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Abstract 

Proteins are the structural supports, signal messengers and molecular 

workhorses that underpin living processes in every cell. Understanding when and 

where proteins are expressed, and their structure and functions, is the realm of 

proteomics.  Mass spectrometry (MS) is a powerful method for identifying and 

quantifying proteins, however, very large datasets are produced, so researchers rely 

on computational approaches to transform raw data into protein information.  This 

project develops new bioinformatics solutions to support the next generation of 

proteomic MS research.   

Part I introduces the state of the art in proteomic bioinformatics in industry and 

academia.  The business history and funding mechanisms are examined to fill a 

notable gap in management research literature, and to explain events at the sponsor, 

GlaxoSmithKline.  It reveals that public funding of proteomic science has yet to come 

to fruition and exclusively high-tech niche bioinformatics businesses can succeed in 

the current climate.  Next, a comprehensive review of repositories for proteomic MS 

is performed, to locate and compile a summary of sources of datasets for research 

activities in this project, and as a novel summary for the community.  Part II 

addresses the issue of false positive protein identifications produced by automated 

analysis with a proteomics pipeline.  The work shows that by selecting a suitable 

decoy database design, a statistically significant improvement in identification 

accuracy can be made.  Part III describes development of computational resources 

for selecting multiple reaction monitoring (MRM) assays for quantifying proteins 

using MS.  A tool for transition design, MRMaid (pronounced „mermaid‟), and 

database of pre-published transitions, MRMaid-DB, are developed, saving 

practitioners time and leveraging existing resources for superior transition selection. 

By improving the quality of identifications, and providing support for 

quantitative approaches, this project brings the field a small step closer to achieving 

the goal of systems biology.  
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RT  retention time 

 

SCX   strong cation exchange (chromatography) 

SPMDB  The Standard Protein Mixture Database 

SQL  Structured query language 

SRM  selected/single reaction monitoring 

SSRCalc Sequence Specific Retention Calculator  

 

TFA  triflouroacetic acid 

TIC  total ion chromatogram 

TIQAM Targeted Identification for Quantitative Analysis by MRM 

TP  true positive 

TPP  Trans Proteomic Pipeline 

TS  Transition Score 

TSV  tab-separated values 
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Amino acid single letter abbreviations 

G      Glycine (Gly)  

P      Proline (Pro)  

A      Alanine (Ala)  

V      Valine (Val)  

L      Leucine (Leu)  

I      Isoleucine (Ile)  

M      Methionine (Met)  

C      Cysteine (Cys)  

F      Phenylalanine (Phe)  

Y      Tyrosine (Tyr)  

W      Tryptophan (Trp)  

H      Histidine (His)  

K      Lysine (Lys)  

R      Arginine (Arg)  

Q      Glutamine (Gln)  

N      Asparagine (Asn)  

E      Glutamic Acid (Glu)  

D      Aspartic Acid (Asp)  

S      Serine (Ser)  

T      Threonine (Thr)  
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Abbreviations (business) 

CE(E)DD centre for excellence in (external) drug discovery 

CPTAC Clinical Proteomic Technologies for Cancer 

CRO  contract research organisation 

GSK  GlaxoSmithKline 

OBT  Oxford BioTherapeutics 

R&D  research and development 

SOP   standard operating procedure 

USP  unique selling point 

VC  venture capitalist 
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Thesis Structure Summary 
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a
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b
 

    

1 Introduction An introduction to mass spectrometry of 

peptides, bioinformatics analysis in proteomics, 

and the aims and objectives of this thesis 

0 

 

Part I –Characterising proteomic bioinformatics in industry and academia 

2
c
 The business history 

of proteomic 

bioinformatics  

(1985-2009) 

How business and science interacted to create a 

new industry, proteomics.  Investigation into 

why proteomics and proteome bioinformatics 

were downsized at the sponsoring company, 

GlaxoSmithKline. 

0 

    

3 Review of public 

repositories for 

proteomics  

The state of the art in proteomics databases on 

the internet: including a summary of 

functionality, data content and data analysis 

pipelines 

3   

 

Part II – Increasing confidence in protein identification using automated analysis  

4
d
 Optimising the 

design of decoy 

search databases 

using the Genome 

Annotating 

Proteomic Pipeline 

(GAPP)  

Investigation into which decoy database design 

produces the lowest false positive rate for 

protein and peptide identifications using GAPP 

and MS/MS datasets of known protein 

composition.   

1  

 

Part III – Software solutions for quantitative proteomics: the MRMaid family 

5
 d

 MRMaid: the web-

based tool for 

designing multiple 

reaction monitoring 

(MRM) transitions 

Design and implementation of a new tool for 

automating the design of MRM assays by 

applying expert knowledge of MRM and MS/MS 

data-mining 

2  

    

6
 d

 MRMaid Database: 

a repository for 

published MRM 

transitions 

Design and development of a novel database 

system for dissemination of published MRM 

transitions 

1  

    

7 Conclusion Summary of the benefits of this thesis, including 

contribution to knowledge and a description of 

possible avenues for future work. 

1
e
  

    

A
f
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Appendices 

 0 
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1 a – Each chapter represents a standalone piece of research work, and as such, each has its own brief 

executive summary.  Exceptions to this are the Introduction and Conclusion; b – Copies of all 
published journal papers are available in the Appendices; c – Unlike the other chapters, chapter 2 is 
written for a business/lay audience; d - A summary of all the tasks involved in the work presented 
for these chapters is shown as a breakdown diagram in the corresponding Appendix; e – A review of 
publicly available tools for MRM transition design was written after development of the MRMaid and 
MRMaid database.  This is referred to in the final chapter.  f - The Appendices are numbered by the 
Chapter to which they refer.  In Appendix I there is a summary of the courses/conferences attended 
by the author as part of the EngD programme, and membership to professional organisations.   
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1.1 Proteomics is the large-scale study of proteins 

Proteomics is the science concerned with understanding the role of protein 

molecules in biology, such as their function in maintaining health, causing disease 

and in development and ageing.  Proteomics techniques aim to measure and 

characterise proteins present in cells, tissues or whole organisms under a set of 

defined conditions, at a particular point in time.   

 

Protein molecules underpin living processes in every cell in every organism on 

Earth.  They provide cellular machinery to maintain life providing structural 

supports, acting as signal messengers/transducers and reaction catalysis.  Proteins 

are polymers, since they consist of many individual amino acids molecules 

covalently bonded together into long chains.  The chemical/physical properties of 

the amino acids in the chain, their position, and the cellular environment of the 

protein act together to determine how the final protein will fold up into its final 3D 

structure.  The resulting structure dictates the functional role of the protein, how it 

interacts with other biomolecules, where it is located, and the substrates it can bind. 
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Proteomics involves characterising the „proteome‟: the complete set of proteins 

expressed in a specific tissue, organ or cell type.  Unlike the genome, a DNA 

molecule that is a static string of nucleotides from birth to death, the proteome is 

highly dynamic, since proteins carry out virtually all cellular functions and respond 

to constantly changing intra- and extracellular environments.   

 

Indeed, it is estimated that there are 20,488 genes that encode proteins in the human 

body (Table 1), but the real size of the proteome depends on the measure taken; for 

example, if all splice variants are taken into account, the number of distinct proteins 

is estimated to be over 200,000 (Table 1).   

            

Table 1 Estimates of the total number of human proteins.  Data taken from (Uhlen and Ponten, 2005, 

Clamp et al., 2007)   

 

This huge variation in the composition is dependent on the individual‟s state of 

health and age, gender, as well as on genetic differences, such as race, mutations, 

and other factors.  Consequently, proteomics research (at least for now) must focus 

on characterising proteomes of very specific samples under well-defined conditions.  

Description Number of proteins 

If one protein is counted for each gene locus 20,488 

If protein fragments (such as splice variants) are counted >200,000 

If proteins that differ in post-translational modifications are counted <100,000 

If proteins that differ by small genetic variations (such as single 

nucleotide polymorphisms) 

>75,000 
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The word „proteomics‟ is an „umbrella‟ term that refers to a diverse array of 

experimental approaches; each employing its own set of niche technologies (Figure 

1).  For example, proteomics research can involve structural studies, interactomics 

and identification/ quantification of proteins using mass spectrometry (MS).   

 

The benefit of proteomics is that it is a direct method.  Compared to indirect 

measurements, such as gene expression analysis via DNA microarrays, for example, 

proteomics can reveal real changes in proteins themselves.  It is proteins that carry 

out the vast majority of functional and structural roles in cells, not the genetic 

information that underlies them. 
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Examples 

Proteins are 

chains of 

many amino 

acids, where 

the protein 

folds into a 

3D shape 

using 

molecular 

forces 

(interactions) 

between the 

amino acids, 

such as 

electrostatic 

forces.  

When there 

are amino 

acid changes 

in critical 

sites, such as 

in the active 

site of an 

enzyme, or 

in a 

structurally 

important 

region, there 

can be 

profound 

consequences 

for the 

protein‟s 

shape and/or 

function. e.g. 

Heparin 

protein, 

when lysine 

becomes  

glutamate 

(position 

531), it 

causes an 

interruption 

Modifications to 

amino acids can 

affect the 

protein‟s 

function.  e.g. 

modifications 

can change 

proteins so that 

they are no 

longer 

recognised as 

„self‟ and can 

result in attack 

by the body‟s 

own immune 

system, for 

example in 

rheumatoid 

arthritis 

(Anderton, 

2004).  

Modifications, 

such with a 

phosphate, are 

required to 

switch proteins, 

such as kinase 

enzymes, on 

and off in 

signalling 

cascades in 

cells; cigarette 

smoke has been 

shown to affect 

phosphorylation 

in proteins and 

may play a role 

in 

cardiovascular 

disease 

aetiology in 

smokers 

(Edmiston et al., 

2009). 

3D structures 

of proteins 

can reveal 

mechanisms 

of protein 

action.  e.g.  

bacterial 

proteins for 

motility (for 

understanding 

infection); 

characterising 

viral and host 

receptor 

proteins; for 

cancer 

antigens (such 

as p53); ion 

pumps and 

channels (for 

understanding 

regulation of 

heart beat); 

transporter 

proteins (how 

drugs are 

transported 

into and out 

of cells); 

enzyme active 

sites, such as 

in cytochrome 

P450 (how 

drugs are 

detoxified by 

the body).  

Drug design 

can exploit 3D 

structures for 

designing 

suitable drug 

molecules that 

will bind to 

protein 

Levels of 

specific 

proteins in 

samples 

taken from 

individuals 

can be used 

to indicate 

disease or 

health.  

Proteins 

measured in 

this way are 

referred to as 

„biomarkers‟.  

e.g. 

measuring 

levels of 

proteins, 

such as 

insulin-like 

growth factor 

protein in 

blood, is a 

way to detect 

illegal doping 

in athletes 

(Kay et al., 

2009).  

Furthermore, 

protein 

expression 

studies are a 

direct way of 

measuring 

what is 

happening in 

cells, so it is 

generally a 

more robust 

way to 

demonstrate 

to the 

regulators 

Determining 

interactions 

between 

proteins, 

peptides and 

other 

molecules 

allows a 

network of 

bio-molecules 

to be 

constructed, 

giving a 

wider picture 

of the biology 

of a system.  

This can be 

useful for 

predicting 

side effects of 

new drugs, 

or toxicity, 

for example.  

Proving that 

a particular 

protein binds 

another has 

been crucial 

for working 

out what 

happens in 

cell 

signalling.  

e.g. signalling 

cascade 

investigations 

have  shown 

cellular 

proliferation 

and  

apoptosis 

(cell death) 

are involved 

in cancer 

When the 

function of a 

protein is 

known, then 

its role in 

maintaining 

health or 

causing 

disease can 

be leveraged 

to design new 

or improved 

medicines.  

Insulin is a 

simple 

example: it is 

a protein that 

lowers the 

level of 

glucose in the 

blood.  Once 

its function 

was 

established it 

was exploited 

to treat 

patients with 

diabetes. In 

other cases, 

knowing 

which 

proteins are 

involved in 

causing a 

disease 

means 

researchers 

have a target 

for new 

medicines; 

e.g. if a 

particular 

protein 

causes a 

Bioinformatics 

can be for 

data analysis, 

data storage, 

algorithm 

design and 

routine 

infrastructure.  

e.g. some 

proteomics 

software, such 

as Mascot 

Distiller and 

X-Tracker, 

can compute 

the quantities 

of proteins in 

samples by 

extracting 

peak areas 

from MS 

spectra, or by 

automating 

spectral 

counting. 

Also, 

automated 

software 

pipelines can 

extract 

peptide 

identifications 

from 

hundreds of 

spectra in a 

single run.  

Public 

databases for 

storing 

protein data 

for the 

community 

are being 

developed and 
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Figure 1 The Proteomics Umbrella.  „Proteomics‟ describes any large-scale approach taken to investigate 

the function and properties of proteins (biology‟s molecular machines).  The „proteome‟ is the entire 

complement of proteins expressed at any one time, in a particular system, cell type or tissue under 

defined conditions, and it can be examined from very different angles to answer very different questions.  

To reflect the diversity of research activities undertaken, proteomics can be split into separate branches 

of research with its own specific toolbox of experimental approaches and methods.  The broad categories 

shown are not mutually exclusive and there are activities which do not fit in those areas shown here.  One 

of the main aims of proteomics is to discover which proteins indicate a disease state or susceptibility to a 

disease, so-called protein biomarkers.  These can be used for designing new drugs and in some cases can 

prove useful for demonstrating to the regulators that a drug works.  (Source: authors own summary)     

 

1.1.1 Proteomic mass spectrometry is an approach used for biomarker 

discovery 

The current arsenal of drugs that the pharmaceutical industry offer target only 

several hundred or so distinct proteins. Through proteomics approaches, however, 

the potential to expand on this number was widened dramatically.  Indeed, as a 

field, proteomics has grown rapidly in the last decade (see Figure 2); in the late 1990s 

to 2000s, for example, academic researchers and biotech/pharmaceutical companies 

became particularly interested in a high-throughput approach for identifying 

proteins in biological samples, namely MS-based proteomics.  This was because it 

offered a new avenue to discover biomarkers that have potentially high commercial 

value.   
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Figure 2 The number of articles with „proteomics‟ in the title or as the topic (source: ISI Web of 

Knowledge, Science Citation Index Expanded (SCI-EXPANDED) database) 

 

By comparing protein profiles identified by MS for samples from diseased versus 

healthy populations, for example, biomarkers for elucidating disease mechanisms 

and for developing diagnostics and new therapies can be identified.  These new 

targets would then be patented as new drug targets.  Conditions including cancer, 

atherosclerosis, pain, virus-induced cell transformation and many others have been 

investigated using this approach, although biomarker discovery turned out to be a 

complex task, as is explained further in Chapter 2.   
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1.1.2 Proteomics is an ‘omics’ science that is needed for systems 

biology 

Another benefit of large-scale protein studies has emerged recently, that is 

proteomics as a branch of „systems biology‟.  A major aim of biology research is to 

achieve a complete computational model of the cell: a „cell simulator‟, which can be 

used to demonstrate the effects of drugs, environment and genetics on biology to 

understand disease, human development and more.   

 

Modern drug design in the pharmaceutical industry is not as „rational‟ as scientists 

would like.  One cannot, for example, predict how a drug will affect the metabolic 

processes in a cancer cell until it is empirically tested using a cell line or animal 

model, because there are no holistic models to simulate it.  Thus, only by 

characterising the changes in molecules in time and space, using so-called „global‟ 

approaches, such as genomics (study and prediction of genes), transcriptomics 

(transcripts i.e. mRNAs which encode proteins), proteomics (protein expression), 

interactomics (molecular partners, complexes, dynamics) and metabolomics (small 

molecules and metabolites), can there be any hope of generating a mathematical 

model of a cell.  These large-scale „omics‟ approaches are required, since so many 

discrete events and interactions are happening simultaneously.  If systems biology 

ever arrives in this global form, where computational models are available for whole 

systems or even whole organisms, then the way medical research is performed and 
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demonstrated to the regulators will be totally revolutionised; changed beyond all 

recognition.   

  

Great advances have been made to get this far: for example in the 1970s, it could take 

an entire PhD project to sequence a single gene using lab-based techniques, but by 

mid-2000s it was possible to sequence the genome of a whole organism in a day 

(PressRelease, 2007i).  Compared to the biology being studied before, this scale of 

research is revolutionary.  The leap in throughput became possible, in this case, 

through the advent of: new methods in molecular biology (invention of polymerase 

chain reaction (PCR), cloning and sequencing methods); advances in 

instrumentation (automated sequencers, robotics); and computing and software 

development (sequence recombination algorithms, processing power).  The trends 

seen in the development of proteomics also relied on significant technological 

breakthroughs, as explained later.   

 

Unsurprisingly, there is much work to do before researchers can unravel what this 

new „omics‟ data really means in the context of an organism, tissue and at the level 

of the cell (Ghosh and Poisson, 2009).  Nevertheless, the desire to achieve the elusive 

systems model for biology acts as a potent stimulus for proteomics and proteome-

related computational research, including for the research presented in this thesis.   
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1.1.3 Proteomic bioinformatics exploits computers for analysing large 

datasets from proteomic MS experiments 

The promise of proteomics - to deliver biomarkers and new ways to model processes 

in biology, for example – is wholly dependent on computers, and their ability to 

manipulate large datasets in an automated fashion.     

 

When computers are applied to analyse biological data of any kind, the process is 

referred to as „bioinformatics‟.  Bioinformatics is an interdisciplinary science that sits 

at the interface between the biological and computational sciences.  This thesis 

delivers bioinformatics solutions specifically for proteome research, so the work is 

described  as „proteomic bioinformatics‟, or „proteome bioinformatics‟.  In particular, 

the work presented here is focused on delivering computational methods and tools 

for mass spectrometry-based proteomics that may be applied directly to early stage 

pharmaceutical and medical research.   

 

To put the project deliverables into context the next sections introduce some of the 

major concepts in proteomic MS and proteome bioinformatics.  The story of how 

proteome bioinformatics approaches and resources came about is presented in 

Chapter 2, and a detailed review of the state of the art in public computational 

resources for proteomics is presented in Chapter 3; however, the following section 

gives the reader a brief introduction to the field, so the contribution to knowledge 

and benefits of this thesis can be appreciated.  



 

12 

 

1.2 The practicalities of high-throughput proteomic MS and 

proteome bioinformatics 

1.2.1 Proteins are prepared for MS using 2D-PAGE or MuDPIT 

MS requires that peptides enter the MS in a charged and gaseous state, preferably 

only one peptide species at a time.  There are two main routes to achieving this 

(Figure 3): (1) two dimensional poly-acrylamide gel electrophoresis (2D-PAGE), and 

(2) the multidimensional proteome identification technique (MuDPIT).  The first 

approach is still practised, but is less routinely used for high-throughput studies; 

both are explained now. 
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Figure 3 Experimental flows in mass-spectrometry-based proteomics.  MuDPIT (multi-dimensional 

protein identification technology) uses two chromatography steps interfaced back to back, the advantage 

of this being band broadening and increased resolution. The capillary can also be fed directly into the ion 

source of the MS to maximise sensitivity. 2D-SDS PAGE separates proteins by two different properties: 

pl and molecular weight. Picked spots may also undergo an HPLC stage after digestion to increase purity 

and to allow automated introduction into the MS instrument. 

 

Gel-based methods separate proteins by their chemical and physical 

properties 

2D-PAGE is a gel electrophoresis approach for separating complex protein mixtures.  

It separates protein molecules by two different properties:  mass and isoelectric point 

(pI).  Protein molecules can have a positive, neutral or negative charge, depending 

on the chemical groups in the molecule and the chemical environment; pI is the pH 

value at which the net charge across the whole protein molecule is zero.     

 

To create the gel, the proteins are first separated by pI in an isoelectric focusing (IEF) 

step.  The proteins are put on a strip with a pH gradient and a voltage difference is 

applied. The proteins are free to migrate according to their charge state, moving 

towards the pole with an opposite charge until the protein reaches the location 

where its pI equals the strip‟s local pH, where it halts because its net charge is zero.    

The proteins are now separated by pI.  Next, they are separated by mass by rotating 

the strip by 90 degrees and separating using sodium dodecyl sulphate (SDS) PAGE.   
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SDS denatures proteins - straightening them all out into linear structures - and 

imparts a uniform negative charge, with the number of charges adopted being 

dependent on the protein‟s length.  To explain: when unfolded, a protein's length is 

approximately proportional to its mass, thus each protein attaches a number of SDS 

molecules approximately proportional its mass. Since the SDS molecules are 

negatively charged, the result is all proteins having approximately the same mass-to-

charge ratio as each other.  As mentioned, SDS also imparts a negative charge which 

is necessary here, because the proteins must become charged (having lost their 

charge in the IEF step) to migrate across a potential difference.  The unfolded 

proteins have to pass though the gel matrix, whereby larger proteins travel slower 

than smaller ones.    

 

Now separated by pI and mass, the proteins are stained whilst in the gel with a dye, 

the result being a canvas of spots, where each protein species has a unique position 

on the gel „map‟: its x,y-coordinates depending on its unique properties.  The protein 

spots are usually excised and then proteolytically digested into peptides.  The 

proteolytic enzyme of choice is trypsin, which cleaves the carboxy (C)-terminal of 

arginine or lysine generating peptides with at least one basic amino acid, thus 

trypsin predominantly generates positively charged peptide ions – a property which 
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is very useful, since only charged ions can be analysed in MS, and positive ions are 

the ions of choice.  The digested protein samples are then ready for ionisation in MS. 

MuDPIT exploits high performance liquid chromatography to 

separate peptides 

2D-PAGE has a protein or peptide-picking stage, where peptides are individually 

excised from the gel and dissolved in buffer before analysis in MS; this process is 

expensive to automate, using robots for example.  In contrast, MuDPIT (Washburn et 

al., 2001) offers the advantage that it may be fully automated at relatively low cost.  

Compared to 2D-PAGE, when using MuDPIT, the IEF step (first dimension) is 

substituted by strong cation exchange (SCX) chromatography, and the separation by 

mass (second dimension) is replaced reverse-phase (RP) HPLC.  For MuDPIT, the 

protein mixture is digested into peptides first and then the pooled peptides are 

separated and purified using capillary chromatography.   

 

In chromatography, the mixture of molecules to be separated is dissolved in a 

„mobile phase‟ which is passed through a 'stationary phase‟, usually immobilised on 

a column or on beads packed into a column.  Certain molecules become separated 

from other molecules in the mixture based on differential partitioning between the 

mobile and stationary phases.  And the mobile phase moves through the column 

with the help of an HPLC pump.     
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SCX chromatography 

Ion-exchange chromatography has a charged stationary phase, thus separation of 

peptide ions is achieved by differing levels of electrostatic attraction between the 

ions and the column. Ions of the same charge state as the column and uncharged 

compounds are ejected, whereas ions with opposing charge states attract and bind, 

then must be eluted off gradually.  The SCX stationary phase is usually sulphonic 

acid polymer, as explained in (Zhang et al., 2003) for example, immobilised on silica 

particles (usually 5µm diameter).  Peptides are retained by the surface charge of the 

stationary phase because, as mentioned, most peptides derived from digestion with 

trypsin contain the basic amino acids lysine and/or arginine, so at the pH applied 

for SCX (often pH2) most peptides are cationic, with two or three positive charges.   

Furthermore, organic solvent (such as acetonitrile (ACN)) is used to strengthen the 

ionic and hydrophilic interactions, facilitating stronger retention of these charged 

peptides.   

 

To gradually elute off the bound peptides, an increase in counter ion concentration is 

needed; the pH may be increased to do this, or the salt content of the buffer may be 

increased at constant pH (e.g.pH3) starting at low concentration (e.g 10 mM) then 
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increasing (e.g. to 1M) ammonium formate, for instance.  In most cases, the mobile 

phase is usually an organic solvent, such as 5% formic acid in 20-50% ACN.   

 

RP-HPLC 

After SCX, peptides enter RP-HPLC.  RP-HPLC has a hydrophobic stationary phase 

and an aqueous polar mobile phase.  For peptide separation, the stationary phase is 

usually silica beads coated in a hydrophobic straight-chain alkyl group, C18H37 - 

referred to a „C18‟.  Peptides bind to the beads in high aqueous mobile phase, and 

elute off with high organic mobile phase (such as ACN); the peptides are usually all 

eluted by 50% organic solvent.   Since the binding of peptides to the beads is based 

on hydrophobic forces, thus retention time (RT) increases with hydrophobic (non-

polar) surface area of the peptides.   

 

In practice, peptides are separated by running an ascending gradient of an organic 

solvent over time that is then brought back to the starting concentration over about a 

specified time period.  The gradient may be performed in a linear or in stepwise 

fashion.   

 

Examples of solvents that are used are: A (aqueous, water with 0.1% acid) and B 

(organic solvent with 0.1% acid), whereby the acid (such as triflouroacetic acid (TFA) 

or formic acid) is added to improve chromatographic peak shape.  The sample 
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containing the peptides is usually dissolved into phase A.  One example of a 

gradient is starting the mobile phase with A at 98% and B 2%, then increasing B to 

60% of the total mobile phase composition and bringing it back down to 2% again 

over 60 minutes.  In this case, most peptides will elute at around 30% organic 

solvent, and if there are very hydrophobic ones these will elute nearer 60%.  The 

gradients applied in RP-HPLC are extremely variable between researchers, and often 

require optimising, but the overall aim is the same: to have distinct peptide species 

elute at discrete time points into MS.   

 

In RP-HPLC, there are many factors that can influence RT of peptides, including: 

particle size, column dimensions (length and diameter), flow rate, temperature, pH 

and mobile phase composition and gradient.  For example, C18 beads with a 

diameter of less than 2 µm can offer significant increases in throughput for peptide 

analysis (Kay et al., 2007), although beads of 2-3 µm are more routinely used in 

proteomics.  Flow rates may vary, including nanoflow (nl/min), microflow (µl/min) 

and normal flow (ml/min), depending on the column used; the advantage of low 

flow rates being that greater sensitivity can be achieved (Kay et al., 2007).  

Temperature is usually maintained at 30-40 ºC throughout separation, depending on 

the experiment.       

 

RP-HPLC is used frequently, and there are software tools for predicting theoretical 

RT of peptides in HPLC for researchers planning proteomics studies.  The 
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algorithms are based on the assumption that the chromatographic behaviour of 

peptides is dependent predominantly on their amino acid composition, so by 

summing the hydrophobic contribution of each residue, the RT can be predicted.  A 

notable example, Sequence Specific Retention Calculator (SSRCalc) (Krokhin et al., 

2004), applies a linear model that can accurately predict RT for peptides up to 

approximately 20 residues, and correction factors are specified in the prediction 

process to account for the variability in column set-up.  In addition, neural networks 

may be applied to RT datasets for the purpose of optimising models for RT 

prediction (Petritis et al., 2003). 

1.2.2 Mass spectrometry of peptides can be performed in high-

throughput 

MS was originally a method used in small molecule chemistry, since it allowed 

elucidation of chemical structures by measuring a molecule‟s m/z: mass (m) divided 

by its charge state (z).  From the m/z values one could determine the atoms involved 

and hence identify basic structures.  Over the decades, MS has evolved and can now 

routinely achieve resolutions in excess of 0.1 Daltons2 with the latest instruments 

and has become more routinely applied to analyse large biomolecules, such as 

proteins (see Figure 4 for a typical workflow). 

                                                
2 A Dalton is the same as an atomic mass unit; it is the usual way to express mass when referring to proteins 
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Figure 4 A typical workflow for proteomic mass spectrometry.  Notice that data straight from the MS 

instrument is in „raw‟, machine-readable form, meaning it usually requires MS-vendor-specific software 

to convert it to a peak list of intensities and m/z values. This conversion step often requires proprietary 

software or software libraries.  

 

There are two common modes of mass spectrometry: single MS or tandem MS (also 

referred to as MS/MS, or MS2).  The former produces a spectrum of the peptide ion 

m/z values, the latter produces a spectrum of peptide fragment ion m/z values.  

Tandem MS is the approach used most frequently for proteomic MS.  Various mass 

spectrometers are available, each setup offering different benefits and applications; 

some of these setups are explained in detail later in the thesis, such as triple 

quadrupole (QQQ) MS, and others.  The general principles of MS/MS are now 

described. 
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A tandem mass spectrometer has three components: an ion source, a mass-to-charge 

ratio mass analyser, collision cell (a type of analyser), and a detector.   

Ion source  

The ion source is at the entrance of the instrument and its function is to ensure the 

molecular species entering the analyser are charged and in the gas phase.  The most 

common ion source in proteomic MS is electrospray ionisation (ESI) (Fenn et al., 

1989), followed by matrix-assisted laser desorption/ionization (MALDI) (Tanaka et 

al., 1988).  

 

Using MuDPIT, the separation phase may be directly coupled to the MS instrument, 

whereby the continuous flow of peptide-separated liquid sample is injected through 

a fine nozzle into the instrument.  Once inside, the peptides in the liquid undergo 

ESI to atomise the peptides.  ESI is performed at the tip of a very fine nozzle 

(needle), which is heated (to around 60ºC), at atmospheric pressure, and a drying 

inert gas is applied over the tip.  The nozzle is conductive: a potential difference of 

up to 5kV is applied.  This means the positively charged peptides are pushed out of 

the needle tip, and as the liquid containing the peptide – which is more volatile than 

the peptides - dries off, the droplet containing the peptide ions gets smaller, until at 

a critical moment when the charge density destabilises the droplet and the peptide 

ions repel each other dispersing as a fine aerosol.  The vaporised ions then drift 

towards the opposing needle electrode.   
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ESI does not impart a charge on to the peptide; it is a „gentle‟ technique, whereby the 

native charge state of the molecular species is exploited.   Most peptides will have a 

positive charge if derived from tryptic proteolysis, so the technique is particularly 

suited to proteomics.  Native states of molecules are often preferred for biologists 

wishing to characterise nature.   

 

Micro and nano-spray are recent variants of ESI that are employed in proteomic MS 

studies.  The „micro‟ and „nano‟ prefix refer to the flow rates of liquid in RP-HPLC 

into the instrument; by microlitre (µl) or nanolitre (nl) per minute, respectively. 

 

MALDI is the other ionisation technique employed for proteomic MS.  It employs a 

laser, usually UV light, which is directed at a metal plate onto which a „matrix‟ with 

spots of peptide (or whole proteins) have been immobilised.  The matrix consists of 

crystallised molecules3 such that when the energy from the laser hits the matrix, the 

matrix itself becomes ionised.  Part of its acquired charge then transfers to the 

analyte molecules (the peptides).  In this way, the peptides become ionised (usually 

by addition of a proton, thus [M+H]+), but are protected from the disruptive energy 

of the laser.  MALDI usually produces singly charged ions and, in contrast to ESI, is 

usually performed in a vacuum. 

                                                
3 The most common matrix constituents are 3,5-dimethoxy-4-hydroxycinnamic acid, α-cyano-4-
hydroxycinnamic acid and 2,5-dihydroxybenzoic acid. 
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Analyser  

The analyser measures the mass to charge (m/z) ratio of ions4.  The two main 

strategies to achieve this are by using an electrical field (such as in time-of-flight 

(TOF), quadrupole and ion trap analysers), or using a magnetic field (in the Fourier 

transform ion cyclotron resonance (FT-ICR) analyser).   

 

Data from various instrumental setups has been applied to develop the novel tools 

and methods in this thesis; in particular, the quadrupole analyser data, which is the 

analyser of choice for selected reaction monitoring (SRM) (Chapter 5 and 6).  Also, 

MS instruments with ion trap and Fourier transform ICR analysers have been used 

to produce the standard datasets applied in Chapter 4, and to populate the database 

(GAPP DB) interrogated by the novel tool presented in Chapter 5.  The principles of 

these three analysers are described now. 

 

 

 

The quadrupole (Paul and Steinwedel, 1953) has four conductive, metal rods aligned 

in parallel arranged in a square (Figure 5).  An oscillating electrical field is produced 

in the chamber by the application of a direct-current and a radio-frequency 

alternating current.  When the peptide ions enter the field, they oscillate 

perpendicularly to the direction of their movement, with their progress in the field 

determined by the ions‟ charge and mass.  Only for certain mass and charge 

                                                
4 m/z means mass divided by charge, for example a peptide of 670 Da and a 2+ charge would have an m/z of 335 
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combinations will an ion successfully escape from the quadrupole, all others will 

have increasing horizontal or vertical amplitudes and will ejected before the end.  

The quadrupole can be tuned scan for a narrow or a wide range of m/z values.   

 

 

 

 

 

Figure 5 Schematic diagram of a quadrupole mass analyser.  The red arrow shows the path of selected 

ions (Source: adapted from Wikimedia Commons) 

 

Ion traps (March, 1996) are a type of ion cage that store charged particles by the use 

of an oscillating electric field (in a similar fashion to a quadrupole). An ion species is 

stored in a vacuum chamber between caps of the same polarity; there are three 

electrodes: two capping electrodes (one connected to the ion inlet and the other to 

the detector plate), and a single ring electrode that encircles the trap chamber (Figure 

6). 

  

From the ion 
source 

Detector 

– 
 

         +                + 
–  
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Figure 6 Schematic cross section view of an ion trap (Source: adapted to a schematic from the Paul ion 

trap entry at Wikimedia Commons)  

 

The ions enter the trap, where there is an applied oscillating radiofrequency 

electrical field (like in a quadrupole). This field causes the ions to shift and move 

according to the applied field, producing a compact „cloud‟ of ions that expands and 

compresses.  To dissipate the energy generated from ion collisions, an inert gas, such 

as helium, is continuously added to the chamber.  The m/z can be measured by an 

ion trap because the ring electrode potential difference sets the m/z threshold below 

which ions are expelled from the trap.  As for the quadrupole, the voltage setting 

may be configured to accept a range of m/z values.     
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The „cyclotron frequency‟ of ions is the measure used to determine m/z of peptide 

ions in FT-ICR (Figure 7); space and time measures, as for other analysers, are not 

used.  It is the highest resolution, and highest cost approach to proteomic MS 

because it requires a super-conducting magnet.   

 

The analyser is a box-type compartment with a plate on each side: encircling the 

chamber are two „excitation‟ plates (opposite to each other) two „detector‟ plates 

(also opposites), and the entrance and exit plates are the „trapping‟ plates.  When 

ions enter the magnetic field in this box, they are forced into a circular trajectory by 

the plates, thus becoming trapped inside.  An alternating current (as radio 

frequency) is applied to the excitation plates, which causes ions trapped in the 

magnetic field to become excited to higher energies, and trajectories.  At the moment 

when the current is stopped the ions decay back to their original states. The 

trajectories of the ions in the field induces an electric current that is measured by the 

detector plates.  It is this current that is measured.  It corresponds to the decay in 

kinetic energy of all ions in the trap, and may be deconvoluted into mass-to-charge 

ratios by applying the mathematical operation, Fourier transformation. 
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Figure 7 Fourier transform ion cyclotron resonance analysers use high-maintenance superconducting 

magnets (Source: Wikimedia Commons) 

 

The mass accuracy and general performance achieved by each type of instrument 

varies enormously (Table 2).  
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Table 2 Resolution of MS (Source: adapted from (Domon and Aebersold, 2006))   

Characteristic of the MS setup IT-LIT QQQ QQ-LIT FT-ICR 

Mass accuracy low medium medium very 

high 

Resolving power low low Low very 

high 

Sensitivity high high High medium 

Dynamic range low high High medium 

Throughput high medium medium medium 

Suitability for peptide identification medium low Low high 

Suitability for absolute quantitation  low high High medium 

Suitability for detection of PTMs low low High low 

 

Collision cell 

In tandem MS mode, the peptide ions are broken into smaller peptide fragment ions 

in a collision cell (or „chamber‟), which is often an ion trap or quadrupole, containing 

inert gas, such as helium or argon.  An electrical potential is applied to the cell, 

imparting kinetic energy to the particles.  This kinetic energy is converted into 

internal energy in the peptide molecular ions resulting in bond breakage and the 

release of smaller fragment molecules.  The collisions are stochastic, so even for 

replicate samples different ions may be observed. 

 

The primary mechanism of peptide fragmentation, regardless of the ion source used,  

is collision induced dissociation (CID) - also referred to as collision activated 

dissociation (CAD)5.  In CID, there are six primary ion types created during peptide 

fragmentation pathways; these are referred to as b-, y-, a-, x-, c- and z-type ions.  The 

                                                
5 Post source decay is another mechanism for peptide decay, where peptide ions spontaneously decay into 

fragments in the ion source vacuum.  It is a phenomenon specific to the MALDI ion source.     
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formation of b- or y-ions, the most common fragment ions, is shown in  Figure 8.  

The original paper describing the nomenclature and pathways is (Roepstorff and 

Fohlmann, 1984). 

  

 

 

 Figure 8 A peptide fragmentation pathway.   Frequently the peptide bond breaks to generate fragments, 

only one of which retains a positive charge and is detected in MS: either a b-ion (left, retaining the amino 

terminus) or a y-ion (right, maintaining the carboxyl group) (Source:  (Brunetti et al., 2008)) 

 

Molecular ions that retain a positive charge are fed into a final mass analyser, where 

they are focused using a magnetic field and their signal intensity measured at the 

sensor.   

 

The propensity for specific fragmentation pathways depends on the MS instrument 

in use.  Triple quadrupole MS, for example, has a bias towards detection of y-ions, 
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rather than b-ions.   Moreover, the complement of ions produced is also dependent 

on the voltage applied to the cell and pressure of the inert gas, properties which can 

be altered by the operator.  For example, „high-energy‟ CID generates spectra that 

usually from single collisions between peptide ions and the gas particles, but 

generally results in a wider range of fragmentation possibilities.  In contrast, „low-

energy‟ mode permits several collisions and hence more complex, multi-step 

cleavages  are observed, but the overall results is a greater proportion of b- and y-

ions, and fewer of the other species of ions seen in high-energy CID. 

Detector/sensor 

The detector measures either the current produced or the charge induced when an 

ion passes or directly hits a surface.  Since the volume of ions exiting the mass 

analyser at any given moment is small the signal must be amplified.  Microchannel 

plate detectors are frequently fitted in modern instruments, these are a type of 

electron multiplier.   

 

In FT-ICR and Orbitraps (modified ion traps), ions are not detected by hitting a 

detector, such as an electron multiplier, but rather are measured by passing near 

detection plates.  No current is produced, only a weak AC image current is detected 

in a circuit between the electrodes. 
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The output at the detector is a mass spectrum, usually representing the complement 

of fragment ions for a single peptide precursor ion, with m/z on the x-axis and 

arbitrary signal intensity on the y-axis (Figure 9).   

 

 

Figure 9 An MS spectrum.  Only the x-axis m/z values are applied to peptide identification using search 

engines 

 

 

Each spike represents a single fragment ion. The identity of the peptides may be 

determined manually by inspection of these product ion spectra, however, this is 

tedious and in many cases the volume of data precludes the manual approach.  

Therefore, an automated proteomic search engine is usually applied to produce 

protein identifications from MS/MS peak lists, see section 1.2.4 for details of this 

process. 
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Visibility of peptides in MS 

Not all peptides can be detected using MS with the aforementioned approach.  There 

are four aspects that determine whether a peptide will be observed or not in MS 

(Tang et al., 2006):  

(i) Chemical properties of the peptide – will the structure successfully undergo ionisation at 

the ion source?  Will it fragment in the collision cell to produce detectable product ions?   

(ii) Limitations of the peptide identification protocol, including the pre-processing of the 

sample - Is the peptide positively charged?  Is tryptic digestion complete so peptides are 

within mass range? 

(iii) Abundance of the peptide in the sample – is there enough peptide to be detected? (Of 

course, there is no PCR for proteins to amplify the sample) 

(iv) Interference with other peptides present in the sample – is there competition with 

another peptide in the identification procedure?  Is there co-elution of peptides making 

signals difficult to interpret? 

 

Some of these factors are very hard to predict, but given the data the community 

already has, it is clear that certain peptides are routinely more readily detectable 

than others, given standard MS protocols.  Peptides that are usually the ones that are 

visible for a given protein in MS are referred to as proteotypic peptides (PTPs) for 

the given protein.   

 

Given that peptides are usually measured in MS with a view to identifying the 

parent protein, in some definitions „proteotypic‟ refers to those peptides that are 

both visible and unique for a given protein.  In this EngD thesis, both constraints on 

the definition are applied: usually visible and unique to the protein.       
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 There are various computational/mathematical approaches for predicting PTPs for 

the purposes of proteomic MS.  These include: neural networks (Tang et al., 2006); 

classical pattern discovery methods (Mallick et al., 2007);   machine learning 

classification approaches (Lu et al., 2007); support vector machines (Webb-Robertson 

et al., 2008); and the Random Forest classifier technique (Fusaro et al., 2009).  These 

are valuable, because being able to anticipate which peptides will be observable in 

MS can help experimental design for targeted MS workflows, as explained in the 

following section.   

1.2.3 Proteins can be quantified using MS 

Although protein identification alone can provide valuable information about 

biological systems, there is a limit to the conclusions that can be drawn from 

qualitative experiments.  Instead, knowing how much protein is present is usually 

more valuable.  Indeed, recent findings reported by Uhlen using an antibody-based 

approach (Uhlen and Ponten, 2005) illustrate that differentially expressed proteins 

are actually rare, because most proteins in humans are expressed in all cell types, 

most of the time.; less than 1% of proteins are expressed in one tissue only (Service, 

2008a).  It is precise regulation of protein expression in space and time that results in 

tissue-specificity; thus, qualitative (present or absent) protein biomarkers are usually 

less valuable for understanding the true complexities of biology.  Indeed, many 

diseases, including asthma, arthritis, schizophrenia and heart disease, are known to 

involve very small changes in the regulation of protein expression over time, and 

diseases are complex, often polygenetic and environmentally-dependent, meaning 
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that the protein profile for healthy, susceptible and diseased states varies in very 

subtle ways; hence small changes in quantity may be important factors.     

In recent years, several techniques to quantify proteins by mass spectrometry have 

emerged (Figure 10).  

 

 

Figure 10 A summary of the approaches for quantifying proteins using mass spectrometry, adapted from 

(Lau et al., 2007) 

 

Relative approaches measure the abundance of proteins as a ratio between different 

samples, whereas absolute approaches provide a specific quantity value, such as 

ng/ml for a specific protein(s). 

 

Relative quantification of proteins (with labelling) 

An isotopic label is the marker used to distinguish two (or more) populations of 

proteins.  Heavy elements (heavy nitrogen or oxygen) or heavy amino acid residues 
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(such as heavy arginine or iso/leucine) are assimilated via cell metabolism using the 

in vivo approach.  In stable isotope labelling of amino acids in cell culture (SILAC) 

(Ong et al., 2002), for example, two cell cultures are grown up in parallel, one 

exposed to medium containing heavy amino acids, and one with standard medium.    

For higher organisms in vitro labelling with chemical reagents is performed after the 

proteins have been harvested, such as a label specific for cysteines in  the isotope-

coded affinity tag (ICAT) approach (Gygi et al., 1999) , and free amine labels with 

iTRAQTM.     

 

The assumption in all cases is that the proteins will incorporate the labels to 

completion.  Protein quantitation is achieved by comparing the MS intensity of the 

peptides derived from the two samples, which is possible since the expected mass 

shift of the ions is known. 

Relative quantification of proteins (label free) 

Label free methods include peptide/spectral counting and ion intensity monitoring.  

In spectral counting, protein quantities are estimated in distinct samples by counting 

the number of MS/MS spectrum-sequence matches found by the search engine.  The 

assumption is that protein abundance is correlated with protein coverage and the 

number of times a peptide is observed (in replicate experiments).  The size of the 

protein affects the reliability of this approach, and the assumptions are quite „loose‟.  

For the ion intensity approach, the RP-HPLC retention profile (ion chromatogram) 

for each peptide is exploited.  Chromatographic peak intensities are retrieved and 
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used as a basis to compare with peptides matched in different experiments.  When 

several peptides are matched to a common protein, each peptide ratio is used to 

measure protein fold change across the different experiments.  Peptide RT can 

present a problem for this approach; for example, when multiple peptides elute at 

the same moment peak intensity will be too high, but if peptides are separated in 

SCX not all the peptides will necessary arrive in the same peak. 

 

Absolute quantification of proteins (SRM and variants)  

The AQUA technique (Gerber et al., 2003), now more frequently referred to as 

selected reaction monitoring (SRM) (Anderson and Hunter, 2006), and QconCat 

(Beynon et al., 2005) are methods for measure absolute quantities of protein using 

tandem MS. 

To determine the quantity of a specific protein using SRM, QQQ-MS is performed as 

RP-HPLC separation is in progress.  Each peptide is analysed by selection on the 

basis of m/z using the first quadrupole (Q1).  Once separated, in a second quadrupole 

(Q2), the peptide undergoes fragmentation, generating product ions exclusive to the 

precursor, which are selectively monitored by a third quadrupole (Q3) (Figure 11).  

The two stage filtering process in SRM allows chemical background to be overcome 

by improving signal to noise ratio, and permits several transitions to be monitored 

quickly.  The observed m/z ratio of a precursor peptide and its corresponding 

product ion is referred to as an SRM „transition‟ and has a specific RT associated 

with it. 
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Figure 11 SRM targets a specific peptide to product ion transition in triple quadrupole (QQQ) MS  

(Source: www.srmatlas.org) 

 

SRM becomes quantitative when the incoming sample is first spiked with a known 

quantity of stable isotope-labelled synthetic peptide, which is identical in sequence 

to the expected native peptide (Gerber et al., 2003).  For robust studies, calibration 

curves of serial dilutions of the surrogate are determined to produce more reliable 

measurement of the quantity of protein.   

 

To monitor a protein of interest, it must be known in advance which transition is 

most suitable.  In simple protein mixtures, a single transition may be sufficient to 

monitor a particular protein of interest, but in complex samples, such as serum, 

multiple transitions are generally required due to noise and proteins of very high 

abundance interfering with the signal (Kay et al., 2007, Keshishian et al., 2007).  

Furthermore, for very complex samples, such as whole serum, stable isotope 

standards and capture by anti-peptide antibodies (SISCAPA) (Anderson et al., 2004, 

Anderson et al., 2009) can be used to enrich the peptide targets prior to SRM to 
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further improve signal-to-noise.  With this approach, antibodies are raised to the 

native and surrogate (labelled) peptides, and are immobilised on a surface.  Prior to 

SRM, the peptides are enriched by pull down on these antibodies, thus increasing 

the sensitivity of the SRM assay.   

 

QconCat is a variation on the AQUA/SRM theme, whereby the heavy surrogate 

peptides are not synthesised artificially, but rather the surrogate peptides are 

expressed in vivo by a bacterial cell expression system.  A gene is constructed to 

encode suitable surrogate peptides (Q-peptides) concatenated in a protein (QCAT 

protein).  This protein is expressed and is digested into peptides for subsequent 

targeted monitoring (as per SRM). Q-peptides are heavy due to metabolic labelling, 

where the bacterial cells are grown in culture containing heavy amino acids, for 

example.         

 

SRM is an increasingly popular technique because it offers the option to measure 

protein regulation across many targets simultaneously, and in a quantitative manner 

examples include: (Zhang et al., 2004, Kuhn et al., 2004, Beynon et al., 2005, Unwin et 

al., 2005, Cox et al., 2005, Ciccimaro et al., 2006, Anderson and Hunter, 2006, Rifai et 

al., 2006, Wolf-Yadlin et al., 2007, Stahl-Zeng et al., 2007, Kay et al., 2007, Keshishian et 

al., 2007, Lenz et al., 2007).  It is possible to multiplex quantitative measurement of 

peptides because each transition (the pair of precursor and product ion m/zs) is 

unique for each peptide.  The assumption is made, however, that each SRM does not 
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interfere with any other in the assay, and that peptide co-elution from HPLC is 

avoided.   

 

The capability for multiplexing means SRM is often referred to as MRM (multiple 

reaction monitoring) by practitioners.  However, MRM may actually refer to either a 

set of SRM assays that are being performed for several protein targets 

simultaneously (the multiplexed approach), or may refer to monitoring multiple 

product ions (in effect, multiple transitions) for each peptide precursor ion in a 

single SRM assay.    SRM is the accepted MS nomenclature according to IUPAC 

(Murray et al., 2005), however the term MRM is still widely used in the community, 

so both are applied in this thesis, depending on the context.     

 

SRM has proven to be a successful method for discovery and validation of novel 

biomarkers  (Kuhn et al., 2004, Zhang et al., 2004, Anderson and Hunter, 2006, Rifai et 

al., 2006) and, compared to the alternatives, (such as ELISAs) it has the advantage of 

being cost effective, quicker to design and suitable for multiplexed analysis (Stahl-

Zeng et al., 2007).  MRM studies have also reported measurements down to 

attomolar concentration (Onisko et al., 2007, Keshishian et al., 2007).  Increased 

throughput is also possible with SRM, due to direct coupling of separation (via 

HPLC) to MS and, in some cases, the ability to avoid extensive sample preparation 

before analysis (Kay et al., 2007, Keshishian et al., 2007).  Furthermore, SRM requires 

a high level of ion separation, but not necessarily high resolution, meaning that the 
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instrumentation (QQQ-MS) is potentially affordable compared with the alternatives 

(Orbitrap and FT-ICR); since lower resolution MS is generally less expensive to run.   

These features suggest that in the near future SRM may become a routine assay in 

the clinic.  Indeed, transitions for monitoring blood proteins (Anderson and Hunter, 

2006, Keshishian et al., 2007, Kay et al., 2007, Stahl-Zeng et al., 2007, McKay et al., 

2007) and biomarkers for arthritis (Kuhn et al., 2004), acute liver damage (Zhang et 

al., 2004) and cardiovascular disease (Anderson and Hunter, 2006) have already been 

published, no doubt with this objective in mind.  In addition, post translational 

modifications (Cox et al., 2005, Ciccimaro et al., 2006, Stahl-Zeng et al., 2007) and cell 

signalling networks (Wolf-Yadlin et al., 2007) may also be characterised using the 

SRM technique.  

 

SRM has only recently been applied to quantify proteins, having originally being 

used to determine small molecules (Kerns and Di, 2002, Kovarik et al., 2007, Singhal 

et al., 2007) and metabolites (Gu et al., 2007) in complex sample background by the 

pharmaceutical industry.  This means much has to be learned as regards the optimal 

approach to designing transitions targeted at proteins: the major challenge being the 

decision of which peptide(s) are best to monitor, since each protein has multiple 

tryptic cleavage sites.  Moreover, some peptides and their product ions are always 

visible in MS/MS, whereas others are not detected at all because they do not ionise, 

for example (Tang et al., 2006).   
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1.2.4 An introduction to proteomic bioinformatics  

In very large volumes of data, the meaning may be hidden.  To interpret and 

understand what large datasets (such as hundreds of spectra) are showing, the data 

must first be manipulated with computers to make it understandable.  An overview 

of the types of bioinformatics tools and resources for proteomic MS is shown in 

Figure 12. 

 

 

Figure 12 An overview of proteomic bioinformatics resources for tandem MS. Note that „proteomics‟ 

repositories are distinct from „protein‟ databases; the former contains MS/MS data, auxiliary 

information (such as protocol, species, etc.) and peptide and protein identifications, whereas the latter 

contains protein sequences, and sometimes often information on protein structure, function, and other 

properties, for example. (Source: author‟s own summary)  
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Proteomic MS data has ‘peak lists’ 

Molecular ions in mass spectra are referred to as „peak lists‟.  This is a list of m/z 

values (x-axis) and intensities (y-axis).  Peak lists are not „raw data‟ direct from MS 

instruments, which is machine-readable and requires proprietary software to 

convert it to a readable/searchable form, instead they are lists of values either in text 

file form (such as .mgf, .pkl or .dta format) or encoded in XML (such as mzXML, 

mzData or mzML) (Figure 13). 

 

  



 

44 

 

 

 

 

(a) 
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Figure 13 Examples of MS/MS data in peak list form, ready for analysis with a proteomic search engine.  

(a) mzData is an example of an XML-based format; (b) pkl, and (c) mgf formats are text-based. 

 

Data formats for proteomic MS came about independently and before standard data 

formats and reporting standards had begun to be established.  As a result, formats 

and repositories were autonomously designed, with no inter-change being possible: 

the European Bioinformatics Institute developed mzData and PRIDE XML; Ron 

Beavis‟ group BIOML and XIAPE; and the Institute of Systems Biology (ISB) 

mzXML, for example.  This remains an issue, because it is often difficult for users to 

convert their data into a suitable format for other labs to use.   However, barriers to 

(b) (c) 
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data sharing are beginning to come down as public data format conversion software 

is becoming increasingly easier to find (see the Appendix I for a summary), and tools 

have been specifically developed, such as PRIDE Converter (Barsnes et al., 2009) to 

ease submission to public databases.  Academics and MS instrument vendors are 

also cooperating with the Human Proteome Organisation‟s Proteomics Standards 

Initiative (HUPO-PSI) to make their native formats compatible with tools and 

databases.  Furthermore, HUPO-PSI is coordinating the development of standard 

formats for the major proteomics data-types (Table 3); for example, recently 

competing MS data formats mzData and mzXML have been replaced by a single 

new format called mzML (first release June 2008), which is expected to become the 

universal unprocessed proteomic MS data format.  Furthermore, MRM transitions 

now have TraML format.    

 

Table 3 Standard formats for proteomic MS developed by PSI.  Protein separation, interactions, and 

modifications are managed by other groups and their formats. 

   

Standards 

Work Group 

Format name Format remit 

Mass 

Spectrometry  

mzML Merges various peak list formats (not native .raw formats).  

It has experimental information (metadata).  Peak lists are 

encoded in binary to make files manageable in size 

Mass 

Spectrometry  

TraML MRM transitions  (see Chapter 6 for more information) 

Proteomics 

Informatics  

mzIdentML 

(formerly 

analysisXML) 

Peptide/protein identifications from search engines plus 

search metadata, decoy database used, etc. 

 

 

 

There are also work groups for developing standard formats for protein 

modifications, interactions and protein separation. 
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Metadata for proteomic MS 

Data that describes the MS/MS peak lists is called „metadata‟.  Metadata is usually 

required to identify proteins using an automated system (such as a search engine).  

Metadata for this purpose includes the protein search database, the mass tolerance to 

be applied in the search (which represents the level of mass accuracy achieved by the 

mass spectrometer at MS and MS/MS levels), the proteolytic enzyme used, any 

anticipated PTMs, and the expected charge state of the peptides in the experiment 

(usually 2+).  An example of a metadata entry form is in Figure 14.   
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Figure 14 The metadata required by the Genome Annotating Proteomic Pipeline, which employs the 

X!Tandem search engine and APS 

 

This form also includes „biological‟ metadata.  These are descriptions of the 

experiment, such as the name of the instrument, the cell line or tissue, disease state, 
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protocol details, such as the separation protocol used.  Having this information 

available means that the resulting identifications, when stored in a database, can be 

data-mined to reveal hidden trends.  For example data-mining can reveal the 

proteins present in certain disease states, or show that certain proteins are present 

under particular processing protocols and absent in others. 

Peptide search engines 

Proteomic search engines are central to the field of proteomic bioinformatics.  There 

are both free (X!Tandem (Craig and Beavis, 2003)) and commercial (Mascot (Perkins 

et al., 1999)) offerings, with each being based on differing scoring algorithms.  In 

proteomics „discovery‟ studies, the protein content of the sample being analysed is 

usually unknown, however, there is still some information that can be utilised to 

assign sequence to m/z.  It is known, for example, that all proteins consist of 

combinations of only 20 possible amino acid units, each having a known molecular 

weight.  It is also known that trypsin, the enzyme most often used, cuts proteins 

after lysine or arginine (if not followed by proline).  Most importantly, the target 

protein sequences are known, as database, such as a translation of the genome; thus 

information from the genome can be applied to characterise the proteome using 

search engines.  In summary, using all these sources of information, combined with 

statistical methods to assess the likelihood of matches compared to chance, various 

search-engine type algorithms have been designed. Most search engines fall into 

four types of algorithm: 
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1.  Peptide Mass Fingerprinting (PMF) matches masses (as m/z) to peptides (Figure 

15) by comparing the unknown masses to a theoretical database, generated by 

performing an in silico cleavage operation (per trypsin) on a protein sequence 

database.  With PMF, several peptides may share the same mass because 

permutations in the arrangement of the same set of amino acids will result in 

peptides of identical mass.  And certain combinations of amino acids may result in 

mass differences, which are indistinguishable at the resolution of MS. Once masses 

have been assigned to peptides, proteins may be identified as those that contain a 

number of the matched peptides.   

 

2. Tandem MS searching is the most prevalent approach.  As with PMF, the 

unknown spectrum is compared to a theoretical database, but this time the database 

is derived from in silico digestion of proteins, followed by theoretical CID 

fragmentation of the peptides (Figure 15).  Product ion masses are used, so it 

overcomes the problem seen in PMF, allowing peptides to be distinguished even if 

they have identical mass.   
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Figure 15 The principle of spectrum identification using PMF and tandem MS searches.  Scores are 

generated by comparison of experimental peak lists with theoretical peak lists in the search databases.  

For PMF, the theoretical fingerprint, which is the unique set of peptide masses generated by in silico 

enzymatic cleavage of a protein or translated genomic database, is matched to a single pass mass 

spectrum.  For tandem MS searching, the search proceeds initially in a similar way to PMF, by matching 

to the precursor ion mass, but following this, the experimental tandem spectrum is compared in a second 

round of searching to a theoretical peptide fragment spectrum of daughter ions generated for each 

candidate peptide, based on known peptide fragmentation chemistries.  It is possible to identify proteins 

by assigning MS/MS fragments only.  Note that all searches are based only on the m/z component of the 

spectra, signal intensity is only used to discriminate peaks from noise. (Source: author‟s own summary) 
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  3. De Novo sequencing seeks to use the tandem MS spectrum as the sole reference 

for deducing the sequence of the peptide it represents, it does not apply a search 

database, only knowledge of amino acids and CID fragmentation.  

 

As product ions are generated by splitting amino acids, all the information necessary 

to reconstruct a peptide sequence can exist in the ions generated, although spectra of 

high enough quality are in reality quite rare.  This technique can be performed by 

hand and is advantageous, for example, when no reference database is available, as 

in the case of organisms with an as yet unsequenced genome.   

 

4.  Peptide sequence tagging locates a peptide sequence by searching a database 

with partial sequence information, termed „tags‟, derived from the spectrum.  An 

example of a sequence tag is „[340]GLGSA[112] PK‟, where the letters denote amino 

acid sequence which could successfully be identified from the spectrum using de 

novo methods, and the numbers in brackets represent unknown amino acid 

combinations with mass equal to the values (because sequence could not be 

established from the spectrum alone for these regions).  The tag is then used to query 

the search database for possible matches.   

 

Development of peptide identification programs is a major area of bioinformatics 

research.  Table 4 summarises some popular search engines in routine use, and gives 

a synopsis of the algorithms they employ.  Due to the open source philosophy of the 
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bioinformatics research community, many tools are freely available to use and 

download; review articles provide a comprehensive overview (Sadygov et al., 2004, 

Xu and Ma, 2006, Shadforth et al., 2005a).   
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Program Ref. Type of 

search 

algorithm 

Description Free to 

use on 

web 

Free to 

download 

Website 

       

 

 

(Pappin et 

al., 1993) 

PMF, 

tandem and 

tagging 

Uses the MOWSE algorithm.  Calculates the probability 

that the match was observed by chance, and by using 

knowledge of the exact size of the search database, 

calculates the statistical significance of the match.  Some 

additional heuristics for intensity and ion ladders are 

included in the search. 

Yes  No www.matrixscience.co

m/  

       

 

 

(Eng et al., 

1994) 

Tandem  The protein database is searched to identify linear amino 

acid sequences.  A cross-correlation function is then used to 

provide a measurement of similarity between the theoretical 

mass for the fragment ions in the database and the real mass 

of fragment ions observed in the tandem mass spectrum. 

No No Sequest sourcerer and 

cluster are Thermo 

Fischer products.  

www.thermo.com 

       

 

 

(Craig 

and 

Beavis, 

2003) 

Tandem  „Dot product‟ method is used correlate theoretical spectra 

with the real one.  Performs multiple stages of searching and 

refinement to ensure efficient matching of mass peak lists to 

sequences, and to optimise for speed.  The first step aims to 

match the theoretical tryptic peptide and fragment masses 

to the real MS signal peak lists.  Then further iterative steps 

search for PTMs and point mutations, thus search space is 

decreased to a manageable size for computation, and more 

of the peaks are successfully assigned.   

Yes Yes  www.thegpm.org/TA

NDEM/index.html 

       

 

 

(Colinge et 

al., 2003) 

Tandem  OLAV algorithm.  Stochastic model, the parameters for 

which are learnt from a set of reference matches.  The 

likelihood of the match is derived from deciding between the 

null hypothesis, that the match is random, versus the 

alternative, that it is correct.  Also can identify known PTMs 

in the search. 

 

Yes No www.phenyx-ms.com/  

       

Table 4 A selection of the major protein/peptide identification search engines 
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(Ma et al., 

2003) 

De novo 

and tagging 

Determines corresponding peptide sequences without the 

use of a theoretical peptide fragment database.  All possible 

amino acid combinations are calculated and the peak lists 

are matched to these.   

No, but 

free web 

demo 

No, but 

free demo 

www.bioinformaticsso

lutions.com/products/

peaks/ 

       

 

 

(Tabb et 

al., 2003) 

Tagging Uses an empirically-derived model of fragment ion 

intensities to increase accuracy when deriving sequence tags, 

which are used to search the database.  Score of the match is 

determined by comparing the experimental spectrum and 

theoretical spectrum using the model. 

No No, license 

required 

free for 

academic 

users 

http://fields.scripps.ed

u/GutenTag/  

       

 

(Geer et 

al., 2004) 

Tandem  The Open Mass Spectrometry Search Algorithm - scores 

significant hits with a probability score developed using 

classical hypothesis testing, the same statistical method used 

in BLAST.  

 

Yes  Yes http://pubchem.ncbi.n

lm.nih.gov/omssa/ 

 

 

(Hummel 

et al., 

2007) 

Tandem  „Modified‟ dot product distance measure between unknown 

and reference spectra.  MS/MS spectra (unknown peak list, 

x, and library of peak lists, y) are compared and a distance 

between them is found using a series of steps.  The distance 

is calculated and taken as a single overall measure of the 

goodness of match between unknown and library.  To 

determine which distances are true matches a threshold is 

applied to the distances. 

Yes No http:// 

www.promexdb.org 
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Metadata is important for the accuracy of search engine results.   For example, if the 

mass tolerance window is set too large, ambiguous peptide matches may result 

leading to false peptide matches.  Other considerations are search space, for 

example, if many PTMs are specified the search may take a long time.  Having 

accurate metadata is important for the search accuracy, but also for users wishing to 

interrogate the resulting identifications later. 

 

Harnessing search engines to make large scale sets of identifications is powerful and 

widely used.  Nevertheless, despite recent advances only 10-20% of the MS/MS 

spectra analysed can be confidently assigned to peptide sequences.  Reasons for 

uncertainty come from many sources, for example: trypsin cleavage may not 

proceed to completion (depending on the protocol used); there can be inadequate 

mass resolution by the MS instrument to be certain of identity; and the search space 

can be too large to explore especially when the various possible protein 

modifications (such as oxidation or phosphorylation) are included in the search.  

Recent work by Matthias Mann‟s group is improving the situation, whereby up to 

90% of all fragmented peptides in yeast could be identified using high resolution 

Orbitrap (linear ion trap) instruments and a new search algorithm, MaxQuant (Cox 

and Mann, 2008).  In this case, the number of assignments was boosted by the 

„robust scoring‟ applied to peptides that were found to be modified versions of 

already assigned peptides.  This approach of re-searching for modified variants is 

applied in X!Tandem, and GAPP pipeline.    
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Proteomics search databases 

The search database applied for the peptide identification process is important.  

Increasingly, consensus spectra databases are being used for „pattern matching‟-type 

searches, instead of theoretical databases searches.  A consensus spectrum is a fusion 

of all available experimental MS/MS spectra for an individual peptide sequence into 

a single composite spectrum, which retains the most frequent m/z and intensity 

features.  The consensus spectra are also usually MS instrument-specific, since each 

approach favours detection of different fragment ion types.  The search process is 

analogous to methods used for small molecule identification, such as in 

metabolomics (Dunn and Ellis, 2005), whereby annotated spectrum libraries are 

searched for matches with unknown sample spectra.   

 

Since more MS/MS spectral data is available than ever before, there is now scope to 

construct this kind of database, whereas it was not an option before due to the lack 

of data.  X!Hunter (Craig et al., 2006) and SpectraST (Lam et al., 2007) are search 

engines designed to use consensus spectra for identifying peptides. These are the 

first examples, but the approach will no doubt increase in popularity as more data 

becomes available.  This is because, compared to searching a theoretical spectral 

database, consensus spectra offer faster identification speeds.  Moreover, by 

comparing real experimental (unknown) spectra to real (known) spectra, it increases 

the chances of correct identifications, because phenomena experienced in the real 

spectra will be captured in the search.  Theoretical spectra, on the other hand, may 
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capture the stochastic element apparent in real spectra, so may still have value in 

assisting identification. 

 

For the purpose of comparing the identifications derived from search engines (only 

PMF, tandem, tagging searches and limited support for de novo sequencing) there is a 

new standard data format, mzIdentML (formerly known as analysisXML) being 

developed by HUPO-PSI.  This XML-based format provides sufficient information to 

enable a subsequent researcher to run the same search using the same or another 

search engine, permitting validation of results by other scientists or reviewers.  It 

also supports enough information for tools to display the spectral evidence (if 

available) to demonstrate the peptide matches, including support for isotope 

labelling studies.  Metadata (search parameters), manual protein annotations, as well 

as the search database used are captured (but not the peak lists per se, only a 

reference to them).   

Inferring proteins from peptides  

All search engines generate peptide identifications.  Protein identifications, however, 

are made subsequently by inferring a match, given the peptides found.  In most 

cases, users first validate the peptides found; options to do this are in Figure 16.   
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Figure 16 Peptide assignments from search engines may be filtered by user-specified criteria to attempt to 

remove false identifications before protein inference begins 

 

There are various algorithmic approaches to infer proteins from peptide 

identifications.  The principle of parsimony is sometimes used to overcome the 

problem of ambiguous peptides (Figure 17).   

 

 

Figure 17 The problem of protein inference.  The principle of parsimony (Occam‟s Razor) favours 

Protein A.    

 

Indeed, if the protein molecular weight and pI of the proteins are available (from the 

2D gel stage), then protein identification is made easier, however, this is usually not 

the case in high-throughput setups.  A tutorial on protein inference (Nesvizhskii and 
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the rest

Apply an identity 
threshold (cut off at 

p<0.05)
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Aebersold, 2005) suggests that peptides should be distributed using a probability-

based approach that takes the probabilities of peptide assignments into account 

(Nesvizhskii et al., 2003b).  This has an advantage of permitting calculation of 

statistical confidence measures for the protein identifications and allows estimation 

of false identification error rates resulting from filtering the data.  Indeed, 

Proteomics journal insists that for each protein identified there is a stated measure of 

certainty, such as a p-value.   

 

The identification of a single peptide is not usually deemed acceptable to confirm the 

presence of a protein; these are seen as unreliable thus are usually unacceptable for 

publication.  The more peptides are matched the more likely it is that the match is 

correct, and the protein isoform (splice variant) can be confirmed. 

Validating protein identifications 

The problem associated with automated searches is finding a means to assess the 

accuracy and hence reliability of the results, because without human interpretation 

false positive (FP) identifications may not be recognised as such.  FPs come about for 

several reasons, including unexpected enzymatic cleavage, lack of sufficient mass 

resolution, poor sample handling and background noise.  The cost of FPs can be 

substantial because such identifications can feed through into later stages of 

research, leading to, for example, phantom biomarkers or erroneous drug targets or 

erroneous conclusions about the underlying biology. 
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„Post-identification systems‟ are available to perform validation of protein 

identifications made by automated searches (Table 5).  In some cases, the validation 

and protein inference are performed by the same program as for APS in the GAPP 

pipeline, and ProteinProphet, for example. 

 

One approach to confirm identifications are correct is by taking a consensus across 

different search engines and deriving a composite score based on performance 

across the board (Alves et al., 2008, Jones et al., 2008a).  Consensus comparisons may 

be performed by Scaffold software (a proprietary offering), for example (Table 5). 
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Table 5 Post identification systems validate identifications derived from automated searches 

Program Reference Type of system Description Free to use 

on web 

Free 

software 

download 

Website 

       

 

(Searle et al., 

2008) 

Validation of 

diverse search 

engine results to 

reduce false 

positives  

Performs multiple searches on 

the same raw dataset in parallel 

and thereby compares 

independent interpretations of 

the same data, providing a 

confidence score of the 

combined results 

Yes  No www.proteomesoft

ware.com/ 

       

 

 

 

PeptideProphet 

(Keller et al., 

2002a), 

ProteinProphet 

(Nesvizhskii et 

al., 2003b) 

 

Validation of 

various search 

engine results by 

using probabilistic 

methods. Enhances 

existing search 

engine 

identification 

outputs by 

permitting 

comparison – with 

probabilities being 

on the same scale. 

 

 

 

 

 

 

 

PeptideProphet analysis is 

followed by ProteinProphet, 

which groups peptides by their 

corresponding protein(s) to 

compute probabilities that those 

proteins were present in the 

original sample.  

Yes Yes  http://peptideprop

het.sourceforge.net

/ 
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APS 

(Chepanoske et 

al., 2005), 

advanced APS  

(Shadforth et 

al., 2005b) 

Applies a threshold 

and, protein 

inference  

False positive protein 

identifications may achieve high 

scores as a result of many low-

scoring peptides. The average of 

peptide scores (APS) is 

calculated  and any proteins 

with an APS lower than a 

certain threshold is deemed 

false.  The threshold is set by a 

decoy DB search, which is  used 

to filter the hits returned from 

the target DB search (explained 

later).   

Yes, as 

part of 

GAPP 

No www.gapp.info  
Advanced 
Average 
Peptide 

Score (APS) 
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Another approach to reduce FPs is decoy database searching.  Using a decoy 

database it is assumed that the highest scoring match (between a peptide and a 

spectrum found) in the decoy search is a suitable threshold for filtering off the 

incorrect identifications found in the target search, and hence is used to eliminate 

FPs.  In this way, the decoy is exploited to test the null hypothesis; this being the test 

to determine whether a peptide was not identified in MS.  The caveats with this 

include the time consumed in searching the same dataset twice, and the difficulties 

in creating a mirrored distribution of the target without including any target 

sequences - to avoid forfeiting sensitivity.  Methods to reduce FP detection by decoy 

database searching have been published recently, including modification of 

PeptideProphet to incorporate a target-reverse proteome search (Choi and 

Nesvizhskii, 2008b), incorporation of a decoy database search option into Mascot 

and research articles such as (Elias and Gygi, 2007, Reidegeld et al., 2008).   

Proteomic pipelines  

Proteomic pipelines are the multi-step processing platforms required to seamlessly 

convert tandem MS/MS data into protein identifications by calling a specific search 

engine.  Using pipelines, thousands of spectra may be processed consistently and in 

manageable timescales; batch spectra submissions are usually possible.  In this way, 

pipelines provide a convenient route into proteomics repositories.  Pipeline steps can 

include: data format conversion, quality filtering, execution of a search engine and 

post-processing validation.  Examples include Global Proteome Machine (GPM), 

Trans-Proteomic Pipeline (TPP),  Genome  Annotating  Proteomic  Pipeline  (GAPP) 
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and others.  GAPP pipeline is applied to novel research in Chapter 4, and is also the 

basis of data analysis and capture for the tool developed in Chapter 5.   A detailed 

description of the most frequently used pipelines is presented in Chapter 3. 

 

In addition to existing pipelines, developers may use software frameworks to design 

their own bespoke, flexible workflows.  OpenMS (Sturm et al., 2008), for example, 

has a static core for download, and via this core OpenMS-specific or external 

software tools may be called (via the command line) to process HPLC-MS/MS data. 

There is a library of free packages comprising 350 classes and 100,000s of lines of 

C++ code.  The OpenMS Proteomic Pipeline (TOPP) (Kohlbacher et al., 2007) is one 

example of an OpenMS pipeline which is ready-to-use and designed to be run 

locally.   

Proteomic MS repositories 

Proteomics repositories are for storing, integrating and sharing MS/MS data.  Once 

the peptides and proteins have been identified in an experiment, their usefulness 

does not stop: by sharing and comparing the protein status of various samples, 

understanding of biology can be uncovered, for example, the proteins specific to 

certain tissues or organs (i. e. specific proteomes) can be identified by comparative 

studies.  There are many publicly accessible repositories on the internet, most with 

additional tools to make understanding the data in the repositories easier; effectively 

converting meaningless spectra and identifications into knowledge.  For example, 

the  PRoteomics  IDEntifications  database  (PRIDE)  provides  a  facility  to  generate 
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Venn diagrams to compare protein expression profiles between experiments in the 

database.  Moreover, graphical representation of the data, including clickable image 

maps of tissues where proteins have been identified are available (at the Max-Planck 

Unified Proteome Database (MAPU), for example), and dynamically generated 

spectrum views and colour shading to show significance of matches (at GPM 

database).  Programmatic querying (with API) is also available with some 

repositories, via Biomart, for example.   

1.3 Aims and objectives of this thesis  

This thesis is focused on key areas of unmet need in proteomic bioinformatics 

research and management.  For the management component, this EngD aims to 

establish the current state of exploitation of proteomic bioinformatics in public and 

commercial environments in the UK and abroad.  It looks at why the sponsor, 

GlaxoSmithKline (GSK), downsized proteomics and proteome bioinformatics 

research, and makes recommendations for future investment in proteomic 

bioinformatics products and services.   

 

The engineering research component aims to deliver computational solutions to two 

problems: first, to improve confidence when identifying proteins in MS/MS data, 

and second, to provide integrated online resources to support the next generation of 

targeted, quantitative proteomics research.  These deliverables will assist proteomics 

researchers in the community, such as those performing biomarker discovery and 

validation studies, and  will  help to  make  proteomics  research  cheaper  and  more 
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efficient, for example, by reducing the risk of false leads and saving time designing 

experiments.  Moreover, by improving the quality of identification and 

quantification of proteins, this EngD contributes to the field by moving resources a 

step closer towards achieving accurate proteome information for modelling the 

workings of biological systems in the future.   

 

The thesis is split into three parts: Part I (Chapter 2 and 3), Part II (Chapter 4), and 

Part III (Chapter 5 and 6).  The field of „proteomic bioinformatics‟ in industry and 

academia is mapped out in Part I.  In Chapter 2, for example, the question of 

whether proteomic bioinformatics is a commercially viable activity is explored.    The 

author investigates how high-throughput proteomics was funded, focusing on 

events from 1985-2009.  This is an important story that may present new lessons for 

the funding and development of new high-tech businesses in the future, and 

although there are rare examples of management literature for proteomics, such as 

(Mitchell, 2003) and a chapter in (Moody, 2004), there are no examples of 

investigations into the business history of proteomic bioinformatics, so the study will 

be unique, timely and a valuable resource for management decision-makers and 

investors in this field.   

 

In Chapter 3, a review of the freely available proteomics data repositories is 

performed.  This review highlights key data sources, which form the foundation for 

subsequent research in this thesis.  Moreover, the review represents novel research, 
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because a comprehensive overview of public repositories was not previously 

available.   

 

In Part II, approaches to improve confidence in the results from an automated 

proteomics pipeline are investigated.  Expert judgement calls cannot be made to spot 

incorrect identifications on a spectrum-by-spectrum basis using a pipeline.  

Therefore, decoy database searches may be performed to isolate incorrect 

identifications and filter them out.  In Chapter 4, therefore, the author investigates 

which decoy database design is most efficient at reducing FPR using the Genome 

Annotating Proteomic Pipeline (GAPP).    This is important research, because the 

cost of pharmaceutical R&D is rising, and by reducing FPRs the risk of pursuing 

false leads is lessened.   

 

Finally, new computational systems to support the design of quantitative MRM 

experiments are developed in Part III.  For example, designing transitions for MRM 

ab initio is challenging - it often requires empirical „discovery‟ studies and expert 

knowledge - therefore, a new algorithm is developed in Chapter 5 to speed up the 

design process.  The tool predicts the best candidates by leveraging existing public 

data resources and tools, and combines these with rules captured from expert 

practitioners.    Also, once a transition has been developed and validated in MS it 

may be reused, hence Chapter 6 describes the development of a new database 

management system for disseminating validated transitions, so researchers can 

easily re-use transitions instead of designing them from scratch, and spend less time 
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scanning heterogeneous literature for a suitable candidate.  In turn, this 

compendium will serve as a „shop window‟ to boost exposure of the data submitters‟ 

work and increase citations.   
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2 The business history of proteomic bioinformatics (1985-

2009) 
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2.1 Summary 

In this chapter, the author investigates the emergence of proteomic bioinformatics, 

the subject of this EngD thesis, and looks at the technological advancements and 

public and private funding mechanisms that enabled its development into a new 

industry of its own.  The management research performed demonstrates how 

business and science interacted to create new breeds of high-tech organisations – 

first, proteomics biotech‟s, followed by in-house departments in research and 

development organisations, and more recently niche firms focused on proteomic 

bioinformatics.  By presenting insights into how this new and specialised industry of 

proteomic bioinformatics developed, including detailed analysis of companies and 

operations in “big pharma”6, predictions are made for the future model of the 

proteomic bioinformatics market.  These recommendations are aimed at the 

management decision-makers at the project sponsor (the blue chip pharmaceutical 

company, GlaxoSmithKline), at investors in biotechs, and generally at decision-

makers and stakeholders who may be interested in exploring proteomic 

bioinformatics activities in the near future.   

                                                
6 ‘Big pharma’ generally refers to large pharmaceutical companies that have political influence.  Specific 

definitions vary but it is a widely used term in management literature.  Definitions include, for example,that  

revenue should be in excess of $2-3 billion, R&D expenditure should be in excess of $500 million, and/or the 

firm should operate in the major global markets (i.e. USA, Europe and Japan).   
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2.2 Introduction 

This chapter describes the development of „high-throughput‟ proteomics, and takes 

the reader from emergence of the science, and subsequent uptake by biotech and 

pharmaceutical companies, to the current status of the field.  It focuses on the 

interaction between the new science (proteomics and proteomic bioinformatics), 

commercial markets and public funding bodies.  As such, the resulting narrative is 

referred to as a „business history‟ of proteomic bioinformatics.   

2.2.1 The proteomic bioinformatics market is investigated using a 

business history approach  

A „business history‟ is a story about industry in the past, and can include the history 

of an individual firm, or entire business systems; often described using a specific 

time period and geographical location (Amatori and Jones, 2003).  The story usually 

includes the relationships between businesses and their political, cultural, 

institutional, social and economic contexts7.  Business history began as a discrete 

discipline at the Harvard Business School in the interwar years, with the first 

histories emerging in the 1950s8.  The business history approach is now widely used, 

and can contribute to decision-making and strategic management processes, often 

being published in journals, such as Enterprise and Society: The International 

Journal of Business History; Business History Review; and the Journal of Economic 

History.  Teaching case studies on an MBA course at Cranfield University, for 

example, are a type of brief business history, usually focused on a specific firm; and 

                                                
7 Taken from the remit for Enterprise and Society: The International Journal of Business History  
8 Examples include ‘The History of Unilever: volumes 1 and 2’ (C. Wilson, 1954, London) and ‘Pioneering in 

Big Business’ (about Standard Oil) (R.W. Hidy and M. E. Hidy, 1995, New York). 
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can be a convincing way to demonstrate business principles, stimulate ideas and 

teach strategy. 

 

The business history and analysis of the proteomic bioinformatics industry 

presented here is timely for three main reasons.  Firstly, decision-makers in big 

pharma, venture capitalists (VCs) and universities currently have no detailed reports 

regarding the business of proteomic bioinformatics and its associated technologies.  

This industry report leads the reader from no knowledge of proteomics to 

understanding the funding mechanisms, current market and wider context of 

proteomic science and informatics.  With this knowledge, better decisions may be 

made for funding proteomic bioinformatics and/or other similar technologies in the 

future.  Furthermore, the analysis presented has the advantage of being performed 

by an author actively involved in proteomic bioinformatics research, with relevant 

industry contacts and data sources to draw primary data.   

 

The second reason is that during the project (in 2005-6) GSK downsized high-

throughput proteomics in R&D.  This meant that no suitable new data were 

generated by the sponsor and hence the output of the project was not a system(s) to 

specifically meet the sponsor‟s needs, but rather relied upon publicly-available tools 

and datasets that were freely-available or from collaborators.  For the sponsor, 

therefore, this business research delivers a new account of the events that lead to the 

downsizing of proteomics as well as a description of the wider context in which 
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these events took place.  A new, independent perspective on these events is timely 

and valuable for the community to understand and learn from what happened. 

 

Finally, on a practical level, the business history and case-study-approach are 

employed, because empirical data and observations are the most accessible source of 

information on proteomic bioinformatics, which is a specialised, high-tech industry.  

It is not represented in management literature, so any other approach would not 

have been possible.  Moreover, the approach is a powerful one because by tracing 

developments over time, looking at the decisions made, funding provided and the 

players in the market, a picture of the business of proteomic bioinformatics may be 

drawn, and conclusions offered based on real evidence, rather than referring to the 

observations of others. 

 

The author believes that in spite of the downsizing that occurred at the sponsor, this 

management report (and the remainder of the thesis) demonstrates that the tools and 

techniques developed are timely and valuable for the next generation of targeted, 

quantitative proteomics research.   

2.2.2 Management hypothesis and contribution to knowledge 

The main hypothesis for this chapter is that there are links between the economics of 

proteomic/ proteomic bioinformatics and the way the science per se has developed.  

The main precept is that economic forces pushed the growth of the uptake of the 

science, not the true ability for the science to deliver valuable products and services.   
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This is the reason for the wave of investment suddenly drying up, once it was 

realised that commercially valuable protein biomarkers were not visible on the 

horizon. 

   

There are two main areas to investigate to demonstrate the truth of this hypothesis.  

Firstly, did the market for proteomic bioinformatics come about because of a process 

innovation (such as computer technology, new reagent development)?  Or, did it 

come about because of the excitement and the success of the genome sequencing 

project?  Was it scientific leaps or hype that would fuel growth and development of a 

new market for proteomic bioinformatics?  The business history presented here is a 

detailed examination of events, which will make the answer to this hypothesis clear.   

 

The contributions to knowledge of this chapter are threefold: this is the first business 

history ever to be written on the proteomic bioinformatics industry.  There are 

examples of business histories of new scientific fields, such as genetic engineering 

(McKelvey, 2000), and a review of proteomics as part of the digital revolution in 

biology (a chapter in (Moody, 2004)), however an investigation into the economics of 

proteomics/ proteomic bioinformatics per se is novel.  Secondly, the author has 

examined the two aforementioned research questions, and makes conclusions based 

on new history and case-based evidence collated specifically for this purpose; these 

data have not been described before.  Finally, this chapter represents the first 

attempt to put the business of proteomic bioinformatics into the context of the 

pharmaceutical R&D industry, and offers new recommendations about where 
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proteomic bioinformatics in this industry is going next; these predictions are new 

and unique. 

2.3 The business history of proteomic bioinformatics  

Events in the following business history are split into phases, and the funding for 

each stage of development is described.  This section serves as preliminary evidence 

for the recommendations made for potential investors in proteomic bioinformatics in 

the discussion section.     

2.3.1 The early innovators of proteomics and proteomic bioinformatics 

were publicly-funded   

It is commonly thought that proteomics came about as a result of the sequencing of 

the human genome, which took place during the late 1990s by the publicly-funded 

Human Genome Project and a parallel effort by Celera Genomics‟ J. Craig Venter.  

This is correct, since the now commonly used high-throughput approaches in MS-

based proteomics rely on search engines to identify peptides in mass spectra by 

searching a protein sequence database.  To do this, a genome sequence that is 

translated into proteins is needed, so the availability of a genome was important.  

However, the philosophy and desire to characterise the proteome in toto actually 

began years before.  According to Nicolas Wade9 (Wade, 1981) it began with the 

American pioneer, Norman Anderson, who first attempted to set up a human 

protein index project as a national objective in 1980 (reference in (Moody, 2004, Fong, 

2009)).  He failed at that time since gene-related research was the focus for funding 

                                                
9
 New York Times science journalist and author 
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agencies, however, in spite of this he and his son (Leigh) set up the first „industrial-

scale‟ protein cataloguing project in 1985.  With $1 million of US public funding and 

a team of around a dozen scientists, they began to create a database of protein maps.  

This database would contain x,y-coordinates of proteins measured on 2D-PAGE10 

gels; a technique that separates proteins on a square „canvas‟ of jelly.  The Andersons 

aimed to quantify each protein by measuring the size of its spot on the gel.  This was 

revolutionary, because it applied Henry Ford‟s conveyor-belt „brute force‟ to 

biology.  The aim was ambitious: involving creation of a catalogue of all human 

proteins and building a huge virtual repository to store the findings.    At this time, 

Edman degradation11 - a low-throughput chemical technique - was used to identify 

proteins.  This meant the project was colossal in terms of the time and resources to 

complete it; the Andersons predicted the eventual cost of their protein index to be 

$350 million over a further five years.  No one had seen protein research on this scale 

before.  Quickly it became clear, however, that they were failing to create a valuable 

catalogue.  The variability of the 2D gel approach meant that each time a gel was run 

the spots moved, making the database useless for other researchers.  Moreover, 

obtaining suitable quantities of interesting proteins was an issue, since unlike 

genomics, where PCR can be applied to amplify DNA, there is no such method to 

increase the quantity of protein.  In spite of the obstacles, the Andersons new „list-

based‟ approach to biology was revolutionary and ambitious.  They were early 

innovators, because their  ambitious  approach  was  to  characterise  the  proteomics 

                                                
10 See introduction for a detailed description of this technique. 
11 Edman degradation, named after its inventor in the 1950s, is a method of determining the order of amino acids 

in a peptide.  It is a relatively time-consuming, chemical method that pre-dates mass spectrometry for peptide 

sequencing. 
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biotech entrepreneurs a decade later.  Their work provided the first glimpse of the 

huge hype, and correspondingly large investment that would be stimulated by the 

promise of proteomics.       

 

Irrespective of the lack of continued funding the Andersons set up a company called 

the Large Scale Proteomics Corporation (LSPC) to create a proprietary proteomic 

database using their own gel platform „ProGEx‟, which could analyse “1 million 

proteins a week”12.  In addition to $1.4 million in internal funds in 1994 they received 

$1.9 million of US government‟s Advanced Technology Program: “Since no 

company...had improved ... electrophoresis since its development in 1975, sources of private 

funding for LSPC‟s efforts were difficult to find.”12.  The science was too young, and 

hence too risky, for private investors to get involved.  Several years later (1999), 

however, their technology was acquired by the Large Scale Biology Corporation 

(LSBC) and LSBC went on to release the Human Protein Index based on the 

Anderson‟s work.   

 

In Europe proteomics was also beginning to attract interest.  Oxford 

Oligosaccharides later to change its name to Oxford GlycoSystems then Oxford 

GlycoSciences spun out of the Glycobiology Unit at Oxford University in 1988.  The 

transition was managed by Oxford University‟s Isis Innovation Technology Transfer 

                                                
12 US government (NIST’s) Economic Assessment Office status report evaluating the performance of their investment in  

Large Scale Biology Corporation (formerly Large Scale Proteomics Corporation),  available at 

http://statusreports.atp.nist.gov/reports/94-01-0284PDF.pdf 
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Company13 and was directed by Raymond Dwek, who later became Head of 

Biochemistry at Oxford University (2000-06), and is now president of the Institute of 

Biology, UK.   

 

Oxford Oligosaccharides was a start-up that aimed to identify and analyse a specific 

type of protein: glycoproteins those modified with carbohydrate molecules14.  They 

were believed to play a role in important molecular interactions impacting 

reproductive biology, disease aetiology and regulation of biochemical processes in 

the body.  Initial funds for glycobiology research (£1 million per annum) were 

provided by Monsanto, then later the VCs, Advent Capital and Euro Ventures 

(Dwek, 2008).  The university, Monsanto (and Searle15, which Monsanto had then 

acquired) plus the scientists and staff were the initial shareholders.  A board of 

directors was recruited and head-hunters found the CEO – Raj Parekh, an Oxford 

postdoc.  The company became Oxford Glycosystems in October 1988 and went on 

to develop and market products for glycobiology, such as GlycoPrep 1000, which in 

1992-1994 was “purchased by nearly every major pharmaceutical company throughout the 

world” (Dwek, 2008).  However, they did not enter the MS „proteomics market‟16 

proper (as is the subject of this thesis) until they released their first product for high 

throughput proteomics in 1996.     

                                                
13 Isis Innovation Limited is the University of Oxford’s wholly owned technology transfer company.  Isis was 

established in 1988 and manages the University’s IP portfolio, working with University researchers to identify, 

protect and market technologies through licensing, spin-out companies, consulting and material sales. 
14 (Oligo)saccharide is another name for carbohydrate, hence the company name Oxford Oligosaccharides, 

which developed products related research into proteins modified with carbohydrate molecules. 
15 A company in the life sciences industry, specifically pharmaceuticals, agriculture and animal health. It is now 

part of Pfizer, the pharmaceutical company. 
16 The ‘proteomics market’ refers to businesses providing services or products for large scale proteomics, and 

specifically proteomics that is based on automated mass spectrometry workflows.   
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Another firm to embrace proteomics, Nonlinear Dynamics, started up in the UK in 

1989 in Newcastle-Upon-Tyne, and was to become one of the key players in 

provision of software for 2D gel proteomics, and is the subject of one of the company 

case studies to follow.  

2.3.2 High-throughput analysis became possible by applying mass 

spectrometry to proteins 

A critical turning point initiating the shift from expensive low-throughput protein 

identification to affordable high-throughput protein sequencing was the application 

of mass spectrometry (MS) to proteins (Barinaga, 1989, Hanash et al., 1991, 

Hillenkamp et al., 1991) (Table 6).   
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Table 6  Timeline showing key events in the development of high-throughput proteomics and proteomic bioinformatics and funding mechanisms. 

 1980s Early 1990s Late 1990s 2000s 2008-9 and onwards 

Technology 

developments 

2D-PAGE and Edman 

degradation 

„List-based‟ biology 

arrives 

Glycoprotein research 

begins 

 

 

2D gel reproducibility 

improved, 

quantification using 

spot size 

MS for peptide 

sequencing arrives 

First search engines 

arrive on internet 

Term „proteomics‟ 

coined 

 

Electrospray ionization 

(ESI) arrives – fully 

automated workflows 

now possible 

Protein biomarker 

discovery efforts using 

MS technology 

Nature warns against 

„mindless‟ high-

throughput studies 

New methods for 

quantification of proteins 

arrive (eg. ICAT) 

Validation, statistical 

approaches to increase 

quality of identifications 

derived from automated 

workflows 

Standardisation of data 

and reporting 

Journals push for data 

sharing/ dissemination 

Funding/ 

financial 

support 

US government 

funding (eg. 

Andersons) 

UK public funding (eg. 

Nonlinear Dynamics) 

Biotech funds (eg. 

Monsanto/Searle fund 

Oxford 

Oligosaccharides) 

 

 

US government 

funding 

Public funding (UK, 

USA) of research 

through universities 

 

Protein IP land- grab  

Private investment (eg. 

Oxford Glycosciences 

float, Celera stock 

offering, Geneprot 

Darier Hentsch) 

LSBC acquire 

Anderson‟s technology 

Public funds (eg. 

Imperial Cancer 

Research Fund and 

Mascot) 

 

phase 

Corporate venturing (eg 

pharma companies take on 

proteomics for 

development of workflows 

in house) 

Private investment and 

deal-making (eg. 

Confirmant: Oxford 

Glycosciences and  

Marconi, Myriad 

Proteomics) 

Oxford Glycosciences sold 

for £102 m 

Private and public funding 

(eg. Oxford Genome 

Sciences South East 

growth fund) 

 

 

Public funding of 

research  
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In the 1950s, scientists were trying to measure proteins by MS: Klaus Biemann at 

MIT in, for example, and later Howard Morris17 at Imperial College.  However, the 

problem of getting proteins to vaporise into the gas phase for entry into the MS 

instrument was to elude them and the introduction of Fast Atom Bombardment by 

Michael „Mickey‟ Barber in 1981 was the major breakthrough allowing native 

peptides to be ionised, without requiring chemical alteration.  However, MALDI18, 

the ionisation technique developed between 1987-1991 (Hillenkamp and Karas, 1990) 

delivered what is now called high-throughput proteomics, because large 

biomolecules (such as proteins) could be consistently ionised and enter the MS 

instrument.  MALDI-TOF (time of flight) MS arrived in several labs as a bench-top 

instrument for the first time in the early 1990s.  And in 1993, key ideas for applying it 

to proteins were developed.  Indeed, the discovery of the MALDI method earned a 

quarter of the Nobel Prize in Chemistry (in 2002) to Koichi Tanaka for demonstrating 

that it could be used to ionise protein.      

 

With new data becoming available from both gene sequencing efforts and new 

MALDI-derived protein spectra, proteomic bioinformatics was fast approaching.  

The first ever MS search engine, “Fragfit” (Henzel et al., 1993) performed an in silico 

digest of protein sequences, derived from translation of gene sequences, and 

compared the resulting peptide masses to MS spectra to identify proteins.  

Development of this program planted the seed for proteomic bioinformatics. 

                                                
17 He claims the first complete sequence of a protein by mass spectrometry (early 1970s) 
18 Matrix Assisted Laser Desorption Ionisation – a method to ionise and  vaporise proteins for visibility in MS. 
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Suddenly freely available software accessible via the internet arrived.  Indeed, 1993 

was described as a  „vintage year‟19 for peptide mass fingerprinting (PMF) programs, 

which improved on FragFit‟s original idea (Mann et al., 1993, James et al., 1993, 

Pappin et al., 1993, Yates et al., 1993).   

 

As a consequence of the surge in PMF tools, development of new and improved 

search algorithms began, spearheaded independently by Matthias Mann 

(Heidelberg), and John Yates III and Ruedi Aebersold (University of Washington, 

Seattle).  These two groups pioneered the first tandem MS search engines, 

Peptidesearch (Shevchenko et al., 1996) and Sequest (Eng et al., 1994), respectively.  

These new tools were the first in a new class of proteomic search engines that 

exploited fragment level information to make peptide identifications from which 

whole protein sequences could be inferred.  Another level of complexity was now 

being applied to the search; like a Google-type search engine, instead of searching 

just for webpage titles (peptide sequences), it could now include detailed webpage 

content (fragment masses) in the search.  The knock-on effect was automation of 

protein identification by combining search engines with high resolution MS 

instruments (also now becoming available).  High-throughput protein identification 

by MS would soon be affordable to many.  No biological insights of great note had 

been shown, but the technology was now viable enough to publish papers and 

present results.      Scientists were very interested, such as (Kahn, 1995, Jungblut and 

Wittmann-Lieboldb, 1995), and industry started to notice.   

                                                
19 Quoted from John Cottrell, Matrix Science, taken from a tutorial session delivered at the ASMS (American 

Society of Mass spectrometry) conference, San Antonio, Texas on June 5-9, 2005 
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2.3.3 Privately-funded biotechs competed for control during the land-

grab  

In mid-1994, the term „proteome‟ was finally coined by an Australian postdoc (Marc 

Wilkins).  Armed with a name, proteomics was ready to enter the main-stream.  The 

land-grab for intellectual property was ready to begin.  New biotech companies were 

established, each determined to be the first to identify proteins and their role in 

disease, in order to patent them and earn royalties from the pharmaceutical industry.  

Economics was driving the development of the science now.   But it was highly 

questionable whether biotech entrepreneurs were capable of moving immature 

proteomics technology from experimental labs to the wider market and be able to 

deliver knowledge to earn rents (van der Sijde et al., 2003).   

 

One of the first to cash in on the hype was Oxford Glycosystems, who in 1996 

achieved over $60m in private financing (Editorial, 1996) with Kirk Raab (formerly of 

Genentech20) as CEO.  They launched the „ProteoGraph‟ product for genome-scale 

proteomics (Editorial, 1997), and in 1997 formed the „proteome partnership‟ with 

Oxford University, changing their name to Oxford Glycosciences around this time. 

In April 1998 the company floated on the London Stock Exchange raising £30.8m 

(market cap: £103m) (Editorial, 1998).  This was achieved on their previous success in 

 

                                                
20 Now part of Roche, Genentech were the biggest biotech company in the world in the 1990s-2000s.  Set up by 

pioneers of genetic-engineering in 1976. 
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designing a drug for Gaucher‟s disease21 using glycobiology knowhow.  With the 

funds, Oxford Glycosciences invested heavily back into Oxford University providing 

a grant of £1.5m to the Glycobiology Institute to set up a proteomics facility in the 

Biochemistry Department.  They then continued in earnest with high-throughput 

proteomics, not glycobiology. 

 

The imminent arrival of electrospray ionisation (ESI) MS in 1998 further fuelled 

investment in proteomics.  ESI allowed direct coupling of protein separation to MS 

instrumentation, such that when the instrument was linked to a computer with the 

pre-processing programs (such as peak pickers) and proteomic search engine(s), the 

whole workflow from sample to identification could be fully automated.  As the 

Andersons had approached 2D gels in 1980s, now academics and companies in the 

late-1990s/2000s joined the race to perform huge scale MS-based studies to 

characterise entire proteomes before their rivals – in genome sequencing style.  

Having patented their new technologies, in 1999, Oxford Glycosciences, scaled up 

their operation building a proteomics data „factory‟ in Milton Park.  Proteomics 

facilities for biomarker discovery were now emerging in many universities and spin-

outs; the pharmaceutical industry had yet to get involved. 

   

In 1997, Geneva Bioinformatics (GeneBio) was formed by Ron Appel, Amos Bairoch 

and Dennis Hochstrasser, and became the commercial entity representing the Swiss 

                                                
21 A type of  lysosomal storage disease, a rare inherited metabolic disorder that results from defects in lysosomal 

function.  Lysosomes are organelles (sub-components) of cells in the body, which digest old organelles, food 

particles and engulf viruses or bacteria.  Symptoms may include enlarged spleen and liver, liver malfunction, 

skeletal disorders and bone lesions that may be painful, as well as severe neurologic complications. 
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Institute of Bioinformatics (SIB), providing premium versions of SIB‟s otherwise free 

data resources.  The company‟s mission was to provide high quality proteomics 

databases, software tools and services through in-house development and 

partnerships with universities, biotechs and pharma companies.  GeneBio is one of 

the company case studies described later.    

 

In London in March 1998 John Cottrell and David Creasy, both having left MS 

technology firm Finnigan (now part of Thermo Scientific), formed the first ever 

company based exclusively on a proteomic bioinformatics search engine product, 

called Mascot (Cottrell, 2003).  The product was based on the original MOWSE 

program (Pappin et al., 1993) developed at the Imperial Cancer Research Fund.  A 

later paper carefully omitted important details of the Mascot product algorithm 

(Perkins et al., 1999).  This company is an interesting case, because it has continued to 

grow in spite of the proteomics booms and busts around it.  It is one of the 

companies described in detail later. 

 

As commercial labs accelerated their efforts to catalogue all observable proteins 

using their new pipelines the editor of Nature cautioned that this may not be the 

most biologically meaningful approach (Editorial, 1999): “should funding agencies be 

pouring money into some global [human proteome project] strategy at this point?”  Nature 

was advocating the small-scale approach, where studies would lead to conceptual 

understanding of biology, rather than long lists of protein IDs.  Quality is better than 
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quantity.  Commercial labs did not take heed of this warning and huge investments 

were made to achieve the absolute opposite.     

 

Celera, for example, the company responsible for sequencing a large chunk of the 

human genome, announced their Human Proteome Project in 2000.  They intended 

to identify the properties and functions of every human protein (Butler, 2000) and 

make revenues through lucrative patents.  Craig Venter, the company president, was 

quoted in Science at the time: “We‟re going to have the biggest facility and the biggest 

database…we‟ll be working through every tissue, organ, cell” (Service, 2000).  Celera 

managed to obtain $944 million in a stock offering (Washtech@WashingtonPost).  

Venter could achieve these colossal amounts on the back of his previous success in 

sequencing the genome.  The proteome, however, is not the genome; it is something 

with more dimensions and is much harder to pin down.  Venter approached 

GeneBio co-founder, Hochstrasser, with an attempt to join forces with SIB.  No 

partnership was forged since Hochstrasser‟s view on open data access did not fit 

with Venter‟s vision.  Celera is re-visited later.    

 

In 2000 GeneProt (Geneva Proteomics) was established by the three co-founders of 

GeneBio.  It planned to set up a „proteomics factory‟ to compete with rival Celera.  

Huge investment ensued: in April 2000 the seed round of financing22 raised $4.6 

million  and  three  months  later  a  further  $40  million  was  raised  through  six 

 
                                                
22

 Funded through Switzerland’s Darier Hentsch Life Science Fund 
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additional European funds (PressRelease, 2000b).  Soon after, they spent $70 million 

with Compaq for supercomputing equipment.  A deal was then signed with the 

Swiss pharma giant Novartis, where in return for $43 million equity investment 

GeneProt would “analyse the protein profile of three human diseased tissues…and their 

healthy counterparts” (PressRelease, 2000c).  The idea was to apply the proteomic data 

generated by GeneProt to identify novel protein-based targets for use in medicine 

development.  The company was fully operational by 2001, and had an additional 

facility in USA. At the time, it claimed to have the world‟s most powerful super-

computer and proteomic discovery facility (PressRelease, 2001f).  The investors were 

leading, the science was trailing. 

 

Next Oxford Glycosciences announced (2001) that they were building „ProteinAtlas‟.  

It was to be sold on subscription basis by a company called Confirmant - a joint 

venture between Oxford Glycosciences and Marconi23- which formed just before 

Marconi went into liquidation (PressRelease, 2001c).  Their short-term aim was “to 

become the leading provider of bio-information” and long-term, to circumvent pharma 

distribution channels by developing “online, real-time diagnostics, made available to 

physicians…on a pay-per-use basis”.  In parallel to this announcement, the Anderson‟s 

Human Protein Index database was completed.  The LSBC annual report for 2000 

outlined their strategy.  Their database contained protein information for all major 

tissues so was to become: “the definitive source of information about human proteins”, 

                                                
23 Available at http://www.prnewswire.com/cgi-bin/stories.pl?ACCT=104&STORY=/www/story/06-15-

2001/0001514667&EDATE= 
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although their 2001 annual report stated a shift to “develop therapeutic products using 

our proprietary technology”. 

 

It is clear that the promises of proteomics were fuelling great expectations in the 

markets.  But the market got ahead of itself, before the science could actually 

demonstrate that it could deliver.  According to Frost & Sullivan24 in 2001, 

proteomics was estimated to grow from $700m in 1999, to $5.8bn in 2005 

(Frost&Sullivan, 2001).  Quotes from the then Director of Drug Discovery 

Technologies, Stefan Unger, suggest the high-throughput nature of proteomics, and 

the fact that the technology was in its infancy, were the drivers for the huge 

investments in proteomic biotechs:  "The main difference between the old and new 

paradigms is in the high-throughput, parallel thinking…There are no clear winners in these 

early stages of market development for proteomics, which means there is a wealth of 

opportunity".  151 different proteomics biotech companies appeared in F&S‟s 2001 

report including all areas of the proteomics market: instruments, "wet" technologies 

& supplies, lab services, and bioinformatics: "With over 40 commercial funding activities 

of various types (VC, IPO25, mergers, etc.), this is a very rapid pace for a discipline that was 

unnamed just six years ago". 

 

In 2001 Myriad Proteomics, was formed in collaboration with Oracle and Hitachi 

and headed by Nobel Prize winner Walter Gilbert (who founded Myriad Genetics).  

                                                
24 A global a strategic market research consultancy based in San Jose, CA 
25

 Initial public offering: when a company issues shares to the public for the first time. 
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The venture was valued at $185 million and aimed to “analyse all proteins and their 

interactions” (PressRelease, 2001d)26.  The business was based on collection of 

proteomics information in a proprietary database (to be ready by 2004) using 

proprietary technologies including: ProNET, protein interaction technology 

(industry-scale yeast two hybrid27) and ProSpec (proprietary MS technology for 

identifying protein complexes).   

 

Myriad‟s formation marked the ignition of the proteomic biotech bomb.  High 

profile doubters of the high-throughput approach to proteomics began to engage 

with the media.  The president of Hybrigenics28 said of Myriad‟s mission: “there‟s no 

way they‟ll come close to it!”(Pollack, 2001).  Myriad replied: they intended to look 

only at “10-12 cell types”. The famous Venter quote “there ain‟t no such thing as a 

proteome” then appeared in The Wall Street Journal (Hamilton and Regalado, 2001), 

and in The New York Times “We don‟t think there‟s much value in a general survey of 

proteins” (Pollack, 2001).  This is the key point, because suddenly everyone had 

realised there was no „value‟ in high-throughput proteomics.  The economics could 

not drive the growth anymore, because it was not there.     Celera ceased to catalogue 

proteins, switching instead to designing new drugs as a fledgling pharmaceutical 

enterprise.  LSBC also pulled out: in 2002 they reorganised stimulating both 

Andersons to resign from their life‟s work.   

 

                                                
26 Available at http://findarticles.com/p/articles/mi_m0EIN/is_2001_April_4/ai_72721585 
27 Interaction proteomics – a method to determine protein to protein binding interactions at the molecular level. 
28

  A Parisian biotechnology and pharmaceutical company 
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Oxford Glycosciences was bought by Celltech for £102 m in 2003, which was 

groundbreaking for a biology-based University spin-out.  It lead the formation of a 

new proteomics company, Oxford Genome Sciences, now called Oxford 

Biotherapeutics (one of the case study firms, see later section).  This new company 

acquired the proteomics division of Oxford Glycosciences and used this to start the 

new enterprise.  This was perhaps not ideal timing to start a proteomics company, 

since the land-grab was losing momentum and reputation of proteomics was 

diminishing.  In fact, as explained in the case study later, OGS‟s success would 

depend on how well they could exploit the potential growth for out-sourcing of 

proteomics, as the pharma companies began to downsize in-house research in this 

area in the mid-2000s.   

 

In academia, steps were being taken during the late 1990s to improve proteomics 

techniques.  One of the major drawbacks of proteomic MS was that proteins could be 

identified, but not quantified (Mann, 1999).  To address this, Aebersold and his team 

invented isotope-coded affinity tagging (ICAT) (Gygi et al., 1999).  In 2001, Oxford 

Glycosciences (before the Celltech buyout) collaborated with these inventors to 

create state of the art quantitative proteomics facilities (PressRelease, 2001e).  Protein 

interactions were also emerging as a new area of interest.  In 2000, proteomic 

„interactomics‟ arrived with yeast-two-hybrid technology being described for the 

first time (Uetz et al., 2000) (later applied by Myriad Proteomics‟ ProNET approach, 

as described earlier).  Interestingly, both quantitation and interaction proteomics 

were moving away from the principle of list-based cataloguing, which was still 
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going on in industry.  Instead, these approaches delivered detailed understanding of 

sub-sets of proteins, like traditional biochemistry, as Nature has endorsed earlier.   

 

To summarise, it appears that the development of the proteomics market was 

stimulated by the willingness of investors to believe in MS technology and 

bioinformatics analysis could deliver.  The cost-effectiveness of these new 

approaches (ability to produce huge datasets in little time) rather than scientific 

efficacy drove the boom in proteomics biotechs.  Indeed, the capacity of new 

techniques to generate value (as patents on new drug targets, for example) was 

limited in the extreme.  This clearly demonstrates that it was the economics, rather 

than the true potential of the science that stimulated emergence and growth of this 

new market. 

2.3.4 Big Pharma invested heavily in proteomic bioinformatics 

infrastructure  

In the pharmaceutical industry, heavy investment went into high-throughput 

proteomics, both during the surge in biotech funding and after biotechs began to fail.  

During the late 1990s to early 2000s productivity across pharmaceutical R&D 

organisations was declining (Prasad, 2004, Garnier, 2008).  The amount spent on 

R&D was not reflected in the number of candidates making it through the drug 

development pipeline (Dimasi et al., 1995); there was an incentive for firms to try out 

technologies to try to increase the flow.  Moreover, in the mid-2000s it was getting 

harder to convince the regulators that new NCEs  (new chemical entities)  were  safe, 
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effective and better than the existing alternatives.  A new breed of medicines, „bio-

pharmaceuticals‟, were now being developed, where large molecules, such as 

peptides and protein molecules (antibodies, as in Herceptin29, for example) were 

being designed as therapies, instead of small drug molecules.  New avenues, such as 

these, were being explored because the industry needed innovative approaches; 

proteomics and its associated bioinformatics activities would form part of this drive.  

 

GlaxoSmithKline (GSK), the sponsor of this EngD (from 2005 to 2009), is taken as a 

case to illustrate how proteomics was carried out in R&D-based pharmaceutical 

firms at the time30.  Prior to the merger in 2000, both Glaxo Wellcome (Glaxo) and 

SmithKline Beecham (SKB) were using some tandem MS to identify proteins in 

samples from humans and model organisms, with both companies having labs in the 

US and UK.  High-throughput proteomics, however, began only after the merger.    

Pre-merger Glaxo joined forces with Cellzome for proteomics  

With several new proteomics-based biotech companies already trading, Glaxo began 

proceedings to set up its own independent spin-out company called the Cell Map 

Incubator (CMI).  CMI was based on the biotechnology expertise within Glaxo at the 

time, and planned to study protein-protein interactions on a large-scale.  The CMI 

company would recruit its scientists from Glaxo, including Walter Blackstock (cell 

biologist, mass spectrometrist and co-founder of the earlier  cell  map  unit  in  Glaxo, 

                                                
29 Trastuzumab is a breast cancer treatment.  It interferes with the HER2 protein receptors, which regulate cell 

growth, survival, adhesion, migration, and differentiation – all processes affected in cancer. 
30 Information on amounts invested could not be released.  Instead, the information presented is taken from 

public sources, such as press releases, and from interviews with remaining GSK employees in bioinformatics. 
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1998), and it would specialise in generating and analysing proteomic MS data.  In 

exchange for their investment, Glaxo would receive proteomics services at a 

discounted price from CMI in the future.   

 

However, regrettably for CMI, the merger with SKB happened just before it began 

trading.  As a result, several key players pulled out.  Some experts remained at GSK, 

but most moved elsewhere (Malcolm Ward and Helen Byers for example, who 

joined a new proteomic MS company, ProteomeSciences – listed on the AIM stock 

exchange in 1995).  Blackstock joined Cellzome UK soon after, in 2000.   

 

CMI‟s business model was based on the expertise, skills and knowledge of its 

scientists, so after haemorrhaging their most important resource, it was forced to 

collaborate with an external third party.  After deliberation, they chose Cellzome 

(PressRelease, 2001a).  This was a compelling choice, because Cellzome had links 

with the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany. 

 The partnership meant that Cellzome could provide bioinformatics services, and 

CMI would perform MS in the UK to generate data.  This setup appeared to be 

working until 2006, when Cellzome dropped the MS function, in line with other 

major downsizing of MS in big pharma.  This down-sizing is described now. 
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Post-merger GSK invested in proteomics workflows and IT 

infrastructure in the UK and USA 

After the spin-out of CMI, a „home-grown‟ proteomics facility was established at 

GSK.  Workflows were set up to analyse samples using most types of proteomic 

analysis; in particular, high-throughput MS to discover biomarkers for a variety of 

diseases in easily accessible samples, such as serum.   

 

There was a „buzz‟ surrounding proteomics at the time.  Scientists believed that 

proteomics would be capable of providing a supply of new biomarkers; so GSK 

invested heavily in proteomics capability.  Indeed around 2002, a major focus was on 

large scale phospho-proteomics studies, since GSK was aiming to understand how 

chemical modification of proteins (with phosphate groups) affects biological 

pathways and cell signalling (Annan, 2002) thus developing new ideas to design 

drugs to target kinases31. 

   

By 2001/2, the six CEDDs32, instituted by CEO Sir Richard Sykes and his successor J-

P Garnier were up and running, each investigating a different therapeutic area in 

GSK‟s portfolio.  Feeding the CEDDs with new candidates were the drug discovery 

„research‟ organisations: discovery research (DR) and genetics research (GR). These  

                                                
31 Kinases are ‘druggable’ enzymes that catalyse phosphorylation reactions in the body.  Druggable refers to 

their ability to be targeted successfully with medicines.  Kinases are phosphotransferases that transfer phosphate 

groups on other molecules, and are involved in cell signalling.   
32 Centres for Excellence in Drug Discovery.  These are smaller centres in R&D, each focuses on a specific 

disease area.  They were set up after the merger to improve the efficiency of research in such a large 

organisation like GSK. 
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carried out research typical to a “classical proteomics department” (Annan, 2002), 

including comprehensive high-throughput experiments.  Organisationally, the 

bioinformatics group for proteome research was aligned to GR, performing the 

occasional ad hoc project for DR.   

 

Large investment was put into instrumentation (Roland Annan Head of Proteomics: 

“We have…one of everything here” (Annan, 2002)) as well as hardware and software 

solutions to capture, store, analyse and report huge amounts of data being generated 

from DR and GR workflows.  In the early 2000s, software suites that could pipeline 

data into a searchable repository were scarce and were either too specific or too 

generic.  GSK built a bespoke, adaptable infrastructure for data analysis, working 

with a number of third parties, in particular Matrix Science.  The result was a system 

called „Proteominer‟, directly integrated with the Mascot result files.   

 

Collaborations with academia in proteomics were ongoing, including in 2002 links 

with Ray Deshaies at the California Institute of Technology (CalTech).  No corporate 

partnerships were in place, however, as was the case for rivals like Novartis, who 

joined with GeneProt.  GSK had greater in-house expertise, for example in genomics, 

so needed to rely less on third parties (Annan, 2002). 

Proteomics was downsized at GSK  

The turning point came in 2005.  Previously (in 2002), the head of proteomics at GSK 

(Roland Annan) had stated that “upper management here thinks that [proteomics] can  
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make an important contribution to all aspects of drug discovery...applications for proteomics 

are still evolving.” (Annan, 2002).  Management were changing their view.  Annan‟s 

comment on applications of proteomics was telling.  It shows that investment has 

been driven by economic grounds, not based on what science could deliver to GSK.  

GSK could not find a place for proteomics to add value. 

   

By this time, however, the volume of MS/MS data generated had grown, so too had 

spending on Mascot licenses and Blade servers.  The board had begun to notice that 

the cost-benefit profile of proteomics was not acceptable.  There had been no impact 

on the drug discovery pipeline; a scenario that was encountered by many labs in 

industry, as well as their academic counterparts: “...there are no clear success stories in 

which discovery proteomics has led to a deployed protein biomarker”(Rifai et al., 2006).   

 

Technology platforms were prioritised at this stage, and compared with other 

emerging technologies, such as transcriptomics and high-throughput screening 

(HTS)33, proteomics‟ impact on the drug discovery was noticeably inadequate, as 

was the case for GSK‟s rivals.   Consequently, in winter 2006 all proteomics activity 

was stopped.  The remaining proteomics research activities would be very small or 

                                                
33 A method of drug discovery that involves testing hundreds of thousands of compounds against a particular 

target – so all permutations of the problem are tried to find a match, rather than undergoing rational design.  

HTS is an automated process  involving  modern robotics, sophisticated control software, advanced liquid 
handling and detection methods. The hits generated during HTS can be used as the starting point for a drug 

discovery effort. Many pharmaceutical companies are screening between 100,000 and 300,000 compounds per 

screen to produce approximately 100 to 300 hits. Usually only 1 or 2 of these hits become lead compounds for 

further development. Occasionally, screens of over 1 million compounds are required to generate a sufficient 

number of lead compounds.   HTS can also be used in safety studies, to screen for compounds with undesirable 

activity. 
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outsourced.  This inevitably prompted disposal of MS instruments and an exodus of 

MS scientists, several moving to biotechs and back to academia34.    

GSK has a new CEO and proteomics does not feature in his 

plan 

Since 2006, proteomics and related research has remained absent from GSK.  Current 

CEO, Mr. Andrew Witty, consulted the firm's shareholders after taking his post in 

May 2008.  Many were discontented with years of underperformance, thus, 

demanded "more growth with less risk” (PressRelease, 2008c). This suggests that the 

consumer goods part of GSK‟s business will grow, not the more risky R&D-base in 

which proteomics and bioinformatics sit (Russell, 2008).  Interestingly, Witty‟s 

background, unlike previous GSK CEOs, is in economics not science or medicine.   

 

Witty‟s role as CEO is to mediate between innovation in R&D and the overall 

business strategy of the firm.  As such, he has the central role in the ultimate 

outcome for GSK.  To bridge the market and innovation in R&D, he plans to 

outsource R&D activities to contract research organisations (CROs); implying that if 

proteomics were to prove valuable in the future, it would be bought in not grown. 

 He is simplifying the structure of R&D and intends to encourage competitiveness, 

as in small biotechs, by setting up teams that must compete for up to $1 billion in 

annual funds from a „Drug Discovery Investment Board‟.  This board will include 

VCs and an external (biotech) firm's senior executive. The idea of this role-play is to 

                                                
34 For example, Arthur Moseley who is now the Director of Proteomics for the Institute for Genome Sciences & 

Policy at Duke University’s School of Medicine.   
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simulate the pitching process of a university spin-out, to ensure that R&D‟s activities 

can only proceed if the proposed strategy fits with the current, highly competitive 

marketplace.  This may help, although if the investments made previously by 

biotech investors in this space are exemplary of the decisions made by the market – 

then these can also be amiss, presenting Witty with a no win scenario. 

2.4 Current status of the proteomic bioinformatics market 

In this section the most topical areas of funded academic research in proteomic 

bioinformatics are described and following this, the current state of the proteomic 

bioinformatics industry is presented with case studies for firms operating in the UK, 

continental Europe and North America.  In this section, the author demonstrates 

how the research work for this EngD thesis is relevant and timely, given the status of 

the field.   

2.4.1 Proteomic bioinformatics research is publicly funded again 

Proteomic bioinformatics research has continued to receive small amounts of public 

funding in the UK.  Funding awarded between 1998 and 2008 for England is shown 

in Figure 18 (details of each grant are available in Appendix II).   
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Figure 18  Distribution of BBSRC funds in England for bioinformatics research for proteomic MS 

between 1999 and 2008
35

.  Only grants for software and computational hardware for proteomics were 

considered.  See Appendix II for information on each grant.  From this sample, the Wellcome Trust 

appears to be the most engaged in funding bioinformatics projects for proteomics, such as the PRIDE 

(Proteomics IDEntifications database) grant (PressRelease, 2005d).  The figure illustrates a sample only, 

other possible funding sources are available, but not reported here due to data access issues.   

 

To obtain a snapshot of public spending globally is more challenging, since there is 

no easy way to search awarded grants in specific areas, such as via the NIH 

(National Institute of Health, USA).  However, activity in proteomics can be traced 

indirectly using a major public proteomics repository, The Global Proteome Machine 

Database (GPMDB), because it provides detailed statistics on hits by country (an 

example is shown in the Appendix II).  It shows the global proteomics „hot spots‟ are 

                                                
35 Information taken from BBSRC Oasis database of awarded grants.  Only research grants are considered, not  

teaching  or fellowships.  The database can be found at  http://www.bbsrc.ac.uk/science/grants/index.html 
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Seattle and the South East UK.  Seattle is home to the Institute of Systems Biology, 

and the UK has the European Bioinformatics Institute – major hubs for data in 

proteomics.       

Ideally, large-scale proteomics would now be a commercially viable activity earning 

rents through with private funding.  Instead, it has come full circle.  The early 

innovators (Andersons, Mann and Aebersold) were publicly funded and after the 

tsunami of biotech and pharma investment, it has now dried up again leaving the 

field in a funding situation as per the 1990s.  This suggests that the economy is still 

waiting for proteomics to deliver on its potential.  Private funding and interaction 

with financial markets will resume if investors believe in the science of proteomics.       

2.4.2 Company case studies illustrate the current market for proteomic 

bioinformatics products and services 

Despite general disinvestment, proteomic bioinformatics companies are still trading.  

To illustrate the current status of the market, key players have been examined.  Case 

studies are used to examine how businesses were funded over their whole life cycle, 

and to see if there are any patterns which support or contradict the overall industry 

summary and the conclusion that too much investment was made too early.   

Funding routes are varied, and different funding providers have very distinct 

expectations as regards the return on the investment they provide.  VCs, for 

example, expect quick and large returns on their investment, as this is the nature of 

their business model.  Government agencies and charities, however, do not usually 

demand returns in the short term, but rather invest with a view to obtaining revenue 
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opportunities and societal benefits in the longer term.  This difference in priorities 

must be applied when interpreting the case studies in this chapter. 

Only firms that generate revenue from MS-based proteomics software or software-

related products and services36 are considered. MS-instrument vendors are therefore 

excluded because they provide proteomics software as part of larger product 

bundles, and it would be virtually impossible to consider the two revenue streams 

separately.  This may cause a bias, since the MS vendors (such as ThermoScientific, 

Agilent, Waters, Bruker, Shimadzu and others) represent large providers of software 

products for MS-based proteomics.  In some cases, the innovative elements of the 

software products sold by these vendors originated from university research or R&D 

in niche bioinformatics companies and the software is incorporated into MS 

instrument vendor bundles at a later stage: through licensing agreements, for 

example.  Specific examples include the Sequest search engine which was previously 

freely available (developed by John Yates III et al (Eng et al., 1994)), but is now 

exclusively available from ThermoScientific.  In this way, the two types of company 

are linked.     Examples of niche firms that have been left out include GenoLogics 

Life Sciences Software (USA) and Accelrys Software Inc. (Canada); which both have 

software platforms for proteomics, but their products are not exclusively in this area.  

Bioinformatics Solutions Inc.  (Canada)37 are not included, although they have a 

search engine product for de novo sequencing peptides from MS/MS spectra, because 

too little information was available to include them.  

                                                
36 Gel-based proteomics software is also included in some instances.  This is acceptable since in practice, gel 

studies are often linked to MS experiments. 
37

 See www.bioinformaticssolutions.com 
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CASE STUDY 1: Oxford Biotherapeutics Ltd. 

This start-up company was incorporated in November 

2003 and began trading 18 months later.  The 

opportunity to start a new proteomics company came 

about when Oxford GlycoSciences (OGS) and the newly formed company, 

Confirmant (a joint venture between OGS and Marconi) were acquired by Celltech 

plc in 2003.  At the point of purchase, OGS had three core areas of business: 

oncology drug development, inherited disease drug development and proteomics 

services.  The latter two were of significant value to Celltech, offering precious IPR 

for potentially lucrative drugs.  Proteomics, as a research service, did not.  This 

meant that Christian Rohlff (OBT‟s current CEO) and other senior members of the 

proteomics division at OGS could strategically acquire technology, infrastructure, IP, 

bioinformatics and data that Celltech did not want (PressRelease, 2003a), including 

OGAP® (The Oxford Genome Anatomy Project) (Rohlff, 2004).  OGAP is a unique 

database of high quality protein data derived from (formerly) state of the art 

proteomics facilities at Oxford Glycosciences, one of the largest in the world at that 

time.  This was not a management buy-out; instead a completely new company was 

started up.  Proteomics was going to be their business, but by retaining a familiar-

sounding acronym „OGeS‟, it meant that the company could maintain continuity 

with existing clients and exploit Oxford Glycosciences‟s good reputation.  Five years 

later - in November 2008 - OGeS became Oxford Biotherapeutics (OBT) to better 

reflect its expertise in proteomics. 
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Initial funding for the firm was provided by the South East Growth Fund, part of the 

UK government agency SEEDA38 in July 2004. Investors in this fund included GE 

Commercial Finance, Barclays, The Royal Bank of Scotland, the European 

Investment fund, Berkshire Pension Fund and the DTI (Smart Awards Scheme) 

(PressRelease, 2005b).  The company‟s pitch was to perform biomarker discovery 

and evaluation using high-throughput proteomics and bioinformatics.  Later the 

fund invested further (March 2005) (PressRelease, 2005b) as part of a larger 

investment round including the venture capital firm, Oxford Capital Partners 

(PressRelease, 2005f).  This second tranche of financing was for the move to larger 

custom-built facilities, the largest of its kind in Europe.  In February 2007, Catapult 

Growth Fund invested £1,200,000 (PressRelease, 2007f).  This is private equity firm 

funded by the UK government‟s Department for Business, Enterprise and 

Regulatory Reform and local authority pension funds.   

 

OBT is still privately held and based in Abingdon, Oxfordshire, with an additional 

site in San Jose, California.  It has 16 employees.  The firm‟s income comprises 

approximately 50% government grants and 50% commercial contracts, see Table 7 

for the financial performance information.  Grants include schemes such as the DTI‟s 

Smart Awards and TSB39 competitions, in return for which OBT must match the 

donated funds 100% - providing documentation and attending quarterly meetings.  

The remaining revenue stream is bespoke projects for pharmaceutical companies.  

                                                
38 South East England Development Agency  
39 The Technology Strategy Board.  Government agency which has a budget for 2008-2011 of £711 million plus 

aligned funding from the Regional Development Agencies of £180 million and at least £120 million from the 

Research Councils.  
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Since the majority of big R&D-based pharmaceutical companies have downsized 

internal proteomics research activities, OBT is presented with potentially lucrative 

opportunities to sell contract research services, allowing their clients to avoid 

expensive internal headcount.   

 

Table 7  OBT‟s financial performance (source: Companies House, UK) 

 

 

 

 

The contract services offered include protein biomarker discovery, the “bread and 

butter” 40 of the business (approximately 60% of contract revenue), and proteomic 

assay development, including design of MRM (40%).  Both of these services involve 

significant expertise in proteomic bioinformatics and data analysis, and they rely 

heavily on exploitation of OBT‟s most valuable asset: OGAP.  This is OBT‟s source of 

competitive advantage, because it provides the value-added elements to the 

discovery and development services they offer.  The database includes clinical and 

SNP41 information along with protein expression data on an enormous scale, 

containing over a million peptide sequences from over 50 different tissues involved 

in 58 diseases, including 5,000 cancer membrane proteins42.   This  means that  when  

                                                
40 Quoted from Martin Barnes, Head of Bioinformatics, OBT  
41 SNPs and haplotypes are the genetic differences between populations or individuals that can affect 

susceptibility to certain diseases. 
42

 Membrane proteins are often the preferred targets for drugs 

Year Turnover (£) P & L (£) 

2006 427,342 -546,484 

2007 0 -1,265,168 

2008 not available until 

October 2009 

 



 

 
108 

biomarkers are to be discovered many possible clinical implications can be 

accounted for, allowing evidence-based multi-marker assessment – an attractive 

proposition to big pharma.   

 

OBT have partnered with Medarex, a specialist in antibody technology.  OBT license 

Medarex's proprietary transgenic mouse43 technology to generate antibody 

therapeutics against cancer proteins that OBT identify using OGAP.  OBT retain 

worldwide rights to the antibodies generated, and Medarex has the right to receive 

license fees, milestone payments and royalties on commercial sales of any products 

that may result from the agreement: all on a 50:50 cost and profit share basis 

(PressRelease, 2007g).  Medarex would have liked to purchase OGAP outright, but 

greater value could be leveraged by OBT by retaining it.   

 

In 2006, OBT partnered with BioSite (San Diego), a company specialising in 

commercialisation of protein-based medical diagnosis (PressRelease, 2006a).  This 

strategic partnership improves OBT‟s position in personalised medicine. There is 

also a three-way agreement with Biosite and Medarex, where Medarex provide 

access for Biosite to transgenic technology, and Biosite carry out early stage antibody 

generation on behalf of OBT for OBT‟s programs. Amgen also collaborate with OBT 

to develop and commercialise antibody therapies (PressRelease, 2007a), where OBT‟s 

                                                
43 In this case, transgenic mice are genetically modified mice, which are used to generate antibodies that are 

suitable for human therapeutic use, for example to treat or diagnose cancer.  The mice produce ‘humanised’ 

antibodies, which are less likely to cause an adverse immune system reaction in humans 
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role is to provide novel druggable44 protein targets to which fully human antibodies 

can be raised by Amgen‟s proprietary Xenomouse® (transgenic mouse) technology. 

 

Going forward, OBT wants to commercialise components of OGAP via vendors of 

MS instruments and associated software packages.  MS vendors offer very attractive 

routes to consumers and could greatly expand OBT‟s market by exploiting their 

huge network of existing research laboratory clients.  At present, however, OBT is 

„too resource-constrained‟ to invest in product development to prepare OGAP for this 

kind of proposition.  Of course, OBT‟s market position is based on OGAP, so they 

will need to be very careful if they want to share even parts of it with such powerful 

organisations. 

  

                                                
44 Implies that the protein can be targeted by a chemical compound (medicine).  This type of protein is most 

suitable when designing a new drug.  
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CASE STUDY 2: Matrix Science Ltd. 

Matrix Science Ltd. was set up by John Cottrell and David Creasy, 

experts in scientific software /analytical hardware for protein MS, who had prior to 

their venture worked for Finnigan, now part of Thermo Scientific - a major MS 

vendor.  The company was launched initially in collaboration with the Imperial 

Cancer Research Fund (ICRF), with the original idea for the product, the molecular 

weight search (MOWSE) algorithm (Pappin et al., 1993) from Darryl Pappin, head of 

the Protein Sequencing Laboratory at ICRF.  Cancer Research technology, the 

technology transfer subsidiary of this fund, licensed the rights to MOWSE to Matrix 

Science.  To further develop the program into a viable product, Matrix Science 

partnered with BioVisioN (of Hannover, Germany), a peptidomics45 company.  

BioVision had lab-based research expertise, which could be combined successfully 

with Matrix Science‟s bioinformatics knowhow.  The company was officially 

incorporated on 24th March 1998, making it a very early entrant into the proteomic 

bioinformatics market.   

 

The company started with shareholders‟ funds of less than £40k and is still privately 

held, with the major partners also being active in running the business.  As Cottrell 

stated in 2003 “Starting a software company is not as expensive as starting a hardware 

company, so we did not have to get outside investment, which has given us a certain amount 

of freedom” (Cottrell, 2003). 

                                                
45 Peptidomics is essentially the same as proteomics, the difference is that only the peptide sequences are 

characterised; you do not go the extra step to identify the proteins that gave rise to the peptides. 



 

 
111 

The company began distributing the Mascot search engine product a year after the 

company was started.  Despite having only seven employees (six in UK, one in 

USA), MatrixScience has a healthy P&L46 account, reporting +£1.67m in March 2007 

and +£1.89m in 2008.   

 

Mascot has been around the longest of all the commercial search engines, so many 

labs and individual researchers are loyal to the product.  Commercial data capture 

and analysis pipelines have incorporated Mascot, via licensing agreements, so it is 

difficult for customers to switch products easily.  Also the target consumer, the 

research biologist, generally is attracted to a well supported „black box‟ analysis 

platforms, which are easy to use: Mascot fills this niche.   

 

Revenue streams include the sale of licensing agreements to commercial partners for 

integration of Mascot into their systems, for example with NonLinear Dynamics, 

IBM, LabVantage‟s Sapphire, National Institute of Health (NIH), Proxeon and 

Thermo Scientific.  The sale of licenses for their software platforms directly to clients 

is another major stream.  Their products are all related to Mascot and perform 

proteomic MS data analysis in some form (Table 8). 

 

 

 

                                                
46 Taken from abbreviated accounts at Companies House, UK.  A cash flow statement is not included, so no 

turnover information is available. 
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Table 8 A summary of Matrix Science‟s products 

Product Description Approximate retail price 

Mascot 

Server 

Hardware and software for protein 

identification 

Entry level £4,250
47

 up to 

£21,800 for eight processors 

Mascot 

Distiller 

Workstation 

Analyses data from multiple vendors 

includes novel algorithms for peak detection 

and quantitation 

£1,500 plus £750 for each 

toolbox (e.g. Daemon or 

quantitation) and £6,000 for 

Distiller Developer 

Mascot 

Integra 

Scalable solution for managing and 

automating proteomics research, based on 

Proteominer, which was developed for GSK 

in the early 2000s 

Entry level £20,000 

Mascot 

Cluster 

“Turn-key solution” for high throughput 

protein identification, exploiting parallel 

computing 

Price depends on specification 

 

In additional to the revenue from these products there are also rents earned in the 

form of support contracts (30% of license fee per year).  A final minor revenue 

stream is the sale of Mascot training courses, which are hosted in various cities 

across the world and in-house on request.  Arguably most proteomics labs in 

industry and academia, at least in Europe, are Matrix Science customers.  In addition 

to direct sales and marketing, MS instrument vendors perform marketing on their 

behalf, Bruker Daltronics, for example.   

 

Since 2004, the company has been expanding its Japanese customer base 

(PressRelease, 2004b) with the establishment of a sister company, Matrix Science KK, 

which was assisted by The Japan External Trade Organisation (JETRO), a 

government-funded organisation that promotes inward investment. 

 

                                                
47

 Prices were by quotation and exclude VAT 
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CASE STUDY 3: Nonlinear Dynamics Ltd. 

Incorporated in Newcastle-Upon-Tyne, UK, on 9th 

October, 1989, Nonlinear Dynamics is a privately 

owned company specialising in analysis and data-

mining tools for 1D and 2D electrophoresis gels and for MS.  Nonlinear is a family-

backed business with former „directors‟ including William, Sheila and Alfred Dracup 

and the current CEO is Will Dracup. 

 

Currently with 29 employees and an additional office in North Carolina, USA, 

Nonlinear is one of the larger companies in this market.  The firm was financed 

initially through bank loans (e.g. £15,000 in 1993), followed by equity investment by 

British Coal in 1995.  Funds from the Smart Awards scheme48 were granted, but the 

majority of investment was provided by Northern Enterprise49.  NEL Captial Fund 

Managers also have Nonlinear in their investment portfolio50.  In 1995, the first 

distribution contract was signed and in early 2000 Nonlinear launched their most 

successful product, Progenesis. The end user price for this software increased from 

£4.5k to £80k and the company headcount grew suddenly as a result, growing from 

just 25 to 100.  However, revenue streams dried up in more recent years and 

redundancies ensued (Figure 19).   

 

                                                
48 Smart Awards were given to individuals and small and medium-sized companies  (<250 headcount) by the 

Department of Trade and Industry.  The last one was awarded in 2003 NEWSLINK (2003) ‘Smart’ companies 

get their rewards Newcastle University's Newslink.. 
49 From Will Dracup’s blog at http://www.ifwecanyoucan.co.uk/Entrepreneurs/Will-Dracup/my-story 
50

 NEL is a VC company investing  in high growth businesses in North East England http://www.nel.co.uk 
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Figure 19  Nonlinear Dynamics financial performance
51

 

 

Nonlinear‟s customers are universities and academic institutes and also Novartis 

and BioMerieux.  They are also a distribution partner for GeneBio, distributing 

Phenyx globally (PressRelease, 2008e).  For a summary of their products see Table 9.   

  

                                                
51

 As reported in the Fame database 
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Table 9 A summary of Nonlinear Dynamics‟s products 

Product Description Approximate retail price (in $) 

Progenesis software for 2D gel, DIGE, LC-MS and 

biomarker screening 

22,000 

Progenesis 

SameSpots 

2D and DIGE analysis platform 24,000 

Progenesis 

Stats 

multivariate statistical analysis tool for 2D 

and LC-MS 

Unknown 

Progenesis 

PG600 

biomarker discovery using MALDI TOF MS 

analysis 

Unknown 

TL100 quantitation and calibration of 1D gels 999 

TL120 analysis tools for quantitation, calibration 

and band pattern matching 

3,000 

 

Nonlinear has two wholly owned subsidiary companies: Nonlinear EBT Limited and 

Phoretix International Limited, and has distribution partners in Korea (Chayon 

Laboratories Inc.) and Japan (SCRUM Inc) (PressRelease, 2007e).  In August 2004, 

Nonlinear sought collaboration with Matrix Science Ltd.   Under this agreement, 

Nonlinear‟s protein informatics system was integrated with the Mascot Server 

product.  They also have agreements for distribution with Perkin Elmer, who have 

proteomic gel imaging products (PressRelease, 2005e).   
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CASE STUDY 4: GeneBio S.A. 

Geneva Bioinformatics (GeneBio) was founded in 

1997 by three professors from the University of 

Geneva: Ron Appel (Department of Computer Sciences and Executive Director of the 

Swiss Institute of Bioinformatics52 (SIB)), Amos Bairoch (Department of Structural 

Biology/ Bioinformatics and head of the SWISS-PROT53 database group at SIB) and 

Denis Hochstrasser (director of the Clinical Pathology and Vice Dean of the Faculty 

of Medicine).   

 

The current CEO, Nasri Nahas, took the role in 2001 having acquired experience in 

the biotech industry at Genset SA, which specialised in genomics54 and was the 

second largest biotechnology company in Europe in 1999, and also ValiGen SA, a 

EuroAmerican functional genomics55 company.  Former director, Prof. Robin Offord 

(1998-2000) came from GeneProt.  GeneBio was funded predominantly by Index 

Ventures, a pan-European VC firm focused on the life science and information 

technology markets (PressRelease, 2001b).   

 

                                                
52 SIB is an academic not-for-profit foundation established on 30th March, 1998.  It coordinates research and 

education in bioinformatics and provides bioinformatics services for various areas of biology to international 

research communities via the internet. 
53 SWISSPROT is a protein sequence database hosted at SIB, which was first created in 1986 by Amos Bairoch 

during his PhD.  It is a manually-curated database which means it provides a high level of annotation (such as 

the description of the function of a protein, its structure, chemical modifications and variants).  It has little 
redundancy, making it more compact than other protein databases available in the public domain.  It also has 

links to relevant external data resources. 
54 Genomics is the study of genomes, where a genome is the entire DNA sequence of an organism. 
55 Functional genomics aims to understand the function of the genes that make up the genome, so includes 

research into on the dynamic processes such as gene transcription and  translation – which leads to protein 

production in cells. 
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In 1998, GeneBio became the exclusive commercial representative for the Swiss 

Institute for Bioinformatics (SIB), the developer of key proteomic tools and protein 

databases like SWISS-PROT, PROSITE56 and SWISS-2DPAGE57.  In May 2004, 

GeneBio expanded into Japan (PressRelease, 2004a).  In 2005, another company was 

founded called Current BioData, Ltd (CEO Ian Tarr) as a joint venture between 

GeneBio and the Current Science Group (London).  The company would focus on 

the further development, promotion, and distribution of the ProXenter product.  

Current BioData set up a research site in Wales in 2008 (PressRelease, 2008a).      

 

Financial performance information is unavailable for this firm.  The company‟s 

products (Table 10) are priced on an individual basis. 

 

Table 10 A summary of GeneBio's products 

Product Description 

Phenyx MS data analysis platform released in 2004.  It is sold as PhenyxServer, with 

a CPU-license (set price per CPU) and as PhenyxOnline with an annual 

subscription the price of which depends on the “user profile” (i.e. number of 

monthly submissions, size of peaklist files,etc.) 

SmileMS Metabolomic MS data analysis 

Melanie 2D gel analysis which is sold as a user-license (price per user number) 

Aldente For PMF sold as a PC-license (price per PC) 

MSight For graphical exploration of huge MS datasets 

e-proxemis Bioinformatics learning portal (launched 2005) 

Premium 

versions of the 

SIB Databases 

User license (with a set price per user number) 

ProXenter Web-based information portal (released as a joint venture with Current 

Science Group) 

 

                                                
56 PROSITE is a manually-curated database of protein families and domains hosted at SIB. It was set up in 1988 

by Amos Bairoch.  
57

 SWISS-2DPAGE is a database of annotated 2D and 1D PAGE gels hosted at SIB, set up 1993.   
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GeneBio‟s key customers are academic institutions, such as the Biozentrum at the 

University of Basel (PressRelease, 2007b) and the proteomics group at Utrecht 

University (PressRelease, 2009).  They are well-connected with partnerships 

including Nonlinear Dynamics, GE Healthcare, Bruker Daltonics, Genedata, 

Amersham (PressRelease, 2003b); Wiley-VCH (PressRelease, 2005g); Sage-N 

Research (PressRelease, 2006e); Insilicos (PressRelease, 2006b); Genologics 

(PressRelease, 2006c); Proteome software (PressRelease, 2007c); Institute of Systems 

Biology, Seattle (PressRelease, 2007d); Protagen AG (PressRelease, 2008f); and 

Proxeon (PressRelease, 2008b).  GeneBio has international partnerships including 

KOOPrime Pte (Singapore) (Summary, 2005); BIGG (The Bioinformatics Institute for 

Global Good (BiGG), a research institute in Tokyo, Japan) and Hitachi Software 

Engineering Ltd. (PressRelease, 2005c); Proteomic Solutions (France) (PressRelease, 

2005a); and Proteome Systems (Sydney, Australia) (PressRelease, 2000a). 
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CASE STUDY 5: Proteome Software Inc. 

Mark Turner and Brian Searle58 started Proteome Software 

Inc. in 2004 in Portland, Oregon, USA.  Mark Turner's 

background is in information technology and previously (1994-1996) established a 

successful start-up called Noetix based around views for visualising data in 

commercial Oracle databases.  Brian Searle was originally trained in chemistry, but 

then later moved into proteome informatics research and software programming.  

The company was initially funded internally and has since been funded entirely on 

sales. 

 

Before forming their company, Searle and Turner had worked together at Oregon 

Health and Sciences University under Srinivasa Nagalla, MD59.  Here they 

developed proteomics software called OpenSea (Searle et al., 2004, Searle et al., 2005) 

to interpret peptide de novo sequencing data.  OpenSea was intended to be Proteome 

Software's first product but IP issues complicated the spin-out process.   

 

Instead, the first year was spent developing an alternative software product called 

Scaffold.  This software package helps scientists interpret results from proteomics 

search engines such as Sequest and Mascot in a consistent and reliable manner.  To 

achieve this, they  re-implemented  and  pipelined  strategies  from  the  proteomics 

                                                
58 Brian Searle was interviewed by the author on 15th July, 2009, Cambridge, UK.  This case study text has also 

been edited directly by Brian Searle (31st August, 2009). 
59 Founder and CEO of Diabetomics, a medical diagnostics company.  He is a pioneer in application of genomic 

and proteomic technologies for medical diagnostics. 
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literature, most notably PeptideProphet (Keller et al., 2002a) and ProteinProphet 

(Nesvizhskii et al., 2003b) for determining peptide and protein identification 

probabilities.   

 

Once the product was ready for market, the company hired Mark Pitman as a 

primary sales lead.  Turner took on management and product testing responsibilities 

and Searle took technical development.  Searle admits to using Matrix Science as a 

model for setting up and maintaining a profitable proteomics software company.  

Proteome Software has gone on to specialise in developing tools to make complex 

data analysis easier for lab-based researchers.  

 

In 2009, the company is still privately held and employs just nine people: one 

manager, three software developers, two sales leads, two customer service 

managers, and a software tester.  The company has a modest list of specialised 

products that are sold to industry and academic labs worldwide, but predominantly 

in the USA and Europe (Table 11).   

 

Table 11 A summary of Proteome Software's products 

Product Description 

Scaffold 2 Interpreter for MS/MS based proteomics that combines and compares 

multiple samples and database search engines into a single experiment-wide 

view 

Scaffold Q+ Relative quantitation tool for MS/MS based proteomics 

MassQC Online service that stores, analyzes and displays performance metrics for LC-

MS/MS based proteomics for quality control 
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Sales are made directly, or via resellers, such as Mass Solutions Technology in 

Taiwan, Software4Labs, UK, and Matrix Science KK, Japan.  Proteome Software do 

not publish accounts.  The funding structure, however, is known to be based on 

reinvestment of profits, for example into new product development, rather than 

requiring external investment – at least for now. 
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CASE STUDY 6: Sage-N Research Inc. 

Sage-N Research‟s CEO is David Chiang, a member of the Sand 

Hill Angels60, an early-stage venture and mentor capital firm.  He 

is an inventor and engineer, educated at MIT, and before founding Sage-N Research, 

he was employed by Xilinx, Inc., the world leader in the Field Programmable Gate 

Array (FPGA) industry61.  Before this, he was a Senior Design Engineer for Altera 

Corporation, as well as for the Research Laboratory of Fairchild Semiconductor. 

 

The company was incorporated in 2002 and is in San Jose, California, and Shanghai, 

China (since December 2005).  The Silicon Valley connection is unique in the 

proteomic bioinformatics field, and Sage-N plays this to its strength with its major 

product being the only integrated data appliance for proteomic MS-based research.  

It also boasts the biggest names in proteomics on its advisory board, including 

Zubarev, Aebersold, Gygi and Yates.  Sage-N‟s major revenue stream is the 

development and sale of platforms for high-throughput proteomics data analysis 

(Table 12). 

 

 

 

 

                                                
60 http://www.sandhillangels.com/ 
61

 Information is from the Infotrac Company Profile for Sage-N, dated 5
th

 Dec 2008 
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Table 12 A summary of Sage-N Research's products 

Product Description 

Pattern Match 

Accelerator 

Hardware and software that are as powerful as a computational cluster 

but are a single machine 

Sorcerer 2 Software that supports continuous high throughput proteomic data 

analysis.  It is extensible, accommodating Open Source as well as 

proprietary analysis algorithms.   

Sorcerer XT Rack mounted server version 

Sorcerer Enterprise Scalable version for large research centres, designed for Linux 

platforms 

Sorcerer's Shield Subscription program (for continuous updates and zero down time) 

renewed on a yearly basis for up to five years ($5500/year) are 

additional add-on lines 

 

Sage-N have an agreement with Proteome Software Inc. (PressRelease, 2006f) for 

distributing Scaffold as part of the Sorcerer bundle. In 2007, they were also granted a 

sublicense from ThermoFisherScientific to sell SEQUEST® search engine 

(PressRelease, 2007h, PressRelease, 2008g).  Other partnerships include VM Ware, 

IBM, Institute of Systems Biology (PressRelease, 2005h); Rosetta BioSoftware 

(interoperability between Elucidator® and Sorcerer) (PressRelease, 2006d) and 

GeneBio (Sage-N can distribute GeneBio's Phenyx platform together with Sorcerer) 

(PressRelease, 2006e).  Sage-N‟s customers include universities, institutes and 

private companies in USA, UK, Israel, Canada and Singapore. 

  



 

 
124 

2.5 Discussion  

Proteomic bioinformatics is a new field of science.  The chapter so far has explained 

how it developed and how it was funded.  In the discussion, the business history 

and case studies are interpreted, and recommendations are made to fragment the 

proteomics value chain.  This will increase efficiencies in R&D spending on 

proteomics in big pharma and, in turn, will generate further growth potential for 

niche proteomic bioinformatics companies.     

2.5.1 High-throughput proteomics is a typical ‘hype cycle’ technology  

Gartner‟s technology hype cycle offers a useful model for interpreting the series of 

events seen in proteomics (Figure 20).  The x-axis is time, and the y-axis is „visibility‟, 

which represents private funding and the level of interaction with financial markets 

in general.  The model shows that there is a direct connection between the way 

science is funded with how it evolves.  
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1985 protein catalogue using Edman 

1987-91 MALDI,  

1998 ESI 

1993 MOWSE (Mascot precursor) FragFit 

1996 PEPTIDESEARCH 

1999 Mascot paper, ICAT 

2004 ProNET, 

ProSPEC 

2000 Yeast 2 hybrid 

1990s human genome sequencing 

1994 SEQUEST 

Early 1990s   MALDI-TOF 
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Figure 20 Gartner‟s technology hype cycle applied to proteomics.  The green star marks the current 

location of high-throughput proteomics technology (MS/MS and associated bioinformatics) in pharma; 

the blue star represents the location of academia and other publicly-funded research organisations.  

Process innovations are annotated on the curve by the year(s) they emerged.  Gartner is a large, US 

market research firm for high-tech and IT.   (Source: images from Wikimediacommons, Matthias 

Mann‟s MaxQuant website and http://www.sttammany.lib.la.us) 

 

Phase I: The technology trigger came from publicly-funded 

research 

Prior to proteomics taking off in industry, two developments had begun in publicly-

funded organisations: (1) in the late 1980s and 1990s researchers began large-scale 

cataloguing of proteins using existing low-throughput methods; then (2) new 

technology (MS and proteomic search engines) was invented which could increase 

the throughput of cataloguing, meaning proteins could be measured on an industrial 

scale. 

 

These catalogues were effectively proteomics „taxonomies‟, where the aim was to 

record and measure every human protein.  This was an obvious thing to do first: like 

explorers, or alchemists, endeavours were made to carefully characterise the 

landscape and give the new field boundaries.  An effort to create such a catalogue is 

perhaps unlikely to create commercial value in the short term, but the public funders 

appreciated that this was unchartered territory and they were willing to support it.  

Indeed, funding of fundamental research like this is justified by governments by 

referring to “indirect but important long-term benefits to society”, with the division of 

labour with firms coming later once technical advancements have been made 

(McKelvey, 2000).      
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Phase II: Industrial scale proteomics was possible and investors 

believed the genomics ‘superstars’ could deliver   

The transition from publicly funding to private investment came about because: 

1. There was a technology push: industry-scale proteomics was now possible, specifically via 

MALDI (1993) and ESI (1998). 

2. IP was potentially available using the new technology; there was a desire to increase the 

effort for protein biomarker discovery in pharma and biotechs.    

3. Genomics was developing high-throughput science ‘superstars’, who attracted the attention 

of investors. 

 

During the land-grab, a boom began for companies to create their own catalogue of 

proteins and mark their territory in the form of IP.  This was fundamental 

exploration of the science way before commercial viability had been demonstrated.  

During the 1990s, the greatest taxonomy yet - the human genome project - was 

almost complete.  The sequencing effort for genes began in 1990, a draft was 

available of the entire genome in 2000, and by 2003 it was complete.  And in contrast 

to proteomics, high-throughput sequencing of genes created commercial value 

almost immediately, in the form of low cost microarray products for measuring gene 

expression using the sequences taken direct from the genome sequence.  In 1997, for 

example, the first miniaturised microarray was created (Lashkari et al., 1997), with 

commercial versions coming soon after: Affymetrix62 in 1994, Agilent63 in 1997.   

 

                                                
62 Scientists at Affymetrix invented the world's first high-density microarray in 1989 and the company was the 

first to market with a DNA microarray. 
63 Agilent is a Hewlett Packard spin out .  In 1997 as HP, it introduced its first microarray product  (the 

GeneArray Scanner) for analysing GeneChip probe arrays from Affymetrix. 
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As a result of the incumbent success of genomics in the mid to late 1990s, the new 

breed of genomics biotech „champions‟ (as defined in (Markham, 2002)), like Venter, 

Hochstrasser, Gilbert and Raab - who had been highly visible figures in gene-related 

enterprise - were powerful, well-connected and respected in both commercial and 

scientific spheres.  They effortlessly attracted the confidence of investors when they 

set out to launch proteomic biotech companies.  However, the land-grab did not 

succeed.  Expectations were artificially high; compared to genomics, the problems 

being addressed were more complex: “the proteome is analogue, the genome is digital” 

(Moody, 2004).  The human proteome, as a concept still is not fully defined, whereas 

it took less than ten years to have the idea and complete the entire sequencing of the 

whole genome.  The number of genes is 20,488 (Clamp et al., 2007), but there are 

more than 200,000 proteins including variants and possibly up to ten million if all 

somatic DNA rearrangements are included (Uhlen and Ponten, 2005).   

 

For evaluating the potential of biotech companies, JP Morgan suggest that three 

requirements need to be satisfied (Figure 21): people, IP and science (Berry, 2002).   
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Figure 21  Investors weigh up biotech start-ups using three main criteria: people, IP and science (Source: 

JP Morgan in (Berry, 2002)) 

 

It could be argued that the proteomics biotechs of the late 1990s easily met the 

people criterion that investors were looking for, but the IP rights and the science 

were notably absent; spelling their downfall.  The reputation of the „genomics 

superstars‟ sold the idea of high-throughput proteomics, despite the „experts‟ having 

specialised knowledge derived from a distinct field.  One of the challenges facing 

middle/senior managers is how to determine the economic value of the new 

technologies and knowledge they have or promise to deliver (McKelvey, 2000).  At 

the time, it was impossible to understand the proteome in enough detail to patent or 

just apply elements of it to patents or product development.  Fishing for marketable 

biomarkers in the „spectral soup‟ was hindered by the technical  difficulties,  such  as  
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background noise, orders of magnitude differences in protein expression and issues 

with reproducibility.  Sophisticated tools were needed to integrate and interpret 

proteomics data, and many different groups needed to coordinate to get the job 

done.   

 

There was not a public policy issue to prevent IP for protein biomarkers.  Indeed, 

despite President Clinton and Prime Minister Blair announcing in 1999 that gene 

sequence information should be made freely available, thus not patentable (Hencke 

et al., 1999), by spring 2000, Clinton had clarified the statement: “if someone discovers 

something with a specific commercial application, they should get a patent” (Pilling, 2000).  

And in any case the genomics market had grown on the back of technical microarray 

products, not just gene leads per se.  Protein sequences and information could in 

theory be patented, as demonstrated by Oxford GlycoSciences who successfully 

patented 800 proteins associated with human disease in 2000 (Firn, 2000), it was just 

that there were very few leads to patent, because the technology could not deliver 

them.  In summary, the IP dimension of the triangle (Figure 21) was not to blame.  It 

was the science criterion of the model, there was a problem.  Since industry-scale 

research of proteins became possible, it was automatically deemed worthwhile 

doing it, but “technology should not be about higher throughput,...but a means to provide 

insight...of the biology...under investigation” (Naylor et al., 2007).  The science was not 

ready to deliver knowledge with economic value.     
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Phase III: The peak of inflated expectations - proteomics was 

driven by hype and rivals in corporate pharma 

Corporate pharma entered the market for proteomics relatively late.  There was 

increasing pressure to be seen to be investing, since “... not doing anything is generally 

not a real option for firms engaged in fast-moving environments...[it] means being left behind 

and out of business” (McKelvey, 2000).  By investing in high-throughput proteomics, 

GSK could demonstrate that it was not missing out in the technology potentially 

delivering value to their rivals. Operations in proteomics were at full speed (at GSK, 

for example) at the very tip of the wave (Figure 20).   

 

Companies, like GSK, have a history of „punting‟ on several new technologies in 

parallel in R&D and then assessing the value added by each after a period of time.  

For them, proteomics and its associated bioinformatics activities was just another 

component in a very large „machine‟ (Garnier, 2008).  Unlike the biotechs, it did not 

spell bust, because there were other elements of the business that could keep the 

machine running.  However, proteomics is an example of how technology alone is 

unable to cure the inefficiencies in R&D: “without true understanding of ...new 

technologies...and the ability to interpret the complex and massive datasets that are 

produced...how can we expect [technology] ...to cure...all [the pharma industry‟s] 

woes?”(Naylor et al., 2007).  
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Phase IV: The trough of disillusionment – proteomics has no 

interaction with the financial markets  

Industrial proteomics in the mid to late 2000s was noticeably absent from the 

headlines, with no interaction with the financial markets: “Once the poster child of the 

biotechnology revolution... seen as the next technological gold rush, proteomics has gone very 

quiet.” Russ Swan64, 22nd July 2008.  Given the very steep increase in investment seen 

in the wave, proteomics may be considered the victim of its own successful 

marketing.  However, “...much of the data generated by proteomics groups over the past 

decade is junk.” (Service, 2008a).  The plasma proteome project, for example, was “a 

big disaster” (John Yates quoted in (Service, 2008a)) because of the lack of quality 

control and reproducibility obtainable with MS.  Moreover, downsizing cost 

scientists (and middle management) their jobs, morale and credibility.   

 

As a hit back, the Nonlinear Dynamics CEO, Will Dracup, is leading the Fixing 

Proteomics Campaign65 (2007) to protect the marketplace (including his own 

company‟s) and to „bring together the people in proteomics who want to tackle the growing 

frustration and unfair perception that proteomics hasn't delivered‟.  How „unfair‟ the 

perception is can be debated, since as yet there are still no commercially valuable 

biomarkers derived exclusively from proteomics (Rifai et al., 2006). 

                                                
64 Editor of the Laboratory Talk Blog (http://www.laboratorytalk.com) 
65

 http://www.fixingproteomics.org/ 
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Phase V: The slope of enlightenment – a new technology trigger 

or consolidation of existing techniques? 

In spite of the difficulties, proteomics still has the potential to become a big market.  

Unlike genes, proteins are the physical targets of drugs; they carry out the biological 

process in all cells in all organisms, so there is great potential for leveraging 

understanding about them to create commercial value. “The lure of proteins was 

undeniable” (Service, 2008a) and it still is.  For now, however, high-throughput 

proteomics is in the trough, albeit higher on the y-axis than when it started out 

(orange arrow, Figure 20).  Possible options for escape are the arrival of a new 

technology trigger, or revisiting existing techniques applying learning from 

mistakes.  For the first scenario, the limits of MS and current database searching 

techniques must be overcome.  It may be that investors will need to see totally new 

technologies that have been proven, to lift the market out of the dip and start a new 

cycle.  Given the poor track record for proteomics, funding will only be made 

available if scientists can reliably substantiate their claims.  Furthermore, given the 

economic crisis in the financial industry during 2008-9, governments and private 

companies have contracted budgets further; President Obama, however, appears to 

be backing fundamental scientific research with $1.1 billion already promised for 

research funding to NIH and other bodies (Mundy, 2009).  However, there is a 

noticeable absence of „superstar‟ scientists to lead the cause this time, so 

revolutionary new techniques may be even harder to sell.     
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If, in contrast, high-throughput proteomics is revisited in a concerted effort, then 

best practice and standards must be set and adhered to.  This is the route of escape 

that the author believes is happening now.  For example, since January 2006 the US 

National Cancer Institute has been running the Clinical Proteomic Technologies for 

Cancer (CPTAC)66 programme: a five year initiative to develop standard operating 

procedures (SOPs) for high-throughput proteomics (PressRelease, 2008d, Blow, 

2008).  The program will cost $104 million; and they have already spent 

approximately $35.5 million.  Five labs are involved in setting SOPs for unbiased 

biomarker discovery and biomarker verification with MRM including bioinformatics 

analysis.  A new tool for MRM transition design, for example, was funded by 

CPTAC (Skyline from the MacCoss lab (Prakash et al., 2009)) (personal 

communication, MacCoss, June 2009).  Furthermore, recent news articles hint that 

leaders in proteomics research, such as Matthias Mann, Mathis Uhlen and Amos 

Bairoch, are forming a plan to undertake a new full-scale human proteome project 

(HPP) (Editorial, 2008a, Service, 2008a), estimated to cost in excess of $1 billion and 

take 8-10 years.  This may not happen just yet, as European-wide funding is harder 

to coordinate.  Nevertheless, a pilot study is being considered for mapping the 

proteins expressed by genes on chromosome 21.   

 

Indeed, it seems that the profile of high-throughput proteomics is improving.  €12 m 

over five years (2008-2013) has just been awarded by the EU framework 767 to the 

                                                
66 http://proteomics.cancer.gov/about/CPTC_milestones_508.pdf 
67 Seventh Framework Programme of the European Community for research, technological development and 

demonstration activities (http://cordis.europa.eu/home_en.html) 
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PROSPECTS (PROteomics SPECification in Time and Space) project (Cottingham, 

2008), and the Science magazine 2008 „Breakthrough of the year‟68 runner up was 

Matthias Mann and co-workers‟ with work in large scale proteomics.  Mann et al. can 

now identify the complete yeast proteome “in one shot-in just a few days” using tuned 

MS (Service, 2008a) and new software, MaxQuant (Cox and Mann, 2008); a feat 

which in 2003 would have taken months five years earlier.  Their strategy is truly 

like a gene sequencing facility – running samples constantly in a fully automated 

fashion.  The difference this time is that the cataloguing approach has impact on 

science.  For example, they can measure all of the proteins expressed in cells lines 

and knock-outs, which are used by the pharmaceutical industry to test new 

medicines.  Specific biomarkers are not here yet, but reproducible platforms are 

emerging.     

 

Phase VI: Plateau of productivity – routine and affordable 

proteomics technologies are needed 

For the technology to plateau, the technology must become routine and affordable.  

To this end, efforts like CPTAC, and Mann‟s work brings the field a step closer to an 

affordable method to map the proteome and exploit it to examine global changes in 

protein expression for delivering biomarkers.  For proteomics to see growth, like 

genomics, the industry needs a single, affordable technology platform to tell 

researchers all they would like to know about proteins.   

                                                
68

 http://www.sciencemag.org/cgi/content/full/322/5909/1768 



 

 
136 

 

From the viewpoint of the author, high-throughput proteomics is now beginning to 

ascend the slope of enlightenment, but has not yet reached an acceptable plateau.  

The aforementioned efforts work towards the formulation of SOPs and best practice 

(CPTAC, Mann, et al.).  Furthermore, the author argues that the tools and resources 

developed in this EngD add to the progression of this upward slope.  For example, 

by increasing confidence in automated searches (in Chapter 4) higher quality is 

established in high-throughput analysis workflows; it acts as a way to establish best 

practice and suitable reporting guidelines for protein identifications derived from 

pipelines.  Indeed, new statistical techniques and methods to increase the quality of 

identifications are topical right now (Elias and Gygi, 2007) (Nesvizhskii et al., 2007) 

(Choi and Nesvizhskii, 2008a, Käll et al., 2008, Tabb, 2008). 

 

Furthermore, the computational resources for MRM (developed in Chapter 5 and 6) 

are important steps towards the future of proteomics, because it is highly likely that 

MRM will feature in the final toolbox of SOPs for proteomics, and in routine clinical 

proteomics practices on the plateau.  The MRM tool and database developed in this 

thesis fit with CPTAC‟s aims to improve the quality of biomarker validation using 

targeted and reliable, and quantitative approaches - not high-throughput shot-gun-

style proteomics seen previously.  In fact, the MRM tool published as part of this 

thesis was released before the CPTAC offering (Skyline), showing the timeliness of 

the efforts presented by the author. 
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2.6 Proving the management hypothesis 

The hypothesis for this investigation was that the economics was leading the true 

value creator: science and technology.   

 

The business history of proteomics showed clearly that despite the advent of 

genome sequencing (leading eventually to the development of the first search 

engines), scientists like the Andersons, were aiming to catalogue proteins years 

before a genome was available.  So proteomics started out in the absence of 

genomics.  It started, like other sciences, as publicly-funded exploratory science.  

Only when it became possible to perform large-scale proteomics, through 

technologies such as bioinformatics (now using genome sequences) and high-

throughput LC-MS set-ups, did private investors get involved.  When they did, it 

was frenzy and a new market was rapidly cultivated.  It was a technology push 

scenario, where the improvements in technological ability to analyse proteins fuelled the 

investment in proteomics and bioinformatics, rather than a market pull where 

technical improvements were made in response to a perceived market demand for 

protein analysis.   

   

In contrast, however, pharmaceutical companies had declining productivity in R&D 

and were looking for ways to fill their drug pipelines with new targets.  Proteomics 

was one of many new technologies offering potential use for biomarker discovery so 
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it fitted the bill.  In contrast then, a market pull was driving the investment and 

growth in proteomics in corporate pharma and indirectly affected biotech growth.      

 

Did the market for proteomic bioinformatics come about because of process 

innovation, or did it come about because of the excitement and the success of the 

genome sequencing project?  It is true to say that the excitement and the success of 

the genome sequencing project helped to fuel the growth in commercial proteomics 

in biotechs and big pharma in the late 1990s- early 2000s, in that this era produced 

the genomics „superstars‟ who caught the eye of investors and hence, socio-economic 

interactions ensued. However, availability of genome sequences per se, had little 

effect on the growth in proteomics at this time.  Since when one search engine was 

developed to demonstrate the principle of applying genome sequences to 

proteomics that was it.  Search databases did not change significantly after this; 

instead developments were made in instrument design and software algorithms.  It 

was the reputations of individuals from the genome sequencing era that were more 

responsible for the growth in proteomics, than the improvements in genome 

sequences themselves. 

 

The author argues that increases in processing power, new algorithms (such as 

Mascot), and capability of MS as a technique, did have an impact on the 

attractiveness of proteomics and hence the emergence of proteomics and proteome 

bioinformatics as a new market in its own right. But, by the boom in the market in 

the late 1990s, the science could not keep up with the demands of the market.      
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2.7 Recommendations for investors and funding bodies for 

proteomic bioinformatics 

The hype cycle demonstrated that proteomic bioinformatics is a high-tech industry 

with close parallels with the IT industry.  Indeed, the dot-com bubble (1998–2001) 

was happening at the same time as the boom in high-throughput proteomics 

biotechs.  By 2001, the IT industry was in crisis, but it picked up quickly afterwards 

with success stories like Microsoft and Google, and more recently Skype and 

Facebook.  So, for investors looking to invest in the next phase in proteomic 

bioinformatics, what recommendations can be made?   To answer this, the trends in 

funding mechanisms are analysed, and suggestions made given the author‟s 

interpretation of the results of the analysis.       

2.7.1 Funding high-tech can be a springboard for growth or a futile cycle 

The typical funding stages for high tech companies are shown in Figure 22.  High-

tech is a high risk, potentially high-growth industry, so VC funding is usually 

required.  Funding is multi-stage and exit routes (of interest in particular to the VCs 

involved) are: a buyout, for example by a larger corporate firm; flotation on the stock 

market; or (in the worst case) a cycle where start-ups require further government 

support to continue development and trading (blue arrow, Figure 22).      

    

  



 

 
140 

 

 

Figure 22  Usual funding stages for high-tech start-ups, with buy out or public floatation as the final 

stage.  The blue arrow is atypical, but observed in some of the proteomic bioinformatics companies in this 

chapter, such as Oxford Biotherapeutics where government funds are still needed to fund day-to-day 

operation.  Grants at the start are usually at the university stage, but may be in collaboration between a 

university and company.  (Source: author‟s own summary) 

 

Looking in detail at the business history and case studies, three types of business 

emerge based on the funding route taken (Table 13), these are: 

 Type I: ‘ideal’ rapid growth, VC-funded, successful exit 

 Type II: ‘lifestyle’ profitable, small, stable, perpetual 

 Type III: ‘marginal’ pre-revenue, need continued support with public grants   
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Table 13  Funding summary for the proteomic bioinformatics case studies.  Oxford Oligosaccharides is taken as an example for comparison with the proteomic 

bioinformatics companies (the case studies).  * - at the grant stage, companies must usually match the funds „in kind‟ (i.e. by teaching time, resources etc., bank 

loans or individuals investing).   

 

Type of 

business 

Company Grants*/ funds 

from academic 

projects 

Private funds Angels 

investors 

VC Corporate 

venturing 

Final or next 

move 

Type I 

Success – 

usual funding 

route 

Oxford 

Oligosaccharides 

(predecessor of OGS 

and then OBT) 

Yes (Oxford 

Uni) 

Yes (£60m) No Yes (Advent 

Cap. And 

Euro 

Ventures) 

Yes 

(Monsanto, 

Searle) 

Floatation (mkt 

cap £103m) 

Type II 

Stable 

 

Matrix Science Yes Yes (shareholders 

funds) 

No No No No change 

„lifestyle‟ 

business 

 Proteome Software  No Yes (director 

invested initial 

capital) 

No No No Reinvest profits 

in developing 

more products 

Type III 

Marginal 

Nonlinear Dynamics Yes (smart 

awards, 

northern 

enterprise, 

Yes (bank loans) Yes (British 

Coal) 

Yes (NEL) No Unknown 

 Oxford Bio-

therapeutics 

Yes Yes (small amount 

of shareholders 

funds) 

No Yes No Government 

funding, reinvest 

any profits 

Unknown, 

likely 

marginal 

GeneBio Yes ?  Yes (index) ? ? 

Unknown Sage-N Research ? ?  Yes (Sand 

Hill) 

? ? 
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Overall, there is no common funding model followed by proteomic bioinformatics 

ventures.  OBT‟s original company, Oxford Glycosciences was floated on the public 

markets (market cap: £103m, 1998) then it bought by Celltech for £102m in 2003, thus 

provides an example of how it can proceed.  In proteomic bioinformatics ventures 

there is no example of type I.  The most successful businesses in proteomic 

bioinformatics (Matrix Science and Proteome Software) are type II: stable, not fast 

growing, not requiring VC or Angel funding (as described by (Brush et al., 2001)).  

This is consistent with the market characteristics, being specialised and too small to 

support the kinds of investments that were seen in the late 1990s and early 2000s: 

“Good database search software is not a word processor; it‟s not a spreadsheet. There aren‟t 

millions of customers.” Cottrell, Matrix Science co-founder (Cottrell, 2003).  So, the 

antithesis is that these firms are certainly high-tech, but unlike high-tech seen before 

they are not suited to VC funding rounds.  It appears proteomic bioinformatics 

companies are a new breed of „bio-high-tech‟ firms, unlike IT and unlike typical 

biotechs.        

 

Type III is the „marginal‟ group.  They do not demonstrate a clear pattern, but 

appear to be „thinking bigger‟ in terms of their strategy than they should.  Nonlinear, 

for example, had a workforce of a hundred and turnover at £4m, but profits were 

never higher than Matrix Science, a tiny firm of seven people at its height.  The type 

IIIs show no tangible links with private financial organisations, despite high 

ambitions for growth – only government backed funds, such as Catapult Growth 
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private equity fund.  They appear to have invested, anticipating growth that the 

market could not support.  The P&Ls quoted for Nonlinear and OBT for 2006-07 are 

negative, and this was in comparatively good times, when public labs were receiving 

more funding from the research councils in the UK, before the economic downturn 

seen in 2008-9.   New P&L information is not yet available, but in the short term, the 

losses may be greater as fewer customers have the ability to buy their products as a 

result of spending cutbacks. 

    

The case study businesses did not take part in corporate venturing with big pharma 

or established IT companies, for example (Table 13).  This may be because “an 

imbalance in the power relationship between a high-tech firm and its network partners makes 

the high-tech firm vulnerable” (van der Sijde et al., 2003).  There are, however, strategic 

links and agreements between smaller biotechs and specialist equipment vendors 

across all the firms examined in the case studies.  Indeed, collaboration for small 

players in this high-tech market is essential, because of the complexity and changing 

needs of the client: a single entity is unlikely to work flexibly enough to 

accommodate the changes, but by offering expertise in one specific area, they 

become an attractive proposition for partnering with other experts to deliver an 

optimal package.  Moreover, other firms may have useful routes to market, which 

are hard to establish for small start-ups.   
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Other evidence is provided by the cases (Table 14), for example, the trend for 

expanding operations into the Far Eastern countries confirms the high-tech nature of 

proteomic bioinformatics companies.  Generally, branding is not an important 

feature for these companies, because the unique selling points of each software 

product are sufficient for sales, not usually brand recognition.  There are limited 

options in each niche, because the field is so new, so there is less need to advertise.  

Matrix Science‟s Mascot product is perhaps an exception to this, because there are 

multiple search engines available both public and proprietary, yet Mascot is a 

trusted „brand‟ amongst the proteomics research community.        
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Table 14 Comparisons between the company case studies 

 

 

Similarities between case studies  Differences between case studies 

Small start-ups Ambition – Non Linear have highs and lows, Matrix Science is steady 

low-level growth „lifestyle‟ business.   

Technical individuals as senior management and advisors  (scientists, 

software programmers) not „business/commercial‟, not high-profile 

individuals as seen in other industries, such as finance or biotech (such as 

the biotech „champions‟ defined in (Markham, 2002)) 

Matrix Science‟s Mascot is the only established „brand‟ across the 

board.  Most citations in literature. 

Major revenue streams are from software licensing, they all have similar 

product types 

Funding routes are diverse (refer to Table 13) 

Small niche, high tech firms– cutting edge researchers are their main 

customer base (industry or academia).  Not easy for customers to weigh up 

the quality of the products before purchase because the field is not well 

established, so there is less to benchmark and little choice. 

Hardware as a bundle in the bioinformatics products  – Sage-N 

product is distinct, offering the Silicon Valley USP  

Partnerships, collaborations and agreements with many other 

companies/institutes.  Classic cases of resource sharing seen within 

collaborative networks – see later subheading regarding  the balance 

between vulnerability and collaboration (van der Sijde et al., 2003) 

 

Technology push-based projects – MS technology means there are high-

throughput approaches – all the products on offer have emerged to fill the 

unmet need for complex analysis 

 

The companies are in the trials, deals and further research stages.  Growth 

ideally needs to be fast enough to be fundable by further VC rounds (Berry, 

2002).  This is not the case for these firms; they have stagnated. 

 

Expansion/distribution into Asia-Pacific region, especially Japan and China.    
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2.7.2 Specialise for success: the contract research model is 

recommended 

Pharmaceutical companies have removed many core research activities in recent 

years to try to reduce R&D spending (Prasad, 2004) and CROs have profited from 

this trend (Sahoo, 2006).    

 

Analysis of the proteomic bioinformatics market suggests that the value chain 

should be split into individual elements for the range of proteomics research 

activities for the short-to-mid term (see Figure 23).  This process is effectively 

reorganisation of vertical supply chain relationships (McMillan, 1994). 

    

Figure 23 Suggested concept of fragmentation of the proteomics value chain.     
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This is a phenomenon where firms shed some the activities they would normally 

perform in-house, so switch from „making‟ to buying.  For example, in the „usual‟ 

value chain for an R&D-based pharma organisation, proteomic bioinformatics 

would have formed part of their own research base, but it is now suggested that 

small niche firms operate to do this directly for customers, not via another 

organisation.  The net result is that firms reduce headcount and the economy 

becomes more sophisticated in terms of relationships and specialisms (McMillan, 

1994).   

 

The evidence for this recommendation is that proteomic bioinformatics services 

alone, as provided by Matrix Science for example, appear to be much more 

commercially successful when they are independent of proteomics data capture 

facilities.  The overheads involved in experimental work are too high; demonstrated 

by the fruitless land-grab phase and subsequent bust.  Too many different areas of 

expertise had to integrate for success, when each area alone needed to grow and 

mature independently first.   

 

CROs, such as Quotient BioResearch (a significant collaborator for this EngD) 

demonstrate the growth in CRO‟s business.  They have rapidly expanded their 

contract research with pharmaceutical companies, since big pharma now outsources 

a large proportion of routine experimental work.  This trend for outsourcing 

activities has been seen in many other industries, such as telecoms and 

146 
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manufacturing, and is already taking place in clinical research for big pharma.  The 

author, with others, such as (Arlington, 2007), forecast outsourcing to increase in 

scope in pharmaceutical R&D.  By 2020, for example it is predicted that „specialist 

firms‟ focussing specifically on discrete areas of drug development, such as testing 

biological pathways, and proving mechanisms of drug action, will be more prevalent 

(Arlington, 2007).  Proteomics research will most probably be part of this trend.   

 

As the era of the blockbuster drug is over, to replace it there will be a wider array of 

more targeted medicines.  Similarly, big pharma organisations will get smaller and 

will perform more „virtual‟ research through targeted partnerships with smaller 

expert business and groups in academia, outsourcing large portions of their research 

operations, such as proteomics research and bioinformatics analysis.  Indeed there is 

already a virtual CEDD (CEEDD) at GSK based on this idea.   

 

R&D efficiency must increase, by these (and/or other) means, because new 

innovative medicines are desperately needed to cure the chronic illnesses such as 

diabetes, neurodegeneration, cancer, obesity and heart disease.  Costs need to be 

better managed, by making the right decisions in R&D, and more candidates 

exhibiting novel mechanisms of action must be found. 

 

These predictions bode well for the aforementioned „marginal‟ companies, such as 

OBT,  Nonlinear  and  Matrix  Science.    They  are  suitably  placed  to  soak  up  the 
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demand for contract research, as proteomics becomes more developed with SOPs 

and best practice.  A key requirement, also, is the adaptability of these companies: 

how quickly they can embrace new techniques as the field settles into maturity?  

Will they be able to get funding to do this?     

 

Moreover, will biomarkers and the opportunity for IP see growth soon?  For the 

moment, it is not likely since the best source of easy-access biomarkers is blood and 

blood proteins remain problematic, because they are expressed in quantities that 

vary by ten orders of magnitude; thus, it is difficult to measure interesting, low 

abundance proteins using current MS-based techniques (Service, 2008b).  More 

focused techniques, such as using N-linked glycopeptides that fish out the 

interesting proteins, have potential to improve the promise of biomarkers, but 

overall consensus is that timescales for these developments could be years or even 

decades. 

 

In summary, the recommendation is to hold off private investment in proteomic 

bioinformatics companies until the SOPs and platforms become routine.  To develop 

routine technologies, public agencies will provide, and are already providing, the 

majority of the funding.  Big pharma should look further into networking and 

building relationships with niche CROs, such as the companies discussed in this 

chapter.   
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2.8 Conclusion 

This chapter has given a detailed account of the development of a new science and 

the high-tech industry of proteomic bioinformatics.    

 

The business history showed that proteomics was born out of publicly funded 

research, carried out in the late 1980s, and 1990s.  Once high-throughput could be 

achieved with new MS-related inventions, industry got involved with a view to 

patenting newly sequenced proteins for developing therapeutics.  This was a 

disaster, as the technology did not generate reproducible results, dogged by 

technical failings and complexities of the proteome.  Divestment ensued in both 

biotechs and pharma.   

 

The story followed closely the technology hype cycle, where over-enthusiasm for 

high-throughput proteomics technology was followed by commercial 

disappointment. The slope of enlightenment and plateau of productivity are still to 

be reached for high-throughput proteomics, because trust for the technique was lost 

and the technology has yet to be shown to be reproducible and value-adding.  

 

For now, the market is small and is still immature, supporting only niche companies 

of a very technical nature.  Given the data presented in the cases, these companies  
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fall into two types:  small, profitable and stable companies who have kept headcount 

to a minimum; and marginal companies, who aimed for higher growth, and now 

rely on public funds to survive, partly as a result of a previous miscalculation of the 

size and expected growth of their marketplace.   

 

Analysis of the players in the market suggests that proteomic bioinformatics is 

indeed a commercially viable activity when executed in a small, specialised 

company that keeps overheads to a minimum and growth slow and steady.  This is 

in contrast to other equivalent high-tech examples, such as IT, where accelerated 

growth and several rounds of VC-funding usually ensue.   

 

For corporate pharma, proteomics and associated bioinformatics is unlikely to ever 

become a large core function, since there will be an increasing trend towards 

outsourcing technical aspects of R&D to keep costs to a minimum without 

compromising quality of research.  In this future, niche companies will have a 

refined core competency in the field, so will offer superior quality for less cost than 

setting up the equivalent research and data analysis infrastructure in-house.   

 

In summary, the author believes that the market for proteomic bioinformatics 

products and services will not grow significantly until standards are developed, and 

the value added by the technologies can be clearly demonstrated to new investors.  

As a result of the problems in the past, investment  in  a  high -throughput  approach 
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may be harder to obtain, but the fact remains that proteins are the molecular 

machines of the cell.  Only by understanding these can a radical breakthrough be 

made to improve drug design processes and deliver understanding and targeting of 

the most elusive diseases.  
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3 Review of public repositories for proteomics  

 

 
 
 
 
 
 

Review of public  
repositories for proteomics  

 

 

 

 

 

 

“To hoard is human; to share, divine.” 

From (Wells et al., 2008) 
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3.1 Summary 

Since the withdrawal of high throughput proteomics at GSK (2005-6), and given that 

there are no in-house labs producing proteomic MS data at Cranfield University, a 

major source of data for the research in this EngD project was public data.  This is 

data deposited into public proteomic repositories on the internet, usually the 

product of publicly-funded research projects and may be downloaded by anyone for 

free.   

 

The problem with using public data, however, is that new data appears frequently 

but is not usually announced through traditional routes, such as research papers, 

and developments in the repositories themselves are frequent.  For this reason, there 

is an urgent need for a single document detailing all available resources, so 

researchers can leverage the most value from the systems and data available to them.  

Thus, for both practical purposes and to add to state of the art, this chapter presents 

a review of the major public data repositories, the data they contain and the 

pipelines that populate them.   
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3.2 Introduction 

3.2.1 Definition of a public proteomics repository 

As explained in the introduction public proteomics repositories can store and 

disseminate proteomic MS datasets.  In this way they are distinct from the freely 

available laboratory information management systems (LIMS) such as PROTEIOS 

(Garden et al., 2005), PRIME69, YASSDB (Thomsen et al., 2007), Labkey.org‟s CPAS 

(Rauch et al., 2006) and the Proteomics Experiment Data Repository (Taylor et al., 

2003). This is because LIMS systems typically store much more diverse data such as 

gel images, plate barcodes and protocol information, and are primarily intended for 

local data analysis and archiving, rather than for public data sharing over the 

internet; however, some do also facilitate secure data sharing across geographically 

distant collaborating groups.  As mentioned in the Introduction, proteomics 

repositories are also distinct from protein databases, because they store data 

pertaining to MS/MS experiments, not data pertaining to proteins per se.  

Commercial products for proteomics data capture and storage are not described 

here, because they are not relevant for this EngD project.   

3.2.2 Benefits of public repositories  

As proteomic MS has increased in throughput, so has the demand to catalogue the 

increasing number of peptides and proteins observed by this technique. As in other 

'omics' fields, this brings obvious scientific  benefits  such  as  sharing  of  results  and 

                                                
69 http://prime.proteome.med.umich.edu 
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prevention of unnecessary repetition, but also provides technical insights, such as 

the ability to compare proteome coverage between different laboratories, or between 

different proteomic platforms (Figure 24). 

 

 

Figure 24 A summary of the benefits and potential uses of public proteomic MS repositories 

 

As well as offering direct benefits, proteomic data repositories have also catalysed 

developments in other areas of proteomics research (Figure 25); for instance, the 

availability of large volumes of data - only possible by combining efforts from many 

labs - means research can now be performed and biological conclusions drawn 

which otherwise would have been impossible. A specific example is PTPs: only 

when redundant data is available can PTPs be identified, and the benefits of 



 

158 

 

knowledge of PTPs be gleaned, such as design of PTP-based search engines 

optimised for speed, like X!P3 (Craig et al., 2005), or software suites for MRM 

transition design, like in TIQAM (Lange et al., 2008). Furthermore, with access to 

large amounts of data the limitations of the MS method per se are brought to light, 

for example redundancy in the peptide identification data can effectively 

demonstrate the limited range of visibility of peptides using current techniques 

(Nesvizhskii et al., 2007) – stimulating the community to look for improved 

alternatives for detecting the elusive peptides. 

 

 

 

 



 

159 

 

 

 

 

 

 

 

 

 

 

 

  

DB-dependent 
search engines 

& pipelines 
eg. X!Tandem, 

TPP 

Provision of format & 
reporting standards.  

eg. MIAPE, mzIdentML 

Increased 
data 

redundancy 

DB/data-
dependent 
software  

Data-mining 
tool 

development 

Improved 
visualization & 

interfacing 

PTP-based 
tools 

eg. X!P
3
, 

MRMaid, 
TIQAM 

Data format 
conversion 
tools eg. 
mzXML2other 

Quantitative tools 
eg. i-Tracker, 

ASAPRatio 
Data-sharing between 

repositories  eg. 
PeptideAtlas to 

Tranche, GPM to 
PRIDE 

Emergence of standard 
protein mixtures eg 

ABRF, Aurum, SPMDB 

Increased 
understanding 

of protocol/ 
instrumental 

effects on 
coverage  

Comparative /differential 
analysis on large scale   eg. 
PRIDE Venn diags., GAPP 

differential views 

Incorporation of 
ontologies eg GO 

categories in 
GAPP, OLS at 

PRIDE 

Search engine 
consensus 
support eg. 

MASPECTRAS 

Novel research activities eg. 
false positive reduction, 
algorithm improvement, 

statistical methods 

Standard search 
recommendations 

eg. decoy DB 
suggested in Paris 

guidelines 

Emergence of proteomic 
bioinformatics wikis for 

knowledge dissemination 
eg. GPM, TIQAM 

Benchmarking, measure relative 
performance, assess false positive rate 

Development of protein chips & software 
for rapid profiling, perhaps using PTPs 

MS/MS pattern recognition  
software eg for disease 

diagnosis 

Proteomic profiling software in a clinical environment 
for diagnosis & treatment decision-making/ monitoring 

on an individual patient basis 

Consolidation of 
data formats and 

application of 
standards  

Compulsory 
submission of 
MS/MS data & 

metadata to public 
repositories eg. 

required for funding 
or paper acceptance 

Inter-species proteomic 
bioinformatics solutions to 
negate need for complete 

genome sequences for all species 

More complete organ 
proteomes  available in 

public repositories, 
eventually whole 

organisms 

Provision of 
public data 
repositories  

 

Increase quality control & increased 
quality data content in public 

repositories 

Increased understanding of reasons why peptide coverage 
is limited in MS & development of new technologies to 

overcome the current limitations 

‘Top-down’ proteomics  (analysis 
of intact proteins) & associated 

tools 

Integration 
of 

resources & 
data to 

facilitate 
systems-

based 
studies 

Spectral 
search tools  

eg. X!Hunter, 
SpectraST 

Consolidation 
of disparate & 
diverse tools 

 



 

160 

 

Figure 25 The emergence of public proteomic data repositories has stimulated the development of a huge 

array of public bioinformatics resources, including pipelines and diverse data analysis tools.  The 

concentric dashed ellipses show the progress of the field, with the central ellipse showing the completed 

areas of work, the next showing areas of work in progress, to the outermost area, which describes 

anticipated future developments in the field.  Text which overlaps a boundary means that the work 

transcends both areas.  (Source: author‟s own summary) 

 

Another advantage of availability of public datasets is that advanced data-mining 

and visualisation tools can be developed.  These programs, which sit at the „front 

end‟ of some public data repositories, can highlight important trends in data that 

would otherwise remain hidden; for example, tools to collate and display 

differentially expressed proteins, peptides and PTMs, or data-mining programs that 

use Gene Ontology (Ashburner et al., 2000) categories to compare shifts in cell or 

molecular functionality across datasets. Such tools can be used by researchers to 

analyse their own data, possibly in the context of data from other groups, and as the 

amount of data in the repositories increases, so does the possibility of new 

discoveries being made purely using existing public data. 

3.3 An overview of the public repositories 

The main public repositories are the Proteomics IDEntifications database (PRIDE) 

(Jones et al., 2006), the Global Proteome Machine database (GPMDB) (Craig et al., 

2004), PeptideAtlas (Desiere  et al., 2006), Tranche at ProteomeCommons70, the 

Genome Annotating Proteomic Pipeline (GAPP) (Shadforth et al., 2006), and Human 

Proteinpedia (HPP) (Mathivanan et al., 2008). 

 

                                                
70 Falkner, J. A., Andrews, P. C., HUPO Conference 2006, Long Beach USA, poster presentation 
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Smaller scale repositories include the Max-Planck Unified Proteome Database 

(MAPU) (Zhang et al., 2007), PepSeeker (McLaughlin et al., 2006), and SwedCAD 

(Falth et al., 2007).  And even more specialist offerings include the Yeast Resource 

Center Public Data Repository, the BiblioSpec Library (Frewen and MacCoss, 2007), 

the Open Proteomics Database, the Proteomics Data Center at the Resource Center 

for Biodefense Proteome Research (Zhang et al., 2008), SWISS-2DPAGE (Hoogland et 

al., 2004), and Biodemo; these are not covered in this chapter.   

 

The main repositories are now described briefly, followed by more detailed 

information of the features for the six databases deemed relevant for this EngD, 

namely: PRIDE, GPMDB, PeptideAtlas, Tranche, GAPP and Human Proteinpedia.   

3.3.1 PRIDE 

PRIDE71  is not limited to identifications; it also includes peak 

list data for download, journal article links and associated 

tools, including data-mining, visualisation and ontology-

assisted data conversion tools (Jones et al., 2008b).  With close links to HUPO PSI, 

PRIDE aims to be compliant with agreed community standards, in terms of 

reporting (MIAPE) and standard data formats (mzML and mzIdentML), as soon as 

they become available.  PRIDE does not include an analysis pipeline and as such 

stores data from any appropriate MS/MS analysis workflow.  This repository has a 

facility for pre-publication data storage to assist the peer review process. Notable 

                                                
71 http://www.ebi.ac.uk/pride/ 
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datasets in PRIDE include the acid mine drainage extract, HUPO liver (HLPP), 

HUPO plasma proteome (HPPP), HUPO brain and human CSF, and the Cellzome 

dataset.  

3.3.2 GPMDB 

GPMDB72 celebrated its 50,000,000th peptide 

identification on 16th May, 2008.  It was created by Ron 

Beavis and co-workers, and was originally designed as a 

web-interface for the X!Tandem Spectrum Modeler search engine (Craig et al., 2004), 

but it has been developed significantly, now allowing comparison between 

experimental results and the best results that have been previously observed by 

other scientists.  It is the first repository to apply analytics tools to map the number 

of visits, and has recently developed new features: for example, it has expanded the 

number of eukaryotic species supported (as NCBI builds) and shifted to collecting 

annotated spectral files for improved searches, as well as a new compressed data 

format (called Common, .cmn).  A peer-to-peer grid computing system, called 

Tornado, has also been released which speeds up searches tenfold (for human, 

mouse and rat) by determining which server on the grid is least busy and sending 

the search to X!Tandem there.  In addition, there are new ways to access and view 

the data, such as a new view that allows protein lists to be explored by chromosome 

number73 or those derived from mitochondria or transposons, also there is an MRM 

                                                
72 http://gpmdb.rockefeller.edu/ 
73 http://gpmdb.thegpm.org/go/index_chr.html 
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worksheet that uses consensus spectra to select transitions for MRM (Walsh et al., 

2009).   

3.3.3 PeptideAtlas  

PeptideAtlas74 is a project of ISB, Seattle,and as such its creators 

place an emphasis on its application to systems biology research.  

It is described as a “platform to select and validate MS targets” (Deutsch et al., 2008) and 

is separated into „builds‟, which represent all peptides mapped to a single reference 

Ensembl genome.  This allows protein identifications to be viewed from within the 

Ensembl browser as a DAS track (Dowell et al., 2001, Shadforth and Bessant, 2006).  

Current species builds include human, human plasma, Drosophila, Drosophila 

Phosphopeptide, yeast, mouse, halobacterium and Streptococcus pyogenes.  The 

Ensembl and IPI accession numbers are supported and PeptideAtlas is also home to 

the Human Plasma Proteome Project Data Central (Omenn et al., 2005) with various 

links to project-specific articles and identification data.  

 

MS data is made available as peak lists by submitting laboratories, from which TPP 

(Trans Proteomic Pipeline) (Keller et al., 2005) extracts peptide IDs to populate the 

SBEAMS (Systems Biology Experiment Analysis Management System) proteomic DB 

module.  Furthermore, PeptideAtlas has released a raw data repository for MS/MS 

dataset posting, acting as a data provider for others, including the spectrum library 

at NIST and the PepSeeker database (McLaughlin et al., 2006). 

                                                
74 http://www.peptideatlas.org/ 
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To derive a quantitative perspective on protein expression, for generation of system 

models and simulations, PeptideAtlas has developed an MRM transition prediction 

tool, TIQAM (Lange et al., 2008), and a database of yeast MRM transitions, 

MRMAtlas (Picotti et al., 2008). 

3.3.4 Tranche at ProteomeCommons  

Tranche75 aims to solve the problem of data sharing in 

proteomics by supporting transfer and dissemination of 

very large datasets in a secure fashion across the internet.  It has huge volumes of 

distributed disk space for backing-up of proteomics datasets, facilitating long term 

data storage to ensure data is not lost through changes in staff or funding.  It also, 

like PRIDE, has a facility for pre-publication (private) data storage.  It is a storage 

platform not a relational database, so does not provide powerful querying 

functionality.  The system had 5,502 projects and 11.1 million individual files 

corresponding to 3.1 terabytes on June 26th, 2008.  Notable datasets include The 

National Cancer Institute (NCI) Mouse Proteomics Technologies Initiative (MPTI) 

project and Kislinger and co-workers‟ ascites study into ovarian carcinoma 

biomarkers (Gortzak-Uzan et al., 2008).  PeptideAtlas data repository is also mirrored 

here.  Tranche has an average of 70 website visits per day (reported on April 22nd, 

2008).   

 

 

                                                
75 http://tranche.proteomecommons.org/ 
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3.3.5 GAPP 

GAPP76 is a data analysis pipeline, the results of which are stored 

in GAPP DB.  Like PeptideAtlas identifications can be viewed as 

an Ensembl DAS track (Shadforth and Bessant, 2006). Much of the 

data in GAPP is taken from other repositories, and has been reanalysed to allow 

direct comparison between different datasets. 

 

GAPP has undergone significant developments since creation on a previous EngD 

project, and in its current state it is a critical element required for the novel research 

work presented in this thesis.  New graphical visualisations and data-mining 

functionality have been developed for GAPP by others in the Bioinformatics Group, 

as well as simplification of data submission using data-entry forms.   

3.3.6 Human Proteinpedia 

HPP77 is a repository of diverse proteomic 

datasets including data from MS/MS, co-immunoprecipitation MS/MS, 

immunohistochemistry, yeast two-hybrid and other platforms.   It is the best 

repository in terms of consistent reporting of all necessary metadata to reprocess the 

raw datasets accurately; routinely reporting mass and fragment tolerances, for 

example. Its data content is steadily increasing, with 71 labs regularly submitting.     

 

                                                
76 http://www.gapp.info 
77 http://www.humanproteinpedia.org/ 
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The HPP repository is complemented by The Human Protein Reference database 

(HPRD) (Mishra et al., 2006): a database of literature-derived information, compiled 

at the level of the individual protein.  HPRD shows, for example, characterised 

protein domains, PTMs and interactions, and allows users to explore the meaning of 

their data, submitted via HPP.  Each protein in HPRD is annotated with peptide 

information and the sample of origin (and where relevant as an HPP „HuPA‟ 

identifier). 

3.3.7 MAPU 

MAPU 2.0 78 a database of 

organellar, cellular, tissue 

and body fluid proteomes was released in 2006 by the Max-Planck-Institute of 

Biochemistry in Martinsried, Germany (Zhang et al., 2007).  The system is a family of 

discrete proteome databases, which its creators believe will eventually provide 

reference proteomes for biomarker discovery studies.  It has a notebook-style design 

with tabs to navigate around the site, and like PeptideAtlas and GAPP, it has 

genome annotating functionality viewed as a DAS source.  Furthermore, transcript 

annotations are also accessible via a graphical chromosome view, similar to GPMDB.  

The proteomes available at MAPU 2.0 include mouse adipocyte and liver, and for 

human, there are body fluid proteomes: urine, tears and seminal fluid.  MAPU 1.0 

also includes the human plasma and cerebrospinal fluid proteomes.   

 

                                                
78 http://www.mapuproteome.com 
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3.3.8 PepSeeker 

PepSeeker79, unlike other repositories, aims to increase the 

understanding of peptide fragmentation chemistries and 

the effect of peptide sequence on visibility in MS (McLaughlin et al., 2006).  It is led 

by Simon Hubbard at the University of Manchester, UK and it stores peptide 

identifications and corresponding fragment ion details used to identify that amino 

acid sequence. The argument for such a system is that the peptide sequence 

composition determines the presence or absence of certain ions in the resulting 

spectrum, so by harnessing this information, development of more sophisticated 

peptide identification algorithms should be possible in the future.  Improvements to 

query functionality have been made (now via Biomart), and it has contains a „gold‟ 

database instance comprising only the highest scoring peptides.   

 

3.3.9 SwedCAD and SwedECD 

SwedCAD80 and SwedECD81 are databases of high 

resolution, high mass accuracy MS/MS spectra 

derived from collision associated dissociation (CAD) and electron capture 

dissociation (ECD) MS, respectively.  One aim of the repositories is to provide 

reference  spectra  for  use  as  search  databases  for  peptide  identification, since  all  

                                                
79 http://www.nwsr.manchester.ac.uk/cgi-bin/pepseeker/pepseek.pl?Peptide=1 
80 http://www.bmms.uu.se/CAD/ 
81 http://www.bmms.uu.se/CAD/indexECD.html 
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datasets may be downloaded for local use.  Arguably, the main aim, however, is to 

provide a repository that can offer unique insight into fragmentation pattern 

aetiology, such as exploring the phenomenon of neutral loss, looking at the 

frequency and nature of missed cleavages, and the effect of certain motifs, such as 

terminal „RR‟ (Falth et al., 2007).  The systems are able to do this because they 

provide both CAD and ECD spectra for the same samples, namely human milk, 

lysates of human cell lines (K562 and A-431) and E.coli proteins.       

3.4 Data upload, download and format support  

New standard data formats for MS are available, as outlined in Chapter 1, but they 

must become “the norm” in order to be useful to the community.  To achieve this, 

the analysis tools and databases must support them, thus encouraging their use.  In 

the short term, however, diverse data formats remain in existence so knowing which 

system supports which formats is necessary – thus is described here.  Long-term, it is 

envisaged that the standards will prevail across all public MS resources. 

3.4.1 PRIDE 

PRIDE supports private data submission, generating anonymous login details to 

grant access to the uploaded dataset. This anonymous login can be sent to reviewers, 

providing confidential access to the details of the proteomics experiment supporting 

the manuscript before publication.  The Proteome Harvest PRIDE Submission 

Spreadsheet is available for small-scale submissions of data to PRIDE (Jones et al., 

2008b) supporting conversion to PRIDE 2.1 XML and applies an ontology look-up 
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service (OLS) (Côté et al., 2006) to apply controlled vocabularies to data annotations.  

Data may also be submitted via the MASPECTRAS pipeline (Hartler et al., 2007), or 

via PrideWizard (Siepen et al., 2007) (for Mascot files), which both create PRIDE 

XML output.  The method of choice, however, is the new PRIDE Converter (Barsnes 

et al., 2009), which can be used for large or small datasets, accepts various input 

formats, and has a „point-and-click‟ graphical interface.       

 

Once registered, users may submit data to PRIDE as individual XML files (PRIDE 

XML or mzData/mzML), or as a zip archive of multiple files.  Submitting data in 

this way can be impersonal; however there is access to a curator at PRIDE if 

submission is difficult.  For bulk data submissions, PRIDE also supports secure FTP 

upload of datasets.   

 

In PRIDE‟s case, public mzData/mzML and PRIDE XML datasets may be 

downloaded.  The files are downloaded as zip files directly from the website or 

alternatively the FTP server82.  The only exception to this is where experiments have 

been submitted without MS/MS spectra, in which case mzData/mzML is not 

available. 

                                                
82 ftp://ftp.ebi.ac.uk/pub/databases/pride/ 
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3.4.2 GPMDB 

Adding data to GPMDB is possible via the search pages in public or restricted mode.  

To submit data for analysis and storage a species (referred to as a „boutique‟) is 

selected and the details for the search are entered on the Tornado search form.  Only 

the top 50 most intense ions are applied from the peak lists (Walsh et al., 2009). 

 

GPMDB‟s new compressed format is Common (.cmn), and there is a tool provided to 

compress/decompress MS/MS data files (such as .mgf, mzXML, mzData, .dta and 

.pkl) to/from .cmn.  MS/MS files may still be submitted in more familiar formats, 

however .cmn files have the scope to support analysis of files that would previously 

have been too large to submit.  Furthermore, .cmn files can be made available to the 

data archive83.  GPM also provides protein lists derived from specific tissues, as part 

of the Normal Clinical Tissue Alliance84.  Both processed data and the raw MS/MS 

files are available, the former via GPMDB interfaces in the usual way, and the latter 

via an FTP site85.     

3.4.3 PeptideAtlas  

MS/MS spectra are accepted in either native (.raw) format or in mzXML, with the 

latter being preferred.  There is a web application for data submission, and to access 

it the administrators must be contacted. As part of PeptideAtlas‟ pipeline, the Trans-

Proteomic Pipeline (TPP), there are several free tools available.  For data submission, 

                                                
83 ftp://ftp.thegpm.org/data/msms 
84 http://wiki.thegpm.org/wiki/Normal_Clinical_Tissue_Alliance 
85 ftp://ftp.thegpm.org/projects/ncta/release_1/data 



 

171 

 

for example, there is a program86 to convert .wiff87 format files to mzXML.  If 

desired, a date can be entered for when the raw data becomes available to the public.  

„Minimum public access‟ submissions still appear on the site with the institution 

name, the contact, date, organism and cell type, but data is only available when it 

becomes public.  To download unprocessed datasets and lists of identifications, there 

is a Data Repository88 - by clicking on the zip files they may be saved locally.  

Accompanying journal paper links are also provided.  

3.4.4 Tranche  

Tranche is based on peer-to-peer data sharing.  To upload data, a Tranche account 

must be requested and any data format is accepted.  The administrators also offer a 

data submission service with data on USB hard drives.  An easy way to download 

data is via the website89, where there is a long list of the available datasets.  The free 

Java downloader package manages the download, and also executes the security 

check for private datasets.  Tranche applies industry standard encryption protocols 

for security.  In the current system, data annotations can be made by anyone 

uploading data - a separate username and password is not required.   

3.4.5 GAPP 

As GAPP is primarily an analysis pipeline rather than a repository, it accepts mass 

spectra not identifications, and does not provide data for download.  To submit data, 

                                                
86 http://tools.proteomecenter.org/wiki/index.php?title=Software:mzWiff 
87 Proprietary raw data format used by Applied Biosystems 
88 http://www.peptideatlas.org/repository/ 
89 http://www.proteomecommons.org/data.jsp 
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users must register and login, then create a dataset-specific „data profile‟, which is an 

electronic form for metadata.  Data may be submitted in .mgf, .pkl or mzXML 

format, and can be submitted privately.  Privately submitted data is not visible to 

any other users at any time, including via the data-mining tool, MRMaid, described 

later in this thesis.  GAPP DB (the current version) captures and analyses only the 

100 most intense ions. 

3.4.6 HPP 

A comprehensive list of meta-annotations is required to submit data to HPP.  The 

submission process exploits ontologies where necessary and guides the submitter by 

providing drop down menus.  Format is not specified, with currently available 

datasets including .pkl, .mgf, mzXML and .raw.  To submit, users must first register 

and login.  All data is visible to the public and is stored in triplicate across 16 servers.  

HPP employs the Tranche Java application for download of raw datasets and 

identifications. 

3.5 Data-mining and visualisation 

3.5.1 PRIDE 

There are two ways to mine data in PRIDE: by „browsing experiments‟ (Figure 

26(a)), or by querying with Biomart.  The former is a „flat file‟ table view with 

hyperlinks, whereas the latter is based on the programmatic web service framework 

(Jones et al., 2008b) offering flexible searching and quick retrieval of user-specified 

relevant data.  Half of all downloads from PRIDE are via Biomart.     
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Since PRIDE accepts identifications that are derived from searching different protein 

databases, querying across all datasets exploits the Protein Identifier Cross-

Reference Service (PICR) (Côté et al., 2007), which is cross-referencing tool to map 

identifiers across 60 different databases.  Thus, PRIDE may be queried by the users‟ 

accession numbering system of choice.  Furthermore, PRIDE has been incorporated 

into EBI‟s new metasearch, „EB-Eye‟ – a search tool that collates data from multiple 

EBI resources. 

 

PRIDE also has graphical de novo sequencing spectrum views (Figure 26(b)) and a 

tool to dynamically generate Venn diagrams to compare identifications from up to 

three datasets (Figure 26(c)). 
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(a)

 

(b) 

 

 

 

 

 

 

(c) 

 

  

 

Figure 26 PRIDE data 

visualisation options       

(a) dataset download 

page; (b) manual de novo 

sequencing tool; (c) Venn 

diagram for comparing 

identifications across 

experiments 
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3.5.2 GPMDB 

For each protein entry in GPMDB, all the experiments in which the protein was 

identified are listed with a schematic representation of the protein sequence with the 

individual red „peptide blocks‟ for observed peptides, and green blocks for regions 

that are predicted to be difficult to observe in MS/MS (Figure 27).   

 

Figure 27 GPMDB's experiment view with assigned peptides shown as blocks along the protein sequence.  

Each row represents a single experiment.  Red blocks are PTPs, green are predicted to be not visible in 

MS 

 

Statistical significance of identifications is also illustrated graphically, by the shade 

of red, and there are three possible ways to view identified proteins: gene view (G), 

protein and observed peptide sequence view (P) and the X!Tandem view (X).  X is a 
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collapsible view of the algorithm‟s output, which breaks down to the details, 

including the x,y-coordinates of the original peak list. Graphics are implemented in 

SVG. 

 

As in PRIDE, different protein database accession systems can be searched, however 

GPMDB has implemented automatic conversion of identifiers (for Ensembl, IPI, 

HGNC or MGI gene symbols, NCBI genes and Swiss-Prot/Uniprot) without 

requiring repeated searches.  The „note keywords‟ search allows querying of 

submitter‟s notes (that accompanied the uploaded datasets), and there is batch 

querying where a list of peptide sequences is queried.  In addition, when searches 

have been performed against the Ensembl database (for human, mouse, rat or yeast) 

the results may be viewed as a KEGG (Kyoto Encyclopedia of Genes and Genomes) 

pathway by sorting proteins into metabolic pathway categories using ontologies.  

3.5.3 PeptideAtlas  

Peptide and protein information may be browsed, where each peptide entry has a 

list of properties (like pI, sequence, accession number and SSRCalc (Krokhin et al., 

2004)-derived hydrophobicity) (Figure 28).  Each protein entry has a genome view, 

which shows observed peptides and predicted domains, such as membrane 

spanning regions determined by TMHMM (Krogh et al., 2001).  As in GPMDB‟s 

view, peptide regions that are predicted to be unlikely to be visible in MS/MS are 

highlighted (Figure 28).    
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Figure 28 PeptideAtlas maps peptides on to the genome using a DAS track. 

 

PeptideAtlas has the Cytoscape (Shannon et al., 2003) plug-in linked to each protein 

entry, which allows peptides to be viewed as a network with associated proteins.  

The proteotypic score reflects the likelihood that a peptide is proteotypic, this is also 

shown in the protein view.  Hyperlinks to external resources, like Ensembl or IPI, are 

also provided. 

3.5.4 Tranche  

The data available via Tranche is listed on a single page (linked via the „data panel‟ 

shown in Figure 29).  A simple search form is available for specifying the search 

criteria, such as, project status, journal, and researcher name. 
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Figure 29 Homepage for Tranche at ProteomeCommons.  Latest datasets are shown in the centre.  

 

3.5.5 GAPP 

GAPP now provides three options for querying: by experiment, by protein, or by 

„differential view‟.  The experiment view lists all experiments processed and stored 

in GAPP by displaying headline information about each.  By selecting a single 

experiment, metadata for the experiment and lists of identified peptides and 

proteins are displayed in a collapsible view. The protein view allows users to search 

for a protein of interest by Ensembl accession number and displays a breakdown of 

information for this protein, including peptide coverage, GO categories, number of 

experiments in which it was seen and PTMs, where found. 

 

The differential view allows protein expression to be compared between 

experiments in a table. These experiments may be selected manually, or according to 

metadata (e.g. tissue type, disease state or instrument type). As the list of proteins in  
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such a comparison can be large, proteins can be filtered according to GO category 

(Figure 30(a)), and a pie chart (Figure 30(b)) illustrating the breakdown of protein 

identifications is generated dynamically for the selected experiments.  
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(a)  

(b)  

Figure 30 GAPP's differential view shows (a) a comparison of the protein content between experiments 5, 

6 and 7, and (b) the proteins found in the experiments broken down into GO „biological process‟ 

categories. 
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3.5.6 HPP 

There are three search avenues: genes/proteins, annotations and MS platform.  

Ontologies are implemented and the user may select from lists of agreed terms using 

the query form.  For gene or protein searches, entries that identified the query gene 

or protein are listed, and under each contributor‟s and experiment information there 

are the peptides that contributed to the identification with associated modifications, 

charge state, precursor mass and HuPA identifier.  Complete datasets may be 

downloaded with corresponding metadata (Figure 31). 

 

Figure 31 Human Proteinpedia's download page.  Raw datasets, protein identifications and meta-

annotations may be downloaded for some experiments, for other just identifications and metadata are 

available. 

 

Although there is comprehensive search functionality at HPP, arguably more 

powerful biological querying may be performed using the reference database, HPRD 

(Mishra et al., 2006), which is directly linked to HPP and also contains peptide 



 

182 

 

sequences derived from the PeptideAtlas and PRIDE repositories.  HPRD can be 

queried using gene symbols or various accession numbers including RefSeq, OMIM, 

Swiss-Prot, HPRD and Entrez Genes. Several different parameters may be queried 

simultaneously as well as via a BLAST search tool.  There are also links to curated 

pathway information and visualisations.    

3.6 Data content of repositories is varied 

Since each repository fits a particular niche and the developers have different 

collaborators, the data present in each system can vary.  This section highlights the 

differences in data volume (Table 15). 
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Table 15 A summary of data content of the major public repositories.  Values were reported on 26th June 2008, except PeptideAtlas where values were taken from 

(Deutsch et al., 2008),  and PRIDE where values were taken from a lecture (Phil Jones, 4
th

 December 2008, Cranfield University).  a) denotes that the value is not 

readily obtainable on the website or recent paper; b) referred to as „projects‟; c) these values are based on the gene level, with values indicating distinct 

identifications at the gene level ; d) high confidence proteins; e) two Salmonella typhimurium datasets are counted so identifications may overlap; f) includes post-

translationally modified and different splice variant peptides, for the other values in this column it is assumed that they are counted but not stated explicitly in the 

data sources.   

 

Repository Species No. spectra No. experiments Protein identifications All peptides Distinct peptides 

PRIDE all 16,564,434 7,969 (all) 1,949,593 8,523,790 986,473 

GPMDB 

 

all 

 

?
a) 

 

? 

 

(all) 8,585,612  

(distinct) 491,070
c)
  

52,748,666 

 

1,150,085 

 

PeptideAtlas all 74,600,000 471 (distinct) 40,456 ? 285,000 

 human 49,000,000 219 (distinct) 12,141 ? 97,000 

Tranche all ? 5,502
b)

 ? ? ? 

GAPP DB human 130,152 146  (distinct) 2,171
)
 649,366

 f)
 66,655 

f)
 

Human PP human 4,567,235 2,695 (distinct)15,231 1,851,124 ? 

MAPU 2.0 mouse ? ? (all) 5,497d
d)

 ? ? 

 human ? ? (all) 2,926
d)

 ? ? 

SwedCAD/SwedECD All 15,897 15,897 n/a 15,897 15,897 
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In most repositories public data submissions outnumber private ones; in PRIDE, for 

example, 84% of data submissions were public, and 16% private in December, 2008.  In 

general, submission rates are increasing; see Figure 32 for PRIDE submissions as an 

example.   

 

 

 

 

 

 

 

 

  

Figure 32 Increase in data submissions to PRIDE repository (Source: Phil Jones „Proteomics Standards 

Development: Progress & Tools‟ Lecture, 4
th

 December, Cranfield University) 

 

This increase has most probably been stimulated by the recommendations from journal 

editors that, upon publication, proteomic MS data should be made public (Table 16).   
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Table 16 Journals that recommend deposition of MS-based proteomics data into public repositories (autumn, 

2008) 

Journal Requirement for submission to public repositories 

 

Journal of Proteome Research  

 

Molecular Cellular 

Proteomics 

Authors encouraged to provide access to raw MS data 

using group websites and public repositories 

Nature Methods  Strongly recommends deposition of data before 

manuscript submission.  PRIDE and HPP are 

mentioned (Editorial, 2008b)   

Nature Biotechnology  Recommends proteomics data be posted in public 

repository before manuscript submission.  PRIDE is 

preferred (Editorial, 2007) 

Proceedings of the National 

Academy of Sciences 

Proteomics data is required to be submitted to a 

publicly accessible database and accession numbers 

must be provided. Access must be available at the time 

of publication.  

Proteomics States protein identification results, expression data 

and MS peak lists should be deposited in a public 

database.  Gives PRIDE as an example. 

Rapid Communications in MS Encourages public dissemination of raw files 

supporting identifications (Taylor and Goodlett, 2005) 

 

  

3.7 Standalone versions of some public repositories are available 

Some pipelines and their accompanying databases can be installed as standalone 

versions for local processing and warehousing of in-house data.  However, in contrast 

to web-based versions, which are relatively easy to use and universally accessible, 

standalones require computing expertise to set up; for example, GPMDB90 is available 

as a standalone, and a complete local PRIDE system (core and the web interface) is 

available91 as creation scripts for Oracle or MySQL.   

 

                                                
90 ftp://ftp.thegpm.org/projects/GPMDB/current_release 
91 http://sourceforge.net/projects/pride-proteome/, requires two components: PRIDE core 
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PeptideAtlas is based on SBEAMS92 which can also be downloaded, but it is complex to 

install because the core biolink module, interface software and proteomics module must 

be configured individually, and the bundle does not contain all the required Perl and R 

libraries.  Also, the setup files are written for Sybase (proprietary DB system), so it can 

be difficult to set up a MySQL version, for example.   

3.8  Pipelines feed GPMDB, PeptideAtlas and GAPP DB with 

identifications 

There are two routes of data entry into public repositories: by direct submission of peak 

lists and identifications by users, or via an analysis pipeline.  Pipelines, as defined in 

Chapter 1, perform multi-stage processing to assign identifications to peak lists, as well 

as other processing steps in some cases.  The resulting identifications and peak lists are 

stored in a repository („back-end‟).      

3.8.1 GPM 

X!Tandem Spectrum Modeler (Craig and Beavis, 2003) is the heuristic search engine in 

the GPM pipeline.  The algorithm produces theoretical spectra for peptide sequences 

using known relationships between intensity of mass peaks and amino acids, and then 

matches these with the unknown experimental peak lists using a dot product.  This is a  

 

                                                
92 http://www.sbeams.org/download/ 
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„descriptive‟ approach, because it is based on mechanistic prediction of how peptides 

fragment (Sadygov et al., 2004).  

 

X!Tandem performs multiple stages of searching and refinement to ensure efficient 

matching of mass peak lists to sequences, and to optimise for speed.  The first step aims 

to match the theoretical tryptic peptide and fragment masses to the real MS signal peak 

lists.  Then further iterative steps search for PTMs and point mutations.  This way, the 

search space is decreased to a manageable size for computation, and more peaks are 

successfully assigned.  

 

Also, a new option to „use sequence annotations‟ creates a search file detailing the 

proteins and their potential modifications (referred to annotations) for searching in a 

more PTM-specific fashion.  The files are created using UniProt and GPMDB as sources 

of annotations; and human, mouse, rat, chicken and yeast are currently supported.    

 

Furthermore, users can now select „decoy search‟ on the form to reduce FPs.  Users are 

not restricted to X!Tandem; there is also a consensus spectral search engine X!Hunter 

(Craig et al., 2006)  and a PTP-based search engine, X!P3 (Craig et al., 2005). 
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3.8.2 TPP 

In TPP, spectra are searched against sequence databases using SEQUEST (Eng et al., 

1994), or (the recently added) X!Tandem (Craig and Beavis, 2003).  The peptide 

identifications are converted into probabilities using PeptideProphet (Keller et al., 2005) 

and protein identifications, also with probabilities, are derived from the PeptideProphet 

results by applying ProteinProphet (Nesvizhskii et al., 2003a).  The recent addition is the 

next SpectraST (Lam et al., 2007) stage, which offers a second round of searching and 

scoring using a spectral library, followed by Peptide- and ProteinProphet as before.  The 

addition of this search produces more identifications compared to the original TPP 

alone, and with a low error rate.   

 

The SpectraST search is against an MS/MS library created by combining high scoring 

spectra to create a database of consensus reference spectra, each one representing an 

individual peptide.  As in X!Hunter, the consensus reference spectrum is compared to 

the unknown.  Individual searches can be performed via the website, where users enter 

peak lists and mass tolerance.  The resulting match of unknown to reference is shown as 

a comparison view with the x-axis as a „mirror‟ where the consensus spectrum points 

up and the unknown query peaks are mirrored below the x-axis, facing down.  The 

main drawback with SpectraST is that it is only applicable for the PeptideAtlas builds 

that have sufficient data to create a library.   
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3.8.3 GAPP 

GAPP (Figure 33) is the most important pipeline for this thesis, because the work 

presented in Chapter 4 and 5 is based on it.   

 

 

Figure 33  An overview of the Genome Annotating Proteomic Pipeline 

 

As in GPM, GAPP performs peptide scoring using X!Tandem (Craig et al., 2004).  

Advanced APS filtering (Shadforth et al., 2005b) is then performed to produce high 

quality protein identifications.  GAPP is parallelised, where the process of matching 

spectra to peptides, using X!Tandem, is split across 16 separate PCs (nodes), which are 

all connected to a master node with the MySQL database for collating the results from 

each node.  The X!Tandem scores are converted to APS (average peptide scores) values 

by summing the score for each peptide and dividing by the number of peptides found 
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for each protein identification.  A reversed proteome search is performed (in composite 

with the target) and the maximum APS found in the reverse decoy is used to filter the 

target protein identifications found.  For a detailed description of APS, see Chapter 4, 

where GAPP is applied to determine the optimal decoy database design to reduce false 

positives. 

 

There are splice variant and PTMs loops in GAPP (Figure 33); these aim to increase the 

proportion of spectra that are successfully assigned to peptides.  The pool of unassigned 

spectra in a given run are filtered by accepting only spectra with „quality‟ higher than 

the worst „quality‟ spectrum that was successfully assigned.  The quality metric is the 

sum of the peak intensities divided by the number of peaks, which is usually 100, since 

only the top 100 peaks are processed by GAPP.  The unassigned spectra that pass this 

criterion are re-searched with X!Tandem against smaller search databases that 

correspond to the proteins already found in the first round of searching (those in the 

„hitlist‟ table of GAPP DB).  The first database is the relevant splice variants for the 

proteins in the hitlist table (an exon boundary “Pexon” database), and the second is a 

database of all possible PTM variants (30 of them) for the proteins in the hitlist table.  

These searches are faster than the original search because the search space is smaller.  

The Pexon database is created for each target database used in GAPP (human and 

others) using a Perl script created by Ian Shadforth on a previous EngD project 

(Shadforth, 2005).   
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In summer 2008, peptide mass fingerprinting (PMF) functionality was added to GAPP, 

allowing MS as well as MS/MS data to be analysed, with both results being deposited 

into GAPPDB.   

3.9 Repositories for quantitative proteomics are emerging  

Although application of quantitative proteomic MS techniques, such as ICAT, iTRAQTM 

and SILAC, is growing, there is still very little quantitative data available in the public 

domain.  This may be attributed to quantitative data not being supported in public 

systems.  Some public offerings are beginning to support quantification. For example, 

when a complete LC/MS run is uploaded (as a single mzData query file) to ProMEX 

(Hummel et al., 2007), one of the public pipelines, an entry for each protein/peptide is 

generated including how often it was identified.  The cumulative sum of spectra per 

peptide and protein may be taken as similar to spectral counting, and spectral counting 

has been shown to be related to protein abundance, so effectively enables semi-

quantitation (Lau et al., 2007).  PeptideAtlas also claims to give an approximate estimate 

of absolute abundance of proteins in biological samples, determined by spectral 

counting and averaging of the many datasets analysed by its pipeline, the TPP (Deutsch 

et al., 2008).  This information indicates the quantity of surrogate peptide that should be 

spiked for SRM, for example.  Also, after the peptide identification stage of TPP, 

XPRESS (Han et al., 2001), ASAPRatio (Automated Statistical Analysis on Protein Ratio) 

(Li et al., 2003) or Libra may be invoked to perform quantitation on suitable data.   
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However, quantitative data is not available via the public PeptideAtlas repository 

interface, so is only possible when TPP is installed and run locally.   

 

A major hindrance to the development of repositories to support quantitative data is the 

lack of formats for its capture, storage and exchange and the variety of strategies 

available (Lau et al., 2007).  Furthermore, best practice in protein quantification has not 

yet been established, compounding the problem.  However, in-roads are being made 

with iTRAQ reporter ion ratios forming part of the extended PRIDE XML schema 

(Siepen et al., 2007), and mzML format is expected to support quantitative data, 

although is unlikely to do so in the first releases.  Encouragingly, a recent addition is 

Quantitative proteomics repository (QuPE)93, a database and algorithmic framework 

implemented in Java and the Spring framework.  It stores proteomics data and 

metadata from assorted quantitative approaches, such as SILAC, in a consistent fashion, 

also offering tools for statistical analysis.  The resource is accessed via the web interface 

(after login), which is implemented using Echo2 web framework and has an Ajax-based 

rendering for graphics.   

3.10  Discussion: proteomics data quantity, quality and usage 

In summary, the outlook for public proteomics repositories is positive.  They continue 

to grow in content and functionality.  However, there  is  still  no  complete  collection of 

                                                
93 At http://www.cebitec.uni-bielefeld.de/groups/brf/software/prose_info/index.html.  QuPE was previously called 

‘ProSE’     
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all publicly available data in one place, despite the ProteomExchange Consortium 

(including PeptideAtlas, Tranche, GPMDB and PRIDE) being set up to work towards 

this goal (Hermjakob and Apweiler, 2006).   

 

In general, repositories with the largest amount of data are most useful, because large 

quantities of data are necessary for meaningful data-mining, deriving consensus 

libraries for searching, and to improve significance of conclusions derived from the 

data.  However, large file sizes can themselves present a problem for the pipeline-based 

repositories; GAPP, for example, has an upload limit of ~200MB per submission, 

although files are routinely much larger, given increased sampling frequency with new 

MS protocols (to increase sensitivity).  Moreover, files are especially large after merging 

multiple runs for the same experiment.  As a result, establishing the best way to submit 

data is a formidable challenge for the pipeline-based repositories.   

 

In addition, the quality of submissions is an issue for public systems.  For spectral 

quality, research into new methods to assess quality is ongoing (Nesvizhskii et al., 2006), 

but at present no repository claims to limit public submissions based on any measure of 

quality.  In fact, the move to consensus spectral searches (such as using SpectraST in 

TPP and X!Hunter at GPM) aims to overcome this issue empirically by averaging across 

many submissions to account for noise and variability amongst individual  spectra 

assigned to the same peptide.     
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It is hoped that proteomics repositories may be useful for answering challenging 

questions such as: Who has observed a set of proteins similar to the set I have 

observed?, or Can I perform global comparative proteomics using their datasets?  To 

answer the former, the PRIDE Venn diagrams may be used, for example, or GAPP‟s 

differential view, or indeed the iSPIDER94 integration service (Siepen et al., 2008), which 

enables users to search and view the identifications made by other groups that are 

stored in different databases in an internal format called spidyXML.  The combined 

results are then displayed using software clients and specialist viewers.   

 

To answer the latter, global comparative studies are, by definition, only possible if 

whole proteomes are made publicly available.  Examples exist of this scenario:      such 

as Martiens et al. who compared protein identifications from brain proteome project 

(BPP) and three other proteome studies (plasma proteome project (PPP), human platelet 

proteome and the mouse proteome) (Martens et al., 2006).  For now, however, the 

heterogeneity of data submitted by various labs hampers the process of whole 

proteome comparison, since sample type, MS instrumentation, identification algorithm 

and search database can vary.  With efforts, such as CPTAC (Blow, 2008) and the Fixing 

Proteomics Campaign, addressing the issues of reproducibility of data, it is hoped that 

comparative proteomics will become feasible via public repositories soon. 

 

                                                
94 http://www.ispider.manchester.ac.uk/cgi-bin/ProteomicSearch.pl 
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Finally, it is likely that in the mid- to long-term future new functionality will lead to 

better integration between proteomics and other „omics‟ data, such as interactomics and 

metabolomics.  This could deliver holistic understanding of biology and the workings 

of the cell, with implications for improved approaches to biomarker discovery. 

3.11  Conclusion  

This review described two main types of repository: the analysis pipeline-based 

repositories (GPMDB, PeptideAtlas and GAPP), and the data warehouse repositories 

(e.g. PRIDE, Tranche and HPP).  It represents novel research that was adapted to form 

two review articles that were published by Proteomics journal (see Appendix III).   
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4 Optimising the design of decoy search databases using 

the Genome Annotating Proteomic Pipeline (GAPP) 
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4.1 Summary 

False positive (FP) identifications can be costly for high-throughput proteomics as they 

can lead to futile follow-up studies, for example, or erroneous conclusions about the 

underlying biology.  Indeed, inaccurate identification performance provides a reason 

for investors to continue to be suspicious of high-throughput proteomics, and can lead 

to problems for those developing new tools to mine the data, once it is stored in 

proteomics repositories (as is the case for the MRMaid tool developed in Chapter 5).   

 

To remove FPs decoy database searches are routinely applied, the decoy acting as a null 

model to test if the score of the peptide match is true.  Threshold scores, for filtering out 

FP identifications, are usually set to the highest score achieved by the decoy database 

search in a given MS/MS data analysis run. Various methods have been published for 

generating decoy databases, but there is debate about which decoy design is „the best‟.  

This chapter addresses this question by performing an evaluation of nine diverse decoy 

designs using public MS/MS datasets from samples of known composition and GAPP 

pipeline.  
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4.2 Introduction 

Proteomics pipelines are automated, high-throughput workflows that extract protein 

identifications from m/z peak lists, usually by tandem MS database searching.  As 

already described, one way to assess if the identifications are correct is to apply a decoy 

database search to filter out false positive (FP) identifications from the target database 

search results; for example, by taking the highest score achieved by the decoy to siphon 

off the low scoring peptides in the target search results.  Using reversed sequence 

searches for this purpose is well documented (Peng et al., 2003, Cargile et al., 2004, Qian 

et al., 2005, Kapp et al., 2005).  However, a reverse decoy database may be simple to 

generate (literally reverse the sequences end to end), but it may not be the optimal 

choice as regards to false positive rate (FPR) it can achieve; in fact, “there is no clear 

consensus ... as to which method for generating a decoy database is best” (Käll et al., 2008).     

 

To answer the question of which decoy database is best for reducing FPRs, therefore, 

nine different decoy database designs were systematically investigated, searched in 

both composite and in parallel to the target proteome.  The peptide and protein 

identification performance was examined for each decoy using Cranfield University‟s 

GAPP pipeline.  Unlike other studies to investigate decoy designs (Higdon et al., 2005, 

Elias and Gygi, 2007, Käll et al., 2008, Reidegeld et al., 2008), the data used in this 

investigation is a standard protein mixture analysed by multiple laboratories, each of 

which processed the sample using MS without knowing its composition. It therefore 
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represents a real-life scenario, taking into account inevitable variability between 

different experimental setups and researcher experience.   

4.3 Method 

To perform a decoy optimisation study, a peptide identification pipeline is required so 

that many searches can be performed in an acceptable period of time.  The methodology 

applied in this study is summarised in Figure 34, and is explained in more detail in the 

following sections.   
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Figure 34 Overview of the approach used to investigate the best decoy database design performed in this 

chapter.  The GAPP-APS pipeline was applied to ABRF standard MS/MS datasets, and performance of the 

decoy was measured as FPR 

   

4.3.1 Standard datasets with suitable metadata were selected 

A prerequisite for the standard data analysed in this study was the availability of 

accompanying metadata, such as details of the protein content of the samples, chemical 

treatment, MS instrumentation and the number of spectra: 

 Chemical treatment information relates to search parameters, such as variable 

modifications to include, enzyme regular expression and others 

 Instrument type indicates the necessary mass tolerances for the search.  

 The number of spectra provided confirmation that all intended spectra from each lab 

had been downloaded in completeness    

 

The two main contenders, based on fulfilment of these criteria, were the Aurum dataset 

of 246 human proteins (Falkner et al., 2007) and the ABRF sPRG2006 49 human protein 

mixture (Andrews et al., 2006); for a full summary of the publicly available datasets at 

the time of writing go to Appendix IV.  The ABRF datasets were chosen because 

multiple labs had submitted data, so varying levels of data quality could be considered, 

such as levels of contamination and sample handling. Capturing such variance in data 

quality was an important factor to include in this investigation, so decoys could be 

evaluated regardless of individual technique, data quality or mass resolution.   
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Although the ABRF protein mix was originally intended to contain 49 proteins only, 

ABRF Proteomics Standards Research Group Bioinformatics Committee (sPRG BIC) 

confirmed the presence of further „bonus‟ proteins in the mix (Lane et al., 2007).  

Subsequently, a „master list‟95 of SWISSPROT confirmed protein constituents was 

published as a result of retrospective consensus analysis using diverse search strategies.  

For this thesis, all human proteins on the list were considered, including synonymous 

accession numbers, where necessary.  The total number of proteins was therefore 49 

plus associated synonyms totalling 64, plus 40 „bonus‟ proteins (total 104).  

Identifications of all these proteins were deemed to be true positives (TPs).  To perform 

the study, the author converted the accession numbers provided by the ABRF to 

Ensembl-compatible IDs (Appendix IV shows the list). 

 

The ABRF datasets were downloaded using the Tranche Java Downloader Application 

at ProteomeCommons96, and the metadata downloaded from www.abrf.org.  Sean 

Seymour (of ABRF) was contacted to fill in the gaps in the metadata, where necessary.  

If individual submitting laboratories provided multiple data files for the analysis of the 

protein mixture, then these files were merged into a single file and the number of 

spectra was counted and verified against the ABRF metadata file.  ReAdW, a free 

program available for download as part of the TPP software tools, and XCALIBUR 

(Thermo Scientific, Waltham, MA)  were  used  to  convert  .raw  data  to  .mgf  format,  

                                                
95 Available at www.abrf.org 
96 www.proteomecommons.org 
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where required.  The ten labs fulfilling the above format and metadata conditions were 

downloaded; their code numbers were: 00700, 10085, 12874, 14997, 17017, 22069, 25636, 

53178, 53908 and 72079. 

4.3.2 GAPP-APS pipeline produces high quality protein identifications 

The peptide and protein identification performance of diverse decoy database designs 

was evaluated using the GAPP pipeline (Shadforth et al., 2006), where (as mentioned in 

Chapter 3) primary scoring is performed by X!Tandem (Craig et al., 2004) followed by 

validation and protein inference using advanced APS (Shadforth et al., 2005b) (Figure 

34).     

   

For the explanation that follows, note that: an analysis „run‟ for GAPP is defined as a 

single MS/MS data submission, with a specific decoy search and a specific set of search 

parameters; a protein identification (or „hit‟) is any protein found in the target database 

that passes the APS threshold set by the decoy database search for that given analysis 

run; and a peptide „hit‟ is any peptide that was found in the target search database that 

corresponds to a protein that passed APS.   

 

X!Tandem first assigns a peptide sequence to an MS/MS spectrum in GAPP; the results 

are peptide sequences each with an X!Tandem score.  Proteins are inferred from these 

peptides, and validated with the advanced APS method.  There are two parts to the 
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advanced APS method, these are: calculating APS thresholds using a decoy database 

search, and sampling to determine a local maximum for selecting the best APS 

threshold to use (as shown in Figure 34). 

APS threshold and applying decoy database searches to GAPP 

GAPP calculates the sum of X!Tandem scores of the peptides that match to the protein, 

and divides this value by the number of peptides that match to the protein, thus taking 

the mean average.  This aims to account for the fact that the sum of many low scoring 

incorrect peptide identifications would result in an overall high total score for the 

protein overall, thus the protein would appear to be a correct identification when it was 

not; a deleterious situation for an automated search.  Thus, peptide assignments to 

proteins with an APS score below an APS threshold are discarded.  This threshold is 

derived ab initio by setting it to the maximum APS score from the decoy database search 

for the data in question.   

 

GAPP pipeline‟s default decoy is a reversed version of the target.  To create this decoy 

database, all the amino acid sequences in the Ensembl protein database were literally 

reversed.  The assumption is that the reverse DB covers enough of the possible random 

sequences to be reliable, which is a credible assumption, but remains to be proven.  

Despite the uncertainty however, this APS approach in GAPP has been demonstrated to 

perform well when compared to Sequest, Mascot, PeptideProphet, X!Tandem and 

others (Shadforth et al., 2006). 
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Threshold sampling in advanced APS 

„i‟ is a quality filtering value applied to determine which APS score is best to apply as 

the filtering threshold.  The APS values for each run are computed several times at 

different increments of i, and the APS value for i that results in the most identifications 

is chosen.  Note that APS is the protein level measure, and i is at the peptide level.  For 

example, the algorithm proceeds as follows:  

Step 1:  For i = 0, if X!Tandem score for the peptide > i, calculate the protein‟s APS score, 

store the number of peptides and proteins.   

Step 2:  For i = 5, if X!Tandem score for the peptide > i, calculate the protein‟s APS score, 

store the number of peptides and proteins...etc.   

This is repeated in steps for i in increments of 5, up to 50.  The final result is a table of 

values (Table 17) for each value of i, which is stored in the GAPP DB schema. 
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Table 17 APS_score_info table from the GAPP database schema 

Column Description Example data 

entry 

unique_id Unique number of the run, auto-incremented for each data 

submission to GAPP pipeline 

1 

single_pass Number of protein identifications that pass the APS threshold 

with a single peptide assigned  

5 

multi_pass Number of protein identifications that pass the APS threshold 

with multiple peptide assignments 

4 

total_pass Sum of single_pass and multi_pass values.  The total number 

of protein identifications that the pass APS threshold. 

9 

single_thresh The APS score required for proteins with a single peptide 

identification (equal to the maximum APS found for proteins 

matched to a single peptide in the decoy database search) 

76.21 

multi_thresh The APS score required for proteins with multiple peptide 

identifications (equal to the maximum APS found for proteins 

matched to multiple peptides in the decoy database search) 

6.96 

qual_filter i value (incremented in steps of 5) 10 

 

The APS threshold that is applied for a given run is the one that maximises the total 

number of identifications: the highest „total_pass‟ (Table 17).  However, if there are two 

values of i with the maximum number of protein identifications for the same run, then 

the value of i that has a higher number of multiple-peptide protein identifications is 

applied.   

 

In summary, i serves to remove noise (low scoring peptides) in a parametric way by 

sampling the best APS threshold empirically.  This approach increases confidence 

without losing true positive identifications by finding a local maximum for each search.       
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GAPP processing capabilities and X!Tandem search parameters 

For the decoy database analysis in this chapter, processing was carried out on a Linux-

based Beowulf cluster of 16 3.2GHz dual core nodes. In total 1,440 individual search 

runs were performed, excluding initial testing.  The author estimates that this would 

have taken approximately 90 days to compute using a single processor. Computing 

power is an important limiting factor in terms of the number of different combinations 

of algorithms, search parameters and data that can be considered when comparing 

decoys in this way.  For this study, the author collated the spectra to submit to GAPP. 

Luca Bianco created a script to automate the submission process so the pipeline could 

be run overnight, taking the spectra from a specified file directory.   

4.3.3 Search parameters were applied according to the ABRF metadata 

All datasets were processed with the following X!Tandem search parameters: missed 

cleavages up to 2, carbamidomethyl as a variable modification (because the metadata 

stated IAA97 treatment had been used across all labs) and charge state up to 3+.  The 

mass tolerances were set to reflect the MS instrument used by the individual submitter 

(Table 18), with five search parameter sets in total. Unfortunately, as for the majority of 

publicly available MS/MS datasets, the mass accuracies derived from calibration were 

not reported in the  accompanying  metadata, so   the   parameter   sets  were  chosen  to  

                                                
97 Iodoacetamide (IAA) is an alkylating sulphhydryl reagent that is used to prepare peptides for MS.  It prevents 

disulphide bonds forming between cysteines.  It produces peptides with carbamidomethyl modifications, so the mass 

shift of these must be accounted for in automated searches.    
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represent the approximate resolution known to be achieved by the given instrument 

type (Table 18).  

 

Table 18 The mass tolerance parameters used for each dataset.  The tolerances reflect the average resolution 

achieved by the instrument setup 

Parameter set 

no. 

Instrument 

type 

Mass tolerance 

(Da) 

Fragment 

tolerance (Da) 

ABRF submitter 

code 

1 HCT 1.5 0.8 22069 

2 LCQ 2 1 72079 

3 LTQ 1.5 0.8 00700 

4 LTQ-FT 0.3 0.7 12874 

    17017 

    25636 

    53908 

5 QTOF 0.5 0.5 10085 

    14997 

    53178 

 

Ensembl (31st May 2007, homo_sapiens.ncbi36.45.pep.all.fa), which contains all the 

proteins known to be in the sPRG2006 mixture, was used as the target sequence 

database for generating the decoy databases.  

4.3.4 Two search strategies were applied 

The claim of superiority of the target-decoy composite strategy is ubiquitous in the 

literature (Higdon et al., 2005, Haas et al., 2006, Reidegeld et al., 2006, Klammer and 

MacCoss, 2006, Balgley et al., 2007, Falkner et al., 2007, Elias and Gygi, 2007, Reidegeld et 

al., 2008).  Despite this, the search method still remains a controversial topic, since 

separate searches are believed to result in more conservative FPRs, because there is no 

competition with the high quality matches for the best scores.  As a result, decoy hits 



 

211 

 

may receive elevated scores, so matches to the target have to achieve even greater scores 

to pass the higher threshold (Elias and Gygi, 2007). 

 

This study performed searches in both ways: firstly, by searching the target and decoy 

database in parallel so that each database was searched independently from the other, 

and secondly, using the target and decoy as a composite with the forward search by 

appending an additional identifier to the decoy entries.  The Perl script to append this 

tag to each accession number was implemented by Luca Bianco.   

4.3.5 Nine decoy database designs were investigated 

Nine different decoy database designs were tested, four of which were generated at the 

protein level using the most popular published techniques and five, not previously 

described, which were produced at the peptide level (Figure 35). 
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Figure 35 Taxonomy of decoy databases (a) Denotes novel methods of decoy generation implemented in this 

study.  REV: reversed proteome; PRD: uniformly distributed amino acid composition decoy; RND: weighted 

amino acid composition decoy; SHF: shuffle decoy database; MC: decoy where the mass of peptides are 

conserved; pep: denotes a peptide level version of the decoy database as described above; „_c‟ denotes decoys 

appended to the target proteome; „_s‟ denotes decoys that are searched separately in parallel to the target 

proteome.  

 

The main decoy database designs that have been described previously include reversed 

proteome (Moore et al., 2002, Peng et al., 2003, Cargile et al., 2004, Kapp et al., 2005, Qian 

et al., 2005, Shadforth et al., 2005b, Reidegeld et al., 2006, Balgley et al., 2007, Reidegeld et 

al., 2008), shuffled sequence decoys (Stephan et al., 2006, Reidegeld et al., 2006, Klammer 

and MacCoss, 2006, Reidegeld et al., 2008) and randomised decoys (Elias and Gygi, 

2007, Reidegeld et al., 2008).  Reverse database searches are the most popular decoy 

employed to reduce FPs, primarily because they do not require a distribution to be 

determined, since the reverse proteome is deterministically computed.  By reversing 

each protein, amino acid composition and protein length are preserved, so the statistical 

properties of the target are maintained.   

 

Shuffle-type operations can also be performed to create decoy databases, where a 

shuffle is essentially a randomisation process performed within given constraints or 

rules.  The operation may be performed in several ways, for example, where all amino 

acids of the original protein have been shuffled to random positions using functionality 

of proprietary decoy database builder software, such as DecoyDB (Reidegeld et al., 2006, 

Reidegeld et al., 2008).  The final alternative is randomising sequences using an amino 

acid distribution reflecting the entire target proteome. 
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The properties of the decoy databases employed in this study are summarised in Table 

19.  For each decoy, excluding reverse sequence decoys, ten instances were generated so 

that the average distribution of identifications could be calculated.  This was required 

because the randomisation process produced differences in each decoy‟s composition 

each time the program to generate it was executed.     

  

Table 19 Summary of the database properties of the decoys. a - note that proteome length is preserved when 

protein (or peptide) length is preserved. b - in the case of (K/R)P this may be shuffled to create additional 

K/R not followed by P, which is a tryptic cleavage site. 

 

 

 

 

Decoy 

design 

Protein 

and 

peptide  

length 

preserved
a
 

Amino acid 

composition 

preserved in 

each protein 

Amino acid 

composition 

preserved in 

whole 

proteome 

Tryptic 

cleavage 

sites 

preserved 

Protein 

mass 

preserved 

Tryptic 

peptide mass 

preserved 

REV Yes  Yes Yes  No Yes  No  

PRD Yes No No No No  No  

RND Yes No Approx. No No  No  

SHF Yes Yes  Yes No Yes No  

pREV Yes Yes Yes Yes but may 

be more 

Yes Yes but may 

be more
 b

  

pPRD Yes No No Yes but may 

be more 

No  Yes but may 

be more
 b

  

pRND Yes No No Yes but may 

be more 

No  Yes but may 

be more
 b

  

pSHF Yes Yes Yes Yes but may 

be more
b
  

Yes  Yes, unless
b
 

MC No  No No  Yes, but 

may be 

more 

Yes Yes  
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For the reversed proteome (REV) each protein sequence was reversed, meaning that the 

N-terminus of a protein became the C-terminus, and vice versa. Cleavage sites were not 

conserved with this method.   

 

For the uniformly distributed amino acid composition decoy (PRD) the algorithm found 

the size of a protein then created another of identical length by randomly selecting 

amino acids. A uniform probability distribution was used to choose the amino acid to 

add to the polypeptide chain. In this way, all residues had equal probability (1/20) of 

being placed in each position of the decoy protein. The protein length is the only feature 

preserved by this method.   

 

For the weighted amino acid composition decoy (RND) a pre-computation step was 

performed to determine the amino acid distribution of the whole proteome. For each 

protein to be randomised, the size was used to generate a new protein by randomly 

selecting amino acids with a probability distribution depending on the distribution of 

each amino acid within the whole proteome. The [0,1] interval was divided in 20 sub-

intervals, whose length depended on the frequency of the distribution of each amino 

acid in the proteome. A random number from a normal distribution between 0 and 1 

was chosen to decide the amino acid to add to the polypeptide chain under 

construction. This method maintained the protein size and the proteome‟s amino acid 
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distribution, but cleavage sites and amino acid distribution at the protein level were not 

conserved.   

 

In the shuffle decoy database (SHF), the positions of amino acids within a protein were 

randomly changed. This conserved the protein length as well as the amino acid 

composition. The swapping of residues‟ positions could, however, affect cleavage sites, 

which are not protected by this operation.   

 

The peptide level decoys included pREV, pPRD, pRND, pSHF and MC.  To generate 

these, a pre-computation step was required to digest each protein in silico into tryptic 

peptide sequences. Then, a post-computation step reassembled all digested peptides 

into proteins. In the post-computation step, care was taken to conserve all cleavage 

sites.   The reverse peptide decoy (pREV) was similar to the REV decoy but was 

performed at the peptide level, whereby the reverse of each tryptic peptide was 

computed. This preserved the protein length and the amino acid composition. The 

number and composition of cleavage sites was at least as large as it was in the original 

protein.   

 

For the uniformly distributed amino acid composition decoy at the peptide level 

(pPRD), each peptide was substituted by a new sequence having the same length and 

amino acids from a uniform random distribution.  As for the other peptide level decoys,  
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the cleavage sites were used to determine peptide lengths prior to randomisation.  This 

approach maintains protein length but not amino acid composition. The number and 

composition of cleavage sites was at least as large as in the original protein.   

 

In the weighted amino acid composition decoy at the peptide level (pRND) each 

peptide was substituted by another with the same length. All amino acids were 

randomly chosen from a distribution depending on the frequency of amino acids in the 

proteome.  This preserved protein length but not the amino acid composition of 

peptides. The number of cleavage sites was at least as large as in the original protein.   

 

For the peptide shuffle decoy (pSHF) amino acids were randomly shuffled in each 

peptide sequence using the same approach as for SHF.  This preserved protein length 

and the amino acid composition of peptides. The frequency of cleavage sites was at least 

as often as in the original protein.   

 

Finally, for the mass-conserved decoy (MC), the mass of each tryptic peptide that 

constituted a protein was computed and a new, randomly generated, peptide having 

the same mass (plus/minus a tolerance, in this case fixed to 0.5 Da) was substituted for 

the original in the newly generated protein.  This method preserved the mass of 

digested peptides but varied the amino acid composition and the protein length.    
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Palindromic sequences were not removed, neither were any target sequences found in 

the decoy by chance.  This is because it has been shown that palindromic peptides 

account for a negligible proportion of the proteome (Elias and Gygi, 2007) and the 

probability of obtaining an identical sequence by chance is small (1/20)l, where l is 

sequence length. 

For this part of the work, the author designed the selected decoy models, and 

performed conceptual design of the algorithms to create them in conjunction with Luca 

Bianco, who coded the final programs to generate the decoy database instances: a 

program written in C for the mass conservation decoy and Perl scripts for the others.     

4.3.6 Decoy database performance was measured using FPR 

False positive rate (FPR), FP/(FP + TP), was used as the principal measure of decoy 

performance.  This is because it captures the identification performance of each search, 

taking into account both correct and incorrect identifications.  FPR could be determined 

because a standard protein mixture was analysed (Higdon et al., 2005).  FPR was 

calculated at both the protein and peptide levels, however the focus of the analysis was 

predominantly on protein identification performance. 

There is ambiguity in the community as to the definition and usage of the term „False 

Positive Rate‟ (FPR) versus „False Discovery Rate‟ (FDR).  In the literature there are 

instances where FPR and FDR have been used interchangeably, for example in Elias and 

Gygi‟s paper (Elias and Gygi, 2007), where FPR was defined as FP/(FP + TP) (as in this 

thesis) and in (Jones et al., 2008a) where the same measurement is referred to as FDR.  
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Further complications arise still, for example, where FDR is defined as the percentage of 

PSMs (peptide-spectrum matches) that are incorrect by some authors, such as (Käll et 

al., 2008), and can be applied when datasets of unknown composition have been used 

(Blackler et al., 2006, Reidegeld et al., 2008).   Also FDR - for separate target decoy 

searches - may be calculated as the number of decoy peptides identified, divided by the 

number of target peptides identified (Choi and Nesvizhskii, 2008a, Tabb, 2008).  The 

purpose of FDR in this case is to give an indication of the percentage of incorrect 

peptide identifications that have been accepted as correct by passing a user-defined 

threshold.  In this study, however, FDR, by this definition, did not need to be 

determined, because a standard dataset of known composition was employed, so FPR 

sufficed – as calculated as FP/(FP + TP), where the TPs list was available.   

4.3.7 Statistical analysis included factorial ANOVA 

ANOVA was performed on the mean FPR values to determine if there was a 

statistically significant difference in performance across the decoy designs.  It was 

performed with three factors using Genstat (VSN International Ltd., UK), the factors 

being: i) decoy design (nine as shown in Table 19), ii) search strategy (composite and 

separate) and iii) instrument (five MS setups as shown in Table 18).  The aim was to 

determine which, if any, decoy design was significantly better than the others and also 

to investigate the effect of search strategy and instrument type on FPR - to put any 

difference between decoys into context.  To establish significant differences, pair-wise 

comparisons of least significant difference (LSD) values were made.  For instrument 
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type, the number of replicates was not uniform so LSDs had to be compared taking into 

account the replicate number for each case.  Bespoke scripts were written by the author 

to import data into Matlab (Mathworks, Natick, MA) and Genstat for these analyses. 

 

In addition to ANOVA, box whisker plots were generated to graphically illustrate the 

differences in protein identification performance across different labs and decoys.  Such 

a plot shows the robustness of each decoy design, demonstrating the variability 

between the ten individual instances.  These plots were generated using Matlab scripts 

written by the author.  Additional graphs were created using Excel.   

 

To explore the effect of decoy design on identification performance further, the author 

designed a database to capture several other metrics at the time of search.  These 

properties were designed to give further, detailed understanding into the aetiology of 

the differences in decoy design performance, and included: 
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 Number of protein identifications (TP, FP and decoy database) 

 Number of peptide identifications (TP, FP and decoy database) 

 Number of peptides found per protein identification (TP, FP and decoy database) 

 Number of peptides matched with seven or fewer amino acids (TP, FP and decoy 

database).  Seven amino acids is the number reported by Elias and Gygi at which peptide 

redundancy between target and reverse decoy deteriorates (Elias and Gygi, 2007). 

 Average length of peptide identifications (TP, FP and decoy database) 

 Number of assigned peptides identical in sequence across target and decoy 

 False positive rate at the peptide level 

 False positive rate at the protein level 

 APS score threshold for single peptide identifications 

 APS score threshold for multiple peptide identifications 

 

For each decoy database (except the reverse decoys) there were ten values for each 

metric in this list, these represented the ten instances.  The author implemented the 

MySQL database to capture these metrics, and Luca Bianco wrote the intermediary 

script between GAPP and this metrics database.  The author manually queried specific 

values, such as APS thresholds, from the metrics database schema. 

4.4 Results 

4.4.1 FPRs summary 

Mean FPRs were reported between zero and 5.6 percent for peptide level 

identifications, and zero and 17.9 percent for the protein level identifications.  Actual 

numbers of FPs and TPs used in the calculations are provided in Table 20.  The separate 
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search strategy generally performed better, producing lower FPRs over the majority of 

decoy designs (Figure 36 and Table 20).     

 

 

 

 

Figure 36 Mean protein identification FPR by decoy design and search strategy.  Separate searches are 

generally more accurate.  The majority of decoys produced a lower FPR when searched independently of the 

target database, the only exception being pRND which resulted in lower FPR when searched in composite 

with the target.  pREV searched in composite with the target appears to be the optimal method, followed 

closely by pSHF in both composite and separate.  Bars represent the standard error.  Decoy/method LSD 5% 

= 2.86  
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Table 20 Mean true positives and false positives across all data submitters and decoy search types.   

(a) TP proteins   (grand mean = 32.1, standard deviation = 13.1 )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) FP proteins  (grand mean = 1.80, standard deviation = 2.61) 

Submitter REV_c PRD_c RND_c SHF_c pREV_c pPRD_c pRND_c pSHF_c MC_c REV_s PRD_s RND_s SHF_s pREV_s pPRD_s pRND_s pSHF_s MC_s 

22069 3 3.5 3.2 2.6 0 2.5 1.8 1.7 4.3 3 2 2.4 2.2 0 1.5 2.3 1.5 2.3 

72079 8 14.1 9.4 9.8 3 11.2 7.6 6.9 12.7 2 10.3 9.6 8.5 3 9.7 9.8 8.2 7.8 

00700 1 2.6 1.3 0.2 1 1.6 0.3 0.3 3 0 1.6 2.1 1.3 2 2.2 2.3 1 2.2 

12874 0 0.2 0 0.1 0 0 0 0 0.3 1 0.1 0.3 0.2 1 0.6 0.7 0.1 0.2 

17017 2 4.4 1.8 1.6 2 2.7 1.6 1.2 4.7 6 1.6 1.7 2.2 1 2 2.1 1.7 2.2 

25636 1 1.1 0.8 1 1 1.2 0.3 1.2 1.2 0 0.8 0.4 0 0 0.3 0 0.1 0.1 

53908 1 1.4 0.5 0.6 0 0.6 0.1 0.6 0.9 2 0.6 0.9 0.4 0 0.3 0.5 0 0.5 

10085 1 0.8 0.9 0.6 0 0.6 0.3 0.6 1 0 0.5 0.7 0.8 1 0.5 0.6 0.3 0.7 

14997 3 1 0.8 0.8 0 1 0.2 0.9 1 1 0.4 0.1 0.8 1 0.5 0.5 0.2 0.4 

53178 1 1.4 0.3 0.6 1 0.8 0.4 0.5 1.5 1 0.7 0.3 0.7 1 0.5 1 0.5 0.7 

 

Submitter REV_c PRD_c RND_c SHF_c pREV_c pPRD_c pRND_c pSHF_c MC_c REV_s PRD_s RND_s SHF_s pREV_s pPRD_s pRND_s pSHF_s 

MC_

s 

22069 34 34.4 34.8 34.3 33 33.8 33.6 33.6 35.2 34 33.1 33.4 32.8 33 33 33.8 32.9 33.5 

72079 61 64.5 63.3 62.4 62 63.2 62.2 63 64.1 58 63.1 62.1 61.7 62 61.9 62 62.1 61.7 

00700 20 22.7 20.4 19.8 20 21 19.7 19.8 22.5 19 22 22.9 21.1 24 23 23.1 20.9 21.7 

12874 36 35.8 35.2 35.7 36 35.3 35.8 35.9 36 36 35.8 35.7 36 36 35.2 36 35.9 36 

17017 34 33.7 33.3 33.8 32 33.6 33 33.3 33.8 34 33.5 33.6 33.4 34 33.4 33.6 33.6 33.4 

25636 10 9.5 8.4 8.7 7 8.5 7.8 9 8.9 9 10 9.5 8.8 8 9.1 7.8 8.9 8.6 

53908 28 27.1 26.2 26.3 24 26.8 26.1 25.9 27.1 27 26.4 26 26.4 26 26.3 26.7 26.4 26.7 

10085 37 37.2 37 37 37 37 37 37.1 37.1 37 37 36.9 36.8 37 36.8 36.9 37 37 

14997 37 36.4 36.7 36.8 36 36.5 36.6 36.4 36.7 36 36 35.5 36.7 36 36.1 35.9 35.4 36 

53178 25 27.1 24.9 25.5 26 26 25.6 25.1 26.5 26 25.5 25.3 25.8 27 25.8 26.3 25.7 25.9 
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The grand mean FPR across all 180 means (10 data submitters x 9 decoy designs x 2 

search strategies) at the protein level was only 4.56 percent (standard error 0.31), and at 

the peptide level only 1.34 percent (standard error 0.10).   

4.4.2 Recommendation for decoy design based on protein level FPR 

The ANOVA F probability values were under 0.05 for each of the three factors for the 

protein level FPR mean values: 0.030 for decoy design, 0.021 for search strategy and 

<0.001 for MS instrument setup, respectively.  This was an exciting result indicating that 

there were significant differences between the FPRs across the decoy designs, and that 

the FPRs obtained by separate searches were significantly different to FPRs obtained by 

composite searches over the datasets tested.  Importantly, the interaction F values 

showed no statistically significant interactions between the three factors at the protein 

level, with all values exceeding 0.05, meaning that the decoy effects on FPR were 

reproducible across the different search methods and instrument types.  This is 

important as it indicates that the relative performance of the decoys across the samples 

analysed in the study is independent of the MS instrument or search strategy employed.  

Finally, inspection of the residuals showed that the average FPRs fitted the normal 

distribution, so the underlying assumptions required for ANOVA were valid. 

 

To determine which decoy design performed best, the LSDs at 5% from the ANOVA 

analysis were compared to the mean FPR values (Table 21).   The LSD at 5% is the 

absolute value by which two means must differ to be deemed significantly different 
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with 95% confidence.  The comparison shows that pREV, pSHF and pRND were 

significantly better in terms of protein FPR than MC and PRD.   pREV was also 

significantly superior to REV and pPRD.  There was, however, no single „winner‟ decoy 

database that was significantly better than all the rest; however, the results are suitable 

to make the recommendation that peptide level reverse be used routinely for automated 

searches using the APS method.  This is because pREV is as good as the other decoy 

designs, significantly better than MC, PRD, pPRD and REV, but, perhaps more 

importantly, in practical terms it is easier to generate and use than pSHF or pRND (the 

other contenders) because it does not require multiple database instances to be 

generated to derive a robust result.   
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Table 21 Significant differences between decoy designs for protein identification false positive rate (FPR).  

The underlined values are the pairs that demonstrate statistical significance.  To determine significant 

differences the least significant difference (LSD) value at 5% was compared to the mean FPRs.   The LSD at 

5% is the absolute value by which two means must differ to be deemed significantly different with 95% 

confidence.    pREV, pSHF and pRND are significantly better in terms of protein FPR than MC and PRD, 

and SHF is significantly better than MC.  pREV is also significantly better than pPRD and REV.  it is 

therefore the recommended decoy design for protein identification because it is as good as the other decoy 

designs, significantly better than those mentioned and is easier to generate than other randomised decoys, 

because it does not require multiple instances to be run to derive a reliable result.   LSD at 5% = 2.022 

 

Decoy design  MC pPRD PRD pREV pRND pSHF REV RND SHF 

 Mean FPR  6.01 5.06 6.03 2.91 3.72 3.49 4.95 4.68 4.22 

MC 6.01 x 0.95 0.02 3.1 2.29 2.52 1.06 1.33 1.79 

pPRD 5.06  x 0.97 2.15 1.34 1.57 0.11 0.38 0.84 

PRD 6.03   x 3.12 2.31 2.54 1.08 1.35 1.81 

pREV 2.91    x 0.81 0.58 2.04 1.77 1.31 

pRND 3.72     x 0.23 1.23 0.96 0.5 

pSHF 3.49      x 1.46 1.19 0.73 

REV 4.95       x 0.27 0.73 

RND 4.68        x 0.46 

SHF 4.22         x 

 

 

The ANOVA provides a Boolean result on significant difference, but to further explore 

the variability in decoy design the box whisker plot is useful (Figure 37, continued in 

the Appendix IV).  This plot shows that certain decoy generation methods produce 

more reproducible performance than others.  This variation further affirms the 

recommendation of a reverse decoy design, where standard deviation is always zero. 
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Figure 37 Box whisker plot to illustrate the distribution of protein level false positive rates (FPRs) across 

the ten database instances for each decoy design.  Each color represents an individual ABRF data-

submitting laboratory.  The horizontal line is the mean of the ten database instances, the box around the 

line shows one standard deviation above and below the mean, the whiskers show two standard deviations 

from the mean and the filled dots are the maximum and minimum individual FPR values obtained for the 

given decoy.  The first nine decoys on the x-axis were searched in composite with the target and the last 

nine separate to the target.  A representative of each instrument type is shown, for the remaining three 

labs (53908, 14997 and 17017) see the Appendix IV.   

 

The coefficient of variation (CV) value for protein FPR means in this study was 

70.6%, which is why small differences between decoy designs could not be detected 

as significant by the ANOVA.  This is also the reason for the relatively large LSD 

values – with FPRs having to be very different to be classed as significantly different 

(Table 21).  However, the data volume and scope was sufficient in this study to make 

statistically significant, meaningful recommendations, hence sub 0.05 F values were 

reported. 

4.4.3 Recommendation for search strategy based on protein level FPR 

For search strategy, the ANOVA generated an LSD (5%) for FPR at the protein level 

of 0.953.  The difference between the composite and separate means, 5.12 and 4.00, 

respectively, was 1.12, therefore composite and separate search methods were 

significantly different across the datasets included in this study – with separate 

being the significantly superior method.  The recommendation, therefore, is that 

separate searches should be used, which is in contrast to the multiple studies using 

datasets from samples of unknown composition that recommend composite 

searches, such as (Elias and Gygi, 2007, Reidegeld et al., 2008).   
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4.4.4 Recommendations based on peptide level FPRs  

For peptide level FPRs, F values were not below 0.05 for decoy and search method: 

0.077 and 0.178, respectively.  Machine type, however, did show the expected 

significant difference at the peptide level (F value <0.001).  Unlike the protein level 

FPR, the peptide FPR values also showed interactions between search strategy and 

instrument (F value <0.001).  The meaning of this interaction is very difficult to 

interpret, however more pertinent to this study is the fact that there were no 

interactions between decoy design and search strategy, and no interactions between 

decoy design and instrument.   

 

In contrast to the protein level, there was no statistically significant difference 

between composite and separate search strategies at the peptide level, although the 

mean overall peptide FPR was lower for the separate search data (1.2) than the 

composite (1.4).  Finally, the CV value for peptide FPR means was 79.5 percent, 

which is higher than the protein level.  
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4.5 Discussion 

In this study, the FPRs at the peptide level were lower than the protein level.  This is 

to be expected, because the peptide hits are identifications corresponding to actual 

matches between the database and m/z values, whereas protein identifications are 

inferred from peptide level data, and the process of inference is subject to additional 

error and ambiguity.   

4.5.1 APS threshold explains the differences in FPR between the 

different decoy database designs 

To understand the reasons for the lack of a clear „winning‟ decoy design, and to see 

why pREV, pSHF and pRND were significantly better than MC and PRD, various 

metrics were examined across the different decoy designs.   The APS threshold was 

the metric that best explained these observations. Figure 38 (a) illustrates average 

single-peptide APS threshold for four of the ABRF data submitters (across the ten 

instances of each decoy design), and Figure 38 (b) the same only for multiple peptide 

APS thresholds.  Arguably, the single threshold is the most important threshold to 

examine because the results showed that the average number of peptides required to 

make a false positive identification was one, compared to true positives which on 

average found multiple peptides to assign to the protein (data shown in Appendix 

IV).  It shows that across the four labs shown pREV, pSHF and pRND have some of 

the highest APS thresholds compared to the other decoys, and explains why these 

three had significantly better FPRs than MC and PRD (Table 21).  MC and PRD 

routinely had lower APS thresholds compared to pREV, pRND and pSHF, so these 
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decoys permitted more low-scoring FP identifications to pass, thus producing higher 

FPRs as a consequence.   

 

Figure 38 also shows that the best decoy was not always the same (in terms of 

threshold) across the different datasets.  Lab 17017, for example, showed pREV had 

the highest, whereas 25636 showed pRND had the highest for single peptide APS 

thresholds.  This study, however, looked holistically across ten different datasets and 

the statistical analysis showed no significant interactions meaning that overall the 

decoys behaved reproducibly across the datasets – despite this sample perhaps 

indicating otherwise. 
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(a) 
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 (b)  

 

 

Figure 38 Average APS score thresholds across the diverse decoy designs for (a) single-peptide protein 

identifications and (b) multiple-peptide protein identifications.  Four of the ten ABRF submitting labs are 

shown and were chosen to represent a suitable range of candidates, including data from different 

instruments and across different ranges of FPs (72079, high FPs; 12874, low FPs; 17017 and 25636 mid-

range FPs).  The remaining three labs (00700, 14997 and 22069) are shown in Appendix IV. The bars 

show the standard error above and below the mean; reverse decoys have zero variation so have zero 

error.  The thresholds are plotted to establish the underlying reasons for the differences in decoy 

database performance; in particular, to understand why pREV, pRND and pSHF were significantly 

better than MC and PRD.  The figure shows average peptide score (APS) thresholds, where APS is 

calculated as the sum of the individual peptide X!Tandem scores divided by the number of peptides for 

the given protein identification.  This figure illustrates average single-peptide APS threshold (across the 

ten instances of each decoy design).  The single threshold (in (a)) is particularly important because the 

results showed that the average number of peptides required to make a FP identification was one or less 

(remembering there are ten instances of each decoy design some of which had no FPs), compared to true 

positives which on average found multiple peptides to assign to the protein (see the Appendix IV for these 

data).     
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Finally, Figure 38 clearly shows that separate searches achieve higher (thus more 

stringent) APS thresholds.  This is because the decoy hits are not in direct 

competition with high quality matches when searched independently, so can achieve 

elevated APS scores (Elias and Gygi, 2007).  Lastly, pREV and pSHF conserve both 

peptide and amino acid composition (see Table 19 earlier), this could be an 

additional contributory factor for these decoys performing significantly better than 

MC and PRD.   

 

Other metrics that explained some of the observations were: (1) total number of 

peptide hits (Figure 39), which showed that more hits are made against the decoy 

databases when searched in parallel, as opposed to composite; and (2) average 

length of peptides used in identifications (Figure 40), which showed that on average 

false identifications are made using shorter peptides compared to those for true 

identifications.  This data also indicates that the decoy databases represented 

acceptable null models, because peptides of very similar length to TPs were found in 

the decoys.  
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Figure 39 Understanding differences between decoy designs by examining the number of peptides found by each individual decoy design.  The horizontal line is the 

mean of the ten database instances, the box around the line shows one standard deviation above and below the mean, the whiskers show two standard deviations 

from the mean and the filled dots are the maximum and minimum individual FPR values obtained for the given decoy.  The first decoys on the x-axis were searched 

in composite with the target and the last nine in parallel.  More peptides are found in separate searches because there is less competition for matches.  This is also 

why there is a more conservative hit rate with the separate search because with more peptides found by the decoy, there is more likely to be a higher maximum 

APS (hence higher APS threshold) in the decoy meaning more peptides hits are filtered out.  (The remaining two labs are plotted separately because the values 

overlap).   



 

238 

 

 

The remaining metrics that were considered included the mean number of assigned 

peptides that were identical between the target and decoy- this was virtually zero 

(grand mean 0.018); and the number of assigned peptides of seven amino acids or 

less, which showed that on average only one or fewer (0.83) peptides under seven 

residues was hit in the TP protein space and only 0.13 in the FP space across all 

decoys and labs. 

Figure 40 Mean peptide lengths found across ten instances of each decoy type.  The bars show the standard 

error above and below the mean.  False positives are generally attributed to shorter peptide matches. 
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4.5.2 Identification performance was comparable with the original ABRF 

study 

Comparison with the results reported in the original ABRF analysis poster98 have to 

be limited to the 49 core proteins because the „bonus‟ constituents were only 

identified subsequently (Lane et al., 2007).   The comparison showed that on the 

whole, GAPP identified similar numbers of the original TPs and FPs, although this 

varied according to lab.  For example, lab 72079 originally reported 47 TPs and 5 FPs, 

but using pREV in separate (the now recommended decoy database search strategy) 

with GAPP, it achieved 41 TPs and 3 FPs, and for lab 14997, originally 36 TPs and 

zero FPs were reported, but GAPP achieved 32 TPs and 1FP.  This is an encouraging 

outcome, as the ABRF data submitters were able to leverage their expertise through 

manual interpretation, whereas the results in this chapter were generated 

automatically.   

4.5.3 Differences in FPR between data submitters was caused by 

individual sample handling 

Given that the combination of a decoy database and APS scoring is often purported 

to eliminate FPs, it may seem surprising that FPs were not totally eliminated; the 

grand mean average number of FPs over all analyses was 1.8 FPs. A list of all FPs 

observed across the ten labs for (one instance of) all decoys was collated and 

analysed by the author;  none corresponded to the cRAP (“cee-RAP”) – the Common 

                                                
98 Andrews et al., 2006, ABRF-sPRG2006 study: a proteomics standard, see 

http://www.abrf.org/ResearchGroups/ProteomicsStandardsResearchGroup/EPosters/ABRFsPRGStudy2006post

er.pdf 



 

240 

 

Repository of Adventitious Proteins99 -  list of contaminants, however, four possible 

contaminant proteins were identified (shown in red in Table 22).  These 

contaminants were not the most ubiquitous FPs.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 22 False positive (FP) protein descriptions taken from results of a single instance of each decoy 

design.  There are 49 FPs in total.  Rows in bold are FPs with no functional descriptions.  In red are the 

FPs believed to be common contaminants introduced during sample handling.   

 

                                                
99 This is a list of sequences in fasta format for the most common contaminant proteins in proteomics. It 

contains proteins from multiple species and includes common laboratory, dust and contact-related proteins, as 

well as molecular weight or mass spectrometry quantitation standard proteins.   
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Ensembl identifier Description 

ENSG00000049618 

 

AT-rich interactive domain-containing protein 1B (ARID domain- containing 

protein 1B) (Osa homolog 2) (hOsa2) (p250R) (BRG1-binding protein 

hELD/OSA1) (BRG1-associated factor 250b) (BAF250B).  

ENSG00000065883 Cell division cycle 2-like protein kinase 5 (EC 2.7.11.22) (CDC2- related 

protein kinase 5) (Cholinesterase-related cell division controller).  

ENSG00000073712 Pleckstrin homology domain-containing family C member 1 (Kindlin-2) 

(Mitogen-inducible gene 2 protein) (Mig-2).  

ENSG00000075914 Exosome complex exonuclease RRP42 (EC 3.1.13.-) (Ribosomal RNA- 

processing protein 42) (Exosome component 7) (p8).  

ENSG00000078487 Zinc finger CW-type PWWP domain protein 1.  

ENSG00000096654 Zinc finger protein 184 

ENSG00000104133 Spatacsin (Spastic paraplegia 11 protein) (Colorectal carcinoma- associated 

protein).  

ENSG00000108557 Retinoic acid-induced protein 1.  

ENSG00000116254 Chromodomain helicase-DNA-binding protein 5 (EC 3.6.1.-) (ATP- 

dependent helicase CHD5) (CHD-5).  

ENSG00000119812 Protein FAM98A.  

ENSG00000121495 Retrotransposed gene: no description available 

ENSG00000122034 Transcription factor IIIA (Factor A) (TFIIIA).  

ENSG00000128731 Probable E3 ubiquitin-protein ligase HERC2 (EC 6.3.2.-) (HECT domain and 

RCC1-like domain-containing protein 2). 

ENSG00000128881 Tau-tubulin kinase 2 (EC 2.7.11.1).  

ENSG00000136327 Homeobox protein Nkx-2.8 (Homeobox protein NK-2 homolog H).  

ENSG00000138379 Growth/differentiation factor 8 precursor (GDF-8) (Myostatin).  

ENSG00000141837 

 

Voltage-dependent P/Q-type calcium channel subunit alpha-1A (Voltage- 

gated calcium channel subunit alpha Cav2.1) (Calcium channel, L type, 

alpha-1 polypeptide isoform 4) (Brain calcium channel I) (BI).  

ENSG00000141968 Proto-oncogene vav. 

ENSG00000143520 Filaggrin family member 2  

ENSG00000143702 Centrosomal protein of 170 kDa (KARP-1-binding protein) (KARP1-binding 

protein).  

ENSG00000146872 Serine/threonine-protein kinase tousled-like 2 (EC 2.7.11.1) (Tousled- like 

kinase 2) (PKU-alpha).  

ENSG00000148842 Metal transporter CNNM2 (Cyclin-M2) (Ancient conserved domain- 

containing protein 2) 

ENSG00000152670 Probable ATP-dependent RNA helicase DDX4 (EC 3.6.1.-) (DEAD box 

protein 4) (VASA homolog).  

ENSG00000153201 

 

E3 SUMO-protein ligase RanBP2 (Ran-binding protein 2) (Nuclear pore 

complex protein Nup358) (Nucleoporin Nup358) (358 kDa nucleoporin) 

(p270).  

ENSG00000156222 

 

Sodium/nucleoside cotransporter 1 (Na(+)/nucleoside cotransporter 1) 

(Sodium-coupled nucleoside transporter 1) (Concentrative nucleoside 

transporter 1) (CNT 1) (hCNT1).  

ENSG00000161849 Keratin type II cuticular Hb4 (Type II hair keratin Hb4) (Keratin-84) (K84).  

ENSG00000162896 

 

Polymeric-immunoglobulin receptor precursor (Poly-Ig receptor) (PIGR) 

(Hepatocellular carcinoma-associated protein TB6) [Contains: Secretory 

component].  

ENSG00000163214 Putative ATP-dependent RNA helicase DHX57 (EC 3.6.1.-) (DEAH box 

protein 57).  
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In virtually all cases, a FP was seen by multiple decoys, but by only one lab, 

implying that the FP was derived from individual sample handling or 

instrumental/protocol error on a one-off basis (Figure 41 and Figure 42).       

 

 

ENSG00000164574 

 

Polypeptide N-acetylgalactosaminyltransferase 10 (EC 2.4.1.41) (Protein-

UDP acetylgalactosaminyltransferase 10) (UDP- GalNAc:polypeptide N-

acetylgalactosaminyltransferase 10) (Polypeptide GalNAc transferase 10) 

(GalNAc-T10) (pp-GaNTase 10). 

ENSG00000166508 DNA replication licensing factor MCM7 (CDC47 homolog) (P1.1-MCM3). 

ENSG00000168924 Leucine zipper-EF-hand-containing transmembrane protein 1, mitochondrial 

precursor.  

ENSG00000169509 Protein NICE-1.  

ENSG00000170748 Testis-specific heterogeneous nuclear ribonucleoprotein G-T (hnRNP G- T).  

ENSG00000171433 Glyoxalase domain containing 5  

ENSG00000171444 Colorectal mutant cancer protein (Protein MCC).  

ENSG00000175756 Aurora kinase A-interacting protein (AURKA-interacting protein).  

ENSG00000175920 Protein Dok-7 (Downstream of tyrosine kinase 7).  

ENSG00000176825 No longer in the Ensembl database 

ENSG00000177843 No longer in the Ensembl database 

ENSG00000179981 Teashirt homolog 1 (Serologically defined colon cancer antigen 3) (Antigen 

NY-CO-33).  

ENSG00000180043 Pseudogene: no description available 

ENSG00000186543 CDNA FLJ41343 fis, clone BRAWH2001973.  

ENSG00000188013 Meis1, myeloid ecotropic viral integration site 1 homolog 3 isoform 2 

ENSG00000188153 Collagen alpha-5(IV) chain precursor.  

ENSG00000188483 Immediate early response 5-like  

ENSG00000189182 Keratin, type II cytoskeletal 1b (Keratin-77).  

ENSG00000197582 Glutathione peroxidase 1 (EC 1.11.1.9) (GSHPx-1) (GPx-1) (Cellular 

glutathione peroxidase).  

ENSG00000197594 

 

Ectonucleotide pyrophosphatase/phosphodiesterase family member 1 (E- 

NPP 1) (Phosphodiesterase I/nucleotide pyrophosphatase 1) (Plasma-cell 

membrane glycoprotein PC-1) [Includes: Alkaline phosphodiesterase I (EC 

3.1.4.1); Nucleotide pyrophosphatase 

ENSG00000198854 Skin-specific protein 32. 
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Figure 41 The distribution of FP protein identifications across specific Ensembl gene accession numbers, showing the breakdown by decoy type.  The theoretical 

maximum is 10 for each coordinate on the graph, because each position shows the number of different data submitters, where the FP was found for decoy.  The 

data shown is derived from examination of one instance (out of the ten performed). 
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Figure 42 The distribution of false positive protein identifications across specific Ensembl gene accession numbers showing the breakdown by data submitter.  The 

theoretical maximum is 18 for each coordinate on the graph, because each position represents FP observe across 18 different decoy types for decoy instance 1.  The 

data shown is derived from examination of one instance (out of the ten performed). 
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Tau-tubulin kinase 2 (ENSG00000128881), for example, was observed by 16 decoy 

designs for lab 17017 (LTQ-FT).  Furthermore, lab 72079 (LCQ) had the most FPs by 

a large margin, suggesting generally poor sample handling; this observation was 

consistent with the original ABRF study (Andrews et al., 2006).   

 

Significant differences in FPR were detected between instrument types, except for 

LTQ and HCT, which did not report a significant difference (both being ion traps) 

(Table 23 and Figure 43).   
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Table 23 Three-way ANOVA analysis.  Given the number of replicates available (a), the least significant 

differences were found (b), and applied to determine whether significant differences had been observed 

(c).  It showed that there were statistically significant differences between the mean protein FPR values 

achieved by the instrument types tested (underlined and bold).  The only exception was LTQ/ HCT, 

which did not report a significant difference in FPR.  This is to be expected, since  LTQ and HCT are 

both ion trap instruments, and both have the same mass tolerances applied for the protein identification 

search.   

 

(a) 

 HCT LCQ LTQ LTQ-

FT 

QTOF 

No. of 

replicates 

18 18 18 72 54 

 

 

(b) 

  18 to 18 18 to 54 18 to 72 54 to 72 72 to 72 

LSD at 5%  2.131 between 2.131 and 1.685 1.685 between 1.066 and 1.685 1.066 

 

 

(c) 

 

 

 

        

Instrument type   HCT LCQ LTQ LTQ-FT QTOF 

   Mean FPR (prot) 6.04 11.7 6.05 3.84 2.16 

HCT 6.04 x 5.66 0.01 2.2 3.88 

LCQ 11.7  x 5.65 7.86 9.54 

LTQ 6.05   x 2.21 3.89 

LTQ-FT 3.84    x 1.68 

QTOF 2.16     x 
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Figure 43 False positive rate by decoy design showing the effect of instrument type.  Separate and 

composite runs are considered together.  HCT, LCQ and LTQ were represented by only one replicate for 

each run type, whereas LTQ-FT was represented by four labs and QTOF by three.  The highest 

resolution instrument, the LTQ-FT did not result in the lowest FPR; although the lack of multiple 

submissions from a QTOF make its superiority inconclusive. 

 

It should also be noted that only one replicate was present for HCT, LCQ and LTQ.  

The box whisker plots illustrate the large variation in FPR (Figure 37), which is to be 

expected since not only the instrument differs, but also the experience and skill of 

the practitioner.   

4.6 Conclusions and recommendations to increase confidence in 

automated searches 

Given the work presented, the peptide level reverse decoy searched independently 

from the target may be recommended as a suitable alternative to reduce FPs in 

automated searches.  The research offers science-based evidence that may prove 

useful for guiding proteomic data reporting policies.  For example, the recently 



 

 
248 

released “Paris Guidelines” specify that FPR should be estimated for large scale MS 

studies using randomised decoy database searches when reporting the findings in 

publications (Bradshaw et al., 2006, Tabb, 2008).  The work here suggests which 

randomised decoy should be applied. This research also provides a specific example 

of how publicly available MS/MS datasets may be exploited for novel studies by the 

community.    However, it should be noted that although experimental variance has 

been covered by use of the ABRF datasets, a specific pipeline was employed for the 

analysis. As such, the author cannot claim that the observed pattern of decoy 

performance will definitely be seen in all proteomics workflows.  Thus, an 

investigation with other pipelines, using the presented methodology, would 

represent valuable work.  In particular, it is most likely that the findings will be 

reproducible across pipelines that employ search engines set to accept only one 

peptide identification per spectrum, as was the case for X!Tandem.  X!Tandem did not 

allow second, third or fourth (etc.) ranked peptides to be found as „hits‟; only one 

peptide was successfully identified per spectrum – the top ranking peptide.  This is a 

critical point, because without competition for this top hit position, differences in 

performance between decoys would most probably have been negligible.   In this 

study, however, separate searches produced lower FPRs than with the composite 

because there was competitive pressure for the highest score.  Mascot, for example, 

can be set to accept only the top scoring peptide per spectrum in this way.                      

A research article has been written by the author describing the investigation 

performed in this chapter.  It has been published in the Journal of Proteome 

Research (see Appendix IV). 
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4.7 Additional future work 

4.7.1 Testing further standard datasets  

To further confirm the conclusions made in this chapter, it is proposed that an 

additional standard MS/MS dataset be applied to the GAPP/ decoy database 

analysis.    There are several candidate datasets that could be applied; Appendix IV 

lists the alternatives.  This work would exploit the existing framework for analysis, 

with the decoy databases already being generated and Matlab scripts requiring 

minimal recoding.   

4.7.2 Apply peptide level reverse decoy database in the public GAPP 

pipeline 

Now that the peptide level reverse decoy database is recommended for GAPP, this 

decoy should become the default database for the public GAPP system.  At the 

moment, the protein level reverse is still in use.  Ideally, there should be an option 

for users to select their decoy database of choice, at the time of data submission.  The 

scripts for generating the decoy database instances could be applied to the website to 

achieve this. 

4.7.3 Investigation into theoretical FPRs would make the study more 

useful for non-standard datasets 

FPR was the primary measure for protein identification performance.  This is a 

useful metric, but there are other approaches that could improve the thoroughness 

of the work.  For example, one of the reviewers of the decoy design manuscript 

suggested that theoretical FPR should be varied to make the results more applicable 
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to non-standard datasets.  The proposed work would involve calculating theoretical 

FPR - using “classical” approaches (Elias and Gygi, 2007) (Jones et al., 2008a) using 

FPR = 2 * decoy hits / (decoy + target hits), or similar variants, and comparing these 

values to the real FPRs already obtained. This would mean dropping the APS 

threshold value to take in more “hits”, and calculating theoretical FPRs at 1%, 5%, 

10% for example (in the study already performed all results were based on a single 

nominal 0% threshold).   This additional experiment would be possible because the 

APS data was stored for all GAPP analysis runs performed in the original study, so 

the APS threshold can be varied incrementally when querying out the results to 

obtain plus or minus the actual APS score used as the theoretical 0% FPR threshold.   

This work would be informative, because: 

 It would highlight the differences a user would obtain from searches where they do not know the 

identifications a priori; as is normally the case. For example, if a search is run versus Ensembl 

database at a nominal FPR of 5% (measured from decoy hits being FPs) then what would be the real 

FPR?  

 It may highlight further the differences observed between decoy designs, and could confirm the initial 

findings of the original work.  

 It would evaluate performance at a variety of thresholds, as is the norm for ROC analysis.  

Importantly, there are potential dangers in drawing inference from a single threshold, as was the case 

in the original study. 

 

In addition, it is proposed that posterior error probabilities (PEPs) could be 

estimated (Käll et al., 2008), as this approach can be thought of as a measure of local 

FDR for specific proteins rather tham the dataset as a whole.  This metric could be 

calculated as part of the re-analysis of the data presented, and could confirm the 

findings that the reverse peptide decoy is the recommended choice. 
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5 MRMaid, the web-based tool for designing multiple 

reaction monitoring (MRM) transitions 

 

 
 
 
 
 

MRMaid, the web-based tool for 
designing multiple reaction  

monitoring (MRM) transitions 

 

 

 

 

 

 

“For a scientist, all of this is clear, but for a computer it isn‟t” 

Henning Hermjakob, EMBL annual report 2007-08 
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5.1 Summary 

Multiple reaction monitoring (MRM) exploits MS/MS to quantify selected proteins 

of interest, such as those previously identified in differential studies. Using this 

technique, the specificity of precursor-to-product ion transitions is harnessed for 

quantitative analysis of multiple proteins in a single sample.    

 

The design of transitions is critical for the success of MRM experiments, but 

predicting signal intensity of peptides and fragmentation patterns ab initio is 

challenging given existing methods.  This chapter delivers a new tool, MRMaid 

(pronounced “mermaid”), which offers a novel alternative to streamline the design 

of MRM transitions, and is aimed at the lab-based proteomics researcher.  By 

exploiting available knowledge of the MRM technique, and using publicly available 

software programming resources (such as LAMP and PICR), this new tool offers fast 

and reliable transition design, negating the need for theoretical prediction of 

fragmentation and removing the need to undertake prior „discovery‟ MS studies.   
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5.2 Basic characteristics of an SRM assay  

For SRM, a peptide precursor ion that is pre-selected undergoes a CID reaction in 

MS/MS, generating fragments referred to as product ions.  If the chosen pair of 

precursor and product ion m/z signals is distinct from other m/z signals in the MS 

run, then it is suitable for monitoring.  If this precursor represents a proteotypic 

peptide (PTP) – one that is unique to the protein of origin and usually visible in 

MS/MS – then this transition is not only distinguishable from others, but it is a 

characteristic signature for the protein of interest.  Thus, by introducing a heavy 

surrogate of the native peptide into the reaction, the quantity of the protein target 

may be accurately determined.  Moreover, many peptides may be monitored this 

way, one after another; hence MRM is a method suitable for multiplexing where 

several targets may be quantified in the same experiment.   

5.3 There is no best practice for designing SRM transitions 

The critical part of performing SRM is designing suitable transitions to monitor the 

protein(s) of interest.  In early studies, there was no alternative but to perform 

empirical „discovery‟ MS/MS studies to design SRM transitions (Table 24).  And 

even by the early 2000s, no widely accepted best practice had emerged for transition 

design, and the level of detail given for the selection of candidates was variable in 

the literature.   
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Paper Year Study Transition design criteria and/or method Software used for S/MRM transition 

design 

(Barr et al., 1996) 1996 SRM Peptides chosen because they responded well in FAB-MS. No 

(Barnidge et al., 2003) 2003 SRM Peptide chosen by optimising for signal intensity in MS . No 

(Gerber et al., 2003) 2003 MRM including  

PTM detection 

Peptides chosen based on amino acid sequence and the protease used. No  

(Zhang et al., 2004) 2004 Distinguished 

protein isoforms 

using MRM 

Chose two signature peptides based on the four most intense MS/MS TIC peaks for 

each isoform. 

No 

(Kuhn et al., 2004) 2004 MRM No information given. No 

(Beynon et al., 2005) 2005 QconCat Peptides chosen if: did not contain C; were unique in sequence with respect to the 

other peptides monitored; mass 1000-2000 Da (for MALDI) ; gave strong signal in 

MS; and had R at terminus. 

No, but software was used to predict 

the gene sequence for the construct. 

(Unwin et al., 2005) 2005 MRM for PTM 

detection (MIDAS) 

Manual calculation and software script developed by Applied Biosystems. MRM 

Builder software generated precursor-to-product ion transitions and CEs for 

phosphopeptides.  MS used the results to perform sequential scan cycles and select 

suitable peptides. 

Software script developed by Applied 

Biosystems 

MRM Builder software for pre-

MIDAS workflow 

(Cox et al., 2005) 2005 MRM including 

PTM detection 

Used prototype software with protein sequence and LC conditions as inputs.  

Performed in silico digest and calculated the m/z of the precursor and fragment ions.  

Definition of „appropriate‟ not explicit, but it had to contain S/T or Y.  It calculated 

Q1 and Q3 m/z values for various charge states and fragment ions.  The software 

created multiple possible transitions for the given protein of interest. 

„Research-grade‟ version of software 

from the Applied Research group at 

MDS Sciex 

(Ciccimaro et al., 2006) 2006 MRM for PTM 

detection 

Most intense precursor ion and product ion chosen.  Applied MIDAS approach for 

prediction and data acquisition. 

MIDAS software 

(Anderson and Hunter, 

2006) 

2006 MRM Predicted tryptic peptides , found corresponding Swissprot annotation, found 

physico-chemical parameters of each (composition, mass, Hopp-Woods 

hydrophobicity annotation (Hopp and Woods, 1981)), predicted RT (Krokhin et al., 

2004).  Determined likelihood of detection of each peptide using a published plasma 

data and calculated each protein: (no. of hits for peptide)/(no. of hits for most freq 

detected peptide for that protein) and  index of protein quality by positively 

weighting: P, KP, RP, DP and negatively weighting: C, W, M, chymotrypsin sites, 

detrimental Swissprot features and mass less than 800 and more than 2000.  Length 

set at 8-24 amino acids.  Used GPMDB to selected peptides from frequently detected 

proteins.   

Used in silico techniques including 

software tools to predict physico-

chemical properties.  Used GPMDB 

repository to confirm proteotypic 

peptides from MS results (Craig et 

al., 2004).  No integrated software 

program used. 

(Wolf-Yadlin et al., 2007) 2007 MRM for PTM, 

used iTRAQ 

labeling not radio-

isotope labels 

Performed discovery study.  Considered peptide m/z and charge state, the 

characteristic b- and y-ions and CE required.   

No  

(Stahl-Zeng et al., 2007) 2007 MRM using 

elution time 

constraints to 

maximise number 

of transitions 

Used criteria of the proteotypic species (as defined by Peptideatlas) including that the 

peptide ionises well in the range of the MS instrument and is unambiguously 

associated to a single protein. 

Used bespoke software modifications 

for instrument control and data 

acquisition in the MRM study. 

Table 24 Overview of empirical methods for SRM transition design applied in the literature to date. 
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Paper Year Study Transition design criteria and/or method Software used for S/MRM 

transition design 

     

(Kay et al., 2007) 2007 MRM Some transitions taken from papers, others chosen using criteria: most intense 

y-ions, two product ions were monitored, extracted chromatograms for 

peptides of interest and used  HPLC peaks at identical RT for the two 

transitions.  When HPLC peaks were summed signal-to-noise ratio was 

required to be a minimum of five. 

No 

(Keshishian et al., 

2007) 

2007 MRM Factors considered were: observed or predicted RT, MW, and charge state.  

Preference was given to moderately hydrophobic peptides likely to produce 

triply or doubly charged ions in detectable mass range. 

No 

(Lenz et al., 2007) 2007 MRM Decision was based on collision energy (in Q2), specific m/z and dwell time 

required. 

No 

(Lange et al., 2008) 2008 MRM Predicted transitions using TIQAM. TIQAM  
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5.3.1 Summary of existing transition design software 

Despite the lack of consensus, various commercial, vendor-specific software 

packages for MRM transition design are available, including, for example MIDAS™ 

(MRM-initiated detection and sequencing) Workflow Designer software (ABI, Foster 

City, CA), which calculates theoretical peptides and corresponding transitions, then 

builds the MIDAS acquisition method (Unwin et al., 2005), whereby a coupled Q-

TRAP (ABI) iteratively cycles through scans and to select suitable peptides.  Thermo 

Scientific‟s (Waltham, MA) contribution has been presented to user groups but was 

not available for purchase at the time of writing. It takes data from SIEVE, the 

Automated Label-Free Differential Expression Software, computes ions generated, 

relates those back to the sequence and then imposes filters similar to those in 

MRMaid (see later section). 

 

In 2007, however, when the author was developing MRMaid, there were no publicly 

available software programs to predict suitable transitions.  In 2008, at the same time 

as MRMaid was released, TIQAM (Targeted Identification for Quantitative Analysis 

by MRM) (Lange et al., 2008) was published by the Institute of Systems Biology, 

Seattle.  This was the first tool to mine a public MS repository, PeptideAtlas (Deutsch 

et al., 2008), for peptides based on the number of previous observations.  It 

fundamentally differs from the approach taken by MRMaid, because it requires the 

user to experimentally acquire MS/MS data to isolate suitable candidates from the 

list of possible transitions, whereas MRMaid is able to indicate which peptides in the 

shortlist are most suitable using its novel transition scoring algorithm. MRMaid is 
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also a web-based tool whereas TIQAM is designed to be installed locally, requiring 

setup of a local database.  

 

In summary, at the time of development there were limited options available for 

MRM practitioners requiring transition design support without involving 

acquisition of MS/MS data for the prediction process.  In this chapter, a publicly 

accessible MS vendor-independent program, called MRMaid, is presented, which 

provides transition design support to assist the expansion in use of the MRM 

method.  

5.4 Methods 

5.4.1 An overview of the MRMaid system 

MRMaid‟s method for transition design relies on the combination of two sources of 

information: firstly, on prior knowledge of the kind of precursor peptides that 

generally perform better in MS/MS, and secondly, on mining the data in a 

proteomic data repository, GAPP (Shadforth et al., 2006), to determine which 

precursor and corresponding fragment ions have appeared regularly for the given 

protein of interest.  The hydrophobicity and reverse phase RT of each peptide 

candidate are calculated so suitable transitions may be selected and ordered.  

Finally, as with all approaches for transition design, the shortlist of the best 

transition candidates must be validated using a suitable MS instrument.      
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The GAPP database is populated with data from public resources and data 

submitted directly by users, as described previously in this thesis.  Peptide 

candidates for MRM are mined from this data source by applying the principle of 

proteotypicality (Mallick et al., 2007), whereby peptides that map unambiguously to 

a single protein are first mined from the database.     

 

To design an MRM experiment, several SRM transitions are monitored in a single 

assay.  For this purpose, MRMaid allows comparison of individual SRM transition 

candidates using estimated RT and hydrophobicity values, this way transitions may 

be selected to avoid co-elution of peptides.  The proposed peptide candidates can be 

compared by downloading the page of MRMaid results and comparing RT and 

transition score (TS) values.  This process is explained below, and ultimately allows 

users to design the optimal bespoke MRM experiment for their specific target 

proteins.  

 

To indicate reliability of the transitions, metrics of reproducibility are calculated for 

the candidate product ions.  An indication of reproducibility is required because 

GAPP is a public system, and as such, accepts data from any source if the format and 

metadata requirements are met.  Reliability is ensured in two discrete ways: firstly, 

peptide precursor (and subsequent fragment) candidates are presented to the user 

with the number of times they have been observed in GAPP for the protein of 

interest.  Secondly, the individual product ions are assessed in terms of signal 

intensity reproducibility: an average of signal intensity for the relevant m/z peaks is 



 

 
260 

calculated across all applicable experiments, as well as the variance and standard 

deviation values.  These descriptive statistics indicate the reproducibility of the 

fragment ions for a given precursor, and hence, point to the number of times one 

would expect to have to run the MRM experiment to observe a good result for the 

transition.   

5.4.2 Software implementation 

MRMaid (Figure 44) is a program written in Perl and PHP that interrogates the 

GAPP database for suitable transitions for a given protein sequence.  The protein 

target is input by the user as a database accession number, such as an Ensembl, 

Swissprot or IPI number.  Many database accession numbers are supported thanks 

to integration of the EBI‟s PICR service (Côté et al., 2007).    

 

The steps in the algorithm for transition design include the following:  

(a) All PTPs for the protein are retrieved 

(b) PTPs are filtered by criteria defined by the user 

(c) MS/MS data for the protein is retrieved, descriptive statistics are calculated and y- 

and b-ions are assigned for each peptide using the mass tolerance window provided 

by the original data submitter 

(d) TS value is computed for each peptide and is used to rank the transitions 

(e) RT and hydrophobicity are computed for each peptide 

 

The following sections explain the MRMaid workflow (Figure 44) in more detail.  

The algorithm is novel and was conceptualised and formulated by the author.  With 

help and direction from the author, Vanessa Ottone (visiting student) implemented 

the function to assign b- and y-ions using mass data. 
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Figure 44 The process of transition design in MRMaid.  Transition score is used to rank the resulting 

transition predictions. x is a value that can be adjusted according to users‟ requirements, in the web 

release it is one. 

 

Luca Bianco implemented the PHP script for the MRMaid website homepage, using 

Darren Oakley‟s original GAPP style-sheet.  He also implemented the PHP program 

(using the GD library) to draw the spectral graphics.         

5.4.3 MRMaid has filters to determine optimal transition candidates 

Users may choose from a series of filtering options to constrain the prediction of 

transitions (Table 25).  These filters take the form of a list of check boxes, drop down 

menus and text boxes on the homepage.  They can be found below the box where the 

user enters the accession number for the protein target.  The filters were chosen 

through targeted questioning of experts in the MRM approach and the use of 

prototypes for live demonstration. The author organised meetings and lead the 

sessions with expert practitioners from Quotient BioResearch Ltd., a contract 

research organisation, and the University of Cambridge.  The reasoning given for 

inclusion of the criteria suggested by the experts is described below and is 

summarised in Table 25.  All peptides that pass the relevant filtering steps enter the 

transition scoring phase, which is necessary to rank the candidates. 
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Table 25 Optional filters that may be used to constrain the search for MRM transitions using MRMaid 

Filter criterion Description 

Peptide observation 

redundancy 

Peptide must have been seen in x% of all observations of the query 

protein in GAPP database 

Internal cleavage Peptides with K or R, unless followed by P 

Instrument type Constrains to MS/MS data retrieved for the instrument set up 

selected 

Omit N and Q N and Q can be deamidated resulting in m/z reproducibility issues 

Peptide length Short peptides (<7 or 8 amino acids) are unlikely to be unique to the 

target, and very long peptides will be out of mass range 

Omit M and C Often covalently modified affecting m/z 

Omit Q and E Can spontaneously cyclise to form pyroglutamate 

Accept only P-

containing peptides 

Produces a very high abundance peak – suitable when a single 

product ion is sufficient, such as in low complexity samples 

Omit P at any position Swamps tandem spectrum, selected when multiple transitions per 

target are required, such as in high complexity samples like serum 

Omit P1 (P adjacent to 

the C-terminus) 

Can produce non-specific product y-ion 

 

Omit P2 (P second 

position from C-

terminus) 

Can produce non-specific product y-ion 

 

m/z cut off (user 

specifies a value, x) 

Selects only fragment ion m/z > x, where x is a percentage of the 

precursor m/z 

  

Users may define the proportion of times a peptide has been observed for the target 

protein in GAPP database.  In this way, the frequency of peptide identifications in 

the repository may be used as a measure of transition reliability for the protein.  For 

example, if users enter „50‟ then this means that the peptide candidate(s) presented 

in green in the peptide results table (see Figure 45) are assigned in at least 50% of 

occasions when the protein target was successfully identified in GAPP, so these are 

the best candidates to choose.  The higher the value entered, the more stringent the 

prediction. 

 

As a default, peptides with internal cleavage sites (namely peptides with K or R, 

unless followed by P) are omitted to prevent selection of peptides that may be 
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irregularly cleaved.  This is a necessary feature since the efficiency of trypsin is 

known to be only (approximately) 70 percent (Yen et al., 2006, Falth et al., 2007). 

 

Another important consideration for users intending to perform MRM is whether 

MS/MS evidence is available for their particular MS instrument.  Each instrument is 

known to have a different set of preferred PTPs (Mallick et al., 2007), therefore, to 

account for this phenomenon, GAPP database‟s MS instrument information may be 

incorporated as a filter into the querying process.  A drop-down menu to select the 

type of instrument is provided on the homepage. 

 

Protein expression can vary significantly between tissue types.  To try to account for 

this, the type of biological sample can also be specified as a filter in the search for 

transitions.  In serum, this is particularly useful, since its levels of protein expression 

and sample complexity can present unique challenges for the transition design.  The 

ability to choose transitions based upon experiments performed on the same type of 

sample increases the likelihood of selection of successful candidates. 

 

In addition to constraining experiment-specific factors, information on the sequence 

of the peptide may also be used in the filtering process.  For example, N and Q may 

be deselected, because these residues can be deamidated resulting in fragment ion 

m/z irregularities and problems with reproducibility.  This is a problem because the 

m/z of fragment ions must be as consistent, and hence reliable, as possible.  Opting to  
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omit peptides containing Q or E at the N-terminus is also possible in MRMaid, 

because these residues can spontaneously cyclise to form pyroglutamate.  Likewise, 

P is an important residue to consider when designing transitions.  Peptides 

containing P may be considered favourable, because they generally produce MS/MS 

peaks of high intensity.  This is because proline‟s 3D structure promotes 

fragmentation, often producing a single greater abundance fragment ion that 

„swamps‟ the remainder of the tandem mass spectrum.  However, this single signal 

may not be sufficient to identify the protein with adequate specificity, particularly in 

complex samples.    For this reason, users may opt to omit or allow candidate 

peptides containing P.  The location of P in the peptide primary sequence is also 

important.  P, which is adjacent to the C-terminus (P1) or in the second position from 

the C terminus (P2), is generally not desirable in MRM.  This is because a very short, 

non-specific product y-ion is produced, which is unsuitable for monitoring.  Users 

may, therefore, opt to omit P1 and P2-containing peptides from their results.   

 

Peptide sequence can also affect the probability of covalent modification.  M and C 

are often modified residues, so if they are omitted it makes it possible to constrain 

the candidates to those where mass should not vary.  Naturally, if all possible amino 

acids that fall into this category were omitted, the filter would be too strict, however 

by negatively weighting these residues in the TS calculation it provides a more 

suitable method (see the next section for more detail).  Typical modifications like 

carbomido-methylation are, however, worth considering in peptides for monitoring, 

as there are examples in the literature, such as for Apolipoprotein A2 (Kay et al., 
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2007) where they have been present in transitions, so for this users may choose a 

filter in this list to omit them. 

 

A further filter option is peptide length.  Users may constrain this because very short 

peptides (<7-8 residues) are unlikely to be unique, and peptides longer than 

approximately 20 to 25 residues are unsuitable for MRM because they may exceed 

acceptable mass range.  For all MRMaid searches, mass range for the peptide (MS 

mode) is restricted to 500-1600 m/z.  This range is routinely used for monitoring 

tryptic peptides, so peptide candidates beyond this range are omitted by default. 

 

b- and y-ions are common fragment ions produced in tandem MS.  To restrict 

transitions to peptides that produce suitable y- or b-ions for monitoring, two 

approaches are employed in MRMaid.  Firstly, y-ions (shown in red) and b-ions (in 

blue), with the charge states, are highlighted in the resulting spectrum graphic and 

results table (an example is shown in Figure 45).   
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Figure 45 MRMaid has three main views for the candidate transitions.  This shows screenshots of 

elements of the interface for transitions predicted for transthyretin (ENSG00000118271).  The first (top) 

is the list of peptide candidates ordered by transition score (TS). „m/z to monitor‟ is the range within 

which the product ion masses fall.  The peptide sequences are hyperlinks, when a user clicks on 

„GSPAINVAVHVFR‟, for example, the product ion results are displayed (centre) and a list of schematic 

spectra (bottom) that represent the underlying data in GAPP DB that was used for the predictions.  The 

„Export in TSV‟ link (top) allows users to download all the peptide and product ion data for the target. 
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y- and b- ion assignment is achieved by dynamic computation using the accepted 

rules of fragmentation (Zhang et al., 2005), and where the theoretical m/z values (for 

monoistopic and average mass - as required) are compared to those observed in the 

underlying MS/MS data.  The mass tolerance window is applied to ensure the 

resolution of the data is accounted for in the assignment; for this, the range specific 

to each experiment in GAPP is used, and not the maximum over all relevant 

observations in the search.  In an extremely small number of cases, this window 

prevents unambiguous assignment of a peak to a single b- or y-ion.  In this case, the 

ion is not counted as b- or y- and is instead grouped into the „other ion type‟ 

category (shown in black).    

 

The second approach to ensure MRMaid suggests suitable fragment peaks is by 

using m/z cut-off; an approach that is demonstrated in the literature (Anderson and 

Hunter, 2006, Keshishian et al., 2007).  This facilitates selection of fragments with m/z 

greater than the precursor m/z.  If desired, only MS/MS fragment masses that are x 

percent or more of the mass of the precursor will be recommended by MRMaid, 

where x is specified by the user.  For example, if x is 100%, then only fragment ions 

having a mass higher than the precursor ion will be selected.  This ensures that 

fragments in the higher end of the m/z spectrum will be considered and accounts for 

the effect of the mass filtering step that is applied between MS and MS/MS modes.  

This approach has the knock-on effect of increasing the chances of producing a more 

reliable and specific fragment candidate, because the specificity of a transition 

greatly increases when looking at a product ion that is higher m/z than the precursor 
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ion. Note that there is no limit to the number of fragment ions that can be suggested 

to the user – only the underlying data restricts this.   

5.4.4 MRMaid takes a novel approach to transition ranking 

MRMaid‟s transition score (TS) provides a quantitative measure of predicted 

performance in MRM to candidate transitions that are retrieved by mining the GAPP 

database and by aggregating the results.  Implementation of a series of Boolean 

filtering steps (as in the filters described above) was one available options for this 

part of the process.  However, this would not reflect the approach taken by experts, 

and would have made it impossible to judge relative favourability of candidate 

transitions.  Therefore, TS is calculated as the weighted sum of several key 

characteristics of the spectral data (each denoted as a letter: q, c, r, s, p and n), giving 

a quantitative measure of expected performance in MRM (Table 26).  The relative 

weights applied (50, 8, 7, 6, 1 and 1, respectively) were determined by combining 

authors‟ experience with researching the literature and discussions with practising 

MRM experts.  Note that all values are normalised to a range between zero and one, 

such that each coefficient has consistent scale. 
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Table 26 Derivation of Transition Score (TS) coefficients.  TS is used to rank the predicted transitions in 

MRMaid.  It is calculated as the sum of the coefficients, each relating to efficiency in MRM. Each 

coefficient is derived by multiplying the value by the weighting. 

Transition score  

coefficient 

Description Relative 

weighting 

MS/MS suitability (q) Assesses MS/MS spectrum for suitability in MRM by 

assessing m/z values of y-ions 

50 

Peptide coverage (c) Favors fragment ions that represent a greater 

proportion of the precursor peptide sequence 

8 

Mass range (r) Constrains acceptable MS/MS mode mass range 7 

Precursor charge state 

(s) 

Doubly and triply charge peptides are favored 6 

Positively weighted 

residue content (p) 

H, K and R 1 

Negatively weighted 

residue content (n) 

Y,S,T,C and M 1 

 

 

The MS/MS suitability score (q) positively weights precursor peptides that 

demonstrate a suitable profiles of y-ions for MRM.  A suitable y-ion profile is one 

where there are several y-ions at the high m/z range of the MS/MS spectrum.  y-ions 

with a 1+ charge state were chosen for this because these generally have higher m/z 

than b-ions, so are a suitable indicator to determine the quality of a spectrum for 

MRM.  They are also the ions that are routinely used, as demonstrated, for example, 

in Anderson and Hunter‟s paper (Anderson and Hunter, 2006) where virtually all 

experimentally confirmed transitions were y-ions: see Table 27, where selected 

transitions from this article are used to validate MRMaid performance.  Furthermore, 

b-ions are less suitable than y-ions because they are susceptible to cyclisation, which 

can result in fragment ions of unexpected sequence (Harrison et al., 2006).  Therefore, 

the q coefficient, and hence overall TS value, is designed to favor spectra showing 

evidence of multiple y-ions and  is achieved by considering three key factors for each 

precursor peptide sequence that passes the initial filtering stage for the protein of 
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interest.  First: the highest m/z value of the MS/MS spectrum that is a y-ion with 1+ 

charge (
max)/( zm ); second: the number of peaks of the spectrum that are y-ions with 

1+ charge (npeaks); and third: the standard deviation of m/z values of peaks of the 

spectrum that are y-ions with 1+ charge (stdpeaks).  Standard deviation is calculated in 

the usual way (Equation 1), where pe ak szm )/(  is the individual m/z value of a y-ion 

with 1+ charge in the MS/MS spectrum, and 
p e a k szm )/( is the mean m/z value of all 

the individual y-ions with 1+ charge for the given spectrum, for the peptide in 

question. 

 

Equation 1 Calculating standard deviation, which is used to calculate the coefficient q in MRMaid‟s 

transition score 

 

p e a k sst d
 

1

)/()/(
2

peaks

peakspeaks

n

zmzm

 

The rationale for using the three factors above is the following: if it is possible for a 

peptide to fragment into n different y-ions, then the MS/MS metric for suitability in 

MRM should favour spectra with evidence of larger y-ions (those having higher m/z 

values), as well as a higher number of y-ions in total. Since, in general, the whole 

complement of theoretically possible y-ions, for a given peptide, are not produced, 

instead spectra with a smaller standard deviation of m/z values belonging to 

identified y-ions must be favoured.  
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The three elements, above, are combined to assign higher scores to spectra carrying 

evidence of the heaviest y-ion, as well as the greater number of y-ions.  If two or 

more spectra are equal according to these first two criteria, the one identifying a 

higher number of heavier y-ions gets a higher score.    Thus, given a spectrum for a 

peptide sequence in the GAPP database, its interim score 
rk  (r denoting „real‟) is 

calculated as shown in Equation 2.  

 

Equation 2 Calculating the interim score kr as part of coefficient q   

rk  
peaks

peaks

std

nzm

1

)/( m ax

 

After this, using the peptide sequence, a theoretical interim score tk  (t for 

„theoretical‟) is similarly calculated, but this time considering the total complement 

of theoretical y-ions (with 1+ charge state) for the sequence, using the rules of CID 

fragmentation (Zhang et al., 2005).  To finish, the MS/MS suitability score (q) is 

computed as a ratio between the real and theoretical interim scores (Equation 3), 

thus, q is normalised to a scale between zero and one, as is the case of all other 

coefficients in TS. 

 

Equation 3 MS/MS suitability score (q) is computed as a ratio between the real and theoretical interim 

scores 

t

r

k

k
q

 

In summary, q provides a quantitative scale of MS/MS suitability to each peptide 

based on the MS/MS spectral evidence, and is weighted most heavily because it is 

quantifying actual experimental data.        
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Peptide coverage (c) refers to the proportion of the target peptide that is represented 

by the product ions for the transition.  Product ions that have greater m/z are 

preferable, because they represent  a greater proportion of the original peptide in the 

spectrum and, therefore, increase the specificity of the transition.  Peptides with 

fragments within the mass range for MS/MS mode (r) of 500-1600 m/z are positively 

weighted, for reasons mentioned earlier. 

 

Most tryptic peptides are doubly charged cations, with one charge originating from 

the primary amine terminus and one from the K or R residue side chain at the C-

terminus. Precursor charge state (s) is important for MRM because doubly or triply 

charged precursor peptides are favoured, due to the mass filtering stage.  Doubly 

and triply charged precursors, therefore, achieve a coefficient higher than singly 

charged peptides, such as those derived from unspecific protein cleavage.  Charge 

state for each precursor peptide is known, because this information is available in 

GAPP‟s input peak lists (currently .mgf, .pkl or mzXML).  Fragment ions with a 

single charge are preferred in MS/MS mode; information on charge state is 

displayed as b- and y-ion labels on the peaks, so the user can select singly charged 

peaks for monitoring. 

 

Weighting of specific residue content (coefficients p and n) allows more refined 

ranking to be performed on the  candidate  output list.  Positively - charged  residues  
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have been demonstrated to increase fragmentation and hence visibility in MS, so are 

positively weighted (Mallick et al., 2007).  Y, S and T, like C and M, may be post-

translationally modified, so are negatively weighted. 

5.4.5 Transitions can be scored in the absence of MS/MS evidence 

TS may also be calculated in the absence of MS/MS data.  In this situation, it is 

computed with q omitted and the user is informed on the results page.  This 

calculation involves digestion of the protein and application of user-defined filters as 

in the usual MRMaid mode.  Clearly, candidates predicted in the absence of MS/MS 

evidence are less robust, because predicted peptides cannot be statistically measured 

for reliability across experimental datasets, and less comprehensive, because 

candidate MS/MS fragment ions cannot be suggested.    However, an indication of 

which peptides should be monitored is welcome functionality, since the alternative 

is deciding on transitions manually, which would be tedious for large proteins, and 

particularly problematic when many proteins are to be analysed.     

5.4.6 Results can be downloaded from MRMaid 

In the final output, MRMaid provides a tabulated list of ranked transition 

candidates, which are intended for validation using the MS instrument.   This 

validation is necessary because it is not possible to select a single in silico-derived 

transition, without experimental confirmation, as shown by existing software 

options, such as MIDAS workflow designer.  The results table may be exported as 

tab-separated values (TSV) for import into a spreadsheet package for local analysis 

and archiving.  Also, as described previously, schematic spectra are displayed to 

highlight the y- and b-ions suggested for monitoring. 
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5.4.7 Retention time is calculated using a linear model 

Elution time data is commonly used in combination with MS/MS to support 

transition design for MRM experiments (Stahl-Zeng et al., 2007, Wolf-Yadlin et al., 

2007, Keshishian et al., 2007).  RT is used in the discovery phase to decide which 

peptides to monitor - on the basis of peak separation and, once transitions are 

chosen, it allows transition ordering (Wolf-Yadlin et al., 2007) and provides 

confirmation that the peptide species expected is the one actually being monitored 

(Stahl-Zeng et al., 2007, Keshishian et al., 2007, Kay et al., 2007).  Management of 

elution time also maximises the number of transitions that can be performed, 

without overly compromising on sensitivity (Stahl-Zeng et al., 2007).  

 

Implementation of RT was necessary for MRMaid to become an MRM, rather than 

an SRM, design tool.  By having RT indicators to compare across all candidate 

transitions, the order of transitions in a multiplexed experiment can be planned.  The 

problem in achieving this is that GAPP is dependent on data sources in the public 

domain and RT information is rarely captured in publicly available datasets.  In the 

absence of this data, RT is predicted using a linear peptide RT algorithm, which 

holds true for peptides up to approximately 20 residues (Krokhin et al., 2004).  This 

was acceptable since MRM peptides are typically no more than 24 amino acids.  The 

procedure involves summation of residue coefficients then correction for the length 

of the peptide and factors relating to the procedure and setup of the column.  There 

are eight different options for reverse phase column setup provided by MRMaid for 

this process, each of which can be selected by the user using a drop-down menu.   



 

 
276 

There is a default option available, namely, a microflow method (4µl/min) applying 

a gradient of 1-80% ACN over 60min (1.32% ACN/min) using a 150µmx150mm 

Vydac® 218 TP C18 bead column (5µm).  It is recommended that the user selects the 

specific setup that reflects his/her own RP chromatography procedure.  Therefore, 

there is a warning printed on the results page when the default option is selected, to 

remind users that they should choose a specific setup wherever possible.  RT 

prediction is programmed in a modular fashion, so that as improved RT models 

become available, new algorithms may be integrated into MRMaid.  The author 

implemented the RT prediction program in conjunction with Vanessa Ottone. 

5.5 Results 

5.5.1 Man versus MRMaid: testing MRMaid’s performance  

To demonstrate MRMaid‟s ability to predict MRM transitions, a selection of 

transitions that had been experimentally validated were obtained by the author and 

compared to the results generated by the MRMaid program.  Table 27 shows the 

comparison with transitions from Anderson and Hunter (Anderson and Hunter, 

2006), and Table 28 transitions provided by Chris Barton of Quotient Bioresearch.   

 

The author obtained diverse datasets from Human Proteinpedia, PeptideAtlas and 

Tranche and analysed and stored them using GAPP.  The data included serum-

based identifications required for the test cases.  In addition, four MS/MS datasets 

for horse serum proteins were obtained and submitted to GAPP pipeline (with 

appropriate  search  parameters  based  on  the   metadata):   these  were  two  whole  
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plasma samples, and two samples depleted of highly abundant proteins using ACN-

depletion, taken from eight horses see (Barton et al., 2009) for details.  The data, in 

total, represented 100 runs in QQQ-MS/MS.        

 

 

 

 

 

 

 

 

 

 

 

 

Table 27 MRMaid performance versus experimentally verified transitions (Anderson and Hunter, 2006).  

The results shown are derived from MRMaid searches using the default search parameters, namely, no 

internal cleavage sites, 80% of the precursor mass and 50% of total observations.  Peptides which did not 

meet the criterion of 50% of total observations criterion (shown as red rows in the table of results) were 

still considered, due to current quantity of available MS/MS reference data.  An „observation‟ in this case 

is an identification made using a single MS/MS dataset that was submitted to GAPP. Results are derived 

from searches performed on 26
th

 August, 2008.  Values are rounded to one decimal place in the table but 

MRMaid shows up to three in the results on the website.  Key: (a) these values may be shown as a range 

to account for the mass tolerance of fragment ions entered by the user when the MS/MS data was 

submitted to GAPP; (b) relative intensity refers to the fact that signal intensity is normalised by the 

GAPP analysis pipeline.  When spectra are uploaded for protein identification, the y-dimension of each 

spectrum is normalised to 100.  This means that for all the spectra in the GAPP database, which are 

mined by the MRMaid program, there is a maximum y value of 100.  This is also reflected in the 

graphical MS/MS spectra displayed on the MRMaid product ion results page.  The intensity values differ 

for each individual peak in each experiment submitted to GAPP, therefore the mean over all observations 

is given for each particular ion species, for example, y8.  It is possible to successfully monitor product ions 

at low abundance, as long as there is no overlap with other peaks: generally there is less likely to be 

overlap at the very high m/z end of the spectrum, therefore the higher the m/z, the lower the abundance 

that can be successfully tolerated.  
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Table 28 MRMaid performance using horse serum transitions.  Settings applied were: species horse, default RT setting, 8-24 aa length, 80%, 50%.  * - denotes that 

the peptide was predicted by MRMaid, but there was insufficient data to predict the product ion (performed 18
th

 May, 2009).  
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5.5.2 Retention time prediction is accurate 

Compared to empirically-derived RTs (in Table 28), MRMaid‟s RT predictions from 

sequence alone are encouragingly accurate.  The retention times measured for 

nineteen peptides were compared to the RTs predicted using Krokhin and co-

workers algorithm (Krokhin et al., 2004), as implemented in MRMaid (Figure 46).   

 

 

Figure 46 Observed versus predicted retention time for selected transitions shows that MRMaid's 

retention time prediction is accurate 

 

The R2 value was 0.75 (to two decimal places), indicating that the RT estimates 

suggested by MRMaid were very likely to be adequate for avoiding co-elution when 

planning a MRM experiments. 
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5.5.3 MRMaid has comprehensive documentation and user support 

The author prepared resources to help users, and has made them available via the 

MRMaid website (see Figure 47 for a summary).  These include: videos to introduce 

the aims of the system; demonstration „walk-through‟ videos filmed using (a trial 

version of) Adobe CaptivateTM 3; a glossary of terms; a user guide; and a link to the 

paper published in Molecular Cellular Proteomics Journal.  Furthermore, interactive 

help „bubbles‟ were integrated into the homepage, where users select the filters and 

enter details for their searches.  The user guide including screenshots, glossary and 

journal paper can be found in Appendix V.  In addition, a practical guide to using 

the MRMaid software has also been accepted for publication as a book chapter by 

Humana Press (2010), see Appendix V.        
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Figure 47 Summary of the MRMaid user documentation and help resources taken as screenshots from www.mrmaid.info (26

th
 August, 2009) 
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5.6 Discussion  

5.6.1 MRMaid can design transitions with multiple product ions 

MRMaid is essentially an SRM design tool which can be used for MRM design by 

combining the results of several SRMs in a single spreadsheet.  As explained above, 

a protein accession number is entered via the interface and candidates are predicted.  

The results may be downloaded, which include both product and precursor ion data, 

then following this, the next protein to be targeted is entered.  Candidates are 

generated by MRMaid and downloaded, as before.  This process is repeated until all 

the spreadsheet data has been captured.  Finally, using TS, number of observations 

and RT, the candidates may be ordered for experimental validation in MS/MS, 

before purchasing synthetic surrogates or designing an expression construct (see 

Figure 48).   
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 Figure 48 The process for applying MRMaid to multiple reaction monitoring (for multiple protein targets) 
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Recommendations and tips to assist users in optimal candidate selection are 

provided in the interactive help documentation. 

5.6.2 MRMaid can design multiple transitions for targeting proteins in 

complex samples 

MRMaid is particularly suitable for designing transitions with multiple product ions.  

A shortlist of multiple peptide candidates is provided for each target, so two or three 

of these can be selected for validation.  For each of these, a list of many different 

product ions is provided, each with metrics to indicate their reproducibility and 

reliability.  At this stage users may select several of the best product ions.  In this 

way, MRMaid supports multiple product ion selection for each peptide.  This allows 

monitoring of a target even in very complex samples: by having several ions to act as 

signposts for the protein in MS/MS, it can make it possible to confirm its presence in 

spite of high levels of noise.   

 

Moreover, by allowing users to apply a sample type filter at time of search, such as 

serum, transition design for complex samples is further supported, because this 

strategy increases the likelihood that a candidate will be selected that has been 

proven to work even amongst associated sample noise. 

5.7 Conclusions 

MRMaid is a modular, web-based tool built around the GAPP DB framework, 

providing a web-based solution for fast and reliable transition design.  Candidate 

transitions are ranked based on a novel transition scoring system, and users may 
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refine the results by selecting optional stringency criteria.  Comparison with 

published transitions showed that MRMaid successfully predicted the peptide and 

product ion pairs in the majority of cases with appropriate retention time estimates.  

 

It is web-based with an intuitive user interface and does not require computer 

expertise to use - avoiding download and complicated processes for setup locally.  It 

also supports diverse MS instruments and RP chromatography conditions, so has 

flexibility to be useful to a large number of users. 

   

MRMaid is a tool for designing MRM transitions and is intended to support the 

proteomics community by exploiting public data resources and prior knowledge of 

the MRM technique.  MRMaid eliminates the need for time-consuming preliminary 

studies by delivering ranked candidate transitions based on an existing repository of 

experimental data – meaning that far fewer transitions need to be validated before a 

suitable candidate is found.  The software is freely available as an executable 

application on the web at www.mrmaid.info and is a major deliverable for this 

EngD. 

 

As with any automated workflow, no human judgment could be applied to interpret 

the results; only widely applicable rules could be used. Despite this, the MRMaid 

results presented demonstrate that accurate peptide-product ion transition 

predictions can be made when MS/MS data is available for querying.  Estimation of 
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RT is also of high enough accuracy to be useful for ordering transitions and avoiding 

co-elution.   

 

As the data content of the Genome Annotating Proteomic Pipeline repository 

increases, the coverage and reliability of MRMaid are set to increase further.  In 

conclusion, MRMaid represents an effective first step towards the future of 

integrated software applications for the design of quantitative proteomic 

experiments. 

 

In the wider context for proteomics research, MRMaid is a fitting example of a tool 

that contributes to transformations in knowledge (McNally, 2008).  Specialised 

disciplinary skills and expertise from lab-based MRM practitioners were built into 

MRMaid in a process that now enables novices and other relatively unskilled 

personnel to perform what previously was a ground-breaking, expert procedure – 

namely designing targeted assays for several targets.  This philosophy is an accepted 

way that modern science, including proteomics, progresses in the „knowledge 

economy‟.     

5.8 Suggested developments for MRMaid releases in the future 

5.8.1 Transition candidate ranking using a star rating 

The MRMaid transition ranking system could be improved by linking MRMaid with 

MRMaid  database,  a  repository   of   published   transitions  (see  Chapter  6).    The  
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principle is to rank the transitions by a star rating or as „gold‟, „silver‟ or „bronze‟, 

depending on the level of MS evidence for the transition candidate in question, by 

MRMaid calling the MRMaid-DB during processing.  The transition candidates 

could be ordered into three categories, for example: 

 Gold transitions: when a published, validated transition from a journal publication is 

available in MRMaid-DB for the target protein 

 Silver: when the transition candidate is supported by MS/MS data in GAPP database  

 Bronze: when the transition candidate is supported by a theoretical prediction only, i.e. 

when MS/MS evidence or a published transition is absent  

The benefit of this would be to make it even clearer to the user which candidate is 

the best, increasing the likelihood of reproducibility. 

5.8.2 Batch mode for submitting protein targets 

MRMaid can predict transitions for only one protein target at a time.  Newer 

additions to the field, such as MaRiMba (Sherwood et al., 2009), support batch 

submission of proteins, so that transitions for several proteins may be determined 

simultaneously, saving the user time inputting and interpreting the outputs of 

searches.  Support for batch submission of targets would therefore improve the 

MRMaid program.   

5.8.3 Protein sequence as input 

Collaborators at Quotient Bioresearch and the University of Cambridge have 

suggested that MRMaid would be greatly improved if it could accept protein 

sequences as inputs, not just protein accession numbers.  In this way, users can skip 

the time needed to find the protein ID and there is  less  chance  of  an  erroneous  ID  
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being used.  As in Skyline (Prakash et al., 2009) - a recent addition to the array of 

transition design tools -  protein or peptide sequences can be input directly by the 

user and filters are applied to decide which peptides are most suitable, given „rules‟ 

of transition design (similar to the MRMaid approach); no accession numbers are 

needed. 

5.8.4 Interspecies mode for predicting transitions  

Generally, MS/MS data for some species, such as human and yeast, is more readily 

available compared to other species used in biology research, such as the rat, horse, 

dog or hamster, for example.  Having a facility in MRMaid to predict transitions for 

less well-supported species may prove useful in the future.  This would require 

extrapolation from the data that is available.  In genomics, for example, the 

interspecies approach can be applied to microarray analysis, to analyse CHO cell 

lines using mouse arrays, for example (Ernst et al., 2006).  However, it remains to be 

seen how this approach may be applied for data-driven, cross-species transition 

design.  Although cross-species identification for MS using PMF has been 

demonstrated (Lester et al., 2002), the problem of leveraging data from one species to 

design transitions to target a protein in another has yet to be addressed at all in the 

literature.  If MRMaid could be modified to offer this service, it would be unique, 

and from communications with collaborators, such as researchers at Quotient 

BioResearch who design MRM assays to target horse proteins, it would add value to 

the field, potentially helping many research groups.   
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Having protein sequences as inputs per se (as described in the previous future work 

item) would be compatible with the implementation of interspecies transition 

prediction in MRMaid.  By searching for any transition candidates that have suitable 

spectra for a given peptide sequence (regardless of which species database the target 

protein pertains to) would mean candidates could be searched for in an unbiased 

way – with species not constraining the search. 

5.8.5 PSI-compliance of MRMaid 

A standard format for storing and sharing transition data, TraML, is almost 

complete.  Ideally, MRMaid should be modified to make it possible to export the 

transition candidates it predicts in a fashion compliant with the new standards.  If 

this is not possible, because MRMaid does not have the minimal data required for 

the final agreed version, then MRMaid should at least be modified to export the 

transitions in a format compatible with MS instruments, so that the candidates can 

be directly programmed into the instrument ready for validation and/or 

quantitation; this way researcher avoid having to convert the list from MRMaid 

manually.    

5.8.6 Porting data to MRMaid via GAPP 

In essence, MRMaid is a data-mining algorithm for retrieving transitions from a 

database of spectra.  The predictions it can make are only as good as the data quality 

and content of the repository it mines.  Ideally, therefore, MRMaid should be 

adapted to work as a universal „front-end‟ program that can interrogate a suitable 

„back-end‟ MS/MS data repository.  For example, data from other public 
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repositories, such as PRIDE, GPMDB or Tranche, could be ported to the MRMaid 

server, or indeed a configurable, generic version of MRMaid could be coded to sit on 

top of these public databases.  GAPP DB is too limited and is less likely to continue 

to grow at a fast rate as the other offerings, such as PRIDE.   

 

Moreover, the generic, configurable version of MRMaid could be implemented as a 

commercial software product for mining customers‟ in-house MS/MS data 

repositories, and also mine public datasets as well (at the same time), if desired.   

This would satisfy the unmet need for companies, such as OBT (mentioned earlier), 

who wish to have a completely private facility for predicting transitions with 

MRMaid.  
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6 MRMaid-DB: a repository for published MRM transitions 

 

 
 
 
 
 
 

MRMaid-DB: a repository for  
published MRM transitions 

 

 

 

 

 

 

 

 

 

 

“Once an SRM assay for a protein is established, 

it becomes universally useful and exportable” 

From Picotti et al., 2008 
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6.1 Summary 

The thesis so far has focused on repositories for disseminating proteomic MS data 

and identifications.  In this chapter, a new type of repository is developed, namely a 

public database for storage and dissemination of published and experimentally 

validated transitions.  It is designed for researchers seeking to quantify proteins 

using the increasingly popular technique of SRM, providing a structured system for 

published transitions, which otherwise would remain in publications in disparate 

forms, being difficult to systematically search.  The database is unique compared to 

the only other offering in this space (MRMAtlas), because it directly couples 

transitions to the research paper from which they came, and permits users to submit 

their own transitions as they publish them.         

 

Together, MRMaid (described in the previous chapter) and MRMaid-DB (described 

here) provide a two-pronged approach to address the lack of computational 

resources for the SRM practitioner.  For example, when there are no published 

transitions, users may use MRMaid to design new ones, and when there are 

validated transitions in the literature, they can interrogate MRMaid-DB to retrieve 

them.    
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6.2   6.2  Introduction 

The key to selected reaction monitoring (SRM) is finding the best peptide-to-product 

ion transitions to monitor.  The MRMaid database (MRMaid-DB), presented in this 

chapter, is a new online database for capturing SRM transitions from published 

research papers to save practitioners time when searching for transitions that have 

been previously validated.  It contains all the information needed to reproduce the 

transitions, such as information on the sample matrix, HPLC, and MS 

instrumentation used, and also includes details of the manuscript of origin.  

Transitions are submitted using simple web-based data entry forms, meaning 

researchers have a simple way to increase access to their transitions, and in turn, 

may increase the citations for their research papers.  

 

To use a crude analogy, MRMaid-DB may be compared to a second-hand shop, 

where researchers can bring their own SRMs and search for new ones as they need 

them, only the „goods‟ are all free.  However, MRMaid-DB does not contain a 

haphazard mixture of good, average and poor quality transitions, but instead only 

contains high quality, experimentally validated transitions; each one having been 

published in peer-reviewed journal articles.  Each SRM entry is checked manually 

upon entry, and the product ion type and mass are cross-checked against the peptide 

sequence to ensure accuracy.  In MRMaid-DB, the previous „owners‟ of each 

transition are available -as journal titles and author names- and users can quickly 

determine if a transition will fit in and suit their own lab because all protocol, sample 
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handling and mass spectrometry details are available.  MRMaid-DB‟s „shop window‟ 

is based on the Biomart framework, using colour schemes and „look and feel‟ 

consistent with the MRMaid/ GAPP family of software.    

6.3 An introduction to MRMaid-DB 

The key to performing successful SRM studies is finding the best peptide-to-product 

ion transitions to monitor.  To find the best transitions, researchers can perform 

empirical validation themselves in the laboratory, or exploit the new tools for 

transition design that have emerged during this EngD (Walsh et al., 2009, Martin et 

al., 2008, Lange et al., 2008, Prakash et al., 2009, Mead et al., 2009, Sherwood et al., 

2009).  The most reliable transitions, however, are those that have already been 

experimentally validated and peer-reviewed by others. Yet the problem with using 

these is the lack of a common reporting format, and the absence of a central resource 

for published transitions, meaning researchers must scour the literature manually 

taking time and effort. The aim in producing MRMaid-DB, therefore, was to solve 

this problem by providing a freely accessible collection of the majority of available 

empirically-confirmed transitions, described in proteomics literature to date.  

Furthermore, it is a scalable, structured database system to support the continued 

growth in generation of SRM data in the community.       

6.3.1 Existing repositories for SRM transition data 

The only other SRM transition data resource on the web at the time of writing was 

MRM Atlas (Picotti et al., 2008).  In the MRM Atlas paper, this group reinforced the 

idea that storing validated transitions is a scientifically worthwhile effort, because 
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they demonstrated that transitions may be reproduced across different QQQ-MS 

instruments (Picotti et al., 2008) with minimal „tweaking‟, such as collision energy 

adjustment.  MRM Atlas is built on the SBEAMS framework (Marzolf et al., 2006), 

and contains ready-to-use peptide-to-product ion transitions for approximately 1,500 

S. cerevisiae proteins (equivalent to 21% of the yeast proteome) (Picotti et al., 2008).  

Information stored includes protein sequence; precursor charge; Q1 m/z; Q3 m/z; 

intensity; ion type; collision energy; hydrophobicity; observed retention time; 

number of peptide observations; annotator (name of individual/lab or „best‟); and a 

hyperlink to a „consensus‟ spectrum (representative pattern of product ions for the 

peptide by averaging many observations).  MRM Atlas is searchable via 

PeptideAtlas, or may be queried via its own interface (see (Picotti et al., 2008) for an 

example).  Furthermore, using a new data visualisation option, SRM assays in MRM 

Atlas can be accessed by clicking on protein targets in metabolic pathway diagrams.   

 

MRMaid-DB is distinct from MRM Atlas in several ways: firstly, it contains 

transitions and the infrastructure to support transitions for multiple species: 

currently there are optimised transitions for monitoring proteins from horse, yeast, 

cow, mouse and human.  It is also unique in providing a quick and easy method of 

uploading transition data online, and includes paper manuscript details, so users can 

extract all the transitions from a given article in one search. 
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At the time of writing, plans were presented for a new resource: the PeptideAtlas 

Transitions Resource (PATR)100.  It is not available yet, but demonstrates the topical 

and fast-moving nature of this field of research.   

6.4 Method and implementation 

6.4.1 MRMaid-DB Data Content 

A typical transition has the following core information: a protein target, peptide 

sequence (including any PTMs), precursor m/z; product ion m/z; and observed 

peptide retention time.  MRMaid-DB stores this core information, but in addition, it 

stores detailed auxilliary information for reproducing the transition accurately.   

 

The database scope was set by the author by capturing user requirements for SRM 

assays from lab-based practitioners.  Once a list of data-fields had been formulated, 

the items were cross-checked with nine research papers (Gerber et al., 2003, Kuhn et 

al., 2004, Zhang et al., 2004, Cox et al., 2005, Anderson and Hunter, 2006, Stahl-Zeng 

et al., 2007, Kay et al., 2007, McKay et al., 2007, Keshishian et al., 2007) that included 

SRM assays to see if the desired data items were usually reported in peer-reviewed 

papers (without needing to contact the authors).  For the majority of the items on the 

list the data was routinely available, although some decoding and knowledge of the 

field was required to extract the information, such as decoding the descriptions of 

the RP-HPLC protocols, for example.   

                                                
100 Deutsch et al., ASMS conference 2009, Philadelphia USA, poster presentation 
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Detailed information is captured so that users can easily identify the most suitable 

transition for their particular workflows; data-items include sample processing, 

biological matrix, and RP-HPLC-MS setup parameters.  All of these factors can affect 

the reliability of detection of the precursor/product ions, so by making these 

available users have the best possible chance of reproducing the selected assay(s) in 

their own labs.  Moreover, if the transitions were validated for a given sample type, 

it follows that they should be reproducible for the same sample type if variables are 

kept constant.  Indeed, by specifying the details of biological matrix in MRMaid-DB, 

it ensures that the orders of magnitude and interference can be accounted for when 

users‟ samples, settings, and platform match those of the validated transition(s) in 

the database.   

6.4.2 The MRMaid-DB transitions database schema 

The established data fields were encoded into a non-redundant database schema, 

designed by the author.  A database does not need to be a faithful representation of 

reality (see Figure 49 for the steps used), because it is not a simulation or model.  

Rather, it is a more pragmatic solution, whereby only the features are included that 

are absolutely necessary for the purpose of the system to be fulfilled.  As an analogy, 

a database is a play, which depicts a real-life story, but only picks out events that are 

necessary for the audience to get the message to be conveyed.  The entities in 

MRMaid-DB and the relationships between them have, therefore, been chosen with 

just two things in mind: does the user need this information?, and is the data 

available in journal papers? 
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Figure 49 The methodology used to create the MRMaid-DB transitions database.  PK is primary key, FK 

is foreign key. 

 

 

The database schema was created in Fabforce.net DB Designer 4 for Windows, a free 

database design suite.  Using this package, the tables and relationships were entered 

and the schema could be exported to a „create database‟ SQL script automatically.   

 

The MRM transition schema includes 16 tables, ten of which are look-up tables 

(Figure 50).  One-to-many relationships exist between the tables; for example, in the 

look-up table „journal‟, one journal contains many individual papers, so is a one-to-

many relationship.  Likewise, each paper in the „paper‟ table can contain many 

transitions so paper to transition table is also one-to-many.    
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Figure 50 MRM transitions MySQL database schema   
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The tables were initially populated in batch with data taken manually from the nine 

papers (those mentioned earlier) by creating a comma delimited file of the data (see 

Appendix VI) and uploading it table by table.  Tables were populated using 

PHPMyAdmin, a web-based software that is part of the Easy PHP (2.0.0.0) 

installation bundle.   

 

In some cases, papers used protein IDs such as Swissprot or IPI for the protein 

targets, for which there were multiple Ensembl gene ID equivalents; for example, 

IPI00303963 (Complement C2 precursor) which is cross-referenced (by PICR, 

accessed 10th June, 2009) to ENSG00000166278, ENSG00000204364 and 

ENSG00000206372.  To cope with this, all Ensembl gene IDs were included in the 

data entry for the first instance of MRMaid-DB. 

6.4.3 MRMaid-DB is based on the Biomart framework which offers 

flexible and federated querying  

The type of database front-end to use for populating and querying the database was 

selected next.  The database was implemented in MySQL, which is a widely used 

database framework that is compatible with several database „skins‟.  The author 

investigated several alternatives that were free and compatible with MySQL 

databases101.  These were: 

 

                                                
101 Intermine (www.intermine.org) was considered but it is compatible with postgreSQL, not MySQL. 
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1. DadaBik102, a free PHP-based front-end that is customisable and can support 

searching, inserting and updating of database records.  DadaBik was tested (see 

Figure 51) but was ruled out because multiple primary keys could not be supported. 

2. Xataface103, a flexible front-end that automatically generates web forms and search 

menus.  It offers customised features and functionality via configuration files, 

templates, and plug-ins. Xataface was ruled out because it was excessively rich in 

features and flexibility, a simpler solution was preferred. 

3. Biomart104, this interface is familiar to biologists, because existing databases in 

biology research use it.  It offers very powerful, flexible querying and is supported by 

its creators, who offer implementation support by email.   

4. Code a solution from scratch using PHP, as was done for GAPP database’s website.  

This would require coding all possible queries in SQL statements manually into web-

forms, taking more time but having the possibility to make the site totally bespoke.  

This option was ruled out, because time was better spent on novel aspects of the 

system, not coding an interface from scratch - a routine task in IT. 

  

                                                
102 www.dadabik.org 
103 http://xataface.com 
104 www.biomart.org 
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Figure 51 Dadabik was tested as a possible solution for 

web-based querying and data entry to the transition 

database 
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Biomart was chosen, because it offered superior implementation support and scope 

to federate queries with existing EBI Biomarts, advantages which were valuable for 

this project and are explained later.  Furthermore, the database in this chapter was 

developed at the end of the EngD, so a solution had to be selected that could be 

implemented quickly, given the time constraints.  Biomart offered the quickest route 

to have a working prototype compared to the other options. 

 

Biomart does however, have limitations; for example, it is less flexible than coding 

from scratch, because the interface is configurable only within the parameters 

offered by the system. Moreover, the author could not incorporate interactive help 

pop-ups in the interface or other functionality.  It was also not possible to „drill 

down‟ into results, where one query is run, the results displayed, and then these 

results queried further by the user.   

6.4.4 Implementing an instance of Biomart  

Pre-requisites for running Biomart version 0.7 on the web were: 

 Martj-0.7: notably this includes Martbuilder and Marteditor, all the configuration 

files, such as header.tt, and other files to manage the appearance of the Mart 

interface.  

 LAMP (Linux Apache MySQL and PHP) configuration: both the Biomart per se, and 

the other pages of the MRMaid-DB website were web-based, so must be set up to 

run on a server. 

 Biomart Perl: available via Perl package manager (PPM)   

 Correct configuration of XML files, such as the registry files 
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Once the MRMaid-DB schema was created in MySQL, the database was transformed 

into a Biomart database, using the Martbuilder (Figure 52).    A Biomart database is a 

database with greater redundancy, so queries can be executed quickly via the 

finished Mart query interface.  

 

 

Figure 52 The MRM transition database (a MySQL database) shown in Martbuilder.  The MySQL 

database was transformed to a Biomart using Martbuilder software. 

 

Martbuilder transformed the MySQL transitions database (16 tables) into a large 

redundant table („main‟) table, and one other („dm‟) table that stores the display 
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parameters for specifying the interface appearance (which is populated by exporting 

information from Marteditor, this is explained later).   

 

The Biomart „main‟ table is based on the transition table, because it is the central 

table in the original MySQL schema (Figure 53).  The new mart version of the 

database is exported as a „create SQL‟ script (Figure 53, window inset), hence the 

Biomart is also encoded as SQL, so is also a MySQL database, like to original, but has 

only two tables instead of 16.   
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Figure 53 Martbuilder transforms the MySQL transitions database (16 tables) into a large redundant 

table this „main‟ table is based on the transition table because it is the central table in the original 

MySQL schema.   

 

Next, the Biomart MySQL database was imported into Marteditor (Figure 54).  
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Figure 54 Marteditor software was used to tune the Biomart interface parameters, including the 

attributes and filters displayed 

 

In Marteditor, one can configure the interface displayed to the user, specifying the 

attributes and filters, for example; this system of „filters‟ and „attributes‟ is now 

explained briefly. 

      

The Biomart query interface is a database front-end that has standard features: it has 

filters - criteria on which the results are filtered/constrained (a protein ID, for 

example) and attributes - the data items that the user wishes to have returned from 

the search (the peptide, m/z values and collision energy, for example).   Biomart 
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allows any combination of filters and attributes to be selected simultaneously, 

offering the maximum level of query flexibility to users.   

 

Theoretically, any of the data-fields in the Biomart could be applied as filters or 

attributes in the interface, if this was specified in Marteditor.  The author has chosen 

only the filters and attributes deemed pertinent to the needs of users of MRMaid-DB 

(shown in Figure 55).  The assumptions for this selection were based on discussions 

between the author and expert MRM practitioners.  There is a worked example of 

using filters and attributes in Case Study 1 in the results section of this chapter.   
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Figure 55 Filters and attributes in the MRMaid-DB transitions Biomart.  The ellipses indicate the five main data categories in the Biomart 

query interface.  The boxes show the data-fields available in the schema.  Shaded boxes indicate data-fields that are compulsory when 

submitting transition data.  The boxes with a heavy line are the data-fields that can be applied as filters when searching the Biomart, the 

other boxes are just attributes 
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The parameters entered into Marteditor for the filters and attributes must all refer to 

the new Biomart database column names and table names, not those of the original 

database and must be compatible with the other configuration files.  Once these are 

set, the settings are „exported‟, which means they are added automatically by the 

Marteditor program to the „dm‟ table of the transition Biomart MySQL database.   

6.4.5 Federating the MRM transitions Biomart with Ensembl Biomart 

The MRM transition Biomart was federated with the Ensembl Biomart, an existing 

database provided by the EBI, by joining the Ensembl gene ID column.  Using this 

setup, the two Biomarts can be queried simultaneously.  The advantage of this is that 

the most up-to-date descriptions for targets may be retrieved from the EBI servers, 

rather than retrieving descriptions or names of targets from a local version of 

Ensembl, which may become out-of-date.  There are five logical sections to the 

transition Biomart: transition, protein, protocol, matrix, and paper (Figure 55).  Each 

section has several data-fields, as per the original schema.  Only linking fields, such 

as foreign keys are not displayed to users.    

 

To get the Ensembl Biomart options to display correctly, the settings had to be 

specified in the registry XML file.  The complete set of Biomart configuration files are 

in Appendix V.  Configuring Biomart was not trivial, since the written 

documentation did not have explicit instructions on how to do it.  The author sought 

advice and practical help for setting up the system, including the federated 

querying, directly from the Biomart developers.   
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6.4.6 Submitting transition data to MRMaid-DB 

The website allows any registered user to submit SRM assays, which are then 

manually curated by the administrator (for now, the author) and inserted into the 

database (Figure 56).   

 

As soon as the submission is approved, the data becomes immediately available via 

the public interface by execution of two PHP programs: the first moves data from the 

temporary user submission database, to the MySQL database, and the second 

transforms the updated MySQL database to a Biomart MySQL database, compatible 

with the query interface of the website (Figure 56).  These two PHP programs were 

coded by Luca Bianco.   
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Figure 56 The process of data submission to MRMaid-DB 
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The data submission process (and hence the temporary user submission database) 

were designed by the author on the basis of how practitioners perform and publish 

MRM studies.   Multiple transitions can be performed given a single experimental 

protocol, and multiple transitions may be published for single protocol/workflow; 

thus, to save users time when submitting transitions this idea was applied.  For 

example, users must only submit biological matrix, protocol, and manuscript 

information once, save the information as a list of settings, and give the list a name.  

These settings can then be applied when submitting transition data on subsequent 

visits to the site (see Case Study 3 in the results section).  The temporary user 

submission database (Figure 57) stores the submissions in this logical format as an 

intermediate stage before entry into MRMaid-DB proper.  The data entry system was 

conceptualised and designed by the author, but to save time for the author (who was 

extracting and submitting transitions from papers for the first release of MRMaid-DB 

at the time), Luca Bianco encoded the items into a MySQL schema, ready for use on 

the MRMaid-DB website.   
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Figure 57 Data submission database tables for the MRMaid-DB website.  Dotted arrows show the website interfaces for the corresponding MySQL tables.  

The solid lines indicate links between database tables in the schema.   
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To test the submission process, selected transitions from a recent paper (Barton et al., 

2009) were entered by Chris Barton (the author of that paper), via the completed 

MRMaid-DB web interface.  His submission tested the process shown in Figure 56, 

and helped to ensure that the data entry was intuitive for an external user.  His 

comments were applied to improve the interface.  Screen shots of the whole data 

submission process are available in the user guide in Appendix VI.   

6.4.7 Exporting data from MRMaid-DB 

When a query is executed, the attributes selected by the user are presented in a 

single results table, which can be exported in HTML, CSV, TSV or XLS formats.  The 

results can be refined to show distinct rows of data by selecting a check box in the 

results display panel.  This export functionality is standard for Biomart.    

6.4.8 Designing the MRMaid-DB website look and feel 

MRMaid-DB is a comprehensive website, not just a Biomart query interface.  Biomart 

has been applied by other groups.  One offering (see http://paramecium.cgm.cnrs-

gif.fr) was used as an example of how to create a coherent website around a Biomart 

query interface.  There is a homepage, help area and information about the creators 

for users to browse.   
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6.5 Results  

6.5.1 Examples of MRMaid-DB use cases 

The following case studies give detailed walk-throughs for the most typical 

procedures performed using MRMaid-DB.  The author has also produced a user 

guide, which is available in Appendix VI, which also includes example workflows.   

Case study 1: Retrieving a list of transitions for a protein target 

In this scenario, a list of validated transitions is retrieved for a specific protein target, 

namely human apolipoprotein A-II (ENSG00000158874).  The filter must be selected 

first, this is the field on which data retrieval is to be restricted; in this case, it is the 

protein identifier.  To begin, the user clicks „Browse Mart‟, chooses the „MRM 

transition database‟, clicks „filters‟ on the left toolbar, and expands the „Filter by 

protein‟ section. The Ensembl ID of interest is then pasted into the „Ensembl ID for 

target‟ text box - the adjacent box must also be checked to indicate this filter is active.  

The Ensembl ID now appears on the left toolbar.   

 

Next, the attributes are selected, which are the data-fields to be retrieved for this 

protein.  The user clicks „Attributes‟ in the left toolbar to see the available lists of 

attributes. For SRM transitions, useful information includes the protein target (in this 

case the name and ID), peptide, precursor m/z (Q1), product ion m/z (Q3), peptide 

retention time, collision energy and dwell time.  These features are now selected by 

the user as attributes, by checking the relevant boxes.   
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The protein name (description), which is desired for the output list, is not available 

in the attribute form shown (for transition Biomart); it must instead be selected from 

the Ensembl Biomart.  To do this, the user clicks the second „Dataset‟ link in the left 

toolbar and chooses in the drop-down menu the dataset for Homo sapiens (NCBI36); 

this is because the target in this example is human, so the dataset must be selected 

depending on the species in the query.  To confirm the user‟s selection, the database 

name is now shown in the toolbar.  Next, the user clicks „Attributes‟ for the Ensembl 

Biomart, and expands „Gene‟.  Ensembl Gene ID and Ensembl Transcript ID are 

checked by default.  The user unchecks these and selects instead description (and/or 

Ensembl Protein ID, not used in this example); again the selections now appear in 

the left toolbar.   

 

The filters and attributes are now in place, so to retrieve the transitions the user 

clicks the results button above the toolbar, which executes the search.  The results 

show the transitions retrieved (screenshot in Figure 58) with the table including data 

from both the transition and Ensembl Biomarts.  To export these results, the user 

selects the download option from the drop-down menu above the table and hits 

„Go‟. 
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Figure 58 Screenshot of results from a federated query using MRMaid-DB for apolipoprotein A-II.  The 

first seven columns are from the MRM transition Biomart, and the final column is from the Ensembl 

Homo Sapiens (NCBI36) Biomart database.  The asterisk (*) in the peptide sequence indicates a 

modification on the previous residue. „-1‟ is entered for numerical fields when the data is not available in 

the manuscript („null‟ if a non-numerical field).  The tool bar on the left displays the filters and attributes 

selected for the search; the first dataset refers to the MRM transition Biomart, and the second dataset 

refers to the Ensembl Biomart.  For both peptides shown, there are two possible transitions.  

Simultaneous monitoring of multiple transitions that identify the same peptide can increase selectivity of 

the SRM assay; MRMaid-DB can store multiple transitions pertaining to the same peptide and protein, 

for this purpose.     

 

Case study 2: Retrieving all the transitions from a particular 

manuscript 

A frequently cited paper is Anderson and Hunter‟s investigation, where human 

plasma proteins were monitored using SRM (Anderson and Hunter, 2006).  This case 

study shows how to retrieve all the validated transitions from this particular article.  
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To begin, the user selects as filters for the transition database: first author „Anderson 

NL‟; journal „Molecular Cellular Proteomics‟; and volume „5‟ (volume is optional in 

this case).  Next the user selects the attributes: Ensembl gene ID; peptide; precursor 

m/z (Q1); product ion m/z (Q3); and retention time.  As explained in case 1, selecting 

„description‟ in the Ensembl Biomart gene attributes is the way to retrieve the target 

name, if required.  To count the number of transitions for this paper, the user clicks 

the „count‟ button above the left toolbar.  This shows that there are 119 transitions 

that meet the filter search criteria (displayed below the count button).  To retrieve 

the transition data for these, the user clicks the „results‟ button.  A list of the 

transitions and protein descriptions is displayed, and can be exported.              

Case study 3: Submitting transition data to MRMaid-DB 

For users to start submitting transition data from their own manuscripts, they must 

first register and log in via the „Submit data‟ area of the website.  Once logged in, a 

submission status bar appears on the left to indicate the number of transitions 

submitted and approved for this specific user.  To begin submission, information on 

the experimental set-up must be entered and saved (as „SRM settings‟).  Clickable 

help bubbles (blue question marks) are positioned next to some of the data-fields in 

the data entry form: these give a brief explanation of the type of data required, with 

specific examples.  During the data entry process, if the data required is not available 

in the drop-down menu options then users must check the „Not there?‟ box and 

write in their desired entry in the text box at the end of the section (labelled „Any 

problems…?‟).  In this case, the administrator will  enter the  user‟s  request  into  the  
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relevant lookup table of the schema, making it available for future submissions.  This 

feature is required because comprehensive controlled vocabularies were not 

available for all aspects of the MRMaid database, such as HPLC column models and 

mobile phase compositions.   

 

Once the form is complete, the settings can be saved.  If there any data entry issues, 

these are highlighted in red when the user attempts to submit the form.  The data 

fields that are flagged can be amended and the form submitted again, without losing 

the settings already entered.   

 

To submit individual transitions, the user selects the link on the left.  The settings 

that were entered and saved earlier are now selected by the user in the drop-down 

menu.  Once selected, the transition data entry form is filled in by the user.  The 

protein target must have an Ensembl accession number; if the user has another type 

of accession number it must first be converted to Ensembl.  To convert the accession 

number, the user can click on the PICR icon; this takes him/her to a tool that cross-

references database accession numbers and can convert lists of various IDs in batch 

mode (Côté et al., 2007).   

 

After completing the form, the user clicks „Submit transition‟ to send the data to the 

database administrator for approval.  Once approved, the transitions enter the 

Biomart immediately and are available to all users. 
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6.6 Discussion 

There is currently no officially sanctioned standard for reporting SRM transitions in 

research papers and repositories.  HUPO-PSI and Institute of Systems Biology are 

currently coordinating efforts to develop a standard XML-based format for storage 

and exchange of SRM transitions, called transitions markup language (TraML).  The 

first draft was posted on the HUPO-PSI website105 on May 2nd, 2009.  The overlap 

between the proposed TraML standard format (as in August 2009) and MRMaid-DB 

has been examined (Table 29). 

 

 

 

 

 

 

 

 

 

 

 

                                                
105 www.psidev.info 
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 Transitions Markup Language (TraML) MRMaid Database  

Data-fields 

specified as 

compulsory 

TraML, version: TraML format version used 

CV, URI: uniform resource identifier for the controlled vocabulary 

CV, fullName: name of the controlled vocabulary 

CV, id: identifier for the controlled vocabulary 

CV, version: version of the controlled vocabulary 

contact, id: contact person for referencing 

publication, id: identifier for the publication 

instrument, id: identifier for the MS instrument 

software, id: identifier for  referencing the  software 

software, version:  version of the software used to generate transitions 

protein, id: identifier for the protein target 

protein, name: name of the protein target 

cvParam, accession: accession number for the controlled vocabulary 

cvParam, cvRef: reference to the controlled vocabulary parameters 

cvParam, name: name of the controlled vocabulary 

peptide, id: identifier for the peptide 

peptide, modifiedSequence and unmodifiedSequence: peptide sequence with 

and without modified amino acids 

compound, id: identifier for the compound to be monitored by SRM 

precursor, mz: Q1 m/z 

product, mz: Q3 m/z 

prediction, softwareRef: reference to the software for transition prediction 

prediction, transitionSource: how the transition predictions were made (e.g. 

using a consensus spectrum search) 

configuration, instrumentRef: reference to instrument configuration for 

validation or optimisation of transitions 

validation, transitionSource: how the transition(s) was validated 

Ensembl gene ID (for the target) 

Peptide sequence 

Q1 m/z 

Q3 m/z 

First author (of the paper) 

Title (of the paper) 

Transition 

targets  

Different biomolecules  Peptides only (and validated in peer-reviewed papers) 

Signal intensity 

data 

Signal intensity, intensity rank, and relative intensities  No intensity information 

Redundancy Some redundancy  if all elements are filled in, such as Q1 m/z which can be 

specified in Element <transition> and Element <precursor> 

Redundancy is avoided by storing the SRM settings only once for each type of 

setup, and reusing this for the individual transition submissions. 

Sequence 

information 

Whole protein sequences and peptides  Protein IDs and peptide sequences 

Product ion 

data 

Ion series and ordinal separately: „y‟ and „6‟, respectively. Product ion type as „y7‟, for example. 

PTMs and 

heavy peptides 

PTMs or heavy residues are written as square brackets in the modified peptide 

sequence. 

PTMs are specified by an asterisk in the sequence and a text field with the name 

of the modification(s).  Heavy residues are described in the isoform / variant data-

field 

Table 29 A comparison of the data captured by TraML versus MRMaid-DB.  The comparison shown here is based on the TraML early draft (Version 

0.2.0.0) released on May 13, 2009. 
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Publication 

details 

Published articles from which the transitions are derived can be captured, as 

Pubmed IDs, for example.  

More detail on the paper, including the Pubmed ID or DOI, as well as journal 

name, title, mini abstract, volume, start page, etc. 

Contact details  All contact names of people who produced the transitions First author of the paper article  

Transition 

design / 

analysis 

software  

Name and version of the software used to design the transitions.  Also the 

„transition source‟ (how the transitions were selected) 

No software or transition selection information  

Peptide 

retention time 

Predicted or actual RT data Observed RT only 

Protein name/ 

description 

Protein description is in TraML (in Element <protein>) Transition data Biomart database is federated with the EBI‟s Ensembl Biomart 

for several species (currently human, mouse, dog, cow, horse, and yeast). The 

description/name of the target ID must be retrieved from the Ensembl Biomart. 

Coefficient of 

variance 

- Captures coefficient of variance in % for each transition from the published 

paper manuscript. 

Ranking 

transitions 

Transitions ranked in recommended order by the experimentalist For each protein in each paper the transition is indicated as the best (y) or not the 

best (n) or unknown (0), if not specified in the research paper. 
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Although TraML and MRMaid are very different (the former is a data standard, 

whereas the latter is a database) it is worth comparing their data models, because it 

would make sense to support TraML import/export within MRMaid when TraML 

becomes stable. Currently, MRMaid-DB export is in a simple spreadsheet format, 

although results can be extracted as XML via the Biomart API. 

 

TraML contains the specifications for representing SRM transitions for monitoring 

different types of compounds via mass spectrometry, not just proteins and peptides, 

plus signal intensity information, and experiment/sample information encoded 

using ontological terms.  This contrasts with MRMaid-DB which, being dedicated 

specifically to proteins / peptides, captures only a subset of the data included in the 

TraML specification. Furthermore, MRMaid-DB also takes a pragmatic approach to 

data entry, allowing free text entry for fields for which ontologies have yet to be 

developed, such as for specific RP-HPLC conditions.  

 

At the moment there is no relevant MIAPE (The Minimum Information About a 

Proteomics Experiment) module for this area of proteomics, so TraML and MRMaid-

DB enforce their own rules regarding compulsory data fields. Again, MRMaid-DB 

currently takes the more pragmatic approach, requiring only a subset of the data 

considered compulsory in TraML (Table 29). 
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6.7 Conclusions 

MRMaid-DB is a scalable compendium of high quality, validated transitions 

available at www.mrmaid-db.info.  It provides a freely accessible online framework 

to store and disseminate transitions as they become available in the literature.  This 

has the potential to save users valuable time when designing SRM experiments, and 

to increase citations for those authors submitting their transitions to the database. 

 

Along with TraML and MRM Atlas, MRMaid-DB acts as a useful template for 

researchers looking for guidance on what to include in their SRM publications in the 

future.  Indeed, in the same way that prototype software applications act as a useful 

tool for communication between users and developers, these new developments will 

hopefully stimulate researchers to discuss and decide which aspects of experimental 

information are most important for reproducing SRM assays in practice. 

6.8 Future work 

6.8.1 Data content of MRMaid-DB 

For the purposes of this thesis, the novel work was development of the data 

management system, not database population.  At the time of release, MRMaid-DB 

contained only 272 individual SRM transitions, which is sufficient for a prototype 

system but does not reflect all of the published transitions in the public domain at 

that time.  MRMAtlas, the only other system for storing MRM transitions, is limited 

to yeast at present, but despite this has thousands of transitions already.  Immediate 
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future work, therefore, should be population of MRMaid-DB with newly published 

transitions.   

6.8.2 MRMaid-DB should become compatible with standards  

MRMaid-DB could be made TraML-compatible (hence PSI-compliant), once the 

standards are finalised.  This was not possible at the time of writing this EngD, 

because the standard was not ready for release, however, as demonstrated in Table 

29 there are already data-fields in common.  For example, a parser program could be 

produced to allow export of entries from MRMaid-DB in TraML format for the data-

fields available. 

6.8.3 Automated quality control at point of data entry 

Each SRM entry is checked manually by the author to verify that product ion type 

and mass are correct using both the research article and also web-based m/z 

calculators to ensure fidelity of the data entered.  This is a process which could, at 

least in part, be automated.  In MRMaid, for example, there is already a function to 

calculate the b- and y-ion complement of a peptide sequence.  Using this code, the 

mass of the peptide entered could be automatically checked against the m/z values 

(and ion type) entered by the user into the form.      
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7 Conclusion 
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This project contributes to the body of knowledge in proteomic bioinformatics on 

several levels.  Firstly the field of „proteomic bioinformatics‟ was characterised in 

terms of its commercial presence (Chapter 2), and as an array of publicly available 

repositories and software resources (Chapter 3).  There is no research available in the 

public domain regarding the management of proteomic bioinformatics, so it is 

believed that the work presented in Chapter 2 adds significant value to the field.  

The immediate future plan for the material is to re-format it into a teaching case for 

the MBA course, for example via the European Case Clearing House106.  The 

business history could also be written up separately as an article for Enterprise & 

Society: The International Journal of Business History.  The review of the latest 

developments in public repositories, Chapter 3, offers a further notable contribution 

to the field, because the public repositories are constantly changing in functionality 

and content.  A review in a single document is thus valuable to both lab-based 

proteomics practitioners, who wish to upload their datasets or mine existing ones, 

and for proteomic bioinformaticians, wishing to have an overview of existing 

resources to avoid repetition of effort and to design tools to plug gaps in the 

resources currently available.   

 

In Part II, the long standing question of which decoy database should be used to 

reduce FPs in automated identification workflows was answered.  A systematic 

investigation of diverse decoy database designs was carried out using GAPP, 

                                                
106 A not-for-profit organisation that provides a collection of case studies and papers for teaching purposes for 

management training. 
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revealing that the recommended decoy database design is peptide level reverse, 

searched independently from the target database.  This work was a „brute force‟ 

empirical approach and offers a practical way to reduce the risk of pursuing false 

protein leads in biological/pharmaceutical research.  Naturally, by taking the 

recommended approach, which stringently filters out FPs, it may happen that true 

identifications are also filtered out thus not providing the full picture of the proteins 

present in a sample.  In this scenario, the investigator can be sure that what is 

identified was present, but will not know what is absent from the list – this is 

favourable in a pharmaceutical setting, for example, when researchers must be 

certain that the protein was present.  The work also has potential to affect reporting 

policies for high-throughput proteomics, for example, by providing science-based 

evidence on which kinds of randomised decoy searches should be applied for 

reporting false identification rates in journal papers (Bradshaw et al., 2006, Tabb, 

2008).  Future work to examine the decoy database performance on different datasets 

and pipelines will help to confirm the recommendations made from this study.    

 

Chapter 4 also provided a tangible example of how novel research may be 

performed by exploiting datasets made public in a proteomics repository on the 

internet, such as those reviewed in Chapter 3.  Mitchell Waldrop, a journalist at 

Scientific American, posed the question in April 2008 “...is posting results online for all 

to see a great tool or a great risk?”107.  The author argues that the work presented shows 

                                                
107 From an article entitled ‘Science 2.0 Is open access science the future?’ 
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that it is indeed worthwhile to make data freely available to the community via 

public proteomics repositories, such as Tranche at ProteomeCommons (as was used 

in Chapter 4).  In this case there are more benefits for making datasets available than 

risks, especially since datasets are, in any case, usually only made available after 

publication.   At present, one of the issues for proteomics data-sharing in this way is 

that there is currently more value placed on receiving citations for papers than there 

is value in having one‟s datasets re-applied and cited.  This situation is likely to be 

improved with projects such as MIBBI (Minimum Information for Biological and 

Biomedical Investigations) (Taylor et al., 2008).  As Chis Taylor - who runs the project 

- stresses, external referencing of datasets that are obtained via repositories is 

important to incentivise authors to submit their data to databases in the first place 

(personal communication, July 2009).  A formal system to make this possible is much 

needed.  Moreover, by making data available in repositories, it is good for science as 

a whole, because it means reviewers can determine if the data is as good as authors 

say before work is accepted for publication.  It also allows data to be re-used in new 

analyses, such as with new algorithms as they become available, and can lead to new 

tool development that is only possible when a critical mass of data is put together, 

such as consensus spectral searching, for example.   

In Part III a new tool (MRMaid) and database (MRMaid-DB) were developed to 

support MRM studies. These systems, unlike those in Part II, focused on quantitative 

proteomics,  an   area  of   proteomics   which  is  increasingly  important   permitting  



 

338 

 

detection of changes in the absolute quantities of proteins for use in systems biology 

and biomarker discovery and validation. Indeed, MRM is an effective technique for 

this purpose, but its limitation is that it is exclusively for targeted protein 

quantification; it must be hypothesis-driven. Other quantitative methods, such as 

label-free and those reviewed in Chapter 1 are required in situations where the 

proteins to target are not known - where there is no hypothesis to direct the 

quantification.   

Designing transitions for SRM assays from scratch, or locating existing transitions in 

research papers is time-consuming, and does not leverage existing knowledge and 

data resources.  MRMaid and MRMaid-DB offered new bioinformatics solutions to 

solve these problems.  Indeed, since releasing MRMaid, several new publicly 

available tools for transition design and optimisation have subsequently emerged.  

These new computational resources fall into two main types:  

(1) Web-based data-mining applications that sit between the user and a large public proteomics 

repository on the internet like MRMaid, they include The Global Proteome Machine’s MRM 

Worksheet (Walsh et al., 2009), and ESPPredictor (Fusaro et al., 2009) 

(2) Standalone packages to predict transition candidates, which are installed and executed 

locally, such as MRMer (Martin et al., 2008), Skyline (Prakash et al., 2009), and  MaRiMba 

(Sherwood et al., 2009).  This second group can exploit data from public repositories for the 

prediction process, for example via a web service or by applying specific spectral libraries.   

The array of new offerings demonstrates how quickly the MRM approach is gaining 

popularity.  Moreover, they highlight how appropriate the development of MRMaid 

was at the time.  Indeed, MRMaid (along with TIQAM) lead the field of MRM 

informatics, being the first freely available tools in the world for transition design.  

Indeed, MRMaid has already been cited by others in recent papers and reviews, for 
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example in the MaRiMba paper (Sherwood et al., 2009), and in a review article on 

MRM for clinical applications (Kim and Kim, 2009).  To further contribute to the 

state of the art in this field, the author has written a review of publicly available 

software for MRM informatics.  A review of these resources was desirable, since like 

repositories, the field is fast moving and researchers find it difficult to weigh up the 

capabilities and benefits of each offering.   The review has been accepted by 

Proteomics journal and will be published as part of the HUPO conference 

proceedings edition of Proteomics in 2010 (see Appendix VII).   

Also, MRMaid-DB has implications for the new standard format, TraML, for 

reporting transition data in the community.  The process that the author went 

through to obtain all of the data items required to reproduce transitions is the same 

process that the HUPO-PSI work group are going through now.  Therefore, it may 

be argued that by comparing the data-fields captured by MRMaid-DB with TraML, 

the MRMaid-DB schema may serve to validate the new standard going forward.     

In summary, the outlook for MRMaid and MRMaid-DB is promising.  Indeed, a new 

proposal is being put together in Autumn 2009 to obtain funding108 to, among other 

things, integrate the MRMaid algorithm and its transition scoring, as well as the 

MRMaid-DB schema, into PRIDE database at the EBI.  PRIDE is the only major 

public proteomics repository still to provide transition design functionality.  

Applying MRMaid in this way would provide a way to achieve longevity of support 

and continued global reach for the resources developed on this EngD.  In general, a 

                                                
108From the bioinformatics and biological resources (BBR) fund from the BBSRC (Biotechnology and 

Biological Sciences Research Council).     
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major issue for tools like MRMaid is that they never progress from the level of 

„prototype‟ to a robust application, and down-time on small-scale development 

servers is inevitable.  By incorporating the MRM tool and database into PRIDE, 

which has professional support and regular sources of funding, there is the best 

chance of delivering benefits to users on a continued basis.  Moreover, as part of the 

EBI‟s toolbox, there is greater likelihood that the proposed future improvements to 

MRMaid will go ahead (such as those mentioned at the end of Chapter 5).   

Finally, it is likely that once SOPs are in place for the MRM approach, such as those 

that will be delivered by CPTAC, MRM will form a major part of the proteomics 

toolbox in both research environments and clinics.  This means that sources of 

reliable transition candidates, such as MRMaid and MRMaid-DB, will become 

increasingly important in the future. 

7.1 Wider opportunities for future work 

To conclude, some further areas of research work are suggested to build on the 

achievements of this thesis.   

7.1.1 Decoy database design options 

The decoy databases created in Chapter 4 were based on randomising protein 

sequence databases based on known mathematical techniques, such as shuffling or 

reversing.  There are other approaches to this randomisation that could be applied; 

for example, in proteins there are recurring biological motifs, the sequences are not 

completely random strings.  New approaches to design decoy databases can take the 
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information on biological sequence motifs into account for decoy database creation, 

such as in a study that applied pattern recognition approaches and a Monte Carlo 

sampling algorithm (Feng et al., 2007).  If the statistical properties of the target are to 

be accurately mirrored in the decoy, then short repeating domains should also be 

accounted for in the decoy design.  This avenue should be explored, and may lead to 

improved FPRs. 

7.1.2 Refactoring of the systems: GAPP and MRMaid  

Future work should include re-coding of GAPP and MRMaid from scratch, because 

there are several aspects that need to be improved.  The original release of GAPP 

(Shadforth, 2005) was not well-documented and written in Perl.  Issues with it 

include speed, presence of bugs in the code, and that the input and output formats 

are not PSI standards-compliant.  Perhaps more importantly, however, is that the 

GAPP framework is based on Ensembl gene identifiers, hence MRMaid had to be 

based on these.  Ensembl genes are not useful for protein isoforms, since each gene 

has a single ID even if several isoform variants exist.  For MRMaid in particular this 

is a problem, because ideally users need to be able to monitor specific variants by 

MRM. 

 

To make all of these changes in a piecemeal fashion would be a difficult task, and it 

would be more time-efficient to implement complete refactoring of the system, with 

the focus on delivering modularity and extensibility in the new version.  Indeed, this 

would allow GAPP to become a robust application, not a prototype as it effectively  
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is now.  Furthermore, a stand-alone version could be created at the same time and 

commercialisation explored.   

7.1.3 Automated data harvesting 

As explained in this thesis, there is a growing body of MS data available in public 

repositories.  It is suggested, therefore, that changes be made to GAPP to allow 

harvesting of data from two major proteomic repositories, PRIDE and Tranche.  One 

of the major pieces of work for the author in Chapter 5 was making sure enough 

spectral data was in GAPP DB, so MRMaid could make meaningful transition 

predictions.  To improve MRMaid, therefore, more data needs to be made available 

to it via GAPP DB.  To implement data-harvesting is not a simple operation because 

the minimum set of metadata will be required as search parameters for X!Tandem; 

hence, a middleware interface is required to connect to the repositories every time 

new data becomes available.  The multiplicity of file formats for the spectra is also an 

issue to be accounted for, although it is hoped that HUPO-PSI‟s mzML will become 

the widely-adopted format of choice for MS/MS datasets in the near future.     

 

The danger of taking data from multiple distributed sources is that some of it may be 

erroneous, or of poor quality.  It is therefore important that some form of quality 

assessment be made on data presented to GAPP via automated harvesting.  Various 

techniques to assess and improve spectral quality have already been described, for 

example in (Flikka et al., 2006).  Filters could be used to eliminate poor quality data 

prior to submission.  In addition, post - processing  could be  developed  to remove 
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errant identifications; for example, a rule-based expert system could apply 

knowledge of MS fragmentation chemistry taken from experts to identify and 

remove erroneous identifications, such as through knowledge of fragmentation 

chemistries and the limits of detection of MS.   

7.1.4 Facility to execute different search engines in GAPP 

To improve the data and identifications available to MRMaid further, and to make 

the score for optimising decoy database designs wider, it is suggested that GAPP 

pipeline be extended to include peptide scoring from others search engines in 

addition to X!Tandem including, for example, OMSSA and Mascot (for which the 

user would need to link GAPP to their Mascot server). This will also allow consensus 

scoring, whereby results from multiple search engines are combined to increase 

confidence, thus only identifications validated by searching various approaches 

would be stored in GAPP DB.  It would also provide scope to combine the results of 

the different search engines into a single score, such as FDRScore as described in 

(Jones et al., 2008a).  Of course, Mascot is a commercially licensed software product 

so cannot be integrated into the open source distribution of GAPP, or made freely 

available as a part of the web-based installation of GAPP. However, users could 

„farm out‟ processing to their own in-house Mascot server, if they have one. Mascot 

is a widely used and accepted search engine, particularly in the UK, so it would be a 

valuable addition for the purposes of testing decoy designs and for MRMaid. 
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7.2 Final word: proteomics gear-heads are here to stay 

Biologists may feel frustrated by bioinformatics, believing that „black boxes‟ (tools) 

developed by „gear-heads‟ (bioinformaticians) do not represent „real biology‟ 

research; rather a complicated means to an end.  A recent sociology workshop 

explored this point; McNally - who lead it - found that biologists saw the growth in 

proteomic bioinformatics (the „gear-head moment‟) merely as a transient stage in the 

history of biology research, and they “look forward to the day when the gear-heads move 

aside to make room for biology to return to its rightful position centre stage and resume the 

„real‟ job of science, which is addressing biological questions and meeting urgent social 

needs” (McNally, 2008).       

 

McNally‟s findings do not, however, reflect the reception the author has received for 

the work presented in this thesis.  In fact, the author would argue that each piece of 

research presented here was designed specifically to assist lab-based researcher‟s 

endeavours by providing a means for researchers to leverage expertise and data 

from others, and to increase access and recognition to their own and others‟ work.  

Given the explosion in data volume, it is also hard to agree that proteomic 

bioinformatics research represents a short transient stage.   

 

In reality, it is likely that even more sophisticated „black boxes‟ will be needed to 

federate disparate data for the systems biology models of the future.  It is more likely 

that the „real biology‟ of the future will have computing as its central, novel focus, no 



 

345 

 

longer with the focus on the actual process of biological data capture, but rather the 

analysis afterwards.  Evidence of this shift is already here: the CEO of the BBSRC, for 

example, concedes that increasing amounts of text and data are likely to change the 

entire epistemology of much of science109. Indeed, it appears that the proteomics 

gear-heads are here to stay and the future of proteomics, and biology in general, 

needs them.  

 

  

                                                
109 Taken from Professor Douglas Kell's blog at the BBSRC website (http://blogs.bbsrc.ac.uk/), ‘Computational 

infrastructure for modern biology’ posted on 21st September, 2009. 
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Appendix I Figure 1 A summary of software tools to interchange proteomics data formats (Source: ISB 

ProteomeCenter) 
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Appendix I Table 1 Short courses/ workshops attended during the EngD 

Course Course content 

Research planning and report writing  Scientific report writing, data analysis and 

interpretation skills 

Techniques to aid innovation  Design/realisation process, IP rights, statistical 

experiment design, new manufacturing processes 

GRAD summer school  Personal development,  teamwork, facilitation skills 

and confidence 

Technology change and 

environmental assessment  

Auditing methods for environmental impact 

Learning team approach course  Team-building, leadership, inter-personal skills, 

problem-solving 

Intelligent systems  Architecture, knowledge engineering and control, 

languages used in expert systems, Bayesian 

interference, fuzzy logic and decision support systems 

including clinical applications 
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Appendix I Table 2 Conferences, Presentations and Posters for the EngD

Date Title of EngD work presented Presentation 

type 

Conference or meeting name Location Materials in 

appendix CD 

21-25/07/07 Novel bioinformatics tools for cross-species data 

analysis 

Poster 15
th

 International conference on Intelligent Systems for 

Molecular Biology, and 6
th

 European Conference on 

Computational Biology 

Vienna, Austria No 

19/11/07 - - 6
th

 Annual Proteomics Day 

and Second BSPR London Regional meeting 

London, UK - 

6-7/05/08 Using Bioinformatics to Increase Speed and Reduce 

Uncertainty in Protein Biomarker Discovery 

Oral and 

paper 

Cranfield Multi-Strand Conference Cranfield, UK Paper 

18-19/06/08 Bridging the GAPP Oral  Proteomics Method Forum Dundee, 

Scotland 

No 

8-10/07/08 Fast and reliable MRM transition design Oral  British Society of Proteome Research (BSPR) / European 

Bioinformatics Institute (EBI) Conference [Proteomics: 

From technology to new biology] 

Hinxton, UK No 

22-26/09/08 Applying community standard MS/MS datasets to 

evaluate proteomic data analysis pipeline 

performance 

Poster  7
th

 European Conference on Computational Biology Cagliari, 

Sardinia, Italy 

Poster 

01/12/08 

 

- - The Seventh Annual Proteomics Day, and Third BSPR 

London Regional meeting 

 

London, UK - 

20/05/08 Man versus MRMaid: can a computer program 

design transitions as well as a Quotient scientist? 

Oral  Quotient BioResearch Ltd. lunchtime seminar Fordham, 

Newmarket, UK 

No 

27/06/09-

02/07/09 

MRMaid: automating the design of multiple 

reaction monitoring (MRM) experiments using 

expert knowledge and MS/MS data-mining 

Poster  17
th

 International conference on Intelligent Systems for 

Molecular Biology, and 8
th

 European Conference on 

Computational Biology 

Stockholm, 

Sweden 

Poster 

14-16/07/09 Which decoy database gives the lowest false positive 

rate in automated searches using a proteomics 

pipeline? 

Poster  British Society of Proteome Research (BSPR) / European 

Bioinformatics Institute (EBI) Conference [Multiscale 

proteomics: from cells to organisms] 

Hinxton, UK Poster 
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 Appendix I Table 3 Professional memberships of the author, as a result of expertise gained on the EngD 

programme 

 

 

 

 

 

 

  

Date joined Organisation 

2009 The American Chemical Society 

2007 The International Society for Computational Biology 

2007 The British Society for Proteome Research  



 

383 

 

Appendix II 

 
 
 
 
 
 
 
 

 
Appendix II 

  



 

384 

 

 

  



385 

 

Appendix II Table 1 BBSRC proteomic MS grants awarded between 1999 and 2008.  The colours indicate linked grants, such as follow on grants.  Asterisk 

indicates grants which also include additional proteomics approaches (in addition to MS) 

Year Start date Grant Proposal details Recipient 

Establishmen

t 

1999 11/01/1999 £119,898 Software tools for complex mixture analysis of proteome proteins hubbard manchester 

2000 01/04/2000 £460,964 

Making the most of a genome sequence: the application of global transcriptome and proteome analysis 

to Streptomyces coelicolor A3(2)* smith manchester 

2001 01/08/2001 £197,912 

Realising a qualitative increase in the capacity of proteomics by statistical image analysis of 2D 

electrophoresis gels graham manchester 

2004 01/05/2004 £376,187 ISPIDER - a pilot grid for integrative proteomics apweiler EBI 

2004 01/07/2004 £360,181 

Developing PEDRo as a standard tool for the capture, representation, analysis, and dissemination of 

proteomics data oliver cambridge 

2004 01/10/2004 £202,883 ISPIDER - a pilot grid for integrative proteomics martin birkbeck 

2004 25/10/2004 £363,821 ISPIDER - a pilot grid for integrative proteomics hubbard manchester 

2004 15/11/2004 £230,130 Application of field programmable gate arrays to eliminate bottlenecks in near-instrument proteomics beynon liverpool 

2004 22/11/2004 £129,699 A Grid-Based System for Cataloguing the Human Proteome from Distributed Mass Spectrometry Data bessant cranfield 

2005 01/04/2005 £222,889 ISPIDER - a pilot Grid for integrative proteomics jones UCL 

2005 01/09/2005 £20,000 

Development and Dissemination of e-Protein: A distributed pipeline for proteome annotation using 

GRID technology jones UCL 

2005 01/09/2005 £19,965 

Development and Dissemination of e-Protein - a Distributed Annotation Pipeline for Proteome 

annotation using Grid technology sternberg imperial 

2005 01/12/2005 £150,193 Computing Equipment for Bioinformatics * sternberg imperial 

2006 01/05/2006 £444,800 EMBOSS: European Molecular Biology Open Software Suite * Rice EMBL 

2006 01/10/2006 £50,205 ProteomeHarvest - Excel/XML Bridge for User-friendly Proteomics Data Collection Apweiler EBI-EMBL 

2007 01/04/2007 £92,274 Further Development of the Genome Annotating Proteomic Pipeline bessant cranfield 

2007 01/05/2007 £156,781 A Multi-Processor Linux Farm for Bioinformatics and Functional Genomics * lovell manchester 

2007 07/05/2007 £99,103 Informatics tools for analysis of quantitative proteomics data hubbard manchester 

2008 14/01/2008 £186,111 Rapid proteome profiling using positional signature peptides hubbard manchester 

2008 01/03/2008 £48,383 Database on demand - creating customized sequence databases for efficient protein identification apweiler EBI-EMBL 

2008 14/03/2008 £71,545 FPGA supercomputing technology for high-throughput identification and quantitation in proteomics beynon liverpool 

2008 15/03/2008 £356,480 FPGA supercomputing technology for high-throughput identification and quantitation in proteomics coca sheffield 

2008 01/06/2008 £217,459 Rapid proteome profiling using positional signature peptides beynon liverpool 

2008 01/07/2008 £103,094 X-tracker: a generic quantitation tool for MS-based proteomics bessant cranfield 

2008 18/09/2008 £99,876 

Computational methods to enable construcution of 3D models of protein complexes by integrating mass 

spectrometry and biochemical data robinson cambridge 

      

 Total £4,780,833    



 

386 

 

 

 

Appendix II Figure 1 Breakdown of public funding awarded for proteomic bioinformatics research in 

England between 1999 and 2008. 
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Appendix II Figure 2 Hits for GPMDB as an indicator of activity in proteomics research across the world 

during June 2009 
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Paper 1 of the EngD  

- Mead, J.A. and Shadforth, I.P. (2007) Bringing protein identification to the masses. Institute of Biology 

Biologist 54:200-206 

paper1_ 2007_biologist.pdf 

Paper 2 of the EngD 

- Mead, J.A., Shadforth, I.P. and Bessant C. (2007) Public proteomic MS repositories and pipelines: 

available tools and biological applications Proteomics 7(16): 2769-86 

paper2_ 2007_proteomics.pdf 

Paper 3 of the EngD  

- Mead, J.A., Bianco,L. and Bessant C. (2009) Recent developments in public proteomic MS repositories and 

pipelines. Proteomics 9(4):861-81 

paper3_ 2009_proteomics.pdf 
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Paper 4 of the EngD  

- Bianco,L.,Mead J.A. and Bessant,C.(2009) Comparison of novel decoy database designs for optimizing 

protein identification searches using ABRF sPRG2006 standard MS/MS datasets Journal of Proteome 

Research 8(4):1782–1791 

paper4_ 2009_jpr.pdf 
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 Appendix IV Figure 1 Work breakdown for the research work completed in Chapter 4 
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Appendix IV Figure 2 The remaining three labs from the box 

whisker plots in Chapter 4.  The plot illustrate the 

distribution of protein level false positive rates (FPRs) across 

the ten database instances for each decoy design.  Each colour 

represents an individual ABRF data-submitting laboratory.  

The horizontal line is the mean of the ten database instances, 

the box around the line shows one standard deviation above 

and below the mean, the whiskers show two standard 

deviations from the mean and the filled dots are the 

maximum and minimum individual FPR values obtained for 

the given decoy.  The first nine decoys on the x-axis were 

searched in composite with the target and the last nine 

separate to the target.    
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(a) 
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 (b) 

 

Appendix IV Figure 3 Remaining graphs from Chapter 4. 
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Appendix IV Table 1 Examples of standard public MS/MS datasets and where to find them. 

Dataset 

name 

Reference 

article where 

available 

Description  Instrument 

used 

Data format Data download location  Metadata location 

ABRF 

sPRG2006 

Paper 

pending see 

www.abrf.or

g 

derived from a study 

involving anonymous 

analysis by multiple 

labs.  49 human 

proteins, plus human 

and non-human bonus 

protein list determined 

by the sPRG BIC2007 

consensus study 

Various 

including 

HCT, LCQ, 

LTQ,  

LTQ-FT, 

Q-TOF 

.pkl 

.mgf 

 native .raw 

http://www.proteomecommons.org/data/sh

ow.jsp?id=802 

 

 

http://www.abrf.org/index.cfm/group.sho

w/ProteomicsInformaticsResearchGroup.

53.htm 

ABRF 

iPRG2008 

www.abrf.or

g/iprg has 

slides and 

posters  

mouse liver differential 

expression using iTRAQ 

Various  .mgf  

native.raw 

mzData 

mzXML 

.dta 

http://www.abrf.org/index.cfm/group.show

/ProteomicsInformaticsResearchGroup.53.

htm 

 

 

http://www.abrf.org/index.cfm/group.sho

w/ProteomicsInformaticsResearchGroup.

53.htm 

 

Aurum (Falkner et 

al., 2007) 

over 250 known human 

proteins 

MALDI-

TOF/TOF 

.mgf 

.pkl  

.t2d 

http://www.proteomecommons.org/data/sh

ow.jsp?id=90 

„Aurum homepage‟ 

http://www.proteomecommons.org/archi

ve/1122567790437/index.html 

The ISB‟s 

standard 

protein 

mix 

(SPMDB) 

(Klimek et 

al., 2008) 

18 proteins 1.1million 

spectra including 150 

replicate runs.  The 

standard is used 

regularly for 

determining 

performance of in-house 

MS instruments 

Species include rabbit, 

bovine, human, B. 

licheniformis, chicken 

LTQ, 

 LCQ Deca,  

Q-TOF, 

QSTAR, 

XCT Ultra, 

ABI 4800, 

ABI 4700,      

LTQ-FT 

native .raw  

mzXML 

http://regis-

web.systemsbiology.net/PublicDatasets/ 

 

Very large dataset, hence suitable for 

training and validation 

Most useful information is in the 

accompanying publication  

SASHIMI  

17 protein 

standard 

None 17 tryptically digested 

proteins, multiple 

species including bovine, 

rabbit, E.coli, chicken, 

horse  and others 

Micromass  

Q-TOF 

Ultima   

mzXML http://sashimi.sourceforge.net/repository.h

tml 

 

 

http://sashimi.sourceforge.net/repository.

html 
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SASHIMI  

7 protein 

standard 

None 7 protein mix: - rabbit 

glycogen phosphorylase, 

E. Coli beta-

galactosidase, bovine 

serum albumin, myosin, 

chicken ovalbumin, 

bovine serotransferrin 

LCQ mzXML http://sashimi.sourceforge.net/repository.h

tml 

 

http://sashimi.sourceforge.net/repository.

html 

 

SASHIMI  

7 protein 

ICAT 

standard 

None Cleavable ICAT labelled 

7 protein mix: bovine 

catalase, bovine alpha-

lactalbumin, chicken 

ovalbumin, bovine 

serum albumin, horse 

myoglobin, bovine 

serotransferrin, rabbit 

glycogen phosphorylase 

LCQ mzXML http://sashimi.sourceforge.net/repository.h

tml 

 

http://sashimi.sourceforge.net/repository.

html 

 

Experimen

tal Protein 

Mixture 

(Keller et al., 

2002b) 

Tandem mass spectra 

for 14 LC/MS/MS runs 

of control mixture A and 

8 LC/MS/MS runs on 

control mixture B 

(explained in paper)  

Thermo ion 

trap 

native .raw, .dta http://www.systemsbiology.org/extra/prote

in_mixture.html 

Data is downloaded from a password  

protected website (access can be granted 

for both non-commercial and commercial 

upon application by email) 
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Appendix IV Table 2 The identifiers considered to be true positives in this study performed in Chapter 4.  

They are derived from all the human proteins in the published ABRF sPRG 'BIC final protein list' 

(downloaded from: 

http://www.abrf.org/index.cfm/group.show/ProteomicsInformaticsResearchGroup.53.htm).  These 

identifiers were generated from SWISSPROT accession numbers using the PICR program at the EBI 

(http://www.ebi.ac.uk/Tools/picr).   

ENSG00000012223 

ENSG00000015475 

ENSG00000017427 

ENSG00000083750 

ENSG00000084207 

ENSG00000090013 

ENSG00000090382 

ENSG00000091513 

ENSG00000091583 

ENSG00000096087 

ENSG00000096696 

ENSG00000100311 

ENSG00000100448 

ENSG00000100665 

ENSG00000102081 

ENSG00000103275 

ENSG00000104267 

ENSG00000104879 

ENSG00000105220 

ENSG00000106804 

ENSG00000109107 

ENSG00000112855 

ENSG00000116030 

ENSG00000117450 

ENSG00000117601 

ENSG00000117984 

ENSG00000119392 

ENSG00000121691 

ENSG00000121769 

ENSG00000124588 

ENSG00000125730 

ENSG00000129559 

ENSG00000132141 

ENSG00000132693 

ENSG00000133703 

ENSG00000133742 

ENSG00000134202 

ENSG00000136810 

ENSG00000138207 

ENSG00000138798 

ENSG00000139610 

ENSG00000142168 

ENSG00000143416 

ENSG00000143437 

ENSG00000143947 

ENSG00000148180 

ENSG00000149575 

ENSG00000149925 

ENSG00000150991 

ENSG00000155876 

ENSG00000163631 

ENSG00000163815 

ENSG00000164111 

ENSG00000166347 

ENSG00000166710 



 

403 

 

ENSG00000167244 

ENSG00000167531 

ENSG00000167768 

ENSG00000167815 

ENSG00000169429 

ENSG00000170035 

ENSG00000170142 

ENSG00000170315 

ENSG00000170442 

ENSG00000170445 

ENSG00000170465 

ENSG00000170523 

ENSG00000171345 

ENSG00000171346 

ENSG00000171401  

ENSG00000171403 

ENSG00000172115 

ENSG00000172232 

ENSG00000172379 

ENSG00000172867 

ENSG00000173636 

ENSG00000173801 

ENSG00000174156 

ENSG00000174697 

ENSG00000174775 

ENSG00000175063 

ENSG00000176919 

ENSG00000181019 

ENSG00000182247 

ENSG00000182793 

ENSG00000185479 

ENSG00000186081 

ENSG00000186395 

ENSG00000186442 

ENSG00000186831 

ENSG00000186832 

ENSG00000186847 

ENSG00000186868 

ENSG00000187681 

ENSG00000188170 

ENSG00000188536 

ENSG00000196084 

ENSG00000196262 

ENSG00000196565 

ENSG00000198125 

ENSG00000198618 

ENSG00000203786 

ENSG00000204319 

ENSG00000204490 

ENSG00000205420 

ENSG00000205426 

ENSG00000206172 

ENSG00000206328 

ENSG00000206439 

ENSG00000211592 

ENSG00000211679 

ENSG00000211890 

ENSG00000211895 

ENSG00000211896 

ENSG00000211899 

ENSG00000213281 

ENSG00000213931 
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Paper 5 of the EngD  

- Mead, J.A., Bianco,L., Ottone,V., Barton,C., Kay,R.G., Lilley,K.S., Bond,N. and Bessant,C. (2009) 

MRMaid: the web-based tool for design of multiple reaction monitoring (MRM) transitions, Mol Cell 

Proteomics 8(4): 696-705 

paper5_2009_mcp.pdf 

Paper 6 of the EngD  

- Mead,J.A., Bianco,L. and Bessant,C. (2009) Mining proteomic MS/MS data for MRM transitions. Methods 

in Mol. Biol.;604:187-99 

paper6_2009_humana.pdf 

MRMaid user guide 

mrmaid_userguide.pdf 

MRMaid glossary 

mrmaid_glossary.pdf 
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Appendix V Figure 1 Work breakdown for the research work completed in Chapter 5 
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Appendix VI 
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Paper 7 of the EngD  

- Mead J.A., Bianco,L., Barton C. and Bessant,C (2010) MRMaid-DB: a compendium of published SRM 

transitions. Journal of Proteome Research 9(1):620-5 

paper7_ 2010_jpr.pdf 

MRMaid-DB user guide  

mrmaid_db_userguide.pdf 

Folder („biomart‟) contains all the files needed for the set up of the Biomart instance for MRMaid-DB.  

Important files include: 

Biomart registry file required to set up the MRMaid-DB Biomart query interface 

myRegistryTransitionEns.xml  

Data to populate the MRM MySQL database (16 tables) 

csv_mrmaid_db_data_population.txt  

SQL dump file of the populated database 

mrmaid_db_dump.sql 

Apache server configuration file  

httpd.conf 
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Appendix VI Figure 1 Work breakdown for the research work completed in Chapter 6 
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Appendix VII 
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Paper 8 of the EngD  

- Mead, J.A., Bianco,L. and Bessant C. (2010) Free computational resources for designing selected reaction 

monitoring (SRM) transitions. Proteomics  Jan 13
th

 2010. [Epub ahead of print] 

paper8_ 2010_proteomics.pdf 
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