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Ab stract 

Aim: This work sets out to use haplotype-based tagSNP selection and a systematic in 

silico analysis for design of multiplex-compatible PCR primer and SAT probe sets to 
capture maximum variation with minimum tests across candidate genes IGF1, IGFBP1 
and IGFBP3. Additionally, the work aims to develop a number of robust, high-efficiency, 
high-specificity multiplex PCR constructs for amplification of these targets and to 
demonstrate the applicability of these target types to suspension array genotyping for 
non-insulin-dependant diabetes mellitus association facilitation. 
 
Methods: Haplotypes for predominantly European Caucasian populations were 
constructed and tagSNP selection performed using Haploview to capture maximum 
variation across candidate genes IGF1, IGFBP1 and IGFBP3. Extensive in silico analysis 
was performed for design, evaluation and selection of robust high-specificity primer and 
probe pairs, suitable for downstream multiplex PCR and SAT analysis. Singleplex end-
point and real-time PCR was performed for primer pair profile determination which 
informed multiplex PCR set construction and optimisation. The applicability of this 
complex target type to suspension array-based genotyping was investigated using a 
model probe pair using both quantum dot-encoded and fluorophore-encoded 
microspheres.  
 

Results: Haploview was used for haplotype construction and linkage disequilibrium-
based tagSNP selection across candidate genes, reducing the number of SNP targets from 
292 to 32 with minimal information loss. Extensive evaluation of potential tagSNPs was 
performed and 29 SNPs, representing 29 bins across target genes were designed for 
multiplex analysis. Singleplex end-point and real-time PCR was performed for primer 
pair profile determination which allowed four multiplex PCR sets to be constructed and 
optimised for simultaneous amplification of 14, six, five and two targets. The 
applicability of this complex target type (14-plex) to suspension array-based genotyping 
was demonstrated using a model probe pair.  
 

Conclusion: In silico analysis techniques have been applied for successful development 
of four robust multiplex PCR sets (14-plex, 6-plex, 5-plex and 2-plex) which display 
high-efficiency and target-specific amplification of tagSNPs, capturing maximum assay-
compatible variation across candidate genes IGF1, IGFBP1 and IGFBP3 for European 
Caucasian populations. The applicability of these multiplex PCR constructs to suspension 
array-based genotyping has been demonstrated, thus paving the way for development of 
large multiplex suspension array-based genotyping assays using probes designed during 
the course of this work. This work offers the potential for comprehensive association 
analyses to become more accessible to the wider-scientific community by facilitating 
reduced genotyping burdens which allow increased accessibility for powerful association. 
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1.1 Introduction 

 

Complex polygenic diseases such as coronary artery disease and non-insulin-dependant-

diabetes mellitus (NIDDM) contribute the largest burden to ill-health care costs in 

developed countries [1]. Increasing efforts are being made to improve prevention, 

diagnosis and treatment of these costly disorders by unravelling the complex genetics 

which underlie disease predisposition, progression and  individual response to 

therapeutics [2]. While monogenic diseases displaying severe phenotypes may be 

mapped quite effectively using smaller pedigree structures and manageable 

polymorphism maps, the complex nature of polygenic diseases with their multiple 

contributory quantitative trait loci (QTL), small effects and complex interactions 

including genetic heterogeneity, epistasis, low penetrance genes, pleiotropy and variable 

expressivity, require large population-based sample repositories and high-density maps if 

comprehensive analysis of target genes is to be performed effectively [3,4]. Performing 

association of this nature incurs incredibly large genotyping burdens and huge associated 

costs that limits accessibility of this technique [1] .  

 

Many well-considered polygenic disease investigations falter due to budgetary 

constraints which limit sample size and breadth of polymorphism investigation rendering 

definitive determinations regarding candidate gene/disease associations indeterminable. If 

polygenic disease research is to be performed effectively care must be taken that the 

scope and depth of experimental design is robust enough to fully address the hypothesis 
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posed [1]. A number of careful experimental design innovations may be implemented to 

reduce genotyping burdens and render association of this nature more amenable.  

 

Many associations to date have enabled reduced genotyping burdens by sample size 

reduction, however even using a best-case scenario example of a common SNP acting in 

a dominant fashion; in excess of 800 samples would be required to detect a strong 

polygenic effect with 80% power [1]. Thus for polygenic disease association, sample size 

reduction does not represent a viable option for genotyping burden reduction. Two 

techniques of considerable interest aim to effect genotyping burden reduction by use of 

knowledge-driven SNP prioritisation and multiplex experimental structures.  

 

SNPs are the most frequent variation type in the human genome, occurring in every 100-

300 bases; however only 1% of SNPs may be expected to confer more than modest 

disease associated risk, as such careful knowledge-driven selection is essential to reduce 

the testing burden [4,5]. SNP prioritisation may be informed using linkage disequilibrium 

and/or functional prioritisation-based selection which allows SNP reduction with minimal 

loss of power in terms of either variation coverage or putative functional alleles [5-7]. 

Linkage disequilibrium-based approaches are especially effective for burden reduction 

where homogenous populations are available and linkage disequilibrium is strong while 

functional prediction-based prioritisation can be effective where strong evidence (both 

theoretical and experimental) exists for contributory target alleles in disease 

predisposition [5,8]. 
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Concomitant with SNP reduction, high-dimensionality multiplex analysis structures may 

be used for increased data yields. Careful design and optimisation of multiplex 

parameters can facilitate amplification of multiple targets in a single reaction, these 

concentrated amplicons may then be used for multiplex suspension array (SA) 

genotyping [9,10].  

 

Suspension array analysis was first investigated in the 1970s however recent advances in 

multiplex capacity afforded by quantum dot-encoding mechanisms have rendered high-

dimensionality combinatorial libraries compatible with standard four-colour flow 

cytometry and re-ignited interest in the technique [10-12]. Flow cytometers are used for a 

wide variety of cellular applications and as such, suspension array analysis offers the 

opportunity for high-throughput flexible analysis without the need for additional capital 

equipment expenditure. As a result multiplex PCR combined with multiplex suspension 

array based techniques offers an attractive alternative to expensive microarray-based 

work and may afford high-efficiency association to be performed in a more 

comprehensive fashion [13]. 

 

The motivation driving this research is to demonstrate a range of techniques that may be 

applied to facilitate genotyping burden reduction of NIDDM target genes IGF1, IGFBP1 

and IGFBP3, and to increase accessibility of association analysis for these three 

candidates. It is hoped that the methods demonstrated and developed during the course of 

this work will contribute to association-based analyses by providing methods for robust 

multiplex amplification of targets described in this instance but also in a more general 
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sense to provide methods which may be applied to reduce amplification costs and aid 

genotyping burden reduction in subsequent analyses. 

 

Before association may be initiated however, a careful literature search must be 

performed to examine the disease pathogenesis and select suitable disease candidate loci 

or genes of appropriate size. The following section provides an introduction to NIDDM, 

the disease pathogenesis, symptoms and long term complications of the disease. The 

function of our three candidate genes are described and potential mechanismby which 

these may effect NIDDM development outlined.  

 

1.2 Non-insulin-dependant-diabetes mellitus (NIDDM)  

 
Non-insulin-dependant-diabetes mellitus (NIDDM), also known as type 2 diabetes is a 

chronic endocrine disorder characterised by insulin resistance, deficiency and 

hyperglycaemia [14]. Insulin is one of the key players in NIDDM development. Produced 

by pancreatic ß-cells this hormones primary functions are to facilitate cellular uptake of 

blood glucose and lipogenesis1, facilitate increased amino acid transport into cells and 

reduce lipolysis2. It also stimulates growth, DNA synthesis, and cellular replication, 

activities which mirror those of insulin-like growth factors (IGFs) [14,15].  

 
High blood glucose triggers pancreatic ß-cell uptake, leading to an elevation in the 

ATP/ADP ratio. This activates K+ channel inhibition causing cell membranes to become 

depolarised and Ca2+ channels to become activated. The net result is electrically 

                                                 
1 Lipogenesis is the processes whereby simple sugars are used for fatty acid synthesis and subsequent 
triglyceride synthesis. 
2 Lipolysis is the breakdown of fat stored in adipose cells. 
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stimulated insulin secretion and insulin action [16]. The order of insulin secretion should 

induce an appropriate cellular insulin receptor response inducing glucose uptake and the 

allowing blood glucose to return to normal. In cases of insulin resistance it is seen that 

although appropriate insulin secretion is induced, the analogous cellular response is not 

elicited. Accordingly, persistently high blood glucose, insufficient glycogen storage and 

hydrolysis of stored triglycerides (high blood tri-glyceride) are observed.  

 
Exposure to high blood glucose such as that seen in hyperglycaemia stimulates beta cells 

to produce more insulin to effect the required blood glucose reduction, however over 

prolonged periods this high insulin output causes beta-cell apoptosis to increase and total 

beta-cell mass is reduced [17-19]. This is termed insulin sensitivity or deficiency and 

heralds a worrying phase in glucose homeostatic control. Insulin resistant profiles are 

often symptom-free and may frequently be reversed by diet and exercise, insulin deficient 

profiles often represent a more chronic phase and it is at this point that an individual will 

generally move from pre-diabetic to NIDDM classification [20-25].  

 

NIDDM patients often present with manageable symptoms including thirst, weight loss, 

increased urination and tiredness, however with progression of the disease serious longer-

term complications may arise. These predominantly develop from microvascular disease 

which can lead to renal complications including nephropathy, cardiovascular 

arteriosclerosis and retinopathy, an eye disease which can impair vision. Diabetic 

neuropathies are among the most frequent complication of long-term diabetes; with 60% 

to 70% of diabetics determined to have some form of nervous system damage which may 

manifest as pain, muscle weakness incontinence, oedema, neurogenic impotence and 
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paresthesia [26,27]. Less commonly seen is ketoacidosis, however the accumulation of 

ketoacids (a by-product of fat metabolism) can initiate severe effects; inducing diabetic 

coma and death in some instances [14].  

 

Once this severe phase in NIDDM development is reached, the disease tends to be 

progressive and treatment and management of NIDDM and associated long-term 

complications costly. Approximately 5% of total NHS spend (3.75 billion) was consumed 

in management and treatment of NIDDM in 2007, a figure projected to rise in coming 

years[28]. However much of this cost is associated with chronic NIDDM profiles, as such 

determination of “at-risk” SNP profiles and implementation of individualised lifestyle 

management programs may act reduce the propensity for disease development, while 

careful monitoring of at-risk individuals may allow early-stage detection and avoidance 

of costly complications. The need for earlier disease monitoring was recently espoused 

by Douglas Smallwood, chief executive of Diabetes UK who said "many of the worst 

effects of diabetes can be avoided. We cannot afford to wait until people have heart 

attacks or have problems with their sight or kidneys before they get the care they need" 

[29].  
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1.3 NIDDM and Insulin-Like-Growth Factors 

 
The genetic determinants of NIDDM development have been investigated extensively 

and a wide range of targets including  insulin receptor-related receptor (INSRR), calpain-

10 gene (CAPNIO), hepatic pyruvate kinase (PKLR), fatty acid binding protein (FABP2), 

peroxisome proliferators-activated receptor-gamma (PPARy), apolipoprotein A2 ATP-

binding cassette, sub-family C (ABCC8) identified [30,31]. However further 

characterisation of these disease genes and an array of other potential targets must be 

investigated extensively if a comprehensive NIDDM disease profile is to be unravelled. 

The insulin-like growth factor (IGF) family represents a class of target which merits 

further investigation. 

 

As the name suggests, insulin-like growth factor-1 (IGF1) is primarily involved in 

growth, however its structure and a number of its functions mirror that of insulin. In 

1978, Rinderknecht and colleagues determined that human IGF1 with its single chain 70-

amino acid polypeptide and 3 disulfide bridges shares significant homology with 

proinsulin [32]. Subsequent analysis by Ullrich et al., also identified striking similarities 

between their corresponding receptors (IGF1-R and IR), both of whom are members of 

the transmembrane tyrosine kinase receptor subfamily [33]. In fact the similarities are 

such that IGF1 has also been found to bind the insulin receptor, activating identical 

signaling cascades as that of its insulin cognate, albeit at a significantly lower affinity ~ 

0.01x [34].  
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Moxham et al., first noted that tissues, which expressed both insulin and IGF1 receptors, 

also express a hybrid Insulin-IGF1 receptor [35,36]. These hybrids contain one IGF1 and 

one insulin alpha/beta heterodimer, however their function is more analogous to that of 

IGF1 receptors with respect to a higher affinity for IGF1 and reduced 

autophosphorylation. As such, increased hybrid receptor proportions have been seen to 

reduce insulin binding in these tissues [37]. This is particularly relevant as muscle falls 

within this category and is responsible for approximately 80% of whole-body glucose 

uptake. Thus, even marginally altered hybrid receptor proportions may induce significant 

effects on glucose management and contribute to insulin sensitivity [36].  

 

The role of IGF genes and relationship to known NIDDM contributors such as insulin 

and growth hormone (GH) began to be investigated in the late seventies. Chronic 

elevation of GH has been shown to induce insulin sensitivity and as such, factors 

effecting GH expression are worthy disease candidates [38]. The correlation between 

circulating IGF1 concentrations and GH expression is striking; a recent study by Haluzik 

et al., found down-regulation of IGF1 by 65%, 75% and 85% corresponded with no 

change, a 4X increase and a 10X increase respectively in GH production in engineered 

mouse models [36]. This relationship between IGF1, GH and NIDDM was further 

validated by Yakar et al., who showed treatment of liver IGF1-deficient (LID) mice with 

exogenous IGF1 resulted in inhibited GH secretion and improved insulin sensitivity 

[39,40]. 
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However serum IGF1 is not maintained as a singular structure; a large proportion of IGF1 

is complexed in the blood with other stabilising agents, which facilitate increased half-

life and access to target tissues. In fact just 5% of blood IGF1 is present in its unbound 

form. Around 15% is composed of binary IGF1/IGF-binding protein complexes while the 

majority, ~80%, is found in a ternary complex of IGF1/IGFBP3 acid labile subunit 

format. This ternary structure crosses the capillary barrier poorly and thus acts as a stable 

reservoir of circulating IGF1 [36]. IGF1 is freed when required by proteolytic cleavage of 

IGFBP3 and interaction with proteoglycans [41]. As unbound IGF1 has a half life of <10 

minutes compared to 12-15hrs for its ternary structure cognate, it follows that inadequate 

IGFBP3 activity may contribute to NIDDM by poor ternary complex formation with 

IGF1 and insufficient IGF1 reservoir maintenance [42]. The relevance of IGFBP3-

induced stability was further highlighted by Bang et al., who noted that increased serine 

protease activity (known to degrade IGFBP3) co-segregates with NIDDM phenotypes 

[43]. 

 

Recombinant DNA technology has also been utilised with good effect to investigate the 

use of IGF1 and its binding proteins for potential NIDDM treatment. Administration of 

free IGF1 was found to significantly reduce insulin resistance in NIDDM patients [44]. 

However administration of complexed IGF1/IGFBP3 has been used with even greater 

effect for treatment of insulin dependant diabetes mellitus (IDDM). This binary structure 

was found not only to reduce insulin requirements and lower serum glucose however, but 

a marked decrease in serious side effects were also noted [45,46]. 
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In addition to its IGF1-dependent activities, IGFBP3 has also been found to display 

IGF1-independent functions affecting growth and apoptosis and which may modulate 

disease progression and longer term NIDDM-associated complications [47]. Association 

between IGFBP3 and retinal neovascularisation (a leading cause of diabeteic retinopathy) 

was recently highlighted by Lofqvist et al., who identified correlation between increased 

IGFBP3 levels and reduced retinal neovascularisation in oxygen-induced retinopic mice. 

Results indicate that IGFBP3 acts (independently of IGF1), as a progenitor cell 

chemoattractant, reducing oxygen-induced vessel loss and promoting vascular regrowth 

[48]. IGFBP3 is thus an attractive candidate treatment for prevention of diabetic 

retinopathy, the leading cause of blindness in persons of less than 75 years [49]. 

 

Table 1: Effect of candidate gene IGF1 and binding proteins IGFBP1 and IGFBP3 on blood glucose 

and NIDDM development. Increased IGFBP1 and reduced IGFBP3; reduce IGF1 bioavailability and 

half-life resulting in increased blood glucose. Hyperglycaemia induces increased propensity towards 

insulin sensitivity and NIDDM development [36,50].  

 
↑ IGFBP1 

Or 
↓ IGFBP3 

↓ IGF1 ↑ Blood Glucose 
↑Insulin sensitivity, 
↑ NIDDM 

 

 

In total 6 IGF binding proteins exist. IGFBP1 is a particularly strong NIDDM gene 

candidate as it is the only known acute regulator of IGF1 bioavailability [42]. High 

IGFBP1 expression has been found to correlate with reduced IGF1 activity, resulting in 

poor IGF1-stimulated growth, differentiation and hypoglycaemic control. This reduced 

IGF1 availability has been found to induce increased insulin resistance and glucose 

intolerance [51]. With regard to NIDDM phenotype induction; the mechanism of IGFBP1 

action may be postulated from a study by Uekiet et al. Using mouse knockouts lacking 
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IGF1 receptors, Uekiet et al.,  found poor IGF1 uptake to correlate with reduced glucose-

stimulated secretion of insulin without beta cell mass attrition [52]. It may thus be 

postulated that a similar effect may be induced by over-expression of IGFBP1 and 

resultant IGF1 unavailability. 

 

Thus clear supportive evidence exists regarding the roll of IGF1 in glucose homeostasis 

and multiple proposed modes of action regarding how IGF binding proteins one and three 

may contribute to the NIDDM disease profile. IGF1, IGFBP1 and IGFBP3 gene targets 

were therefore selected for further association-based SNP prioritisation. 

 

1.4.1 Aims 

The aim of this work is to use haplotype based tagSNP selection and a systematic in 

silico-based analysis approach to design a multiplex compatible PCR primer and SAT 

probe set facilitating maximum variation capture with minimum tests across candidate 

genes IGF1, IGFBP1 and IGFBP3. This will be applied though development of a number 

of robust, high-efficiency, high-specificity multiplex PCR constructs for amplification of 

multiple targets to demonstrate the applicability of these target types to suspension array 

genotyping for non-insulin-dependant diabetes mellitus.  
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1.4.2 Objectives 

 

• To construct haplotypes for a given population and perform tagSNP selection 

which captures maximum variation across candidate genes IGF1, IGFBP1 and 

IGFBP3.  

• To perform multiplex primer and probe design, utilising in silico and manual 

analysis for evaluation and selection of a high specificity primer and probe sets in 

a manner compatible with downstream multiplex PCR and SAT analysis. 

• To perform extensive PCR optimisation for the construction of a number of 

robust, well characterised, high dimensionality multiplex PCR sets.  

• To demonstrate the applicability of multiplex PCR to suspension array facilitated 

allele discrimination using a model probe pair and validate allele designation via 

dot blotting. 

1.4.3 Thesis overview 

 

Chapter 1: Introduction 

Polygenic disease is introduced.  Confounders associated with polygenic disease 

discovery are described and innovations to reduce problem complexity and confounding 

with regard to study design and experimental performance are discussed. NIDDM is 

introduced and hypotheses regarding candidate IGF1, IGFBP1 and IGFBP3 gene 

participation in NIDDM predisposition reviewed. 
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Chapter 2: Haplotype based TagSNP Selection and Functional Impact Prediction 

Linkage and association-based disease discovery techniques are described with particular 

emphasis on the efficiency and accuracy of haplotype and functional impact-based 

polymorphism prioritisation methods. Haplotype-based design considerations, parameter 

selection and thresholds designation are investigated in a bid to improve the likelihood of 

true quantitative trait loci (QTL) discovery. Haplotype-based prioritisation techniques are 

applied to candidate IGF1, IGFBP1 and IGFBP3 genes for optimal marker selection in 

Caucasian populations and captured SNPs are analysed to predict their putative 

functional impact.  

 

Chapter 3: PCR Primer and probe Design 

The difficulties associated with increased dimensionality PCR amplification and 

suspension array genotyping are introduced with particular emphasis on primer and probe 

design. Oligonucleotide design features which may be considered to increase the 

probability of successful multiplex amplification and genotyping are discussed and a 

systematic method using both manual and in silico evaluation applied to candidate 

tagSNPs (selected in chapter 2) for construction of a high-specificity primer and probe set 

with a low putative propensity toward aberrant functionality. Final primer and probe set 

profiles determined using this method are described and critiqued with respect to their 

proposed multiplex application. 
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Chapter 4: Multiplex PCR Amplification 

This chapter sets out to evaluate primer pairs (designed in chapter 3) in terms of true 

experimental functionality. Multiplex-critical primer-pair parameters are investigated 

extensively using singleplex end-point and real-time PCR amplification and results 

discussed with respect to theoretically derived profiles. Results of singleplex 

experimental amplification are used to inform multiplex set construction and optimisation 

and the effect of increased dimensionality formats on amplification efficiency discussed. 

This chapter also provides an overview of reaction components adjuvants which may be 

used to ameliorate problematic PCR amplification and a number of these techniques are 

implemented for amplification of repeat region targets in this instance.  

 

Chapter 5: Suspension Array SNP Genotyping 

This chapter aims to introduce the area of flow cytometry facilitated suspension array; 

comparing it to other planar array and SNP genotyping methods currently available. 

Linear probes which facilitate genotyping of PCR amplicons are designed using manual 

and in silico methods as previously described (chapter 3). A model probe pair is used in a 

proof of concept study for SNP genotyping of target amplicon sequences. Probe coupling 

and target hybridisation efficiency using single stranded and multiplex targets are 

described. Allele discrimination designation is validated via sequencing of target 

amplicons. 
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Chapter 6: Final Discussion, Conclusion and Future Work 

The final chapter considers and discusses the work presented in this dissertation. Results 

described are discussed with respect of the aims and objectives of the project and with a 

view to its wider potential applicability for disease association. A conclusion regarding 

the work is drawn and further work pertaining to this project is discussed. 

 
 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 2: Haplotype Construction and TagSNP 

Selection 
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2.1 Introduction 

 

Although animal and cell line models have been instrumental in deciphering the complex 

pathways that underlie NIDDM, they are not without their limitations. Ethical constraints, 

limited genomic and pathway homology, disease heterogeneity and increased costs 

associated with use of highly syntenic models mean that genomic investigation, such as 

those afforded by forward genomic approaches presents an attractive alternative. Forward 

genomics aims to allow the genetic determination of observable phenotypic variation. 

Two broad approaches may be taken; linkage (genome scan) or association analysis 

(candidate gene) [53].  

This chapter serves as an introduction to forward genomic disease discovery techniques; 

linkage and association analysis are reviewed with particular emphasis on applicability to 

polygenic disease discovery. Association-based design considerations and parameter and 

thresholds selection are investigated in a bid to improve the likelihood of true quantitative 

trait loci (QTL) discovery. Association-based techniques are then applied to candidate 

IGF1, IGFBP1 and IGFBP3 genes for optimal marker selection in the target population and 

SNPs analysed to predict their putative functional impact.  
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2.1.1 Linkage Analysis 

 
Linkage analyses aim to follow meiotic events through pedigrees to identify increased co-

segregation of alleles sharing distribution with disease traits at a rate greater than that 

which would be expected by the laws of independent assortment. These loci should be 

linked with the true disease susceptibility loci but may not contribute to the disease profile 

themselves. 

Pedigrees are used to minimise the number of markers required for adequate inheritance 

mapping. As recombination rates within families are low, identity by descent (IBD) 

haplotypes tend to be inherited in large megabase blocks, rather than the kilobase sized 

IBDs displayed by more distant population structures. Recombination frequency is 

predominantly a function of physical distance on a single chromosome and as such, may be 

exploited by use of mapping functions to convert recombination frequencies between 

adjacent loci to genetic map distances [54]. In this way genetic linkage maps, detailing the 

likelihood of recombination events between ordered sets of evenly spaced markers, have 

been constructed. The principle of identity by descent mapping is outlined in Figure 1. 
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Figure 1: Principle of IBD Mapping (Identical by Descent Mapping). Two genes/alleles are identical 

by descent if they are exact copies of the ancestral gene/allele. Two siblings can share 0, 1 or 2 

parental marker alleles identical by descent at any locus with respective probabilities 0.25, 0.5 and 

0.25 under random segregation. Male and female symbols are represented squares and circles 

respectively [55].  
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Low density microsatellites maps (marker intervals of ~10cM3) have traditionally been 

used for this purpose, however high density SNP maps have now been developed with 

good effect [56]. Although individually less informative than microsatellites, SNPs are 

distributed at a much higher rate throughout the genome, allowing map intervals of less 

than 1cM to be set. This approach has proven to be more powerful in terms of linkage 

localisation and generation of significant linkage scores [57,58]. In addition genotyping 

error rates tend to be lower for SNPs than for microsatellites and when parental genotype 

information is considered; lower type I error rates have also been found to be produced 

[59,60].  

 
Either model based (parametric) or model free (non-parametric) methods may be 

implemented, although in truth parametric models are rarely useful for true polygenic 

disease discovery. Disease model specification is required for parametric linkage (PL); 

however polygenic diseases are constituted by casual genes which display small individual 

effects. These genes require multiple contributory loci, and complex interactions in order 

for their effect to be felt, making the polygenic disease profile difficult to reconstruct. 

Additionally polygenic disease onset is generally later; making construction of large 

multigenerational pedigrees difficult. Conversely nonparametric (NPL) techniques do not 

require model specification. Small pedigree generations and an array of pedigree 

relationship types including affected sib-pair, parent-child pair and cousin pair relationships 

may therefore be used.  

                                                 
3 A centimorgan (cM) is a unit that describes a recombination frequency of 1% and is approximately 
1,000kb in the human genome. 
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Two-point or (more commonly) multipoint linkage analysis may be used to evaluate NPL. 

Two-point methods use logarithm of odds (LOD) scores to identify regions of increased co-

segregation between single markers and disease traits. However because single marker 

alleles do not always define the inheritance pattern (i.e. grand paternal/maternal founder 

member who passed the allele) power can be lacking. 

Multipoint analysis allows information from multiple markers to be used to infer IBDs and 

calculate linkage scores [61]. Calculation of full multipoint IBD distribution for pedigrees 

is a computationally intensive exercise however; and methods that calculate exact 

maximum likelihoods (Elston-Stewart, Lander-Green) are limited in terms of the number of 

loci and/or individuals that may be analysed concurrently. The Markov-Chain Monte-Carlo 

(MCMC) method bypasses this problem by instead estimating maximum likelihoods and as 

such, MCMC can process large pedigree loads and multiple markers in excess of 1000 loci 

and individuals simultaneously. The computational efficiency afforded by MCMC also 

facilitates analysis of epistasis and genetic heterogeneity via a number of two-locus linkage 

enrichment models [62,63].  

Although initially unconsidered in single-locus models, analysis of co-segregation between 

casual genes on alternate chromosomes can serve to strengthen linkage scores. Several two-

locus models have been devised using various approaches including, LOD score 

calculation (with an assumption of a two-locus disease model) and a two-stage approach 

which assesses correlation between unlinked regions prior to estimation of joint 

susceptibility induction. The latter model is particularly useful for enrichment of samples 

where genetic heterogeneity is suspected [64]. These methods may be implemented for 
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discrete or quantitative traits and are readily available in programs such as Loki4 and 

MORGAN5 . With regard to quantitative traits however, both are restrictive in that only 

additive multi-locus models may be applied [62]. An overview of linkage analysis from 

pedigree marker analysis through to SNP association is outlined in Figure 2. 

 

Figure 2: Linkage Analysis; Markers spanning the genome are typed and used to map IBD 

haplotypes within pedigrees. Excess IBD haplotype sharing (greater than that expected by the law of 

independent assortment) within cohorts groups indicate regions of potential disease linkage.  Further 

analysis of Linkage region may yield functional polymorphisms. 

 

Linkage analyses have been used to convincingly identify many disease loci in multiple 

populations, including ten NIDDM linked regions on chromosomes 1q25.3, 2q37.3, 3q28, 

3p24.1, 6q22, 8p23, 10q26.13, 12q24.31 18p11.22 and 20q13.1 with consequential 

genome-wide scores, in excess of that which is considered significant (LOD >3.0) [31].  

 

                                                 
4 Loki:  http://www.stat.washington.edu/thompson/Genepi/Loki.shtml 
 
5 MORGAN: http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml 
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However Linkage analysis also has a number of drawbacks, rendering the approach 

incompatible with many aspects of the polygenic disease profile. 

One of the main difficulties is that linkage analysis provides relatively low statistical power 

for detecting QTLs with small to modest effects, i.e. given strong linkage (θ = 0.05 ) Sham 

et al., determined that a sample size of 80,620 is required to detect QTLs conferring 5% 

trait variance. In practical terms this renders linkage analyses aiming to capture variance of 

<10% infeasible and given the putative nature of polygenic disease, a large proportion of 

QTLs conferring small to moderate risk may be overlooked if linkage alone is employed 

[65]. The use of pedigrees for analysis of late onset diseases also presents particular 

problems in terms of sample collection in Western Europe where families have declined in 

size dramatically over the past 60 years [66]. Additionally, although use of this cohort type 

facilitates large IBD haplotype coverage with minimal marker requirements, it also 

precludes fine mapping and identification of individual linked genes or casual 

polymorphism alleles. As such population-based association analyses have been developed 

in an attempt to alleviate these problems and make forward genomics amenable to a wider 

range of polygenic disease models. The following section covers disease association; 

describing and evaluating both functional prediction and linkage disequilibrium-based 

approaches.  
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2.1.2 Association Analysis 

 
Association analysis measures the relative frequency with which marker alleles co-

segregate with disease traits within a cohort. However unlike linkage analysis, 

association does not exploit linkage but rather linkage disequilibrium. Linkage 

Disequilibrium (LD) describes non-random association between two or more alleles 

across the genome. When two or more regions are in strong LD they are usually inherited 

together without recombination. Consequently, association is not limited to assessment of 

correlation between markers and disease on individual chromosomes and epistatic 

interactions are more readily modelled by association approaches. This method is 

generally used, a posteriori, to finely map regions or individual SNPs of interest 

highlighted by genome-wide linkage analysis, expression analysis, functional studies, or 

functional prediction methods and aims to identify susceptibility alleles or markers in 

close linkage disequilibrium with true at-risk polymorphisms [67,68]. 

 

Disease discovery can be time consuming as multiple markers and many individuals must 

be tested in order to collate a comprehensive set of susceptibility alleles, as such 

establishing priorities in the selection of SNPs based on functional prediction or linkage 

disequilibrium is an excellent way to accelerate the process and reduce cost.  
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2.1.2.1 Functional Candidate Based Prioritisation  

 
The functional candidate approach prioritises individual polymorphisms based on their 

putative capacity for functional disruption. Selection may be based on the genomic 

environment in which they reside and/or on the extent of their presumed capacity for 

functional disruption. An array of computer programs and algorithms have been developed 

to simplify the selection process; sequence and 3D-structure homology or RNA stability 

modelling may be implemented for SNPs located in coding regions. While splice / branch 

site motif analysis may be used for functional prediction of SNPs located in non-coding 

regions. 

The following section gives an overview of the methods that may be employed for in silico 

functional impact prediction and Table 2 provides a list of some of the software programs 

available for this type of application. A number of models are currently used to predict the 

functional impact of coding SNPs on protein function: Sequence homology uses retention 

of amino acids in homologous proteins to predict tolerance of residue change while 3D 

structure analysis exploits use of known protein structures to model the effect of residue 

change on electrostatic interaction, catalysis, ligand binding and hydrophobic disruption of 

the protein core. Research suggests that use of multiple analysis methods including that of 

3D structure modelling result in highly accurate prediction, however just 60% of proteins 

have been modelled to date making modelling of this nature inaccessible for many protein 

products and isoforms. This multiple analysis approach used by Sunyaev et al., for human 

transthyretin functional impact prediction is outlined in Figure 3. 
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Figure 3: Multiple prediction mechanisms can help improve the accuracy of functional impact 

prediction. Comparative residue analysis of Ile-Ser replacement in transthyretin fails to predict a 

deleterious impact as this residue can also be seen in the Sparus aurata homolog. Although the 

substitution results in a hydrophobic to hydrophilic residue change on the molecule surface, 

structural analysis also identifies this substitution as neutral, as its location is quite a distance from 

the binding site. However, complex formation analysis predicts the residue to play a role in substrate 

complex formation and a deleterious prediction was duly made [69]. 

 

RNA stability modelling is currently used to predict the impact of larger polymorphisms on 

single stranded RNA molecular stability. Using this method conformational energy 

searching is carried out to find the energetically preferred conformations of a molecule. 
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Although local instability may be necessary to facilitate certain mRNA activities (i.e. 

catalysis and binding) alleles which produce the lowest free energy measurements are 

generally more stable and should therefore incur higher activity [70,71]. The extent of free 

energy difference between RNA molecules and resultant RNA folding changes can be used 

to predict the putative impact which may be imparted (Figure 4). Structural changes of this 

nature can be stark impacting complex formation between mRNA, tRNA and ribosomes 

and having knock-on effects on the protein expression.  

 

Figure 4: RNA Analyzer; local minima are sought to model RNA structure. A single allele change 

can significantly effect the theoretical structure produced and may have real life implications for 

RNA structure / function. The example featured displays a modelled 114 base sequence with 

alternate alleles C or A at position 99. A clear difference may be observed between structures, this 

was also reflected in energy scores [70]. 
 

Non-coding regions are segments of DNA that do not encode functional proteins or RNA. 

Such regions do however; often contain conserved regions involved in control of 

expression, or that play a role in structural stability of the genome. Promoters work in  
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unison with other regulatory regions such as enhancers, silencers and insulators to direct 

the level of transcription of a given gene. SNPs located in transcription factor binding sites 

(TFBS), triplex-forming oligonucleotide target sequences (TTSs), catalytic regions, poly-A 

tails and other conserved motifs are likely to direct more significant change than those 

located in non-conserved regions.  

Clear donor and acceptor splice signals are important for defining splicing boundaries 

and recognition of exons, while exon splice silencers (ESS), exon splice enhancers 

(ESEs) and intronic splice silencers (ISS) are known to direct selection and expression of 

alternate transcripts. 

 

The success of in silico prediction strategies depends heavily on how well putative 

functional variants are identified however. If prediction and thus prioritisation is poor, the 

proportion of true functional polymorphisms included may be too small to facilitate 

standard association detection. While some prediction methods and programs display 

encouraging detection rates (i.e. PolyPhen true positive non-synonymous SNP prediction 

of 82%), others, such as RNA stability/structure analysis, are little more than speculative 

(at least in terms of SNP analysis) [72,73] (private correspondence, Zucker, 2007). In 

addition, the limited knowledge of promoter and other non-coding regions available 

means that accurate prediction of SNP effects in these environments is more challenging 

[67]. 
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Table 2: In silico Functional Impact Prediction Software Programs. A number of analysis 

implementations are listed, along with the general category of prediction facilitated. 

 
Functional prediction 

Category 

Software 

program 
Software access 

Protein catalytic sites, 

structure and binding 

SIFT (Sorting 
Intolerant From 
Tolerant)  

PolyPhen 
(Polymorphism 
Phenotyping) 

SNPs3D 

http://blocks.fhcrc.org/sift/SIFT.html 

[74] 

http://genetics.bwh.harvard.edu/pph/ 

[75] 

http://www.snps3d.org/ 

[60] 

Post translational 

modification, protein 

aggregation and 

amyloidosis 

SNPeffect 
http://snpeffect.vib.be/ 

[76] 

mRNA stability 

modelling and regulatory 

motifs 

RNA Analyzer 

 

GeneBee 

http://wb2x01.biozentrum.uni-
wuerzburg.de/ 

[60] 

http://www.genebee.msu.su/genebee.html 

[77] 

Splice site recognition 

and regulation 

Automated 
Splice Site 
Analysis  

https://splice.uwo.ca/ 

[78] 

 
Comprehensive genomic 

analysis (Protein, Post 

translational 

modification, Splice site, 

intron/ exon boundary 

and motif analysis) 

PupasView  

 

http://www.pupasnp.org 

[79] 
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Initially, non-synonymous coding SNPs were believed to be responsible for the majority of 

polygenic disease predisposition and as such, candidate SNP selection was weighted 

heavily towards this premise. One of the most frequently cited NIDDM susceptibility 

polymorphisms; the missense alanine pro12Ala allele, was initially highlighted as the at-

risk allele. However more recent association studies have refuted this claim and an 

investigation by Wei et al., using alternate ethnic cohorts indicate that this SNP is more 

likely to be in linkage disequilibrium (LD) with the true at-risk allele [80].  

This pattern of weak and confounded association is repeated in multiple association 

studies across candidate genes IGF1, IGFBP1 and IGFBP3 chosen for this study, where 

markers have been predominantly selected via functional impact prediction. Two of the 

most heavily studied NIDDM candidates across this region are; IGF1 non-synonymous 

coding SNP Gly972Ar (rs1801278) and promoter constituent (CA)n repeat 

polymorphism 192-bp.  Vaessen et al., initially reported evidence of NIDDM association 

with IGF1 cytosine-adenosine non-192-bp repeat promoter polymorphism. This allele 

was found to confer an 18% reduction in IGF1 expression and an increased relative 

NIDDM risk of 1.7, however a subsequent analysis by Frayling et al., using a UK 

Caucasian cohort did not support these findings [81,82]. A third study by Rietveld et al., 

did not support the original findings either, and instead found correlation between 

homozygous carriers of the 192 bp allele and increased GH-driven age related decline in 

total circulating IGF-I [83]. This indicates that the polymorphism itself is unlikely to be 

functional, or that heterozygosity in study design contributed to conflicting outcomes. 
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Tentative association between NIDDM and IGF1 nonsynonymous SNP Gly972Arg was 

also identified by Florez et al., although limited power meant subsequent investigations 

of this SNP again produced conflicting results. A meta-analysis undertaken by Jellema et 

al., found carriers of the 972Arg variant to induce a substantial 25% increased risk of 

NIDDM by comparison with non-carriers [84]. However two subsequent large-scale 

population studies of Caucasian cohorts (n=9,000 and n=1,467 respectively) found this 

substitution to have little appreciable effect on common NIDDM predisposition [85,86].  

 

Studies such as these highlight the potential pitfalls of association; large sample sizes, use 

of homozygous populations and meta-analyses do not necessarily render association clear-

cut. The process of association is a complex one; confounding can occur as a result of 

multiple factors irrespective of the markers chosen or manner in which markers were 

selected, however use of a more comprehensive haplotype-based approach may offer a 

method to further minimise confounding caused by linkage disequilibrium and incomplete 

gene coverage. The following section describes haplotype and linkage disequilibrium-

based marker prioritisation. 
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2.1.2.2 Haplotype Based Prioritisation  

 

An alternate marker haplotype-based prioritisation approach uses linkage disequilibrium to 

guide selection of markers representing a high proportion of common variation across 

candidate regions.  

As previously discussed, increased physical distance generally results in increased 

recombination and lower linkage disequilibrium along the length of the whole 

chromosome. This also holds true for smaller, minimally recombinant haplotypes, with 

alleles positioned at the edges of haplotype blocks experiencing greater recombination than 

haplotype-central alleles (Figure 5). As such individual SNPs may be used to capture the 

maximum amount of variation across the haplotype and predict which alleles are likely to 

be present. These representative SNPs are termed tagging SNPs, tagSNPs or haplotype-

tagged SNPs and have been found to be highly effective for disease association of common 

alleles [6]. 

While such an approach has clear application for high frequency alleles, Prichard et al., 

additionally postulates that it may offer advantages for SNPs subscribing to the rare allele 

common disease hypothesis [87-89]. This is based on observations by Patterson et al., who 

noted that rare SNPs often appear within long-established haplotypes; as such, it is thought 

effects may be more detectable within haplotype-tagged studies than with single variation 

approaches [67].  
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Figure 5: Linkage Disequilibrium within a Haplotype Block over Multiple Generations. A new 

mutation (X) arises in the ancestral haplotype signature TATCAT that causes disease. Within the 

haplotype block recombination occurs more frequently with increasing physical distance. As such the 

most highly conserved haplotype signature in patients carrying the disease allele are central around 

the casual allele. 
 

 

Power for detection may also be enhanced for haplotypes containing multiple contributory 

SNPs subscribing to an additive disease model, as linkage disequilibrium allows the impact 

of all tag and capture SNPs to be felt.   

However while Haplotype-based tagSNP association has a higher practical power 

capacity than functional prediction, approaches are known to suffer from confounder 

susceptibility which can render true association elusive [88]. The validity of results 

obtained can be heavily influenced by selected algorithms, thresholds and the study 

design implemented; therefore, it is essential that analysis options are evaluated and 

selected carefully before any association study is initiated [90]. 
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The following section describes potential confounders, design features and options that 

may be considered prior to haplotype- / LD-based association analysis to minimise 

confounding and maximise the probability of true association. Haplotype inference, LD 

calculation and LD-based tagSNP selection / paring approaches are all discussed. 

 

2.1.3 Haplotype Inference and Linkage Disequilibrium Calculation 

 
Somatic cell chromosomes exist in pairs of homologues, as such it is necessary to infer 

phase (which polymorphisms are derived from each homologous chromosome) when 

estimating haplotypes and their associated frequencies.  

A number of techniques have been developed for direct haplotype observation including 

single-molecule dilution, long-range allele specific PCR, pyrosequencing, intracellular 

ligation, rolling-circle amplification, carbon nanotube probing, diploid-to-haploid 

conversion and clone-based systematic haplotyping. However these techniques are often 

labour intensive, costly and hampered by technical difficulties which make large scale 

application difficult [91-93]. 

Haplotypes may be directly inferred from tri-generational pedigree data although most 

polygenic association studies use less complex pedigree structures or data from unrelated 

individuals that cannot accommodate this approach. As such, a number of alternative 

haplotype estimation-based approaches have been developed including Clark’s algorithm, 

expectation-maximisation (EM), coalescence and Bayesian-derived methods [93,94].  
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These algorithms can predict multiple haplotype frequencies for un-phased individuals, 

however phase uncertainty remains a feature of all and this uncertainty influences 

subsequent haplotype construction and LD calculation. 

For un-phased genotypes the haplotypes inferred by these programs are described with a 

certain probability, however the linkage disequilibrium calculations which follow generally 

treat the most probable haplotypes as true and subsequent calculations are based on these 

assumptions. Kulle et al., described a method to derive LD measures from relative 

haplotype frequencies produced by EM or Bayesian approaches using weighted or joint 

statistical models, essentially incorporating haplotype uncertainty into LD calculation. 

While this may benefit Mendelian disease discovery however, Lu et al., determined that 

this is likely to be of little benefit to complex disease analysis due to the increased model 

complexity and relatively weak gains imparted [95,96]. 

A host of LD measurements exist, with disequilibrium statistics (D’) and pair-wise 

correlation coefficients (r2) being the most common. D’ displays indicator-like behaviour 

for missing haplotypes and tends to enrich for rarer alleles, while r2 is more favourable for 

common alleles. Additionally, r
2 is inversely related to power (i.e. sample size) and as 

such, has become popular for tagging and disease association studies (see Figure 6) 
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Figure 6: Association analysis sample size calculation. Maximum r
2 

can be used to calculate the 

sample size requirements for indirect association. Both the frequency of marker and capture alleles 

and the strength of LD between markers and capture SNPs influence sample size requirements. 

Higher minor allele frequencies and LD (maximum r
2
) between tag and capture SNPs results in 

reduced sample size requirements [97]. 

 

2.1.4 LD-based tagSNP Selection Methods 

 
Prioritisation, and thus reduction, of tagSNP burden can be accomplished using haplotype 

block-based or block-free methods [98]. Block-based methods such as those developed by 

Johnson et al., Patil et al., and Zhang et al., are based on reconstruction of LD using 

haplotype block models in candidate regions (see Figure 7 for graphical representation). 

Resultant tagSNPs aim to describe variation across individual blocks using a subset of non-

recombinant SNPs [99]. These methods work best when small numbers of common 

haplotypes exist within the population sample and require full phase information and block 

boundary identification. The definition of a haplotype block partition has been much 

discussed with three established classes (diversity, LD and recombination-based methods) 

found by Ding et al., to produce divergent haplotype block partition and alternately sized 
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haplotype tagged SNP subsets. The effect of haplotype block definitions on subsequent 

associative power has yet to be resolved; however these findings underline the 

inconsistencies that may impact power to detect true association when implementing block-

based SNP prioritisation [100]. 

 

 

Figure 7 Haplotype block-based tagging. The genome is organised into 10- to 20-kb haplotype blocks 

that are in strong LD and are transmitted more or less intact from generation to generation. 

Separating these are "recombination hot spots" where recombination is most likely to occur. As 

SNPs within a block tend to be in LD with each other; single tagSNPs can be used to predict the 

genotype of multiple markers within the block [101].  

 

Haplotype block-free methods such as those described by Carlson et al., Halldorsson et al., 

Halperin et al., He et al., and De Bakker et al., aim to capture maximum variation across 

the candidate region as described by linkage disequilibrium, Recombination is not 
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considered however, and block boundaries are not defined [6,7,99,102]. Consequently, 

uncertainty associated with block definition is circumvented and correlation between 

alternate haplotype blocks may be exploited with reduced tagSNP burden [99]. This can 

increase associative power for haplotypes which subscribe to an additive effects model 

across a broader genotypic range while potential small sample size confounders may be 

limited by setting LD recognition windows to a physical distance suggestive of true LD 

[99,103]. 

Other additional strategies may be employed to reduce tagSNP burden, include r
2
 

correlation threshold reduction and use of best “N” methods. At present most tagSNP 

selection is based on pair-wise LD, capturing minimal sets of markers based on pair-wise r2 

correlation between adjacent SNPs. SNPs are in perfect LD if r
2 = 1 however slightly 

reducing this correlation threshold, can dramatically decrease the tagSNPs requirement 

while maintaining high relative power to detect association for common casual alleles. De 

Bakker et al., found an r
2 threshold of > 0.8 reduced tagSNP requirements by 55% (in 

Central European ancestry Utah populations) while retaining relative associative power of 

96%. Further reduction of set thresholds results in rapid atrophication of relative power, 

and as such an r2 threshold of > 0.8 is generally accepted as a suitable concession [7] 

De Bakker further reduced tagSNP burden by development of a block-free multi-marker 

“best N” approach. This works by ranking potential tagSNPs with regard to the number of 

SNPs captured and has been found to be more efficient than the r
2 threshold reduction 

technique when complete reference panels are used. However as “best N” discards putative 
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self-tagging SNPs, incomplete LD may result is rejection of unlisted SNPs, a strategy likely 

to impact preferentially upon rarer alleles [7].  

Although multi-marker approaches produce fewer tagSNPs they are more likely to exhibit 

lower associative power than pair-wise methods, as such, care must be taken to avoid over 

paring tagSNP lists [104]. The software program Haploview 

(http://www.broad.mit.edu/haploview/haploview-downloads) developed by Barrett et al., at 

the Broad institute MIT has implemented a method which combines the simplicity of 

pairwise methods with the potential efficiency of multimarker approaches. Overfitting is 

avoided by using only those multiallelic combinations in which the alleles are themselves 

in strong LD [105]. 

In this study we use Haploview to infer phase (section 2.1.3 Haplotype Inference and 

Linkage Disequilibrium Calculation) construct haplotypes (section 2.1.2.2 Haplotype 

Based Prioritisation) and calculate linkage disequilibrium (section 2.1.2 Association 

Analysis) from unphased non-pedigree population data. TagSNPs are selected using 

Haploview’s aggressive mode which implements a multi-marker haplotype-free tagging 

approach (section 2.1.4 LD-based tagSNP Selection Methods) to reduce tagSNP burden 

and increase associative power. TagSNP burden is further pared using r
2 correlation 

threshold adjustment (section 2.1.4 LD-based tagSNP Selection Methods). The following 

work sets out to address the first thesis objective “To construct haplotypes for a given 

population and perform tagSNP selection which captures maximum variation across 

candidate genes IGF1, IGFBP1 and IGFBP3”.  
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2.2 Materials and methods 

2.2.1 Genotype Data Collation and Amendment 

 
High quality reference panels collated by NHLBI Seattle SNP’s PGA (programs for 

genomic applications) and NIEHS’s EGP (environmental genome project) were used to 

access high quality genotyping data for candidate genes. Where possible data included 

was limited to populations of European Caucasian descent (i.e. for IGF1 and IGFBP3), 

where such selections were unavailable (i.e. for IGFBP1); data was treated to remove 

putative African derived genotypes which tend to display increased genotype / haplotype 

diversity relative to Caucasian profiles.  

 

Genomic data for both IGF1 and IGFBPP3 was accessed through GVS (Genome 

variation Server) website at http://gvs.gs.washington.edu/GVS/. PGA (programs for 

genomic applications) data was selected for IGF1 and EGP (environmental genome 

project) for IGFBP3. European population, allele frequency cut-off of 5 % and tagSNP 

data coverage of 95% were selected. All other parameters were left at default values, 

including r2 threshold of 0.8, LD range of 1.0-0.1.  Genotype displays were used to access 

local SNP positions, sample identifiers and corresponding genotyping allele designations, 

while SNP summaries allowed access to SNP reference sequence IDs, minor allele 

frequency, heterozygosity, chi-square statistics, function and conservation scores for each 

SNP. This data was saved as text files and converted to Haploview compatible formats 

.ped format and .txt files using locally designed software [106].
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Genomic data for IGFBP1 was also accessed using the GVS EGP panel as before, 

however the European population selection was unavailable and All was stipulated for 

this parameter. This returned PDR90 (Polymorphism discovery resource 90) mixed panel 

genotypes, derived from 24 European Americans, 24 African Americans, 24 Asian 

Americans, 12 Mexican Americans and six Native American individuals. Although 

individual ethnic identifiers are unavailable, a study by Al Zahrani et al., exploited the 

known increased genotype and haplotype diversity in individuals of African American 

descent in order to deselect these samples [50]. These same 28 samples (P002, P003, 

P004, P011, P015, P017, P018, P021, P032, P038, P039, P041, P042, P047, P050, P057, 

P059, P061, P064, P065, P074, P075, P076, P080, P082, P087, P088, P089) were 

manually removed from IGFBP1 data tables prior to Haplotype and tagSNP analysis.  

 

The identity of a GVS “unknown” SNP (chromosome position 45900628, allele G/C) 

was identified as rs9658231 using dbSNP and the corresponding text altered prior to 

TagSNP selection to allow inclusion. Files were converted to Haploview compatible .ped 

and .info files as before. 
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2.2.2 Haplotype Construction and tagSNP Identification 

 
Haploview was downloaded from http://www.broad.mit.edu/mpg/haploview/download 

and installed locally. IGF1, IGFBP1 and IGFBP3 genotype data files (.ped and .txt) were 

uploaded and Haploview used to estimate haplotypes and linkage disequilibrium. HW p-

value of 0.01 and minor allele frequency (MAF) values of 0.01 were stipulated, all other 

parameters were left at default values. Haploview’s tagger was used to section SNPs 

meeting the specified criteria into tag and capture bins. 

 

2.2.3 Functional Impact Prediction (PupaSuite) 

 
All potential Tagger tag and capture SNPs were analysed using PupaSuite 

(http://bioinfo.cipf.es/pupasuite/www/) to identify those with putative deleterious 

functional impact designations. dbSNP reference sequence identifiers for all tag and 

capture SNPs were uploaded and the following parameters selected; only predicted 

pathological non-syn mutations, pathological mut (PMUT), prot. structure and dynamics 

(SNPeffect), cellular processing (SNPeffect), pathological mutations predicted by 

selective constraints (dN/dS) and Mus Musculus conserved regions. All other criteria 

were left at default values. 
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2.3 Results 

2.3.1 Haplotype Construction and TagSNP Identification 

 
The following section displays linkage disequilibrium plots (Figure 8, Figure 9 and 

Figure 10), haplotype displays (Figure 11, Figure 12 and Figure 13) and tag / capture 

SNPs identified (Table 4, Table 5 and Table 6) across candidate regions IGF1, IGFBP1 

and IGFBP3. 

 

Linkage Disequilibrium plot  

Pairwise estimates of D’ were generated and graphically displayed using Haploview. The 

standard D′/LOD colour scheme is used; with red indicative of strongest linkage and 

linkage disequilibrium (D'> 0.8, LOD>2) and white indicative of weak evidence for both. 

The values in each square indicates the pairwise D' value, when no figure is listed the 

value of D' is actually one. Haplotype blocks containing multiple SNPs in strong linkage 

and linkage disequilibrium are highlighted by a border, and block size (Kb) displayed. 

Relative distance between markers along with reference sequence SNP identifiers are 

displayed above the plot.  Haploview LD plot colour key is described in Table 3. 

 

Table 3: Haploview LD plot standard D′/LOD colour scheme. 

 D' < 1 D' = 1 

LOD < 2 white blue 

LOD ≥ 2 shades of pink/red bright red 
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Haploview linkage disequilibrium Plots are displayed for IGF1, IGFBP1 and IGFBP3 

(Figure 8, Figure 9 and Figure 10 respectively). IGF1 contains strongest linkage 

disequilibrium and two large haplotype blocks spanning 13Kb and 35Kb containing 11 and 

18 SNPs respectively. Regions of strong linkage disequilibrium are displayed in pink and 

red. IGFBP1 displays lower linkage disequilibrium with two haplotype blocks spanning 

1Kb and <1Kb, containing five and two SNPs respectively, while IGFBP3 displays the 

lowest level of linkage disequilibrium with just one haplotype block spanning <1Kb and 

containing three SNPs. The reduction in linkage disequilibrium and linkage is clearly 

evidenced by comparison of IGF1 plots and IGFBP3 plots which display predominantly 

red/pink and blue/white profiles respectively.  
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Figure 8 Haploview Linkage Disequilibrium Plot for IGF1. Two large Haplotype blocks spanning 13 

and 35Kb, containing 11 and 18 SNPs respectively are visible. Regions of strong linkage 

disequilibrium are displayed in pink and red. 



 
 

 

 
Figure 9: Haploview Linkage Disequilibrium Plot for IGFBP1 gene. Two haplotype blocks spanning 

1 and <1Kb, containing 5 and 2 SNPs respectively are visible. Regions of strong linkage 

disequilibrium are displayed in pink and red. 

 

 
Figure 10: Haploview Linkage Disequilibrium Plot for IGFBP3 gene. One haplotype block spanning 

<1Kb, containing 3 SNPs are visible. Regions of strong linkage disequilibrium are displayed in pink 

and red. 
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Haplotype Display  

Multi-allelic D’ was used to model linkage disequilibrium across candidate genes using 

Haploview and results displayed graphically. The horizontal sequential number list 

spanning block displays relates to the allocated SNP numbers (corresponding NCBI 

reference sequence identifiers are displayed on LD plots). Predicted haplotypes for each 

block are listed vertically from the highest to lowest population frequency and transitions 

between haplotypes in each block represented by lines whose thickness correspond to the 

population frequency. Hedrick’s multi-allelic D’, which represents the degree of LD (or 

recombination) between blocks, is displayed beneath transition lines [105]. Haploview 

derived haplotype displays for candidate genes IGF1, IGFBP1 and IGFBP3 are displayed 

in Figure 11, Figure 12 and Figure 13 respectively. Seven haplotypes are predicted for 

both IGF1 blocks, ranging from population frequencies of 0.326 to 0.022. IGFBP1 blocks 

are predicted to contain four and two haplotypes ranging from population frequencies of 

0.653 to 0.065, while four potential haplotypes are predicted for IGFBP3 haplotype 

block, ranging from population frequencies of 0.386 to 0.023. 
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Figure 11: Haploview IGF1 Haplotype Display.  Seven haplotypes are predicted for both IGF1 

blocks, ranging from a population frequency of 0.326 – 0.022.  D’ = 0.81. 

 

 

Figure 12: Haploview IGFBP1 Haplotype Display.  Four and two haplotypes are predicted for 1Kb 

and <1Kb haplotype blocks respectively, ranging from a population frequency of 0.653 – 0.065. D’ = 

1.0. 

 

 
Figure 13: Haploview IGFBP3 Haplotype display. Four potential haplotypes are predicted for this 

block, ranging from a population frequency of 0.386 – 0.023. 
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Tag and Capture SNP tables 

The following tables; Table 4, Table 5 and Table 6 display all tag and capture SNPs 

identified by Haploview’s implementation of Tagger for IGF1, IGFBP1 and IGFBP3 

respectively.  

Haploview’s Tagger sections SNPs into bins of high linkage disequilibrium. Any single 

tagSNP in each bin may be used to capture all tag and capture SNPs with user defined 

correlation coefficients within that bin. Capture TagSNPs do not display high correlation 

with all bin-constituent SNPs and should therefore not be selected for analysis. IGF1 

contains 35 potential tagSNPs and four capture SNPs sectioned into 13 tagSNP bins. Bin 

one contains the largest pool of 16 tagSNPs from which to choose, while bins seven to 

13 inclusive contain self-tagging SNPs. IGFBP1 contains 19 alleles which were 

sectioned into 5 bins containing 14 tagSNPs and five capture alleles. IGFBP3 contains 

25 SNPs sectioned into 14 bins; nine of these bins are self-tagging. 

Testing a single tagSNP from each of the bins should allow for 100% variation capture 

across target regions with mean r
2 of 0.973, 0.957 and 0.968 for IGF1, IGFBP1 and 

IGFBP3 respectively. All tagSNPs listed capture all respective tag and capture SNPs 

with an r2>0.8. 
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Table 4 IGF1 - Tag and Capture SNPs. Haploview’s Tagger sections SNPs into bins of high linkage 

disequilibrium. Any single tagSNP in each bin may be used to capture all tag and capture SNPs with 

user defined correlation coefficients within that bin. Capture TagSNPs do not display high 

correlation with all bin-constituent SNPs and should therefore not be selected for analysis.  

 

Bin 

No 

TagSNPs 

Additional Capture 

SNPs 

1 

rs12313279, rs10778175, rs10778174, rs5742653, 

rs972936, rs4764884, rs5742678, rs17885477rs5009837, 

rs2195242, rs4764883, rs9308315, rs978458, rs6539035, 

rs5742694, rs6220 

 

2 rs17882461, rs7956547 rs11111267 

rs10860869, 

rs10778176, 

rs5742629, 

rs17727841 

3 
rs17882264, rs11111262, rs6219 

rs5742714 
 

4 rs10745942, rs2033178  

5 rs1140655, rs2946834  

6 rs35767  

7 rs12821878  

8 rs1019731  

9 rs17884646  

10 *rs12316064  

11 rs1520220  

12 rs3730204  

13 rs6214  

* rs12316064 was formally listed as rs17885068 
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Table 5 IGFBP1 - Tag and Capture SNPs. Haploview’s Tagger sections SNPs into bins of high 

linkage disequilibrium. Any single tagSNP in each bin may be used to capture all tag and capture 

SNPs with user defined correlation coefficients within that bin. Capture TagSNPs do not display high 

correlation with all bin-constituent SNPs and should therefore not be selected for analysis. 

 

Bin 

No 

TagSNPs Additional Capture 

SNPs 

1 

rs7454 

rs9658189,rs9658223, 

rs4988515, 

 rs9658192, rs9658236 

2 rs1874479 rs9658239 rs9658221 rs9658205 

rs9658224 
 

3 rs3828998 rs3793344 rs1065780 

rs4619 
 

4 rs9658194 rs2854843 rs9658231  

5 rs9658238  
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Table 6 IGFBP3 - Tag and Capture SNPs. Haploview’s Tagger sections SNPs into bins of high 

linkage disequilibrium. Any single tagSNP in each bin may be used to capture all tag and capture 

SNPs with user defined correlation coefficients within that bin. Capture TagSNPs do not display high 

correlation with all bin-constituent SNPs and should therefore not be selected for analysis. 

 

Bin No TagSNPs 

Additional Capture 

SNPs 

1 rs3793345 rs34678704, rs2471551 
rs35440925, rs34091405 

2 rs33979592 rs2854747, rs6413441 
rs3110697 

3 rs2132572 
rs10255707 

rs2132570 

4 rs2132571 
rs13241830 

 

5 rs2854744 
rs2854746 

 

6 rs11765572  

7 rs12540724  

8 rs2453840  

9 rs2453839  

10 rs35751739  

11 rs6670  

12 rs13223993  

13 rs10282088  

14 rs34087654  
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2.3.1 PupaSuite in silico Functional Prediction 

The following section describes in silico functional analysis results obtained using 

PupaSuite. PupasSuite scores and brief descriptions are shown where appropriate. 

Deleterious predictions were not made for MUT, protein structure and dynamics, cellular 

processing, codon conservation, TFBS and I/E boundary analysis for any tag or capture 

SNP analysed and therefore output is not displayed. A number of deleterious predictions 

were made for IGF1 and IGFBP3 exonic splice enhancer SNPs (Table 7). Three SNPs 

(rs6214, rs6219 and rs2854746) were predicted to impact a deleterious effect with scores 

of -2, -2 and -1 respectively and although located in a srp55 responsive site IGFBP1 SNP 

rs4988515 was predicted to be neutral. IGF SNP rs5742629 was determined to be located 

within a triplex forming oligonucleotide target sequence, however predictions regarding 

the functional impact of such SNPs is not facilitated by PupaSuite at this time (Table 8). 

 

Table 7: PupaSuite Exonic Splice Enhancer (ESE) Prediction for candidate genes IGF1, IGFBP1 and 

IGFBP3. SNP and transcript identifiers, SR protein types and prediction and associated scores are 

listed. 

 
 IGF1 IGFBP1 IGFBP3 

SNP ID rs6214 rs6219 rs4988515 rs2854746 

Transcript ID IGF1-001 IGF1-001 IGFBP1-001 IGFBP3-201 

SR Protein type srp40 srp40 srp55 sf2 

Allele scores 
-2.73 (G) 

- 0.35 (A) 

- 4.35 (G) 

- 1.97 (A) 

-6.14 (C) 

- 4.59 (T) 

- 3.56 (C) 

- 1.65 (G) 

Prediction Lose (-2) Lose (-2) Maintain Lose (-1) 
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Table 8: PupasSuite Triplex Forming Oligonucleotide Target Sequence (TTS) Identification. TTS 

constituent SNP identifiers, genomic environment and associated TSS sequence are listed. 

 
 IGF1 IGFBP1 IGFBP3 

SNP ID rs5742629 

Genomic environment Intron 

TTS Sequence 
AAAGGAAAAAG 

 

� � 

 

2.4 Discussion 

 
This chapter aimed to construct haplotypes across candidate genes IGF1, IGFBP1 and 

IGFBP3 and identify the minimal number of tagSNPs required to offer maximum 

variation coverage for Caucasian populations. In silico functional impact prediction was 

also performed to identify those SNPs most likely to impart a deleterious effect.  

 

2.4.1 Haplotype Construction and tagSNP Identification 

 
Using PGA (program for genomic application) genotyping data, 155 SNPs were 

identified in candidate gene IGF1. Of these 39 (31 intronic, four 3’UTR, two mRNA 

UTR and two intergenic SNPs) displayed a minor allele frequency of ≥5%. These were 

sectioned into 13 bins containing 39 potential tagSNPs using Haploview. Extensive LD 

was observed across the locus with two well-defined blocks spanning 35kb and 13kb. 

One SNP (listed as “unknown”) chromosome base position 101363244 was identified as 

rs10778175 through dbSNP. Another listed as rs17885068 in Haploview has now been 

merged into rs12316064 and is listed using this identifier. Five SNPs (rs5742678, 
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rs5742694, rs1520220, rs6220 and rs2946834) previously found to correlate with altered 

IGF-I levels (Al-Zahrani et al., 2006) were included as either tag or capture SNPs. Using 

parameters as previously described; 39 of the 39 alleles (or 100 % of variation) may 

theoretically be captured with a mean r2 value of 0.973 using 13 tagSNPs in 13 tests. A 

total of 100% of captured alleles show an r2 >0.8. 

 

IGFBP1 genotype data for individuals of European descent only was unavailable from 

NIEHS, however the known increased genotype and haplotype diversity in individuals of 

African American descent was utilised in order to deselect individuals of African descent 

from the PDR90 (Polymorphism discovery resource 90) mixed panel prior to Haplotype 

analysis. From “treated” PGA data, 63 SNPs were identified using Haploview. Nineteen 

had a minor allele frequency of ≥5% in the 64 PDR90 subjects of putative non-African 

descent (ten intronic SNPs, one mRNA UTR SNP, one coding-synonymous, one coding 

non-synonymous, one near 3’ SNPs, three intergenic SNPs and two near gene 5’ SNPs).  

LD was observed across two well-defined blocks collectively spanning >1kb. One non-

synonymous SNP rs4619 previously associated with diabetic nephropathy was captured 

by the selection [107].  

 

Using previously specified parameters, Haploview in combination with Tagger selected 

5 tagSNPs, capturing 19 alleles (100% of variation) with a mean r2 value of 0.957, using 

5 tagSNPs in 5 tests. 

 

Using IGFBP3 EGP (Environmental Genome project) genotyping data 74 SNPs were 

identified. Of these, 25 polymorphisms had minor allele frequencies of ≥5% (seven 
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intronic SNPs, two near gene 3’ SNPs, one coding-synonymous, one coding non-

synonymous, four intergenic, three mRNA UTR and one 3’UTR SNP). The locus 

exhibits low LD with just one haplotype block of <1kb encompassing three SNPs 

identified. Two SNPs (rs2132571 and rs2132572) previously found to correlate with 

alternate IGFBP3 levels were included as tag and capture SNPs respectively (Al-Zahrani 

et al., 2006).  Using parameters as specified 25 of 25 SNPs (100% of variation) could be 

captured with a mean r2 of 0.968 using 14 SNPs in 14 tests.  

 

2.4.2 Functional Impact Prediction (PupaSuite) 

 
All tag and capture SNPs were investigated by PupaSuite in order to identify those 

located in transcription factor binding sites, intron/exon border consensus sequences, 

exonic splicing enhancers and exonic regions – with putative deleterious effects. 

Although selection was not made on this basis, downstream experimental incompatibility 

may require incomplete bin representation. In instances where incompatibility is noted, 

the results of putative functional impact predictions will be used for prioritisation of bins. 

SNPs located in triplex-forming oligonucleotide target sequences (TTS) were also 

identified along with their location, however predictions regarding TTS impact could not 

be made at this time [108,109].  

 

Disruptions to pre-mRNA processing mechanisms are of great interest to genetic disease 

research with up to 50% of all point mutations responsible for genetic disease inducing 

aberrant splicing [110]. Disruption of exonic splice enhancers (ESEs) are known to effect 

exon recognition, resulting in exon skipping altered expression and production of other 
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malformed splicing combinations [111]. Deleterious PupaSuite ESEs are identified using 

threshold scores derived by Cartegni et al., SNP alleles causing significant deviation 

above set thresholds are more likely to disrupt normal ESE function causing aberrant 

effects. Three SNPs (IGF1 rs6214 and rs6219 and IGFBP3 SNP rs2854746) received 

deleterious predictions using this method. IGF1 candidate tagSNPs; rs6214 and rs6219 

were found to be located in SRp40 responsive ESEs. The score difference threshold for 

this ESE type is >2.670; both received scores of 2.38 and designations of “lost” 

indicating a potential propensity toward mRNA processing misfunction [112]. 

 

The exact role of SRp40 is not yet fully described however these regions have been 

linked to development of type 2 diabetes and a reduction in insulin-dependent glucose 

uptake by insulin induced alternate splicing in Akt2 deficient mice. Here SRp40 was 

shown to reduce protein kinase C (PKC) ßII isoform expression via the PI-3 kinase 

signalling pathway [113,114]. Reduced PKC ßII expression, induced by selective 

mutation of SRp40 Ser86 residue (Serine > alanine) further demonstrated the significance 

a single amino acid change may have to splice site selection [113]. 

 

IGFBP3 capture SNP rs2854746 was found to be located within an SR Sf2 responsive 

ESE. ESE-Sf2 sites have a significant threshold score of 1.956. Rs2854746 SNP alleles 

generated a score difference of 1.91 and a designation of “lost”. Sf2s act to maintain 

splicing regulation and accuracy and also to prevent exon skipping. Sf2- / ESE-mediated 

alternate splicing has yet to be established for IGFBP3, however a study by Smith et al., 

found that increased ESE-mediated Sf2 expression promotes splicing of IGF1 alternative 
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exon 5 in vivo [115]. Disruption of Sf2 ESEs have not as yet been linked with NIDDM 

however Sf2-specific ESE disruption has been linked with other disorders including 

spinal muscular atrophy [116]. 

IGFBP1 capture SNP rs4988515 (tagged by rs7454) was found to be located in an SRp55 

responsive ESE. These sites have a significant threshold score of 2.676. A less severe 

score difference of 1.55 between alleles was seen in this instance and as such a verdict of 

maintain was calculated; indicating that the SNP is less likely to have a consequential 

effect on ESE recognition and functionality. It may also be of interest to note that 

Ensembl transcripts predict just one isoform for IGFBP1, therefore the ESE may be 

erroneously identified by PupasSuite or may work in conjunction with other sequences 

not currently recognised. One capture SNP rs5742629 (tagged by rs7956547) was found 

to be located within a triplex-forming oligonucleotide target sequence (TTS). Regulatory 

TTSs are concentrated heavily in promoter regions and play a role in expression 

regulation. By binding complementary triplex-forming oligonucleotides (TFOs), TTS 

RNAs form triple-helical oligonucleotide structures which have been shown to inhibit 

expression in multiple genes, including that of IGF-IR [117]. No method for assessing the 

functional impact of these SNPs has been developed yet however, and as such, a 

prediction regarding the likely impact of either SNP could not be made [118,119]. 

 

IGF binding protein post-translational modifications (including glycosylation, 

phosphorylation and proteolytic fragmentation) are known to heavily modulate IGF-I 

binding and bioavailability, as such it was hoped that PupaSuite’s use of SNPeffect for 

identification of aberrant cellular processing of this type may prove particularly useful 
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with regard to analysis of candidate genes IGFBP1 and IGFBP3 [120]. No putative 

deleterious predictions of this SNP type were made however. Non-synonymous coding 

sequence SNPs were heavily prioritised in the past regardless of functional study beyond 

an awareness of an amino acid residue change. The techniques used for protein prediction 

have improved greatly and PupaSuite offers an excellent range of programs based on 

protein structure and dynamics, cellular processing and codon conservation prediction. A 

total of 12 coding non-synonymous and 6 synonymous SNPs have been identified across 

candidate genes IGF1, IGFBP1 and IGFBP3. Just four of these (two non-synonymous 

SNPs; rs4619 and rs2854746 and two synonymous rs4988515 and rs2132572) proved to 

have a minor allele frequency of 0.05 or greater in the target population. 

 

Non-synonymous missense SNP rs2854746, was previously found by Patel et al., to 

confer a 12% change in circulating IGFBP3, and codes for proline or alanine depending 

on the nucleotide present (cytosine and guanine respectively) [55], while IGFBP1 non-

synonymous rs4619 contains either alanine- or guanine-containing alleles. Some 

confusion abounds regarding the reading frame of the IGFBP1 exon; therefore the amino 

acid substitution created for rs4619 is unclear, methionine / isoleucine or tyrosine / 

cysteine may be produced by nucleic acid variants alanine and guanine respectively, 

depending on which reading frame is used. Missense mutations account for 48% of all 

reported human disease-causing alleles, however missense translations do not necessarily 

have any appreciable effect on protein function if a similar amino acid is substituted in 

place of the wild type residue [121]. Studies to assess the protein structure, binding and 

catalytic impact of such substitutions may be carried out to determine whether an 
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aberrant effect is likely to be imparted. This type of analysis is most effective if 3D 

structures are available, however structures for IGFBP3 or IGFBP1 proteins are currently 

unresolved (Protein Database, 07-08-07).  

 

PupasSuite analysis found neither synonymous SNPs (rs4988515 and rs2132572) to incur 

a deleterious effect: IGF1 rs4988515 appears in the least highly conserved third-base 

codon position (TGC /TGT), however due to degeneracy the appearance of either C / T 

allele does not cause an amino acid substitution and cysteine addition is retained.  Some 

confusion regarding the designation of SNP rs2132572 exists however, with GVS listing 

the SNP as intergenic while dbSNP build 36.3  

(http://www.ncbi.nlm.nih.gov/projects/SNP/) predicts its location to be within an exonic 

region. According to the dbSNP designation, SNP rs2132572 is located in the third base 

position of serine codons TCC / TCT. A 30 kb haplotype block containing SNP 

rs2132572 was found previously by Al-Zahrani et al., to affect plasma IGFBP3 levels 

[50]. An interesting question regarding codon bias is raised by synonymous 

polymorphisms. Codon bias relates to the unequal use of synonymous codons in an 

organism or gene family [122], a selective driver of which is thought to be translation 

efficiency. Cysteine TGT and serine TCT codons are known to facilitate G/U wobble, a 

feature which is less preferable than codons facilitating Watson-Crick pairing (i.e.TGC). 

In this way synonymous codons may yet be found to play in disease predisposition 

[123,124]. Studies by Kotlar et al., did not find any significant bias for general cysteine 

codon use across 16,000 human genes, however no such studies with regard to the IGF 

gene family have been carried out to date [123]. 
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This work in this chapter set out to capture the variation across candidate regions IGF1, 

IGFBP1 and IGFBP3 using linkage disequilibrium based tagSNP selection for target SNP 

reduction with minimal loss of information as described in our project objectives “to 

construct haplotypes for a given population and perform tagSNP selection which 

captures maximum variation across candidate genes IGF1, IGFBP1 and IGFBP3”. We 

also assessed all tag and capture SNPs in terms of their putative functional impact. Both 

of these issues were addressed; haplotypes were constructed across candidate genes and 

all SNPs meeting relevant selection criteria sectioned into bin to allow downstream 

tagSNP selection. All tag and capture SNPs were also assessed using PupaSuite and three 

SNPs predicted to impart deleterious impact. Theoretically any tagSNP from a single bin 

may be used to represent variation within that region of high linkage disequilibrium, 

however multiplex analyses (PCR and hybridisation assays) are to be used for 

amplification and genotyping of these targets, therefore all potential tagSNPs must be 

analysed in terms of their suitability for singleplex PCR amplification and probe 

hybridisation as well as multiplex compatibility with other species across linkage 

disequilibrium bins. Where bin representation may not be facilitated due to multiplex 

incompatibility, selection of tagSNPs will be directed by putative functional impact 

results where appropriate. The following chapter primer and probe design and in silico 

analysis aims to assess tagSNPs in terms of their suitability for multiplex PCR 

amplification and suspension-array probe hybridisation using a host of in silico 

techniques. 
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3.1 Overview  

 
Chapter 2 Haplotype construction and tagSNP analysis facilitated organisation of 

tagSNPs into bins of strong linkage disequilibrium for maximum variation capture across 

target genes IGF1, IGFBP1 and IGFBP3 with minimal theoretical tagSNP requirements. 

If the benefits of this reduced resource are to be truly felt however, the probability for 

successful downstream amplification and genotyping must be maximised. Singleplex 

PCR and certain SA techniques are reasonably well-established; however, analysis of 

target sequences within the proposed multiplex format requires design of novel PCR 

primers and SA probes, which contribute sequence-induced variability to the assay. 

Careful planning, parameter selection and in silico evaluation of primer and probe 

sequences during the experimental design phase can greatly improve the chances of a 

successful outcome. This chapter provides an introduction to the methods which underlie 

PCR amplification and SA genotyping; experimental considerations are introduced with 

particular emphasis on robust primer and probe design. The techniques employed during 

the course of this work for construction and evaluation of IGF primer and probe 

sequences are discussed, and the final primer and probe set profiles described and 

critiqued. 

3.1.1 Polymerase Chain Reaction (PCR)  

 
The polymerase chain reaction has revolutionised the world of modern molecular biology 

by allowing rapid target specific amplification of nucleic acid sequences which facilitates 

robust analysis and sequence characterisation with a precision and sensitivity previously 

inaccessible to the wider scientific community.  
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The technique is derived from the naturally occurring cellular reaction, which uses DNA 

polymerase enzymes for replication and repair of DNA and RNA sequences in vitro. This 

process is the cornerstone of cellular replication and expression, a fact, which is reflected 

in the highly conserved nature of polymerase genes across species. The PCR concept was 

initially investigated by Kleppe et al., in 1971 who demonstrated repair and replication of 

short synthetic DNA sequences pertaining to the major yeast alanine transfer RNA gene 

in vivo [125], however the significance and widespread applicability of this technique 

was not wholly realised until 1983 when Karry Mullis devised an in vitro derivative 

[126]. Vital to increased PCR utility was the discovery of thermostable polymerase 

enzyme; unlike previous polymerases derived from mesophilic bacteria and 

bacteriophages, Taq DNA polymerases are purified from a chemotrophic thermophilic 

bacterium Thermus aquaticus that thrives at high temperatures (50°C to 80°C). The 

derived polymerase enzyme can itself withstand repeated heating to 95°C without 

significant loss of activity. This negates the need for stepwise enzymatic additions 

following DNA denaturation and has paved the way for the development of automated 

thermal-cyclers and high-throughput PCR amplification [126]. 

 

The significance of the in vitro PCR conception, which Mullis attributes to an 

“improbable combination of coincidences, naïveté and lucky mistakes”, was recognised 

in 1993 when he was awarded the Nobel Prize in Chemistry [126,127]. 

 



Chapter 3: Primer and probe design and in silico evaluation 
  
 

Clair Gallagher  Cranfield University 66 

 
Figure 14: The three basic steps of the polymerase chain reaction are illustrated. High temperatures 

~94°C are used to denature dsDNA into single strands, primers hybridise these targets during 

annealing ~54°C and increased temperatures ~72°C facilitate high polymerase activity and primer 

extension in the final extension step [128]. 

 
The standard application of this technique consists of three basic steps; denaturation, 

annealing and extension which are performed at ~94-96°C, 50-60°C and 68-72°C 

respectively. 

• High temperatures are used to denature hydrogen bonds, which bind 

complementary double stranded DNA into single strands.  
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• Brownian motion causes the reaction components to move within the solution. 

Ionic bonds are formed between the synthetic single stranded oligonucleotide 

primers and nucleic acid template. Under suitably stringent conditions primers 

bind their complementary target sequences with increased stability allowing DNA 

polymerases to attach to ssDNA-primer duplexes.  

 
• Once bound; DNA polymerases extend complementary sequences by sequential 

addition of free dNTPs to 3' primer ends in a manner directed by the 

complementary single stranded target.  

 
Denaturation, annealing and extension steps are repeated between 25-50 times during 

standard PCR reactions [129,130]. 

 

 

Figure 15: PCR amplification profile: The target gene is amplified from a double stranded target. 

The reaction is exponential with a single copy of each target produced with every PCR cycle 

assuming complete reaction efficiency. As such 4, 8, 16, 32 and 68 billion copies of this gene are 

produced following 1, 2, 3, 4 and 35 cycles respectively [128]. 



Chapter 3: Primer and probe design and in silico evaluation 
  
 

Clair Gallagher  Cranfield University 68 

PCR amplification is an exponential process, with a single copy of each amplicon 

produced per cycle assuming complete reaction efficiency. Thus from a double stranded 

target; 4, 16, and 1,048,576 copies may theoretically be produced following one, two and 

20 cycles respectively. In practice 100% efficiency is elusive however as limiting factors 

including diminishing dNTP concentration, temperature induced Taq inactivity and 

macromolecular crowding reduce final yields. Notwithstanding these limitations, large 

quantities of highly concentrated target sequence can be produced by PCR facilitating 

increased analytical sensitivity for evaluation of target sequences and other follow-on 

activities [126,129-131].  

 

3.1.2 PCR Primer Design 

 
Careful primer design is an essential first–step for high-efficiency, high-specificity PCR 

amplification. Specificity relates to the frequency with which mispriming or 

amplification of non-specific products occurs, while efficiency relates to the ability of the 

reaction to amplify products exponentially (i.e. doubling of targets per PCR cycle) and is 

reflected in yield. A large number of parameters including primer length, GC content, 

inter and intra-primer annealing temperature and propensity for cross homology must be 

considered if high functionality primers are to be developed [132]. 

 

Primer specificity is directed to a large extent by sequence length, GC content and 

applied annealing temperature. The genomic sequence of the target organism dictates the 

required minimum primer length, with increased genomic size inducing an increased 

primer length requirement. Allowing for some error, a minimum sequence length of 18 
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nucleotides is generally recommended for applications relating to the human genome, 

however for each additionally nucleotide used, primer sequences gain a four-fold increase 

in specificity. As such primer lengths of 18-24 nucleotides corresponding to annealing 

temperatures of >54°C are generally used [132]. Longer primers sequences of 28-35 

bases have also been used to facilitate increased specificity for isoform-specific 

amplification and multiplex PCR amplification [133]. This design is implemented with 

some cost with regard to efficiency however, and amplifications of this nature require 

extended annealing times to facilitate hybridisation of primer-target duplexes [131,132].  

During primer-target hybridisation lateral intra-strand hydrogen bonding occurs between 

complementary bases, however bonding strengths are not unilateral with adenine-thymine 

double bonds significantly weaker than guanine-cytosine triple bonds. As such, relatively 

balanced AT / GC nucleotide distributions should be applied to promote stable annealing 

along the primer length [134]. Also as polymerase effects elongation by addition of 

dNTPs to 3’ ends, increased triple bond strength can be exploited by inclusion of G/C 

terminal nucleotides at ultimate and/or penultimate positions [135-138].  

 

Both sequence length and GC content heavily influence primer-melting temperature (TM). 

TM is the temperature at which half of the DNA duplex will dissociate to become single 

stranded and is indicative of duplex stability. Annealing temperatures (TA)6 are derived 

from calculated TM and must be high enough to guard against non-specific target 

hybridisation but low enough to facilitate target specific duplex formation. A number of 

other forces have also been found to impact duplex melting profiles including salt 

                                                 
6 TA = Tm - 5°C  
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concentration, the propensity for self-homology and base stacking forces (induced by the 

sequential order of nucleotides and vertical covalent bond formation along the length of 

the helical structure) [139,140]. The Panjokovich “consensus method” which calculates 

average predicted TMs from a number of comprehensive nearest neighbour TM prediction 

algorithms and has been implemented in the primer design program Primer3 

(http://frodo.wi.mit.edu/) and has been shown to display minimal error probabilities with 

regard to true TM prediction [141]. It is essential that primer TMs be predicted accurately 

in order to minimise intra-primer pair TM deviation. Divergent intra-primer pair TMs can 

result in use of suboptimal TAs, which prohibit efficient annealing of lower-TM primers 

and induce non-specific amplification of the higher-TM primers. This feature is especially 

important for multiplex reactions or standardisation of amplification within single labs 

[132].  

 

If high-level primer functionality is to be maintained, primers should display homology 

with their intended target sequence only. Cross-homology facilitates identification of 

primers that display a propensity for strong homology within and between primers via 

hairpin, homodimer and heterodimer formation. These features can act to promote 

primer-dimer accumulation and inhibit target-specific amplification efficiency if left 

unchecked [142]. A stand alone program AutoDimer 

(http://www.cstl.nist.gov/div831/strbase/AutoDimerHomepage/DownloadPage.htm) has 

been developed by Vallone et al., to allow evaluation of primer sequences in this way 

[142,143].  
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A further primer-specificity check may be achieved by searching sequences against 

relevant target database (where such repositories are available). A number of programs 

including NCBI’s Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and 

UCSC’s PCR (http://genome.ucsc.edu/cgi-bin/hgPcr?command=start) are specifically 

designed to search primer sequences against human genome assemblies and also provide 

relevant information regarding putative amplicon size and sequence. Detailed amplicon 

views also allow identification of sequence-based features including repeat regions and 

indels which may affect amplification specificity or amplicon size [144,145].  

 

3.1.3 Suspension Array Genotyping 

 
PCR acts to provide a concentrated yield of target molecules for improved sensitivity and 

specificity of downstream SNP genotyping assays. A wide array of divergent genotyping 

techniques have been conceptualised and investigated in an attempt to develop a flexible 

accurate, cost-effective, high-throughput system for sequence characterisation of this 

nature. These include enzyme based methods such as RFLP, primer extension and 

oligonucleotide ligase assays, post-amplification methods including SSCP gel and 

melting peak analysis and hybridisation discrimination approaches, including micro and 

suspension-arrays [146]. The impact of microarrays on SNP genotyping has been 

astonishing; using this method target specific capture molecules are spotted onto a planar 

array surfaces in a highly regulated manner which facilitates target identification by spot 

positioning. Hybridisation is subsequently carried out and fluorescent signals used to 

detect moieties captured under suitably stringent conditions. This approach facilitates 

characterisation of thousands of SNPs and even whole genomes in a single assay and has 
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been widely applied for disease SNP association and expression analysis. A number of 

limitations have, however, led to the development of suspension arrays that aim to 

alleviate some of these restrictive characteristics displayed by planar array formats 

[147,148].  

 

Suspension arrays use suspended probe-coupled microspheres for target-specific capture 

and flow cytometric detection. Divergent optical microsphere properties (including 

particle size and fluorescence characteristics) can be used for identification of multiple 

probes within complex mixtures in a manner substitutive of physical location on planar 

arrays. This elevates problems associated with inert-spot, inter-chip variability and 

eliminates the need for complex spotting and dedicated data analysis instrumentation. 

Coupling of target molecules to their respective supports is also relatively straight-

forward and can be performed in bulk to facilitate thousands of subsequent SAT assays 

[13]. Hybridisation of SAT target molecules mirrors that used for microarrays, however 

as SAT hybridisation is performed in suspension, binding kinetics are significantly 

improved and are more closely analogous to those observed in liquid-based hybridisation. 

The convex microsphere array surface also contributes to improved binding kinetics due 

to its reduced capacity for stearic hindrance [149]. SAT detection may be performed 

using a number of methods, although flow cytometry offers particle analysis rates of up 

to 10,000s-1, making serial multiplex analysis of this type extremely rapid [13]. 

Additionally a wide range of microsphere-encoding techniques have facilitated increased 

parallel analysis with multiplex detection of up to 100 codes detectable using the 

luminex100 flow analyser [150].  
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3.1.4 SAT Probe Design  

 
Probe characteristics can greatly affect assay performance; probe type, length, GC 

content, intra- and inter-probe TA, and the propensity for cross-homology all affect 

specificity, hybridisation efficiency and the capacity for probe allelic discrimination. As 

such, all contributory parameters must be carefully assessed during this experimental 

design phase if SAT allele discrimination is to be performed. 

 
During SAT genotyping, allelic discrimination is achieved by hybridisation of PCR 

targets with allele-specific oligonucleotide probes. Under suitably stringent conditions, 

fully complementary sequences should display increased thermal stability relative to their 

non-complementary counterparts, thereby facilitating divergent hybridisation 

characteristics and increased hybridisation signals for fully complementary sequences 

[151]. Dissociation divergence of ~10°C may be seen for short oligonucleotide probes–

target duplexes (11-17 bases) containing single base mismatches relative to fully 

complementary duplexes. This should be sufficient to allow discrimination between SNP 

alleles, however the extent of dissociation divergence is also influenced by a number of 

other factors.  The position of the SNP within the probe sequence has been found by 

Letowski et al., to be important with respect to discrimination, with centrally positioned 

mismatches contributing greater instability than those located at non-central positions 

[152].  
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Selection of suitable hybridisation temperature (THYB)7 also plays an important role. 

Many published protocols still use “standard” 42°C hybridisation temperatures or 

hybridisation temperatures, which are significantly below predicted optimal THYB when 

performing suspension array genotyping. Letowski et al., determined that altering 

hybridisation temperatures (8-13°C below predicted TM) to meet the requirements of the 

probes results in increased specificity and increased true hybridisation signal 

determination [152]. As previously discussed, sequence derived factors which influence 

oligonucleotide melting and hybridisation temperatures include sequence length, GC 

content and nearest neighbour effects. Again nearest neighbour calculations provide the 

most accurate predictions and should be used for probe TM/ THYB prediction [141].  

 

Relative to PCR primer design, broader GC ranges of ~25-70% are permissible for 

hybridisation probes [10,153,154]. Use of highly divergent GC% in PCR based primers 

induce divergent annealing time requirements resulting in poor amplification efficiency 

or failure for highly divergent pairs. This range is relaxed somewhat for SAT probe 

design as allelic determination is made by relative inter-probe pair hybridisation signals. 

These probe pairs are predominantly composed of identical sequences and as such GC 

impact is likely to be of less consequence [10]. Probes with GC content below 20% may 

display poor hybridisation due to the reduced strength of AT double bonds relative to GC 

triple bonds, while those exceeding 80% GC have been shown to display drastically 

increased cross-hybridisation [154]. 

 

                                                 
7 THYB is the temperature at which annealing between probe and targets is performed. 
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The non-genomic PCR amplicon targets generally used for SAT mean that specificity can 

be achieved using smaller probe sequences although, whilst not strictly required, probe 

lengths of 15-25 bases are generally used and adjusted within this range to fit a 

universally applied hybridisation temperature [10,153]. 

 

As for PCR primer design, it is essential to evaluate all SAT probes fully in terms of their 

propensity for cross-homology. Due to the tethered nature of microarray probes, cross-

homology analysis between alternate probes within this format is not required. 

Overlooking this feature within the scope of SAT probe design can result in coagulation 

of coupled microspheres and hybridisation failure. As such, evaluation of potential 

hairpin and homo/hetero-duplex structures using programs such as AutoDimer is 

recommended [10].  

 

The following in silico primer probe design and evaluation methods were employed to 

address the thesis objective “To perform multiplex primer and probe design, utilising in 

silico and manual analysis for evaluation and selection of a high specificity primer / 

probe sets in a manner compatible with downstream multiplex PCR and SAT analysis”. 
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3.2 Methodology 

 
Using Primer3 (http://frodo.wi.mit.edu/), primer pairs and SAT probes for all tagSNPs 

generated by HaploView’s Tagger (http://www.broad.mit.edu/mpg/haploview/download) 

were designed within strict parameter thresholds. Pairs were analysed for specificity 

using UCSC (University of California Santa Cruz) in silico PCR program and evaluated 

in terms of their constituent sequence type and insertion deletion polymorphisms. The 

proximity of probe-adjacent SNPs was determined for all probes, and proximity of primer  

pairs performed using Gene Infinities Primer Map 

(http://www.geneinfinity.org/sms_primermap.html). 

Multiplex compatibility of primer pairs was assessed using AutoDimer 

(http://www.cstl.nist.gov/div831/strbase/AutoDimerHomepage/DownloadPage.htm) until 

a primer pair combination representing the largest number of bins across candidate genes 

IGF1, IGFBP1 and IGFBP3 was identified. The following section describes the methods 

and thresholds used to determine the final multiplex primer and probe sets [142,155].  

 

3.2.1 Sequence retrieval  

 
The Ensembl Homo sapiens search panel was accessed at 

http://www.ensembl.org/index.html and dbSNP reference sequence identifier used to 

retrieve corresponding FASTA format target SNPs and flanking sequences (position; + 

200, -200 bases). In cases where downstream primer design could not be used to produce 

a suitable primer pair for amplification within this optimal target size range, flanking 

sequences of +400, -400bases were permitted.  
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3.2.2 Primer3 Primer and Probe Design 

 
Primer3 was accessed at http://frodo.wi.mit.edu/ and used to design primers and probes 

for all tagSNPs. Both primers and probe sequences were designed concurrently to 

determine suitability of target to both (PCR and SAT) downstream applications.  

 

Ensembl derived tagSNP sequences (with associated descriptor listing gene name, 

haplotype bin number and target SNP reference sequence identifier) were inputted and 

the following parameters specified for primer design: default minimum product size 

range 100-300bp, primer size: (min) 18 (opt) 29 (max) 35, primer Tm: (min) 64 (opt) 65 

(max) 67, max Tm difference: 2.0, primer GC% (min) 40(opt) 50 (max) 60, Max poly X: 

3 and CG Clamp: 1. Hybridisation probes were selected using the following 

specifications: Hyb Oligo Size: (min) 13 (opt) - (max) 40, Hyb Oligo Tm: (min) 55 (opt) 

60 (max) 65 and Hyb Oligo GC%: (min) 25 (opt) - (max) 80. All other parameters were 

left at default values.  

 

Primer3 returns primer pairs in order of PCR suitability given the specified parameters; 

as such the first primer pair returned in each search was initially selected and primer pair 

sequences and associated information retained for further in silico analysis. Where 

possible an attempt was made to choose primer pairs with amplicons of alternate sizes 

(≥7 base difference) to allow for subsequent separation and analysis of multiplex 

amplicons.  
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3.2.3 UCSC in Silico PCR 

 
The UCSC PCR facility was accessed at http://genome.ucsc.edu/cgi-

bin/hgPcr?org=Human&db=hg18&hgsid=91360718. Forward and reverse primer 

sequences designed using Primer3 were inputted and the human March 2006 assembly 

selected. All other parameters remained at default values. All primer pairs were assessed 

in terms of amplicon specificity and those producing more than one amplicon or no 

amplicon, replaced with alternate pairs where possible. 

 

3.3.4 UCSC Amplicon Analysis 

Detailed information regarding the nature of in silico predicted amplicons was accessed 

using UCSC Genome Browser (http://genome.ucsc.edu/). The following UCSC Genome 

Browser information was displayed: ref seq genes, humanESTs, human ESTs that have 

been spliced, SNPs (129), segmental dups, structural var, repeat masker, simple repeats, 

microsatellites, self chain. Each amplicon constituent non-target SNP was investigated in 

terms of the polymorphism type and proximity to primers and probe sequences. 

Amplicons containing known indels were replaced where possible. Where substitution 

could not be facilitated, indel amplicons were permissible. Polymorphisms within primer 

sequences and non-target polymorphisms within probe sequences were not permissible. 

Repeat region tagSNPs were also replaced with alternative tags where possible, however 

these SNPs were permissible where replacement could not be made.  
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3.2.5 Primer Pair Proximity Analysis 

 
The chromosomal position of amplicons was plotted using the Gene Infinities’ Primer 

Map program (accessed at http://www.geneinfinity.org/sms_primermap.html) to assess 

the position of primers and amplicons on the genomic strand. Full FASTA format gene 

sequences for IGF1, IGFBP1 and IGFBP3 were mined from Ensembl as before using 

gene names rather than reference sequence identifiers. Gene sequences and 

corresponding primer pairs were inputted and selections made as follows; maximum 

allowable bases per line;105, reading frame;1 and restriction sites not be shown. 

Resultant Primer Map windows detailing the position of primers across the target 

sequence was evaluated and potentially problematic adjacent primer pairs identified. 

Screen capture was used to save results of interest; these include any adjacent primer 

pairs within 800 bases of each other. 

 

3.3.6 AutoDimer Cross-homology Analysis 

 
Primer pairs and probes were assessed in terms of their suitability for multiplexing by 

assessing their putative potential for dimer (homodimer and heterodimer) and hairpin 

formation using AutoDimer. AutoDimer was accessed at 

(http://www.cstl.nist.gov/biotech/strbase/AutoDimerHomepage/AutoDimerProgramHom

epage.htm) and downloaded locally. 

 

Files containing Primer3 primer pair sequences and identifiers were assembled and 

uploaded to the AutoDimer pane in FASTA format and Temp for dG calc of 64°C 

(putative optimal annealing temp -1°C) specified prior to analysis.  Results were assessed 
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and dimers receiving threshold scores ≥7 replaced with alternate primer pairs 

representing the identical tagSNPs or bins. Primer pairs receiving scores of 7, which 

could not be substituted for less reactive alternatives, were assessed in terms of their 

predicted melting temperature and Gibbs folding free energy (delta G). Duplex’s 

receiving predicted delta G >0 kcal/mol (at 64) were deemed permissible. Those 

exceeding this threshold were removed regardless of whether bin representation was 

maintained or not. This process was repeated for probe sequences using a Temp for dG 

calc of 59 (putative hybrid temp -1°C). 

 

3.3.7 Primer Pair and Multiplex Set Nomenclature 

 
The final primer and probe sets were termed “IGF multiplex sets”. For clarity primer 

pairs selected for inclusion in this final set were named using a single prefix and 

underscore-separated suffix. The prefix represents the tagSNP constituent gene, i.e. 

prefixes IGF1, BP1 and BP3 represent genes IGF1, IGFBP1 and IGFBP3 respectively, 

while the suffix represents the TagSNP bin number as conferred by Tagger. Probes were 

named using similar nomenclature using the gene name/bin number prefex/suffix as 

before, however an additional letter (A, T, C, G) or symbol (-) were also added to denote 

alleles adenine, thymine, cytosine, guanine and deletion respectively. TagSNP reference 

sequence identifier for each IGF multiplex set primer / probe are detailed in electronic 

appendix Table 1 and Table 6 respectively. 
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3.3 Results 

3.3.1 Primer3 Primer Sequences 

 
Primer3 was used to design primers for tagSNP targets spanning candidate genes IGF1, 

IGFBP1 and IGFBP3. Forward primers are designed to hybridise sense strands while 

reverse primers should hybridise their antisense counterparts. Primer sequences for 

IGFBP3, IGF1 and IGFBP1 are displayed in Table 9, Table 10 and Table 11 respectively. 

Haplotype bin numbers are displayed and 3’ CG clamps highlighted in bold lettering. 

Reference sequence identifiers for tagSNP used in the final IGF multiplex set along with 

corresponding bin numbers and identifiers can be found in electronic appendix Table 1. It 

should be noted that all reverse primers contain a 5’ biotin attachment to facilitate 

downstream streptavidin-fluorophore attachment. 

Table 9:IGFBP3 primer sequences. Both forward and reverse primer sequences (5’→3’) designed to 

hybridise with sense and antisense genomic sequences respectively are displayed. The Tagger derived 

bin numbers, which they represent, are also displayed. 

 
Bin Forward Primer 5’→3’ Reverse Primer 5’→3’ 

1 AACACGCTTATAAGAGCTTGGTGTCC GAGTGGGACTTTGGCATTGTCTG 

3 GACTCTGCTATGCTGAGAAAGCACAAC GCTGGTGTCCACCTTATACTCCTAGAAAC 

4 TACACCGCAAGTCTCCAATTAAGAGTG CCAACGCATCGAGAATACAGTAATACG 

6 TGTCGTCTACAAGAACCAAGGTGTG TCCACGAGGTACACACGAATGC 

7 CATCATACTACTCACTACATGGTGGTTGC ATGAAGCATACTGCCTTCACCTACTGAG 

9 GCCCTGAGATATCCAGCACAGC TGAACACTGTGAGCAGCATCTGG 

10/11 ATTACTTGTGATGCCTCTGAATGTGG CTCTGGGAACCTATAAAGGCAGGTATTTC 

12 GTGAGCTCCTTTCCTCAGTCATGG GAGATTCACCCATGTTTGTTGAACTTAGAG 

13 ACACACCACAATACCAGTCCTCTGAAC AGTCGAAGAGTTACCTCCTGTCGAGTTAC 

14 GTTGATCATAGGTATTGTGTCAGGGTTTC GATGGTGAGACTTAGCCTCCATACTTAGC 
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Table 10: IGF1 primer sequences. Both forward and reverse primer sequences (5’→3’) designed to 

hybridise with sense and antisense genomic sequences respectively are displayed. The Tagger derived 

bin numbers, which they represent, are also displayed. 

 
Bin  Forward Primer 5’→3’ Reverse Primer 5’→3’ 

1 GGGTCTCTTTCTCTTAGCCTTCTATCTGG ATCTTTGGGTCTTGTTATAGTGCCTTCTC 

2 ATACCTCAGCATTGGCAATAGATTCTG TCTGCAACTTACTTGGTGAGTGATCTTG 

3 GCTAAAGCACATTTGAGATTACACAGACC  AGTCAGTACAAGATGTTGACCATCGACTC 

4 GCTAAAGCTGGAATAATGTGTTAGGTGTG GACAGTGATTTGCATGTAGAAAGTGCTC 

5 CTCTATATCCCTGGGTGTTACCTGCATAG GCACCTTTGAGTGATGACCTATTATTGAG 

6 GCAGACATACCTCTTTCCCTAGAGAGC TAACACAAAGAGCCAGAGTAGGATTTCAAG 

7 AGTTGTCCAATATCCTTAAGTGTCTGTGC ACTAGGTAATTGCCAAGCCTAGAAGTGTC 

8 GCTTTCCCACAGCTAGTGACTGTACC TTAGACTGCCTGCTATGCATCTGTG 

9 CTCTCACCTGCCACCATGTAAGATATG GTTTCACCGTGTTAGCCAGGATG 

10 CGTGTGCCTGTAGTTTCAGCTACTCA GCCGTTGTTATTAGTCCTCAGTGATCTTT 

11 GTTGAGCTAATAGAGAGCTTGAACCTTGG TTACTAGGAAAGGATCTAGAGGCCAGAAG 

12 CTGAAGTTCCTCTTGGAAGGCATAAC AGATTCCATCTGTGGCATTTGTACC 

13 AGATAATATGGCAGTGCATCTTTCAGC GAATAAGATACTGGACTCCTCTTCCCAAG 

 

Table 11: IGFBP1 primer sequences. Both forward and reverse primer sequences (5’→3’) designed 

to hybridise with sense and antisense genomic sequences respectively are displayed. The Tagger 

derived bin numbers, which they represent, are also displayed. 

 
Bin  Forward Primer 5’→3’ Reverse Primer 5’→3’ 

1 ATTTCTGCTCTTCCAAAGCTCCTG ATGGTGGAATATACAAGTTAACCGTCCTC 

2 GAGTGCTTTAGGTCTCAGTGAAGTACAGG GTGCAATAATGACTTCCCATGTGTG 

3/4 CACAACTAGAGCTTGAAACCAGAGCAC CTTCCTCCTTGAGTCTCCACTAAGCTATG 

5 TCCTGGAGACTCTAGCTCCCTATCTTG TATCAGTCTGTCCCTGTCCCACATC 
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3.3.2 Primer Parameter Profiles  

 
Critical parameters which may affect efficiency and or specificity of PCR amplification 

were determined and profiled for each primer / primer pair. These parameters include 

amplicon length/ repeat regions, primer-annealing temperature and GC content (Figure 

16, Figure 17 and Figure 18  respectively). Data is displayed in Matlab-derived plots for 

ease of interpretation and comparison between all pairs in the full IGF multiplex set.  

 

Amplicon length of each primer pair was determined using UCSC in silico PCR. 

Predicted mean amplicon length was determined to be 209bp, spanning 428bp from 72 – 

500bp (IGF1_8 and IGF1_12). Three targets (IGF1_9, IGF1_10 and BP3_14) contain 

repeat regions, spanning 100%, 30% and 87% of each amplicon respectively (Figure 16). 

The Panjokovich consensus method as implemented in Primer3 was used to predict TA 

for all primers in the IGF Multiplex set. Mean inter-primer TA is 65.24°C, spanning 

1.34°C from 64.47 – 65.81°C (IGF1_12 and BP3_12 respectively), while mean intra-

primer TA is 0.548 °C, spanning a maximum of 1.32°C for primer pair BP3_10/11 (Figure 

17). GC content for all primers in the final IGF set was determined. Mean inter-primer 

GC% was determined to be 46.31%, spanning 15% from 40.0–55.0% 

(IGF1_6R/BP3_12R and BP3_6R respectively), while mean intra-primer GC% is 4.33%, 

spanning a maximum of 14% for primer pair BP3_12 (Figure 18). Numerical table 

accompaniments for amplicon length/ repeat regions, primer-annealing temperature and 

GC content plots are detailed in electronic appendix Table 5, Table 3 and Table 4 

respectively. 
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Figure 16: Amplicon profiles for the IGF multiplex set. Predicted amplicon length for each primer 

pair is displayed, with repeat and standard genomic regions highlighted in green and blue 

respectively. Predicted mean amplicon length is 209bp, spanning 428bp from 72 – 500bp (IGF1_8 

and IGF1_12). Three targets (IGF1_9, IGF1_10 and BP3_14) contain repeat regions, spanning 100, 

30 and 87% of each amplicon respectively. 



Chapter 3: Primer and probe design and in silico evaluation 
  
 

Clair Gallagher  Cranfield University 85 

64.4 64.6 64.8 65 65.2 65.4 65.6 65.8 66 66.2

IGF1_1    

IGF1_2    

IGF1_3    

IGF1_4    

IGF1_5    

IGF1_6    

IGF1_7    

IGF1_8    

IGF1_9    

IGF1_10   

IGF1_11   

IGF1_12   

IGF1_13   

BP1_1     

BP1_2     

BP1_3/4   

BP1_5     

BP3_1     

BP3_3     

BP3_4     

BP3_6     

BP3_7     

BP3_9     

BP3_10/ 11

BP3_12    

BP3_13    

BP3_14    

Annealing temperature ( °C )
 

Figure 17: Primer3 (Panjokovich consensus) primer predicted TA. The predicted TA for each 

forward (blue) and reverse (green) primer is given for each pair. The vertical terminal box position 

denotes the predicted optimal TA for each primer. The intra-primer vertical line separating forward 

and reverse primers in each pair denotes the predicted optimal TA for that pair. The central dotted 

vertical line denotes that optimal predicted TA for all primers in the full IGF set. Mean inter-primer 

TA is 65.24°C, spanning 1.34°C from 64.47 – 65.81°C (IGF1_12 and BP3_12 respectively), while mean 

intra-primer TA is 0.548
 
°C, spanning a maximum of 1.32°C for primer pair BP3_10/11.  
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Figure 18: Primer GC content. GC content for all primers in the final IGF set are shown. GC content 

for each forward (blue) and reverse (green) primer are displayed. The vertical terminal box position 

denotes the GC % for each primer. The intra-primer vertical line separating forward and reverse 

primers in each pair denotes the mean GC% for that pair. The central dotted vertical line denotes 

the mean GC% for all primers in the full IGF set. Mean inter-primer GC% is 46.31%, spanning 

15% from 40.0–55.0% (IGF1_6R/BP3_12R and BP3_6R respectively), while mean intra-primer 

GC% is 4.33%, spanning a maximum of 14% for primer pair BP3_12. 
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3.3.3 Primer3 Probe Sequences 

 
Primer3 was used to design probes for tagSNP targets spanning candidate genes IGF1, 

IGFBP1 and IGFBP3. Probes were designed concurrently with primers using the internal 

oligo probe function and are designed to hybridise with antisense biotinylated PCR 

amplicon strands. Probe identifiers, SNP alleles and probes sequences for IGF1, IGFBP1 

and IGFBP3 probe pairs are displayed in Table 12, Table 13 and Table 14 respectively. 

SNP alleles are highlighted in red. Further details regarding probe sequence identifiers 

and corresponding bin numbers may be found in electronic appendix Table 7. 

 

Table 12: IGF1 probe identifiers, constitutive alleles and probe sequences are displayed. Probe alleles 

are highlighted in red. 

Probe 

Identifier 

TagSNP 

Allele 
Probe Sequence 

IGF1_1T T TTCTGCATTTCTCTGAATGTCAG 

IGF1_1C C ACTTCTGCATTTCCCTGAATGT 

IGF1_2A A AGATGAGAAAATTGAGGAACAAACA 

IGF1_2T T GTTGAGAAAATTGAGGAACA AACA 

IGF1_3G G CATAGGGATCGGCAGGTTT 

IGF1_3A A CCATAGGGATCAGCAGGTTTT 

IGF1_4A A TTCCCTATAGAGCTTGGCATTT 

IGF1_4G G TTCCCTATAGGGCTTGGCAT 

IGF1_5A A AATGACACATTATTAGATACATTGGTTACC 

IGF1_5G G TGACACATTATTGGATACATTGGTTAC 

IGF1_6A A TTTTCCACATGACTCTCAGGG 

IGF1_6G G TTTCCGCATG ACTCTCAGG 

IGF1_7G G AACATCATAG GCATAGAAAGATCCA 

IGF1_7A A CAAACATCATAGACATAGAAAGATCCA 

IGF1_8C C TAACTTTGACCAGCTGTCACACA 

IGF1_8A A CTAAATTTGACCAGCTGTCACACA 

IGF1_9C C GCGGATCACGAGGTTAGAAG 

IGF1_9T T GGTGGATCAC GAGGTTAGAA GA 

IGF1_10C C CCAGGAGGCGGAGGTT 

IGF1_10T T AACCCAGGAGGTGGAGGTT 

IGF1_11G G TTGCCAAACCTCACTCAGG 

IGF1_11C C TTTCCCAAACCTCACTCAGG 

IGF1_12A A GCACATTAACTCATCATTTGAAGG 

IGF1_12G G CACATTAACTCGTCATTTGAAGGA 

IGF1_13C C AAAACACGTTAAGTCTGCAGAAGA 

IGF1_13T T CAGAAAACATGTTAAGTCTGCAGAAG 
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Table 13: IGFBP1 probe identifiers, constitutive alleles and probe sequences are displayed. Probe 

alleles are highlighted in red. 

 
Probe 

Identifier 

TagSNP 

Allele 
Probe Sequence 

BP1_1C C CGTCTGTTTT TAAAGAGCATGGA 

BP1_1G G CGTCTGTTTT TAAAGAGGATGGA 

BP1_2A A CTGCTTCACAGGCAATGAAC 

BP1_2G G TGCTTCACGGGCAATGA 

BP1_3T T CAGGACGTGCTCTGGGAG 

BP1_3C C CAGGACGTGCCCTGG 

BP1_4C C ATTGCACGGTCTTGGCAG 

BP1_4A A CATTGAACGGTCTTGGCAG 

BP1_5A A GCCAGGCTGCCATCC 

BP1_5G G GGCTGCCGTCCTCTCTG 

 

Table 14: IGFBP3 probe identifiers, constitutive alleles and probe sequences are displayed. Probe 

alleles are highlighted in red. 

 

Bin no 
TagSNP 

Allele 
Probe Sequence 

BP3_1T T GGCTCAGAATCATGCAAGC 

BP3_1C C TCAGAATCACGCAAGCATGT 

BP3_3T T AAGAGCCATGCGTGCCTA 

BP3_3C C CCACGCGTGC CTAGG 

BP3_4T T ATGGAGTTTACACCCATGACAAA 

BP3_4C C GGAGTTTACA CCCACGACAA A 

BP3_6G G AGCCGGTGTCGGGG 

BP3_6A A GAGCCGGTGTCAGGGAA 

BP3_7A A CTAAAGAAGGCAGACAAACGCT 

BP3_7G G GAAGGCGGACAAACGCT 

BP3_9T T GTCTCAACTCATGTTTTCAA ACAAA 

BP3_9C C GGTCTCAACTCACGTTTTCAAAC 

BP3_10C C GTCCCTCCTACCCCACG 

BP3_10T T GTCCTTCCTACCCCACGG 

BP3_11T T GACTCTCCCTGTCTCTCTGTCC 

BP3_11- - GACTCTCCCGTCTCTCTGTCC 

BP3_12T T CACAGTTGTATCATATAGCATCTCTAACAT 

BP3_12A A ACAGTTGTATCAAATAGCATCTCTAACATT 

BP3_13G G TTACAGAACCGGCTTGCTG 

BP3_13A A TACAGAACCGACTTGCTGCTC 

BP3_14C C CTATCATCTATCTAGTCTATCTACCTACTT ATCTC 

BP3_14A A ATCTATCATCTATCTAGTCTATATACCTAC TTATCTC 
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3.3.4 Probe Parameter Profiles  

 
Critical parameters including inter- and intra-probe pair melting temperature (TM) and 

GC content which may affect efficiency and or specificity of probe hybridisation were 

determined and profiled for each probe / probe pair. For ease of interpretation all probes 

TM and GC data is displayed in Matlab-derived plots (Figure 19 and Figure 20 

respectively). Numerical table accompaniments are detailed in electronic appendix (Table 

8 and Table 9 respectively). 

The Panjokovich consensus TM method as implemented in Primer3 was used to predict 

probe TM. Mean inter-primer TM for the full IGF Multiplex probe set was predicted to be 

60.09°C, spanning a 3.49°C degree range from 57.96 to 61.45°C (BP1_3C and IGF1_8A 

respectively). The mean intra-primer TM was predicted to be 0.548 °C, spanning a 

maximum of 1.32°C for probe pair BP1_3. GC content of all probes in the final IGF set 

was also calculated. Mean inter-probe GC% was determined to be 48.96%. This spanned 

a 48.87% range from 29.70–78.57% (BP3_14C and BP3_6T respectively), while mean 

intra-probe GC% is 5.25%, spanning a maximum of 17.77% for probe pair BP3_3. 
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Figure 19: Primer3 (Panjokovich consensus) probe predicted TM. The predicted TM for each probe 

pair is displayed on a single horizontal axis with box colour representative of the tagSNP allele. The 

vertical terminal box positions denote the predicted optimal TM for each probe. The intra-probe 

vertical line separating probe pairs denotes the predicted optimal TM for that pair. The central 

dotted vertical line denotes that optimal predicted TM for all probes in the full IGF set. Mean inter-

primer TM is 60.09°C, spanning 3.49°C from 57.96 to 61.45°C (BP1_3C and IGF1_8A respectively), 

while mean intra-primer TM is 0.548
 
°C, spanning a maximum of 1.32°C (for probe pair BP1_3). 
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Figure 20: Probe GC content. GC content of all probes in the final IGF set are shown. GC content for 

each probe is displayed with box colour representative of the tagSNP allele. The vertical terminal box 

position denotes the GC % for each probe while the intra-primer vertical line separating probe pairs 

denotes the mean GC% for that pair. The central dotted vertical line denotes the mean GC% for all 

probes in the full IGF set. Mean inter-probe GC% is 48.96%, spanning 48.87% from 29.70–78.57% 

(BP3_14C and BP3_6T respectively), while mean intra-probe GC% is 5.25%, spanning a maximum 

of 17.77% for probe pair BP3_3. 
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3.3.5 UCSC PCR 

 
UCSC PCR was used to investigate primer specificity; like blast searching this program 

compares primer pairs against a specified genomic repository (in this case the Human 

Genome March 2006 assembly). Sequences are mapped to their respective genomic loci 

and intervening sequence regions returned to allow primer pair specificity and amplicon 

size predictions to be made. Figure 21 and Figure 22 display the output received for 

primer pairs IGF1_5 and IGF1_9 respectively. IGF1_9 primer pairs failed to produce an 

amplicon while primer pair IGF1_5 (like all other IGF multiplex set primer pairs) 

produced a single target sequence of the anticipated size. All predicted amplicon 

sequences are displayed in electronic appendix Table 6. 

 

 

Figure 21; UCSC in silico PCR amplification; successful PCR amplification was predicted for 26 of 

the 27 primer pairs tested using this approach. The example displayed shows IGF1_5 primers and 

single putative 175bp amplicon spanning IGF1 chromosome 12:101311849+101312023. 

 

 

Figure 22: UCSC in silico PCR amplification failed to produce an amplicon for IGF1_9 primer pair 

within either default or relaxed minimum perfect match settings of 15 or 1 respectively. 
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3.3.6 UCSC Amplicon Analysis 

 
UCSC Genome View was used to access information regarding constituent 

polymorphism indels and low complexity repeat regions which may affect amplicon size, 

the number of amplicons produced and efficiency / specificity of PCR amplification or 

probe hybridisation. UCSC repeat region determination was made for IGF1_9, IGF1_10 

and BP3_14 targets (as displayed in Figure 23, Figure 24 and Figure 25 respectively).  

IGF1_9 contains one LTR (long terminal repeat) and one SINE (short internuclear 

dispersed) region and no indels. IGF_10 contains one SINE and one partially overlapping 

simple repeat region as well as two indel polymorphisms (rs57468885 and rs58322331) 

seven and one nucleotides in length. BP3_14 was also found to contain two LTRs and 

one simple sequence/tandem repeat region. This target also highly polymorphic 

containing five indel polymorphisms (rs34122177, rs55702604, rs35919935, rs58209457 

and rs34087654) of four, three, two, five and five nucleotides respectively. 

 

The polymorphic nature of BP1_3/4 and BP3_10/11 targets are also displayed (Figure 26 

and Figure 27). BP1_3/4 primer pair target region. UCSC Genome View was used to 

access information regarding amplicon-constituent polymorphisms. BP1_3/4 amplifies 

two target tagSNPs rs3828998 and rs9658194 (IGFBP1 bins 3 and 4 respectively) and 

one intervening SNP rs9658195. BP3_10/11 primer pair amplifies two target tagSNPs 

rs35751739 and rs35496550 (IGFBP3 bins 10 and 11 respectively) and one intervening 

SNP rs34735423.  
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Figure 23: IGF1_9 primer pair target region. UCSC Genome View was used to access information 

regarding constituent polymorphisms and repeat regions which may affect amplicon size, the 

number of amplicons produced or the efficiency / specificity of PCR amplification.  No 

polymorphism indels or repeat regions were identified however LTR (long terminal repeat) and 

SINE (short internuclear dispersed) regions were identified. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 3: Primer and probe design and in silico evaluation 
  
 

Clair Gallagher  Cranfield University 95 

 
 
 
 
 
 

 
Figure 24: IGF1_10 primer pair target region. UCSC Genome View was used to access information 

regarding constituent polymorphisms and repeat regions which may affect amplicon size, the 

number of amplicons produced or the efficiency/specificity of PCR amplification.  Two indel 

polymorphisms (rs57468885 and rs58322331), one SINE (short internuclear dispersed region) and 

one partially overlapping simple repeat region are evident. 
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Figure 25: BP3_14 primer pair target region. UCSC Genome View was used to access information 

regarding constituent polymorphisms and repeat regions which may affect amplicon size, the 

number of amplicons produced or the efficiency/specificity of PCR amplification. Two LTR (long 

terminal repeat), one simple sequence/tandem repeat region were identified. Five indel 

polymorphisms (rs34122177, rs55702604, rs35919935, rs58209457 and rs34087654) are also evident. 
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Figure 26: BP1_3/4 primer pair target region. UCSC Genome View was used to access information 

regarding amplicon-constituent polymorphisms. Two target tagSNPs rs3828998 and rs9658194, 

IGFBP1 bins 3 and 4 respectively are amplified with intervening SNP rs9658195. 

 
 
 

 
Figure 27: BP3_10/11 primer pair target region. UCSC Genome View was used to access information 

regarding amplicon-constituent polymorphisms. Two target tagSNPs rs35751739 and rs35496550, 

IGFBP3 bins 10 and 11 respectively are amplified with intervening SNP rs34735423. 

 
 
 

Allele frequency data for both intervening SNPs rs9658195 and rs34735423 were 

determined using dbSNP. SNP rs9658195 displays a minor allele frequency of 0.011 in 

PDR90 mixed population while SNP rs34735423 does not exhibit allele G in European 

population EGP_CEPH-PANEL.  The position and allele frequency of these intervening 

SNPs was considered to facilitate robust probe design. 

 

 

Table 15: Allele Frequency data for intervening SNPs rs9658195 and rs34735423. Reference 

sequence identifiers, population and allele frequencies are displayed. SNP rs9658195 displays a 

minor allele frequency of 0.011 in PDR90 mixed population while SNP rs34735423 does not exhibit 

allele G in European population EGP_CEPH-PANEL. 

 
refSNP ID Population Allele Frequency 

C 

 
0.989 

T 

 
0.011 

rs9658195 PDR90 

 
A 

 
0.00 

G 

 
1.000 

rs34735423 EGP_CEPH-PANEL 
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3.3.7 Primer Pair Proximity analysis  

 
Primer Map was used to position all primer pair sequences across their respective genes. 

The visual output allows identification of overlapping primer pairs likely to induce 

amplification failure or those in close proximity, which may facilitate nonspecific 

amplification between adjacent non-pair forward and reverse primers. Overlapping pairs 

were not admissible and were redesigned or removed. Primer pairs producing nonspecific 

products of <550bp also received this treatment while those in the 550-800bp range were  

noted to facilitate thermal cycle adjustment / optimisation in subsequent reactions. Three 

nonspecific products of 583, 589 and 642 within this 550-800bp range were predicted for 

adjacent non-pair primers IGF1_2F/IGF1_8R, BP3_12F/BP3_10/11R and 

BP3_7F/BP3_1R as displayed in Figure 28, Figure 29 and Figure 30 respectively. 

 

Figure 28: Gene Infinity Primer Map Output. Both primer pairs IGF1_2 and IGF1_8 are in close 

genomic proximity; as such a nonspecific product of 583bp may be produced between IGF1_2F and 

IGF1_8R (forward and reverse primers of alternate pairs). Forward and reverse primer loci are 

highlighted in pink and orange respectively, while red arrows pinpoint primer pair target sequences.
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Figure 29: Gene Infinity Primer Map Output. Both primer pairs BP3_12 and BP3_10/11 are in close 

genomic proximity; as such a nonspecific product of 589bp may be produced between BP3_12F and 

BP3_10/11R (forward and reverse primers of alternate pairs). Forward and reverse primer loci are 

highlighted in pink and orange respectively, while red arrows pinpoint primer pair target sequences. 

 
 
 

 
Figure 30: Gene Infinity Primer Map Output. Both primer pairs BP3_7 and BP3_1 are in close 

genomic proximity; as such a nonspecific product of 642bp may be produced between BP3_7F and 

BP3_1R (forward and reverse primers of alternate pairs). Forward and reverse primer loci are 

highlighted in pink and orange respectively, while red arrows pinpoint primer pair target sequences.  
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3.3.8 AutoDimer Cross-homology 

 
AutoDimer was used to analyse all primers with regard to their propensity towards 

homodimer, heterodimer and hairpin formation. Primer dimers displaying potentially 

problematic score thresholds of >7 were redesigned or excluded from analysis if no 

suitable alternative could be identified. Dimers receiving threshold scores of 7 were 

further analysed in terms of their putative stability; duplexes receiving predicted TMs of 

<20°C and Gibbs folding free energy (delta G) >0 kcal/mol (at 64°C) were deemed 

permissible as these are unlikely to hold their structure given the lowest PCR reaction 

temperature (-1°C). A single hetero-dimer receiving a score of 7 and delta G >0 kcal/mol 

(at 64°C) was included in the final IGF multiplex set (see Figure 31). 

 
Figure 31: AutoDimer primer dimer results for final multiplex set. A single potentially problematic 

heterodimer between IGF1_1R and BP3_3F was predicted. Both primers display complementarity at 

3’ ends; a feature which tends to promote primer dimer formation. A borderline score of 7 was also 

calculated however its thermodynamic profile indicates that primer dimer formation is unlikely to be 

problematic given the PCR conditions under which it is to be amplified (delta G >0 kcal/mol). No 

potentially problematic homodimer or hairpin structures were identified. 
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3.4 Discussion 
 
Extensive evaluation of primer pairs and probes was carried out to maximise the 

probability of successful high-dimensionality multiplex target amplification and 

downstream SAT genotyping. The following section describes the results of PCR primer 

and probe design, in silico analysis and theoretical bin coverage achieved using the 

approaches described.  

 

Using Primer3, primer pairs for all tagSNPs generated by Tagger were designed within 

strict parameter thresholds in terms of inter- and intra-Tm, GC%, amplicon length etc. 

Pairs were analysed for specificity using UCSC PCR and evaluated in terms of their 

constituent sequence type and insertion / deletion polymorphisms, which may affect 

amplification profiles or probe hybridisation. Proximity analysis was performed using 

Primer Map and multiplex compatibility of primer pairs and probes was assessed using 

AutoDimer until a primer pair / probe set representing the largest number of bins across 

candidate genes IGF1, IGFBP1 and IGFBP3 was identified. The results of primer / probe 

design and in silico evaluation techniques employed during this important design phase 

are described.  
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3.4.1 PCR  

3.4.1.1 Primer Profiles (Annealing Temperature, GC Content and 

Distribution) 

 
Following nearest neighbour-based primer TM approximation it is recommended that 

primers are tested empirically and amended to suit the true primer pair requirements. This 

approach is unsuitable for multiplex PCR however where one highly specific TM is 

required to meet the needs of a full primer set. In such cases theoretical anomalies must 

be minimized before ordering primer sets [141]. Work has been carried out by a number 

of groups in an attempt to develop a method which accurately and precisely quantifies 

base stacking forces, however calculation methods for alternate algorithms result in small 

but significant differences in predicted TM [156,157]. Panjkovich et al., have devised a 

consensus TM calculation method which employs multiple nearest neighbour inclusive 

formulas to derive mean TM scores with minimal error probabilities [141]. This method 

has been implemented in Primer3 (primer design program) for TA prediction and has been 

used to successfully design a number of large multiplexes including a 10-plex, 25-plex 

and 52-plex for forensic applications [133,158,158,159]. 

 
Using Primer3 primer design software, 27 primer pairs spanning 29 target bins were 

designed. These displayed an average primer length of 27 bases ranging from 22-30 

nucleotides, corresponding to a mean Panjkovich derived TA of 65.25 oC. An inter-primer 

TA of just 1.68 oC (64.31-65.99 oC) was predicted across the full primer set, with a 

maximum intra-primer pair TA of 1.32oC predicted for BP3_10/11 primer pair. A number 

of other successful multiplex studies exceeding the TA ranges predicted for this IGF 

multiplex set have been performed successfully with Sanchez et al., successfully using 
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intra /inter primer TA ranges of 4.0 and 7.0°C respectively for multiplex amplification of 

52 targets [134,141,160,161].  As such TA divergence is unlikely to effect multiplex 

amplification in this instance. Primer lengths and associated TA predicted for this primer 

set exceed those usually seen for singleplex PCR, however a number of groups including 

Henegariu et al., and Dieffenbach et al., have recently used primers in this range for 

high-specificity multiplex amplification with excellent results [132,133,162]. 

 
Alternate bond strengths contributed by guanine-cytosine (GC) triple and adenine-

thymine (AT) double bonds can impact hybridization characteristics of PCR primers, 

with higher AT sequences being less stable than their higher GC counterparts. Nowhere 

is this more critical than at 3’ terminal ends. Polymerase effects elongation by addition of 

dNTPs to 3’ sticky ends. Use of GC clamps at these terminal positions have been found 

to increase duplex stability, specificity and efficiency of amplification and as such a GC 

clamping provision was included in the design specification [135-138]. All primers in the 

final set adhered to this specification bar IGF1_10 which contains a weak “A” and “TTT” 

terminal nucleotide sequence for forward and reverse primer pairs respectively. Loss of 

this GC clamping feature may affect functionality of this primer pair. 

 

It is also recommended that GC content for all primers be maintained between 40-60%. 

All primers in the final set adhered to this ideal specification with mean inter-primer GC 

of 46.31%, spanning 15% from 40.0–55.0% for primers IGF1_6R/BP3_12R and BP3_6R 

respectively. A mean intra-primer GC% of 4.33% was also calculated spanning a 

maximum of 14% for BP3_12. This is still reasonably narrow and should not affect 

amplification efficiency to a significant extent. 
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3.4.1.2 Primer Specificity 

 
UCSC PCR was used to investigate primer specificity; this program compares inputted 

nucleotide primer sequences against the specified genomic repository (in this case the 

Human Genome March 2006 assembly). This acts to map primer sequences to their 

respective genomic loci and returns both primers and intervening sequence regions 

allowing primer pair specificity and amplicon size to be determined. In silico PCR 

analysis predicted target–specific amplification with amplicons in the anticipated location 

and of the anticipated size range for all IGF multiplex set primer pairs bar IGF1_9 which 

failed to produce a product. The reason for this failure is unknown however IGF1_9 is 

located in a repeat region where sequence determination is often less concrete, as such 

differences are more likely to be observed in this type of genomic environment. Using the 

Ensembl-derived rs17884646 flanking sequence; IGF1_9 primers were predicted to 

produce a 141 base amplicon and this primer pair was included in the final IGF multiplex 

set.  

 

3.4.1.3 PCR Amplicon length  

 
Another key consideration for multiplex PCR analysis is amplicon length; singleplex 

PCR amplification has been successfully performed on targets ranging in size from 44bp 

to 27 kb [163,164]. However optimal reaction components, concentrations and 

thermocycle segment times and efficiencies differ significantly between alternately sized 

amplicons. Extension time requirements are particularly increased with longer amplicon 

lengths (i.e. using Taq polymerase with processivity of 60nt/sec, theoretical extension 
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times of 5, 16 and 166 seconds are required for amplification of 300bp, 1kb and 10kb 

amplicons respectively). Application of single extension times to multiplex amplification 

can result in skewed relative yields for alternately sized amplicons, it was therefore 

important to ensure the amplicon size range was kept relatively narrow.  

 
The issue of amplicon length with regard to its potential influence on downstream SAT 

hybridization efficiency and specificity was also considered. A recent study by Liu et al., 

used a range of targets of alternate lengths, ranging in size from 1490-93bp, to assess the 

effect of length on hybridisation and efficiency. Hybridisation efficiency was found to 

increase with decreasing target length (by up to a factor of 8.8 for smaller 93-145bp 

amplicons) and was also found to reduce the incidence of false negatives. Shorter 

fragments were found to marginally increase false positive error rates however, thus a 

compromise between hybridisation efficiency and specificity is required [165-168]. A 

number of groups including Dunbar and Armstrong et al., have used a range of amplicon 

target sizes from 100-300bp for SAT analysis with good effect [10,150,153,169]. An 

optimal range of 100 – 300bp was therefore set for this IGF multiplex set. A total of 25 

out of 27 amplicons fell within this range, although tagSNP rs3730204 (IGF1_12) 

flanking sequence contains a disproportionately high distribution of AT; as such a larger 

allowable threshold was set and primer pairs spanning 500bp produced. Rs1019731 

(IGF1_8) also contained a disproportionate GC/AT distribution and a smaller allowable 

amplicon size was therefore accepted (72bp). A mean multiplex amplicon length of 

209bp with standard deviation, variance and range of 78, 6097 and 428bp respectively 

was determined for all putative amplicons in the final IGF Multiplex set.  
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3.4.1.4 Primer Targets 

 
Target sequence structures can impact specificity and efficiency of amplification, as such 

target sequences were assessed using UCSC Genome Browser detailed view as described. 

Of particular interest was identification of repeat region sequences. Successful 

amplification of repeat region targets is notoriously difficult; multiple repeats often lie in 

close proximity within PCR amplification range, resulting in amplification of longer 

products. Additionally the repetitive nature of this sequence type also lends itself to 

secondary structure (loop) formation which can facilitate deletion mutagenesis and 

production of shorter PCR products [170]. Despite this, repeat regions have been 

successfully amplified in the past and therefore, where representation of these regions 

could not be achieved by use of tagSNPs spanning more PCR-facilitations environments, 

repeat region primer pairs were designed and included in the IGF multiplex set. Primer 

pairs IGF1_9, IGF1_10 and BP3_14 fall in this category, spanning Alu-SINE/LTR, Alu-

SINE/ Simple repeat and LTR/Simple tandem repeat regions respectively. Alu-SINE 

targets were of particular interest as these types of retrotransposon have been found by 

Jiang et al., to induce hypermethylation of the Gck promoter, thereby reducing hepatic 

expression and elevating diabetogenic potential in ageing rats [171-173].  

 

Inclusion of repeat region targets can also add an extra dimension of complexity due to 

their highly polymorphic nature which may include indels. Due to the homologous nature 

of chromosomes, sequence length differences caused by insertion/deletion 

polymorphisms in hereditary alleles may result in production of two amplicons of 

alternate size from high specificity amplification. IGF1_9 amplicon does not contain any 

known indels, however IGF1_10 contains two (rs57468885, rs58322331) and BP3_14 
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contains five indels (rs34122177, rs55702604, rs35919935, rs58209457 and rs34087654) 

of 7, 25 and 4, 3, 2, 5, 5  nucleotides respectively. Thus amplicons may range from 192-

224bp and 274- 293bp for IGF1_10 and BP3_14 primer pairs respectively. 

3.4.1.5 Primer Pair Proximity Analysis 

 
Gene Infinity’s Primer Map program was used to position all primer pair sequences 

across their respective genes. Primers amplifying overlapping targets may result in 

amplification of short products, poor target amplification, or amplification failure while 

non-overlapping amplicons located in close genomic proximity may allow amplification 

of longer unspecific between adjacent non-pair forward and reverse primers. Longer PCR 

products have different thermal cycle and reaction requirements however and as such 

long non-specific products which significantly exceed the maximal target size are 

unlikely to be amplified within optimised reactions [174]. Smaller nonspecific amplicons 

may cause problems however and as such those within 300bp of the largest target-

specific amplicon were identified. Three potential nonspecific products of 583, 589 and 

642bp within this 550-800bp range were predicted for adjacent non-pair primers 

IGF1_2F/IGF1_8R, BP3_12F/BP3_10/11R and BP3_7F/BP3_1R respectively. Thermal 

cycle and protocol adjustments may be required to remove these nonspecific products in 

final multiplex amplifications [162].  
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3.4.1.6 Primer Cross-Reactivity 

 
Primer3 has limitations in terms of its ability to predict multiplex compatibility. The 

propensity of primers toward homodimer, heterodimer and hairpin formation is 

particularly significant for multiplex amplification where complexity is increased. A 

number of programs including FastPCR and Beacon Designer facilitate analysis of this 

type during the primer design phase; however FastPCR uses the Allawi and SantaLucia 

nearest-neighbour algorithm for TM calculation, and Beacon Designer requires licence 

payment and limits simultaneous evaluation to five primer pairs [175]. As such, an 

independent post-primer design analysis program “AutoDimer” was used for evaluation 

of Primer3-designed primers.  

 

A score threshold of seven, as recommend by AutoDimer, was used to identify 

potentially problematic primers. Primers displaying a high propensity towards 

homodimer and heterodimer formation were redesigned where possible and replaced by 

lower scoring alternatives. IGFBP3 bins two, five and eight (SNP rs33979592 and self 

tagging SNPs rs2854744 and rs2453840) were excluded from multiplex inclusion due to 

high primer dimer scores (>13) received for all possible primers in these regions. None of 

these SNPs were predicted to confer a deleterious impact during PupaSuite functional 

impact prediction (chapter 2). The AutoDimer sliding algorithm was used to perform 

1,485 primer-primer comparisons8 on the final 54-primer set. Just two of these included 

in the final IGF multiplex set; BP3_3F and IGF1_1R, displayed a potentially problematic 

                                                 
8 The number of duplex comparisons made may be calculated using the following formula 2n

2 + n, where n 
= the number of primer pairs 
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hetero-dimer score of seven. Ten complementary matches spanning thirteen nucleotides 

near both 3’ ends of this duplex were predicted; this is potentially significant as 

polymerase effects elongation by addition of dNTPs to 3’sticky ends. IGF1_1R also 

contains a terminal guanine clamp, which may further act to stabilise the 

BP3_3F/IGF1_1R duplex [136,176].  Gibbs folding free energy can be used to determine 

the thermal profile of a molecule within a closed system (i.e. PCR reaction), as such the 

minimum putative temperature used during PCR amplification was applied prior to 

analysis. A delta G calculation threshold temperature of 64 rather than the predicted 

optimal 65°C was used, this was to facilitate thermal cycle block and / or optimal TM 

prediction error. A non-significant delta G of >0 kcal/mole was predicted, indicating that 

the duplex is likely to be unstable under given PCR conditions. As such, both primers 

were included in the final multiplex set [176,177]. A hairpin screen, using an AutoDimer 

threshold score of seven was also performed, however problematic primers of this nature 

were not found to be present [176]. Primer3 implements an intra-primer and hairpin score 

threshold of eight and therefore self and intra-primer homology was protected to a large 

extent during primer design. 

3.4.2 SAT  

3.4.2.1 Probe Profile (Annealing Temperature, GC Content and SNP 

position) 

 
In order to achieve maximum hybridisation signal strength and discrimination it is 

essential for all probe sequences to have a narrow TM range. Again Primer3’s nearest-

neighbour calculation was implemented to design probes and predict associated TMs. A 

mean TM of 60.09°C for all IGF set probes was predicted, ranging 3.49°C from 57.96 to 
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61.45°C for BP1_3C and IGF1_8A respectively. Maximum intra-probe pair TM was 

predicted to be 2.61°C for BP1_3. This mirrors a narrow TM range used by Xu et al., who 

successfully used maximum intra-probe TM range of 4.8°C from 62.1-66.9°C to 

successfully perform SAT SNP genotyping [10].  

 

Probe lengths are of less concern for this type of analysis relative to PCR-based primer 

design, due to the limited capacity for cross-homology incurred by use of PCR targets. 

All our probe sequences fell within 22 bases, ranging from 14 bases for BP3_6T to 37 

bases for BP3_14C. A range of 15-25 bases is commonplace for SAT-based genotyping 

assays; however, sequences of 100 bases have been used for microarray analysis and 

therefore it is anticipated that our largest sequence should function suitably [10,152,153]. 

 

Letowski et al., determined that centrally positioned mismatches contribute to greater 

duplex instability than those located at non-central positions [152]. As such, an attempt 

was made to position SNPs centrally within probe sequences. This was not possible for 

all targets however, due to sequence secondary structure and adjacent SNP constraints 

and as such, a number of alleles were positioned non-centrally. A somewhat arbitrary 

designation of centrality was applied to classify probes with regard to this feature, with 

SNPs positioned <25% from probe terminus designated as skewed. Four probe pairs 

including IGF1_2, IGF1_8, IGF1_9 and IGF1_11 fell within this category and may 

display reduced discrimination capacity.  
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Broad GC ranges of ~25-70% are permissible for hybridisation probes, with lower GC 

probes displaying reduced hybridisation signals, and those exceeding 80% displaying a 

stronger propensity for cross-homology [10,153,154,178]. The mean GC content for IGF 

multiplex set probes was determined to be 48.96% ranging from 29.70-78.57% for 

BP3_14C and BP3_6T respectively. Inter-probe pair GC deviance within the allowable 

range should be of little consequence due to the comparative nature of intra-probe pair 

allele designation, although it is hypothesised that intra-probe pair GC divergence may 

contribute some effect. A number of probe pairs including IGF1_4, IGF1_10, BP3_9,  

BP3_7, BP3_6 and BP3_3T in our final IGF multiplex set exceed the ~7°C intra-probe 

pair GC divergence seen in previous SAT genotyping assays. The consequence of this is 

unknown. TM similarity within probe pairs may be sufficient to facilitate accurate allele 

calling, alternatively however, TM restrictions may need to be relaxed to facilitate higher 

GC similarity within the pair if experimental evaluation determines this feature to be 

problematic [153].  

 

3.4.2.2 Probe Proximity Analysis 

 
The proximity of adjacent tagSNPs was determined using the UCSC Genome Browser as 

described. TagSNPs <30 bases apart that could not be substituted for alternate tags were 

amplified within one sequence using single primer pairs. As such these pairs will require 

double amplification (in separate reactions) to allow downstream SAT genotyping. Two 

such pairs; BP1_3/4 and BP3_10/11 were included in the final IGF multiplex set. Primer 

pair BP1_3/4 contains two tagSNPs rs3828998 and rs9658194 (IGFBP1 bins 3 and 4 

respectively) just 21 bases apart, while primer pair BP3_10/11 contains tagSNPs 
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rs35751739 and rs35496550 (IGFBP3 bins 10 and 11 respectively) just 13 bases apart. 

To complicate matters further, both contained a third variation positioned between target 

tagSNPs. In both cases allele frequency data and nature of the intervening third variation 

was assessed.  SNP rs34735423 (BP3_10/11 intervening SNP) is thought to be absent in 

European Caucasian derived populations (EGP CEPH-panel) and is therefore also very 

unlikely to cause complication in terms of downstream probe hybridization. SNP 

rs9658195 (BP1_3/4 intervening SNP), has a relatively small minor allele frequency of 

0.011 and should also cause minimal disruption. PDR90 global mixed population 

genotype data only was available for this SNP however; therefore European Caucasian 

population specific genotyping of this locus may act to further clarify this matter. 

 

3.4.2.3 Probe Cross-Reactivity 

 
AutoDimer was again used for sequence cross-reactivity analysis. No problematic 

duplexes were predicted for probes in the final multiplex set, cross-reactivity should 

therefore not be an issue using the probe set described [142].  

 

The work in this chapter aimed to use a range of in silico design and analysis programs to 

increase the probability of high experimental multiplex PCR and SAT functionality for 

maximum coverage of tagSNP target bins (as describe chapter 2).  As described in our 

project objectives we aimed to “ perform multiplex primer and probe design, utilising in 

silico and manual analysis for evaluation and selection of a high specificity primer / 

probe sets in a manner compatible with downstream multiplex PCR and SAT analysis”. 

This was achieved by testing the applicability of all tagSNPs using a range of in silico 
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techniques. Primers and probes were designed within strict specifications which should 

facilitate high-functionality. A number of concessions regarding primer design were 

made to allow inclusion of primers which displayed sub-optimal profiles; several primers 

which  

 

displayed very poor profiles were excluded from further analysis (IGFBP3 bins two, five 

and eight). This allowed design of a 27 primer- / 29 probe- pair set which theoretically 

allows representation of 29 bins from the original 32 bins identified by Haploview. 

Experimental analysis of these sequences is required however to determine their true 

functionality.  

The following chapter aims to analyse all primer sequences experimentally; testing 

specificity and multiplex compatibility for construction of a number of well-defined 

multiplex sets which facilitate robust amplification of IGF target sequences. 
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4.1 Overview 

 
Chapter 3 primer / probe design and in silico evaluation aimed to design a set of 

multiplex-compatible PCR primer and SAT probe sequences spanning the maximum 

number of tagSNP bins in the candidate region. Careful primer design and in silico 

evaluation was used to design these sequences for target-specific, high-yield 

amplification. However while in silico evaluation of this nature can act to improve the 

probability of high-level primer performance, it is no guarantee of experimental success. 

As such, chapter 4 aims to evaluate primer pair in terms of their true experimental 

functionality with regards to both singleplex and multiplex amplification. Multiplex 

critical primer pair parameters are investigated extensively and results discussed with 

respect to theoretically derived profiles. Singleplex profiles are also compared to those 

derived during multiplex amplification.  This chapter also provides an overview of 

reaction components which may be used to ameliorate PCR amplification and a number 

of these techniques are implemented to attempt to improve amplification of repeat region 

targets. 

 

4.1.1 Experimental PCR Considerations 

 
An understanding of PCR constituents; their function, scope and inter-relationships 

within a given reaction, can act to increase specificity, efficiency of amplification and 

reduce PCR optimisation times.  The influence of magnesium chloride (MgCl2), dNTP, 

primer and template concentrations as well as adjuvant addition and polymerases 

selection are considered.  
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It is recommended that primer concentration be set with a molar excess of ~107 with 

respect to template concentration if non-specific artefact formation and preferential 

amplification of GC rich targets is to be avoided [179].  Preferential amplification of 

targets is thought to occur by two basic mechanisms; PCR drift or inhibition. PCR drift 

occurs as a direct result of inadequate template concentrations that cause fluctuations in 

reagent interaction and preferential and non-specific amplification, while selection is 

induced by intrinsic template properties, namely divergent GC contents or structural 

anomalies which affect amplification efficiency [180]. 

 

Increased total template concentrations may be used to diminish the effects of drift, while 

increased relative primer concentrations can act to offset less efficient amplification of 

poorly amplified targets in multiplex sets. This strategy does not always work for repeat 

region targets prone to secondary structure formation however; in such instances adjuvant 

addition may be required [181]. A wide range of adjuvants including single-stranded 

DNA binding proteins (gp32 and EcoSSB), non-ionic detergents (Tween-20, Nonidet P-

40 and Triton X-100) and organic solvents (formamide and Dimethyl sulfoxide) have 

been developed. These employ an array of mechanisms to relax hairpin structures while 

allowing conditions conducive to hybridisation to be retained [182].  

 

Taq DNA polymerase is a magnesium-dependant enzyme and as such, sufficient 

magnesium chloride addition is required if high-yields are to be produced. Divalent 

cations act to stabilise hydrogen bond formation between single-stranded nucleotides and 

nucleic acid sequences. As a result dNTP, template and primer concentrations all 

influence Mg2+ availability. Mg2+ increases duplex stability however if used in excess it 
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can result in poor dsDNA melting during denaturation. Excessive Mg2+ concentrations 

have been shown to cause significant problems for amplification of repeat-region targets; 

where magnesium acts to stabilise hairpins facilitating non-specific amplification of 

aberrant targets and poor target yields [162,180,183].  

 

The type of polymerase selected is also an important consideration. An array of modified 

polymerases have been developed to improve reaction speeds, fidelity and target-specific 

amplification. Hot-start, 3’-5’ exonuclease-enabled, high-processivity, high-fidelity and 

inhibition-resistant polymerases are outlined in the following section. 

 

Low reaction temperatures incurred during PCR preparation or thermocycle ramping can 

allow non-specific inter- and intra-primer binding even for those with non-significant 

designations9. By implementing hot-start procedures with limited polymerase activity 

prior to PCR cycling, non-specific amplification can be reduced and target-specific yields 

increased. These procedures were originally performed by physical removal or barrier-

facilitated sequestration of reaction essential components (i.e. polymerase), however 

more recent innovations employ modified polymerases with chemical or ligand-mediated 

(oligonucleotide or antibody) active-site inactivation with good effect [184-186]. The 

choice between ligand- and chemically-inactivated polymerase depends on the 

application; ligand-mediated moieties require very short temperature activation and as 

such, retain higher polymerase activity throughout the reaction. Chemically modified 

polymerases however, can be used to reduce misamplification of problematic targets by 

time-release activation. This technique uses an incomplete preliminary activation step 

                                                 
9 As determined by cross-reactivity prediction software (i.e. AutoDimer) 
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allowing polymerase activation over a number of cycles. Consequently, active 

polymerase concentrations mirror target availability and excess polymerase induced non-

specific amplification may be reduced [186,187].  

 

 

Figure 32: Hot start PCR. The mechanism by which primer dimer formation occurs during non-hot 

start PCR amplification is displayed as is binding protein mediated hot start amplification. Using the 

hot start method described; binding proteins bind with single stranded primers at low temperatures 

thereby preventing non-specific primer-primer binding and subsequent primer dimer formation 

[188]. 
 

Polymerase selection is also known to affect the fidelity of PCR amplification. In fact it is 

thought that polymerase may be responsible for the majority of errors that arise in the 

form of misincorporation substitutions [170]. A number of aspects impact on the 

fidelatous capacity of the enzyme including; the specificity of dNTP binding, rate of 

phosphodiester bond formation, pyrophosphate release, extension following 

misincorporation and the ability of the enzyme to carryout proofreading or 3’-5’ 

exonuclease excision of erroneously incorporated nucleotides following aberrant 

inclusion. This proofreading feature is illustrated in figure Figure 33 [170,189-192].  
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Figure 33: DNA polymerase extension and proofreading during replicative extension. Polymerase 

effects elongation by sequential addition of dNTPs to 3’ sticky ends, erroneous dNTP additions are 

excised by polymerase exonuclease activity and extension continued as normal [191].  

 

The choice of polymerase can greatly impact resultant base substitution rates; with errors 

of 10 -2- >= 10 -6 and  10 -6-10 -7 reported for non-proofreading and proofreading 

facilitated polymerases respectively. An array of chimeric polymerases have been 

developed for this application including Pfu, Vent , Deep Vent and UlTm, however Pfu 

polymerase has proved to be particularly effective displaying a ~10-fold increase in 

fidelity compared to non-proofreading Taqs [193]. It is estimated that the typical 

polymerase error rate is 1x10-4; one error may be expected per every 1,000 nucleotides 

during a twenty cycle amplification. This is a somewhat optimistic figure however, as 

increases in cycle number greatly increase error rates and the exponential nature of PCR 

means that mutations incurred early during the reaction process are amplified at each 
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subsequent cycle. As such final error rates may exceed these estimations greatly 

[131,194].  

 

The significance of fidelity with regard to PCR amplification depends on the precise 

application. Indirect characterisation of amplicons by size or even direct characterisation 

via sequencing and nucleic acid hybridisations are unlikely to be significantly effected by 

polymerase fidelity due to the relatively low signal strength of aberrant amplicons 

(assuming reasonable enzyme functionality, cycle numbers and standard amplicon sizes). 

This is a very important consideration however for applications derived from single 

molecules or rare targets present in heterogeneous samples [170]. 

 

For some applications requiring PCR, circumstances dictate that amplification be 

performed in the presence of polymerase-inhibitors. A number of polymerases which 

display increased resistance to common inhibition have been modified using both 

“directed evolution” and “domain swapping”. Ghadessy et al., used compartmentalisation 

of self-replication (directed evolution) to enhance resistance of Taq polymerase to 

heparin inhibitor by 130-fold, for improved amplification of blood samples (see Figure 

34), while Pavlov used domain swapping or tagging to combine the protein domains with 

polymerase catalytic sites to facilitate high-processivity amplification in the presence of 

high salt concentrations, phenol, blood and intercalating dye inhibitors. These modified 

polymerases will no doubt become important to the development of PCR, facilitating 

removal of costly pre-PCR steps and improved real-time PCR amplification efficiency 

[195,196]. 
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Figure 34: Surface model of the main polymerase domain in taq polymerase. Compartmentalized 

directed evolution was used to identify heparin-resistant inducing mutants (shown in blue)with non-

synonymous substitution and positions described [195].  

 
 

These modified enzymes and novel reaction adjuvants have allowed PCR to be 

performed with ever-increasing reliability increasing the utility of PCR. A wide range of 

PCR variants including allele-specific-, nested-, reverse-transcriptase-, rapid-

amplification- cDNA-ends-, methylation-specific-, direct- and asymmetric-PCR have 

been developed, however real-time PCR and multiplex PCR amplification techniques 

(used during the course of this work) have especially acted to revolutionise PCR utility 

by allowing increasing sensitivity detection and reduced costs [197-206]. The following 

section gives an overview of real-time and multiplex PCR techniques, including 

advantages and limitations of these applications. 
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4.1.2.1 Real-time PCR (RT-PCR)  

PCR as previously described, assess yields following completion of the three PCR 

reaction phases (exponential, linear and plateau) and is referred to as an ‘end-point’ 

method. Due to renaturation competition between complementary product strands, the 

linear phase introduces considerable variability even between replicates. Post-PCR 

processing also introduces further pipettor error and detection methods used (i.e. agarose 

gel / ethidium bromide staining) are also often less than sensitive, varying by as much as 

10-fold for band densitometry based measures. As such, end-point procedures are ill-

suited to PCR analyses that require high accuracy and precision. Real-time PCR, also 

termed quantitative PCR (qPCR), was developed in 1996 to address this weakness and 

improve data yields for PCR amplification experiments [207,208]. 

 

Real-time PCR uses fluorescent dyes or probes in association with instrumentation 

equipped with dedicated fluorescence to monitor the accumulation of amplicons at each 

PCR cycle [209]. These procedures follow the same three-phase pattern as end-point 

PCR, however during the annealing / extension phase, either intercalating dye or 

fluorescent target-specific probes may be used for high-sensitivity target detection [208]. 

Fluorescence data pertaining to the most stable exponential phase is then used to 

calculate amplicon yields and determine reaction efficiencies [207]. 

 
Aside from the higher precision capacity afforded by exponential data acquisition, the 

amplicon detection methods employed in real-time PCR also effect sensitivity and 

precision. A whole host of probe types including hybrid, hydrolysis, taqman, scorpion 

probes and molecular beacons are commonly used for RT-PCR determination. These 

exploit fluorescence resonance energy transfer (FRET) and fluorescent quenching for 
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signal detection during annealing and / or extension. Target-specific probe 

implementation offers an advantage in terms of specificity over intercalating dyes, 

however probe synthesis is expensive and a number of probe-induced complications may 

also be incurred. Apart from increased optimisation requirements (concentration 

adjustment, hydrolysis and quenching efficiency determination), the introduction of 

additional probe moieties increases molecular crowding and reduces the capacity for 

multiplexing. Additionally some sequences may also simply be unsuited to internal probe 

hybridisation due to GC distribution or secondary structure constraints [208] , as such 

intercalating dyes such as SYBR Green I, SYTO-13, SYTO-82, SYTOX Orange, TO-

PRO-3, -3, POPO-3 and BOBO-3 have been developed for amplicon detection and 

quantitation [127,210].  

 
Like ethidium bromide, SYBR Green 1 (the most commonly used intercalating dye) 

displays preferential binding with double stranded DNA. It also displays a much higher 

binding affinity (100-fold) and fluorescence signal (1000-fold) however, making it more 

suitable for high-sensitivity detection [208]. The degenerate binding mechanism of 

intercalating dyes offers huge benefits in terms of reduced RT-PCR costs and the ease of 

experimental design and optimisation, although it also results in lower specificity relative 

to probe detection [208].  

 
Newer generation dyes such as SYTO-13 and SYTO-82 offer improved detection 

sensitivity and alleviate some of the problems previously associated with use of 

intercalating dyes including preferential binding with GC-rich targets and intercalation-

induced PCR inhibition [210]. After real-time PCR amplification, instruments may be 

programmed to perform melt-peak / curve analysis. Using this approach dsDNA 
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amplicons are melted by incremental temperature increases resulting in fluorescence 

reduction with escalating denaturation and dissociation of intercalating dyes (or probes). 

By monitoring the associated change in fluorescence the point at which the melting 

temperature for each amplicon is reached may be identified, thereby facilitating target 

identification even within multiplex formats [211].  Additionally the development of 

high-resolution, melt-curves (facilitated by an increased rate of fluorescence detection) 

allows high-precision curves to be derived which may then be compared to known 

standards for SNP genotyping determination [212]. 

 

4.1.2.2 Multiplex PCR  

 
Multiplex PCR facilitates simultaneous amplification of multiple targets within a single 

reaction format. This higher-dimensionality structure affords a number of benefits which 

have driven wide-spread adoption of this technique. The largest benefit may be seen in 

terms of cost; which applies to consumable use, preparation time and maximum 

utilisation of limited target templates. As multiplex amplification is more demanding than 

singleplex amplification (covering a larger expanse of genomic / cDNA targets) it also 

offers an improved capacity for target quality determination. Additionally multiplex 

amplification facilitates the inclusion of internal reaction controls that act to differentiate 

between “complete” PCR and “target-specific” PCR failure leading to more robust 

sample analysis [9]. Multiplex amplification incurs a number of drawbacks which may, 

however, impede or prohibit effective target specific amplification. As discussed in 

chapter 3, primer design is significantly more complex for multiplex amplification; 

therefore if amplification is to be successful, a number of constraints outside the general 

remit of singleplex primer design must be adhered to. The propensity toward hetero-
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dimer formation for all primers in the set must be assessed and minimised to a 

manageable level, inter-primer TM range should be relatively narrow and amplicon 

lengths must also be divergent enough to facilitate differentiation between amplicons but 

narrow enough to retain thermocycle profile compatibility [162]. While consideration of 

such parameters is not particularly complex, sequence and primer design constraints 

mean universally applicable TMs, minimal dimerisation profile and amplicon production 

in the desired size range cannot always be achieved. The complexity of the problem also 

increases dramatically with multiplex dimensionality, making larger multiplex 

construction difficult.  

 

Amplification robustness decreases with increasing multiplex dimensionality however 

and as such a wide range of singleplex assays are recommended to identify potential 

primer pair weaknesses and failures prior to multiplex inclusion. TA profile analysis may 

be used to determine optimal experimental primer pair TA, while efficiency and dynamic 

range may be used to determine relative yields and reaction sensitivity across a range of 

target concentrations. This type of dynamic range-efficiency measure is generally applied 

for expression sensitivity determination; however as primer pair performance suffers 

upon multiplex inclusion, dynamic range-efficiency assessment can be used to determine 

whether primer pairs are robust enough to facilitate multiplex inclusion. According to 

Edwards et al., multiplex reactions should be constructed by sequential addition of primer 

pairs until the full experimental capacity of the multiplex reaction is achieved, however 

reaction components (MgCl2, dNTP concentration, polymerase) and amplification 

profiles are subject to the extent of multiplex dimensionality, primer concentrations used 

and targets generated; as such, optimal conditions will deviate for alternate multiplex 
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constructs and optimisation procedures performed in this way can be long and arduous 

[9,213].  

 

The following methods were performed to address the thesis objective “To perform 

extensive PCR optimisation for the construction of a number of robust, well 

characterised, high dimensionality multiplex PCR sets”. During the course of this work 

all primer pairs were evaluated extensively using singleplex end-point and real-time PCR 

to determine amplification characteristics and identify any weaknesses in terms of 

specificity or efficiency. All high-performing primer pairs were then constructed into the 

highest dimensionality multiplex formats appropriate for discrimination using available 

instrumentation. Multiplex reactions were subsequently optimised to create relatively 

equimolar amplification profiles suitable for downstream SAT. The following section 

describes the experimental protocols implemented during the course of this work. 
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4.2 Methods 

All methods were performed as described and reagents purchased from Qiagen (Qiagen 

Ltd, West Sussex, UK) unless otherwise stated. 

4.2.1 Cell culture 

OE21 human Caucasian oesophageal squamous cell carcinoma cell lines were cultured as 

described (see appendix 1.2.1 Cell Culture). DNA extraction was performed according to 

the manufacturer’s instructions using the Qiagen QIAamp DNA Mini Kit and 

quantification / qualification performed using the Warburg and Christian 

spectrophotometric molar extinction coefficient absorption method (Eppendorf 

BioPhotometer) Samples displaying purity scores of >2 and 1.7-1.9 for A260/A228 and 

A260/A280 measurements were used for subsequent PCR amplification experiments. 

 

4.2.2 Primer Handling and Processing  

IGF multiplex set primer sequences described in chapter 3 containing 5’ biotin reverse 

primer modifications were synthesized by Thermo-Electron (OD of 0.2µM, RP-HPLC 

purification). Lyophilised primers were rehydrated to an approximate concentration of 

200µM using sterile nuclease-free Tris-EDTA (TE) buffer pH7.8 in accordance with 

datasheet instructions and handling specifications. Subsequent spectroscopic 

measurement and TE volume adjustment was used to normalise primers to a final 

concentration of 100µM (Eppendorf BioPhotometer). All spectroscopic measurements 

were performed in triplicate with OD readings ranging between 0.1-1.0 in accordance 



Chapter 4: Multiplex Polymerase Chain Reaction 

 

 

Clair Gallagher   Cranfield University 
 
 

128 

with good standard practice. Once normalised, primer solutions were divided into 

aliquots of 20µl and stored at -20°C to minimise the probability of cross-contamination.  

 

4.2.3 Single-plex End-Point PCR  

In order to assess basic primer-pair functionality; singleplex end-point PCR was 

performed for all 27 primer pairs using the Qiagen Multiplex PCR and GeneAmp  

AmpliTaq Gold kits as described Table 17 and Table 18 respectively. GeneAmp 

AmpliTaq Gold kit was purchased from Applied Biosystems (Applied Biosystems Inc, 

Foster City, CA). All amplifications were performed using a Techne TC-512 thermal 

cycler (Techne Inc, Staffordshire, United Kingdom) and thermal cycle profile A (Table 

16). Amplification products were separated by agarose gel electrophoresis and stained 

using ethidium bromide (electronic appendix 1.2.3 Agarose Gel Electrophoresis). 

Syngene Gene Genius Bioimaging System in association with GenSnap and GeneTools 

software (Synoptics Ltd, Cambridge, UK) were used to visualise and analyse products by 

molecular weight marker comparative analysis. 

 

Table 16: Thermal Cycle Profile A 

 
Step Temp (°C) Duration (min/sec) Cycle no. 

Preheated Lid 105 3m00s 1 

Initial 

Denaturation 
95 15m00s 1 

Denaturation 95 00m30s 

Annealing 65 00m30s 

Extension 72 00m30s 

30 

Final Extension 68 15m00s 1 
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Table 17: Qiagen Multiplex PCR Amplification Reaction Mix. Reaction mix “D” 

 
 Component Volume (µl) 

1 Qiagen Multiplex Master Mix 7.5 

2 Primer mix (10uM) 2.0 

4 DNA Template (190ng/µl) 1.0 

5 Deionised nuclease free H2O 4.5 

 Total Volume (µl) 15 

 

 

 
Table 18: AmpliTaq Gold PCR Amplification. Reaction mix “B 

 Component Volume (µl) 

1 Deionised nuclease free H2O 9.90 

2 10x Gold buffer 1.50 

3 dNTP (200 µM) 0.15 

4 Forward Primer (10µM) 1.00 

5 Reverse Primer (10µM) 1.00 

6 Target DNA (190ng/µl) 1.00 

7 AmpliTaq gold DNA Polymerase (5 units/µl) 0.45 

 Final Volume (µl) 15.00 

 

4.2.4 Repeat Region Amplification Optimisation  

Further optimisations were performed for primer pairs (IGF1_9, IGF1_10 and BP3_14) 

displaying non-specific amplification using six alternate amplification protocols termed 

A, B, C, D, E and F. These are described as follows: 
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• A = Standard taq, MgCl2 restricted, manual hot start 

Protocol A was composed of reactants as detailed (Table 19). MgCl2 was excluded from 

the reaction mix in an attempt to minimize MgCl2 facilitated secondary structure 

stabilisation and a manual hot start implemented. This was performed by withholding 

polymerase addition until reactants had reached 95°C (during the initial thermal cycle 

denaturation step) and should act to reduce primer-dimer and or non-specific 

hybridisation and amplification. 

 

Table 19: Reaction mix A - Standard taq, MgCl2 restricted, manual hot start 

 
 Component Volume (µl) 

1 Deionised nuclease free H2O 11.5 

2 buffer 1.50 

3 dNTP (200 µM) 0.15 

4 Forward Primer (10µM) 0.2 

5 Reverse Primer (10µM) 0.2 

6 Target DNA (190ng/µl) 1.00 

7 Taq DNA Polymerase (5 units/µl) 0.45 

 Final Volume (µl) 15.00 

 

• B = Time-release AmpliTaq -gold, MgCl2 restriction 

Protocol B reactants were composed as detailed (Table 18). Again MgCl2 was excluded 

from the reaction mix in an attempt to minimize MgCl2 facilitated secondary structure 

stabilisation. A higher-processivity, higher-fidelity AmpliTaq polymerase was also used 

to try to reduce polymerase mediated nucleotide inclusions or exclusions (indel). In 

addition a time-release thermal cycle profile which implements a short 5 minute initial 

denaturation and increased cycle number (35cycle) profile was introduced (Table 20). 

This allowed slow activation of chemically inactivated AmpliTaq gold polymerase over a 
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number of cycles to allow polymerase concentrations to mirror those of target production 

and should reduced excess-polymerase induced non-specific amplification.  

 

Table 20: Time-release Thermal Cycle Profile B 

 
Step Temp (°C) Duration (min/sec) Cycle no. 

Preheated Lid 105 3m00s 1 

Initial Denaturation 95 5m00s 1 

Denaturation 95 00m30s 

Annealing 65 00m30s 

Extension 72 00m30s 

35 

Final Extension 68 15m00s 1 

 
 
 
• C and F = Time-release AmpliTaq-gold, MgCl2 restricted with 5% and 10% 

DMSO respectively. 

Again this protocol used AmpliTaq gold and excluded MgCl2 however destabilising 

agent DMSO (Sigma Aldrich Dimethyl sulfoxide biotech. grade, 99.8%) was also added 

to reduce hydrophobic forces and the stability of target secondary structures which may 

contribute to non-specific amplification by deletion mutagenesis mechanisms [214]. 

AmpliTaq Gold Reaction mix “B” (Table 18) was used with addition of 5% and 10% 

DMSO and H2O adjustment for protocols C and F respectively. Thermal cycle A was 

again used (Table 16) to facilitate amplification.  

 

• D and E = Qiagen multiplex master mix, 3mM MgCl2, MP-factor (with 5% Q 

solution for reaction mix E) 

Reaction mix “D” was used for amplification of targets as described (table 17). The 

Qiagen multiplex PCR kit is supplied with a premixed master, containing HotStar 
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polymerase, synthetic factor MP and MgCl2. Factor MP increases the local concentration 

of primers at the DNA template and should help stabilise specifically bound primers. 

Reaction mix “E” also contains 5% Q-solution isostabilizing agent which can act to 

improve amplification of GC rich targets and those containing a high degree of secondary 

structure [215]. 5% Q-solution was added to these reactions and H2O adjusted 

accordingly. Thermal cycle profile A (Table 16) was used for amplification in both 

instances.  

4.2.5 Single-plex Real-Time PCR 

The Bio-Rad CFX96 Real-Time System (Bio-Rad Laboratories Ltd., Hertfordshire, UK) 

was used to perform high-sensitivity singleplex real-time PCR amplification of all primer 

pairs. Multiplex critical parameters; annealing temperature and amplification efficiency / 

dynamic range were investigated using this highly sensitive technique. Note: A range of 

optimisations including template (0.025-250ng/µl) and primer (50-900nM) 

concentrations were first performed for identification of optimal conditions prior to 

annealing temperature profile or standard curve determination. Primer and template 

negatives were also prepared and included in each analysis plate.  

4.2.6 Annealing Temperature Profile Determination 

In association with OE21 target and single primer pairs; Bio-Rad’s IQ SYBR Green 

Supermix (with high-fidelity antibody-mediated hot start polymerase and high-sensitivity 

proprietary intercalating dye) was used for amplification and detection of PCR products. 

Master mixes were constructed for each primer pair to minimize intra-sample variations 

which may affect yields in a manner independent of annealing temperature effects. A 

gradient thermal cycle profile facilitating amplification with annealing temperatures  
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spanning an 8.9°C range was constructed as described (Table 22 and Table 23). For each 

prime pair, 10ul of master mix was added to each well (B through F) which corresponded 

to TAs of 59.9, 62.2, 65.1, 67.5 and 68.8°C respectively. Amplification curves, melt peaks 

and electrophoretic analysis was used to assess specificity and kinetic conformance of the 

reaction. This information in association with relative yields across the TA range were 

used to determine optimal experimental TA for each primer pair. 

 

Table 21: Real-time PCR IQ SYBR Green Reaction mix. 

 

 Components 
1X Volume  

(µl) 
5.2X Volume (µl) 

1 2X IQ SYBR Green Supermix 5 26 

2 Primer mix (2uM forward and reverse primer) 1  5.2 

3 Template (conc. 13.62ng/µl) 1.834  9.53 

4 Deionised nuclease free H2O 2.2 11.44 

 Total Volume (µl) 10 52.0 
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Table 22: Real-time PCR Thermal Cycle Profile. 

 
Step Temp (°C) Duration (min/sec) Cycle no 

Preheated Lid 105.00 3m00s 1 

Initial Denaturation 95.00 10m00s 1 

Denaturation 95.00 00m30s 

Annealing 65.00* 00m30s 

Extension 72.00 01m00s 

+ Plate read  

40 

Denaturation 95.00 01m00s 1 

Annealing 40.00 01m00s 1 

Melt Curve From 65.0-95.0 for 0.01s at 0.2°C increment + plate read 

 

*During real-time TA optimisation; annealing temperatures as described (Table 23) were 

used for sample tests of each primer pair. A TA of 65.00°C was used for amplification of 

efficiency / dynamic range samples. 

 

 
Table 23: Real-time PCR Thermal Cycle Annealing Temperature Gradient Profile. 

 
Plate Row Identifier B C D E F 

TA Gradient (°C) 68.8 67.5 65.1 62.2 59.9 
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4.2.7 Efficiency / Dynamic Range Determination 

 
The standard curve method was used for primer-pair efficiency / dynamic range 

determination.  A ten-fold serial dilution of OE21 target DNA (6.16 × 10-1-6.16 × 10-2 

fMol) was carried out and an additional two samples containing 3.85 and 2.31fMol of 

template around the optimal target concentration prepared to create a six-point profile of 

each primer pair (see Table 25).  Master mixes containing ABI Power SYBR Green PCR 

master mix (with high-fidelity antibody-mediated hot start polymerase and high-

sensitivity proprietary intercalating dye) were constructed for each primer pair to 

minimise intra-sample variations which may affect yields in a manner independent of 

template concentration (Table 24). Standard Curves were prepared and analysed in 

duplicate to avoid inter-run and inter-plate variability. Bio-Rad CFX software was used 

to construct standard curves and carry out efficiency, slope and r2 determination for each 

pair. All these features were evaluated to assess primer pair performance and sensitivity. 

Amplification curves, melt peaks and electrophoretic analysis was used to assess primer 

pair specificity and kinetic adherence as before.  

 

Table 24: Real-time PCR ABI Power SYBR Green reaction mix. 

 
 Components 1X Volume (µl) 6.3X Volume (µl) 

1 2X Power SYBR Green PCR master mix 5 31.5 

2 Primer mix (2uM forward and reverse primer) 1  6.3 

3 Template (variable conc.) 1.32  8.316 

4 Deionised nuclease free H2O 3.2 20.16 

 Total Volume (µl) 10 63 
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Table 25: Real-time PCR Standard Curve Template concentrations and dsDNA copy number. 

 
Total Target DNA  

Concentration (fMol) 

dsDNA  

Copy number 

6.16x101 1.24x105 

6.16 1.24x104 

6.16x10-1 1.24x103 

6.16x10-2 1.24x102 

3.85 7.72x103
 

2.31 4.63x103
 

 

4.2.8 Multiplex PCR 

Multiplex PCR amplification and analysis was performed using Techne TC-512 PCR 

system and Bio-Rad’s Experion Automated Electrophoresis System (Bio-Rad 

Laboratories Ltd., Hertfordshire, UK)  respectively. AmpliTaq gold, MgCl2 restriction 

reaction mix was used for amplification of the 2plex primer mix while Qiagen’s 

multiplex PCR mix was used for amplification of all other multiplex primer mixes. 

Extensive optimisation of both reaction mixes and thermal cycle segment times were 

required for each multiplex amplification. Adjustment was performed by sequential 

increase of annealing, extension and denaturation times until optimal conditions for each 

multiplex were reached. Reaction mix adjustment in terms of polymerase selection was 

instructed from previous singleplex amplification, while a number of other optimisations 

regarding template concentration and total primer concentration were also made for the 

largest 14-plex reaction. Final reaction mixes (as listed Table 26, Table 27 and Table 28) 

and thermal cycle profiles (Table 29, Table 30 and Table 31) were used to produce 

optimised 2-plex, 5-plex, 6-plex and 14-plex respectively. 
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Table 26: 2-plex multiplex reaction mix. 

 
GeneAmp Gold PCR  

Reagent Kit 
Volume (µl) 

GeneAmp 10X 

PCR Gold Buffer 
3.0 

dNTP (200µM) 0.6  

MgCl2 (25mM) 2.4  

*Primer mix 3.0  

AmpliTaq Gold DNA 

Polymerase (5 units/µl) 
0.9  

Target DNA 0.52 (100ng) 

DiNF H2O 21.08 

Total vol 30 

 

Table 27: 5-plex, 6-plex and 14-plex multiplex reaction mixes 

 
Qiagen multiplex  

PCR kit 
5-plex (µl) 6-plex (µl) 14-plex (µl) 

2x QIAGEN Multiplex 

PCR Master Mix 
12.5 12.5 25 

Primer mix* 1.25 1.25 2.5 

Q soln (5X) 2.5 2.5 5.0 

Target 2.6 (0.5µg) 2.6 (0.5µg) 5.2 (1µg) 

DiNF H2O 4.9 4.9 13.8 

Total vol. 25 25 50 
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Table 28: Primer Pair reaction mixes for final 2-plex, 5-plex, 6-plex and 14-plex PCR amplifications. 

Final primer pair concentrations ranged from 0.03-0.1, 0.05-0.177, 0.04-0.15µM for 5-plex, 6-plex 

and 14-plex respectively. An equimolar concentration of 0.1µM per primer was used for the 2-plex 

amplification.  

 

Multiplex 

identifier 

Primer Pair 

Identifier 

Primer Mix, 

Primer Pair 

Conc. (µl) 

Final Primer 

Pair Conc. 

(µM) 

Final total 

Primer Conc. 

(µM) 

IGF1_9 1.0 0.10 
2-plex 

IGF1_11 1.0 0.10 
0.400 

BP1_3/4 1.0 0.10 
BP3_10/11 0.3 0.03 

IGF1_5 1.0 0.10 
IGF1_2 1.0 0.10 

 

5-plex 

BP3_1 0.62 0.062 

0.392 

 

BP3_13 0.5 0.05 
BP1_5 2.0 0.20 
IGF1_5 0.5 0.05 
BP3_12 1.77 0.177 
IGF1_7 0.6 0.060 

 

6-plex 

IGF1_3 1.45 0.145 

0.341 

IGF1_8 2.5 0.125 
BP3_9 1.6 0.08 
BP1_1 1.6 0.08 
BP3_7 1 0.05 

BP1_3/4 1.5 0.075 
BP3_10/11 0.8 0.04 

BP3_3 1.5 0.075 
BP1_2 1 0.05 
BP3_6 1 0.05 
IGF1_1 1 0.05 

IGF1_13 1 0.05 
BP3_4 1.5 0.075 
IGF1_4 1 0.05 

14-plex 

IGF1_12 3 0.15 

2.00 
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Table 29: 2-plex Thermal Cycle Profile. 

 
Step Temp (°C) Duration (min/sec) Cycle no. 

Preheated Lid 105 3m00s 1 

Initial Denaturation 95 5m00s 1 

Denaturation 95 1m00s 

Annealing 65 1m00s 

Extension 72 1m00s 

40 

Final Extension 68 15m00s 1 

 
 
Table 30: 5-plex and 6-plex Thermal Cycle Profile. 

 
Step Temp (°C) Duration (min/sec) Cycle no. 

Preheated Lid 105 3m00s 1 

Initial Denaturation 95 15m00s 1 

Denaturation 95 50s 

Annealing 65 2m30s 

Extension 72 1m15s 

35 

Final Extension 68 15m00s 1 

 
 
Table 31: 14-plex Thermal Cycle Profile. 

 
Step Temp (°C) Duration (min/sec) Cycle no. 

Preheated Lid 105 3m00s 1 

Initial Denaturation 95 15m00s 1 

Denaturation 95 50s 

Annealing 65 3m00s 

Extension 72 1m30s 

35 

Final Extension 68 15m00s 1 
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4.2.9 MetaPhorTM Gel Electrophoresis 

High resolution MetaPhor agarose gel (Cambrex Corp., Charles City, IA) electrophoresis 

with ethidium bromide staining was used for initial separation and visualization of 

smaller dimensionality multiplex amplicons (to up 5-plex). The technique was applied 

using 5% MetaPhor agarose and 1xTBE (100 Volts for 3hours) in accordance with 

manufacturers’ instructions to achieve a resolution of 16bp in the range of 72-500bp. A 

number of amendments including use of up to 8% gel in association with 3 × TBE, 24 

hours electrophoresis at 4@C and multiple buffer changes were used to increase 

resolution. 

4.2.10 Experion Electrophoresis 

 
Bio-Rad’s Experion automated gel electrophoresis system and associated Experion 1K 

DNA Analysis kit was used to facilitate increased resolution, sensitivity and precision for 

multiplex amplicon analysis. Analysis was performed in accordance with manufacturers’ 

instructions to achieve 5bp resolution (<160bp). All reagents and chip were subsequently 

cooled to 0°C to achieve a slightly increased 4bp resolution. Lower temperature 

electrophoresis has been successfully used by a number of groups including Fanali et al., 

Tsai et al., and Chen et al., to facilitate increased electrophoretic resolution of this nature 

[216-218]. 1µl of undiluted PCR product was analysed per well for each multiplex. 

Amplicon yields were determined by automated comparison between amplicon peaks and 

Experion DNA 1K ladder using Experion software. 
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The following calculation is used to determine the relative yield produced for each prime 

pair within optimised multiplex formats, with adjustment for primer pair concentration in 

each instance. For each multiplex constituent primer pair: 

o Primer Pair Yield / Primer Pair concentration = X 

o X/ Largest X in multiplex = Relative end-point efficiency 

 

The following calculation was performed to determine the largest % difference in yield 

for all primer pairs amplified within individual multiplexes.  

o Lowest primer pair yield / (Highest primer pair yield/ 100) = Y 

o 100 -Y = % divergence between largest and smallest yielding primer pairs  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4: Multiplex Polymerase Chain Reaction 

 

 

Clair Gallagher   Cranfield University 
 
 

142 

 

4.3 Results 

 

4.3.1 Single-plex PCR amplification 

All primer pairs were amplified singly using uniform PCR reactant mixes and thermal-

cycling conditions. Specificity and yield of individual primer pairs under set conditions 

were examined to identify potentially problematic pairs which may require specialised 

singleplex amplification or adjustment prior to multiplex inclusion. The following 

ethidium bromide stained gels (Figure 35, Figure 36 and Figure 37) display amplicons 

procured using high fidelity, high processivity AmpliTaq gold polymerase as previously 

specified (Table 16 and Table 18). Singleplex amplicons derived using the Qiagen 

Multiplex PCR kit are displayed in electronic appendix Figure 1. 

 

25 of the 27 amplicons displayed high-specificity amplification, producing targets of the 

anticipated size (as predicted by UCSC in silico PCR analysis). Repeat region targets 

IGF1_10 and BP3_14 displayed non-specific amplification and multiple bands, however 

IGF1_9 (also a repeat region target) produced a single strong amplicon band. Primer pair 

BP3_1 produced relatively weak amplicon yields relative to other primer pairs. 
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Figure 35: Singleplex PCR amplification of target loci. AmpliTaq Gold mediated PCR amplification 

was performed under uniform conditions for individual primer pairs and resultant product 

separated and visualised using 3% agarose gel electrophoresis and ethidium bromide staining. 

Primer pair identifiers are listed above associated lanes. 

 
 
 
 

 
 
 
Figure 36: Singleplex PCR amplification of target loci. AmpliTaq Gold mediated PCR amplification 

was performed under uniform conditions for individual primer pairs and resultant product 

separated and visualised using 3% agarose gel electrophoresis and ethidium bromide staining. 

Primer pair identifiers are listed above associated lanes. 

 
 
 

Ladder  IGF1_11 IGF1_12 IGF1_13 BP1_1 BP1_2 BP1_3/4  BP1_5  BP3_1  BP3_3  BP3_4 

Ladder  IGF1_1 IGF1_2 IGF1_3 IGF1_4 IGF1_5 IGF1_6 IGF1_7 IGF1_8 IGF1_9 IGF1_10 
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Figure 37: Singleplex PCR amplification of target loci. AmpliTaq Gold mediated PCR amplification 

was performed under uniform conditions for individual primer pairs and resultant product 

separated and visualised using 3% agarose gel electrophoresis and ethidium bromide staining. 

Primer pair identifiers are listed above associated lanes. 

 
 
 
 

4.3.2 Problematic Primer Pair Optimisation 

 
Primer pairs IGF1_9, IGF1_10 and BP3_14 with targets spanning putative repeat regions 

were optimised to reduce aberrant band formation. A number of alternate strategies 

including use of alternate enzymes (standard taq, AmpliTaq Gold and HotStar DNA 

polymerases), addition of adjuvants (DMSO and Q-solution) and magnesium chloride 

restriction were implemented to reduce erroneous amplification and minimise secondary 

structure formation. The following ethidium bromide stained agarose gels (Figure 38, 

Figure 39, Figure 40 and Figure 41) display optimisation of each primer pair using the six 

treatments described (see 4.2.4 Repeat Region Amplification Optimisation).  

 

Use of AmpliTaq Gold polymerase (treatments B, C and F) facilitated target specific 

amplification in all instances for IGF1_9. Use of treatment F (AmpliTaq gold with 10% 

DMSO and time-release thermal cycle protocol) significantly increased relative 

Ladder  BP3_6   BP3_7  BP3_9  BP3_10/11 BP3_12  BP313  BP3_14 
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concentration of the IGF1_10 target amplicon relative to other non-specific products; 

however total yield was very low. Target specific amplification was not achieved for 

BP3_14 using the amendments detailed here; additionally use of even 5% DMSO 

significantly reduced yields.  

 

 
 
 

Figure 38 IGF1_9 reaction mix optimisation for amplification of target repeat regions. Treatment A 

= standard taq DNA polymerase, B = AmpliTaq Gold polymerase, C = AmpliTaq gold polymerase 

with 5% DMSO, D = Hot star polymerase and MP factor, E = Hot star polymerase, MP factor and Q 

solution. 

 
 
 

Ladder  A        B         C        D        E 
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Figure 39 IGF1_10 reaction mix optimisation for amplification of target repeat regions. Treatment A 

= standard taq DNA polymerase, B = Time-release AmpliTaq Gold polymerase, C = Time-release 

AmpliTaq gold polymerase with 5% DMSO, D = Hot star polymerase and MP factor, E = Hot star 

polymerase, MP factor and Q solution. 

 
 
 

Figure 40 BP3_14 reaction mix optimisation for amplification of target repeat regions. Treatment A 

= standard taq DNA polymerase, B = Time-release AmpliTaq Gold polymerase, C = Time-release 

AmpliTaq gold polymerase with 5% DMSO, D = Hot star polymerase and MP factor, E = Hot star 

polymerase, MP factor and Q solution. 

 

Ladder   A          B        C        D        E 

Ladder   A        B         C        D       E 
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Figure 41 Time-release AmpliTaq gold facilitated PCR amplification of repeat region targets for 

primer pairs IGF1_9 IGF1_10 BP3_14. 10% DMSO (treatment F) was used to reduce secondary 

structure formation which can result in multiple band formation. 

 

4.3.3 RT-PCR Annealing Temperature Optimisation 

All primer pairs were amplified singly using uniform RT-PCR reactant mixes spanning a 

range of annealing temperatures (59.9-68.8°C) including the putative optimal annealing 

temperature (~65°C) as described (4.2.6 Annealing Temperature Profile 

Determination). Amplification curves, melt peaks and electrophoretic analysis was 

performed to determine whether primer dimer formation and / or non-specific 

amplification were likely to have had occurred. Optimal annealing temperatures for each 

primer pair were attributed to those TAs which produced highest relative target yields 

(assuming adequate amplification specificity at given TAs).  RT-PCR amplification 

curves, melt peaks and annealing temperature profiles for IGF1_1, BP3_1 and IGF1_9 

are displayed in full (Figure 42, Figure 43 and Figure 44 respectively). 

 

 

      Ladder    IGF1_9    IGF1_10    BP3_14   
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IGF1_1 amplification curves follow the desired sigmoid shape and melt peaks do not 

display significant primer dimer or multiple band formation. Largest yield and therefore 

optimal annealing temperature for IGF1_1 occurs at 65.1°C. IGF1_1 appears to be quite 

robust with strong amplification across all TAs (59.9-68.8°C) tested (Figure 42). BP3_1 

also displayed good amplification however melt peaks displayed an increase in primer 

dimer formation at the lower 59.9 °C temperature, a feature which was taken into account 

when assessing yields and assigning optimal TA (Figure 43).Melt peak profiles clearly 

display non-specific amplification for primer pair IGF1_9, with alternate products 

favoured at opposing ends of the TA spectrum tested. Although the IGF1_9 annealing 

temperature profile is displayed, results are not indicative of high-specificity target yields 

and were not used to determine optimal TA in this case (Figure 44). 

 

Figure 45 displays optimal experimental annealing temperature for high-specificity 

primer pairs. Primer3 TA (Panjkovich) consensus method displayed good predictive 

accuracy with >70% of primer pairs tested displaying optimal performance at the 

anticipated TA ~65°C. A slight trend toward underestimation of TA may be noted with 

25% of primer pairs displaying superior performance at 67.5°C. Just one primer pair 

BP3_10/11 displayed optimal performance outside these temperatures at 62.2°C. 

Annealing temperature profiles for all other primer pairs are displayed in electronic 

appendix Figure 5-31.  
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Figure 42: IGF1_1 Amplification Curve, Melt Peak and Annealing Temperature Profiles are 

displayed. Amplification curves follow the desired sigmoid shape and melt peaks do not display 

significant primer dimer or multiple band formation. Largest yield and therefore optimal annealing 

temperature for IGF1_1 occurs at 65.1°C. IGF1_1 appears to be quite robust with strong 

amplification across all TAs (59.9-68.8°C) tested. 
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Figure 43: BP3_1 Amplification Curve, Melt Peak and Annealing Temperature Profiles are 

displayed. Amplification curves follow the desired sigmoid shape however melt peaks do display 

increased primer dimer formation at the lower 59.9
 
°C temperature. This was taken into account 

when assessing yields and assigning optimal TA.  
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Figure 44: IGF1_9 Amplification Curve, Melt Peak and Annealing Temperature Profiles are 

displayed. An amplification curve correlation between increasing TA and C(t) may be observed; a 

feature unassociated with robust target-specific primer pair functionality. Non-specific amplification 

is clearly visible by melt peak analysis, with alternate products favoured at opposing ends of the TA 

spectrum. Although the IGF1_9 annealing temperature profile is displayed, results are not indicative 

of high-specificity target yields and therefore may not be used to determine optimal TA. 
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67.5 deg C (25%)

IGF1_5, IGF1_12, 

BP1_3/4, BP1_5, 

BP3_3, BP3_7

62.2 deg C (4.16%) 

(BP3_10/11) 

65.1 deg C (70.83%)

IGF1_1, IGF1_2, IGF1_3, 

IGF1_4, IGF1_6, IGF1_7, 

IGF1_8, IGF1_11, IGF1_13, 

BP1_1, BP1_2, BP3_1, 

BP3_4, BP3_6, BP3_9, 

BP3_12, BP3_13

 

Figure 45: Optimal experimental annealing temperature for high-specificity primer pairs.  Primer 

pair identifiers and the percentage of high-specificity pairs displaying optimal performance at each 

TA are shown. >70% of primer pairs displayed optimal amplification at 65.1°C, 25% displayed 

optimal performance at 67.5°C and just one primer pair displayed optimal amplification 

performance at 62.2°C. 
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4.3.4 RT-PCR Efficiency and Dynamic Range 

 
All primer pairs were amplified singly using uniform RT-PCR reactant mixes and 

thermal-cycling conditions. Efficiency and of individual primer pairs under optimal 

conditions were examined across a dynamic range four orders of magnitude to identify 

potentially problematic pairs which may suffer upon multiplex inclusion. A four-point 

ten-fold serial dilution of OE21 target DNA Amplification (6.16 × 10-6-16 × 10-3 fMoles) 

was carried out and an additional two samples containing 3.85 and 2.31fMoles of 

template around the optimal target concentration prepared to create a six point profile of 

each primer pair and efficiency, slope and r2 noted.  Visual inspection of amplification 

curves and melt peak shapes and electrophoresis was used to assess whether primer dimer 

formation and / or non-specific amplification had occurred. Values within the following 

ranges; Efficiency = 90-110%, Slope = -3.6 and -3.1 and r
2 = >0.95 are indicative of 

robust “good” primer pair functionality, primer pairs with scores exceeding set limits in 

any of these categories was said to display “poor” functionality.  

 

RT-PCR amplification curves, melt peaks and standard curves for high-functionality 

IGF1_1 and sub-optimal IGF1_8 and IGF1_9 primer pair are displayed in full (Figure 46, 

Figure 47 and Figure 48).  IGF1_1 amplification curves follow the desired sigmoid shape 

and pattern (approx 3.3 cycles separating 10-fold serial dilutions) and no significant 

mispriming was visible by melt curve analysis (Figure 46). This primer pair like most 

others in the IGF multiplex set displayed excellent efficiency over the dynamic range 

tested with efficiency of 99.3% (slope = -3.338, r2 = 0.986). Although amplification was 

target-specific; IGF1_8 demonstrated poor efficiency over the dynamic range tested with 

efficiency of 114.3% (slope = -3.021 and r2 = 0.989) (Figure 47).  
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Amplification curves displayed a sigmoid curve shape but do not follow the anticipated 

pattern of 3.3 cycles between 10-fold serial dilutions for higher 6.16x101fM target 

samples. IGF1_9 demonstrate poor efficiency of 152.9% (slope = -2.471 and r2 = 0.775) 

and specificity over the dynamic range tested (Figure 48). Melt peaks were indicative of 

poor specificity which was confirmed by agarose gel electrophoresis. Figure 49 displays 

efficiencies for all primer pairs while Table 32 gives details of efficiency, slope r2 and 

functionality designation. Standard curves for all other primer pairs are displayed in 

electronic appendix Figure 32 to Figure 40. 
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Colour Key - Genomic Template Concentration (fMoles) 

 6.16x101 
 6.16 

 6.16x10-1 
 6.16x10-2 

 3.85 
 2.31 

 

Figure 46: IGF1_1 Amplification Curve, Melt Peak and Standard Curve. Amplification curves follow 

the desired sigmoid shape and pattern (approx 3.3 cycles separating 10-fold serial dilutions) no 

significant mispriming is evident by melt curve analysis. IGF1_1 displays excellent efficiency over 

this dynamic range (6.16x10
1
-6.16x10

-2
fM) with E = 99.3%, slope = -3.338 and r

2
 = 0.986.  
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Colour Key - Genomic Template Concentration (fMoles) 
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 2.31 

 

Figure 47: IGF1_8 Amplification Curve, Melt Peak and Standard Curve. IGF1_8 demonstrates poor 

efficiency over this dynamic range (6.16x10
1
-6.16x10

-2
fM) with E = 114.3%, slope = -3.021 and r

2
 = 

0.989. Sample melt peaks indicate single target amplification. Amplification curves display a sigmoid 

shape but do not follow the anticipated pattern of 3.3 cycles between 10-fold serial dilutions for 

higher 6.16x10
1
fM target samples. Agarose gel electrophoresis indicates that target specific 

amplification was achieved for all 6 samples. 
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Colour Key - Genomic Template Concentration (fMoles) 
 6.16x101 
 6.16 

 6.16x10-1 
 6.16x10-2 

 3.85 
 2.31 

 

Figure 48: IGF1_9 Amplification Curve, Melt Peak and Standard Curve. IGF1_9 demonstrate poor 

efficiency and specificity over this dynamic range (6.16 × 10
1
-6.16 × 10

-2
fM) with E = 152.9%, slope = 

-2.471 and r
2
 = 0.775. Amplification curves display a sigmoid shape however adjacent curves do not 

follow the anticipated pattern of 3.3 cycles between 10-fold serial dilutions.  All sample melt peaks 

indicate equimolar duplex amplification bar the largest 6.16x10
1
fM target sample which displays 

positively skewed amplification of the target amplicon. This poor specificity was confirmed by 

agarose gel electrophoresis. 
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Figure 49: RT-PCR Derived Efficiencies for Singleplex Primer Pairs.  RT-PCR was carried out using 

uniform conditions as described (4.2.7 Efficiency / Dynamic Range Determination) for all primer 

pair and efficiencies plotted against identifiers. Primer pairs IGF1_8 and IGF1_9, with efficiencies of 

114.3 and 153.9% respectively, exceed the recommended 90-110% efficiency boundaries indicating 

poor primer pair performance.  All other primer pairs are within the recommended efficiency range 

with an arithmetic mean of 102.00, standard deviation of 2.79 and variance of 7.78. Despite receiving 

good efficiency, slope and r
2
 scores IGF1_10 and BP3_14 (along with poorly efficiency IGF1_9) also 

displayed poor specificity upon agarose gel electrophoretic analysis. 
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Table 32 : Table displaying efficiencies, r
2
, slope and quality designation derived by RT-PCR analysis 

of singleplex primer pairs. Efficiency is a measure of primer pair performance and should range 

between 90-110% for primer pairs with good functionality. The slope of the standard curve is 

directly related to the average efficiency of amplification and should be between -3.6 and -3.1 while 

r2 (correlation coefficient) is indicative of the quality of the fit of the data points plotted to the 

standard curve, r2 should be >0.95. Primer pairs with scores exceeding set limits in any categories 

(i.e. IGF1_8 and IGF1_9) are determined to display “poor” efficiency. 

 
 Primer Identifier Efficiency r

2
 Slope Functionality 

1 IGF1_1 99.3 0.986 -3.338 Good 

2 IGF1_2 95.8 0.988 -3.426 Good 

3 IGF1_3 101.7 0.988 -3.282 Good 

4 IGF1_4 102.6 0.991 -3.261 Good 

5 IGF1_5 99.7 0.993 -3.329 Good 

6 IGF1_6 101.1 0.991 -3.295 Good 

7 IGF1_7 105.4 0.991 -3.199 Good 

8 IGF1_8 114.3 0.989 -3.021 Poor 

9 IGF1_9 153.9 0.775 -2.478 Poor 

10 IGF1_10 102.7 0.980 -3.260 Good 

11 IGF1_11 99.1 0.990 -3.344 Good 

12 IGF1_12 101.0 0.963 -3.297 Good 

13 IGF1_13 103.3 0.992 -3.244 Good 

14 BP1_1 100.8 0.984 -3.302 Good 

15 BP1_2 101.5 0.992 -3.285 Good 

16 BP1_3/4 104.0 0.985 -3.230 Good 

17 BP1_5 103.2 0.978 -3.247 Good 

18 BP3_1 107.5 0.993 -3.155 Good 

19 BP3_3 101.3 0.985 -3.291 Good 

20 BP3_4 104.4 0.983 -3.222 Good 

21 BP3_6 102.2 0.994 -3.270 Good 

22 BP3_7 108.5 0.992 -3.134 Good 

23 BP3_9 99.8 0.994 -3.326 Good 

24 BP3_10/11 102.4 0.986 -3.266 Good 

25 BP3_12 101.4 0.988 -3.289 Good 

26 BP3_13 97.8 0.998 -3.376 Good 

27 BP3_14 103.6 0.992 -3.239 Good 
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4.3.5 Multiplex PCR Size Determination 

The Experion microfluidic electrophoresis platform was used for separation and 

quantitation of multiplex PCR products. The resolution capacity was tested and high 

functionality primer pairs (as identified by preliminary singleplex PCR and RT-PCR 

analysis) separated into groups. Reaction components and thermocycle profile 

adjustments were optimised for each multiplex reaction to facilitate high-specificity, 

suitably equimolar amplification of multiple targets. Four multiplex reactions amplifying 

14, six, five and two targets, capturing variation from 29 bins across candidate genes 

IGF1_1, IGFBP1 and IGFBP3 were constructed. Experion-generated electropherograms 

are displayed for 14-ples, 6-plex, 5-plex and 2-ples reactions in Figure 50, Figure 51, 

Figure 52 and Figure 53 respectively. Each electropherogram peak is labelled with its 

corresponding primer-pair identifier and Experion-estimated amplicon size. A virtual gel 

corresponding to the sample is displayed below each graph. Amplicon size data displayed 

in table format may be accessed in electronic appendix Table 13, Table 14, Table 15 and 

Table 16.  

 

Amplification of all 14, six, five and two targets was successful. The 14-plex amplified 

the largest amplicon size range with targets spanning 428bp from 72-500bps. 6-plex 

amplicons ranged from 154-248bps, 5-plex ranged from 156-250bps and the 2-plex 

amplified targets of 147 and 260bp. The size designations made exceeded the anticipated 

size in most cases (+ ~12bp).  
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Figure 50: Multiplex (14-plex) PCR amplification of 14 primer pair targets ranging in size from 72-

500bps was performed using the Qiagen multiplex PCR kit. Using optimised reaction mix and 

thermocycle profiles 14 targets of anticipated size range were produced (+/- 12bp). 
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Figure 51: Multiplex (6-plex) PCR amplification of 6 primer pair targets ranging in size from 154-

248bps was performed using the Qiagen multiplex PCR kit.  Using optimised reaction mix and 

thermocycle profiles 6 targets of anticipated size range were produced (+/- 13bp). 
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Figure 52: Multiplex (5-plex) PCR amplification of 5 primer pair targets ranging in size from 156-

250bps was performed using the Qiagen multiplex PCR kit.  Using optimised reaction mix and 

thermocycle profiles 6 targets of anticipated size range were produced (+/- 17bp). 
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Figure 53: Multiplex (2-plex) PCR amplification of IGF1_9 (141bp) and IGF1_11 (248bp) was 

performed using AmpliTaq Gold and thermocycle profile as described (Table 29: 2-plex Thermal 

Cycle Profile. Use of this high processivity time-release polymerase was implemented to reduce non-

specific amplification of repeat region primer pair IGF1_9 which performed poorly using alternate 

polymerases/protocols. The final reaction and thermocycle profile was found to facilitate 

amplification of both targets (+/- 12bp). 
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4.3.6 Multiplex PCR Yield Determination 

Multiplex primer pair yields pertaining to 14-plex, 6-plex, 5-plex and 2-plex figures 

displayed previously (Figure 50, Figure 51, Figure 52 and Figure 53) determined by 

comparative analysis against molecular weight markers (Experion facilitated 

quantitation) are displayed in column charts. Each column is labelled with its primer pair 

identifier and corresponding yield (ng/µl). Data displayed in table format may be 

accessed in electronic appendix Table 17, Table 18, Table 19 and Table 20 for 14-plex, 6-

plex, 5-plex and 2-plex reactions respectively. 

All reactions produced strong product yields which displayed relatively equimolar 

profiles. The 14-plex reaction displayed a mean yield of 6.06ng/µl ranging from 4.36 - 

8.24ng/µl for primer pairs IGF1_13 and IGF1_8. The 6-plex and 5-plex reactions 

produced increased mean yields of 10.07ng/µl and 10.57ng/µl ranging from 7.26 - 12.45 

(IGF1_7 and BP3_12) and 8.82-12.31ng/µl (IGF1_2 and BP3_) respectively. The 2-plex 

produced the highest mean yield of 11.44ng/µl and most equimolar amplification of 

targets IGF1_11 and IGF1_9 (10.48 and 12.4ng/µl respectively). 
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Figure 54: Multiplex (14-plex) PCR target yields for 14 primer pairs derived using optimised 14-plex 

protocol and quantified using the Experion microfluidic electrophoresis and detection system. Using 

optimised reaction mix, adjusted relative primer pair concentrations and thermocycle profiles as 

described suitably-equimolar amplification of all targets was achieved; resulting in a mean 

amplification yield of 6.06ng/µl for all targets, ranging from 4.36 - 8.24ng/µl for primer pairs 

IGF1_13 and IGF1_8 respectively. 
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Figure 55: Multiplex (6-plex) PCR target yields for 6 primer pairs derived using optimised 6-plex 

protocol and quantified using the Experion microfluidic electrophoresis and detection system. 

Optimisation of both reaction mix and thermocycle profiles were used to facilitate reasonably 

equimolar amplification of all targets. Relative primer pair adjustment was used to adjust poorer 

efficiency resulting in relatively equimolar amplification of all primer pairs, with a mean yield of 

10.07ng/µl, ranging from 7.26 - 12.45 for primer pairs IGF1_7 and BP3_12 respectively.  
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Figure 56: Multiplex (5-plex) PCR target yields for 5 primer pairs derived using optimised 5-plex 

protocol and quantified using the Experion microfluidic electrophoresis and detection system. 

Optimal thermal-cycle protocol and relative primer pair adjustment was used to facilitate suitably-

equimolar amplification of all primer pairs, resulting in a mean amplification yield of 10.57ng/µl for 

all targets, ranging from 8.82-12.31ng/µl for primer pairs IGF1_2 and BP3_1 respectively. 
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Figure 57: Multiplex (2-plex) PCR target yields for two primer pairs derived using optimised 2-plex 

protocol and quantified using the Experion microfluidic electrophoresis and detection system. A 

mean yield of 11.44ng/µl was determined, ranging from 10.48 – 12.4ng/µl for primer pairs IGF1_11 

and IGF1_9 respectively. 
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4.3.7 Relative Multiplex End-point Efficiencies 

The concentration of primer pairs used for multiplex amplification was not equal; as such 

relative amplification efficiency (accounting for initial primer pair concentration and 

resultant yield) was determined as described (see 4.2.10 Experion Electrophoresis) and 

relative end-point efficiencies plotted for each multiplex reaction.  

 

The 14-plex reaction contained the widest range of amplicon sizes ranging from 72-

500bp for IGF1_8 and IGF1_12 respectively (Figure 58). Efficiency appears to have been 

influenced by amplicon size within this 14-plex format with smallest (<160bp) and 

largest (500bp) amplicons suffering most significantly. Within the 6-plex reaction both 

primer pairs IGF1_5 and BP3_13 displayed highest end-point amplification efficiency 

approximately 3 times that of other amplicons in the set, a significantly increased relative 

efficiency was also seen for primer pair BP3_10/11 within the 5-plex reaction (Figure 59 

and respectively Figure 60). The reasons for increased efficiency in all three cases is 

unknown; neither innate primer features or characteristics determined during singleplex 

optimisation assays indicated a tendency toward superior performance of these pairs 

relative to others in their respective sets. The smallest 2-plex reaction displayed relatively 

equal efficiencies for both primer pairs (Figure 61).  
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Figure 58: Relative, end-point primer pair efficiencies within the optimised 14-plex format previously 

described. Average relative efficiency of 60.73% was determined with a standard deviation of 

23.09% and variance of 5.33%. Efficiency appears to be influenced by amplicon size within this 14-

plex format where amplicons range from 72-500bp, with smaller (<160bp) and largest (500bp) 

amplicons suffering most significantly. 
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Figure 59: Relative, end-point primer pair efficiencies within the optimised 6-plex format previously 

described. Average relative efficiency of 53.68%was determined with standard deviation of 31.33 and 

variance of 9.82%.  Both primer pairs IGF1_5 and BP3_13 displayed highest end-point amplification 

efficiency in this format.  



Chapter 4: Multiplex Polymerase Chain Reaction 

 

 

Clair Gallagher   Cranfield University 
 
 

170 

0.296

1.000

0.235 0.230

0.519

0.000

0.200

0.400

0.600

0.800

1.000

1.200

BP1_3/4 BP3_10/11 IGF1_6 IGF1_2 BP3_1

Primer Pair Identifier

R
e
la

ti
v

e
 M

u
lt

ip
le

x
 P

ri
m

e
r 

P
a

ir
 E

ff
ic

ie
n

c
y

 

Figure 60: Relative, end-point primer pair efficiencies within the optimised 5-plex format previously 

described. Average relative efficiency of 45.60% was determined with standard deviation of 32.61% 

and variance of 10.63%. Primer pair BP3_10/11 displayed significantly higher efficiency than all 

other pairs in this set.  
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Figure 61: Relative, end-point primer pair efficiencies within the optimised 2-plex format previously 

described. Average relative efficiency of 92.25% was determined with standard deviation of 10.96% 

and variance of 1.20%.  Relative 2-plex efficiency mirrored that displayed by AmpliTaq gold 

singleplex amplification of both pairs.  
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4.3.8 14 Multiplex Optimisation 

Amplification of the largest 14-plex set required extensive optimisation. Annealing time 

adjustment was required to adjust for the wider size range of target amplicons and factors 

affecting reactions kinetics including total primer concentration and total reaction 

volumes were investigated.  

Longer annealing times of 3mins were found to favour 14-plex amplification efficiency 

of larger amplicons (most notable for the largest 500bp IGF1_12) (Figure 58).  While a 

use of alternate total primer concentrations ranging from 3.0 and 1.0µM were found to 

effect amplification efficiency in a size dependant manner (Figure 59). A similar effect 

was seen with use of alternate total reaction volumes (25-100µl). A balance between 

multiple contributory factors was therefore required to produce suitably equimolar 

amplification of all targets. 
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Figure 62: Effect of Annealing time on Amplification of larger Amplicons. 14-plex samples 1 and 2 

were amplified using annealing times of 1min30s and 3mins respectively.  An increase in 

amplification efficiency can generally be seen for larger amplicons (>250bp), this effect is most 

apparent with largest 500bp IGF1_12 amplicon, which is present at a concentration of 2ng/µl in 3min 

annealing sample 2, but absent from sample one.  
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Figure 63: Effect of total primer concentration on multiplex amplification. 14-plex amplification was 

performed using an equimolar primer mix at a final concentration of 3.0 and 1.0µM for sample 3 and 

1 (highlighted in red and navy) respectively. Use of higher total primer concentration results in 

preferential amplification of smaller amplicons, small non-specific amplicons and primer dimers 

while use of lower total primer concentration results in preferential amplification of larger amplicons 

and larger non-specific products.  
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Figure 64: Effect of total reaction volume on 14-plex amplification using alternate reaction volumes 

from 25-100µl with common reaction conditions and reactant concentrations as specified. Increased 

volumes result in reduced speed of heat transfer within the reaction solution, as such “true” 

thermocycle segment times may be impacted and amplification effected. Using the reaction 

conditions specified 50µl total reaction volume (blue trace) resulted in most equimolar amplification 

of the target size range used in this reaction mix. Smaller 25µl (green trace) and larger 100µl reaction 

volumes (red trace) resulted in preferential amplification of larger and smaller targets respectively.  
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4.4 Discussion 

Multiplex PCR is a complex reaction that often results in low product yield, amplification 

failure and or non-specific amplification. Complications of this nature may be influenced 

by incompatibilities with regard to annealing temperature, primer cross-reactivity and 

divergent amplification efficiencies. Increasing reaction complexity by use of higher-

dimensionality multiplex formats often results in exasperation of these effects. It is 

therefore essential to perform extensive analysis and optimisation of primer pairs using 

both singleplex and multiplex formats if robust amplification of this nature is to be 

performed [180,213,219]. The following section discusses the results of experimental 

PCR evaluation including singleplex end-point and real-time analysis as well as 

discussion of multiplex optimisation and the final PCR profiles.  

 

4.4.1 Single-plex End-point PCR  

All primer pairs were initially tested in singleplex using end-point PCR to assess their 

specificity. Using the Qiagen protocol as previously described (see 4.2.3 Single-plex 

End-Point PCR); 24 of the 27 primer pairs displayed target specific amplification, 

however three primer pairs IGF1_9, IGF1_10 and BP3_14 located in or amplifying 

repeat region targets displayed non-specific amplification. The Qiagen kit comes with a 

pre-blended master mix optimised for multiplex amplification of standard targets and 

contains a number of moieties which may act to reduce specificity when used for 

amplification of repeat regions. These include a high final MgCl2 concentration of 3mM 

and MP-factor. Metal ions (particularly divalent cations such as Mg2+) act to stabilise 

hydrogen bond formation between single stranded nucleic acid sequences [220]. This can 

be useful for increasing yields however it can also act to stabilise bonding of primers with 
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non-complementary repeat regions or formation of amplicon-constituent hairpins leading 

to non-specific amplification as was seen in this instance [170,180,183]. Further 

optimisation was required therefore, to ameliorate repeat region pairs IGF1_9, IGF1_10 

and BP3_14. An AmpliTaq no-MgCl2 protocol as described (see 4.2.3 Single-plex 

End-Point PCR) was used to achieve these ends. This protocol uses a higher processivity 

AmpliTaq DNA polymerase which should facilitate faster elongation and higher fidelity 

[190]. The removal of MgCl2 should also act to reduce secondary structure formation and 

potential deletion mutagenesis artifact formation. Amplification specificity was again 

good for all 24 non-repeat region primer pairs. Specificity was found to improve 

somewhat for all problematic pairs however IGF1_9 benefitted most significantly from 

this treatment with one single target amplicon (~155bp) produced in this instance.  

 

A wide range of adjuvants including DMSO and Q-solution have been developed to 

reduce hairpin formation while allowing conditions conducive to hybridisation to be 

retained (formamide and Dimethyl sulfoxide) [182]. Time-release methods which allow 

slow-activation of polymerase have also been shown to reduce excess-polymerase 

induced non-specific amplification. While high-fidelity polymerases are also known to 

reduce aberrant amplification. Six alternate treatment types (A-F inclusive) employing a 

number of these approaches were used to try to reduce non-specific amplification of 

repeat region targets IGF1_10 and BP3_14. MgCl2 restricted manual hot start with 

standard Taq (treatment A) and time-release AmpliTaq Gold facilitated amplification 

with and without DMSO destabilising agent (treatment B, C and F; 0%, 5% and 10% 

DMSO respectively) were used, as was the Qiagen 3mM MgCl2 constituent mix with and 



Chapter 4: Multiplex Polymerase Chain Reaction 

 

 

Clair Gallagher   Cranfield University 
 
 

177 

without Q-solution isostabilizing agent (treatment D and E) (see 4.2.4 Repeat Region 

Amplification Optimisation for full details).  

IGF1_10 amplification produced non-specific artefacts for all treatment types. As 

expected use of manual hot start, standard Taq (treatment A) resulted in poorest 

specificity with nine amplification bands ranging in size from ~187-1,027bp produced. 

The Qiagen master 3mM MgCl2 protocol (treatment D) resulted in production of five 

amplification bands ranging in size from 658 – 199bp. Specificity was increased by 

addition of 5% isostabilizing Q-solution (treatment E), with three bands of 246, 207 and 

199bp produced in this instance. Use of the no- MgCl2, time-release AmpliTaq gold 

protocol (treatments B, C and F) again resulted in amplification of three bands in all 

instances. The relative proportions of putative 199bp target did significantly increase with 

increasing DMSO concentration however and addition of 10% DMSO (treatment F) 

produced a putative target concentration, approximately twice that of non-specific 

artefacts.  

As previously discussed; PCR tends to be less specific and efficient when primers 

containing 3’adenine or thymine terminal and/or penultimate nucleotides are used [136]. 

Target constraints meant that IGF1_10 primers were designed without a G/C clamp on 

either primer with forward or reverse primers. Loss of this GC clamping feature, 

particularly in a repeat region already prone to mispriming10, is likely to have impacted 

upon specificity as was seen in this instance.  

 

 

                                                 
10 Mispriming occurs due to binding of primers to unintended template sites, subsequent amplification 
results in the formation of non-specific product  
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Target specific amplification of BP3_14 was also quite challenging; three amplicons 

(289, 269 and 258bp) were produced for treatments A, B, C, D and E. Addition of 10% 

DMSO (treatment F) increased relative concentration of doublet 289 and 269bp bands 

however yields were heavily impacted and a total yield of just 4.44ng/µl was achieved. 

As previously discussed high-specificity doublet formation can result from indel 

heterogeneity. Five indels are known to exist in this BP3_14 target region however at 

289bp the secondary band is outside the predicted indel variable range (274- 293bp) and 

as such doublet formation is more likely to be attributable to deletion mutagenesis or non-

specific amplification.  

4.4.2 Single-plex Real-Time PCR  

 

4.4.2.1 Primer Pair Annealing Temperature (TA) 

Annealing Temperature uniformity is one of the most critical requirements for successful 

multiplex PCR amplification [132]. According to Panjkovich TA prediction; all primers in 

the final IGF multiplex set should have an optimal TAs of between 64.47 and 65.81°C 

(mean TA = 65.24°C), however prediction agreement is strongest for oligonucleotide 

sequences <20–22 nucleotides in length which have a CG content of 40-60%. All primers 

designed during this study fall within recommended GC limits (40-59%), however with a 

mean primer length of 27 nucleotides (ranging from 22-30bases), primers exceed high-

specificity prediction limits. As such experimental assessment of optimal TA was 

especially required. Five temperatures ranging from 59.9-68.8°C, spanning the 

anticipated optimal annealing (~65°C) were tested for each primer pair. Amplification 

curve, melt peaks and relative yields were plotted and assessed to determine optimal 

experimental TA. 
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Manual evaluation of amplification curves was used to assess whether the reaction 

followed the expected sigmoid amplification profile indicative of good reaction kinetics 

(exponential, linear and plateau phases). Strong sigmoid shapes are indicative to good 

amplification while flattened curves indicate that efficiency was less than ideal during the 

exponential phase. This may be indicative of inhibition or non-specific amplification. All 

27 primer pairs displayed good sigmoid shapes indicative of good reaction kinetics. 

 

Amplification specificity was assessed using both melt peak and MetaPhor gel 

electrophoresis. Melt peak analysis is readily facilitated by RT-PCR instrumentation, 

however it cannot differentiate between alternate amplicons with analogous melting 

temperatures, as such-high resolution gel electrophoresis was also used to identify 

mispriming (primer dimer or multiplex amplicon formation). Single melt peaks with 

relatively flat adjacent baselines indicative of target specific amplification with minimal 

primer-dimer formation were identified for all primer pairs bar IGF1_9 which displayed a 

two peak profile (TMs of 84.5 and 87.5°C). Melt curve analysis did not display any 

anomalies for IGF1_10 or BP3_14; however gel electrophoresis displayed triplet and 

double band formation with products of (246 / 207 / 199bp and 289 / 269bp respectively) 

as before. 

 

Once amplification specificity was established, relative amplicon yields were assessed to 

determine optimal experimental TA for all high-specificity primer pairs. The TA at which 

highest single amplicon yields were derived was designated as the optimal TA. Small 

primer-dimers and non-specific artifacts (such as those observed for BP3_1 at the lower 
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59.9°C annealing temperature) were considered when comparing amplification yields to 

avoid misappropriation of optimal TA. The Panjkovich method displayed good predictive 

performance with 71% or primer pairs functioning optimally at the predicted TA (~65°C) 

despite the relatively long primer lengths used [141]. A slight tendency towards 

underestimation of TA may be noted; with 25% of primer pairs (including IGF1_5, 

IGF1_12, BP1_3/4, BP1_5, BP3_3, BP3_7) functioning optimally at TA = 67.5°C. Just 

one primer pair (BP3_10/11) displayed optimal performance at TA = 62.2°C. Relative 

yield analysis across the 8.9°C TA spectrum tested indicate that all high-specificity 

primers (excluding IGF1_9, IGF1_10 and BP3_14) function well at 65.0°C, therefore 

strong multiplex amplification at this set annealing temperature should be possible.   

 

Tolerance of primer pairs to sub-optimal conditions is known to suffer upon multiplex 

inclusion, as such the extent of primer pair robustness was also assessed by comparative 

analysis of yields derived at alternate annealing temperatures. Larger yield differences 

between products amplified at alternate TAs are indicative of primer pairs that display 

poorer performance in association with deviation from optimal TA. High-specificity 

primer pairs were found to be quite robust to TA adjustment with mean yield losses of 

32.4% across this 8.9°C range. Primer pairs BP3_3, BP3_4 and BP1_3/4 displayed 

maximum yield losses of 64.8%, 55.9% and 53.4% respectively and were found to be 

least robust to deviations of this nature, while IGF1_1 and IGF1_8 are most robust to this 

kind of adjustment displaying just 14.5% loss across the TA range tested. The reasons for 

deviation of this nature is unclear however the poorest performing pair BP3_3, contains 

two and three sequential adenine residues adjacent to a single cytosine clamp for forward 
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and reverse primers respectively. These weak adjacent sequences may have acted to 

reduce annealing efficiency and impact subsequent yield production.  

 

4.4.2.2 Efficiency and dynamic range 

Primer pair amplification efficiency and dynamic range has been shown to diminish upon 

inclusion in a multiplex configuration. PCR amplification efficiency reflects primer pair 

performance and is indicative of stable high-specificity yield production, as such 

determination of this feature is important as relatively small differences in efficiency can 

significant effect yield [221]. 

 

Efficiency is determined empirically and may be derived using sigmoid / logistic curve-

fitting models or standard curve determination. Curve-fitting models work by fitting the 

experimentally derived amplification plots to a theoretical optimal sigmoid curve, while 

standard curve methods require amplification of multiple serial dilutions for construction 

of standard curves from which slope and efficiency are derived. Curve-fitting models 

offer an advantage in terms of the lower number of samples required to estimate 

efficiency, however standard curve determination allows efficiency to be determined 

across a broad dynamic range of template concentrations (up to 5 orders of magnitude for 

genomic DNA). Dynamic range is an additional measure of primer pair performance and 

reflects the ability of primer pairs to function optimally across a wide range of target 

concentrations. Its determination is most often employed for assessment of primers used 

in expression analysis, where a range of target concentrations must be accurately 

amplifiable. Although only a single target concentration is to be used during our analysis, 

multiplex inclusion is known to reduce primer pair capacity and as such primer pairs 
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displaying poor singleplex dynamic range may be rendered non-functioning by inclusion 

in higher dimensionality formats.  All primer pairs were therefore tested using the 

standard curve method for assessment of efficiency across a dynamic range four orders of 

magnitude. A six point standard curve spanning a range of target concentrations from 

6.16x101-6.16x10-2fMole of genomic DNA was constructed for all primer pairs. 

Amplification curves, melt peaks and electrophoresis were used to assess primer pair 

specificity and kinetic adherence as before. High-resolution electrophoretic analysis 

showed all non-repeat region pairs to be highly specific, producing a single target band of 

anticipated size. Repeat region pairs IGF1_9, IGF1_10 and BP3_14 again displayed 

multiple band formation. 

 

Efficiency was calculated using Bio-Rad CFX method which implements the Pfaffl and 

Vandesompele formula with percentage conversion [222,223]. Using this method, 

efficiency should range between 90-110% for primer pairs with good functionality. The 

slope of the standard curve is directly related to the average efficiency of amplification 

and should be between -3.6 and -3.1 while r2 (correlation coefficient) indicative of the 

quality of the fit of the data points plotted to the standard curve and should be >0.95. 

Primer pairs with scores exceeding set limits in any categories are determined to display 

“poor” amplification efficiency. A total of 24 high-specificity primer pairs displayed 

good amplification efficiency across this dynamic range with mean efficiency, slope and 

correlation coefficients of 101.90, -3.27 and 0.988 respectively. 

 

Primer pair IGF1_8 displayed poor efficiency of 114.3% and a suboptimal slope of -

3.021. At 72bp, IGF1_8 is designed to produce the shortest amplicon in the set, as such 
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its requirement in terms of optimal extension times are below that of other pairs, a factor 

which may have caused the poor performance observed in this instance. This result may 

highlight potential IGF multiplex set incompatibility with regard to use of single 

extension times for amplification of alternately sized products. Primer pair IGF1_9 also 

displayed sub-optimal performance using this method with poor efficiency, slope and 

correlation coefficients of 153.9%, -2.478 and 0.775 respectively. This poor performance 

is not unexpected given its poor performance in previous assays and the nature of non-

specific amplification formerly observed.  

 

Singleplex optimisation protocols are useful to help determine primer pair weaknesses 

(poor specificity, efficiency, alternate optimal TAs etc) however PCR protocols and 

reaction mixes are altered for multiplex inclusion and as such these changes may 

ameliorate or inhibit performance of primer pairs in a manner not anticipated by previous 

singleplex studies. Analysis of this type is performed to guide identification of poorly 

performing pairs, but determinations may not fully translate in subsequent multiplex 

reactions and optimisation of higher dimensionality formats may be required. 

 

4.4.3 Multiplex PCR  

Once extensive singleplex amplification procedures had been performed and evaluated, 

end-point multiplex amplification was initiated [224,225]. Smaller dimensionality 5-

plexes were initially amplified using the Qiagen multiplex protocol as described and 

analysed using high resolution MetaPhor gel electrophoresis (see electronic appendix 

Figure 3 and Figure 4). Amplification of these multiplexes was relatively straightforward 

with common reaction mixes, thermocycle profiles and equimolar primer concentrations 
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found to produce relatively strong yields for all pairs, without primer dimer or non-

specific artifact formation. Resolution and sensitivity was poor using MetaPhor / 

ethidium bromide staining however and as such a higher resolution / sensitivity 

alternative was sought. The Experion automated electrophoresis system was used to 

achieve these ends. Using company specified guideline resolution of up to 5bp should be 

achievable within the target range. Amendment of this protocol by cooling reagents and 

chip to ~1°C prior to analysis was found to increase resolution allowing separation of 

fragments differing by as little as 4bp (BP3_7 and BP1_3/4, 152 and 156bp respectively) 

in the <160bp range.  

 

Once the maximum resolution capacity was established, the highest dimensionality 

single-tube multiplex sets were constructed. Four multiplexes containing 14, six, five, 

and two target regions, covering 27 bins across candidate genes IGF1_1, IGFBP1 and 

IGFBP3 were assembled.  Downstream suspension array hybridisation are effected in 

part by target concentration; as such optimisations were performed to achieve relatively 

equimolar amplification of targets with all amplicon yields optimised to displaying less 

than 50% yield variance between the largest and smallest yielding primer pair [153]. 

Reaction components, relative primer pair concentrations and thermal cycle profiles were 

adjusted to compensate for bias based on the individual needs of each multiplex and 

previous singleplex investigations. 

 

4.4.3.1 2-plex Amplification 

Previous singleplex analysis determined IGF1_9 to be susceptible to non-specific artifact 

formation; as such IGF1_9 was purposely assembled into the lowest dimensionality 2-
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plex construct to minimise further complications imposed by more complex mixtures. An 

AmpliTaq gold derived protocol (previously shown to facilitate target specific 

amplification of IGF1_9) was used in place of the Qiagen multiplex mix which had been 

shown to induce nonspecific amplification of this target. Both IGF1_9 and IGF1_11 were 

found to produce 15 and 14 ng/µl of target respectively using singleplex AmpliTaq Gold 

amplification (and end-point quantitation). Using the multiplex method as described, 

IGF1_9 and IGF1_11 produced relatively equimolar target specific amplicons of 10.48 

and 12.4ng/µl with minimal primer-dimer formation. The low dimensionality of this 

multiplex mix is likely to have contributed to the relatively straightforward nature of 

amplification observed; relative primer pair concentration adjustment was found to be 

unnecessary in this instance.   

 

4.4.3.2 5-plex /6-plex Amplification 

Using Qiagen multiplex PCR reaction protocol and thermocycle profile as described; 

target specific amplification was achieved for both 5-plex and 6-plex reactions.  

Application of 5-plex mix containing equimolar primer pair concentrations of BP1_3/4, 

BP3_10/11, IGF1_6, IGF1_2 and BP3_1 resulted in high specificity amplification of 

targets of anticipated size; 156, 168, 174, 243 and 250bp (+/- 17bp). End-point efficiency 

divergence was high however with BP3_10/11 and BP3_1 displaying significantly higher 

relative efficiencies of 1 and 0.519 compared to those derived for BP1_3/4, IGF1_6 and 

IGF1_2 (0.296, 0.235 and 0.230 respectively). RT-PCR singleplex yield divergence for 

all five primer pairs was determined to be 22%, this was increased to 77% upon multiplex 

inclusion. Optimisation via primer pair concentration adjustment was therefore performed 

to compensate for alternate efficiencies within this format. Using this approach primer 
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concentrations of 0.3-1.0µM were used to produce five target amplicons with a narrow 

28% yield variance ranging from 8.82-12.31 ng/µl for IGF1_2 and BP3_1 respectively. 

 

6-plex primer pair amplification (BP3_13, BP1_5, IGF1_5, BP3_12, IGF1_7 and 

IGF1_3) also resulted in target specific amplification, with six amplicons of anticipated 

size 154, 168, 175, 205, 234 and 248bp (+/-13bp) produced. Again multiplex amplified 

targets displayed higher relative yield divergence (~73.8%) compared to those derived 

using singleplex RT-PCR amplification (31%). Primer pairs BP3_13 and IGF1_5 

displayed high relative end-point efficiencies of 1.0 and 0.824 compared to an average 

efficiency of 0.349 for all other pairs in the set. Again relative primer pair concentration 

adjustment was used to compensate for divergent yields. Using final primer pair 

concentrations 0.5-2.0µM; six target amplicons ranging from 7.26-12.45ng/µl for IGF1_7 

and BP3_12 respectively were determined equating to a yield variance of 41.69%. 

 

4.4.3.3 14Mpx Amplification 

In accordance with Rachlin et al., assertion that “achieving broad SNP coverage rapidly 

transitions from being very easy to very hard as the target multiplexing level (# of primer 

pairs per tube) increases”, equimolar amplification of the 14 targets included in the 

largest multiplex construct was more challenging than previous smaller amplifications 

[226]. Total primer and reagent consumable concentrations, kinetic considerations and 

innate primer features all contributed to make multiplex optimisation significantly more 

challenging in this instance.        

 
Amplicon length compatibility issues were raised by this assembly, containing the 

longest possible range of targets spanning 428bp from 72-500bp (for IGF1_8 and 
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IGF1_12 respectively). As before, equimolar primer pair concentrations were initially 

used for multiplex amplification. Thermocycle annealing and extension times of 1 min 30 

seconds (as recommended by Qiagen multiplex PCR protocol) were initially used for 14-

plex amplification. This facilitated amplification of 13 targets, however amplification of 

the largest 500bp (IGF1_12) amplicon was unsuccessful. Annealing time was duly 

increased in 30 second increments to a maximum of 3 min 30 seconds annealing and the 

effect on amplification noted. Longer, 3 min annealing times produced the largest 

IGF1_12 yield, while retaining all other target amplicons. Annealing times exceeding this 

threshold did not act to improve amplification and overall yields were reduced.  

 

Polymerase displays strong activity in the range of 65 to 78°C; as such the high 65°C 

annealing temperature used during this protocol should facilitate primer elongation 

during both extension and annealing phases; mirroring the reaction profile of two-step 

PCR. DNA polymerase displays reduced activity with increasing temperature exposure; 

as such increasing the total combined duration of annealing and extension past 4min30sec 

was not feasible. Due to increased thermal conductivity rates, it was postulated that 

“true” segment times may be increased by reducing reaction volumes. As such, a range of 

reaction volumes from 25-100ul were used for 14-plex amplification. 100µl reaction 

volumes resulted in preferential amplification of smaller targets, while use of 25µl 

volumes induced preferential amplification of larger targets (in particular IGF1_12). 

However, while use of smaller volumes aided IGF1_12 amplification, it also resulted in 

failure of the smallest IGF1_8 (72bp) target amplicon and poor overall yields. Although 

not equimolar; 50µl reaction volumes produced successful amplification of all 14 targets 

with minimal non-specific amplification. As such, a 3 min / 1 min 30 sec annealing / 
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extension profile in conjunction with a total reaction volume of 50µl was selected for 

further optimisation.  

 

Using equimolar primer pair concentrations; target-specific amplification of all 14 targets 

was performed with yields and relative efficiencies determined. Relative efficiency 

within the 14-plex ranged from 1-0.296 for BP1_2 and IGF1_12 respectively with a mean 

relative efficiency of 0.607. A correlation appears to exist between amplicon length and 

efficiency with both largest IGF1_12 and smallest IGF1_8 primer pairs performing quite 

poorly relative to those in the optimal 200bp range (100-300bp). Aside from amplicon 

length, repeat region inclusion and GC clamp exclusion (previously discussed), all other 

design features thought to affect amplification performance were strongly adhered to 

within narrow optimal boundaries (GC% and distribution, intra and inter primer Tm etc). 

Accordingly, no correlation between any of these features and relative primer pair 

efficiency was observed. Potentially problematic AutoDimer-predicted heterodimer 

formation between IGF1_1 and BP3_3 forward primers also appeared to have little 

appreciable effect on amplification with strong relative yields of 0.716 and 0.677 

determined for these pairs within the 14-plex structure.  

 

Although primer pair concentration adjustment was performed as before, an unforeseen 

effect was noted; use of increased total primer concentration was found to induce 

preferential amplification of smaller targets at the expense of larger targets (especially 

500bp IGF1_12 amplicon). The effect of total primer concentration on amplification 

efficiency using this 14-plex structure was therefore investigated. Using a range of total 

primer concentrations target-specific amplification was achieved. Skewed large and small 



Chapter 4: Multiplex Polymerase Chain Reaction 

 

 

Clair Gallagher   Cranfield University 
 
 

189 

target amplification profiles abound however, at both ends of the 1µM and 3µM spectrum 

respectively. Non-specific amplification was also seen to have occurred with non-specific 

amplicons in the range of 22-65bp and 710-1121bp evident for 1.0µM and 3µM reaction 

mixes respectively (Figure 63).  

 

An optimal total primer pair concentration of 2.0µM was identified and relative 

concentration adjustment performed to this specification. Using final primer pair 

concentrations of between 0.04-0.15µM (BP3_10/11 and IGF1_12) equimolar 

amplification of all 14 targets was achieved with amplicon yields ranging 47.09% from 

4.36 - 8.24ng/µl for IGF1_13 and IGF1_8 respectively.  

 

Following the removal of non-specific IGF1_10 and BP3_14 primer pairs, a four-test 

structure, simultaneously amplifying 14, 6, 5 and 2 target loci across 99kb was achieved 

using multiplex PCR. To the best of our knowledge; the larger 14-plex IGF construct 

developed during the course of this work is among the highest dimensionality multiplex 

assembled to date for targeted gene-specific disease association and with 14 primer pairs 

spanning ~99kb (1 assay per ~7kb). This is just below the largest commercially available 

high-density gene specific multiplex test developed to date which screens 31 cystic 

fibrosis mutations across 188kb (1 assay per ~6kb).  
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The work in this chapter aimed to meet the objective “to perform extensive PCR 

optimisation for the construction of a number of robust, well characterised, high 

dimensionality multiplex PCR sets” as described. This objective was met. All primer pairs 

(designed in chapter 3) were assessed in terms of their singleplex PCR specificity, 

efficiency and tolerance and this data used to direct construction of a 14-plex, 6-plex, 5-

plex and 2-plex sets which display high-specificity amplification of target loci. The 

following chapter aims to demonstrate the applicability of this type of multiplex amplicon 

target to suspension array genotyping using a model IGF probe pair designed in chapter 

3.  
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5.1 Introduction 

5.1.1 Overview 

 

The fundamentals of suspension array technology (SAT) in association with a number of 

the advantages of this approach relative to other SNP genotyping formats has previously 

been outlined in chapter 3. The following section describes experimental design 

considerations and divergent suspension array-based options which may be employed to 

meet the increased multiplex, high-throughput, robust requirements of suspension array 

disease association experiments. The applicability of this technique to IGF1 multiplex set 

probe pair pIGF1_1C/pIGF1_1T is also demonstrated in a proof of concept suspension 

array allele discrimination study.  

 

 

5.1.2 Encoded multiplex microspheres 

 
Functionalised microspheres are the solid support probe carrier of choice for suspension 

array-based genotyping assays [13]. A number of commercially available sets have been 

developed and are generally composed of inert material such as Poly(methyl 

methacrylate) (PMMA), polystyrene or silica, with sizes ranging from of 0.5-10µM [227-

230]. They are manufactured to display low variation in terms of microsphere size, 

encoding and stability distributions allowing simplified population discrimination using a 

host of fluorescent reporters and detection platforms. Microspheres are generally 

functionalised using amination, carboxylation, avidination or biotinylation. Functional 

group densities and intergroup distances are set to allow for a host of molecule types 

including antibodies, enzymes and oligos permitting the application to genomics and 

proteomics [227-231].  
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5.1.3 Microsphere encoding 

 
A wide array of encoding schemes have been reported in the that can be broadly 

categorised into non-optical and optical (fluorophore or nanocrystal) approaches. Non-

optical encoding schemes exploit physical dissimilarities for classification of alternate 

microsphere populations. Particle size, surface-enhanced resonance Ramon spectra effect 

(SERRS), radio frequency tagging and fluorophore or quantum dot encoding have all 

been utilised. Particle size was initially used by Horan et al., to discriminate between 

alternate beads with as little as 0.1µm size differences, however the scope of such sets is 

limited and so alternate approaches were investigated. Jin et al., exploited the increased 

sensitivity and narrow spectral bandwidths afforded by SERRS to achieve high 

sensitivity microsphere encoding with increased multiplex dimensionality [12,232]. The 

SERRS effect occurs when molecules adsorbed on rough metal surfaces (silver or gold) 

display Raman scattering and the incident light is resonant with both the molecule and 

plasmon of the metal. This results in increased Raman scattering (by up to 1015) allowing 

femtomolar to attomolar target detection, consequently Raman peaks with narrow 

bandwidths of ~1 nm facilitate high dimensionality multiplexing [232-234]. However, 

while SERRS SAT can increase sensitivity and multiplex capacity, decoding Raman 

spectra is complex; a feature likely to discourage widespread uptake of this approach 

[235].  

 
Radio frequency tagged microchips have also been developed with good effect. These 

microchips are fitted with transponders which transmit a distinct radio frequency which 

may be used to determine microsphere identities. Moran et al., used capillary 

electrophoresis and laser activated signal transmission for the discovery of tripeptide-

substituted cinnamic acid inhibitors of the protein tyrosine phosphatase however while 
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this approach offers a large capacity for multiplexing; transponders are relatively large, a 

feature disadvantageous for oligonucleotide analysis [236].  

 
Optical encoding using fluorophores or quantum dot doping is the most popular encoding 

mechanism employed for microsphere identification. This is due to the ease of 

identification and high throughput analysis facilitated by use of widely available flow 

cytometers and bulk encoding strategies which allow large quantities of relatively 

inexpensive microspheres to be produced with high uniformity and minimal size, 

intensity and granularity distributions [13,237-240]. Using this approach distinct spectral 

barcodes are produced by combining a number of fluorochromes with alternate emission 

wavelength at fixed intensities (see Figure 65).  

 

Figure 65: Microsphere Optical Encoding. Microspheres are doped using multiple fluorophores with 

alternate emission wavelengths at fixed intensity ratios to produce an array of distinct spectral 

barcodes for alternate microspheres within a combinatorial library [241].  

 

Using the equation below, 1,900, 000 spectral codes may be produced using 6 emission 

wavelengths and 11 intensity ratios. In practice however decoding such combinatorial 

sets would be challenging and a number of other experimental limitations with regard to 

fluorochrome excitation and emission spectrum also restrict set sizes to lower more 

manageable dimensions. 



Chapter 5: Suspension array genotyping 

 

Clair Gallagher   Cranfield University 195 

 

C = Nm – 1 

Where  

� C = number of unique codes possible,  

� N = number of intensity levels and  

� m = number of emission colours 

 
Organic dyes have been predominantly used for optical encoding and are available in a 

number of commercial kits which allow simultaneous analysis of up to 100 microspheres 

[229,231,242,243]. Organic dyes have narrow excitation and broad emission spectra 

which display red tailing and as such combinatorial sets of this nature are limited in terms 

of the number of fluorophores which can be included and differentiated during analysis. 

Development of semiconductor nanocrystals or quantum dots have acted to loosen 

combinatorial constrains allowing the scope of higher dimensionality sets to be more 

broadly investigated [244]. 

 
Quantum dots are nanometer scale moieties (2-10nm) composed of semiconductor 

materials including Cadmium Selenide and Zinc Sulfide whose physical dimensions are 

lower than that of the Bohr radius11. When photons of light strike semiconductor 

materials electrons are excited and are elevated to higher energy levels, upon their return 

to ground state they generally release a photon of light characteristic of the 

semiconductor material, however when particle size is lower than that of the Bohr radius, 

band-gaps between ground and excited states become size dependant and as such 

semiconductors display emission spectra whose wavelengths are directly proportional to 

particle size. This is termed the quantum confinement effect [238,245]. 

 

                                                 
11 The Bohr radius is the mean radius of the orbit of an electron around the nucleus of a hydrogen atom at 
its ground state (lowest-energy level). Bohr radius represents the smallest mean radius normally attainable 
by a neutral atom. 
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This effect can be exploited to produce a wide range of quantum dots from a single 

semiconductor material with differing emission spectra. Quantum dots may be assembled 

into bead-based formats containing differently sized nanoparticles with a range of 

emission maxima at fixed ratios; producing beads with distinct spectral barcodes. 

Quantum dots display a number of advantages over biological fluorophores which 

increased ease of handling, minimal photobleaching, large molar extinction coefficients, 

high quantum yields, broad excitation wavelengths and narrow emission spectra (25-

40nm FWHM) as well as their capacity for high-combinatorial set construction [240]. As 

such, quantum dot-encoded microspheres offer a facility for high-dimensionality 

suspension array applications and work has begun with regard to commercial 

development of sets of this nature [246,247] 

 

5.1.4 Detection instrumentation  

 

A range of existing and novel detection platforms have been applied to suspension array 

analysis. These platforms should ideally display high sensitivity, accuracy, precision, 

throughput and multiplex capacity at minimal cost. The following section describes two 

approaches to suspension array detection which utilise static and flow based platforms 

[248-250]. The mosaic system is a dedicated static platform developed specifically to 

facilitate robust quantitative oligonucleotide analysis using a static platform and quantum 

dot-encoded microspheres (QDEM). Using a single laser for excitation of multiple 

QDEM encoded microsphere species in conjunction with a coupled device (CCD) image 

detector, multiplex analysis of sedimented microspheres may be performed [251]. This 

system offers a number of advantages including use of low-cost CCD detectors and a 

high level of automation however this product has now been discontinued and a 
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replacement static system has yet to emerge. Additionally concerns remain regarding 

coagulation of microspheres and overlapping species can contribute to the difficulty 

associated with data interpretation using this approach [249,250]. 

 

Flow based platforms offer the opportunity for single microsphere analysis and the high 

accuracy which this approach affords. The Luminex 100 platform is a dedicated dual-

laser flow-based system analogous to flow cytometry specifically designed for Luminex 

2-colour microspheres analysis. The system has been applied to multiple applications 

including nucleic acid profiling, immunoassays and cytokine analysis [252-259]. The 

specific application of this design means that assay set-up times are minimised and 

compensation requirements are reduced, however the system is less flexible than standard 

flow cytometers and Tsuchihashi et al., suggest that due to its use of biological 

fluorophores its capacity is limited beyond its current capacity [247,260].  

 

Flow cytometry (FC) is a well established technique which facilitates simultaneous 

multiparametric analysis of microsphere or cell characteristics (physical or chemical) 

using flow-facilitated manipulation of target moieties through an optical analysis and 

detection system. Flow cytometers are widely available in hospitals, universities and core 

laboratories and have been developed to include multiple lasers and PMTs which can 

detect up to 14 emission wavelengths, however these more complex FC systems are 

incredibly expensive and the bulk of current flow cytometry-based applications are 

performed on single/dual-laser, 4 PMT detector FCs [261]. The unique properties 

afforded by quantum dot-encoded microspheres (QDEMs), including single wavelength 

excitation and narrow emission spectra, allow these basic cytometers to be used for more 

complex genotyping and proteomic assays. They provide an easily accessible high-
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throughput analysis platform which is flexible, sensitive, and accurate allowing a high 

degree of multiplexing. The following section describes in more detail the mechanism by 

which FC instrumentation functions and its putative capacity with regard to SAT sample 

analysis.  

 

5.1.5 Flow Cytometry 

 

Flow cytometry is a powerful technique for the characterisation of multiple parameters 

from individual cells or microspheres ranging from 0.5-100µM12 within heterogeneous 

population samples at analysis rates of up to 100,000 sec-1 [13]. During sample analysis 

particles are injected into the centre of a fast flowing sheath fluid stream where, due to 

the principles of laminar flow the sheath and sample fluid do not mix and pressure 

differences may be used to hydrodynamically focus the sample particles into a thin 

corridor of single concurrent particles which are analysed at the interrogation point. The 

interrogation point consists of a clear section of capillary tubing which is traversed by a 

laser and flanked on multiples sides by detectors and a series of optical filters.  

 

When a particle passes the detection window it intersects the laser causing light to be 

scattered, absorbed and emitted in a manner directed by the innate particle profile. Side 

scatter detected at 90° to the incident of light is a measure of particle granularity or 

structural complexity, while light scattered in a predominantly forward direction near the 

angle of incidence is a function of cell diameter. Scattered light is quantified by a detector 

that converts intensity into a voltage pulse. The scatter profile and therefore voltage pulse 

is proportional to the particle size or complexity, with larger and more complex particles 

producing larger signals on forward and side scatter detectors respectively. Histograms 

                                                 
12 Bacteria and blastocysts respectively 



Chapter 5: Suspension array genotyping 

 

Clair Gallagher   Cranfield University 199 

may be used to plot forward and side scatter signals to determine sample population size 

and complexity distributions determination. Use of 2D scatter plots (SS versus FS) can 

allow increased resolution and differentiation of subpopulations within the sample, while 

additional fluorescent measurements first exploited by Wolfgang Göhde in 1968 may be 

used to determine a wide range of non-physical particle characterises through fluorescent 

labelling [262]. Fluorescent emission occurs when molecular absorption of photons cause 

electrons to become excited and move to higher energy states, when electrons return to 

ground state they release photons of light at longer fluorescent wavelengths. By coupling 

fluorescent moieties to specific cellular or microsphere targets, characteristic 

determination regarding the target of interest may be made [263,264].  

 
Fluorescent photons are directed along the same path as the side scatter signal and 

manipulated through a series of filters and mirrors to allow separation of multiple 

fluorescent wavelengths into ranges detectable by dedicated photomultiplier tube 

detectors. Fluorescent signals are detected in a manner analogous to scatter data; with 

fluorescent light intensity converted to voltage signals in a manner indicative of intensity. 

Multiple fluorophores may be used to determine alternate characteristics for a single 

particle. The number of characterises determinable is dictated by the number and scope of 

PMTs, lasers and fluorophore excitation and emission spectra. Use of quantum dots in 

place of biological fluorophores can act to increase this capacity allowing improved 

multiplexing and data acquisition from single particles [263,264].  

 
The work described in this chapter sets out to meet the final project objective “To 

demonstrate the applicability of multiplex PCR to suspension array facilitated allele 

discrimination using a model probe pair and validate allele designation via dot blotting”. 

During the course of this work, the potential application of quantum dot-encoded 
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methacrylate microspheres to suspension array techniques were assessed. Suspension 

array coupling and hybridisation approaches were evaluated in a proof of concept study 

using model probe pair pIGF1_1C/pIGF1_1T in association with singleplex IGF1_1 and 

multiplex 14-plx targets and assay boundaries determined. The following section 

describes experimental protocols implemented throughout this SAT study. 

 

5.2 Methodology  

 
All FCM was performed using a Beckman Coulter EPICS® XL flow cytometer with 

488nm air-cooled laser, four-colour fluorescent filter set-up (252BP, 575BP, 625BP and 

675BP) and digital signal processing [265]. Optical alignment and FC fluidic 

performance was assessed using SPHEROTM Ultra Rainbow Calibration Particles and 

instrument maintenance and quality control performed in accordance with Beckman 

Coulter recommendations [266,267]. Data analysis was performed using De Novo FCS 

Express software [268]. All reagents used during coupling and optimisation protocols 

were purchased from Sigma Aldrich unless otherwise stated. 

5.2.1 Microsphere Characterisation and Selection 

 
The PlxBead quantum dot-encoded microsphere solid support library was purchased from 

Crystalplex (Crystalplex Corp., Pittsburgh, PA). This combinatorial assembly is 

composed of 5µM mesoporous methacrylate microspheres with carboxyl 

functionalisation. Each of the 16 microsphere species has a distinct spectral address, 

encoded using a maximum of four emission wavelengths (525, 575, 620 and 675nm) with 

binary on/off intensities.  

 

Microsphere counts were performed on untreated microsphere samples using 

haemocytometer counting and flow cytometry to determine microsphere populations 
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(particles / µl) [269,270]. Microsphere handling was performed in accordance with 

manufacturer instructions.   

 

In order to assess the response of microspheres to assay-relevant conditions microspheres 

were incubated with a number of solutions including H2O, TE, Phosphate-buffered saline 

(PBS), Tetramethyl Ammonium Chloride (TMAC) spanning a range of salt (0-4M) and 

pH conditions (pH4 -10) over discrete time periods (15 min – 48 hours). The effect these 

treatments on microsphere populations were assessed using haemocytometer and flow 

cytometry counting as before.  

 
A second set of distinct microspheres were purchased from Spherotech (Spherotech, Inc., 

Lake Forest, IL) and population counts under the range of conditions previously specified 

repeated. Unlike previous microspheres these particles are fluorophore-encoded and 

composed of polystyrene. This 2-plex set consists of carboxyl functionalised microsphere 

codes, 5.0-5.9 µm in size with single emission wavelengths at 530nm and 635nm for 

microspheres CFP-5052-2 (Carboxyl Fluorescent Yellow Particles) and CFP-5067-2 

(Carboxyl Blue Particle Array Chemistry Development Particles). These microspheres 

are termed S1000 and S0001 respectively throughout the thesis for ease of recognition.   

 

5.2.2 Quantitative Flow Cytometry 

 
The applicability of quantitative flow cytometry to EPICS® XL (Beckman Coulter, Inc., 

Fullerton, CA) analysis was assessed using Spherotech UltraRainbow Calibration Particle 

URFP-38-2K. Flow cytometry voltage and gain values (Table 33) were adjusted to allow 

particles to be observed across three FC channels (470, 575 and 675nm) with five 

microsphere intensities spanning four orders of magnitude as recommended. The 

population was gated on forward and side scatter and a count threshold of 10,000 applied. 
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For each PMT detector; histograms were used to determine channel (peak) numbers for 

all five microsphere intensity levels, channel numbers were plotted against Spherotech 

determined relative molecules of equivalent fluorescence (MEF) and calibration curves 

potted. Correlation coefficients and curve shapes were used to assess the suitability of 

this technique to our instrumentation (i.e. the EPICS® XL). 

Table 33: EPICS
®
 XL Quantitative Flow Cytometry Settings. PMT voltage and gains are specified 

for forward, side and auxiliary channels as well as fluorescence channels F1, FL2, FL3 and FL4. 

Populations were gated on forward and side scatter and compensation was not applied.  

 
 Voltage Gain  

FS 432 2 4.59 

SS 39 10 11.17 

FL1 819 1 - 

FL2 820 1 - 

FL3 795 1 - 

FL4 1021 1 - 

AUX 500 10 25.00 

Compensation None 

Gate FS/SS 

 
 

5.2.3 Microsphere Coupling  

 

Oligonucleotide probe immobilisation was facilitated by heterobifunctional EDC (1-

Ethyl-3-[3-dimethylaminopropyl]) coupling between carboxylated microspheres and 

aminated oligonucleotide probes. A synthetic PE-Cy5 labelled aminated-Poly(dA) 

reporter probe with FL4 (670nm) emission facilitated coupling optimisation. 2µl of 

Spherotech S0001 0.5% w/v partiles (2.9 × 104 microspheres) were washed (x2) with 

0.1mol/L 2-(N-morpholino) ethanesulfonic acid (MES) pH 4.5. Microspheres were 

resuspended in 20µl MES and 150µl of fresh EDC (250g/L) added. The solution was 

vortexed for 1min 45sec (Fisons Whirlimixer WM250-SC) to activate microsphere 
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carboxyl groups and further MES (×2) wash steps performed [153,231,271,272]. 

Microspheres were resuspended in 40µl MES and 1.00pmol heat-denatured/ snap-cooled 

(95°C 5min/ 0°C 5min,), probe added to the mix. The solution was vortexed, sonicated 

(1min Sonicor SC-121) and incubated at room temperature with rotation (instrument and 

setting) for 2 hours. Following incubation coupled microspheres were washed in weak 

non-ionic detergent 0.02% Tween, 0.1% SDS to remove non-specifically bound probe 

species [273]. Microspheres were resuspended in 600µl PBS for immediate FC analysis 

or stored in 0.1M imidazole (pH7.0). A number of optimisations were performed during 

the course of protocol development including optimisation of probe concentration (0.25-

2.00pmol/µl) and incubation duration (15min – 3hour).  

 

5.2.4 Microsphere-Target Hybridisation  

 
Following coupling of S1000, S0001 microspheres and target specific probes pIGF1_1T 

and pIGF1_1C, hybridisation was perfumed between microsphere-probe species and PCR 

targets.  49.5µl of 75mM Tris-HCL (pH8.0) buffered hybridisation solution containing 

4.5M TMAC salt, 0.15% sarkosyl and 6mM EDTA as described by Dunbar et al., was 

added to coupled microspheres (~20,000) [274]. PCR product was added to sample tubes 

to produce final IGF1_1 target concentrations of between 5-50fmol. 1x TE buffer was 

added to make a final volume of 75µl. Samples were denatured (95°C, 10min, Techne 

TC-512) and hybridisation performed at 60°C for 2 hours (Hybaid Maxi 14). 

Hybridisation duration (15 min -2 hrs) and temperature (40-70°C) were optimised for 

maximum allele discrimination and optimal concentration ranges for singleplex and 14-

plx targets determined. Following hybridisation; samples were washed (× 2) in 1× 

hyrbidisation buffer and resuspended to a final concentration of 6mg/µl streptavidin PE-

Cy5. Streptavidin-biotin coupling was performed at 37°C for 30 minutes and samples 
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subsequently washed in 0.02% Tween/0.1% SDS to remove non-specifically bound 

molecules. Microspheres were resuspended in 1,200µl PBS for FC analysis.  

 

5.2.5 FC Sample Analysis 

Geometric mean fluorescence intensity (MFI) determination was used to assess coupling 

efficiency for each microsphere population as follows: Normalised geometric mean 

(nMFI) = Processed microsphere MFI – unprocessed microsphere MFI. 

 

EPICS® XL FC analysis for both coupling and hybridisation reactions were performed 

using a low flow rate, total sample volume of 600-1,200µl, FS / SS gating and an event 

threshold of 5,000 / 10,000 particles for singleplex and duplex bead code samples 

respectively. Voltages and gains as described (Table 34) were applied for analysis of all 

coupled and hybridised samples.  

 

Table 34: EPICS® XL Sample Analysis Flow Cytometry Settings. PMT voltage and gains are 

specified for forward, side and auxiliary channels as well as fluorescence channels F1, FL2, FL3 and 

FL4. Populations were gated on forward and side scatter and compensation was not applied.  

 
 Voltage Gain  

FS 432 2 4.59 

SS 39 10 11.17 

FL1 386 1 - 

FL2 409 1 - 

FL3 410 1 - 

FL4 637 1 - 

AUX 500 10 25.00 

Compensation None 

Gate FS/SS 
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5.2.6 Dot Blot 

 
Dot blotting was performed using GE healthcare ECL Direct Nucleic Acid labelling and 

Detection System according to manufacturer’s instructions. Singleplex IGF1_1 PCR 

product was chemically denatured using 1.5M NaCl, 0.5M NaOH solution and spotted 

onto Hybond-N+
 nitrocellulose membrane (25ng per spot). Spots were fixed using 30sec 

exposure to UV light (Herolab Clean Cab) and incubation with probe sequences 

IGF1_1C, IGF1_1T and IGF1_5G performed at 42°C ~6hrs (Hybaid Maxi 14). A range 

of primary stringency washes (0.4% sodium dodecyl sulfate with 0.2X, 0.3X, 0.4X and 

0.5X SSC) were applied to alternate repeat membranes in order to facilitate allele 

discrimination via spot intensity quantitation.  
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5.3 Results 

5.3.1 Microsphere Characterisation and Selection 

 
Extensive bead loss was observed in initial suspension array-based experiments using 

methacrylate Crystalplex PlxBeads. It was hypothesised that high salt concentrations or 

pH adjustment may cause osmotic shock and degradation of PlxBead material or leaching 

of QDs. The effect of a number of relevant buffer solutions and pH environments was 

therefore assessed to determine whether these induced PlxBead loss (Figure 66, Figure 67 

and Figure 68).  

 

Microspheres were determined to be unaffected by H2O incubation. Some loss was 

observed using TE buffer incubation however this was manageable within the confines of 

SAT time requirements. Microsphere loss was critical using both PBS and TMAC (2.5M) 

solutions however. PBS buffer contains phosphate which was subsequently found to 

causing leeching of quantum dots from the polystyrene shell (Crystalplex Corp., personal 

correspondence). A high salt TMAC (~2.5M) solution was found to have the most 

negative effect on microsphere stability (Figure 66). It was hypothesised that osmotic 

shock may induce microsphere breakage and therefore the effect of increasing TMAC 

concentration 0.01-4.00M on bead population maintenance was tested following 

15minutes incubation. A clear correlation between increasing TMAC concentration and 

reduced microsphere population was evident with 4M TMAC sample displaying a 

PlxBead population of just ~20% relative to the size of lowest 0.01M concentration tested 

(Figure 67). The effect of TMAC concentration (0.1-0.01M) over a range of pHs 4-10 

was also assessed. Microsphere populations were found to be most stable at pH10 in low 

salt concentrations (0.01M) (Figure 68). 
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Figure 66: The effect buffer solution on PlxBead population yields was assessed at intervals over a 

48hour period. Non-significant microsphere loss was determined for H2O incubation; loss was 

manageable using TE buffer within the confines of SAT time requirements however microsphere loss 

was critical using both PBS and hybridisation buffer. PBS buffer contains phosphate which causing 

leeching of quantum dots from the polystyrene shell (personal correspondence Crystalplex). The 

reason for hybridisation buffer incompatibility is unknown however this solution contains a high salt 

concentration (~2.5M) relative to alternate solutions tested, as such osmotic shock or salt sensitivity 

may effect bead disruption and breakage. 
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Figure 67: The effect of TMAC (tetra-methyl ammonium chloride) concentration on PlxBead 

population as determined following 15 minutes incubation and FC analysis. A strong correlation 

between increasing TMAC concentration and PlxBead loss may be seen to occur with the highest 4M 

TMAC sample displaying a PlxBead population of just ~20% relative to the size of lowest 0.01M 

concentration TMAC sample.  
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Figure 68: Effect of pH (4-10) on PlxBead population following 15min incubation in 0.1 and 0.01M 

TMAC solutions. PlxBeads appear most stable in high pH (~pH10) and lower 0.01M TMAC 

concentrations. 

5.3.2 Quantitative Flow Cytometry 

 

The applicability of quantitative flow cytometry to EPICS XL analysis was assessed 

using Spherotech UltraRainbow Calibration Particle URFP-38-2K. Flow cytometry volt 

and gain values were adjusted to allow particles to be observed across three FC channels 

(470, 575 and 675nm) with five microsphere intensities spanning four orders of 

magnitude as recommended. For each PMT detector; histograms were used to determine 

channel (peak) numbers for all five microsphere intensity levels (Figure 69 and Figure 

70). Channel numbers were plotted against Spherotech determined relative MEFs 

(molecules of equivalent fluorescence) and calibration curves potted (Figure 71 and 

Figure 72). Correlation coefficients and curve shapes were used to assess the suitability 

of this technique with regard to processing by flow cytometers employing digital signal 

processing. At r2 = 0.9544, 0.9703, 0.9545 and 0.941 correlation coefficients determined 

for MEFL, MEPE, MEPCY MEAP did not reach the anticipated >0.99 value specified by 
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Spherotech. All curves also display non-conformance to anticipated straight-line profiles, 

exhibiting a tendency toward convex (MEFL, MEPE, MEPCY) and convex (MEAP) 

curvature.  

 
 

 
Figure 69: Histogram plots of Spherotech UltraRainbow calibration particle emission profiles in 

FITC (525nm) and PE (570nm) channel. Five populations are visible spanning four log decades; 

peaks M1-M5 are used for molecules of equivalent fluorescein (MEFL) and molecules of equivalent 

phycoerythrin (MEPE) determination. 
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Figure 70: Histogram plots of Spherotech UltraRainbow calibration particle emission profiles in PE, 

PE-Cy5 / APC channels (histograms B, C and D respectively).  Five populations are visible spanning 

four log decades. Peaks M1-M5 are used for determination of molecules of equivalent phycoerythrin 

(570nm), phycoerythrin-Cy5 and allophycocyanin (675nm). 
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Figure 71: Calibration curves determined for MEFL and MEPE channels (525 and 575nm 

respectively) using EPICS XL derived channel numbers and Spherotrech supplied molecules of 

equivalent fluorescein and phycoerythrin. Correlation coefficiencts determined for both MEFL and 

MEPE curves (r2 = 0.9544 and 0.9703 respectively) are suboptimal and to not reach the anticipated 

>0.99 value specified by Spherotech. Both curves also display non-conformance to anticipated 

straight-line profiles, exhibiting a tendency toward convex curvature. 
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Figure 72: Calibration curves determined for MEPCY and MEAP channel (675nm) using EPICS XL 

derived channel numbers and Spherotrech supplied molecules of equivalent phycoerythrin-Cy5 and 

allophycocyanin. Correlation coefficiencts determined for both MEPCY and MEAP curves (r2 = 

0.9545 and 0.941 respectively) are suboptimal and to not reach the anticipated >0.99 value specified 

by Spherotech. Both curves also display non-conformance to anticipated straight-line profiles, 

exhibiting a tendency toward concave and convex curvature for MEPCY and MEAP respectively. 
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5.3.3 Coupling Efficiency 

 
Oligonucleotide probe immobilisation was facilitated using heterobifunctional EDC (1-

Ethyl-3-[3-dimethylaminopropyl]) cross-linking between carboxylated microspheres and 

aminated oligonucleotide probes. A synthetic PE-Cy5 labelled aminated-Poly(dA) 

reporter probe was used to facilitate coupling optimisation. A number of factors including 

probe concentration and incubation duration were assessed to facilitate maximum 

coupling of probe sequences (Figure 74 and Figure 75 respectively). Microsphere 

analysis was performed using EPICS XL flow cytometric analysis and geometric mean 

determination used to assess coupling efficiency. A final probe concentration of 1pmol/µl 

(molar excess of 624:1 reporter probe molecules to COOH) in association with two hours 

incubation with rotation resulted in maximum coupling and nMFI of 121.25 (Figure 73). 

 
Figure 73: Coupling efficiency determination. Microsphere S0001 and PE-Cy5 labelled amino-

Poly(dA) reporter probe were used to perform probe coupling optimisation.  The FCS Express 

derived dot plot displays an overlay of two samples; a no-probe S0001 population and a S0001 

reporter probe coupled population. A normalised geometric MFI of 103.91 was determined for the 

optimised coupled population  
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Figure 74: Effect of reporter probe poly(dA)PECY5 on coupling efficiency. A range of reporter 

probe concentrations ranging from 0.25-2.00pmol/µl were used to identify the optimal probe 

concentration required for coupling 2.9 × 10
4
 microspheres. A final probe concentration of 1pmol/µl 

resulted in maximum coupling. This is a large molar excess of 624:1 reporter probe molecules to 

COOH- sites. 
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Figure 75: Effect of Incubation duration on coupling efficiency. MES buffered EDC carbodiimide 

cross-linking was used to perform coupling between S0001 microspheres and PE-Cy5 labelled 

reporter probe. Coupling efficiency was assessed following incubation durations of between 15 

minutes and three hours. Two hours incubation resulted in MFI of 121.25 and maximum coupling 

efficiency.  
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5.3.4 Hybridisation Efficiency and Allele Designation 

 
Hybridisation reactions were performed in accordance with the protocol described and a 

number of optimisations performed to allow maximum discrimination for genotyping 

(Figure 76). 

 

Figure 76: FCS Express dot plot for allele discrimination determination. All S1000 microspheres are 

coupled with pIGF1_1T probes and S0001 microspheres coupled with pIGF1_1C probs. Populations 

S1000 Neg and S0001 Neg highlighted in black were hybridised with non-complementary IGF1_5 

singleplex PCR targets (i.e. target negative) while populations S1000 pIGF1_1T and S0001 

pIGF1_1C highlighted in light blue and navy respectively were hybridised with IGF1_1 singleplex 

PCR target. Fully complementary allele positive S0001_pIGF1_1C / IGF1_1 species display a high 

normalised MFI of 157.64, this is 42.72 times higher than that displayed by single allele mismatch 

S1000_pIGF1_1T/IGF1_1 species which display a normalised MFI of 3.69 relative to their non-

complementary target negative counterparts. 

 
Hybridisation temperatures of 40-70°C spanning the predicted probe annealing 

temperature of 60°C were analysed and their effect on allele discrimination evaluated 

(Figure 77). Temperatures of 60°C were found to facilitate maximum allele 

discrimination capacity with normalised MFI of 157.64 and 3.69 determined for positive 

pIGF1_1C and negative pIGF1_1T allele probe-targets respectively. Lower hybridisation 

temperatures provided increased total MFI for both probes however divergence between 
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probe MFIs was reduced and allele discrimination was not facilitated at lower 40°C 

temperatures.  

 

314.38

246.46

171.50
157.64

92.63

0.65

325.11

128.86

15.19
3.69 3.14 0.93

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

40 50 57 60 63 70

Hybridisation Temperature (deg C)

M
F

I

pIGF1_1C pIGF1_1T
 

Figure 77: Hybridisation temperature optimisation. The effect of hybridisation temperature on allele 

discrimination was assessed across a 30°C range of 40-70°C.  Temperatures of 60°C were found to 

facilitate maximum allele discrimination capacity with MFI of 157.64 and 3.69 determined for 

positive pIGF1_1C and negative pIGF1_1T allele probe-targets respectively. Lower hybridisation 

temperatures provided increased total MFI for both probes however divergence between probe MFIs 

was reduced and allele discrimination was not facilitated at lower 40°C temperatures. The highest 

70°C hybridisation temperature exceeds the predicted TM and as expected did not facilitate 

hybridisation (normalised MFI of 0.65 and 0.93 for pIGF1_1C and T respectively).  

 

 

The effect of hybridisation duration was also assessed. One-hour hybridisation resulted in 

maximum normalised MFI of 161.97.  Incubation times exceeding this did not act to 

improve hybridisation further (Figure 78). 
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Figure 78: Effect of incubation duration on hybridisation efficiency. Using fully complementary 

probe and singleplex target (pIGF1_1C and IGF1_1) hybridisation was performed at 60°C with 

rotation over a series of incubation times ranging from 15 minutes to two hours. Sample MFIs were 

plotted against hybridisation duration to identify the optimal hybridisation time under the conditions 

specified. One-hour hybridisation resulted in maximum normalised MFI of 161.97, times exceeding 

this did not act to improve hybridisation.  

 

The effect of target concentration using both singleplex and multiplex (14-plex) targets 

were assessed. Target concentrations can affect allele discrimination and it is therefore 

essential to determine a range which may be used effectively [153]. It was determined 

that allele discrimination could be performed effectively using either singleplex IGF1_1 

or mltiplex (14-plex) target across a range of 5-50fMols. Use of multiplex targets reduced 

total MFIs somewhat however this effect was relatively small and allele discrimination 

was not impinged. Singleplex target allele discrimination spanning 5-50fmols of target 

for both IGF1_1C and IGF1_1T are displayed in Figure 79. Singleplex and multiplex 

(14-plex) MFIs determined across a range of concentrations from 5-50fmols for probe 

IGF1_1C are displayed in Figure 80, while those for probe IGF1_1T are displayed in 

Figure 81. 
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Figure 79:  Effect of target concentration on allele discrimination.  Hybridisation was performed 

using a range of singleplex IGF1_1 target concentrations from 5-50 fetomols. Normalised MFIs 

ranging from 114.87-161.03 and 0.76-3.73 were determined for positive and negative allele probes 

(pIGF1_1C and pIGF1_1T respectively). Target saturation was reached at 15 fmols for 

complementary pIGF1_1C samples, while a lower saturation point at 10fmols and poorer relative 

performance at concentrations exceeding this point were evident for allele negative pIGF1_1T 

samples.  
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Figure 80: Effect of PCR target complexity on pIGF1_1C Hybridisation Efficiency. Singleplex 

IGF1_1 and 14-plex PCR product (containing IGF1_1 amplicon) were used to assess the 

performance of pIGF1_1C on hybridisation efficiency over a range of target concentrations (5-

50fmols). Use of 14-plex targets resulted in a lower saturation point of 10fmols relative to that 

determined for singleplex targets (15fmols). Use of 14-plex target also resulted in marginally reduced 

overall performance.  
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Figure 81: Effect of PCR target complexity on pIGF1_1T Hybridisation Efficiency. Singleplex 

IGF1_1 and 14-plex PCR product (containing IGF1_1 amplicon) were used to evaluate the 

performance of pIGF1_1T on hybridisation efficiency over a range of targets (5-50fmols).  A target 

saturation point of 10fmols was determined for both singleplex and multiplex targets however 

multiplex targets displayed increased relative hybridisation signal at lower 5fmol concentrations. 

 
 

5.3.5 Dot Blot Validation 

 

Allele discrimination was also performed using dot blot hybridisation to validate results 

determined using suspension array approaches. Linear probe sequences (designed for 

suspension array genotyping) were hybridised with PCR product under a range of high-

stringency conditions and hybridisation signal strength used to determine alleleotype of 

target sequences. Three probes were hybridised in parallel with singleplex IGF1_1 PCR 

amplified target. Strongest hybridisation signals were seen for IGF1_1C in all cases, a 

lower relative hybridisation signal was seen for all IGF1_1T samples bar the highest 

stringency wash D where no signal was evident. No hybridisation signal was observed 

using IGF1_5G probe negative control. 
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Figure 82: Dot blotting was used to validate allele designation as determined by suspension array 

experimentation. IGF1_1 singleplex PCR product was chemically denatured and spotted onto 

nitrocellulose blotting membrane. IGF1_1C, IGF1_1T and IGF1_5G probes were used to assess the 

target sequence using alternate primary washes increasing in stringency from 0.2-0.5X SSC from A 

to D respectively.  Strongest hybridisation signals were seen for IGF1_1C in all cases, a lower relative 

hybridisation signal was seen for all IGF1_1T samples bar the highest stringency wash D where no 

signal was evident. No hybridisation signal was observed using IGF1_5G probe even with the lowest 

stringency wash A. 
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5.4 Discussion  

 

Suspension array technology offers the potential for high throughput SNP genotyping of 

PCR products with high accessability, flexability, sensitivity, speed and efficiency [13]. 

Like any oligonucleotide assay however all probe sequences require extensive 

optimisation and validation prior to clinical sample analysis. A wide range of alternate 

approaches with regard to suspension array coupling and hybridisation have been 

demonstrated. The following section describes development of a high efficiency 

suspension array method for use in conjunction with high-dimensionality multiplex PCR 

targets and probe sequences as previously described (chapters 3 and 4). Microsphere 

selection, coupling, hybridisation and validation of a model probe pair pIGF1_1T and 

pIGF1_1C in conjunction with singleplex and multiplex PCR targets are described 

demonstrating the efficacy of the suspension array genotyping method developed.  

 

5.4.1 Microsphere Characterisation and Selection 

 
In order to exploit the inherent advantages afforded by quantum dots (narrow emission 

peaks with minimal red tailing and high capacity for multiplexing); suspension array 

solid supports composed of quantum dot encoded microspheres were selected. A number 

of companies including Bangs Laboratories and Duke scientific supply low 

dimensionality combinatorial sets of single colour, multi-intensity carboxyl-

functionalised vinyl polymer microspheres of this nature, however Crystalplex offered 

the highest dimensionality combinatorial set in suitably discrete quantities in the form of 

the PlxBead nanocrystal encoded microspheres [230,275].  
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Particle counts were performed using haemocytometer and flow cytometry, 

demonstrating a mean PlxBead concentration of 1.46x104/µl determined for all beads in 

the set (although the concentration of microsphere QDEM 1100 was substantially below 

that of other microspheres at 1.7 × 101/µl). Moderate to significant microsphere loss was 

noted upon Initial coupling and subsequent hybridisation experiments however and as 

such, potential contributing factors including buffer composition and concentration, salt 

concentration, and pH were investigated in an attempt to determine the cause of 

microsphere atrophication. 

 

The effect of H2O, TE, PBS and TMAC (2.5M) storage on microsphere populations were 

tested at intervals over the course of two days. Water storage had no discernable effect 

while significant microsphere loss due to TE storage within the assay time span was 

manageable. Stark effects were seen following PBS and TMAC incubation however with 

significant loss observed following two hours and thirty minutes PBS and TMAC 

incubation respectively. PBS has a low salt concentration (similar to that of TE buffer) as 

such osmotic shock seemed unlikely and the reasons for this effect were investigated. 

Consultation with the manufacturers revealed phosphate to be utilised in PlxBead 

manufacture and subsequent storage in phosphate-containing buffer was found to cause 

leeching of constituent quantum dots and microsphere disruption (personal 

correspondence Crystalplex).  The effect of TMAC was also of concern, TMAC is a 

soluble organic salt which binds selectively to AT rich regions reducing melting 

temperature disparity between AT and GC rich regions, as such facilitation of this salt 

was essential for multiplex probe analysis of the nature proposed [276]. Incubation of 

PLxBeads with 2.5M TMAC caused significant loss following of microspheres following 

one hour incubation. Salt-induced osmotic shock was proposed as a potential mechanism 
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by which atrophication may be induced and therefore a range of TMAC concentrations 

(0.01-4M) were investigated. Microsphere population attrition of 10% was observed in 

solutions of <1M, however attrition increased significantly thereafter with ~80% loss 

determined following incubation with 4M TMAC solutions. TMAC solutions were also 

adjusted for pH evaluation with micropsheres appearing to be most stable in higher pH 

solutions (up to pH 10). 

 

Alternate hybridisation protocols such as those described by Das et al., which facilitate 

hybridisation using lower salt buffers, may potentially be used in conjunction with 

methacrylate PlexBead microspheres. However, use of lower salt conditions significantly 

reduces hybridisation kinetics incurring increased hybridisation time requirements 

[277,278]. Additionally one of the advantages afforded by suspension array technology is 

that microsphere coupling may be performed in bulk and aliquots subsequently used to 

perform numerous genotyping experiments [13]. It was felt that microsphere instability 

was too significant to proceed using microspheres as described and therefore 

amelioration techniques and alternate probe supports were investigated. 

 

 
PlxBeads are composed of mesoporous methacrylate (PMMA), a clear plastic resin 

favoured for its robust characteristics. However PMMA can be unstable and 

manufacturing must be carefully controlled if robust structures are to be produced [279]. 

Core-shell deposition has been the subject of intense investigation with silica, alumina 

and titania investigated in a bid to increase core shell stability [280]. Silica based core-

shell hybrids are the most widely applied due to their low cost, chemical inertia and 

transparency which renders then suitable to a wide range of chemical and biological 

applications [280,281]. A number of treatment options including microsphere surface 
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modification in association with coupling agent employment as well as electrostatically 

driven layer-by-layer self assembly for sequential adsorption of silica have been 

employed for vinyl polymer encapsulation. However the requirement for surface 

treatment and repeated centrifugation / wash / redispersion treatments make these 

processes time consuming [280-284]. Cao et al., successfully employed the former 

approach to coat carboxylated polystyrene QD encoded beads using 

Tetraethylorthosilicate (TEOS) and demonstrate functionality of reactive groups through 

DNA probe hybridisation, however the low pH (pH1.5) employed in this instance was 

found to be incompatible with methacrylate PlxBead stability and as such an 

NTC/nanosilica approach which facilitates electrostatic deposition of silica on PMMA as 

developed by Chen et al., was identified as a potential solution to the PLxBead stability 

problem [280,281]. These stabilisation issues were discussed with Crystalplex and 

development of silica-encapsulated Plxbeads is currently underway. In the interim 

however alternate supports were sought.  

 

Although optically encoded using fluorophores (rather than quantum dots) Spherotech 

particles were selected due to their reported stability with regard to the wide salt and pH 

ranges which may be accommodated (personal correspondence Spherotech) [285,286]. 

Microsphere stability in terms of resistance to buffer composition and concentration, salt 

concentration, and pH were again tested and microspheres found to be highly-stable 

inducing insubstantial microsphere loss under all conditions tested. Two Spherotech 

microspheres species S1000 and S0001 with maximum emission at 530nm and 635nm as 

described were thus used for all subsequent suspension array genotyping optimisation 

experiments. 
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5.4.2 Flow Cytometry Data Analysis 

 
Suspension array coupling and hybridisation procedures performed during the course of 

this work use fluorescent reporter molecules to facilitate assay evaluation. A number of 

approaches, including absolute and relative quantitative analysis, exist to allow 

meaningful determinations regarding genotyping outcomes to be made. 

 

Quantitative flow cytometry facilitates quantitative measurement of particle staining by 

flow cytometry, providing an absolute value for the light intensity measured. Using 

microsphere sets containing multiple populations with known fluorophore loadings, mean 

channel numbers may be determined for specific instruments / assays allowing standard 

curve construction and absolute fluorophore determination for unknown samples [228]. A 

number of commercial calibration kits including QuantumTM PE-Cy5 MESF, 

QuantiBRITE-PE and UltraRainbow Calibration Particles have been specially devised to 

allow accurate repeatable determinations to be made in this way [228,230,287]. The 

Spherotech UltraRainbow Calibration kit was selected due to its multichannel emission 

spectra and use of water insoluble fluorescent dyes which afford increased stability 

relative to surface labelled microparticle attachment methods used in other calibration 

kits. Their high size uniformity also means that these species may be used for optical 

system alignment [288,289]. 

 
The applicability of this approach to our EPICS XL instrument was assessed using 

URFP-38-2K UltraRainbow Calibration Particles which should allow molecules of 

equivalent FITC, PE, PE-CY5 and APC to be determined in channels FL1, FL2 and FL4 

using our optical set-up. FC parameters were selected to allow detection of calibration 

particle across four log decades and calibration particles analysed. Derived channel 

numbers were plotted against known molecules of equivalent fluorochrome (MEF) and 
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calibration curves plotted for each channel. Spherotech calibration particles have very 

low coefficients of variation and should display correlation coefficients of >99% 

(personal correspondence Spherotech), however deviation from anticipated profiles were 

noted for MEFL, MEPE, PEPCY and MEAP standard curves which displayed correlation 

coefficients of 0.9544, 0.9703, 0.9545 and 0.941 respectively. Non-conformance of data 

points to the anticipated straight-line profile for was noted for all curves with 

MEFL/MEPE/MEAP and MEPCY standard curves displaying convex and concave 

curvature respectively.  The reasons for these deviations are unknown however the 

EPICS XL employs digital signal processing which uses linear amplifiers in association 

with log look-up tables to convert linear signals to logarithmic output. All other 

commercially available flow cytometers use analog based methods which employ log 

amplifiers for signal amplification. These amplifiers are notoriously difficult to align 

however and as such true logarithmetic output is difficult to obtain [265]. UltraRainbow 

Calibration Particles were developed and optimised using 12 cytometers including Dako 

Cyan, various LSRs, FAC StarPlus, Canto I, FC500, and MoFlo which implement use of 

log amplifiers for signal processing. As such amplification induced deviation may have 

contributed to the deviant profiles observed in this instance (personal correspondence, 

Spherotech) [228].  

 

An alternate data interpretation approach involves use of mean fluorescent intensity 

determination (MFI). Using this measure of central tendency, fluorescent profiles for 

alternate populations or treatment types can be measured to allow relative fluorescence 

determination to be made. Although quantitative flow cytometry should facilitate 

empirical characterisation of fluorophore loading and therefore more objective 

characterisation, error is likely to be induced by use of non-conforming standard curves. 
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MFIs have been used extensively for suspension array analysis of this nature with Xu et 

al., Armstrong et al., and Yeoma et al.,using this method for single nucleotide 

discrimination [10,153,290], as such MFI determination was selected to facilitate 

efficiency determination and allele discrimination in this instance [291,292].  

5.4.3 Microsphere Coupling  

 
Oligonucleotide probes may be immobilised on the microsphere surface using non-

covalent physical adsorption, affinity binding methods, or covalent conjugation. Physical 

adsorption of DNA onto glass particles occurs due to electrostatic interaction, however 

the process is not very stable (subject to pH induced deviation) or efficient and it also 

prohibits the use of the newer optically encoded high-dimensionality multiplex sets 

which are generally composed of hydrophobic polymers. High-affinity tags such as poly-

his, biotin and glutathione-S-transferase may be coupled with their respective ligands to 

produce stable, high-specificity reactions, however in terms of both of these parameters, 

covalent coupling using carboxylated microspheres and aminated oligonucleotides offers 

the greatest gains and is the most widely used oligonucleotide attachment approach 

currently employed [13,237,293].  

 

Heterobifunctional cross-linker EDC was used to perform carbodiimide coupling 

between carboxyl groups and primary amines. During this reaction an O-acylisourea 

intermediates are formed however these groups are unstable and susceptible to hydrolysis 

and as such this reaction can be difficult to perform effectively [293,294]. A number of 

amended protocols have been developed in an attempt to improve coupling efficiency 

including a high-pH (7.4) imidazole buffer and low-pH MES (pH 4.5) facilitated 

approach which can be performed using a single step or multiple step 

[10,272,290,295,296]. These approaches have all been applied efficiently however lower-
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pH MES facilitates faster reaction rate and was therefore selected for attachment of 

target-specific probe sequences in this instance [295]. Recent studies by Xu et al., have 

incorporated a poly(dT) linker sequence for coupling evaluation, however this requires 

hybridisation of fluorescent poly(dA) target sequences and as such an extra source of 

variability with regard to hybridisation efficiency and specificity is included [10]. We 

employed an aminated-poly (dA) probe directly labelled with PE_Cy5 fluorophore to 

facilitate optimisation of the coupling reaction.  

 

Stoichiometric calculations using manufacturer derived data determined the surface of 

each 5µM microspheres to be coated with approximately 3.32256 × 106 carboxyl sites, 

with an inter-carboxyl distance of ~2,284Å2 and carboxyl group to inter-carboxyl surface 

area of 1:29. This should allow binding of the reporter probe in sufficient quantities to 

facilitate detection [296].  

 

A range of reporter probe concentrations ranging from 0.25-2.00pmol/µl were used to 

identify the optimal probe concentration required for coupling 2.9 × 104 microspheres. A 

final probe concentration of 1pmol/µl resulted in maximum coupling with normalised 

MFI of 103.91 following two hours incubation. This is a large molar excess of 624:1 

reporter probe molecules to COOH- sites, mirroring that determined by Newkirk et al., 

which cites an optimum ratio of 600:1 probe to potential binding sites [272]. 
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5.4.4 Hybridisation and Allele Designation 

 

The optimised coupling protocol was used to perform coupling between target-specific 

probe sequences IGF1_1T and IGF1_1C and microspheres S0001 and S1000. 

Hybridisation between microsphere-probe moieties and PCR products were then 

performed. The effect of applied hybridisation temperature is stark especially with regard 

to allele discrimination where conditions must be stringent enough to facilitate 

identification of heterozygous genotypes. Lower hybridisation temperatures have been 

implemented to perform allelic designation of this nature however stringency washes 

must be applied to remove un-specifically bound target and total MFI signals are reduced. 

As such the effect of hybridisation temperature on allele discrimination was assessed 

across a 30°C range of 40-70°C. Optimal hybridisation temperature designation was 

made by identifying the temperature at which complementary duplexes produced an 

increased MFI such that discrimination between homozygous positive and negative 

alleles was highest while retaining a population that was clearly distinguishable from 

target-negative controls. Un-reacted species must be clearly distinguishable from 

duplexed species if allelic determination is to be robust to coupling/hybridisation 

aberrations.  

 

With normalised MFIs of 161.03 and 3.69 (C and T probe alleles respectively) and 

relative fluorescence increase 43.63 times that for homozygous positive relative to 

homozygous negative alleles, optimal hybridisation temperature was designated to be 

60°C for probe pair IGF1_1. Lower hybridisation temperatures provided increased total 

MFI with normalised MFIs of 314.38 and 322.52 for pIGF1_1T and C respectively 

determined at 40°C, in the order of MFI determined for reporter probe coupled species, 
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however divergence between alternate allele probe MFIs was reduced and allele 

discrimination was not facilitated. The highest 70°C hybridisation temperature exceeds 

the predicted TM and as expected did not facilitate hybridisation (mean MFI  = 0.79).   

 

Blotting has been performed by a number of groups to validate suspension array 

alelelotyping [10]. Dot blotting was also performed using singleplex IGF1_1 target and 

probes in this instance. Significantly stronger hybridisation signals were determined for 

membranes treated using probe pIGF1_1C relative to those derived using pIGF1_1T, 

using the highest stringency wash (containing 0.5xSSC) no signal was determined for 

probe IGF1_1T thereby validating previously determined SAT genotyping results.  

 

Total nMFI determined using this method at optimal hybridization temperature was lower 

than that determined by a number of other groups including Dunbar et al., who 

determined net MFIs at ~800 [274] . Individual probe kinetics and melting temperatures 

are likely to contribute to variations between MFIs for alternate probes however spacer 

length has also been found to contribute heavily to total MFI magnitude. Spacers are 

employed to reduce stearic hindrance and increase hybridisation efficiency  Using a 

number of linear probe and PCR target sequences Shchepinov et al., determined that 

employment of 40 atom modified-nucleotide spacers increased hybridisation signals by 

up to 150 times [167]. A number of additional spacer types including standard nucleotide 

and carbon atom spacers have been investigated, however repulsive forces of negatively 

charges nucleotides have been shown to reduce hybridisation while both carbon spacers 

and modified nucleotides are expensive [297]. A balance between spacer length and cost 

must therefore be struck. 12-carbon spacers are most often employed for suspension 

based genotyping however a 6-Carbon spacers was employed during the course of this 
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work [167,277]. Use of this shorter spacer type may have contributed to reduced total 

MFI however it may also acted to increase discrimination between alleles (to make any 

determination of this nature however genotyping using a more extensive probe set is 

required). 

 

The hybridisation kinetics and thermodynamic affinities of nucleic acid duplexes can be 

driven in a concentration dependant manner. Increasing target concentrations are known 

to improve MFI signals, however an excess of target can result in poor allele 

discrimination and overall signal reduction due to renaturation competition between 

complementary PCR stands [298]. The effect of singleplex target concentration was 

investigated using IGF1 PCR amplicon targets ranging from 5-50fmols. MFIs ranging 

from 161.03-111.93 and 3.79-0.76 were determined for positive and negative allele 

species (C and T alleles respectively) across this range with saturation point of 15 fmols 

determined for fully complementary sequences. A lower saturation point of 10fmols was 

determined for species containing homozygous mismatches.  

It may be postulated that increasing PCR mixture complexity could affect hybridisation 

efficiency and allele discrimination. The effect of PCR target complexity on pIGF1_1T 

hybridisation was therefore assessed over a range of target concentrations (5-50fmols) 

using singleplex IGF1_1 and 14-plex PCR product (as detailed in chapter 4). Use of 

higher complexity 14-plex targets resulted in lower overall performance. Lower 

saturation points were also incurred relative to those determined singleplex targets, with 

maximum target capacities of 10fmols determined for complementary and single-base 

mismatch species respectively. 
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It is important to note that SAT probe saturation points are not merely a product of the 

hybridisation protocol employed. Target concentration ranges are also influenced by the 

innate profile and associated hybridisation rate constants of individual target sequences 

used, as such use of relatively equimolar multiplex PCR targets during multiplex 

suspension array genotyping should provide a degree of leeway with regard to 

accommodation of this feature and reduce or negate the need for further multiplex PCR 

optimisation during SAT analysis [153]. 

 

The work in this chapter aimed to meet the final project objective “To demonstrate the 

applicability of multiplex PCR to suspension array facilitated allele discrimination using 

a model probe pair and validate allele designation via dot blotting”. These aims were 

met and allele discrimination demonstrated using a range of both singleplex and 

multiplex (14-plex) PCR targets. Allele designation was made and validated using dot 

blotting.  
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6.1 Overall Discussion 

 

The work presented in this thesis was produced in order to satisfy several key objectives 

which were defined to allow the aims to be met. The aim of the thesis was to “use 

haplotype based tagSNP selection and a systematic in silico-based analysis approach to 

design a multiplex compatible PCR primer and SAT probe set facilitating maximum 

variation capture with minimum tests across candidate genes IGF1, IGFBP1 and 

IGFBP3. This will be applied though development of a number of robust, high-efficiency, 

high-specificity multiplex PCR constructs for amplification of multiple targets to 

demonstrate the applicability of these target types to suspension array genotyping for 

NIDDM”.  

 
The first objective was “to construct haplotypes for a given population and perform 

tagSNP selection which captures maximum variation across candidate genes IGF1, 

IGFBP1 and IGFBP3”.   

 
Linkage disequilibrium based tag-SNP selection was used to select target SNPs across the 

candidate loci. Haplotypes were constructed by Haploview, using population data of 

predominantly Caucasian origin, and TagSNPs selected using Tagger. Due to the block-

based structure of the genome and instigation of a MAF threshold of ≤5%, a significantly 

reduced SNP population may be selected for analysis with little reduction in power 

making larger associations more cost-effective and amenable.  

 

Using the method as described a total of 292 SNPs spanning candidate genes IGF1_1, 

IGFBP1 and IGFBP3 were identified. Of these 83 displayed sufficient minor allele 

frequencies of ≥5% and were sectioned into a total of 32 bins. IGF1_1 contained 39 SNPs 
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in 13 bins capturing alleles with a mean r
2 of 0.973, IGFBP1_1 contained 19 SNPs 

partitioned in five bins displaying a mean r2 of 0.957, while IGFBP3 contained 25 SNPs 

were partitioned into 14 bins displaying a mean r2 of 0.968. All tag and capture SNPs 

displayed an r
2 exceeding 0.8, indicative of strong linkage disequilibrium between all 

alleles. Linkage disequilibrium was seen to be strongest across IGF1_1 and weakest 

across IGFBP3, reflected by the bin to SNP ratio determined to be 1:3 and 1:1.5 for 

IGF1_1 and IGFBP3 respectively. Through prioritisation of SNPs displaying high 

linkage disequilibrium and moderate minor allele frequencies, LD-based tagSNP 

selection facilitated knowledge-based SNP prioritisation, reducing the number of SNPs 

required for comprehensive IGF1_1, IGFBP1 and IGFBP3 gene coverage from 292 to 32 

with minimal information loss.  

 

All tag and capture SNPs were also investigated by PupaSuite in order to identify those 

located in transcription factor binding sites, triplex-forming oligonucleotide target 

sequences, intron/exon border consensus sequences, exonic splicing enhancers and 

exonic regions, with putative deleterious effects which may contribute to the NIDDM 

disease profile. Although selection of SNPs was not made on the basis of putative 

functional impact, it was felt that downstream experimental incompatibility may require 

incomplete bin representation which could be informed by results of such analyses.  

 

Using PupaSuite, IGF1 candidate tagSNPs; rs6214 / rs6219 and IGFBP3 capture SNP 

rs2854746 received deleterious impact predictions. IGF1 and IGFBP3 SNPs were found 

to be located in SRp40 responsive and SR Sf2 responsive ESEs representing a potential 

propensity toward mRNA processing misfunction [112]. Functional studies regarding the 

nature of the putative deleterious SNPs identified during this study have not been 
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performed to date however in association with supportive evidence (i.e. strong 

association), these loci may also represent good targets on which to perform functional 

analysis (knock-down, selective mutation studies etc.).  

 

Following successful knowledge-based SNP reduction and bin prioritisation, the second 

objective “To perform multiplex primer and probe design, utilising in silico and manual 

analysis for evaluation and selection of a high specificity primer/probe sets in a manner 

compatible with downstream multiplex PCR and SAT analysis” could be addressed.  

 

While use of increased dimensionality formats can reduce costs; design and optimisation 

of these complex structures is considerably more problematic than for singleplex formats. 

The probability of successful multiplex analysis performance may be ameliorated by 

extensive and comprehensive in silico analysis however, and to this end Primer3, UCSC 

PCR, Primer Map and AutoDimer were used to design multiplex PCR and SAT 

compatible primers and probes for maximum bin coverage. While adherence to 

singleplex design recommendations was important; use of multiplex PCR formats is 

known to incur diminished tolerance ranges and induce the potential for cross-reactivity. 

As such, a number of multiplex-specific primer design features were implemented, 

allowable thresholds restricted, and multiplex-specific tests performed to increase the 

probability of successful amplification. 

 

Deviations from optimal TA can affect efficiency of amplification, which can be 

exasperated within multiplex formats resulting in large yield variances between alternate 

amplicons. Narrow inter- and intra-primer TA ranges of ≤ 2°C were therefore stipulated 

for this study. Using the Panjkovich consensus TM method which displays minimal TM 
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error probabilities, all primers in the final IGF multiplex set adhered to this range with 

maximum inter-primer TA of just 1.68°C and intra-primer pair TA of 1.32oC [141]. A 

second feature of increased primer length was also implemented to aid specificity. Primer 

length is generally observed in the range of 18-24 bases for amplification of human 

genomic targets. Sanchez et al., and Henegariu et al., suggested that use of longer 

primers (up to 35 bases) and their associated elevated TAs may increase specificity for 

multiplex amplification [162,299]. These principles were applied for primer design in this 

instance resulting in production of primers with an average length of 27 bases ranging 

from 22-30 nucleotides.  

 

AutoDimer analysis was also performed to assess cross-reactivity of all primer and probe 

species which may reduce assay performance. AutoDimer scores in excess of 13 were 

determined for self-tagging rs33979592, rs2854744 and rs2453840 IGFBP3 SNPs primer 

pairs (bins two, five and eight respectively). This exceeds the maximum recommended 

score threshold of seven to eight and as such all three tagSNPs were excluded from 

further analysis. Cross-homology constraints did not affect PupaSuite functional variants 

and therefore prioritization was not made on this basis.  

 

A number of relaxed parameters were allowed for a number of primer pairs where 

superior tagSNP replacement options were unavailable. Primer pairs exceeding these 

optimal constraints include pairs IGF1_9, IGF1_10 and BP3_14, located in repeat regions 

known to increase susceptibility to non-specific amplification. IGF1_12 and IGF1_8, 

which at 500bp and 78bp respectively, exceed the optimal 100-300bp size range. IGF1_9 

which failed the in silico PCR test, and may therefore contain homologous targets despite 

the longer primer lengths used. In addition to IGF1_10’s less than optimal target type, 
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these primers were also constructed without stabilising G/C clamps which may further 

exasperate reaction specificity.  

 

Probe sequences also displayed high TM conformity with intra- and inter-probe TMs 

ranging a maximum of 1.32°C and 3.49°C, As such, probe TM-induced genotyping 

irregularities should be minimised. Genotyping efficiency may be influenced by a 

number of probes including IGF1_2 and IGF1_11 which, due to sequence constraints 

were designed with non-central target SNPs, a feature known to reduce SNP-induced 

duplex instability. Due to position along the complementary sequence of probes pBP1_3 

and pBP1_4, SNP rs9658195 may interfere with genotyping. However this is predicted to 

have a low MAF frequency and further genotyping of this position in the target 

population is required. Consequently, primer and probe sequences representing 29 of 32 

bins across targets genes were designed during this phase. 

 

While in silico evaluation can act to improve the probability of high-level primer 

performance, it is no guarantee of experimental success, particularly for those primers 

exceeding optimal specifications. As such the objective described for chapter 4 “To 

perform extensive PCR optimisation for the construction of a number of robust, well 

characterised, high dimensionality multiplex PCR sets” aimed to address this and 

produce targets for downstream SAT applications. 

 

Singleplex end-point PCR was performed to assess primer pair specificity. All primer 

pairs displayed target specific amplification bar repeat region pairs IGF1_9, IGF1_10 and 

BP3_14 which displayed multiple band formation. A number of polymerases, adjuvants 

and reaction protocols were used to reduce non-specific amplification; sufficient (target-
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specific) amelioration was achieved for IGF1_9 however, only when using high-fidelity 

AmpliTaq gold polymerase protocols.  

 

According to Panjkovich TA prediction; all primers in the final IGF multiplex set should 

have an optimal TAs of between 64.47 and 65.81°C (mean TA = 65.24°C), however 

prediction agreement using this method is strongest for oligonucleotide sequences <20–

22 nucleotides in length. A mean primer length of 27 nucleotides (ranging from 22-

30bases) primers in our multiplex set exceeded high-specificity prediction limits. As such 

RT-PCR optimal TA assessment was performed across five annealing temperatures 

ranging from 59.9-68.8°C. Despite the relatively long primer lengths used, the 

Panjkovich method displayed good predictive performance with 71% or primer pairs 

functioning optimally at the predicted TA (~65°C) [141]. A slight tendency towards 

underestimation of TA was noted; with 25% of primer pairs (including IGF1_5, IGF1_12, 

BP1_3/4, BP1_5, BP3_3, BP3_7) functioning optimally at TA = 67.5°C. Just one primer 

pair (BP3_10/11) displayed optimal performance at TA = 62.2°C. Relative yield analysis 

determined that all primers (excluding low-specificity IGF1_9, IGF1_10 and BP3_14) 

functioned well at 65.0°C, therefore this annealing was selected for amplification of 

multiplex constructs.  

 

PCR amplification efficiency reflects primer pair performance and is indicative of stable 

high-specificity yield production, while dynamic range reflects the ability of primer pairs 

to function optimally across a wide range of target concentrations and is important for 

multiplex amplification where tolerances are known to diminish. As such RT-PCR was 

performed for all primer pairs across a dynamic range spanning four orders of magnitude. 
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Twenty four high-specificity primer pairs displayed good amplification efficiency13 

across this dynamic range with mean efficiency, slope and correlation coefficients of 

101.90%, -3.27 and 0.988 respectively. These are within the ideal efficiency (90-100%), 

slope (-3.6 to -3.1) and correlation coefficient (>0.95) limits generally recommended. 

Primer pair IGF1_8 displayed poor efficiency and a suboptimal slope, however at 72bp, 

IGF1_8 is produces the shortest amplicon, therefore, its requirement in terms of optimal 

extension times is below that of other pairs. Use of inappropriate annealing time may 

have contributed to the poor performance observed in this instance. 

 

The results of these singleplex amplification procedures were used to inform end-point 

multiplex set construction and amplification [224,225]. Primer pairs IGF1_10 and 

BP3_14 primer pairs, shown during non-specific amplification under all conditions 

tested, were removed from the set. Repeat region IGF1_9, shown to be susceptible to 

non-specific artifact formation, was purposely assembled into the lowest dimensionality 

2-plex construct to minimise complications imposed by more complex mixtures and 

AmpliTaq gold-derived protocol (previously shown to facilitate target-specific 

amplification of IGF1_9) used in place of the Qiagen multiplex mix. In addition to this 2-

plex structure, a high-specificity, high efficiency 14-plex, 6-plex and 5-plex were 

produced for amplification of a total of 27 targets across this 99kb region. To the best of 

our knowledge; the larger 14-plex IGF construct developed during the course of this 

work is among the highest dimensionality multiplexes assembled for targeted gene-

specific disease association with 14 primer pairs spanning ~99kb (~1 test / 7kb). Thi sis 

exceeded however by Makowski et al’s., 31-test cystic fibrosis multiplex spanning 188kb 

which facilitates one test every ~6kb [300]. 

                                                 
13 Excluding low-specificity IGF1_9, IGF1_10 and BP3_14 and high-specificity IGF1_8 
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Multiplex amplification for disease association appears to be quite limited with many 

associations utilising singleplex or low complexity multiplex amplification (<5-plex) 

[251,301-304]. The largest multiplex of this nature identified during this review was an 

8-plex developed by Mirel et al., for IDDM based association testing [305]. To date, 

disease association has been primarily based on assessment of putative functional 

polymorphisms which cannot be substituted. Exploiting the haplotypic structure of genes 

for SNP prioritisation can facilitate inter-bin tagSNP substitution where alternate tags are 

unavailable, thereby allowing greater gene coverage to be retained. The target regions 

used during this study were relatively small, spanning 84.7kb, 5.3kb and 9.0kb across 

candidate genes IGF1, IGFBP1 and IGFBP3 respectively. The high linkage 

disequilibrium displayed by IGF1 resulted in accumulation of numerous interchangeable 

tagSNPs rendering block representation relatively straight forward for standard non-

repeat region targets. Adversely IGFBP3, which displayed the lowest low levels of 

linkage disequilibrium, allowed little room for manoeuvre in terms of tagSNP 

substitution. As a result lower multiplex coverage was more challenging with non-repeat 

region tagSNPs rs33979592, rs2854744 and rs2453840 (IGFBP3 bins two, five and eight 

respectively) unrepresented by any primer pair.  

 

The PCR products developed during this work were used to attempt to satisfy the final 

objective “To demonstrate the applicability of multiplex PCR to suspension array 

facilitated allele discrimination using a model probe pair and validate allele designation 

via dot blotting” 
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Originally we proposed the use of quantum dot encoded microspheres which, due to their 

narrow emission spectra and multi-wavelength excitation, should facilitate large 

multiplex set construction to meet the demands of the 58 probe set. Methacrylate 

microspheres were sourced from Crystalplex (Crystalplex Corp. Pittsburgh, PA), 

however these unprotected methacrylate microspheres were found to be unstable and 

susceptible to breakage especially in the presence of high-salt solutions such as those 

used during our hybridisation assays. Potential amelioration approaches were researched 

and the results of our findings discussed with the manufacturer. As a result a more robust, 

silica-encapsulated species is currently under development.  

 

In the interim however alternate, more stable microspheres were sourced; we selected 

two fluorophore-encoded polystyrene microspheres produced by Spherotech (Spherotech, 

Inc., Lake Forest, IL) Although encoded using fluorophores, these highly-stable 

microspheres facilitated a suitable level of multiplex required for demonstration of our 

model 2-plex SAT genotyping assay. Optimisation of carbodiimide EDC-coupling was 

achieved using a synthetic PE-Cy5 labelled aminated-Poly(dA) reporter probe and the 

optimised protocol applied to facilitate high-efficiency model probe-pair IGF1_1C and 

IGF1_1T attachment. Hybridisation was subsequently performed and conditions 

optimised to allow SNP discrimination. OE21 cell line was determined to display 

homozygous CC allele at the target locus (rs972936). The applicability of both singleplex 

IGF1_1 and 14-plex target (containing IGF1_1) were assessed and good efficiency and 

discrimination determined for both target types. The total MFI was somewhat reduced 

using the multiplex target structure and saturation point was reached at an earlier 

juncture, however overall, the homozygous discrimination thresholds were generally in-
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line with those described by other groups [153,260,306]. Dot blot experiments validated 

genotyping results determined using SAT analysis.  

 

The applicability of these multiplex PCR targets to biallelic suspension array-based 

genotyping has been demonstrated, paving the way for development of a larger multiplex 

suspension array using the probe set designed during the course of this work. Although 

currently untested, the success of in silico primer design, de-risks multiplex probe 

construction, particularly in terms of its likely propensity for cross-homology. The 

multiplex nature of the PCR amplicon set described should allow association of candidate 

genes IGF1, IGFBP1 and IGFBP3 to be performed at a significantly reduced cost (in 

European Caucasian populations). As such, a larger proportion of association analysis 

budgetary provision may be allocated towards analysis of larger sample sizes, thereby 

increasing the power of association outcomes. The increased accessibility of this set may 

also encourage the scope of association to be expanded allowing knowledge-driven and 

exploratory associations to be performed across the polygenic disease spectrum.  

 

While the applicability of our IGF multiplex targets was demonstrated by use of high 

throughput bi-allelic suspension array based genotyping, further development of the full 

probe set may allow high-dimensionality analysis of multiplex targets to be performed 

thereby reducing the test structure for both amplification and genotyping tests (with 

associated cost reduction which would be incurred). Additionally the multiplex PCR 

amplicons developed during the course of this work may also be analysed using a number 

of alternate genotyping approaches making this multiplex structure accessible to the 

wider research community.  
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6.2 Overall Conclusion 

 
The aim of this work was to “use haplotype based tagSNP selection and a systematic in 

silico-based analysis approach to design a multiplex compatible PCR primer and SAT 

probe set facilitating maximum variation capture with minimum tests across candidate 

genes IGF1, IGFBP1 and IGFBP3. This will be applied though development of a number 

of robust, high-efficiency, high-specificity multiplex PCR constructs for amplification of 

multiple targets to demonstrate the applicability of these target types to suspension array 

genotyping for NIDDM”.  

 
This has been addressed through several objectives which have previously been 

discussed. From the work presented here, several conclusions may be drawn: 

 
o Haplotype based tagSNP selection for European Caucasian populations has been 

performed and a systematic in silico PCR primer and SAT probe design and 

analysis approach implemented to thoroughly assess all target tagSNPs allowing a 

well considered, multiplex-compatible structure capturing maximum variation 

with minimum tests across candidate genes IGF1, IGFBP1 and IGFBP3 to be 

designed.  

 
o A set of 25 primer pairs, capturing 27 target bins have been profiled thoroughly 

using singleplex PCR amplification. From these four robust multiplex-compatible 

PCR sets (14-plex, 6-plex, 5-plex and 2-plex) which display high-efficiency and 

target-specific amplification have been developed.  

 
o The applicability of these multiplex PCR constructs to suspension array 

genotyping has also been demonstrated using a single probe pair, thus paving the 
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way for development of a large multiplex suspension array genotyping assay 

using the probes designed during the course of this work. 

As such a more accessible lower test, higher-efficiency analysis structure has been 

developed which facilitates comprehensive association analyses of IGF1, IGFBP1 and 

IGFBP3 to be performed. 

6.3 Further work  

 
 
To test all probe pairs designed in chapter 3 to determine their allele discrimination 

capacity and construct these into large multiplex sets which facilitate analysis of 

multiplex PCR targets.  

 
To test the full multiplex capacity of all high-specificity primer pairs to increase the 

dimensionality of our multiplex set using fluorescent amplified fragment length 

polymorphism (fAFLP). FAFLP uses fluorophores rather than intercalating dye in 

combination with capillary electrophoresis for size dependant separation of multiplex 

amplicons. As such fluorochromes with alternate emission wavelengths can be utilised 

for identification of identically sized amplicons irresolvable by single colour detection.  

Our primer set is readily amenable to this type of analysis as the biotinylated attachment 

implemented for downstream SAT can also be utilised for streptavidin facilitated 

fluorophore attachment without any further adjustment [307].  

 
We would like to apply the techniques (multiplex PCR - suspension array method) 

developed during this thesis to perform an association analysis to determine whether any 

association between IGF1, IGFBP1 and IGFBP3 SNPs captured by these targets and 

NIDDM is evident in European Caucasian populations.  
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APPENDIX 
 

 

1.1 Chapter 3: PCR Primer / Probe Design 
 

Table 1: Gene name, Tagger derived bin number, tagSNP reference sequence identifier and 

corresponding IGF multiplex set identifiers for all primer pairs used in the final multiplex set are 

displayed. 

Gene 

Name 

Tagger Bin 

No 

TagSNP Reference Sequence 

Identifier 

IGF Multiplex Set 

Identifier 

1 rs972936 IGF1_1 

2 rs17882461 IGF1_2 

3 rs11111262 IGF1_3 

4 rs2033178 IGF1_4 

5 rs2946834 IGF1_5 

6 rs35767 IGF1_6 

7 rs12821878 IGF1_7 

8 rs1019731 IGF1_8 

9 rs17884646 IGF1_9 

10 rs12316064 IGF1_10 

11 rs1520220 IGF1_11 

12 rs3730204 IGF1_12 

IGF1 

13 rs6214 IGF1_13 

1 rs7454 BP1_1 

2 rs1874479 BP1_2 

3/4 rs3828998 / rs9658194 BP1_3/4 

IGFBP1 

5 rs9658238 BP1_5 

1 rs3793345 BP3_1 

3 rs10255707 BP3_3 

4 rs2132571 BP3_4 

6 rs11765572 BP3_6 

7 rs12540724 BP3_7 

9 rs2453839 BP3_9 

10/11 rs35751739 / rs35496550 BP3_10/11 

12 rs6670 BP3_12 

13 rs13223993 BP3_13 

IGFBP3 

14 rs10282088 BP3_14 
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Table 2: Chromosome and genomic base position of putative prime pair amplicons for each 

primer pair IGF multiplex set as determined using UCSC in silico PCR amplification. The 

chromosome and base position for IGF1_9 was derived using Ensembl. 

Primer Pair Identifier Chromosome and Base Position 

IGF1_1 chr12:101349004+101349234 

IGF1_2 chr12:101387933+101388175 

IGF1_3 chr12:101322176+101322423 

IGF1_4 chr12:101371094+101371374 

IGF1_5 chr12:101311849+101312023 

IGF1_6 chr12:101399601+101399774 

IGF1_7 chr12:101391684+101391917 

IGF1_8 chr12:101388524+101388595 

IGF1_9 chr12:101,369,854-101,369,994 

IGF1_10 chr12:101324870+101325068 

IGF1_11 chr12:101320576+101320823 

IGF1_12 chr12:101319336+101319835 

IGF1_13 chr12:101317573+101317822 

BP1_1 chr7:45899490+45899627 

BP1_2 chr7:45898675+45898879 

BP1_3/4 chr7:45895239+45895394 

BP1_5 chr7:45900594+45900761 

BP3_1 chr7:45924115+45924364 

BP3_3 chr7:45921159+45921334 

BP3_4 chr7:45928057+45928329 

BP3_6 chr7:45927624+45927841 

BP3_7 chr7:45923723+45923874 

BP3_9 chr7:45920024+45920144 

BP3_10/11 chr7:45919162+45919329 

BP3_12 chr7:45918741+45918945 

BP3_13 chr7:45917715+45917868 

BP3_14 chr7:45916783+45917051 
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Table 3: Panjokovich consensus primer predicted TAs (°C) for IGF Multiplex Set.  The predicted 

primer annealing temperature for each primer pair (both forward and reverse), mean primer 

pair TA and intra-primer pair TA difference as predicted using Primer3 predictions are 

displayed. 

Primer Pair 

Identifier 

Primer TA (°C) 

Forward/Reverse  

Mean Primer Pair TA 

(°C) 

Intra-primer pair TA 

Difference (°C) 

IGF1_1 65.76 / 64.89 65.325 0.87 

IGF1_2 64.60 /65.81 65.205 1.21 

IGF1_3 65.18 /  65.87  65.525 0.69 

IGF1_4 64.95 /  65.35 65.15 0.40 

IGF1_5 65.17 /  65.07    65.12 0.10 

IGF1_6 64.95 /  65.73 65.34 0.78 

IGF1_7 64.74 /  64.98 64.86 0.24 

IGF1_8 65.46 /  64.83 65.145 0.63 

IGF1_9 65.92 /  64.95 65.435 0.97 

IGF1_10 65.87 / 65.60 65.735 0.27 

IGF1_11 65.59 / 64.42 65.005 1.17 

IGF1_12 64.52 / 64.43 64.475 0.09 

IGF1_13 64.72 / 64.62 64.68 0.10 

BP1_1 64.31 /65.14    64.725 0.83 

BP1_2 64.85 / 64.62    64.735 0.23 

BP1_3/4 65.64 / 65.71    65.675 0.07 

BP1_5 65.41 / 65.67    65.54 0.26 

BP3_1 64.82 / 65.22    65.02 0.40 

BP3_3 65.77 / 65.27    65.52 0.50 

BP3_4 65.56 / 65.60    65.58 0.04 

BP3_6 64.64 / 65.48    65.06 0.84 

BP3_7 64.83 / 65.87    65.35 1.04 

BP3_9 65.47 / 65.99    65.73 0.52 

BP3_10/ 11 64.53 / 65.85    65.19 1.32 

BP3_12 65.66 / 65.97    65.815 0.31 

BP3_13 65.63 / 65.32    65.475 0.31 

BP3_14 64.82 / 65.45    65.135 0.63 
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Table 4: % GC for all primers (both forward and reverse), mean prime pair GC% and Intra-

primer pair difference in the final IGF Multiplex set as determined by Primer3 are displayed. 

Primer Pair 

Identifier 

 GC % 

Forward 

Primer 

GC % Reverse 

Primer 

Mean Primer 

Pair GC % 

Intra-Primer 

Pair GC 

Difference (%) 

IGF1_1 48  41 44.5 7 

IGF1_2 41  43 42 2 

IGF1_3 41  45 43 4 

IGF1_4 41  43 42 2 

IGF1_5 48  41 44.5 7 

IGF1_6 52  40 46 8 

IGF1_7 41 45 43 4 

IGF1_8 54  48 51 6 

IGF1_9 48  52 50 4 

IGF1_10 50  41 45.5 9 

IGF1_11 45  45 45 0 

IGF1_12 46  44 45 2 

IGF1_13 41  45 43 4 

BP1_1 46  41 43.5 5 

BP1_2 48  44 46 4 

BP1_3/4 48  48 48 0 

BP1_5 52  52 52 0 

BP3_1 46  52 49 6 

BP3_3 48  48 48 0 

BP3_4 44  44 44 0 

BP3_6 48  55 51.5 7 

BP3_7 45  46 45.5 1 

BP3_9 59  52 55.5 7 

BP3_10/ 11 42  45 43.5 3 

BP3_12 54  40 47 14 

BP3_13 48  48 48 0 

BP3_14 41  48 44.5 7 
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Table 5: Putative Amplicon Length, BioMath derived RT-PCR amplicon melting temperature 

and position of amplicon constituent repeat regions. 

Primer Pair 

Identifier 

Amplicon Length 

(bp) 

RT-PCR Amplicon 

TM (°C) 

Repeat Regions 

Amplicon Position 

(bp) 

IGF1_1 231 79 - 

IGF1_2 243 77 - 

IGF1_3 248 81 - 

IGF1_4 281 79 - 

IGF1_5 175 78 - 

IGF1_6 174 80 - 

IGF1_7 234 78 - 

IGF1_8 72 78 - 

IGF1_9 141 85 1-141 

IGF1_10 199 81 1-35 

IGF1_11 248 80 - 

IGF1_12 500 78 - 

IGF1_13 250 78 - 

BP1_1 138 76 - 

BP1_2 205 83 - 

BP1_3/4 156 84 - 

BP1_5 168 85 - 

BP3_1 250 84 - 

BP3_3 176 85 - 

BP3_4 273 79 - 

BP3_6 218 91 - 

BP3_7 152 80 - 

BP3_9 121 83 - 

BP3_10/ 11 168 85 - 

BP3_12 205 75 - 

BP3_13 154 80 - 

BP3_14 269 74 35-269 
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In Silico PCR  

 
Table 6: Primer pair identifiers and corresponding putative amplicon sequences as derived using 

UCSC in silico PCR and Ensembl
1
 are displayed.  Forward primer sequences are detailed in 

block capital lettering while reverse complement reverse primer sequences are displayed in block 

capital italics. Probe hybridisation sequences are highlighted in grey and the tagSNP of interest is 

displayed highlighted in red lettering.  

IGF1_1 GGGTCTCTTTCTCTTAGCCTTCTATCTGGcctgaacttctgcatttctctgaatgt

cagaataactacacataccacactactaggcttgaagcttagttaagttctctaacgtgatttaaacacagt

gcagaaaacacttccatggaagcgtgaacgcttgaaaagactcaaacttagaggatactaattagctact

gagaGAGAAGGCACTATAACAAGACCCAAAGAT 

 

IGF1_2 ATACCTCAGCATTGGCAATAGATTCTGcaattgatctcagaagagaataattaa

gtgtaatagctcacatatgtggtgcttactgtgtgccaggcaatattctaagttaacatattccaatataataa

ctaatttaatcctaacaccaactctataaggcaggccccattttacagatgagaaaattgaggaacaaaca

ggttaaataacttgctCAAGATCACTCACCAAGTAAGTTGCAGA 

 

IGF1_3 GCTAAAGCACATTTGAGATTACACAGACCtgagacctggagaaggtgaga

ggttttaatatgaaggctggggaaaaagataaactgccaccccttgggaataatacctattggccaaggc

ccatagggatcggcaggttttcttacacatgttttccggttctacttggaacatgagagttatcaccaagtcc

ttcatgaaaggtagctagtgttttatGAGTCGATGGTCAACATCTTGTACTGACT 

 

IGF1_4 GCTAAAGCTGGAATAATGTGTTAGGTGTGtggcctaggagggtctacattgt

gcttttccaaagtgttttttataggatgtaggttttcaggagtgggagagttccctatagagcttggcatttgtt

tgtttgttttgctttgttttgaatttggaaagatgatcttaaagaggtatggtaggattaggaaacttttcttcag

gcctcagttagtggcctccggtattcaattatactcaggcaatgttaattGAGCACTTTCTACAT

GCAAATCACTGTC 

 

IGF1_5 CTCTATATCCCTGGGTGTTACCTGCATAGcatgaagtactatccagaactgac

atgcacatgtggaagaacggcagtggggaatgacacattattagatacattggttaccgtgcagaaatgc

ttctttatcctgataatatcataCTCAATAATAGGTCATCACTCAAAGGTGC 

 

IGF1_6 GCAGACATACCTCTTTCCCTAGAGAGCtctccaggcctggtttcccaggagtg

gtggaaataacctggaccttgaattttttctttttttttttttccacatgactctcaggggactgacacatcaact

gaaaacacagttctgCTTGAAATCCTACTCTGGCTCTTTGTGTTA 

 

IGF1_7 AGTTGTCCAATATCCTTAAGTGTCTGTGCaaacacttataagtatcatacagtt

acttaggaacaatcattttttccattctaatttttcatcatttaatgcaaacatcataggcatagaaagatccag

ttttcatgcactgtgcatggaaattctggagcaatgtcgtgttgaacatcacaattcaacctggcacgtaac

agagGACACTTCTAGGCTTGGCAATTACCTAGT 

 

IGF1_8 GCTTTCCCACAGCTAGTGACTGTACCcctaactttgaccagctgtcaCACAG

ATGCATAGCAGGCAGTCTAA 

 

IGF1_9 CTCTCACCTGCCACCATGTAAGATATGtctacttcggccgggcgcggtggctc

acgcctgtaatcccagcactttgggaggccgaggcgggtggatcacgaggttagaagatcaagacCA

TCCTGGCTAACACGGTGAAAC 

 

                                                 
1
 Ensembl was used to determine the putative amplicon for IGF1_9 primer pair only. 
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IGF1_10 CGTGTGCCTGTAGTTTCAGCTACTCAggaggctgaggcaggaaaattgcttgaa

cccaggaggcggaggttgcagtgagctgagattgtgccactgcattccagccttggcgacagagtaaa

actctgtctccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaAAAGATCACTGAG

GACTAATAACAACGGC 

 

IGF1_11 GTTGAGCTAATAGAGAGCTTGAACCTTGGttttcctgagaagggcatgtatag

gtggacaggcccttagtacttttgccaaacctcactcaggcatcttctatgtacccctggtggcgtgaatac

cacagacagctttataatcacacaaagatgagatttgattcatctgcttctatcacagattcattgattgaaag

gagatcctgaaaaatccagcCTTCTGGCCTCTAGATCCTTTCCTAGTAA 

 

IGF1_12 CTGAAGTTCCTCTTGGAAGGCATAACtggggggactttgccttctttcccaaatg

gatggtgttttcagtacccttccccttgtgtcatctttggctccaggcttcccctattgttttgctttcacgtatta

ccgttttggccagactctttcatataacaaactacaaaatagcaccattatactaaaaaacagagttttacat

actgtttgatatatcctgtataattgatatgctaaatttacatagtgctctatatggaaaaaataaaaagagga

aagttactaattaggttgcacattaactcatcatttgaaggaactcttttgagttgaagaaactttctatgtttaa

aacatatgcctaaaaatgattggcctcaaagttgcaactatttgcattattcttttttgtaagcatgatgtggaa

aaataaagctttgtgtctaaaataaaatgcatccaacttatatttGGTACAAATGCCACAGAT

GGAATCT 

 

IGF1_13 AGATAATATGGCAGTGCATCTTTCAGCtttcctccttgggggatttttgactgtgg

atagaattaagtgaaggaaataagtcatagacactcttagaattatcacatctaactatgacagaaaacac

gttaagtctgcagaagactgcctataaagttttgttgagagggaataattttaaaaggtacacactgggga

caagaaataaaaagaagtgccatCTTGGGAAGAGGAGTCCAGTATCTTATTC 

 

BP1_1 ATTTCTGCTCTTCCAAAGCTCCTGcgtctgtttttaaagagcatggaaaaatactgc

ctagaaaatgcaaaatgaaataagagagagtagtttttcagctagtttgaagGAGGACGGTTAA

CTTGTATATTCCACCAT 

 

BP1_2 GAGTGCTTTAGGTCTCAGTGAAGTACAGGttctgtagattttattgggagaaac

tgaggactaggccctgcttcacaggcaatgaacagtggggcacacacgagacatgttccctctgggttg

ggctcccctgacatcaggctatgaagcagacagctgtgcacacactgtactgtttaaCACACATG

GGAAGTCATTATTGCAC 

 

BP1_3/4 CACAACTAGAGCTTGAAACCAGAGCACgtagttggggaaggagcttgggtca

cccagtggagcccgctcattgcacggtcttggcaggacgtgctctgggagaagaaggaagatgttcca

gggcacaCATAGCTTAGTGGAGACTCAAGGAGGAAG 

 

BP1_5 TCCTGGAGACTCTAGCTCCCTATCTTGggtcccccctttaaccctccaaccccat

agctgccaggctgccatcctctctgccatgaccctagggctggtgtgtaaactcagcactcagactcatc

aagaggagcagccagaccGATGTGGGACAGGGACAGACTGATA 

 

BP3_1 AACACGCTTATAAGAGCTTGGTGTCCagctcagatgggaaaactgaattattac

ctgcaaagcgttttgcctcaggggctcagaatcatgcaagcatgttggtggcttgttttctaggtccccgtt

acatctctaaaactcaaggtctacacagaccctgtgcatcttgctggtgcctgcctaagtgagtccttttcac

cccgggtgaacacagcagcacatggatgCAGACAATGCCAAAGTCCCACTC 
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BP3_3 GACTCTGCTATGCTGAGAAAGCACAACagaaatttcagctaaggcaacacaa

gagccatgcgtgcctaggcccgctgagtgtgcgcctgtgcatgcgtgtgggtgtaacttcctgctccaag

aaagcgggggtgggggcagttttgtGTTTCTAGGAGTATAAGGTGGACACCAGC 

 

BP3_4 TACACCGCAAGTCTCCAATTAAGAGTGgaccggcaagcgaatgcgtccttaa

ggcagggcttttcaaatattttaaatgacaactgttcttcttgtcttgggtattctccctgattatgttttcaaatg

gagtttacacccatgacaaaagaataataaagacaataaactgggcactgctgaaacgtaattaaccaaa

tagtcctttaataggcaattttcattgtcattttttgaaggcgacttCGTATTACTGTATTCTCGA

TGCGTTGG 

 

BP3_6 TGTCGTCTACAAGAACCAAGGTGTGcccggccaccccggcactccaggccac

ctcagcacccccggtcaccccagtcactcctggccaactcagcacccccgatctccttgaccccgccgc

ccttaccccttccgctctcggggtgaggtctccctgcggcgagccggtgtcggggaaactggcatacag

cgctccGCATTCGTGTGTACCTCGTGGA 

 

BP3_7 CATCATACTACTCACTACATGGTGGTTGCtctacctcaagaagttatctgtttga

aagtcaatctgacaggtgctcttcctaagtagctgcaactaaagaaggcagacaaacgcttcagtgccc

CTCAGTAGGTGAAGGCAGTATGCTTCAT 

 

BP3_9 GCCCTGAGATATCCAGCACAGCctgcaggctaatggcactaggcctgcaagtgca

gggctggggtctcaactcatgttttcaaacaaagcaacgagtaCCAGATGCTGCTCACAGT

GTTCA 

 

BP3_10/ 

11 

ATTACTTGTGATGCCTCTGAATGTGGaggctgactctccctgtctctctgtccctc

ctaccccacggggccgcagcaaaagccatcctgggccttcgactgggccatgtcttcaggaagattcct

gaagaggagggcccGAAATACCTGCCTTTATAGGTTCCCAGAG 

 

BP3_12 GTGAGCTCCTTTCCTCAGTCATGGccacagttgtatcatatagcatctctaacatttc

atctaggattatctagtatagatcttactatatttggggctatgttgtatacaatgttaacaagaacatatcttct

ctgcatatatgtgtgaattataaagaaaagcatgagaatgaCTCTAAGTTCAACAAACATG

GGTGAATCTC 

 

BP3_13 ACACACCACAATACCAGTCCTCTGAACacttacagaaccggcttgctgctcatc

acatacaacacgtgataagggtatcattttagatgtttcatcaacaaatcagacatggcgctagacaggag

GTAACTCGACAGGAGGTAACTCTTCGACT 

 

BP3_14 GTTGATCATAGGTATTGTGTCAGGGTTTCccagagaaacagaactaacaggt

tatatctatctgtctgtctatctatctatctatctatctatctatctatctatctatctatctatcatctatgtatctatc

tctgtctaatctacctatctatctaatctatcaatctatcatctatctagtctatctacctacttatctctaatcacc

caccaaaaaagacttattacaaaaaattgGCTAAGTATGGAGGCTAAGTCTCACCA

TC 
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Table 7: IGF Multiplex Probe Set Data: Gene name, Tagger Bin number, dbSNP ref sequence 

identifier, SNP allele and given Probe Identifier are displayed 

Gene Name Tagger Bin 

Number 

Reference 

Sequence 

tagSNP 

Identifier 

SNP Allele Probe Identifier 

T IGF1_1T 1 rs972936 

C IGF1_1C 

A IGF1_2A 2 rs17882461 

T IGF1_2T 

G IGF1_3G 3 rs11111262 

A IGF1_3A 

A IGF1_4A 4 rs2033178 

G IGF1_4G 

A IGF1_5A 5 rs2946834 

G IGF1_5G 

A IGF1_6A 6 rs35767 

G IGF1_6G 

G IGF1_7G 7 rs12821878 

A IGF1_7A 

C IGF1_8C 8 rs1019731 

A IGF1_8A 

C IGF1_9C 9 rs17884646 

T IGF1_9T 

C IGF1_10C 10 rs12316064 

T IGF1_10T 

G IGF1_11G 11 rs1520220 

C IGF1_11C 

A IGF1_12A 12 rs3730204 

G IGF1_12G 

C IGF1_13C 

IGF1 

13 rs6214 

T IGF1_13T 
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C BP1_1C 1 rs7454 

G BP1_1G 

A BP1_2A 2 rs1874479 

G BP1_2G 

T BP1_3T 3 rs3828998 

C BP1_3C 

C BP1_4C 4 rs9658194 

A BP1_4A 

A BP1_5A 

IGFBP1 

5 rs9658238 

G BP1_5G 

1 rs3793345 T BP3_1T 

  C BP3_1C 

3 rs10255707 T BP3_3T 

  C BP3_3C 

4 rs2132571 T BP3_4T 

  C BP3_4C 

6 rs11765572 G BP3_6G 

  A BP3_6A 

7 rs12540724 A BP3_7A 

  G BP3_7G 

9 rs2453839 T BP3_9T 

  C BP3_9C 

10 rs35751739 C BP3_10C 

  T BP3_10T 

11 rs35496550 T BP3_11T 

  - BP3_11- 

12 rs6670 T BP3_12T 

  A BP3_12A 

13 rs13223993 G BP3_13G 

  A BP3_13A 

14 rs10282088 C BP3_14C 

IGFBP3 

  A BP3_14A 



 11 

 

 

 
Table 8: Panjokovich consensus predicted TM (°C) for IGF Multiplex probe set.  The predicted 

probe annealing temperature for each probe pair, mean primer pair TA and intra-primer pair TA 

difference as predicted using Primer3 predictions are displayed. 

Probe Identifier Probe TA (°C)  Mean Probe  

Pair TA (°C) 

Intra-probe pair TA 

Difference (°C) 

IGF1_1T 59.51    

IGF1_1C 60.00    

59.75 0.49 

IGF1_2A 60.38    

IGF1_2T 59.56    

59.97 0.82 

IGF1_3G 59.90    

IGF1_3A 60.33    

60.11 0.43 

IGF1_4A 59.27    

IGF1_4G 61.15 

60.20 1.88 

IGF1_5A 60.00    

IGF1_5G 60.17    

60.08 0.17 

IGF1_6A 60.10    

IGF1_6G 59.93    

60.01 0.17 

IGF1_7G 60.23    

IGF1_7A 59.83    

60.03 0.4 

IGF1_8C 60.77    

IGF1_8A 61.45    

61.11 0.68 

IGF1_9C 59.84    

IGF1_9T 60.50    

60.17 0.66 

IGF1_10C 59.70    

IGF1_10T 60.75    

60.22 1.05 

IGF1_11G 59.81    

IGF1_11C 60.08    

59.94 0.27 

IGF1_12A 59.90    

IGF1_12G 60.39    

60.14 0.49 

IGF1_13C 59.53    

IGF1_13T 60.69    

60.11 1.16 
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BP1_1C 60.63    

BP1_1G 59.65    

60.14 0.98 

BP1_2A 59.45    

BP1_2G 60.97    

60.21 1.52 

BP1_3T 60.57    

BP1_3C 57.96    

59.26 2.61 

BP1_4C 60.84    

BP1_4A 60.25    

60.54 0.59 

BP1_5A 59.79    

BP1_5G 60.68    

60.23 0.89 

BP3_1T 59.50    

BP3_1C 60.42    

59.96 0.92 

BP3_3T 60.53    

BP3_3C 58.27    

59.4 2.26 

BP3_4G 60.51    

BP3_4A 59.88    

60.19 0.63 

BP3_6T 60.13    

BP3_6C 60.79    

60.46 0.66 

BP3_7C 60.08    

BP3_7T 59.93    

60.00 0.15 

BP3_9T 59.61    

BP3_9A 60.07    

59.84 0.46 

BP3_10G 58.81    

BP3_10A 60.32    

59.56 1.51 

BP3_11C 59.46    

BP3_11A 60.40    

59.93 0.94 

BP3_12T 59.45    

BP3_12C 60.15    

59.80 0.7 

BP3_13T 60.00    

BP3_13C 60.59    

60.29 0.59 

BP3_14T 61.32 

BP3_14C 61.00 

61.16 0.32 
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Table 9: % GC for all probes, mean probe pair GC% and Intra-probe pair difference in the final 

IGF Multiplex set as determined using Primer3 are displayed. 

Probe Identifier Probe (GC %) Mean Probe  

Pair GC (%) 

Intra-probe pair GC 

Difference (%) 

IGF1_1T 39.13   

IGF1_1C 40.91   

40.02 1.78 

IGF1_2A 32.00   

IGF1_2T 33.33   

32.66 1.33 

IGF1_3G 52.63   

IGF1_3A 47.62   

50.12 5.01 

IGF1_4A 40.91   

IGF1_4G 50.00 

45.45 9.09 

IGF1_5A 30.00   

IGF1_5G 33.33   

31.66 3.33 

IGF1_6A 47.62   

IGF1_6G 52.63   

50.12 5.01 

IGF1_7G 36.00   

IGF1_7A 33.33   

34.66 2.67 

IGF1_8C 43.48   

IGF1_8A 41.67   

42.57 1.81 

IGF1_9C 55.00   

IGF1_9T 50.00   

52.50 5.00 

IGF1_10C 68.75   

IGF1_10T 57.89   

59.37 10.86 

IGF1_11G 52.63   

IGF1_11C 50.00   

51.31 2.63 

IGF1_12A 37.50   

IGF1_12G 37.50 

37.50 0 

IGF1_13C 37.50   

IGF1_13T 38.46   

37.98 0.96 



 14 

 

 

 

 

BP1_1C 39.13   

BP1_1G 39.13   

39.13 0 

BP1_2A 50.00   

BP1_2G 52.94   

51.47 2.94 

BP1_3T 66.67   

BP1_3C 73.33   

70.00 6.66 

BP1_4C 55.56   

BP1_4A 52.63   

54.09 2.93 

BP1_5A 73.33   

BP1_5G 70.59   

71.96 2.74 

BP3_1T 52.63   

BP3_1C 45.00   

48.81 7.63 

BP3_3T 55.56   

BP3_3C 73.33   

64.44 17.77 

BP3_4G 39.13   

BP3_4A 47.62   

43.37 8.49 

BP3_6T 78.57   

BP3_6C 64.71   

71.64 13.86 

BP3_7C 45.45   

BP3_7T 58.82   

52.13 13.37 

BP3_9T 32.00   

BP3_9A 43.48   

37.74 11.48 

BP3_10G 70.59   

BP3_10A 66.67   

68.63 3.92 

BP3_11C 59.09   

BP3_11A 61.90   

60.49 2.81 

BP3_12T 33.33   

BP3_12C 30.00   

31.66 3.33 

BP3_13T 52.63   

BP3_13C 52.38   

52.50 0.25 

BP3_14T 34.30 

BP3_14C 29.70 

32.00 4.60 
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Table 10: IGF Multiplex Probe SNP position. Probe identifier, probe length, SNP position closest 

to the sequence terminus and position designation of central or skewed. 

Probe Identifier Probe length (bp) SNP position 

(closest to probe 

terminus) (bp) 

SNP Position 

Designation* 

(central / skewed) 

IGF1_1T 23    12 central 

IGF1_1C 22   9 central 

IGF1_2A 25    3 Skewed 

IGF1_2T 24    2 skewed 

IGF1_3G 19    9 central 

IGF1_3A 21    10 central 

IGF1_4A 22    11 central 

IGF1_4G 20 10 central 

IGF1_5A 30   15 central 

IGF1_5G 27    13 central 

IGF1_6A 21 7 central 

IGF1_6G 19   6 central 

IGF1_7G 25   11 central 

IGF1_7A 27    13 central 

IGF1_8C 23    4 Skewed 

IGF1_8A 24    5 skewed 

IGF1_9C 20    2 Skewed 

IGF1_9T 22    3 skewed 

IGF1_10C 16 8 central 

IGF1_10T 19    8 central 

IGF1_11G 19 3 Skewed 

IGF1_11C 20    4 skewed 

IGF1_12A 24    12 central 

IGF1_12G 24   13 central 

IGF1_13C 24    7 central 

IGF1_13T 26 10 central 
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BP1_1C 23    6 central 

BP1_1G 23 6 central 

BP1_2A 20    10 central 

BP1_2G 17    9 central 

BP1_3T 18    8 central 

BP1_3C 15    5 central 

BP1_4C 18    5 central 

BP1_4A 19    6 central 

BP1_5A 15    4 central 

BP1_5G 17    8 central 

BP3_1T 19    7 central 

BP3_1C 20   10 central 

BP3_3T 18    9 central 

BP3_3C 15   4 central 

BP3_4G 23    7 central 

BP3_4A 21   7 central 

BP3_6T 14    4 central 

BP3_6C 17    6 central 

BP3_7C 22 11 central 

BP3_7T 17   7 central 

BP3_9T 25    12 central 

BP3_9A 23    11 central 

BP3_10G 17    5 central 

BP3_10A 18   5 central 

BP3_11C 22    10 central 

BP3_11A 21 10 (del) central 

BP3_12T 30 14 central 

BP3_12C 30    13 central 

BP3_13T 19 8 central 

BP3_13C 21   11 central 

BP3_14T 35 15 central 

BP3_14C 37 15 central 

* SNPs in the interquartile range were designated as “central”, while those in the 25
th

 

or 75
th

 percentile were designated as being in a “skewed” position. 
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1.2 Chapter 4: Multiplex PCR Amplification 

 

1.2.1 Cell Culture 

OE21 human Caucasian oesophageal squamous cell carcinoma derived cell line was 

removed from nitrogen storage, thawed, inoculated into RPMI 1640 media with L-

glutamine and NANCO2. This medium was supplemented and incubated at 37°C in a 

5% CO2 enriched atmosphere. Cell cultures were monitored, fed and split as follows: 

 

Table 3 - Media Enrichment for Culture of cell lines 

 Ingredients Volume Function 

1 10% (v/v) Foetal calf serum (FCS) 50 ml Nutritional  

2 Penicillin (5units/ml)/streptomycin (0.005mg/ml) 500 µl Antibacterial 

3 Amphotericin B (2.50 units/ml) 500 µl Antifungal 

4 Glutamine 1 ml Nutritional 

 

Note good cell culture practices were followed throughout these procedures to 

minimise contamination. 

 

Media inoculation 

1. Media containing 10% FCS was warmed to 37
O
C and a water bath to 70

O
C.  

2. A stock vial of OE21 was removed from nitrogen storage and swirled gently 

in the water-bath until the contents had thawed. 

3. The contents of the vial was extracted and placed in a 15ml centrifuge tube. 

4. 1 drop of media was added using a plastic Pasteur pipett and the mixture 

swirled. This was done over the course of 15 minutes until a volume of 



 18 

approximately 5ml was reached. A further 5mls was then added over the 

course of 1 minute. 

5. The mixture was centrifuged at 4
O
C, 100g (1300rpm) for 5 mins. 

6. Supernatant was decanted and the pellet was resuspended in 1ml of media. 

7. The contents of the centrifuge tube were added to a T25 flask and a further 

6mls of media added. 

8. The flask was swirled gently to ensure an even distribution of cells and placed 

in a 37
O
C incubator. 

9. The contents of the T25 flasks were checked the next day to ensure that cells 

have grown in a thin film across the bottom of the flask. 

 

Feeding cell cultures 

Once established – cultures were checked daily and the media replaced every two 

days. Media should appear light pink in colour, turning slightly yellow when cells 

require feeding. Media should always be clear as turbidity is an indication of 

infection, contamination or non-adherence of cells. 

1. Stock media was warmed to 37
O
C, and a waste beaker prepared in accordance 

with disinfection protocols 

2. T25 flasks (maximum of two at a time) were removed from the incubator and 

media decanted into the waste beaker. 

3. 5ml of warmed media (37
O
C) was added to each flask, these were gently 

swirled before reincubation. 
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Splitting cell cultures 

Cell cultures were checked daily, to ensure they were growing adequately and 

adhering to the flask surface. Percentage coverage was also assessed and split once a 

confluence state of 75-80% coverage had been reached. Cells were split using the 

trypsin/EDTA detachment method as follows: 

1. Trypsin/EDTA (10x) was thawed and warm sterile PBS and media warmed to 

37
O
C. 1x trypsin/EDTA was prepared by adding 1ml of trypsin concentrate to 

9mls of PBS. 

2. Media was decanted from flasks and residual media rinsed using sterile PBS. 

3. 1x trypsin solution (5ml for a T25 flask) was added and flasks placed in a 

37
O
C incubator for 1 minute. 

4. Flasks were removed and tapped vigoursly and checked using a microscope to 

determine if the cells were becoming detached. 

5. 1 minute incubation followed by tapping and checking was repeated until all 

the cells were in suspension. 

6. Once cells had become detached the suspension was removed and added to the 

centrifuge tube containing 5ml of media (which acts to neutralise the trypsin) 

and centrifuged at 4
O
C, 100g (1300rpm) for 5 mins. 

7. Supernatant was decanted and pelletts resuspended in 5mls of media.  

8. Each T25 was split into two T75’s and 1ml of cell suspension added followed 

by 9ml of media. 

9. The solution was gently swirled to ensure adequate dispersion of cells and 

flasks incubated as before.  

 

 



 20 

1.2.2 DNA Quantification and Qualification 

 

All singleplex amplifications were carried out using OE21 cell line template. 

DNA was extracted using the Qiagen QIAamp DNA Mini Kit according to the 

manufacturers instructions. Resultant DNA yield and purity was tested using the 

spectrophotometric molar extinction coefficients absorption method first described by 

Warburg and Christian using the following equation: 

o Quantitation (µg/ml): (A260)(dilution factor)(50 ngDNA/µl) 

Where 1 spectrophotomic unit equals 50 ng/µl of double stranded DNA at OD = 

260nm  

 

Nucleic acid degradation and PCR inhibition can result from insufficient purification 

of DNA. Deposition of cellular contaminants including proteins, polysaccharides and 

salts (DNase, RNase, heparin, bile salts) can have debilitating effects on downstream 

applications, it is therefore essential to test for potential contamination and perform 

further purification if required (Holodniy et al. 676-79). Protein contamination is a 

good indication of overall sample purity and was used to assess purity of the sample.  

 

Protein peptide bonds absorb maximally at A228, while polypeptides containing 

multiple aromatic residues absorb maximally at A280. Measurement at both 

wavelengths provides a more broad ranging assessment of sample purity.  

• Purity (score):  A260/A228  

 A260/A280  

 

Samples displaying scores of >2 for A260/A228 and between 1.7 and 1.9 for 

A260/A280 were used for subsequent experiments. 
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All spectrophotometric measurements were carried out using Eppendorf 

BioPhotometer (Eppendorf UK Limited, Cambridge, UK) and Hellma Quartz 10mm 

(Hellma UK LTD, Essex, UK) cuvettes. to ensure accurate spectrophotomic readings; 

all used dilutions provided OD readings between 0.1 and 1.0. Ten readings were 

performed for both absorbance wavelengths (A260 and A280) and all were carried out  

in duplicate. 

 

1.2.3 Agarose Gel electrophoresis 

The results of the PCR reaction were prepared, separated by size using agarose gel 

electrophoresis Sub-Cell® GT kit (Bio-Rad Laboratories, Inc., Hertfordshire, UK) 

and visualised using ethidium bromide /UV illumination Syngene Gene Genius 

Bioimaging System (Synoptics Ltd, Cambridge, UK) 

1. 1.2µl of X6 Blue / Orange loading dye was gently mixed with 2µl of 100bp 

ladder for size standard preparation and 5µl aliquot from each completed PCR 

reaction tube for sample preparation.  

2. 2% (w/v) agarose gel was made as follows: 1g of agarose powder was added 

to 50ml of 1xTAE buffer (see Appendix H for TAE preparation protocol). 

3. This was heated till it boiled and allow cool to a temperature of just below 

70
o
C  

4. The molten gel was poured into the gel tray and the comb placed into position. 

This was allowed to set for 20 minutes on a flat surface. 

5. The comb was removed and the mould (containing the gel) was placed into the 

electrophoresis tank. Note – Care was taken to position the gel so that sample 
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wells were closest to the negative charge as DNA is itself negatively charged 

and therefore will run to the positive through the gel. 

6. 1XTAE buffer was poured into the tank until the gel was fully covered by 

buffer.  

7. Pre-prepared samples and size standards were loaded into their respective 

wells. 

8. The tank was connected to a power source and ran at 100 Volts for 45 minutes 

for the small 50ml gels (or for 2 hrs 30 mins for larger 100ml gels).   

9. Each gel was placed in 0.5 µg/ml of ethidium bromide solution for 30 minutes.  

10. UV illumination of processed / stained gels allowed size standard and products 

to be visualised. 

11. Bands were sized by comparison to 100bp size standard (100–1,500bp) 
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Sample number  

 

 

 
Figure 1: Singleplex Primer Pair Amplification using the Qiagen Multiplex PCR kit. All pairs were amplified singly using uniform reaction conditions as specified. 

Target specific amplification may be observed for all pairs bar IGF1_9, IGF1_10 and BP3_14 sample numbers 16, 17 and 27 respectively. All primer pair 

Identifiers and corresponding sample numbers are detailed in table 11 and lanes containing ladder labelled “L”.

 Sample number: 

L   1       2     3    4    5    6    7    8     9   10   L    11    12    13     14    15    16     17     18    19    20    21     22    23        L    24    25    26   27 
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Table 11: Singleplex Primer Pair Amplification using the Qiagen Multiplex PCR kit. Sample 

numbers and corresponding primer pair identifiers relating to figure 1 are displayed. 

Sample number  Primer Pair Identifier 

1 BP3_12 

2 BP3_10/11 

3 BP3_9 

4 BP3_7 

5 BP3_1 

6 BP1_2 

7 IGF1_12 

8 IGF1_7 

9 IGF1_5 

10 IGF1_3 

11 IGF1_1 

12 IGF1_2 

13 IGF1_4 

14 IGF1_6 

15 IGF1_8 

16 IGF1_9 

17 IGF1_10 

18 IGF1_11 

19 IGF1_13 

20 BP1_1 

21 BP1_3/4 

22 BP1_5 

23 BP3_3 

24 BP3_4 

25 BP3_6 

26 BP3_13 

27 BP3_14 
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Figure 2: Multiplex PCR amplification of four 5-plexes using MetaPhor agarose gel 

electrophoresis. Multiplex PCR amplification appears to have been relatively successful with 

clear resolution of amplicons ≥16bp (5B-plex BP3_7 and BP3_10/11; 152 and 168bp respectively).  

 

 

 

Ladder   5A-plex,  5B-plex,  5C-plex,  5D-plex 
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Figure 3: Separation of four 5-multiplex PCR products using higher resolution MetaPhor gel 

protocol. Use of longer separation times with increased MetaPhor gel and buffer concentrations 

resulted in increased resolution; allowing 12bp resolution of IGF1_3 and IGF1_7 amplicon bands 

(243 and 231bp respectively, 5A-plex). However band sharpness and sensitivity was significantly 

diminished especially for lower molecular weight amplicons.  

 

 

 

 

 

  Ladder   5A-plex, 5B-plex, 5C-plex, 5D-plex 
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Table 12: 5-plex primer pair and target description. Multiplex Identifier, constituent primer pair 

identifier and amplicon sizes for 5A-plex, 5B-plex, 5C-plex and 5D-plex, corresponding to 

MetaPhor gels figures 3 and 4 are detailed.  

Multiplex 

Identifier 

Primer Pair ID Amplicon size (bp) 

IGF1_12 500 

IGF1_3 248 

IGF1_7 234 

BP1_2 205 

5A-plex 

IGF1_5 155  

BP3_1 250 

BP3_12 205 

BP3_10/11 168 

BP3_7 152 

5B-plex 

IGF1_8 72 

IGF1_4 281 

IGF1_2 243 

IGF1_1 231 

IGF1_6 174 

5C-plex 

BP3_9 121 

IGF1_11 248 

IGF1_13 250 

BP1_1 138 

BP1_3/4 156 

5D-plex 

BP1_5 168 
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Table 13: 14-plex amplicon size determination; in silico predicted amplicon size and Experion 

derived size approximations are displayed along with deviation (bp) between the two. 

No. Primer Pair 

Identifier 

Predicted 

Amplicon 

size (bp) 

Experimental 

amplicon size 

approximation (bp) 

Deviation between 

predicted and 

experimental amplicon 

size approximation (bp) 

1 IGF1_8 72 84 6 

2 BP3_9 121 128 7 

3 BP1_1  138 141 3 

4 BP3_7 152 158 6 

5 BP1_3/4 156 165 10 

6 BP3_10/11 168 175 7 

7 BP3_3  176 188 12 

8 BP1_2 205 215 10 

9 BP3_6 218 219 1 

10 IGF1_1 231 236 5 

11 IGF1_13 250 249 1 

12 BP3_4 273 270 3 

13 IGF1_4 281 278 3 

14 IGF1_12 500 500 0 

 

 
Table 14: 6-plex amplicon size determination; in silico predicted amplicon size and Experion 

derived size approximations are displayed along with deviation (bp) between the two. 

No. Primer Pair 

Identifier 

Predicted 

Amplicon size 

(bp) 

Experimental 

amplicon size 

approximation (bp) 

Deviation between 

predicted and 

experimental amplicon 

size approximation 

(bp) 

1 BP3_13 154 164 10 

2 BP1_5 168 177 9 

3 IGF1_5  175 188 13 

4 BP3_12 205 216 11 

5 IGF1_7 234 243 9 

6 IGF1_3 248 257 9 

 

 



 29 

 

 

 

 

 

 

Table 15: 5-plx amplicon size determination; in silico predicted amplicon size and Experion 

derived size approximations are displayed along with deviation (bp) between the two. 

No. Primer Pair 

Identifier 

Predicted 

Amplicon 

size (bp) 

Experimental 

amplicon size 

approximation (bp) 

Deviation between 

predicted and 

experimental 

amplicon size 

approximation (bp) 

1 BP1_3/4 156 166 10 

2 BP3_10/11 168 177 9 

3 IGF1_6 174 191 17 

4 IGF1_2 243 253 10 

5 BP3_1 250 261 11 

 

 
Table 16: 2-plex amplicon size determination; in silico predicted amplicon size and Experion 

derived size approximations are displayed along with deviation (bp) between the two. 

No. Primer Pair 

Identifier 

Predicted 

Amplicon 

size (bp) 

Experimental 

amplicon size 

approximation (bp) 

Deviation between 

predicted and 

experimental 

amplicon size 

approximation (bp) 

1 IGF1_9 141 147 6 

2 IGF1_11 248 260 12 

 

 

 



 30 

 

Table 17: 14-plex primer pair yield (ng/µl) 

No. Primer Pair Identifier Amplicon Concentration (ng/µl) 

1 IGF1_8 8.24 

2 BP3_9 6.58 

3 BP1_1  6.16 

4 BP3_7 5.04 

5 BP1_3/4 6.54 

6 BP3_10/11 4.62 

7 BP3_3  5.1 

8 BP1_2 7.46 

9 BP3_6 6.4 

10 IGF1_1 6.5 

11 IGF1_13 4.36 

12 BP3_4 5.28 

13 IGF1_4 6.1 

14 IGF1_12 6.64 
 

Table 18: 6-plex primer pair yield (ng/µl) 

No. Primer Pair Identifier Mean Amplicon Concentration (ng/µl) 

1 BP3_13 9.13 

2 BP1_5 12.08 

3 IGF1_5  11.08 

4 BP3_12 12.45 

5 IGF1_7 7.26 

6 IGF1_3 8.42 

 

Table 19: 5-plex primer pair yield (ng/µl) 

No. Primer Pair Identifier Mean Amplicon Concentration (ng/µl) 

1 BP1_3/4 11.31 

2 BP3_10/11 11.46 

3 IGF1_6 8.99 

4 IGF1_2 8.82 

5 BP3_1 12.31 

 
Table 20: 2 -plex primer pair yield (ng/µl) 

No. Primer Pair Identifier Mean Amplicon Concentration (ng/µl) 

1 IGF1_9 12.4 

2 IGF1_11 10.48 
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Figure 4: IGF1_1 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C)  

 
Figure 5: IGF1_2 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

  
Figure 6: IGF1_3 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 
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Figure 7: IGF1_4 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

  
Figure 8:IGF1_5 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

 
Figure 9: IGF1_6 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 
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Figure 10: IGF1_7 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

 
Figure 11: IGF1_8 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

 
Figure 12: IGF1_9 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 
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Figure 13: IGF1_10 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

 
Figure 14: IGF1_11 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

 
Figure 15: IGF1_12 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 
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Figure 16: IGF1_13 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

 
Figure 17: BP1_1 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

 
Figure 18: BP1_2 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 
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Figure 19: BP1_3/4 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

 
Figure 20: BP1_5 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

 
Figure 21: BP3_1 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 
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Figure 22: BP3_3 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

 
Figure 23: BP3_4 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

 
Figure 24: BP3_6 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 
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Figure 25: BP3_7 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

   
Figure 26: BP3_9 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

 
Figure 27: BP3_10/11 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 
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Figure 28: BP3_12 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

 
Figure 29: BP3_13 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C) 

  
Figure 30: BP3_14 RT-PCR Amplification Curve, Melt Peak and Relative Yield for all Test TAs ( 59.9-68.8°C)
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Figure 31: IGF1_1, IGF1_2 and IGF1_3 RT-PCR Standard Curves for Template (6x10
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Figure 32: IGF1_4 IGF1_5 and IGF1_6 RT-PCR Standard Curves for Template (6x10
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fMoles) 
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Figure 33: IGF1_7 IGF1_8 and IGF1_9 RT-PCR Standard Curves for Template (6x10
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Figure 34: IGF1_10, IGF1_11 and IGF1_12 RT-PCR Standard Curves for Template (6x10
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 fMoles) 
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Figure 35: IGF1_13, BP1_1 and BP1_2 RT-PCR Standard Curves for Template (6x10
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Figure 36: BP1_3/4, BP1_5 and BP3_1 RT-PCR Standard Curves for Template (6x10

1
 – 6x10

-3
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Figure 37: BP3_3, BP3_4 and BP3_6 RT-PCR Standard Curves for Template (6x10
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Figure 38: BP3_7, BP3_9 and BP3_10/11 RT-PCR Standard Curves for Template (6x10
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fMoles) 
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Figure 39: BP3_12, BP3_13 and BP3_14 RT-PCR Standard Curves for Template (6x10
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