

 

 

Modelling density dependent reproduction 

It was not possible to establish the upper limit of available territories on the study site from the 

counts of territorial male numbers, but it was assumed to be not much greater than the 

observed maximum number of 19 and thus a limit was set on the number of territories at a 

baseline value of 25. Wren territories are defined by the suitability of the vegetation for 

building nests and supporting breeding attempts. The vegetational characteristics which 

determine wren territories are not static, but change through time, partly in response to 

environmental conditions. It is reasonable to suppose that such changes will normally occur 

gradually and that the number of available territories will change progressively rather than 

taking big steps between years. If we simulate variation in the number of territories as a 
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random number using the observed mean and variance values this could lead to frequent 

sequential occurrences of territory numbers at the upper and lower ends of the defined 

distribution. In order to limit this possibility and introduce a degree of positive autocorrelation 

in territory availability, the number of territories in any one year is found as the previous year’s 

value plus a small random number: 

[6] 

where ε is a normal random deviate with a standard deviation of 1 and a mean equal to: 

[7] 

thus the mean varies around 0, and is negative when the previous territory number was greater 

than the baseline and positive when it was less. This promotes both a central tendency in 

territory number and also a ‘stepped’ progression in territory number over time, reducing the 

incidence of consecutive high and low values. This mechanism was adopted to mimic the way 

changes (affecting the number of wren territories) are expected to occur in the vegetation 

structure. 

 

 

Estimating density independent vital rate means and variances 

It is assumed that the mean survival rates obtained from the study population were recorded in 

the presence of density dependence. To avoid the situation where density dependence is 

applied twice during simulations (the ‘implicit’ density dependence in the observed rates, and 

that added by the model), the input mean rates need to be increased, ideally to their density 

no.  territorybaseline
  noterritory 1)( mean 1 -t −=ε

ε+= −  noy   territor  noterritory 1tt
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independent levels. Increasing the input mean rates has a negligible effect on the output mean 

rates because of the action of density dependence, and therefore comparing input and output 

rates is ineffective in this regard. However, since the probability of extinction is strongly 

influenced by change in the mean survival rates this was used as a means to identify an 

appropriate amount by which to increase the observed mean values prior to simulation. The 

target for mean survival rate increases was the minimum amount which would deliver an 

approximate extinction probability of 10% in 250 years. This was chosen as a conservative 

probability of extinction for a small, isolated wren population. Prior to simulation all survival 

rate means were multiplied by a small value (in the range 0.9-1.5) and the subsequent 

extinction probability recorded. 

 

The variance in vital rates recorded for field populations is the product of both demographic 

and environmental stochasticity (Saether, et al, 2002). The variances required as model inputs 

are those which would be obtained in the absence of demographic stochasticity, so it was 

necessary to decompose the rate variances in order to isolate the environmental component. To 

do this, incremental percentage reductions were made to the input variances and model was run 

with both environmental and demographic stochasticity. The resulting model output variances 

were compared to the observed field variances, using a least squares method, and the 

appropriate level of adjustment to make to account for demographic variation was identified as 

that which gave the closest match. 

 

Calculation of extinction probability 

A quasi-extinction threshold of 5 individuals was set for all simulations. Extinction risk was 

estimated both as the proportion of simulations in which the population falls below the 
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threshold (simulation extinction risk) and also as an analytical rate (analytical extinction risk), 

calculated as follows. Assuming the population size over time conforms to a normal 

distribution, the probability (p) of falling below a threshold level per unit time can be estimated 

from the area under the tail of the cumulative distribution function (specified by the long run 

population mean and standard deviation), and we can calculate the risk of extinction (E) within 

a specific time period (t) as:  

[8] 

 

 

4.3 Results 

Density dependent survival in the study population 

In a multiple regression analysis both the previous year’s proportion of occupied territories and 

the number of winter snowdays were found to be marginally significant at the 5% level in 

explaining change in the proportion of occupied territories (previous occupation: F = 7.64, P = 

0.051; snowdays: F = 8.03, P = 0.047). Fig. 6 plots the observed data and the fitted lines taking 

into account low, average and high numbers of snowdays, as recorded over the study period. 

Because of the chance that the proportional measure used in this analysis would not be 

normally distributed a Kolomogorov-Smirnov normality test was performed on the residual 

values, which returned a non-significant result (P>0.15). We therefore have some evidence 

that once winter weather is accounted for, the survival of the wrens in the study population is a 

function of the previous year’s population density.  

 

 

tp)-(1 - 1  E =
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Fig. 6. Change seen in proportional territory occupation (proportion occupied in year t/ 
proportion occupied in year t-1) in relation to the proportion of territories occupied in the 
previous breeding season (proportion occupied in year t-1), taking into account the number of 
days of snow lying during the intervening winter. The multiple regression equation is: change 
in proportion = 1.93 – 1.05 (occupation proportion) – 0.0103 (snowdays); p (occupation 
proportion) =0.051; p (snowdays) = 0.047. The points are the observed data, the middle (blue) 
line the change expected with average snowdays (9.3), the upper (dotted black)and lower 
(dashed red) lines show the expected change after respectively a low (1) snowday winter and a 
high (25)snowday winter. 
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Estimates of extinction probability 

The simulation extinction risk was calculated using the total population size, while the 

analytical extinction probability was calculated using the total population mean and variance 

and also the male and female population means and variances separately (fig. 7). The 

extinction risks found using each method show the same marked increase as the total 

population size falls below 100 individuals. Due to differences between the mean and variance 

of each of these sub-classes of the population at any particular total population size, the 

estimates of analytical extinction risk for each are slightly different. Clearly, however, if either 

males or females becomes extinct then the population becomes extinct, and estimates of the 

simulation extinction probability based on either sex would be identical. The fact that the 

analytical rate for females is higher than for males is an indication that low female numbers are 

more likely to trigger population extinction than low male numbers. Since the analytical 

extinction rate derived using female numbers closely matches the numerical simulation 

extinction probability, it was used for the descriptions of the relationship between extinction 

risk and density dependent survival. This reduced the need to perform large numbers of model 

simulations in order to obtain robust estimates of the extinction probability under a range of 

possible model settings.  
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Fig. 7. The effect of the mean population size on the extinction risk, calculated both 
analytically (using the long run mean and variance and the cumulative normal probability 
distribution) and numerically ‘simulation extinction’ (from the observed probability of 
extinction within 250 years, repeated 500 times). An extinction threshold of 5 individuals 
was used in each case (either sex for the numerical rate and combined analytical rate, 
specifically male or female numbers for the other analytical rates). The mean population size 
is determined by the density dependent survival scaling parameter a, with the mean 
population size decreasing as a increases. 
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Demographic rate adjustment  

Vital rate variances 

The probability of extinction obtained from the model using the observed vital rate variances 

indicates that these values are likely to be overestimates of the actual variances (fig. 8). In the 

presence of demographic stochasticity the observed (i.e. unmodified) vital rate variances yield 

probabilities of population extinction within 250 years of 72-84%. Decreasing the variance in 

vital rates reduces the risk of extinction, although even with the variances set to 10% of their 

observed values extinction can still occur (without demographic stochasticity the risk of 

extinction is significantly reduced at all levels of variance adjustment, and falls immediately to 

zero when the variances are reduced below their observed values). It is thus evident that the 

variances need to be reduced prior to use in model simulations. To identify the appropriate 

amount by which to reduce the observed variances, the coefficients of variation (for all 

demographic rates) obtained from the field values were compared to those taken from 

simulations with incrementally adjusted variances, using a least squares method (fig. 9a: plot 

of coefficients of variation, fig 9b: least squares comparison of observed and adjusted 

coefficients of variation). The best-fit model corresponds to a reduction in the variances to 

60% of their observed values. This adjustment was adopted in all subsequent simulations.  
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Figure 8. Sensitivity of extinction risk to estimated variance in vital rates. Extinction 
probability within 250 years plotted against proportional adjustment made to  demographic 
rate variances. The vertical line at 1 indicates the results when no adjustment to the recorded 
demographic rate variances was made (actual rate coefficients of variation in range: 0.2-
0.56). Lines with no markers were found with demographic stochasticity present, lines with 
circle markers with demographic stochasticity absent. The solid lines () are the simulation 
extinction rate, the dashed lines (--) are the female analytical extinction rate, the dotted lines 
(L) are the male analytical extinction rate and the dot-dash lines (._.) are the analytical 
extinction rate for both sexes combined. 
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Fig. 9 
(a) Coefficients of variation for each of the 12 demographic rates (1-3: Female survival, 4-6: 
female reproduction, 7-9: male survival, 10-12: male reproduction). Blue circles are the 
observed CVs from the study population. Each line represents the CV’s from one of 14 
simulations in which the input demographic rate variances were multiplied prior to 
simulation by 0.1 – 1.4 (increments of 0.1).  
 
(b) Sum of squared difference between the observed CVs (blue circles in fig 9a) and the CVs 
obtained from each adjusted simulation (lines, fig 9a), summed across all demographic rates, 
plotted against the adjustment made to the rate variances. The least squares was obtained 
when the observed variances were multiplied by 0.6.  
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Vital rate means 

If the observed mean survival rates are used unmodified in the model, all population 

projections become extinct within 250 years (fig. 10). In order to account for the implicit 

density dependence in the observed survival rates, simulations were conducted with the mean 

survival rates increased incrementally. These increases produce a rapid decline in the 

extinction probability, for example an increase of 20% in the mean survival rates reduces the 

extinction probability within 250 years from 1.0 to approximately 0.1 (fig. 10). Although 

further increases in the mean values bring further reductions in extinction, 20% was chosen as 

a conservative level of adjustment, and this was applied in all subsequent simulations. 
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Figure 10. The change in extinction probability (simulation and analytical) against 
proportional increase made to observed mean survival rates prior to simulation. Simulations 
of 250 years, 500 repeats. Solid light blue line: simulated extinction; dashed green line: 
female analytical extinction; dotted red line: male analytical extinction; dash-dot dark blue 
line: combined analytical extinction. 
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Influence of stochasticity on population dynamics 

An initial comparison of population trajectories produced with and without either demographic 

or environmental stochasticity does not suggest there are big differences in their population 

dynamics, since both types of stochasticity appear to be capable of producing large year to year 

variations (fig 11 simulation runs 2 and 3; see also table 2). However, in the absence of either 

form of stochasticity, the population size increases and the variance decreases. Demographic 

stochasticity can only be either on or off, but environmental stochasticity can be more finely 

controlled through adjustment of vital rate variances. As we have already seen, as the rate 

variances are reduced the extinction risk falls (fig. 8). However, even though the extinction 

rate can be reduced to very low levels by this means, as long as demographic stochasticity is 

operating the possibility of extinction remains.  

 

The addition of a low level of covariance between vital rates has no discernible effect on the 

mean population size and variability and there is no difference in the extinction probability of 

model runs with and without co-varying vital rates (fig. 11, simulation run 4). Partial auto-

correlation tests of populations projected with and without rate covariance exhibit similar lag 

structures. While this could be interpreted as evidence that vital rate covariance plays a minor 

role in wren population dynamics, as modelled here, and is an unnecessary extra complexity in 

the model, it is more likely that there is a low level of rate covariance present, rather than none 

at all. Thus the covariance routine was used in all subsequent simulation. 
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Fig 11. Model outputs under a range of stochastic settings. a-d are box plots of total 
population size and individual age classes for 4 different simulations. e-h are representative 
population projections for 4 different simulations, showing female age classes: 1 (blue lines), 
2 (green lines), 3 (red lines).  Run 1 = baseline (all stochastic routines on); run 2 = 
environmental stochasticity off, mean demographic rates used; run 3 = demographic 
stochasticity off, numbers of survivors and offspring found by rounding to nearest integer; 
run 4 = rate covariance off. Absence of either environmental or demographic stochasticity 
raises means and reduces variances. Comparison of runs 2 and 3 indicates that demographic 
stochasticity is the majority contributor to the modelled population variance. The low level of 
rate covariance employed has little impact on the population dynamics, backed up by non-
significant PACF tests (not shown).  
For tabulated data see table 2.  
 

 

Simulation run
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Table 2. Female population data for 4 different stochastic simulations, with both density 
dependent survival and breeding operating. Simulation runs: (1) full model, including 
environmental and demographic stochasticity and vital rate covariance; (2) environmental 
stochasticity off, mean demographic rates used throughout; (3) demographic stochasticity off 
(numbers of survivors and offspring found as product of individuals and vital rates, rounded to 
the nearest integer); (4) no within year covariance between vital rates. Absence of either 
environmental or demographic stochasticity raises the means and reduces variances. 
Comparison of runs 2 and 3 indicates that demographic stochasticity contributes the majority of 
the population variance under these model conditions. For graphical representation of this data 
see fig. 11. 
 

        Simulation run    
    1  2  3  4 
-------------------------------------------------------------------------------------------------------------------------  
Total population 
Max    98  91  80  97 
Uppr quartile   55  58  58  55 
Median   47  51  53  47 
Lwr quartile   38  44  48  38 
Min    6  6  18  2 
Mean   46.75  51.06  52.38  46.81 
S.d.    12.69  10.48  7.71  12.92 
s.e.    0.0005     0.0004  0.0003     0.0005 
-------------------------------------------------------------------------------------------------------------------------  
Age class 1 
Max    72  65  55  71 
Uppr quartile   37  39  38  37 
Median   30  34  34  30 
Lwr quartile   24  29  31  24 
Min    3  2  10  1 
Mean   30.53  33.72  34.06  30.65 
S.d.    9.23  7.71  5.62  9.48 
s.e.    0.0003     0.0003    0.0002     0.0002 
-------------------------------------------------------------------------------------------------------------------------  
Age class 2 
Max    22  22  19  23 
Uppr quartile   12  12  12  12 
Median   9  10  11  9 
Lwr quartile   7  8  10  7 
Min    0  0  0  0 
Mean   9.06  10.05  10.78  9.04 
S.d.    3.59  2.98  2.33  3.61 
s.e.    0.0001     0.0001     0.00009     0.0001 
-------------------------------------------------------------------------------------------------------------------------  
Age class 3 
Max    18  16  14  18 
Uppr quartile   9  9  9  9 
Median   7  7  8  7 
Lwr quartile   5  6  7  5 
Min    0  0  1  0 
Mean   7.16  7.29  7.54  7.12 
S.d.    2.51  2.09  1.52  2.39 
s.e.    0.0001    0.00008     0.00006     0.0001 
-------------------------------------------------------------------------------------------------------------------------  
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Density dependence 

Baseline population dynamics 

The influence of the two density dependent regulators, density dependent survival and 

breeding territory limitation, on model population dynamics depends on their relative 

strengths. For example, there is little difference in the population dynamics of simulations run 

with either limited or unlimited numbers of territories, when density dependent survival 

parameters a and b equal 0.0025 and 4 respectively (fig 12 simulations 1 and 3; table 3). In this 

case density dependent survival is exerting a greater degree of regulation than territory 

limitation. Further evidence for this is obtained when survival rates are unaffected by density 

(simulation 2) and all the population size increases to a level determined by the availability of 

territories. When density dependent survival is applied only to the first survival transition (fig 

12, simulation 4), the second age class declines (the age group immediately following the 

density regulated transition), the oldest age class increases (containing all individuals aged 2 

years and older) and the youngest age group increases slightly since overall there is a greater 

breeding population.  
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Fig 12. Model output under a range of density dependent settings. a-d, box plots of total 
population size and individual age classes for 4 different simulations. e-h, representative 
population projections for the 4 different simulations, showing female age classes: 1 (blue 
lines), 2 (green lines), 3 (red lines). Run 1 = baseline (density dependent survival and  
territory limit operating), run 2 = survival of all age classes unregulated by population 
density, run 3 = unrestricted number of breeding territories, run 4 = density dependent 
survival for juveniles only, adult survival unaffected by population density. With the level of 
density dependent survival at an intermediate value and a mean limit to the number of 
territories of 25, runs 1-3 demonstrate that the survival function is exercising the main 
population regulation. Run 4 indicates that approximately half of this is due to regulation of 
adult survival. For tabulated data see table 3. 
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Table 3. Population data for females derived from 4 different density dependent simulations 
(with environmental and demographic stochasticity and vital rate covariance operating). 
Simulation runs: (1) full model, including density dependent survival and  breeding territory 
regulation; (2) density independent survival for all age classes, only breeding territory operating; 
(3) unrestricted number of breeding territories, only density dependent survival operating; (4) 
density dependent survival for juveniles only, adult survival unaffected by population density. 
With an intermediate strength of density dependent survival and a mean limit to the number of 
territories of 25, runs 1-3 demonstrate that the survival function is the main population regulator. 
Run 4 indicates that approximately half of this is due to regulation of adult survival. For 
graphical representation of this data see fig. 12 

 
       Simulation run    

    1  2  3  4 
------------------------------------------------------------------------------------------------------------------------- 
Total population 
Max    98  118  99  108 
Uppr quartile   55  76  55  64 
Median   47  68  47  56 
Lwr quartile   38  59  38  46 
Min    6  13  6  7 
Mean   46.76  67.43  46.83  55.24 
S.d.    12.68  12.82  12.71  13.06 
s.e.    0.0005     0.0005     0.0005     0.0005 
-------------------------------------------------------------------------------------------------------------------------  
Age class 1 
Max    72  92  68  80 
Uppr quartile   37  50  37  42 
Median   30  43  30  35 
Lwr quartile   24  36  24  29 
Min    3  8  2  4 
Mean   30.53  43.43  30.56  35.53 
S.d.    9.22  10.66  9.21  9.75 
s.e.    0.0003     0.0004     0.0003     0.0004 
-------------------------------------------------------------------------------------------------------------------------  
Age class 2 
Max    22  26  25  21 
Uppr quartile   12  13  12  11 
Median   9  10  9  9 
Lwr quartile   7  7  7  6 
Min    0  0  0  0 
Mean   9.07  10.08  9.10  8.30 
S..d.    3.59  4.27  3.62  3.70 
s.e.    0.0001   0.0001     0.0001     0.0001 
-------------------------------------------------------------------------------------------------------------------------  
Age class 3 
Max    18  26  18  26 
Uppr quartile   9  17  9  14 
Median   7  14  7  11 
Lwr quartile   5  11  5  9 
Min    0  0  0  0 
Mean   7.16  13.92  7.16  11.42 
S.d.    2.51  3.82  2.51  3.75 
s.e.    0.0001    0.0001     0.0001     0.0001 
-------------------------------------------------------------------------------------------------------------------------  
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Influence of parameter a on extinction risk 

The scaling parameter a determines the threshold population size at which the reduction in 

density dependent survival (for a given value of parameter b) reaches a fixed value. Raising a 

lowers the threshold and so increases the extinction probability (fig 13a). The extinction risk 

increases through decreased survival rates, which reduce the mean population size, leading to a 

greater likelihood of population decline below a threshold level. The rate of increase of 

extinction risk with increasing a and the level of risk at any particular value of a depends also 

on other model settings.  

 

 

Influence of parameter b on extinction risk and population dynamics 

Parameter b determines the severity of the density dependent reduction in survival. The 

relationship between extinction risk and the magnitude of parameter b is not as straightforward 

as that for parameter a (fig. 13b). Although it is highly unlikely that values of b in the wild will 

reach the higher values shown, they are included here in order to confirm the fact that 

extinction risk is at its lowest when b is at an intermediate level and rises with either an 

increase or decrease. It also serves to illustrate the contrast between the symmetrical pattern of 

extinction risk seen at intermediate and high values of parameter a, with that when a is low, or 

density dependent survival is applied to juveniles only. 
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Fig. 13. Influence of (a) parameter a (scaling constant) and (b) parameter b (strength of 
density dependence) on extinction risk calculated using female data. At any particular level 
of either parameter the extinction probability is also determined by the value of the other 
density dependent parameter, as well as the stochastic settings (environmental/demographic 
only) and whether density dependent survival is applied to all equally to all age classes or 
only to juveniles. 
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Further insight into the operation of parameter b can be gained from examination of 

deterministic model behaviour. Figures 14a-c display bifurcation plots of the deterministic 

total population size against changing levels of parameter b, at three values of parameter a. At 

low levels of a (fig. 14a) the population maintains a stable equilibrium across all levels of b 

presented here, but at intermediate (fig 14b) and high (fig 14c) levels of a, increasing b leads 

first to two-point cycles, followed by four-point cycles and then increasingly complex periodic 

patterns. These changes occur as the density dependent regulation moves from compensatory, 

to increasingly over-compensatory. At intermediate values of a the territory limit also plays a 

role in the dynamics at values of b exceeding 8. Breeding regulation prevents the population 

from achieving the maximum which density dependent survival alone would permit. Thus the 

worst extremes of over compensatory density dependence are avoided (and a three point cycle 

ensues). This is not seen at the higher level of a as the population is maintained below a level 

at which the territory limit becomes important.  
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Figure 14. Panels a-c are bifurcation plots of the deterministic total population size against 
increasing parameter b (strength of density dependence) at different levels of density 
dependent scaling parameter a: (a) low parameter a (=0.0054); (b) intermediate parameter a 
(=0.0075); and (c) high parameter a (=0.0096). Panel (d) shows the values of the first order 
partial auto-correlation coefficients of the logged total population size against parameter b. 
Data from stochastic simulations of 10000 time steps. Dashed (blue) line: low parameter a; 
solid (green) line: intermediate parameter a; dotted (red) line: high parameter a. The 
horizontal lines are at 0 and the approx. 95% confidence intervals. 
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It is not possible to detect such clear patterns in the presence of stochasticity, however analysis 

of model time series using a partial auto-correlation function of the logged total population size 

provides evidence of the action of parameter b for stochastic populations. When a is at 

intermediate to high levels, the first order partial auto-correlation values (only first order 

correlations were significant) show a trend from significantly positive to significantly negative 

as increasing values of b shift the population from stability to instability (b = 1 to 7). This 

indicates a change in the density dependence from compensatory to over-compensatory. As b 

continues to rise the strongly negative auto-correlations, which might be expected, become 

diluted by the positive ones occurring during the periods of population growth following 

crashes.  

 

There is also evidence that density dependence and stochasticity are interacting in their 

influence on the population dynamics, as has been demonstrated previously (Higgins et al, 

1997; Leirs et al, 1997; Grenfell et al, 1998; Coulson et al., 2001). The first significantly 

negative PAC values (implying over-compensatory dynamics) occur under stochastic 

conditions when b = 5, but when there is no environmental noise the transition to fluctuating 

population dynamics occurs when b > 5. Similarly, the extinction probability at high levels of 

a (fig 13b), is lowest when b = 4, indicating the population size is both at its highest and least 

variable. However, the deterministic population reaches its stable maximum when b = 5 (fig. 

14c). Thus there is evidence that noise induced oscillations are being maintained in the 

population dynamics at a strength of density dependence which, in the absence of noise, 

produces a stable equilibrium. In other words, population cycles induced by over-

compensatory density dependence occur at a lower absolute strength of density dependence in 

the presence of environmental noise. Greenman and Benton (2003) have demonstrated that this 
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effect is a feature of the dynamics of structured population model outputs when they are close 

to a threshold from stability to instability.  

 

 

Influence of territory number on extinction risk 

Fig. 15 illustrates the poor match between the analytical and simulation estimates of extinction 

risk when population regulation occurs solely through breeding territory restriction. This 

contrasts with the close match between the simulation and female analytical estimates when 

density dependent survival is the sole or dominant regulator (fig. 7). This is due to a reduction 

in the size of the population variance when the number of territories is reduced, compared to 

that observed when the threshold for density dependent survival is decreased (i.e. by increasing 

scaling parameter a). This can be illustrated if we consider two populations fluctuating around 

the same mean size, the first regulated by the number of breeding territories, the second by 

density dependent survival. In the first case the maximum reproductive output will be lower 

than that possible in the second, since the breeding limit acts to cap the maximum number of 

offspring produced. Thus, restricted breeding reduces the variation in the size of age class one, 

and thus also the total population variance as most of the overall variance is accounted for by 

the first age class. Since the population variance is a determinant of the analytical extinction 

probability this causes the observed difference between the analytical and simulation 

extinction risk. In contrast, when territories are unlimited and the population size is regulated 

by density dependent survival, the average survival of all age classes is lower than before, and 

consequently in most years the level of reproduction is similar to the first case. However, 

because there are now surplus territories available, years of higher reproduction can occur 

when, by chance, survival is high leading to an overall larger population variance (fig. 16). 
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This leads to a closer match between the analytical rate and the simulation extinction rate when 

density dependent survival is the chief population regulator. It is also of note that the 

extinction rates are lower for any given population size when the dominant regulator is 

territory number rather than density dependent survival, regardless of the method of 

calculation (simulation or analytical). This is due to density dependent survival reducing all 

age classes, whereas the effects of limited territory numbers are more concentrated in age class 

one. 
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Fig. 15. The effects of mean population size on extinction probability, with the population 
size regulated by reduced territory availability. Extinction estimated using a quasi extinction 
threshold of 5 individuals. Error bars for the plotted lines are omitted for clarity, but in all 
cases are comparable in size, or smaller than, the points symbols used. The simulation 
extinction rate is the percentage of population simulations which fall below the extinction 
threshold. The analytical rates are found from the cumulative normal distribution specified by 
the long term population mean and variance, using the total population or subsets (all males, 
all females, adult males, adult females). The differences between the analytical rates for each 
category of the population indicate contrasts between the subclasses in their means and 
variances. 
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Fig. 16. Comparison of population variation within each age class of females and for the total 
female population, when the population is regulated by (a) density dependence in survival, 
and (b) limited availability of territories. The mean total population sizes are comparable for 
the two data sets: (a) 30.9; (b) 28.2, but  when density dependent survival is the population 
regulator the upper limit of the variance is greater than when territories are restricted, thus the 
equivalent total population variances are: (a) 9.6 and (b) 7.0. 
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4.4 Discussion 

Models produced for wildlife management can be viewed in one of two ways: as ‘true’ 

representations of a particular system, or as problem solving tools to address specific questions 

(Starfield, 1997). It might be considered that the model described here is an example of the 

former, due to the detailed approach taken to simulating the wren life-cycle. Viewed from this 

perspective a model will often be found wanting since it will inevitably be a compromise 

between capturing the complexities of a natural system and the need to produce a manageable 

model. However, I would argue that this model is a problem solving tool, and the questions to 

be addressed (are stochasticity and density dependence important for population models? how 

critical is it to investigate them together?) are the reason the life-cycle is treated in such detail. 

This led to the production of a model which could be run under a range of possible density 

dependent and stochastic scenarios. 

 

Wrens were chosen for this study because previous work has found both considerable variation 

in their demographic rates between years, and evidence for density dependent population 

regulation. Wrens are amongst the species of passerine in the UK which are most affected by 

severe weather during the winter (Armstrong, 1955). Over winter survival rates vary extremely 

widely between years in response to cold temperatures and snowfall (Peach, et al, 1995). Less 

is known about variation in breeding performance between years, but there was a noticeable 

difference in nesting success in two consecutive years of this study and it seems reasonable to 

suppose that this is not unusual. While there are plenty of anecdotal reports of wren numbers 

dwindling after occasional extremely harsh winters (i.e. 1962-3), there are none which claim 

wren numbers of excessive proportions following sequences of favourable winters. So, what 
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prevents wren population explosions? It is apparent from the range of variability in survival, 

and the ability of wren populations to recover from severe reductions, that there must be 

regulatory mechanisms which keep populations in check. Williamson (1969) monitored the 

expansion of wren populations over several years in England in the aftermath of the severe 

winter of 1962-3. He noted that as the population recovered from the low level caused by the 

high mortality rate experienced in that winter, the most favourable breeding habitats were 

occupied first (e.g. woodland) and that in subsequent years, with the best sites already taken, 

less productive habitats became increasingly re-colonised (e.g. hedgerows, gardens, etc.). 

These observations are in line with the observations made for other passerine populations 

(Brown, 1969; Krebs, 1971) which led to the formulation of the ‘buffer theory’ for population 

regulation through breeding (Brown, 1969). This theory proposes that for species which 

maintain breeding territories the population’s overall reproductive output will decline in stages 

as the population size increases. During the first stage, when there are more territories in the 

best quality habitat than breeding individuals, reproduction increases in line with the 

population. When all the best habitat has been filled the remaining individuals of breeding age 

are forced to occupy lower quality sites and consequently contribute less to the overall 

reproduction in the population, which subsequently increases at a decreasing rate. At some 

further point of population increase there are no more locally available territories remaining, at 

which time any excess individuals either emigrate or become non-breeding ‘floaters’. By this 

mechanism reproduction is limited and population regulation occurs. However, with a species 

that maintains a degree of territoriality throughout the year, such as the wren, this also presents 

a means by which the population density may influence survival. It is not unreasonable to 

suppose that a territory which is better for reproductive success is also one which has better 

resources for winter survival. Space limitations may simultaneously regulated both 
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reproduction and survival. Thus we have a basis to state that modelling wren population 

dynamics with a density independent, deterministic matrix model is a priori inappropriate. 

Since we have no information detailing how reproduction might decline with territory quality 

the model makes the simplifying assumption that the whole study site is of equal quality and 

once all territories are filled excess individuals are treated as emigrants. 

 

Environmental stochasticity is relatively straightforward to model, and is achieved by simply 

using the observed variation in vital rates.  However, there is a need to decompose this 

variance to account for that imposed by the environment and that due to chance demographic 

factors (Saether et al, 2002). An approximation of this process was performed using the model 

itself, and this highlights the adaptive nature of the modelling approach employed here. 

Detecting and measuring the effects of population density in wild populations is notoriously 

difficult, but for wrens there is evidence that both breeding (Wesolowski, 1983), and survival 

(Greenwood and Baillie, 1991; Peach et al, 1995; Newton et al, 1998) are regulated by density. 

Two of the studies comprised over 20 years of continuous population monitoring (Greenwood 

and Baillie, 1991; Newton et. al, 1998), yet the authors do not present any information about 

the form of the density dependent survival response. It is not clear whether this was due to 

limitations in the data or if it was simply not investigated. However, in combination with the 

lack of sufficient data from this study (a feature shared with many population studies), this 

meant it was not possible to parameterise the response of the vital rates to the population 

density. One of two courses of action can be taken when workers are faced with this difficulty, 

either assume density dependence plays a sufficiently minor role that its absence from a 

population model will not be critical (e.g. Cuthbert et al, 2001; Weilglus et al, 2001), or use the 

available information and apply density dependence to vital rates using a realistic, and flexible, 
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approximation of its form (e.g. Saether et al, 2000). As we have shown here this latter, 

pragmatic approach led to the incorporation of density dependent routines which can produce a 

range of population dynamics. This greatly enhanced the likelihood of identifying the 

appropriate density dependent response, while also permitting the potential consequences of 

misidentification to be tested.  

 

Through adjustment of the density dependent control parameters we have shown how the 

strength of density dependent survival plays a key role in determining the frequency and 

amplitude of population fluctuations, which in turn are critical factors in determining 

extinction probabilities. In the absence of stochasticity, regular population fluctuations only 

occur when the strength of the density dependence operating on survival is high. But with the 

same strength of density dependence in the presence of stochasticity, the moderately high 

levels of extinction risk experienced by the population suggest this probably overestimates its 

natural level. This is an example of environmental noise acting to amplify the deterministic 

population fluctuations, as described by Greenman and Benton (2003), and this may have 

important implications for estimating extinction probabilities. If adding environmental noise to 

a deterministic, density dependent model with stable dynamics can induce instability, 

intuitively it follows that adding density dependence to a stochastic model will also enhance 

the amplitude of population fluctuations, leading to an elevated extinction probability. This has 

implications for applications of PVA which omit density dependent regulation (e.g. Wielgus et 

al. 2001; Brook et al, 2000). 

 

There is growing evidence that stochastic and density dependent processes interact to produce 

observed population dynamics (Higgins et al, 1997; Leirs et al, 1997; Grenfell et al, 1998; 
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Coulson et al, 2001), and it is becoming increasingly apparent that for a full appreciation of 

population fluctuations it is necessary to analyse them in combination (Saether, 1997; Milner 

et al, 1999). There are indications that wren survival during the winter conforms to this pattern, 

with both this study and two previous ones (Peach et al, 1995; Newton et al, 1998) finding 

greater support for density dependent survival when winter weather variables were included in 

analyses. It appears therefore that this system is an example of one in which linear and non-

linear effects combine to produce observed population dynamics which are greater than the 

sum of their parts. Using either a stochastic model or a density dependent one in isolation will 

fail to capture the full range of dynamics displayed by the combined model. The model 

described here was developed primarily with elasticity analysis in mind, rather than as a form 

of PVA, however there are some important features of this model which apply to investigations 

of extinction risk. PVA models are designed to provide information about population 

persistence. While absolute estimates of extinction risk are highly sensitive to parameter values 

(Ludwig, 1999) and should therefore be treated with a large degree of caution (Beissinger and 

Westphal, 1998), comparison of the change in relative extinction probability obtained under 

alternative management regimes can provide useful guidance for management (Reed et al, 

2001). If such comparisons are to be made, the results presented here indicate that models 

which lack any, or all, of density dependence, environmental stochasticity and demographic 

stochasticity, may fail to provide a sufficient degree of accuracy for their outputs to be useful. 

Since extinction is a chance event, environmental and demographic stochasticity obviously 

play central roles. What is striking however, is their relative importance for a small population, 

as modelled here. Either form of stochasticity in isolation can produce population fluctuations 

of a broadly similar nature to those seen when both are operating together (fig. 11). Yet the 

probabilities of extinction obtained when either is absent are much lower than when both are 
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present (fig. 13b). This is particularly evident in the absence of demographic stochasticity. 

While acknowledgement of demographic stochasticity’s influence on extinction rates is not 

new (e.g. Soule, 1987), it is still not universally incorporated into models of small and 

endangered populations (e.g. Reed et al, 1998; Cuthbert et al, 2001; Gerber and VanBlaricom, 

2001; Wielgus et al, 2001). By failing to include demographic stochasticity these analyses run 

a very real risk of underestimating the likelihood of population decline and extinction. While it 

is possible that comparisons of relative extinction risk may retain the same relationships with 

or without demographic stochasticity, its incorporation into a population model requires a 

trivial amount of additional programming. Thus, compared to the effort employed in obtaining 

demographic rates in the first place, its inclusion should be standard for all models of small 

populations. 

 

Restrictions on space also are an important part of wren population dynamics, since possession 

of a breeding territory is essential for reproduction. If the availability of territories in the model 

is limited, we obtain deterministic population cycles of a simple nature even when over-

compensation is strong, whereas with unlimited territories the dynamics become extremely 

complex. The territory restriction controls the population by preventing numbers from reaching 

the extreme peaks they would otherwise, which in turn limits the severity of population 

crashes. This stabilising effect is likely to be retained in the presence of stochasticity, and 

therefore density dependent survival and territory limitation probably act together in their 

effects on the population dynamics. Population regulation through the availability of breeding 

sites is probably an important factor for many species of bird, and possibly also for other 

species which congregate to breed (e.g. pinniped breeding colonies). For example, modelling 

of red-cockaded woodpecker populations by Heppell et al (1994) suggested that one of the 
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largest restrictions on population growth was limited numbers of nest cavities, and subsequent 

experiments have shown how provision of extra cavities can help population recovery (Walters 

et al, 2002). 

 

It might be argued that density dependent regulation will play a secondary role to 

environmental variation in regulating the numbers of a species such as the wren, since they 

appear to be so prone to harsh conditions. However, the result of reducing the strength of over-

compensatory density dependence is to increase the likelihood of population extinction. This is 

due to the relationship between density dependent survival and extinction probability being 

bimodal, with a minimum extinction risk at intermediate strengths of density dependence (b = 

4) and peaks to either side. Thus, the fact that extinction risk is minimised at medium strengths 

of density dependent survival rather than low levels, is further support for the role density 

dependent survival plays in this system. While it is quite likely that we will never know 

exactly how density dependent survival operates for the wrens in the study population, through 

exploration of regulatory mechanisms in a flexible modelling framework we have been able to 

identify its probable characteristics. We can’t discount the possibility that individual wren 

populations do undergo frequent extinction and recolonisation events, but it is more likely that 

density dependence operates in real populations in a similar manner to that described here. 

 

The work here is an example of the type of model that can be produced using a limited dataset. 

Many of the short-comings commonly seen with data for rare species (short duration, missing 

years, etc.) are shared by this study, limitations which can be used to justify the omission of 

density dependence and stochasticity from population models. For such reasons the inclusion 

of these features into matrix models specifically developed to assist the management of rare 
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populations is still uncommon. This, in spite of general acknowledgement that environmental 

variation, chance events and density dependent regulation are key components of natural 

population processes. While there is evidence for the presence of density dependence in the 

study population we have little information as to how it operates – in common with most 

species. By making sensible inferences, guided by the biology of the study population, we have 

demonstrated here that this need not be a hindrance to successful model development. 
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5.1 Introduction 

Sensitivity analysis is a generic term which describes a range of techniques used in 

many different disciplines to analyse the relationship between a model’s structure and 

its outputs. In the context of a traditional, deterministic, linear matrix population model, 

the output is λ, the population growth rate, and the structure is derived from a species 

demographic rates (survival, growth and fecundity). Sensitivity analysis apportions the 

contribution of each of the demographic rates to the rate of population growth (Caswell, 

1978). Proportional sensitivity analysis (elasticity analysis) was introduced by Caswell 

et al. (1984), and developed by de Kroon et al. (1986). The use of elasticity analysis for 

the study of wild populations has become very popular, particularly for species of 

conservation concern (Heppell et al, 2000; Benton and Grant, 1999). The reasons are 

obvious if we imagine a common scenario. A species’ numbers are in decline and a 

conservation body wishes to reverse this trend. Mean demographic data for the species 

are entered into a matrix, and after a few simple calculations estimates of λ and the 

elasticities of λ can be obtained. The demographic rates with the largest corresponding 

elasticities are those which contribute most to λ. Thus, the most effective management, 

either in terms of cost or the biggest increase in λ, can be identified.  

 

Typically, sensitivities and elasticities are calculated analytically from a population 

matrix containing a species’ average vital rates. Both forms of analysis estimate the 

change in λ resulting from a change in one vital rate (all others held constant) and thus 

ranking vital rates by their contribution to λ is possible. The difference between the two 

techniques is in the form of change made to the vital rates: for sensitivity analysis the 



 144

changes are absolute, while for elasticity analysis the changes are proportional. The 

analytical method for calculating sensitivities can lead to the estimation of values for 

entries in the population matrix with a value of 0. These may be transitions which do 

not currently occur but, under different circumstances could (e.g. precocious 

maturation), or they may be biologically impossible (e.g. reversion from adult to 

juvenile). Despite debate about the value of such results (Mesterton-Gibbons, 2000; 

Caswell et al., 2000) they may provide insights into alternative life history strategies, 

and indicate transitions (e.g. early maturity) which might occur if extra resources 

became available (Benton and Grant, 2000). Elasticities avoid such issues, since a 

proportional change in a demographic rate with a zero value remains zero. 

 

Elasticity analysis is a predictive (or prospective: Caswell, 1989) technique which 

estimates the change expected in λ resulting from a proportional change in a vital rate. 

All else being equal, changing the matrix element with the largest corresponding 

elasticity value will produce the greatest change in λ. This correspondence between 

demographic rates and population growth, and the relative ease of calculation and 

interpretation, has led to the popularity of elasticity analysis in conservation 

management. However, there are some important questions concerning the general 

applicability of elasticity analysis to population management. Central to the technique is 

the concept of population growth, since analytical elasticities are a measure of how the 

rate of population growth will change as a result of proportional change in each matrix 

element. However, populations in the real world are constrained by resources and 

rarely, if ever, exhibit unrestricted growth. We need to know how well analytical 
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elasticities, calculated with reference to λ, perform for populations constrained by 

density dependence. In addition to intrinsic controls on population dynamics, 

environmental variation causes demographic rates to change over time. While Benton 

and Grant (1996) have shown that the elasticities derived from density independent 

models with small to moderate stochastic variation in vital rates are typically not 

significantly different from those obtained for λ, if data are available on the variation in 

demographic rates it is clearly sensible to employ it. 

 

 

Examples of elasticity analysis 

The following section briefly describes a few of the published examples (listed in table 

1) of elasticity analysis of matrix models, covering a range of model formulations and 

levels of complexity, from simple, deterministic, linear models to simulations 

incorporating stochasticity or density dependence or, occasionally, both. This list is not 

exhaustive, but represents the type of studies typically conducted in order to gain an 

understanding of the cause(s) of a particular species’ decline, and thereby assist in the 

identification of methods to reverse such trends. Although 12 of the 16 studies 

incorporated stochasticity into their elasticity analysis, all but two calculated elasticities 

of λ, albeit in some cases a range of the possible values which λ might take. The 

exceptions were Cuthbert et al. (2001, example 8), who calculated the elasticities of the 

stochastic equivalent of λ , and Yearsley et al. (2003, example 16) who calculated the 

elasticities of the deterministic equilibrium population size. In the majority of the 

remaining, stochastic elasticity examples, a form of regression analysis was used, 
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following broadly similar methods to those described by Wisdom and Mills (1997; 

example 14). Typically this involved the repeated generation of a complete set of 

random vital rates, calculation of λ for each set, and subsequent regression of the vital 

rate values against their associated λ value, to identify how change in each of the vital 

rates affected the value of λ obtained. Such analyses are an improvement over a 

deterministic elasticity assessment based on a single set of mean vital rates since they 

incorporate environmental variation, but they still take no account of population 

regulation through density dependent processes. To address this issue, two of the studies 

claim to calculate deterministic, density dependent elasticities. However, in the first of 

these, Escos et al. (1994, example 2) in fact calculate a selection of elasticities of λ. The 

only difference between their approach and an elasticity analysis using mean vital rates 

is that, prior to each set of elasticity calculations the fecundity rates were adjusted 

across a range of (fixed) values derived using a density dependent parameter. Thus, 

despite the inclusion of a feedback process which would promote population regulation 

(and an expected long term mean λ value ≈ 1), the elasticities were calculated from 

time-invariant matrices with reference to an (effectively) density independent value of 

λ. In the second case, Yearsley et al (2003, example 16) used the characteristic 

equations of the deterministic model developed by Hunter et al, (2000, example 15) to 

calculate density dependent, analytical elasticities of the equilibrium population size 

(Ne). Based on their findings they conclude that the results of a density dependent 

elasticity analysis, evaluated at Ne, are directly proportional to those derived from a 

density independent analysis (i.e. the elasticities of λ), a result supported by the work of 

Takada and Nakashizuka (1996) and Caswell (2001). This prompted Yearsley et al 
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(2003) to suggest that the inclusion of density dependence is therefore not critical for a 

successful elasticity analysis. However, Grant and Benton (2000) used a numerical 

elasticity technique applied to simulation models of simplified density dependent life 

histories to demonstrate that this equivalence can break down when populations 

experience non-equilibrium, density dependent dynamics or if the density dependence is 

determined not by the total population size, but from a subset of the population.  

 

Interactions between density dependence and stochasticity 

Since it has recently been demonstrated that environmental variation and density 

dependence can interact in their effects on population dynamics (Higgins et. al, 1997; 

Grenfell et. al, 1998; Leirs et. al, 1997; Coulson et al, 2001; Milner, 1999) elasticities 

calculated either for λ, or for its density independent stochastic equivalent, or for 

equilibrium density dependent models may all omit vital parts of natural population 

processes. To investigate the likelihood of conservation actions being based on 

potentially misleading results, elasticity analysis needs to be performed using models 

which incorporate both environmental stochasticity and density dependence, so that an 

understanding can be developed of when to expect the equivalence of elasticity 

techniques to break down.  

 

Grant and Benton (2000; 2003) have shown how the elasticities of λ can differ from 

those for density dependent, non-equilibrium (deterministic and stochastic) populations 

using both generic models and ones parameterised using data from laboratory 

populations. However, there is an urgent need to extend these results to models of 
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populations in natural systems. The central questions are: can the inclusion of 

ubiquitous features of natural systems alter the results of a traditional elasticity analysis 

sufficiently that management recommendations based on their results are misleading? 

And can we calculate elasticities using metrics other than λ, which are more appropriate 

to the goals of population management? 

 

This chapter will present the elasticities of λ, its stochastic density independent 

equivalent (a), and its density dependent equivalent (ϑ). This last measure will also be 

applied to stochastic, density dependent situations, as will two further elasticity methods 

which are based on alternative population measures (mean population size, extinction 

risk). All the  elasticities will be calculated using a model based on a wild population of 

wrens (Troglodytes troglodytes), and the results compared. Two of the density 

dependent, stochastic methods used here have been demonstrated previously (Grant, 

1997; Grant and Benton, 2000; Grant and Benton, 2003). The first calculates elasticities 

of fitness (the density dependent equivalent of the elasticities of λ) by estimation of an 

invasion exponent (ϑ) and are known as invasion elasticities. The second calculates 

elasticities of the mean population size. A third method, introduced here, uses the 

probability of extinction (either simulated or analytical: for details of analytical 

extinction risk calculation see chapter 4) as the comparative measure, and these will be 

referred to as elasticities of extinction risk (E). Despite the development of Population 

Viability Analysis (PVA) packages in recent years with the specific role of guiding 

management aimed at minimising extinction risk, use of estimates of the probability of 
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extinction has received only limited attention with regard to the calculation of 

elasticities.  

 

5.2 Methods 

Matrix model framework 

The matrix population model used for the following elasticity calculations is described 

in detail in chapter four (the model code is provided in appendix 1). This is a stochastic, 

density dependent simulation model, written in Matlab (Mathworks), developed using 

data collected and analysed for a small population of wrens (Troglodytes troglodytes) as 

part of this study (see chapters 2 and 3). The model readily permits manipulation of 

environmental and demographic stochasticity, vital rate covariance and density 

dependent survival and breeding. The density dependent survival function selected was 

first described by Maynard Smith and Slatkin (1973), and subsequently recommended 

by Bellows (1981) for its combination of flexibility and good descriptive properties. 

The function takes the form: 

[1] 

where f(N) is a function of population density which acts to modify the survival rates, a 

is the scaling parameter, b determines the strength of the density dependence and N is 

the total population size. For all density dependent simulations the survival function is 

calculated using the total population size, but it is applied in one of two ways: either to 

all age classes equally, or to just the first survival transition (i.e. for juveniles surviving 

from fledging to one year of age). In the latter instance the older age class survival rates 

-1)N)((1(N) baf +=



 150

are left unmodified by population density and take either the mean observed values 

(deterministic models), or random values (stochastic models) as drawn from appropriate 

distributions (see chapter 4 for details). This division of density dependent survival by 

age enables the contrast between equal and unequal competition for resources, and the 

implications for elasticity analysis, to be investigated. Density dependence can also be 

applied to reproduction by limiting the availability of breeding territories, and thus only 

individuals in possession of a territory (and a breeding partner) contribute to the overall 

production of offspring. 

 

 

Linear, deterministic elasticity analysis 

The formula for calculating analytical sensitivities is given by:  

[2] 

Where s is the sensitivity value for matrix element c in row i and column j of the 

population matrix and λ is the population growth rate. The sensitivities can then be used 

to calculate the elasticity values for λ thus: 

[3] 

 Or alternatively elasticities may be calculated directly as: 
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[4] 

Where eλij is the elasticity value for matrix element cij. Only non-zero matrix elements 

have elasticities and because they measure proportional change in λ they sum to one. 

The remainder of the work presented here will be on elasticities. 

 

 

Elasticities of λ were calculated from two different sets of mean demographic rates. The 

first uses the mean survival and fecundity rates as measured from the study population 

(see table 1, chapter 4), and the second uses these same rates after being ‘re-sampled’ by 

the model during simulation. To calculate the elasticities for both sets of mean values, 

they were entered into a 6*6 population matrix, which incorporates the vital rates for 

both sexes. The upper left quarter of the matrix contains the female rates, the lower right 

quarter the male rates and elasticity analysis of this matrix is straightforward (after 

adjustments to accommodate the two sex format). However, there is an important extra 

consideration to be made regarding the composite nature of the fecundity rates. The 

vital rates to be entered into the matrix were derived from a series of annual ‘post-

breeding’ censuses. The period from one census to the next is made up of a survival 

period followed by breeding. Thus the matrix elements for fecundity are products of the 

age class breeding rate (specifically the mean number of same sex offspring produced 

by each age class, assuming a fledgling sex ratio of 50:50) and the age class survival 

rate, since only surviving individuals breed. Analytical elasticity analysis is carried out 

by perturbation of each matrix element in isolation, so for example perturbing the 

matrix element for first year female survival has no effect on any other matrix element. 
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However, if we were to perturb the actual survival of first year females in the study 

population then the fecundity rate of first year females (the product of survival and 

breeding) would be perturbed by the same amount. Similarly, when rates are perturbed 

during model simulations it mimics this latter form, thus perturbing a survival rate also 

perturbs that age class’s fecundity rate. Consequently the elasticity values for lower 

level rates derived from simulations are not directly comparable to analytical elasticities 

of λ  (Wisdom and Mills, 1997). We can, however, calculate elasticities of λ for the 

lower level vital rates either analytically or numerically (e.g. Crowder et al, 1994; 

Heppell et al 1994) and these are equivalent to simulation elasticities. Since simulation 

elasticities are calculated numerically, for consistency the lower level λ elasticities were 

also calculated numerically. Each of the underlying vital rates (either mean or time-

averaged) is perturbed in turn by a small proportion (e.g. *1.05) and the elasticity for the 

lower rate (x) is calculated using the observed change in λ: 

[5] 

It should be noted that elasticities of underlying rates do not have the property of 

summing to one, because λ is not a homogenous function of lower-level rates (Caswell, 

2001).  
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Linear stochastic elasticity analysis 

 To find density independent, stochastic elasticities the stochastic population growth 

rate, a  (Tuljapurkar, 1990) is calculated from a stochastic time series: 

[6] 

 Where E is the expected value, N0 is the starting population size and Nt is the population 

size after a period of time t. Elasticities are calculated by replacing the deterministic 

population growth rate, λ, in eq. [3] with a, thus: 

[7] 

 

 

Non-linear elasticity analysis 

As previously stated, populations which experience density dependent regulation can be 

considered as having a long-term growth rate of zero (i.e. λ ≈ 1). Manipulation of vital 

rates for population management can have only a transient effect on the population 

growth rate since density dependent regulation will promote population stability in the 

long term. Thus elasticity analysis performed with respect to λ may not provide accurate 

predictions of population responses for populations regulated by density dependence. 

Alternative measures to λ are required for a non-linear elasticity analysis. Three 

different population measures were used to calculate elasticities in this study: invasion 

exponent, population size and extinction risk. The method for implementing each will 
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be described in more detail below. In each case vital rates were perturbed by 5%. This is 

larger than ideal, since the relationship between increment size and change in the model 

output metric need not be linear (Grant and Benton, 2000). However, larger changes 

maximise the precision of estimates obtained from stochastic simulations. 

 

 

Invasion elasticities 

Elasticities of invasion are calculated by measuring the rate of growth of a small 

population of a mutant (invader) type, with one vital rate perturbed, into a larger 

resident population at equilibrium (whether stable or fluctuating). The rate of invader 

population growth (i.e. the rate of invasion) is the average slope of the regression line 

fitted through replicated invader population time series (log transformed), and is known 

as the invasion exponent (ϑ). In a stochastic model the likelihood of success or failure of 

each invasion event is highly variable. A mean invasion rate is obtained from multiple, 

short duration invasions (e.g. 2000 invasion events of 50 time steps each). The 

elasticities of ϑ are calculated as the log change in ϑ (compared to an unperturbed, 

baseline invasion rate, expected to be 0) divided by the log change in each vital rate: 

[8] 

In the previous applications of this technique (Grant, 1997; Grant and Benton, 2000, 

Grant and Benton, 2003) the strength of density dependent regulation, applied to both 

residents and invaders, is a function of the resident population size. Invasion elasticities 
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calculated in this way are the stochastic, density dependent equivalent to elasticities of 

λ.  

 

When density dependent regulation also operates through restricted territories, 

modifications to the invasion elasticity technique are required, since in this case the 

invaders and residents must compete for the limited number of available territories. In 

this modified form, the density dependent survival function is calculated using the 

combined population size of the residents and invaders, and the two types compete for 

breeding territories as follows. First year birds of the two types are assigned territories 

in proportion to their respective population sizes, either deterministically or 

stochastically (using a binomial routine). As described in chapter 4, once in possession 

of a territory a bird remains there until it dies, thus it is only first years which compete. 

The ϑ of the modified technique is a measure of the rate of replacement of residents by 

invaders. The elasticities of invasion calculated  using either technique do not sum to 1, 

for the same reason that elasticities of λ calculated from lower–level vital rates do not 

sum to 1: the vital rates perturbed during simulation are not equivalent to matrix 

elements. A comparison of the results from both the original method and the new one 

will be presented. To distinguish between the two, the original method will be referred 

to as ‘ghost’ invasions, the modified one as ‘real’ invasions. 
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Population size elasticities 

Population size elasticities are calculated as the change in the mean population size with 

the change in each vital rate, using a baseline, unperturbed run for comparison. To 

minimise the influence of large population fluctuations the average of the logged 

population size is used:  

[9] 

where N is the total population size. Elasticities of population size provide an intuitively 

direct connection between the results of model analysis and a common aim of species 

conservation, since management goals are often stated in terms of population targets. 

Any subset of the population can be used to calculate elasticities (by sex, age, etc.), 

although the results presented here are for the total population size. 

 

 

Extinction risk elasticities 

Estimation of the time to extinction has become a common feature in the assessment of 

populations of conservation concern, through the use of PVA packages (Beissinger and 

Westphal, 1998). The relative risk of, and estimated time to, extinction under current 

conditions can be found and then the change in this resulting from alternative 

management strategies or environmental scenarios can be compared in order to gain an 

understanding of the relationship between extinction risk and management or 

environmental conditions. A method to formalise this approach was developed here, 
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using the estimate of extinction risk to calculate elasticities. Extinction probability (E) is 

calculated both from the number of simulations dropping below an extinction threshold 

(simulation extinction) and also analytically (analytical extinction) from the mean and 

standard deviation population size (as described in chapter 4). The elasticities of E are 

then calculated as the change in E (within a specific time period) seen with change in 

the vital rates, using the value of E derived from a baseline (unperturbed) state for 

comparison: 

[10] 

It could be argued that elasticities of E provide limited additional information beyond 

that obtained from elasticities of population size, since the former is an assessment of 

how best to avoid extinction, and the latter how best to maximise population size. 

However, it is possible to envisage a situation where the two elasticity analyses might 

not indicate the same management prescriptions. Consider a population which under 

normal circumstances is subject to large fluctuations of population size, perhaps in 

response to a highly variable environment. Elasticity analysis of population size might 

suggest that manipulation of vital rate ‘x’ will promote the highest mean population 

size. However, while the mean population size may be increased by manipulating rate 

‘x’, the magnitude and/or frequency of population fluctuations could also be increased, 

if for example, the elevated mean population size is accounted for by an increase in a 

life stage which is highly sensitive to environmental conditions. The probability of 

extinction, rather than being reduced could in fact be elevated by the larger fluctuations 
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in population size due to the increased risk posed by chance catastrophes or sequences 

of ‘poor’ years. Thus the largest extinction elasticities will be for those parameters 

which increase the mean population size and also those which reduce the magnitude of 

population fluctuations. An analysis based on mean population size alone could 

overlook the latter characteristic.  

 

 

 

5.3 Results 

Density independent models 

Elasticities of λ and stochastic growth rate ‘a’ 

The elasticities of λ, derived from both the time averaged mean matrix and the study 

population’s mean vital rates, and the elasticities of a from multiple (5000) simulations 

provide broadly similar results (fig. 1). The different techniques produce small 

variations in their elasticity estimates, but these do not change the overall pattern. It is 

not surprising that the elasticities of λ and a are close to each other since it has been 

shown that adding small to moderate levels of stochastic variation to demographic 

parameters typically makes only a small difference to the overall pattern of elasticities 

(Benton and Grant, 1996). The order of elasticities remains the same for each method of 

calculation: elasticities for both survival and fecundity decline with age, and within each 

age class, survival has a slightly greater elasticity than fecundity. The vital rates which 

contribute most to both λ and a are first year survival and breeding at age one. In a  

conservation setting, these analyses would recommend management efforts targeted at  
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Fig 1. Comparison of density independent elasticities for female demographic rates. Red 
dotted line (‘o’ symbols): elasticities of population growth rate, λ, using mean vital rates 
from field data; green solid line (‘x’ symbols): elasticities of λ, using time-averaged 
mean vital rates from 10000 simulations; blue dashed line (‘�’ symbols): elasticities of 
stochastic growth rate, a from 5000 simulations (errorbars excluded for clarity, however 
the errors are smaller than the symbols used). All elasticities scaled to sum to one, 
including male rates, but only female rates shown. Demographic rates: F – Fecundity; S 
– survival; 1 –3 age classes 
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the 1st year rates. These elasticities are equivalent to many of those quoted in the 

literature and applied in conservation situations.  

 

 

Density dependent, deterministic models 

Elasticities of ϑ, ghost invasion – unlimited territories 

Elasticities of ϑ were estimated from 2000 simulated invasions, of 50 time steps each. 

When breeding territories are unrestricted, increasing the strength of over-compensatory 

density dependence shifts the population dynamics from stable equilibria, through 2 

point cycles, into more complex periodic behaviour (fig 2a). In common with the results 

of other workers (Takada and Nakashizuka 1996; Yearsley et al, 2003), the elasticities 

of λ and ϑ when the population is at a stable equilibrium are nearly identical (density 

dependent parameter b <= 5, fig. 2b-d, f-h). Investigation of the elasticities of non-

equilibrium populations by Grant and Benton (2000; 2003) have demonstrated that, if 

density dependence operates on fecundity, this situation can change considerably as 

populations move from stable to oscillating dynamics due to changes in selection 

pressures occurring with the transition from a stable population to a two-point cycle. 

Unlike their results, here the onset of population bifurcations does not give rise to a 

changes in the elasticities and the equivalence of λ and ϑ is maintained even at high 

levels of over-compensation. This is due to the density dependence in the model 

operating equally on the survival of all age classes, and under these circumstances 

individual fitness is always maximised by increasing early survival and breeding.  
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Elasticities of ϑ, real invasions – limited territories  

If density dependence operates through restricted availability of territories as well as the 

survival function, the population dynamics move from stable equilibria through simple 

oscillations to more complex dynamics as before (fig. 2e). However, this is followed by 

a return to simpler dynamics caused by the territory limit capping the population. Under 

these conditions the elasticities of λ are no longer a good guide to those of ϑ (fig 2b-d, f-

h). While the ghost invasion elasticities of ϑ match those for λ, with elasticities for 

survival having higher values than fecundity (at any particular age), the real invasion 

elasticities are reversed, with fecundity elasticities higher than survival. This occurs 

because survival rate perturbation is applied to only one sex, and without an 

accompanying increase in the other sex, the extra surviving individuals cannot breed. 

Therefore increasing survival of first years has no effect on the rate of invasion because 

the extra survivors are surplus to the availability of either territories or breeding partners 

(or both). However, an increase in fecundity increases the number of offspring of both 

sexes, there is no subsequent imbalance in the sexes, and a higher rate of invasion 

results, since the invaders are able to out compete residents for territories. At weak 

strengths of density dependence the final survival transition has an elasticity of zero 

because, under these particular conditions the increase in age class three, and the 

corresponding decrease in age class one lead to identical levels of offspring production. 

However, for values of b greater than three (i.e. from mild to high overcompensation), 

increasing older age class survival exacerbates the imbalance in the sexes by further 

reducing the availability of territories and partners for first years. Since first year 

breeders are the most productive age class this puts the invaders at a disadvantage 
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Fig 2. Population bifurcation and elasticity plots for density dependent, deterministic 
simulations for female demographic rates. Elasticities of λ (time averaged mean values) 
and ϑ, plotted against density dependent control parameter b (increasing b increases the 
strength of overcompensation). Panel (a) bifurcation plot of total population size, with 
unlimited breeding territories. Panel (e) bifurcation plot of total population size, with 
restricted number of territories. Panels (b-d, f-h) female elasticities of: λ (open circles); 
ϑ ghost* invasion method (solid blue lines); ϑ real** invasion method (dotted red lines). 
Elasticities scaled to sum to unity for comparison, including male values but only 
female ones shown. 
*Ghost invasions: unlimited breeding territories 
**real invasion: restricted number of breeding territories. 
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relative to the residents, the invader population fails to increase in number, and negative 

elasticities result. Negative elasticities signify that positive rate perturbation is having a 

negative effect on the rate of invasion, indicating that an individual’s fitness may 

actually be reduced by elevated survival rates after the age of first breeding.  

 

 

Elasticities of ϑ, ghost invasion – unlimited territories, density dependent survival 

applied to juveniles only 

When territories are unlimited, and all age classes contribute to the strength of density 

dependence but only juvenile survival regulated by it, the population declines as the 

density dependent function increases (fig. 3a). This is because the effect of increasing 

the strength of density dependence (parameter b) from low to intermediate levels 

depends on the size of the population, relative to the reciprocal of the scaling parameter, 

a. This is the value at which the density dependence survival rate is reduced by 50% 

(Bellows, 1981). When the population size is smaller than 1/a, increasing b from low to 

intermediate values increases the mean population size (fig 2a), while for a population 

greater than 1/a, the reverse occurs and the population falls (fig 3a).  

 

With density dependent survival restricted to juveniles, this is effectively regulation of 

breeding, albeit in a delayed sense, and the population undergoes a single bifurcation to 

a two-point cycle. The elasticities for fecundity at age 1 and 2 now do follow the pattern 

described by Grant and Benton (2000) after the bifurcation point: the elasticity for 

fecundity at age 1 begins to fall, whilst that for fecundity at age 2 corresponding 



 164

increases, so that when b = 10, the elasticity for fecundity at age two exceeds that for 

age one (fig. 3b-c). This is explained by considering the following. Birds born in a year 

with a low population will have higher first year survival than those born at a peak, and 

once past the only density regulated survival transition they are subsequently unaffected 

by the population density. While the offspring this generation produce in their first 

breeding season are born at a population peak and experience reduced survival, the 

breeding birds themselves have unaffected survival and the offspring they produce in 

their second breeding season will have a higher survival rate. Thus increased breeding at 

age two, despite the smaller proportion of two year olds in the population, becomes a 

successful alternative strategy to increased breeding at age one. For the same reasons 

the elasticities for survival to one and two show the same (but smaller) trend.  

 

 

Elasticities of ϑ, real invasion – limited territories 

With a limited number of breeding territories and density dependent survival applied 

only to juveniles, the population initially increases with increasing b and only develops 

two point cycles when b reaches a value of ten (fig 3e). As before, when territories are 

limited the fecundity elasticities are higher than the survival ones (figs. 3b-d and f-h). 

Because the difference between ‘good’ and ‘bad’ years when the population is 

fluctuating is now smaller, the relative change in the fecundities of ages one and two, 

although still present, is much less pronounced. The survival elasticities are largely 

unaffected by the application of density dependent survival only to juveniles, and their 

values remain the same as those in fig. 2.  
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Fig 3. Population bifurcation and elasticity plots for density dependent, deterministic 
simulations for female demographic rates. Elasticities of λ (time averaged mean values) 
and ϑ, plotted against density dependent control parameter b. Only juvenile survival is 
modified by the density dependent function. Panel (a) bifurcation plot of total 
population size, with unlimited breeding territories. Panel (e) bifurcation plot of total 
population size, with restricted number of territories.  Panels (b-d, f-h) female 
elasticities of: λ (open circles); ϑ ghost* invasion method (solid blue lines); ϑ real** 
invasion method (dotted red lines). Elasticities scaled to sum to unity for comparison, 
including male values but only female ones shown. 
*Ghost invasions: unlimited breeding territories 
**real invasion: restricted number of breeding territories  
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Elasticities of population size 

As described previously, if only density dependent survival regulates the population 

size, the population dynamics, after initial two-point cycles become extremely 

complicated (fig. 2a). When the population is at a stable equilibrium (b <= 5) the 

elasticities are almost identical to those for λ (fig. 4a, b=2). As the strength of density 

dependence increases further, the population first bifurcates to a two-point cycle (b = 6) 

and all the elasticities become negative, while maintaining the same values relative to 

one another. This occurs because although all rate perturbations increase the peak 

population size, they consequently also lower the subsequent trough by a greater 

amount, and the mean population size falls. The same occurs when b is ten, but for 

values of b between seven and nine the elasticity responses do not follow any particular 

pattern apart from being predominantly negative (fig. 4b). This is a reflection of the 

complex periodic dynamics present at these strengths of density dependence (fig. 2a), 

which, in combination with the size of vital rate increment, make for unpredictable 

population responses to rate perturbation. 

 

As we have already seen, when the number of breeding territories is limited, population 

bifurcations return to simple dynamics at high levels of density dependence (fig. 3). The 

elasticities of total population size under such conditions are strongly influenced by the 

strength of over-compensatory density dependence (fig. 5). The elasticities for fecundity 

are the same as those when territories are unlimited (see fig. 4a), but those for survival 

are quite different. First year survival has an elasticity of, or near to, zero for all 

strengths of density dependence. Again, this is a result of the competition for breeding 
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Fig. 4. Comparison of deterministic female elasticities of λ from time averaged mean 
matrix and population size, for different strengths of density dependent control 
parameter b. There is no restriction on the number of territories. Population dynamics as 
in fig. 2a. Panel (a): elasticities of: λ, solid black line (‘o’); population size, for b=2 blue 
line (stable equilibrium), 6 green line (two-point cycles) and 10 red line (four point 
cycles). Panel (b) elasticities of: λ, solid black line (‘o’); population size for b=7 blue 
line, 8 green line and 9 red line (all multiple point cycles). Errorbars are omitted for 
clarity, as in all but one case they are smaller than the marker symbols used. The 
exception is when b = 6 (graph a), reflecting the small absolute elasticity values 
obtained, and the consequent inflation of the values (by a factor of approx. 6) also 
increases the relative size of the errors. All elasticities (male and female) scaled to sum 
to one, but only female elasticities shown. Demographic rates: F – Fecundity; S – 
survival; 1 –3 age classes. Population size elasticities calculated when the population 
has a stable equilibrium (b = 2) match the elasticities of λ from the time averaged matrix 
(graph a). When  the population exhibits simple cycles (b = 6 and 10), the elasticities 
retain the same relative positions but become negative, due to enhanced cycling and a 
lowered mean population size. When the dynamics are complex, interactions between 
the density dependence and perturbation size lead to a high degree of variability in the 
population size elasticities (graph b), corresponding to greater imprecision. 
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territories and indicates that there are already surplus first years in the population, so 

increasing their survival has no effect on the breeding population size. Increasing older 

age class survival when b is below six has a small negative effect, through greater 

exclusion of first years (as described above for real invasions). However at higher 

strengths of density dependence (b > 6), the same elasticities are positive, (with the 

exception of when b equals eight (not shown): this is the only strength of density 

dependence which produces complex periodic dynamics when territories are limited, 

and as a result the elasticities do not follow a simple pattern, as with those in fig. 5b). 

These positive survival elasticities for age classes two and three occur for the following 

reasons. Increasing the proportion of older territory holders at the expense of first time 

breeders, limits the overall production of offspring, since first year birds have the 

highest fecundity rates and are the most numerous age class. Thus, in combination with 

the territory restriction, this reduces the peak of the population cycles by a small 

amount, but more importantly raises the subsequent trough by a larger quantity, leading 

overall to a higher mean population size. The end result is an almost complete reversal 

in the rank order of population size elasticities as we move from weak to strong, over-

compensatory density dependence.  
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Fig 5. Comparison of deterministic female elasticities of λ from time averaged mean 
matrix and population size, at low, medium and high values of density dependent 
parameter b. Population dynamics as in fig. 2e. There is a limited number of breeding 
territories. Elasticities of: λ solid blue line (‘o’); population size, b = 2 black line (stable 
equilibrium), 6 green line (two point cycles) and 10 red line (three point cycles). When 
b = 8 the elasticities are unpredictable as in fig 4b. All elasticities (male and female) 
scaled to sum to one, but only female elasticities shown. Actual value for elasticity F1 at 
b = 10: -1.14. Demographic rates: F – Fecundity; S – survival; 1 –3 age classes 
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Density dependent, stochastic models 

Elasticities of ϑ 

The effect of adding stochasticity (environmental and demographic) to the estimation of 

elasticities of ϑ can be seen in fig. 6. The elasticities change by only negligible amounts 

across values of b from 1 to 10, so the data plotted in fig. 6 all come from simulations 

with the same strength of density dependence (b = 4). The ghost invasion elasticities are 

not significantly different from those for λ (fig. 2). Surprisingly however, while the 

deterministic survival elasticities from real invasions were either zero or negative (fig. 

2), their stochastic equivalents are large and positive: comparable to the elasticities from 

both the ghost invasion method and for λ (from the time averaged mean matrix). Thus 

the addition of noise changes the survival elasticities from negative (i.e. an increase in 

2nd year survival decreases the rate of invasion) to positive (i.e. an increase in 2nd year 

survival increases the rate of invasion), indicating that constant environments and 

stochastic environments can elicit alternative approaches for maximising individual 

fitness. In this case the mechanism for the difference is as follows. In the presence of 

stochasticity (unlike the situation in a constant environment), there is sufficient variation 

between the survival rates and the number of territories from one breeding season to the 

next, to allow increased numbers of first years to obtain territories and breeding partners 

in most years. For example, under deterministic conditions the numbers of each sex in 

age classes two and three are identical at each time step. This is extremely unlikely to 

occur under stochastic conditions, and the imbalance in the sexes means there will  

usually be older birds available as breeding partners for first years. In the deterministic 

models when density dependent survival affected only the first transition there was a 
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decrease in first year fecundity and survival elasticities matched by an equivalent 

increase in the rates for age class two (fig. 3), but again the presence of stochasticity 

minimises this effect.  
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Fig. 6. Comparison of density dependent, stochastic elasticities of ϑ for female 
demographic rates, and elasticities of λ from time averaged matrix. Solid lines are 
ghost* invasions, dotted lines real** invasions. Lines with circle (‘o’) symbols are from 
simulations with density dependent survival applied to all age classes, lines with square 
(‘□’)  symbols are simulations with only juvenile survival modified by the density 
dependent survival function. Invasions were for 50 time steps, repeated 2000 times, 
values shown are the means, confidence intervals are smaller than the point symbols. 
For comparison the elasticities of λ from the time averaged matrix are added. The 
strength of density dependence did not significantly alter the elasticity values. Lines 
shown came from an intermediate strength of density dependence. Elasticities are scaled 
to sum to one, including the male elasticities (not shown). Confining density dependent 
survival to juveniles increases selection on late survival and breeding and decreases 
selection on juvenile rates. Demographic rates: F – Fecundity; S – survival; 1 –3 age 
classes 
*ghost invasions: unlimited breeding territories 
**real invasion: restricted number of breeding territories  
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Elasticities of population size and extinction risk 

In the previous elasticity plots the female and male elasticities followed the same 

patterns, and the male rates were omitted for clarity. However, that is not the case for 

the elasticities presented here, so the male rates are included. When density dependence 

is weakly over-compensatory the stochastic elasticities of extinction and population size 

are in reasonable agreement, both with each other (figs. 7 and 8) and also with λ (fig. 1). 

As the strength of over-compensation increases, the elasticities of population size 

remain similar to those for λ until b has a high value ( > 8), but the extinction risk ones 

change much earlier. By the time b has a value of six only the male survival elasticities 

are still positive. The elasticities of population size are positive for rate perturbations 

which increase the mean population size, and this will also tend to be true for extinction 

elasticities. However, the latter also take into account changes in the variance in the 

population size. In the example here, when b has a value of six, increasing the first year 

female survival rate by 5% raises the mean population size by 0.5%, while the same rate 

increase for first year male survival produces a rise of 0.9%. The population size 

elasticities for the two rates are 0.1 and 0.28 respectively.  However, at the same time as 

the mean population size increases, the variance also changes, only in opposite 

directions: for first year female fecundity it increases by 5.7%; for first year male 

survival it decreases by 5.2%. Hence the respective extinction elasticities are –0.8 and 

+0.22. The same pattern is repeated to a lesser extent for all the survival rates. The 

cause of this difference lies in a combination of each sex’s stable age structure and age 

related contribution to the total reproductive output, and how these respond to 

perturbations at high levels of over-compensation. Average female offspring production 



 174

is split 2.67 : 1 in favour of first years over older ages, while the male equivalent is 1.68 

: 1. When first year female survival is increased, their proportion of the breeding 

population rises and consequently there is a large increase in offspring production. This 

raises the population to a level which triggers a severe density dependent response, 

causing the population to crash. Repetition of this pattern leads to wide population 

fluctuations, and subsequently a large population variance. The same does not occur 

with elevated first year male survival because, although the total offspring number still 

rises, the increase is insufficient to prompt the same degree of density dependent 

regulation. The elasticities for the older survival rates have the same signs, but are 

closer to zero, since in the female case older individuals produce less young and the 

increase in the variance is smaller, while for the males, reproductive output increases 

with age and the variance increase is higher. This is an example of a situation in which 

conservation management prescriptions, guided by elasticities of population size would 

be at odds with those from elasticities of extinction risk. 
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Fig. 7. Comparison of density dependent, stochastic elasticities of population size for 
both sexes at different strengths of density dependence. Simulations were of 200,000 
time steps, with a 5% increment in vital rates. Horizontal lines indicates zero. All 
elasticities scaled to sum to one. Demographic rates: f – female, m – male; F – 
Fecundity; S – survival; 1 –3 age classes. 
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Fig. 8. Comparison of density dependent, stochastic extinction risk elasticities at 
different strengths of dependence. Simulations were of 250 years, with a 5% increment 
in vital rates. Extinction probability was calculated analytically using the mean and 
variance of the population size from 5000 simulations. Horizontal lines indicates zero. 
All elasticities scaled to sum to one. Demographic rates: f – female, m – male; F – 
Fecundity; S – survival; 1 –3 age classes 
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5.4 Discussion 
 
The work presented here demonstrates how a pragmatic approach to population 

modelling, coupled with recently developed methods for performing elasticity analysis 

(Grant, 1997; Benton and Grant, 1999), can provide valuable guidance for conservation 

managers and allow an insight into the evolutionary pressures underpinning population 

processes. By using a simulation model to compare the deterministic, linear elasticities 

of λ with those derived from stochastic and density dependent populations, we can 

begin to appreciate the conditions under which disagreements arise between the 

elasticity methods, and perhaps more importantly, why. Grant and Benton (2000; 2003) 

have used models of both simplified life histories and also the ‘LPA’ model for 

Tribolium populations (Dennis et al, 1995), to demonstrate that the elasticities for 

population growth and population size need not be in accordance when density 

dependence and stochasticity are operating in a realistic manner. The results here extend 

this work to a density dependent, stochastic model developed for a wild population and 

find similar differences between the elasticities of λ and population size, and also show 

how elasticities for alternative metrics (e.g. extinction risk) may present further 

alternative management recommendations. 

 

In the field of conservation management elasticity analysis has become a useful guide, 

and this is symptomatic of a welcome and widespread expansion in the use of scientific 

methods in conservation (Reed et al, 2002). However, the analysis presented here, and 

the work on which it builds, indicate that great care is needed in both the application of 

elasticity techniques, and the interpretation of their results (Benton and Grant 1999; 
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Mills et al, 1999). As we have shown, for a range of plausible circumstances the 

elasticities of λ are a useful guide to the levels of selection acting on demographic rates. 

However the goals of a conservation management programme, and the direction in 

which selection acting on individuals may be operating need not coincide (Grant and 

Benton, 2003). This should not be a surprising conclusion, as it seems unreasonable to 

expect that any one method of calculating elasticities will provide useful (or accurate) 

answers in all the situations where elasticities may be used (a ‘one size fits all’ 

philosophy). As we have shown here the elasticities of fitness, population size and 

extinction risk calculated for the same population can all be different. For example, if 

we consider the female elasticities for a stochastic population with all age classes 

experiencing an intermediate level of over compensatory density dependent survival, 

first year fecundity can have a (scaled) value of: 0.15 (population size), 0.08 (real 

invasion) or –0.2 (extinction risk), while its respective rank order changes from 1st to 2nd 

to 6th (in terms of positive value). Thus under these conditions a positive perturbation 

applied to the first year female fecundity rate will be expected to raise the mean 

population size, but at the same time the increase is combined with an elevation in the 

population variance around the mean, putting a small population at an enhanced risk of 

extinction. This difference between the elasticities for population size and extinction 

risk will be of greatest concern to conservation managers, since management goals for 

rare species are frequently expressed in terms of either population size or extinction 

probability. 
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When density dependence operates through the survival rates of all age classes equally 

we find that the elasticities of ϑ and λ are in general agreement, and thus a simple 

analysis of a matrix of mean values will provide a good guide to the selection pressures 

acting on demographic rates. This concordance does not appear to be affected by either 

the presence or absence of realistic levels of environmental stochasticity, nor by the 

strength of density dependent regulation, whether it is stabilising or strongly 

destabilising. Therefore, under these circumstances, an understanding of the 

evolutionary processes will be gained from a simple elasticity analysis of a matrix of 

mean values, and little extra information will be gained through analysis of a fully 

density dependent, stochastic model. However, the same may not be true if density 

dependence operates unequally on subsets of the population (Grant and Benton, 2000). 

The example used in this account, of juvenile birds being subject to density dependent 

survival while older individuals are not, represents an extreme case but highlights some 

possible outcomes. It is not unreasonable to suppose that for a species which maintains 

a degree of territorial behaviour all year round, birds not in possession of a territory may 

be disadvantaged during critical survival periods, through elevated resource competition 

among similarly afflicted conspecifics. So it is not a trivial result that in such 

circumstances the elasticity which was previously the largest (first year survival of 

either sex), now has a value of zero. This indicates that the selection pressure in a 

system where space is at a premium may be focused on elevated levels of fecundity 

instead of survival. It is true that a time averaged matrix of mean values derived from a 

simulation which incorporates this form of density dependent survival structure will 

produce comparable elasticities. However, once such a model has been developed there 
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is little additional extra work required to calculate fully density dependent elasticities, 

and it would seem unwise in such circumstances to assume that the result presented here 

(of elasticity equivalence) was always the norm. It should also be noted that in this 

instance, elasticity analysis of a matrix of mean observed values (as often reported) 

makes no provision for questions of space and may produce results of limited value. 

Heppell et al (2000), performed comparative λ elasticity analyses to see if was possible 

for species to be categorised using common life history patterns, thus assisting the 

management of species with minimal demographic data. They report success in this aim 

using a generalised model, however the result described above demonstrates that the 

absence of density dependent considerations in their analyses calls such generalisations 

based only on life histories into question. If we consider a hypothetical example of two 

species with the same pattern of λ elasticities, but in which the effects of density 

dependence on survival rates for one are felt by all ages equally and in the other are 

concentrated on a specific age group, it is highly likely that the density dependent 

elasticities for the two species will be different. 

 

Analysis of change in the mean population size and extinction probability provide two 

directly applicable and easily understandable measures on which to base elasticities for 

the management of rare species and populations. They should not be considered as 

competitors for the title of ‘best’ elasticity method, any more than the elasticities of λ 

should be dismissed as too simplistic. The two methods offer alternative approaches to 

investigate the closely related problems of small and declining population sizes. Small 

populations are confronted by much higher risks of extinction than larger ones simply 
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through the enhanced impact of chance events. Estimation of a projected time to 

extinction using simulation modelling techniques has become a popular means with 

which to assign conservation priorities (Brook et al, 2000), although the validity of 

absolute predictions has been called into question (Coulson et al., 2001; Ludwig, 1999; 

Ellner et al, 2002). Beissinger and Westphal (1998) in their review of PVA state that, 

“in our opinion the optimal use of PVA is to evaluate relative differences among model 

outcomes”. By comparing the relative extinction probabilities resulting from different 

management regimes an appreciation of the factors contributing to the level of 

extinction probability can be gained (e.g. Lindenmayer and Possingham, 1996). 

Calculation of the elasticities of extinction risk (or population size) is simply a 

formalisation of this process and represents a prime example of this approach.  

 

Since the extinction risk can be considered as a product of a population’s size and 

variance, the elasticities of extinction risk will identify the vital rates which combine 

increases in the population size and reductions in year to year variability. Instances 

when extinction elasticities may be of less value would be for species or populations not 

in imminent danger of extinction, but rather showing the early signs of decline. Such 

examples might include harvested species or populations, such as marine fish. In these 

cases the population size will be sufficiently large, and the risks of imminent extinction 

sufficiently small, that the dangers associated with chance events can largely be ignored. 

Such a population is likely to be little affected in the long term by relatively large year 

to year variations, and elasticities of the mean population size will be a more useful 

guide for long term management aimed at maintaining a healthy population size. Thus, 
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just as the elasticities of λ may be inappropriate in certain density dependent situations, 

so the elasticities of extinction risk or population size can also be of limited value, 

depending on the circumstances and goals of management. Before performing an 

elasticity analysis it is important that the purpose for which the results are sought has 

been carefully considered and clearly stated, in order that the most appropriate 

elasticities are employed. The metrics used here are not exclusive, and other systems 

may warrant alternatives, indeed conservation managers should be encouraged to 

consider alternative elasticity measures which may suit their needs better, since this will 

also assist them in refining management goals. 
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Chapter 6 
 
 

General discussion 
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The pressures on the natural environment resulting from the expansion of the human 

population have created a situation in which many species are facing an extinction risk 

far greater than that which might otherwise be expected. Conservation science as a 

discipline has grown out of a need to effectively target limited resources in order to 

maximise results. Quantitative approaches have been applied at many scales, from the 

study and modelling of climate patterns, through to species specific population research. 

Within the field of species conservation the term population viability analysis (PVA) 

has come to be applied to models which are used both to quantify the risks faced by 

populations, and to select the best means to ameliorate such risks. While many of the 

commercially available PVA model packages have become quite sophisticated, with 

population projections explicitly incorporating density dependent processes and realistic 

means for simulating environmental and demographic stochasticity, their chief purpose 

has remained the provision of estimates of population growth rates and extinction risk. 

It is somewhat surprising, given the availability of such models, that the identification 

of management targets by means of elasticity analysis is nearly always still conducted 

with reference to a deterministic, density independent estimate of the population growth 

rate (λ). The work presented in this thesis forms part of a growing body of evidence that 

elasticity analysis which fails to incorporate ubiquitous natural processes may produce 

misleading results. By providing an example of how natural processes may influence a 

species’ population dynamics, and demonstrating how such effects can have important 

implications for conservation planning it is hoped that species conservation efforts will 

be enhanced.  
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Population models are a useful tool to aid the conservation of rare species. Their 

development can promote greater understanding of the factors underlying a species’ 

population dynamics and their outputs can be used both to guide further research efforts 

and to identify optimum courses of action to slow, stop and reverse population declines. 

Most population models have at their core estimates of a species’ rates of survival and 

reproduction. Using these it is possible to make a calculation of probable future trends 

in the population size. For most species, demographic rates will not be constant 

throughout an individuals lifetime but will vary as, for example, experience is gained 

(affecting e.g. reproductive success) and the risk of predation changes (affecting e.g. 

survival rates). A model which uses single survival or reproductive rates for all ages or 

stages will inevitably be a compromise under such circumstances. However, it is 

possible to accommodate age (or stage) structure within the lifecycle by entering 

demographic rates appropriate to each age into specific locations in a matrix. The sub-

divisions of the life-cycle can be based simply on age or alternatively on size classes 

(e.g. carapace length in turtles) or developmental stage (e.g. arthropod instars). 

Common to all forms of matrix model, however, is the requirement for a certain 

threshold level of demographic data to permit accurate estimation of vital rate 

parameters, and the quality and quantity of the available data will determine the degree 

of uncertainty which will be associated with the estimates obtained. Unfortunately, it is 

often the case that the amount of data available with which to estimate demographic 

parameters for endangered species is limited. The wren population data collected during 

the course of this study is typical of this intermediate level of data quality. Since the 

outputs obtained from a population model are very dependent on the quality of the data 
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used for parameter estimation care must be exercised during the interpretation of results. 

However, by adopting a pragmatic approach to parameter estimation and model 

development the risk of prescribing misguided management based on erroneous model 

outputs can be minimised (Starfield, 1997). For example, the estimate of juvenile wren 

survival (from fledging to one year) derived during this study was estimated from two 

summers (June – September) and one winter (October – February) of radio tracking 

data, combined with inferences based on older age class survival and first year return 

rates for the periods outside the radio tracking study. While this is a limited amount of 

data on which to base a parameter estimate, the amount of effort required and the 

availability of suitable technology (i.e. sufficiently small radiotags) mean that this 

represents a typical level of data quality. One way we can gain extra confidence in our 

estimated value is to make comparisons with ecologically similar species, since such 

species are likely to share common traits. In this case we can consider both short-term 

radio tracking studies of other small passerine species of temperate forests (e.g. coal and 

great tits: Naef-Daenzer et al, 2001), and also longer term studies of passerine 

populations for which dispersal and death can be distinguished with reasonable 

accuracy (e.g. great tit: Perrins, 1965). Comparison of our juvenile wren survival rate 

with these other data sources suggests that our estimate is likely to be reasonably 

accurate. Thus, while this survival rate should receive further attention in the field in 

order to improve the confidence we have in its value, we can still use the data we have 

to begin the process of parameter refinement. Indeed, this highlights the second proviso 

with an analysis based on limited data such as this, which is that modelling results are 

not final, but can and should be updated as further periods of study are carried out. As 
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more data becomes available we can refine our models and so gain further confidence in 

them. The model itself can assist this process by identifying parameters which require 

further research.  

 

If a species or population exhibits fluctuations in numbers and there is reason to suppose 

that density dependent regulation is also present, a linear, deterministic model clearly 

leaves out a great deal of potentially relevant information. Omitting ubiquitous features 

of natural systems because of a lack of empirical data may thus prevent the level of 

insight into population processes that an open-minded, experimental attitude may yield. 

Since the means with which to develop stochastic and density dependent population 

simulations are now readily available there is little excuse for not doing so, and indeed 

more and more published population models are both stochastic and density dependent. 

Incorporating routines to calculate the elasticities of such stochastic, density dependent 

models requires little extra work (e.g. elasticities of population size or extinction risk). It 

is surprising therefore, that elasticities are so often still calculated with reference to λ, 

when stochastic and density dependent population simulation models have been 

produced for many years. 

 

One of the key aims of the modelling and elasticity analyses presented here is to 

highlight the fact that neglecting to take account of density dependent population 

regulation can have major implications for the results obtained. Omitting density 

dependence from population models has sometimes been excused because researchers 

have no information about how population density may effect demographic processes 
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(e.g. Wielgus et al, 2001). This is not surprising since few species have sufficiently long 

datasets for its presence to be unequivocally identified, and even less for estimation of 

its form. In addition it is occasionally asserted that an endangered species will, by 

definition, be present in sufficiently low numbers that density dependence processes 

may be ignored. However, this argument may seldom be justified. For example, it is 

reasonable to suppose that small populations of social species will actually maintain 

similar local densities to those found in larger populations, in order to facilitate their 

normal activities (e.g. feeding, reproduction, predator detection). If we also consider the 

fact that one of the chief causes of population declines is habitat loss it becomes 

increasingly clear that density dependence is almost certainly not confined to large 

populations. For the population studied here there is some evidence for density 

dependent survival, but we can also draw on the results of other workers who have 

found evidence for density effects in wren populations of a similar size (Newton et al, 

1998; Peach et al, 1995). The datasets available in these cases covered over 20 years, 

yet even with such time series we still have no information on the form of the density 

dependent regulation. This led to the adoption of a flexible density dependent survival 

function, which enabled investigation of the effects of changing the strength and form of 

the feedback. By doing this, a range of possible density dependent scenarios could be 

modelled and the implications of each could be investigated. This approach permited 

questions regarding the form and strength of density dependence to be addressed 

through analysis of the model by making sensible guesses about its probable 

characteristics within a modelling framework. By such methods a greater understanding 

of its probable function in the study population can be obtained, and improved means to 
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identify its action in the field may be suggested. The results of the stochastic, density 

dependent elasticity analysis presented here indicate that at relatively modest strengths 

of density dependent survival the elasticities of λ and the elasticities for population size 

or extinction probability can be markedly different, even to the extent of having 

opposite signs. This suggests that the management of a small population with the aim of 

maximising the population size or minimising the risk of extinction, based on 

recommendations derived from the deterministic, density independent elasticities of λ, 

may at best fail to have the desired effect and at worst actually be detrimental to the 

population’s status. This result is extremely concerning given the number and range of 

studies which have reported the elasticities of λ. If reducing extinction risk is a 

management goal, it seems logical that estimates of the rate of extinction are used 

directly to guide management, rather than estimates of other population characteristics 

which may provide only indirect measures of the population health. It is hoped that this 

result will lead other workers to recognise that omitting density dependence and 

stochasticity from elasticity analysis may have serious implications for the results 

obtained.  

 

There are a range of possible directions in which the modelling research presented here 

could be extended. For example, all of the work here deals with a single population in 

isolation, so an obvious development would be to link up one or more replicate 

populations to create a meta-population model. This could be used to ask questions 

about topics such as the degree of dispersal between populations and the potential 

impacts of source-sink dynamics could be investigated. It would also be instructive to 
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parameterise the model with data for other species, particularly ones with different life-

cycles (e.g. longer lived, slower breeding species). This might indicate the presence of 

more general rules regarding the dynamics of density dependent, stochastic simulations 

and elasticity analyses. Allee effects were not incorporated as part of the density 

dependence in the model since it was felt that considering the wren’s highly mobile and 

vocal nature, along with the size of population and study site modelled here, their 

effects would be minimal, but this assumption (as with all assumptions) is worth testing.  

 

The use of a matrix model formulation for this study was driven by the goal of 

improving a technique which is already commonplace, rather than to develop a novel 

approach to demographic modelling which might better represent wren population 

dynamics. All models by their nature have inherent advantages and disadvantages with 

regards to their ability to capture the salient features of a chosen system and provide 

insights into their workings. It is hoped that the work presented here addresses some of 

the limitations of traditional elasticity analysis and thus improves the value of matrix 

modelling to the task of endangered species conservation.    
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%Mark Trinder, 2003. 
%Density dependent, stochastic simulation model of a Wren population 
%Based on data collected in Mine Wood, Brideg of Allan, Stirling. 
 
clear all 
runno=1; %runno defines number of repeat simulations 
for runloop=1:runno;  
   runloop   
    
    
   %clears file stores 
   [fid,msg]=fopen('popl','w'); %population vector for all time steps 
   fclose(fid); 
   [fid,msg]=fopen('popl3','w'); %population vector excluding 0 entries 
   fclose(fid); 
   [fid,msg]=fopen('popl4','w'); %population vector excluding extinct runs  
   fclose(fid); 
   [fid,msg]=fopen('ssbdm','w'); %density dependent vital rate storage 
   fclose(fid); 
   [fid,msg]=fopen('ssibdm','w'); %density independent vital rate storage 
   fclose(fid); 
   [fid,msg]=fopen('finvad','w'); %female invader population storage 
   fclose(fid); 
   [fid,msg]=fopen('minvad','w'); %male invader population storage 
   fclose(fid); 
   [fid,msg]=fopen('fresid','w'); %female resident population storage 
   fclose(fid); 
   [fid,msg]=fopen('mresid','w'); %male resident population storage  
   fclose(fid); 
   [fid,msg]=fopen('spare','w'); %excess resident and invader numbers store 
   fclose(fid); 
   [fid,msg]=fopen('gendat','w'); %general breeding data store 
   fclose(fid); 
    
    
   %--------------model run info----------------------- 
   %the following section contains 'switches' for different  
   %subroutines in the model 
    
   invpopext=0; %takes a value of 0,1,2: 
   %switches between: 
   %(1) invasion elasticities  
   %(0) population elasticities 
   %(2) extinction elas 
    
   allrand=1; %turns all random routines on (1) or off (0)  
   density=1; %turns d.d. survival on (1) or off (0) 
   terrlimit=1; %breeding territory density dependence on (1) or off (0) 
   juvdd=0; %d.d. survival for all ages (0) or just juveniles (1) 
   mfext=1; %quasi-extinction level sum of both sexes (0) or just lower (1)  
       
    
   %individual random routine switches: 0-off, 1-on 
   env=1; %environmental stochasticity 
   demog1=1; %survival demographic stochasticity - for residents 
   demog2=0; %survival demog stoch - for invaders 
   demog3=1; %demographic stochasticity in birth sex ratio 
   covar=1; %vital rate covariance 
   randterr=1; %number of male breeding territories fixed/random 
   randterr2=0; %female breeding territories: (1) random and different from   
       %male number, (0) same as male (whether random or fixed) 
   binoterrm=0; %territory sharing between male residents and invaders,  
                %binomial or rounded to nearest integer 
   binoterrf=0; %territory sharing between female residents and invaders   
   breedattempts=1; %number of breeding attempts per individual 
   breedratio=1; %random ratio of female territories to male territories 
    
   %switches for breeding routines  
   mixedpairs=1; %excess res and inv breed together (1) or don't (0) 
   dominant=0; %excess res and inv mate and offspring all inv(1) or equal(0) 
   binomix=0; %offspring of mixed prs split res and inv by rounding (0) or binomially (1) 
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   switch allrand 
   case 0; %randomness switches all off (0) 
      env=0;  
      demog1=0;  
      demog2=0;  
      demog3=0;  
      covar=0;  
      randterr=0;  
      randterr2=0;  
      binoterrm=0;  
      binoterrf=0;  
      breedratio=0;  
      breedattempts=0;  
      dominant=0;  
      mixedpairs=0; 
      binomix=0;  
      breedratio=0;  
   end 
    
   quasiextmain=5; %sets extinction threshold  
   redvar=0.6; %reduces the size of the inpur vital rate variances  
    
   %popsizer is used to increase the simulated population size actual to any  
   %size range to reduce rounding errors and prevent population extinction 
   if invpopext==2; %extinction run 
      popsizer1=1;  
   else 
      popsizer1=1000; %popsizer1 applies to residents 
      popsizer2=10; %popsizer2 applies to invaders 
   end 
    
    
   %----------------invader format-------------------------- 
   %sets parameters to determine invasion format (if appropriate) 
   %number of time steps for each invasion, invaders only present  
   %for 1st half of time, the 2nd half is a recovery period for  residents 
   invp=200; 
    
   %number of time steps at beginning of invasion not used for  
   %invasion rate calculations 
   cut=15;  
    
   invdelay=50; %time period before first invasion 
   invprop1=0.2; %propn. of res turned into inv at beginning of invasion 
   rateindexstart=1; %counter used to record data 
    
    
   %----------displays run type and prompts for input data-------------- 
   if invpopext==1; out='invasion run';  
   elseif invpopext==0; out='population size run';  
   else out='extinction risk run';    
   end 
   disp(out) 
   switch invpopext 
   case 0 %population run 
      if runno==1; 
         years=input('how many years to simulate? '); 
         sim=input('how many simulation runs? '); 
         inc=input('perturbation value (range 0-0.05)? '); 
         pert=1; 
         ratepert1=2; %runloop+X 
      elseif runno>1; 
         years=500; 
         sim=13; 
         inc=0.01; 
         pert=1; 
         ratepert1=2; %runloop+X 
      end 
   case 1 %invasion run 
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      if runno==1; 
         years=input('how many years to simulate? '); 
         sim=input('how many simulation runs? '); 
         inc=input('perturbation value (range 0-0.05)? '); 
         pert=1; 
         ratepert1=2; %runloop+X 
      elseif runno>1; 
         years=160050; %160100 
         sim=13;  
         inc=0.05; 
         pert=1; 
         ratepert1=2; %runloop+X 
      end 
   case 2 
      if runno==1; 
         years=input('how many years to simulate? '); 
         sim=input('how many simulation runs? '); 
         inc=input('perturbation value (range 0-0.05)? '); 
         pert=input('how many repeats runs? '); 
         ratepert1=2; %runloop+X 
      elseif runno>1; 
         years=250; 
         sim=10; %repeat runs of the same perturbed parameter 
         inc=0.05;   
         pert=500;  
         ratepert1=1; %runloop+X 
      end 
   end 
    
    
   %bigrun reduces the size of files stored to aid in managing space 
   switch invpopext 
   case 0 
      if years>=100000; bigrun=1;  
      else bigrun=0; 
      end 
   case 1 
      if ((years-invdelay)/invp)>=100; bigrun=1; 
      else bigrun=0; 
      end 
   case 2 
      if pert>=1; bigrun=1;  
      else bigrun=0; 
      end 
   end 
    
   %if no d.d. routines operating, stochastic growth rates are calculated 
   if density==0 | terrlimit==0; stocha=1; else stocha=0; end       
    
   %d1main determines strength of denisty dependent survival parameter 'a' 
   d1main=0.0025; %0.0018 - 0.0036 (low to high values)  
   fred=1; %fred adjusts strength of female d.d. survival relative to males 
   %d2main determines strength of density dependent survival parameter 'b' 
   d2main=4; %2 - 10 (weak to strong) 
    
   cov=0.33; %degree of covariance between vital rates 
    
   %raise/raise2 adjust mean vital rate values to take account of d.d. in 
   %the recorded values 
   raise=1.2;  
   raise2=1.2; 
    
   %potir can be used to apply a rate of immigration into the population 
   potir=0; %usually set to 0 
   terrnomain=25; %sets the mean number of male breeding territories 
    
   %switch on (1) or off (0) file stores  
   saverates=1; %vital rates  
   savef=1; %general stuff (e.g. territory number etc) 
   savepop=1; %population data  
   %--------------------------------------------------------------------- 
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   %if inv elasticities: creates storage matrices (slope,slopedat)  
   switch invpopext; 
   case 1; 
      slopedat=zeros(floor((years-invdelay)/invp),sim); 
      slope=zeros(floor((years-invdelay)/invp),1); 
   case 0; 
      slopedat=0; 
   case 2 
      extprob=zeros(pert,sim); 
      slopedat=0; 
   end 
    
    
   %baseline demographic rates 
   %f/m - female/male; s/br - survival/fecundity; age classes 1-3 
   %means  %stds 
   fsm1=0.43; fssd1=0.11; 
   fsm2=0.52; fssd2=0.247;  
   fsm3=0.46; fssd3=0.21;  
    
   msm1=0.43; mssd1=0.11; 
   msm2=0.52; mssd2=0.247; 
   msm3=0.46; mssd3=0.21; 
    
   fbrm1=1.78; fbrsd1=0.34; 
   fbrm2=1.4; fbrsd2=0.79; 
   fbrm3=1.4; fbrsd3=0.79; 
    
   mbrm1=1.61; mbrsd1=0.27; 
   mbrm2=1.25; mbrsd2=0.48; 
   mbrm3=1.25; mbrsd3=0.48; 
    
   %mean and std breeding attempt numbers  
   fembrmean=[1.32;1.21;1.21]; 
   fembrstd=[0.05;0.21;0.21]; 
   malebrmean=[1.19;1.7;1.7]; 
   malebrstd=[0.14;0.11;0.11]; 
    
   %rates expressed in matrix form 
   mean2mat= [fbrm1*fsm1*fembrmean(1) fbrm2*fsm2*fembrmean(2) fbrm3*fsm3*fembrmean(3) 0 0 0; 
      fsm1   0    0    0    0    0; 
      0    fsm2   fsm3   0    0    0; 
      0 0 0 mbrm1*msm1*malebrmean(1) mbrm2*msm2*malebrmean(2) mbrm3*msm3*malebrmean(3); 
      0    0    0    msm1   0    0; 
      0    0    0    0    msm2   msm3]; 
    
   %adjustments to rates 
   means1 = [fbrm1 fbrm2 fbrm3 (fsm1*(raise)) (fsm2*(raise)) (fsm3*(raise)) (msm1*(raise)) 
(msm2*(raise)) (msm3*(raise)) mbrm1 mbrm2 mbrm3]; 
   means1mat=[fbrm1*fsm1 fbrm2*fsm2 fbrm3*fsm3; (fsm1) 0 0;0 (fsm2) (fsm3)]; 
    
   means=means1; 
   %switches between stochastic and deterministic runs 
   switch env; 
   case 1; 
      sds=[fbrsd1 fbrsd2 fbrsd3 fssd1 fssd2 fssd3 mssd1 mssd2 mssd3 mbrsd1 mbrsd2 mbrsd3]; 
   case 0; 
      sds=zeros(1,12); 
   end 
   sds=sds*redvar; %redvar adjusts rate variances 
   vars  = (sds).^2; 
    
   %rate covariance routine 
   %corr defines the correlation structure between the rates 
   switch covar; 
   case 1; 
      corr=  [1 cov cov -cov -cov -cov -cov -cov -cov  cov  cov  cov; 
         0 1.0  cov -cov -cov -cov -cov -cov -cov  cov  cov  cov; 
         0   0  1.0  -cov -cov -cov -cov -cov -cov  cov  cov  cov; 
         0   0    0   1.0   cov  cov  cov  cov  cov -cov -cov -cov; 
         0   0    0     0   1.0   cov  cov  cov  cov -cov -cov -cov; 
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         0   0    0     0     0   1.0   cov  cov  cov -cov -cov -cov; 
         0   0    0     0     0     0   1.0   cov  cov -cov -cov -cov; 
         0   0    0     0     0     0     0   1.0   cov -cov -cov -cov; 
         0   0    0     0     0     0     0     0   1.0  -cov -cov -cov; 
         0   0    0     0     0     0     0     0     0   1.0   cov  cov; 
         0   0    0     0     0     0     0     0     0     0   1.0   cov; 
         0   0    0     0     0     0     0     0     0     0     0   1.0]; 
   case 0; %deter covar mx 
      corr=eye(12); 
   end 
    
   elems = means; 
    
   %this turns the corr's into a symetrical matrix and z12 is cov matrix 
   np=12; %number of non-zero entries in population matrix 
   corrs = corr +(corr' - (eye(np))); 
   [uuu,eee] = eig(corrs); 
   z12 = uuu*(sqrt(abs(eee)))*uuu'; 
    
   %calculates beta cdf's for survival rates 
   for iii = 4:(np-3) 
      for fx100 = 1:101 
         ffx = (fx100-1)/100; 
         parabetas(fx100,(iii-3)) = betaval(means(iii),sqrt(vars(iii)),ffx); 
      end; %fx100 
      parabetas; %contains beta cdf's 
   end; %iii 
    
   [pb1,pb2]=find(parabetas>1); 
   parabetas(pb1,pb2)=1; 
    
   %-------------------------------------------------------- 
   %file storage index variable - determines the max size for matrices  
   %held in memory before being saved 
   if rem (years,10000)==0; 
      filesize=min(10000,years); 
   else filesize=min(5000,years); 
   end 
    
    
   switch invpopext 
   case 2 
      if pert==0; endperts=1; else endperts=pert; end; 
      %if pert==10; endperts=10; else endperts=13; end; 
   case 1 
      endperts=1; 
   case 0  
      endperts=1; 
   end 
    
    
   %-------------------population projection start------------------------- 
   %t is no. of program runs 
   for t=1:sim; t %simulation loop, prints to screen 
       
      switch invpopext 
      case 2 %extra file stores for extinction elasticity runs 
         [fid,msg]=fopen('popl','w');  
         fclose(fid); 
         [fid,msg]=fopen('popl3','w');  
         fclose(fid); 
         [fid,msg]=fopen('popl4','w');  
         fclose(fid); 
         [fid,msg]=fopen('ssbdm','w');  
         fclose(fid); 
      end 
       
      %------------------------perturbation loop start------------------- 
      %rate perturbations for elasticity analysis 
      for pertloop=1:endperts; %perturbation loop for extinction runs 
         if pertloop==1 | pertloop==pert; pertloop 
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         elseif rem (pertloop,(pert*0.5))==0, pertloop  
         end; 
          
         switch invpopext 
         case 1 
            pop=0; 
         otherwise 
            switch bigrun 
            case 1 
               pop=zeros(filesize,2); 
            otherwise 
               pop=zeros(filesize,9); 
            end 
            sbdm=zeros(filesize,12); 
         end 
          
         %adjust1/2 are used to change strength of d.d. for different  
         %simulation runs 
         popsizer=popsizer1;    
         adjust1=[1:0.5:15];  
         adjust2=[1:1:20];  
          
         %makes changes depending on which elasticities are being calculated 
         switch invpopext  
         %invasion    
         case 1  
            y=[40;12;8;40;12;8]; 
            adjust=[1:1:25]; 
            %d1=((d1main/popsizer)/(sum(y)/360))*adjust2(runloop); 
            d1=(d1main/popsizer)/(sum(y)/360); 
            %d2=d2main; 
            d2=d2main*adjust2(runloop); 
            invprop=invprop1; 
            init=sum(y); 
            terrno=terrnomain*popsizer; 
         %population size 
         case 0  
            y=[40;12;8;40;12;8]; 
            adjust=[1:1:25]; 
            %d1=((d1main/popsizer)/(sum(y)/360))*adjust2(runloop); 
            d1=(d1main/popsizer)/(sum(y)/360); 
            %d2=d2main; 
            d2=d2main*adjust2(runloop); 
            invprop=invprop1; 
            init=sum(y); 
            terrno=terrnomain*popsizer; 
         %extinction probability    
         case 2  
            y=[40;12;8;40;12;8]; 
            init=y; 
            invprop=invprop1; 
            popsizer=popsizer1; 
            %popsizer=popsizer1*adjust2(pertloop);    
            d1=((d1main/popsizer)/(sum(init)/360)); 
            %d1=((d1main/popsizer)/(sum(y)/360))*adjust1(pertloop); 
            d2=d2main;  
            %d2=d2main*adjust1(pertloop); 
            terrno=(terrnomain*popsizer)-adjust2(runloop); 
            %terrno=terrnomain*popsizer; 
            quasiext=quasiextmain*popsizer; 
            %quasiext=quasiextmain*adjust2(pertloop); 
            %quasiext=quasiextmain+adjust2(pertloop); 
         end 
          
          
         %resets randon number generators from the clock 
         rand('seed',sum(57*(clock)));  
         randn('seed',sum(100*(clock))); 
          
         y=y*popsizer; 
         invgen=1; 
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         yiallstart=zeros(6,1); 
          
         %builds covar random pop matrix 
         gr=y; 
         v=years; 
         A=zeros(years,np);  
         for mat=1:v; 
            uncov=randn(1,np); 
            rawelems=(z12*(uncov'))'; 
            elems(4)=parabetas(round(100*stnormfx(rawelems(4)))+1,1); 
            elems(5)=parabetas(round(100*stnormfx(rawelems(5)))+1,2); 
            elems(6)=parabetas(round(100*stnormfx(rawelems(6)))+1,3); 
            elems(7)=parabetas(round(100*stnormfx(rawelems(7)))+1,4); 
            elems(8)=parabetas(round(100*stnormfx(rawelems(8)))+1,5); 
            elems(9)=parabetas(round(100*stnormfx(rawelems(9)))+1,6); 
             
            for zz=1:(np-9); 
               elems(zz)=lnorms(means(zz),vars(zz),rawelems(zz)); 
            end; 
            for zz1=10:np; 
               elems(zz1)=lnorms(means(zz1),vars(zz1),rawelems(zz1)); 
            end; 
            elems1=elems; %elems1 contains a set of rates for one year 
             
            switch invpopext 
            case 2 
               switch stocha 
               case 0 %normal extinction runs 
                  ratepert=ratepert1; %2:13 (add 1 to rate to be perturbed) 
               case 1 %density independent stochastic sims 
                  ratepert=t;  
               end 
            otherwise 
               ratepert=t; 
            end 
                         
            switch invpopext; 
            case 0; %population size 
               ratepert=t; 
               if ratepert<=1; elems1=elems1; 
               elseif ratepert>=14; elems1=elems1; 
               else elems1(1,ratepert-1)=elems(1,ratepert-1)+(inc*elems(1,ratepert-1)); 
               end; 
            case 2; %extinction risk 
               if ratepert<=1; elems1=elems1; 
               elseif ratepert>=14; elems1=elems1; 
               else elems1(1,ratepert-1)=elems(1,ratepert-1)+(inc*elems(1,ratepert-1)); 
               end; 
            end 
             
             
             
            elems1(find(elems1(4:9)>1)+3)=1; 
            elems1(find(elems1(4:9)<0)+3)=0; 
            %A stores all rates for the whole simulation, one row per year             
            A(mat,:)=elems1; 
            A1=[fbrm1 fbrm2 fbrm3 fsm1 fsm2 fsm3 msm1 msm2 msm3 mbrm1 mbrm2 mbrm3]; 
             
         end 
         Am=mean(A); 
          
         %sets territory number to mean starting point 
         ball0=terrno; 
         terrsd=1*popsizer; 
          
         %switches envirnomental stochasticity on/off 
         switch env; 
         case 0; %off 
            A=repmat(A(1,:),years,1); 
            %A=repmat(A1,years,1); 
         case 1; %on 
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            A=A; 
         end 
          
         %------------------population simulation start------- 
         %gen is year  
         for gen=1:v; 
             
            if t>=2, ref=gen+((t-1)*v); 
            else ref=gen;end; 
            mp=init; 
             
            %demographic rates for year: (gen) 
            fbr1=A(gen,1); 
            fbr2=A(gen,2); 
            fbr3=A(gen,3); 
            fs0=A(gen,4); 
            fs1=A(gen,5); 
            fs2=A(gen,6); 
            ms0=A(gen,7);  
            ms1=A(gen,8);  
            ms2=A(gen,9);  
            mbr1=A(gen,10); 
            mbr2=A(gen,11); 
            mbr3=A(gen,12); 
             
            %-----------invaders---------- 
            %standard invasion 
            yistart=yiallstart; 
             
            switch invpopext; 
            case 1; 
               invdelay=invdelay; 
            case 0;  
               invdelay=years+1; 
            case 2 
               invdelay=years+1; 
            end 
             
            %invdelay lets res pop to get going before invs start 
            if invdelay==0; delay=0; invstart=1; 
            else  invstart=invdelay+1; %delay=[1:1:invdelay]; 
            end 
             
            %inv pop is set to be a propn of total pop at start of invasion 
            warning off; 
            yistart=round(y*invprop); %invprop sets the propn 
            warning on; 
             
            if gen<=invdelay; 
               yi=zeros(6,1); 
            else 
               switch invstart; 
               case gen; 
                  yi=yistart; %y  
                  switch terrlimit %switches between ghost and real inv 
                  case 1 
                     y=yistart*((1/invprop)-1);  
                  case 0 
                     y=y; %if ghost invasion 
                  end             
                  invgen=1; 
               case (rem(gen-invstart,invp))+invstart; 
                  yi=yistart; %y  
                  switch terrlimit 
                  case 1 
                     y=yistart*((1/invprop)-1);  
                  case 0 
                     y=y; 
                  end 
                  invgen=1; 
               otherwise 
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                  yi=yi; 
                  y=y; 
               end 
            end 
             
            %------------survival density dependent function-------------- 
            switch density; 
            case 1; 
               %dd by sex, just residents 
               totdd(1)=(1/(1+(((d1*fred)*sum(y(1:6)))^d2))); 
               totdd(2)=(1/(1+((d1*sum(y(1:6)))^d2))); 
                
               %dd by sex, residents and invaders 
               invdd(1)=(1/(1+(((d1*fred)*(sum(y(1:6))+sum(yi(1:6))))^d2))); 
               invdd(2)=(1/(1+((d1*(sum(y(1:6))+sum(yi(1:6))))^d2))); 
                
            case 0; 
               totdd=ones(1,2); 
               invdd=ones(1,2); 
            end 
             
            switch savef==1; 
            case 1;  
               dden(gen,1:2)=totdd; dden(gen,3:4)=invdd; 
            end; 
            dden(gen,1:2)=totdd; 
            %if unlimited territories then dd affects res only 
            %if terr limit is operating then invaders contribute to dd 
            switch terrlimit 
            case 1 
               dd=invdd; 
            case 0 
               dd=totdd; 
            end 
             
            %-----------survival routine---------------- 
             
            %-----------residents---------- 
            sv=[fs0;fs1;fs2;ms0;ms1;ms2]; 
            %switches density dependent survival between all ages (0) and  
            %just juveniles (1) 
            switch juvdd  
            case 1; 
               ressurvs(1)=sv(1)*dd(1); 
               ressurvs(2:3)=sv(2:3); 
               ressurvs(4)=sv(4)*dd(2); 
               ressurvs(5:6)=sv(5:6); 
            case 0; 
               ressurvs(1:3,1)=sv(1:3).*dd(1); 
               ressurvs(4:6,1)=sv(4:6).*dd(2); 
            end 
             
            switch demog1 
            %demographic stochasticity off (rounding)    
            case 0;  
               if y(1,1)<=0, ydd(1,1)=0; else ydd(1,1)=round(y(1)*ressurvs(1)); end; 
               if y(2,1)<=0, ydd(2,1)=0; else ydd(2,1)=round(y(2)*ressurvs(2)); end; 
               if y(3,1)<=0, ydd(3,1)=0; else ydd(3,1)=round(y(3)*ressurvs(3)); end; 
               if y(4,1)<=0, ydd(4,1)=0; else ydd(4,1)=round(y(4)*ressurvs(4)); end; 
               if y(5,1)<=0, ydd(5,1)=0; else ydd(5,1)=round(y(5)*ressurvs(5)); end; 
               if y(6,1)<=0, ydd(6,1)=0; else ydd(6,1)=round(y(6)*ressurvs(6)); end; 
                
            %demographic stochasticity on (binomial)    
            case 1;  
               warning off; 
               if y(1,1)<=0, ydd(1,1)=0; else ydd(1,1)=bino_rndc(1,y(1),(ressurvs(1))); end; 
               if y(2,1)<=0, ydd(2,1)=0; else ydd(2,1)=bino_rndc(1,y(2),(ressurvs(2))); end; 
               if y(3,1)<=0, ydd(3,1)=0; else ydd(3,1)=bino_rndc(1,y(3),(ressurvs(3))); end; 
               if y(4,1)<=0, ydd(4,1)=0; else ydd(4,1)=bino_rndc(1,y(4),(ressurvs(4))); end; 
               if y(5,1)<=0, ydd(5,1)=0; else ydd(5,1)=bino_rndc(1,y(5),(ressurvs(5))); end; 
               if y(6,1)<=0, ydd(6,1)=0; else ydd(6,1)=bino_rndc(1,y(6),(ressurvs(6))); end; 
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               warning on; 
            end 
            %ydd contains the density dependent survivors 
            ydd=max(ydd,0); 
             
            %---------------------- 
            warning off; 
            dds1=ydd./y; 
            dds=max(dds1,0); 
            dis(1:3,1)=min(dds(1:3)./dd(1),sv(1:3)); 
            dis(4:6,1)=min(dds(4:6)./dd(2),sv(4:6)); 
            warning on; 
            %dds - denisty dependent survival rate 
            %dis - denisty independent survival rates 
             
             
            %----------survival perturbation for invaders---------------- 
            %same survival rate as res, but turned back into d.i. rate 
            invsurvs(1:3,1)=dds(1:3,1)./dd(1);  
            invsurvs(4:6,1)=dds(4:6,1)./dd(2); 
            idds=zeros(6,1); 
            %now perturbtion is applied, to d.i. rate 
            if t>=5 & t<=7; 
               invsurvs(t-4)=(invsurvs(t-4)*(1+inc)); 
            elseif t>=8 & t<=10; 
               invsurvs(t-4)=(invsurvs(t-4)*(1+inc)); 
            else invsurvs=invsurvs; 
            end 
            %d.d. is reapplied - invsurvs now identical to ressurvs plus  
            %perturbation of rate 
            invsurvs(1:3)=invsurvs(1:3)*dd(1);  
            invsurvs(4:6)=invsurvs(4:6)*dd(2); 
            invsurvs(find(invsurvs(1:6)>1))=1; 
            invsurvs(find(invsurvs(1:6)<0))=0; 
             
             
             
            %--------------invader survival--------------------- 
            switch demog2; 
            case 1; %invaders binomial survival seperately from residents 
               if yi(1,1)<=0, yddi(1,1)=0; else yddi(1,1)=bino_rndc(1,yi(1),(invsurvs(1))); end; 
               if yi(2,1)<=0, yddi(2,1)=0; else yddi(2,1)=bino_rndc(1,yi(2),(invsurvs(2))); end; 
               if yi(3,1)<=0, yddi(3,1)=0; else yddi(3,1)=bino_rndc(1,yi(3),(invsurvs(3))); end; 
               if yi(4,1)<=0, yddi(4,1)=0; else yddi(4,1)=bino_rndc(1,yi(4),(invsurvs(4))); end; 
               if yi(5,1)<=0, yddi(5,1)=0; else yddi(5,1)=bino_rndc(1,yi(5),(invsurvs(5))); end; 
               if yi(6,1)<=0, yddi(6,1)=0; else yddi(6,1)=bino_rndc(1,yi(6),(invsurvs(6))); end; 
                
            case 0; %invader survival rates identical to resident 
               if yi(1,1)<=0, yddi(1,1)=0; else yddi(1,1)=round(yi(1)*invsurvs(1)); end; 
               if yi(2,1)<=0, yddi(2,1)=0; else yddi(2,1)=round(yi(2)*invsurvs(2)); end; 
               if yi(3,1)<=0, yddi(3,1)=0; else yddi(3,1)=round(yi(3)*invsurvs(3)); end; 
               if yi(4,1)<=0, yddi(4,1)=0; else yddi(4,1)=round(yi(4)*invsurvs(4)); end; 
               if yi(5,1)<=0, yddi(5,1)=0; else yddi(5,1)=round(yi(5)*invsurvs(5)); end; 
               if yi(6,1)<=0, yddi(6,1)=0; else yddi(6,1)=round(yi(6)*invsurvs(6)); end; 
            end    
             
            yddi=max(0,yddi); 
             
            warning off; 
            idds1=yddi./yi; 
            warning on;       
             
            idds=max(idds1,0); 
             
             
            %---------------reproduction----------------- 
            %territory number changes randomly each year, mid keeps the  
            %change small and prevents big jumps up and down. if  
            %territory no. falls in one year it is likely to go up again next. 
            mid=(1-(ball0/terrno))*10*popsizer; 
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            switch randterr; 
            case 1; 
               ball=round(rnorm(1,mid,terrsd))+ball0; 
            case 0; 
               ball=terrno; 
            end 
             
            %territory no. even so no territory advantage for inv or res 
            if rem(ball,2)==1; ball=ball+1; 
            else ball=ball; 
            end 
             
            %use to turn off territory density dependence 
            if terrlimit==0; ball=Inf; else ball=ball; end 
             
           % %lastyr is used to set immi rate, using  
           % if gen<=1, lastyr1=ball; else lastyr1=sum(Mres)-Kplus; end;  
           % if lastyr1<=0, lastyr=0; else lastyr=lastyr1; end; 
             
             
            %resident older males (Mres(2:3)) 
            Mres(3,1)=ydd(6); 
            Mres(2,1)=ydd(5); 
            Mres(1,1)=0; 
             
            %invader older males (Minv(2:3)) 
            Minv(3,1)=yddi(6); 
            Minv(2,1)=yddi(5); 
            Minv(1,1)=0; 
             
            Mres=max(Mres,0); 
             
            %-------------male territory allocation----------------------- 
            switch terrlimit 
            case 0 
               Mres(1)=ydd(4); 
               Minv(1)=yddi(4); 
            case 1 
                
               if ydd(4)+yddi(4)<=(ball-(sum(Mres(2:3))+sum(Minv(2:3))));  
      Mres(1)=ydd(4); Minv(1)=yddi(4);  
               elseif yddi(4)==0; Minv(1)=0;  
      Mres(1)=min((ball-(sum(Mres(2:3))+sum(Minv(2:3)))),ydd(4)); 
               else 
                  switch binoterrm; %invader first 
                  case 1; %binomial sharing of territories based on proportions of inv and res 
                     if  (ball-(sum(Minv(2:3))+sum(Mres(2:3))))<=0; Mres(1)=0;  
                     else 
                        Minv(1)=bino_rndc(1,(ball- 
      (sum(Mres(2:3))+sum(Minv(2:3)))),(yddi(4))/(yddi(4)+ydd(4))); 
                     end 
                      
                  case 0; %territories shared in proportion to nos of inv and res 
                     if (ball-(sum(Mres(2:3))+sum(Minv(2:3))))<=0; Minv(1)=0; 
                     else 
                        Mres(1)=round((ydd(4)/(ydd(4)+yddi(4)))*(ball-(sum(Minv(2:3))+sum(Mres(2:3))))); 
                     end 
                  end 
               end; 
                
               %%alternative territory allocation by rounding, inv or res first: 
                
               if Mres(1)==0; 
                  %%if invs went first 
                  if Minv(1)>=(ball-(sum(Mres(2:3))+sum(Minv(2:3))));  
                     Minv(1)=(ball-(sum(Mres(2:3))+sum(Minv(2:3))));  
                  elseif Minv(1)>yddi(4); Minv(1)=yddi(4); 
                  else Minv(1)=Minv(1);  
                  end; 
                  Mres(1)=max(ball-(sum(Mres(2:3))+sum(Minv)),0); 
                  if Mres(1)>ydd(4); Mres(1)=ydd(4); 
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                  else Mres(1)=Mres(1); 
                  end 
               else 
                  %if res went first 
                  if Mres(1)>=(ball-(sum(Mres(2:3))+sum(Minv(2:3))));  
                     Mres(1)=(ball-(sum(Mres(2:3))+sum(Minv(2:3))));  
                  elseif Mres(1)>ydd(4); Mres(1)=ydd(4); 
                  else Mres(1)=Mres(1);  
                  end; 
                  Minv(1)=max(ball-(sum(Minv(2:3))+sum(Mres)),0); 
                  if Minv(1)>yddi(4); Minv(1)=yddi(4); 
                  else Minv(1)=Minv(1); 
                  end 
               end 
            end 
             
            %-------------------------------------------------- 
            %population vectors updated 
            y1(5,1)=Mres(1); 
            y1(6,1)=sum(Mres(2:3)); 
            yi1(5,1)=Minv(1); 
            yi1(6,1)=sum(Minv(2:3)); 
             
            %randomly changes sex ratio for breeding territories 
            switch breedratio; 
            case 0; 
               sr=1; 
            case 1; 
               sr=rnorm(1,1,0.16); 
            end 
             
            switch randterr2; 
            case 1; 
               femterr=round(sr*(ball));  
            case 0; 
               femterr=ball; 
            end 
             
            if rem(femterr,2)==1; femterr=femterr+1; 
            else femterr=femterr; 
            end 
             
            %resident older females (Fres(2:3)) 
            Fres(3,1)=ydd(3); 
            Fres(2,1)=ydd(2); 
            Fres(1,1)=0; 
             
            %invader older females (Finv(2:3)) 
            Finv(3,1)=yddi(3); 
            Finv(2,1)=yddi(2); 
            Finv(1,1)=0; 
             
             
            %----------------female territory allocation------------ 
            switch terrlimit 
            case 0 
               Fres(1)=ydd(1); 
               Finv(1)=yddi(1); 
            case 1 
                
               if ydd(1)+yddi(1)<=(femterr-(sum(Fres(2:3))+sum(Finv(2:3))));  
      Fres(1)=ydd(1); Finv(1)=yddi(1);  
               elseif yddi(1)==0; Finv(1)=0;  
      Fres(1)=min((femterr-(sum(Fres(2:3))+sum(Finv(2:3)))),ydd(1)); 
               else 
                  switch binoterrf; 
                  case 1; 
                     if  (femterr-(sum(Finv(2:3))+sum(Fres(2:3))))<=0; Fres(1)=0; 
                     else 
                        Fres(1)=bino_rndc(1,(femterr- 
       (sum(Fres(2:3))+sum(Finv(2:3)))),((ydd(1))/((ydd(1))+yddi(1)))); 
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                     end 
                      
                  case 0; 
                     if (femterr-(sum(Fres(2:3))+sum(Finv(2:3))))<=0; Finv(1)=0; 
                     else 
                        Fres(1)=round((femterr- 
       (sum(Finv(2:3))+sum(Fres(2:3))))*((ydd(1)/((yddi(1))+ydd(1))))); 
                     end 
                  end 
               end 
                
               %alternative territory allocation using rounding: 
                
               if Fres(1)==0; 
                  %%if inv went first 
                  if Finv(1)>=(femterr-(sum(Fres(2:3))+sum(Finv(2:3)))); 
                     Finv(1)=(femterr-(sum(Fres(2:3))+sum(Finv(2:3)))); 
                  elseif Finv(1)>yddi(1); Finv(1)=yddi(1); 
                  else Finv(1)=Finv(1);  
                  end; 
                  Fres(1)=max(femterr-(sum(Fres(2:3))+sum(Finv)),0); 
                  if Fres(1)>ydd(1); Mres(1)=ydd(1); 
                  else Fres(1)=Fres(1); 
                  end 
               else 
                  %%if res went first 
                  if Fres(1)>=(femterr-(sum(Fres(2:3))+sum(Finv(2:3)))); 
                     Fres(1)=(femterr-(sum(Fres(2:3))+sum(Finv(2:3)))); 
                  elseif Fres(1)>ydd(1); Fres(1)=ydd(1); 
                  else Fres(1)=Fres(1); 
                  end; 
                  Finv(1)=max(femterr-(sum(Finv(2:3))+sum(Fres)),0); 
                  if Finv(1)>yddi(1); Finv(1)=yddi(1); 
                  else Finv(1)=Finv(1); 
                  end 
               end 
            end 
            %---------------------------------------------------------- 
             
             
            %breeding slots split between residents and invaders, invaders mating with surplus residents 
            aFres(3,1)=(min(Fres(3),round(sum(Mres)*sr))); 
            aFres(2,1)=(min(Fres(2),round(sum((Mres)*sr)-(aFres(3))))); 
            aFres(1,1)=(min(Fres(1),round(sum((Mres)*sr)-(aFres(3)+aFres(2))))); 
            Frsp=(Fres)-(aFres); 
            if sum(Frsp)>0, Frsp=Frsp; else Frsp=0; end 
             
            aMres(3,1)=(min(Mres(3),round(sum(aFres)/sr))); 
            aMres(2,1)=(min(Mres(2),round(sum((aFres)/sr)-(aMres(3))))); 
            aMres(1,1)=(min(Mres(1),round(sum((aFres)/sr)-(aMres(3)+aMres(2))))); 
            Mrsp=(Mres)-(aMres); 
            if sum(Mrsp)>0, Mrsp=Mrsp; else Mrsp=0; end 
             
            switch terrlimit %if ghost invasions no limit to invader breeding 
            case 0 
               aFinv=Finv; 
               aMinv=Minv; 
            case 1 
                
               switch dominant; 
               case 1; %all mixed pairs produce invaders - invader dominant 
                  %---spare residents breed with invaders 
                  aFinv(3,1)=(min(Finv(3),round((sum(Mrsp)+sum(Minv))*sr))); 
                  aFinv(2,1)=(min(Finv(2),round(((sum(Mrsp)+sum(Minv))*sr)-(aFinv(3))))); 
                  aFinv(1,1)=(min(Finv(1),round(((sum(Mrsp)+sum(Minv))*sr)-(aFinv(3)+aFinv(2))))); 
                  Fisp=sum(Finv)-sum(aFinv); 
                  if sum(Fisp)>0, Fisp=Fisp; else Fisp=0; end 
                   
                  aMinv(3,1)=(min(Minv(3),round((sum(aFrsp)+sum(Finv))/sr))); 
                  aMinv(2,1)=(min(Minv(2),round(((sum(aFrsp)+sum(Finv))/sr)-(aMinv(3))))); 
                  aMinv(1,1)=(min(Minv(1),round(((sum(aFrsp)+sum(Finv))/sr)-(aMinv(3)+aMinv(2))))); 
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                  Misp=sum(Minv)-sum(aMinv); 
                  if sum(Misp)>0, Misp=Misp; else Misp=0; end 
                   
                   
                  %----spare residents DONT breed with invaders, yet.... 
               case 0; %no dominance 
                  aFinv(3,1)=(min(Finv(3),round(sum(Minv)*sr))); 
                  aFinv(2,1)=(min(Finv(2),round(sum((Minv)*sr)-(aFinv(3))))); 
                  aFinv(1,1)=(min(Finv(1),round(sum((Minv)*sr)-(aFinv(3)+aFinv(2))))); 
                  Fisp=(Finv)-(aFinv); 
                  if sum(Fisp)>0, Fisp=Fisp; else Fisp=0; end 
                   
                  aMinv(3,1)=(min(Minv(3),round(sum(aFinv)/sr))); 
                  aMinv(2,1)=(min(Minv(2),round(sum((aFinv)/sr)-(aMinv(3))))); 
                  aMinv(1,1)=(min(Minv(1),round(sum((aFinv)/sr)-(aMinv(3)+aMinv(2))))); 
                  Misp=(Minv)-(aMinv); 
                  if sum(Misp)>0, Misp=Misp; else Misp=0; end 
                   
                   
                  %mixed pairings - half invader offspring and half resident 
                  switch mixedpairs 
                  case 1; %even split of offpsring from mixed pairs 
                     mixed(1,1)=min(round(sum(Mrsp)*sr),sum(Fisp)); 
                     mixed(2,1)=min(round(sum(Misp)*sr),sum(Frsp)); 
                     extra=zeros(2,1); 
                     %mixed=zeros(2,1); %turned off mixed pairs 
                     if mixed(1)<=0; aFinv=aFinv; aMres=aMres; 
                     else 
                        switch binomix; 
                        case 1; 
                           extra(1)=(bino_rndc(1,mixed(1),0.5));  %mixed(1); 
                        case 0; 
                           extra(1)=round(mixed(1)*0.5); 
                        end       
                        %instead - add all overlap to both male and female 
                        extra=mixed; 
                        aFinv(1)=aFinv(1)+extra(1); 
                        %aMinv(1)=aMinv(1)+extra(1); 
                        aMres(1)=aMres(1)+(extra(1)); 
                        %aFres(1)=aFres(1)+(mixed(1)-extra(1)); 
                     end 
                      
                     if mixed(2)<=0; aFres=aFres; aMinv=aMinv; 
                     else 
                        switch binomix; 
                        case 1; 
                           extra(2)=(bino_rndc(1,mixed(2),0.5)); %mixed(2); 
                        case 0; 
                           extra(2)=round(mixed(2)*0.5); 
                        end 
                        %instead add all to both 
                        extra=mixed; 
                        aMinv(1)=aMinv(1)+extra(2); 
                        aFres(1)=aFres(1)+(extra(2)); 
                     end 
                  end 
               end 
            end 
             
            %----------------------- 
            %fembrmean/std = mean/std female breeding attempts by age class 
            %br=fem breeding attempts:either mean or random  
            switch breedattempts; 
            case 0; 
               br=fembrmean; 
            case 1; 
               br(1,1)=rnorm(1,fembrmean(1),fembrstd(1)); 
               br(2,1)=rnorm(1,fembrmean(2),fembrstd(2)); 
               br(3,1)=br(2,1); 
            end 
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            %bratts=total no. feeding attempts for both res and inv females 
            %bratts=round(br.*(aFres+aFinv)); 
             
            %breeding attempts split into res and inv 
            %totfbr=total no. breeding attempts for both res and inv females 
            resfbr=round(aFres.*br); 
            invfbr=round(aFinv.*br); 
            totfbr=resfbr+invfbr; 
            bratts=sum(totfbr); 
             
            %male breeding attempts 
            %apportioning breeding attempts by male age 
            switch breedattempts; 
            case 0; 
               br2=malebrmean; 
            case 1; 
               br2(1,1)=lnorms(1,malebrmean(1),malebrstd(1)); 
               br2(2,1)=rnorm(1,malebrmean(2),malebrstd(2)); 
               br2(3,1)=br2(2,1); 
            end 
             
            %maleadjust keeps br atts in the age specific proportions,  
            %but modifies to match the number of female br atts 
            warning off; 
            maleadjust=max(sum(totfbr)/sum(br2.*((aMres+aMinv))),0); 
            %malebr=modified rates 
            br3=br2.*maleadjust; 
            warning on; 
             
            resmbr=round(br3.*aMres); 
            invmbr=round(br3.*aMinv); 
            totmbr=resmbr+invmbr; 
             
            %ensures that total breeding is equal for both sexes, by  
            %randomly reducing any extras caused by rounding 
            %p and q used to randomly select which age to reduce  
            p=ceil(2*(rand(1))); %rand no between 1 and 2 
            q=ceil(3*(rand(1))); %rand no between 1 and 3 
            if sum(totmbr)==sum(totfbr); totmbr=totmbr; totfbr=totfbr; 
            elseif sum(totmbr)>sum(totfbr) & sum(invmbr)<=0;  
               resmbr(q)=resmbr(q)-(sum(totmbr)-sum(totfbr)); 
            elseif sum(totmbr)>sum(totfbr) & sum(invmbr)>0;  
               if p==1; resmbr(q)=resmbr(q)-(sum(totmbr)-sum(totfbr)); 
               else p==2; invmbr(q)=invmbr(q)-(sum(totmbr)-sum(totfbr)); 
               end; 
            elseif sum(totmbr)<sum(totfbr) & sum(invmbr)<=0;          
               resfbr(q)=resfbr(q)-(sum(totfbr)-sum(totmbr)); 
            elseif sum(totmbr)<sum(totfbr) & sum(invmbr)>0; 
               if p==1; resfbr(q)=resfbr(q)-(sum(totfbr)-sum(totmbr)); 
               else p==2; invfbr(q)=invfbr(q)-(sum(totfbr)-sum(totmbr)); 
               end; 
            end; 
             
            totmbr=resmbr+invmbr; 
            totfbr=resfbr+invfbr; 
            %sum(totmbr) should equal sum(totfbr).  
            %if not then 'gen' is printed to screen as a warning! 
            if (sum(totmbr)-sum(totfbr))>=1; gen 
            elseif (sum(totmbr)-sum(totfbr))<=-1; gen 
            end 
             
            %-----------breeding data store--------------- 
            if gen==1; rateind2=rateindexstart; 
            elseif gen>1 & rem((gen-1),filesize)==0; rateind2=rateindexstart; 
            else rateind2=rateind2; 
            end 
             
            switch savef; 
            case 1; 
                
               switch invpopext; 
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               case 1; 
                  finvad1(rateind2,1:3)=aFinv';  
                  finvad1(rateind2,4:6)=invfbr';  
                  finvad1(rateind2,7)=sum(Fisp); 
                   
                  minvad1(rateind2,1:3)=aMinv'; 
                  minvad1(rateind2,4:6)=invmbr'; 
                  minvad1(rateind2,7)=sum(Misp); 
                   
                  spare1(rateind2,1)=sum(Frsp); 
                  spare1(rateind2,2)=sum(Mrsp); 
                  spare1(rateind2,3)=sum(Fisp); 
                  spare1(rateind2,4)=sum(Misp); 
                   
                  switch rateind2; 
                  case filesize; 
                     fid=fopen('finvad', 'a'); 
                     fprintf(fid,'%10g %10g %10g %10g %10g %10g %10g\r',finvad1'); 
                     fclose(fid); 
                     fid=fopen('minvad', 'a'); 
                     fprintf(fid,'%10g %10g %10g %10g %10g %10g %10g\r',minvad1'); 
                     fclose(fid); 
                     fid=fopen('spare', 'a'); 
                     fprintf(fid,'%10g %10g %10g %10g\r',spare1'); 
                     fclose(fid); 
                  end 
                   
               case 0; 
                  finvad1=0; 
                  minvad1=0; 
                  spare1=0; 
                   
               case 2; 
                  finvad1=0; 
                  minvad1=0; 
                  spare1=0; 
                   
               end 
                
               fresid1(rateind2,1:3)=aFres'; 
               fresid1(rateind2,4:6)=resfbr'; 
               fresid1(rateind2,7)=sum(Frsp); 
                
               mresid1(rateind2,1:3)=aMres'; 
               mresid1(rateind2,4:6)=resmbr'; 
               mresid1(rateind2,7)=sum(Mrsp); 
                
               gendat1(rateind2,1)=ball; 
               gendat1(rateind2,2)=femterr; 
               gendat1(rateind2,3:5)=br'; 
               gendat1(rateind2,6:8)=br3'; 
               gendat1(rateind2,9)=bratts; 
                
               switch rateind2; 
               case filesize; 
                  fid=fopen('fresid', 'a'); 
                  fprintf(fid,'%10g %10g %10g %10g %10g %10g %10g\r',fresid1'); 
                  fclose(fid); 
                  fid=fopen('mresid', 'a'); 
                  fprintf(fid,'%10g %10g %10g %10g %10g %10g %10g\r',mresid1'); 
                  fclose(fid); 
                  fid=fopen('gendat', 'a'); 
                  fprintf(fid,'%10g %10g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %10g\r',gendat1'); 
                  fclose(fid); 
               end 
                
            case 0; 
               finvad1=0; 
               minvad1=0; 
               fresid1=0; 
               mresid1=0; 
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               gendat1=0; 
               spare1=0; 
            end 
             
            reps1=[fbr1;fbr2;fbr3;mbr1;mbr2;mbr3]; 
             
             
            %----------breeding attempt reproduction------------ 
            y1rf(1,1)=round(resfbr(1)*reps1(1)); 
            y1rf(2,1)=round(resfbr(2)*reps1(2)); 
            y1rf(3,1)=round(resfbr(3)*reps1(3)); 
            y1rm(1,1)=round(resmbr(1)*reps1(4)); 
            y1rm(2,1)=round(resmbr(2)*reps1(5)); 
            y1rm(3,1)=round(resmbr(3)*reps1(6)); 
             
            warning off; 
            reps2(1:3)=max(0,y1rf./resfbr); 
            reps2(4:6)=max(0,y1rm./resmbr); 
            warning on; 
             
            %----------------------------------------- 
             
             
            invreps=reps2; 
            if t>=2 & t<=4; 
               invreps(t-1)=invreps(t-1)*(inc+1); 
            elseif t>=11 & t<=13; 
               invreps(t-7)=invreps(t-7)*(inc+1); 
            else invreps=invreps; 
            end 
             
            y1if(1,1)=round(invfbr(1)*invreps(1)); 
            y1if(2,1)=round(invfbr(2)*invreps(2)); 
            y1if(3,1)=round(invfbr(3)*invreps(3)); 
            y1im(1,1)=round(invmbr(1)*invreps(4)); 
            y1im(2,1)=round(invmbr(2)*invreps(5)); 
            y1im(3,1)=round(invmbr(3)*invreps(6)); 
             
            %offspring combined 
            y1rt=y1rf+y1rm; 
            y1it=y1if+y1im; 
             
             
            %and split into males and females 
            switch demog3 
            case 0; %deterministic 
               %resident 
               if y1rt(1,1)<=0, y1m(1,1)=0;  
               else y1m(1,1)=y1rt(1,1)*0.5; 
               end; 
               if y1rt(2,1)<=0, y1m(2,1)=0;  
               else y1m(2,1)=y1rt(2,1)*0.5;  
               end; 
               if y1rt(3,1)<=0, y1m(3,1)=0;  
               else y1m(3,1)=y1rt(3,1)*0.5;  
               end; 
               %invader 
               if y1it(1,1)<=0, yi1m(1,1)=0;  
               else yi1m(1,1)=y1it(1,1)*0.5; 
               end; 
               if y1it(2,1)<=0, yi1m(2,1)=0;  
               else yi1m(2,1)=y1it(2,1)*0.5; 
               end; 
               if y1it(3,1)<=0, yi1m(3,1)=0;  
               else yi1m(3,1)=y1it(3,1)*0.5; 
               end; 
                
            case 1; %binomial 
               %resident 
               if y1rt(1,1)<=0, y1m(1,1)=0;  
               else y1m(1,1)=bino_rndc(1,y1rt(1,1),0.5);  
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               end; 
               if y1rt(2,1)<=0, y1m(2,1)=0;  
               else y1m(2,1)=bino_rndc(1,y1rt(2,1),0.5);  
               end; 
               if y1rt(3,1)<=0, y1m(3,1)=0;  
               else y1m(3,1)=bino_rndc(1,y1rt(3,1),0.5);  
               end; 
                
               warning off; 
               maleprop=y1m./y1rt;   
               maleprop=max(maleprop,0); 
               warning on; 
                
                
               %invader split done using resident data 
               if y1it==0; yi1m=0; 
               else yi1m=y1it.*maleprop; 
               end 
            end 
             
            yi1m=round(yi1m); 
            yi1f=y1it-yi1m; 
            y1m=round(y1m); 
            y1f=y1rt-y1m; 
             
            y1(1,1)=sum(y1f);  
            y1(4,1)=sum(y1m); 
             
            unpert=ones(6,1); 
            warning off; 
            iBdm(1,1)=max(((y1if(1,1)/((aFinv(1))))*invsurvs(1)),0); 
            iBdm(2,1)=max(((y1if(2,1)/((aFinv(2))))*invsurvs(2)),0); 
            iBdm(3,1)=max(((y1if(3,1)/((aFinv(3))))*invsurvs(3)),0); 
            iBdm(4:9,1)=min(yddi,idds); 
            iBdm(10,1)=max(((y1im(1,1)/((aMinv(1))))*invsurvs(4)),0); 
            iBdm(11,1)=max(((y1im(2,1)/((aMinv(2))))*invsurvs(5)),0); 
            iBdm(12,1)=max(((y1im(3,1)/((aMinv(3))))*invsurvs(6)),0); 
            warning on; 
             
            %file store: reproduction parameters,   
            warning off; 
            %Bim1-6 are d.i. rates (rand rep rates*den ind survival) 
            Bim(1,1)=max(((fbr1*(y1f(1))/(y1rt(1)))*dis(1)),0); 
            Bim(2,1)=max(((fbr2*(y1f(2))/(y1rt(2)))*dis(2)),0); 
            Bim(3,1)=max(((fbr3*(y1f(3))/(y1rt(3)))*dis(3)),0); 
            Bim(4:6)=dis(1:3); 
            Bim(7:9)=dis(4:6); 
            Bim(10,1)=max(((mbr1*(y1m(1))/(y1rt(1)))*dis(4)),0); 
            Bim(11,1)=max(((mbr2*(y1m(2))/(y1rt(2)))*dis(5)),0); 
            Bim(12,1)=max(((mbr3*(y1m(3))/(y1rt(3)))*dis(6)),0); 
            warning on; 
             
            %prevents minus values 
            y1=max(y1,0); 
             
            %Bdm4-6 are density dependent survival rates  
            Bdm(4:9,1)=min(y,dds); 
            %Bdm1-3 are density dependent fecudity rates 
            warning off; 
            Bdm(1:3,1)=max(y1rf(1:3,1)./aFres(1:3,1),0); 
            Bdm(10:12,1)=max(y1rm(1:3,1)./aMres(1:3,1),0); 
            iBdm(1:3,1)=max(y1if(1:3,1)./aFinv(1:3,1),0); 
            iBdm(10:12,1)=max(y1im(1:3,1)./aMinv(1:3,1),0); 
            warning on; 
             
            Bdm(find(isinf(Bdm)))=0; 
            Bdm(find(isnan(Bdm)))=0; 
            iBdm(find(isinf(iBdm)))=0; 
            iBdm(find(isnan(iBdm)))=0; 
             
            switch saverates; %saves demographic rates 
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            case 1;  
               if gen==1; rateind=rateindexstart; 
               elseif rem((gen-1),filesize)==0; rateind=rateindexstart; 
               else rateind=rateind; 
               end 
                
               %filesize=min(10000,years); 
               switch bigrun 
               case 1 
                  switch invpopext 
                  case 0 
                     switch t 
                     case 1 
                        sbdm(rateind,:)=Bdm'; 
                        switch rateind; 
                        case filesize; 
                           fid=fopen('ssbdm', 'a'); 
                           fprintf(fid,'%0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g 
%0.4g %0.4g\r',sbdm'); 
                           fclose(fid); 
                        end 
                     end 
                  otherwise 
                     sbdm(rateind,:)=Bdm'; 
                     switch rateind; 
                     case filesize; 
                        fid=fopen('ssbdm', 'a'); 
                        fprintf(fid,'%0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g 
%0.4g\r',sbdm'); 
                        fclose(fid); 
                     end 
                  end 
               otherwise 
                  sbdm(rateind,:)=Bdm'; 
                  switch rateind; 
                  case filesize; 
                     fid=fopen('ssbdm', 'a'); 
                     fprintf(fid,'%0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g 
%0.4g\r',sbdm'); 
                     fclose(fid); 
                  end 
               end 
                
                
               switch invpopext; 
               case 1; 
                  sibdm(rateind,:)=iBdm'; 
                  switch rateind; 
                  case filesize; 
                     fid=fopen('ssibdm', 'a'); 
                     fprintf(fid,'%0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g %0.4g 
%0.4g\r',sibdm'); 
                     fclose(fid); 
                  end 
               case 0; 
                  sibdm=0; 
               case 2; 
                  sibdm=0; 
               end 
               rateind=rateind+1; 
                
                
            case 0; 
               sbdm=0; 
               sibdm=0;    
            end 
             
            %baserates saves rates from baseline invasion (when inc=0) 
            switch t; 
            case 1;  
               baserates(gen,:)=iBdm'; 
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            end 
             
            transition=zeros(6,6); 
            transition(2,1)=1;  
            transition(3,2)=1;  
            transition(3,3)=1;  
            transition(5,4)=1;  
            transition(6,5)=1;  
            transition(6,6)=1; 
             
            yi(1:3,1)=aFinv; 
            yi(4:6,1)=aMinv; 
            y(1:3,1)=aFres; 
            y(4:6,1)=aMres; 
             
            if rem (invgen,invp+1)==0; invgen=1; invpop=zeros(invp,1);  
            else invgen=invgen;  end 
             
            if gen<=invdelay; invgen=1; else invgen=invgen; end; 
            %invend set as smaller:50 or invp/2 
            invend=invp-max(50,round(invp/2));  
            if invgen>=invend; yi=zeros(6,1); yi1f=0; yi1m=0; else yi=yi;end 
             
            yi1=(transition*yi); 
            y1=(transition*y); 
             
            yi1(1,1)=sum(yi1f);  
            yi1(4,1)=sum(yi1m); 
            y1(1,1)=sum(y1f); 
            y1(4,1)=sum(y1m); 
             
             
             
            %---------invasion tracking and slope calculation------------- 
            linvpop(1:(invend-1-cut),1)=ones; 
            linvpop(1:(invend-1-cut),2)=(1:1:(invend-cut-1))'; 
            linvpop(1:(invend-1-cut),3)=zeros; 
             
            %resident check - to compare to invaders 
            linvpop2(1:(invend-1-cut),1)=ones; 
            linvpop2(1:(invend-1-cut),2)=(1:1:(invend-cut-1))'; 
            linvpop2(1:(invend-1-cut),3)=zeros; 
             
            if sum(yi)==0; invpop(invgen,1)=1;  
            else invpop(invgen,1)=sum(yi1); 
            end 
             
            %resident check 
            if sum(y)==0; invpop2(invgen,1)=1;  
            else invpop2(invgen,1)=sum(y1); 
            end 
             
            yi=yi1; 
            if invgen<=invp-1; linvpop=linvpop; 
            else invgen>=invp; invgen=invp; linvpop(:,3)=log(invpop(cut+1:invend-1,1)); 
               if sum(linvpop(:,3))<=0; ireg=zeros(2,1); 
               else ireg=regress(linvpop(:,3),linvpop(:,1:2));  
               end; 
               slope((gen-invdelay)/invp,1)=ireg(2); 
            end 
             
            %resident check 
            if invgen<=invp-1; linvpop2=linvpop2; 
            else invgen>=invp; invgen=invp; linvpop2(:,3)=log(invpop2(cut+1:invend-1,1)); 
               if sum(linvpop2(:,3))<=0; ireg2=zeros(2,1); 
               else ireg2=regress(linvpop2(:,3),linvpop2(:,1:2));  
               end; 
               slope2((gen-invdelay)/invp,1)=ireg2(2); 
            end 
             
            invgen=invgen+1; 
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            %age class pop size stored for each year, females then males 
            switch invpopext 
            case 0          
               switch bigrun 
               case 1; 
                  pop(rateind2,1)=sum(y1(1:3,1)); 
                  pop(rateind2,2)=sum(y1(4:6),1); 
               otherwise 
                  pop(rateind2,1:3)=y1(1:3,1)'; 
                  pop(rateind2,4)=sum(y1(1:3,1)); 
                  pop(rateind2,5:7)=y1(4:6,1)'; 
                  pop(rateind2,8)=sum(y1(4:6,1)); 
                  pop(rateind2,9)=sum(y1); 
               end 
            case 1 
               pop(rateind2,1:3)=y1(1:3,1)'; 
               pop(rateind2,4)=sum(y1(1:3,1)); 
               pop(rateind2,5:7)=y1(4:6,1)'; 
               pop(rateind2,8)=sum(y1(4:6,1)); 
               pop(rateind2,9)=sum(y1); 
            case 2  
               pop(rateind2,1:3)=y1(1:3,1)'; 
               pop(rateind2,4)=sum(y1(1:3,1)); 
               pop(rateind2,5:7)=y1(4:6,1)'; 
               pop(rateind2,8)=sum(y1(4:6,1)); 
               pop(rateind2,9)=sum(y1); 
            end 
             
            switch invpopext 
            case 2 
               switch mfext 
               case 0 
                  %total pop 
                  if sum(y1)<=(quasiext); rateind2=filesize; 
                  else rateind2=rateind2; 
                  end 
                   
               case 1 
                  %male/female version 
                  if min((sum(y1(1:3))),(sum(y1(4:6))))<=(quasiext); rateind2=filesize; 
                  else rateind2=rateind2; 
                  end 
               end 
                
               gr=y; 
               yext(1)=max(sum(y1(1:3,1)),0); 
               yext(2)=max(sum(y1(4:6,1)),0); 
               yex=sum(yext); 
                
               %extstore=1:not extinct, extstore=0:extinct 
               switch mfext 
               case 0 
                  %total pop 
                  if yex<=quasiext & gen<years; extstore=0; else extstore=1; end; 
                   
               case 1 
                  %male/female 
                  if min(yext)<=quasiext & gen<years; extstore=0; else extstore=1; end; 
               end 
                
            end 
             
             
             
            %popl file store: population size 
            %popl - stores everything, all years from all runs 
            %popl2 - is just the nonzero entries of popl 
            %popl3 - is all years but only runs which don't go extinct 
            %popl4 - is same as popl2, but with a row of zeros between runs 



 235

            switch savepop; 
            case 1; 
               switch invpopext; 
               case 0;  
                  switch bigrun 
                  case 1 
                     switch rateind2; 
                     case filesize; 
                        fid=fopen('popl', 'a'); 
                        fprintf(fid,'%10g %10g\r',pop'); 
                        fclose(fid); 
                     end 
                  otherwise 
                     switch rateind2; 
                     case filesize; 
                        fid=fopen('popl', 'a'); 
                        fprintf(fid,'%10g %10g %10g %10g %10g %10g %10g %10g %10g\r',pop'); 
                        fclose(fid); 
                     end 
                  end 
               case 2 
                  switch bigrun 
                  case 1 
                     pop3(:,1)=pop(:,4); %total females 
                     pop3(:,2)=pop(:,8); %total males 
                     switch rateind2; 
                     case filesize; 
                        fid=fopen('popl', 'a'); 
                        fprintf(fid,'%10g %10g\r',pop3'); 
                        fclose(fid); 
                     end 
                  otherwise 
                     switch rateind2; 
                     case filesize; 
                        fid=fopen('popl', 'a'); 
                        fprintf(fid,'%10g %10g %10g %10g %10g %10g %10g %10g %10g\r',pop'); 
                        fclose(fid); 
                     end 
                  end 
                   
                  switch rateind2 
                  case filesize 
                     pop2=pop(:,9); 
                     pop2=pop2(1:(min(gen+1,years)),:);                   
                     fid=fopen('popl4', 'a'); 
                     fprintf(fid,'%10g\r',pop2'); 
                     fclose(fid); 
                      
                     switch extstore 
                     case 1 %not extinct 
                        fid=fopen('popl3', 'a'); 
                        fprintf(fid,'%10g %10g %10g %10g %10g %10g %10g %10g %10g\r',pop'); 
                        fclose(fid); 
                     end 
                  end 
               end 
            end 
             
            rateind2=rateind2+1; 
             
            switch invpopext 
            case 2 
               switch mfext 
               case 0 
                  %total pop 
                  if yex<=(quasiext), break; end; 
               case 1 
                  %male/female 
                  if min(yext)<=(quasiext), break; end; 
               end 
            end 
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            ball0=ball; 
             
            %resident population vector updeated at end of annual cycle 
            y=y1; 
            gen=gen+1; 
             
         end; %population loop 
         %----------------end of population loop--------------------- 
          
          
                   
          
         %calcs mean and std of unperturbed (t=1) vital rates 
         switch invpopext; 
         case 1; 
            switch t; %first year - base rates for unperturbed inv rate 
            case 1;  
               [g,h,j]=find(baserates(:,1)); 
               ms=mean(baserates(g,:)); 
               basestd=std(baserates(g,:)); 
               basestd=std(baserates); 
               clear j h g; 
            end 
             
            slopeind=ceil(min((((years/invp)*0.1)),500)); 
             
            if max(slope)==0; z1=0; z2=0; z3=0; 
            else [z1,z2,z3]=find(slope); 
            end 
            invmn=mean(z3); 
            invsd=std(z3); 
            invse=invsd/(length(z1))^0.5; 
             
            slopedat(1:(length(slope)),t)=slope; 
             
            invdat(1,t)=invmn; 
            invdat(2,t)=invsd; 
            invdat(3,t)=invse; 
            invdat(4,t)=length(z3); 
            invdat(5,t)=invprop; 
            base=invdat(1,1); 
             
            if max(slope2)==0; z1a=0; z2a=0; z3a=0; 
            else [z1a,z2a,z3a]=find(slope2); 
            end 
            invmn2=mean(z3a); 
            invsd2=std(z3a); 
            invse2=invsd2/(length(z1a))^0.5; 
             
            slopedat2(1:(length(slope2)),t)=slope2; 
             
            invdat2(1,t)=invmn2; 
            invdat2(2,t)=invsd2; 
            invdat2(3,t)=invse2; 
            invdat2(4,t)=length(z3a); 
            base2=invdat2(1,1); 
             
            switch t==13; %sim;  
            case 1;  
               els=(invdat(1,2:end)-base)/log(1+inc); 
               iels=[els(1) els(2) els(3) 0 0 0; 
                  els(4) 0 0 0 0 0; 
                  0 els(5) els(6) 0 0 0; 
                  0 0 0 els(10) els(11) els(12);  
                  0 0 0 els(7) 0 0; 
                  0 0 0 0 els(8) els(9)];  
               elsum=sum(els); 
               elsum2=sum(invdat(1,2:end)-0)/log(1+inc); 
                
               zbase=0; 
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               zels=(invdat(1,2:end)-0)/log(1+inc); 
               ziels=[zels(1) zels(2) zels(3) 0 0 0; 
                  zels(4) 0 0 0 0 0; 
                  0 zels(5) zels(6) 0 0 0; 
                  0 0 0 zels(10) zels(11) zels(12); 
                  0 0 0 zels(7) 0 0; 
                  0 0 0 0 zels(8) zels(9)]; 
            end; 
             
         case 0  
            iels=0; 
             
         case 2 
            %which sex goes extinct? 
            if yext(1)<=quasiext; sex(t,pertloop)=1; %1=females 
            elseif yext(2)<=quasiext; sex(t,pertloop)=2; %2=males 
            else sex(t,pertloop)=0;   %0=neither 
            end; 
             
            iels=0; 
         end 
          
         switch invpopext 
         case 1 
            tally=[years:years:(years*sim)]'; 
         case 0 
            tally=[years:years:(years*sim)]'; 
         case 2; 
            tally=[years:years:(years*pert)]'; 
         end 
          
          
      end %perturbation loop for elasticity analysis 
      %-------------------------------------------------------------- 
       
       
       
      %extinction rates from the repeat runs 
      index=round(min(500,years*0.1)); 
      switch invpopext 
      case 2 %extinction run 
         load popl; 
         load ssbdm; 
         zallt=zeros(years,pert); 
         for count1=1:pert; 
            switch bigrun 
            case 1 
               if count1<=1, zallm(1:tally(count1),1)=popl(1:tally(count1),2); 
               else zallm(1:tally(count1)-tally(count1-1),count1)= 
        popl(tally(count1-1)+1:tally(count1),2);  
               end; 
               if count1<=1, zallf(1:tally(count1),1)=popl(1:tally(count1),1); 
               else zallf(1:tally(count1)-tally(count1-1),count1)= 
        popl(tally(count1-1)+1:tally(count1),1);  
               end; 
               if count1<=1, zallt(1:tally(count1),1)=sum(popl(1:tally(count1),:),2); 
               else zallt(1:tally(count1)-tally(count1-1),count1)= 
        sum(popl(tally(count1-1)+1:tally(count1),:),2);  
               end; 
            otherwise 
               if count1<=1, zallm(1:tally(count1),1)=popl(1:tally(count1),8); 
               else zallm(1:tally(count1)-tally(count1-1),count1)= 
        popl(tally(count1-1)+1:tally(count1),8);  
               end; 
               if count1<=1, zallf(1:tally(count1),1)=popl(1:tally(count1),4); 
               else zallf(1:tally(count1)-tally(count1-1),count1)= 
        popl(tally(count1-1)+1:tally(count1),4);  
               end; 
               if count1<=1, zallt(1:tally(count1),1)=popl(1:tally(count1),9); 
               else zallt(1:tally(count1)-tally(count1-1),count1)= 
        popl(tally(count1-1)+1:tally(count1),9);  
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               end; 
            end 
            count1=count1+1; 
         end 
          
         switch saverates; 
         case 1 
            if length(ssbdm)==0; rates=zeros(1,12); mrates=zeros(1,12); sdrates=zeros(1,12); 
            else 
               rates=ssbdm; 
               rates(:,1)=rates(:,1).*rates(:,4); 
               rates(:,2)=rates(:,2).*rates(:,5); 
               rates(:,3)=rates(:,3).*rates(:,6); 
               rates(:,10)=rates(:,10).*rates(:,7); 
               rates(:,11)=rates(:,11).*rates(:,8); 
               rates(:,12)=rates(:,12).*rates(:,9); 
               mrates(t,:)=mean(rates((min(15,round(years/10))):end,:)); 
               sdrates(t,:)=std(rates((min(15,round(years/10))):end,:)); 
            end 
         case 0; 
            rates=zeros(1,12); 
            mrates=zeros(1,12); 
            sdrates=zeros(1,12); 
         end 
          
          
         for count2=1:pert; 
            if min(zallt(index:end,count2))==0; 
               extprob(count2,t)=1; %1 means pop went below threshold 
            else extprob(count2,t)=0; 
            end 
            finalpop(count2,t)=zallt(end,count2); 
            count2=count2+1; 
         end 
          
         %calculates mean and 95% intervals, for runs which don't go extinct 
         w=find(zallt(end,:)>0); 
         zallt2=max(zallt(:,w),0); 
         meantot=mean(zallt2,2); 
         meanstd=std(zallt2,0,2); 
         q=size(zallt2); 
         e=q(2); 
         meantot(:,2)=meantot(:,1)-2*(meanstd/sqrt(e)); 
         meantot(:,3)=meantot(:,1)+2*(meanstd/sqrt(e)); 
         meantot(:,4)=meantot(:,1)-meanstd; 
         meantot(:,5)=meantot(:,1)+meanstd; 
          
          
         %popl3 is a saved matrix with only extant runs saved 
         load popl3; 
         [q,e]=find(popl(:,end)); 
          
         %popl2=popl(q,:); 
         warning off; 
         r1=max(mean(popl3),0); 
         w1=max(std(popl3,0,1),0); 
         q1=max(w1/sqrt(length(popl3)),0); 
          
         switch bigrun 
         case 0; 
            r2=max(mean(popl(q,:)),0); 
            w2=max(std(popl(q,:),0,1),0); 
            q2=max(w2/sqrt(length(q)),0); 
         case 1; 
            r2(1,1:2)=max(mean(popl(q,:)),0); 
            r2(1,3)=max(mean(sum(popl(q,:),2)),0); 
            w2(1,1:2)=max(std(popl(q,:),0,1),0); 
            w2(1,3)=max(std(sum(popl(q,:),2),0,1),0); 
            q2=max(w2/sqrt(length(q)),0); 
         end 
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         warning on; 
         if sum(r1)<=0; r1=zeros(1,9); else r1=r1; end; 
         if sum(q1)<=0; q1=zeros(1,9); else q1=q1; end; 
         if sum(w1)<=0; w1=zeros(1,9); else w1=w1; end; 
          
         %non-extinct run stats 
         stableage(1:6,1)=init; 
         stableage(7,1)=sum(init); 
         stableage(1:3,t+1)=r1(1:3)'; stableage(4:6,t+1)=r1(5:7)'; 
         stableage(7,t+1)=sum(stableage(1:6,t+1)); 
          
         stablesd(1:7,1)=0; 
         stablesd(1:3,t+1)=w1(1:3)'; stablesd(4:6,t+1)=w1(5:7)'; 
         stablesd(7,t+1)=w1(9); 
          
         stablese(1:7,1)=0; 
         stablese(1:3,t+1)=q1(1:3)'; stablese(4:6,t+1)=q1(5:7)'; 
         stablese(7,t+1)=q1(9); 
          
         switch bigrun 
         case 0; 
            if sum(r2)<=0; r2=zeros(1,9); else r2=r2; end; 
            if sum(q2)<=0; q2=zeros(1,9); else q2=q2; end; 
            if sum(w2)<=0; w2=zeros(1,9); else w2=w2; end; 
             
            aexprob(t,1)=r2(9); %mean analytical tot pop size 
            aexprob(t,2)=w2(9); %std analytical tot pop size 
            aexprob(t,3)=r2(4); %mean anal female pop size 
            aexprob(t,4)=w2(4); %std anal fem 
            aexprob(t,5)=r2(8); %mean male 
            aexprob(t,6)=w2(8); %std male 
         case 1 
            if sum(r2)<=0; r2=zeros(1,3); else r2=r2; end; 
            if sum(q2)<=0; q2=zeros(1,3); else q2=q2; end; 
            if sum(w2)<=0; w2=zeros(1,3); else w2=w2; end; 
             
            aexprob(t,1)=r2(3); %mean analytical tot pop size 
            aexprob(t,2)=w2(3); %std analytical tot pop size 
            aexprob(t,3)=r2(1); %mean anal female pop size 
            aexprob(t,4)=w2(1); %std anal fem 
            aexprob(t,5)=r2(2); %mean male 
            aexprob(t,6)=w2(2); %std male 
         end 
          
         anext(t,1)=quasiext; 
          
          
         clear popl A sbdm;  
          
          
         %save data 
         runstoretxt=['d1 d2 juvdd env demog surv demog fec redvar raised rates randterr']; 
         runstore1=[d1 d2 juvdd env demog1 demog3 redvar raise randterr]; 
         runstore(:,t)=runstore1'; 
         allpops(1:7,1)=stableage(1:7,1); 
         allpops(1:7,t+1)=stableage(1:7,2); 
         allpops(8,t+1)=mean(extprob(:,t));  
          
         %probability of small populations declining further 
         load popl4; 
         if length(popl4)<=0; decliner=0; else decliner=1; end 
         switch decliner 
         case 1 
            warning off; 
            half=find(popl4(:,1)<(0.5*aexprob(t,1))); 
            half1=half+1; 
            half1=half1(1:end-1); 
            halfprob(t,1)=max((length(find(popl4(half1,1)<(aexprob(t,1)*0.5))))/length(half1),0); 
             
            quart=find(popl4(:,1)<(0.25*aexprob(t,1))); 
            quart1=quart+1; 
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            quart1=quart1(1:end-1); 
            quartprob(t,1)=max((length(find(popl4(quart1,1)<(aexprob(t,1)*0.25))))/length(quart1),0); 
            warning on; 
         case 0 
            halfprob(t,1)=0; 
            quartprob(t,1)=0; 
         end 
      end 
      clear popl4; 
       
      switch invpopext 
      case 2 
         if t==13; extinction=1; else extinction=0; end 
         extrisk(t,1)=mean(extprob(:,t)); 
      end 
       
      %---------------------------------------------------------------- 
       
       
      t=t+1; 
       
   end;    
    
   load ssbdm; 
   load ssibdm; 
   load finvad; 
   load fresid; 
   load minvad; 
   load mresid; 
   load spare; 
   load gendat; 
    
    
    
   switch invpopext; 
   case 0; 
      load popl; 
      load ssbdm; 
      zallm=zeros(years,sim); 
      zallf=zeros(years,sim); 
      zallt=zeros(years,sim); 
       
      for count1=1:sim; 
         switch bigrun 
         case 1 
            if count1<=1, zallm(1:tally(count1),1)=popl(1:tally(count1),2); 
            else zallm(1:tally(count1)-tally(count1-1),count1)=popl(tally(count1-1)+1:tally(count1),2);  
            end; 
            if count1<=1, zallf(1:tally(count1),1)=popl(1:tally(count1),1); 
            else zallf(1:tally(count1)-tally(count1-1),count1)=popl(tally(count1-1)+1:tally(count1),1);  
            end; 
            if count1<=1, zallt(1:tally(count1),1)=sum(popl(1:tally(count1),:),2); 
            else zallt(1:tally(count1)-tally(count1-1),count1)=sum(popl(tally(count1-
1)+1:tally(count1),:),2);  
            end; 
         otherwise 
            if count1<=1, zallm(1:tally(count1),1)=popl(1:tally(count1),8); 
            else zallm(1:tally(count1)-tally(count1-1),count1)=popl(tally(count1-1)+1:tally(count1),8);  
            end; 
            if count1<=1, zallf(1:tally(count1),1)=popl(1:tally(count1),4); 
            else zallf(1:tally(count1)-tally(count1-1),count1)=popl(tally(count1-1)+1:tally(count1),4);  
            end; 
            if count1<=1, zallt(1:tally(count1),1)=popl(1:tally(count1),9); 
            else zallt(1:tally(count1)-tally(count1-1),count1)=popl(tally(count1-1)+1:tally(count1),9);  
            end; 
         end 
          
         switch saverates; 
         case 1 
            switch bigrun 
            case 1 
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               rates=ssbdm; 
               rates(:,1)=rates(:,1).*rates(:,4); 
               rates(:,2)=rates(:,2).*rates(:,5); 
               rates(:,3)=rates(:,3).*rates(:,6); 
               rates(:,10)=rates(:,10).*rates(:,7); 
               rates(:,11)=rates(:,11).*rates(:,8); 
               rates(:,12)=rates(:,12).*rates(:,9); 
                
               mrates(1,:)=mean(rates((min(15,round(years/10))):end,:)); 
               sdrates(1,:)=std(rates((min(15,round(years/10))):end,:)); 
            otherwise 
               if count1<=1, rates(1:tally(count1),:)=ssbdm(1:tally(count1),:); 
               else rates(1:tally(count1)-tally(count1-1),:)=ssbdm(tally(count1-1)+1:tally(count1),:); 
               end; 
               rates(:,1)=rates(:,1).*rates(:,4); 
               rates(:,2)=rates(:,2).*rates(:,5); 
               rates(:,3)=rates(:,3).*rates(:,6); 
               rates(:,10)=rates(:,10).*rates(:,7); 
               rates(:,11)=rates(:,11).*rates(:,8); 
               rates(:,12)=rates(:,12).*rates(:,9); 
                
               mrates(count1,:)=mean(rates((min(15,round(years/10))):end,:)); 
               sdrates(count1,:)=std(rates((min(15,round(years/10))):end,:)); 
            end 
         case 0; 
            rates=zeros(1,12); 
            mrates=zeros(1,12); 
            sdrates=zeros(1,12); 
         end 
          
         count1=count1+1; 
      end 
       
       
       
      %----------calculates means and elasticities-------- 
      %index chops off early years of wobble 
      index=round(min(500,years*0.1)); 
       
      %base geometric means for males, females and total 
      bgeozm=mean(log(zallm(index:end,1))); 
      bgeozf=mean(log(zallf(index:end,1))); 
      bgeozt=mean(log(zallt(index:end,1))); 
       
      %base geometric standard errors 
      bgeozmerrs=std(log(zallm(index:end,1)))/sqrt(length(zallm)-index)'; 
      bgeozferrs=std(log(zallf(index:end,1)))/sqrt(length(zallf)-index)'; 
      bgeozterrs=std(log(zallt(index:end,1)))/sqrt(length(zallt)-index)'; 
       
      %geometric means for perturbed runs 
      geozms=mean(log(zallm(index:end,2:end)))'; 
      geozfs=mean(log(zallf(index:end,2:end)))'; 
      geozts=mean(log(zallt(index:end,2:end)))'; 
       
      %geometric standard errors for perturbed runs 
      geozmerrs=(std(log(zallm(index:end,2:end)))/sqrt(length(zallm)-index))'; 
      geozferrs=(std(log(zallf(index:end,2:end)))/sqrt(length(zallf)-index))'; 
      geozterrs=(std(log(zallt(index:end,2:end)))/sqrt(length(zallt)-index))'; 
       
      %standard error of the difference between the log mean 
      sediffm=sqrt(((bgeozmerrs).^2)+((geozmerrs).^2)); 
      sedifff=sqrt(((bgeozferrs).^2)+((geozferrs).^2)); 
      sedifft=sqrt(((bgeozterrs).^2)+((geozterrs).^2)); 
       
      %elasticities - mean 
      popelm(:,2)=(geozms-bgeozm)/log(1+inc); 
      popelf(:,2)=(geozfs-bgeozf)/log(1+inc); 
      popelt(:,2)=(geozts-bgeozt)/log(1+inc); 
       
      %elasticities - lower 
      popelm(:,1)=popelm(:,2)-(2*sediffm); 
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      popelf(:,1)=popelf(:,2)-(2*sedifff); 
      popelt(:,1)=popelt(:,2)-(2*sedifft); 
       
      %elasticities - upper 
      popelm(:,3)=popelm(:,2)+(2*sediffm); 
      popelf(:,3)=popelf(:,2)+(2*sedifff); 
      popelt(:,3)=popelt(:,2)+(2*sedifft); 
       
      for me=2:sim; 
         clear h1 sig1; 
         [h1,sig1]=ttest2((zallt(:,1)),(zallt(:,me))); 
         popelt(me-1,5)=h1; 
         popelt(me-1,6)=sig1; 
      end 
       
      popeltmx=[popelt(1,2) popelt(2,2) popelt(3,2) 0 0 0; 
         popelt(4,2) 0 0 0 0 0; 
         0 popelt(5,2) popelt(6,2) 0 0 0; 
         0 0 0 popelt(10,2) popelt(11,2) popelt(12,2);  
         0 0 0 popelt(7,2) 0 0; 
         0 0 0 0 popelt(8,2) popelt(9,2)]; 
       
       
   case 1; 
      popeltmx=0; 
   end 
    
    
   if invpopext==0 | invpopext==2; 
      timeavmat=[mrates(1,1) mrates(1,2) mrates(1,3) 0 0 0; 
         mrates(1,4) 0 0 0 0 0; 
         0 mrates(1,5) mrates(1,6) 0 0 0; 
         0 0 0 mrates(1,10) mrates(1,11) mrates(1,12); 
         0 0 0 mrates(1,7) 0 0; 
         0 0 0 0 mrates(1,8) mrates(1,9)]; 
   else  
      msb=ms; 
      timeavmat=[msb(1,1) msb(1,2) msb(1,3) 0 0 0; 
         msb(1,4) 0 0 0 0 0; 
         0 msb(1,5) msb(1,6) 0 0 0; 
         0 0 0 msb(1,10) msb(1,11) msb(1,12); 
         0 0 0 msb(1,7) 0 0; 
         0 0 0 0 msb(1,8) msb(1,9)]; 
   end 
    
   switch invpopext 
   case 2 
      %analytical extinction rate 
      for sexer=1:pert; 
         whichsex(sexer,1)=length(find(sex(:,sexer)==1))/length(sex); 
         whichsex(sexer,2)=length(find(sex(:,sexer)==2))/length(sex); 
         whichsex(sexer,3)=length(sex); 
      end 
       
      ext2(:,1)=normcdf(0,aexprob(:,1),aexprob(:,2)); %total 
      ext2(:,2)=normcdf((2*anext(:,1)),aexprob(:,1),aexprob(:,2)); 
      ext2(:,3)=normcdf(0,aexprob(:,3),aexprob(:,4)); %female 
      ext2(:,4)=normcdf(anext(:,1),aexprob(:,3),aexprob(:,4)); 
      ext2(:,5)=normcdf(0,aexprob(:,5),aexprob(:,6)); %male 
      ext2(:,6)=normcdf(anext(:,1),aexprob(:,5),aexprob(:,6)); 
       
      ext3(:,1)=1-((1-ext2(:,1)).^years);%total 
      ext3(:,2)=1-((1-ext2(:,2)).^years); 
      ext3(:,3)=1-((1-ext2(:,3)).^years);%female 
      ext3(:,4)=1-((1-ext2(:,4)).^years); 
      ext3(:,5)=1-((1-ext2(:,5)).^years);%male 
      ext3(:,6)=1-((1-ext2(:,6)).^years); 
       
      ext4(:,1:2)=aexprob(:,1:2); 
      ext4(:,3:5)=ext3(:,2:2:6); 
      ext4(:,6)=extrisk; 
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      ext4(:,7)=halfprob; 
      ext4(:,8)=quartprob; 
      %ext4(:,6:7)=runstore(1:2,:)'; 
       
      switch sim 
      case 13  
         for x=1:4; 
            extels(:,x)=(ext4(1,x+2)-ext4(2:end,x+2))./log(1+inc)'; 
         end 
         allextmx=[extels(1,1) extels(2,1) extels(3,1) 0 0 0; 
            extels(4,1) 0 0 0 0 0; 
            0 extels(5,1) extels(6,1) 0 0 0; 
            0 0 0 extels(10,1) extels(11,1) extels(12,1); 
            0 0 0 extels(7,1) 0 0; 
            0 0 0 0 extels(8,1) extels(9,1)]; 
         femextmx=[extels(1,2) extels(2,2) extels(3,2) 0 0 0; 
            extels(4,2) 0 0 0 0 0; 
            0 extels(5,2) extels(6,2) 0 0 0; 
            0 0 0 extels(10,2) extels(11,2) extels(12,2); 
            0 0 0 extels(7,2) 0 0; 
            0 0 0 0 extels(8,2) extels(9,2)]; 
         malextmx=[extels(1,3) extels(2,3) extels(3,3) 0 0 0; 
            extels(4,3) 0 0 0 0 0; 
            0 extels(5,3) extels(6,3) 0 0 0; 
            0 0 0 extels(10,3) extels(11,3) extels(12,3); 
            0 0 0 extels(7,3) 0 0; 
            0 0 0 0 extels(8,3) extels(9,3)]; 
         simextmx=[extels(1,4) extels(2,4) extels(3,4) 0 0 0; 
            extels(4,4) 0 0 0 0 0; 
            0 extels(5,4) extels(6,4) 0 0 0; 
            0 0 0 extels(10,4) extels(11,4) extels(12,4); 
            0 0 0 extels(7,4) 0 0; 
            0 0 0 0 extels(8,4) extels(9,4)]; 
      otherwise 
         allextmx=0; 
         femextmx=0; 
         malextmx=0; 
         simextmx=0; 
      end 
       
       
       
   end 
    
   %--calculates elasticities for underlying vital rates--------------- 
   %for mean matrix 
   if runloop>1;  
      clear mels3 msens mlam mean4mat mean3mat mels2 msens2 mlam2 mels5 mels4 msens4 mlam4 q w e; 
   end 
    
   [q,w,e]=find(mean2mat'); 
   [mels,msens,mlam]=elinv(mean2mat); 
   for r=1:12; 
      mean4mat=mean2mat'; 
      mean3mat=mean4mat; 
      mean3mat(q(r),w(r))=mean4mat(q(r),w(r))*(1+inc); 
      if r>=4 & r<=6; mean3mat(q(r-3),w(r-3))=mean4mat(q(r-3),w(r-3))*(1+inc); 
      elseif r>=10 & r<=12; mean3mat(q(r-3),w(r-3))=mean4mat(q(r-3),w(r-3))*(1+inc); 
      else mean3mat=mean3mat; 
      end 
      [mels2,msens2,mlam2]=elinv(mean3mat'); 
      mels3(q(r),w(r))=(mlam2-mlam)/(mlam*inc); %mels3=lower rate elasticity matrix 
   end 
   mels3=mels3'; 
   clear q w e r mean4mat mean3mat  
    
   %for time averaged rates 
   [tavels,tavsens,tavlam]=elinv(timeavmat); 
   [q,w,e]=find(timeavmat'); 
   if length(q)==0; gh=0; mels5=zeros(6,6); else gh=12; end 
   for r=1:gh; 
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      mean4mat=timeavmat'; 
      mean3mat=mean4mat; 
      mean3mat(q(r),w(r))=mean4mat(q(r),w(r))*(1+inc); 
      if r>=4 & r<=6; mean3mat(q(r-3),w(r-3))=mean4mat(q(r-3),w(r-3))*(1+inc); 
      elseif r>=10 & r<=12; mean3mat(q(r-3),w(r-3))=mean4mat(q(r-3),w(r-3))*(1+inc); 
      else mean3mat=mean3mat; 
      end 
      [mels4,msens4,mlam4]=elinv(mean3mat'); 
      warning off; 
      mels5(q(r),w(r))=(mlam4-tavlam)/(tavlam*inc); %mels3=lower rate elasticity matrix 
      warning on; 
   end 
   mels5=mels5'; 
    
   %-------------------------------------------------------------------- 
    
    
   [mels,msens,mlam]=elinv(mean2mat); 
   [tavels,tavsens,tavlam]=elinv(timeavmat); 
   switch invpopext; 
   case 0; 
      mels2=mels'; 
      [q,w,e]=find(mels2); 
      popelt(1:12,4)=e; 
   end    
    
   switch invpopext; 
   case 1; 
      sigg; 
   end 
    
   %saves data for each runloop simulation into a different file 
   if runloop==1; 
      save g:\afhpc\mnt1a; 
   elseif runloop==2; 
      save g:\afhpc\mnt2a; 
   elseif runloop==3; 
      save g:\afhpc\mnt3a; 
   elseif runloop==4; 
      save g:\afhpc\mnt4a; 
   elseif runloop==5; 
      save g:\afhpc\mnt5a;     
   elseif runloop==6; 
      save g:\afhpc\mnt6a; 
   elseif runloop==7; 
      save g:\afhpc\mnt7a; 
   elseif runloop==8; 
      save g:\afhpc\mnt8a; 
   elseif runloop==9; 
      save g:\afhpc\mnt9a; 
   elseif runloop==10; 
      save g:\afhpc\mnt10a;     
   elseif runloop==11; 
      save g:\afhpc\mnt11b; 
   elseif runloop==12; 
      save g:\afhpc\mnt12b; 
   elseif runloop==13; 
      save g:\afhpc\mnt13b; 
   elseif runloop==14; 
      save g:\afhpc\mnt14b; 
   elseif runloop==15; 
      save g:\afhpc\mnt15b;     
       
   end 
    
    
   %displays summary run info and elasticity values 
   disp(date);clock; disp(ans(4:5)) 
    
   if invpopext==1; out='invasion run';  
   elseif invpopext==0; out='population size run';  
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   else out='extinction risk run';    
   end 
   disp(out) 
    
   disp('no. years:'); disp(years) 
   disp('no. sims:'); disp(sim) 
   disp('perturbation size:'); disp(inc) 
    
   if invpopext==1; out='invasion elasticities:';  
   elseif invpopext==0; out='population size elasticities:';  
   else out='extinction risk elasticities:';    
   end 
   disp(out) 
   if invpopext==1; disp(iels);  
   elseif invpopext==0; disp(popeltmx);  
   else %disp(extmx); 
   end 
    
   if invpopext==0 & length(popelt)==13; out='territory elasticity:'; disp(out); disp(popelt(end,2)); 
end 
   disp('time averaged matrix elasticities:'); disp(tavels) 
   disp('time averaged lower rate elasticities:'); disp(mels5) 
   disp('mean matrix elasticities:'); disp(mels) 
   disp('mean lower rate elasticities:'); disp(mels3) 
   if invpopext==1; disp('sig. results:'); disp(sigs);  
   elseif  invpopext==0; disp('sum pop els:'); disp(sum(popelt(1:12,2)));  
   else disp('population size and extinction probabilities:'); disp(ext4(:,1:6));  
      disp('simulation ext elasticities:'); disp(simextmx);  
      disp('analytical all ext elasticities:'); disp(allextmx);  
      disp('analytical female ext elasticities:'); disp(femextmx); 
      disp('analytical male ext elasticities:'); disp(malextmx); 
   end 
    
   if invpopext==2; 
      totmean(runloop,:)=mean(ext4(:,1:6)); 
      totstd(runloop,:)=std(ext4(:,1:6)); 
      totse(runloop,:)=(std(ext4(:,1:6)))/sqrt(length(ext4(:,1))); 
   end 
      
   runloop=runloop+1; 
end 
 
%program ends 

 




