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Abstract 

 
Following the industrial revolution and advances in chemical science, the 
pollution of the environment with trace organic pollutants has been steadily 
increasing, which is of concern, due to their effect on the environmental and 
human health. Tighter legislation that has been introduced in order to minimise 
the release of harmful pollutants has led to the initiation of monitoring 
programmes. For example, drinking water suppliers are obliged to 
systematically monitor drinking water supplied for human consumption for a 
large range of pollutants. The same applies for waste water treatment facilities. 
The well-established standard methods of environmental waters analysis 
require sampling and transportation of samples to the laboratory for detailed 
measurements. Therefore, the timescale from sampling to reporting is not ideal, 
as a considerable lag occurs.  
 
There is therefore the potential for the use of in situ methods that overcome this 
issue. As these do not currently exist, a need to address this is identified.  
 
Biosensors are sensing devices that rely on a biologically-derived component 
as an integral part of their detection mechanism. Biosensors that respond to 
pollutants could be used for rapid, low cost, field-based pre-screening of water 
samples.  
 
Herbicides are considered to be the most important class of pesticides used in 
the E.U. Herbicides can be highly toxic for human and animal health, and 
increase in the application of herbicides in agriculture during recent decades 
has resulted in immense pollution of both soil and water. About half of the 
herbicides used at present in agriculture inhibit the light reactions in 
photosynthesis, mostly by targeting the Photosystem II (PSII) complex.  
 
A method of detecting certain classes of herbicides is therefore proposed; the 
photosynthesis-inhibiting herbicides act by binding to PS II, a chlorophyll–
protein complex which plays a vital role in photosynthesis, located in the 
thylakoid membrane of algae, cyanobacteria and higher plants. The inhibition of 
PS II causes a reduced photoinduced production of hydrogen peroxide, which 
can be measured by the HRP-mediated luminol chemiluminescence reaction. 
The design and development of a fluidic sensor unit for the detection of such 
herbicides, based upon their inhibition of the hydrogen peroxide production, will 
employ the use of superparamagnetic beads in order to address issues of reuse 
and regenerability.  
 
The illumination-dependent production of hydrogen peroxide by isolated 
thylakoids, and its inhibition by herbicides in a concentration-dependent 
manner, were achieved and measured with the HRP-mediated 
chemiluminescence reaction with luminol in a cuvette, batch format, allowing for 
the detection of herbicides down to 6.0 x 10-09. 
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The integration of the above reactions has been achieved by designing and 
constructing a fluidic unit that combines the herbicide-dependent production and 
the detection of hydrogen peroxide in a single fluidic assay by combining all the 
individual steps in a compact, portable format, with both HRP and thylakoids 
covalently coupled on superparamagnetic beads. This addresses issues of 
regenerability, as the beads are introduced, used and discarded following a 
measurement, controlled only by magnetic and flow forces. Herbicide detection 
was achieved to a lower LOD of 5.5 x 10-10 M. The concept development, 
design and construction of the fluidic unit, as well as results of the detection of 
herbicides with the batch assay method has been published, in a paper by the 
author (Talanta, 2008, vol. 77, no. 1, pp. 42-47), 
 
 
Considerable progress has therefore been made towards developing a system 
that would be suitable for automated, field deployment applications for the 
detection of the most frequently used classes of herbicides; the lower LOD 
however is not within the stringent legislated maximum permissible limits set for 
herbicides measured in water, in European waters.  
 
An immediate step forward would be to achieve the required lower LOD, with 
the unit's development into a prototype instrument that can be field deployed 
being the further goal. 
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" …when she was a little startled by seeing the Cheshire Cat sitting on a bough 
of a tree a few yards off.  
 
The Cat only grinned when it saw Alice. It looked good-natured, she thought: still it had 
very long claws and a great many teeth, so she felt that it ought to be treated with 
respect.  
 
'Cheshire Puss,' she began, rather timidly, as she did not at all know whether it would 
like the name: however, it only grinned a little wider. 'Come, it's pleased so far,' thought 
Alice, and she went on.  
 
'Would you tell me, please, which way I ought to go from here?'  
 
'That depends a good deal on where you want to get to,' said the Cat.  
 
'I don't much care where--' said Alice.  
 
'Then it doesn't matter which way you go,' said the Cat.  
 
'--so long as I get somewhere,' Alice added as an explanation.  
 
'Oh, you're sure to do that,' said the Cat, 'if you only walk long enough.'  
 
Alice felt that this could not be denied. " 
 
 
 
 
Alice's Adventures in Wonderland (Lewis Carroll, 1865, www.gutenberg.org) 
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Chapter 1: Introduction 

Chapter 1. a 

1.1 Expanded background of the purpose of the work 

1.1.1 Environmental pollution by herbicides   

The increasing pollution of the natural and built environment with pesticides, 

endocrine disrupting chemicals and other organic pollutants, and accumulation 

thereof, is of concern, due to their effect on the environmental and human 

health.  

 

Langford 1 defines biological impacts of synthetic substances as: 

• lethal effects (direct mortalities); 

• controlling effects (on growth, reproduction etc); 

• directive effects (behavioural responses); 

• indirect effects (through effects on other biota or chemistry). 

The effects of synthetic substances on organisms are generally toxic in that 

they interfere with one or more essential processes, resulting in effects ranging 

from death of the organism (lethal) to changes in sub-cellular structures (sub-

lethal). Non-synthetic (naturally occurring) substances can also be present at 

concentrations that are toxic to organisms (e.g. heavy metals) 2. 

 

The concepts of hazard and risk are widely used in the identification of 

substances of concern. The hazard associated with a substance is its potential 

to cause harm and is assessed by collecting data on its properties, such as 

physico-chemical characteristics, mobility and persistence in environmental 

media, bioaccumulation and acute and chronic toxicity. Risk is the probability 

that harm will be caused and requires information on likely environmental 

concentrations of the substance, derived from known rates of release and 

dilution factors in the environment. Reliable information on known release rates 

of many substances is extremely difficult to find and consequently risk 
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assessments for chemicals already in the environment are not commonly done. 

Substances on priority lists have been identified primarily in terms of 

characteristics associated with hazard (persistence, bioaccumulation and 

toxicity) 2. 

 

Many thousands of chemicals are released into the environment as a result of 

human activities. For example, the European Inventory of Existing Commercial 

Chemical Substances (EINECS) 3 contains more than 100,000 chemicals and 

many of these are likely to be released into the environment to some extent. 

However, only 61 synthetic substances, or groups of substances, have been 

identified on priority lists for control 2. 

 

Pesticides introduced in practice since 1945, have spread worldwide as the 

most significant form of pest control. Their availability on the commercial market 

reaches a point of thousands of different compounds. Pesticides are chemicals 

specifically developed and produced for use in the control of agricultural and 

public health pests, to increase production of food and other products, and to 

facilitate modern agricultural methods. Antibiotics to control microorganisms are 

not included. They are usually classified according to the type of pest 

(fungicides, algicides, herbicides, insecticides, nematicides, and molluscicides) 

they are used to control. When the word pesticide is used without modification, 

it implies a material synthesised by humans 4.  

 

Agriculture is the largest user of freshwater resources, using a global average of 

70% of all the surface water supplies. Except for the water lost through 

evaporation and transpiration, the water used in agricultural practices is 

recycled back to the surface water or groundwater. Agriculture is therefore the 

main cause of water pollution 5. 

 

Herbicides are considered to be one of the most important classes of pesticides 

used in the European Union 5. The application of herbicides in agriculture has 

increased appreciably during the past few decades, resulting in the massive 
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pollution of water and soil. About one half of the herbicides used at present in 

agriculture work by inhibiting the light reactions in photosynthesis, mostly by 

targeting the Photosystem II (PSII) complex 6. Worldwide, thousands of tons of 

photosynthesis-inhibiting herbicides are applied annually. As early as the 

1950s, selection for the most effective herbicides took advantage of the fact that 

some herbicides can inhibit the Hill reaction in isolated chloroplasts 7. The D1 

protein of the PSII reaction centre is the main target of herbicides that inhibit 

photosynthesis. Photosynthesis-inhibiting herbicides fall into three main groups: 

phenylureas, triazines and phenols, depending on their chemical structure and 

binding properties 8. These compounds are usually absorbed through the roots 

and then transferred via the xylem to the leaves, although some are directly 

absorbed by the leaves. These chemicals are quite stable in the soil and are 

adsorbed by colloids and organic substances on the basis of their ability to 

exchange cations. Since these herbicides can be highly toxic to humans and 

animals, their indiscriminate use has serious environmental implications. 

Consequently, the use of dinoseb was prohibited in the US and in most other 

countries because of its high toxicity. Atrazine, a possible human carcinogen, 

has also been banned. The triazine herbicides are among the most commonly 

detected herbicides in water 9 and are the most persistent. They are transported 

through pore and ground waters to surface and coastal sea waters 10. 

 

1.1.2 Environmental pollution monitoring: legal fra meworks, standard 

methods, alternative routes 

Key E.U. legislation on water quality includes: 

• Water Framework Directive (1997), 

• Directive on Integrated Pollution Prevention and Control (1996), 

• Nitrates Directive (1991), 

• Urban Waste Water Treatment Directive (1991), 

• Shellfish Waters Directive (1979), 

• Dangerous Substances Directive (1976), 

• Bathing Waters Directive, 

• Drinking Water Directive. 
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The European Drinking Water Act (1980) does not allow concentrations of 

herbicides in drinking water to exceed 0.1 µg/l (0.1 ppb) of any individual 

herbicide and 0.5 µg/l of total herbicides 6. Thus, in order to meet drinking water 

standards, concentrations around 0.5 ppb must be readily detectable. 

Previously, poor evidence on pesticide contamination of waters was 

documented but with the adoption of the Drinking Water Directive, the drinking 

water suppliers were obliged to monitor systematically drinking water supplied 

for human consumption for a large range of pollutants 5.  

 

Therefore, additional, tighter environmental legislation that was introduced in 

order to minimise the release of harmful pollutants either having immediate or 

long-term effects, led to the initiation of monitoring programmes. 

 

During 1997 a total number of 1419 sites were monitored for pesticides by the 

Environment Agency in England and Wales. Considering the 163 individual 

pesticides analysed in surface water, 58% were detected above 0.1 µg/l on at 

least one occasion in 1997, while 22% were detected below the 0.1 µg/l level 

and 20% were never detected. Isoproturon, mecoprop, diuron, atrazine and 

MCPA exceeded the maximum permissible concentration level most frequently 
5. 

 

The standard methods of environmental waters analysis require sampling and 

transportation of samples to the laboratory for detailed measurements. In this 

case, skilled personnel are required to perform the sample pre treatment and 

the rest of the analysis using sophisticated and expensive equipment and 

consumables. The results from a laboratory analysis are very accurate and 

provide desirable lower detection limits, in accordance with the legislated limits. 

 

One area where water is routinely monitored for pollutants is in wastewater 

plants, in order to monitor the effectiveness of the treatment processes. 

According to U.K. Water Act 2003, wastewater dischargers require permits and 

according to these permits the limits are set on the amounts of specific 
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pollutants which can be discharged, as well as a schedule for monitoring and 

reporting the results. Only standard analytical procedures are allowed to be 

used providing assurance to government agencies that the results from different 

laboratories are comparable and well reproduced. Generally, in order to collect 

the water samples it is necessary first to assess the site where collection is to 

be undertaken and set a limit of samples that would give sufficient results. Once 

representative samples are gathered, the next step is the extraction of the 

analyte from the bulk solution, since most of the analytical methods require the 

analyte to be in the liquid phase. Some measurements even require separating 

the analyte from the water entirely.  

 

Although the traditional laboratory methods are both standard and reliable, 

permitting the determination of several kinds of herbicides simultaneously with 

high sensitivity, they are time consuming, require expensive equipment, large 

amounts of organic solvents and the purification of samples prior to assay, thus 

limiting the number of samples that can be analysed 8; 11. Full chemical 

characterisation on all waters is not economically practical 12. Very importantly, 

they are not mobile. 

 

A solution would be to have analytical devices that are mobile, i.e. the 

instrumentation and reagents etc can be transferred easily to the sample, rather 

than the other way. This would allow for the near-real-time analysis of water 

samples that would otherwise take days to be analysed. This would be a very 

important advantage for the related water industries, allowing for appropriate 

measures to be put in place to rectify / reduce / stabilise the problem sooner. 

Should the specificity of such field-deployed methods not be as good as that of 

the standard methods, they could then be used as screening tools, allowing for 

the selection of water samples to be then further analysed and characterised to 

be more targeted. They could also be automated, to therefore allow for their 

'permanent' (subject to other restriction) deployment in the environment, without 

the need for an individual to perform the analysis themselves.  
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The work presented here is therefore attempting to provide new scientific 

knowledge that will progress the research and development of such field-

deployable analytical devices. 

 

1.2 Aims and Objectives 

1.2.1 Aims 

• The development of a bioassay platform for the detection of trace organic 

pollutants in water samples, that can be deployed/used in the field, in order 

to also meet the commercial / regulatory requirements. 

• This will be demonstrated by detecting photosynthesis-inhibiting herbicides 

by measuring their effect on photosynthetic material derived from plant cells. 

• The bioassay will be field-deployable and will be addressing issues of reuse 

and regenerability in a remote working environment. 

 

1.2.2 Objectives 

• To demonstrate, given the uncertainty in the literature, the production and 

chemiluminescence detection of H2O2 from illuminated photosynthetic plant 

material. 

• To demonstrate the concentration-dependent inhibition of production of H2O2 

from illuminated photosynthetic plant material, by photosynthesis-inhibiting 

herbicides. 

• To develop a fluidic unit that can be reused and regenerated by employing 

the use of magnetic beads to act as the immobilisation support for the bio-

recognition elements of the bioassay, allowing for the repeated introduction, 

use and discardation  of the bio-recognition elements. 

• To specifically demonstrate a fluidic assay using the principle of the 

magnetic bead immobilisation, by immobilising HRP on beads that will be 

used for detection of H2O2 using the HRP-mediated luminol 

chemiluminescence reaction with H2O2. 



 7 

• To transfer the herbicide detection batch assay into the demonstrated fluidic 

format in order to demonstrate a fluidic assay for the detection of herbicides 

that can be reused and regenerated, thus allowing for its subsequent 

development into a field-based system. 

Finally,  

• To perform the work within the objectives of the funding project, "Assembly 

and application of Photosystem II-based biosensors for large scale 

environmental screening of specific herbicides and heavy metals" 13. 

 

1.2.3 Introductory summary on the European project 'Biosensors for 

Effective Environmental Protection' 

The PhD project described in the thesis was part of a European project, titled 

'Assembly and Application of Photosystem II-based Biosensors for Large Scale 

Environmental Screening of Specific Herbicides and Heavy Metals' (short name: 

'Biosensors for Effective Environmental Protection', acronym: BEEP). This was 

part of the Fifth Framework Programme, Project Reference: QLK3-CT-2001-

01629. 

 

Objectives  

The objective of BEEP was the development of biosensors using Photosystem 

II (PSII) isolated from photosynthetic organisms to monitor polluting chemicals. 

This should lead to the set-up of a low cost, easy-to-use apparatus, able to 

reveal specific herbicides and/or heavy metals, and eventually, a wide range of 

organic compounds present in industrial and urban effluents, sewage sludge, 

landfill leak-water, ground water, and irrigation water.  

 

Within the framework of sustainable development, a number of European 

countries will have to make strong efforts during the coming years to meet the 

European directives and standards in the areas of environmental monitoring, 

pollution control, waste management, water and soil quality. This project will 

contribute to this objective by way of a versatile, low-cost technology with a 
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presumably lower environmental impact than many traditional techniques for 

herbicide and heavy metal detection.  

 

A photosystem II based biosensor will avoid costly and often environmentally 

unsound analyses in two ways:  

• biosensors that respond to a range of pollutants can be used for rapid, low 

cost pre-screening of large numbers of samples to determine samples that 

will then undergo more detailed analysis. This should avoid the use of large 

quantities of organic solvents and the need for expensive apparatus to 

extract herbicide compounds, 

• the use of an array of PSII based biosensors that are each highly specific to 

a given class of pollutant in conjunction with sophisticated data elaboration 

will enable the user to generate an identikit of the pollutants present in 

samples. 

 

The project's aims were: 

1) The realisation of sensitive and stable biosensors based on isolated 

Photosystem II for the detection of herbicides and heavy metal. 

2) By screening of a large number of photosynthetic organisms and genetic 

engineering, production of PSII biomediators able to distinguish the various 

subclasses of herbicides and heavy metals. 

3) Realisation of new and sophisticated transduction systems based on printed 

electrodes, chemiluminescence and fluorescence systems that enhance the 

sensitivity and specificity of detected signals. 

4) Development of miniaturised biosensor prototypes and special software to 

monitor the information deriving from the mutated PSII biomediators. 

5) Practical, on-site application of the biosensors in a mobile unit for 

environmental screening under real operational conditions, i.e. leak-water from 

land fills and ground/river waters. 

6) Contribution toward spin offs and commercialisation. 
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The PhD project was part of the Work Programme Three, 'Transduction 

Systems and Sensor Assembly'. This Work Programme encompassed the 

realisation of sophisticated and new transduction systems based on: 

fluorescence, chemiluminescence, amperometric-printed electrodes and 

alternative systems (optical absorbance of chromophore-quinone). 

 

1.3 Structure of the thesis 

Following the introductory chapter, where a review of environmental pollution by 

herbicides is already given, a review of other relevant literature is reported in 

Chapter 2, starting with a review of the knowledge and research on sensor 

technologies. Given the aims and objectives of the work presented, an overview 

of the photosynthetic process is also given, followed by a review of the prior 

research on the detection of photosynthesis-inhibiting herbicides as well as an 

account of the scientific opinion on the production of hydrogen peroxide by 

photosynthetic material. An introduction to chemiluminescence is presented 

next, focusing on the luminol chemiluminescence compound, its uses, the 

involvement of HRP in the catalysis of the reaction, and examples of its use for 

analytical purposes and specifically for the detection of hydrogen peroxide. A 

brief account of the use of superparamagnetic beads in fluidic assays with 

details of examples ends the literature review. 

 

In Chapter 3, the first experimental chapter, the development of a bench-top, 

batch assay for the detection of H2O2 is reported. Given the work to follow in 

Chapter 4, the development of a standard method to detect H2O2, irrespective 

of its source, was an essential first step, as the HRP-mediated 

chemiluminescence reaction of luminol with H2O2 is the main method used to 

detect and quantify the results of the rest of the experiments in the thesis. 

 

In Chapter 4, the unsuccessful attempt to effect the production of H2O2 by 

isolated chloroplasts is followed by a detailed account of the successful 

approach when using isolated thylakoids; this includes varying a number of 
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experimental parameters to optimise the production. This is followed by 

reporting on the work performed to cause a concentration-dependent change of 

the thylakoids' H2O2 production after incubation with herbicides.  

 

In Chapter 5, the design and development of the fluidic unit is presented, 

followed by the development of a fluidic assay for the detection of H2O2 using 

HRP-coated superparamagnetic beads, effectively transferring the batch assay 

from Chapter 3, as the work performed later would be using the H2O2 fluidic 

assay as the detection method. 

 

In Chapter 6, the transfer of the assay for the detection of photosynthesis-

inhibiting herbicides by measuring their effect on the production of H2O2 by 

thylakoids, from batch to fluidic format is presented, using the HRP-coated 

superparamagnetic beads developed earlier as well as thylakoid-coated 

superparamagnetic beads. This is followed by the presentation of work on the 

reuse and stability of the immobilised materials, as well as a report on the 

matrix effect of real water samples.  

 

A general discussion, conclusions and future work ends the main body of the 

thesis. 
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Chapter 2: Literature Review  

 

Chapter 2. a 

2.1 Assays, sensors and biosensors for environmenta l analysis 

2.1.1 Definition of sensor, biosensor and categorie s thereof 

The term sensor has been defined as a device or system that responds to a 

physical or chemical quantity to produce an output that is a measure of that 

quantity 14. Chemical sensors are devices that convert concentrations or 

activities of chemicals into electrical or optical signals related to these quantities 
15. Electrochemical sensors convert the chemical substance being measured 

into an electrical quantity, such as voltage, current, or charge.  

 

Optical sensors have their optical properties changed by the chemical being 

measured or by light of a specific wavelength produced by the chemical 15. 

Optical sensors detect changes in the properties of light in the ultraviolet, visible 

and infrared range, which are caused by an interaction between 

electromagnetic waves and matter. Photonic measurement techniques are 

being used for their superior sensitivity. A number of different measuring 

principles have already been applied. These techniques mainly make use of the 

following optical parameters: absorbance, fluorescence (intensity, decay, 

polarisation, and energy transfer), bio- and chemiluminescence, 

phosphorescence, thermoluminescence, light scattering, evanescence, surface 

plasmon resonance (SPR) 16, refractive index, total internal reflection (TIR), and 

interferometry 17. There are also thermal methods for detecting concentrations 

of substances and major analytical techniques, such as spectroscopy and 

nuclear magnetic resonance that involve complex instrumentation systems. 

 

Biosensors can be considered as a subgroup of chemical sensors in which a 

biologically-based mechanism is used for analyte detection 18. Pietro 19 defines 
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biosensors as “any discrete sensing device that relies on a biologically derived 

component as an integral part of its detection mechanism,” although sensors 

that are used to monitor biological conditions are usually also included. 

According to the literature 14, a biosensor comprises of two distinct elements: a 

biological recognition element (e.g. enzymes, whole cells, microorganisms, 

such as bacteria, fungi, eukaryotic cells, and yeast, cells’ organelles, plant or 

animal tissue, antibodies and receptors 20) and, in close contact, a signal 

transduction element (e.g. optical, acoustic and electrochemical) connected to a 

data acquisition and processing system. Thus, the signal from the biological 

element is converted to a quantifiable signal. Therefore, biosensor technologies 

include biochemical sensors, enzymatic sensors, cellular sensors, sensors for 

redox reactions, antigen/antibody interactions, and other materials that provide 

recognition surfaces 21.  

 

Biosensors can be categorised by recognition processes, but they can also be 

classified by the response mechanism used. The activity of the biological 

component for a substrate can be monitored by the oxygen consumption, 

hydrogen peroxide formation, changes in Nicotinamide Adenine Dinucleotide 

(NADH) concentration, fluorescence, absorption, pH change, conductivity, 

temperature, mass or others. Thus, the biosensor can be classified in several 

types according to the transducer: electrochemical (electrodes with 

amperometry, potentiometry, impedimetry), calorimetric (thermistors or heat 

sensitive sensors), optical and mass (piezoelectric or surface acoustic wave 

devices) transducers 22. 

 

2.1.1.1 Microbial biosensors 

Microbial biosensors are used largely to monitor environmental chemical 

contaminants. They are less sensitive to the inhibition by other compounds 

present in the sample, are more tolerant to the pH variations, temperature and 

generally have a longer shelflife 22. In the example of bioluminescent microbial 

sensors, they comprise essentially of three components. These are as follows: 



 13 

1. Viable microbial cells (bacteria or yeasts), which have been genetically 

modified to produce a recombinant organism (e.g. Escherichia coli) that exhibits 

a number of important traits, e.g. a reporter enzyme such as bacterial luciferase 

which is induced in the presence of the target analytes (e.g. pesticides).  

2. The recombinant organisms are either directly immobilised (e.g. to cellulose 

nitrate or acetate membrane) or entrapped within a matrix (e.g. agar gel).  

3. The recombinant microbial strain carries a bacterial luciferase reporter and a 

plasmid expressing enzymes that degrade the target chemicals, and the 

enzyme luciferase is induced in the presence of the contaminant. The luciferase 

activity is readily measured as light output by a luminometer by adding the 

substrate luciferin to the test sample. 

 

2.1.1.2 Enzyme biosensors 

Problems like selectivity and slow response, characteristic of microbial sensors, 

can be overcome by the use of enzymes which represent the most commonly 

used sensing agents, due to their selectivity 20. Basically, all enzyme sensors 

work by immobilisation of the enzyme system onto a transducer. Among the 

enzymes commercially available, the oxidases are used most often. This type of 

enzyme offers the advantages of being stable, and, in some situations, does not 

require coenzymes or cofactors 22.  

 

In an analytical process, enzymes are normally used for specific estimation of 

the corresponding substrates, and, depending on the turnover number of the 

enzyme, provide a significant amplification system for the sensitive detection of 

same substrate. In contaminant analysis, both the catalytic conversion of the 

substrate and the dose-dependent inhibition of an enzymic reaction are 

important determinants of the contaminant concentration 14.  

 

In contaminant analysis, enzyme biosensors have largely been used for 

organophosphorus and carbamate pesticide and herbicide analysis. In the case 

of pesticides, it is largely the inhibition of enzymic activity, in particular 

acetylcholine esterase (AChE) and butyrylcholine esterase (BChE), that is the 
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determinant of pesticide concentrations in samples. However, other enzymes 

have also been used, e.g. tyrosinase and alkaline phosphatase. The analytical 

set-up is normally based on flow injection analysis (FIA). Generally, the 

enzymes are bound by covalent or non-specific interactions to a variety of 

surfaces, which also contain the immobilised substrates in the case of enzyme 

inhibition-based assays. The reaction of the pesticides in samples with the 

immobilised enzymes causes inhibition of enzyme activity, depending on the 

type of pesticide and its concentration. The resultant enzymic product is 

determined by a number of transduction mechanisms, including change in pH, 

temperature, fluorescence and potential, measured by amperometry, thermal 

spectrometry, optical detector and potentiometry, respectively 14. 

 

2.1.1.3 Immunosensors 

An immunosensor is a biosensor that uses antibodies as the biological element 
14. The transduction element in the case of immunosensors reported for the 

detection of chemical and microbial contaminants is largely based on optical, 

electrochemical and piezoelectric signals. They are a direct descendant of 

classical uses of antibodies in traditional immunoassays. Therefore, the majority 

of immunosensors are in essence flow immunoassays. Immunoassays like the 

enzyme-linked immunosorbent assay (ELISA) have several advantages 

compared with conventional analysis methods (e.g. GC or HPLC). These are 

the low costs per sample, the high sample throughput of several hundred 

samples per day, the easy handling and high sensitivity. Especially for aqueous 

samples there is only minimal sample preparation necessary and therefore 

immunoassays are an ideal screening tool, not only in the medical, but also in 

the environmental field. The extended use of immunosensors is mainly 

restricted by the time and money consuming development and the lack of a 

multianalyte capability. Multianalyte detection is achieved by the use of different 

antibodies for different analytes, immobilised on well-defined, distinct areas 23. 
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2.1.2 Immobilisation for biosensors 

Biological transducers can be immobilised on a solid support in a variety of 

ways. Physical and chemical methods for immobilisation of the biological 

component include physical adsorption to surfaces and chemisorption, 

crosslinking, covalent bonding, entrapment within a polymeric gel, 

encapsulation in a semiporous capsule and others as use of solid binding 

matrices 21; 22. 

 

2.1.2.1 Advantages of immobilisation  

The immobilisation matrix may function purely as a support. Immobilisation 

provides several advantages to biosensors. It can improve enzyme stability and 

preserve its biological activity by providing a non-denaturing environment and 

preventing the loss of enzyme to the surrounding fluid; this allows for the device 

to be used multiple times. The polymer matrices used can be designed to 

control the diffusion of the substrate to the enzyme, and conducting polymers 

can transduce redox charges from enzyme active sites to electrode surfaces, 

thus mediating the signal transduction mechanism. Immobilisation is also used 

to protect enzymes from denaturing proteins and helps avoid extreme pH and 

chemical microenvironments for the biomolecule. Enzyme stability and 

maximum activity can be crucial for the performance of biosensors, because 

destabilisation can result in false biosensor readings 21. 

 

2.1.2.2 Immobilisation methods 

The selection of an appropriate immobilisation method depends on the nature of 

the biological element, the type of the transducer used, the physico-chemical 

properties of the analyte and the biosensor's operating conditions. The most 

common methods for immobilisation of biocomponents are adsorption and 

covalent bonding. A comprehensive review of common methods of 

immobilisation of proteins onto surfaces or other molecules has been written by 

Brinkley 24. 
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Physical adsorption of the biocomponent based on van der Waals attractive 

forces is the oldest and simplest immobilisation method. In this case, a solution 

of enzyme, a suspension of cells or a slice of tissue is immobilised by an 

analyte-permeable membrane, as a thin film covering the transducer. The 

adsorption method does not require chemical modification of the biological 

component and it is possible to regenerate the matrix membrane. The 

advantage of this method is its simplicity and the great variety of beds that could 

be used. However, loss of adsorbed biological component is possible if changes 

in pH, ionic strength or temperature occur during use. Entrapping the biological 

component in matrices such as gels, polymers, pastes or inks, considerably 

improves its stability and consequently the biosensor performance; therefore it 

may be essential to use covalent linking 22.  

 

Covalent bonding may be used to achieve the immobilisation of biological 

components to a membrane matrix or directly onto the surface of the 

transducer. These methods are based on the reaction between the same 

terminal functional groups of the protein (not essential for its catalytic activity) 

and reactive groups on the solid surface of the insoluble bed. Functional groups 

available in the enzymes or protein mainly originate from the side chain of the 

amino acid.  

 

2.1.2.3 Materials used for immobilisation 

In immobilisation, polymers are normally used to restrict diffusion or to serve as 

matrices for adsorbing or binding enzymes. A variety of polymers, both 

synthetic and naturally occurring, have been used for chemical linkages to 

enzymes or in gelled forms to control diffusion. Some standard 

microencapsulation techniques that can be used for immobilisation include 

spray drying, rotary atomisation, coextrusion, fluid bed coating, solvent 

evaporation, and emulsion and suspension polymerisation. Synthetic polymers 

used in immobilising enzymes and other biological components include 

polyacrylamides, poly(maleic anhydrides), poly(meth)acrylic acids, acrylates, 

poly(vinyl alcohol), Dacron, Nylon and polystyrenes. Natural materials used in 
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immobilising biological components include agarose, Dextrans, cellulose, glass, 

collagen, alumina, polysaccharides and polypeptides (compiled from ref. 21). 

 

2.1.3 Sensors for environmental monitoring 

2.1.3.1 Traditional detection methods of herbicides  

The most common laboratory-based instrumental methods used to detect 

herbicides have been summarised as UV spectrometry, liquid chromatography, 

more recently including HPLC-mass spectrometry (MS) or gas chromatography 

(GC), capillary electrophoresis or solution-state nuclear magnetic resonance 

spectroscopy (high resolution-magic angle spinning NMR, HR-MAS NMR) 25. 

Common sample preparation methods for instrumental analysis include SPE 

and SFE, but direct sample introduction has also been reported 26. 

 

2.1.3.2 Biosensors for environmental analyses  

It is agreed that the need for detection of toxic chemicals in aquatic and soil 

environments requires the development of rapid, simple, and low-cost toxicity 

screening procedures 27. A review by Patel contains lists of many examples of 

enzyme biosensors for the analysis of pesticides, herbicides or other chemical 

contaminants, as well as examples of microbial biosensors and immunosensors 

reported for chemical contaminants 14. New tools would be helpful in allowing 

the simultaneous detection of various analytes ranging from pesticides and their 

metabolites, to chlorinated solvents and degradation products of detergents. 

These tools should be reliable, fast and cost-effective as it is necessary to 

analyse many samples 28. 

 

Pesticides have attracted the greatest interest for environmental biosensors to 

date. This is because pesticides typically function by means of interacting with a 

specific biochemical target either as a substrate or as inhibitors. With respect to 

environmental monitoring, one of the challenges is that a large number of 

contaminants may be involved, from a variety of related and unrelated chemical 
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classes. This calls for field analytical methods able to measure a number of 

compounds without interference by breakdown products or other hazardous co-

contaminants 18. 

 

As we strive to better understand and manage risks to human health and 

ecosystems, the demands on environmental monitoring are increasing. Stricter 

regulations and a greater public awareness of environmental issues bring 

requirements to monitor an ever-wider range of analytes in air, water and soil, 

and to do so with greater frequency and accuracy. Meanwhile, operators are 

looking to contain the costs of increasingly complex monitoring regimes. In 

response to these issues, environmental analysts have sought improvements in 

laboratory-based analytical methods as well as portable solutions that allow 

sampling and analysis to be undertaken reliably on-site 18. 

 

Immunochemical techniques can be particularly suited for the measurement of 

organic pollutants (for reviews see references herein 11). A good correlation has 

been found between ELISA (enzyme-linked immunosorbent assay) techniques 

and gas chromatography and mass spectrometry (GC, MS) 28. However, the 

typical laboratory-oriented immunoassay format is far from the requirements of 

automated monitoring systems. Time to achieve results is typically in the range 

of at least 1 h, and assays require a manual multi-step procedure. 

 

In recent years, immunosensors have been developed for herbicide detection 
26. In contrast to traditional immunoassays, the concept of immunosensors 

leads to simple immunoanalytical monitoring devices. The general idea is to 

combine antibodies as recognition elements with an appropriate physico-

chemical transducer to achieve an analytical device without the complexity of 

classical immunoassays.  

 

Within the spectrum of immunochemical techniques, flow immunoassay can be 

applied when continuous monitoring and high sample throughput are required, 

also for on-site analysis. Continuous flow systems are easier to automate than 
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formats using microtitre plates and they can lead to very sensitive detection with 

rapid results. Either the antibody or the antigen is immobilised on a solid 

support. Various solid-phase supports are available commercially. The most 

common materials used are inorganic surfaces and organic polymers in the 

form of beads, membranes and coils 29. For example, a flow immunoassay for 

atrazine using solid phase support with fluorescence has been described 28. 

Due to antibodies’ individual specificities, it is difficult to use an immunosensor 

for herbicide monitoring in samples which contain unknown herbicides or 

several different herbicides 8.  

 

Other techniques have been employed for environmental monitoring 30, 

including a non-specific electronic nose sensor array for continuous monitoring 

of water and wastewater quantities of organic pollutants 31; 32. An optical 

portable sensor for ammonia has also been developed 33, where a colour 

change of a dye, in a concentration-dependent manner, which is detected 

spectrophotometrically. 

 

2.1.4 Ideal characteristics and future improvements  of biosensors 

The ideal characteristics of a sensor include: 

• No hysteresis; the sensor signal should return to baseline after responding 

to the analyte. 

• Signal output should be proportional or bear a simple mathematical 

relationship to the amount of the analyte in the sample; this is becoming less 

important because of on-device electronics and integration of complex signal 

processing options. 

• Fast response times; slow response times arising from multiple sensing 

membranes or sluggish exchange kinetics can seriously limit the range of 

possible application and prevent use in real-time monitoring situations. 

• Good signal-to-noise(S/N) characteristics; the S/N ratio determines the limit 

of detection; can be improved by using the sensor in flow analysis rather 

than for steady-state measurements. 
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• Selectivity; without adequate selectivity, the user can not confidently relate 

the signal obtained to the target species concentration. 

• Sensitivity; sensitivity is defined as the change in signal per unit change in 

concentration (i.e., the slope of the calibration curve); this determines the 

ability of the device to discriminate accurately and precisely between small 

differences in analyte concentration 21. 

 

The analysis of contaminants concerns a number of organisations, including 

industrial sectors (e.g. agrifood, water and healthcare), regulatory authorities, 

and food control and environmental agencies. Biosensors form important 

analytical tools, and instrumentation and kits are already becoming available for 

use. The major requirements for biosensors are that they are comparable to, or 

better than, the conventional analytical systems in terms of performance (e.g. 

reliability, sensitivity, selectivity, specificity and robustness). However, 

biosensors are expected to fulfil other criteria, e.g. they must be able to provide 

results in real time, must be simple to use, portable, cost-effective and rugged.  

 

In general, the current generation of biosensors for contaminant analysis have 

several important limitations, which require addressing if they are to become a 

significant force in the analytical armoury:  

• the sensitivity needs to be improved further;  

• the specificity; close consideration should be given to whether the sensor is 

used for screening purposes or for identification of a specific analyte;  

• the response time and longevity need to be further improved; and  

• independent validation data on performance characteristics in applications 

need to be generated, which could subsequently lead to wider acceptance 

by analysts, in general, and regulatory authorities, in particular 14. 

 

Due to their characteristics, biosensors and related techniques show great 

promise for environmental monitoring applications. Advances in areas such as 

toxicity-, bioavailability-, and multi-pollutant screening could widen the potential 

market and allow for these techniques to become more competitive. 
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Miniaturisation, reversibility and continuous operation may allow biosensor 

techniques to be incorporated as detectors in chromatographic systems. Many 

obstacles still need to be overcome, however, on the road to commercial 

deployment. Some of these are common to all analytical, field-based methods. 

They include: the diversity of compounds and the complexity of matrices in 

environmental samples; the variability in data quality requirements among 

environmental programmes; and the broad range of possible environmental 

monitoring applications 18. 

 

Other hurdles are more specific to biosensor technology. Single analyte 

systems will remain relatively costly to develop, while pre-manufactured 

biorecognition components have limited shelf and operational lifetimes. Added 

to this, is the relative complexity of assay format for many potentially portable 

(but currently laboratory-based) biosensor systems. Key areas for further 

investigation include improving the sensitivity and selectivity of biosensors as 

well as overcoming the inherent instability of biological molecules 18. 

 

2.2 Photosynthetic material - based  detection of o rganic trace 

pollutants 

2.2.1 Photosynthesis 

2.2.1.1 An introduction 

About half of the herbicides used at present in agriculture inhibit the light 

reactions in photosynthesis, mostly by targeting the Photosystem II (PSII) 

complex 6. 

 

Photosynthesis is the process by which green plants and certain other 

organisms use the energy of light to convert carbon dioxide and water into the 

simple sugar glucose. In so doing, photosynthesis provides the basic energy 

source for virtually all organisms. An extremely important byproduct of 

photosynthesis is oxygen, on which most organisms depend. 
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The overall photosynthetic reaction is: 

6CO2 + 12H2O + light energy + photosynthetic pigments -------- >  

C6H12O6 (sugar) + 6O2 + 6H2O 

 

Plant photosynthesis occurs in leaves and green stems within specialised cell 

structures called chloroplasts. One plant leaf is composed of tens of thousands 

of cells, and each cell contains 40 to 50 chloroplasts. The chloroplast, an oval-

shaped structure, is divided by membranes into numerous disk-shaped 

compartments. These disk-like compartments, called thylakoids, are arranged 

vertically in the chloroplast in stacks called grana; the grana lie suspended in a 

fluid known as stroma 34. 

 

Embedded in the membranes of the thylakoids are hundreds of molecules of 

chlorophyll, a light-trapping pigment required for photosynthesis. Additional 

light-trapping pigments, enzymes and other molecules needed for 

photosynthesis are also located within the thylakoid membranes. The pigments 

and enzymes are arranged in two types of units, Photosystem I and 

Photosystem II. Because a chloroplast may have dozens of thylakoids, and 

each thylakoid may contain thousands of photosystems, each chloroplast will 

contain millions of pigment molecules 34. 

 

Photosystem II (PSII) is a multisubunit complex embedded in the thylakoid 

membrane of higher plants, algae and cyanobacteria. It contains a large 

number of cofactors including, chlorophyll, pheophytin, carotenoids, 

plastoquinone, non-heme iron and manganese, which together trap, transfer 

and modulate the utilisation of solar energy, to drive the water splitting reaction 
35.   

 

2.2.1.2 The role of pigments in photosynthesis 

The action spectrum of higher plant photosynthesis includes wavelengths from 

about 350 nm to 700 nm. About 60% of the sunlight incident on the Earth’s 

surface falls within this photosynthetically active range. Two classes of coloured 
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compounds, chlorophylls and carotenoids, are responsible for the absorption of 

light that energises photosynthesis in higher plants. These antenna pigments 

operate exclusively within the thylakoid membrane, where they are bound to 

specialised proteins. Chlorophyll is the dominant pigment and occurs in two 

forms, chlorophyll a and chlorophyll b. Chlorophyll strongly absorbs red and 

blue light, while scattering most of the incident green light. Carotenoids, which 

are present in much lower amounts in the thylakoid membrane than chlorophyll, 

in addition to serving as accessory pigments, they help protect the 

photosynthetic apparatus from photooxidative damage caused by excess light 

energy 36; 37. 

 

2.2.1.3 Oxidative stress in plants  

Oxidative stress is imposed on cells as a result of one of three factors: 1) an 

increase in oxidant generation, 2) a decrease in antioxidant protection, or 3) a 

failure to repair oxidative damage 38. 

 

Various environmental stresses on plants, such as drought, high or low 

temperature, ultraviolet irradiation (UV), and pollutant gases, suppress CO2-

utilising capacity of chloroplasts, leading to an overflow of light energy which 

activates dioxygen. The resulting reactive species of oxygen (1O2, O2¯, H2O2, 

·OH) if not immediately scavenged, oxidise various target molecules to halt 

photosynthesis (photoinhibition) and promote destructive chain reactions to cell 

death 39. 

 

When stress-injured leaves are exposed to high light intensities, this leads to 

production of toxic active oxygen species, including superoxide, hydrogen 

peroxide (H2O2), singlet oxygen and hydroxyl radical. Superoxide is formed by 

oxygen photoreduction by photosystem I in the chloroplast. Superoxide is then 

dismutated to H2O2. The hydroxyl radical can then be formed by the reaction of 

H2O2 with superoxide. Singlet oxygen is formed by energy transfer from excited 

triplet state chlorophyll to oxygen. The chloroplast is particularly susceptible to 

these active oxygen species, whose synthesis is enhanced on exposure to 
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excess excitation energy. These active oxygen species denature proteins, 

damage nucleic acids and cause lipid peroxidation.  

 

The D1 protein of photosystem II is particularly susceptible to reactive 

photoproducts, and its photodamage may be the primary cause of 

photoinhibition in stressed leaves. Damaged D1 proteins must be excised from 

the PS-II reaction centres, and replaced with newly synthesized D1 proteins. 

This repair will be inhibited if protein synthesis is impaired in stressed leaves. 

Cell death results if H2O2 production overwhelms the antioxidative defence 

mechanisms (catalase, ascorbate peroxidase, monodehydroascorbate 

reductase, dehydroascorbate reductase, superoxide dismutase, glutathione 

peroxidase, glutathione reductase and glutathione S-transferase) 40. 

 

2.2.2 Photosynthesis-inhibiting herbicide detection  

The most frequently used biosensing systems for monitoring photosynthesis-

inhibiting herbicides utilise intact cells of algae, cyanobacteria and diatoms to 

measure either changes in photocurrent, inhibition of electron transport with 

artificial mediators, or changes in chlorophyll fluorescence 8. As an example, 

damage to the photosynthetic system is immediately identified by a decrease in 

the fluorescence with a long time constant (delayed fluorescence) and an 

increase in the immediate fluorescence. The effect of environmental pollution 

has been studied in vivo in leaves and trees and the technique has been used 

for herbicide detection 41. 

 

One of the advantages in using PSII-based biosensors is the simplicity of the 

biological transduction, which can be monitored directly without requiring 

additional markers or transducer molecules. Another advantage is its extreme 

susceptibility and selectivity towards the binding of some agents. The sensitivity 

of any PSII-based biosensor is determined by the binding constant of the 

herbicide. The PSII reaction centre was isolated in 1987 and the isolated 

complex was found to maintain its herbicide binding ability 8. 
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During the 1990s there was an increased interest in developing biological 

sensors to detect low levels of herbicides in water and soil using an isolated 

PSII complex or reaction centre. Isolated chloroplasts and thylakoids have been 

widely used in biosensors for herbicide detection. Such biosensors test either 

the inhibition of the Hill reaction 42, the inhibition of DCPIP photoreduction 43, or 

changes in chlorophyll fluorescence 44. Hall and co-workers developed an 

elegant technique to generate photocurrent using isolated PSII particles 

immobilised on TiO2 electrodes in the presence of a quinone as an electron 

acceptor 45. They found that this reaction is inhibited by the addition of diuron. In 

principle, they utilise an electrochemical biosensor based on PSII particles for 

herbicide detection.  

 

The practical applications of herbicide biosensors based on PSII preparations 

were earlier limited by their instability, particularly upon illumination. Significant 

stabilisation of photochemical activity was achieved by the entrapment of cells 

or PSII-containing subcellular components, e.g. chloroplasts and thylakoids, on 

either an albumin–glutaraldehyde crosslinked matrix 46; 47 or polyvinylalcohol 

bearing styrylpyridinium groups 42. Techniques for immobilisation range from the 

entrapment of whole cells or isolated membranes or pigment–protein 

complexes in an agarose, alginate or gelatine matrix, to crosslinking in a 

glutaraldehyde serum –albumin matrix.  

 

Recently, mutants and adaptable strains of the cyanobacterium Synechocystis 

sp. PCC6803 have been used in phytotoxicity tests. This approach has been 

used primarily to study photosynthesis, for example to introduce tolerance 

(alternative sensitivity) to a variety of stress conditions. Many studies have been 

successful in verifying the effect of single amino acid modifications on herbicide 

binding affinity 8. High affinity binding to the D1 protein is a useful property for 

the detection of herbicides. Recently, a fluorescence biosensor based on 

isolated thylakoids from mutants resistant to various herbicide classes was 

developed 48. This technology made it possible to distinguish between 

subclasses of herbicides (e.g. triazines from urea and phenolic type herbicides).  
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The reaction centres of photosynthetic microorganisms have also been shown 

to bind herbicides and could potentially be used for the detection of herbicides 

as part of sensing devices. Recently, isolated D1 protein has been embedded 

on a working electrode for the potentiometric monitoring of the specific 

interaction between a protein and an herbicide 26. Biorecognition systems based 

on the binding of herbicides to the reaction centre of plants and microorganisms 

seem to be the most direct method for herbicide detection. However, their 

stability and sensitivity still needs to be improved. The ELISA approach has 

been combined with the application of the herbicide-binding D1 protein, allowing 

mass screening of the herbicide-containing samples 26. The herbicide binding 

protein of chloroplasts (D1 protein) is used in ELISA as a substitute for specific 

antibodies. Among the advantages of this innovation are simplicity of D1 protein 

preparation, its high stability, and group specificity for the photosynthesis 

inhibiting herbicides.  

 

2.2.3 Photoinduced production of hydrogen peroxide by photosynthetic 

material  

A group from the Institute of Soil Science and Photosynthesis of the Russian 

Academy of Sciences has extensively studied the photoinduced production of 

H2O2 in subchloroplast oxygen-evolving PSII particles and isolated complexes 

of PSII reaction centres using luminol-peroxidase chemiluminescence and pulse 

photoactivation 49-53. They have been using luminol-mediated 

chemiluminescence for the detection of photoinduced production of H2O2 at 

both acceptor and donor sides of PSII. In their experiments, PSII particles from 

pea leaves, after isolation and further purification steps, were illuminated with 

saturating flashes of light or continuous illumination. They have found that, 

inhibitors of PSII, diuron (2 µM) 53 and DCMU 50 inhibit the H2O2 production, 

although no published results indicate a concentration-dependent inhibition. 

 

It has been previously suggested that H2O2 is produced in the photosynthetic 

process by chloroplasts, broken chloroplasts and thylakoids of spinach when 

exposed to light, in the absence of other electron acceptors 54-56; however, 
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newer research tends to discredit the work, as more, but limited, information 

becomes available about aspects of the processes that take place. 

 

There is a great amount of published work trying to elucidate the photosynthetic 

process; however, most authors, whatever hypothesis they present in their work 

based on the research they have performed, add that little is clear about the 

molecular processes that take place. For example, it is suggested that the 

decrease in the activity of the photosynthetic light reactions in illuminated 

thylakoids correlates with the degradation of the protein components of each 

complex, but the mechanism and regulation of thylakoid protein catabolism are 

poorly understood 57. In another published work it was noted that photoinduced 

production of O2 and H2O2 was observed during photoinhibition of PSII 

preparations; however the exact location of the site of photoinduced production 

of H2O2 is obscure 49. Another journal article author summarises that despite 

considerable efforts, the detailed mechanism of the water-splitting reaction is 

still unknown, in particular the structural prerequisites of the catalytic site where 

water oxidation is supposed to take place 58. Despite its importance, the 

reaction centre within PSII that splits water is not fully understood at a molecular 

level 59, and that the structure of the oxygen evolving complex, as well as the 

molecular mechanism of water oxidation, is yet to be determined 60. Authors of 

another paper suggest that PSII may also produce H2O2, but that "controversial" 

results on the effect of oxygen on photoinhibition indicate that more work is 

needed to understand the molecular mechanism behind the loss of PSII activity 

in the light 61.  

 

A review of the literature on the effect of heavy metals on photosynthetic 

material showcases the inability of the current scientific methods to prove or 

disprove possible modes of action of pollutants on photosynthesis. Heavy 

metals affect different components of photosynthetic electron transport chain. 

Photosystem II appears to be affected by the heavy metals on both oxidising 

(donor) and reducing (acceptor) side 62; the overall opinion of the scientific 

literature however remains very fragmented with no consensus. 



 28 

For example, several sites have been proposed as a potential target of copper 

but the exact location of the binding site in PSII is still uncertain 63. Some 

authors locate the target of the copper inhibition of PSII on its oxidising site 64; 

65, while other studies concluded that copper ions affect the PSII electron 

transport on the acceptor side 66; 67. The PSII reaction center has also been 

considered as the copper binding site 68; 69. On cadmium, there is agreement 

that evidence is strong to suggest that it is an inhibitor of the photochemical 

activity of the chloroplasts, but some studies have concluded that the light 

reactions of photosynthesis are not sensitive to cadmium 70, while others that 

they are 71; 72.  

 

2.3 Chemiluminescence and its use for the detection  of hydrogen 

peroxide 

2.3.1 Definition of chemiluminescence  

Luminescence is the emission of light that does not result from high 

temperatures (incandescence). In general, luminescence occurs when an atom 

or molecule is excited into a high energy state, and then decays to the ground 

state. Since electronic energy levels are quantised, the decay to the ground 

state is accompanied by the emission of a photon of a specific wavelength. 

Luminescence is categorised by the mode of excitation that produces the high 

energy excited state. This excitation energy can be supplied by electromagnetic 

radiation (photoluminescence also termed as fluorescence and 

phosphorescence), by heat (pyroluminescence), by frictional forces 

(triboluminescence), by electron impact (cathodoluminescence), by 

crystallisation (crystalloluminescence) or by a chemical reaction, in which case 

it is called chemiluminescence 73. Fluorescence occurs when an atom or 

molecule is excited by absorption of a photon into the singlet excited state, 

which then decays to the ground state. The lifetime of this excited state is very 

short (on the order of picoseconds), resulting in rapid emission. Some 

molecules may undergo intersystem crossing where the singlet excited state 
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becomes a triplet state which has a long lifetime (seconds to hours), resulting in 

a weak but long-lived glow called phosphorescence 73.  

 

Return of a chemically excited electron to the ground state with emission of a 

photon is thus called chemiluminescence. The excited molecule can also lose 

energy by undergoing chemical reactions, by collisional deactivation, internal 

conversion or inter-system crossing. These radiationless processes are 

undesirable from an analytical point of view when they compete with 

chemiluminescence. The fraction of molecules emitting a photon on return to 

the ground state is the quantum yield (fcl). It is the product of three ratios: fcl=fc · 

fe · ff where fc is the fraction of reacting molecules giving an excitable molecule 

and accounts for the yield of the chemical reaction; fe is the fraction of such 

molecules in an electronically excited state and relates to the efficiency of the 

energy transfer and ff is the fraction of these excited molecules that return to the 

ground state by emitting a photon.  

 

2.3.2 Advantages and reviews of chemiluminescence  

Since excitation is not required for sample radiation, problems frequently 

encountered in photoluminescence as light scattering or source instability are 

absent in chemiluminescence. It has been pointed out that chemiluminescence 

has a large linear response reaching up to six orders of magnitude, a fast 

emission of light, especially when it is generated in a single flash, a high stability 

of several reagents and most of the conjugates (increased stability is often 

observed after conjugation), and a low consumption of expensive reagents 73. 

The short incubation times owing to the high sensitivity generally achieved, the 

full compatibility with homogeneous or heterogeneous, competitive or not 

competitive, direct or indirect immunoassays or immunometric assays 

developed in one step as well as two steps formats and finally the absence of 

toxicity have also been noted 73. Kricka and his co-workers have also published 

several review articles dealing with chemiluminescence 127. Some of these 

cover the early developments of chemiluminescence or applications to all fields 

which can benefit from chemiluminescence while others published regularly up 
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to 1997 are devoted to recent advances of this method in clinical chemistry. 

Chemiluminescence has been widely used as detection method in many fields 

as flow injection analysis, high performance liquid chromatography, capillary 

electrophoresis and thin layer chromatography 73.  

 

In recent years, several papers dealing with new chemiluminogenic compounds 

and more than 1500 per year dealing with applications in immunoassays and 

biomedical research have been published. Although significant improvements in 

noise reduction and sensitivity, new developments in multianalyte analysis and 

homogeneous immunoassays, and advances in selectivity of coupling and 

triggers are expected in the near future. Chemiluminescence has already 

become an essential tool in medical research as well as in routine analysis 73. 

 

2.3.3 Chemiluminescence compounds 

Compounds belonging to five chemical classes: acylhydrazides, acridinium 

derivatives, dioxetanes, coelenterazines and peroxyoxalic derivatives are 

currently used. Each of them has advantages counter balanced by drawbacks 

with the result that none can be definitively preferred to the others. 

Acylhydrazides, including luminol, are still the most frequently used 

chemiluminogenic compounds. 

 

Acridinium derivatives have high quantum yields even after easy coupling to 

proteins. As they do not need catalysts, background signals are low and high 

sensitivities are frequently obtained. The instantaneous light emission, which 

has been considered in the past as a disadvantage (measuring problems), 

allows high rates in automated analysers.  

 

The dioxetanes used for diagnostic applications are enzyme triggered 

dioxetanes. As for acridinium derivatives, low background signals are observed. 

Moreover, dioxetanes exhibit a prolonged light emission but they need for a 

rather long period of time before to reach a constant signal. This last feature 

represents an unwelcome added incubation time.   
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Coelenterazine and its analogues are essentially used in association with 

catalytic proteins as apoaequorin. Used alone, it is a specific luminogenic 

reagent for superoxide anion.  

 

In the presence of a fluorescer, oxalate derivatives are the most efficient non-

biological emitters, with a quantum yield of about 0.25. Fluorescers and 

oxalates are chosen independently. Efficiency and flexibility are therefore the 

main advantages of this system. Non-resolved problems of water solubility and 

stability added to a loss of efficiency in water certainly explain the little success 

of peroxyoxalate chemiluminescence in immunoassays and biomedical 

applications. 

 

2.3.4 Luminol chemiluminescence  

2.3.4.1 General on luminol chemiluminescence  

The first report of luminol chemiluminescence was made by Albrecht in 1928 74. 

Since that time the reaction of luminol and other derivatives of the general 

hydrazide structure have been studied extensively.  

 

For luminol, the quantum yield, Φcl, is about 5% in DMSO and about 1% in 

aqueous systems 73; 75. Isoluminol shows about 5-10% of that efficiency. The 

mutagenicity and genotoxicity of chemiluminescence compounds have been 

tested, to identify potential risks associated with using these chemicals. None of 

the luminol derivatives tested induced either 76. Chemiluminescence intensity is 

proportional to the concentration of luminol, oxidant and catalyst. Therefore, the 

system can be applied to the determination of luminol, hydrogen peroxide, or 

the catalyst 77. As luminol concentration increases, chemiluminescence intensity 

increases. However, the signals due to peroxide and background 

chemiluminescence from oxygen are affected similarly. In fact, at high 

concentrations of luminol, the observed chemiluminescence signal becomes 

more sensitive to variations in mixing, causing precision to deteriorate. 
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Concentrations in the range from 0.1 mM to 1 mM luminol are suitable for 

hydrogen peroxide analysis. 

 

Attaching luminol via the aromatic group to, for example, an analyte is not 

recommended, as it leads to a large decrease (to 5% of initial) in 

chemiluminescence due to steric hindrance. However, isoluminol attached via 

the aromatic group is frequently used as it leads to a large increase in 

chemiluminescence 78.  

 

Examples of commercial chemiluminescence ELISA kits are the Supersignal® 

ELISA Femto Maximum Sensitivity Substrate and the SuperSignal® ELISA Pico 

Chemiluminescent Substrate (both from PIERCE Chemicals), while substrates 

for detecting HRP-on-antibodies for Western blotting are the BioWest Extended 

Duration peroxidase substrate (UVP), ECL substrate (Amersham Pharmacia, 

RPN2108) and the ECL Plus substrate (Amersham Pharmacia, RPN2132). 

 

2.3.4.2 Choice of catalyst/cooxidant; advantages an d disadvantages 

In aprotic media (dimethylsulphoxide or dimethylformamide), only oxygen and a 

strong base are required for chemiluminescence 73. In protic solvents (water, 

water solvent mixtures or lower alcohols) luminol and hydrogen peroxide will not 

react to any significant extent unless a third component is present 79. The third 

component can function as a catalyst, a cooxidant or both.  

 

An example of a catalyst is peroxidase, since it is unchanged in the overall 

reaction. Most frequently the enzymes microperoxidase (MPO), horseradish 

peroxidase (HRP) and catalase, or the substances cytochrome c and 

haemoglobin are used. Hemin had been the usual catalyst/cooxidant for earlier 

fundamental studies of luminol chemiluminescence; however, it is not very 

soluble and is more expensive than other catalysts/cooxidants 73.  

 

An example of a cooxidant is peroxydisulfate. Peroxydisulfate oxidises luminol 

by two electrons to a diazaquinone, which then reacts with hydrogen peroxide in 
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a one-to-one reaction yielding chemiluminescence 80. With peroxydisulfate used 

as the cooxidant, the chemiluminescence response to peroxide is linear; 

however, there is background chemiluminescence from peroxydisulfate and 

luminol that is not sufficiently constant in order to be subtracted.  

 

An example of a catalyst/cooxidant is ferricyanide which oxidises luminol and is 

reduced to ferrocyanide but is subsequently reoxidised to ferricyanide 80. Other 

catalysts of the reactions are ozone, halogens, Fe(III) complexes, Co(II) and 

Cu(II) ions as well as their complexes 75. Co(II) and Cu(II) are the most efficient 

transition metal ions. Both have been investigated as catalysts for hydrogen 

peroxide determination using luminol 80; however, problems are encountered. 

The intensity is proportional to [H2O2]
n, where n is larger than one. The value of 

n is quite sensitive to conditions such as pH and luminol concentration.  

 

The use of Co(II) ions as the catalyst of luminol provides the highest sensitivity 

and stability of reagent, followed by the Cu(II)-catalysed chemiluminescence. 

However, the use of metal catalysts results in interference from substances that 

complex the metal ions, while also requiring a high pH. HRP and FRP catalyse 

the luminol chemiluminescence at a lower pH, therefore being better for 

coupling to enzymatic reactions, mainly the enzymatic production of H2O2. They 

are also good for coupling to production of H2O2 at physiological pH 81.  

Superoxide anion, generated by xanthine oxidase (XO) has also been used to 

oxidise luminol in aqueous solution 75. 

 

2.3.4.3 Reaction mechanism of luminol with HRP  

The reaction mechanism followed is shown in Fig. 2.1; initially, an oxidised 

derivative of the enzyme is formed, HRP-I, which reacts with the anion of 

luminol (luminolO) to form a half-reduced HRP-II and the radical luminol●. The 

cycle is completed and the enzyme returns to its native state in a second 

reaction with a luminol molecule 75. While the latter step is dependent only on 

the pH of the system, the initial steps are dependent upon the exact 

composition of the reacting systems, the nature of the oxidant, additives, buffer, 
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overall concentration and pH 82. Since the overall oxidation of luminol to 

aminophthalate involves the loss of four electrons, it will require two hydrogen 

peroxide molecules for each luminol 80. It should be noted that the pH will affect 

not only the ability of the enzyme to catalyse the chemiluminescence reaction, 

but also directly affect the ability of luminol to react with H2O2 and the kinetics of 

this reaction, thus altering the speed of the reaction. 

 

 
Figure 2.1 Reaction mechanism of the HRP-mediated c hemiluminescence 

reaction of luminol with H 2O2. 

HRP reacts with hydrogen peroxide to form an oxidised HRP (HRP-I) which reacts with 
the luminol anion to form a half-reduced enzyme (HRP-II) and a luminol radical. The 
enzyme returns to the reduced form (HRP) by reaction with a second molecule of 
luminol. 
 

2.3.4.4 Immobilisation of HRP for chemiluminescence  assays 

Instability of HRP can cause poor assay reproducibility in H2O2 assays 83. The 

reasons for HRP instability include heat instability of the HRP protein and 

deficiency of endogenous calcium ion. These problems can be overcome by 

immobilisation of HRP and supplementation with exogenous calcium ion 

respectively. Retaining the activity of HRP during an assay is important in order 

to obtain reproducible results for H2O2, using a flow system, because the same 

HRP is repeatedly used.  
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Several methods have been developed to immobilise the HRP for use in 

chemiluminescence sensor, such as cellulose particles, polystyrene tubes and 

beads 84, polyacrylamide gel 80; 85 and beads 84, magnetic particles 84 and sol-

gel 85 in silica and graphite pastes 85 and others.  

 

Generally, its storage stability is good, but there is limited operational stability 

due to the relatively fast washing out of the HRP into the flow stream 86. For 

example, a group has reported immobilising HRP on polyamide membrane and 

on polyethersulfone membranes 87. This procedure was repeated 9 times. They 

observed a drift and instability of the hydrogen peroxide response even within 

the first 9 runs. At the same time, the background luminescence was increased 

as the number of assays increased. 

 

2.3.5 Examples of analytical uses of chemiluminesce nce  

The luminol reaction can be the foundation of significantly different analytical 

determinations. For instance, the reaction could be used to determine:  

• luminol itself by holding other variables constant,  

• luminol-like derivatives similarly,   

• hydrogen peroxide or the progress of reactions that produce H2O2, 

• the concentrations of metal cations,  

• or analytes that effect the concentration of catalysts.  

 

The chemiluminescence reaction provides methods for trace analysis that are 

attractive because of their high sensitivity. This feature makes 

chemiluminescence suitable for pollution studies 88.  

 

The use of chemiluminescence as a detection method following traditional 

analytical separation makes up a significant share of its application in the lab. 

For example, liquid-phase chemiluminescence has been applied to high-

performance liquid chromatography and to capillary electrophoresis. Gas-phase 

analytical chemiluminescence reactions have in the main been employed with 
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gas chromatography (GC) to detect trace chemical species or target analytes in 

complex matrices 89.  

 

In immunoassays, luminol chemiluminescence has been extensively used. 

Because the oxidation of luminol derivatives has to be catalysed, antigen or 

antibody labelling with either the catalyst or the luminogenic substrate has been 

investigated and heterogeneous immunoassays in various formats (direct or 

indirect detection in competitive or not competitive mode) as well as 

homogeneous immunoassays have been proposed. In most examples, the 

antibodies specific to the antigen of interest have HRP immobilised on them, 

which is quantitatively detected by luminol-H2O2 chemiluminescence. An 

example of an immunoassay for the detection of HRP on antibodies for 

herbicides with luminol-H2O2 has been reported 90. A chemiluminescence 

ELISA for pesticides, using chemiluminescence for detection of HRP on 

antibodies with different specificities towards pesticides immobilised in separate 

wells has also been described 91. In attempts to use the specificity of 

immunoassays out of the lab, flow immunoassays using exactly the same 

principle have been described. A flow immunoassay for the DDT pesticide has 

been described, the detection being by the luminol-H2O2-HRP 

chemiluminescence 29, and another for the herbicide 2,4-dichlorophenoxyacetic 

acid 92. Isoluminol derivatives that show increased efficiency after coupling, are 

almost the only tracers to be used in substrate labelled immunoassays. Luminol 

is more efficient in the free state and is used mostly in enzyme labelled 

immunoassays 73. For a comprehensive list of analytical applications of 

chemiluminescence see a review paper 93. 

 

2.3.6 Chemiluminescence assays for hydrogen peroxid e   

Development of reliable sensors for H2O2 determination is of great importance 

in both academic and industrial fields. At the same time, a H2O2 sensor is often 

employed as a fundamental detector for various biochemically important 

substrates which can be converted into H2O2 by their oxidases 85. Hydrogen 

peroxide is an important component in the oxygen–hydrogen chemical cycle in 
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natural aquatic systems, being formed as an intermediate in redox processes 

that transfer oxygen between oxidation states. It is a chemically and biologically 

labile oxidant that plays a role in a variety of important redox processes 

occurring within natural waters. In the aquatic environment, H2O2 arises from a 

variety of sources including wet and dry deposition and photochemical reactions 

involving dissolved organic matter (DOM) 94. 

 

Chemiluminescence is commonly used in the determination of hydrogen 

peroxide because of its low detection limit and wide dynamic range that can be 

achieved with relatively simple instrumentation; luminol, lucigenin, bis(2,4,6-

trichlorophenyl)oxalate (TCPO) and pyrogallol are mainly used 95. 

 

2.3.6.1 Chemiluminescence assays for enzymatically p roduced hydrogen 

peroxide  

Great interest of the chemiluminescent reactions in analysis has been the 

possibility of coupling them with H2O2-generating enzyme-catalysed reactions. 

In this way, the substrates involved in some enzymatic reactions catalysed by 

specific oxidases can be assayed by chemiluminescent detection. Important 

examples include the oxidation of glucose by oxygen to gluconolactone and 

peroxide catalysed by glucose oxidase, the oxidation of uric acid by oxygen to 

allantoin and hydrogen peroxide catalysed by uricase and the oxidation of 

cholesterol by oxygen to ∆4-cholesterone and hydrogen peroxide catalysed by 

cholesterol oxidase. Such an example in environmental analysis is a flow-

injection system for phosphate ion in river water that has been developed 96. 

The phosphate ion in the sample reacts in a column with immobilised pyruvate 

oxidase G and H2O2 is produced. This is then detected by luminol-ARP 

chemiluminescence by a PMT, the LOD being 1 nM. Other examples have been 

described 73. In addition, processes generating NADH are amenable to 

chemiluminescence detection, since NADH reduces molecular oxygen to 

hydrogen peroxide in the presence of a mediator 80. In addition to these simple 

enzymatic reactions generating hydrogen peroxide, multienzymatic systems 

leading to the production of H2O2 can be used for the analysis of a particular 
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metabolite for which no specific oxidase is available. For example, three 

consecutive enzymatic reactions are involved in producing peroxide and 

allowing the chemiluminescent determination of creatinine 17.  

 

2.3.6.2 Examples of direct hydrogen peroxide detect ion using 

chemiluminescence  

Using a real-time assay for measuring hydrogen peroxide formation, the H2O2 

release in human HaCaT keratinocytes using the luminol-HRP 

chemiluminescence reaction has been analysed 97. An example of the common 

luminol-HRP reaction for the detection of H2O2 in a microsystem has been 

described 83, where the LOD was 5 pM. The reaction was performed in a flow, 

with the HRP immobilised. A reagentless biosensor for H2O2 with immobilisation 

of all reagents has also been described. Luminol was electrostatically 

immobilised on anion exchange resin and packed into a glass tube, while HRP 

was immobilised in a chitosan membrane which was formed on a glass coil. 

The two segments were integrated to construct a chemiluminescence flow 

biosensor. The LOD was 1x10-7 M 85. A nonenzymatic H2O2 assay that is based 

on the chemiluminescence reaction of luminol with hypochlorite (NaOCl) has 

been described 98. The flash-type luminescence signal (less than 2 s) is linearly 

dependent on H2O2 down to the 10-9 M range.  

 

The determination of hydrogen peroxide in rain water is commonly 

accomplished by a chemiluminescence method which is based on the Cu(II)-

catalysed reaction of luminol with hydrogen peroxide 99. In another example, a 

FIA with luminol-Co(II) for H2O2 in sea water was made, the LOD being 10.6 nM 
100. The well-known liquid phase chemiluminescence reactions based on the 

luminol or other chemiluminescence reagents in the presence of a catalyst, 

often suffered from the interference of transition metals (e.g. for luminol: Co, Cu, 

Fe, Cr and Ni) 99. A solution that has been applied is the use of EDTA as a 

masking agent, as it binds with the metal ions; a FIA with luminol- KIO4 for 

determination of H2O2 has been reported (LOD 3.0x10-8 M) 101.  
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Because of the aforementioned problem, different chemiluminescence reactions 

have also been used; an improved method for the determination of H2O2 in 

natural waters utilising the acridinium ester has been developed 94. A group has 

synthesised a new chemiluminescence reagent, DTMC, which reacts with H2O2, 

without the need for substrate and without any interference of metal ions, while 

the LOD is 4x10-8 M 95. 

 

2.4 Fluidic sensors and the use of magnetic beads  

2.4.1 Microsystems development and fluidic analysis  

The application of microtechnology to biotechnology and biosensing has rapidly 

expanded in recent years in response to recent advances in molecular biology 

and biochemistry, and microfluidics have become accepted as a means of 

integrating analytical and synthetic functions in a single device, or lab-on-a-chip 
16; 102. Micromachining techniques consist of microfabrication techniques, mainly 

developed in semiconductor industries, and other techniques for precision 

machinery. They are reconstituted based on novel concepts to fabricate 

miniaturised devices or systems. Especially, the field of miniaturisation of flow 

type chemical analysis systems attracts increasing interests, due to potential 

advantages such as high efficiency, reproducibility, low consumption of 

reagents and samples, fast analysis, parallel processing and multi-functionality. 

In addition, miniaturisation allows analytical systems to be portable, enhancing 

their value for field use in environmental monitoring 16.  

 

Flow injection analysis techniques are promising analytical methods because 

many of the analytical processes required for a measurement can be completed 

automatically in a flow system. In an FIA system, for example, the introduction 

of several types of solutions into a flow cell equipped with a suitable detector 

can be strictly and freely controlled by a computer program and, as a result, a 

series of processes in an assay could be readily automated. Furthermore, the 

consumption of reagents and waste solutions in measurements are less than 

those required for non-flow measurements 103. 
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Chemiluminescence analysis has some advantages such as sensitivity, ease of 

use and simple instrumentation, and has been actively investigated for the 

highly sensitive detection of small amounts of chemical species at ultra-trace 

levels. Since many chemiluminescence reactions are very fast, they give rise to 

imprecise measurements as a result of irreproducible mixing of sample and 

reagents, but the reproducibility and selectivity of the chemiluminescence 

analysis can be improved by combination with a flow injection method 104. 

 

2.4.2 Superparamagnetic beads and their use in flui dic systems 

2.4.2.1 Magnetic beads characterisation  

All materials exhibit magnetic properties to some extent at all times, depending 

on their atomic structure and temperature. Since magnetism originates at the 

atomic level, from the state of a particular material's electrons, all materials fall 

into one of five major groups, namely, ferromagnetic, antiferromagnetic, 

ferrimagnetic, diamagnetic and paramagnetic. Ferromagnetism, 

antiferromagnetism and ferrimagnetism are ordered states; diamagnetism and 

paramagnetism are transient states that exist as a result of an applied magnetic 

field. 

• Ferromagnetism 

On a microscopic scale, ferromagnetic materials exhibit magnetism even 

without an applied field. Some, like iron, cobalt and nickel can exhibit strong 

external magnetic fields under certain conditions. 

• Paramagnetism 

In the absence of an external magnetic field, the electron energy bands of a 

paramagnetic material are equally populated with spin 'up' and spin 'down' 

electrons. Once a magnetic field is applied, there is an imbalance of electrons 

due to the presence of unfilled bands, and a weak magnetic effect is observed 

as the net magnetic moments are aligned in the field. Paramagnetic materials 

lose their magnetic properties immediately when the external magnetic field is 

removed. 
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• Ferrimagnetism 

Ferrimagnetic materials exhibit characteristics of both ferromagnetic and 

antiferromagnetic materials. The magnetic moments of the coupled atoms are 

anti-parallel but unequal in magnitude; therefore there is a net overall 

magnetisation. The susceptibility is small and positive. The iron oxide materials 

used in magnetic beads are examples of ferrimagnetic materials. The 

imbalance in moments is caused by the presence of Fe ions in different 

oxidation states. 

 

Most of the magnetic particles used in beads have some form of iron oxide. 

Typically these iron oxide phases are ferrimagnetic, but when particles are 

manufactured from bulk material, and the diameter of these particles is carefully 

controlled, a distinctly different magnetic phenomenon is observed. By reducing 

the particle size to below a critical diameter, the particles become so small that 

the magnetic moments present in each particle (by virtue of the underlying 

ferrimagnetism inherent to the material) are constantly being re-oriented by 

random thermal energy vectors in the system. Thus the particles have a 

coercivity (ability to resist demagnetisation) of zero and the net magnetic 

moment of the powder is zero. The bulk powder is thus essentially ‘non-

magnetic’. However, the particles are still susceptible to applied magnetic fields, 

and in this regard they are similar to paramagnetic materials. Because of the 

presence of so many large magnetic moments within the individual powder 

particles, the susceptibility of the powder is very large, and thus the particles 

behave like ‘super’ paramagnets, and usually referred to as superparamagnetic. 

Removing the applied magnetic field from the particles will instantaneously 

reduce the overall net magnetic moment of the powder particles back to zero. 

Thus, the powder has no ‘magnetic memory’ 105. 

 

2.4.2.2 Uses of superparamagnetic beads  

Due to advantages including ease of separation and suitability for automation 
106, superparamagnetic beads act as a solid support for a variety of biomagnetic 

separations such as cell and protein isolation from samples, and detection 
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thereof. They can be applied to the development of immunoassays and protein 

applications such as sample preparation, bioassays or the selection of affinity 

binders 107. They can also be used for DNA separation and mRNA purification 

and the highly efficient magnetic separations have therefore also led to 

improvements in their applications, such as in PCR and in gene detection 108. 

They are useful in coupling labile proteins, peptides and functional enzymes for 

the isolation of a wide variety of targets, e.g. hormones, receptors, disease 

markers etc 106. By applying appropriate magnetic fields on the beads, magnetic 

separators, pumps, filters 109 and manipulation microsystems 110 have been 

fabricated.  

 

Magnetic beads are often used as solid supports for immunoassay reactions. 

They feature a large binding surface area per volume and hence a large 

number of analyte molecules are bound within a small volume, allowing for 

sensitive detection. Furthermore, incubation times are often shortened 

significantly as analyte molecules pumped through a beads plug encounter very 

short diffusion distances to the active surfaces 111. 

 

In conventional test tube based separation assays, magnetic beads are mixed 

with a sample and the component of interest binds to the biomolecule on the 

particle surface. The beads are then captured at the bottom of the tube by an 

external magnet and the supernatant is pipetted off. Multiple washing steps are 

required for complete separation of bound and unbound sample components 
111.  

 

2.4.2.3 Attachment of biological material on superp aramagnetic beads  

Since paramagnetic beads can be suspended in solution, coating them is an 

easier manufacturing process than coating classic solid phases, such as 

microplates or non-magnetic beads. The high surface area provided by 

submicron particles and the ability to suspend them near the target analyte 

enable fast reaction times 112. 
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There are currently several means of attaching biological ligands to 

microspheres, including adsorption to plain polymeric microspheres, covalent 

attachment to surface-functionalised microspheres, and attachment to 

microspheres that are pre-coated with a generic binding protein, such as 

streptavidin or protein A 113. Simply adsorbing protein, especially polyclonal IgG, 

on the surface of polystyrene microspheres is successful more than 95% of the 

time.  

 

However, covalent attachment has many advantages 114:  

1. Some evidence indicates that one can attach 10–40% more protein 

covalently than by adsorption. 

2. Covalent coupling binds protein more securely, an asset in production of 

tests or assays that would be influenced by quantities of protein that might leach 

off the particles over time.  

3. The covalent bond is more thermally stable. 

4. Covalent coupling conserves costly reagent because it does not require the 

large excess of protein necessary for crowded adsorption.  

5. Covalent attachment at relatively few sites may overcome the issue whereby 

large, well-adsorbing protein molecules become tightly adsorbed over so wide 

an area or at so many contact points that they become distorted or denatured.  

 

2.4.2.4 Manipulation of magnetic microbeads 

As mentioned previously, by adopting magnetic bead separation techniques 115, 

the advantages of rapid, efficient and convenient processes can be attained in 

separating appropriate particles from suspensions. A comprehensive review of 

recent research on the use of magnetism and magnetic beads in particular in 

fluidic devices has been published 116. 

 

In conventional magnetic bead separators, rare earth permanent magnets 

produce a magnetic field 115. When the magnetic beads suspended in a fluid are 

subject to the field, forces are generated that cause the particles to migrate and 

attach to the magnetic poles. After the cancellation of the magnetic field these 
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separated beads can be re-dispersed in a suspension, achieving the function of 

a magnetic bead separator.  

 

For microfluidics, a few methods have been reported for the manipulation of 

magnetic particles 107. A device with semi-encapsulated spiral electromagnets 

on a Pyrex glass wafer coupled with microfluidic channels on silicon wafer has 

been made 115. As the beads flow in a suspension through the channel, the 

electromagnets underneath the channel magnetically capture the beads within 

their magnetic field area.   

 

Another micromagnetic system reported employed microfabricated circuits 

rather than permanent magnets or electromagnets to generate local magnetic 

field 110.  Soft lithography was used to fabricate current-carrying circuits that can 

generate strong local magnetic fields, and manipulate magnetic beads. The 

magnetic beads suspended in buffer, move towards magnetic field-maxima 

generated by the current-carrying wires. A similar example is a 

microelectromagnetic matrix to control the movement of magnetic beads and 

also a microelectromagnet ring to trap them 117. The matrix is a multilayer of 

lithographically patterned conducting wires separated by insulating material, 

with the ability to trap and move magnetic beads suspended in fluid above the 

chip.  

 

2.4.2.5 Microsystems employing chemiluminescence an d magnetic beads 

An example of a microsystem using magnetic beads and 

electrochemiluminescence has been developed and commercialised 118. The 

electrochemiluminescence process follows a conventional immunoreaction 

step, - a competitive, sandwich or other assay format in which, according to the 

analyte under measurement, a biotin-labelled antibody, antigen or other 

complex is incubated with the specific sample analyte in the presence of 

(Ru(bpy)3
2+ labelled binding partner. The complex is captured by the concurrent 

addition of modified streptavidin-polymer coated magnetic, polystyrene beads. 

The beads are drawn into a flow-through cell. Under a platinum foil working 
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electrode lies a moveable permanent magnet. This is raised up to capture the 

beads on the electrode surface as they are drawn in; there then follows a wash 

sequence and, prior to measurement, the magnet drops away so as not to 

influence the photomultiplier tube (PMT) signal detector mounted above the cell. 

The ECL reaction is initiated by the application of a voltage against a 

silver/silver chloride reference electrode. Then, everything is washed out. 

 

A generic microfluidic system for biochemical detection using a magnetic bead-

based approach for both sampling and manipulating the target molecules has 

also been constructed 119. The analytical concept is based on an 

electrochemical immunoassay. Magnetic beads with anti-antigen antibodies 

coated on them are used, which are introduced on the electromagnet and held 

down by the magnetic field. Then, the sample with antigen is injected into the 

channel. The target antigens are immobilised on the antibodies. Next, 

secondary antibodies with immobilised enzyme are introduced and incubated. 

The substrate solution is injected, and the electrochemical detection is 

performed, with the microelectrodes inside the flow channel, above the 

magnetic beads. Finally the magnetic beads are released to waste and the 

device is ready for another immunoassay. The electromagnets and 

microchannels were fabricated on silicon wafers using micromachining 

techniques. It should be noted that, from an analytical point, it has not been 

shown to work yet.  

 

Similar examples include a DNA optical sensor using antibodies immobilised on 

magnetic beads to capture DNA, where a magnet captures the beads, and 

chemiluminescence is used for detection of sandwiched DNA 120; also, the 

detection hepatitis B antigen in a chemiluminescence assay has been achieved 

by using antibodies to capture hepatitis B antigen, then captured on magnetic 

beads and detected by acridinium chemiluminescence 121. 
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Chapter 3: Bench-top Batch Assay for the Detection of H2O2 using 

HRP-mediated Luminol Chemiluminescence 

Chapter 3. a 

 

3.1 Introduction 

In order to research the potential light-induced production of hydrogen peroxide 

by photosynthetic material, with the possibility of inhibition thereof by herbicides, 

the chemiluminescence detection of hydrogen peroxide was chosen as the 

detection method, primarily due to its increased sensitivity compared to 

colorimetric methods.  

 

Chemiluminescent reactions can be classified, according to their reaction 

kinetics, as either of a slow releasing, "glow" nature, where the emission of light 

builds slowly and reaches a maximum after a substantial incubation time, 

typically minutes, or of the "flash" nature, where the mixing of reagent causes 

the immediate emission of light, typically over milliseconds. An example of glow 

reactions is that generated by enzyme systems such as HRP using luminol as 

substrate. A typical flash reaction is generated by acridinium esters. Flash type 

systems such as the acridinium esters have high or moderate 

chemiluminescence efficiencies. The chemistry of this type of 

chemiluminescence light production is well understood. The simple triggering 

conditions contribute little to the background signal and are an added benefit. 

They have a wide dynamic range and low temperature dependency. These 

advantages have led to the use of flash reactions in rapid quantitative detection 

applications. However, the mixing is of critical importance, photon counting is 

difficult, as is the engineering of the reaction in a flow system. Glow type 

systems are excellent for qualitative systems such as identification of proteins 

on gels, or for quantitative systems if sufficient temperature control can be 
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maintained; also the signal levels are generally high, and it is easy to engineer 

the reaction for a flow system 122. 

 

The luminol chemiluminescence reaction is most efficient at high pH. Maximum 

chemiluminescence is observed in the pH range from 10.4 to 10.8 when using 

ferricyanide catalysis. Since background chemiluminescence behaves similarly 

with pH however, the signal-to-background ratio does not decrease nearly as 

rapidly as the absolute response.  

 

The optimally high pH is a serious limitation to applications of luminol 

chemiluminescence. One problem is that the luminol reaction and the 

processes producing hydrogen peroxide cannot occur simultaneously without 

severe compromises with respect to luminol intensity or the rate of the H2O2 

production. The differences in pH optima severely limit the possibilities of the 

approach of performing both reactions simultaneously under one set of 

conditions, unless a satisfactory compromise can be achieved. Instead, it is 

necessary to do the two reactions involved in a coupled scheme sequentially, 

under two sets of conditions. Another problem is that the high pH may 

accelerate the rate of reaction between hydrogen peroxide and reducing 

components in biological samples. These reactions consume hydrogen 

peroxide before it can react with luminol, thus reducing observed 

chemiluminescence intensity and interfering negatively in analytical procedures 
80.  

 

Peroxidase catalysis is promising over the pH range from 7 to 9, since it gives 

greater chemiluminescence intensity than other catalysts/cooxidants under 

these conditions. Therefore, for the enzymatically or otherwise generated 

hydrogen peroxide the application of peroxidases as the biocatalysts of luminol 

chemiluminescence seems to be more convenient, as they require a weak 

alkaline reaction medium 123. For analyses performed at physiological pH, the 

HRP-luminol-H2O2 reaction is the most useful as the optimum is close to pH 8.0 
124.  
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The role of a buffer is to maintain a constant concentration of hydrogen ions in a 

reaction. Ideally, a buffer should not influence the reaction, but for some buffers 

there are undesirable side-effects, e.g. complexing metal ions, enzyme 

interactions. Buffers are also known to influence light emission in luminescent 

reactions, and they have been shown to alter the intensity and kinetics of light 

emission in the chemiluminescent HRP-catalysed oxidation of luminol; in an 

assay for HRP detection previously described 125, the light emission from the 

luminol-H2O2 assay mixture (blank) was lower in Tris buffer compared to other 

buffers with pKa’s ranging from 6.8 to 9.5. Thus, the optimal buffer for 

chemiluminescence reaction of luminol is Tris buffer at a pH of 8.0 – 8.5, 

according to the literature 126. 

 

Based on the above introduction, it was thus decided to employ the luminol-

HRP-H2O2 chemiluminescence for the assay for the detection of H2O2 as the 

reaction of choice. This would provide the means to detect any probable 

production of H2O2 by photosynthetic material, as well as the inhibition thereof 

by certain classes of herbicides. 

 

Hence, the standard HRP-mediated luminol chemiluminescence reaction with 

H2O2 required to be developed, as this was envisaged to form the basis of the 

assay methodology for the detection of photosynthesis-inhibiting herbicides. As 

H2O2 is the substance in the reaction that is of interest to be detected, the work 

performed on the establishment of a batch, bench-top assay for the detection of 

H2O2 is hereby presented. 

 

3.2 Materials and methods  

Trizma, hydrochloric acid (HCl), 5-amino-2,3-dihydrophthalazine-1,4-dione 

sodium salt (luminol sodium salt), horseradish peroxidase (HRP) (type II, 148 

U/mg) and hydrogen peroxide (30% w/w) were purchased from Sigma Chemical 

Company Ltd. (Gillingham, UK). The Tris-HCl buffer (10mM, pH 8.5) was 

prepared using deionised, reverse-osmosis (RO) water. Stock solutions of 
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luminol (30 mM), HRP (150 U/ml) and H2O2 (30 µM) were prepared in Tris-HCl 

buffer, 10 mM, pH 8.5, while for the work presented in Section 3.3.3 the pH was 

12. The final solutions of the appropriate concentrations of the reagents were 

prepared freshly each day, unless stated otherwise.  

 

The sequence of actions that formed a single measurement was: 

• 330 µl  of different concentrations of luminol in Tris-HCl buffer (10 mM, pH 

8.5) and 330 µl of different concentrations of HRP in Tris-HCl buffer (10 mM, 

pH 8.5) were added in Kartell disposable semi-micro optical polystyrene 

cuvettes (Thermo Fisher Scientific Ltd., Loughborough, UK), in a time 

window of 1 hour before the experiment to follow, unless stated otherwise.   

• The cuvette with the above 660 µl of the different concentrations of luminol 

and HRP in Tris-HCl buffer (10 mM, pH 8.5) was placed in the sample 

holding compartment of a Cary Eclipse fluorescence spectrophotometer 

(Varian UK Ltd., Oxford, UK). The spectrometer was set up, via the use of its 

bespoke software, to record the intensity of detected light over 60 seconds.  

• Using a PC interface, the spectrometer's detection process was initiated, 

and 10 seconds later, the sample, an aliquot of Tris-HCl buffer (10 mM, pH 

8.5) containing different concentrations of H2O2 was forcefully pipetted 

manually in the cuvette, thus resulting in the chemiluminescence reaction 

between luminol and H2O2, in the presence of HRP.  

• At the end of 1 min, the spectrometer would stop recording the intensity of 

the light detected, and would produce a file containing the light intensity 

recorded over time, in arbitrary units, collected every 100 ms, over 1 minute. 

Microsoft Office Excel 2003 was used to further analyse the data. 

 

As the spectrometer's detection sensor (a photomultiplier tube) is very sensitive 

to light, and, given that the sample holding compartment was not fully closed 

during the experiment, as a small gap had to be allowed in order to pipette the 

H2O2 sample, it was of outmost importance to ensure that the ambient light 

achieving to affect the measurement would be maintained at the minimum 

possible. This was accomplished by covering the top part of the instrument 
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(where the gap to allow for the pipette to reach the cuvette was found) with a 

piece of thick, black refuse bag, as well as a piece of black material with a felt-

like surface. Most importantly, the experiments were performed in near-

complete darkness; the laboratory room ambient light source was switched off 

(fluorescent tubes), the gap under the door leading to the space outside the 

laboratory room was sealed with opaque material, and the PC's monitor was set 

up in a way as to reduce the light intensity emitted by it to the minimum 

possible, while still allowing the experimenter to distinguish various key graphics 

on the screen (namely the "start" button and the mouse pointer). 

 

3.3 Results and discussion 

3.3.1 Introduction  

The results of the literature search and review reveal that it has mainly been of 

interest to detect and quantify HRP by the use of chemiluminescence 93; 127; 128. 

For the purpose of the research described here however, it is hydrogen 

peroxide that is the reactant of interest. It was therefore important to perform an 

extensive series of experiments aiming to identify the optimal concentrations of 

luminol and HRP for the detection of H2O2. As mentioned in the Chapter's 

introduction (Section 3.1), the HRP catalysis of luminol is the most promising in 

the region of pH between 7 to 9, however, as the pH increases, so does the 

chemiluminescence signal. In order to investigate the ‘enhancement’ at higher 

pH, although not ideal from an analytical point for the rest of the work aimed to 

be performed for this project, H2O2 detection measurements were carried out 

also at a high pH, in order to compare the two sets of conditions.   

 

3.3.2 Bench-top batch assay for the detection of H 2O2 using HRP-

mediated luminol chemiluminescence 

In order to identify the wavelength maximum (peak) of the light produced by the 

reaction and confirm the information available from literature 75; 93 a wavelength 
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scan was performed (Fig. 3.1). Thus, the wavelength at which the luminol 

chemiluminescence emits the most light is at 432 nm.   
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Figure 3.1 Wavelength scan of luminol chemiluminesc ence. 
Chemiluminescence light output detected by the spectrometer, produced by the 
chemiluminescence reaction of [H2O2] = 2 µM, [HRP] = 10 U/ml, [luminol] = 100 µM, in 
Tris-HCl buffer (10 mM, pH 8.5), over 1 min. 
 

Experiments were performed in order to find the optimal concentrations of the 

reagents luminol and HRP, for the detection of the lowest concentration of 

H2O2, as well as a wide linear range. For these experiments, the light intensity 

was measured with the Varian Eclipse spectrophotometer, a large, bench-top 

detector, with great sensitivity to low light levels, as described in Section 3.2. 

 

Four concentrations of luminol (10 mM, 1 mM, 100 µM, and 50 µM) and five 

concentrations of HRP (50 U/ml, 20 U/ml, 10 U/ml, 5 U/ml, and 1 U/ml) were 

tested in all possible combinations (twenty combinations in total) for the 

detection of H2O2. The focus was put on small concentrations of H2O2 (1 nM – 1 

µM) in order to find the combination of luminol and HRP that allowed for the 

best detection of H2O2; what is more, these concentrations are within the range 

of H2O2 produced by 1 mg of chloroplasts, as suggested by the literature 50; 51. 
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At higher concentrations of H2O2 (in the millimolar region), the reaction acts like 

a typical glow-type chemiluminescent reaction expanding over minutes. At 

anything equal to or lower than micromolar concentrations, the result resembles 

a flash-like spike, typically for a few seconds. 

 

Having identified the peak wavelength at which luminol chemiluminescence is 

emitted (approximately 432 nm), measurements of light intensity over time were 

made, at a wavelength of 432 ± 20 nm. Such a large ‘window’ of detected 

wavelength was chosen in order to allow the maximum possible light to be 

detected, and, as the reaction is performed in the dark, any light detected would 

be more likely to only be from the chemiluminescence reaction. It should be 

noted that the Varian Spectrometer used does not allow for light of wider 

wavelength bands to be measured, with 20 nm being the maximum permissible 

waveband. 

 

The example shown in Fig. 3.2, shows the two methods originally considered 

and used to interpret the data; one was to measure the light output as such, 

measuring the maximum, peak output, while the other was to measure the area 

under the curve, i.e. to add all the data points together, thus integrating the 

resulting light emission. 
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Figure 3.2 Example of graphical analysis of obtaine d chemiluminescence signal. 
Chemiluminescence light output detected by the spectrometer, produced by the 
chemiluminescence reaction of [H2O2] = 1 µM, [HRP] = 10 U/ml, [luminol] = 100 µM, in 
Tris-HCl buffer (10 mM, pH 8.5) in 1 min. 
 

The calculations used to quantify the lower limit of detection (LLOD) were based 

on the definition of the limit of detection by the International Union of Pure and 

Applied Chemistry (IUPAC Compendium of Chemical Terminology 2nd Edition, 

1997). The limit of detection, expressed as the concentration, cL, or the quantity, 

qL, is derived from the smallest measure, xL, that can be detected with 

reasonable certainty for a given analytical procedure. The value of xL is given by 

the equation: 

xL = ¯ xbi + ksbi,  

¯ xbi is the mean of the blank measures,  

sbi is the standard deviation of the blank measures, and  

k is a numerical factor chosen according to the confidence level desired. 
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Therefore for a k value of 3, the LOD is the concentration corresponding to a 

signal 3*s.d. (of the blank) above the mean of the blank. 

 

The LLOD was calculated for all the aforementioned combinations of luminol 

and HRP and the results are presented in Table 3.1. By comparing all the 

LLODs, the one that appeared to give the most sensitive detection was the one 

employing 100 µM luminol and 5 Units/ml HRP, with an LLOD of 9.0x10-8. For 

this combination of luminol and HRP further measurements were performed, in 

order to build a more detailed profile of the detection of H2O2, and its graphical 

representation. Using the same methods of data analysis as shown in Fig. 3.2, 

the standard curve (Fig. 3.3) and the calibration curve (Fig. 3.4) were drawn for 

both the maximal light output (peaks), and the integrated light output. The 

observed LLOD agrees with published literature for similar batch assay 

development (18x10-8 129, 12x10-8 94,  1x10-8 130) and is within range for H2O2 

production from photosynthetic material. The relative standard deviation was 

less than 8% from five repeated measurements of a 1x10-6 H2O2 sample. 

 

Table 3.1 Lower limit of H 2O2 chemiluminescence detection calculated for all 
combinations of four luminol and five HRP concentra tions. 
Luminol conc. 
(M) HRP concentration (Units of activity/ml) 

 50 U/ml 20 U/ml 10 U/ml 5 U/ml 1 U/ml 
10 mM 9.3x10-7 8.5x10-7 8.5x10-7 6.7x10-7 7.5x10-7 

1 mM 4.6x10-7 5.5x10-7 3.1x10-7 9.5X10-8 5.0x10-7 
100 µM 1.9x10-7 9.9x10-8 9.5x10-8 9.0x10-8 3.5x10-7 

50 µM 1.1x10-6 2.0x10-6 6.7x10-7 1.0x10-7 2.2x10-6 
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Figure 3.3 Standard curve for the chemiluminescence  detection of H 2O2.  
H2O2 was assayed by measuring the chemiluminescence light output detected by the 
spectrometer, produced by the chemiluminescence reaction of [HRP] = 5 U/ml, 
[luminol] = 100 µM, with different [H2O2] = 3.33 nM - 10 µM, in Tris-HCl buffer (10 mM, 
pH 8.5), in 1 min. Each data point is the average of 5 replicates. 
 

The approach of manually injecting a sample containing the H2O2 to be 

measured in a cuvette is subject to poor precision due to non-reproducible 

injection 80. It can however be improved by using a FIA system 104. Research 

done with luminol chemiluminescence reaction established a RSD ±13% when 

sample was manually injected and ±5% when an automatic injector was used. 

The reproducibility was similar whether total light output or peak light intensity 

was measured 78. In the case of the H2O2 chemiluminescence detection, the 

precision of injection of hydrogen peroxide, the volume of hydrogen peroxide 

and the speed of the injection in association with the size of the assay tube all 

affect the rate of the chemiluminescence reaction, the quenching of light 

emission and the precision 128. This explains the RSD values seen in the results 

of the standard curve (Fig. 3.3) and generally in all results obtained with the 

batch assay. 
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Figure 3.4 Calibration curve for the chemiluminesce nce detection of H 2O2. 
H2O2 was assayed by measuring the chemiluminescence light output detected by the 
spectrometer, produced by the chemiluminescence reaction of [HRP] = 5 U/ml, 
[luminol] = 100 µM, with different [H2O2], in Tris-HCl buffer (10 mM, pH 8.5), in 1 min. 
Each data point is the average of 3 replicates. 
 

3.3.3 Investigation into the use of different pH  

Luminol is more reactive at high pH according to the literature 124, and 

confirmation of the potential increase in chemiluminescence signal intensity 

obtained when doing so was sought. Therefore, the chemiluminescence 

detection of H2O2 was performed at pH 12. As it can be seen in Figure 3.5, the 

assay with the high pH has a lower H2O2 detection range, as well as a higher 

overall light output. However, as at pH 12 HRP has a half-life of 21 minutes 124 

and the fact that the high pH affects irreversibly the activity of HRP, meant that 

the pH 12 could not be considered further. 

 
 



 57 

0

200

400

600

800

1000

1200

0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000

[H2O2] / µM

Lu
m

in
es

ce
nc

e 
si

gn
al

 in
te

ns
ity

 / 
ar

b.
 u

ni
ts

Maximum luminescence (pH 8.5)
Maximum luminescence (pH 12)

 
Figure 3.5 Comparison of standard curves of H 2O2 detection for two different pH 
values. 
Chemiluminescence light output for H2O2 detected by the spectrometer, produced by 
the chemiluminescence reaction of [HRP] = 5 U/ml, [luminol] = 100 µM, in Tris-HCl 
buffer (10 mM) in 1 min. The pH was 8.5 for ■, and 12 for ○. Each data point is the 
average of 3 replicates. 
 

3.3.4 Investigation in the effect of varying the be nch-top detector's 

amplification methodology 

In order to ensure that the experimental setup was adjusted in an optimal 

fashion, a series of measurements were performed in order to identify the 

appropriate level of amplification that the light produced by the 

chemiluminescence reaction would be receiving by the embedded circuitry of 

the PMT detector. The bench-top Varian Eclipse spectrometer's proprietary 

software allows for a user to choose from 3 pre-defined settings of "high", 

"medium" or "low" PMT voltage, each corresponding to a different level of 

"gain", i.e. amplification to be applied to the signal produced by the detector in 

response to the light detected. It should be noted that the sensitivity of the 

system is not increased as such when the PMT voltage is increased. Figure 3.6 

displays the resulting changes of the detector's output values (arbitrary units) 
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when varying the PMT voltage between the three pre-defined levels. Increasing 

the amplification of the signal by varying the PMT voltage results in a marked 

change in the peak signal intensity obtained by a typical chemiluminescence 

measurement; as it can be seen, the highest concentration of H2O2 that the 

spectrometer can detect is reduced as the PMT voltage increases. What is 

more, the subsequent H2O2 concentrations that can be adequately detected 

achieve a smoother response with the "medium" voltage setting, compared to 

the "low" setting. In addition, given the potential focus on the smaller 

concentrations of H2O2 to be detected, in the micromolar region or less, it would 

not be necessary to allow for millimolar or higher concentrations of H2O2 to be 

adequately detected.  Thus, it was decided that no amplification gain would be 

applied to all subsequent experiments performed with the particular 

spectrometer, as this would allow for a wider range of detection. 
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Figure 3.6 Effect of PMT amplification voltage on c hemiluminescence H 2O2 
detection. 
H2O2 detection by the chemiluminescence light output detected by the Varian Eclipse 
spectrometer with different signal amplification voltages applied. Concentrations: [H2O2] 
= 1 nM -1 M, [HRP] = 5 U/ml, [luminol] = 100 µM, in Tris-HCl buffer (10 mM, pH 8.5). 
Each data point is the average of 3 replicates. 
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3.3.5 Investigation in the effect of varying physic al parameters of the 

sample mixing process 

In order to optimise the experimental conditions and processes as well as to 

minimise potential loss of useful signal intensity potentially detected, an 

investigation into some parameters of the mixing of reagents was performed. As 

described in more detail in the Materials and Methods of this chapter (Section 

3.2), for the cuvette-based assay, for the detection of H2O2 using the HRP-

mediated luminol chemiluminescence reaction, 330 µl of the sample to be 

measured were introduced in a cuvette already containing 330 µl of luminol and 

330 µl of HRP. This was achieved by expelling the H2O2-containing sample, 

using the common manual pipetting action associated with standard air-

displacement pipettes, in the cuvette. The chemiluminescence reaction is 

initiated the moment the H2O2 sample is dispensed in the cuvette containing the 

rest of the reagents. It has therefore been of great importance to ensure that the 

dispensing method used was uniform and optimal. The aspiration step of the 

common pipetting action does not introduce any unreasonable elements of 

variation; however, the dispensing step can be affected by the type of pipette tip 

used. Two different pipette tips, of different lengths, were used in the collection 

and discharge of the sample. It was hypothesised that the length of the pipette 

tip used could then affect other parameters of the pipetting action and hence 

introduce variation to the mixing of the reagents. One tip had a length of 3.5 cm 

(pipette tip "s"), while pipette tip "l" had a length of 5.5 cm.  

 

Another parameter that could vary significantly the flow dynamics of the mixing 

of the reagents that occurs when dispensing the H2O2 sample into the cuvette, 

is the angle between the pipette tip and the cuvette's inner wall. This is an 

important parameter that pipette manufacturers usually highlight in pipette 

manuals 131, suggesting, as good practice, that pipette users dispense the 

aspirated liquid from the pipette tip into the cuvette indirectly, i.e. against the 

walls of the cuvette, rather that directly into the centre of the cuvette. It is 

expected that this is of even greater importance when using a higher than 
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normal expelling force to the sample, in order to achieve that same greater 

mixing that will be affecting the reaction dynamics, as is the case in the work 

presented here. Given the manual nature of the procedure, it was not 

achievable to keep the angle of pipetting precisely constant to the desired 

angle, but all care was taken to ensure that discrepancies were kept to a 

minimum. Two different angles were used while expelling the sample into the 

cuvette, approximately 35° and 60° between the vertical wall of the cuvette and 

the tip (Fig. 3.7).  

 
Figure 3.7 Schematic of the different pipetting ang les.  
Representation of the two different angles between the pipette tip and the cuvette wall 
employed when releasing the H2O2-containing sample in the cuvette containing the 
luminol and HRP. The left schematic depicts an angle of 35° while the schematic on 
the right represents the 60° angle, as can be seen by t he lengths of the angles' arcs, 
drawn in red colour. 
 

The length of the pipette tips and the angle in which they were used were 

assessed combinatorially. The results of altering these two parameters can be 

seen in Figure 3.8. It is apparent that altering these two experimental method 

parameters has a significant effect on the performance of the assay for the 

detection of H2O2. Based on the results obtained, it was decided to always 
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employ the longer pipette tips and dispense the sample with a 60° angle 

between the tip and the cuvette wall. 
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Figure 3.8 Effect of pipetting parameters on the ch emiluminescence detection of 
H2O2. 
Chemiluminescence light output detected by the spectrometer with different 
combinations of varying the pipette tip used as well as the angle of dispensing the 
sample. [H2O2] = 1 µM, [HRP] = 5 U/ml, [luminol] = 100 µM, in Tris-HCl buffer (100 mM, 
pH 8.5). Each data point is the average of 3 replicates. 
 
 

3.4 General discussion 

In Chapter 3, the establishment of the standard chemiluminescence assay for 

the detection of hydrogen peroxide was described. The concentrations of the 

reagents (luminol and HRP) were optimised for the most sensitive detection of 

hydrogen peroxide. It was necessary for instrumentation (PMT gain) as well as 

other parameters (pipetting) of the batch assay to also be optimised, as the 

batch, bench-top, manual method employed for the conduct of the experiments 

introduces methodological parameters that required optimisation and 

standardisation. This work will form the basis of consequently researching the 

chemiluminescence detection of the probable production of hydrogen peroxide 

by photosynthetic material, and inhibition thereof by certain classes of 
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herbicides. Having established an optimised assay for the detection of standard 

H2O2, the focus can now be placed on the source of the H2O2 being replaced by 

light-induced photosynthesis by-production from photosynthetic material. 
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Chapter 4: Bench-top Batch Assay for the Detection of Herbicides 

using HRP-mediated Luminol Chemiluminescence 

 

Chapter 4. a 

4.1 Introduction 

Having established an optimised HRP-mediated luminol chemiluminescence 

assay for the detection of standard H2O2, the focus was placed on the source of 

the H2O2 being replaced by light-induced production from photosynthetic 

material.  

 

Although the photosynthetic cycle has not been completely elucidated, it has 

become an established fact that H2O2 is produced at some step of the cycle. 

Initially, whole chloroplasts were isolated and tested for H2O2 production instead 

of any sub-chloroplast organelles, as the chloroplasts have been shown to fully 

participate in the whole photosynthetic cycle, and thus potentially produce H2O2, 

and are easier to isolate 8. Later, isolated thylakoids, a sub-chloroplast 

organelle, were isolated and tested for H2O2 production, and the majority of the 

work presented in this chapter was performed with thylakoids. Various isolation 

protocols, for both chloroplasts and thylakoids, were sought in the literature and 

repeatedly featured protocols were accepted as the standard  / optimised.  

 

In order to investigate the ability to effect the production of H2O2, isolated 

chloroplasts and thylakoids were illuminated and then mixed with luminol and 

HRP in order to detect any produced H2O2 (Section 4.2 and 4.3). The 

production of H2O2 was optimised in order to allow for the highest H2O2 yields, 

for a variety of parameters that could potentially be affecting the H2O2 

production during the illumination step.  
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The isolated thylakoid preparations were then used further in order to 

investigate the inhibition of the production of H2O2, following their incubation 

with herbicides (Section 4.4). Ability to report a relationship between herbicide 

concentration and H2O2 produced, in a batch assay format, would form the 

basis of the project's further direction.  

 

Section 4.5 includes the author's critical review of the effect and relevance of 

the two standard methods used in plant research to report the 'health' or ability 

of plants, plant cells, or subcellular organelles to photosynthesise. 

 

4.2 Bench-top batch assay for the detection of H 2O2 produced by 

illuminated chloroplasts, using HRP-mediated lumino l 

chemiluminescence 

4.2.1 Introduction  

A key objective for the successful completion of the work presented in the thesis 

is the establishment of a causative link between the presence of 

photosynthesis-inhibiting herbicides in an aqueous sample and a measurable 

change in a physico-chemical parameter of photosynthetic plant material, when 

in contact with the sample. 

 

In order to achieve the central aim of detecting herbicides by quantifying their 

disrupting effect imposed on the photosynthetic ability of plant material, and 

based on the literature, as reported in Chapter 2, it was initially decided to use 

chloroplasts isolated from spinach plant leaf cells. There is published research 

that has utilised whole chloroplasts as, essentially, the biological component 

that, with an external effect taking place, such as the introduction of a chemical, 

will alter in morphology or activity, with that change being detected and reported 

further measured electrochemically, thus forming a biosensor 42-44. Although the 

photosynthetic cycle has not been completely elucidated, it has become an 

established fact that H2O2 is produced at some step of the cycle 49. It has been 

reported previously that H2O2 produced by isolated chloroplasts lamellae has 
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been detected 132, thus chloroplasts appeared as promising biological elements 

to be used for the purpose of this project, also being easy to isolate, relatively to 

other sub-chloroplast organelles. 

 

Therefore, chloroplasts were isolated, and the possible stimulation of H2O2 

production was examined by illuminating the chloroplasts and measuring any 

produced H2O2 using the HRP-mediated luminol chemiluminescence. A variety 

of values for parameters of the chloroplasts illumination step were identified in a 

literature search; the illumination time varied greatly in the literature from 

milliseconds to minutes, while the distance from the light source was generally 

kept to the minimum possible allowed from the experimental setups employed. 

The type of light source used varied greatly depending on the application, with 

Tungsten filament lamps or halogen lamps in non-miniaturised experiments 

commonly used, or LEDs for miniaturised setups 49.  

 

4.2.2 Materials and methods  

In experiments testing for chemiluminescence signal potentially resulting from 

H2O2 produced by illuminated chloroplasts, the setup and method were kept 

similar to those used for the standard luminol-HRP-H2O2 cuvette assay as 

described in Section 3.2, apart from the H2O2 sample's origin, preparation and 

illumination steps. More specifically, the 330 µl of a known H2O2 concentration 

sample that was previously pipetted into a cuvette containing 660 µl of luminol 

and HRP was replaced by 330 µl of an isolated chloroplast-containing aliquot, 

as the aim of the experiments described in Section 4.2 was to identify and 

quantify the production of H2O2 by chloroplasts.  

 

4.2.2.1 Chloroplast isolation methods 

There is a variety of isolation methods; mechanical isolation methods are the 

most common. These are more likely to succeed for a limited number of 

species, such as pea and spinach, as opposed to chemical and enzymatic 

permeabilisation of cells 133. The age of the plant material is an important factor 
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in determining the yield of the desired organelles; the yield decreases rapidly 

with the age of the plant, as organelles aggregate into sticky lumps, which is the 

most serious problem during organelle isolation. Hence leaves of baby spinach 

plants were used in order to isolate the chloroplasts 134.  

 

Chloroplast preparations, as used in experiments described in Section 4.2, were 

prepared using two different protocols, Chloroplast Isolation Protocol 1 and 2, 

coded as Ch0a and Ch0b. These were identified as common chloroplast 

isolation protocols used in the literature. Full step-by-step descriptions follow. 

 

4.2.2.1.1 Chloroplast isolation protocol 1 (Ch0a) 

Chloroplast isolation was performed using a modification of a protocol described 

previously 26. One hundred grams (fresh weight) of fresh baby spinach leaves 

(Tesco Stores Ltd., Cheshunt, Hertfordshire, UK, Bedford Branch) were washed 

with distilled water, dried on filter paper and homogenised in a blender, in 300 

ml of extraction buffer (0.35 M sucrose, 50 mM Tris-HCl, 10 mM NaCl, pH 8.0). 

The homogenate was filtered through 4 layers of cheese-cloth and through 

sieves with a pore diameter 100 µm. Centrifugation was performed for 10 min at 

2000 g at 4°C (Model J2-21 centrifuge, Beckman, German y). The pellet was 

resuspended in extraction buffer. The final preparation was divided in 200 µl 

aliquots in Eppendorf tubes, immersed in liquid nitrogen, and then stored at  

-80°C. The buffers were at 4°C, the room temperature  was 15°C, and the 

ambient light was kept at the bare minimum necessary to conduct the work. The 

isolation was carried out post-sunset, in order to minimise the ambient light in 

the otherwise well-lit area of the centrifuge. All chemicals were from Sigma 

Chemical Company Ltd. (Gillingham, UK).  

 

4.2.2.1.2 Chloroplast isolation protocol 2 (Ch0b) 

Chloroplast isolation was performed using a modification based on two 

variations of the same protocol, as described in 135 and in 136. Thirty five grams 

(fresh weight)  of fresh baby spinach leaves (Tesco Stores Ltd., Cheshunt, 

Hertfordshire, UK, Bedford Branch) were washed with distilled water, dried on 
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filter paper and homogenised in a blender, in 100 ml of a partially frozen slurry 

of buffer (0.4 M sorbitol, 25 mM tris(hydroxymethyl)-methylglycin-NaOH, pH 8). 

The homogenate was filtered through 10 layers of muslin with an added 2 cm 

layer of cotton wool. The filtrate was centrifuged at 2500 g for 1 min at 4°C 

(Model J2-21 centrifuge, Beckman, Germany). The supernatant was discarded 

and the pellet was resuspended in same buffer. The final preparation was 

divided in 200 µl aliquots in Eppendorf tubes, immersed in liquid nitrogen, and 

then stored at -80°C. The buffers were at 4°C, the ro om temperature was 15°C, 

and the ambient light was kept at the bare minimum necessary to conduct the 

work. The isolation was carried out post-sunset, in order to minimise the 

ambient light in the otherwise well-lit area of the centrifuge. All chemicals were 

from Sigma Chemical Company Ltd. (Gillingham, UK). 

 

4.2.2.2 Chloroplast illumination and chemiluminesce nce H2O2 detection 

methodology 

Trizma, hydrochloric acid (HCl), 5-amino-2,3-dihydrophthalazine-1,4-dione 

sodium salt (luminol sodium salt), HRP (type II, 148 U/mg), MES, NaOH, 

sucrose and hydrogen peroxide (H2O2) (30% w/w) were purchased from Sigma 

Chemical Company Ltd. (Gillingham, UK). The Tris-HCl buffer (10 mM, pH 8.5) 

was prepared using reverse-osmosis (RO) water. Buffer "A2" was prepared with 

0.4 M sucrose in 10 mM Tris-HCl, pH 8.5. Buffer "B1" was 10 mM MES-NaOH, 

pH 7.0, and buffer "B2" was prepared with the addition of 0.4 M sucrose in 

buffer "B1". Stock solutions of luminol (30 mM), HRP (150 U/ml) and H2O2 (30 

µM) were prepared in Tris-HCl buffer, 10 mM, pH 8.5, unless otherwise stated. 

The final solutions of the appropriate concentrations of the reagents were 

prepared freshly each day, unless stated otherwise.  

 

The experiments described in the current section, Section 4.2, were based on 

the HRP-mediated luminol chemiluminescence reaction in cuvettes using a 

bench-top spectrometer, with the H2O2 required for the reaction being provided 

by illuminated isolated chloroplast samples. It is therefore a variation of the 

experimental process of detecting known H2O2 samples using 
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chemiluminescence, as described in Section 3.2. The sequence of actions that 

formed a single measurement was based on that described in Section 3.2, with 

the crucial illumination of the sample as an added step, due to the different 

nature of the sample itself. 

  

The steps thus followed are: 

• 330 µl of luminol (100 µM) in Tris-HCl buffer (10 mM, pH 8.5) and 330 µl of 

HRP (5 Units/ml) in Tris-HCl buffer (10 mM, pH 8.5) were added in a Kartell 

disposable semi-micro optical polystyrene cuvette (Thermo Fisher Scientific 

Ltd., Loughborough, UK), in a time window of 1 hour before the experiment 

to follow.   

• The cuvette with 660 µl of luminol and HRP in Tris-HCl buffer (10 mM, pH 

8.5, unless otherwise stated) was placed in the sample holding compartment 

of a Cary Eclipse fluorescence spectrophotometer (Varian UK Ltd., Oxford, 

UK). The spectrometer was set up, via the use of its bespoke software, to 

record the intensity of detected light over 60 seconds.  

• In order to induce the production of H2O2 by the chloroplasts, the sample 

illumination step was undertaken: 

o The previously isolated chloroplast preparations were diluted in a 

suitable buffer in order to form the measuring sample (three 

different buffers and three different dilutions tested). 

o A 330 µl diluted sample was aspirated in a pipette tip attached to 

an air-displacement pipette. 

o The pipette was placed 10 cm underneath a JC12V20W halogen 

lamp (20 watts, 350 lumens)(EiKO Ltd. Kansas, USA), with a 

borosilicate Pyrex glass Petri dish (SciLabware Ltd, Stone UK) 

containing water in between the pipette tip containing the sample 

and the light source (Fig. 4.1). 

o The light source was powered and illumination took place, for a 

variety of duration of time (10 – 120 s). 

o When the designated illumination time ended, the light source was 

switched off. 
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• Using a PC interface, the spectrometer's detection process was initiated the 

moment the illumination ended, and 10 seconds later the aliquot containing 

the previously illuminated chloroplast sample was forcefully pipetted 

manually in the cuvette, thus resulting in the initiation of any potential 

chemiluminescence reaction between luminol and previously produced 

H2O2, in the presence of HRP.  

• At the end of 1 min, the spectrometer would stop recording the intensity of 

the light detected, and would produce a file containing the light intensity 

recorded over time, in arbitrary units, every 100 ms, over 1 minute. Microsoft 

Office Excel 2003 was used to further analyse the data. 

 

 
Figure 4.1 Schematic representation of the experime ntal setup for the 

illumination of chloroplasts by a halogen lamp.  

The chloroplast sample is contained within the pipette tip, in order to allow for the fast 
transfer of the sample post-illumination to the cuvette with the HRP and luminol. Not to 
scale. 
 

It should be noted that during the manipulation of the chloroplasts, the ambient 

light was restricted using the same methods employed in the general 

chemiluminescence assay, described in the standard chemiluminescence assay 

Materials and Methods (Section 3.2). 
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4.2.3 Results and discussion 

Using the isolation procedures outlined in the Materials and Methods (Section 

4.2.2.1), two different chloroplast preparations were obtained, coded Ch0a and 

Ch0b. Using these, a multitude of measurements was made with the aim to 

achieve, and optimise, the production of H2O2 by chloroplasts following 

illumination, and detection thereof. Some parameters were therefore altered 

between experiments, aiming to identify the optimal conditions for achieving an 

H2O2 production from chloroplasts. 

 

4.2.3.1 Effect of different buffers on H 2O2 production by chloroplasts  

Different buffers were used to dilute the concentrated chloroplast preparations 

to the desired chlorophyll content concentration, prior to the illumination: 

• Buffer "A1": 10 mM Tris-HCl, pH 8.5,  

• Buffer "A2": 0.4 M sucrose, 10 mM Tris-HCl, pH 8.5,  

• Buffer "B1": 10 mM MES-NaOH, pH 7.0,  

• Buffer "B2": 0.4 M sucrose, 10 mM MES-NaOH, pH 7.0. 

 

This was an attempt to investigate not only the effect of different buffers with 

different pH on the production of hydrogen peroxide, but also importantly of 

different osmolarities. Both isolation protocols require the chloroplasts to be 

stored in buffers with a high concentration of a sugar, in order to achieve the 

osmotic balance between the internal and external environments of a 

chloroplast's wall. This balance therefore removes the osmotic forces that would 

otherwise cause the chloroplasts to swell or loose volume, depending on the 

osmolarity in relation to the external environment. This effect is common to most 

biological membranes, as the osmotic forces are a means of allowing for intra-

extra membrane communication, exchange of analytes etc.  

 

The results of using the different dilution buffers on the production of H2O2 by 

the two different chloroplast preparations, as measured by the 

chemiluminescence detection of any produced H2O2, are presented in Table 
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4.1. As it can be seen from the results presented, no chemiluminescence signal 

was obtained, suggesting that no H2O2 was produced by the chloroplasts or 

successfully detected following the production. 

 

Table 4.1 Peak signal intensity (background subtrac ted) obtained from the HRP-

mediated luminol chemiluminescence with H 2O2 provided by illuminated 

chloroplasts diluted in different buffers. 

 Chemiluminescence signal intensity 

Buffer Chloroplasts Ch0a Chloroplasts Ch0b 

Buffer "A1" None detected None detected 

Buffer "A2" None detected None detected 

Buffer "B1" None detected None detected 

Buffer "B2" None detected None detected 
 
The signal intensities presented, detected by a bench-top spectrophotometer, resulted 
from the production of light by the cuvette-based chemiluminescence reaction of 
luminol, HRP and H2O2. [HRP] = 5 U/ml, [luminol] = 100 µM, in Tris-HCl buffer (10 mM, 
pH 8.5). Any H2O2 present was previously produced by illuminating the two different 
preparations of chloroplasts with a halogen lamp (20 watts, 350 lumens) at a distance 
of 10 cm for 1 min, while aspirated in a semi-transparent pipette tip. The chloroplast 
preparations were diluted in the following buffers: buffer "A1" (10 mM Tris-HCl buffer, 
adjusted to pH 8.5), buffer "A2" (0.4 M sucrose, 10 mM Tris-HCl buffer, adjusted to pH 
8.5), buffer "B1" (10 mM MES, brought to pH 7.0 with NaOH) and buffer "B2" (0.4 M 
sucrose, 10 mM MES, brought to pH 7.0 with NaOH). Chloroplasts were diluted to 
achieve a chlorophyll content of 0.1 mg/ml. Average values shown are the results of 3 
replicates. 
 

4.2.3.2 Effect of different dilution factors on H 2O2 production by 

chloroplasts  

In order to initiate the process of potentially identifying the quantity of 

chloroplasts that would produce a high H2O2 concentration with respect to the 

absorbance of light inherent to the chloroplasts due to their colour and non-

transparency, i.e. optical density, the following investigation was performed.  

 

Various dilutions of the isolated chloroplasts were tested for the illumination-

induced production of H2O2: 

• Dilution A: Adjusted by volume to chlorophyll content 0.284 mg/ml, 
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• Dilution B: Adjusted by volume to chlorophyll content 0.05 mg/ml, 

• Dilution C: Adjusted by volume to chlorophyll content 0.1 mg/ml, 

• Dilution D: Adjusted by volume to chlorophyll content 0.5 mg/ml. 

 

The results of using the different dilution factors on the production of H2O2 by 

the two different chloroplast preparations, as measured by the 

chemiluminescence detection of any produced H2O2, are presented in Table 

4.2. As it can be seen from the results presented, no chemiluminescence signal 

was obtained, suggesting that no H2O2 was produced by the chloroplasts or 

successfully detected following the production. 

 

Table 4.2 Peak signal intensity (background subtrac ted) obtained from the HRP-

mediated luminol chemiluminescence with H 2O2 provided by illuminated 

chloroplasts diluted in different degrees. 

 Chemiluminescence signal intensity 
Chloroplast 

concentration Chloroplasts Ch0a Chloroplasts Ch0b 

Dilution A None detected None detected 

Dilution B None detected None detected 

Dilution C None detected None detected 

Dilution D None detected None detected 
The signal intensities presented, detected by a bench-top spectrophotometer, resulted 
from the production of light by the cuvette-based chemiluminescence reaction of 
luminol, HRP and H2O2. [HRP] = 5 U/ml, [luminol] = 100 µM, in Tris-HCl buffer (10 mM, 
pH 8.5). Any H2O2 present was previously produced by illuminating the two different 
preparations of chloroplasts with a halogen lamp (20 watts, 350 lumens) at a distance 
of 10 cm for 1 min, while aspirated in a semi-transparent pipette tip. The chloroplast 
preparations were diluted in buffer "A2" (0.4 M sucrose, 10 mM Tris-HCl buffer, 
adjusted to pH 8.5), in four different dilutions (A: [chlorophyll] = 0.284 mg/ml, B: 
[chlorophyll] = 0.05 mg/ml, C: [chlorophyll] = 0.1 mg/ml and D: [chlorophyll] = 0.5 
mg/ml. Average values shown are the results of 3 replicates. 
 

4.2.3.3 Effect of different illumination times on H 2O2 production by 

chloroplasts  

It was expected that varying the duration of the illumination process would be 

affecting the amount of H2O2 produced by chloroplasts. Therefore, during the 
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step of the illumination of chloroplasts, different durations of illumination were 

employed: 

• 10 s 

• 20 s  

• 60 s 

• 120 s. 

 

The results of using the different illumination times on the production of H2O2 by 

the two different chloroplast preparations, as measured by the 

chemiluminescence detection of any produced H2O2, are presented in Table 

4.3. As it can be seen from the results presented, no chemiluminescence signal 

was obtained, suggesting that no H2O2 was produced by the chloroplasts or 

successfully detected following the production. 

 

Table 4.3 Peak signal intensity (background subtrac ted) obtained from the HRP-

mediated luminol chemiluminescence with H 2O2 provided by illuminated 

chloroplasts illuminated for different times. 

 Chemiluminescence signal intensity 
Illumination 

duration Chloroplasts Ch0a Chloroplasts Ch0b 

10 s None detected None detected 

20 s None detected None detected 

60 s None detected None detected 

120 s None detected None detected 
The signal intensities presented, detected by a bench-top spectrophotometer, resulted 
from the production of light by the cuvette-based chemiluminescence reaction of 
luminol, HRP and H2O2. [HRP] = 5 U/ml, [luminol] = 100 µM, in Tris-HCl buffer (10 mM, 
pH 8.5). Any H2O2 present was previously produced by illuminating the two different 
preparations of chloroplasts with a halogen lamp (20 watts, 350 lumens) at a distance 
of 10 cm, while aspirated in a semi-transparent pipette tip. The chloroplast preparations 
were diluted in buffer "A2" (0.4 M sucrose, 10 mM Tris-HCl buffer, adjusted to pH 8.5), 
with a [chlorophyll] = 0.1 mg/ml. The illumination duration was varied between 10 – 120 
s. Average values shown are the results of 3 replicates. 
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4.2.3.4 Effect of the addition of H 2O2 'spikes' to chemiluminescence signal 

Following the inability to detect a chloroplast-derived H2O2 chemiluminescence 

signal, measurements were taken when illuminated as well as non-illuminated 

chloroplasts were spiked with known H2O2 concentrations, in order to observe 

whether the chemiluminescence reaction that was expected to be taking place 

with the added H2O2 would be detected. It was observed that adding known 

concentrations of H2O2 (0.1 µM - 10 µM) in the final chloroplast sample, even 

when omitting the illumination step, did not produce any chemiluminescence 

signal; results are presented in Table 4.4. 

 

Table 4.4 Signal intensity (background subtracted) obtained from the HRP-

mediated luminol chemiluminescence with H 2O2 provided by illuminated 

chloroplasts illuminated with added H 2O2 in sample. 

 Chemiluminescence signal intensity 

Added H 2O2 Chloroplasts Ch0a Chloroplasts Ch0b 

(µM) Illuminated Non- Illuminated Illuminated Non- Illuminated 

0.1 N/D N/D N/D N/D 

1 N/D N/D N/D N/D 

10 N/D N/D N/D N/D 
The signal intensities presented, detected by a bench-top spectrophotometer, resulted 
from the production of light by the cuvette-based chemiluminescence reaction of 
luminol, HRP and H2O2. [HRP] = 5 U/ml, [luminol] = 100 µM, in Tris-HCl buffer (10 mM, 
pH 8.5). The H2O2 present was an added 'spike' of known H2O2 samples of 0.1 – 10 µM 
(final concentration) in the Non-illuminated samples, or potentially also from the 
chloroplasts in the case of the illuminated samples. The chloroplast preparations were 
diluted in buffer "A2" (0.4 M sucrose, 10 mM Tris-HCl buffer, adjusted to pH 8.5), with a 
[chlorophyll] = 0.1 mg/ml. Average values shown are the results of 3 replicates. N/D: 
None detected. 
 

Absorption of the blue light produced during luminol chemiluminescence by 

chloroplasts was considered as a possible inhibiting factor. An absorbance scan 

of a chloroplast sample does reveal that a peak of absorbance lies in the region 

very close to the peak obtained from the chemiluminescence of luminol (Fig. 

4.2), thus making the hypothesis plausible. 
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Figure 4.2 Absorbance scan of a chloroplast sample.  

The chlorophyll content of the chloroplasts sample was 0.2837 mg/ml. The blue trace 
represents the luminol chemiluminescence signal spectrum distribution. 
 

However, repeating the measurements presented in Table 4.4 having removed 

by centrifugation the chloroplasts following the addition of the H2O2 spikes but 

prior to the chemiluminescence assay gave no signal. The same absence of 

signal was observed when the centrifuged chloroplasts' supernatant was then 

spiked with H2O2, following the centrifugation step.  

 

Osmotically breaking up the chloroplasts post-illumination, and thus releasing 

their content, and then measuring the chemiluminescence signal achieved and 

detected using the standard methodology still failed to produce any 

chemiluminescence signal. 

 

4.2.4 Conclusions 

As it can be seen from the results presented in Section 4.2.3, no 

chemiluminescence signal was detected following the illumination of isolated 

chloroplasts, under a variety of different conditions. More importantly, the 

results presented in Section 4.2.3.4 suggest that it is likely that the 
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chemiluminescence response is influenced not by quenching of the light 

emission, but by elimination of the H2O2. It has been found that this affects 

added H2O2, and therefore possibly any H2O2 produced by the chloroplasts as 

well. It appears to be an effect inherent in the chloroplasts preparations, not 

necessarily within the chloroplasts however, as the scavenging / quenching of 

added H2O2 is observed when using the chloroplasts preparations' supernatant 

as well as when the chloroplasts are osmotically broken. A final remark is that a 

catalase-type activity is present in the chloroplast preparations. In the literature 

review (Section 2.2.1.3) it is explained in detail that under normal or stress 

conditions, plant cells (and animal cells) use complex means to remove H2O2 

and every other type of radical oxygen species that is produced. Catalase is an 

enzyme present in the cells of plants, animals and aerobic bacteria. It promotes 

the conversion of hydrogen peroxide to water and molecular oxygen: 

2H2O2   to   2H2O + O2 

Catalase also uses hydrogen peroxide to oxidise toxins including phenols, 

formic acid, formaldehyde and alcohols. 

H2O2 + RH2   to   2H2O + R  

 

In order to achieve the production of H2O2 by photosynthetic plant material, 

alternative preparations would therefore have to be considered.   

 

4.3 Bench-top batch assay for the detection of H 2O2 produced by 

illuminated thylakoids using HRP-mediated luminol 

chemiluminescence 

4.3.1 Introduction  

Following the inability to obtain any detection of H2O2 produced by chloroplasts, 

it became necessary to find alternative means of obtaining a 

chemiluminescence signal produced by organelles that take part in the 

photosynthetic oxygen evolution. On the next lower 'level' of organisational 

complexity and completeness of structural organisation is the thylakoid, as 

graphically displayed in Fig. 4.3a and a photograph of a chloroplast with clearly 
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visible the stacks of thylakoids within, in Fig. 4.3b. Thylakoids have been used 

in the literature as the photosynthetic material of choice for H2O2 production 

studies 49, suggesting that catalase-like activity is not found in isolated 

thylakoids. Also, thylakoids are able to take part in the key photosynthetic 

oxygen evolution stages 37; 54; 137.  

 

A review of the literature revealed some isolation protocols that featured 

repeatedly as the preferred isolation methods in many different peer-reviewed 

published research papers by a variety of groups 8; 9; 46-48; 48; 134; 138-147. Based on 

these, and in order to optimise the isolation procedure, three distinctively 

different isolation protocols were tested, with two further variations of two of 

these protocols. All five different isolated thylakoid preparations were then 

tested for H2O2 production by illuminating them and then using the HRP-

mediated luminol chemiluminescence reaction, in exactly the same way as in 

Section 4.2 with the chloroplasts. The effect, and optimisation, of a multitude of 

different experimental parameters were investigated; the results of these 

investigations make up the sub-sections under Section 4.3.3.   

 

 

 

 

Figure 4.3a: Schematic representation of a chloroplast and the thylakoids within. 
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Figure 4.3 Schematic and photographic representatio n of a chloroplast and the 

thylakoids within. 

 

Figure 4.3b: Chloroplast cross-section, showing clearly the stacks of thylakoid 
disks. Photograph by A.D. Greenwood, then at Dept. of Botany, Imperial College 
London, circa early 1970s; scan by Dr. J. Nield. With permission. 
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4.3.2 Materials and methods 

In experiments testing for chemiluminescence signal potentially resulting from 

H2O2 produced by thylakoids, the setup and method were kept similar to the 

standard luminol-HRP-H2O2 cuvette assay as described in Section 3.2, apart 

from the H2O2 sample's origin, preparation and illumination steps. More 

specifically, the 330 µl of a known H2O2 concentration sample that was 

previously pipetted into a cuvette with 660 µl of luminol and HRP, was replaced 

by 330 µl of an isolated thylakoid-containing aliquot, as the aim of the 

experiments described in Section 4.3 was to identify and quantify the production 

of H2O2 by thylakoids. 

 

4.3.2.1 Thylakoid isolation methods 

Thylakoid preparations, as used in experiments described in Section 4.3, were 

made using five different protocols or variations thereof (Thylakoid Isolation 

Protocol 1, 2, 3, 4 and 5). Full step-by-step descriptions follow. 

 

4.3.2.1.1 Thylakoid isolation protocol 1 (Ch1) 

Thylakoid isolation was performed using a modification of a protocol described 

previously 148. One hundred grams (fresh weight) of fresh baby spinach leaves 

(Tesco Stores Ltd., Cheshunt, Hertfordshire, UK, Bedford Branch) were washed 

with distilled water and homogenised in a blender, in 300 ml of extraction buffer 

(0.3 M mannitol, 30 mM tetrasodium pyrophosphate, 2 mM 

ethylenediaminetetraacedic acid (EDTA), 0.1% bovine serum albumin (BSA), 

pH 7.9). The homogenate was filtrated through sieves with a pore diameter of 

100 µm. Centrifugation was performed for 1 min at 600 g at 4°C (Model J2-21 

centrifuge, Beckman, Germany). The pellet was resuspended in the rinsing 

buffer (0.3 M mannitol, 2 mM 4-morpholinepropanesulfonic acid (MOPS), 2 mM 

ethylene-diaminetetraacedic acid (EDTA), 0.1% bovine serum albumin (BSA), 

pH 7.9). The mixture was centrifuged for 1 min at 2000 g at 4°C. The pellet was 

resuspended in 100 ml of distilled water in order to disrupt the chloroplasts. The 

obtained thylakoid membranes were stirred for 10 s, and placed in the rinsing 
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buffer and further centrifuged for 2 min at 2000 g. The pellet was resuspended 

in the rinsing buffer. The final preparation was divided in 200 µl aliquots in 

Eppendorf tubes, immersed in liquid nitrogen, and then stored at -80°C. The 

buffers were at 4°C, the room temperature was 15°C, a nd the ambient light was 

kept at the bare minimum. The isolation was carried out post-sunset, in order to 

minimise the ambient light in the well-lit area of the centrifuge. All chemicals 

were from Sigma Chemical Company Ltd. (Gillingham, UK).  

 

4.3.2.1.2 Thylakoid isolation protocol 2 (Ch2) 

Thylakoid isolation was performed using a modification / combination of 

subsequent steps of protocols described previously in 135, 149 and 136. One 

hundred grams (fresh weight) of fresh baby spinach leaves (Tesco Stores Ltd., 

Cheshunt, Hertfordshire, UK, Bedford Branch) were washed with distilled water, 

dried on filter paper and homogenised in a blender, in 300 ml of a partially 

frozen slurry of buffer No1 (0.33 M sorbitol, 0.02 mM MgCl2, 20 mM MES, 

brought to pH 6.5 with NaOH). The homogenate was filtered through 2 layers of 

cheese cloth with an added 2 cm layer of cotton wool. The filtrate was 

centrifuged at 2200 g for 60 s at 4°C (Model J2-21 cent rifuge Beckman, 

Germany). The supernatant and the soft pellet were discarded and the pellet 

was resuspended in 250 ml of buffer No2 (0.33 M sorbitol, 0.5 mM Tris base, 

brought to pH 7.5 with HCl), and then centrifuged at 2200 g for 60 s. The 

supernatant and the soft pellet were discarded and the pellet was resuspended 

in a small volume (25 ml) of buffer No3 (0.33 M sorbitol, 1 mM KCl, 1 mM 

Magnesium acetate tetrahydrate, 0.5 mM Tris base, brought to pH 7.5 with 

HCl). The suspension was then incubated in a large volume (225 ml) of 

hypotonic medium, buffer No4 (5 mM MgCl2) for 60 s, followed by the addition 

of an equal volume of buffer No5 (0.66 M sorbitol, 5 mM MgCl2, 40 mM MES, 

brought to pH 6.5 with NaOH). The suspension was then centrifuged at 3000 g 

for 4 min. The pellet was resuspended in the final buffer (5 mM MgCl2, 15 mM 

NaCl, 2 mM MES, brought to pH 6.9 with NaOH). The final preparation was 

divided in 200 µl aliquots in Eppendorf tubes, immersed in liquid nitrogen, and 

then stored at -80°C. The buffers were at 4°C, the ro om temperature was 15°C, 
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and the ambient light was kept at the bare minimum. The isolation was carried 

out post-sunset, in order to minimise the ambient light in the well-lit area of the 

centrifuge. All chemicals were from Sigma Chemical Company Ltd. (Gillingham, 

UK). 

 

4.3.2.1.3 Thylakoid isolation protocol 3 (Ch3) 

The thylakoid isolation was performed using the same protocol employed in the 

thylakoid isolation protocol 2, with a few changes; the first centrifugation step 

lasted 4 min, instead of 1 min, the second centrifugation step lasted 4 min, 

instead of 1 min and the third centrifugation step lasted 10 min instead of 4 min. 

All other details of steps taken were kept the same. 

 

4.3.2.1.4 Thylakoid isolation protocol 4 (Ch4) 

Thylakoid isolation was performed using a modification of a protocol described 

previously 150. Fifty grams (fresh weight) of fresh baby spinach leaves (Tesco 

Stores Ltd., Cheshunt, Hertfordshire, UK, Bedford Branch) were washed with 

distilled water and homogenised in a blender, in 250 ml of buffer No1 (5 mM 

MgCl2, 0.3 M sucrose, 1 mM EDTA, 1 mM PMSF (phenylmethylsulfonylfluoride), 

20 mΜ Tricine, adjusted to pH 7.8 with NaOH). The homogenate was filtrated 

through 4 layers of cheesecloth. Centrifugation was performed for 2 min at 700 

g at 4°C (Model J2-21 centrifuge, Beckman, Germany) and the pellet was 

discarded. Another centrifugation was performed for 20 min at 7500 g, 4°C and 

the supernatant was discarded. The pellet was suspended with 200 ml buffer 

No2 (5 mM MgCl2, 70 mM sucrose, 1 mM PMSF (phenylmethylsulfonylfluoride), 

20 mΜ Tricine, adjusted to pH 7.8 with NaOH). After another centrifugation for 

20 min, at 7500 g, 4°C, the supernatant was discarded. The pellet was 

suspended with minimum quantity of buffer No2, divided in 200 µl aliquots in 

Eppendorf tubes, immersed in liquid nitrogen, and then stored at -80°C. The 

buffers were at 4°C, the room temperature was 15°C, a nd the ambient light was 

kept at the bare minimum. The isolation was carried out post-sunset, in order to 

minimise the ambient light in the well-lit area of the centrifuge. All chemicals 

were from Sigma Chemical Company Ltd. (Gillingham, UK). 
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4.3.2.1.5 Thylakoid isolation protocol 5 (Ch5) 

The thylakoid isolation was performed using the same protocol employed in the 

thylakoid isolation protocol 4, with one change: the protease inhibitor PMSF was 

not included in buffer No1 or buffer No2.  

 

4.3.2.2 Thylakoid illumination and chemiluminescenc e H2O2 detection 

methodology 

Basic chemicals and reagents used (luminol, HRP and preparations thereof) 

were the same as described in 4.2.2.2. The additional buffers prepared, used in 

4.3.3.3, were buffer B (5 mM MgCl2, 15 mM NaCl, 2 mM MES, brought to pH 

6.9 with NaOH), buffer C (5 mM MgCl2, 70 mM sucrose, 1 mM PMSF, 20 mΜ 

Tricine, adjusted to pH 7.8 with NaOH) and buffer D (5 mM MgCl2, 70 mM 

sucrose, 20 mΜ Tricine, adjusted to pH 7.8 with NaOH). The pipette tips used in 

Section 4.3.3.5 were the Fisherbrand 'Blue' and 'Natural' polypropylene 200 µl 

to 1,000 µl tips (Thermo Fisher Scientific Ltd., Loughborough, UK).  

 

The experiments described in the current section, 4.3, were based on the HRP-

mediated luminol chemiluminescence reaction in cuvettes using a bench-top 

spectrometer, with the H2O2 required for the reaction being provided by 

illuminated isolated thylakoid-containing samples. It is therefore a variation of 

the experimental process of detecting known H2O2 samples using 

chemiluminescence, as described in Section 3.2. The sequence of actions that 

formed a single measurement was based on that described in Section 3.2, with 

the crucial illumination of the sample as an added step.  

 

The steps thus followed are: 

• 330 µl of luminol (100 µM) in Tris-HCl buffer (10 mM, pH 8.5) and 330 µl of 

HRP (5 Units/ml) in Tris-HCl buffer (10 mM, pH 8.5) were added in a Kartell 

disposable semi-micro optical polystyrene cuvette (Thermo Fisher Scientific 

Ltd., Loughborough, UK), in a time window of 1 hour before the experiment 

to follow.   
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• The cuvette with 660 µl of luminol and HRP in Tris-HCl buffer (10 mM, pH 

8.5, unless otherwise stated) was placed in the sample holding compartment 

of a Cary Eclipse fluorescence spectrophotometer (Varian UK Ltd., Oxford, 

UK). The spectrometer was set up, via the use of its bespoke software, to 

record the intensity of detected light over 60 seconds.  

• In order to induce the production of H2O2 by the thylakoids, the sample 

illumination step was undertaken: 

o The previously isolated thylakoid preparation was diluted in a 

desired buffer in order to form the measuring sample. 

o A 330 µl diluted sample was aspirated in a pipette tip attached to 

an air-displacement pipette. 

o The pipette was placed in close proximity to the light source, with 

the exact distance varying depending on the source.  

o The light source was powered and illumination took place, for the 

desired duration of time. 

o When the designated illumination time ended, the light source was 

switched off. 

• Using a PC interface, the spectrometer's detection process was initiated the 

moment the illumination ended, and 10 seconds later the aliquot containing 

the previously illuminated chloroplast sample was forcefully pipetted 

manually in the cuvette, thus resulting in the initiation of any potential 

chemiluminescence reaction between luminol and H2O2, in the presence of 

HRP.  

• At the end of 1 min, the spectrometer would stop recording the intensity of 

the light detected, and would produce a file containing the light intensity 

recorded over time, in arbitrary units, every 100 ms, over 1 minute. Microsoft 

Office Excel 2003 was used to further analyse the data. 

 

The illumination step was performed using alternative light sources, or 

variations thereof. The different light sources used to illuminate the thylakoids 

were: 
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• The JC12V20W halogen lamp (20 watts, 350 lumens)(EiKO Ltd. Kansas, 

USA) 

• The above lamp but covered with semi-transparent coloured sheets, 

normally used in light engineering (LEF-64SET, Farnell Ltd, Leeds, UK) 

• A laser-diode light source (630-680 nm, rated output wattage: 1 mW) 

(source and make unknown). 

 

When the JC12V20W halogen lamp was employed, with or without the coloured 

filters, the experimental setup used was as portrayed in Fig. 4.4. The pipette 

was placed 10 cm underneath the lamp, with a borosilicate Pyrex glass Petri 

dish (SciLabware Ltd, Stone UK) containing water in between the pipette tip 

containing the sample, and the light source. 

 

 

 
Figure 4.4 Schematic representation of the experime ntal setup for the 

illumination of thylakoids by a halogen lamp step.  

The thylakoid sample is contained within the pipette tip, in order to allow for the fast 
transfer of the sample post-illumination to the cuvette with the HRP and luminol. Not to 
scale. 
 

When the laser diode was used to illuminate the thylakoid preparation, the set-

up could not be kept the same as with the halogen light source, but had to be 

re-designed, due to the limited spread of light inherent in laser technology. The 
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chosen setup during the illumination with the laser light source can be seen in 

Figure 4.5. 

 

 

Figure 4.5 Schematic representation of the experime ntal setup for the 

illumination of thylakoids by a laser diode.  

The thylakoid sample is contained within the pipette tip, in order to allow for the fast 
transfer of the sample post-illumination to the cuvette with the HRP and luminol. Not to 
scale. 
 

It should be noted that during the manipulation of the thylakoids, the ambient 

light was restricted using the same methods employed in the general 

chemiluminescence assay, described in the standard chemiluminescence assay 

Materials and Methods (Section 3.2). 

 

4.3.3 Results and discussion 

Using the experimental procedure outlined in the Materials and Methods, five 

different thylakoid preparations were obtained by using the five different 

isolation protocols; the resulting thylakoid preparations were code-named Ch1, 

Ch2, Ch3, Ch4 and Ch5.  

 

According to Whatley 151, three different properties of light may separately affect 

the metabolism and development of a plant: its spectral quality, its intensity and 

its duration. The response produced depends initially on the receptive pigment, 

which determines the wavelengths of light which are absorbed, and secondarily 
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on the intensity and duration of illumination. It was therefore decided to 

investigate these parameters. 

Using the five different thylakoid preparations, a multitude of measurements 

was made with the aim to achieve, and optimise, the production of H2O2 by 

thylakoids following illumination, and detection thereof. Some parameters were 

therefore investigated and altered between experiments, aiming to identify the 

optimal. These parameters were: 

• the illumination time 

• the amount of thylakoids being illuminated, as represented by the chlorophyll 

concentration 

• the buffer used during the illumination  

• the distance between the light source and the thylakoids  

• the pipette tip used to hold the thylakoids during the illumination and 

• the light source used to illuminate the thylakoids.  

 

The results presented below show the H2O2 production yields from the different 

thylakoid preparations, when altering one key parameter, while keeping the 

other experimental parameters constant or optimised.  

 

4.3.3.1 Investigation of the effect of different il lumination times on the 

H2O2 production by thylakoids 

It was important to examine the effect of changing the illumination time on the 

production of H2O2 by the different thylakoid samples. A wide range of times 

from 0 to 15 min was investigated in order to identify any patterns. Therefore, 

samples of all five different thylakoid preparations were illuminated, keeping all 

experimental parameters constant, apart from the length of time that the 

illumination took place, before detecting the production of H2O2, using the 

standard chemiluminescence reaction. The results obtained can be seen in 

Figure 4.6.  
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Figure 4.6 Effect of illumination time on the produ ction of H 2O2 by different 

thylakoid preparations.  

The luminescence signal, detected by a bench-top spectrophotometer, resulted from 
the production of light by the cuvette-based chemiluminescence reaction of luminol, 
HRP and H2O2. [HRP] = 5 U/ml, [luminol] = 100 µM, in Tris-HCl buffer (10 mM, pH 8.5). 
The H2O2 was previously produced by illuminating diluted thylakoid preparations with 
an un-filtered halogen lamp (20 watts, 350 lumens) at a distance of 10 cm while 
aspirated in a pipette tip, for an illumination time of 0 – 15 min. The Ch1 thylakoid 
preparation ([chlorophyll] = 284 µg/ml) and the Ch3 thylakoid preparation ([chlorophyll] 
= 237 µg/ml) were diluted in buffer B (5 mM MgCl2, 15 mM NaCl, 2 mM MES, brought 
to pH 6.9 with NaOH). The Ch2 thylakoid preparation ([chlorophyll] = 171 µg/ml), the 
Ch4 thylakoid preparation ([chlorophyll] = 131 µg/ml) and the Ch5 thylakoid preparation 
([chlorophyll] = 64 µg/ml) were diluted in buffer A (10 mM Tris-HCl buffer, adjusted to 
pH 8.5). Average values and the SDs shown are the results of 3 replicates. The R2 
values have been calculated only for the time period 0-10 min. 
 

It is known, that, the greater the duration of illumination the more 

photosynthesis will, in general, be accomplished, under normal physiological 

conditions 151. It can be observed from the results, that, increasing the length of 

illumination time resulted in an increase of H2O2 being produced, although, after 

10 minutes of illumination, there appears to be no more H2O2 being produced. 
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This could be the result of, at some point in time between 10 and 15 min, the 

rate of H2O2 production being reduced to zero, or it could be that H2O2 

quenching is taking place. It is known from the literature 152 that increased 

illumination time results in degradation of thylakoids and other sub-chloroplast 

particles. What is more, H2O2 photoproduction by spinach thylakoids has been 

shown to cease after approximately 10 minutes of continuous illumination in 

isolated thylakoids (17 µg chlorophyll / cm3), illuminated by white light (200 W / 

m2). The generation of highly active oxygen species during electron transport, 

and resulting thylakoid inactivation, has been suggested as the cause 137. 

 

In order to therefore ensure the integrity of thylakoids, particularly for the 

purpose of the detection of herbicides in later experiments, it was decided not to 

extend the illumination time longer than 10 min, as the production of H2O2 would 

not be reliably correlated to the effect of herbicides, as other physiological 

processes may be affecting the production.   

 

As it can be seen, the increase of H2O2 production over time differed for the 

different thylakoid preparations. The relationship is linear, with the R2 values 

very close to 1 for the first 10 minutes of illumination.  

 

4.3.3.2 Investigation of the effect of different ch lorophyll concentrations 

on the H 2O2 production by thylakoids 

The production of H2O2 by the different thylakoid preparations was tested over a 

range of dilutions, in order to identify the optimal thylakoid concentration for 

each different thylakoid preparation, as well as to then also identify the overall 

better performing thylakoid preparation against the other preparations. The 

chlorophyll concentration was used as the indirect descriptor parameter to 

characterise the different final amounts of thylakoids tested, expressed in µg/ml. 

Different dilutions of the five different thylakoid preparations were illuminated in 

order to induce the production of H2O2, which was then detected using the 

HRP-mediated luminol chemiluminescence reaction. All steps were conducted 
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using the standard operating procedure as described in the Methods (Section 

4.3.2.2). The results can be seen in Fig. 4.7 below. 
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Figure 4.7 Effect of thylakoid concentration (repor ted as chlorophyll 

concentration) used during the illumination of diff erent thylakoid preparations on 

the production and detection of H 2O2. 

The luminescence signal, detected by a bench-top spectrophotometer, resulted from 
the production of light by the cuvette-based chemiluminescence reaction of luminol, 
HRP and H2O2. [HRP] = 5 U.ml-1, [luminol] = 100 µM, in Tris-HCl buffer (10 mM, pH 
8.5). The H2O2 was previously produced by illuminating different dilutions of thylakoid 
preparations with an un-filtered halogen lamp (20 watts, 350 lumens) at a distance of 
10 cm for 1 min, while aspirated in a 'white' semi-transparent pipette tip. The thylakoid 
preparations were diluted in the following buffers: Ch1 thylakoid preparation and the 
Ch3 thylakoid preparation were diluted in buffer B (5 mM MgCl2, 15 mM NaCl, 2 mM 
MES, brought to pH 6.9 with NaOH). The Ch2 thylakoid preparation, the Ch4 thylakoid 
preparation and the Ch5 thylakoid preparation were diluted in buffer A (10 mM Tris-HCl 
buffer, adjusted to pH 8.5). Average values and the SDs shown are the results of 3 
replicates. 
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While keeping other experimental parameters constant or optimised, it can be 

seen that, for all different thylakoid preparations, varying the amount of 

thylakoids illuminated resulted in varying amounts of H2O2 being produced 

and/or detected. The different thylakoid preparations did behave differently, but 

no differences in H2O2 production of the order of x101 or more were observed; 

the difference between the lowest (Ch4) and highest (Ch3) maxima was only 

approximately two-fold, from about 25 a.u. to 50 a.u. This suggests that the 

isolation protocols employed for all different thylakoid preparations have been 

relatively optimised throughout the many decades of their use by scientists, and 

thus resulting in relatively non-discriminatory formulations. 

 

For each thylakoid preparation separately, it can be seen that increasing the 

amount of thylakoids illuminated did also result in an increase of H2O2 being 

produced and detected up to a point, while further increase of the thylakoid 

concentration seemingly resulted in a decrease of the H2O2 being produced and 

detected. This was observed independently for all five different thylakoid 

preparations, with the concentration of chlorophyll where the decrease in 

chemiluminescence signal starts, being different for each thylakoid preparation.  

 

As each measurement employs two main stages (the illumination, and thus 

production of H2O2) and the chemiluminescence detection of produced H2O2, 

the decrease in signal could be attributed to either of those two stages. There is 

little knowledge that could be gained on the characteristics of the production of 

H2O2 by the thylakoids, and specifically how varying the concentration of 

thylakoids affects the said production, particularly how and why increasing the 

thylakoid concentration may affect negatively the H2O2 production, without the 

use of equipment, skills and knowledge that were not readily present when the 

work was taking place. Focus was therefore placed on the second stage of a 

measurement, namely the chemiluminescence detection of the produced H2O2. 

 

With the second stage of a measurement being the H2O2 detection after its 

production by illuminated thylakoids, it was considered a possibility that the 
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reduction in chemiluminescence signal could be associated with the detection of 

H2O2 instead. It is likely, that an increase in the concentration of thylakoids while 

the chemiluminescence light production is taking place in the cuvette, also 

results in an increase of the absorption due to the thylakoids in the sample that 

is higher than the increased H2O2 production due to same increased thylakoid 

concentration.  

 

As it can be seen from Fig. 4.8, thylakoid preparations do absorb a significant 

amount of light in the blue region. That is because chlorophyll absorbs most of 

the red and blue part of the spectrum and transmits the green, and hence 

appears green. As luminol chemiluminescence peaks at approx 432 nm, the 

blue light emitted during the H2O2 detection falls within one of the absorbance 

peaks of the thylakoid samples. 
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Figure 4.8 Wavelength absorbance scan of a thylakoi d sample (chlorophyll 

content 0.4 mg/ml). 
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In order to investigate this possibility, measurements were made with known 

concentrations of H2O2 being 'spiked' with illuminated and non-illuminated 

thylakoid preparations. The results of these measurements can be seen in 

Figure 4.9.  
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Figure 4.9 Effect of thylakoid absorption on the de tectability of H 2O2 from a 

standard sample or resulting from the illumination of thylakoids.  

Signal A: light intensity output from the cuvette-based chemiluminescence reaction of 
known H2O2 sample ([H2O2] = 200 – 500 nM) with luminol and HRP ([HRP] = 5 U.ml-1, 
[luminol] = 100 µM, detected by a bench-top spectrophotometer. 
Signal B: light intensity output from the cuvette-based chemiluminescence reaction of 
known H2O2 sample ([H2O2] = 200 – 500 nM) with luminol and HRP ([HRP] = 5 U.ml-1, 
[luminol] = 100 µM, detected by a bench-top spectrophotometer, in the presence of 
illuminated thylakoids (Ch1, [chlorophyll] = 284 µg.ml-1). The Ch1 thylakoid preparation 
was illuminated with an un-filtered halogen lamp (20 watts, 350 lumens) at a distance 
of 10 cm for 1 min, while aspirated in a 'white' semi-transparent pipette tip. 
Signal C: light intensity output from the cuvette-based chemiluminescence reaction of 
known H2O2 sample ([H2O2] = 200 – 500 nM) with luminol and HRP ([HRP] = 5 U.ml-1, 
[luminol] = 100 µM, detected by a bench-top spectrophotometer, in the presence of 
non-illuminated thylakoids (Ch1, [chlorophyll] = 284 µg.ml-1) 
Signal D: light intensity output from the cuvette-based chemiluminescence reaction of 
luminol, HRP and H2O2. [HRP] = 5 U.ml-1, [luminol] = 100 µM, in Tris-HCl buffer. The 
H2O2 was previously produced by illuminating diluted thylakoid preparation (Ch1 
[chlorophyll] = 284 µg.ml-1) with an un-filtered halogen lamp (20 watts, 350 lumens) at a 
distance of 10 cm for 1 min, while aspirated in a 'white' semi-transparent pipette tip. All 
reagents and samples used were made in Tris-HCl buffer (10 mM, pH 8.5). 
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From the results presented in Figure 4.9, it can be observed that the thylakoids' 

pigmentation and density did indeed result in absorption of the 

chemiluminescence-derived light, therefore not allowing some of it to be 

detected. A 500 nanomolar H2O2 sample, which on its own gave a 

chemiluminescence signal of approximately 70 arbitrary units (signal A on 

graph), when mixed with a non-illuminated thylakoid sample equivalent to a 

chlorophyll concentration of approx. 284 µg/ml, was reduced to giving a 

chemiluminescence signal of only 10 units (signal C). When the same thylakoid 

sample was illuminated for 1 min without any added H2O2, it gave a signal of 34 

units (signal D), while when illuminated with the same 500 nM H2O2 sample, the 

signal rose to about 42 units (signal B). Signal B appears to be the equivalent of 

adding signals C and D, which seems logical, as it is essentially a combination 

of the two experiments (result of the known H2O2 sample in the presence of 

thylakoids [signal C], and result of illuminating those same thylakoids [signal 

D]).  

 

For lower concentrations of known H2O2, which resulted, on their own, in lower 

chemiluminescence signals, the addition of same non-illuminated thylakoid 

sample resulted in complete inhibition of the chemiluminescence signal, by 

'masking' it, due to absorption. However, when the same thylakoid sample was 

illuminated, it gave almost the same chemiluminescence signal of about 34 

units with or without the presence of those smaller (300 nM or less) H2O2 

samples. What this suggests is that a sample of Ch1 isolated thylakoids, diluted 

to a concentration of 284 µg/ml chlorophyll, produces, after illumination for 1 

min, the equivalent of 1.2 µM H2O2. This is based on the observation that the 

H2O2 sample of 500 nM giving a chemiluminescence signal of 70 units (signal 

A) fell to 10 units when adding that same amount of thylakoids (signal C); 

therefore for a signal (D) of 33.5 units suffering from the same absorption effect, 

the equivalent amount of un-absorbed H2O2 ought to have been in the 1.2 

micromolar region. This is also supported by the fact that, for smaller 

concentrations of H2O2 being tested with illuminated thylakoids, the signal (B) 

obtained is almost constant, suggesting that it is primarily resulting from the 
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thylakoids-produced H2O2, and that this is not near the 500 nM concentration, 

but larger enough in order for its signal not be masked due to the absorption by 

the thylakoids. 

 

4.3.3.3 Investigation of the effect of different bu ffers on the H 2O2 

production by thylakoids 

As described in the isolation protocols (Section 4.3.2.1), different buffers have 

been described as suitable for dilution and storage of the thylakoids in 

published protocols. In each protocol, the suggested 'final' storage and usage 

buffer has been chosen due to its perceived superiority over others that may 

have been tested by the scientists that established the isolation protocols. It 

was therefore decided to test these buffers, for all five different thylakoid 

preparations, by using them as the dilution buffer used to dilute the thylakoids to 

the desired final chlorophyll concentration in the 330 µl sample that would be 

illuminated and then tested for H2O2 in the HRP-mediated luminol 

chemiluminescence cuvette assay. Therefore, four different buffers were used 

to dilute the five different thylakoid preparations: buffer A (10 mM Tris-HCl 

buffer, adjusted to pH 8.5), buffer B (5 mM MgCl2, 15 mM NaCl, 2 mM MES, 

brought to pH 6.9 with NaOH), buffer C (5 mM MgCl2, 70 mM sucrose, 1 mM 

PMSF, 20 mΜ Tricine, adjusted to pH 7.8 with NaOH) and buffer D (5 mM 

MgCl2, 70 mM sucrose, 20 mΜ Tricine, adjusted to pH 7.8 with NaOH). Each 

different thylakoid preparation diluted in each of the four buffers was illuminated 

using the standard illumination protocol and then tested for H2O2 production 

using the standard chemiluminescence reaction protocol described in the 

Methods. The results can be seen in Figure 4.10.  
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Figure 4.10 Effect of buffer used during the illumi nation of different thylakoid 

preparations on the production and detection of H 2O2. 

The luminescence signal, detected by a bench-top spectrophotometer, resulted from 
the production of light by the cuvette-based chemiluminescence reaction of luminol, 
HRP and H2O2. [HRP] = 5 U.ml-1, [luminol] = 100 µM, in Tris-HCl buffer (10 mM, pH 
8.5). The H2O2 was previously produced by illuminating diluted thylakoid preparations 
with an un-filtered halogen lamp (20 watts, 350 lumens) at a distance of 10 cm for 1 
min, while aspirated in a 'white' semi-transparent pipette tip. The thylakoid preparations 
were diluted as following: Ch1 [chlorophyll] = 284 µg.ml-1, Ch2 [chlorophyll] = 171 
µg.ml-1, Ch3 [chlorophyll] = 237 µg.ml-1, Ch4 [chlorophyll] = 131 µg.ml-1 and Ch5 
[chlorophyll] = 64 µg.ml-1. Average values and the SDs shown are the results of 3 
replicates.  
 

In order to compensate for the effect the varying pH would have on the 

chemiluminescence reaction that would be taking place post-illumination, 

thereby altering the H2O2 detection per say, it was initially decided to repeat the 

measurements with all four buffers with their pHs adjusted to 8.5, the standard 

chemiluminescence reaction pH, and then to factor in the effect of this to the 

measurements when the four different buffers were used in their assigned pH 

(6.9 – 8.5). This method however, would have introduced an added 

complication, as it would be altering not only the desired parameter, the pH of 

the chemiluminescence reaction, but also the pH during the thylakoid 
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illumination, thus making the results incomparable. Instead, it was decided to 

therefore repeat the standard HRP-mediated luminol chemiluminescence 

reaction with H2O2 at the pH 7.8 and 6.9, and then calculate the proportional 

change in signal effected by the change in pH alone, and apply this proportion 

as a factor to the signal resulting by the chemiluminescence detection of the 

H2O2 produced by the thylakoids when diluted in the buffers with the varying 

pHs.  

 

As it can be seen from the graph, the thylakoid preparations reacted differently 

to the four buffers tested. The results demonstrate no association between the 

use of the buffer suggested in each protocol and the H2O2 production by the 

thylakoids. Having adjusted the results solely for the difference in pH that using 

the Buffers B, C or D effect during the chemiluminescence detection, it can be 

seen from the graph that for thylakoid preparations Ch1 and Ch3, the buffer 

effecting the highest production of H2O2 during illumination is Buffer B, while for 

the other three thylakoid preparations, Buffer A effects the highest yield. 

Therefore, the specific buffers were used when using the thylakoid preparations 

for other experiments. 

 

4.3.3.4 Investigation of the effect of the distance  of illumination on the 

H2O2 production by thylakoids 

As mentioned in the introduction of the Results, (Section 4.3.3), the intensity of 

the light used to illuminate a plant is a property that affects the plant's response 

to the light stimulus. The intensity of light markedly affects the rate of the 

oxygen photosynthetic evolution in photosynthesis. There is a linear relationship 

over a wide range up to a saturating light intensity, at which point other factors 

become rate-limiting 151; 153. 

 

Therefore, an investigation was conducted on the effect of different distances 

from the light source on the H2O2 production by thylakoids, as, increasing the 

distance between the light source and the thylakoids, reduces the intensity of 

light that reaches the sample. The results of the experiment can be seen in 
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Figure 4.11. As expected, increasing the distance between source and sample, 

and therefore reducing the energy available to the thylakoids, resulted in an 

associated reduction of the H2O2 being produced during the illumination.  
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Figure 4.11 Effect of distance between the light so urce and the illuminated 

thylakoid sample on the production of H 2O2. 

The luminescence signal, detected by a bench-top spectrophotometer, resulted from 
the production of light by the cuvette-based chemiluminescence reaction of luminol, 
HRP and H2O2. [HRP] = 5 U.ml-1, [luminol] = 100 µM, in Tris-HCl buffer (10 mM, pH 
8.5). The H2O2 was previously produced by illuminating diluted thylakoid samples with 
an un-filtered halogen lamp (20 watts, 350 lumens) at a varying distance of 20, 10 and 
2 cm for 1 min, while aspirated in a 'white' semi-transparent pipette tip. The thylakoid 
preparation Ch1 [chlorophyll] = 284 µg.ml-1, was diluted in buffer B (5 mM MgCl2, 15 
mM NaCl, 2 mM MES, brought to pH 6.9 with NaOH). Average values and the SDs 
shown are the results of 3 replicates.  
 

4.3.3.5 Investigation of the effect of different pi pette tips on the H 2O2 

production by thylakoids 

As described in the thylakoid illumination and chemiluminescence H2O2 

detection methodology (Section 4.3.2.2), the experimental procedure required 
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the positioning of the 330 µl thylakoid sample in a pipette tip fitted on an air-

displacement pipette for the illumination step, in order to allow for the fast and 

easy transition from the illumination step to the measurement of the H2O2 

produced during the illumination. The possibility of the pipette tips affecting the 

spectral quality of light reaching the thylakoids was considered, and thus 

investigated.  

 

The two pipette tips commonly used interchangeably in the facilities of this work 

taking place (Fig. 4.12) were used in order to identify the preferred product. For 

all five different thylakoid preparations, each with different chlorophyll amounts 

and therefore responses to excitation by light, the same measurements were 

made with the thylakoid sample being illuminated while aspirated within the 

'blue'-tinted semi-clear pipette tips and in the 'white'-tinted semi-clear tips.  

 

 

 
Figure 4.12 Photographs of the two different pipett e tips used as sample 

containers during the illumination of the samples.  

The thylakoid aliquots were aspirated into the tip, and then illuminated through the 
pipette tip. Top: 'white'-tinted semi-clear tip; bottom: 'blue'-tinted semi-clear pipette tip. 
Both types pictured are made of polypropylene, with a capacity of 200 µl to 1,000 µl 
(Thermo Fisher Scientific Ltd., Loughborough, UK.  
 

Briefly, the measurements performed consisted of illuminating thylakoid 

samples while aspirated in the different pipette tips, and then measuring the 

H2O2 produced using the chemiluminescence reaction. All parameters of the 

measurements were kept constant, apart from the tips, and as described in the 

standard experimental procedure in Section 4.3.2.2. The results can be seen in 

Fig. 4.13.  

 



 99 

0

10

20

30

40

50

60

Ch1 Ch2 Ch3 Ch4 Ch5
Different thylakoid preparations

Lu
m

in
es

ce
nc

e 
si

gn
al

 in
te

ns
ity

 / 
ar

b.
 u

ni
ts

Blue tip

White tip

 
Figure 4.13 Effect of pipette tip light absorption and transmittance on the 

production of H 2O2 by different thylakoid preparations. 

The luminescence signal, detected by a bench-top spectrophotometer, resulted from 
the production of light by the cuvette-based chemiluminescence reaction of luminol, 
HRP and H2O2. [HRP] = 5 U.ml-1, [luminol] = 100 µM, in Tris-HCl buffer (10 mM, pH 
8.5). The H2O2 was previously produced by illuminating diluted thylakoid preparations 
with an un-filtered halogen lamp (20 watts, 350 lumens) at a distance of 10 cm for 1 
min, while aspirated in two different pipette tips tested. The Ch1 thylakoid preparation 
([chlorophyll] = 284 µg.ml-1) and the Ch3 thylakoid preparation ([chlorophyll] = 237 
µg.ml-1) were diluted in buffer B (5 mM MgCl2, 15 mM NaCl, 2 mM MES, brought to pH 
6.9 with NaOH). The Ch2 thylakoid preparation ([chlorophyll] = 171 µg.ml-1), the Ch4 
thylakoid preparation ([chlorophyll] = 131 µg.ml-1) and the Ch5 thylakoid preparation 
([chlorophyll] = 64 µg.ml-1) were diluted in buffer A (10 mM Tris-HCl buffer, adjusted to 
pH 8.5). Average values and the SDs shown are the results of 3 replicates. 
 

As it can be seen from the results, it was observed that, for all thylakoid 

preparations, the H2O2 produced by the thylakoids when illuminated through the 

'white' tips was consistently higher, when compared to the amount of H2O2 

produced by thylakoids when illuminated while aspirated in the 'blue' tips. As all 

other experimental details were kept the same, this difference can be attributed 

to the effect the 'blue' tip has on the spectral qualities of the light that is 

transmitted through the tip to the sample. This is probably a combination of the 

overall reduction in intensity of the light, due to increased absorbance, as well 
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as due to a shift in the wavelengths that are allowed to be transmitted through 

the pipette tip to the sample. Hence, all measurements were made with the 

'white' pipette tips. 

 

4.3.3.6 Investigation of the effect of different li ght sources on the H 2O2 

production by thylakoids 

It was discovered from key literature that halogen lamps have been widely used 

for the illumination of photosynthetic material and whole plants 153. What is 

more, most fluidic sensors using some isolated and immobilised photosynthetic 

material, usually employ red light to excite the material 9; 48; 154. Therefore, a 

halogen lamp was used as the main light source throughout the work presented 

in Chapter 4, emitting at the whole of visible spectrum; this was fitted with 

optical filters to modulate wavelengths of different wavebands. Also a red laser 

diode was used, providing only red light, which, as mentioned, is the one most 

frequently used according to literature. 

 

4.3.3.6.1 Characterisation of the light sources; light intensity and other 

parameters 

Incandescent lamps radiate visible light by thermal radiation generated from 

tungsten filaments heated to a high temperature by an electric current. The 

energy distribution is continuous, but the intensity of red light is higher than that 

of blue light 153. Tungsten incandescent lamps are thermal radiators that emit a 

continuous spectrum of light extending from about 300 nanometers, in the 

ultraviolet region, to about 1400 nanometers, in the near infrared region. 

Halogen bulbs, a high-performance version of the incandescent tungsten lamp, 

typically contain traces of iodine or bromine in the fill gas, which return 

evaporated tungsten to the filament far more efficiently than lamps made with 

other gases 155. 

 

The filters, used to modulate the light emitted from the halogen light source, are 

categorised as absorption filters; they selectively transmit some portions of the 
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incident white light spectrum, but absorb other wavelengths. More specifically, 

they are categorised as colour correction or compensation filters; they consist of 

colloidal carbon mixed with suitable dyes and dispersed in gelatin to achieve the 

desired spectral characteristics. Colour correction filters differ from colour 

balancing and conversion filters in that they control colour by attenuating 

principally the red, green, and/or blue regions of the visible light spectrum rather 

than fine-tuning overall spectral performance, thus they do not possess band-

pass or other similar properties.  

 

The light intensity profile over a wide light spectrum was measured for the light 

sources, in order to gain insight into the intensity of light that should be 

expected from each source, as well as a more specific understanding of the 

effect of the different absorption filters on the spectral characteristics of the 

halogen lamp. This is also very important due to the characteristics of 

photosynthesis, and its components, especially the chlorophylls and other 

pigments, as described elsewhere (Section 2.2.1).  

 

The light intensity spectral distribution wavelength scan of different light sources 

was performed by placing an optical fibre, connected to a spectrometer, in the 

area directly underneath the halogen lamp, facing towards the source, at a 

distance of 10 cm. For the laser diode, the laser beam was focused directly in 

the fibre's opening. The results are presented in Figure 4.14.  
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Figure 4.14 Light intensity spectral distribution w avelength scan of different light 

sources used to illuminate the thylakoid preparatio ns. 

All traces, apart from the 'laser' refer to the JC12V20W halogen lamp (output: 20 W), 
without a filter ('No filter') or with a coloured, semi-transparent sheet of various colours. 
The laser light source was a laser photodiode (output: 1 mW). 
 

As it can be seen from Fig. 4.14, the different filters resulted in very different 

outputs, both in spectral quality (wavelength) and quantity (intensity). What is 

more, a portion of all wavelengths are hindered by the use of the filters. This 

effect is common to most filters; this type of unwanted absorption is termed 

secondary absorption. If the filters were of the highest quality, the plots in Fig. 

4.14 would have very sharp peaks centred in specific wavelength regions, and 

near-maximum absorption at the rest of the wavelengths 156. For example, the 

red filter blocked most of the light of less that approximately 600 nm; in other 

words, the light emitted from the source in the violet, blue, green and yellow 

bands, while the green filter blocked most light of orange and violet wavelength 

bands, while allowing light of the green and some blue and red wavelengths. 

The laser diode has a distinctively coherent, collimated and near-

monochromatic light output, peaking at 655 nm. Overall, it appears that most 

filters did not absorb light of the unwanted wavelengths perfectly; that can be 
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said for the blue, green and yellow filters, where there are clear but small peaks 

in the red region, for the blue and green filters, and an overall non-absorbance 

for the yellow. 

 

Based on the light intensity output over the whole visible light spectrum and 

beyond, as displayed in Fig. 4.14 above, the 'total light output' of the halogen 

lamp light source, with and without the optical absorption filters, as well as of 

the laser source was measured, by calculating the sum of all the data points 

over the aforementioned spectrum. The results can be seen in Figure 4.15.  
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Figure 4.15 The sums of total light output achieved  by the two different sources, 

halogen lamp and laser diode, over the whole spectr um between 300 and 870 

nm.  

For the halogen lamp, the total light output was calculated when used on its own, as 
well as with the optical absorption filters (Red, Blue, Green, Yellow), that changed its 
spectral qualities. The percentage above each column depicts the proportion of 'total 
light output' each light source achieved in comparison to the un-filtered halogen lamp 
(left-most column). 
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It was important to calculate a means of comparing the light output of all the 

different light sources, as the wavelengths over which they produced light (or 

allowed to pass, in the case of the optical filters) varied greatly, and, as the 

filters were essentially attenuating the original, 'no filter' light output, it was 

expected that the 'total light output' achieved when using the filters would only 

be a proportion of the original, non-filtered light of the halogen lamp source. It 

was also important to calculate the same for the laser diode, which, given the 

nature of laser light, emits at very discreet bandwidth, compared to any other 

light source, as also seen from Figure 4.14. The 'total light output' produced by 

each source was also calculated as a proportion of the 'total light output' 

produced by the halogen lamp without a filter, which thus served as the 

'standard' against which the other sources were compared to. 

 

4.3.3.6.2 Effect of dual UV and IR filter on light intensity profile of light source 

Simple methods have been employed in photosynthesis applied research in 

order to minimise the harmful effect of undesirable wavelengths of radiation. 

Some reported include employing a glass filter intercepting the pathway of the 

light arriving to the sample from the source in order to reduce UV (glass stops 

70% of UV-B rays) 61, or the use of a water layer between the light source and 

the sample 157, as water absorbs IR wavelength to varying degrees 158. In order 

to minimise UV/IR wavelengths and importantly heat, a borosilicate Pyrex glass 

Petri dish (SciLabware Limited, Stone UK) was used as the container in which 

water of 1 cm thickness was contained, placed in between the light source and 

the illuminated thylakoid sample, hence together acting as a dual UV and IR 

filter, as used similarly by others 49; 134; 145.  

 

The effect this dual UV and IR filter had on the intensity of light arriving to the 

thylakoid sample over a broad wavelength was investigated. As it can be seen 

from Figure 4.16, over the wavelengths 175 nm to 875 nm, no reduction in the 

intensity of light available to the illuminated thylakoids was observed. This 

includes the near infra-red wavelengths (770 – 1400 nm), as well as all UV-A 

(315 – 400 nm) and UV-B (280 – 315 nm) light, as well as some of the UV-C 
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light (100 – 280 nm). It is therefore not an observation that the filter has 

attenuated any wavelengths of optical radiation that it was possible to measure 

using the available instrumentation. It was nevertheless decided to employ the 

setup for all experiments that employed this light source. 
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Figure 4.16 Light intensity spectral distribution w avelength scan of halogen lamp 

light source with and without a borosilicate Pyrex glass Petri dish filled with 

water acting as a UV and IR filter between the ligh t source and the detector. 

 

4.3.3.6.3 Effect of different light sources on the H2O2 production by thylakoids  

It was considered of paramount importance to examine the effect of different 

light sources used for the illumination step, on the thylakoids. The halogen 

lamp, un-filtered or with a filter, as well as the laser diode, were used to 

illuminate the thylakoids. The results of the chemiluminescence detection of the 

produced H2O2 can be seen in Figure 4.17, for each of the five different 

thylakoid preparations. For the four filters (red, blue, green and yellow) and the 

laser diode used, superimposed on the 'opaque' columns, which are the 

experimentally obtained H2O2 values, are the expected values, visualised as 
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semi-transparent columns. The expected, theoretical values were calculated 

from the results presented in Section 4.3.3.6.1, where the spectral distribution of 

light produced by the filtered lamp and the laser diode as well as their intensity 

over the spectrum, were calculated, summed and then compared to that of the 

halogen lamp without a filter, as presented in percentages in Fig. 4.15. They 

therefore represent the amount of H2O2 that would be produced and detected if 

the spectral quality of different lights did not affect the said production, but if 

only the overall intensity did so.  

 

 

 



 
10

7 

 F
ig

ur
e 

4.
17

 E
ffe

ct
 o

f l
ig

ht
 s

ou
rc

e 
us

ed
 fo

r 
th

e 
ill

um
in

at
io

n 
st

ep
 o

n 
th

e 
pr

od
uc

tio
n 

of
 H

2O
2 

by
 d

iff
er

en
t t

hy
la

ko
id

 p
re

pa
ra

tio
ns

. 

T
he

 lu
m

in
es

ce
nc

e 
si

gn
al

, d
et

ec
te

d 
by

 a
 b

en
ch

-t
op

 s
pe

ct
ro

ph
ot

om
et

er
, 

re
su

lte
d 

fr
om

 th
e 

pr
od

uc
tio

n 
of

 li
gh

t 
by

 th
e 

cu
ve

tte
-b

as
ed

 c
he

m
ilu

m
in

es
ce

nc
e 

re
ac

tio
n 

of
 lu

m
in

ol
, 

H
R

P
 a

nd
 H

2O
2.

 [
H

R
P

] 
=

 5
 U

.m
l-1

, 
[lu

m
in

ol
] 

= 
10

0 
µ

M
, 

in
 T

ris
-H

C
l b

uf
fe

r 
(1

0 
m

M
, 

pH
 8

.5
).

 T
he

 H
2O

2 
w

as
 p

re
vi

ou
sl

y 
pr

od
uc

ed
 b

y 
ill

um
in

at
in

g 
di

lu
te

d 
th

yl
ak

oi
d 

pr
ep

ar
at

io
ns

 w
ith

 a
n 

un
-f

ilt
er

ed
 h

al
og

en
 la

m
p,

 a
s 

w
el

l a
s 

fil
te

re
d 

ve
rs

io
ns

 o
f 

th
e 

la
m

p,
 a

nd
 a

 la
se

r 
so

ur
ce

, 
at

 a
 d

is
ta

nc
e 

of
 1

0 
cm

 f
or

 1
 m

in
. 

T
he

 C
h1

 t
hy

la
ko

id
 p

re
pa

ra
tio

n 
([

ch
lo

ro
ph

yl
l] 

=
 2

84
 µ

g.
m

l-1
) 

an
d 

th
e 

C
h3

 t
hy

la
ko

id
 p

re
pa

ra
tio

n 
([

ch
lo

ro
ph

yl
l] 

=
 2

37
 µ

g.
m

l-1
) 

w
er

e 
di

lu
te

d 
in

 b
uf

fe
r 

B
 (

5 
m

M
 M

gC
l 2,

 1
5 

m
M

 N
aC

l, 
2 

m
M

 M
E

S
, b

ro
ug

ht
 to

 p
H

 6
.9

 w
ith

 N
aO

H
).

 T
he

 C
h2

 th
yl

ak
oi

d 
pr

ep
ar

at
io

n 
([

ch
lo

ro
ph

yl
l] 

=
 1

71
 µ

g.
m

l-1
),

 
th

e 
C

h4
 t

hy
la

ko
id

 p
re

pa
ra

tio
n 

([
ch

lo
ro

ph
yl

l] 
=

 1
31

 µ
g.

m
l-1

) 
an

d 
th

e 
C

h5
 t

hy
la

ko
id

 p
re

pa
ra

tio
n 

([
ch

lo
ro

ph
yl

l] 
=

 6
4 

µ
g.

m
l-1

) 
w

er
e 

di
lu

te
d 

in
 b

uf
fe

r 
A

 (
10

 
m

M
 T

ris
-H

C
l b

uf
fe

r,
 a

dj
us

te
d 

to
 p

H
 8

.5
).

 A
ve

ra
ge

 v
al

ue
s 

an
d 

th
e 

S
D

s 
sh

ow
n 

ar
e 

th
e 

re
su

lts
 o

f 3
 r

ep
lic

at
es

. 



 108

 

As it can be seen, altering the light sources or variations thereof did have a 

clear effect on the amount of H2O2 produced by the illuminated thylakoids. The 

unfiltered halogen lamp provided the optimal illumination conditions for the 

highest H2O2 production by all different thylakoid preparations. Had the effect 

been only due to the differences in overall light intensity, and not wavelength 

characteristics of the light produced by each light source, the H2O2 production 

would have varied even more than that achieved.  

 

This is visually highlighted by the semi-transparent columns superimposed over 

the actual results of chemiluminescence signal obtained following the 

illumination by each light source. The semi-transparent columns represent the 

expected chemiluminescence signal to be achieved by each variation of the 

halogen lamp and the laser diode, based on the proportion each of those light 

sources' 'total light output' constituted of the un-filtered halogen lamp's 'total 

light output', previously reported as percentages in Figure 4.15.  

 

The actual results obtained thus highlight the effect the different spectral 

distributions have on the production of H2O2. Table 4.5 presents a summary of 

the expected H2O2 production obtained by illumination with the different filters 

and the laser diode, as well as the results obtained, compared to the expected 

values, all expressed as percentages of the experimental values obtained with 

the un-filtered halogen lamp, which therefore is used as the 'standard'.  

 

Firstly, it is noted that the different thylakoid preparations performed and 

behaved differently under the same illumination wavelength qualities. This is 

seen in the table under the heading "H2O2 produced, as proportion of H 2O2 

production with un-filtered lamp ", by comparing vertically the percentage 

values for the 5 different preparations, under a filtered version of the halogen 

lamp. This suggests that, irrespective of the actual peak chemiluminescence 

signal detected, and therefore H2O2 produced under each filtered illumination, 

i.e. when instead observing the performance, for each preparation, under the 
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different filters, in relation to the values set as the standard (100%), there is 

qualities of the thylakoids that differ from preparation to preparation, and these 

qualities affect the utilisation of specific wavelengths of light. It is suggested that 

the different pigments in thylakoids, which utilise different wavelengths of light 

differently, account for these differences. 

 

Table 4.5 Summary of H 2O2 detection for the different thylakoid preparations , 

with the different illumination sources and set-ups . 

 No filter Red filter Blue filter Green filter Yellowfilter Laser 

Expected H 2O2 production as proportion of un-filtered halogen la mp production, based 

on light intensity sum 

 100% 43% 11% 24% 68% 5% 

H2O2 produced, as proportion of H 2O2 production with un-filtered lamp 

Ch1 100% 97% 61% 54% 87% 55% 

Ch2 100% 60% 52% 40% 80% 49% 

Ch3 100% 80% 52% 52% 85% 46% 

Ch4 100% 73% 68% 58% 94% 56% 

Ch5 100% 99% 56% 58% 91% 45% 

Average H 2O2 produced, as proportion of H 2O2 production with un-filtered lamp 

 100% 82% 58% 52% 88% 50% 

Absolute increase of observed H 2O2 production against the expected 

Ch1  227% 554% 221% 128% 1091% 

Ch2  141% 474% 164% 118% 960% 

Ch3  187% 476% 211% 125% 898% 

Ch4  171% 616% 239% 138% 1103% 

Ch5  233% 510% 236% 133% 887% 

Average absolute increase of observed H 2O2 production against the expected 

  192% 526% 214% 128% 988% 

Average relative increase of observed H 2O2 production against the expected 

  92% 426% 114% 28% 888% 

 

As it can be seen from Table 4.5, when comparing the first numerical row (the 

expected results) to the last row, for each filter, there was a significant increase 

in the amount of H2O2 produced (average of 5 preparations), compared to what 

would have been obtained if only the intensity of the light had an effect on the 

H2O2 production. For example, when employing the blue filter, the average 
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H2O2 produced was 58% that of the un-filtered light, while the expected 

proportion ought to have been only 11%, based on the light intensity per say; as 

light of the blue region of the spectrum is highly effective however, and thus 

desirable, for the photosynthetic processes, the 4-fold (426%) increase 

observed can be thus explained. The very high difference observed between 

the expected and achieved H2O2 production with the laser diode can again be 

partly attributed to the usefulness of the region of light emitted by the source 

(655 nm). However, another reason is the fact that laser light is collimated, and 

thus, when shone directly onto the thylakoid sample, as illustrated in Fig. 4.5, 

there is minimal loss due to dispersion, refraction or other lossy behaviour that 

is observed with the light produced from the halogen lamp. 

 

The efficiency of plant photosynthesis is not the same throughout the 400 to 

700 nm waveband. Just as the human eye has visual curves (further 

information on the differences between photometry and radiometry in Section 

6.3.3.2), plants have sensitivity curves over a wide range. Plants select effective 

wavelengths from white light and utilise them accordingly 153. 

 

Hence, as green light does not correspond to the energy needed for any of the 

various electronic transitions possible in the chlorophyll molecule, chlorophyll 

cannot therefore absorb green light 151. The spectral quality of light is of great 

importance; an intense source of monochromatic green light at 530 nm would 

not be absorbed significantly by pure chlorophyll in solution, so would not be 

expected to be effective in photosynthesis. However, action spectrums for 

photosynthesis show that green light is nevertheless effective, though the main 

peaks are in the blue and red wavelength bands. The usefulness of green light 

appears to be due to the absorption of light by the carotenoids which normally 

accompany the chlorophylls in thylakoids; the additional absorbed light is 

transferred by resonance transfer to yield excited electrons, equivalent to those 

produced by direct red light absorption into the antennae systems. This situation 

may be approached in woodland, where the canopy absorbs blue and red light 

preferentially and transmits the green, i.e. the understorey plants get greener 
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light. This energy transfer has important implications for the successful growth 

of understorey plants in forests, which are therefore at a less disadvantage that 

might be expected. 

 

An action spectrum of photosynthesis is a graph of the relative effectiveness of 

light of different wavelengths needed to bring about a biological response, for 

example oxygen evolution in photosynthesis 151, presented in Fig. 4.18. The 

photosynthesis action spectrum has a large peak composed of two peaks at 

about 675 and 625 nm in the red light region, and a smaller peak between 440 

and 450 nm in the blue. As it can be seen, red light has the strongest action and 

blue light a weaker action.  

 

 
Figure 4.18 Average values for photosynthesis actio n spectra from different 

plant species. 

From 153. 
 

It is red light that is both best absorbed by chlorophyll and results in maximal 

photosynthesis 153, as it can also be deducted from the wavelength absorbance 

scan of thylakoids (Fig. 4.8) and Fig 4.18. This is probably the reason why red 

light has been so extensively, almost exclusively, used in recent biosensors 

utilising plant material 8; 9; 48; 142; 154; 159. The fact that green light does also effect 

the photosynthetic oxygen evolution appears however to have often been 

disregarded, instead focusing on the fact that chlorophyll does not absorb and 
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therefore utilise it. Clearly however, the results obtained by illuminating the 

thylakoids with 'green' light support the fact that green light is useful and 

actually utilised in photosynthesis. Table 4.6 highlights this fact; as it can be 

seen, a third of the photosynthesis is actioned by green light, just as green light 

responds to about a third of the light provided by a typical incandescent lamp. 

  

Table 4.6 Photosynthesis action spectrum distributi on, and spectrum 

distribution for incandescent lamps.  

Reproduced from 153. 

 

4.3.4 Conclusions 

Following the unsuccessful attempt to effect the production of H2O2 from 

illuminated chloroplasts, attempting to do so by using sub-chloroplast 

organelles, the thylakoids, was successful. This was measured with the HRP-

mediated chemiluminescence reaction of luminol with the produced H2O2.  

 

Five different isolation protocols were used and, following a series of 

investigations into their performance, as far as H2O2 production is concerned, 

by altering a variety of external parameters (illumination time, illumination 

distance, illumination source, buffer) and a thylakoid-specific parameter 

(individual preparation's chlorophyll concentration), all five preparations were 

optimised for use. 

 

There was variation in the maximum production of H2O2 achieved by each 

preparation, but none that would allow for the definitive selection of a 

preparation that would be clearly the one to proceed further with the 

experiments described in Section 4.4 for the investigation of the potential 

inhibition of the aforementioned H2O2 production if effected (by illumination) 

 
Blue light  

(400-500 nm) 
(%) 

Green light  
(500-600 nm) 

(%) 

Red light  
(600-700 nm) 

(%) 
Photosynthesis action spectrum  23.5 32.0 44.5 

Incandescent lamp 12.3 33.3 54.4 
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after an incubation of the thylakoids with photosynthesis-inhibiting herbicides. 

Preparation Ch5 allowed for the highest production of H2O2 after a 10 min 

illumination, while also containing the least amount of thylakoids (as measured 

by the chlorophyll concentration), but this would not necessary also be 

translated in the lowest LOD for herbicides.  

 

As it is a cuvette-based batch method, with the isolated thylakoids in 

suspension, the chemiluminescence signal intensity resulting from the H2O2 

effectively underreported the amount of H2O2 produced, due to the sample's 

optical density.  

 

The experimental conditions, optimal for the highest production of H2O2 are: 

• Illumination source: 20 W halogen lamp, full spectrum 

• Illumination time: 10 min 

• Illumination distance: 10 cm 

• Buffer: thylakoid preparation specific 

• Chlorophyll concentration: thylakoid preparation specific 

 

It is surprising that Ch5 thylakoid preparation produced much better H2O2 yields 

than Ch4, as the only difference in the protocols was the absence of PMSF in 

the Ch5 protocol. It should be noted that, normally, PMSF is added in extraction 

/ isolation buffers in order to inhibit plant proteinases, which degrade plant 

organelles 139; 160. 

 

4.4 Batch assay for the detection of herbicides, by  measuring the 

illuminated thylakoids' H 2O2 production inhibition  

4.4.1 Introduction  

The successful production of H2O2 by illuminated thylakoids, as presented in 

Section 4.3, was an important accomplishment in the overall progress of this 

work. Following this, the next important milestone to be achieved was the 

development of an assay for the detection of herbicides, based on the H2O2 
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production by thylakoids. As described in the literature review (Section 2.2.2), 

many biosensors have been developed using as the basis of their working 

method the inhibition of photosynthesis by specific classes of herbicides, albeit 

using different parameters affected by this inhibition as the affected variable, 

changes of which are then correlated to the concentration of the herbicide 

bringing about that change. This may be an increase in fluorescence, or a 

decrease of current in an electrochemical signal detection etc. 

 

Therefore, building upon the work on producing of H2O2 by thylakoids in the 

absence of herbicides, it was thus decided to extend the experimental methods 

used in Section 4.4 with the additional step of the incubation of thylakoids with 

herbicides, prior to the illumination, during which the H2O2 is normally produced, 

and the subsequent chemiluminescence analysis of the sample, for the 

detection of said H2O2. The herbicides tested were: atrazine, diuron, propanil, 

2,4-D, paraquat and acifluorfen. Atrazine, diuron and propanil are 

photosynthesis-inhibiting herbicides, while the remaining three employ other 

modes of action. Three photosynthesis-inhibiting herbicides were chosen, each 

representing a main family of herbicides, the triazines, the ureas and the 

amides. The specific photosynthesis-inhibiting herbicides were chosen due to 

their frequent use as herbicides of choice for studies presenting assays for 

these classes of herbicides 8; 9; 48; 142; 154; 159. Atrazine and diuron are also 

amongst the most widely used herbicides in agriculture, and they are also 

amongst the herbicides that are most frequently found in excess of the E.U. 

maximum permissible amount of 0.1 µg/l. 2,4-D, paraquat and acifluorfen were 

chosen as commonly found herbicides, and were included in the study in order 

to ascertain the selectivity of the developed assay for photosynthesis-inhibiting 

herbicides and to identify potential unwanted effects on the assay due to their 

modes of action. 

 

Before reporting the results of incubating isolated thylakoids with the herbicides, 

a report of the mode of action and usage is given for each of the six herbicides. 
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4.4.1.1 Biochemical mode of action of selected herb icides 

4.4.1.1.1 Method of action of photosynthesis-inhibiting herbicides  

Triazines and ureas are well-known herbicides that specifically fix to the QB 

binding site of PSII with high affinity. This blocks the photosynthetic electron 

flow. The principal mode of action of ureas, triazines and other similar 

herbicides is to disrupt the light reaction of photosynthesis (Fig. 4.19). PSII is 

responsible for the production of oxygen and supplies electrons, which move, 

via a chloroplastic electron transport system, to a positive moiety formed on 

excitation of PS I. PS I produces the high-energy electrons that ultimately 

reduce NADP+ to NADPH, with the latter then responsible for the reduction of 

carbon dioxide to sugar. These classes of herbicides interfere with the 

photosynthetic process at the QB binding site of PSII as well as a probable 

secondary location probably in PS I 161-163. Urea and triazine inhibition of oxygen 

evolution is reversible, and can be removed by washing 164. 

 

 
Figure 4.19 Light reactions of photosynthesis and s ites of action of certain 

classes of herbicides.  

PQ, plastoquinone; Cyt b, cytochrome b; PC, plastocyanin; PS, photosystems I and II; 
Q, X, electron acceptors; A, site of electron deflection by quaternary ammonium 
compounds; B, primary site of action of triazines and ureas; C, site of action of 
uncouplers such as phenols. With permission, from 165  
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4.4.1.1.2 Atrazine characteristics  

Atrazine (2-Chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) belongs to the 

class of triazine compounds. A wide range of triazines have been synthesised 

over time to control annual and broadleaved weeds in a variety of crops as well 

as in non-cropped land. They are effective, at low dosages, in killing broad-

leaved weeds in corn and other crops and they can be used in high dosages as 

soil sterilants. In general, these herbicides are applied in pre- or post-

emergence and they are absorbed by the roots or by the foliage, respectively. In 

some cases, they are used in combination with other herbicides to broaden the 

spectrum of activity. These compounds have an appreciable persistence in soil 
10.  

 

4.4.1.1.3 Diuron characteristics  

Diuron (3-(3,4-Dichlorophenyl)-1,1-dimethylurea) is a urea herbicide. Urea is the 

amide of carbonic acid. Phenylureas belong to a numerous group of substituted 

ureas directly applied to soil in pre-emergence to control annual grasses in 

various crops 10. It binds to a critical site in the Photosystem II region of 

chloroplasts, shutting down CO2 fixation and energy production. Indirect 

production of reactive lipid peroxides contributes to a loss of membrane integrity 

and organelle function 161-163. 

 

4.4.1.1.4 Propanil characteristics  

Propanil (3',4'-Dichloropropionanilide) is an amide herbicide. In general, the 

amides are photosynthesis inhibitors. These chloroacetamides are effective pre-

emergence herbicides for annual grasses and annual broad-leaved weeds but 

they also have foliar contact activity. In general, these compounds are soil 

applied and used in various horticultural crops, such as maize, soybean, and 

sugarcane. They are normally absorbed by shoots and roots and they are, in 

general, non-persistent compounds in soil 10. At low concentrations propanil is a 

strong inhibitor of photosynthetic electrons, at a site near plastoquinone. At 
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higher concentrations it attacks chloroplasts and other cell membranes and at 1 

mM it uncouples oxidation from phosphorylation 165; 166.  

 

4.4.1.1.5 2,4-D characteristics  

2,4-D (2,4-Dichlorophenoxyacetic acid) is a chlorinated phenoxyacetic acid 

compound, discovered during the Second World War 10. It disrupts normal cell 

growth, acting as a growth hormone, similar to natural auxins. The term 'auxins' 

applies to compounds which are able to stimulate the growth of plant tissue 167. 

It stimulates the growth of old cells and the rapid expansion of new cells. The 

rapid growth in cell size without normal cell division effectively crushes the 

plant's water and nutrient transport system 161; 162; 165.  

 

4.4.1.1.6 Paraquat characteristics  

Paraquat (1,1′-Dimethyl-4,4′-bipyridinium dichloride hydrate or methyl viologen 

dichloride) is a broad spectrum herbicide absorbed by leaves, but is not trans-

located in sufficient quantities to kill the roots of perennial weeds. It has a 

quaternary ammonium structure and is rapidly adsorbed and inactivated in soil. 

Therefore, it is not effective as a pre-emergence herbicide 10. Paraquat is a 

quaternary ammonium (bipyridinium) herbicide. In the presence of light, it is 

reduced to a stable free radical, which then causes toxic effects to the plant 166. 

At high light intensities, paraquat acts as a contact poison when applied on 

leaves, while in low light, some translocation can occur. Even in the dark the 

plant dies after some days, but the dramatic toxic effects require the presence 

of light, oxygen and photosynthetic tissue. Although the importance of light 

makes the light reactions of photosynthesis an obvious candidate as the 

primary candidate of paraquat, it does not inhibit the Hill reaction in isolated 

chloroplasts 165.  

 

In 1937 Hill found that the isolated chloroplasts upon illumination were unable to 

reduce carbon dioxide, but able to remove electrons from water and pass them 

to a suitable artificial electron acceptor 168. As a result, water evolves, while the 

artificial electron acceptor is reduced. There are numerous electron acceptors 
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that can replace carbon dioxide in the Hill reaction, amongst them being methyl 

viologen, used since the 1930's as a redox indicator (by Hill and others), only to 

be discovered in 1955 as an herbicide named paraquat. Paraquat inhibits the 

reduction of NADP+ and therefore prevents the reduction of carbon dioxide in 

the photosynthetic carbon cycle 165, as it replaces ferredoxin as electron 

acceptor in PSI. After the reduction, paraquat is automatically reoxidised by 

oxygen to form superoxides. Therefore its primary action is the generation of 

free radicals 4.  

 

 
Figure 4.20 The mode of action of paraquat by its r edox cycle.  

With permission from 4  
 

Many other natural processes form superoxide radicals, and the cells have 

efficient enzymes called superoxide dismutases (SOD) that detoxify the 

superoxide radicals. However, the detoxification is not complete because 

another very reactive substance, namely, hydrogen peroxide, is produced from 

it. Hydrogen peroxide must then be reduced to water by reduced ascorbic acid, 

catalases or glutathione peroxidases. If this does not happen fast enough, H2O2 

may react further, producing the extremely reactive hydroxyl radical 4. However, 

in the presence of paraquat, the production of superoxide is greatly enhanced, 
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all available reduced ascorbic acid is oxidised and thereafter H2O2 accumulates 
165.  

 

4.4.1.1.7 Acifluorfen characteristics  

Acifluorfen is a phenolic herbicide. These compounds are used in post-

emergence and frequently applied in combination with other herbicides to 

extend the spectrum of weed species to be controlled 10. Its effective usage is 

dependent on the presence of light. The primary effect of phenolic herbicides on 

weeds is to disrupt cellular and sub-cellular lipoprotein membranes, so that they 

lose their selective permeability, leak their contents, thus causing cell death, 

leaf bleaching 169 and cause the plant to die. More specifically, acifluorfen 

interferes with a wide range of biochemical processes in plants and plant cell 

organelles; it destabilises lipoprotein membranes, inhibits the Hill reaction in 

isolated chloroplasts, affects the mitochondrial electron transport and inhibits 

the synthesis of proteins. It also interferes with the photosynthetic reduction of 

carbon dioxide by inhibiting the reduction of NADP+. Interference with electron 

transport in illuminated chloroplasts probably leads to the formation of singlet 

oxygen or other oxidants, which are known to cause peroxidation of membrane 

lipids with disruption of function and leakage of contents 162; 165. Light is 

essential for the activation of the disruption process, although the specific role 

light plays in its activation is uncertain, with many conflicting theories 165; 170; 171.  

 

4.4.2 Materials and methods 

Basic chemicals and reagents used (luminol, HRP and preparations thereof) 

were the same as described in Section 4.3.2.2. The six herbicides used were all 

from the PESTANAL® range, analytical standard grade from Sigma Chemical 

Company Ltd. (Gillingham, UK). The herbicides were diluted in a variety of 

concentrations, all in Tris-HCl buffer (10 mM, pH 8.5). The following information 

sources were used in order to identify the appropriate method (solvent and 

concentration) to solubilise each herbicide used: 4; 7; 163; 165; 172; 173.  
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The experiments described in Section 4.4.3 were HRP-mediated luminol 

chemiluminescence reactions with H2O2, in cuvettes, using a bench-top 

spectrometer, with the H2O2 required for the reaction being provided by 

illuminated isolated thylakoid preparations, while potentially inhibited by 

herbicides, during an incubation period prior to the illumination. It is therefore a 

variation of the experimental process used in Section 4.3.3. The sequence of 

actions that formed a single measurement was based on that described in 

Section 4.3.2.2, with the main difference being that, prior to the illumination 

step, the thylakoid sample was mixed with a herbicide sample, incubated, and 

only then illuminated. These measurements were repeated for the different 

herbicides, with the five different thylakoid preparations, while also altering the 

incubation time. 

 

More specifically, the luminescence signal, detected by a Varian bench-top 

spectrophotometer, resulted from the production of light by the cuvette-based 

chemiluminescence reaction of luminol, HRP and H2O2. [HRP] = 5 U.ml-1, 

[luminol] = 100 µM, in Tris-HCl buffer (10 mM, pH 8.5). The H2O2 was 

previously produced by illuminating diluted thylakoid preparations with an un-

filtered halogen lamp (20 watts, 350 lumens) at a distance of 10 cm for 5 min. 

Prior to the illumination, the thylakoid sample was incubated with different 

concentrations of the different herbicides for different lengths of time. 

 

The Ch1 thylakoid preparation ([chlorophyll] = 284 µg.ml-1) and the Ch3 

thylakoid preparation ([chlorophyll] = 237 µg.ml-1) were diluted in buffer B (5 mM 

MgCl2, 15 mM NaCl, 2 mM MES, brought to pH 6.9 with NaOH). The Ch2 

thylakoid preparation ([chlorophyll] = 171 µg.ml-1), the Ch4 thylakoid preparation 

([chlorophyll] = 131 µg.ml-1) and the Ch5 thylakoid preparation ([chlorophyll] = 

64 µg.ml-1) were diluted in buffer A (10 mM Tris-HCl buffer, adjusted to pH 8.5).  

 

The calculations used to quantify the lower limit of detection (LLOD) were based 

on the definition of the limit of detection by the International Union of Pure and 

Applied Chemistry (IUPAC Compendium of Chemical Terminology 2nd Edition, 
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1997), as described in Section 3.3.2. For a k value of 3, the LOD is the 

concentration corresponding to a signal 3*s.d. (of the blank) above the mean of 

the blank. As the assays performed aim to detect herbicides based on their 

inhibition of a signal, rather than an increase, this means that the signal 

obtained by a 'blank' sample is the highest achievable, with therefore the (lower) 

LOD being calculated by subtracting, rather than adding the signal obtained by 

3*s.d. (of the blank). 

 

4.4.3 Results and discussion 

4.4.3.1 Chemiluminescence batch assay for atrazine  

Samples of the five different thylakoid preparations, at the optimal chlorophyll 

concentrations as identified in Section 4.3.3.2, were incubated with samples of 

different atrazine concentrations (1x10-4 – 1x10-8 M) for different lengths of time 

(1 – 15 min) and then illuminated for 5 min. The individual results were plotted 

for all different combinations, and can be found in Appendix I. From these, it can 

be seen that the longer incubation times resulted in a more distinct effect 

(reduction) on the H2O2 production, although the rate of inhibition fell 

considerably with incubation times longer than 10 min; thus the 10 min 

incubation time was chosen as the optimal. That would help detect lower 

concentrations of atrazine, as it was expected that, with the increased 

incubation time, a detectable reduction in H2O2 production, and therefore 

chemiluminescence signal, would be achieved by lower herbicide 

concentrations.  

 

A summary of the chemiluminescence signal of the H2O2 produced and 

detected for the different atrazine concentrations and the different thylakoid 

preparations, with the 10 min incubation time, is seen in Fig. 4.21.  
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Figure 4.21 Standard curves of the inhibition of H 2O2 production of five different 

thylakoid preparations (Ch1 – Ch5) by atrazine, meas ured by HRP-mediated 

luminol chemiluminescence, following a 10 min incub ation and a 5 min 

illumination step.  

 

Based on the results obtained, the LLODs for the different thylakoid 

preparations were calculated, shown in Table 4.7. 

 

For all thylakoid preparations, the upper LOD of atrazine is around the region of 

1x10-4 M. It is therefore evident that the detection range is quite wide, mainly 4 

orders of magnitude. This is believed to be due to the high concentration of 

thylakoids, and therefore binding sites for the atrazine molecules. It is therefore 

believed that, for the same reason, the lower LODs achieved can inherently not 

be very low, as a small concentration of atrazine will make too small a change 

in the total amount of H2O2 produced to be satisfactorily detected, especially as 

the effect of atrazine is not an increase or presence of signal, in which case the 

detector's LOD and background signal would be the only limiting factors, but the 

inhibition of a maximum signal already present. 
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Table 4.7 Limits of detection of atrazine, obtained with the five different thylakoid 

preparations. 

Thylakoid LLOD (M) 

Ch1 1.0 x 10-08 

Ch2 2.5 x 10-07 

Ch3 6.7 x 10-08 

Ch4 3.9 x 10-08 

Ch5 6.0 x 10-09 
 

As it can be seen from Table 4.7, the thylakoid preparation Ch5 was thus 

identified as the one allowing for the most sensitive detection of atrazine. More 

measurements were therefore made with Ch5, in order to obtain a more 

detailed profile of the effect of atrazine on the H2O2 production by thylakoids. 

The results can be seen in Fig. 4.22. 

 

0%

20%

40%

60%

80%

100%

0.1 1 10 100 1000 10000 100000 1000000

[Atrazine] / nM

R
es

id
ua

l a
ct

iv
ity

 / 
%

R2 = 0.9938

85%

90%

95%

100%

0 1 2 3
nM

 
Figure 4.22 Calibration curve for the detection of atrazine, using the bench-top 

batch assay with Ch5 thylakoids in suspension. Inse t: linear range. 
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The concentration of atrazine that equals 0.1 µg/l, which is the maximum 

permissible amount of an individual herbicide in drinking and other waters in the 

E.U., is 4.6x10-10 M. Therefore, the current bench-top batch assay developed 

for the detection of photosynthesis-inhibiting herbicides does not reach the 

desired limit of detection for atrazine.  

 

4.4.3.2 Chemiluminescence batch assay for diuron 

Samples of the five different thylakoid preparations, at the optimal chlorophyll 

concentrations as identified in Section 4.3.3.2, were incubated with samples of 

different diuron concentrations (1x10-4 – 1x10-8 M) for different lengths of time (1 

– 15 min) and then illuminated for 5 min. The individual results were plotted for 

all different combinations, and can be found in Appendix I. From these, it can be 

seen that the longer incubation times resulted in a more distinct effect 

(reduction) on the H2O2 production, although the rate of inhibition fell 

considerably with incubation times longer than 10 min; thus the 10 min 

incubation time was chosen as the optimal. That would help detect lower 

concentrations of diuron, as it was expected that, with the increased incubation 

time, a detectable reduction in H2O2 production, and therefore 

chemiluminescence signal, would be achieved by lower herbicide 

concentrations.  

 

A summary of the chemiluminescence signal of the H2O2 produced and 

detected for the different diuron concentrations and the different thylakoid 

preparations, with the 10 min incubation time, is seen in Fig. 4.23.  
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Figure 4.23 Standard curves of the inhibition of H 2O2 production of five different 

thylakoid preparations (Ch1 – Ch5) by diuron, measu red by HRP-mediated 

luminol chemiluminescence, following a 10 min incub ation and a 5 min 

illumination step.  

 

Based on the results obtained, the LLODs for the different thylakoid 

preparations were calculated, shown in Table 4.8. Compared to the LODs for 

atrazine (Table 4.7), it can be seen that a less sensitive detection of diuron was 

achieved. 

 

Table 4.8 Limits of detection of diuron, obtained w ith the five different thylakoid 

preparations. 

Thylakoid LLOD (M) 

Ch1 1.0 x 10-07 

Ch2 1.6 x 10-07 

Ch3 9.4 x 10-08 

Ch4 1.2 x 10-07 

Ch5 8.0 x 10-08 
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For all thylakoid preparations, the upper LOD of diuron is around the region of 

1x10-4 M. It is therefore evident that the detection range is relatively wide, 3-4 

orders of magnitude, but narrower than that achieved for atrazine.  

 

As it can be seen from Table 4.8, the thylakoid preparation Ch5 was thus 

identified as the one allowing for the most sensitive detection of diuron. More 

measurements were therefore made with Ch5, in order to obtain a more 

detailed profile of the effect of diuron on the H2O2 production by thylakoids. The 

results can be seen in Fig. 4.24. 
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Figure 4.24 Calibration curve for the detection of diuron, using the bench-top 

batch assay with Ch5 thylakoids in suspension. Inse t: linear range. 

 

The concentration of diuron that equals 0.1 µg/l, which is the maximum 

permissible amount of an individual herbicide in drinking and other waters in the 

E.U., is 4.3x10-10 M. Therefore, the current bench-top batch assay developed 

for the detection of photosynthesis-inhibiting herbicides does not reach the 

desired limit of detection for diuron.  
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4.4.3.3 Chemiluminescence batch assay for propanil  

Samples of the five different thylakoid preparations, at the optimal chlorophyll 

concentrations as identified in Section 4.3.3.2, were incubated with samples of 

different propanil concentrations (1x10-4 – 1x10-8 M) for different lengths of time 

(1 – 10 min) and then illuminated for 5 min. The individual results were plotted 

for all different combinations, and can be found in Appendix I. From these, it can 

be seen that the longer incubation times resulted in a more distinct reduction of 

the H2O2 production, for the lower concentrations of propanil assayed, while the 

higher concentrations resulted initially in a decrease of the H2O2 production, 

followed by an increase, after an incubation of 5 min or so.  

 

A summary of the chemiluminescence signal of the H2O2 produced and 

detected for the different propanil concentrations and the different thylakoid 

preparations, with the 10 min incubation time, is seen below in Fig. 4.25.  
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Figure 4.25 Standard curves of the inhibition of H 2O2 production of five different 

thylakoid preparations (Ch1 – Ch5) by propanil, mea sured by HRP-mediated 

luminol chemiluminescence, following a 10 min incub ation and then a 5 min 

illumination step.  
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Based on the results obtained, the LLODs for the different thylakoid 

preparations were calculated, shown in Table 4.9. 

 

As it can be seen from Table 4.9, the thylakoid preparation Ch5 was thus 

identified as the one allowing for the most sensitive detection of propanil. More 

measurements were therefore made with Ch5, in order to obtain a more 

detailed profile of the effect of propanil on the H2O2 production by thylakoids. 

The results can be seen in Fig. 4.26. 

 

Table 4.9 Limits of detection of propanil, obtained  with the five different thylakoid 

preparations. 

Thylakoid LLOD (M) 

Ch1 2.3 x 10-07 

Ch2 5.4 x 10-07 

Ch3 2.9 x 10-07 

Ch4 2.4 x 10-07 

Ch5 1.4 x 10-07 
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Figure 4.26 Calibration curve for the detection of propanil, using the bench-top 

batch assay with Ch5 thylakoids in suspension. Inse t: linear range. 

 

As it can be seen from Figures 4.25 and 4.26, the inhibitory effect of propanil on 

the production of H2O2 by thylakoids could be interpreted as having a 

distinctively sigmoidal shape when plotted. However, when examined in 

conjunction with the detailed time-concentration results found in Appendix I, it is 

clear that, for the higher concentrations of propanil, as the incubation time 

increases, the inhibitory effect they have on the H2O2 production and thus 

chemiluminescence signal appears to be decreasing, thus leading to an 

increase in chemiluminescence signal.  

 

Therefore, for propanil, the upper LOD cannot be calculated with the limited set 

of measurements that have been taken, but, more importantly, due to the fact 

that, as the concentration of propanil in a sample increases, the inhibitory effect 

on the thylakoids' H2O2 production over time appears to be decreasing, in 

contrast with the effect smaller concentrations of propanil have. This is in direct 

contrast to the behaviour of atrazine and diuron, where increased 
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concentrations and increased incubation time both result in a decrease of the 

H2O2 production, and thus chemiluminescence signal obtained. 

 

Such behaviour, although unexpected due to propanil's classification as a 

photosynthesis-inhibiting herbicide, is explained in the literature; as mentioned 

in Section 4.4.1.1.4, at low concentrations, propanil is a strong inhibitor of 

photosynthetic electrons, at a site near plastoquinone. At higher concentrations 

it attacks chloroplasts and other cell membranes and at 1 mM it uncouples 

oxidation from phosphorylation 165; 166. However, no research literature could be 

found confirming the above. 

 

The concentration of propanil that equals 0.1 µg/l, which is the maximum 

permissible amount of an individual herbicide in drinking and other waters in the 

E.U., is 4.6x10-10 M. Therefore, the current bench-top batch assay developed 

for the detection of photosynthesis-inhibiting herbicides does not reach the 

desired limit of detection for propanil.  

 

4.4.3.4 Chemiluminescence batch assay for 2,4-D 

Samples of the Ch5 thylakoid preparation, at the optimal chlorophyll 

concentration as identified in Section 4.3.3.2, were incubated with samples of 

different 2,4-D concentrations (1x10-4 – 1x10-7 M) for different lengths of time (1 

– 15 min) and then illuminated for 5 min. The chemiluminescence signals of the 

H2O2 produced and detected for the different 2,4-D concentrations with the 

different incubation times, are seen below in Fig. 4.27.  
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Figure 4.27 Effect of 2,4-D concentrations, measure d over time, on the H 2O2 

production of the Ch5 thylakoid preparation, follow ing a 5 min illumination step, 

measured by HRP-mediated luminol chemiluminescence.   

 

In Fig. 4.27, it can be seen that 2,4-D had an inhibitory effect on the production 

of H2O2 by the Ch5 thylakoids, which was more pronounced over longer 

incubation periods. The inhibition is not comparable to that effected by the 

photosynthesis-inhibiting herbicides, but nonetheless it was not an expected 

result, as 2,4-D acts by inhibiting certain biochemical pathways that are 

irrelevant to the plants' ability to photosynthesise (Section 4.4.1.1.5). No 

mention in literature of experiments on the effect of 2,4-D on isolated thylakoids 

or PSII could be retrieved. 

 

4.4.3.5 Chemiluminescence batch assay for paraquat 

Samples of the five different thylakoid preparations, at the optimal chlorophyll 

concentrations as identified in Section 4.3.3.2, were incubated with samples of 

different paraquat concentrations (1x10-4 – 1x10-7 M) for different lengths of time 

(1 – 15 min) and then illuminated for 5 min. The individual results were plotted 

for all different combinations, and can be found in Fig. 4.28.  
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b) Thylakoid preparation Ch2
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c) Thylakoid preparation Ch3
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d) Thylakoid preparation Ch4
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e) Thylakoid preparation Ch5
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Figure 4.28 Effect (a–e) Effect of paraquat on chem iluminescence signal due to 

H2O2 obtained from five isolated thylakoid preparations , over different incubation 

times, followed by a 5 min illumination step. 

The Y-axis represents the percentile change of the chemiluminescence signal, and 
therefore H2O2 concentration produced during the illumination step, observed following 
the incubation for different periods of time of the thylakoids with paraquat, compared to 
the 'base' signal, which is assigned the 100% mark, obtained from the thylakoids when 
illuminated but not previously incubated with paraquat. Each graph (a-e) presents the 
results obtained with a different thylakoid preparation (thylakoid preparations Ch1 – 
Ch5 respectively). 
 

As it can be seen, for all five different thylakoid preparations, paraquat had a 

distinctively different effect on the expected H2O2 produced by thylakoids 

following illumination, compared to the photosynthesis-inhibiting herbicides. For 

most concentrations of paraquat, there was a large increase in 

chemiluminescence signal observed, and hence possibly H2O2 produced by the 

thylakoids, when compared to the signal that was achievable by the thylakoids 

following the illumination without a herbicide incubation step. The very high 

chemiluminescence signals obtained following a 1 minute incubation of the 

thylakoids with paraquat did then fall over time, suggesting that, the very large 
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amounts of H2O2 produced during the period up to 1 min, were then somehow 

removed.   

 

As explained in detail in Section 4.4.1.1.6, in the presence of light, paraquat is 

reduced to a stable free radical, which then causes toxic effects to the plant 166. 

The dramatic toxic effects of paraquat require the presence of light, oxygen and 

photosynthetic tissue. Although the importance of light makes the light reactions 

of photosynthesis an obvious candidate as the primary candidate of paraquat, it 

does not inhibit the Hill reaction in isolated chloroplasts 165. Therefore its 

primary action is the generation of free radicals, including hydrogen peroxide 4. 

Hydrogen peroxide must then be reduced to water by reduced ascorbic acid, 

catalases or glutathione peroxidases, and there are such processes in place 

within the plant cells. In the presence of paraquat, the production of hydrogen 

peroxide is greatly enhanced and it then accumulates 165.  

 

It is therefore suggested, that, the observed decrease, over time, of the 

concentration of H2O2 that is produced during the initial contact of paraquat with 

the thylakoids is the result of the H2O2-reducing facilities of the thylakoids 

coming into action, after a delay. This was also supported by simple 

measurements made, whereby the addition of catalase in thylakoid samples 

that were being incubated with paraquat caused the elimination of any H2O2 

signal being detected by chemiluminescence; this is in accordance with the 

literature 169, whereas it is suggested that the inhibition caused by paraquat is 

reduced if O-
2 or H2O2 scavenging enzymes and quenching systems are added 

to plant photosynthetic material. Of course, as it is the production of H2O2 by 

thylakoids that is of analytical interest for this work, the use of catalase therefore 

inhibits all desired H2O2 as well as this produced the effect of paraquat.  

 

As the incubation of the thylakoids with paraquat did not result in a meaningful 

inhibition of their H2O2-producing capacity, no further measurements were 

made, and there are no dose-response curves obtained to plot that would be 

classified as a calibration curve for the detection of paraquat based on the 
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inhibition of H2O2 production by the thylakoids, and hence reduction of the 

chemiluminescence signal. It is important however to acknowledge the effect 

paraquat has on the photosynthetic material itself, as it leads to the exact 

opposite result than the photosynthesis-inhibiting herbicides do (i.e. production 

of H2O2 rather than inhibition).  

 

4.4.3.6 Chemiluminescence batch assay for acifluorf en  

Samples of the five different thylakoid preparations, at the optimal chlorophyll 

concentrations as identified in Section 4.3.3.2, were incubated with samples of 

different acifluorfen concentrations (1x10-4 – 1x10-7 M) for different lengths of 

time (1 – 15 min) and then illuminated for 5 min. The individual results were 

plotted for all different combinations, and can be found in Fig. 4.29.  

 

 

 

 

 

 

 



 137

a) Thylakoid preparation Ch1

0%

50%

100%

150%

200%

250%

0 5 10 15
Incubation time / min

C
he

m
ilu

m
in

es
ce

nc
e 

si
gn

al
 c

ha
ng

e 
/ 
%

100 µM

10 µM

1 µM

100 nM

 

 

b) Thylakoid preparation Ch2
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c) Thylakoid preparation Ch3

0%

50%

100%

150%

200%

250%

0 5 10 15

Incubation time / min

C
he

m
ilu

m
in

es
ce

nc
e 

si
gn

al
 c

ha
ng

e 
/ 

%

100 µM

10 µM

1 µM

100 nM

 

 

d) Thylakoid preparation Ch4
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e) Thylakoid preparation Ch5

0%

50%

100%

150%

200%

250%

0 5 10 15
Incubation time / min

C
he

m
ilu

m
in

es
ce

nc
e 

si
gn

al
 c

ha
ng

e 
/ 

%

100 µM

10 µM

1 µM

100 nM

 

 

Figure 4.29 Effect (a–e) of acifluorfen on chemilum inescence signal due to H 2O2 

obtained from five isolated thylakoid preparations,  over different incubation 

times, followed by a 5 min illumination step. 

The Y-axis represents the percentile change of the chemiluminescence signal, and 
therefore H2O2 concentration produced during the illumination step, observed following 
the incubation for different periods of time of the thylakoids with acifluorfen, compared 
to the 'base' signal, which is assigned the 100% mark, obtained from the thylakoids 
when illuminated but not previously incubated with acifluorfen. Each graph (a-e) 
presents the results obtained with a different thylakoid preparation (thylakoid 
preparations Ch1 – Ch5 respectively). 
 

As it can be seen, for all five different thylakoid preparations, the highest 

concentration of acifluorfen tested had a distinctively different effect on the 

expected H2O2 produced by thylakoids following illumination, compared to the 

photosynthesis-inhibiting herbicides. The increase in chemiluminescence signal 

observed, when compared to the signal that was achievable by the thylakoids 

following the illumination without a herbicide incubation step, did then fall over 

time. What is more, the effect of acifluorfen on the thylakoids appears not to be 

as strong as with paraquat, as the only concentration that effected a large 

increase of the H2O2 produced was the 1x10-4 M, which then fell over time, 



 140

suggesting that, the higher than expected amount of H2O2 produced during the 

period up to 1 min, was then somehow removed.   

 

As explained in detail in Section 4.4.1.1.7, acifluorfen interferes with a wide 

range of biochemical processes in plants and plant cell organelles, including 

inhibiting the Hill reaction in isolated chloroplasts. Interference with electron 

transport in illuminated chloroplasts probably leads to the formation of singlet 

oxygen or other oxidants 162; 165. Light is essential for the activation of the 

disruption process, although the specific role light plays in its activation is 

uncertain, with many conflicting theories 165; 170; 171. 

 

It is therefore suggested that acifluorfen did possibly inhibit the production of 

H2O2 by the thylakoids, while also affecting them in other ways, thus causing a 

rise in the net amount of H2O2 produced. This effect appears to be 

concentration-dependent. The suggested explanation compares well to a similar 

example found in the literature. In the example of a biosensor for the detection 

of specific classes of herbicides, using their effect on the fluorescence of 

photosynthetic particles (fluorescence increases with an increase of herbicides) 
174, it was reported that the biosensor could be used for the detection of DNOC 

(a phenolic herbicide) until a concentration of 300 µg/l. The effect of DNOC on 

the measured fluorescence signal (increase) was attributed to the inhibition of 

PSII electron transport while the uncoupling effect was considered to be 

comparably negligible at such low concentrations. However, at higher 

concentrations, although the PSII inhibition still increased, the uncoupling effect 

of DNOC tended to become the major parameter, which therefore caused a 

decrease of the fluorescence signal, thus not allowing for any meaningful 

detection of the herbicide at higher concentrations.  

 

A similar method of action could therefore be suggested in the presented work, 

where the opposing actions leading to H2O2 formation and inhibition of H2O2 

formation coexist in the chemiluminescence signal detected. Without further and 

detailed experiments this cannot be ascertained in any more detail. 
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As the incubation of the thylakoids with acifluorfen did not result in a meaningful 

inhibition of their H2O2-producing capacity, no further measurements were 

made, and there are no dose-response curves obtained to plot that would be 

classified as a calibration curve for the detection of acifluorfen based solely on 

the inhibition of H2O2 production by the thylakoids, and hence reduction of the 

chemiluminescence signal. It is important however to acknowledge the added 

effect acifluorfen has on the photosynthetic material itself, as it leads to the 

exact opposite result than the photosynthesis-inhibiting herbicides do (i.e. 

production of H2O2 rather than inhibition).  

 

4.4.3.7 Chemiluminescence-related measurements made  with herbicides 

The literature provides very detailed descriptions of the effect of herbicides on 

target, or other organisms. There was however a clear need to evaluate the 

possible effect the herbicides used in this work have on the chemiluminescence 

reaction, as it is the second step of the herbicide detection assay, that provides 

the physical quantity (light) that is then correlated to the herbicide concentration.  

 

Various combinations of the reagents taking part in the HRP-mediated 

chemiluminescence reaction between luminol and H2O2 were investigated when 

incubated with herbicides, using a series of different experiments.  

 

For atrazine, diuron, propanil, 2,4-D and paraquat, when the standard 

chemiluminescence detection of known H2O2 concentration samples was 

performed with the addition of individual herbicides in the H2O2 sample, no 

significant change (increase or reduction) of the chemiluminescence signal 

detected was observed. Therefore, the herbicides do not interact with any of the 

components (H2O2, luminol, HRP) or affect the standard chemiluminescence 

reaction thereof. The same absence of an effect was also observed when the 

aforementioned five herbicides were mixed with luminol and HRP in the 

absence of H2O2.  
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For acifluorfen however, the standard chemiluminescence reaction in the 

presence of the herbicide, with or without H2O2, appeared to give higher than 

normal results. This effect is exemplified in Fig. 4.30. This is due to the fact that, 

as acifluorfen is a phenolic herbicide, it enhances the chemiluminescence 

reaction. Chlorophenols act as enhancers of the peroxidase-catalysed luminol 

chemiluminescence reaction. Using the enhancing property of chlorophenols as 

the detection principle, there is a published example of using this enhancement 

of the chemiluminescence signal as a means of detecting the said herbicides 87, 

by measuring the increase in chemiluminescence signal.  
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Figure 4.30 Effect of herbicide acifluorfen on the HRP-mediated luminol 

chemiluminescence reaction with H 2O2.   

 

For all six herbicides no chemiluminescence signal was detected when a 

herbicide sample was incubated with a thylakoid sample but not illuminated, 

effectively reproducing the standard experiments the results of which make up 

most of Section 4.4.3, but without the illumination step. This means that none of 

the herbicides effect the production of H2O2 by thylakoids without illumination.  
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4.5 Chlorophyll content and activity measurement of  isolated 

photosynthetic material 

4.5.1 Introduction 

In order to ascertain whether the isolated chloroplasts and thylakoids contained 

some of the organelles and molecules necessary for the photosynthetic oxygen 

evolution, and whether these were photosynthetically active, as well as, 

importantly, also as a means of allowing for comparative performance 

assessment of the different isolated thylakoid preparations, it was important to 

identify common parameters that apply to all different preparations, and to 

measure and quantify those. This was considered as a way of adjusting all 

different thylakoid preparations to a common value in order to allow for 

harmonised conditions over which to compare them. 

 

A parameter that is commonly used as a quantity measured following the 

isolation of photosynthetic material, according to the literature 6; 44; 175, is the 

amount of chlorophyll that can be found in such preparations. Therefore, 

absorbance measurements were taken of the different chloroplast and thylakoid 

preparations in order to allow such quantification.  

 

Another parameter identified as commonly reported in the literature is the 

chlorophyll fluorescence 48. The capacity of a plant for photochemistry is limited 

and will depend upon a range of factors including stresses caused by 

environmental conditions. Energy in excess of that used for photochemistry 

must be effectively dissipated by non-photochemical processes. Such 

processes include the emission of heat and re-emission of small but 

diagnostically significant amounts of the absorbed radiation as longer 

wavelength red/far-red light energy. This re-emission of light is termed 

chlorophyll fluorescence 176. The fluorescence of chlorophyll is therefore a 

known process that has been used extensively in basic as well as applied 

agricultural and photosynthesis-related research; not only is it a process that 

has been used to assess the effect of a variety of environmental factors upon 
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whole plants, such as amount of light, water, gases etc, but also as a method of 

quantifying chemical moieties that affect in some way the fluorescence of 

subcellular organelles, more notably in biosensors for the quantitative detection 

of herbicides 175. It was therefore deemed necessary to quantify the 

fluorescence of the different preparations in order to allow for the estimation of 

photosynthetic activity. 

 

4.5.2 Materials and methods 

4.5.2.1 Chlorophyll concentration measurements 

In order to calculate the chlorophyll a and b content, a variation of a protocol 

was used, found in literature 177. Twenty five microlitres of each chloroplast and 

thylakoid preparation were mixed with 5 ml of acetone (80%) and then 

centrifuged. The supernatant was placed in a 1 cm glass cuvette, and 

absorbance measurements of the supernatant were made at two wavelengths, 

663 and 647 nm. The equation then used is as shown: 

[Chl (a+b)] (mg/l) = (7.15 * A663 + 18.71* A647)/5   

where A is the absorption at the given wavelengths. 

 

4.5.2.2 Chlorophyll fluorescence measurements 

A 200 µl aliquot of the sample to be measured (diluted thylakoid preparations) 

was placed in a small opaque sample holder. The sample was then dark 

adapted for 20 min. The chlorophyll fluorescence was measured and analysed 

using a Handy Plant Efficiency Analyser chlorophyll fluorometer (Hansatech 

Instruments Ltd., King's Lynn, UK). The instrument is a light detector designed 

for measurement and analysis of chlorophyll fluorescence. The relative 

fluorescence or Fv/Fm was automatically calculated and reported as (Fm – 

Fo)/Fm, where: 

• Fo - fluorescence level when plastoquinone electron acceptor pool (Qa) is 

fully oxidised (in the dark, at the end of dark adaptation period) 
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• Fm - fluorescence level when Qa is transiently fully reduced (after pulse light 

illumination) 

• Fv - variable fluorescence (Fm-Fo) 

• Fv/Fm - maximum quantum efficiency of Photosystem II. 

 

4.5.3 Results and discussion 

4.5.3.1 Chlorophyll concentration measurements and adjustments 

All chloroplast and thylakoid preparations, prior to illumination experiments for 

the production, and detection, of H2O2, were tested for the amount of chlorophyll 

they contained, in mg per ml of the final aliquots that were the result of the 

isolation process. As the isolation protocols employed varied greatly in overall 

methodologies, amounts of spinach leaves used, reagent volumes throughout 

the isolation protocols and final isolated thylakoids volumes, this was aimed to 

allow for a more direct comparison of the results, although the chlorophyll 

content is only an indication of potential activity. The results can be seen in 

Table 4.10.  

 

Table 4.10 Absorbance and calculated chlorophyll co ncentration of the different 

chloroplast and thylakoid preparations. 

Chloroplast and 
Thylakoid 
preparation name 

Absorbance 
at 663 nm 

Absorbance 
at 647 nm 

Chlorophyll 
concentration of 
undiluted thylakoid 
preparation, mg/ml 

Ch0a 1.24 0.72 4.467 
Ch0b 1.98 0.85 6.012 
Ch1 1.77 0.84 5.674 
Ch2 0.68 0.35 2.282 
Ch3 1.01 0.52 3.390 
Ch4 1.09 0.52 3.505 
Ch5 2.01 0.93 6.354 

  

Next, in order to achieve uniformity, and thus comparability, amongst the 

different chloroplast and thylakoids preparations, the final volumes of all 

preparations were adjusted to contain the same amount of chlorophyll, prior to 
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their use in experiments. The adjustments made are shown in Table 4.11. The 

value of chlorophyll concentration chosen as the one to adjust all chloroplast 

and thylakoid preparations to, was 0.284 mg/ml. This is the optimal chlorophyll 

concentration for the highest production and detection of H2O2 for isolated 

thylakoids Ch1, and, as this was the first thylakoid preparation produced and 

tested, the rest were adjusted according to its chlorophyll concentration. 

 

Table 4.11 Calculated chlorophyll concentration of the different chloroplast and 

thylakoid preparations, and volume adjustments in o rder to achieve the desired 

uniform such concentration in the final 990 µl of a  typical chemiluminescence 

measurement in Chapter 4. 

Chloroplast 
and Thylakoid 
preparation 
name 

Chlorophyll 
concentration of 
undiluted thylakoid 
preparation, mg/ml 

Desired 
chlorophyll 
concentration 
benchmark, 
mg/ml 

Volume of undiluted 
thylakoid preparation 
to achieve desired 
chlorophyll 
concentration, µl 

Ch0a 4.467 0.284 64 

Ch0b 6.012 0.284 47 
Ch1 5.674 0.284 50 
Ch2 2.282 0.284 124 
Ch3 3.390 0.284 84 
Ch4 3.505 0.284 81 
Ch5 6.354 0.284 45 
 

However, as shown in Fig. 4.7 in Section 4.3.3.2, it appears that harmonising 

the final volume of each thylakoid preparation used in the chemiluminescence 

assays by adjusting them according to their chlorophyll concentrations resulted 

in some thylakoid preparations producing less detectable H2O2 in those 

thylakoid concentrations than in other, 'arbitrary' concentrations.  

 

The true reason for the observed behaviour whereas the different thylakoid 

preparations a) do not contain the same amount of chlorophyll and b) do not 

produce the same amount of H2O2 when volume adjusted to contain the same 

amount of chlorophyll, is probably the heterogeneity of the thylakoids 

preparations, due to the different protocols used to deliver them. The different 

methods of isolation lead to the fact that, as all of the thylakoid preparations do 
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not simply contain purified chlorophyll, but, realistically, expectably, and even 

more so, ideally, whole thylakoid particles, adjusting the thylakoid concentration 

of each thylakoid preparation according to a common chlorophyll concentration 

is taking into consideration only partially the important element of sample 

absorbance when H2O2 production and chemiluminescence detection is taking 

place. It appears that the harmonised (according to chlorophyll concentration) 

thylakoid concentrations resulted in some preparations containing thylakoid 

concentrations that were inhibiting the H2O2 production or detection. The most 

probable reason for this is believed to be the increased absorbance of some of 

the thylakoid preparations, in relation to their individual H2O2 production yields, 

thereby inhibiting two-fold the detection of photosynthetically produced H2O2; 

firstly by inhibiting the light from the light source to reach as many thylakoids in 

order to produce H2O2 during the sample illumination, and, secondly, by 

inhibiting the chemiluminescence-produced light to escape the cuvette and be 

detected by the light detector during the detection. In a similar way, the exact 

opposite could have taken place, where adjusting for a chosen chlorophyll 

concentration could have resulted in thylakoid samples under-producing 

detectable H2O2, as is the case for each thylakoid preparation, as seen in Fig. 

4.7, at the part of the curve prior to reaching the individual optimal 

concentration. 

 

It was thus necessary to reach the final optimal thylakoid concentrations in 

thylakoid preparations by using experimental means. Therefore, sets of 

measurements were made for all thylakoid preparations in order to identify the 

optimal thylakoid (and hence chlorophyll) concentration that would result in the 

maximum H2O2 production and, equally importantly, detection. The results have 

already been reported in Section 4.3.3.2. As the chloroplast preparations did not 

produce any H2O2 production, or at least the detection thereof, it was not 

necessary, or indeed possible, to perform such measurements on the isolated 

chloroplasts. This set of experiments resulted in the optimised concentration / 

volume as shown in the right-most column in Table 4.12, for each individual 

thylakoid preparation. It is noted that the thylakoid preparation Ch5 appears to 
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produce the highest chemiluminescence signal resulting from the produced 

H2O2, from the lowest chlorophyll concentration, when compared to the other 

four thylakoid preparations, as seen in Fig. 4.7. Assuming that all thylakoid 

preparations contain thylakoids with the same amount of chlorophyll per 

thylakoid membrane, this would signify that the thylakoid preparation Ch5 has 

the most active, intact thylakoids, with the best H2O2 production yield. 

 

Table 4.12 Chlorophyll concentration and thus volum es: a) set to a standardised 

amount (columns 2 and 3), b) set to the amounts opt imal for the production and 

detection of H 2O2 (columns 4 and 5) 

C
hloroplast and 

T
hylakoid 

preparation nam
e 

D
esired 

chlorophyll 
concentration 
benchm

ark, m
g/m

l 

V
olum

e of 
undiluted thylakoid 
preparation to 
achieve desired 
chlorophyll 
concentration, µl 

F
inal chlorophyll 

concentration 
optim

ised for H
2 O

2  
production and 
detection, m

g/m
l 

F
inal volum

e of 
undiluted thylakoid 
preparation 
optim

ised for H
2 O

2  
production and 
detection, µl 

Ch0a 0.284 64 n/a n/a 
Ch0b 0.284 47 n/a n/a 
Ch1 0.284 50 0.284 50 
Ch2 0.284 124 0.171 75 
Ch3 0.284 84 0.237 70 
Ch4 0.284 81 0.131 37.5 
Ch5 0.284 45 0.064 10 

 

4.5.3.2 Chlorophyll fluorescence measurements 

One of the most common parameters reported in plant health studies is plant 

fluorescence, and specifically the Fv/Fm ratio. When a leaf is kept in the dark, 

all residual energy is processed and the amount of fluorescence is small (Fo); 

then, when a flash of bright light is shone to the leaf, the fluorescence signal will 

increase to a maximum, called Fm, as it can not use all of this energy. The 

difference between the maximum and minimum fluorescence is the variable 

fluorescence, Fv (Fv = Fm – Fo). The parameter that indicates the proportion of 

the maximum possible fluorescence, which was used for photosynthesis, is the 

result of dividing Fv by the maximum Fm. The quantum yield ratio Fv/Fm has for 
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some years been used to provide a diagnostic measure of the overall efficiency 

with which a plant is able to utilise light 176. Values of 0.70 and upwards are 

considered examples of healthy photosynthetic material. A decline in Fv/Fm in 

dark-adapted plants is a good indicator of photo-inhibitory damage in plants 

subjected to stress. 

 

Measurements were made of the chlorophyll fluorescence efficiency of the 

different isolated chloroplast and thylakoid preparations. For each thylakoid 

preparation, the chlorophyll fluorescence efficiency of two dilutions was 

measured, with one being the dilution adjusted for providing a final chlorophyll 

concentration of 0.284 mg/ml and the second being the dilution that provided 

the optimal H2O2 production and detection in experiments, as reported in Table 

4.12. The calculated Fv/Fm ratios can be seen below in Table 4.13. 

 

As it can be seen from the fluorescence efficiencies achieved by different 

concentrations of thylakoids in Table 4.13, for each thylakoid preparation 

separately, there is no direct relative correlation between changes in chlorophyll 

concentration and chlorophyll photosynthetic activity. This is logical, given that 

the parameter of chlorophyll fluorescence activity that is being measured, i.e. 

the ratio Fv/Fm, is a relative measurement of the sample's fluorescence pre- 

and post-illumination. For example, when more than halving the amount of 

chlorophyll in the sample of thylakoid preparation Ch3, the quantum yield does 

not respond in such a reaction as the overall proportion remains constant.  
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Table 4.13 Chlorophyll fluorescence efficiency of t he isolated chloroplast and 

thylakoid preparations. a) set to a standardised am ount (columns 2 and 3), b) set 

to the amounts optimal for the production and detec tion of H 2O2 (columns 4 and 

5) 

C
hloroplast 

and T
hylakoid 

preparation 
nam

e 

D
esired 

chlorophyll 
concentration 
benchm

ark, 
m

g/m
l 

C
orrespondin

g chlorophyll 
photosyntheti
c activity 
(F

v/F
m

) 

F
inal 

chlorophyll 
concentration 
optim

ised for 
H

2 O
2  

detection, 
m

g/m
l 

C
orrespondin

g chlorophyll 
photosyntheti
c activity 
(F

v/F
m

) 

Ch0a 0.284 0.70 n/a n/a 
Ch0b 0.284 0.61 n/a n/a 
Ch1 0.284 0.82 0.284 0.81 
Ch2 0.284 0.66 0.171 0.65 
Ch3 0.284 0.71 0.237 0.70 
Ch4 0.284 0.59 0.131 0.59 
Ch5 0.284 0.72 0.064 0.70 

 

However, as has already been highlighted with the fact that the thylakoid 

dilutions, when chosen to reflect a harmonised chlorophyll concentration (0.284 

mg/ml), were not the optimal to also yield the maximum H2O2 production, it is 

therefore not surprising that, when comparing the chlorophyll activity (column 3 

in Table 4.13) for all thylakoid preparations against each other, there is no direct 

relationship. The same can also be said for the photosynthetic activity of the 

different optimised concentrations of thylakoids; again, the best photosynthetic 

yields, as far as fluorescence is concerned, are not necessarily achieved by the 

preparations that appear to have the most chlorophyll (column 4).  These 

observations point towards an experimental unknown, that, as the thylakoid 

preparations have undergone major, and diverse, isolation procedures, the 

photosynthetic activity of chlorophyll cannot be directly correlated to its 

concentration, in the same way it could be assumed for a healthy leaf. What is 

more, the fact that, in response to identifying the optimal concentration for the 

optimal H2O2 detection some of the chlorophyll concentrations had to be 

reduced, suggests that the chlorophyll activity ought not to be used as a direct 

comparative indicator of the potential H2O2 production, and detection, of any 

preparations described in this work. 
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To conclude, having identified two methods commonly used to report plant 

health, the use of these methods on the isolated chloroplast and thylakoid 

preparations revealed that they do not correlate in any way with the H2O2 

production and detection achieved by said preparations. 

 

4.6 General discussion 

To summarise, the work presented in Chapter 4 establishes the development of 

a bench-top, batch format assay for the detection of certain classes of 

herbicides, based on the HRP-mediated chemiluminescence reaction of luminol 

with H2O2 produced by illuminated thylakoids following incubation with a 

herbicide sample.  

 

4.6.1 Production of H 2O2 by illuminating isolated chloroplasts, and 

detection thereof using chemiluminescence   

An investigation into obtaining detectable H2O2 from isolated chloroplasts 

following illumination was carried out. Two different isolation protocols were 

used to obtain chloroplasts, but with either, no H2O2 was detected. Various 

treatments of the chloroplasts, pre- and post-illumination, as well as the 

assaying of their contents or their preparation's supernatant, with or without 

added H2O2, has led to the suggestion that the inability to detect any produced 

H2O2 is not due to the unsuitability of the H2O2 detection step 

(chemiluminescence reaction), but due to the chloroplasts' preparations having 

a catalase-like active compound that scavenges any produced H2O2, if there is 

any produced.  

 

4.6.2 Production of H 2O2 by illuminating isolated thylakoids, and 

detection thereof using chemiluminescence   

Following this, a different photosynthetic material organelle, the thylakoid, was 

obtained, using five different isolation methods, three of which were the most 

commonly used in the literature and two were variations thereof. All thylakoid 
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preparations produced H2O2 following their illumination, that could be detected 

and measured with the standard chemiluminescence H2O2 assay. The H2O2 

production was affected by a variety of parameters of the illumination step 

(intensity, wavelength, length of time), the suspension medium (buffer) and the 

experimental method (pipette tips holding the thylakoids during illumination) 

used.  

 

The production of H2O2 increased with the time of illumination, for all five 

preparations. As chemiluminescence signals reporting the produced H2O2 

increased with the longer illumination times, there were clear differences in the 

ability of the different thylakoid preparations to produce detectable H2O2. This is 

partly due to the optical density of the thylakoid samples, which, following 

illumination, were then introduced in the standard HRP-mediated 

chemiluminescence reaction, which was affected by the absorbance of the 

chemiluminescence light by the thylakoids. However, for each thylakoid 

preparation the dilution (reported as chlorophyll concentration) at which they 

produced the most H2O2 while keeping all other experimental variables had 

been identified, thus making the dilutions and comparison of the different 

thylakoid preparations based on H2O2 production yields. What is more, 

illumination longer than 10 min appeared to significantly limit the rate of H2O2 

production, although, without further detailed experiments this cannot be 

ascertained, as it could instead be due to the scavenging of H2O2 following a 

time lag.  

 

It is important to highlight however that, as the assay for the detection of 

produced H2O2 is performed in a batch method with the H2O2-producing sample 

having to enter the chemiluminescence reaction step, the chemiluminescence 

signal intensity resulting from the H2O2 effectively underreported the amount of 

H2O2 produced, due to the sample's optical density.  

 

The Ch5 thylakoid preparation was the preparation that, for the least amount of 

thylakoids (reported as chlorophyll concentration) produced the most light after 
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a 10-min illumination, with all aforementioned parameters optimised. That 

makes the Ch5 preparation also the one with the most amount of the 'better 

performing thylakoids' / 'total thylakoids in the preparation irrespective of 

performance'. Nevertheless, all five different isolated thylakoid preparations 

were used in the next set of experiments, as a definitive suggestion on whether 

good overall characteristics on the H2O2 production step would also be 

translated in the lowest LOD for herbicides, could not be ascertained. 

 

Illuminating all five different thylakoid preparations with spectrum- (and 

intensity) filtered variations of the same light source provided a fascinating 

account of the behaviour of thylakoids as a whole depending on the illumination 

wavelength changes, but also between the different preparations. The results 

showed the effect the different spectral distributions have on the production of 

H2O2. An expectation for the H2O2 production to vary accordingly only to the 

light intensity is not met, as photosynthesis is affected by the differences in 

wavelengths as well. Differences in H2O2 production found between thylakoid 

preparations can now be partly attributed to their active pigments constitutions 

(which are unknown, other than chlorophyll). 

 

4.6.3 Detection of herbicides based upon their inhi bitory effect on H 2O2 

production by illuminated thylakoids  

Incubating all five different thylakoid preparations with increasing concentrations 

of photosynthesis-inhibiting herbicides did result in clear, correlated reduction of 

the chemiluminescence signal, which therefore suggests also a correlated 

reduction of the H2O2 production by thylakoids during an illumination step 

following the incubation step. For all three photosynthesis-inhibiting herbicides, 

thylakoid preparation Ch5 resulted in the lowest LODs of all five preparations; 

this suggests that Ch5's seemingly higher proportion of thylakoids that produce 

a lot of H2O2, while containing the least thylakoids overall, did also result in the 

ability of less herbicide molecules to effect a detectable reduction in their H2O2 

production. The lower LODs achieved (atrazine: 6.0x10-09, diuron: 8.0x10-08, 

propanil: 1.4x10-07) are not sufficiently low to meet the E.U. limits of maximum 
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permissible concentrations of herbicides in waters. Given the wide range of 

detection achieved (approximately 4-5 orders of magnitude), it is expected that 

the inability to detect sufficiently low concentrations of herbicides is due to the 

fact that, with the relatively high concentrations of thylakoids in each 

measurement, the binding sites for the herbicide molecules are too many for 

low herbicide concentrations to have a measurable effect on the H2O2 

production, compared to the blank signal, which, as this is an assay measuring 

the inhibitory effect of the analyte, is the maximum possible signal obtained 

rather than 'zero', therefore adding to the difficulty to detect it. The RSD for the 

detection of photosynthesis-inhibiting herbicides is: 5.7%. 

 

The confidence in the presence of this relationship is increased due to a variety 

of measurements that were performed with the herbicides, the thylakoids and 

the chemiluminescence reagents and standard chemiluminescence H2O2 assay 

using different variables of presence or absence of any of the steps (incubation, 

illumination, chemiluminescence reaction) and of any of the participating 

components (herbicides, thylakoids, luminol, HRP) in order to identify any 

unwanted effects.  

 

For non-photosynthesis-inhibiting herbicides, the batch assay gave a variable 

response, due to the means of action of the herbicides chosen. For paraquat 

and acifluorfen, the H2O2 detected was over the blank, for some concentrations 

many times over. This of course could be considered a valid method to detect 

said herbicides, i.e. by measuring their effect on the photosynthetic material, 

which is an effect different to the inhibition of H2O2 production. However, what 

makes the developed assay a valid method for the detection of photosynthesis-

inhibiting herbicides is the fact that the classes categorised as such all have a 

similar effect on the photosynthetic material, while the non-photosynthesis-

inhibiting herbicides vary in their means of action. Interestingly, although 2,4-D 

was not expected to cause any inhibition of the H2O2 production by thylakoids, 

according to knowledge of its mode of action, a small inhibition was observed, 

which was concentration dependent. There is no knowledge to the cause of this 
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however, as no literature reporting the effect of 2,4-D on isolated photosynthetic 

material was found. 
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Chapter 5: Design, Testing and Implementation of the Fluidic 

Chemiluminescence Assay Unit for Hydrogen Peroxide 

 

Chapter 5. a 

A major part of the work presented in Chapter 5 has been published, albeit in 

less detail and depth, in a paper 196, together with parts of the work described in 

Chapter 4 on the detection of herbicides in a batch assay.  

 

5.1 Introduction – Fluidic sensor unit principles a nd design 

5.1.1 Fluidic assay requirements and considerations  

As stated in the aims and objectives of the project (Section 1.2), the central aim 

of the work presented, is the establishment of a fluidic sensor unit for 

performing a chemiluminescent bioassay for the detection of herbicides in 

water, that can be reused and regenerated, itself a key objective for the 

development of a stand-alone, fully automated, field-based, reusable sensing 

system.  

 

When altering the properties of 'wet chemistry' batch assays with the aim of 

converting said assays for use in miniaturised, stand-alone systems with 

automated methods of introducing and processing samples, performing the 

assays and being primed for reuse, the most common way of achieving this is 

to use the principles of flow-based analysis. Hence, the assay for the detection 

of herbicides in a batch format (presented in Section 4.4) needs to be converted 

into a fluidic assay. This includes performing the stages of the batch assay, 

namely the herbicide-induced inhibition of the production of H2O2 by thylakoids 

and its subsequent detection. 
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In order to achieve the objective of transferring the established herbicide assay 

from a batch to a fluidic format, the sensor unit needs to allow for the following 

discreet steps to be performed; 

1. the illumination-stimulated production of H2O2 by thylakoids, and its inhibition 

by a herbicide-containing sample 

2. the detection of produced H2O2 using the HRP-mediated 

chemiluminescence reaction of luminol/H2O2. 

 

What is more, these steps need to be performed in a way that will allow for the 

sensor unit to be subsequently incorporated into a system that will be able to be 

used as a stand-alone device with minimal user involvement. To achieve this, 

the method developed had to therefore take into account the need for the 

sensor unit to be able to be reused or replaced. There are already developed 

sensors for the electrochemical detection of herbicides, that inhibit the 

photosynthetic oxygen evolution that require the physical replacement of the 

component that incorporates the photosynthetic material in use 8; 9; 48; 140-142; 154. 

In all of these prior examples, the photosynthetic material has been immobilised 

on an electrode's surface. The literature reveals that an individual electrode can 

sometimes be reused for a limited number of individual measurements, which 

then requires the user to replace with a new electrode. Hence, this signifies little 

integration of the key element of the sensor (the electrode with the 

photosynthetic material) with other elements of the unit, namely the fluidics and 

detection method. There are no current examples of research performed 

attempting to allow for the seamless replacement of the reusable element of 

such a sensor, namely of the photosynthetic material and its support / 

immobilisation structure. It was therefore decided to investigate this route.  

 

To address the need for reusability, regenerability and suitability for automation, 

the fluidic assay developed would need to alter some of the components of 

either / both of the two steps mentioned above into a format that would allow for 

that improvement. A common trend in research and development for medical 

and environmental assays is the immobilisation of a component used in an 
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assay. This allows for better detection limits, automation, as well as, 

importantly, for the stabilisation of said components, allowing the assay a longer 

time during which it can be used, following its production. As already 

mentioned, in herbicide detection fluidic assays, immobilisation methods for the 

photosynthetic material used have been employed, albeit with the disadvantage 

that the said methods do not allow for the easy replacement of key components 

of the sensor. 

  

A novel immobilisation method that is increasingly employed in clinical 

diagnostics 106; 118 is based on the use of superparamagnetic beads. As it has 

already been discussed in the literature review, superparamagnetic beads allow 

for a variety of immobilisation chemistries to be used on a wide array of 

functionalised chemical-linking groups that can be attached on their surface, 

and are very good candidates for automation 106. Importantly, the non-

permanent nature of the magnetisation of the beads, means that replacing them 

is achievable simply by means of appropriate fluidic and magnetic control. 

Consequently, the use of such beads therefore also means that any material 

immobilised on the beads will also be removed; the subsequent replacement of 

the beads with a new lot, means that the sensor / assay in which they are used 

can be effectively regenerated. This is a novel method of being able to 

manipulate the movement of the photosynthetic material, achieved by 

attachment on the beads.  

 

Another characteristic that ought to be taken into consideration when 

developing the fluidic assay and hence the sensor, is the need for distinct areas 

where the two assay steps would be taking place. Previous work using the 

principle of the inhibition of the photosynthetic oxygen evolution by herbicides, 

used illuminated, immobilised photosynthetic organelles, the effect on which by 

the herbicides would be measured with electrochemical methods concurrently 

with the incubation taking place, and were therefore not affected by the light 

source used to illuminate the organelles 8; 9; 48; 142; 154; 159. This, however, is a 

limiting factor of the current work, where the illumination of the thylakoids needs 
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to precede the detection of chemiluminescence signal. Hence, separate areas 

need to be utilised for the two steps. 

 

5.1.2 Way forward / approach 

All of the above was taken into consideration during the fluidic bioassay 

development and the method chosen includes both HRP and thylakoids 

covalently coupled on superparamagnetic beads, using appropriate 

immobilisation chemistries. The fluidic sensor unit will therefore comprise of a 

fluidic channel with two "active" regions with: 

• thylakoids immobilised on beads, and  

• HRP immobilised on beads. 

 

The two “active" regions on the fluidic channel are non-permanent, as, although 

the thylakoids and HRP are chemically immobilised on superparamagnetic 

beads, the beads will in turn be magnetically entrapped on the “active” regions. 

By immobilising the said components on superparamagnetic beads, it is thus 

possible to (i) magnetically define and control the “active" regions of the sensor 

unit by using magnets to guide the beads to the preferred area and (ii) de-

sensitise a region simply by removing the magnetic field, as  

superparamagnetic beads have no 'magnetic memory'. This is shown 

schematically in Figures 5.1 and 5.2. 

 

Using two separate areas for necessary reactions to take place, allows for the 

2-step assay to take place in the same fluidic sensor unit, as the beads with 

thylakoids and the beads with HRP are magnetically entrapped in separate 

areas of the channel, at different times, allowing a herbicide sample flowing in 

the channel to first react with the thylakoids by inhibiting the production of H2O2 

while then, any produced H2O2 reacts with the pre-mixed luminol and the 

immobilised HRP to produce a light signal, detected by a photodetector.  
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Figure 5.1 Schematic representation of the fluidic sensor unit, semi-exploded 

view.  

The two blocks that sandwich the fluidic channel are shown wide apart. The “active” 
regions are also shown, with the magnetic beads entrapped into the magnetic fields of 
the magnets. Not to scale. 
 

 

 
Figure 5.2 Schematic representation of the sensor u nit, side view.  

The “active” regions are also shown, with the magnetic beads entrapped into the 
magnetic fields of the magnets. Not to scale. 
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5.1.3 Fluidic assay setup and method protocol 

In order to successfully transfer the batch assay to a fluidic sensor format, the 

setup for the use of the sensor unit is required to include:  

• the fluidic channel  

• a flow cell to house the fluidic channel 

• pumps to effect the flow of reagents 

• a flow-injection port and valve arrangement 

• a light source to illuminate the thylakoids and  

• a light detector to detect the chemiluminescence reaction light. 

 

The fluidic sensor unit was designed taking into consideration all the 

requirements and steps of the assay. A method protocol for the use of the fluidic 

sensor thus includes: 

• Beads with immobilised HRP enter the fluidic channel, and are trapped by 

magnetic forces in region A (as seen in Fig 5.1). 

• Beads with immobilised thylakoids enter the fluidic channel, and are trapped 

by magnetic forces in region B. 

• A sample, potentially containing herbicides, pre-mixed with luminol, enters 

the fluidic channel, and is illuminated, whilst stagnant over the thylakoid-

beads (stop-flow technique), on the region B. The illumination will result in a 

herbicide-dependant production of H2O2 by the thylakoids on the beads.  

• The sample, now with H2O2 potentially produced by the thylakoids, flows 

towards region A, where the chemiluminescence reaction takes place, and 

the light produced is collected by the optical fibre and quantified by the 

detector. 

• The removal of the magnetic forces, and the flow of a cleaning buffer, 

means that all the beads are removed and the sensor is ready to be used 

again. 

 

Therefore, in the rest of this chapter, results from work performed on the 

following sub-streams is presented: 

• Flow cell fabrication 
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• HRP immobilisation  

• Fluidic assay for H2O2 detection using the flow cell described here. 

 

5.2 Fluidic sensor unit fabrication  

The fluidic sensor unit was manufactured, following the design and principles 

described above. It consists of three main parts: a fluidic channel and two 

blocks that sandwich it. 

5.2.1 Fabrication of fluidic sensor unit blocks 

The two blocks were designed in detail, and constructed of machined clear 

Perspex, by Cranfield University at Silsoe's engineering technicians.  

 

Detailed, scaled-down drawings of the blocks can be found in Appendix II. 

Briefly, the dimensions are height * width * length = 20 mm * 20 mm * 60 mm; 

Figure 5.3 contains photographs of the two separate blocks. 

 

 
Figure 5.3 Photographs of the two machined Perspex blocks that will be 

sandwiching the fluidic channel. 

(left: top block, right: lower block) 
 

5.2.2 Fabrication of fluidic sensor unit channel  

The fluidic channel effectively functions as a spacer between the two blocks. 

Various methods were considered and tested for the fabrication of the fluidic 
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channel; early prototypes of the channel were made from polydimethylsiloxane 

(PDMS) as well as hand-cut black rubber.  

 

The channels made using the hand-cut method lacked the necessary precision 

required for more elaborate designs other than a straight channel.  

 

PDMS is the most widely used silicon-based organic polymer. Conventional 

methods of fabricating microfluidic devices have centred on etching in glass and 

silicon. Fabrication of microfluidic devices in PDMS by soft lithography provides 

faster, less expensive routes than these conventional methods to devices that 

handle aqueous solutions. These soft-lithographic methods are based on rapid 

prototyping and replica moulding and are more accessible to chemists and 

biologists working under bench-top conditions than are the microelectronics-

derived methods because, in soft lithography, devices do not need to be 

fabricated in a clean-room 178. The properties of PDMS that make it a suitable 

platform for miniaturised biological studies, techniques for fabricating PDMS 

microstructures, and methods for controlling fluid flow in microchannels have 

been reviewed 179.  

 

Early attempts to create fluidic channels using PDMS were successful (Fig. 

5.4). However, the need for the use of lithography and many intermediate steps 

before the end channel is fabricated meant that it was a slow method, which did 

not allow for rapid changes on the designs to take place easily. What is more, 

previous research using fluidic channels for the detection of chemiluminescence 

has highlighted that the use of a translucent collagen membrane as the fluidic 

channel gave chemiluminescence light intensity readings of 10% lower values 

than in the presence of a white polyamide channel 87. The explanation provided 

by the authors was to attribute this to the ability of white membranes to reflect 

light, resulting in better light collection by the optical fibre. 

 



 164

 
Figure 5.4 An early silicon fluidic channel fabrica ted.  

 

The preferred method for the fabrication of the fluidic channel is the use of a 

laser to cut the designed channels from neoprene sheets. A CO2 laser (30 W, IR, 

CO2 Fenix model, by Synrad Inc., USA,) was used for cutting the structures, which 

allowed for rapid prototyping of the structures, as the whole process was 

controlled by software (WinMark Pro, Synrad, Inc., USA), coupled with 

increased accuracy compared to the hand-cutting or the lithographic methods. 

Alternative channel designs were used in order to optimise the capture and 

amount of magnetic beads. Examples can be seen the figures below (Fig. 5.5, 

5.6); details of their use can be found in the description of the experiments in 

Section 5.4. As already mentioned, previous research on the use of fluidic 

channels for the detection of chemiluminescence-produced light has indicated 

that the colour of the fluidic channel can enhance or limit the collected light 87. It 

was therefore decided to make the fluidic channels out of a white neoprene 

sheet.  

 
Figure 5.5 Examples of laser-cut channels fabricate d.  
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Figure 5.6 Schematic drawings of laser-cut channels  fabricated for use with the 

fluidic sensor.  

The regions used for the entrapment of the magnetic beads are the protruding circular 
and rectangular areas. Not to scale. 
 

5.2.3 Assembly of the fluidic sensor unit component s   

The two Perspex blocks are kept together with six screws, four are found in the 

four corners and two in the length of the blocks. The fluidic channel is 

sandwiched and tightly bound by the two blocks.  For the flow of liquids in and 

out of the channel, standard threaded tubing fittings were used.  The tubing and 

fittings used were from Omnifit Ltd, now Bio-Chem Fluidics (Cambridge, UK). 

Neodymium magnets were from RS Components Ltd (Corby, UK). The 

Minipuls3 Peristaltic Pumps were from Gilson (Wisconsin, USA). The injection 

port valve was from Pharmacia.  

 



 166

Further details of the setup of the system to be used with the fluidic sensor unit 

can be found in Section 5.4, where detailed descriptions of the setup and 

methods of its use are given. 

 

 
Figure 5.7 Photographs of the micro-system (top and  side views). 

On the top view, to allow view of the three separate parts (upper block, lower block, 
channel) they are seen partly rotated. On the bottom view, the LED is switched on. 
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5.3 Immobilisation of HRP on superparamagnetic bead s 

5.3.1 Introduction 

As Chapter 5 is the collection of the various pieces of work necessary in order 

to transfer the HRP-mediated luminol chemiluminescence detection of H2O2 

batch assay into a fluidic format, the work presented in Section 5.3 is focused 

on the immobilisation of HRP on beads. As mentioned in the Aim and 

Objectives, part of the objective covering the transfer of the assay into a fluidic 

format, is the immobilisation of a component of the batch assay. Following the 

extensive use of immobilised HRP for chemiluminescence assays, as reported 

in the Literature Review (Section 2.3.4.4 and 2.4.2.5), it was decided to 

immobilise HRP on the superparamagnetic beads.  

 

Having determined the design needs for the fluidic sensor and hence the 

components necessary to achieve the successful use of a fluidic assay for the 

detection of H2O2 (Section 5.1), and having fabricated the physical components 

of the sensor (Section 5.2), work followed on the immobilisation of HRP on 

superparamagnetic beads, as this is the final key preparation stage in order to 

then test the H2O2 detection chemiluminescence fluidic assay. 

 

The nature of the assay that beads are to be used in, determines whether to 

coat the beads with protein completely or not. Although in some cases an 

incomplete coating of the beads with the chosen component is necessary 180, 

for bead-capture ELISAs and tests, dyed-beads sandwich tests, solid-phase 

assays, and DNA probes, coating the beads as heavily as possible (a 

monolayer coating) is desirable 114. This is also the case for the work presented 

here, as it is expected that it is best to achieve the maximum and quickest 

reaction with H2O2. In a monolayer coating, the HRP will mediate the reaction of 

the maximum amount of luminol and H2O2, maximising the signal.  

 

The simpler method of physical adsorption of HRP on non-functionalised 

magnetic beads is possible, but studies have shown that this method results in 
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a significant decrease in active HRP being immobilised, compared to using 

chemical covalent linking 181. Therefore, it was decided to choose a covalent 

attachment method.  

 

Careful examination of the reading material and information therein provided by 

magnetic beads manufacturers, presented no preferred option of beads to 

select, on a scientific basis. Therefore, the bead type chosen for the 

immobilisation of HRP was the MagaBeadsTM from Cortex Biochemicals (now 

Promega Corp, Winskonsin, USA). The beads are uniform, monosized, 

superparamagnetic, with a mean diameter of 3.2 µm, composed of highly cross-

linked polystyrene with evenly distributed magnetic material (iron oxide). These 

beads are carboxyl group (-COOH) modified, with a monolayer of carboxyl 

groups pre-immobilised on their surface.  

 

For the immobilisation of the HRP, the ethyl-dimethyl carbodiimide (EDC) 

chemistry was used (Fig. 5.8). The carbodiimide is utilised to activate the beads 

for amide bonding with primary amines. The mechanism and optimisation of 

carbodiimide mediated amide bond formation is extensively discussed in the 

literature 182. A generic protocol was supplied by the distributor (Europa 

Bioproducts), and immobilisation was performed using this as the basis.  

 

The approximate amount of active immobilised HRP was calculated by 

measuring the peroxidase activity with the colorimetric assay of 2,2’-Azino-

bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and comparing that of a 

sample with the response obtained by a series of dilutions of known 

concentrations of HRP.  

 

ABTS was chosen as it is a chromogenic enzyme substrate specific for 

peroxidases. The peroxidase-catalysed reduction of H2O2 to water is coupled to 

a one-electron oxidation of ABTS, forming a radical cation. This cation has a 

brilliant blue-green colour with a peak wavelength at about 410 nm 183. Other 

protein assays were considered (Bradford reagent, Bicinchoninic acid, TMB, 
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Modified Lowry assay, Coomassie), but they are not peroxidase-specific and 

some are able to detect only larger concentrations of enzymes (about 10 times 

the estimated maximum in the experiments described here).  

 

 

 

Figure 5.8 HRP immobilisation chemistry using EDC a s the intermediate linker 

between the carboxyl group of the beads and the ami ne of the HRP. 

 

Following the choice of the immobilisation method to use, HRP was immobilised 

on superparamagnetic beads. As the protocol provided by the manufacturer of 

the beads was not HRP-specific, the immobilisation took place many times, 

each time building on the knowledge and optimised parameters of the previous 

occasions, aiming to produce a fully optimised protocol. 

 

5.3.2 Materials and methods 

5.3.2.1 Materials 

HRP (type II, 148 U/mg), HRP (type VI, highly stabilised, 300 U/mg), MES, 

NaOH, sodium acetate trihydrate, acetic acid (glacial), glycine, hydrogen 

peroxide (30% w/w), EDC, PBS, phosphate-citrate tablets and ABTS tablets 

were purchased from Sigma Chemical Co. The 'MagaBeads-Carboxyl 

Terminated' were supplied from Europa Bioproducts (Cambridge, UK). The 

buffers (0.1 M sodium acetate, pH 4) and (50 mM MES buffer, pH 6.1) were 
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prepared using RO water. EDC (100 nM), HRP (1 nM), glycine (0.03% w/v) 

were prepared freshly before each immobilisation assay, in MES buffer (50 mM, 

pH 6.1).  

 

5.3.2.2 Immobilisation protocol 

For the immobilisation of HRP on the beads, a protocol supplied by Cortex 

Biochemicals was used, which can be found in Appendix III. Briefly, the protocol 

required the following key steps: 

• Washing and volume adjusting of the beads 

• Incubation of beads with EDC 

• Incubation of beads with HRP 

• Washing 

• Blocking the remaining active sites with glycine 

• Washing. 

The protocol was used as supplied when starting the optimisation process, and, 

via the detailed optimisation process described in the results, alterations were 

made. The final protocol resulting from the optimisation process is therefore 

found in the end of the results, Section 5.3.3.7. 

 

5.3.2.3 HRP activity assay 

A standard curve was firstly prepared from the absorbance measured from 

known HRP concentrations, in order to then compare the results obtained from 

the immobilised HRP to the reference curve. 

 

For the HRP activity standard curve, one tablet of ABTS (10 mg) was dissolved 

in 100 ml of phosphate-citrate buffer (50 mM, pH 5) and 25 µl of 30% H2O2 was 

added immediately prior to use. 100 µl of this reagent were added to 100 µl of 

known HRP samples in wells of a white microtitre plate with a clear bottom. 

Immediately after initiation of reaction, the absorbance at 405 nm was 

measured every 1 minute for 10 minutes, using a Dynex Revelations 4.21 

microplate reader (Dynex Technologies Ltd., Worthing, UK). The microplate 
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reader reported both the individual absorbance measurements per minute as 

well as the rate of the reaction. 

 

When measuring the HRP activity found on immobilised HRP on beads, the 

ABTS assay was repeated, with a dilution of the beads replacing the known 

HRP sample. 

 

5.3.3 Results and discussion 

With the aim of the work presented in this section being to achieve an optimised 

HRP immobilisation process, step-by-step changes were made to the original, 

manufacturer-provided protocol. The optimisation process of the generic 

immobilisation protocol included varying:  

1. the washing steps after the HRP immobilisation, 

2. the concentration of EDC during the functionalisation of the carboxyl groups 

on the beads, 

3. the type of HRP used, 

4. the addition of a washing step of excess EDC, between the EDC and HRP 

incubations, and 

5. the concentration of HRP during the immobilisation of HRP on bound EDC. 

The effect of making these changes was measured with the ABTS HRP-activity 

assay, thereby measuring whether the changes made to the protocol resulted in 

an increase to the amount of active HRP bound on the beads. 

 

5.3.3.1 HRP activity assay 

In order to quantify the amount of active HRP bound on the beads, the ABTS 

assay was performed on the resulting beads obtained from each immobilisation 

optimisation attempt.  

 

Firstly, the standard curve obtained for the activity of known concentrations of 

HRP using the ABTS assay was plotted, in order to be able to translate the 
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ABTS activity results obtained from the beads into an approximation of the 

active amount of HRP bound on the beads. 

 

Therefore, when the immobilisation protocol was used, the resulting HRP 

immobilised on beads from all the optimisation steps was diluted and the ABTS 

assay was performed, the results of which were then checked against the 

standard curve. After finding the corresponding concentration of HRP that was 

bound on the beads, that was used to calculate the standard activity units of 

HRP (purpurogallin units), as this is the standard method used in the literature 

to report HRP activity. 
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Figure 5.9 Standard curve of HRP activity using the  ABTS assay.  

 

5.3.3.2 Optimisation of the sodium acetate washing steps after the HRP 

immobilisation 

The original protocol included a step of washing the beads twice with sodium 

acetate buffer (0.1 M, pH 4.0) after the HRP immobilisation (step 11 in the 

original protocol, Appendix III). Given the low pH of the buffer suggested, and 
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the denaturing effect this could be having on the bound HRP, it was decided to 

evaluate its effect.   

 

The immobilisation was therefore performed with the sodium acetate wash step 

(with one and two washes) and without this step altogether. It should be noted 

that, when the step was omitted, a washing step was carried out nevertheless, 

using MES buffer (50 mM, pH 6.1) instead, thus bringing the total number of 

washes of the three variations to the same number, in order to avoid introducing 

another varying parameter (the number of washes overall) to the experiments. 

Thus, the resulting beads with immobilised HRP from using all three variations 

of the protocol were then tested for active HRP bound on the beads, using the 

ABTS assay.  

 

The results presented in Table 5.1 show that beads with the two sodium acetate 

washes had less active HRP bound on the beads than the ones washed only 

with MES, while the variation of the protocol that employed one sodium acetate 

wash gave intermediate results. Having performed these measurements using 

two different pH values for the acetate buffer reveals that the acetate buffer and 

its low pH are having an effect on the activity of HRP bound on the beads. 

 

Table 5.1 Effect of washing the beads with acetate buffer after the immobilisation 

of HRP on the activity of the final amount of HRP b ound on the beads. 

 HRP activity per 1 mg of beads 
(purpurogallin units) 

Number of 
washing cycles  pH 4.0 pH 5.0 

2 sod. acetate 
washing cycles 

0.088 0.092 

1 sod. acetate 
washing cycles 0.092 0.095 

No sod. acetate 
washing cycles 0.100 

 
Values presented are the average of two replicates. 
 



 174

Protocols for the immobilisation of ligands available from other manufacturers of 

beads, using EDC as the intermediate, appear to have no similar step of 

washing the beads post-immobilisation with an acetate buffer at such a low pH 
180; 184; 185. Similarly, previous research on the effect of pH on the immobilisation 

of HRP on chitosan beads, showed that buffers with pH 4 more than halved the 

activity of immobilised HRP 186. A possible explanation given is that the 

structure of the enzyme is changed due to the fact that such extreme pH values 

are far beyond the isoelectric point of HRP, which is pH 7.2.   

 

To ensure no reduction in active HRP on the beads, it was therefore decided to 

remove the step, and substitute it with washing the beads once with MES buffer 

(50 mM, pH 6.1) instead. 

 

5.3.3.3 Optimisation of the EDC concentration durin g the carboxyl groups 

functionalisation step 

Following the optimisation of the sodium acetate washing step, the amount of 

EDC employed during the beads' carboxyl groups functionalisation step was 

altered in order to identify the optimal conditions.  

 

For the step of binding EDC onto the carboxyl groups of the beads, different 

concentrations of EDC were tested. The original protocol suggested 100 nmol 

of EDC per 1 mg of beads, so concentrations above and below this amount 

were tested.  

 

The results are presented in Table 5.2, with the amount of HRP activity found 

on the beads post-immobilisation following the same protocol apart from one 

variable, the EDC concentration. Concentrations above the suggested 100 nmol 

per 1 mg of beads did not result in an increased amount of active HRP bound 

and detected with the ABTS assay. This suggests that complete activation of all 

the carboxyl groups on the beads is achieved by following the amount 

suggested in the protocol, while also bearing in mind the amount of HRP used 
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too. Therefore, the amount of EDC used was kept to 100 nmol per 1 mg of 

beads. 

 

Table 5.2 Effect of EDC concentration during the ca rboxyl groups activation to 

the activity of the final amount of HRP bound on th e beads. 

EDC concentration  
(nmol per 1 mg of beads) 

HRP activity per 1 mg of beads 
(purpurogallin units) 

80 0.090 

90 0.095 

100 0.100 

110 0.100 
 
Values presented are the average of two replicates. 
 

5.3.3.4 Optimisation of the HRP type immobilised on  the beads 

Following the optimisation of the EDC concentration during the carboxyl groups 

functionalisation step, the HRP type immobilised on the beads was altered in 

order to identify the optimal conditions.  

 

Initially, an HRP with a lower hemin content, and therefore activity, was 

immobilised on the beads (HRP-1, Sigma product code P8250); it is also more 

prone to deactivation in various environments when they are not favourable 

(pH, temperature). A different HRP was subsequently used (HRP-2, Sigma 

product code P2088) which is further purified and also chemically stabilised to 

protect the primary amines and maintain activity at low pH and higher 

temperature 41.  

 

Having immobilised both types of HRP on beads while keeping all conditions of 

the immobilisation the same, the amount of active HRP bound on the beads 

was measured using the ABTS assay, and was then converted to the standard 

purpurogallin units. The results can be seen in Table 5.3. Use of the more 

stable and active type of HRP resulted in better yields of active HRP bound on 

the beads. What is more, the increase in bound, active HRP is approximately 
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threefold, while the difference in purpurogallin units of free HRP is twofold. It 

was therefore decided to substitute the previous type of HRP with the new 

HRP-2.  

 

Table 5.3 Effect of HRP type during the binding of HRP on the beads to the 

activity of the final amount of HRP bound on the be ads. 

Type of HRP HRP activity per 1 mg of beads 
(purpurogallin units) 

HRP-1 0.100 

HRP-2 0.375 
 
Values presented are the average of two replicates. 
 

5.3.3.5 Optimisation of the washing of excess EDC b etween the EDC and 

HRP incubation steps  

Following the optimisation of the type of HRP used for the immobilisation, the 

washing of excess EDC step was altered in order to identify the optimal 

conditions.  

 

Following a protocol suggested by a different carboxyl-modified magnetic beads 

manufacturer 180, where a clear distinction is made between three different 

methods of performing the immobilisation of protein on carboxyl-beads via EDC, 

another refinement of the protocol used was tested, namely the washing of any 

excess, unbound EDC prior to adding the HRP. In more detail, according to the 

authors 180 the three variations of the EDC-assisted immobilisation process of 

the ligand of interest are:  

• the "one-step" process of immobilising the target protein is to mix the beads 

with EDC and the protein at the same time; the greatest disadvantage of this 

being the fact that EDC binds indiscriminately and may cross-link protein 

molecules as well as bind to the beads, and results in the formation of 

denatured proteins, clumped in large groups.  

• the "one-and-a-half step" process, as so called by same manufacturer, still 

uses the mixing of the beads, EDC and the protein altogether, but only 
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following careful calculation of the amount of EDC required to activate the 

available amount of carboxyl groups on the beads as well as the amount of 

protein available.  

• the "two-step" process allows the carboxyl groups on the beads to react with 

EDC, with any unused EDC then washed away, and only then the addition 

of the protein takes place, allowing for a more complete utilisation of the 

reagents as well as controlling any undesirable cross-linking. 

 

The protocol provided by the manufacturer of the beads used in the 

experiments presented here falls into the category of the so-called "one-and-a-

half step" process, as, any excess, unbound EDC is not removed prior to the 

addition of HRP, although the addition of EDC and HRP do not take place 

simultaneously but in series, which would be partly alleviating the negative 

effect of the excess EDC. Therefore, a step was added to the protocol, 

whereas, before the HRP was incubated with the beads, any excess EDC was 

washed away with MES buffer twice. The activity assay was then performed on 

the resulting beads. 

 

The results with this alteration showed a significant increase of active HRP 

bound on the beads, as it can be seen in Table 5.4. This suggests that a 

significant amount of unbound EDC was previously binding to HRP molecules, 

while also either somehow preventing the immobilisation of these HRP 

molecules on bead-bound EDC, or perhaps inactivating the HRP molecules 

thus hindering their activity. It was therefore decided to retain this alteration to 

the protocol. 
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Table 5.4 Effect of presence or absence of excess E DC during the HRP 

immobilisation on the bound EDC to the activity of the final amount of HRP 

bound on the beads. 

Washing step removing excess 
EDC 

HRP activity per 1 mg of beads 
(purpurogallin units) 

Yes, wash step added 1.200 

No washing prior to HRP addition 0.375 
 
Values presented are the average of two replicates. 
 

5.3.3.6 Optimisation of the HRP concentration durin g the HRP 

immobilisation step 

Following the optimisation of the washing of excess EDC, the HRP 

concentration during the HRP immobilisation step was altered in order to 

identify the optimal conditions.  

 

Although, according to the protocol, 10 nmol of protein is suggested as the 

required amount for an optimal coating of 1 mg of beads, which corresponds to 

50 µg of HRP, it was decided to measure the effect other concentrations may 

have on the amount of HRP finally immobilised on the beads. Therefore, 

different concentrations of HRP were used during the immobilisation, and the 

resulting beads with immobilised HRP were tested for the amount of active HRP 

found using the ABTS activity assay. The active HRP bound on beads, in 

purpurogallin units, from the different variations of the protocol are found in 

Table 5.5. 

 

As it can be seen, 50 µg of HRP appear to not have been very close to the 

optimal amount of HRP necessary for what would be categorised as a complete 

coating of the beads. Increasing the concentration effected a significant 

increase of the amount of HRP immobilised on the beads, although from 80 

µg/mg and more the activity measured appears to plateau, suggesting that 

perhaps this is due to the achievement of a complete coating of the beads with 

HRP. 
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Table 5.5 Effect of HRP concentration during its im mobilisation to the activity of 

the final amount of HRP bound on the beads. 

HRP concentration per 1 mg of 
beads (µg/mg of beads) 

HRP activity per 1 mg of beads 
(purpurogallin units) 

45 1.1 

50 1.2 

65 1.5 

80 2.1 

100 2.1 
 

5.3.3.7 Final HRP immobilisation protocol 

In order to ascertain that the immobilisation of HRP on the magnetic beads was 

optimal, and following all the optimisation steps taken as described in Sections 

5.3.3.2.-6, the protocol was thus shaped into the following final form. Magnetic 

beads with 2.1 purpurogallin units per 1 mg of beads were obtained. 

 

HRP immobilisation protocol 

1. Mix beads thoroughly by gently mixing and dispense desired quantity in 

an appropriate sized container. 

2. Wash the beads 3 times with 2 ml of MES buffer (50 mM, pH 6.1) each 

time. 

3. Adjust volume of beads to a 10 mg/ml concentration. 

4. Add EDC (200 µg/ml, in 50 mM MES, pH 6.1, 100 nmol per 1 mg of 

beads). 

5. Mix gently for 5 minutes at room temperature. 

6. Remove excess EDC by washing with 2 ml of MES buffer each time. 

7. Add 80 µg of HRP-2 per 1 mg of beads. 

8. Mix gently for 2 hours at room temperature. 

9. Wash mixture 4 times with 2 ml of MES buffer each time. 

10. Add 2 ml of 0.03% glycine in MES buffer and mix gently for 30 minutes. 

11. Wash beads 5 times with 2 ml of MES buffer each time. 

12. Wash beads 3 times with 2 ml of Tris buffer (10 mM, pH 8.5) 
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Following the steps presented for the fine-tuning of the immobilisation protocol, 

the beads with HRP immobilised on them were therefore obtainable in an 

optimised way to be used with the designed and constructed fluidic cell, for the 

implementation of the fluidic assay for the detection of H2O2. 

 

5.4 Flow assay for the detection of hydrogen peroxi de 

5.4.1 Introduction 

Following the immobilisation of HRP on the magnetic beads, experimental work 

was undertaken in order to transfer the batch assay for the detection of H2O2 

into a fluidic format. This was the first step towards fully transferring the 

herbicides batch assay, which works by inhibiting the H2O2 production by 

thylakoids.  

 

More specifically, the beads with immobilised HRP were used in the fluidic 

sensor unit, in order to perform the H2O2 assay with one reactive component 

immobilised (HRP), and luminol pre-mixed with the H2O2 sample in flow, 

therefore establishing a flow chemiluminescence assay for H2O2. This would 

then allow for a smoother transfer of the herbicides assay to a fluidic format, 

having fine-tuned some of the parameters of the assay already. 

 

As described in the fluidic assay method principles (Section 5.1.3), the beads 

would be magnetically entrapped in the fluidic channel, and standards of H2O2 

with luminol would be flown through. The chemiluminescence light produced 

would be detected with a portable detector, collected with an optical fibre. 

 

Albeit, the fluidic assay for the detection of hydrogen peroxide required to be 

optimised in order to yield for the lowest detectable amount of hydrogen 

peroxide. Therefore, the first section of the results (Section 5.4.3.1) reports on 

the optimisation of the chemiluminescence H2O2 fluidic assay, followed by the 

calibration of the assay with the final, optimised conditions, as well as testing of 

real environmental water samples. 
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5.4.2 Materials and methods 

5.4.2.1 Materials 
 

Chemicals and reagents 

Trizma, hydrochloric acid, 5-amino-2,3-dihydrophthalazine-1,4-dione sodium 

salt (luminol), PBS tablets and hydrogen peroxide (30% w/w) were purchased 

from Sigma Chemical Co. The Tris-HCl and PBS buffers were prepared using 

RO water. Luminol (various concentrations) and H2O2 (various concentrations) 

were prepared freshly each day, in Tris-HCl buffer, 10 mM, pH 8.5. The 

MagaBeads-Carboxyl Terminated beads with a 3.2 µm diameter were from 

Cortex Biochemicals (now Promega Corp, Winskonsin, USA). The beads with 

immobilised HRP (2.1 U/mg beads) were prepared as in Section 5.3.  

 

Detection  

The customised QP1000-2-VIS/NIR-BX optical fibre was from Anglia 

Instruments Ltd. (Ely, UK). The detector C5460 APD Module was from 

Hamamatsu Photonics UK Ltd (Welwyn Garden City, UK). The PCI-1200 

multifunction Input/Output data acquisition device and LabVIEW 5.0 was from 

National Instruments Ltd. (Newbury, UK).  

 

5.4.2.2 Setup and method 

The flow assay for the detection of H2O2 was performed using the fluidic unit 

described earlier (Section 5.2). A schematic diagram of the setup used is 

pictured in Fig. 5.10 below. 
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Figure 5.10 Schematic representation of the experim ental setup for the H 2O2 

fluidic assay.  

 

The HRP-coated magnetic beads were introduced in the flow cell prior to a 

measurement taking place. The magnet was used in order to magnetically 

entrap the beads on the desired position. To achieve a uniform positioning of 

the beads in the region of the fluidic channel that was directly beneath the 

position of the optical fibre, careful physical movement of the magnet had to be 

undertaken in order to spread the beads uniformly. Blu-Tack adhesive was then 

used to fix the magnet, which allowed for easy removal of the magnet when 

desired, as also used for other similar work 111. As described in examples found 

in the literature 103; 111, after the removal of the beads following a 

chemiluminescence measurement, the flow cell was washed by flowing PBS 

buffer (100 mM, pH 7.2), in order to discard the beads completely.   

 

A peristaltic pump was used to deliver the carrier buffer (Tris-HCl, 10 mM, pH 

8.5). Inline with the flow was connected an injection port, on the sample loop of 

which the H2O2 sample was pre-mixed with luminol, which was also carried to 

the flow cell when the valve was switched to the appropriate position. PTFE 

tubing was used to connect all components in the flow system. 

 

The optical fibre assembly used was a customised, 1000 µm diameter premium-

grade fibre. The fibre was terminated with a standard SMA 905 connector on 
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one end (the end that attaches to the spectrometer), while the other end 

consisted only of the ferrule without the outer part of the SMA connector, which 

had been removed by the manufacturer, in order to allow for the fibre to fit 

closer to the fluidic channel. Light detected by the fibre was then transferred to 

the detector. The detector module contains an avalanche photodiode, with an 

effective active photon counting area of 0.78 mm2. The specific APD module 

has a higher sensitivity at 420 nm from other series of Hamamatsu APDs. The 

detector's electrical signal converted from light was acquired via a data 

acquisition card by a PC, and further analysed and controlled by LabVIEW. 

 

Following the assembly of all the components, the process of performing a 

single measurement of the H2O2 assay was the following: 

 

~the fluidic setup was readied for the assay to be initiated~ 

 

• the tubing was washed with PBS buffer (100 mM, pH 7.2) 
 

• a magnet was fixed underneath the active region A, 'viewed' by the optical 
fibre, aiming to magnetically trap the HRP-coated beads 

 

• the magnetic beads with immobilised HRP were aspirated in the flow cell 
and magnetically trapped in the designated active region of the channel, 
directly below the optical fibre 

 

• the tubing was washed with PBS buffer 
 

• the flow of the Tris (carrier) buffer was initiated at varying flow rates 
 

• a plug of the H2O2 sample and luminol was injected into the flow 
 

• delivery of the sample plug in the channel area covered by the beads 
prompted the initiation of the HRP-mediated chemiluminescence reaction of 
luminol with H2O2 

 

• the chemiluminescence light intensity was collected by the optical fibre 
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• the light signal was transduced to an electrical signal by the detector 
 

• the obtained chemiluminescence intensity signal was recorded and the 
maximum intensity was used to plot the graphs or input in tables 

 

• the magnet was removed from its fixed position 
 

• the tubing was washed with PBS buffer, thus removing all beads, as well as 
the sample plug 

 

~the fluidic setup was ready for the assay to be repeated~ 

 

5.4.2.3 Water samples collection 

Rainwater was collected on two separate raining events, on two separate days. 

It was collected from outside the Institute of Bioscience and Technology, 

Cranfield University at Silsoe, Silsoe, MK45 4DT. Water from a small stream 

located in the countryside situated between the triangle of Silsoe, Flitton and 

Pulloxhill in Bedfordshire was collected. The three water samples were filtered 

with a 0.45 µm Whatman filter membrane to remove particles. The water 

samples collected were analysed on the same day following the collection, as 

well as with extra H2O2 of varying concentrations added. The environmental 

water samples were used as a replacement of the 50 µl sample used in the 

optimised fluidic sensor unit for the detection of H2O2. Prior to this, 45 µl of a 

water sample were mixed with 5 µl of luminol, which was diluted from a stock 

solution in buffer to the appropriate concentration using the water sample as the 

dilutant, thus making the presence of a buffer in the final 50 µl of water sample 

negligible.  

 

5.4.3 Results and discussion 

5.4.3.1 Optimisation of fluidic assay parameters 

There are many parameters and aspects of the fluidic assay that were subject 

to scrutiny and optimisation, in an attempt to allow for the best conditions to 



 185

achieve the desired conditions for the detection of low levels of H2O2. The 

parameters of the fluidic assay that were optimised were the channel's 

geometry, namely the area that was covered by the HRP-beads, the H2O2 

sample volume and flow rate and the reagents' concentrations, namely of 

luminol and HRP. 

 

5.4.3.1.1 Optimisation of the fluidic channel geometry 

Firstly, the geometry of the flow channel was optimised. Two designs were 

tested, a square-shaped with a surface area of 16 mm2, and a circular-shaped 

design with a surface area of 78.5 mm2 (Fig. 5.11). More specifically, in both 

cases, the differently-shaped area that protrudes from the straight, rectangular 

channel was used as the area where the beads with the immobilised HRP were 

magnetically trapped, which was also the area directly below the optical fibre 

that would collect the light and deliver it to the APD. Altering the size of the 

area, should result in a different spread of the beads, even when the same 

amount of beads is used.  

 

 
Figure 5.11 Schematic diagrams of the two fluidic c hannel designs used for the 

detection of H 2O2.  

The protruding areas were the areas were the magnetic beads with immobilised HRP 
were magnetically entrapped.  
 

The design of the catchment area played an important part in the 

chemiluminescence signal detected for the same concentration of H2O2 in the 

sample. It was expected that increasing the area that the beads occupy during 

the chemiluminescence reaction would be allowing for increased catalysis of the 

chemiluminescence reaction by more HRP molecules, as more such molecules 

would have the opportunity to come into contact with H2O2 and luminol 

molecules. What is more, a larger surface area would naturally result in a larger 
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volume that a potential sample could occupy and therefore increased interaction 

between more H2O2, luminol and HRP. 

 

The results in Table 5.6 present the peak light intensity resulting from the use of 

the fluidic unit to perform the H2O2 fluidic assay, as described in the Materials 

and Methods, when using the two different designs of the fluidic channel. 

 

Table 5.6 Peak chemiluminescence intensity for thre e different H 2O2 

concentrations, from the two different active regio n designs tested. 

 

 Measured chemiluminescence intensity (a.u)  

Area 10 µM H 2O2 5 µM H2O2 1 µM H2O2 

16 mm2 455 342 73 

78.5 mm2 1260 727 150 
 
Values presented are the average of three replicates. 
 

As it can be seen from the results, with the same amount of HRP-coated beads 

in both cases, the flow channel with the circular design resulted in a much 

higher peak light signal produced by the chemiluminescence reaction. This 

suggests that a larger surface area, which, as ascertained by visual inspection 

allows for the better spread of the magnetic beads, appears to be resulting in 

better interaction between the reactants, with more H2O2 being reduced by the 

HRP-catalysed luminol reaction, from a single sample. Thus, the larger, circular 

active area fluidic channel was chosen for the H2O2 assay. 

 

5.4.3.1.2 Optimisation of the sample volume and flow rate 

Following the channel design optimisation, the variables studied and optimised 

were the sample volume (in this case H2O2 sample and luminol) and flow rate. 

The aim of varying these parameters' values was to identify the conditions that 

would allow for sharp, narrow 'spikes' from each measurement, with the higher 

peaks achievable.  
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In order to identify the range of sample volume values that would not result in 

the chemiluminescence reaction taking place for longer than needed in order to 

achieve a flash / spike kinetic, the volume occupied by the circular active region 

was calculated. Any sample volume value higher than this would be resulting in 

some form of delayed response that would be effectively resulting in a 'glow' 

chemiluminescence light production. With the area of the detection region being 

78.5 mm2, and the height of the channel being 1 mm, the volume occupied by 

the said structure is 78.5 mm3. Therefore, the theoretical value obtained as the 

sample volume that would be expected to fill the active region is 78.5 µl. This 

figure will serve as a possible target volume, around which more volumes were 

tested, but in fluidic movement of such low volumes this serves only as a 

theoretical target. 

 

Therefore, the fluidic assay for the detection of a single concentration of H2O2 

was performed varying these two parameters. The sample volume injected was 

varied between 30 – 150 µl. The sample flow rate was varied between 50-1500 

µl/min.  

 

The difference in peak heights between background / blank and the sample 

increased with increasing sample volumes up to 50 µl, above which 'glow'-like 

behaviour was observed, as, the maximum value detected was not achieved 

momentary, but persisted for the duration of the sample being in the detection 

zone, that is, the circular area covered by the HRP-beads. This effect is 

exemplified in Figure 5.12. As it can be seen, for either of the two 

concentrations, although the signal intensity was not affected negatively, with 

the same peak value being achieved with a sample of 50 µl or 150 µl, it was 

unnecessary to obtain the longer kinetic obtained with the larger volume 

sample, as the peak light intensity was used for the measurements.  
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Figure 5.12 The effect of H 2O2 sample volume on the kinetics of the 

chemiluminescence reaction with luminol and HRP, fo r two H 2O2 concentrations.  

(□: 6.5 µM, +: 2 µM).  
 

Altering the flow rate employed when the H2O2 sample is passing through the 

fluidic channel had a great effect on the resulting chemiluminescence signal 

detected, as seen in Fig. 5.13.  
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Figure 5.13 The effect of H 2O2 sample flow rate on the signal intensity of the 

chemiluminescence reaction with luminol and HRP, fo r 1 µM H2O2. 

Values presented are the average of three replicates. 
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As it can be seen from the results in Fig. 5.13, increasing the flow rate 

corresponded to an increase of peak chemiluminescence light intensity being 

obtained, up to a 750 µl/min, while higher flow rates resulted in a decrease. 

Flow rates higher than the 750 µl/min may have resulted in the dislocation of 

some magnetic beads, as there was a signal decrease observed, while it was 

envisaged that sharper peaks could still be achieved. It is suggested in the 

literature 126 that lower chemiluminescence intensities achieved by higher flow 

rates of samples containing the substrate while the enzyme is immobilised on 

the channel, could be the result of the shortening of the contact time between 

substrate and enzyme. The authors of the same paper also suggest that poor 

substrate exchange between the stream and the immobilised enzyme could be 

the cause of the decrease in signal with the lower flow rates. 

 

What is more, there was a notable increase of the deviation of replicate 

measurements performed for flow rates above 500 µl/min, with a decrease in 

detection reproducibility.  A similar phenomenon was found in the literature, for 

a chemiluminescence flow assay developed with immobilised enzyme 187. The 

authors observed that, although increasing the flow rate produced sharper 

peaks with higher intensity, the stability of the chemiluminescence emission and 

detection reproducibility deteriorated, leading to higher RSD values that were 

not acceptable.  

 

It was found that with a flow rate of 500 µl/min the chemiluminescence signal 

produced when the H2O2 sample was flown through the channel, had the 

desired sharp, and highest, peak characteristics. As mentioned, due to the high 

RSD observed with a flow rate of 750 µl/min (RSD=4.9%), even though it 

produced the highest peak intensities, it was decided to choose the flow rate 

that nevertheless produced satisfactory peak intensities, but importantly with the 

added advantage of lower deviation between replicates (RSD=2.8%). 

 

Sample volumes lower than 50 µl, as well as low flow rates, especially in 

combination, resulted in wider and lower peaks; this is due to the sample 
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dispersion in the flow process, as visual inspection by using an aqueous dye 

instead of the sample confirmed.  

 

The more well-formed peaks (height and sharpness) for the H2O2 concentration 

of 1 µM, were achieved with a flow rate of 500 µl/min and sample volume of 50 

µl. Therefore, these values would be used for the two parameters, in the 

finalised fluidic assay for H2O2. 

 

5.4.3.1.3 Optimisation of the luminol and HRP concentrations  

Having optimised the flow rate and the sample volume for the optimal spike 

kinetics, as well as the geometry of the channel detection area for the best 

spread of the immobilised HRP, the concentrations of the chemicals 

participating in the chemiluminescence detection of H2O2 were then optimised, 

namely the luminol concentration and the immobilised HRP concentration. 

These were optimised by aiming to obtain the greatest chemiluminescence light 

intensity peak for a 2 µM H2O2 concentration, from each of the combinations of 

concentrations. Four luminol concentrations and six different HRP-beads 

concentrations were tested. The results are presented in Table 5.7. 

 

Table 5.7 Peak chemiluminescence light intensity de tected for 2 µM H 2O2, from 

the cross-combinations of 50 – 200 µM luminol conce ntrations and 0.1 – 0.35 mg 

of magnetic beads with immobilised HRP. 

 HRP (mg of beads) 
Luminol 

concentration 0.1 0.15 0.2 0.25 0.3 0.35 

200 µM 56 87 103 117 112 124 

150 µM 65 113 147 259 265 253 

100 µM 114 154 207 305 310 306 

50 µM 78 104 157 207 201 217 
 
Values presented are the average of three replicates. 
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As it can be seen from the results, the concentration of luminol had an effect on 

the light intensity produced by its reduction of H2O2 in the presence of HRP. 

Higher luminol concentrations appeared to inhibit the said light production, as 

did low concentrations as well. The optimal was found to be 100 µM luminol.   

 

The amount of beads magnetically entrapped in the fluidic channel's detection 

region also had an effect on the light intensity produced by the HRP-catalysed 

reaction of luminol with H2O2. Given the optimisation of the flow rate for faster 

reaction kinetics, the amount of HRP deemed as aiding towards that goal was 

at the higher end of concentrations tested. However, the higher amounts of 

beads (and therefore HRP) tested, 0.3 and 0.35 mg, resulted in no further 

increase of the chemiluminescence signal for 2 µM of H2O2, compared to the 

0.25 mg of beads. A possible explanation for this appears to be the fact that 

these higher amounts of beads do not aid in the catalysis of the 

chemiluminescence reaction any more that the 0.25 mg of beads, due to the 

fact that a monolayer of beads coating the active circular region where the 

reaction takes place has probably been achieved by the 0.25 mg of beads, and 

any further addition of beads results in the beads getting assembled on top of 

other beads, rather than next to them. 

 

Therefore, 0.25 mg of HRP-coated beads will be used in the fluidic channel, and 

100 µM luminol will be used for the detection of H2O2 using the final, optimised 

fluidic assay. 

 

5.4.3.2 Optimised chemiluminescence fluidic assay f or the detection of 

hydrogen peroxide using HRP-coated magnetic beads 

Having ascertained the optimal conditions for the desired characteristics of the 

detection of low H2O2 concentrations, namely narrow 'spikes' with the highest 

peaks, the fluidic sensor was utilised to perform the standard fluidic assay for 

the detection of H2O2, thus achieving the transfer of the batch 

chemiluminescence H2O2 assay into a fluidic format. The assay's Materials and 

Method are described in Section 5.4.2.2, with the concentrations, channel 
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design and flow rate and sample volume values were finalised from the 

optimisation of the assay procedure, in Section 5.4.3.1.  

 

The peak light intensities obtained from chemiluminescence reactions of single 

H2O2 samples were collected. The standard curve and the linear calibration 

curve of the data have been plotted, seen in Fig. 5.14. 
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Figure 5.14 Standard curve and linear detection ran ge (inset) for the fluidic assay 

for the detection of H 2O2, with HRP immobilised on magnetic beads. 

Values presented are the average of four replicates. 
 

The lower limit of detection was calculated to be 107 nM H2O2. The RSD for the 

determination of a 5x10-7 M H2O2 sample was 2.7%, based on four replicates. 

 

Comparison with other published work on the lower detection limits of H2O2 

using the HRP-mediated luminol chemiluminescence reaction, with HRP 

immobilised in some way and the assay being run in a flow arrangement reveal 

not too dissimilar results: 180 nM 129, 130 nM 188, while also some with much 

more lower LODs: 4 nM 189, 40 pM 190. Of course, as every fluidic sensor is 
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different, it is difficult to truly compare the LODs. An interesting note however is 

the fact that the two published works reporting the much lower LODs use a PMT 

for the detection of chemiluminescence signal, while the work described here 

uses an avalanche photodiode. 

 

5.4.3.3 Use of real water samples for the determina tion of H 2O2 with the 

fluidic unit with immobilised HRP 

In order to further characterise the developed assay for the detection of H2O2, 

the sample plug containing known concentrations of H2O2 and luminol in buffer 

was replaced by water samples collected from the environment. Three different 

water samples were tested, two sourced from rain and another from a stream; 

the collection method and further details described in Section 5.4.2.3. The water 

samples were tested using the optimised, final method as used for the assay for 

the detection of H2O2 described in Section 5.4.3.2. The results of measuring the 

H2O2 present in the water samples, as well as adding known concentrations of 

H2O2 are presented in Table 5.8. 

 

Table 5.8 Determination and recovery of H 2O2 in rain and stream water samples. 

 H2O2 added (µM) H2O2 found (µM) Recovery (%) 
    

Rainwater 1 0 0.55 N/A 
 1 1.60 103.2% 
 3 3.64 102.5% 

    

Rainwater 2 0 1.19 N/A 
 1 2.27 103.7% 
 3 4.30 102.6% 

    

Stream water 0 0.34 N/A 
 1 1.31 97.8% 
 3 3.24 97.0% 

The H2O2 measurements were performed with the complete fluidic sensor unit for the 
determination of H2O2. The results presented in the "H2O2 found" column are the 
averages of 3 replicates. 
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As it can be seen, H2O2 was found naturally in all three environmental water 

samples, with the concentrations found in rainwater being within the range 

described elsewhere 189. According to the literature 189, variations in hydrogen 

peroxide levels are attributed to several factors, with slight elevations being due 

to an increase in the photochemical production of the precursor hydroperoxyl 

radicals that form hydrogen peroxide in the troposphere, while decreases in 

hydrogen peroxide levels are due to washing and dilution effects of the 

rainwater. Influences from other meteorological factors such as wind speed and 

direction as well as chemical factors can also affect the concentration of 

hydrogen peroxide in the atmosphere. 

 

Both rainwater samples increased the detection of H2O2 measured with the 

fluidic sensor unit for the determination of H2O2, although by a small proportion, 

while the stream water caused a reduction in the chemiluminescence signal 

obtained when known H2O2 concentrations were added to the water sample. 

Overall, the recoveries suggest the interference from the sample matrix on the 

chemiluminescence signal is small.  

 

5.5 General discussion 

Following the development of a set of principles of design and operational 

mode, the flow sensor unit was designed and fabricated. The aim to 

demonstrate the potential of the final developed fluidic assay in aiding the reuse 

and regenerability of the sensor was taken into account; thus, it was decided to 

employ superparamagnetic beads as the immobilisation support for the 

biological elements of the bioassay, which would need to be easily and 

automatically replaced in a field deployment. 

 

The decision to immobilise HRP on superparamagnetic beads in order to aid 

the final sensor's regenerability was made; this was followed by the 

immobilisation itself, which was thoroughly optimised in order to achieve the 

highest possible amount of active HRP on the beads (2.1 purpurogallin units per 
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1 mg of beads). As the protocol provided by the manufacturer was not specific 

for HRP immobilisation, following the necessary calculations to identify the 

concentrations needed, these concentrations, as well as other parameters of 

the immobilisation protocol, were subject to optimisation in order to identify the 

optimal concentrations and steps. As perhaps envisaged, the final developed 

protocol has many differences when compared to the original, generic one. 

 

The fluidic assay for the detection of H2O2 using the developed unit and the 

optimised HRP-coated magnetic beads was itself then optimised in order to 

yield for the lowest detectable amount of hydrogen peroxide, as well as other 

desired chemiluminescence signal characteristics. These included varying the 

fluidic channel geometry for the better spread of the beads, varying the sample 

volume and flow rate for the higher, sharper, but reproducible signal peaks, and 

the concentration of luminol and HRP (immobilised on the beads) for the lower 

H2O2 LOD. 

 

The optimised fluidic unit was then used as part of a fluidic sensor for the 

chemiluminescence detection of H2O2 utilising magnetic beads as the 

immobilisation support material for HRP. The lower LOD for H2O2 was 107 nM 

H2O2. The limit of detection is close to the limit achieved with the bench-top 

batch assay (Section 3.3.2), which was 90 nM. 

 

The matrix effect of the real water samples on the detection of H2O2 was 

identified; rain water caused an increase to the chemiluminescence signal 

observed compared to the expected by approx. 3%, while water from a stream 

caused a decrease of the chemiluminescence signal by approx 2.5%. 
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Chapter 6: Fluidic Chemiluminescent Assay for the Detection of 

Herbicides 

 

Chapter 6. a 

6.1 Introduction 

 

As discussed in the introduction of Chapter 5, in order to achieve the objective 

of transferring the established herbicide assay from a batch to a fluidic format, 

the sensor unit is required to allow for the following discrete steps to be 

performed; 

1. the illumination-stimulated production of H2O2 by thylakoids, and its inhibition 

by a herbicide-containing sample 

2. the detection of any produced H2O2 using the HRP-mediated 

chemiluminescence of luminol/H2O2. 

 

Following the design and fabrication of the flow cell and its testing and usage as 

part of a fluidic sensor for the detection of H2O2, utilising magnetic beads as the 

immobilisation support material for HRP, Step 2 has thus been established, as 

reported in Chapter 5. Therefore, in order to achieve the overall aim of 

establishing a fluidic sensor unit for performing a chemiluminescent assay for 

the detection of herbicides in water, work was undertaken in order to 

accomplish Step 1.  

 

The work undertaken and presented in this chapter has been divided in the 

following sub-sets: 

• the immobilisation of thylakoids on magnetic beads,  

• the selection of an appropriate miniaturised light source, 

• the optimisation of the herbicide detection fluidic assay's parameters, 
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• the implementation of the complete fluidic assay for the detection of 

herbicides,  

• the testing of the complete assay with real water samples and 

• studies on reagent and material stability. 

 

The results of these sub-streams will be presented in the above order in the 

remaining sections of this chapter. 

 

6.2 Immobilisation of thylakoids on superparamagnet ic beads  

6.2.1 Introduction and immobilisation protocols rev iew and choice 

Examples of the use of immobilised photosynthetic material for the detection of 

pollutants have been described in Section 5.1.1. The common feature of the 

sensors that these immobilised materials were employed in, is the immobility of 

the immobilisation platform; with the chloroplasts, thylakoids or sub-thylakoidal 

particles immobilised, usually on the surface of a polymer, or within a matrix of a 

cross-linked gel, the immobilisation step thus renders them immobile, requiring 

for the appropriate amount of the immobilisation material to be further 

immobilised on the sensor's biological / transductive interface. This then results 

in a further component of the sensor needing replacement after one or more 

measurements; in the case of electrochemical detection this tends to be the 

whole electrode.  

 

Nevertheless, in order to identify the appropriate immobilisation chemistry to be 

used for the magnetic beads a literature review was conducted of the methods 

used to immobilise photosynthetic material on surfaces. Whole cells have been 

immobilised on filter paper and there entrapped by being covered by a layer of 

alginate, hardened by CaCl2 
191. The physical entrapment of algal cells by their 

filtration through glass or similar microfibre filters has also been used for a flow 

assay 192. Published work has described the comparison of four PSII 

immobilisation methods; gelatine, agarose or calcium alginate gel entrapment 

and albumin-glutaraldehyde crosslinking 9. The first three methods resulted in 
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products that could not be then used due to poor adhesion on the electrode 

surface or due to the stability of the photosynthetic material being lower than 

when not immobilised. A research group at the University of Quebec performed 

detailed exploration in order to identify the immobilisation method that would 

provide the best support for the thylakoids as well as result in optimal conditions 

for the electrochemical detection of pollutants  46; 47; 143-146. Their work suggested 

that immobilisation of thylakoids in a glutaraldehyde-albumin crosslinked matrix 

resulting in a sponge-like material to be then fixed on electrode surfaces, was 

shown to give better detection results than other techniques 145. From the 

literature review, it was therefore revealed that the use of glutaraldehyde for the 

immobilisation of thylakoids on the magnetic beads would potentially yield the 

more stable and active immobilised thylakoids.  

 

A review of magnetic beads that would be useful for such immobilisation 

chemistry methods revealed that magnetic beads with amine groups 

immobilised on their surface could be used (Fig. 6.1). A review of various 

manufacturers returned a few similar products that could be used, with the 

following product codes: BM546 193, 18879-2 194, CM3540 (from Cortex 

Biochemicals, discontinued), AM-30-10 195. There were no apparent 

scientifically advantageous characteristics of any specific product hence the 

choice was made based on pricing and availability in both the UK and Italy. 

 

Three available immobilisation protocols were collected from manufacturers 

(Appendix IV). Similarities and differences were identified amongst the 

immobilisation protocols; there are close similarities in the overall procedure 

described in all of these protocols, which, without exception, follows the 

following process: 

• washing of beads, 

• functionalisation of the beads by mixing with glutaraldehyde,  

• washing of beads to remove excess glutaraldehyde,  

• coupling of ligand of interest,  

• washing of beads to remove excess ligand of interest. 
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Figure 6.1 Thylakoid immobilisation chemistry using  glutaraldehyde as the 

intermediate linker between the amino group of the beads and the amine of the 

HRP. 

 

There are however great differences amongst the protocols in the actual values 

of all relevant parameters such as volume, concentration, time, repetitions of 

steps, as can be seen in Appendix IV. 

 

The protocols were then forwarded to a partner in the European collaborative 

project that the work described here was part of (Partner 1A: Dr M.T. Giardi, 

Institute of Biochemistry and Ecophysiology IBEV, National Council of 

Research-CNR, Rome, Italy), in order for the partner to perform the optimisation 

process of the immobilisation of thylakoids on the selected beads. It was a 

requirement of the project for research partners to collaborate where research 

experience in specific scientific processes would be best utilised by dividing and 

sharing of tasks appropriately. 

 

The isolated thylakoid preparation chosen for the immobilisation was the "Ch5", 

as it allowed for the lower detection limits for the photosynthesis-inhibiting 

herbicides when assayed in suspension (Section 4.4.3), and also was the 

thylakoid preparation that produced the highest chemiluminescence signal 

intensity, and hence H2O2, when illuminated for 10 min, compared to the other 

four preparations (Section 4.3.3.1). It was therefore envisaged that it was the 

most suitable candidate for the production of a chemiluminescence signal due 

to its H2O2 production that would allow for the quantitative detection of 

herbicides in the fluidic assay. It should be noted, that, the thylakoid preparation 

used during the optimisation of the immobilisation by the research partner was a 
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variation of Thylakoid Isolation Protocol 5 (named Ch5), as described in the 

literature 196, while the thylakoids used in the subsequent use of the optimised 

immobilisation protocol for the current work presented was the actual Thylakoid 

Isolation Protocol 5 (named Ch5), as described in Section 4.3.2.1.5.  

 

The immobilisation protocol used here is hence the result of the project 

partner's work, and no further changes were made to it, other than substituting 

the isolated thylakoid preparation employed during the immobilisation to the 

thylakoid preparation Ch5.  

 

6.2.2 Materials and methods 

6.2.2.1 Materials 

All chemicals and reagents were purchased from Sigma Chemical Company 

Ltd. (Gillingham, UK). The PBS, MES and Tricine buffers were prepared, using 

RO water. Sphero Amino magnetic beads with a 3.6 µm diameter (Catalogue 

Number: AM-30-10), were manufactured by Spherotech Inc. (Illinois, USA), and 

obtained from Saxon Europe (Kelso, UK). The thylakoids were isolated using 

the Isolation protocol 5, in Section 4.3.2.1.5. 

 

6.2.2.2 Immobilisation protocol 

The final protocol used for the immobilisation of thylakoids on the magnetic 

beads was the following: 

• Five hundred microlitres of water suspension of magnetic aminopolystyrene-

beads (5% w/v) were washed with 1.0 ml of PBS buffer (KH2PO4 1.8 mM, 

KCl 7 mM, NaCl 15 mM, Na2HPO4 10 mM, pH 7.2) for three times.  

• The pellet was suspended in 1.0 ml of a glutaraldehyde solution 

(glutaraldehyde dissolved in PBS buffer to a final concentration of 10% w/v).  

• The reaction was carried out with continuous mixing at 16°C for 24 h.  

• The microsphere suspension was washed three times with 1.0 ml of PBS 

buffer to remove the excess of glutaraldehyde.  
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• Pellet was resuspended in 0.5 ml of 5 mM MgCl2, 0.07 M Sucrose, 15 mM 

MES buffer, pH 6.5. 

• Then, 200 µl of thylakoid membranes ([Chlorophyll] = 2.75 mg/ml) and 300 

µl of the same MES buffer were added at 4°C in the d ark.  

• To allow the coupling between the glutaraldehyde and the thylakoids, the 

reaction was carried out at 4°C for 2 h under continuo us mixing.  

• Finally, 100 µl of BSA (quenching solution) was added per 400 µl of 

immobilised thylakoids. The beads were then washed three times with 1 ml 

of PBS buffer, and then stored in 20 mΜ Tricine buffer, pH 7.8, 5 mM MgCl2, 

70 mM sucrose. 

The measurements of photosynthetic activity and chlorophyll concentration of 

the resulting thylakoid-coated beads were performed as described in Section 

4.5.2.  

 

6.2.3 Results and discussion 

As a result of the optimisation of the immobilisation process by the project 

partner, beads were obtained with 0.3 µg of chlorophyll / mg of beads, while the 

photosynthetic activity, as measured by the chlorophyll fluorescence, was 0.7 
196. The fluorescence value indicates that the thylakoids immobilised on the 

beads have retained most of their activity. This is ascertained by the fact that 

the isolated, non-immobilised thylakoids have a Fv/Fm ratio of 0.72, which 

suggests that there was no significant reduction in the photosynthetic activity of 

the thylakoids as a result of the immobilisation. These results however were 

obtained using the variation of the isolation protocol 5, and thus a variation of 

thylakoids Ch5. 

 

When the isolated thylakoids immobilised on the beads were obtained by using 

the isolation protocol 5, there was an increase in the amount of thylakoids 

immobilised on the beads (0.49 µg of chlorophyll / mg of beads). As the 

immobilisation protocol used in both occasions was the same, the increase can 

only be attributed to the thylakoids obtained by the immobilisation protocol 5 

having somewhat better qualities for the immobilisation, or, simply, a higher 
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chlorophyll concentration. However, it is important to remember that the amount 

of chlorophyll found, in a suspension of isolated thylakoids or subsequently in 

immobilised thylakoids, does not represent a quality of thylakoids that reflects 

the H2O2 yield produced by the thylakoids, as explained in detail in Section 

4.5.3.  

 

The reproducibility of the immobilisation of thylakoids on the beads was 

calculated, with each full immobilisation experiment being performed with Ch5 

thylakoids isolated on the same occasion; therefore the reproducibility of the 

immobilisation does not also account for the reproducibility of the isolation. The 

average chlorophyll concentration from three immobilisations was found to be 

0.49 ± 0.026 µg of chlorophyll / mg of beads, therefore with an RSD value of 

5.4%. 

 

6.3 Selection of an appropriate miniaturised light source 

6.3.1 Introduction 

Following the successful use of a standard 20 W, 240 V full spectrum halogen 

lamp as the illumination source of a suspension of thylakoids for the production 

of H2O2, and having optimised the wavelength spectrum that allowed for the 

optimal production thereof (Section 4.3.3.6), it was necessary to investigate the 

application of alternative light sources that would provide the light energy for a 

similar production of H2O2 in the fluidic assay, with the thylakoids immobilised 

on the beads, rather than in suspension. An investigation of the literature 

revealed that, for the purpose of illuminating photosynthetic material in 

miniaturised assays, LEDs appeared to be the preferred illumination technology 

employed 8; 9; 48; 142; 154; 159. Therefore, an investigation was undertaken, aiming 

to identify the preferred LED that would be allowing for the optimal illumination 

conditions, in order to achieve the highest H2O2 yield. The work presented here 

forth was carried out with the isolated thylakoids in suspension using the batch 

assay, and not immobilised thylakoids, as this allowed for a much quicker 

turnaround time, while also utilising resources more effectively, as a great 
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amount of beads with immobilised thylakoids and HRP would be needed to 

perform all the individual measurements presented.  

 

6.3.2 Materials and Methods 

The experiments described in 6.3.3 were HRP-mediated luminol 

chemiluminescence reactions in cuvettes using a bench-top spectrometer, with 

the H2O2 required for the reaction being provided by illuminated isolated 

thylakoids. It is therefore a variation of the experimental process described in 

Section 4.3.3.6, where the results for the different light sources for the cuvette 

assay are presented, with the main difference being the use of LEDs as the 

illumination source, instead of the halogen lamp or the laser diode. 

The steps followed thus are: 

• 330 µl of luminol (100 µM) in Tris-HCl buffer (10 mM, pH 8.5) and 330 µl of 

HRP (5 Units/ml) in Tris-HCl buffer (10 mM, pH 8.5) were added in a Kartell 

disposable semi-micro optical polystyrene cuvette (Thermo Fisher Scientific 

Ltd., Loughborough, UK), in a time window of 1 hour before the experiment 

to follow, unless stated otherwise.   

• The cuvette with 660 µl of luminol and HRP in Tris-HCl buffer (10 mM, pH 

8.5) was placed in the sample holding compartment of a Cary Eclipse 

fluorescence spectrophotometer (Varian UK Ltd., Oxford, UK). The 

spectrometer was set up, via the use of its bespoke software, to record the 

intensity of detected light over 60 seconds.  

• In order to induce the production of H2O2 by the thylakoids, the sample 

illumination step was undertaken: 

o The isolated thylakoid preparation Ch5, obtained from protocol 5, 

was diluted in Tris-HCl buffer (10 mM, pH 8.5) in order to form the 

measuring sample 

o A 330 µl diluted sample was aspirated in a pipette tip attached to 

an air-displacement pipette 

o The pipette was placed within a plastic hollow tube, internally 

covered with aluminium foil, opposite an individual LED (as in Fig. 

6.2) 
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o The LED was powered and illumination took place, for 1 min 

o When the designated illumination time ended, the LED was 

switched off. 

• Using a PC interface, the spectrometer's detection process was initiated the 

moment the illumination ended, and 10 seconds later the aliquot containing 

the previously illuminated chloroplast sample was forcefully pipetted 

manually in the cuvette, thus resulting in the initiation of any potential 

chemiluminescence reaction between luminol and H2O2, in the presence of 

HRP.  

• At the end of 1 min, the spectrometer would stop recording the intensity of 

the light detected, and would produce a file containing the light intensity 

recorded over time, in arbitrary units, every 100 ms, over 1 minute. Microsoft 

Office Excel 2003 was used to further analyse the data. 

LEDs were selected from the widest possible range of wavelengths, illuminating 

angles and intensities. Information on the identification as well as parameters of 

individual LEDs can be found in Appendix V.  

 

 

 
Figure 6.2 Schematic representation of the experime ntal setup for the 

illumination of thylakoids by an LED. 

Not to scale. 
 

Furthermore, measurements of the spectral qualities of the different LEDs were 

also made, in order to characterise the LEDs and allow for comparison with 
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each other, as well as with the optimal light source for the batch assay, the 

halogen lamp. These measurements were conducted within an experimental 

setup similar to the one employed for the illumination of the thylakoids (Fig. 6.3), 

with the thylakoid sample-containing pipette tip being replaced by an optical 

fibre connected to an S2000 Miniature Fiber Optic Spectrometer from Ocean 

Optics B.V. (Duiven, The Netherlands). It was connected to a single-strand, 100 

µm diameter optical fibre (P100-2, Ocean Optics B.V.) through which the light 

was collected. 

 

 
Figure 6.3 Schematic representation of the experime ntal setup for the 

measurement of the light intensity output by an LED . 

Not to scale. The distance between the tip of the optical fibre and the tip of the LED 
was 5 cm.  
 

6.3.3 Results 

6.3.3.1 Characterisation of the LED light sources 

A substantial amount of work was performed on illuminating the thylakoids 

using LEDs. It was therefore important to understand, characterise and quantify 

certain parameters of the light emitted by the LEDs.  

 

LEDs are light-emitting semiconductors and are inherently monochromatic 

devices, with the colour being determined by the band gap between various 

semiconductor materials utilised in diode construction 155. When current flows 
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through the p-n junction of compound semiconductors consisting of GaP 

(gallium phosphide) or GaAsP (gallium arsenide phosphide), light is emitted as 

a result of electrons recombining with holes near the p-n junction.  The 

characteristics of LEDs are as follows: low voltage operation, low heat emission, 

a compact and lightweight design, lack of noise (electron discharge tubes 

produce noise) and easy control 153. 

 

The diode of white LEDs, like all LEDs, is actually monochromatic, however, the 

glass cover of the LED is internally coated with a phosphorescent material 

which, after getting excited by the diode's blue luminescence, phosphoresces. 

Figure 6.4 shows how the total emission spectrum of a white LED is composed 

of the blue luminescence as generated by the diode chip and the primarily 

yellow phosphorescence as generated by the coating 197. 

 

Figure 6.4 White LED emission spectrum.  

(from 197) 
 

Similarly to the other light sources, as reported in Section 4.3.3.6.1, the spectral 

quality of the light emitted by each LED was measured (Fig. 6.5). The light 

intensity spectral distribution wavelength scan of the different LEDs was 

performed by placing an optical fibre, connected to a spectrometer, in the area 

directly in front of the LED, facing towards the source. There was immense 

variation amongst the wavelength 'fingerprints' of all LEDs, as LEDs of many 

different peak wavelengths were chosen, which were therefore also of different 
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colour appearance to the human eye (blue, green, yellow, orange, red and 

white). 
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Figure 6.5 Light intensity spectral distribution wa velength scan of different LEDs 

used to illuminate the thylakoid preparations.  

The trace of the non-filtered halogen lamp has been included in the graph to allow 
visual comparison (N/F). The LED traces are coded 1-38, which are the LEDs' 
assigned codes for this work. 
 

Based on the measured light intensity over the whole visible light spectrum that 

the LEDs emit in, as displayed in Fig 6.5, the 'total light output' was measured, 

by calculating the sum of all the data points over the 400-700 nm spectrum 

window. The results can be seen in Figure 6.6. It was important to calculate a 

means of comparing the light intensity output of all the different LEDs, as the 

wavelengths over which they produced light varied greatly. It was also important 

to be able to compare the amount of light produced by the LEDs to that of the 

main halogen lamp light source. Therefore, for the purpose of comparison, the 

'total light output' of each LED was also calculated as a proportion of the total 

light output achieved by the un-filtered halogen lamp light source. From both 
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graphs in Figures 6.5 and 6.6, it can be seen that amount and spectral 

characteristics of the light emitted from the LEDs varies greatly.  
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6.3.3.2 Effect of LEDs as thylakoid illumination so urces on the H 2O2 

production 

Radiometry is the measurement of optical radiation, which is electromagnetic 

radiation within the frequency range between 3×1011 and 3×1016 Hz. This range 

corresponds to wavelengths between 0.01 and 1000 µm, and includes the 

regions commonly called the ultraviolet, the visible and the infrared. Photometry 

is the measurement of light, which is defined as electromagnetic radiation that is 

detectable by the human eye. It is thus restricted to the wavelength range from 

about 360 to 830 nm. Photometry is therefore like radiometry, except that 

everything is weighted by the spectral response of the eye. Visual photometry 

uses the eye as a comparison detector, while physical photometry uses either 

optical radiation detectors constructed to mimic the spectral response of the 

eye, or spectroradiometry coupled with appropriate calculations to perform the 

eye response weighting 198. 

 

The standard unit for characterising the light output of man-made light sources 

is the lumen which is the total luminous power (luminous flux) emitted from the 

source. The lumen is an SI derived unit for luminous flux. The lumen is derived 

from the candela and therefore the luminous flux is the product of luminous 

intensity and solid angle. It is analogous to the unit of radiant flux (watt), 

differing only in the eye response weighting 198; 199.  

 

Conversely, the candela (cd) is the unit of luminous intensity, which can be 

defined as the amount of luminous flux (total luminous power emitted from a 

source and expressed as lumens) per unit solid angle in a given direction. 

Therefore 1 candela = 1 lumen/steradian 200. One steradian (sr) is the solid (3-

D) angle that, having its vertex in the center of a sphere, cuts off an area on the 

surface of the sphere equal to that of a square with sides of length equal to the 

radius of the sphere 198.  
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If a light source is isotropic, the relationship between lumens and candelas is 1 

cd = 4π lm. Isotropic implies a spherical source that radiates the same in all 

directions, i.e., the intensity is the same in all directions. If a source is not 

isotropic, it is calculated empirically. 

 

In order to empirically calculate the luminous flux, the two parameters needed 

are the luminous intensity and the viewing angle, both of which are given in the 

used LEDs' manufacturers' data sheets. 

 

The viewing angle is typically defined as the angle which encompasses 50% of 

the maximum intensity. It is also referred to as the spatial or directional pattern 

of a LED light beam. The expressed degree dictates the width of the light beam 

and also controls, to some extent, the intensity of a LED. That is because the 

luminous intensity does not represent the total light output from an LED. Both 

the luminous intensity and the viewing angle must be taken into account. If two 

LEDs have the same luminous intensity value, the lamp with the larger viewing 

angle will have the higher total light output. The viewing angle is a function of 

the LED chip type and the epoxy lens that distributes the light. The highest 

luminous intensity (mcd) does not equate to the highest visibility. A higher light 

output is achieved by concentrating the light in a tight beam.  

 

As the luminous flux takes into account the viewing angle, and based on the 

theoretical relationship between the luminous intensity and flux, and as only the 

intensity is provided by the manufacturers of LEDs, it was decided to calculate 

the flux of all LEDs. The calculated flux for all LEDs used can be found as a 

separate column in Appendix V.  

 

Thirty eight different LEDs were used to illuminate the thylakoids. These 

experiments were only performed with one thylakoid preparation (Ch5), which 

was shown to have produced the lowest detectable concentrations / best 

detection limits for herbicides (Section 4.4.3), and had been thus also chosen to 

be the thylakoid preparation to be immobilised on the beads. The illumination of 
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the thylakoids and subsequent detection of any produced H2O2 was performed 

using the standard illumination method, with the modified illumination setup for 

LEDs (Section 6.3.2).  

 

The results of the chemiluminescence detection of the produced H2O2 can be 

seen in Fig. 6.7, with each bar representing an individual LED, sorted in 

chemiluminescence intensity achieved for each emitted colour category of LEDs 

(blue, green, yellow, orange, red and white). As it can be seen, illumination of 

the thylakoids with one white LED (code 22) resulted in the highest H2O2 

production and therefore highest chemiluminescence signal. It was thus 

decided that the LED named LED22 would be used for experiments for the 

detection of herbicides by measuring their effect on the production of H2O2 by 

thylakoids immobilised on beads, that are illuminated by said LED. 

 

It is important to highlight the fact that red LEDs did perform quite well in 

stimulating the production of H2O2 by thylakoids. This is in accordance with the 

fact that red wavelengths are both best absorbed by chlorophyll and result in 

maximal photosynthesis 153, as discussed in Section 4.3.3.6.3, where the results 

of H2O2 production by the different filters were presented. 
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Figure 6.7 Chemiluminescence signal intensity resul ting from H 2O2 produced by 

thylakoids illuminated by 38 different LEDs. 

The luminescence signal, detected by a bench-top spectrophotometer, resulted from 
the production of light by the cuvette-based chemiluminescence reaction of luminol, 
HRP and H2O2. [HRP] = 5 U.ml-1, [luminol] = 100 µM, in Tris-HCl buffer (10 mM, pH 
8.5). The H2O2 was previously produced by illuminating diluted thylakoid samples with 
different LEDs, while aspirated in a pipette tip, for an illumination time of 1 min. The 
Ch5 thylakoid preparation ([chlorophyll] = 64 µg.ml-1) were diluted in buffer A (10 mM 
Tris-HCl buffer, adjusted to pH 8.5). Average values and the SDs shown are the results 
of 3 replicates. 
 

6.3.3.3 Meta-analysis / investigation into LED para meters 

In order to understand the effect different parameters of the illumination light 

produced by the LEDs had on the production of H2O2 by the thylakoids, the 

chemiluminescence-detected H2O2 results were also considered against the 

peak wavelength, the provided luminous intensity, the calculated luminous flux 

and the measured 'total light output'.  

 

It was expected that parameters identifying the light quality and characteristics 

of an LED, when compared to the amount of H2O2 produced by thylakoids due 

to their illumination by that LED, may provide with a model that could potentially 

be used to identify the ideal characteristics of the LED to be used.  
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The peak wavelength (nm) and the luminous intensity (mcd) were provided by 

the manufacturers, although the peak wavelength was verified by own 

measurements. The luminous flux (mlm) was calculated as mentioned above 

(results in Appendix V), and the 'total light output' (a.u.) was measured and 

calculated experimentally, with the results presented in Fig. 6.6. The measured 

'total light output' (a.u.) differs from the luminous intensity (mcd) provided by the 

manufacturers, as it was experimentally measured by collecting light emitted by 

LEDs with an optical fibre at a fixed distance from the LEDs, while no 

information is provided about the way the luminous intensity (mcd) was 

measured by the manufacturers. 

 

Figures 6.8 to 6.11 below are the plots of the chemiluminescence signal 

intensity, resulting from the detection of H2O2 produced by thylakoids, against 

the peak wavelength, the provided luminous intensity, the calculated luminous 

flux and the measured 'total light output'. The coefficient of determination, R2, 

has been calculated and included in the plots of the results.  

R2 = 0.2139
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Figure 6.8 Effect of the illumination wavelengths o f individual LEDs on the H 2O2 

production by thylakoids when illuminated. 

R2 calculated for all LEDs together. 
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Figure 6.9 Effect of the luminous intensity of indi vidual LEDs on H 2O2 production 

by thylakoids when illuminated.  

R2 calculated for all LEDs together. 
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Figure 6.10 Effect of the luminous flux of individu al LEDs on the H 2O2 production 

by thylakoids when illuminated.  

R2 calculated for all LEDs together (black trace), as well as the red (red trace), blue 
(blue trace) and white LEDs (light grey trace) separately. It was not possible to 
calculate the coeffictient for the green, yellow or orange LEDs due to low numbers of 
individual LEDs used. 
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Figure 6.11 Effect of the measured 'total light out put' of individual LEDs on H 2O2 

production by thylakoids when illuminated.  

R2 calculated for all LEDs together. 
 

In order to measure the association between the different parameters (peak 

wavelength, provided luminous intensity, calculated luminous flux and 

measured 'total light output') and against the detected H2O2, correlation analysis 

was performed on the results obtained, presented in Appendix VI. The 

correlation coefficient R was calculated using as paired (dependent and 

independent) variables the above four LED light quality parameters and the 

detected H2O2. This was performed for each group of LEDs according to their 

primary colour, as well as for all LEDs together. Two separate calculations were 

performed for all the LEDs together, one with the white LEDs included and one 

without; this was in order to potentially identify behaviour that may be only seen 

in the white LEDs, or vice-versa, as the white LEDs, as described in more detail 

in Section 6.3.3.1, emit light that cannot be described as monochromatic, or 

near to such. Clearly, that was also why it was not possible to include the peak / 

dominant wavelength category in any such calculations for the white LEDs, as 

such one does not exist. An R value between 0.5 – 0.699 was considered to be 

the result of moderate correlation, a value between 0.7 – 0.899 was considered 
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to be pointing towards a strong correlation, and a value between 0.9 – 1.0 to be 

resulting from a very strong correlation. The identified R values falling within 

those categories have been highlighted in the table in the Appendix VI using 

colour coding.  

 

Firstly, as it can be seen from the Pearsonian coefficient of determination, R2, 

as displayed in the graphs above, there is no strong correlation between the 

H2O2 detected and some of the LEDs' variables, such as the peak wavelength 

(Fig. 6.8) or the luminous intensity (Fig. 6.9). For the 'total light output' as 

measured independently for this project, there is no association between said 

variable and the H2O2 produced whatsoever, resulting in a R2 value of almost 

zero. For the luminous flux, as calculated by the provided luminous intensity 

and viewing angle, there appears to be a moderate association between said 

variable and the H2O2 production, with a positive correlation between increasing 

luminous flux and H2O2 produced.  

 

From the R values in Appendix VI, it can be seen that the correlation coefficient 

R consistently indicates an association between the luminous flux values of 

LEDs and the H2O2 produced; that is observed for LEDs of different colour as 

well as for all LEDs together. There is generally no other consistent correlation 

for the different groups of LEDs; that could be attributed to the small sample 

number for all but the blue, red and white LEDs.  

 

There was a lack of almost any positive association between the measured 

'total light output' (a.u.) and the H2O2 produced. It would have been expected 

that the experimentally measured light intensity (a.u.) would be resulting in just 

as high, if not higher, R values as those obtained for the theoretically calculated 

flux (mlm), which is a measure of luminous intensity (mcd) when taking the 

effect of the illumination angle into consideration. This highlights a possible 

misjudgement in the experimentally measured light intensity values obtained 

(Fig. 6.5), which were then summed to provide the 'total light output' values (Fig. 

6.6).   
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The reason behind this is believed to be the fact that the standard method used 

to measure the light intensity introduced an error to the measurement, or, more 

specifically, to the ability to use the measurements as a means of comparing 

different LEDs. That is because, although used consistently, using an optical 

fibre as a means of collecting light from the different LEDs (Fig. 6.3) was not 

representative of the setup when the LEDs were used to illuminate the 

thylakoids. The fibre only allowed for what could effectively be described as the 

detection of light reaching a specific spot in front of the LED, while, when using 

the LEDs to illuminate the thylakoids, the thylakoids were receiving light emitted 

by an LED directly, in a varying angle depending on the LED, as well as 

indirectly, as light was reflected by the aluminium foil that was coating the inside 

of the tube where the illumination took place. Therefore, the measured light 

intensity for an LED does not represent well the light that each LED provided for 

the illumination of the thylakoids.  

 

Therefore, it can be concluded that the statistical analysis of the results did not 

highlight any of the LED light quality parameters analysed as appropriate for the 

theoretical identification of the optimal characteristics that an LED should 

possess in order to be selected as the best performing, as far as H2O2 

production by thylakoids illuminated in suspension is concerned. It was 

therefore decided to proceed to the next stage, the further optimisation, and, 

finally, implementation, of the fluidic assay for the detection herbicides, 

employing the aforementioned white LED. 

 

6.4 Optimisation of the herbicide detection fluidic  assay 

parameters  

6.4.1 Introduction 

Following the successful immobilisation of thylakoids on magnetic beads, and 

the selection of a suitable miniaturised light source to illuminate them, their use 

as part of an assay for the detection of herbicides in the fluidic unit, based upon 

the herbicides' inhibitory effect, was the next step to be optimised.  
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The fluidic assay for the detection of herbicides would be based upon the fluidic 

assay for the detection of H2O2 (Section 5.4.3.2), by extending it to include the 

step of the H2O2 production and inhibition by herbicides, prior to its detection. 

 

Having optimised and finalised the detection of H2O2 in the fluidic assay setup 

employing the use of the HRP-coated beads, as presented in Section 5.4.3.1, 

there would therefore not be a need to optimise the luminol concentration in 

flow, the amount of beads with immobilised HRP in the H2O2 detection region of 

the fluidic channel, or of the sample volume and flow rate, at least not during the 

H2O2 detection step.  

 

As already highlighted in Section 4.4.3, where the effect of varying the 

incubation time of herbicides with thylakoids in suspension was presented, it is 

expected that the time that the herbicides are in contact with the immobilised 

thylakoids during the fluidic assay would be altering the inhibition level of the 

H2O2 production, and thus of the chemiluminescence signal that would be used 

as the parameter to allow for the quantification of the herbicides in a water 

sample.  

 

What is more, as the sample with a known H2O2 concentration, as previously 

used for the calibration of the fluidic assay for the detection of H2O2 (Section 

5.4.3.2), would now be replaced with H2O2 produced by illuminated thylakoids, it 

was also necessary to investigate the effect altering the illumination time would 

be having on the said H2O2 production. 

 

Furthermore, the amount of beads with immobilised thylakoids would be varied, 

in order to identify the quantity that would result in an adequate H2O2 

production, following illumination. 

 

Therefore, it was decided that it would be required to optimise these parameters 

in order to gain the best possible conditions for the detection of the lowest 

possible concentrations of herbicides. 



 

 

220

6.4.2 Materials and methods 

6.4.2.1 Materials 

 

Chemicals 

Trizma, hydrochloric acid, 5-amino-2,3-dihydrophthalazine-1,4-dione sodium 

salt (luminol), PBS tablets and hydrogen peroxide (30% w/w) were purchased 

from Sigma Chemical Co. The Tris-HCl and PBS buffers were prepared using 

RO water. Luminol (100 µM) and H2O2 were prepared freshly each day, from 

stock solutions, in Tris-HCl buffer, 10 mM, pH 8.5. The six herbicides used were 

all from the PESTANAL®, analytical standard grade from Sigma Chemical 

Company Ltd. (Gillingham, UK). The MagaBeads-Carboxyl Terminated beads 

with a 3.2 µm diameter (Catalogue Number: CM3530), were from Cortex 

Biochemicals (now Promega Corp, Winskonsin, USA). The Sphero Amino 

magnetic beads with a 3.6 µm diameter (Catalogue Number: AM-30-10) were 

from Spherotech Inc. (Illinois, USA).  

 

Detection  

The customised QP1000-2-VIS/NIR-BX optical fibre was from Anglia 

Instruments Ltd. (Ely, UK). The detector C5460 APD Module was from 

Hamamatsu Photonics UK Ltd (Welwyn Garden City, UK). The PCI-1200 

multifunction Input/Output data acquisition device and LabVIEW 5.0 was from 

National Instruments Ltd. (Newbury, UK).  

 

Fluidics 

The tubing and fittings used were from Omnifit Ltd, now Bio-Chem Fluidics 

(Cambridge, UK). Neodymium magnets were from RS Components Ltd (Corby, 

UK). The Minipuls3 Peristaltic Pumps were from Gilson (Wisconsin, USA). The 

injection port valve was from Pharmacia. 
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6.4.2.2 Setup and method 

The herbicides were diluted in a variety of concentrations, all in Tris-HCl buffer 

(10 mM, pH 8.5), as described in Section 4.4.2. The beads with immobilised 

HRP were prepared as in section 5.3, and stored in Tris-HCl buffer (10 mM, pH 

8.5) prior to use. The beads with immobilised thylakoids were prepared as in 

section 6.2, and stored in Tricine buffer (20 mΜ, 5 mM MgCl2, 70 mM sucrose, 

pH 7.8) prior to use. 

 

The fluidic assay for the detection of herbicides was performed using a variation 

of the fluidic unit described earlier (Section 5.2), and used for the detection of 

H2O2, as presented in Section 5.4. A schematic diagram of the setup used is 

pictured in Fig. 6.12. 

 

 

 

Figure 6.12 Schematic representation of the experim ental setup for the fluidic 

assay for the detection of herbicides.  

 

Following the selection of the fluidic channel design based on the optimised 

detection of H2O2 with HRP-coated beads entrapped in the designated area 

(Section 5.4.3.1.1), the fluidic channel for the herbicides assay was designed, 

following the optimised design in Fig. 5.11. A drawing of the channel 

manufactured can be seen in Fig. 6.13. 
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Figure 6.13 Schematic drawing of laser-cut channel fabricated for use with the 

fluidic sensor for the detection of herbicides.  

The regions used for the entrapment of the magnetic beads are: active region A, the 
area covered with the HRP-coated beads; active region B, the area covered with the 
thylakoid-coated beads. Not to scale. 
 

The HRP-coated and thylakoid-coated magnetic beads were introduced in the 

flow cell prior to a measurement taking place. The neodymium magnets were 

used in order to magnetically entrap the beads on the desired positions, which 

were the regions of the fluidic channel that were directly beneath the position of 

the optical fibre for the HRP-coated beads (active region A) and the area 

directly beneath the position of the LED for the thylakoid-coated beads (active 

region B). Blu-Tack adhesive was then used to fix the magnets, which allowed 

for easy removal of the magnets when desired, as also used for other similar 

work 111. As described in examples found in the literature 103; 111, after the 

removal of the beads following a chemiluminescence measurement, the fluidic 

cell was washed by flowing PBS buffer (100 mM, pH 7.2), in order to discard the 

beads completely.   

 

Two peristaltic pumps were used to deliver the carrier buffer (Tris-HCl, 10 mM, 

pH 8.5). Inline with the flow was connected an injection port, on the sample loop 

of which the herbicide sample was pre-mixed with luminol, which too was 

carried to the flow cell when the valve was switched to the appropriate position. 

PTFE tubing was used to connect all components in the flow system. 

 

The optical fibre assembly used was a customised, 1000 µm diameter premium-

grade fibre. The fibre was terminated with a standard SMA 905 connector on 

one end (the end that attaches to the spectrometer), while the other end 



 

 

223

consisted only of the ferrule without the outer part of the SMA connector, which 

had been removed by the manufacturer, in order to allow for the fibre to fit 

closer to the fluidic channel. Light detected by the fibre was then transferred to 

the detector. The detector module contains an avalanche photodiode, with an 

effective active photon counting area of 0.78 mm2. The specific APD module 

has a higher sensitivity at 420 nm from other series of Hamamatsu APDs. The 

detector's electrical signal converted from light was acquired via a data 

acquisition card by a PC, and further analysed and controlled by LabVIEW. 

 

The LED used to illuminate the thylakoid-coated beads was a white LED, coded 

LED22 when used in experiments presented in Section 6.3.3, manufactured 

from MARL Optosource Ltd (Cumbria, UK), Manufacturer Part No: 

NSPW500BS, and acquired from Farnell Ltd (Leeds, UK). 

 

Following the assembly of all the components, the process of performing a 

single measurement of the herbicide assay was the following: 

 

~the fluidic setup was readied for the assay to be initiated~ 

 

• the tubing and fluidic channel were washed with PBS buffer (100 mM, pH 
7.2) 

 

• a neodymium magnet was fixed underneath the active region A, 'viewed' by 
the optical fibre, aiming to magnetically trap the HRP-coated beads 

 

• the magnetic beads with immobilised HRP (0.25 mg of beads) were 
aspirated in the flow cell and magnetically trapped in the designated active 
region A of the channel, directly below the optical fibre 

 

• the tubing was washed with PBS buffer 
 
• a neodymium magnet was fixed underneath the active region B, 'viewed' by 

the LED, aiming to magnetically trap the thylakoid-coated beads 
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• varying amounts of the magnetic beads with immobilised thylakoids were 
aspirated in the flow cell and magnetically trapped in the designated active 
region B of the channel, directly below the LED 

 

• the flow of the Tris (carrier) buffer was initiated at a flow rate of 0.5 ml/min 
 

• a 50 µl plug of the herbicide sample and luminol was injected into the flow 
 
• arrival of the plug in the channel area covered by the thylakoids-coated 

beads signalled the initiation of the incubation period  
 
• the flow was stopped for a varying amount of time, in order to allow for the 

incubation of the herbicide sample with the thylakoids  
 
• following the desired incubation time period, the illumination of the thylakoids 

was initiated and continued for a varying amount of time, with the flow still 
stopped  

 
• following the desired illumination time, the LED was switched off, and the 

flow was then continued, with the plug of the herbicides and luminol now 
enriched with any produced H2O2, subject to the complete inhibition by 
herbicides   

 
• delivery of the plug in the channel area covered by the HRP-coated beads 

prompted the initiation of the HRP-mediated chemiluminescence reaction of 
luminol with H2O2 

 

• the chemiluminescence light intensity was collected by the optical fibre 
 

• the light signal was transduced to an electrical signal by the detector 
 

• the obtained chemiluminescence intensity signal was recorded and the 
maximum intensity was used to plot the graphs or input in tables 

 

• the magnets were removed from their fixed positions 
 

• the tubing was washed with PBS buffer, thus removing all beads, as well as 
the sample plug 

 

~the fluidic setup was ready for the assay to be repeated~ 
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The above process was followed for the optimisation experiments described in 

this section, while varying some of the values of parameters included in the 

process, namely: 

• the concentration of thylakoids immobilised on beads 

• the herbicide incubation time with the immobilised thylakoids  

• the illumination time of the thylakoids.  

 

6.4.3 Results and discussion 

6.4.3.1 Optimisation of the concentration of thylak oids immobilised on 

beads 

The chosen isolated thylakoid preparation, Ch5, which allowed for the lower 

detection limits for the photosynthesis-inhibiting herbicides when assayed in 

suspension (Section 4.4.3), were also the thylakoid preparation that produced 

the highest chemiluminescence signal intensity, and hence H2O2, when 

illuminated for 10 min, compared to the other four preparations (Section 

4.3.3.1). It was therefore envisaged that it was the most suitable candidate for 

the production of a chemiluminescence signal due to its H2O2 production for the 

quantitative detection of herbicides in the fluidic assay.  

 

Following the immobilisation of Ch5 thylakoids on magnetic beads (Section 6.2), 

they were used in the fluidic sensor, in order to quantify the H2O2 production 

following illumination within the fluidic unit by employing the previously chosen 

LED (Section 6.3). This would allow to determine the 'base' signal, which is the 

signal that would be produced by a sample containing no herbicides. More 

importantly, at this stage, the amount of beads with immobilised thylakoids was 

varied, in order to identify the optimal concentration of thylakoids to be used 

further for the detection of herbicides.  

 

Therefore, following the magnetic entrapment of the previously determined 

amount of HRP-coated magnetic beads in the Region A of the fluidic channel, 

several amounts of thylakoid-coated magnetic beads were magnetically 
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entrapped in the Region B, and then a sample with no herbicides but only 

luminol was introduced in Region B, where then the illumination of the 

immobilised thylakoids on the entrapped beads took place. Following this, the 

H2O2-enriched sample was introduced in the Region A, where the detection of 

said H2O2 took place, due to its consumption in the chemiluminescence reaction 

with luminol, in the presence of the HRP-coated beads.  The results of the 

chemiluminescence signal peak intensity produced from the H2O2 following its 

production by illuminating the different amount of thylakoid-coated beads can be 

seen in Fig. 6.14.  
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Figure 6.14 Effect of varying the amount of thylako id-coated magnetic beads, 

reported as chlorophyll concentration, to the produ ction of H 2O2 and thus 

chemiluminescence signal intensity obtained. 

Average values and the SDs shown are the results of 3 replicates. 
 

Firstly, the results signify that H2O2 is produced by thylakoids immobilised on 

magnetic beads, possibly in a manner similar to when suspended in solution. As 

it can be seen, varying the amount of thylakoid-coated magnetic beads during 

their illumination, and hence H2O2 production, had a significant effect on the 
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chemiluminescence signal intensity produced due to said H2O2. More 

specifically, increasing the amount of beads, as quantified on the x-axis of the 

graph by the chlorophyll concentration of the different amounts of beads, 

resulted in an increase of the H2O2 production, and therefore 

chemiluminescence signal intensity. This was not noted for the entire range of 

the amounts of beads tested; entrapping, illuminating and then measuring the 

H2O2 produced by thylakoid-coated magnetic beads that had the equivalent of 

1.25 µg of chlorophyll or more, resulted in very little increase of 

chemiluminescence signal intensity when compared to the near-linear increase 

for the lower increments. The only possible explanation for this is that the higher 

amounts of beads are too closely packed and possibly stacked on each other 

rather than spread in the designated circular region of the fluidic channel into a 

monolayer. A similar effect had also been noted when the amount of HRP-

coated magnetic beads was being optimised, where, increasing the amount of 

beads higher than 0.25 mg of HRP-coated beads resulted in a very small 

chemiluminescence signal increase (Table 5.7). Calculating the amount of 

thylakoid-coated beads that have a chlorophyll concentration of 1.25 µg, given 

that the amount of chlorophyll immobilised on the beads is 0.49 µg of 

chlorophyll / mg of beads suggests that the optimal amount of beads is 

approximately 0.25 mg, which is the same with the optimal amount of HRP-

coated beads for the detection of H2O2. As the two different types of beads are 

magnetically entrapped in regions that have the same dimensions, and that, 

although the beads perform different roles, the optimised amounts are the 

same, the possible explanation for reaching a maximum optimal concentration 

of beads, before then seeing a plateau effect, is thus justified.  

 

It is also important to highlight that the linear increase of H2O2 production 

associated with an increase of the amount of thylakoids, is a relationship that 

was previously not able to be established, as, in the experiments described in 

Section 4.3.3, the thylakoids illuminated in varying amounts were in suspension, 

and thus any produced H2O2, and, more specifically, the associated 

chemiluminescence signal resulting from the detection of said H2O2, was 
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subject to being masked due to the effect that the thylakoids had on the 

chemiluminescence signal, as explained by a series of measurements in 

Section 4.3.3.2 and particularly displayed in Fig. 4.9. Previously, increasing the 

amount of thylakoids being illuminated also resulted in an increase of the 

sample's absorbance of the chemiluminescence light produced; with the 

thylakoids immobilised, the H2O2 produced following their illumination is then 

transported to a different region of the sensor for its chemiluminescence 

detection to be performed, thus eliminating the effect of the sample absorbance.  

 

6.4.3.2 Optimisation of the illumination time of th e thylakoid-coated 

magnetic beads 

As presented in Section 4.3.3.1, increasing the time that the thylakoids in 

suspension are illuminated, resulted in an increase of the H2O2 production and 

hence chemiluminescence detection thereof. It was important to effectively 

repeat the experiments with the thylakoids immobilised on the magnetic beads 

and in the fluidic assay format. What is more, as the fluidic assay is based upon 

the flow of the sample first in the fluidic channel region occupied by the 

thylakoid-coated beads where the illumination would be taking place, and then 

in the region of the chemiluminescence detection (for which the optimal flow 

rate has already been established), this investigation would be allowing for the 

establishment of the optimal flow rate during the illumination period.  

 

Therefore, following the magnetic entrapment of the previously determined 

amount of HRP-coated magnetic beads in the Region A of the fluidic channel, 

and the entrapment of the now established amount of thylakoid-coated 

magnetic beads in the Region B, then, a sample with no herbicides but luminol 

was introduced in Region B, where the illumination of the immobilised 

thylakoids on the entrapped beads took place, for a varying time period. 

Following this, the H2O2-enriched sample was introduced in the Region A, 

where the detection of said H2O2 took place, due to its consumption in the 

chemiluminescence reaction with luminol, in the presence of the HRP-coated 

beads.  The results of the chemiluminescence signal peak intensity produced 
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from the H2O2 following its production by illuminating the thylakoid-coated beads 

for a varying period of time can be seen in Fig. 6.15.  
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Figure 6.15 Effect of varying the illumination time  period of the thylakoid-coated 

beads to the H 2O2 production and thus chemiluminescence signal inten sity. 

Average values and the SDs shown are the results of 3 replicates. 
 

From the results, it appears that, increasing the time for which the thylakoids 

immobilised on the magnetic beads are illuminated, also increases the H2O2 

production during that period. For illumination periods longer than 6 minutes, it 

appears however, that the rate of increased H2O2 production per minute of 

longer illumination period is significantly reduced. The small increase in 

chemiluminescence signal could possibly even be attributed to an increased 

diffusion of produced H2O2 from the thylakoids towards the sample plug. A 

similar effect was observed with the thylakoids in suspension, as displayed in 

Fig. 4.6.  

 

As it is clear from the results, the flow will therefore need to be suspended for 

the illumination step to take place, for 6 minutes.  The possibility of not stopping 
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the flow or significantly reducing it, would only be possible if a very short 

illumination time was required. It is also important to state that the signal 

obtained by illuminating the optimised amount of thylakoid-coated beads for the 

optimised time is equivalent to 620 nM of H2O2. This can be comfortably 

detected by the H2O2 detection step of the fluidic assay, as seen by the curve in 

Fig. 5.14, but it is a small concentration. 

 

6.4.3.3 Optimisation of the herbicide incubation ti me 

As presented in Section 4.4.3, and in the results shown in Appendix I, 

increasing the time that the herbicides were in contact with the thylakoids in 

suspension resulted in an increase of the inhibition of the thylakoids' 

photosynthetic activity, and therefore H2O2 production and hence 

chemiluminescence detection thereof. It was important to repeat the 

experiments with the thylakoids immobilised on the magnetic beads and in the 

fluidic assay format. What is more, as the fluidic assay is based upon the flow of 

the sample first in the fluidic channel region occupied by the thylakoid-coated 

beads where the inhibition would be taking place, and then in the region of the 

chemiluminescence detection (for which the optimal flow rate has already been 

established), this investigation would be allowing for the establishment of the 

optimal flow rate during the incubation period.  

 

Therefore, following the magnetic entrapment of the previously determined 

amount of HRP-coated magnetic beads in the Region A of the fluidic channel, 

and the entrapment of the now established amount of thylakoid-coated 

magnetic beads in the Region B, a sample with atrazine and luminol was 

introduced in Region B, where, following an incubation period, the illumination 

of the thylakoids immobilised on the entrapped beads took place. Following this, 

the H2O2-enriched sample was introduced in the Region A, where the detection 

of said H2O2 took place, due to its consumption in the chemiluminescence 

reaction with luminol, in the presence of the HRP-coated beads.  The results of 

the signal peak intensity produced from the chemiluminescence reaction of 

H2O2, following its production by illuminating the thylakoid-coated beads after a 
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varying incubation period with a herbicide sample (two different atrazine 

concentrations tested, 1x10-8 and 6x10-8), can be seen in Fig. 6.16.  
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Figure 6.16 Effect of varying the herbicide incubat ion time period with the 

thylakoid-coated beads to the H 2O2 production and thus chemiluminescence 

signal intensity. 

Average values and the SDs shown are the results of 3 replicates. 
 

As it can be seen, for both atrazine concentrations tested, increasing the 

incubation time of the herbicide sample with the thylakoid-coated beads 

between 0 and 3 minutes, results in an increased number of herbicide 

molecules interacting with the thylakoids by binding to the target site in the 

thylakoids' Photosystem II complexes, thus deactivating more of the H2O2 

producing ability of the thylakoids. This is measured as a reduction in the 

chemiluminescence signal intensity detected, which is itself due to the reduced 

H2O2 production. It is also observed that an incubation period longer than 3 

minutes does not result in significant further inhibition of the H2O2-producing 

ability. Of course, as the incubation time is then followed by the illumination 

time, which itself has been optimised to 6 minutes, the overall incubation time 
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will be longer than the optimised 3 minutes. This, however, as incubation times 

longer than 3 minutes do not affect their inhibitory effect, does not result in a 

behaviour that damages the detection of the herbicides.  

 

The flow will therefore be stopped for nine minutes altogether, with the herbicide 

sample plug suspended in the Region B for that time. A similar method was 

employed in a HRP-mediated luminol chemiluminescence flow assay for the 

detection of phenolic herbicides by measuring the increase of the 

chemiluminescence signal intensity observed due to the enhancing effect of this 

class of herbicides 87. In the prior work, in order to allow for the build up of 

signal, they stopped the sample plug of the flow within the flow cell. The authors 

call this a 'stop-flow' flow injection analysis technique, suggesting that it can 

generally be used to increase the sensitivity of measurement by increasing the 

residence time in the flow cell. 

 

Having optimised various parameters of the fluidic assay for the detection of 

herbicides, the fluidic assay is ready to be performed for the identification of the 

working range of herbicide detection, the measurement of the limits of detection 

and the development of calibration curves. 

 

6.5 Fluidic assay for the detection of herbicides u sing immobilised 

thylakoids and HRP on magnetic beads  

6.5.1 Introduction  

Having established a batch assay for the detection of herbicides, based on the 

HRP-mediated chemiluminescence reaction of luminol with H2O2 produced by 

illuminated thylakoids following incubation with a herbicide sample, various 

steps have been taken to transfer the various elements of the assay from a 

batch to a fluidic format. The HRP-mediated chemiluminescence detection of 

H2O2, based on its reaction with luminol in a fluidic assay format with HRP-

coated magnetic beads, has been established and optimised (Chapter 5), while 

the remaining necessary steps (the immobilisation of thylakoids on magnetic 
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beads, the selection of a suitable LED to illuminate them, and the optimisation 

of their interaction with herbicides) have been successfully accomplished 

(Sections 6.2 – 6.4).  

 

The assembled fluidic sensor, with the optimised materials and methods, had 

thus been readied for the full experiment set, establishing the fluidic assay for 

the detection of herbicides. The same three photosynthesis-inhibiting herbicides 

(atrazine, diuron and propanil) and three non-photosynthesis-inhibiting 

herbicides (2,4-D, paraquat and acifluorfen) were used, as already assayed in 

the batch assay (Section 4.4.3). 

 

6.5.2 Materials and methods 

6.5.2.1 Materials 

The chemicals, detection and fluidics apparati and other materials were all 

purchased and prepared as described in Section 6.4.2.1. 

 

6.5.2.2 Setup and method 

The herbicides, HRP-coated and thylakoid-coated magnetic beads were 

prepared as described in Section 6.4.2.2. The fluidic assay for the detection of 

herbicides was performed using the same fluidic unit setup as described in 

Section 6.4.2.2. 

 

Following the assembly of all the components, and having now optimised 

various parameters necessary, the process of performing a single measurement 

of the herbicide assay was the following: 
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~the fluidic setup was readied for the assay to be initiated~ 

 

• the tubing and fluidic channel were washed with PBS buffer (100 mM, pH 
7.2) 

 

• a neodymium magnet was fixed underneath the active region A, 'viewed' by 
the optical fibre, aiming to magnetically trap the HRP-coated beads 

 

• the magnetic beads with immobilised HRP (0.25 mg of beads) were 
aspirated in the flow cell and magnetically trapped in the designated active 
region A of the channel, directly below the optical fibre 

 

• the tubing was washed with PBS buffer 
 
• a neodymium magnet was fixed underneath the active region B, 'viewed' by 

the LED, aiming to magnetically trap the thylakoid-coated beads 
 

• the magnetic beads with immobilised thylakoids (0.25 mg of beads) were 
aspirated in the flow cell and magnetically trapped in the designated active 
region B of the channel, directly below the LED 

 

• the flow of the Tris (carrier) buffer was initiated at a flow rate of 0.5 ml/min 
 

• a 50 µl plug of the herbicide sample and luminol was injected into the flow 
 
• arrival of the plug in the channel area covered by the thylakoids-coated 

beads signalled the initiation of the incubation period  
 
• the flow was stopped for 3 min, in order to allow for the incubation of the 

herbicide sample with the thylakoids  
 
• with the flow still stopped, following the 3 min herbicide incubation period, 

the illumination of the thylakoids was initiated and continued for 6 min 
 
• following the illumination period, the LED was switched off, and the flow was 

then continued, with the plug of the herbicides and luminol now enriched 
with any produced H2O2, subject to the complete inhibition by herbicides   

 
• delivery of the plug in the channel area covered by the HRP-coated beads 

prompted the initiation of the HRP-mediated chemiluminescence reaction of 
luminol with H2O2 
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• the chemiluminescence light intensity was collected by the optical fibre 
 

• the light signal was transduced to an electrical signal by the APD detector 
 

• the obtained chemiluminescence intensity signal was recorded and the 
maximum peak intensity was used to plot the graphs or input in tables 

 

• the magnets were removed from their fixed positions 
 

• the tubing was washed with PBS buffer, thus removing all beads, as well as 
the sample plug 

 

~the fluidic setup was ready for the assay to be repeated~ 

 

6.5.3 Results and discussion 

Using the complete fluidic sensor unit to perform the assay for the detection of 

herbicides, the results obtained for atrazine, diuron and propanil, the three 

photosynthesis-inhibiting herbicides, are presented in Figures 6.17 to 6.19. A 

mixture of 50% atrazine and 50% diuron was also tested, and the resulting 

calibration curve is found in Figure 6.20. These results are followed by the 

detection results for the three non-photosynthesis-inhibiting herbicides (2,4-D, 

paraquat and acifluorfen) in Figures 6.21 to 6.23. 

 

6.5.3.1 Detection of photosynthesis-inhibiting herb icides  

Following the magnetic entrapment of the 0.25 mg of HRP-coated magnetic 

beads in the Region A of the fluidic channel, 0.25 mg of Ch5 thylakoid-coated 

magnetic beads were magnetically entrapped in the Region B, and then a 

sample with a varying amount of herbicides and luminol was introduced in 

Region B, where incubated for 3 min, followed by the illumination of the 

immobilised thylakoids on the magnetically entrapped beads for 6 min. 

Following this, the now H2O2-enriched sample was introduced in the Region A, 

where the detection of said H2O2 took place, due to its consumption in the 
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chemiluminescence reaction with luminol, in the presence of the HRP-coated 

beads.   

 

The results of the chemiluminescence signal peak intensities produced from the 

H2O2 following its production by illuminating the thylakoid-coated beads 

following their incubation with different concentrations of the photosynthesis-

inhibiting herbicides can be seen in Figures 6.17-20, expressed as Residual 

Activity, compared to a sample with no herbicides (100%).  
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Figure 6.17 Calibration curve for the detection of atrazine, using the fluidic 

sensor with thylakoids and HRP immobilised on magne tic beads. 

Average values and the SDs shown are the results of 3 replicates. 
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Figure 6.18 Calibration curve for the detection of diuron, using the fluidic sensor 

with thylakoids and HRP immobilised on magnetic bea ds.  

Average values and the SDs shown are the results of 3 replicates. 
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Figure 6.19 Calibration curve for the detection of propanil, using the fluidic 

sensor with thylakoids and HRP immobilised on magne tic beads. 

Average values and the SDs shown are the results of 3 replicates. 
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Figure 6.20 Calibration curve for the detection of atrazine and diuron (50-50%), 

using the fluidic sensor with thylakoids and HRP im mobilised on magnetic 

beads. 

Average values and the SDs shown are the results of 3 replicates. 
 

The limits of detection have been calculated, and presented in Table 6.1. As it 

can be seen, the lower LODs achieved with the fluidic sensor fall close to the 

region of individual herbicides concentrations that are the highest permissible in 

EU to be found in drinking and other waters (Table 6.2). More specifically, 

however, the developed sensor did not achieve the detection of the 

concentration of an individual herbicide that corresponds to the upper limit of 

how much of a single herbicide is allowed to be found in drinking water in the 

EU (0.1 ppb or 0.1 µg/l) for any of the three photosynthesis-inhibiting herbicides 

tested, although the lower LODs achieved are very close to the target limits. 

What can also be observed from the two tables, is that the sensor can 

successfully detect concentrations of herbicides that equal 0.5 µg/l, which is the 

highest permissible amount of total pesticides to be found in drinking water. 

That means, if a mixture of any of the three tested photosynthesis-inhibiting 

herbicides, in whatever proportions, exists in a water sample, the sensor 
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developed can successfully detect the concentration that the mixture should not 

go over. This is exemplified by the lower LOD achieved for the 50-50% atrazine 

and diuron sample, which is lower than the limit it should not exceed (and 

therefore limit it should be detectable at). 

 

Table 6.1 Limits of detection achieved for the thre e photosynthesis-inhibiting 

herbicides and a combination thereof, measured with  the fluidic sensor using 

immobilised thylakoids and HRP. 

 Dynamic Range 

Herbicide Lower LOD (M) Upper LOD (M) 

Atrazine 8.2 x 10-10 2.5 x 10-07 

Diuron 5.5 x 10-10 1.0 x 10-07 

Propanil 9.9 x 10-10 1.0 x 10-08 

Atrazine and diuron (50-50%) 6.5 x 10-10 2.0 x 10-07 
 

Table 6.2 Herbicides concentrations that correspond  to the surface and drinking 

water maximum allowances for individual and total p esticides in the E.U.  

Herbicide 
Concentration that equals 0.1 

µg/l (M) 
Concentration that equals 0.5 

µg/l (M) 

Atrazine 4.6 x 10-10 2.3 x 10-09 

Diuron 4.3 x 10-10 2.1 x 10-09 

Propanil  4.6 x 10-10 2.3 x 10-09 
Atrazine+diuron  
(50-50%) 4.5 x 10-10 2.2 x 10-09 

 

It is evident that the detection working range is quite narrow, 2-3 orders of 

magnitude, compared to the 4 orders or more achieved by the batch assay for 

the detection of same herbicides. This reduction is believed to be due to the low 

concentration of thylakoids, and therefore binding sites for the herbicide 

molecules, compared to the batch assay where the thylakoids were in 

suspension. A similar effect has been noticed in the literature 103, where 

lowering the amount of an analyte immobilised on beads, led to a narrower 

working range. Similarly, in a paper describing the development of an electrode 

with immobilised PSII 154, it is suggested that lowering the concentration of PSII 
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particles, compared to previous work, leads to the elimination of the 

underestimation of low concentrations of herbicides. 

 

Although for atrazine, diuron and their combination, full inhibition of the H2O2 

production was observed, with propanil, the inhibitory effect of propanil on the 

production of H2O2 by thylakoids appears to be reduced with higher 

concentrations. As explained in detail in Section 4.4.3, this is not the case; at 

low concentrations propanil is a strong inhibitor of the photosynthetic process, 

while at higher concentrations it attacks membranes and at 1 mM it uncouples 

oxidation from phosphorylation 165; 166, thus causing an increase of the H2O2 

production. 

 

The RSD for the detection of herbicides is: 3.1%, which is much lower 

compared to the RSD of 5.7% achieved with the batch assay in Chapter 4. 

 

6.5.3.2 Detection of non-photosynthesis-inhibiting herbicides  

Using the complete fluidic sensor unit for the detection of herbicides, the results 

obtained for 2,4-D, paraquat and acifluorfen, the three non-photosynthesis-

inhibiting herbicides, are presented in Figures 6.21 to 6.23. 
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Figure 6.21 Calibration curve for the detection of 2,4-D, using the fluidic sensor 

with thylakoids and HRP immobilised on magnetic bea ds. 

Average values and the SDs shown are the results of 3 replicates. 
 

As it can be seen, compared to the results obtained using the batch assay (Fig. 

4.27), the effect of 2,4-D on the H2O2 production by thylakoids has been 

reduced significantly. As discussed in Section 4.4.3.4, 2,4-D is not expected to 

effect the ability of thylakoids to undertake their part in the photosynthetic 

oxygen evolution, and therefore on the production of H2O2. Therefore its effect 

observed with the thylakoids in suspension could not be accounted for, as no 

knowledge of similar behaviour could be retrieved from the literature. What is 

however observed with the thylakoids immobilised on the magnetic beads, is 

that the same effect is not observed to the same degree; previously, 2,4-D 

concentrations between 1x10-7 – 1x10-4 all reduced the H2O2 produced by 5-

25%, while now the reduction of H2O2 production is only between 0-8%. 

 

 

 



 

 

242

0%

100%

200%

300%

400%

500%

0.1 1 10 100 1000 10000
[Paraquat] / nM

R
es

id
ua

l a
ct

iv
ity

 / 
%

 
Figure 6.22 Calibration curve for the detection of paraquat, using the fluidic 

sensor with thylakoids and HRP immobilised on magne tic beads. 

Average values and the SDs shown are the results of 3 replicates. 
 

As it can be seen, paraquat had a distinctively different effect on the expected 

H2O2 produced by immobilised thylakoids following illumination, compared to 

the photosynthesis-inhibiting herbicides. For all concentrations of paraquat 

tested, there was a large increase in chemiluminescence signal observed, and 

hence possibly H2O2 produced by the thylakoids, when compared to the signal 

that was achievable by the thylakoids following the illumination without a 

herbicide incubation step (residual activity = 100%).  

 

As explained in detail in Section 4.4.1.1.6, and already discussed in relevance 

to the results obtained when testing paraquat-containing samples with non-

immobilised thylakoids (Section 4.4.3.6) in the presence of light, paraquat 

causes the generation of hydrogen peroxide and other free radicals, which 

explains the increased chemiluminescence signal detected in the work 

presented here.  
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Figure 6.23 Calibration curve for the detection of acifluorfen, using the fluidic 

sensor with thylakoids and HRP immobilised on magne tic beads. 

Average values and the SDs shown are the results of 3 replicates. 
 

 

As it can be seen, the higher concentrations of acifluorfen tested had a 

distinctively different effect on the expected H2O2 produced by thylakoids 

following illumination, compared to the photosynthesis-inhibiting herbicides. The 

increase in chemiluminescence signal observed, when compared to the signal 

that was achievable by the thylakoids following the illumination without a 

herbicide incubation step (the 100% signal), was probably effected from all 

concentrations of acifluorfen tested, but only the highest ones caused a H2O2 

production that exceeded the base rate of 100%.  

 

As explained in detail in Section 4.4.1.1.7, and in Section 4.4.3.6, the modes of 

acifluorfen's action are the reason for the obtained results; acifluorfen did inhibit 

the production of H2O2 by the immobilised thylakoids, while also effecting them 

in other ways, thus causing a rise in the net amount of H2O2 produced. This 

effect appears to be concentration-dependent.  
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An electrochemical sensor employing photosynthetic PSII particles 9; 48 

reportedly displayed good sensitivity to classical herbicides diuron, atrazine and 

simazine, but significantly reduced sensitivity to phenolic herbicides. The 

authors attributed this to a very low diffusion rate of the phenolic herbicides in 

the BSA–glutaraldehyde matrix, while also suggesting that replacing the 

entrapment gel type restored the inhibitory effect of phenolic herbicides. From 

the results presented in this and Chapter 4 however, and given the literature 

reporting the mechanism of action of phenolic herbicides, it can be suggested 

that, in the case of the mentioned electrochemical biosensor, the authors have 

misinterpreted their results.  

 

In another example however 174, where a sensor employing PSII for the 

detection of photosynthesis-inhibiting herbicides is presented, it is 

acknowledged that "Phenolic herbicides have two modes of action: they are 

inhibitors of PSII electron transport, and also uncouplers of oxidative 

phosphorylation and photophosphorylation, due to their protonophoric 

properties". Furthermore, the authors even suggest that: "In case of herbicides 

monitoring, precaution should be taken in interpretation of the response 

particularly if DNOC concentration exceeds …".  

 

6.6 Use of environmental water samples for the dete rmination of 

herbicides using the fluidic sensor with immobilise d HRP and 

thylakoids 

6.6.1 Introduction 

In order to further characterise the developed assay for the detection of 

herbicides, and to investigate the calibration needs of a future instrument based 

on the fluidic sensor, the sample plug containing known concentrations of 

herbicides and luminol in buffer was replaced by water samples collected from 

the environment.  
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6.6.2 Materials and methods 

Two different river water samples were tested, both provided by European 

project Partner 1B (Dr L Guzzella, Institute for Water Management IRSA, 

National Council of Research, Via della Mornera 25, 20047 Brugherio, Milan, 

Italy). Both samples provided were collected from the river Po, and tested for a 

variety of herbicides with HPLC and GC–MS analyses, the results of which can 

be seen in Table 6.23. For the purposes of the measurements made with the 

fluidic sensor for the detection of photosynthesis-inhibiting herbicides, the total 

amount of pesticides in each sample has been calculated for all the pesticides 

found as well as only the photosynthesis-inhibiting compounds. As it can be 

seen, sample 1 has a total amount of pesticides that fall exactly on the 

maximum limit allowed in drinking water in the E.U. (0.5 µg/l), while two 

photosynthesis-inhibiting herbicides are near or over the maximum permissible 

amount of 0.1 µg/l (Diuron and Terbuthylazine). Sample 2 has much lower 

levels of pesticides overall, and specifically of photosynthesis-inhibiting 

herbicides.  
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Table 6.3 Laboratory analysis of individual pestici de concentration of river water 

samples, and total amounts calculated for all and p hotosynthesis-inhibiting 

herbicides (PIH) only. 

Compound  
Sample 

1 
Sample 

1 
Sample 

2 
Sample 

2 

Name 
Mode of 
action All PIH 

only All PIH 
only 

2, 6-diethylaniline PIH 0.02 0.02 0 0 
Atrazine PIH 0.06 0.06 0.008 0.008 
Deethylatrazine PIH 0.05 0.05 0.02 0.02 
Deethylterbuthylazine PIH 0.03 0.03 0.02 0.02 
Diuron PIH 0.12 0.12 0 0 
Linuron PIH 0 0 0 0 
Metobromuron PIH 0 0 0 0 
Prometryn PIH 0 0 0 0 
Simazine PIH 0 0 0.008 0.008 
Terbuthylazine PIH 0.1 0.1 0.02 0.02 
Alachor Phenol 0 - 0.006 - 
Metolachlor Phenol 0 - 0 - 
2-methyl 6-ethylaniline other 0 - 0 - 
Butylate other 0 - 0 - 
Molinate other 0.04 - 0 - 
Oxadiazon other 0.08 - 0.007 - 
Thiobencarb other 0 - 0 - 
TOTAL (µg/l)  0.500  0.380 0.089 0.076 

 

The water samples were used with the fluidic sensor in order to measure the 

amount of H2O2 contained and the amount of herbicides contained. Therefore, 

the fluidic sensor was setup as in Section 5.4.3.3 for the H2O2 measurements 

and as in Section 6.5.2.2 for the herbicides measurements. 

 

6.6.3 Results and discussion 

6.6.3.1 Calibration method development 

The performance of the fluidic assay for the detection of herbicides can be 

affected by three factors when measuring environmental water samples: 

a. the effect of H2O2 found in the water sample to the chemiluminescence 

signal that would otherwise be solely due to the H2O2 produced by 

thylakoids,  
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b. the effect of the water sample matrix on the detection of H2O2, whichever its 

source, 

c. the effect of the water sample matrix on the detection of herbicides in the 

water sample, probably due to the effect of the matrix on the inhibition of the 

thylakoids by the herbicides. 

 

Identifying and quantifying these effects can be achieved due to the fact that, as 

the fluidic sensor has been designed to employ two separate areas and for the 

herbicide detection assay to be performed in two distinct, independent stages, it 

is envisaged that, when employed in the field, the assay would therefore be 

performed in four variations, in order to allow for the measurement of all the 

effects of the water sample described.  

 

More specifically, the fluidic sensor would be used to: 

1. measure the concentration of H2O2 found in the water sample, 

2. measure the effect of the water sample matrix on the detection of added 

H2O2, 

3. measure the concentration of photosynthesis-inhibing herbicides in the 

water sample, by detecting the reduction in H2O2 production by the 

thylakoids, and 

4. measure the effect of the water sample matrix on the herbicide-induced 

reduction in H2O2 production by the thylakoids of added herbicides. 

 

Step 3 is essentially the herbicide detection assay, while steps 1, 2 and 4, are 

the measurements that need to be performed in order to factor in the effects "a", 

"b" and "c" from the list above respectively. The calculations thus suggested, in 

order to adjust the herbicide content reported for the three effects, include the 

following: 

i. Chemiluminescence signal obtained from step 1 is subtracted from 

chemiluminescence signal obtained from step 3. 

ii. The result is adjusted by multiplying with (100% - percentile recovery of 

H2O2 obtained from step 2). 
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iii. The result is adjusted by multiplying with (100% - percentile recovery of 

herbicides obtained from step 4). 

 

Calculation i. will remove the chemiluminescence signal due to H2O2 inherent in 

the water sample, from the chemiluminescence signal obtained when 

measuring the H2O2 production by thylakoids, whether inhibited or not by 

herbicides. As both of these signals are skewed with the effect of the water 

sample matrix on any chemiluminescence reaction, irrespective of the hydrogen 

peroxide's source, the chemiluminescence signal value obtained by calculation 

i. is then weighted by the percentile reduction or increase caused by the sample 

water matrix on any chemiluminescence signal, which is calculation ii. Then, the 

resulting chemiluminescence signal value is also weighted by the percentile 

reduction or increase caused by the sample water matrix on the herbicide 

reaction with the thylakoids (calculation iii.). The resulting value ought to 

therefore more accurately reflect the true value of the effect of the concentration 

of herbicides found in the water sample. 

 

Having devised the necessary steps 1-4 and the calculations necessary to take 

the factors a.-c. into account, the calibration of the sensor in order to achieve an 

accurate and true interpretation of a herbicide detection measurement from 

environmental water samples has been attempted.  

  

6.6.3.2 Determination of herbicides in river water samples 

6.6.3.2.1 Step 1 measurement 

The standard H2O2 detection fluidic assay was performed, as described in 

Section 5.4.3.2, in order to identify the concentration of H2O2 in the water 

samples, irrespective of herbicide content. Therefore, the sample plug 

consisting of a water sample collected from the environment with luminol was 

tested for H2O2. 
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The results of measuring the H2O2 present in the water samples are presented 

in Table 6.4. It should be noted that the reported values for H2O2 present in the 

water samples are not adjusted for the effect of the water sample matrix on the 

H2O2 detection process itself, which can only be achieved following Step 2. As it 

can be seen, the amount of H2O2 present in the both river water samples is very 

small. This is probably due to the decay of any H2O2 present since the sample 

collection, as a long period of 4 weeks had passed before the samples were 

used in the measurements described here. There is evidence suggesting that 

H2O2 present in natural waters decays fast within two days from its collection 
201. It should also be noted that both concentrations fall below the fluidic 

sensor's lower LOD of 107 nM, which has been calculated with a 3xSD, but are 

still within the instrument LOD, i.e. the concentration that the detector can 

distinguish from another or from a blank.  

 

Table 6.4 Determination of H 2O2 in river water samples. 

 H2O2 added 
(nM) 

Chemiluminescence 
signal obtained 

(a.u.) 

H2O2 found 
(nM)* 

    
River water 
sample 1 

0 6.2 37 

River water 
sample 2 

0 7.9 62 

The H2O2 measurements were performed with the complete fluidic sensor unit for the 
determination of H2O2. The results presented in the "H2O2 found" column are the 
rounded averages of 3 replicates. *: the amount of reported H2O2 found has not been 
adjusted for the effect of the water matrix on the H2O2 chemiluminescence detection, 
as that can only be achieved following Step 2. 
 

6.6.3.2.2 Step 2 measurement 

In order to quantify the effect of the water samples' matrix on the H2O2 detection 

itself, similarly to the experiments presented in Section 5.4.3.3, the standard 

H2O2 detection fluidic assay was performed, with the water samples containing 

added H2O2. The effect of the water samples' matrix on the H2O2 detection 

would then be taken into consideration when reporting the results of measuring 

the water samples' herbicides based upon the inhibition of the H2O2 production 
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step. The results of measuring the effect of the water samples' matrix on the 

H2O2 detection, presented as percentile recovery, are presented in Table 6.5.  

 

It should be noted that, should the fluidic sensor be used solely for the detection 

of H2O2 in water samples, the chemiluminescence signal obtained from the 

water samples without any added H2O2, would now be adjusted by adding / 

subtracting the 'Effected matrix change' weighting percentage. As these 

measurements are only part of the calibration of the fluidic sensor for the 

detection of herbicides, there is no need to be doing the calculations yet. 

 

Table 6.5 Determination and recovery of H 2O2 in river water samples. 

 

H2O2 
added 
(nM) 

Chemiluminescence 
signal obtained 

(a.u.) 

H2O2 found 
(nM) 

Recovery 
(%) 

Effected 
matrix 
change 

River water sample 1     
 0 6.2 37 N/A  
 300 81.2 321 95.3% -4.7% 
River water sample 2     
 0 7.9 62 N/A  
 300 92.5 352 97.2% -2.8% 

The H2O2 measurements were performed with the complete fluidic sensor unit for the 
determination of H2O2. The results presented in the "H2O2 found" column are the 
rounded averages of 3 replicates. 
 

As it can be seen, the river water samples did affect the detection of added 

H2O2. Both river water samples caused a decrease in the chemiluminescence 

signal obtained when known H2O2 concentrations were added to the water 

sample, although by a small proportion. That means that the water sample 

matrix reduced the 'true' chemiluminescence signal by 4.7% and 2.8% 

respectively for each sample. 

 

6.6.3.2.3 Step 3 measurement 

Next, the river water samples were tested using the optimised, final herbicide 

detection assay as used for the detection of herbicides described in Section 

6.5.3. The results of measuring the effect of the herbicides present in the water 

samples are presented in Table 6.6. 
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Table 6.6 Determination of herbicides in river wate r samples. 

 Herbicides 
added (µM) 

Chemiluminescence signal obtained (a.u.) 

   

River water sample 1 0                      114 

River water sample 2 0                      133 

The herbicides measurements were performed with the complete fluidic sensor unit for 
the determination of herbicides. The results presented in the "Chemiluminescence 
signal obtained" column are the rounded averages of 3 replicates. 
 

If the fluidic sensor was used without the calibration steps for real water 

samples, the chemiluminescence signals obtained, presented in Table 6.6, 

would be directly compared to, ideally, a calibration graph for the detection of a 

mixture of herbicides, the closest to which is presented in Figure 6.20, for a 50-

50% mixture of atrazine and diuron. However, as adjusting the signals obtained 

is necessary in order to obtain a true representation of the amount of herbicides 

present, the values obtained from this step (Step 3), cannot be directly 

correlated to a herbicide concentration. Thus, at the moment, without 

processing the measured chemiluminescence signals, no judgement can be 

made on what herbicides concentrations the obtained chemiluminescence 

signals equate to. 

 

6.6.3.2.4 Step 4 measurement and related calculations 

In order to quantify the effect of the water samples on the herbicide detection 

itself, the standard herbicide detection fluidic assay was performed, with the 

water samples containing added herbicides. The effect of the water samples' 

matrix on the herbicide detection would then be taken into consideration when 

reporting the results of measuring the water samples' herbicides based upon 

the inhibition of the H2O2 production step. The results of measuring the 

chemiluminescence signal obtained when adding herbicides of a known 

concentration are presented in Table 6.7. A 50-50% mixture of atrazine and 

diuron was selected as the added herbicide, as it may aid to reflect the fact that 

an environmental water sample would naturally contain more than a single 

herbicide.  
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Table 6.7 Determination of herbicides in river wate r samples. 

 
Herbicides added 

(nM) 
Chemiluminescence 
signal obtained (a.u.) 

River water sample 1   

 0 114 

 5 97 

River water sample 2   

 0 133 

 5 101 
The herbicides measurements were performed with the complete fluidic sensor unit for 
the determination of herbicides. The results presented in the "herbicides found" column 
are the averages of 3 replicates. 
 

In order to identify the effect the water sample matrix is having on the 

interaction of herbicides with the thylakoids or perhaps the inhibition of the H2O2 

production by the thylakoids, a set of calculations have to be performed. These 

will result in the recovery and hence effect the matrix is having, in order to then 

use the percentile increase or reduction on the results obtained by Step 3, and 

therefore determine the true amount of herbicides in the water sample. The 

detailed step-by-step calculations for river water sample 1 are provided, while 

only a summary of the calculations for river water sample 2 is provided in the 

main body of text below, while the equivalent, detailed calculations can be 

found in Appendix VII.  
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Firstly, calculations i. and ii. are performed on the water sample with no added 

herbicides. 

added 0 
nM         

  Step 3 Chemiluminescence signal obtained 114.00 a.u. 

  
Step 1 Chemiluminescence signal obtained due to 
H2O2 present in water 6.20 a.u. 

Calculation 
i. 

Step 3 - step 1 = Chemiluminescence signal 
calculated, due to herbicide presence only 107.80 a.u. 

  
Step 2 Effected matrix change (i.e. 4.7% of 107.80 
a.u.) = Chemiluminescence signal by which 
calculation i. result is under-reported 

5.07 a.u. 

Calculation 
ii. 

Adjusted for matrix under-reporting effect on H2O2 
detection (i.e. 107.80 + 5.07 a.u.) 

112.87 a.u. 

  
Residual activity (compared to 
chemiluminescence signal of blank, which is 124 
a.u.) 

91.02 % 

  Equivalent amount of herbicides present 0.66 nM 
 

Then, the same set of calculations is performed on the water sample 1 with 

added 5 nM of 50-50% atrazine and diuron mixture. 

 

added 5 
nM         

  Step 3 Chemiluminescence signal obtained 97.00 a.u. 

  
Step 1 Chemiluminescence signal obtained due to 
H2O2 present in water 

6.20 a.u. 

Calculation 
i. 

Step 3 - step 1 = Chemiluminescence signal 
calculated, due to herbicide presence only 

90.80 a.u. 

  
Step 2 Effected matrix change (4.7% of 90.80 
a.u.) = Chemiluminescence signal by which 
calculation i. result is under-reported 

4.27 a.u. 

Calculation 
ii. 

Adjusted for matrix under-reporting effect on H2O2 
detection (i.e. 90.80 + 4.27 a.u.) 

95.07 a.u. 

  
Achieved residual activity (compared to 
chemiluminescence signal of 124 a.u.) 

76.70 % 

  Equivalent amount of herbicides present 4.05 nM 
 

The two 'equivalent amounts of herbicides present' are then used to calculate 

the matrix effect on the interaction of herbicides with the immobilised thylakoids. 
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added 5 
nM 

        

  
Herbicide concentration (known added+ 
calculated native) 

5.66 nM 

  
Expected residual activity due to 5.66 nM 
(compared to chemiluminescence signal of 124 
a.u.) 

72.70 % 

  
Recovery (comparison of expected vs achieved 
residual activity) 105.45 % 

  Effected matrix change 5.45 % 
 

Therefore it has been calculated that the water sample matrix causes an over-

reporting of the amount of herbicides present by 5.45%. 

 

6.6.3.2.5 Calculating the fully adjusted and calibrated value of herbicides in river 

water samples 

Finally, calculation iii. takes place on the original water sample with the 

unknown amount of herbicides. 

 

added 0 
nM         

Calculation 
iii. 

Chemiluminescence signal by which calculation ii. 
result is over-reported 6.15 a.u. 

  True chemiluminescence signal 106.72 a.u. 

  Equivalent amount of herbicides present 1.45 nM 

          

  
Amount of herbicide found by standard 
methods 1.78 nM 

 

Water sample 1 was found to have 1.45 nM of a mixture of herbicides. As the 

amount of herbicides in each river water sample has been provided following 

the use of standard laboratory methods (Table 6.3), it is possible to compare 

these with the values obtained following the calibration calculations. As it can be 

seen, there is a deviation of the calculated herbicides concentration from the 

one obtained with the standard methods.  
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For water sample 2, the equivalent amount of herbicides present was calculated 

to be 0 nM (Appendix VII), which is very close to 0.36 nM as measured with 

standard methods, which is a value below the lower LOD of the fluidic sensor.  

 

Unfortunately, the process devised of accounting for a multitude of the effects a 

real water sample matrix can have on the bioassay presented here cannot be 

compared with similar methods that may have been used for other sensors for 

the measurement of photosynthesis-inhibiting herbicides, as none have been 

reported. In published research 6; 48, it is suggested that using real water as a 

replacement of the carrier buffer: "surprisingly, …, caused a PSII activation. In 

all tested samples, an activation in the range of 14 - 21% was found". No further 

work is reported on attempting to detect herbicides in the real water samples. 

 

It will be important to optimise the process of quantifying the environmental 

water sample effect on each relevant part of the herbicide detection assay and 

use other scientific methods to ensure the robustness of the method described 

here by cross-validation. This is very important as the highest concentration of 

H2O2 that can be produced by the thylakoid-coated beads is relatively low 

compared to the concentrations of H2O2 that can be found in water samples. 

Although the optical detector can detect comfortably and quantitatively 

reductions to the thylakoids-produced H2O2 due to herbicides in samples, when 

the said sample also contains 'background' H2O2 signals that can be 

significantly higher than the true signal, the possibility for error is high. What is 

more, the matrix effect on the detection of H2O2 that could have otherwise been 

classed as less significant, is now of great importance as a small percentile 

change in the background signal, could be as big as the true signal itself.  

 

A caveat should be added on the interpretation and validity of the methodology 

presented here. There are three occasions during which, based on a 

proportional difference in the residual activity, i.e. the chemiluminescence signal 

obtained compared to the blank, an equivalence is calculated of the possible 

amount of herbicide present in the water sample. This was done a) following 
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calculation ii. of the water sample with no added herbicides, b) following 

calculation ii. of the water sample with known added herbicide, and finally, c) 

following calculation iii. of the original water sample with the unknown amount of 

herbicides. On each occasion, the chemiluminescence signal (reported as a 

percentile reduction compared to the 100% of the signal when a blank is used) 

is compared to the calibration curve signal, and a concentration of herbicide is 

deduced, by looking at the responding concentration on the curve. However, 

this method of estimating the amount of herbicide present in the sample would 

only be appropriate if the relationship between amount of herbicide and the 

resulting reduction in chemiluminescence signal was linear. Therefore, by 

employing this method of estimating the amount of herbicide present, it is 

assumed that the relationship is linear, as the exact equation of the relationship 

is unknown. 

 

6.7 Reuse, regenerability and stability of the flui dic sensor unit for 

the detection of herbicides using immobilised thyla koids and 

HRP on magnetic beads 

6.7.1 Introduction 

An aim of the work presented in the thesis is to develop a fluidic sensor unit for 

the detection of specific classes of herbicides. This has been achieved as 

presented and discussed in Section 6.5. A crucial detail of the aims however, 

which adds substantially to the novelty of the work, is the use of mobile support 

for the key substrates and biological material of the two-stage bioassay 

developed. This has been achieved by using magnetic beads on which HRP 

and thylakoids have been immobilised. The importance of using the magnetic 

beads is due to the fact that the fluidic sensor can thus be reused and 

regenerated, as the beads' handling, namely introduction into the sensor, use 

and finally discardation can be easily repeated. As the HRP acts as a mediator 

of the chemiluminescence reaction of luminol with H2O2, it is reusable. The 

literature provides information on the ability to remove bound photosynthesis-

inhibiting herbicides from thylakoids, thus allowing for the thylakoids' reuse. The 
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repeated use of the two types of magnetic beads with immobilised HRP and 

thylakoids, as well as details of the sensor's regenerability process by the 

replacement of the beads was investigated further, with results presented in this 

section. What is more, storage stability studies of some of the components of 

the fluidic bioassay are presented. 

 

6.7.2 Materials and methods 

Chemicals, detection and fluidics apparati and other materials and their use with 

the fluidic sensor unit, as well as the setup and assay method and steps were 

as previously described in Section 6.5.2, when measuring herbicides and as 

described in Section 5.4.2 when measuring H2O2. A crucial difference for the 

reuse studies is the retainment of the magnetic beads after a measurement, 

either of H2O2 or herbicides. For the storage stability studies, the standard 

fluidic bioassay for the detection of herbicides was performed, with various 

components having been stored in room temperature of 16°C, a fridge at 4°C, 

and in freezer at -20°C. 

 

6.7.3 Results and discussion 

The ability to reuse the magnetic beads with immobilised HRP and thylakoids 

was tested, as well as the stability of the magnetic beads when stored, over 

time. 

6.7.3.1 Reuse of HRP-coated beads for the H 2O2 detection fluidic bioassay    

Firstly, the standard fluidic bioassay for the detection of H2O2 was performed, 

with the HRP-coated magnetic beads in the fluidic sensor. The magnetic beads 

were not removed from the active region A where they were magnetically 

entrapped during their use for the detection of H2O2 after a single measurement, 

but, following the H2O2-containing sample's removal from the fluidic channel, 

they were used repeatedly for the detection of further H2O2-containing samples 

of the same concentration. Another set of measurements made involved the 

repeated flow of samples containing no H2O2, apart from a 'final' sample 
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containing H2O2 and thus producing a chemiluminescence signal. The results of 

using the same HRP-coated magnetic beads for a multitude of continuous 

measurements of 2 µM concentration of H2O2 in different samples (series 2 in 

Figure 6.24), as well as with continuous measurements of no H2O2 in different 

samples apart from the last sample (series 1), can be seen in Figure 6.24. 

 

90%

92%

94%

96%

98%

100%

1 2 3 4 5
Measurement sample cycle

R
el

at
iv

e 
re

si
du

al
 a

ct
iv

ity
 / 

%

1: Detection of hydrogen peroxide after final sample 

2: Detection of hydrogen peroxide after each sample 

 
Figure 6.24 Reuse of HRP-coated beads for repeated H2O2 detection, with H 2O2 

present in every or specific samples. 

 

As it can be seen from the results, the same 0.25 mg of HRP-coated beads can 

be reused for a number of repeated measurements of 2 µM H2O2 found in a 

sample; there is, however, a decline in the chemiluminescence signal obtained. 

Also, a reduction of the chemiluminescence signal expected for the H2O2 

sample was still identified when only the last of a series of samples contained 

H2O2.  By comparing the results of the two sets of experiments this reduction on 

the detection of H2O2 can be attributed to the following reasons: repeatedly 

flowing a sample with or without H2O2 through the channel (series 1) is itself an 

act that removes either HRP that becomes unbound from beads, or a number of 

HRP-coated beads themselves, while the rest of the reduction in 
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chemiluminescence signal as experienced when repeatedly measuring H2O2 in 

samples (series 2) is therefore attributed to a partial irreversible inactivation of 

the HRP on the beads due to its repeated use as the mediator in the 

chemiluminescence reaction of luminol and HRP.  

 

It is therefore expected that the HRP-coated beads could be reused for a 

number of measurements, particularly as the concentration of H2O2 produced 

by the thylakoids, in the absence of herbicides, is relatively low (approximately 

620 nM), thus, it would be expected that the irreversible inactivation of HRP (as 

depicted by series 2) as well as the loss of HRP (as depicted by series 1) would 

be having a lesser effect when detecting the thylakoid-produced H2O2, which 

would be expected to be even lower if herbicides are present, than with a higher 

concentration of H2O2 that was used in these measurements (2 µM). This study 

has not been performed as part of the present body of work. 

 

6.7.3.2 Reuse of thylakoids-coated beads for the he rbicide detection 

fluidic bioassay 

6.7.3.2.1 Non-photosynthesis-inhibiting herbicides  

Following a single measurement of 1x10-6 M of 2,4-D, of 1x10-6 M paraquat and 

of 1x10-6 M acifluorfen, the thylakoid-coated beads were then tested without a 

herbicide sample, but only in order to identify the amount of H2O2 that can still 

be produced following the illumination step, i.e. the baseline signal, following the 

removal of the herbicides. From the results presented in Figure 6.25, by 

comparing the baseline H2O2 production of thylakoids before and after the use 

of the specific herbicides, it can be seen that paraquat and acifluorfen, due to 

their method of action and effect on the thylakoids already presented in Section 

6.5.3.2, cause a great reduction of the ability of the thylakoids immobilised on 

the beads to further produce H2O2. This is inline with a similar study found in the 

literature 174, where, following the use of DNOC, a herbicide that belongs to the 

same family with acifluorfen, damage inflicted on isolated, immobilised 

photosynthetic material is irreversible. More specifically, the authors report that, 
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following the rinsing of the biosensor in order to remove DNOC, the signal 

measured decreased "far below the reference level suggesting that the 

membrane has been damaged due to the uncoupling effect".  

 

2,4-D has almost no effect, which suggests that the effect of 2,4-D on the 

thylakoids, as noted in Section 6.5.3.2 and earlier in Section 4.4.3.4, is 

temporary and does not result due to some partially irreversible binding of the 

herbicide onto the thylakoids. However, as already mentioned in Section 

4.4.3.4, no further insight into the possible cause of the reduction in thylakoid 

activity due to 2,4-D can be gained from the literature.  
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Figure 6.25 Effect on residual ability of immobilis ed thylakoids on beads to 

produce H 2O2 following an incubation and illumination with samp le of non-

photosynthesis-inhibiting herbicides. 

 

6.7.3.2.2 Photosynthesis-inhibiting herbicides  

Sets of measurements similar to those presented in the study of the HRP-

coated beads (Section 6.7.3.1) were made for the step of the illumination of 

thylakoid-coated beads, as well as the step of the inhibition of their ability to 
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produce H2O2 by photosynthesis-inhibiting herbicides. In all of the following 

experiments, HRP-coated magnetic beads were magnetically entrapped in 

active region A of the fluidic channel, therefore adding to the decrease in 

residual activity of the herbicide detection bioassay. This added decrease has 

not been explicitly accounted for and removed in the results presented here 

forth. 

 

Firstly, with thylakoid-coated magnetic beads magnetically trapped in active 

region B of the fluidic channel, samples containing no herbicides were 

repeatedly flown through the channel, without illuminating any of the samples 

apart from the last one in a series of samples (series 1 in Figure 6.26). As it can 

be seen, the maximum signal achieved by the thylakoids following one 

illumination step but after many assay cycles is reduced. This is probably due to 

either the dislocation of thylakoids from the magnetic beads, or the removal of 

some magnetic beads from their entrapment region. It should be noted that the 

residual activity (95.1% after five cycles) is less than that of a similar 

measurement performed on the H2O2 detection by HRP-coated beads, as 

presented by series 1 in Figure 6.24 (97.6% after five cycles), suggesting that 

perhaps the immobilisation of the thylakoids on beads is weaker than the 

immobilisation of HRP. 

 

Secondly, with thylakoid-coated magnetic beads magnetically trapped in active 

region B of the fluidic channel, samples containing no herbicides were 

repeatedly flown through the channel, with an illumination step taking place 

following each of the samples (series 2 in Figure 6.26). As it can be seen, the 

maximum signal achieved by the thylakoids following each illumination step 

after each assay cycle is reduced. This is due to the possible reasons for the 

reduction in residual activity identified in series 1, as well as due to another 

reason; as, each time, the signal achieved following the same number of assay 

cycles is lower for series 2 than for series 1, it is suggested that the illumination 

of thylakoids, and the associated production of H2O2, results in some 

irreversible inactivation of the thylakoids, accounting for the relative difference 
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between signals 1 and 2. This is supported by the literature, where it is 

suggested that repeated illumination of strong light causes not only 

photoinhibition but also irreversible photodamage in photosynthetic material 152. 
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Figure 6.26 Effect of reuse on thylakoids immobilis ed on beads, with variation on 

number of assay cycles containing atrazine (5 nM).  

 

Thirdly, the complete bioassay was performed with all necessary steps for the 

detection of herbicides: with thylakoid-coated beads entrapped in active region 

B, a sample containing atrazine (5x10-9 M) was flown, incubated, and then 

illuminated. Following the removal of the herbicide-containing sample, another 

full assay cycle was performed, with a sample containing the same amount of 

atrazine, and with the same thylakoid-coated beads. This was repeated four 

times. As it can be seen from series 3 (Fig. 6.26), there is a reduction in the 

H2O2 production by the thylakoids compared to what would be expected for the 

specific amount of herbicide, i.e. compared to the signal achieved from the first 

cycle of this experiment. Series 3 is also lower than series 1 or 2, as the related 

reductions in residual activity found in signals 1 and 2 are essentially 

incorporated in series 3; the further reduction in series 3 is attributed to some 

irreversible binding of herbicides on the thylakoids or otherwise effected 
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irreversible inactivation of the thylakoids due to the herbicides. As it can be 

seen, following the first measurement of herbicides in a sample, only 74% of 

activity remains when a second sample of the same herbicide is assayed. That 

means that the amount of H2O2 produced following the second inhibition was 

26% lower than that achieved following the first inhibition by the same amount 

of atrazine in the sample. Therefore, approximately 25% of the thylakoids' ability 

to be inhibited for a second time is lost. It should be noted that the atrazine 

concentration used is relatively low, and a different pattern of behaviour may 

have had emerged if a larger concentration had been used.  

  

The literature provides results of similar studies performed on the reversibility of 

the inhibitory effect of herbicides following a measurement cycle. Biosensors 

with immobilised PSII measuring the effect of photosynthesis-inhibiting 

herbicides with electrochemical means can reportedly have their activity 

restored after one measurement by 70% 154, and by almost 100% 142. The two 

examples do not mention however the concentration of herbicides assayed, 

which would be expected to have an effect on the reversibility. Another example 

of a biosensor with immobilised thylakoids measuring the effect of 

photosynthesis-inhibiting herbicides with electrochemical means can only have 

60% of its initial activity restored after one measurement of a 1x10-6 sample of 

atrazine. This suggests that when using immobilised thylakoids the reversibility 

following a measurement of a herbicide sample appears to be achieved to a 

lesser degree than when using PSII. It should be noted however that none of 

the examples found in the literature are reporting detailed studies of the likely 

causes of the relative irreversibility.  

 

The fact that the fluidic sensor presented here retains only a small percentage 

of its activity following a measurement of a herbicide sample, makes the 

inherent ability of the magnetic beads to be removed, following a measurement 

in order to be replaced by a different lot of beads, a key quality of the design 

and realisation of the method developed for the fluidic sensor.  
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6.7.3.3 Storage and stability studies 

Prepared and stored magnetic beads with immobilised HRP and thylakoids 

were tested over time in order to identify the period of time over which they can 

be used adequately with the fluidic bioassay for the detection of herbicides but 

also H2O2, in the case of the HRP-coated beads. 

 

When stored in room temperature (16°C), the HRP-coate d beads performed 

close to their initial activity for the first two days, with even an increase in activity 

before a decrease, over 1 week, when measuring a 2 µM H2O2 sample (Fig. 

6.27). The fact that the HRP used was of a high grade, stabilised form, may 

have attributed to its stability in room temperature. The thylakoid-coated beads 

however, declined rapidly in baseline activity, as measured by the amount of 

H2O2 produced following the incubation of a herbicide sample (10 nM atrazine), 

over the same period of time. According to the literature 142, the stability of 

photosynthetic material is increased at 16°C compared to  the standard 25°C, in 

which case the deterioration of the thylakoids would have been even greater. 

An important observation is that the RSD during the first three days for both lots 

of beads was around 4%, while by the point of the last three measurements it 

had risen to 8% for the HRP- and 10% for the thylakoid-coated beads. This 

appears to signify that, during the passage of time in the less favourable 

conditions offered by a temperature of 16°C, the stabil ity of the immobilised 

material, or of the immobilisation itself of the material, was much reduced, 

leading to the normal variations experienced during the handling and use of the 

beads to be a cause of more deviation in the results from the average. 
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Figure 6.27 Activity of HRP- and thylakoid-coated b eads remaining over 7 days 

stored in room temperature (16°C). 

 

When stored in a fridge at 4°C, the stability of the H RP- and thylakoid-coated 

beads was longer, as measured by their residual activity, as it can be seen from 

Fig. 6.28, over 2 weeks. It is thus suggested that the HRP-coated beads are in 

a usable condition for seven days and the thylakoid-coated beads for three 

days, which is the point by which both lots of beads reach the point where 90% 

of activity is remaining. This is in accordance with work presented elsewhere 
186, where the usability of immobilised HRP, after storage in a 4°C environment, 

remains in similar levels for seven days.  
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Figure 6.28 Activity of HRP- and thylakoid-coated b eads remaining over 14 days 

stored in a fridge (4°C). 

 

The stability and usability of the coated beads following storage in a -20°C 

freezer was also studied. The results of using the two different beads following 

the storage in the freezer temperature can be seen in Figure 6.29. It was 

observed that, the HRP-coated beads retained 90% of their activity for 10 

weeks at -20°C, while the thylakoid-coated beads had 72 % of their activity 

present after the same time period. This is similar to the activity found to be 

retained for immobilised thylakoids on an electrode surface, where 

approximately 75% was retained after 11 weeks of storage in a -20°C 

environment. 
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Figure 6.29 Activity of HRP- and thylakoid-coated b eads remaining over 20 

weeks stored in a freezer (-20°C). 

 

Further studies would need to be performed with combinations of variably 

stored HRP- and thylakoid-coated beads, specifically when performing the 

detection of herbicides, in order to gain a fully characterised profile of the time 

restrictions of the use of the fluidic bioassay as a whole, importantly on the 

detection limits. 

 

6.8 General discussion 

Chapter 6 concluded the practical work performed for this PhD project; all 

experimental work presented in Chapters 3-5 forms a logical, natural continuum 

of the steps needed to achieve the final Objective and therefore reach all three 

Aims of the work.  

 

In order to demonstrate a field-deployable fluidic bioassay for the detection of 

herbicides that has an inherent attribute to regenerate by using 

superparamagnetic beads as the immobilisation substrate on which the 
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biological element of the sensor is immobilised, thus allowing for its introduction, 

use and removal by using simple flow and magnetic controls, and having 

achieved many of the individual steps leading to this, as summarise at the 

Conclusions and Summaries of Chapters 3-5, the following sets of work were 

performed, as reported in Chapter 6: 

 

• the immobilisation of thylakoids on magnetic beads  

 

As a result of the optimisation of the immobilisation process by the project 

partner, beads were obtained with 0.3 µg of chlorophyll / mg of beads. When 

the isolated thylakoids immobilised on the beads were those obtained by using 

the isolation protocol 5, an increase in the amount of thylakoids immobilised on 

the beads (0.49 µg of chlorophyll / mg of beads) was achieved. This allowed for 

an increase in the chemiluminescence signal detected by the production of 

H2O2 by the immobilised thylakoids. 

 

• the selection of an appropriate miniaturised light source 

 

Thirty eight different LEDs were tested in order to identify the one that effected 

the highest H2O2 production, which was successful. Many of the spectral and 

illumination parameters of all LEDs were taken into consideration, but no highly 

statistically significant correlation was identified between the parameters and 

the H2O2 production. 

 

• the optimisation of the herbicide detection fluidic assay's parameters 

 

Having optimised and finalised the detection of H2O2 in the fluidic assay setup 

employing the use of the HRP-coated beads, as presented in Section 5.4.3.1, 

there was no need to optimise the luminol concentration in flow, the amount of 

beads with immobilised HRP in the H2O2 detection region of the fluidic channel, 

or of the sample volume and flow rate, at least not during the H2O2 detection 

step. Instead, the following aspects of the fluidic assay were optimised: 
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o the concentration of thylakoids immobilised on beads 

Varying the amount of thylakoid-coated magnetic beads during their 

illumination, and hence H2O2 production, had a significant effect on the 

chemiluminescence signal intensity produced due to said H2O2. More 

specifically, increasing the amount of beads, resulted in an increase of the H2O2 

production, and therefore chemiluminescence signal intensity. This was not 

noted for the entire range of the amounts of beads tested; entrapping, 

illuminating and then measuring the H2O2 produced by thylakoid-coated 

magnetic beads that had the equivalent of 1.25 µg of chlorophyll or more, 

resulted in very little increase of chemiluminescence signal intensity when 

compared to the near-linear increase for the lower increments. The only 

possible explanation for this is that the higher amounts of beads are too closely 

packed and possibly stacked on each other rather than spread in the 

designated circular region of the fluidic channel into a monolayer. Therefore, 

0.25 mg of beads were identified as the optimal amount. The linear relationship 

between H2O2 production and the amount of thylakoids was established. 

 

o the herbicide incubation time with the immobilised thylakoids  

As expected following the results achieved with the batch assay, the incubation 

time that the herbicides are in contact with the immobilised thylakoids during the 

fluidic assay altered the inhibition level of the H2O2 production, and thus of the 

chemiluminescence signal that was used as the parameter to allow for the 

quantification of the herbicides. Increasing the incubation time of the herbicide 

sample with the thylakoid-coated beads between 0 and 3 minutes, resulted in 

an increased number of herbicide molecules interacting with the thylakoids by 

binding to the target site in the thylakoids' Photosystem II complexes, thus 

deactivating more of the H2O2 producing ability of the thylakoids. This was 

measured as a reduction in the chemiluminescence signal intensity detected, 

which is itself due to the reduced H2O2 production. It was also observed that an 

incubation period longer than 3 minutes did not result in significant further 

inhibition of the H2O2-producing ability, probably due to reduced interaction of 

the herbicide molecules with the thylakoids. 



 

 

270

o the illumination time of the thylakoids  

Increasing the time that the thylakoids in suspension are illuminated, resulted in 

an increase of the H2O2 production and hence chemiluminescence detection 

thereof. For illumination periods longer than six minutes however, the rate of 

increased H2O2 production per minute of longer illumination period is 

significantly reduced. A similar effect was observed with the thylakoids in 

suspension. The lower increase in chemiluminescence signal could possibly 

even be attributed to an increased diffusion of produced H2O2 from the 

thylakoids towards the sample plug. Therefore, the flow will need to be 

suspended for the illumination step to take place, for six minutes. It is also 

important to state that the signal obtained by illuminating the optimised amount 

of thylakoid-coated beads for the optimised time is equivalent to 620 nM of 

H2O2. This can be comfortably detected by the H2O2 detection step of the fluidic 

assay developed in Chapter 5. 

 

• the implementation of the complete fluidic assay for the detection of 

herbicides  

 

From the use of the complete fluidic bioassay for the detection of herbicides, the 

lower LODs achieved with the fluidic sensor fall close to the region of herbicides 

concentrations that are the highest permissible in EU to be found in drinking 

and other waters. More specifically however, the developed sensor did not 

achieve the detection of the concentration of any individual herbicide that 

corresponds to the upper limit of how much of a single herbicide is allowed to 

be found in drinking water in the EU (0.1 ppb or 0.1 µg/l) for any of the three 

photosynthesis-inhibiting herbicides tested, although the lower LODs achieved 

are very close to the target limits. What can also be observed from the two 

tables, is that the sensor can successfully detect concentrations of herbicides 

that equal 0.5 µg/l, which is the highest permissible amount of total pesticides to 

be found in drinking water. 
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The LODs achieved compare very comfortably with those of electrochemical 

sensors with immobilised photosynthetic material: 

 Ref. 136 Ref. 242 Ref. 132 Ref. 130 

Atrazine (M) 2.5 × 10-9  2.0x10-9 2.0x10-9 1.3x10-8 

Diuron (M) 1.8 × 10-9  5.0x10-10 5.0x10-10 1.5x10-8 
 

Although for atrazine, diuron and their combination, full inhibition of the H2O2 

production was observed, with propanil, the inhibitory effect of propanil on the 

production of H2O2 by thylakoids appears to be reduced with higher 

concentrations, which is actually due to propanil's different mode of action 

depending on its applied concentration. The RSD for the detection of herbicides 

was 3.1%, which is much lower compared to the RSD of 5.7% achieved with the 

batch assay. 

 

• the testing of the complete assay with real water samples 

 

In order to further characterise the developed assay for the detection of 

herbicides, and to investigate the calibration needs of a future instrument based 

on the fluidic sensor, the sample plug containing known concentrations of 

herbicides and luminol in buffer was replaced by water samples collected from 

the environment. Identifying and quantifying these effects was achieved due to 

the fact that the fluidic sensor has been designed to employ two separate 

"active" regions and for the herbicide detection assay to be performed in two 

distinct, independent stages. The real water matrix did have an effect on the 

detection of the herbicides present in the water sample, which varied depending 

on the water sample source, and the stage of the assay. It is important that 

such a detailed account of the different effects the matrix can have has been 

devised and taken into consideration, as that would be essential for the use of 

the sensor in a field-deployed situation. 
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• studies of beads' reuse and stability 

 

The repeated use of the two types of magnetic beads with immobilised HRP 

and thylakoids, as well as details of the sensor's regenerability process by the 

replacement of the beads was investigated further; HRP-coated beads could be 

reused for at least 5 times with 90% of their activity retained. The fact that the 

thylakoid-coated beads retain only a small percentage of their activity following 

a measurement of a herbicide sample, makes the inherent ability of the 

magnetic beads to be removed, following a measurement in order to be 

replaced by a different lot of beads, a key quality of the design and realisation of 

the method developed for the fluidic sensor.  

 

Storage stability studies of the magnetic beads were performed, and although 

HRP-coated beads could be considered in a state that allowed for their use for 

a week at 4°C, the thylakoid-coated beads would requir e storage at lower 

temperatures. This was already expected, due to similar studies performed with 

thylakoids immobilised for their use with electrochemical sensors. 
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Chapter 7: Final discussion, conclusions and future work 

 

7.1 Final Discussion 

The four experimental chapters (Chapters 3, 4, 5 and 6) report work that was 

carried out sequentially and was interdependent. Each chapter has been given 

a final section called "General discussion", as, for all results presented in each 

chapter, it was necessary to critically review the findings and implications for 

subsequent work, in order to progress to the next chapter. Therefore, this 

section will briefly summarise the general discussions of each experimental 

chapter, and the relationship each area of work has on the conclusion of this 

PhD work. 

 

7.1.1 Establishment of a standard bench-top batch a ssay for the 

detection of H 2O2 

The chosen standard chemiluminescence assay for the detection of H2O2 was 

established by optimising the concentrations of the reagents (luminol and HRP), 

as well as other parameters such as the detector's voltage gain, for the most 

sensitive detection of H2O2. The observed LLOD of 9.0x10-8 agrees with 

published literature for similar batch assays. 

 

Elements of the actual measurement process were optimised or standardised, 

such as establishing a specific method for the length of time between activation 

of the spectrometer's software and introduction of the sample in the cuvette, 

and the manual nature of the introduction of the sample into a cuvette (pipetting 

angle). It was important to standardise these as early as possible, as the work 

performed for the establishment of the standard chemiluminescence batch 

assay for the detection of H2O2 will form the basis of consequently researching 

the chemiluminescence detection of the probable production of H2O2 by 

photosynthetic material, and inhibition thereof by certain classes of herbicides. 
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7.1.2 Establishment of the production of H 2O2 from photosynthetic 

material 

The focus was then placed on attempting to substitute the source of H2O2 from 

standard, known concentrations, to being a product of the illumination of 

isolated photosynthetic material.  

 

Following the fruitless investigation into obtaining detectable H2O2 from isolated 

chloroplasts following illumination, sub-chloroplastic organelles, the thylakoids, 

were used with the same aim. It had already been ascertained by various 

experiments that the inability to detect any produced H2O2 by chloroplasts was 

not due to the unsuitability of the H2O2 detection step (chemiluminescence 

reaction), but due to the chloroplasts' preparations having a catalase-like active 

compound that scavenges any produced H2O2, if there is any produced. 

 

All different thylakoid preparations isolated, produced H2O2 following their 

illumination, that could be detected and measured with the standard 

chemiluminescence H2O2 assay. The H2O2 production was affected by a variety 

of parameters of the illumination step (intensity, wavelength, length of time), the 

suspension medium (buffer) and the experimental method (pipette tips holding 

the thylakoids during illumination) used. Thus, the said H2O2 production was 

optimised for these and more parameters in order to achieve the highest yields. 

 

Amongst other findings discussed in more detail in the General Discussion of 

Chapter 4, it was found that the production of H2O2 increased with the time of 

illumination, for all five preparations. As chemiluminescence signals reporting 

the produced H2O2 increased with the longer illumination times, there were clear 

differences in the ability of the different thylakoid preparations to produce 

detectable H2O2. This was partly due to the optical density of the thylakoid 

samples, which, following illumination, were then introduced in the standard 

HRP-mediated chemiluminescence reaction, which was affected by the 

absorbance of the chemiluminescence light by the thylakoids. However, for 

each thylakoid preparation the dilution (reported as chlorophyll concentration) at 
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which they produced the most H2O2 while keeping all other experimental 

variables had been identified, thus making the dilutions and comparison of the 

different thylakoid preparations based on H2O2 production yields. What is more, 

illumination longer than 10 min appeared to significantly limit the rate of H2O2 

production. 

 

Illuminating all five different thylakoid preparations with spectrum- (and 

intensity) filtered variations of the same light source provided a fascinating 

account of the behaviour of thylakoids as a whole depending on the illumination 

wavelength changes, but also between the different preparations. The results 

showed the effect the different spectral distributions have on the production of 

H2O2. An expectation for the H2O2 production to vary accordingly only to the 

light intensity was not met, as photosynthesis is affected by the differences in 

wavelengths as well.  

 

All five different isolated thylakoid preparations were used in the next set of 

experiments, as a definitive conclusion on whether good overall characteristics 

on the H2O2 production step would also be translated in the lowest LOD for 

herbicides, could not be reached. 

 

7.1.3 Establishment of the chemiluminescence bench- top batch assay for 

the detection of photosynthesis-inhibiting herbicid es  

Incubating all five different thylakoid preparations with increasing concentrations 

of photosynthesis-inhibiting herbicides did result in clear, correlated reduction of 

the chemiluminescence signal, which therefore suggests also a correlated 

reduction of the H2O2 production by thylakoids during an illumination step 

following the incubation step. For all three photosynthesis-inhibiting herbicides, 

thylakoid preparation Ch5 resulted in the lowest LODs of all five preparations; 

this suggests that Ch5's seemingly higher proportion of thylakoids that produce 

a lot of H2O2, while containing the least thylakoids overall, did also result in the 

ability of less herbicide molecules to effect a reduction in their H2O2 production. 

The lower LODs achieved (atrazine: 6.0x10-09, diuron: 8.0x10-08, propanil: 
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1.4x10-07) are not sufficiently low to meet the E.U. limits of maximum 

permissible concentrations of herbicides in waters.  

 

The confidence in the presence of this relationship was increased due to a 

variety of measurements that were performed with the herbicides, the thylakoids 

and the chemiluminescence reagents and standard chemiluminescence H2O2 

assay using different variables of presence or absence of any of the steps 

(incubation, illumination, chemiluminescence reaction) and of any of the 

participating components (herbicides, thylakoids, luminol, HRP) in order to 

identify any unwanted effects.  

 

For non-photosynthesis-inhibiting herbicides, the batch assay gave a variable 

response, due to the means of action of the herbicides chosen.  

 

7.1.4 Establishment of the chemiluminescence fluidi c assay for H 2O2 

Following the development of a set of principles of design and operational 

mode, the flow sensor unit was designed and fabricated. The aim to 

demonstrate the potential of the final developed fluidic assay in aiding the reuse 

and regenerability of the sensor was taken into account; thus, it was decided to 

employ superparamagnetic beads as the immobilisation support for the 

biological elements of the bioassay, which would need to be easily and 

automatically replaced in a field deployment. 

 

HRP was immobilised on superparamagnetic beads, which was thoroughly 

optimised in order to achieve the highest possible amount of active HRP on the 

beads (2.1 purpurogallin units per 1 mg of beads). 

 

The fluidic assay for the detection of H2O2 using the developed unit and the 

optimised HRP-coated magnetic beads was itself then optimised in order to 

yield for the lowest detectable amount of hydrogen peroxide, as well as other 

desired chemiluminescence signal characteristics. 
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The optimised fluidic unit was then used as part of a fluidic sensor for the 

chemiluminescence detection of H2O2, utilising magnetic beads as the 

immobilisation support material for HRP. The lower LOD for H2O2 was 1.07x10-7 

M (107 nM) H2O2. 

 

7.1.5 Establishment of the chemiluminescence fluidi c assay for the 

detection photosynthesis-inhibiting herbicides  

The immobilisation of thylakoids on magnetic beads was performed by an E.U. 

project partner. 

 

An appropriate miniaturised light source was selected, by testing thirty eight 

different LEDs which gave very different results, in order to identify the one that 

effected the highest H2O2 production. 

 

Parameters of the herbicide detection fluidic assay were optimised, in order to 

allow for the detection of the lowest possible concentrations; these were the 

concentration of thylakoids immobilised on beads, the herbicide incubation time 

with the immobilised thylakoids and the illumination time of the thylakoids. 

 

7.1.6 Implementation of the complete fluidic assay for the detection of 

herbicides 

From the use of the complete fluidic bioassay for the detection of herbicides, the 

lower LODs achieved with the fluidic sensor fall close to the region of herbicides 

concentrations that are the highest permissible in EU to be found in drinking 

and other waters. More specifically however, the developed sensor did not 

achieve the detection of the concentration of an individual herbicide that 

corresponds to the upper limit of how much of a single herbicide is allowed to 

be found in drinking water in the EU (0.1 ppb or 0.1 µg/l) for any of the three 

photosynthesis-inhibiting herbicides tested, although the lower LODs achieved 

are very close to the target limits. The assay was successful in detecting 
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concentrations of herbicides that equal 0.5 µg/l, which is the highest permissible 

amount of total pesticides to be found in drinking water. 

 

To conclude the work, testing of the complete assay with real water samples as 

well as studies of beads' reuse and stability were performed, which gave 

promising results about the ability to accurately measure the effect of the 

water's matrix, as well as the ability to store the HRP- and thylakoid- coated 

beads for later use. 

 

7.2 Summary and conclusions 

The following conclusions are made for the achievement of the project Aims: 

• A bioassay that is potentially field-deployable and addresses issues of reuse 

and regenerability in a remote working environment has been developed 

and demonstrated, by using superparamagnetic beads as the support on 

which the expendible bio-recognition element is immobilised. 

• This was demonstrated for a bioassay for the detection of photosynthesis-

inhibiting herbicides by measuring their effect on photosynthetic material 

derived from plant cells. 

• Thus, a bioassay platform for the detection of trace organic pollutants in 

water samples, that can be deployed/used in the field, in order to also meet 

the commercial / regulatory requirements, has been developed. 

 

To achieve the Aims, the following can be concluded on meeting the project 

Objectives: 

• The production and detection of H2O2 from isolated illuminated 

photosynthetic plant material was demonstrated. 

• The concentration-dependent inhibition of production of H2O2 from isolated 

illuminated photosynthetic plant material, by photosynthesis-inhibiting 

herbicides was demonstrated. 

• A fluidic sensor unit that can be reused and regenerated by employing the 

use of superparamagnetic beads to act as the immobilisation support for the 
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bio-recognition element of the bioassay, allowing for the repeated 

introduction, use and discardation of the bio-recognition element was 

developed. 

• A fluidic assay using the principle of the superparamagnetic bead 

immobilisation, by immobilising HRP on beads that were used for detection 

of H2O2 using the HRP-mediated luminol chemiluminescence reaction with 

H2O2 was demonstrated. 

• The herbicide detection batch assay was successfully transferred into the 

demonstrated fluidic format, thus demonstrating a fluidic assay for the 

detection of herbicides that can be reused and regenerated and therefore 

allowing for its subsequent development into a field-based system. 

Finally,  

• The work was performed within the objectives of the funding E.U. project, by 

contributing to the successful completion of the E.U. project.  

 

The work performed has achieved to demonstrate the additional novelty 

parameters: 

• Second reported demonstration of light induced production of H2O2 by 

thylakoid preparations with the detection of H2O2 by HRP mediated 

chemiluminescence – thus confirming a controversial first experiment. 

• First reported demonstration of concentration-dependent herbicide inhibition 

of light induced production of H2O2 by thylakoid preparations with the 

detection of H2O2 by HRP-mediated luminol chemiluminescence. 

• First use of superparamagnetic beads with immobilised photosynthetic 

material enabling regenerability for their use within a fluidic assay for the 

detection of herbicides.  

• First demonstration of analytically undesirable effects of a range of non-

photosynthesis-inhibiting herbicides on an assay for the detection of 

photosynthesis-inhibiting herbicides. 
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7.3 Future work 

7.3.1 Immediate future work – improvement of the de monstrated sensor 

In order to achieve better performance out of the current developed work, the 

following routes could be followed. 

 

In order to achieve better lower LODs for the detection of herbicides, 

specifically, to achieve the detection of the maximum allowed concentration set 

by the E.U., the avalanche photodiode used to detect the light produced by the 

chemiluminescence reaction could easily be substituted by a photo-multiplier 

tube. This step alone is estimated to allow for 2 orders of magnitude lower 

concentrations of hydrogen peroxide being detected, while also increasing the 

sensitivity, which is more relevant, as the herbicides of interest have an 

inhibitory effect on the chemiluminescence signal 81; 112.  

 

In order to achieve better reproducibility, an automated system for the 

sequential introduction of all the reagents and beads should be employed, thus 

removing the element of human error introduced due to the less-than-perfect 

ability to control the fluidic aspects of each measurement.  

 

Better regenerability could be achieved by using computer-controlled 

microelectromagnets for the magnetic entrapment of the thylakoid- and HRP-

coated beads. 

 

A wider range of real samples could be tested, in order to build a more 

comprehensive profile of the matrix effect of such samples, and to further test 

the devised calibration calculations. Similarly, a wider range of herbicides, 

whether photosynthesis-inhibiting or not, as well as other pesticides and organic 

pollutants can be tested.  
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7.3.2 Longer-term future work – towards a field-bas ed / commercial 

instrument 

The work presented here has taken into consideration the need to carefully 

approach several characteristics of a sensor, such as sensitivity, stability and 

reliability, while possible improvements on the sensor's performance on these 

characteristics have been suggested in the shorter-term future work.  

 

On the other hand, little can be done to make the developed sensor less 

specific and therefore able to detect a wider range of pollutants. It is also not 

envisaged to be able to make the sensor more specific, as a wide range of 

pollutants can have an effect on the biological material used in the assay, the 

thylakoids. These range from heavy metals to other herbicides and pesticides. 

The effect many of the non-target molecules have on the thylakoids can be 

either similar to the inhibition of the H2O2 production, or the exact opposite.  

 

Overall, the main body of the future work ought to focus on the transfer of the 

successful fluidic assay, from a setup where the fluidic sensor unit is used with 

external, large, support technologies, to a fully-automated fluidic sensor system. 

This requires considerable amount of work, and expertise in a wide range of the 

sciences and engineering; it is also the stage at which many (bio)sensors fail to 

perform as required. 
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Appendix I. Detailed results of the batch assay for the detection of the 

photosynthesis-inhibiting herbicides, varying the isolated thylakoid preparation, 

incubation time and concentration of each herbicide.  

 
Legend for all figures: 

The luminescence signal, detected by a bench-top spectrophotometer, resulted from 
the production of light by the cuvette-based chemiluminescence reaction of luminol, 
HRP and H2O2. [HRP] = 5 U.ml-1, [luminol] = 100 µM, in Tris-HCl buffer (10 mM, pH 
8.5). The H2O2 was previously produced by illuminating diluted thylakoid preparations 
Ch1 - Ch5 with an un-filtered halogen lamp (20 watts, 350 lumens) at a distance of 10 
cm for 5 min, while aspirated in a pipette tip, following an incubation period (0 – 15 min) 
with herbicide concentrations (0 - 1x10-4). The Ch1 thylakoid preparation ([chlorophyll] 
= 284 µg.ml-1) and the Ch3 thylakoid preparation ([chlorophyll] = 237 µg.ml-1) were 
diluted in buffer B (5 mM MgCl2, 15 mM NaCl, 2 mM MES, brought to pH 6.9 with 
NaOH). The Ch2 thylakoid preparation ([chlorophyll] = 171 µg.ml-1), the Ch4 thylakoid 
preparation ([chlorophyll] = 131 µg.ml-1) and the Ch5 thylakoid preparation 
([chlorophyll] = 64 µg.ml-1) were diluted in buffer A (10 mM Tris-HCl buffer, adjusted to 
pH 8.5).  
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Appendix II. Drawings of the fluidic sensor unit blocks fabricated. 

Not to scale. 
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Appendix III. Immobilisation protocol from manufacturer of chosen carboxyl-

terminated magnetic beads, used for the immobilisation of HRP. 
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Appendix IV. Immobilisation protocols from manufacturers of amine-terminated 

magnetic beads, used for the immobilisation of isolated thylakoids. 

Protocol 1. Based on Data Sheet 546, Rev 2. (Bangs Laboratories Inc., USA) 
 
Coupling Procedure for Attaching Proteins to Amine- terminated magnetic 
beads  
 
Magn.Beads Activation 
 
1. Transfer 10ml of Amine-terminated Magn.Beads (equivalent to 500mg of 

Magn.Beads) to a 50ml conical tube  
2. Add Coupling Buffer to a final volume of 50ml, shake vigorously and 

magnetically separate perpendicular to gravity until the supernatant is clear 
(approximately 10 minutes). Aspirate the supernatant, leaving the 
Magn.Beads as a wet cake on the container wall.  

3. Repeat Step 2 three times. 
4. Add 20ml of 5% glutaraldehyde to the wet cake and shake vigorously. 
5. Rotate at room temperature for 3 hours. 
6. Magnetically separate perpendicular to gravity and aspirate the unreacted 

glutaraldehyde. 
7. Repeat Step 2 four times. 
 
Coupling of Protein 
 
8. Add 25-100mg of protein to 10ml of Coupling Buffer.  
9. Add the above protein solution to the glutaraldehyde-activated Magn.Beads 

from Step 7. Shake vigorously and rotate 16-24 hours at room temperature. 
10. Magnetically separate and remove supernatant.  
11. Add 50ml of Glycine Quenching Solution and shake vigorously. Rotate 30 

minutes at room temperature. 
 

Protocol 2. Based on Technotes 205 (Bangs Laboratories Inc., USA) 
 
Immobilisation of thylakoids on aminated polystyren e beads 
 

1. Take 250 µl of Amine-terminated beads (equivalent to 12.5 mg of beads) 
from your original 10 ml.  

2. Add them to 5 ml wash buffer. Mix for 1 min. 
3. centrifuge: 

a. Place aliquot of microspheres in appropriate centrifuge tube. 
b. Centrifuge the microspheres at G force 1,200 for 15 minutes to 

clear the supernatant. 
c. Remove and discard supernatant. 
d. Resuspend the microspheres in same buffer. 
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e. Sonicate with a sonic bath for 1 minute, or simply vortex with 
mixer 

4. Repeat washing steps 2 more times. 
5. At end of final (third) wash, don’t resuspend in 5 ml of previous wash 

buffer, but in 5 ml of 10% Glutaraldehyde in wash buffer, ensuring that 
beads are completely suspended. 

6. Rotate at room temperature for 2 hours (with Rotamixer) 
7. Wash 3 times (as steps 2-3 above). 
8. At the end of third wash, resuspend pellet in 3 ml coupling buffer 

appropriate for thylakoids cross-linking with glutaraldehyde.  
9. Add the above protein solution to the glutaraldehyde-activated beads 

from step 8. Shake vigorously and rotate 2 hours at 4°C temperature. 
10. Centrifuge 
11. Remove supernatant, and resuspend beads pellet in 5 ml of quenching / 

blocking solution (5 ml coupling buffer with 30-40 mM glycine with 0.05-
1% (w/v) BSA), and mix gently for 30 minutes 

12. Centrifuge, remove supernatant, and resuspend microsphere pellet in 
storage buffer to desired storage concentration (often 10 mg/ml). 
Wash buffer: MES 
Coupling buffer: Tricine (20mM), sucrose (70mM), pH 7.8  

 
Protocol 3. From Technical data sheet 238G (Polysciences Inc., USA) 
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Appendix VI. Pearson's correlation analysis performed on the different LED 

parameters and against the detected H2O2, 

 
      

  
peak wavelength 
(nm) 

luminous 
intensity (mcd) 

luminous 
flux (mlm) 

total light 
output (a.u.) 

H2O2 
signal 

peak wavelength (nm) 1     
luminous intensity (mcd) 0.870 1    
luminous flux (mlm) -0.132 0.373 1   
total light output (a.u.) -0.185 -0.463 -0.583 1  
H2O2 signal -0.145 0.233 0.742 0.094 1 
      

  
peak wavelength 
(nm) 

luminous 
intensity (mcd) 

luminous 
flux (mlm) 

total light 
output (a.u.) 

H2O2 
signal 

Peak wavelength (nm) 1     
luminous intensity (mcd) -0.940 1    
luminous flux (mlm) -0.615 0.848 1   
total light output (a.u.) -0.490 0.163 -0.385 1  
H2O2 signal -0.997 0.964 0.675 0.420 1 
      

  
peak wavelength 
(nm) 

luminous 
intensity (mcd) 

luminous 
flux (mlm) 

total light 
output (a.u.) 

H2O2 

signal 
peak wavelength (nm) 1     
luminous intensity (mcd) -0.449 1    
luminous flux (mlm) -0.058 -0.866 1   
total light output (a.u.) -0.167 0.956 -0.975 1  
H2O2 signal -0.397 -0.642 0.939 -0.839 1 
      

  
peak wavelength 
(nm) 

luminous 
intensity (mcd) 

luminous 
flux (mlm) 

total light 
output (a.u.) 

H2O2 
signal 

peak wavelength (nm) 1     
luminous intensity (mcd) #DIV/0! 1    
luminous flux (mlm) #DIV/0! -0.282 1   
total light output (a.u.) #DIV/0! 0.838 0.288 1  
H2O2 signal #DIV/0! -0.514 -0.678 -0.899 1 
      

  
peak wavelength 
(nm) 

luminous 
intensity (mcd) 

luminous 
flux (mlm) 

total light 
output (a.u.) 

H2O2 
signal 

peak wavelength (nm) 1     
luminous intensity (mcd) 0.361 1    
luminous flux (mlm) 0.441 0.462 1   
total light output (a.u.) 0.006 0.146 0.287 1  
H2O2 signal 0.596 0.531 0.640 0.252 1 
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White 
peak wavelength 
(nm) 

luminous 
intensity (mcd) 

luminous 
flux (mlm) 

total light 
output (a.u.) 

H2O2 
signal 

luminous intensity (mcd) 1    
luminous flux (mlm)  0.866 1   
total light output (a.u.)  0.820 0.671 1  
H2O2 signal   0.596 0.702 0.234 1 
      

All - white 
peak wavelength 
(nm) 

luminous 
intensity (mcd) 

luminous 
flux (mlm) 

Total light 
output (a.u.) 

H2O2 
signal 

peak wavelength (nm) 1     
luminous intensity (mcd) 0.244 1    
luminous flux (mlm) 0.519 0.207 1   
Total light output (a.u.) -0.636 0.012 -0.190 1  
H2O2 signal 0.462 0.243 0.669 -0.086 1 
      

All 
peak wavelength 
(nm) 

luminous 
intensity (mcd) 

luminous 
flux (mlm) 

Total light 
output (a.u.) 

H2O2 
signal 

luminous intensity (mcd) 1    
luminous flux (mlm)  0.237 1   
Total light output (a.u.)  0.139 -0.157 1  
H2O2 signal   0.309 0.607 -0.010 1 
      
 
Moderate 
correlation 

Strong 
correlation 

Very strong 
correlation 

 

The correlation coefficient R was calculated using as paired (dependent and 

independent) variables all of the above four LED light quality parameters and 

the detected H2O2. This was performed for each group of LEDs according to 

their primary colour, as well as with all LEDs together. Two separate 

calculations were performed for all the LEDs together, one with the white LEDs 

included and one without. An R value between 0.5 – 0.699 was considered to 

be the result of moderate correlation, a value between 0.7 – 0.899 was 

considered to be pointing towards a strong correlation, and a value between 0.9 

– 1.0 to be resulting from a very strong correlation. 
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Appendix VII. Step-by-step calculations of the environmental water matrix effect 

on the detection of herbicides, for river water sample 2 (calibration Step 4 

onwards). 

 

Firstly, calculations i. and ii. were performed on the water sample with no added 

herbicides. 

Added 0 nM         

 Step 3 Chemiluminescence signal obtained 133.00 a.u. 

 Step 1 Chemiluminescence signal obtained due to H2O2 present 
in water 7.90 a.u. 

Calculation i. Step 3 - step 1 = Chemiluminescence signal calculated, due to 
herbicide presence only 125.10 a.u. 

 Step 2 Effected matrix change (2.8%) = Chemiluminescence 
signal by which calculation i. result is under-reported 3.50 a.u. 

Calculation ii. Adjusted for matrix under-reporting effect on H2O2 detection 128.60 a.u. 

 Residual activity (compared to chemiluminescence signal of 124 
a.u.) 103.71 % 

  Equivalent amount of herbicides present -0.25 nM 

 

 

Then, the same set of calculations is performed on the water sample 2 with 

added 5 nM of 50-50% atrazine and diuron mixture. 

added 5 nM        

  Step 3 Chemiluminescence signal obtained 101.00 a.u. 

  Step 1 Chemiluminescence signal obtained due to H2O2 present 
in water 7.90 a.u. 

Calculation i. Step 3 - step 1 = Chemiluminescence signal calculated, due to 
herbicide presence only 93.10 a.u. 

  Step 2 Effected matrix change (2.8%) = Chemiluminescence 
signal by which calculation i. result is under-reported 2.60 a.u. 

Calculation ii. Adjusted for matrix under-reporting effect on H2O2 detection 95.71 a.u. 

  Achieved residual activity (compared to chemiluminescence 
signal of 124 a.u.) 77.20 % 

  Equivalent amount of herbicides present 3.90 nM 

 

The two 'equivalent amounts of herbicides present' are then used to calculate 

the matrix effect on the interaction of herbicides with the immobilised thylakoids. 
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added 5 nM        

  Herbicide concentration (known added+ calculated native) 4.75 nM 

  Expected residual activity due to 4.75 nM (compared to 
chemiluminescence signal of 124 a.u.) 74.70 % 

  Recovery (comparison of expected vs achieved residual 
activity) 103.35 % 

  Effected matrix change 3.35 % 

 

Therefore it has been calculated that the water sample matrix causes an over-

reporting of the amount of herbicides present by 3.35%. 

 

Finally, calculation iii. takes place on the original water sample with the 

unknown amount of herbicides. 

added 0 nM         

Calculation iii Chemiluminescence signal by which calculation ii. result 
is over-reported 4.31 a.u. 

  True chemiluminescence signal 124.29 a.u. 

  Equivalent amount of herbicides present 0.00 nM 

          

  Amount of herbicide found by standard methods 0.36 nM 
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Appendix VIII. Publications  
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