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Abstract 

The application of ICP-MS to the fields of proteomics and genomics has arisen in part due 

to its ability to detect and quantify trace levels of S and P, which are major constituents in 

proteins and nucleic acids respectively. The development of collision/reaction cell 

technology and high resolution instruments has enabled these biologically important 

elements to be measured and quantified at the pg - ng ml-1 level. Despite these advances, 

the detection limits of P and S are still inferior compared to other elements. 
 

Oligonucleotides containing biotin functionality were labelled with Au nano-particles 

attached to a streptavidin protein to achieve site specific labelling, with 100% labelling 

efficiency. Each nano-particle contained ~86 Au atoms, resulting in an 882 fold signal 

enhancement for 24 base length oligonucleotides. However, this enhancement factor was 

only observed when one oligonucleotide bound to one nano-particle in a 1:1 ratio. Much 

lower Au labelling efficiencies and signal enhancements were observed when thiolated 

oligonucleotides were labelled with maleimide functionalised gold nano-particles. This was 

attributed to the extensive and difficult sample preparation steps that were required prior to 

labelling.   

 

The detection and quantification of adducts formed between DNA and the Pt anti-cancer 

drugs cisplatin and oxaliplatin were also investigated with ICP-MS. Acid digestion of the 

carbon based DNA matrix enabled Pt adducts to be quantified at low dose rates of 1 Pt 

atom per 1 500 000 nucleotides in ~12 µg DNA. Such sensitive mass spectrometric 

determinations could be employed in clinical tests to detect and quantify low level adducts 

formed in patients in-vivo. To complement ICP-MS analysis, electrospray ionisation linear 

ion trap mass spectrometry was employed to study the interaction of oxaliplatin with the 

four DNA nucleobases. Multiple stage mass spectrometry enabled detailed Pt-nucleobase 

adduct fragmentation pathways to be established. 

 

The method of DNA detection using P in conjunction with the collision cell, or cool plasma 

to form PO+ was also demonstrated and the limitations of the method, namely, polyatomic 

interferences and severe matrix effects were highlighted. 
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Glossary of Terms 

AC  Alternating current 

APCI  Atmospheric pressure chemical ionisation 

APPI  Atmospheric pressure photoionisation 

AU  Absorbance units 

BSA  Bovine serum albumin 

CCT  Collision cell technology 

CD  Circular dichromism 

CID  Collision induced dissociation 

CPS  Counts per second 

CRM  Consecutive reaction monitoring 

ctDNA  Calf thymus deoxyribonucleic acid  

Da  Daltons 

Dach  Diaminocyclohexane 

DEAE  Diethylaminoethane 

DNA  Deoxyribonucleic acid 

DNase 1 DNA nuclease 1 

dNMP  Deoxyribonucleotide monophosphate 

dNTP  Deoxyribonucleotide triphosphate 

DTNB  5,5’-dithiolbis(2-nitrobenzoic acid) 

DTT  Dithiothreitol 

DVB  Divinylbenzene 

EDC  N-ethyl-N’-(3-dimethylaminopropyl)carbodiimide 

EDT  Ethanedithiol 

EDTA  Ethylenediaminetetraacetic acid 

ESA  Electrostatic analyser 

ESI  Electrospray ionisation 

ESI-MS Electrospray ionisation-mass spectrometry 

GMP  Guanine monophosphate 

hnRNA Heterogeneous nuclear ribonucleic acid 
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HPLC  High performance liquid chromatography 

HR-ICP-MS High resolution inductively coupled plasma mass spectrometry 

ICP-MS Inductively coupled plasma mass spectrometry 

IKEE  Ion kinetic energy effect 

IMAC  Immobilised metal affinity chromatography 

KED  Kinetic energy discrimination 

LA  Laser ablation 

LOD  Limits of detection 

MALDI Matrix-assisted laser desorption ionisation 

MMN  Monomaleimido nanogold 

mRNA  Messenger ribonucleic acid 

MS  Mass spectrometry 

MSn  Mass spectrometry to the nth 

MS/MS Tandem mass spectrometry 

NDP  Nucleotide diphosphate 

NMP  Nucleotide monophosphate 

NMR  Nuclear magnetic resonance 

NP1  Nuclease P1 

NPR  Non porous resin 

NSI  Nanospray ionisation 

NTA  Nitrolotriacetic acid 

NTP  Nucleotide triphosphate 

PAGE  Polyacrylamide electrophoresis 

PBS  Phosphorus buffered saline 

PCR  Polymerase chain reaction 

PEEK  Polyetheretherketone 

PFA  Perfluoroalkoxy 

pI  Isoelectric point 

PLA  Post labelling assay 

PS-DVB Polystyrene divinylbenzene 

RF  Radio frequency 
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RNA  Ribonucleic acid 

RP-HPLC Reversed phase high performance liquid chromatography 

rNMP  Ribonucleotide monophosphate 

rNTP  Ribonucleotide triphosphate 

rRNA  Ribosomal ribonucleic acid 

SAP  Shrimp alkaline phosphatise 

SE  Standard error 

SEM  Secondary electron multiplier 

SERRS Surfaced enhanced resonance raman scattering 

SFNG  Alexa fluor-488 Streptavidin fluoronanogold 

SIM  Selected ion monitoring 

SNP  Single nucleotide polymorphism 

SRM  Selected reaction monitoring 

snRNA Small nuclear ribonucleic acids 

snRNP  Small nuclear ribonucloproteins 

SPE  Solid phase extraction 

SVPD  Snake venom phosphodiesterase 

T4PNK T4 Polynucleotide kinase 

TCEP  Tris(carboxyethyl)phosphine 

TMACl Tetramethyl ammonium chloride 

TMAH  Tetramethyl ammonium hydroxide 

TNB  Thio-bis-(2-nitrobenzoic acid) 

TOF  Time of flight 

TRA  Time resolved analysis  

Tris  Tris(hydroxymethyl)aminomethane 

tRNA  Transfer ribonucleic acid 

UV  Ultra violet 
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1. Introduction 

1.1 Objectives 

Inductively coupled plasma mass spectrometry (ICP-MS) is the most sensitive and versatile 

analytical technique in elemental and isotopic analysis. Most elements in the periodic table 

can be ionised in the ICP source including biologically important elements such as P and S. 

As a result, biomolecules such as nucleic acids and proteins can be detected by their P and 

S content respectively.1-3 Further, proteins containing metallic components such as Zn and 

Mn can be analysed by ICP-MS due to the detectable ions. Such developments have 

resulted in the increased use of ICP-MS in the analysis of biomolecules.  

 

The traditional organic mass spectrometry methods based on electrospray ionisation (ESI) 

and matrix assisted laser desorption ionisation (MALDI) mass spectrometry, provide 

structural information and good powers of detection, but quantification can be problematic. 

ICP-MS provides complementary information to conventional organic mass spectrometry 

and has many additional advantages.4-6 Firstly, ICP-MS offers very low limits of detection, 

which generally range from pg l-1-µg l-1 depending on the analyte. Calibration and 

quantification are much easier and only require inorganic elemental standard solutions. In 

addition, because ICP-MS measures the total concentration of an element regardless of 

chemical form, it facilitates mass balance calculations, which are vital for establishing 

analyte recovery and method validation. Although the ICP is a hard ionisation source and 

molecular information is destroyed, it can be employed as a selective detector when 

coupled to various separation techniques, providing a means of separating molecular 

species prior to elemental detection.6, 7 These factors have helped increase the popularity of 

ICP-MS in biological analysis. Figure 1:1 summarises the main analytical techniques 

available for obtaining both molecular and elemental information from biomolecules. 
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Figure 1:1: Analytical methods available for biomolecule analysis. 

 
Despite the advantages of ICP-MS, P and S are problematic elements because they have 

high first ionisation potentials (10.5 and 10.4 eV respectively), which results in incomplete 

ionisation (~35% and 15% for P and S respectively)8 and they suffer from polyatomic 

interferences at m/z 31 and 32, which are derived from atmospheric gases and the sample 

solvent.9 The advancements in collision/reaction cell1,9-11 and high resolution      

instruments 3, 11, 12 has made it possible to remove or resolve the analyte ions from their 

interferences, but whilst metallic elements can readily be detected at pg l-1 levels, the 

detection limits for these elements are much higher. These problems can be avoided and the 

biomolecule signal enhanced if the biomolecule is labelled with a metallic element or a 

metal nano-particle, which is measured instead of P or S.13-16 Since the sensitivity of     

ICP-MS increases with increasing number of similar isotopes in the sample, the 

incorporation of metal nano-particles, which contain multiple copies of the same isotope, 
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would allow for quantification at very low levels and avoids the problems encountered with 

P and S measurement, providing the metal label does not suffer any interferences.  

 

Apart from avoiding the problems associated with P and S detection, metal or nano-particle 

labelling of biological molecules has additional advantages: 

• Biomolecule structure and configuration does not necessarily have to be maintained, 

since only the elemental label will be detected and not the biomolecule directly. 

Thus, the sample does not have to be analysed immediately after sample preparation 

or stored in specialised conditions to prevent degradation.10, 16  

• Reduced interferences, since a more favourable region of the mass spectrum is 

measured. 

• More than one elemental label can be used simultaneously if there is more than one 

target molecule to study.10, 13  

• Easy calibration and therefore quantitative analysis. 

• Mass balance determinations.17 
 

The primary aim of this thesis is to develop improved methods of biomolecule detection by 

using metal/nano-particle labelling coupled with analysis by ICP-MS. 

 

This introduction will discuss the structure and function of DNA, whilst highlighting its 

importance in living systems. The analytical methods currently used for DNA detection 

will be briefly reviewed. The first aspect of the investigation will then be discussed, which 

involves improving DNA detection using elemental mass spectrometry by means of metal 

nano-particle labelling, where each nano-particle contained approximately 86 Au atoms. 

Gold has lower first ionisation potential than P and does not suffer the same interferences, 

resulting in improved sensitivity when bound to nucleic acids. More importantly, because 

each nano-particle contained ~86 Au atoms, a greater enhancement in sensitivity can be 

obtained to achieve ultra sensitive detection of nucleic acids. Two nanogold labelling routes 

were developed; both methods resulted in site specific labelling on the nucleic acid 

allowing for easy quantification. The methods of modifying DNA, the labelling procedure 

and the methods of purifying and detecting the conjugates will be discussed in detail. 
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The second aspect of this thesis concentrates on the ICP-MS analysis of DNA that had been 

treated with cisplatin or oxaliplatin anti-cancer drugs. These Pt containing complexes are 

known to interact with DNA in-vivo and in-vitro. Pt does not suffer from the same 

problems as P, hence the incorporation of Pt into the DNA molecule provides an additional 

label that can be employed for the ICP-MS analysis of DNA.18 The total platinum 

concentration associated with DNA treated with varying doses of these drugs was 

determined. The ultimate aim was to develop a clinical test to detect and quantify the low 

level adducts formed in patients in-vivo, and to identify patients who are not responding 

well to the selected treatment. In addition to elemental mass spectrometry, the interaction of 

oxaliplatin with DNA nucleobases was investigated with ESI linear ion trap mass 

spectrometry. Detailed fragmentation pathways were established, whilst proposed product 

ion structures were presented, highlighting the complementary nature of elemental and 

molecular mass spectrometry techniques.  

 

Finally, DNA detection by measuring the P signal associated with the sugar phosphate 

backbone will be discussed. The practical problems and limitations of P detection by ICP-

MS will be highlighted. Figure 1:2 summarises the various routes by which nucleic acids 

have been detected and quantified in this thesis using ICP-MS. 
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Figure 1:2: Schematic showing the various methods of detecting DNA by elemental mass spectrometry. 
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1.2 Genomics 

1.2.1 Structure of DNA 

Deoxyribonucleic acid (DNA) contains the chemical instructions required to create and 

sustain a living organism. All physical and biochemical characteristics of an organism are 

determined by the set of chemical instructions contained within DNA. The vast quantity 

and complexity of information stored in this genetic material provides the basis of genomic 

research. But remarkably only three main ingredients constitute DNA: 

• Pentose sugar 

• Nitrogen containing base 

• Phosphate group 

 
All three of the above ingredients are combined to form the basic sub-units required to 

create a DNA strand. The carbon atoms comprising the pentose sugar are numbered 1’ to 5’ 

as illustrated in Figure 1:3. The 2’ carbon of the pentose sugar in DNA is not oxygenated, 

hence the term ‘deoxyribonucleic acid’. A nucleoside is formed upon addition of a 

nitrogen-containing base to the 1’ carbon atom of the pentose sugar. Further, the nucleoside 

becomes a nucleotide upon addition of a phosphate group on the 5’ pentose carbon.19, 20 The 

structures of deoxyribose sugar, nucleoside and nucleotide are illustrated in Figure 1:3. 
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Figure 1:3: Structures of deoxyribose sugar, nucleoside and nucleotide. 

 
The hydroxyl group on the 3’ pentose carbon can form a phosphodiester bond with the 5’ 

phosphate group of another nucleotide. The formation of such phosphodiester bonds 

between nucleotides results in a polynucleotide chain.20 DNA is essentially a polymer of 

nucleotides, which are bonded together through these ester bonds. The first nucleotide in 
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the nucleic acid chain has a triphosphate group located on the 5’ carbon of the pentose 

sugar. The reason for the presence of a triphosphate group on the first nucleotide in the 

chain will be explained in subsequent sections. The position of the phosphate group on the 

sugar is called the C5 position, which is also called the 5’ end. The last nucleotide in the 

nucleic acid chain always has a hydroxyl group (-OH) at the C3 position on the pentose 

sugar. Hence, the hydroxyl group position is called the 3’ end. Thus, nucleotides are joined 

together by the 5’ end of one nucleotide forming a phosphodiester bond with the 3’ end of 

another nucleotide.19, 20 Figure 1:4 illustrates the phosphodiester bond along with the 3’ and 

5’ positions on the nucleotide. 
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Figure 1:4: Phosphodiester bond formation between nucleotides. 

 
One of four nitrogen bases can be incorporated onto the 1’ carbon of a nucleoside, namely; 

adenine (A), cytosine (C), guanine (G) or thymine (T). The structures of the bases can be 

seen in Figure 1:5 and can be separated into two groups; purines and pyrimidines. 

Pyrimidine bases consist of one aromatic ring, whereas, purines are composed of two fused 

rings. Like in the case of the ribose sugar, the carbon and nitrogen atoms within the 

nucleobases are numbered as shown below. This ring numbering system has important 

implications in subsequent chapters when the interactions of nucleobases with metallodrugs 

are discussed. 
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Pyrimidine bases: 
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Figure 1:5: Structures of the purine and pyrimidine DNA bases. 

 
Genomic DNA is arranged into two polynucleotide strands to form a helix, which is 

commonly known as the double helix. For the double helix to form, the bases on one strand 

form hydrogen bonds with bases on the neighbouring strand. This is known as 

complementary base pairing. However, the base pairing process is not random, but specific 

with only adenine and thymine pairing and also guanine and cytosine pairing. Two 

hydrogen bonds are formed between adenine and thymine, whilst three hydrogen bonds 

form between guanine and cytosine. This coupling of bases is known as complementary 

base pairing, thus, a complementary base pair consists of a purine and a pyrimidine.20  

 

Adenine can only bind to thymine, and cytosine can only bond to guanine. The reasons for 

this can be explained by two factors. Firstly, the size of the bases has to be considered. The 

internal diameter of the double helix (1.1 nm wide) is not sufficient to allow adenine and 

guanine to pair.20 Conversely, cytosine and thymine are not wide enough to fit within the 

sugar phosphate backbone and form a stable hydrogen bond, since the strength of hydrogen 
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bonds diminishes rapidly with distance. For these reasons a base pair has to be composed of 

a purine and a pyrimidine.  

 
However, adenine and cytosine are not complementary base pairs, neither are guanine and 

thymine, yet both these pairs contain a purine and pyrimidine. This brings about the second 

factor that has to be considered, which is hydrogen bonding. Hydrogen bonds hold the two 

complementary base pairs together and ultimately help form the double helix. For a stable 

hydrogen bond to form the base pairs must have the appropriate hydrogen bond donor and 

acceptor atoms, along with a short distance between the base pairs. Although adenine-

cytosine and guanine-thymine have a distance between them that could sustain a stable 

hydrogen bond, the hydrogen bond donors and acceptors are not properly matched, thus the 

DNA helix would have to disort to allow for this base pair combination.21 For these reasons 

the complementary DNA base pairs are: adenine-thymine and guanine-cytosine. This strict 

pairing of bases helps minimise errors in the replication of DNA. Figure 1:6 shows how the 

bases are arranged in double stranded DNA. Note, that one DNA strand runs in the 5’→3’ 

direction and the complementary strand is parallel but in the 3’→5’ direction.  
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Figure 1:6: Base pairing of DNA. 
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The pentose sugars and phosphate groups alternate along the outside of the DNA helix to 

form the sugar phosphate backbone, whilst the base pairs are inside the helix holding the 

two polynucleotide strands together by hydrogen bonding. The width of the DNA molecule 

is 2 nm (outer diameter) and the length is approximately 1.8 m.19 Each base pair is 3.4 Å 

apart and one complete turn contains 10 base pairs, therefore one turn is 34 Å in length.20  

 

The external sugar phosphate backbone results in DNA carrying a net negative charge, 

which allows water molecules to pack around the outside of the DNA molecule to create 

hydration spheres around the sugar phosphate backbone.22 Cations are also attracted to the 

exterior of the DNA molecule; thus, DNA can act as a cation exchange medium. Many 

other molecules within biological systems can also interact with DNA, as will be discussed 

later. 

 

1.2.2 DNA Function 

DNA has two main functions which include; the replication of itself so genetic material can 

be passed onto new cells and ultimately offspring. The second function of DNA is protein 

synthesis. The DNA molecule contains regions of base pairs that code for specific proteins, 

these areas are called genes. Genes are decoded and proteins are synthesised by two 

processes known as transcription and translation. Both these processes will be discussed in 

detail in following sections. The discussion of DNA replication and protein synthesis are 

relevant to eukaryotic organisms. 

 

1.2.3 DNA Replication 

DNA has the function of storing all the genetic information of an organism and to pass this 

genetic code onto new cells and ultimately offspring. As mentioned in the previous section, 

the complementary base pairing of DNA bases minimises the chances of errors occurring 

during DNA replication, hence the correct genetic code is passed on to new cells and 

offspring. DNA is stored in the cell nucleus where replication takes place. The nucleus 

helps protect DNA, as certain chemicals and radiation can easily damage it. If DNA were 
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stored in the cytoplasm, it would almost certainly be damaged leading to mutations.19 The 

replication process is referred to as semi-conservative and is exhibited by all organisms.20 

The term ‘semi-conservative’ will become apparent during discussion. 

 

The first stage of replication requires the DNA double helix to unwind, which is aided with 

the enzyme helicase. The origin of replication is where the two DNA strands unwind; this 

forms two exposed DNA strands known as the replication forks. The replication bubble is 

the name given to the regions of newly synthesised DNA.20 The relative positions of the 

replication fork and bubble are shown in Figure 1:7. The replication bubble increases in 

size as the replication fork works its way along the DNA molecule and the new DNA chain 

grows.20, 23 

 
Figure 1:7: DNA Replication. 

 
Short chain ribonucleic acids (RNA), known as primers mark the point where DNA 

replication is to begin. As a result, the base sequence of primers is complementary to the 

DNA base sequence where replication begins. The RNA primers anneal to the DNA with 

the help of an enzyme called RNA primase.19 A covalent bond is then formed between the 

3’ (hydroxyl) end of the RNA primer and the 5’ end of the newly synthesised DNA 

strand.20 As the DNA helix unwinds, the base pairs become exposed and free surrounding 

5’ 

3’ 

3’ 

 5’ 

DNA ligase 

DNA 
polymerase 

Okazaki fragment 

Primer 

 New DNA 

Template strands 

Origin of replication  

Replication 
bubble 



30 

deoxynucleotide triphosphates (dNTP) bond to their complementary bases on the partially 

unwound DNA.  

 

Both DNA strands act as templates for the formation of the new DNA (see Figure 1:7). 

Since one template strand will be exposed in the 3’→5’ direction and the other strand 

exposed in the 5’→3’ direction, the DNA replication forks of the two DNA template 

strands work in opposite directions.20 The template strand, which is exposed in the 3’→5’ 

direction, is copied continuously and the new DNA is formed in the 5’→3’ direction; this is 

known as the leading strand. However, the other strand, which was exposed in the 5’→3’ 

direction is copied discontinuously, but the new DNA is also formed in the 5’→3’ direction 

and is known as the lagging strand. The discontinuous nature of replication on the lagging 

strand forms segments of new DNA called Okazaki fragments.20, 23 The replication of the 

two anti-parallel strands occurs simultaneously.  

 

As the free dNTP bond to their complementary bases on the unwound template DNA 

strands, they are hydrolysed to form deoxynucleotide monophosphates (dNMP) as they are 

added onto the growing DNA strand. Figure 1:8 illustrates the addition and hydrolysis of 

free dNTP’s. Since the dNTP’s are converted to dNMP’s, two phosphate groups are 

removed, which is known as pyrophosphate and is subsequently converted to phosphate as 

shown in Figure 1:9. 
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Figure 1:8: Addition of free dNTP onto a growing DNA chain. 
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Figure 1:9: Conversion of pyrophosphate. 

 
The pyrophosphate side product is converted to phosphate in a reaction that ensures dNTP 

is hydrolysed to dNMP and DNA polymerisation is irreversible.24 DNA polymerase α 

catalyses the formation of hydrogen bonds between the free nucleotides and the exposed 

DNA bases. This enzyme is also responsible for the formation of the phosphodiester bonds 

between neighbouring nucleotides. There are three types of DNA polymerase, the roles of 

these enzymes are summarised in Table 1:1. 

Table 1:1: Functions of DNA Polymerase Enzymes.
20

 

Polymerase Function 

DNA Polymerase α Polymerisation enzyme 

DNA Polymerase β Repair enzyme 

DNA Polymerase γ DNA replication in mitochondria 

 
The newly formed DNA strands are complementary to their corresponding template strand, 

but it is important to note that the template DNA and new DNA strands are not identical, 

due to the complementary nature of base pairing. The two strands are said to be anti-

parallel.19 The Okazaki fragments that are formed as a result of discontinuous replication on 

the lagging strand (Figure 1:7) are joined together with DNA ligase to create a continuous 

complementary strand. This enzyme inserts the missing phosphodiester bonds between the 

Okazaki fragments to complete the sugar phosphate backbone.19  

 

The final stage of replication involves the enzyme DNA polymerase, which removes the 

RNA primers that marked the starting points for DNA replication, and replaces the primers 

with new deoxynucleotides.19 Methylating agents such as methionine, methylates the new 

DNA at various points along the strand. This acts as a protection mechanism for the DNA 

by preventing endonucleases destroying the organism’s own genetic information.24 

 



33 

The whole process of replication is known as semi-conservative, since both DNA strands 

act as templates for the formation of new DNA. When replication is complete, two helices 

are present, each helix contains a DNA template strand (old DNA) and a new DNA strand. 

 

1.2.4 Protein Synthesis 

Protein synthesis is another vital role of DNA and is imperative for the sustainability of all 

living organisms. DNA contains sections of sequential nucleotides called genes that code 

for specific proteins. Each gene along the genome contains the genetic instructions for 

protein synthesis. There are two main stages in the production of proteins; transcription and 

translation. 

 

DNA is not the only important component in protein synthesis; there is a group of nucleic 

acids called ribonucleic acids (RNA) that are vital for the production of proteins. RNA like 

DNA is composed of a pentose sugar, nitrogen containing bases and phosphate groups. 

However there are differences between the two nucleic acids, namely, the RNA ribose 

sugar is oxygenated at the 2’ carbon, whereas in DNA this carbon position is deoxygenated. 

In addition, thymine is absent in RNA, but uracil is present instead. These subtle 

differences between the two nucleic acids are summarised in Table 1:2 and Figure 1:10.19  

Table 1:2: Differences between DNA and RNA. 

 DNA RNA 

Pentose Sugar Deoxyribose sugar Ribose sugar 

   

Bases A, C, G and T A, C, G and U 

   

Size 1.8 m in length Various lengths, but 

significantly smaller than DNA. 

   

Number of Strands Double stranded Usually single stranded however 

there are some double stranded 

forms of RNA. 
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Figure 1:10: Structure of ribose sugar and uracil. 

 
The process of protein synthesis requires the genetic information contained in DNA to be 

decoded. Transcription is responsible for transferring the genetic code from DNA into an 

RNA molecule, whilst translation uses the transcribed genetic code to build amino acid 

chains.19 There are many types of RNA all of which have a specialised role in protein 

synthesis. Each type of RNA will be defined as the transcription and translation processes 

are discussed. 

 

1.2.4.1 Transcription 

The genetic information contained in genes is transcribed into an RNA molecule called 

messenger RNA (mRNA), which is the product of transcription. The transcribed mRNA 

can be transported out of the nucleus to the cytoplasm, where proteins are produced.19 

Messenger RNA is therefore the carrier or messenger containing the genetic code required 

for protein synthesis. 

 

The first step in transcription requires part of the DNA double helix to unwind, which is 

again aided by the helicase enzyme. Once the DNA has unwound the DNA bases are 

exposed and can be used as a template for mRNA production, analogous to DNA 

replication.19 The enzyme RNA polymerase helps in the initiation of transcription by 

binding to the part of the DNA molecule where transcription is to begin. This specific site 

on the DNA molecule is known as the promoter, which determines which DNA strand is to 

be transcribed. Specific proteins known as transcription factors help RNA polymerase 

recognise the promoter site. The combination of all these components is known as the 

initiation complex.24  
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The anti-sense DNA strand is used as a template during transcription; the resulting mRNA 

molecule therefore has a base sequence, which is identical to the sense strand and 

complementary to the anti-sense strand. However, it must be noted that uracil is present in 

mRNA instead of thymine and the ribose sugar is oxygenated at the 2’ carbon.19  

 

RNA primers mark the section of DNA to be transcribed and just like DNA replication; the 

primers have a base sequence complementary to the start and end points of the gene to be 

transcribed. Once the DNA bases are exposed, free ribonucleotide bases can bind to the 

exposed DNA bases by complementary base pairing. RNA polymerase catalyses the 

formation of hydrogen bonds between the complementary DNA-RNA bases, as well as 

catalysing the growth of the RNA strand. The free ribonucleotide triphosphates (rNTP) are 

converted to ribonucleotide monophospates (rNMP) as they are added to the growing RNA 

molecule. The pyrophosphate side product is again formed during mRNA formation and 

the polymerisation reaction is made irreversible by the conversion of pyrophosphate to 

phosphate (Figure 1:9).24 Transcription along the DNA molecule occurs in the 3’→5’ 

direction, so the resulting mRNA molecule grows in the 5’→3’ direction.  

       

RNA polymerase moves along the DNA strand catalysing the growth of the mRNA 

molecule. The energy released during the hydrolysis of rNTP is sufficient to allow the RNA 

polymerase to move along the DNA molecule. Many genes along the genome may be 

transcribed simultaneously, which in turn requires many RNA polymerase enzymes.24 The 

portion of DNA that is transcribed is called the transcription unit. Once the transcription 

unit has been transcribed, the DNA double helix reforms and the newly formed mRNA 

molecule is removed form the DNA template.  

 

There are three main types of RNA polymerase; each is responsible for the formation of 

different RNA molecules. RNA polymerase II is responsible for the formation of mRNA 

during transcription. Table 1:3 summarises the types of RNA and the corresponding RNA 

polymerase required for synthesis. 
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Table 1:3: The types of RNA and their corresponding RNA polymerase required for formation.
24

 

RNA Polyermase RNA Production 

RNA Polymerase I rRNA 

RNA Polymerase II mRNA and snRNA 

RNA Polymerase III Low molecular weight RNA molecules and tRNA 

 
Once transcription is complete the resulting mRNA molecule undergoes some 

modifications before it is ready to leave the nucleus for protein synthesis. The unmodified 

mRNA is called pre-mRNA or the primary transcript and is much longer than the modified 

or mature mRNA that is employed during translation.24 There are regions of bases within 

genes that do not code for proteins. These regions are known as intervening sequences or 

introns and are transcribed into the pre-mRNA, but need to be removed prior to translation. 

Exon is the name given to the useful parts of the transcribed gene that are required for 

translation.24 There are numerous mechanisms which enable these transcribed introns to be 

removed from the pre-mRNA for mature mRNA production. Heterogeneous nuclear RNA 

(hnRNA) is another name given to the mRNA precursor. Pre-mRNA or hnRNA molecules 

are contained in the nucleus and have a half-life as short as a few minutes.24  

 

Introns are removed from the hnRNA by a method called RNA splicing. Splicing has to be 

highly accurate, since additional bases or missing bases in the mature mRNA molecule 

would effect the transcription process, hence the translated protein may not contain the 

correct amino acid sequence.24 Breaks or splice sites have to be introduced into the pre-

mRNA molecule. These splice sites contain specific base sequences. Specific sequences 

also occur in exons, which promote the recognition of introns; these sites are known as 

exonic enhancers.24 Splicing requires another type of RNA called small nuclear RNA 

(snRNA), which is found in the nucleus. SnRNA combines with specific proteins to create 

complexes called splicosomes. The pre-mRNA and splicosomes associate to form a 

macromolecular complex that removes introns from the pre-mRNA.24 

 

In addition to splicing, the 5’ end of the pre-mRNA molecule has a methylguanosine cap 

incorporated. It was discussed in the DNA replication section that the first nucleotide in a 

nucleic acid sequence is a triphosphate, since the first nucleotide is not hydrolysed to 
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rNMP. In the case of mRNA, this triphosphate is converted to a diphsosphate by enzymatic 

action, then guanine monophosphate (GMP) is added to the diphosphate nucleotide via its 

5’ phosphate group. Thus, a triphosphate bridge links the first two nucleosides in the 

mRNA molecule. Both the terminal guanine and the neighbouring nucleotide in the mRNA 

chain are methylated. Methylation prevents endonucleases recognising and destroying the 

polynucleotide chain.24 The modified mRNA molecule also has an adenosine polymer 

attached to its 3’ end.24 The adenosine polymer is added to the mRNA with the help of the 

enzyme, poly (A) polymerase and does not require a DNA template for the addition of the 

adenosine tail. The poly A tail also prevents the mRNA being degraded by nucleases.24 The 

release of the mRNA from the nucleus is also aided by the capped 5’ end.24 

 

1.2.4.2 Translation 

The second stage of protein synthesis translates the genetic code contained in mRNA into a 

string of amino acids, which are subsequently used in the formation of proteins. Translation 

employs a range of RNA molecules, each having there own specialised functions.  

 

The modified or mature mRNA complete with the 3’ and 5’ modifications has to be 

transported out of the nucleus, through the cytoplasm to structures called ribosomes, where 

translation takes place. Ribosomes consist of proteins and another type of RNA called 

ribosomal RNA (rRNA). There are vast numbers of rRNA in cells for protein synthesis, for 

this reason the gene coding for rRNA is repeated throughout the genome many times.24 

Ribosomes can be found in the cytoplasm or situated on the surface of organelles known as 

the endoplasmic reticulum, which are also located in the cytoplasm of the cell. The 

ribosomes consist of two units; the large sub-unit and the small sub-unit, which are 

composed of four types of rRNA; 5S, 5.8S, 18S and 28S along with ribosomal proteins. 

The larger the rRNA molecule the higher the S value associated with it (the S value is 

called the Sedimentation Coefficient).24 The large sub-unit contains three of the four types 

of rRNA; 5S, 5.8S and 28S. Hence, the small sub-unit contains the 18S rRNA.24  
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Translation consists of three distinct stages; initiation, elongation and termination. Each of 

these three stages has a different sequence of events that are involved in the decoding of 

genetic information. 

 

Initiation 

Three adjacent bases along the mRNA chain are called codons and code for a particular 

amino acid. However, some codons also code for the initiation or termination of the 

transcription process. The triplet code is another name given to three adjacent bases that are 

involved in the decoding of genetic information on mRNA. Once the mRNA is transported 

to the ribosomes, the small ribosome sub-unit binds to the mRNA chain via the first codon, 

which is the initiator codon AUG. The large sub-unit then binds to the mRNA in 

preparation for amino acid assembly.24  

 

There are three regions in the ribosome complex; Exit site (E site), Peptidyl site (P site) and 

the Aminoacyl site (A site). Each of the three-ribosome sites has important functions during 

the elongation process.24 The first codon (AUG) in the mRNA molecule is held in the P 

site, and the next codon along is held at the A site, as shown in Figure 1:11. Many protein 

initiation factors are involved in the initiation of translation. The decoding of genetic 

information is thought to take place in the small ribosome sub-unit and the catalysis of 

peptide bonds between neighbouring amino acids takes place in the large ribosome sub-

unit.24 
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Figure 1:11: Ribosome Complex. 

 

Elongation 

Another form of RNA known as transfer RNA (tRNA) is involved in translation and is 

responsible for transporting the correct amino acid to the mRNA molecule, and hence 

stringing the correct amino acid sequence together. There are approximately 50 types of 

tRNA; each is coded for by genes within the genome. RNA polymerase III is responsible 

for tRNA formation.24 

 
The translation of the genetic code contained in mRNA into a protein is achieved by 

decoding the triplet codes or codons, which are contained within mRNA. As already stated; 

three sequential nucleotide bases along the mRNA code for an amino acid. Since there are 

four bases (A, U, G and C) and three bases code for an amino acid, there are 64 (43 = 64) 

possible codons, allowing for 64 amino acids to be coded for. Since there are only 20 

amino acids; each amino acid is normally coded by more than one codon. In addition, there 

are three triplets that do not code for any amino acids, but act as initiation or stop functions 

along the mRNA chain.24 

 
Transfer RNA molecules are relatively large, containing between ~70-90 nucleotides. 

These molecules adopt distinctive configurations containing double stranded or folded 

regions known as stems. Stems are formed where the tRNA nucleotide sequence contains 

regions, which are complementary to other portions of the molecule, thus the 
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complementary regions of the tRNA molecule bind through hydrogen bonding. Loops are 

also found in the molecule due to lack of hydrogen bonding between other tRNA regions.24 

Figure 1:12 illustrates the distinctive ‘clover leaf’ configurations adopted by tRNA, due to 

the stems and loops. 

 

Figure 1:12: Structure of tRNA.
  

 
The 3’ end of the tRNA molecule always contains the base adenine, which reacts with an 

amino acid and thus acts as the attachment site. The middle loop in the tRNA has a 

sequence of three bases called an anticodon. The anticodon is directly opposite the amino 

acid binding site on the tRNA molecule and must be complementary to an mRNA codon 

for an amino acid to be added to the new peptide chain.24  

 

A tRNA molecule with an anticodon complementary to the first codon on the mRNA chain 

will bind to the ribosome at the P site (Figure 1:13). A second tRNA molecule with an 
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anticodon complementary to the second codon along the mRNA strand, will bind at the A 

site on the ribosome. Peptidyl transferase then catalyses the formation of peptide bonds 

between the amino acid at the A site and the amino acid at the P site.19, 23, 24 The tRNA at 

the P site is then transferred to the E site as the ribosome moves along the mRNA, exposing 

the next codon on the mRNA molecule.24 The amino acid at the A site is now located at the 

P site and contains two amino acids bound by a peptide bond. Another tRNA molecule with 

the correct anticodon sequence binds to the exposed A site. A peptide bond then forms 

between the amino acid at the A site and the amino acid dimer at the P site. Once the 

peptide bond is formed, the tRNA molecule at the P site moves to the E site on the 

ribosome and the neighbouring tRNA molecule which now contains three amino acids 

bonded together by peptide bonds, moves to the P site.24 This process repeats itself until all 

the appropriate amino acids are added to the growing peptide chain. The exit site is the 

actual site where the tRNA molecules are released from the ribosome complex.24 The 

process of elongation is summarised in Figure 1:13. 

 
Figure 1:13: Schematic showing the process of elongation. 
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Translocation is the name given to the process where the ribosome moves along the mRNA 

chain, releasing the tRNA held at the E site and exposing the next available codon on the 

mRNA molecule. The translation of mRNA occurs in the 5’→3’ direction.19, 24   

 

Termination 

The elongation process is stopped once the ribosome reaches one of the stop codons (UAA, 

UGA and UAG) on the mRNA molecule.19 These codons do not code for an amino acid, 

but ensures translation stops and the newly synthesised protein chain can be released from 

the tRNA by releasing factors.24 The fate of the mRNA molecule depends on how much 

protein is required. Re-translation of mRNA can occur if the protein is in high demand.19 

 

1.3 Inductively Coupled Plasma Mass Spectrometry 

Inductively coupled plasma mass spectrometry (ICP-MS) provides elemental and isotopic 

information and is capable of detecting most elements in the periodic table owing to its 

efficient ionisation source. This method is highly sensitive, selective, quantitative and 

exhibits a large linear range.10, 25 This technique also boasts the capability of multi-

elemental analysis, high sample throughput and isotope ratio measurements.12, 26-28 In 

addition, numerous methods of sampling are available including; solution sample 

introduction, laser ablation15, 29, 30 and the coupling of chromatographic techniques.28, 31-33 

For these reasons ICP-MS is an attractive alternative to traditional organic mass 

spectrometry techniques for detecting biomolecules.34-36
 ICP-MS instrumentation will be 

briefly discussed in the following section and then the applications in bioanalysis will be 

reviewed.  

 

1.3.1 Instrumentation 

The instrumentation will be briefly discussed, although further sources of information will 

be referenced where appropriate. For simplicity, ICP-MS instrumentation will be broken 

down into five main sub-units, which are listed below, whilst the relative position of these 

sub-units in a conventional instrument are shown in Figure 1:14. 



43 

• Sample introduction system 

• The plasma – ionisation 

• The interface 

• The mass analyser 

• The detector 

 
Figure 1:14: Schematic diagram of a typical ICP-MS instrument. 

 

1.3.1.1 The Sample Introduction System 

The standard way of introducing samples into the ICP ionisation source is through solution 

nebulisation. There are many types of commercially available nebuliser,27 the most 

common being the concentric nebuliser, which is shown in Figure 1:15. The liquid sample 

is introduced through the central capillary, whilst a stream of argon gas is introduced at a 

right angle to the sample. As the sample and argon meet at the tip of the nebuliser, the 

sample is broken up into droplets due to the pneumatic action of the gas. A typical 

nebuliser uptake rate is approximately 1 ml min-1, although microflow nebulisers with 

uptake rates of between 20-600 µl min-1 have gained popularity. The main advantage of 

low flow nebulisers is that only small sample volumes are required for analysis, this is 

particularly important in the biological field, where only limited sample may be available. 

Microflow nebulisers are available from a wide range of manufacturers’ and are available 

in a wide range of materials to suit the application. Traditionally, nebulisers were 
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constructed of glass, however; other materials such as PFA, quartz and polyimide are also 

available to suit the application. For example, PFA nebulisers have the advantage of being 

inert and resistant to acids, bases and solvents.  

 

The liquid droplets formed in the nebuliser aerosol vary in size. Only the small droplets, 

typically those <6 µm in size are efficiently ionised in the plasma. Therefore, large droplets 

are removed with the aid of spray chambers. Like nebulisers, there are many types of spray 

chamber, but they all carry out the same function of excluding large aerosol droplets and 

allowing the smaller droplets to go through to the plasma. 

 

Figure 1:15: Concentric nebuliser, reprinted with permission of Meinhard Glass Products (Colorado, 

USA). 

 

1.3.1.2 The Plasma 

A mass spectrometric method requires the analyte to be ionised, which is achieved here 

using the plasma. A plasma is a partially or fully ionised gas, which in the case of the ICP 

is formed at atmospheric pressure. Argon gas, a torch, radio frequency (RF) coil and a RF 

generator are required for plasma generation.37 The torch is usually made from quartz and 

consists of three concentric tubes; sample injector, outer and middle tube, as illustrated in 

Figure 1:16. The RF generator is generally operated between 1100-1500 W and provides 

RF power to the coil, this results in an oscillating current within the coil, which in turn 
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produces an electromagnetic field. A high voltage spark is then applied to the argon 

flowing through the torch to ionise the gas. This releases electrons which are then 

accelerated in the magnetic field and cause further ionisation of the gas by colliding with 

argon atoms. This results in a chain reaction, which effectively sustains the plasma and is 

known as the plasma discharge.27, 37 The argon plasma is maintained at atmospheric 

pressure, but temperatures within the plasma range from 6000-10 000 K. At these 

temperatures almost everything is ionised, making ICP-MS a versatile analytical tool 

capable of detecting most elements in the periodic table.  

 

 
Figure 1:16: RF coil and torch arrangement. 

 

1.3.1.3 The Interface Region 

It was mentioned in the above section that the plasma is formed and maintained at 

atmospheric pressure. But, the mass analyser and detector are operated in a vacuum at 

approximate pressures of 10-6 mbar. For this reason, the pressure has to be reduced so the 

analyte ions can be analysed in vacuum. The role of the interface is to sample ions from the 

atmospheric pressure plasma and step down the pressure, so ions can be extracted through 

to the analyser region.  

 

Two water cooled metal cones (usually made from nickel or platinum) make up the 

interface region. The first larger cone is called the sampler cone and has an orifice of 

approximately 0.8-1.2 mm is the centre and is positioned at the end of the plasma. Behind 
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the sampler cone sits the skimmer cone, which has a slightly smaller orifice diameter of 

~0.6 mm.38 The region between the two cones is called the expansion region and is 

evacuated to pressures of approximately 2-3 mbar, which is effectively an intermediate 

pressure between the atmospheric plasma and the vacuum of the analyser region. As the 

atmospheric pressure plasma ions are transported through the sampler cone, the plasma 

expands and the ions exceed the speed of sound. This results in a shock wave forming 

behind the sampler cone, within which is the zone of silence. Figure 1:17 illustrates the 

interface region along with the positions of the shock wave and zone of silence. The 

skimmer cone effectively sits within the zone of silence and samples ions from this 

region.27 

 
Figure 1:17: The interface region. 

 

1.3.1.4 Mass Analyser and Detectors 

The role of the mass analyser is to separate the ions that were generated in the plasma, 

according to their mass-to-charge ratio (m/z). Once extracted through the interface region, 

the ion beam is directed towards the mass analyser by a series of lenses. These lenses are 
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essentially metal components that have voltages applied to them, and enable the ion beam 

to be electro-statically directed to the analyser. 

 

There are many types of mass analyser available. These include; quadrupole, 

collision/reaction cell, time-of-flight (TOF), electrostatic and magnetic analysers. The 

quadrupole analysers are the most common, mainly due to their stability and relatively low 

cost. The theory and principles behind the operation of the collision/reaction cells and 

electrostatic and magnetic analysers will be discussed in sections 1.3.2.2 and 1.3.2.3 

respectively. The theory of the remaining mass analysers is beyond the scope of this 

introduction, but such literature is available elsewhere.27  

 
Once the plasma ions have been separated according to their m/z they are directed to a 

detection system. The most common detectors are those based on the electron multiplier 

and Faraday cup. The latter of these is normally employed for extending the dynamic range 

of the instrument and will be mentioned in more detail in section 1.3.2.3.27
  

 

1.3.2 Application of ICP-MS to Genomics Research 

There has been increasing interest over the past two decades concerning the analysis and 

detection of DNA. The inspiration for this interest has come from the ability to identify 

individual gene sequences and effectively decode the genome. There are many methods 

available for the detection and quantitative determination of DNA, each has their merits and 

drawbacks. The traditional method of detecting DNA is to covalently attach fluorescent 

labels to the molecule.39, 40 The DNA-fluorophore conjugates are stable and can withstand 

the conditions used during polymerase chain reaction (PCR) procedures, but the fluorescent 

labels and instrumentation are costly.39 Radioisotope labelling is another popular method of 

detecting and quantifying DNA,41 as in the Post Labelling Assay (PLA), which employs 
32P.42 Even though this technique is sensitive, there are concerns about safety, cost and time 

taken to carry out the analysis.  

 

Surface Enhanced Resonance Raman Scattering (SERRS) has been recently employed for 

detecting and quantifying nucleotides. Raman signals of Raman active molecules are 
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enhanced by employing roughened metal surfaces and metal particles. Raman scattering 

can be dramatically enhanced by Ag and Au. Hence, nucleic acids and other biomolecules 

labelled with these metals can be detected at low levels.39, 43, 44 Further Raman signal 

enhancement can be obtained by depositing Ag metal onto Au particles.39 It has been 

reported that SERRS can exhibit limits of detection three orders of magnitudes lower than 

those obtained with fluorescent analysis methods.40  

 

There have been numerous other methods of quantifying DNA, some of these methods 

based on optical,39 electrical45 and colorimetric methods.46 

 

It has already been discussed that ICP-MS can be employed for the detection of 

biologically important molecules if these molecules contain ICP detectable elements. Table 

1:4 summarises the metals associated with some commonly known metalloproteins. 

Conversely, if the biomolecule does not contain an element which is easily detected by 

ICP-MS, or lower limits of detection are required, the analyte can be labelled with an 

elemental tag.6, 13, 15-17, 47-49  

Table 1:4: Elements contained in typical metalloproteins.
50

  

Element Metalloenzyme/ Metalloprotein 

Fe Transferrin, Ferritin, Catarase, Nitrogenase, Chitochrome. 

Mo Nitrogenase 

Zn Carbonic anhydrase, Carboxypeptidase, Alcohol dehydrogenase, Alkaline phosphatase, DNA 

polymerase and RNA polymerase. 

Cu Plastocyaneine 

Se Gluthathion peroxidase 

Ni Urease 

 

Phosphorus is contained in DNA and phosphorylated proteins, likewise S is contained in 

the amino acids methionine and cysteine, thus nucleic acids and proteins can be detected by 

ICP-MS.2 However, the analysis of these two biologically important elements is fairly 

problematic due to the high ionisation potential of P and S and the abundance of 

polyatomic interferences at the low m/z ratios. These interferences originate from the 
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sample solvent and atmospheric gases. Table 1:5 summarises the ionisation potentials and 

common interferences associated with these two elements.  

Table 1:5: Ionisation potential and common interferences for P and S. 

Element 
First Ionisation 

Potential (eV) 
Common Interferences Limit of Detection 

P 10.5 
14N16O1H+, 15N15N1H+, 15N16O+   
14N17O+, 13C18O+, 12C18O1H+ 

1 ng ml-1 (quadrupole) 

<50 pg ml-1 (high res) 

    

S 10.4 
16O2

+, 14N18O+, 14N18O1H+, 15N17O+, 
15N16O1H+ 

20 ng ml-1 (quadrupole) 

<50 pg ml-1 (high res) 

 
The introduction of collision/reaction cell technology and high resolution instruments has 

overcome the problems associated with P and S analysis. Both methods minimise 

interferences associated with these elements.2, 10 However, the sensitivity of these two 

elements is still inferior compared to metal ions. The principles of collision cells and high 

resolution instruments will be discussed in subsequent sections, along with the recent 

applications of ICP-MS to biological analysis. 

 

1.3.2.1 Cool Plasma 

ICP-MS instruments are generally operated with a forward power of between               

1100-1500 W, however, by decreasing the forward power to approximately 800 W, plasma 

temperature is lowered and a cool plasma is produced. Operating a cool plasma has the 

advantages of reducing many argon based polyatomic interferences that occur during 

normal operation. This is one method of minimising the formation of problematic 

interferences. However, the cool plasma approach is susceptible to matrix effects. For 

example, HPLC eluents containing organic solvents or buffers may cause severe matrix 

effects such as signal suppression.51  

 

1.3.2.2 Collision/Reaction Cells 

An alternative method of removing interferences is to move the analyte away from the 

problematic mass-to-charge ratio. This can be achieved by reacting the analyte ion with a 
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reactive gas to form an ion of higher m/z, which can then be measured. Alternatively, the 

interfering species can be converted to a different mass or to a neutral species, so the 

analyte ion can be measured free from interferences. Either method results in the removal 

of the interfering species. However, such reactions may also create increased interferences 

in other parts of the spectrum.51 The removal of interferences takes place in a 

collision/reaction cell, which is a multipole consisting of either; a quadrupole, hexapole or 

octapole. The cell rods have RF (and DC in the case of quadrupole cells) applied to them. 

Collision/reaction cells therefore act as an ion focussing guide and not a mass separation 

device due to the RF only field.51 Quadrupole cells however can be employed in the RF 

only or RF/DC mode, allowing mass separation in the latter case.52 Once inside the cell, 

ions collide with a collision gas, which is present at low pressure and typically bled into the 

multipole at a rate of 0.5-10 ml min-1. The collision cell is generally operated in 

conjunction with a RF/DC quadrupole mass filter and is positioned between the interface 

and the mass analyser. Hence, the incoming ion beam enters the collision/reaction cell and 

undergoes the appropriate reactions before entering the quadrupole mass filter.  

 

There are six main reactions which can take place within collision/reaction cells, these are 

summarised below along with examples of each reaction: 

 

i. Hydrogen atom transfer53 

Ar+ + H2 → ArH+ + H 

ii. Charge transfer54 

O2
+ + Xe → Xe+ + O2 

iii. Proton transfer53 

ArH+  + H2 → H3
+ + Ar 

iv. Condensation55 

CeO+ + O2 → CeO2
+

 + O 

v. Association55 

Zr+ + nO2 → ZrOn
+ 

vi. Collisional dissociation 

Ar2
+ + He → Ar + Ar+ + He 
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The charge transfer reaction between O2
+ and Xe was successfully used to reduce the 32O2  

interference enabling 32S determination.54  

 

Collision/reaction cells were originally developed for organic MS to generate daughter 

fragments/product ions from parent species. The chances of identifying the structure of the 

parent molecule increased with increasing collision induced fragmentation steps. However, 

in elemental MS polyatomic interferences had to be minimised, so secondary reactions 

were a disadvantage.51 There are several types of collision/reaction cell for ICP-MS which 

are commercially available. Table 1:6 summarises a few of the commercially available 

collision/reaction cell ICP-MS instruments, along with the type of multipole employed. 

Table 1:6: Commercially available collision/reaction cells.
52

 

Instrument Manufacturer Multipole RF or DC potentials 

PQ ExCell Thermo Elemental Hexapole RF only 

7500c Agilent Octapole RF only 

Sciex Elan DRC Perkin Elmer-Sciex Quadrupole RF only or RF and DC 

 
The extent of cell reactions can be controlled by manipulating ion energy input. By making 

the collision/reaction cell potential more positive with respect to the plasma potential, or by 

using high reaction gas pressures, the ion kinetic energy can be retarded upon entering the 

cell. Slower ions tend to have larger reaction cross sections, therefore increasing cell 

reactions, this effect is known as the ion kinetic energy effect (IKEE).56, 57 Dexter et al., 

demonstrated that cell reactivity is significantly effected by IKEE for both exothermic and 

endothermic reactions, where exothermic reaction rates are increased by implementing 

IKEE and endothermic reaction rates are decreased.56 

 

Unwanted secondary reactions can take place in the cell, resulting in unwanted product ions 

that need to be removed. These unwanted products from the collision cell are prevented 

from entering the quadrupole by discrimination by kinetic energy or mass.51 By adjusting 

the collision cell bias in relation to the quadrupole, the unwanted products of the reaction 

can be prevented from entering the mass analyser. For example, by making the collision 

cell slightly less positive than the quadrupole, analyte ions which have more energy than 

the collision cell bias are transmitted to the quadrupole and the unwanted species which 
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have the same energy as the cell bias are rejected.51 This is commonly known as kinetic 

energy discrimination (KED).51, 58 An energy barrier is effectively created between the 

collision cell and quadrupole. Only the analyte ions which have the required energy are 

able to cross this barrier and enter the quadrupole. Hence, collision/reaction cell rates can 

be increased and unwanted product ions from the cell removed by implementing IKEE and 

KED respectively.56 KED can only be employed if there is a significant energy difference 

between the analyte and unwanted product ions.52, 57 All three of the instruments detailed in 

Table 1:6 can employ KED.  

 
Mass discrimination is another way of rejecting the unwanted collision cell products. The 

diffuse stability boundaries of higher order multipoles, makes them unable to discriminate 

by mass.51 However, quadrupoles are mass discriminatory, since they operate in DC and 

RF modes and the stability boundaries are well defined. Since these cells can discriminate 

against mass, unwanted product ions are easily removed. Reactive gases such as ammonia 

and methane are commonly used, which are more effective at reducing interferences than 

the inert gases such as helium.51 It should also be noted that the quadrupole cell can also 

discriminate using KED.52 

 

The presence of a collision/reaction gas in the multipole results in decreased transmission 

of lighter ions due to scattering. This effect is more pronounced for heavier collision gases 

(e.g. O2) compared to lighter gases (e.g. He). Transmission of heavier ions can be enhanced 

by the presence of a collision gas,32 since the lighter gas molecules prevent the heavier 

analyte ions diffusing out of the cell. This is referred to as collisional focussing and is 

relevant to both elemental and molecular mass spectrometry.27, 54  

 

Collision/reaction cells have been used extensively for the detection of 31P and              
32S.9-11, 32, 54, 59-61 The common interferences for these elements are summarised in Table 

1:5. One method of minimising interferences at m/z 31 and 32 is to employ oxygen 

collision gas to form the oxide of P or S. The corresponding oxide ion is then measured at 

m/z 47 and 48 for 31P16O and 32S16O respectively.9, 11, 59 Thus, the m/z of P and S is 
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increased by 16, which moves the analytes away from the polyatomic interferences at m/z 

31 and 32.  
31P+ + O2 → 31P16O+ + 16O  Reaction constant k = 5.3 x 10-10 molecules-1 cm3 s-1 

          Reaction enthalpy ∆Hr = -71.4 kcal mol-1 
32S+ + O2 → 32S16O+ + 16O Reaction constant k = 1.8 x 10-11 molecules-1 cm3 s-1 

          Reaction enthalpy ∆Hr = -6.2 kcal mol-1 

 

The above data (obtained from reference 9) shows that the reactions of S and P with 

oxygen are kinetically and thermodynamically favourable. However, the reaction of oxygen 

with the major interferences; O2
+, NO+ and NOH+ do not occur due to the reactions being 

kinetically and thermodynamically unfavourable in the cell conditions.9 Bandura et al., also 

noted that 47,48Ti could interfere with 31P16O and 32S16O, however, Ti readily reacts with 

oxygen at a rate comparable to P and S reaction rates (k = 5.0 x 10-10).9 Thus, any 47,48Ti in 

a sample would be oxidised to TiO+ and thus be removed from m/z 47 and 48.  

 

An alternative collision cell reaction for the direct determination of 31P employs He 

collision gas in conjunction with a collision/reaction cell.1, 60-62 The interfering polyatomic 

ions (predominantly 14N16O1H and 15N16O) collide with the He gas to a greater extent than 

the elemental 31P analyte, due to their greater cross sectional area. As a result, the 

polyatomic ions decelerate and lose energy rapidly due to the collisions. Then by applying 

KED, an energy barrier is essentially created that allows the higher energy 31P ions through 

to the mass analyser, but prevents the lower energy polyatomic ions being transmitted.60 In 

addition to employing He for reducing polyatomic interferences, Mason et al., reduced 

interfering polyatomic ions at m/z 32 by employing a hexapole collision cell with mixtures 

of He, Xe and H2 gases.54  

 

1.3.2.3 High Resolution ICP-MS 

Resolution is defined from the following equation; R = m/∆m, where m is the analyte mass 

and ∆m is the peak width at 5% peak height. Quadrupole based instruments have typical 

mass resolution capabilities of 300, yet resolutions of 10 000 are possible with high 

resolution instruments.27, 63 The improved resolving power of high resolution instruments 
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enables P/S to be separated from their corresponding polyatomic interferences, and thus 

enables P and S to be determined directly and avoids using collision/reaction cells. Table 

1:7 shows the resolution required to separate P and S from some common interferences, 

such resolutions cannot be achieved with a standard quadrupole based instrument.  

Table 1:7: Resolution required to separate P and S from their common interferences.
27, 64

  

Isotope Interference Resolution 

31P 14N16O1H 970 

32S 

 

16O2 

14N18O 
15N16O1H 

14N16O1H1H 

1800 

1061 

1040 

770 

 
High resolution instruments employ two types of analyser; electrostatic and magnetic mass 

analysers. The magnetic analyser can be placed before the electrostatic analyser (ESA), in 

what is known as the reversed Nier-Johnson geometry, whereas the alternative arrangement 

is referred to as the forward Nier-Johnson geometry.27 The reversed Nier-Johnson geometry 

is employed in the Element 2 sector field instrument; the reasons for this will be explained 

later in this section; whilst the forward geometry is employed in the Thermo-Finnigan 

Neptune and Nu Plasma multi-collector instruments. Figure 1:18 shows a schematic of a 

typical reversed Nier-Johnson magnetic sector instrument.  
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Figure 1:18: Schematic of a reverse Nier-Johnson magnetic sector instrument. 

 
Ions formed in the plasma are accelerated along a curved flight path at approximately 8 kV 

where they pass through an ion lens system before reaching the magnetic analyser, which is 

water cooled to provide good mass stability.65 The magnetic field is perpendicular to the 

flight path and is both mass and energy discriminatory. Ions are separated according to 

mass due to the fact that ions are deflected in the magnetic field according to their mass-to-

charge ratio.27, 66  

  

A limitation on resolution in ICP-MS is the wide ion energy spread. The ESA is therefore 

energy focussing and helps improve resolution.12 By having an ESA after the magnet, the 

energies of the ions are focussed before reaching the detector,66 which in turn lowers the 

overall energy spread of the ions. A 2 eV kinetic energy spread has been reported for ions 

entering the Element 2 (Thermo Finnigan, Bremen, Germany) mass spectrometer.67 This 

has the effect of improving abundance sensitivity and hence resolution; which is an obvious 

advantage in ICP-MS.27 An ESA typically consist of two curved plates with DC voltage 

applied to them, the inner plate is usually negatively charged and the outer plate positively 
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charged. Hence, the inner plate attracts ions and the outer plate repels them, thus ions are 

focussed and deflected as they pass through the two plates.27, 65 

 
Ions are separated according to m/z only when these two mass analysers are used in 

conjunction, since the magnetic analyser is mass and energy discriminatory and the ESA is 

energy only.27 Both analysers provide angular focussing, that is the ion beam is focussed as 

it exits the analyser. For this reason, such instruments are referred to as double  

focussing.12, 27 

 

Electron multiplier detectors are commonly employed in ICP-MS instruments. The 

detection system used in the Element 2 (Thermo Finnigan, Bremen, Germany) is a dual 

mode secondary electron multiplier (SEM). After passing through the magnetic and 

electrostatic analyser, the ion beam hits a conversion dynode where electrons are produced. 

These electrons are then directed to the SEM where secondary electrons are formed upon 

impact with the multiplier surface. The secondary electrons impact again on the electron 

multiplier surface forming more and more electrons, which results in a cascade effect. The 

current from the released electrons can then be converted to a signal. Counting and 

analogue SEM detection modes are available in the Element 2. Analogue detection mode 

allows elements of approximately 1 mg l-1 concentration to be measured. A Faraday 

detector can be employed for extending the linear range further, with concentrations of 

approximately 1000 mg l-1 potentially measured. A Faraday cup is essentially a hollow 

device which the ion beam enters. The charge (positively charged ion beam) is collected on 

a capacitor which is then discharged, the ion detection system then processes the number of 

discharges.65 The approximate intensity (counts per second) that each detector operates 

along with the approximate concentrations measurable with each detector is shown in 

Figure 1:19 (data taken from reference 68). 
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Figure 1:19: Approximate signal intensity and concentration range of each detector for the Element 

2XR.
 68

 

 
The resolution of most commercial instruments can be adjusted. For example, the Element 

2 is a second generation high resolution instrument and has three fixed resolution settings; 

low (resolution ~300), medium (resolution ~4000) and high (resolution ~10 000). The 

resolution is set by adjusting the widths of slits which are positioned at the entrance and 

exit of the mass spectrometer, these slits are known as the entrance and exit slits.12 Low 

resolution is achieved by using wide slits, as the slit width decreases the resolution 

increases. Thus, high resolution has the disadvantage of degrading sensitivity due to the 

narrow slit widths. At a resolution setting of 1460 which is needed to resolve 31P from 
15N16O, ion transmission is only 53%.63 Only 1-2% ion transmission is obtained in high 

resolution setting compared to low resolution. This can be a problem if low limits of 

detection are needed.  

 

Flat topped peaks are obtained when operating in low resolution mode, which are useful for 

obtaining precise measurements, since the signal intensity should be the same wherever the 

peak is sampled due to the flat top.12 The peak shape becomes progressively more 

triangular as the resolution is increased. This causes measurements to become less precise, 
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since signal intensity will vary considerably depending on where the peak is sampled.27 In 

high resolution mass spectrometry, peak widths become progressively narrower at the low 

mass end of the spectrum and as resolution increases. This is because peak width is a 

function of both mass and resolution, as defined by the equation R = m/∆m.67 Despite the 

reduction in sensitivity upon increasing resolving power, these instruments by character 

have good sensitivity and low background levels in low resolution mode. As a result, 

heavier mass elements such as Au and Pt which only require low resolution can exhibit 

extremely low limits of detection.12, 27, 63  

 

Two modes of scanning are available for high resolution instruments; magnetic scanning 

and voltage scanning. A Hall probe controls the magnetic field in the magnetic analyser, 

and is located within the magnet gap.27 Magnetic scanning has the disadvantage of being 

very slow due to the time required for the magnet to move between masses and        

settle.27, 63, 67 An additional disadvantage of magnetic analysers is a phenomenon known as 

magnet hysteresis.69 If a magnetic field is applied to a material, the material will experience 

a change due to the applied magnetic field, but it will not return back to its original state 

when the applied magnetic field is removed. Another field of opposite direction is required 

to return the material back to its original state, which ultimately increases the time of a 

magnet scan in mass spectrometry. Voltage scanning has the advantage of being much 

faster.64 In this mode of measurement, the magnetic field is held constant whilst the voltage 

is varied to transmit the analyte ions. Voltage scanning can measure a peak up to 30% 

above the mass where the magnet is settled, hence the magnet does not necessarily have to 

be moved when voltage scanning is employed.67  

 

Along with a choice of voltage or magnet scanning, the Element 2 has two scanning modes; 

mass accuracy and speed. The choice of scan is dependent upon the application. For 

standard quantitative analysis of solutions, mass accuracy should be implemented. This 

scanning mode is set by default in the instrument software and is used when mass accuracy 

is important and not scanning speed. Conversely, for applications requiring faster magnet 

scanning, such as chromatographic and laser ablation applications, speed scanning should 

be selected.70  
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There are three fixed magnet positions on the Element 2; zero mass (m/z 0), rest mass    

(m/z ~100) and high mass (m/z~ 254). The two different scanning modes refer to the way 

the magnet jumps between these masses during the scanning cycle. Each method will be 

discussed in turn.70 

 

Mass Accuracy 

The magnet jump cycle during a mass accuracy scan is summarised in Figure 1:20. Before 

the measurement of the analytes begins, the magnet goes through an initial scanning cycle, 

where the magnet jumps from the rest mass to the high mass and then to the zero mass 

point.70 The final step in the initial magnet cycle is for the magnet to jump from the zero 

mass point to the first analyte isotope.70 Only after the initial scan are the isotopes of 

interest scanned and measured. However, before returning to the first analyte isotope for a 

repeat scan, the magnet again jumps to the high mass then the zero mass point. After the 

required number of scans has been carried out, the magnet returns to the rest mass. The 

continual jumping of the magnet between the fixed reference points during a scan 

inevitably increases analysis time, especially when multiple isotopes are to be determined.70  
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Figure 1:20: Magnet cycle during mass accuracy scan. 

 
Speed Scanning 

This scanning mode has a much shorter scanning cycle, thus less time is spent moving and 

settling between masses, which has the effect of decreasing analysis times. This is 

particularly important where fast transient peaks are to be measured and as many data 

points as possible are required. The schematic in Figure 1:21 summarises the magnet 

movement during a speed scan. It is important to note that an initial magnet cycle is not 

conducted during a speed scan. Also, the magnet does not jump to the high mass, followed 

by the zero mass point during the scan cycle as observed with mass accuracy scanning. 

Ultimately, speed scanning involves the magnet repeatedly jumping to and from the 

selected isotopes only.70 Again once scanning is complete, the magnet returns to the rest 
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mass. Settling time refers to the time taken for the magnet to move and settle between the 

selected isotopes during a scan. The default settling times given in a method can be 

amended to decrease analysis time further, but caution should be taken when reducing 

settling times too much, since this will have the effect of decreased signal intensity for the 

selected analyte. 

 

Figure 1:21: Magnet cycle during speed scanning. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Zero mass 
(m/z-0) 

Analyte 
isotope 1 

Rest mass 
(~m/z-100) 

Analyte 
isotope 2 

High mass 
(~m/z-254) 

1 

Scanning 

2 

Settling time 



62 

1.4 Linear Ion Trap Mass Spectrometry 

Since all structural information is lost during ICP analysis, complementary analytical 

techniques are advantageous for providing such information. Organic mass spectrometry 

allows for structural analysis and can be used as a complementary technique to ICP-MS as 

opposed to a competing technique.1, 2, 4, 5, 49 Both elemental and structural information can 

be obtained when using the two mass spectrometry methods in parallel, which may be 

useful in the fields of genomics and proteomics.49 

 

Linear ion trap instruments have found a niche within genomic and proteomic research, 

predominantly for the determination of nucleic acid and peptide sequences.71-74 Figure 1:22 

shows a schematic of a typical ion trap instrument. There are parallels between the 

instrumentation found in organic and inorganic mass spectrometers. The ion trap employs 

an atmospheric pressure ionisation source, ion optics/ion guides, mass analyser to isolate 

ions of interest and finally a detection system. This is similar to elemental mass 

spectrometry; however, the principles of operation of some aspects do vary between the 

two mass spectrometry techniques as will be discussed. 

 
 

Figure 1:22: Schematic showing the linear ion trap instrumentation of a Thermo Finnigan LTQ. 
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1.4.1 Instrumentation 

1.4.1.1 Ionisation 

There are many techniques available for analyte ionisation, these include; electrospray 

ionisation (ESI), atmospheric pressure chemical ionisation (APCI) and atmospheric 

pressure photoionisation (APPI) amongst others. The choice of ionisation technique 

depends on the nature of the sample and the application. Only electrospray ionisation (ESI) 

will be discussed here due to its relevance in this project. Information regarding the other 

ionisation techniques is available elsewhere.75-77 

 

ESI can be applied to any compound that forms an ion in solution, making it especially 

good for biological molecules that often are highly charged and polar. For example, nucleic 

acids contain nitrogen containing nucleobases, which can become protonated and thus carry 

a positive charge in solution. Therefore, high molecular weight molecules such as nucleic 

acids and proteins can be analysed when using ESI due to multiple charging of the analyte 

ions, which creates a range of mass-to-charge ratios that most mass spectrometers can 

comfortably analyse.78 The process of ESI is illustrated in Figure 1:23. A solution 

containing the analyte flows through a fused silica capillary towards the ESI needle, which 

has a high voltage applied to it, typically in the region of 3-6 kV.76, 79 The liquid surface is 

disrupted by the applied electric field, which results in a fine mist containing small charged 

droplets being formed. This is known as an electrospray, although nebulisation can also be 

assisted with a nebuliser gas.79, 80 There are two accepted mechanisms of ion formation; 

charge residue model (CRM) and ion evaporation model (IEM).81 In both cases the sample 

solvent evaporates from the droplets, which results in increased charge density on the 

droplets, due to their decreasing size. According to the charge residue model, the 

electrostatic repulsion within the droplet will eventually exceed the surface tension of the 

sample solvent. At this point, which is known as the Rayleigh stability limit or coulomb 

explosion,76, 82 the droplets divide into even smaller droplets. The process of dividing 

droplets is repeated until all the solvent is removed, at which point the analyte/parent ions 

are converted to a free ion in the gas phase.78 In the case of the ion evaporation model, ions 
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are evaporated from the droplet at a certain droplet size due to coulombic repulsion.81 The 

entire electrospray process occurs at atmospheric pressure.  

 

 
Figure 1:23: ESI process in positive ion mode. 

 
The efficiency of ESI depends on the applied voltage, droplet size, volatility and surface 

tension of the sample solvent. A compound with high charge will have improved ionisation 

compared to a lower charged compound.78 Likewise, a higher voltage is required for 

producing a stable electrospray for high surface tension solvents.79 

 

Positive or negative ions can be generated at the source depending on the application. If 

positive ions are to be analysed the ESI needle is positively charged, so positive ions are 

repelled from the needle and ejected into the transfer capillary. Likewise, the needle is 

negatively charged for the analysis of negative ions. When sample quantity is restricted and 

only small sample volumes are available, nanospray ionisation (NSI) is possible. The 

ionisation process is identical to ESI, but ionisation and mass spectrometry analysis is 

possible with sample volumes as low as 1 µl. 

 

Matrix-assisted laser desorption ionisation (MALDI) is also widely used for the analysis of 

large biomolecules such as DNA and proteins.75, 83, 84 As its name suggests, the ionisation 
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process involves the use of a laser (ultraviolet or infrared) to ionise the analyte with the aid 

of a matrix. The matrix contains small organic molecules that strongly absorb the laser 

incident light.75 Singly charged ions are predominantly formed by MALDI as opposed to 

multiply charged species observed with ESI, and Time-of-flight (TOF) mass analysers are 

typically employed. In addition, MALDI is more tolerant to salts, buffers and solvents, 

although the removal of such contaminants improves the quality of the mass spectra. 

Conversely, the presence of buffers in ESI can contaminate the source and create very 

complicated spectra due to the formation of adducts. Therefore, volatile buffers at low 

concentration are preferred for ESI.75  

 

1.4.1.2 Interface 

The ions formed in the ionisation source are transferred to the mass analyser via the transfer 

capillary, which is heated to approximately 270 oC for ESI. Upon exiting the transfer 

capillary, the ions travel through the tube lens where the ions are focussed for transmission 

through the skimmer. As in ICP, the skimmer acts to step down the pressure between the 

interface (~1.3 mbar) and the mass analyser region (~0.067 mbar).78 

 

1.4.1.3 Ion Guides and Optics 

Once the ions are transmitted through the skimmer, they travel through a series of ion 

guides and lens. Two quadrupoles and an octapole help guide the ions to the mass analyser. 

Quadrupole 1 and 2 consists of four square profile rods, which have RF and DC voltages 

applied to them. The ions initially enter quadrupole 1; those ions with a stable path through 

the quadrupole are transmitted. Subsequently, the ions are guided by a lens to quadrupole 2. 

Finally, the ions are guided through the gate lens followed by the octapole and then the 

mass analyser. The injection of ions into the mass analyser is controlled by the gate lens 

(see Figure 1:22).78 
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1.4.1.4 Quadrupole Linear Ion Trap Mass Analyser 

Like a conventional quadrupole, the quadrupole linear ion trap consists of the four parallel 

rods, but the rods of a linear ion trap are cut into three separate sections; two end sections 

and a centre section. The centre rod is 37 mm in length and the two end sections are 12 mm 

in length. Two of the central rods have a 30 x 0.25 mm slit cut into them to allow ions to be 

ejected from the analyser, these rods are therefore known as the exit rods.78, 85  

 

A DC voltage is applied to each of the quadrupole rod sections, the central section having a 

lower potential than the two end sections, which has the effect of trapping the incoming 

ions in the axial direction.78, 85 Table 1:8 shows the potentials applied to each rod section 

during positive ion storage and analysis. A large potential well is created in the centre 

quadrupole section during mass analysis, due to the increased potential of +20 V on the two 

end sections.  The potentials are reversed for negative ion storage and analysis.78 

Table 1:8: DC potentials of the linear ion trap during positive ion storage and transmission.
78

 

Rod Section Ion Storage Potential (V) Mass Analysis Potential (V) 

Front -9 +20 

Centre -14 -14 

Back -12 +20 

 
Storage in the radial direction is achieved by applying AC voltages to the quadrupole rods. 

The frequency of the AC voltage is constant and in the radio frequency range, but the 

amplitude varies, this voltage is referred to as the main RF voltage.78 During ion storage the 

main RF voltage is low; so ions are stable within the quadrupole; this is called the RF 

storage voltage. During analysis, the RF potential is ramped at a constant rate which has the 

effect of causing ions of increasing mass-to-charge ratio to become unstable and oscillate in 

the radial direction. Eventually, the ions become so unstable that they are ejected through 

the exit rods. The resonance voltage is the voltage at which the ion of defined m/z is ejected 

from the quadrupole ion trap. The ejected ions impinge on the conversion dynodes to 

produce ions which are consequently directed to electron multiplier detectors.78  
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The ion storage, isolation, fragmentation and scan out events that take place in the trap are 

summarised below and are illustrated in Figure 1:24-Figure 1:27, which only show the 

central quadrupole sections for diagram simplicity. 

 

i. Ion Storage 

• DC voltages applied to the three quadrupole rod sections, the central 

sections having a lower voltage to create a potential well and trap ions in the 

axial (z) direction. 

• Main RF voltage amplitude is low, so ions are stable in the radial (x,y) 

direction and therefore confined in the mass analyser. This is known as the 

storage voltage.78 

 

Figure 1:24: Ion Storage. 

 
ii. Ion Isolation 

• Applicable to single ion monitoring (SIM), selected reaction monitoring 

(SRM), consecutive reaction monitoring (CRM) and general tandem MS 

(MSn). 

• AC voltage is applied to the exit rods in what is called the ion isolation 

waveform voltage.78  

• An ion of specified m/z is trapped by the main RF and ion isolation 

waveform, whilst all other ions are ejected from the ion trap. 
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Figure 1:25: Ion isolation.  

 
iii. Collision/Fragmentation 

• Applicable to SRM, CRM and MSn. 

• Ion movement in the radial direction is stimulated by voltages, which are 

applied to the exit rods and is known as the resonance excitation voltage.78 

• This voltage is not sufficient to eject the ions, but causes the ions to collide 

with He.78 

• Eventually the parent ion will fragment due to successive collisions with He, 

to form product ions. 

 

 
Figure 1:26 Parent ion fragmentation. 

 
iv. Ion Scan Out 

• Ion ejection is facilitated by the resonance ejection RF voltage that is 

applied to the exit rods.78 

• The amplitude of the resonance ejection RF voltage is ramped to resonate 

the ions.78 
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• During resonance the ion moves further away from the centre of the trap. 

Space charge effects are smaller and the main RF voltage is stronger the 

further away from the trap centre, which has the effect of ejecting the ion.78 

 

 
Figure 1:27: Product ion scan out from the linear ion trap. 

 
Linear ion traps have numerous advantages over the traditional three dimensional ion traps. 

Firstly, linear ion traps exhibit enhanced trapping efficiencies due to the reduced axial 

motion induced by collisions with the He dampening gas.86 Space charge effects are 

defined as the repulsion of ions of like charge which inevitably occurs in mass 

spectrometry.87 This effect is detrimental to mass spectrometer performance, since it results 

in broad peaks, loss of resolution and reduced sensitivity.86, 88 Since linear ion traps are 

larger than their three dimensional counterparts, they are capable of storing more ions 

before space charge effects become apparent.85, 86 In addition, ions are focussed along the 

axial direction, in a line along the centre of the linear ion trap, compared to point focussing 

with three dimensional traps. It has been reported that line focussing may be beneficial in 

minimising space charge effects.86  

 

The ion trap allows the analyte ion with defined m/z to be stored, fragmented and then 

transmitted to the detector. Unlike ICP-MS where fragmentation and secondary reactions 

are to be avoided within collision/reaction cells, molecular mass spectrometry utilises such 

reactions for structure elucidation.75 As discussed above, the mass analyser is filled with He 

gas which can be used to induce fragmentation of the parent ions through collisions. The 

resulting fragment ions are called product ions, which can be analysed. This type of mass 

analysis can be repeated many times depending on how much structural information is 
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required for a compound, since each fragmentation step reveals more information on 

structure. An MS/MS experiment employs two stages of ion selection and fragmentation, 

followed by analysis of the product ions. However, MSn can be used, where n is the number 

of stages in the mass analysis.  

 

As well as inducing fragmentation, He gas also acts as a buffering gas and induces 

collisional focusing. The kinetic energy of the injected ions is reduced in the ion trap by 

collisions with He which ultimately prevents ions diffusing out of the quadrupole, but 

keeps them near the centre of the analyser. This has the effect of increasing       

sensitivity.75, 78, 85 

1.4.1.5 Detector 

Noise is minimised in the linear ion trap by orientating the two electron multiplier detectors 

off-axis (Figure 1:22). As ions are ejected from the linear ion trap via the exit rod slits, they 

impinge on a conversion dynode where secondary particles are produced upon impact. If 

the instrument is operated in negative ion mode, the conversion dynode will release 

positively charged particles, conversely, negative particles are released from the conversion 

dynode when in positive ion mode.78 The secondary charged particles are then directed 

towards the off-axis secondary electron multiplier which works in a similar manner to those 

described in section 1.3.2.3. 

 

1.4.2 Scanning Modes 

It has been discussed that the linear ion trap is capable of trapping a parent ion and either 

analysing this ion directly in a single MS experiment, or fragmenting the ion once or 

multiple times with He to produce parent ions. In addition, there are several types of scan 

available for obtaining information on a particular ion, namely; full scan, selected ion 

monitoring (SIM), selected reaction monitoring (SRM), consecutive reaction monitoring 

(CRM) and zoom scan. Figure 1:28 shows the scanning modes available. 
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1.4.2.1 Full Scan 

The full scan mode allows all the ions associated with the sample to be detected, since all 

the parent ions are sequentially scanned out of the ion trap. Full scanning lacks sensitivity, 

but it does provide a lot of information. Full scanning is also very slow, since all the ions in 

a given mass range specified by the operator are scanned out of the ion trap and detected.78  

 

1.4.2.2 Selected Ion Monitoring (SIM) 

In SIM target ions of specified m/z are only monitored, thus this scan mode is more 

sensitive and faster than the full scan, since more time is spent monitoring the ions of 

interest and ejecting the unwanted ions. The parent ions are stored in the ion trap and all the 

ions apart from those of interest are scanned out of the mass analyser. Then a selected ion 

mass spectrum is created by scanning out of the parent ions of interest. However, if another 

compound other than the analyte forms parent ions at the same m/z as the ions of interest, 

they will also be detected as the target ion, therefore, SIM gives low specificity.78 

 

1.4.2.3 Selected Reaction Monitoring (SRM) 

SRM is similar to SIM, but it is a two stage MS scan that is more specific. The parent ions 

are stored in the ion trap and all the ions except those of interest (which have been 

specified) are scanned out of the trap. The parent ions of interest are then fragmented with 

He to form product ions. The product ions of interest which have also been specified are 

selected whilst all the other ions are ejected from the mass analyser. A SRM mass spectrum 

is then obtained by scanning out the product ions of interest.78 SRM is more specific than 

SIM, since both the parent and corresponding product ions are monitored. Hence, it is 

unlikely that an interfering compound will form a parent ion and product ion of the same 

m/z as the analayte.75, 78  

 

1.4.2.4 Consecutive Reaction Monitoring (CRM) 

CRM is similar to SIM and SRM, but involves more MS steps, where MSn can be achieved. 

As with SIM and SRM, the parent ions are stored in the ion trap and all ions except those of 

specified m/z are ejected. Fragmentation of the selected parent ion is then achieved with the 
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He collision gas and the product ion of interest is selected, whilst all the other product ions 

are ejected. The selected product ion effectively becomes the new parent ion, which is 

fragmented further to yield new product ions. The process is repeated where the entire 

product ions except the one specified is ejected out of the mass analyser, whilst the selected 

product ion then becomes the new parent ion for further fragmentation. This process is 

repeated up to MS10 and has the advantage of increasing specificity. A CRM mass spectrum 

is achieved after the final mass analysis step, where the selected product ions are then 

scanned out of the mass analyser.78 

 

1.4.2.5 Zoom Scan 

This high resolution scan allows the molecular weight and charge state of an ion to be 

determined, by evaluating 12C/13C isotopic separation. Hence, this function is useful if the 

molecular weight of an unknown compound is to be calculated. Further details of this 

function can be found elsewhere.78 

 

Figure 1:28: Scanning modes available for the linear ion trap. 

 

1.4.3 Experiment Modes 

There are several types of experiment available with this type of instrumentation. The type 

of experiment selected depends on the information required, the sample type (e.g. analyte is 

only present at trace levels or present amongst a complex mixture) and how much is known 

about the parent ions and their corresponding product ions. The types of experiment that 

will be discussed in this section are as follows; general MS and MSn , data dependent, ion 

mapping and ion tree.  

 

MS     MS/MS  MSn 
Full Scan      SRM               CRM 
SIM 

Low 
Selectivity 

High 
Selectivity 
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1.4.3.1 MS and MS
n
 

For general MS experiments, the masses of the parent ions need to be known and in the 

case of MSn experiment; the masses of both the parent and product ions need to be known. 

The more steps involved in the MSn experiment, the more detailed information regarding 

the compound obtained.78  

 

1.4.3.2 Data Dependent Experiments 

Very little user input is required for data dependent experiments, yet detailed structural 

information can be obtained.  If very little information is known about the sample, a data 

dependent experiment can be created where the ion trap can select the most predominant 

parent ions, trap them whilst ejecting minor parent ions. The selected parent ions can then 

be fragmented and the most predominant product ions within a given mass range can then 

be isolated and fragmented further. This type of experiment gives detailed information on 

the parent ions in the sample.78 Figure 1:29 summarises the steps involved during a MS/MS 

data dependent experiment, although MSn is possible. 

 

Alternatively, if information about the parent ions is known, their masses can be specified 

and the ions selected and fragmented to give product ion spectra. A list of parent ions that 

should be ignored can also be created to prevent MSn of unwanted parent ions. This type of 

experiment collects detailed MS information on each stage of the mass analysis.78 



74 

 
Figure 1:29: A summary of the processes occurring within the linear ion trap during a data dependant 

experiment. 

 

1.4.3.3 Other Experiment Types 

Ion tree and ion mapping are further types of experiment which are possible with the linear 

ion trap. Ion tree experiments can be data dependent where the instrument decides the next 

stage of the experiment by collecting and evaluating the data, or the parent ion can be 

specified for MSn. There are two ways of prioritising LTQ data collection: depth focus or 

breadth focus, in either case, the instrument will select the most intense parent ion (unless 

specified by the user).78 In the case of depth focus, the instrument will perform the 

specified number of MS experiments (e.g. MS4) before moving to the next most intense 

parent ion and performing the specified number of MSn experiments on that ion. Breadth 

focus will perform MS on all the parent ions (whether chosen by the instrument or specified 

by the user) and then move onto the next MSn level and analyse the product ions. The 

number of MS experiments is specified by the user.78 

 

Ion mapping experiments allow unknown compounds in a mixture to be analysed and 

characterised in detail. There are three main types of ion mapping experiment, namely; total 
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ion map, parent ion map and neutral loss.78 Product ions scans from parent ions are 

obtained in a total ion map experiment. Thus, the user can establish which parent ions 

fragmented to yield specific product ions. Likewise a parent ion mapping experiment 

identifies the parent ions that formed specific product ions. Evidence of neutral fragment 

loss can be obtained with a neutral loss ion map. The details of ion tree and ion map 

experiments are beyond the scope of this introduction, but further information is available 

elsewhere.75, 78   
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2 Elemental Labelling 

2.1 Introduction 

The previous chapter outlined the various problems associated with P and S measurement 

by ICP-MS and briefly highlighted the potential of metal nano-particle labelling. This 

chapter will concentrate on the notion of nano-particle labelling of nucleic acids by 

detailing two methods of incorporating Au nano-particles into oligonucleotides. The 

advantages and limitations associated with each method will be highlighted. Although the 

emphasis is on nucleic acids, the methods can potentially be applied to proteins and related 

molecules. 

 

The signal intensity given by ICP-MS is proportional to the number of similar metal atoms 

present in the sample. Hence, if nano-particle labelling of biomolecules is to be used 

quantitatively, it is vital to know how many nano-particles and therefore metal atoms have 

been incorporated into the biomolecule. This can be achieved if the labelling reaction is site 

specific, which is viable if the biomolecule and nano-particle both contain reactive groups.7 

Site specific labelling has been achieved by employing Au labelled antibodies to bind and 

therefore label specific antigens.13, 48, 89 The interaction between biotin and avidin proteins 

is the strongest non-covalent interaction known with association constants in the region of 

1015 M-1,90 thus nano-particle labelling using these two molecules has also been         

used.39, 45, 46, 91 In addition, DNA sequences can be modified to contain thiol groups which 

then have strong affinity for Au surfaces.39, 41, 91-94 This approach has been used in DNA 

micro-arrays.39, 41, 93 Biomolecules can even be labelled using electrostatic interactions, due 

to the array of charges present on many biopolymers.95 The alternative method of achieving 

site specific labelling is to modify the biomolecule so it contains a reactive group such as a 

primary amine or sulfhydryl group. The derivatised biomolecule can then be reacted with a 

nano-particle also containing a reactive organic ligand such as maleimide or sulfo-N-

hydroxy-succinimide to achieve stoichiometric labelling.95  

 
Biomolecule conjugation to metal surfaces also has the advantage that the biological 

activity of the biomolecule can be maintained.94 This advantage is exploited in the case of 
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Au labelled antibodies and proteins, which maintain their native structure and recognise 

their corresponding antigens to enable Au labelling. The conjugation of biomolecules to 

metal surfaces has been employed extensively in micro-arrays and electron microscopy. 

The majority of biomolecule-nano-particle conjugation reactions have employed Au nano-

particles. Gold has been favoured because it is electron dense and therefore highly visible 

in electron microscopy.96 However, research has been carried out with respect to bonding 

DNA to other metals such as; Ag, Cu, Pd and Pt.22, 39, 97-100 Lanthanide labels have also 

been successfully used to label antibodies for immunoassay reactions.16, 25, 89 

 

Silver and Au enhancement are employed in electron microscopy and involve applying Ag 

or Au solutions to the Au labelled molecules. The Au nano-particles have autocatalytic 

properties that cause the reduction of Ag/Au ions on the Au surface. The deposited metal 

has its own catalytic properties, causing more Ag/Au to be deposited onto the label’s 

surface. The accumulation of metal creates larger metal clusters with diameters much larger 

than the original label. These grains allow easier observation on immunoblots, 

polyacrylamide and other gels.95 Enhancement may also be beneficial in ICP-MS as the 

number of metal atoms increases, resulting in increased sensitivity.46, 95,16 Although further 

signal enhancement will be achieved, quantitative analysis would be very difficult since the 

number of metal atoms per biomolecule would be unknown.  

 

Colloidal Au particles are easy to synthesis and commercially available, making them 

popular in many applications employing biomolecule-metal conjugation. However, there 

are numerous disadvantages of colloidal Au that could cause problems in atomic 

spectrometric applications. Firstly colloidal Au particles carry a negative charge, which 

could result in non-specific binding on the biomolecule, adversely effecting 

quantification.101 In addition, colloidal Au particles are known to become unstable and 

dissociate in solution.101 The size of the particles should also be considered, since research 

in the field of laser ablation (LA) has shown that particles below 90 nm in diameter are 

completely atomised and vaporised in the plasma,102 thus the particle size must be 

controlled. Although there are no commercially available nano-particles which display all 

the desired characteristics for atomic spectrometry, there are probes which can be 
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successfully employed for quantitative analysis. These commercially available Au nano-

particles contain approximately 80 Au atoms and have many advantages over their 

colloidal Au counterparts.91, 98, 101 Firstly, these nanogold particles are neutral and are 

stabilised by phosphine groups,96, 103, 104 minimising any non-specific binding.101 Nanogold 

particles are also stable in solution96, 103 and over a wide range of ionic concentrations.101 

The vaporisation and atomisation of the Au nano-particles should not be problematic, since 

the nano-particles have a uniform Au core diameter of 1.4 nm,95, 96, 103 although the 

presence of the stabilising organic ligands increases the total diameter to 2.7 nm.101 Most 

importantly, these probes are functionalised with a range of ligands and biological 

recognition sites to provide near stoichiometric, site specific labelling.95 Well characterised, 

commercially available probes of this type were chosen for use in this study. Two Au 

probes were investigated: Monomaleimido Nanogold (MMN) and Streptavidin 

FluoroNanogold (SFNG), both probes were obtained from Nanoprobes (Stonybrook, New 

York, USA) and contained an Au core consisting of ~80 Au atoms. 

 
This chapter concentrates on the Au nano-particle labelling of short chain, single stranded 

DNA fragments known as oligonucleotides. The ICP-MS analysis of Au labelled DNA has 

been reported elsewhere,48 however, the method employed DNA hybridised with a peptide 

sequence. Gold labelled secondary antibodies were used to label a monoclonal antibody, 

which was located at the peptide site on the hybrid biomolecule.48 Such labelling is 

therefore dependent upon incorporating peptide sequences into the nucleic acid. In addition 

to Au labelling of DNA, DNA can be detected and potentially quantified using a metallo-

intercalator as described by Tanner et al.105 This method is applicable to double stranded 

DNA where the metal complex intercalates between nucleotide pairs. Cellular DNA was 

identified using a Rh metallo-intercalator.105 The two methods detailed in this chapter differ 

to the reported procedures in that they are site specific (see below) but are not base 

sequence specific or dependent upon peptide sequences. These methods are therefore 

generic and can be applied to any nucleic acid that contains sulfyhydryl or biotin 

functionality.  
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Gold does have some disadvantages when used as a biomolecule label in ICP-MS analysis. 

Firstly, the element is mono-isotopic and has high affinity for the surfaces of sample 

introduction systems.25 This results in inefficient wash-out from the sample introduction 

system, leading to carry over between samples. Bovine serum albumin (BSA) and 

hydrochloric acid solutions have been used to minimise this effect.25 BSA complexes to the 

Au, facilitating its removal from the sample introduction system. Other sulfur containing 

molecules such as the amino acid cysteine have been used as a wash solution to minimise 

Au memory effects.106 Aqua regia and hydrochloric acid solutions are also useful for 

removing residual Au, since Au is very soluble in these acids. These issues will be 

discussed in subsequent sections. 

 

2.2 Instruments and Reagents 

A PQ ExCell ICP-MS instrument with collision cell technology (CCT) was provided by 

Thermo Electron (Winsford, Cheshire, UK). The Element 2XR high resolution ICP-MS 

instrument was obtained from Thermo-Finnigan (Bremen, Germany). The basic operating 

parameters for the PQ ExCell and Element 2XR are shown in Table 2:1 and Table 2:2 

respectively. Both instruments were tuned daily with 1 ng ml-1 115In to obtain maximum 

signal intensity and stability. Tuning of the high resolution lenses on the Element 2XR was 

achieved with a tune solution containing 1 ng ml-1 56Fe. The lenses were tuned to obtain 

maximum resolution between the 56Fe and 40Ar16O peaks. In addition, the 140Ce16O/140Ce 

ratio was monitored daily on both instruments to ensure the oxide level was below 5%. 
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Table 2:1: PQ ExCell operating parameters.  

Parameter Setting 

Gas flows Cool = 12.8 l min-1 

Auxiliary = 0.80 l min-1 

Nebuliser = 1.0-1.2 l min-1 

Quadrupole bias + 1V 

Hexapole bias * ~+ 6 V for 48SO 

~+ 7.5-8 V for 47PO 

Forward power 1350 W 

CCT O2  flow * 0.4 ml min-1 

Nebuliser 100 µl min-1 or 1 ml min-1 glass Conikal (Glass Expansions, Melbourne, 

Australia) 

Spray chamber Impact bead 

 
* These parameters were only relevant when the collision cell was in operation for the 

determinations of P and S.  

Table 2:2: Element 2XR operating parameters. 

Parameter Setting 

Gas flows Cool = 15.5 l min-1 

Auxiliary = 0.82 l min-1 

Nebuliser = 1.0-1.2 l min-1 

Scan type E-Scan 

Scanning mode Mass accuracy (solution analysis) or speed (chromatography mode) 

Detection mode Triple 

Resolution Low (Au and Pt)  or medium (P) 

Forward power 1300 W 

Spray chamber Cyclonic or double pass (Glass Expansions, Melbourne, Australia) 

Nebuliser PFA-ST type (Elemental Scientific, Omaha, USA) or 

1ml min-1 Conikal (Glass Expansions, Melbourne, Australia) 

 
Mass accuracy scanning mode was employed when the Element 2XR was operated in 

standard solution mode. Conversely, the speed scanning mode was implemented when the 

instrument was being employed as a selective detector when coupled to HPLC. Triple 

detection mode, which is noted in Table 2:2, refers to the automatic selection of either the 

counting secondary electron multiplier (SEM), analogue SEM or faraday cup by the 
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Element 2XR. Further details on the Element scanning and detection modes are given in 

Chapter 1.  

  

A HP 1090 Series 2 HPLC system, complete with a diode array detector from Agilent 

Technologies (Waldronn, Germany) was used for HPLC-ICP-MS experiments. A LDC 

Spectromonitor 3200 variable wavelength UV detector (VG data systems, Manchester, UK) 

and HP3396A integrator (Hewlett Packard) and was used for obtaining UV data during gel 

filtration. In addition, a Shimadzu UV-1650 UV/vis spectrometer (Milton Keynes, UK) was 

employed for UV/vis analysis of collected fractions obtained during gel filtration 

chromatography.  

 

A TSKgel-DNA-NPR analytical and guard column was obtained from Tosoh Bioscience 

(Stuttgart, Germany). Both columns were 4.6 mm in diameter and had a particle size of   

2.5 µm. The analytical column was 7.5 cm in length and the guard column was 0.5 cm in 

length. The properties of the column are detailed in Appendix 1 (Chapter 8). Ni-NTA-

Agarose beads were from Qiagen (Crawley, West Sussex, UK). These agaorose beads were 

functionalised with nitrolotriacetic acid (NTA), which consequently enabled 

immobilisation of metal ions for immobilised metal affinity chromatography (IMAC). 

Synthetic oligonculeotides labelled at the 5’ end with a disulfide group and 25 base length 

(25 mer) oligonucleotides modified with a sulfhydryl group were obtained from Alpha 

DNA (Montreal, Quebec, Canada), as were other synthetic oligonucleotide 10 mers 

containing a 5’ phosphate group. Unmodified oligonucleotide 25 mers were obtained from 

Invitrogen (Paisley, Renfrewshire, UK). Oligonucleotides biotinylated at the 5’ end were 

obtained from Biotez (Berlin, Germany). The sequences of all synthetic nucleic acids used 

in this report are shown in Table 2:3. Note that the term ‘mer’ refers to the number of 

nucleobases in the oligonucleotide chain. 
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Table 2:3: Oligonucleotide sequences. 

Oligonucleotide Sequence (5’→3’) 
Backbone 

Molecular Weight 

5’ thiolated di-nucleotide  GG 597 

5’ thiolated 25 mer TGA AGA AAT TCA GTT CAT AGC TTG G 7721 

5’ phosphorylated 10 mer TGC ATT TCG A 3019 

Unmodified 25 mer  TGA AGA AAT TCA GTT CAT AGC TTG G 7721 

5’ biotinylated 18 mer TAT CTG TTC ACC CGA AAG 6145 

5’ biotinylated 24 mer TAT CTG TTC ACC GCA AAT CTG TGG 8000 

 
Deionised water (18 ΩM) was obtained from either an Elga purified water system (High 

Wycombe, Buckinghamshire, UK) or an Elix high purity water system from Millipore 

(Watford, Hertfordshire, UK). Tetramethylammonium hydroxide (TMAH) was from 

Apollo Scientific (Stockport, Cheshire, UK). Tetramethylammonium chloride (TMACl) 

was prepared by adding hydrochloric acid to TMAH until the required pH was obtained. 

Super pure hydrochloric and nitric acid were obtained from Romil (Cambridge, 

Cambridgeshire, UK). Trisodium citrate, sodium chloride, acetic acid, HPLC grade 

methanol, acetonitrile, dithiothreitol (DTT) and ammonium sulfate were obtained from 

Fisher Scientific (Loughborough, Leicestershire, UK). TWEEN-20, citric acid (free acid), 

tris base, N-ethyl-N’-(3-dimethylaminopropyl)carbodiimide (EDC), 5,5’-dithio-bis-(2-

nitrobenzoic acid) and phosphorus buffered saline pouches were obtained from Sigma 

Aldrich (Steinheim, Germany). Ammonium chloride, sodium phosphate monobasic 

(Biochimika), cysteine hydrochloride and EDTA (free acid) was obtained from Fluka 

(Buchs, Switerland). Imidazole was supplied by Alfa Aesar (Karlsruhe, Germany). 

Superdex-75 preparative grade was purchased from Amersham Pharmacia (Uppsala, 

Sweden).   

 

Numerous solid phase extraction (SPE) products were used throughout the investigation. 

C18 SPE and divinylbenzene (DVB) columns were supplied by Alltech (Carnforth, 

Lancashire, UK). Varian (Oxford, Oxfordshire, UK) kindly supplied Bond Elut Jr. PSA 

anion exchange cartridges. 
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2.3 Monomaleimido Nanogold Labelling of Sulfhydryl Modified 

DNA 

2.3.1 Introduction to Monomaleimido Nanogold labelling 

Monomaleimido nanogold (MMN) has a molecular weight of approximately 15 KDa and 

contains a single maleimide ligand, which is covalently attached to an Au core containing 

~80 Au atoms. Only one maleimide functionality is present on the MMN conjugate, which 

reacts specifically with one sulfhydryl group on the biomolecule to provide stoichiometric 

labelling.95 The structure of the probe can be seen in Figure 2:1; details of its synthesis have 

been reported by Jahn96 and Hainfeld et al.,101 The maleimide functionality may react with 

amines above pH 7; therefore, all reactions were carried out at pH < 7 to ensure specific 

sulfhydryl labelling occurred. Since the maleimide functionality hydrolyses in solution, 

MMN was used immediately once dissolved.95 

 

 

                                                                                                                                                                                  

                                                             

N OO

  

Figure 2:1: Monomaleimido Nanogold. 

 
The reaction of MMN with sulfhydryl modified DNA is shown in the schematic in Figure 

2:2. Although the emphasis is on sulfhydryl labelled nucleic acids, sulfhydryl containing 

amino acids on peptides can also be labelled with MMN. 
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Figure 2:2: Reaction between sulfhydryl modified DNA and MMN. 

 

The reaction takes place in mild reaction conditions, typically below room temperature 

within 24 hours at pH ~6.5. 

 

2.3.2 Sulfhydryl Derivatisation of DNA 

Although sulfyhydryl modified oligonucleotides are commercially available, it will be 

necessary to incorporate the reactive group in-house if the technique is to have an 

application in bioanalysis. An article by Ghosh et al.,107 detailed a procedure for modifying 

the 5’ terminal phosphate of nucleic acids to a sulfhydryl group. The reaction steps are 

summarised below in Figure 2:3 and Figure 2:4.107 The actual nucleic acid modification 

was achieved using the method reported by Ghosh, however, two methods of separating the 

stage 1 and stage 2 products were investigated. The first method employed gel filtration and 

the second method used anion exchange SPE. The latter separation method also employed 

 HO 
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5’ sulfhydryl modified DNA MMN 

MMN-DNA conjugate 
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tris(carboxyethyl)phosphine (TCEP) as an alternative reducing agent to dithiolthreitol 

(DDT). Both methods will be discussed. 

 

Stage 1 of the derivatisation required 0.1 M imidazole, 0.15 M EDC and 0.25 M cystamine 

at pH 6.5. EDC and imidazole help form a reactive ester, which then facilitates the 

formation of a covalent bond between the terminal phosphate of the nucleic acid and the 

primary amine of cystamine. The reaction was allowed to proceed at 23 oC for 16 hours.  
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Figure 2:3: Stage 1 of the sulfhydryl derivatisation reaction. 

 

Stage 2 of the reaction involved cleaving the disulfide on the cystamine residue to yield a 

reactive sulfhydryl group. Reduction was carried out with either DDT or TCEP. Both 

reagents resulted in cleavage of the disulfide bonds within 60 minutes, although it will be 

discussed later that TCEP was the preferred reducing agent. 
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Figure 2:4: Stage 2 of the sulfhydryl derivatisation reaction. 

 

Thus, 16 nmoles of 5’-phosphorylated 10 mer were added to 0.6 ml of a solution 

containing; 0.25 M cystamine, 0.15 M EDC and 0.1 M imidazole. The reaction mixture was 

incubated at 23 oC for 16 hours in a heated water bath. The resulting stage 1 product 
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(oligonucleotide-cystamine derivative) was then purified on a Sephadex G-10 column to 

remove excess reagent from the product. The eluent used for purification consisted of    

0.15 M ammonium chloride and 1 mM EDTA, pH 6.3. The gel filtration purification was 

not used by Ghosh et al,107 but developed here to purify the stage 1 and stage 2 products. 

The gel filtration media and column was prepared by suspending 2 g of Sephadex G-10 

media in ~10 ml of deionised water. The suspension was allowed to stand for at least 3 

hours at room temperature, after which time the suspension was poured in one slow motion 

into a plastic column (1 cm diameter x 7 cm). Deionised water was passed through the 

column until the column bed level settled. Equilibration of the column with 5-10 column 

volumes of buffer (0.15 M ammonium chloride and 1 mM EDTA, ~pH 6.3) was then 

carried out prior to sample purification.  Sephadex G-10 has a molecular weight cut-off 

below 700 Da, resulting in the oligonucleotide (MW ~3019) eluting first near the void 

volume and the reactants being retained on the column. The stage 1 product was collected 

as it eluted from the column and was mixed with a reducing agent containing 0.1 M DTT, 

0.15 M ammonium chloride and 1 mM EDTA, pH 8.3. The reduction was carried out at   

23 oC for 1 hour. DTT cleaves the disulfide bond present in the stage 1 product 

(oligonucleotide-cystamine derivative) to produce the stage 2 product, namely the 5’-

sulfhydryl modified 10 mer. The stage 2 product (sulfhydryl modified oligonucleotide) was 

then separated on a Sephadex G-10 column as discussed above. 

 
During the gel filtration purification steps carried out on the stage 1 and 2 products, the 

column outlet was connected to the inlet of a variable wavelength UV detector. The UV 

detector outlet was then connected to the back of the ICP nebuliser, so both UV and MS 

data were collected during the purification of both steps. This was carried out to confirm 

the elution of the oligonucleotides. A schematic of the instrumentation set up is illustrated 

in Figure 2:5. The PQ ExCell ICP-MS instrument was employed during the gel filtration 

purification; refer to Table 2:1 for instrument parameters. The collision cell was employed 

with oxygen collision gas, so the oxides of P and S at m/z 47 and 48 respectively were 

detected. The P signal was monitored to confirm the elution of the oligonucleotide species 

and the S signal confirmed the elution of the stage 1 product (oligonucleotide-cystamine 

species) and excess unreacted cystamine and DTT in the reaction mixture.  
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Figure 2:5: Instrument set up. 

 
It was established that gel filtration was slow, time consuming and an inefficient method of 

sample purification. There was evidence that the excess cystamine was not being resolved 

from the DNA, this will be explained in more detail in the results section. As a result of 

these limitations, alternative separation procedures were investigated and anion exchange 

SPE was chosen for separation of the stage 1 and stage 2 product. An alternative reducing 

agent was also investigated.  

 

Anion Exchange Separation and TCEP Reduction. 

Anion exchange SPE was thought to be a good method of separation, since the modified 

oligonucleotide would be retained on the phase, whilst the excess reagents would be eluted 

with very little retention. This method of separation was less time consuming since the 

phase was pre-prepared and did not require extensive equilibration prior to use like gel 

filtration. Varian PSA Bond Elute Jr. phases were employed for the separation steps, the 

method is summarised in Figure 2:6. The Varian PSA phase was chosen because it 

consisted of ethylenediamine-N-propyl anion exchange resin, which contained two amine 

groups: primary amine (pKa 10.1) and a secondary amine (pKa 10.9), thus providing higher 

capacity.108 Highly polar compounds were not retained strongly on the phase due to its high 

carbon content, which provided good recovery for oligonucleotides.108  
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1) Phase conditioned with 2 ml methanol followed by 2 ml deionised water. 
   Deionised water conditioning step collected. 

 
 

2) Sample applied to the phase. 
Column effluent collected as sample was applied to the phase. 

 
 

3)  Phase washed with 2 ml deionised water. 
Wash fraction collected. 

 
 

4) Elution with 0.3 M citric acid + 0.1 M ammonium chloride or 1.5 M TMACl. 
             Elution fraction collected. 

 

Figure 2:6: Anion exchange SPE separation method for modified oligonucleotides. 

 
The column eluents resulting from steps 1-4 of the separation were all collected and 

analysed by UV/vis to confirm the presence of the oligonucleotide. The deionised water 

phase conditioning step (step 1) was analysed to ensure the phase was not contaminated 

with any absorbing species that may have interfered with DNA detection. A UV spectrum 

of the sample application fraction (step 2) confirmed that the analyte was not eluting 

immediately upon application to the phase. The eluent resulting from the water wash stage 

(step 3) confirmed that the oligonucleotides were retained and finally the eluent from step 4 

confirmed the elution of the nucleic acids from the phase. The above separation method 

was employed for both the separation of the stage 1 (oligonucleotide-cystamine species) 

and the stage 2 (sulfhydryl modified oligonucleotide) product. Eluents containing 1.5 M 

TMACl or 0.3 M citric acid and 0.1 M ammonium chloride were chosen, since both 

solutions had high ionic strength that was thought to be relatively ICP-MS compatible and 

sodium salts were avoided. 

 

DTT is commonly used for cleaving disulfide bonds to form the reactive sulfhydryl group. 

However, this reagent contains thiol groups, which would have competed with the thiolated 

DNA for maleimide, if not completely removed from the sample prior to labelling. As a 

result, TCEP was used in the second stage of the reaction. TCEP is an effective reducing 

reagent, resulting in cleavage of disulfide bonds and avoids the problems associated with 
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DTT. The structure of TCEP and its mechanism of action is shown in Figure 2:7. TCEP 

immobilised on agarose beads is more effective than DTT and it is not mandatory to 

remove the reducing agent before adding the MMN since it does not contain thiol groups. 

However, some studies have reported that the presence of TCEP does reduce the efficiency 

of maleimide-sulfhydryl cross-linking reactions to a certain degree.109 TCEP is also 

effective at a wider range of pH values, whereas DTT should only be used at pH >8.109 By 

employing TCEP immobilised on agarose beads, the oligonucleotides were reduced in one 

step and then easily removed from the immobilised reducing agent by centrifugation. Slow 

inefficient gel filtration methods were therefore avoided.  
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Figure 2:7: a) TCEP structure and b) mechanism for disulfide reduction.
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The stage 1 product (oligonucleotide-cystamine species) was prepared in the same way as 

discussed above (0.1 M imidazole, 0.25 M cystamine and 0.15 M EDC, 23 oC for 16 

hours). After the 16 hour reaction period, a 0.5 ml aliquot of the stage 1 product was 

separated on the SPE phase using the method outlined in Figure 2:6. Following separation, 

a 0.5 ml aliquot of the separated stage 1 product was then added to 0.5 ml immobilised 

TCEP gel and allowed to stand at room temperature for 10 minutes. The suspension was 

then centrifuged at 1000 rpm for 1 minute and the supernatant containing the reduced 

oligonucleotide was removed and applied to a conditioned PSA anion exchange cartridge. 

Separation and elution of the stage 2 product (sulfhydryl modified oligonucleotide) was 

then carried out according the procedure outlined in Figure 2:6. 

 

Since the reducing agent was immobilised on agarose beads, it was easily removed from 

the analyte and there was no chance of the MMN reaction being hindered by other thiols, as 

in the case of DTT. For each mole of disulfide bond broken, two moles of reactive 

sulfhydryl are produced (Figure 2:7). As a result, the anion exchange separation step was 

required to isolate the sulfhydryl modified oligonucleotide and remove the other half of the 

disulfide which also contained a sulfhydryl group. One potential limitation with this 

separation method is that the unreduced oligonucleotides may not be resolved from their 

sulfhydryl modified counterparts. Therefore, UV spectroscopy could not be used to 

calculate reaction efficiency. 

 

Ellman’s assay was employed in an attempt to confirm that sulfhydryl modified 

oligonucleotides were produced during the second stage of the reaction. This is a well 

documented assay that allows the concentration of sulfhydryl groups to be determined. The 

procedure used is outlined below and is a slight modification from the procedure suggested 

by Pierce Biotechnology.111 The S containing amino acid cysteine was used as a standard in 

the determination of free sulfhydryl groups present in the reduced oligonucleotide samples. 

By preparing a range of cysteine standards at a known concentration, a calibration curve 

was prepared and the concentration of sulfhydryl groups present in the second reaction was 

therefore determined. Cysteine hydrochloride standards were prepared in a 0.1 M sodium 

phosphate buffer containing 1 mM EDTA, pH 8. The standards were prepared in the 
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concentration range 1-20 µM. Ellman’s reagent (5,5’-dithiolbis(2-nitrobenzoic acid) or 

DTNB) was prepared at a concentration of 4 mg ml-1 in the sodium phosphate buffer.  

 

The mechanism of the assay is illustrated in Figure 2:8. DTNB (Ellman’s reagent) reacts 

with free sulfhydryl groups in solution to form a mixed disulfide by-product and thio-bis-

(2-nitrobenzoic acid) (TNB). The TNB product is yellow in colour and absorbs at 412 nm. 

Thus, by measuring the absorbance of the standard cysteine solutions containing DTNB at 

412 nm, calibrations were carried out. 
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Figure 2:8: Mechanism of Ellman's assay.
111

 

 
The standard solutions were prepared by mixing 0.5 ml sodium phosphate buffer with    

250 µl cysteine standard solution and 50 µl DTNB. The solutions were mixed and allowed 

to stand for 15 minutes at room temperature, before the absorbances of the resulting 

standard solutions were measured at 412 nm. A calibration curve was then plotted. 

 

DTNB (Ellman’s Reagent) 

TNB 2- 
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The unknown solutions were also prepared by mixing 0.5 ml sodium phosphate buffer with 

250 µl sample and 50 µl DTNB. Incubation for 15 minutes at room temperature was also 

carried out for the samples to be determined. By calculating the concentration of sulfhydryl 

groups expected, the efficiency of the reaction could be determined.  

 

2.3.3 Method of Labelling 

2.3.3.1 Labelling of Di-nucleotides 

Di-nucleotides have a very important role in cancer research studies, which will be 

discussed in detail in Chapter 3. As a result, the MMN labelling method commenced with 

5’ thiolated di-nucleotides. Although di-nucleotides containing 5’ thiol functionality were 

commercially available, they were provided in the disulfide form. As a result, the disulfide 

bond required cleaving with the aid of a reducing agent to obtain the reactive sulfhydryl 

group. Thus, a 100 µl aliquot of 5’ disulfide di-nucleotide (100 µM) was added to 100 µl of 

reducing agent which contained: 0.1 M DTT + 1 mM EDTA + 0.15 M ammonium chloride, 

pH 8.3. The mixture was allowed to stand for one hour at room temperature before an 

aliquot of the reduced di-nucleotide was purified by gel filtration. A Sephadex G-10 gel 

filtration column (7 cm x 1 cm) was used to remove excess DTT. As stated previously, 

removal of excess DTT is necessary to avoid the reagent competing with the functionalised 

oligonucleotide for maleimide sites and adversely effecting the MMN labelling reaction.  

 

The gel filtration media and column used for DTT removal was prepared as discussed 

previously in section 2.3.2. The column outlet was connected to a variable wavelength UV 

detector with peristaltic pump tubing. A peristaltic pump operating at approximately       

200 µl min-1 pumped eluent from the column into the UV detector. The detector outlet was 

connected directly to the back of the ICP-MS nebuliser (see experimental set-up in Figure 

2:5). The column was equilibrated with 0.15 M ammonium chloride + 1 mM EDTA, pH 

6.3. After an adequate equilibration time, a 100 µl aliquot of the di-nucleotide (50 µM) + 

DTT mixture (0.1 M DTT + 0.15 M ammonium chloride + 1 mM EDTA, pH 8.3) was 

injected on the top of the column. The UV detector was set to 260 nm, whilst the PQ 
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ExCell ICP-MS measured m/z 47 and 48 (see Table 2:1 for operating conditions). Table 2:4 

summarises the gel filtration operating conditions.  

Table 2:4: Instrument operating conditions for di-nucleotide desalting. 

Parameter Setting 

Column flow rate 200 µl min-1 

Eluent 0.15 M ammonium chloride + 1 mM EDTA, pH 6.3 

UV detector wavelength 260 nm 

 
Once it was confirmed by ICP-MS that the di-nucleotide and DTT were resolved on the gel 

filtration column, the purified di-nucleotide was collected from the column outlet as it 

eluted, and added to MMN. The MMN was supplied lyophilised and was dissolved in     

200 µl deionised water to yield 6 nmoles of MMN in phosphate buffered saline (PBS-20 

mM phosphate, 150 mM NaCl), pH 6.5. The MMN contained phosphate buffer, which may 

interfere with the di-nucleotide phosphate signal, so the chromatographic method used for 

the MMN-DNA conjugate purification had to resolve the phosphate buffer from the di-

nucleotide. A 100 µl aliquot of the separated di-nucleotide fraction was added to 150 µl 

MMN and stored at 4 oC for approximately 20 hours. These reaction conditions were 

recommended by the manufacturer of the MMN 95 and similar conditions were employed 

by other research groups.92 Before the di-nucleotide was added to the MMN solution, a    

50 µl aliquot of MMN was taken and diluted 100 fold with deionised water and used as a 

retention time marker for HPLC-ICP-MS. In addition, a sample containing the di-

nucleotide only at a concentration of 10 µM was also prepared and used as a retention time 

marker. The HPLC operating conditions used for the separation of the conjugates are 

shown in Table 2:5; any amendments to the conditions shown will be stated were 

appropriate.  
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Table 2:5: HPLC conditions used in the purification of di-nucleotide-Au conjugates. 

Stationary phase TSKgel-DNA-NPR, 4.6 mm x 7.5 cm, 2.5 µM 

Mobile phase A: 5 mM or 20 mM Tris-HCl, pH 9 

B: 5 mM or 20 mM Tris + 0.1 M ammonium chloride, pH 9 

Gradient    Time (mins)                     %B 

           0                               0  

           3                               0 

          15                             100   

Flow rate 0.5-0.7 ml min-1 

Injection volume 10 µl 

Stop time 15 minutes 

Post time 4 minutes 

Wavelength 260 nm 

 

2.3.3.2 Labelling of 25 mer Oligonucleotides 

Thiol modified di-nucleotides were initially chosen in this investigation due to their 

relevance in cancer research studies (see Chapter 3). However, these short chain 

oligonucleotides were commercially supplied in the disulfide form, so a reduction step was 

necessary to yield the reactive sulfhydryl group. These sample preparation procedures, 

which were described above were long and tedious, so longer chain 25 mers were also 

investigated. The longer oligonucleotides were supplied as the reactive sulfhydryl form and 

were received in an inert Ar environment, to prevent re-oxidation of the sulfhydryl groups 

to the disulfide. Thus the DTT reduction step was not required. Using the pre-

functionalised oligonucleotides helped confirm that the labelling method was viable.  

 

The labelling procedure involved re-suspending the dried 5’ sulfhydryl modified 

oligonucleotide in deionised water to a concentration of 10 µM. The stock oligonucleotide 

solutions were stored in the freezer, whilst the 10 µM working solutions were stored in the 

refrigerator to avoid repetitive freeze-thawing and accelerated degradation of the nucleic 

acids. The refrigerated oligonucleotide solutions were used within one week of preparation 

due to long term instability once in solution.112 An 80 µl aliquot of 5’-thiol modified 25 

mer (10 µM) was mixed with 150 µl MMN (30 µM). The reaction mixture therefore 

contained 0.8 nmoles DNA (3.5 µM) and 4.5 nmoles MMN (19.6 µM), resulting in a 5.6 
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fold molar excess of MMN. The mixture was allowed to react for approximately 20 hours 

at 4 oC.  

 

The separation and analysis of the MMN-oligonucleotide conjugates was initially carried 

out using on-line anion exchange HPLC, but here the peaks containing the unbound and 

bound MMN were fraction collected off-line and then analysed by ICP-MS. There are 

several reasons for avoiding on-line separations with ICP-MS; the main reason being that 

the mobile phases used for anion exchange chromatography are not always compatible with 

ICP-MS due to the high salt content. High salt levels may cause the nebuliser to become 

blocked, as well as coating the multipoles and ion optics within the instrument. The basic 

HPLC conditions used for the separation of MMN-25 mer conjugates was identical to that 

outlined in Table 2:5. However, the mobile phases used were of higher ionic strength and 

the gradient was modified as shown in Table 2:6. 

Table 2:6: MMN-25 mer conjugate separation method. 

Stationary phase TSKgel-DNA-NPR Guard column 4.6 mm x 0.5 cm, 2.5 µM 

Mobile phase A:20 mM Tris-HCl, pH 8 

B:20 mM Tris + 0.1 M ammonium chloride + 0.3 M citrate 

pH 8 

Gradient Time (mins)                     %B 

         0                               10 

        10                              90 

        12                              90   

Flow rate 1 ml min-1 

Stop time 12 minutes 

Post time 4 minutes 

Injection volume 5 µl 

Column temperature Room temperature 

Wavelength 260 nm 

 
A TSKgel-DNA-NPR guard column with a 0.5 cm length phase was used for the separation 

of the conjugates. The short length phase resulted in speedier run times, and elution of the 

oligonucleotides occurred at lower salt concentrations than those used with the longer 

analytical column.  
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Optimisation of Reaction Conditions 

Once MMN tagging was achieved, it was necessary to establish the optimum reaction 

conditions. The reaction conditions outlined above were recommended by the 

manufacturer95 and were utilised by other researchers,92 but it was unknown whether the 

reaction proceeded better at slightly higher temperatures (without compromising the 

stability of the probe). The optimum reaction time was another factor that needed to be 

established. As a result, reaction optimisation experiments were carried out, which involved 

preparing two reactions, both containing 6 nmoles MMN (200 µl) and 1 nmole 5’ 

sulfhydryl 25 mer (10 µl). The final concentration of MMN and 25 mer in the reaction 

mixtures was 28.6 µM and 4.8 µM respectively. One of the reactions was stored at 4 oC and 

the other reaction was kept at room temperature. At time intervals of 1, 5, 10, 24, and 48 

hours after the reaction mixtures were prepared, a 30 µl aliquot was taken from the reaction 

vial and diluted to 300 µl with 20 mM tris-HCl, pH 8. The diluted aliquots were then 

separated by HPLC using the conditions outlined in Table 2:6 to resolve the bound and 

unbound MMN. Two further reactions were also prepared, both contained 2.25 nmoles 

MMN and 0.5 moles of DNA, resulting in a 4.5 fold molar excess of MMN. Again one 

reaction was stored at 4 oC and the other at room temperature. These two reactions were 

allowed to proceed for 65 hours before being diluted (50 µl reaction mixture to 500 µl tris-

HCl buffer), separated and fraction collected. During the separation step, the column 

effluent was collected between 0-0.5 minutes (fraction 1) and 7-7.5 minutes (fraction 2). 

These two fractions contained unbound MMN and DNA bound MMN respectively. The 

collected fractions were then diluted further before the Au was determined by ICP-MS. The 

PQ ExCell instrument was used for all Au determinations in the MMN labelling 

experiments.   
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2.4 Results of Monomaleimido Nanogold Labelling 

2.4.1 Sulfhydryl Derivatisation 

As stated in Section 2.3.2, both UV and ICP-MS data were obtained during the gel 

filtration purification of the stage 1 (oligonucleotide-cystamine species) and stage 2 

(sulfhydryl modified oligonucleotide) products of the sulfhydryl modification. The 31P16O 

signal obtained from the ICP-MS confirmed the elution of the unmodified oligonucleotide 

and the oligonucleotide derivatives. Likewise, the elution of the oligonucleotide-cystamine 

species (stage 1 product) could be further confirmed by the 32S16O signal, since the stage 1 

product contained both P and S. The elution of cystamine was also detected by the ICP-MS 

at m/z 48. Figure 2:9 shows the 31P16O and 32S16O ICP-MS data obtained during a stage 1 

purification step. The stage 1 reaction mixture was diluted 50 fold prior to injection on the 

column. It should also be noted that the two sets of data shown in Figure 2:9 were from the 

same sample; both the 31P16O and 32S16O signals were measured simultaneously during 

separation. 
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Figure 2:9: a) 

31
P

16
O signal intensity and b) 

32
S

16
O signal intensity during the stage 1 (oligonucleotide-

cystamine species) gel filtration purification step. Eluted with 0.15 M ammonium chloride and 1 mM 

EDTA, pH ~6.3, 200 µl injection volume. 

 
The 31P16O signal (Figure 2:9a) exhibited a peak between ~12-23 minutes which 

corresponded to the eluting 10 mer oligonucleotide. However, this peak actually appeared 

a 

b 

16 minutes 17.5 minutes 

17 minutes 
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to be two peaks co-eluting, the first peak at ~16 minutes and a second at ~17.5 minutes. 

The first peak at 16 minutes was likely to be the Stage 1 product (oligonucleotide-

cystamine species), since it had a larger molecular weight than the unmodified 10 mer. The 

second peak at 17.5 minutes was probably unmodified 10 mer, since this was the lighter 

oligonucleotide species. The 32S16O signal (Figure 2:9b) showed a small increase in 

response between 15-17.5 minutes and then a huge response between 17.5-30 minutes. The 

small rise in 32S16O signal intensity observed between 15-17.5 minutes corresponded to the 

first 31P16O peak at 16 minutes, which was thought to be the oligonucleotide-cystamine 

species. These two sets of data suggested that the stage 1 product was eluting between 15-

17 minutes, since the oligonucleotide-cystamine species contained both P and S. The 

excess S containing reagents eluted from approximately 18 minutes onwards. Note how the 

signal intensities of the two sets of data vary. The 31P16O counts were quite low compared 

to the huge 32S16O response, in which an excess of 500 000 counts per second (cps) was 

observed. This was due to the large excess of cystamine (9000 fold excess of cystamine) 

that was used in the reaction. The UV data supported the 31P16O data and is shown in 

Figure 2:10. 
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Figure 2:10: UV chromatogram during the stage 1 (oligonucleotide-cystamine species) gel filtration 

purification step. Eluted with 0.15 M ammonium chloride and 1 mM EDTA, pH ~6.3, 50 µl injection 

volume, 25 pmoles of oligonucleotide. 

 
Only one peak was observed in the UV chromatogram of the stage 1 purification step 

(Figure 2:10). However, the ICP-MS data suggested that more than one oligonucleotide 

species eluted from the column, with the stage 1 product eluting at approximately 16 

minutes. All three sets of data show that the modified oligonucleotide was not totally 

resolved from the excess cystamine in the reaction mixture. The lack of resolution was 

most obvious in Figure 2:10, where only one peak was observed at 260 nm. 

 

The stage 1 reaction was repeated but in the absence of EDC, the aim was to see what 

effect the reagent had on the first reaction step. Figure 2:11 shows the UV chromatogram of 

the stage 1 reaction mixture at 260 nm during separation of a Sephadex G-10 gel filtration 

column. 
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Figure 2:11: Chromatogram at 260 nm of the stage 1 product (oligonucleotide-cystamine species) in 

absence of EDC during gel filtration separation. Eluted with 0.15 M ammonium chloride and 1 mM 

EDTA, pH ~6.3, 50 µl injection volume, 25 pmoles oligonucleotide.  

 

Note how two peaks are present in the chromatogram shown in Figure 2:11. The first peak 

at 17 minutes was extremely small and corresponded to the retention time of the stage 1 

product (oligonucleotide-cystamine species), as shown by the 31P16O and 32S16O data in 

Figure 2:9. The second peak at 23 minutes corresponded to the excess reagents. Hence, it 

can be confirmed from this data that EDC is essential for the formation of the stage 1 

product.  

 

Figure 2:12 shows the ICP-MS data obtained for 31P16O and 32S16O during the gel filtration 

of the stage 2 product (sulfhydryl modified oligonucleotide). The 31P16O signal (Figure 

2:12a) revealed oligonucleotide elution between 13 and 25 minutes. However, like with the 

first stage product, the second stage product appeared to have more than one peak present, 

suggesting more than one type of oligonucleotide was eluting. The first peak at 16 minutes 
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was thought to be the stage 1 product (oligonucleotide-cystamine species), which had not 

been reduced by DTT, whilst the second co-eluting 31P16O peak at 21 minutes was thought 

to be the sulfhydryl modified 10 mer (stage 2 product). Therefore, the second 31P16O peak 

was required for the subsequent MMN labelling reaction. 
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Figure 2:12: a)

 31
P

16
O Signal intensity and b) 

32
S

16
O signal intensity during the gel filtration purification 

of the stage 2 product (sulfhydryl modified oligonucleotide). Eluted with 0.15 M ammonium chloride 

and 1 mM EDTA, pH ~6.3.  
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The 32S16O MS data (Figure 2:12b) revealed that the elution of excess DTT occurred at 

approximately 30 minutes, Suggesting the oligonucleotide and excess DTT were well 

resolved. As a result, DTT should not interfere with the MMN labelling reaction. Two other 
32S16O peaks were expected at approximately 16 and 21 minutes, corresponding to the stage 

1 and stage 2 modified oligonucleotides. Both these olignucleotide species would have 

contained S, but no signal was observed in the 32S16O chromatogram. One explanation for 

this is that the S concentration would have been too low for detection.  

 

The UV chromatogram corresponding to the stage 2 (sulfhydryl modified oligonucleotide) 

purification is shown in Figure 2:13. The first peak at ~15 minutes coincided with the first 
31P16O peak observed in the MS data, which was thought to be the unreduced 

oligonucleotide-cystamine derivative (stage 1 product). The second UV peak at ~20 

minutes coincided with the remaining 31P16O signal, which probably corresponded to the 

stage 2 product (sulfhydryl modified oligonucleotide). The third peak in the UV 

chromatogram at 28 minutes onwards corresponded to the excess DTT. Again this was in 

good agreement with the ICP data, which showed a very high signal for 32S16O eluting from 

the column from approximately 30 minutes onwards. 
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Figure 2:13: UV chromatogram at 260 nm of stage 2 (sulfhydryl modified oligonucleotide) gel filtration 

purification. 0.15 M ammonium chloride and 1 mM EDTA, pH ~ 6.3. 

 
Figure 2:12 and Figure 2:13 both show that more than one oligonucleotide species eluted 

from the phase. It has been established that the stage 1 product (unreduced oligonucleotide-

cystamine species) eluted at approximately 15 minutes and the stage 2 product (sulfhydryl 

modified oligonucleotide) eluted at ~21 minutes. However, the stage 1 oligonucleotide 

peak at 15 minutes was larger than the stage 2 oligonucleotide peak, suggesting that not all 

the stage 1 product was being reduced by DTT. The reason for this was attributed to the pH 

of the reducing DTT mixture. It has been documented that DTT is more effective at pH 

>8.109, 110 However, in the above experiments, the first stage reaction mixture was being 

eluted from the gel filtration column with a buffer at pH 6.3. The collected stage 1 species 

was then used directly in the reduction step. Although the DTT mixture was adjusted to pH 

8.5, the addition of the stage 1 species at pH 6.3 may have decreased the pH below 8. Thus, 
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the effectiveness of the DTT was compromised. To overcome this problem, the stage 1 

product (oligonucleotide-cystamine species) was eluted from the gel filtration column with 

a buffer at pH 8.3. The modified oligonucleotide fraction was then collected from the 

column and added to the DTT reducing solution, which was also at pH 8.3. Upon 

separating the stage 2 product, the second peak (sulfhydryl modified oligonucleotide) was 

larger than the first. The UV chromatogram for this separation is shown in Figure 2:14 and 

suggests that the pH of the reducing agent was critical, for maximum disulfide reduction, a 

pH >8 was required. 

 

 
 

Figure 2:14: UV chromatogram at 260 nm of the stage 2 (sulfhydryl modified oligonucleotide) reaction 

mixture after reduction with DTT at pH 8. 

 
Anion Exchange Separation of Modified Oligonucleotides 

Before the SPE separation method was applied to the sulfhydryl derivatised 

oligonucleotides, the retention and elution of unmodified oligonucleotides was assessed on 

the Varian PSA phase. Briefly, a solution containing 5 µM of unmodified 25 mer 
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oligonucleotide was prepared in deionised water, and the UV spectrum of the sample was 

taken between 200-400 nm. A 1 ml aliquot of the sample was then applied to a conditioned 

SPE phase, which was subsequently washed with 1 ml deionised water. Elution of the 

oligonucleotide was then achieved with 2 ml TMACl (1.5 M). Figure 2:15 shows the 

overlaid UV spectra corresponding to the column eluent resulting from the phase 

conditioning step, sample application step, deionised water wash and TMACl elution.  

 

Figure 2:15: Overlaid UV spectra of column eluents during various stages of a 25 mer oligonucleotide 

anion exchange SPE separation.  

 
From the UV data in Figure 2:15, it was calculated that 94% of the oligonucleotide was 

recovered from the phase during TMACl elution, confirming that the oligonucleotide was 

retained on the anion exchange phase, but more importantly the oligonucleotide was easily 

eluted with a high ionic strength mobile phase with good levels of recovery. Once it was 

confirmed that the phase was adequate at retaining oligonucleotides, and that the nucleic 
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acids could be eluted with relative ease, the separation method was applied to the 

sulfhydryl derivatised oligonuleotides.  

 

The stage 1 reaction mixture (oligonucleotide-cystamine species before reduction, 0.5 ml) 

was injected onto a conditioned SPE cartridge and the phase was washed with 2 ml 

deionised water to remove the excess un-reacted reagents. Elution of the modified 

oligonucleotide was then achieved using 1.5 ml buffer containing 0.1 M ammonium 

chloride and 0.3 M citric acid, pH 7. The eluent was originally 1.5 M TMACl (Figure 

2:15), but high background absorbance’s were encountered which was attributed to the 

reagent being contaminated. Therefore, the eluent was changed to 0.3 M citric acid and   

0.1 M ammonium chloride, pH 7. The wash step and oligonucleotide elution fractions were 

collected and analysed by UV/vis spectroscopy to confirm the elution of the reagents. 

Figure 2:16 shows the overlaid UV/vis spectra of the: phase conditioning step (step 1), 

sample application (step 2), deionised water wash step (step 3) and the oligonucleotide 

elution step (step 4). The spectrum from the phase conditioning step revealed that there was 

no absorbing species from the phase that may have interfered with the DNA detection. The 

spectrum corresponding to the sample application step (eluent collected during sample 

application) revealed that no analyte was eluted immediately upon application to the phase. 

The deionised water wash eluent had a very high absorbance below 300 nm, which was a 

consequence of the EDC and imidazole. Distinctive maxima at 257 nm can be seen in the 

citric acid, ammonium chloride elution step which corresponded to the oligonucleotide.  
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Figure 2:16: Overlaid UV spectra of column eluents during various stages of anion exchange SPE of the 

stage 1 product (oligonucleotide-cystamine species), DNA concentration ~9 µM. 

 
The separated oligonucleotide from the stage 1 reaction was collected and reduced with the 

TCEP reducing beads to form the reactive sulfhydryl oligonucleotides. The reduced 

oligonucleotides were then separated on the anion exchange SPE cartridges as discussed 

above. The overlaid UV spectra in Figure 2:17 shows the phase conditioning step, sample 

application, deionised water wash step and the citrate, ammonium chloride elution step 

which resulted in elution of the modified DNA. Anion exchange separation of the 

oligonucleotides appeared to be successful, however, from these spectra it could not be 

confirmed whether the phosphate groups were actually converted to the sulfhydryl form.  

Citrate, 
ammonium 

chloride elution 

DI wash 

Sample 
application 

Phase 
conditioning 

Wavelength (nm) 

A
bs

or
ba

nc
e 

(A
U

) 



110 

 
 

Figure 2:17: Overlaid UV spectra of column eluents during various stages of anion exchange SPE of the 

stage 2 product, DNA concentration ~2 µM. 

 

Figure 2:17 clearly shows that DNA was eluted in the citrate, ammonium chloride elution 

steps. The recovery of the oligonucleotide from the phase was calculated to be 100% and 

86% for the stage 1 and stage 2 separations respectively. This suggested that very little 

oligonucleotide was lost during the separations. However, the reaction efficiency for both 

stages was not calculated.  

 

Ellman’s assay was assessed for its suitability in confirming the presence of sulfhydryl 

groups in the sulfhydryl modified oligonucleotide sample. The concentration of sulfhydryl 

groups could then be calculated, allowing the reaction efficiency to be determined. The 

linearity of the cysteine calibration curves were quite poor, which was attributed to the very 

low absorbance readings obtained from the low concentration cysteine standards (typical 

absorbance readings ranged from 0.018-0.044 AU for a 1-20 µM cysteine calibration). In 

Citrate, 
Ammonium 
chloride 

DI 
wash 

Sample 
application 

Phase 
conditioning 

A
bs

or
ba

nc
e 

(A
U

) 

Wavelength (nm) 



111 

all cases, the calculated concentration of sulfhydryl groups in the samples was much higher 

than expected. The procedure that was followed recommended preparing calibration curves 

in the concentration range 0.1-10 mM cysteine.111 Since the concentration of sulfhydryl 

groups in this particular investigation was anticipated to be much lower than 0.1-10 mM, 

the calibration was prepared in the range 1-20 µM cysteine. Therefore, it was decided that 

Ellman’s assay was not suitable for the determination of very low levels (µM range) of 

sulfhydryl groups used here, and that 1-20 µM was probably below the assay limit of 

detection, hence spurious results were obtained.111  

 

2.4.2 Labelling Results 

2.4.2.1 Labelling of Di-nucleotides 

As discussed in section 2.3.3.1, the disulfide modified di-nucleotides were reduced with 

DTT; the reduced oligonucleotides were then separated from excess DTT by gel filtration 

before being added to MMN. The separation of unbound MMN and MMN labelled di-

nucleotides in the resulting reaction mixture was carried out with the TSKgel-DNA-NPR 

analytical column (7.5 cm x 4.6 mm), which was coupled directly to an ICP-MS 

instrument. Prior to injection, a 100 µl aliquot of the di-nucleotide-MMN tagging mixture 

was diluted with the same volume of deionised water in a micro HPLC vial. The diluted 

reaction mixture was then injected directly onto the anion exchange column. Figure 2:18 

shows the HPLC-ICP-MS data, corresponding to 31P16O and 197Au signals observed during 

the separation of the MMN-di-nucleotide tagging reaction mixture.  
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Figure 2:18: 

197
Au and 

31
P

16
O signal intensity during separation of the MMN-di-nucleotide tagging 

reaction mixture. TSKgel-DNA-NPR 7.5 cm x 4.6 mm column, mobile phase A = 20 mM tris-HCl, pH 9, 

B = 20 mM tris + 0.3 M citrate and 0.1 ammonium chloride, pH 9. 0 mins = 0% B, 2 min = 0% B, 15 

min = 100% B, 17 min = 100% B. Flow rate = 0.7 ml min
-1

, 10 µl injection volume. 

 

From Figure 2:18, it appears that there were three Au peaks at 0.87, 1.27 and 6.67 minutes. 

However, it was realised that in fact there were only two Au peaks, the first two Au signals 

at 0.87 and 1.37 minutes were actually part of the same peak. The sample was not diluted 

enough before injection, hence the Au signal intensity exceeded the detector threshold    

(>5 000 000 cps), at the peak apex, which resulted in a signal intensity of zero being 

recorded around the peak apex, thus giving the appearance of two peaks. Therefore, the 

first Au peak (0.87 and 1.37 minutes peaks combined) was very broad with the width at the 

base ~5 minutes. The Au signal did not return to baseline level and even increased further 

at ~9 minutes. The erratic, elevated baseline and broad Au peak may have resulted from 

overloading the column with MMN. The Au peak at 6.67 minutes was not reproducible and 

could not be explained; suggesting that this signal was an artefact. At 1.25 minutes, a 
31P16O peak was observed. At this stage it was unknown whether the 31P16O peak was due 

to the di-nucleotide or the phosphate buffer that was present in the MMN. UV data was also 

197Au 

31P16O 
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collected during the separation, however, only the first Au peak at 0.87 minutes was 

detected by the UV detector. 

 

A lot of unanswered questions were raised from the experiment, namely, why was the Au 

baseline erratic, what was the identity of the 31P16O peak and the cause of the spurious Au 

peak at 6.67 minutes. As a result, the procedure was repeated again, but some amendments 

to the separation and detection method were made. The disulfide modified di-nucleotide 

was reduced and purified by gel filtration as discussed previously. But, to ensure the correct 

fraction was collected from the column during the separation of the di-nucleotide and DTT, 

the gel filtration column was connected to both a UV detector and ICP-MS. Thus, the UV, 

P and S signals were monitored simultaneously during purification to ensure that the 

correct oligonucleotide fraction was being used for MMN labelling. Figure 2:19 shows the 

elemental (31P16O and 32S16O) chromatograms, during the gel filtration separation of the 

sulfhydryl modified di-nucleotide and DTT. 
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Figure 2:19: 
31

P
16

O and 
32

S
16

O signal intensity during the gel filtration separation of sulfhydryl 

modified di-nucleotide and DTT. 
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The sulfhydryl modified oligonucleotide contained both P and S, Figure 2:19 confirmed 

that both P and S were present at approximately 16 minutes, suggesting that the 

olignucleotide eluted at this retention time. However, the S signal dramatically increased 

from 20 minutes onwards due to the excess DTT in the reaction mixture. As a result, great 

care was needed to ensure that the sulfhydryl modified di-nucleotide was collected but not 

the DTT. For this reason, the oligonucleotide fraction eluting between 11-16 minutes was 

collected for MMN labelling. A 100 µl aliquot of the reduced di-nucleotide was then added 

to 150 µl MMN. The reaction was allowed to proceed at 4 oC for approximately 24 hours. 

 

Before, the reaction mixture was separated and detected by HPLC-ICP-MS, it was diluted 

50 fold in 5 mM tris-HCl and the separation parameters were modified. The ionic strength 

of the HPLC mobile phase was reduced (mobile phase A = 5 mM tris-HCl, pH 9, mobile 

phase B = 5 mM tris + 0.1 M ammonium chloride, pH 9) to ensure that the di-nucleotide 

was retained on the anion exchange resin. The previous experiment resulted in a 31P16O 

peak at 1.25 minutes (Figure 2:18). If this peak was due to the di-nucleotide, then it eluted 

very quickly, but more importantly, it eluted at the same time as the MMN resulting in no 

separation. Reducing the mobile phase ionic strength should ensure that the oligonucleotide 

was retained for longer and thus resolved from the unbound MMN.  

  

The 197Au and 31P16O chromatograms from the repeated tagging experiment are shown in 

Figure 2:20. A large 197Au peak was observed at approximately 1.3 minutes, which 

corresponded to the free unbound MMN. As expected, the MMN had no retention on the 

anion exchange phase, since the neutral nano-particle had no interaction with the positively 

charged amine groups on the non-porous resin. After elution of the unbound MMN, the Au 

signal returned to baseline, but rose again after ~9 minutes and continued rising throughout 

the separation. At 11.8 minutes a small Au peak was observed, which was initially thought 

to correspond to the MMN-di-nucleotide conjugate. However, it was discovered that the 

unlabelled di-nucleotide eluted at 12.8 minutes, suggesting the Au peak at 11.8 minutes 

was not due to the bound di-nucleotide. In addition, a similar Au peak was also observed in 

the blank injection at the same retention time, further confirming that the Au peak at 11.8 

minutes was not due to the labelled oligonucleotide. The large 31P16O peak at 
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approximately 13 minutes was due to a contaminant, either on the column or in the 

injection system. This large signal was observed at exactly the same time in every injection 

and co-eluted with the di-nucleotide. This definitively confirmed the Au peak at 11.8 

minutes was not attributed to the MMN labelled di-nucleotides. 
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Figure 2:20: ICP-MS data for the MMN-di-nucleotide tagging reaction mixture. TSKgel-DNA-NPR  

7.5 cm x 4.6 mm column. Mobile phase A = 5 mM tris-HCl, pH 9 B = 5 mM tris + 0.1 M ammonium 

chloride, pH 9. 0 min = 0% B, 3 min = 0% B, 15 min = 100% B. Flow rate = 0.5 ml min
-1

. 10 µl injection 

volume.  

 
Although the above tagging reaction mixture was diluted 50 fold prior to HPLC-ICP-MS 

analysis, a response exceeding 200 000 counts per second was still obtained for the Au 

peak at 1.3 minutes. Therefore, the rising baseline from 9 minutes onwards could have 

resulted from column overloading. The column was cleaned and repeatedly flushed with 

both high ionic strength eluents, and eluents containing 20% organic solvent in an attempt 

to remove any retained material from the phase. The experiment was then repeated with 

more diluted reaction mixtures in an attempt to avoid overloading the column and elevating 

the baseline.  

197Au 

31P16O 
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The tris-HCl mobile phase was also reconsidered, since it is known that the maleimide 

ligand can become reactive towards primary amines above pH 7. Tris-HCl base 

(tris(hydroxymethyl)aminomethane) contains a primary amine and was used as the HPLC 

eluent at pH 9 throughout the study. The possibility of the tris-HCl buffer reacting with the 

unbound MMN was considered, alternatively, the high pH could have degraded the probe. 

The manufacturer of the probe confirmed that MMN was stable in the presence of amines 

at high pH values once MMN was bound to sulfhydryl groups, hence this should not have 

been an issue. In addition, the maleimide ligand on any unbound MMN would have 

hydrolysed, hence not reacting with the tris base. Despite the manufacturer’s reassurance 

that tris-HCl was suitable for conjugate separation, the separation was repeated using bicine 

buffer (5 mM bicine, pH 9) in place of tris-HCl.  Bicine contains a tertiary amine so should 

not have any reactivity towards MMN. In addition, the pKa value and buffering range of 

bicine is similar to tris-HCl.  Despite these amendments to the procedure, a small rise in Au 

background throughout the separation was still observed, although not as pronounced as 

when tris-HCl was used in the eluent. A key finding was that the small Au peak that was 

previously observed at 11.8 minutes, and was initially thought to be the MMN-di-

nucleotide conjugate, was observed during the separation of the MMN retention time 

marker (no oligonucleotide present). The chromatograms of the MMN retention time 

marker and MMN-di-nucleotide reaction mixture, using the bicine mobile phase are shown 

Figure 2:21.  
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Figure 2:21: a) Au signal during the injection of the MMN retention time marker. b) Au signal intensity 

during separation of the MMN-di-nucleotide tagging reaction mixture. Bicine was employed as an 

eluent for both injections.  

a 

b 
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Despite attempts to ensure the sample preparation procedure was adequate for Au labelling, 

the MMN-di-nucleotide tagging experiments were unsuccessful. The limiting factor to 

success was thought to be the sample preparation procedure, which involved several steps; 

reduction of the disulfide bond with DTT, followed by removal of DTT by gel filtration. 

ICP-MS was used in conjunction with UV detection to ensure the correct olignucleotide 

fraction was being used for MMN labelling. However, gel filtration is a relatively 

inefficient method of sample purification; even trace quantities of DTT in the collected di-

nucleotide fraction may have adversely affected the maleimide-sulfhydryl coupling. Thus, 

the gel filtration separation may not have been sufficient for DTT removal. Reoxidation of 

the sulfhydryl group to yield the disulfide may be another factor that was resulting in poor 

tagging results. Reformation of the disulfide bond can occur by exposing the 

oligonucleotide to the atmosphere. Trace metal ions can also aid reformation of the 

disulfide, although 1 mM EDTA was added to the gel filtration eluent and reaction buffer 

to complex any divalent metal ions that could have potentially reoxidised the 

oligonucleotide. The oligonucletides had an approximate retention time of 20 minutes. The 

formation of disulfide bonds between oligonucleotides to produce di-nucleotides bridged 

by a disulfide bond would have rendered the di-nucleotides un-reactive upon elution. 

 

2.4.2.2 Labelling of 25 mer Oligonucleotides 

The 25 mer labelling reactions were more successful than those for the di-nucleotides. The 

25 mer oligonucleotides used in this particular stage of the investigation were supplied in 

the reactive sulfhydryl form, instead of the disulfide form as in the case of the di-

nucleotides. As a result, the 25 mers did not require additional sample preparation. Initially, 

a sample of unmodified 25 mer (containing no MMN) containing the same base sequence 

as the sulfhydryl modified 25 mer was injected onto the TSKgel-DNA-NPR guard column, 

to establish the retention time. In addition, a MMN retention time marker was injected to 

establish the retention time of the unbound MMN. The retention times of unbound MMN 

and 25 mer were 0.10 and 6.98 minutes respectively. The UV chromatograms of both 

reagents can be seen in Figure 2:22. Citric acid has a residual absorbance at 260 nm, 

consequently the UV baseline increased during gradient elution due to the increasing 

proportion of citric acid. 
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Figure 2:22: a) Unbound MMN (3 µM). b) Unlabelled and unmodified 25 mer oligonucleotide (10 µM). 

Both samples eluted from a TSKgel-DNA-NPR guard column with 20 mM tris-HCl, pH 9 (A) and 20 

mM tris + 0.3 M citrate and 0.1 M ammonium chloride, pH 9 (B). Gradient = 10% B at 0 min, 90% B 

at 10 min and 90% B at 12 min. Flow rate = 1 ml min
-1

. Wavelength = 260 nm. 

 

The UV chromatogram of the tagging mixture is shown in Figure 2:23. Note that the peak 

corresponding to unbound MMN appeared at 0.13 minutes as expected, but an additional 

small broad peak was observed at 7.06 minutes, which was thought to correspond to the 

MMN-25 mer conjugate. This retention time was slightly later than the unbound 25 mer 
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(6.99 minutes), but if the oligonucleotide was covalently bound to a 15 KDa probe, then it 

is not unrealistic to expect a slight shift in retention time.  

 
Figure 2:23: Chromatogram of the MMN-25 mer tagging reaction mixture eluted from a TSKgel-DNA-

NPR guard column with 20 mM tris-HCl, pH 9 (A) and 20 mM tris + 0.3 M citrate and 0.1 M 

ammonium chloride, pH 9 (B). Gradient = 10% B at 0 min, 90% B at 10 min and 90% B at 12 min. 

Flow rate = 1 ml min
-1

. Wavelength = 260 nm. 

 
The MMN-25 mer reaction mixture was injected onto the column again, but the following 

fractions were collected from the column outlet during elution: 0-3 minutes (fraction 1) and 

7-9 minutes (fraction 2). These fractions were collected during the following injections and 

separations; blank, unmodified 25 mer, MMN only and tagging reaction mixture 

separation. Fractions were collected between 0-3 minutes and 7-9 minutes because these 

time frames correspond to the elution of the unbound MMN and MMN-25 mer conjugate 

respectively. The fractions were diluted accordingly and analysed by ICP-MS. The 

summarised data is shown in Table 2:7, which shows that significant Au counts were 

observed in the tagging sample fractions; ~100 000 and 3300 cps were obtained for 

fractions 1 and 2 respectively. The Au signal in each of the tagging sample fractions was 

significantly higher than the signal observed in the blank injection fractions. 
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Table 2:7: Summarised ICP-MS data for HPLC fractions collected during elution of the MMN-25 mer 

samples. 

Sample 
Fraction 1:  0-3 min 

Au (cps) 

Fraction 2:  7-9 min 

Au (cps) 

Blank 300 204 

MMN retention time marker 52492  

25 mer retention time marker  96 

Reaction mixture 96172 3349 

 
The chromatogram corresponding to the MMN-25 mer mixture, shown in Figure 2:23 

revealed that the majority of the MMN was unbound, hence it eluted in the void volume at 

0.13 minutes. ICP-MS data confirmed that the peak at 7.06 minutes contained significant 

Au counts and therefore corresponded to the MMN-25 mer conjugate. Unfortunately, data 

was not collected for fraction 2 of the MMN retention time marker and fraction 1 of the 25 

mer retention time marker. 

 

Once nano-particle labelling of the DNA was indicated, it was necessary to calculate the 

efficiency of reaction. It is important to obtain maximum labelling efficiency to enable 

maximum signal enhancement and therefore sensitivity. In the above experiment, the MMN 

was in a 5.6 fold molar excess of DNA, and only one MMN probe will bind to a DNA 

molecule giving a 1:1 labelling ratio: 

 

Reaction: DNA + AuR →   AuP (fraction 1) + C (fraction 2) 

   No. moles:      1 +  5.6  →         4.6          +  1 DNA + 1 Au   

 

Where: 

DNA = sulfhydryl modified DNA added to the reaction. 

Au = free MMN. Superscript R refers to the reactant MMN and P refers to the MMN upon 

completion of the reaction. 

C = MMN-DNA conjugate formed during the reaction. 
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The ratios of Au signal intensities for the two collected fractions were compared in order to 

calculate the labelling efficiency. If the reaction was 100% efficient, then the mole ratio of 

Aup to C would be 4.6. e.g. 

 

Au Mole Ratio 64
1
64

.
.

C

Au p

===  

 

Therefore, 4.6 times as many Au counts should have been observed in fraction 1 (Aup) 

compared to fraction 2 (C). In the above case, 96 172 cps and 3 349 cps of Au were 

observed in the first and second fractions of the reaction mixture respectively. Fraction 1 

and 2 consisted of 3 ml and 2 ml respectively, therefore, if the appropriate dilution factors 

are applied, 43.08 times as many Au counts were observed in fraction 1 (Aup), so the 

observed Au ratio becomes: 

Observed Au Mole Ratio 0843
672232

96172
.

.C

Au p

===  

 

Once the Au ratios corresponding to 100% labelling and observed labelling are calculated, 

the labelling efficiency can be established by comparing the two ratios; 

 

% Labelling Efficiency %.x
.

.
6810100

0843
64 ==  

 

Therefore ~1/10th, or 10.7% of the DNA was successfully labelled in the above example. 

 

The relative responses of Au and P by ICP-MS also have to be considered, and the 

enhancement in signal has to be calculated to demonstrate that elemental labelling does 

improve biomolecule detection by ICP-MS. Since DNA contains phosphate groups, 

detection is possible through P measurement, but as already discussed, P measurement by 

ICP-MS does have its limitations. In the above experiment, the oligonucleotide contained 

25 P atoms. If each labelled oligonucleotide contained 80 Au atoms, a P:Au ratio of 24:80 

or 1:3.3 was achieved. Therefore, 3.3 times as many Au atoms were present on each 

labelled oligonucleotide compared to P. However, the relative sensitivities of P and Au 
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have to be considered, which was determined by ICP-MS. Briefly, two calibration curves 

were prepared, one for Au and the other for P. The gradients of the Au and P calibration 

curves were 12 421 and 101 respectively (x axis expressed as ng ml-1). Thus, the Au 

gradient was 123 times greater than that of P, or it can be said that Au gave 123 times 

greater signal than P, proving that Au has a greater sensitivity than P when measured by 

ICP-MS. But, each labelled oligonucleotide contained 3.3 times more Au atoms than P. As 

a result, the 123 Au enhancement factor can be multiplied by 3.3 to give 406, 

demonstrating that 406 times greater sensitivity was obtained when measuring Au labelled 

25 mer oligonucleotides compared to measuring P alone. If the 406 enhancement factor is 

multiplied by the 10.7% labelling efficiency (calculated above), a 43 fold greater signal was 

obtained when measuring MMN labelled 25 mers compared to P. This calculation 

demonstrates that even low labelling efficiencies can result in significant signal 

enhancement and could be used to obtain lower limits of detection. 

 

The above calculated signal enhancement factor was applicable to 25 mers, but it should be 

considerably greater for smaller nucleic acids such as the di-nucleotides. Di-nucleotides 

contain two P atoms, thus if these short chain nucleic acids were labelled with 80 Au 

atoms, then there would be 40 times as many Au atoms compared to P. If the 123 Au 

enhancement factor is then multiplied by the factor of 40, potentially 4920 times greater 

response would be obtained when detecting Au labelled di-nucleotides by ICP-MS 

compared to measuring P alone. In the case of di-nucleotides which only contain two P 

atoms, the limits of detection when measuring P alone would be quite poor due to the low 

number of P atoms per nucleic acid, so the signal enhancement achieved by Au labelling 

would be more beneficial to short chain nucleic acids.  

 
Optimisation of Reaction Conditions 

The MMN labelling samples were stored for various periods of time, at either room 

temperature or 4 oC, and then separated by HPLC and the fractions were collected from the 

column outlet at, 0-0.5 minutes (fraction 1) and 7-7.5 minutes (fraction 2) during elution. 

Fractions 1 and 2 corresponded to the unbound MMN and MMN-DNA conjugates 

respectively. A blank injection consisting of 20 mM tris-HCl sample solvent was also 
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fraction collected at 0-0.5 minutes and 7-7.5 minutes, to establish the background Au 

counts on the column. The Au signal intensities for the blank, reaction samples and 

retention time markers are summarised in Table 2:8. The unbound MMN eluted within 

fraction 1 and any MMN labelled 25 mer should have eluted in fraction 2. Hence, the Au 

signal intensity in each fraction was determined to establish the MMN labelling efficiency. 

Table 2:8: 
197

Au signal intensity for the MMN optimisation reactions.  

Sample Fraction 1Au signal (cps) Fraction 2 Au signal (cps) 

Blank  195.34 227.00 

25 mer only 95.67 139.33 

Nanogold only 4484.70 211.34 

4 
o
C reactions   

1 hour 38616.81 452.34 

5 hour 57660.14 749.02 

10 hour  77733.93 619.35 

24 hour 83788.01 674.35 

48 hour  71604.05 730.35 

65 hour 29888.58 480.01 

Room temperature reactions   

1 hour 47996.83 423.01 

5 hour 36819.07 842.03 

10 hour  61581.46 784.36 

24 hour 72449.58 1121.38 

48 hour  81653.37 1023.04 

65 hour 19100.43 455.01 

 

All of the above samples contained Au in fraction 2 (DNA-MMN conjugate fraction) that 

were above the background Au signal. The room temperature reactions generally gave 

higher Au counts than the lower temperature reactions, with the exception of the 1 and 65 

hour samples. The Au counts presented in Table 2:8 were relatively low. A 2% aqua regia 

solution was aspirated between samples to aid Au wash out from the sample introduction 

system. Aqua regia was chosen because Au is very soluble in this acid; hence it should be 

effective at minimising carry over between samples. However, it was noted that the Au 

signal intensity increased during the aqua regia wash, suggesting that some Au was 

adhering to the walls of the sample introduction system and not being measured, resulting 
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in relatively low signal intensities for the labelled conjugates, as shown in Table 2:8. Thus, 

when aqua regia was aspirated, the deposited Au was being removed from the sample 

introduction system. As a result, the above Au signal intensities for the two sets of fractions 

may not be accurate thus effecting the reaction efficiency calculations.  

 

The very high Au backgrounds that were observed during the acid wash did not decrease 

over time as expected. This suggested that the Au contamination was due to the sample 

bottles or reagents rather than the sample introduction system. The polypropylene sample 

bottles were therefore soaked in 5-10% aqua regia before use. This had the desired effect 

of removing residual Au from the bottles prior to analysis and reduced the background Au 

signal upon acid aspiration. It has also been reported that the S containing amino acid, 

cysteine is effective at complexing residual Au on the surfaces of sample introduction 

systems, and improving Au wash out between samples.106 Gold has high affinity for S since 

Au is a soft Lewis acid and S a soft Lewis base. A 10 mM cysteine solution was prepared 

and aspirated, which resulted in the Au signal increasing. This was again due to the 

cysteine complexing to Au in the sample introduction system and aiding wash out. Various 

wash out procedures containing aqua regia and cysteine were investigated; the most 

effective procedure involved aspirating both 5% aqua regia followed by 10 mM cysteine 

between samples. In addition, spiking Au solutions with aqua regia (2-5% acid) improved 

Au signal intensity. This was presumably because the acid stabilised the analyte in solution.  

 

The above analysis was repeated, but the collected fractions were diluted 20 fold with 5% 

aqua regia prior to ICP-MS determination. Gold standards were also prepared at a 

concentration range of 1-3 ng ml-1 in a 5% aqua regia matrix to allow quantification of Au 

in each fraction. The Au signal intensities for each fraction are shown in Table 2:9 and 

were used to calculate the labelling efficiency of each reaction. The labelling efficiency was 

calculated in the same way to that detailed above (Chapter 2.4.2.2), namely, the observed 

and 100% labelling Au ratio were calculated and used to calculate overall labelling 

efficiency. The dilution factors were considered; hence the appropriate dilution factors were 

applied to the Au counts, to ensure the ratios were calculated using equivalent signal 

intensities. The reaction stoichiometry then had to be considered. The majority of 
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optimisation samples contained 6 nmoles of MMN and 1 nmole of DNA, therefore this 

stoichiometry will be used as an example: 

 

Reaction:  DNA  +  AuR  →        AuP (fraction 1)  + C (fraction 2) 

No. nmoles:  1         +   6              5              + 1 DNA+1 Au 

 

Since, 1 nmole of DNA was present in the reaction; the maximum number of moles of 

MMN in the conjugate fraction was 1 nmole, since MMN binds to thiol containing 

compounds in a 1:1 stoichiometry. The data for each sample is shown in Table 2:9. 
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Table 2:9: Reaction optimisation results and corresponding reaction efficiencies. 

Sample 

Overall 

dilution 

factor 

Au 

counts 

(cps) 

nMoles 

of Au  in 

Reaction 

Expected 

Au
p
/C 

Ratio 

Observed 

Au
p
/C 

Au Ratio 

Labelling 

Efficiency 

(%) 

Blank Fraction 1 200 471.71   3.1566  

Blank Fraction 2 201 149.43         

25 mer only Fraction 1 202 118.97   0.9638  

25 mer only Fraction 2 200 123.43         

Nanogold Only Fraction 1 201 12905.20   40.9036  

Nanogold Only Fraction 2 202 315.50         

1hr 4 degrees Fraction 1 844 39693.58 6 5 156.1425 3.20 

1hr 4 degrees Fraction 2 200 1072.27         

1hr RT Fraction 1 847 40935.72 6 5 143.7576 3.48 

1hr RT Fraction 2 200 1205.08         

5hr 4 degrees Fraction 1 816 52646.08 6 5 185.0718 2.70 

5hr 4 degrees Fraction 2 202 1148.81         

5hr RT Fraction 1 820 41294.20 6 5 97.7066 5.12 

5hr RT Fraction 2 201 1721.17         

10hr 4 degrees Fraction 1 809 35638.86 6 5 120.3896 4.15 

10 hr 4 degrees Fraction 2 200 1198.05         

10 hr RT Fraction 1 818 38290.48 6 5 142.6340 3.51 

10hr RT Fraction 2 201 1094.34         

24hr 4 degrees Fraction 1 821 24523.80 6 5 123.0922 4.06 

24 hr 4 degrees Fraction 2 200 817.89         

24 hr RT Fraction 1 867 22545.08 6 5 75.9091 6.59 

24 hr RT Fraction 2 200 1289.86         

48 hr 4 degrees Fraction 1 828 22807.83 6 5 161.4230 3.10 

48 hr 4 degrees Fraction 2 200 585.55         

48 hr RT Fraction 1 808 26078.04 6 5 152.8676 3.27 

48 hr RT Fraction 2 202 683.55         

65 hr 4 degrees Fraction 1 811 12726.30 2.25 3.5 290.0989 1.21 

65 hr 4 degrees Fraction 2 201 176.83         

65 hr RT Fraction 1 801 13106.98 2.25 3.5 272.2664 1.29 

65 hr RT Fraction 2 200 192.80         

 

Very low Au counts were observed in the blank and retention time markers. This was true 

for both fractions, again suggesting that the observed Au in fraction 2 of the optimisation 
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samples was due to the MMN-DNA conjugate.  The calculated labelling efficiencies ranged 

from 1.21-6.59%, with the highest labelling efficiency corresponding to the 24 hour room 

temperature reaction. Generally, the room temperature reactions gave higher labelling 

efficiencies compared to those reactions stored at 4 oC. This observation was expected, 

since ambient room temperature would not have compromised the stability of the MMN 

probe and higher temperatures generally favour faster reaction times. The 10 hour reactions 

were the only exception to this rule, where the lower temperature reaction gave a slightly 

higher labelling efficiency.  

 

The data presented in Table 2:9 does not display any trends. It was expected that the 

labelling efficiency would gradually increase with increasing reaction time, until a plateau 

was reached and the efficiency would remain fairly constant. Instead of the expected trend, 

the labelling efficiencies were quite variable as illustrated in Figure 2:24, which shows 

graphically the variation in labelling efficiencies with reaction time. The efficiency of the 

room temperature reactions initially increased with reaction time, but then decreased at 10 

hours, followed by a large increase in efficiency at 24 hours, where the maximum labelling 

efficiency was observed.  
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Figure 2:24: MMN labelling efficiency with time. 
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The highest labelling efficiency for the 4 oC reactions was observed at 10 hours with     

4.15% labelling achieved. The 65 hour reactions gave much lower labelling efficiency 

values (1.21-1.29%). These two samples were taken from different reactions which only 

contained a 4.5 fold excess of MMN (6 fold excess of MMN was used in 1-48 hour 

reaction mixtures), hence these reactions were not included in Figure 2:24. It is possible 

that the lower molar excess of MMN resulted in lower labelling efficiencies. Alternatively, 

these two reactions may have been compromised upon preparation resulting in poor 

reaction yields.  

 

Despite investigating reaction time and temperature, poor labelling yields were still 

observed. The labelling efficiency values in Table 2:9 are much lower than those seen in 

the calculation on page 121, where 10.7% MMN labelling was achieved. In summary, the 

reaction does not appear to be controlled as illustrated in Figure 2:24, indicating that 

unknown factors are effecting the reaction. Further investigation into this reaction is 

required to obtain reproducible yields. These experiments were carried out with sulfhydryl 

modified 25 mers which did not require lengthy sample preparation prior to labelling. 

Although some success had been obtained in the initial experiments, poor yields prompted 

the decision to seek alternative methods of elemental labelling.  

   

Although calibration standards were prepared in order to quantify the Au contained in each 

fraction, this information was not employed in the calculation of labelling efficiencies. 

However, the standards were employed to check the response of the instrument to Au and 

also to check the instrument for signal drift during the analyses.  

 

One potential limitation of the anion exchange separation method is that the unbound 

MMN species eluted first in the void volume, followed by the MMN-DNA conjugate. It is 

possible that the Au response observed in the second fractions (MMN-DNA conjugate 

fraction), contained residual Au from the unbound MMN. This is plausible especially since 

the main limitation of Au is its ‘sticky’ nature, which results in carry over between samples. 

Although the blank, 25 mer oligonucleotide and MMN retention time markers exhibited 

low Au levels in the second fractions (Table 2:9), indicating that this was not the case, it 
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may be worth investigating this aspect of the separation to ensure any Au present in the 

second fraction is due to MMN-DNA and not residual Au remaining in the column from 

the unbound MMN species. Since cysteine and acid solutions were shown to improve Au 

wash out and reduce memory effects, it may be beneficial to add these to the mobile phase 

to aid Au wash out from the stationary phase. Conversely, a reversed phase separation 

should result in the MMN-DNA conjugate eluting first (highly charged species), followed 

by the less charged unbound MMN. This order of elution would prevent residual Au from 

unbound MMN being mistaken for Au corresponding to MMN-DNA, since the MMN-

DNA species is eluted first. 

 

2.4.3 Monomaleimido Nanogold Labelling Summary 

Preliminary results indicated that thiol modification did take place on 5’ phosphorylated 

oligonucleotides that were treated in-house with EDC, imidazole and cystamine. However, 

more analysis is required to confirm that efficient sulfhydryl modification was achieved. 

The presence of the reactive group could be confirmed with organic mass spectrometry, 

since structural information can be easily obtained, although this was not attempted here it 

should be considered for future development.  

 

The labelling of the sulfhydryl modified di-nucleotides with MMN proved to be difficult 

and very little success was achieved. The problems were attributed to the lengthy and 

difficult sample preparation procedures which involved cleaving the disulfide modification 

with DTT and separating the reactive di-nucleotide from excess DTT by means of gel 

filtration. As a result of these difficulties alternative reducing agents and separation 

methods were investigated. 

 

More success was achieved with the labelling of sulfhydryl modified 25 mers, these longer 

oligonucleotides were provided in the reactive sulfhydryl form. Although the results 

suggested that these nucleic acids were labelled with MMN, the labelling efficiency was 

very low. Investigations aimed at establishing the optimum reaction time and temperature 

for labelling were carried out. Unfortunately, poor labelling efficiencies were again 

calculated for the MMN reactions and the reaction yields were highly variable. The anion 
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exchange separation of bound and unbound MMN also needs to be investigated further to 

ensure all the Au is eluted from the anion exchange phase. 

 

The ‘sticky’ nature of Au meant that appropriate wash solutions were required to minimise 

carry over between samples. A combination of aqua regia and cysteine proved to be 

effective at removing Au from the surfaces of the sample introduction system. It may be 

beneficial to employ this combination of wash solutions in conjunction with the anion 

exchange column to prevent Au build up on the phase. 
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2.5 Streptavidin FluoroNanogold Labelling of Biotinylated DNA 

2.5.1 Introduction to Streptavidin FluoroNangold Labelling 

Streptavidin FluoroNanogold (SFNG) consists of a nanogold particle containing 

approximately 80 Au atoms, which is covalently bound to a streptavidin protein and an 

Alexa Fluor 488 dye. Each streptavidin protein contains an average of one Au nano-particle 

and between 2-3 Alexa Fluor 488 fluorophores.95 The molecular weight of SFNG is 

approximately 75 KDa, with the streptavidin protein contributing 60 KDa of the total mass. 

The probe is illustrated Figure 2:25.95 

 

 
Figure 2:25: Alexa Fluor - 488 Streptavidin FluoroNanogold. 

 
Streptavidin has extremely strong affinity for biotin, which is a water soluble vitamin. 

Association constants in the order of 1013 M-1 have been reported between these two 

species, in what is the strongest known non-covalent biological interaction.113 The 

exceptionally high association constants of these two molecules makes them ideal linkers 

for nano-particle labelling.90, 114, 115 Streptavidin is a tetrameric protein containing four 

biotin binding sites, however, only one or two of the biotin binding sites will potentially be 

accessible on the SFNG probe. This is due to steric hindrance, namely, the nanogold and 

Alexa Fluor dye will block some of the biotin binding sites on the protein.95 The reaction 
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between biotinylated DNA and SFNG is summarised in Figure 2:26. This reaction is 

straightforward, with SFNG-DNA conjugates forming below room temperature within 24 

hours.  

 
 

Figure 2:26: Streptavidin FluoroNanogold labelling of biotinylated DNA. 

 

2.5.2 Biotinylation of DNA 

The work in this section focuses on the labelling of biotinylated DNA with a SFNG probe. 

As in the case of sulfhydryl modified oligonucleotides, biotinylated oligonucleotides are 

commercially available, but for there to be a viable labelling method with an ultimate 

application, the DNA has to be modified to incorporate the reactive biotin group. This 

section outlines a potential method for the biotinylation of 5’ phosphate groups on nucleic 

acids. The modification procedure was obtained from Pierce Biotechnology,116 but similar 

biotinylation methods have been reported elsewhere.117 The DNA biotinylation route is 

shown in Figure 2:27. 

O

SO3-

NH2

CO2-

NH2

SO3-

O
N
H

Streptavidin 

O

N
H

Streptavidin FluoroNanogold 
(SFNG) 

5’ Biotinylated DNA 

O

SO3-

NH2

CO2-

NH2

SO3-

O
N
H

O

N
H

SFNG-DNA conjugate 

Streptavidin 

+ 

+ 



134 

NHNH

S

O

O

N
H

NH2

HH

                                      

PO

O

OH

O -
 

 
 
 
 
 

                                           

NH NH

S

O

O

N
H

H H
NPO

O

O

H

-

 
                                            

Figure 2:27: Biotinylation of DNA 5' phosphate. 

 
Following modification, the biotinylated DNA needs to be separated from excess reagent. 

This could potentially be achieved using anion exchange SPE, since the DNA will be 

retained on the charged phase and the excess reagent eluted. However, the SPE method 

would not necessarily separate the biotinylated DNA from the unmodified DNA.  

 

Upon biotinylation, the distance between the biotin moiety and the terminal 5’ phosphate 

group would be 18.9 Å.118 This spacer arm is intended to minimise any steric effects that 

may occur during the labelling reaction. If more than one biotinylated DNA molecule binds 

to one streptavidin protein, it is possible that steric restraints may effect the labelling 

reaction. However, any steric effects should be minimised by having an 18.9 Å spacer 

between the biotin and DNA. 
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2.5.3 Method of Labelling 

Since the affinity between biotin and streptavidin is very strong, the labelling method was 

straight forward and did not involve complicated and lengthy sample preparation 

procedures. In addition, both the SFNG and biotinylated DNA were stable in solution, 

which made sample handling easier. SFNG labelling of biotinylated DNA was achieved by 

adding the DNA to an excess of SFNG. The reaction mixture was then left for 

approximately 24 hours at 4 oC to allow the reaction to proceed. 

 

2.5.4 Methods of Separation 

Once the labelling reaction was complete, a separation procedure was necessary to resolve 

the SFNG-DNA conjugate from the unbound SFNG. Numerous modes of separation were 

investigated for this labelling strategy. Each one will be discussed along with the 

advantages and disadvantages of each. 

 

2.5.4.1 Gel Filtration 

Gel filtration is a liquid phase separation operating at low pressures. Gel filtration separates 

species according to size, thus the technique works by size exclusion. The stationary phase 

consists of a porous carbohydrate-polymer matrix. Larger molecules cannot fit within the 

stationary phase pores and are therefore excluded and eluted from the phase. Conversely, 

small molecules infuse within the pores and are retained on the phase. This results in a 

sieving effect, where larger molecules are eluted first followed by small molecules.119, 120 

The phases used in gel filtration are relatively stable at a range of pH values.  

 

There are many types of phase available each having different selectivity’s (different 

molecular weight ranges) and molecular weight cut-off points. The media used to separate 

SFNG-oligonucleotide conjugates from unbound material was Superdex-75. This media is 

composed of cross-linked dextran and agarose and has an average particle size of 34 µm, 

and an optimum molecular weight separation range of 3000-70 000 Da. Species falling 

within this molecular weight range will be successfully separated; however, molecules with 
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a molecular weight exceeding 100 000 Da will not be retained in the pores and therefore 

eluted in the void volume. Thus, the exclusion limit of Superdex-75 is 100 000 Da. 

  

Superdex-75 was chosen because the oligonucleotide molecular weight was towards the 

bottom end of the media’s optimum molecular weight range and the molecular weight of 

the bound SFNG-DNA conjugates was towards the top end of the optimum separation 

range. As a result, the free and bound oligonucleotides should separate. The molecular 

weights of the species involved in the tagging experiment are summarised in Table 2:10. 

Table 2:10: Molecular weight of SFNG, biotinylated oligonucleotides and SFNG conjugates. 

Species Molecular weight 

SFNG ~75 500 

18 mer biotinylated oligonucleotide 6145 

18 mer oligo-SFNG conjugate ~81 600-87 790* 

24 mer biotinylated oligonucleotide 8000 

24 mer oligo-SFNG conjugate ~83 500-91 500* 

 
*The molecular weight of the SFNG- oligonucleotide conjugates depends on the number of 

oligonucleotides bound to the streptavidin protein. Only one or two biotinylated 

oligonucleotides will bind to SFNG due to steric restraints. 

 

Superdex-75 was supplied as a suspension in a 20% ethanol solution. The media was 

already pre-swollen and was prepared as follows: 

• The required amount of Superdex suspension was filtered using a glass filter to 

remove the ethanol.  

• 5-10 column volumes of deionised water were used to wash the media. 

• The media was then re-suspended in deionised water. The resulting suspension 

contained approximately 50% settled media and 50% water.  

• 200 µl of TWEEN-20 was added to the Superdex suspension. 

• The suspension was mixed gently by swirling the beaker. 

• The suspension was poured into a packing reservoir, which was attached to a 30 cm 

x 1 cm column. The suspension was poured in one slow, smooth motion.  
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• A peristaltic pump (Minipuls 2, Gilson) was connected to the column outlet and set 

to pump at ~0.20 ml min-1.  

• The column was left to pack at this flow rate for 2-3 hours or until the column bed 

had settled. The column was topped up with deionised water at regular intervals to 

ensure the media did not run dry. 

• Deionised water was then pumped through the column for a further 3 hours at    

0.20 ml min-1. 

 

Once the column bed had settled, the column was ready for equilibration with the elution 

buffer, followed by sample separation. 

 

2.5.4.2 Anion Exchange HPLC 

This mode of separation operates on charge interaction. A positively charged stationary 

phase was employed, which resulted in retention of the negatively charged phosphate 

groups on DNA. Likewise the SFNG was also retained due to the carboxylic and sulfonic 

acid groups on the fluorophore. It also was expected that streptavidin contributed to the 

retention of SFNG due to the carboxylic acid groups on the amino acids. However, it was 

hoped that a method could be developed to resolve the unbound SFNG from the SFNG-

DNA conjugate. The TSKgel-DNA-NPR analytical column was used for anion exchange 

separation (see Appendix 1 for details). The anion exchange stationary phase consisted of a 

non-porous resin, which was chosen since it does not possess intra-particular voids that 

would cause the high molecular weight molecules to be excluded. As a result, non-porous 

resins enable relatively quick, high resolution separations of high molecular weight 

molecules. This phase had a relatively low capacity due to the lack of intra-particular voids; 

therefore, small injection volumes were used to prevent overloading the column. This phase 

was used for all anion exchange separations, but numerous mobile phases were 

investigated.  

 

There were two criteria for the choice of mobile phase; firstly it was important that the 

mobile phase eluted both the DNA and SFNG. Secondly, the mobile phase had to be 
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compatible with ICP-MS. The basic HPLC parameters are outlined in Table 2:11. Any 

amendments to the chromatography conditions will be stated where appropriate.  

 

The HPLC separation optimisation was carried out off-line to the ICP-MS, as a result UV 

data was initially obtained and not ICP-MS data. The Alexa Fluor-488 dye and nanogold 

both have very high absorption coefficients, for example, at 280 nm the nanogold particle 

has an absorption coefficient of approximately 3 x 105 dm3 mol-1 cm-1. As a result, the 

probe should be easily detected by the UV detector allowing off-line chromatography 

optimisation prior to elemental analysis.  

Table 2:11: HPLC parameters employed for the anion exchange separation of the SFNG and SFNG-

DNA conjugates. 

Parameter Setting 

Stationary phase TSKgel-DNA-NPR, 7.5 cm x 4.6 mm, 2.5 µm. 

Mobile phase Variable 

Flow rate 0.7 ml min-1  

Detection wavelength 257 nm  

Gradient Variable 

Stop time Variable 

Post time Variable 

Injection volume 5 µl 

Column temperature Room temperature 

 
Solutions containing unbound SFNG were initially injected onto the HPLC phase to 

establish the retention time of the probe. The mobile phases investigated where as follows: 

• 20 mM Tris-HCl, pH 9 with a gradient of 20 mM Tris-HCl + 50 mM trisodium 

citrate + 0.5 M TMACl, pH 9 

• Phosphorus buffered saline (20 mM sodium phosphate, 150 mM sodium chloride), 

pH 7.2 

• pH gradient (25 mM Tris-HCl, pH 9 and 25 mM sodium phosphate + 25 mM 

trisodium citrate, pH 3) 

• 20% DMSO in 25 mM trisodium citrate, pH 9 isocratic 

• 50 mM ammonium sulfate, pH 3 isocratic 

• 20% acetonitrile in 100 mM triethylammonium acetate, pH 7 isocratic. 



139 

2.5.4.3 Immobilised Metal Affinity Chromatography 

Another mode of chromatography investigated in this particular project was immobilised 

metal affinity chromatography (IMAC). In this mode of affinity chromatography, the metal 

(usually a divalent or trivalent transition metal) is immobilised on agarose beads. The 

biomolecule, which may be DNA or proteins interacts with the immobilised metal and is 

therefore retained on the phase. The retained biomolecule can be eluted with a competing 

compound or by adjusting the pH of the elution buffer. There have been many reports in the 

literature regarding the use of IMAC for biomolecule  separations.121-125  

 

The choice of metal determines the selectivity of the phase, which depends on the part of 

the analyte that is to be retained on the column. Iron(III) and Ga(III) are hard Lewis acids 

and therefore interact with hard Lewis bases, such as phosphate groups on the biomolecule. 

However, Ni(II), Cu(II) and Zn(II) are softer Lewis acids and interact with the nitrogen 

bases on the imidazole rings of purine nucleobases. Iron(III) was chosen in this 

investigation, so the DNA was retained due to the presence of the phosphate backbone. The 

stationary phase was prepared as described below and was a slight modification of the 

procedure reported by Hart et al.126 It was hoped that the oligonucleotides would be 

retained due to the phosphate groups, but the SFNG would have little retention resulting in 

an easy separation method.  

 

Fe(III)-NTA-Agarose Phase Preparation 

• Ni(II)-NTA-Agarose (750 µl) was placed into a micro centrifuge tube. To this, the 

same volume of deionised water was added. The suspension was shaken manually 

and then centrifuged at 6000 rpm for 5 minutes.  

• The supernatant was discarded and then the above step was repeated twice more to 

wash the agarose.  

• The agarose beads were then washed three times with 750 µl of 0.1 M EDTA in      

1 M sodium hydroxide. During these wash steps the EDTA complexed to the NTA-

agarose bound Ni, thus removing the metal from the agarose beads. 

• A 750 µl volume of deionised water was used to wash the stripped beads followed 

by a 750 µl aliquot of 0.1 M acetic acid. The supernatant was again discarded. 
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• The Fe(III) was then introduced to the phase by adding 750 µl of a solution 

containing 0.1 M iron(III) chloride in 0.1 M acetic acid. The mixture was again 

shaken, centrifuged and the supernatant discarded.  

• An acetic acid wash was carried out after the modification, followed by three further 

deionised water wash steps. 

• The Fe(III)-NTA-agarose beads were re-suspended in 750 µl deionised water and 

split into three equal fractions each containing approximately 0.5 ml of suspension. 

One fraction was used as a blank/control sample (control sample consisted of 

deionised water only), the second for an oligonucleotide sample and the third for a 

SFNG sample. 

• The excess water was removed from the beads and 0.4-0.5 ml of sample was 

applied to the Fe(III)-NTA-agarose phase. 

• The loaded beads were shaken and allowed to stand for two hours at 4 oC, with 

shaking every 30 minutes. 

 

After the two hour incubation time, the suspension containing the IMAC phase and sample 

were poured into a small gel filtration column. The column was connected to a vacuum 

manifold. The excess liquid in the column was allowed to drain away. The column eluent 

was collected and kept for UV/vis analysis. The phase was then washed with three 0.5 ml 

aliquots of deionised water followed by three 0.5 ml aliquots of 0.1 M sodium hydroxide. 

The column eluent was collected during each wash and elution step and UV/vis was used to 

determine where the two species of interest eluted.  

 

2.5.4.4 Reversed Phase HPLC 

Reversed phase HPLC (RP-HPLC) employs a non-polar stationary phase and polar mobile 

phases containing various proportions of organic solvent. The mode of separation is based 

on hydrophobic interaction. Non-polar molecules have more interaction with the non-polar 

phase and are therefore retained on the column and exhibit longer retention times. In 

contrast, polar species have less affinity with the stationary phase and more interaction with 

the polar mobile phase and are eluted first. The strength of the mobile phase is increased by 

adding greater amounts of organic modifier, which has the effect of eluting the non-polar 
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species from the stationary phase. Consequently, the elution strength of the mobile phase is 

increased by raising the proportion of organic solvent in the eluent. Reverse phase 

separations can be coupled to ICP-MS more easily than most other modes of 

chromatography, there are several reasons for this. Firstly, the mobile phase consists of 

aqueous solvents which are ICP-MS compatible. Although organic modifiers are used in 

reversed phase chromatography, they can be used in conjunction with ICP-MS providing 

the content is kept relatively low (<15%). Alternatively, the organic solvent can be easily 

removed by evaporation prior to ICP-MS analysis. In addition, HPLC flow rates are 

typically 0.5-1 ml min-1, which is compatible with nebuliser flow rates.  

 

A C18 column was used for all SFNG reversed phase separations. Mobile phases 

containing various proportions of methanol and acetonitrile in deionised water were 

assessed for their suitability in eluting the SFNG species from the phase. In addition to RP-

HPLC being compatible with ICP-MS, the charged SFNG probe should have very little 

interaction with the non-polar stationary phase, thus providing easier separation with good 

levels of recovery. This is a contrast to anion exchange chromatography where SFNG 

appeared to be retained quite irreversibly on the charged anion exchange phase (see results, 

section 2.6.1.2). 

 

A HP 1090 Series 2 HPLC instrument with diode array UV detection, operating off-line to 

ICP-MS was initially employed to establish the retention times of the unlabelled 

oligonucleotides and SFNG. Once it was established that the two species had different 

retention times, the separation was carried out on-line with ICP-MS. The Element 2XR 

ICP-MS instrument was employed for the determination of Au in the SFNG/DNA samples.  

The basic HPLC parameters are outlined in Table 2:12, whilst Table 2:2 summarises the 

ICP-MS operating conditions. 
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Table 2:12: Basic HPLC operating parameters for the C18 separation of SFNG and SFNG-DNA 

conjugates. 

Parameter Setting 

Stationary phase Hypersil C18, 250 mm x 4.6 mm (120 Å) or Waters µBondapak C18 

300 mm x 3.9 mm, 10 µm (125 Å). 

Mobile phase Acetonitrile/water or methanol/water of varying proportions 

Flow rate 0.6 - 1 ml min-1  

Detection wavelength 280 nm  

Gradient Variable 

Stop time Variable 

Post time Variable 

Injection volume 10 µl  

Column temperature Room temperature 

 
The Element 2XR instrument was operated in speed scanning mode for all 

chromatographic data acquisitions. The resulting Au chromatograms were exported as an 

Xcalibur file and then opened with the Xcalibur program (Version 2.0, Thermo Finnigan, 

San Jose, California, US), which was employed to process ESI-MS data on the LTQ linear 

ion trap mass spectrometer. This allowed the Au chromatograms, which were obtained on 

the Element to be integrated, thus peak areas and retention times were accurately obtained 

for each Au chromatogram. In addition, the chromatographic data was also exported as a 

text file and subsequently opened in Microsoft Office Excel, which simply allowed the 

chromatographic data to be viewed without the need for the Xcalibur viewing software.   
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2.6 Results of Streptavidin FluoroNanogold Labelling 

2.6.1 Methods of Separation 

2.6.1.1 Gel Filtration 

Unfortunately, gel filtration was found to be unsuitable for the separation of SFNG from 

SFNG-DNA conjugates due to the poor resolving power of the technique. The longest 

oligonucleotides (24 mer) had a molecular weight of ~8 000 Da, therefore, if two 24 mers 

bound to each streptavidin protein; the corresponding conjugate would have a MW ~91 500 

Da and the unbound SFNG MW ~75 500 Da. This small molecular weight difference (1.2 

fold difference in MW) resulted in partial resolution, which would have resulted in difficult 

quantification. Ultimately, baseline resolution of the two species was required for 

quantitative analysis. This implies that for gel filtration to be successful in purifying these 

conjugates, an excess of biotinylated oligonucleotide was required in the tagging reaction 

mixture, so when the reaction has gone to completion, there should be no free SFNG, but 

an excess of unbound oligonucleotide. It should be reasonably straight forward to separate 

the excess free oligonucleotide (MW~6 000-8 000 Da) from the much heavier SFNG-DNA 

conjugates (MW ~81 600-91 500 Da). Even though the use of gel filtration is possible, the 

species to be labelled has to be in excess and not the probe which negates quantification. 

 

In addition, problems were encountered when packing the media into columns. It was 

difficult to obtain an even column bed. The performance of the column was tested with 

both blue dextran and acetone. Blue dextran was used to establish the void volume of the 

column. The average molecular weight of the dextran was ~2 x 106, thus it was totally 

excluded from the phase. Acetone was used to establish the efficiency of the column, which 

was achieved following the procedure outlined by the manufacturer.120 Breifly, the column 

outlet was connected to a UV detector and integrator as described previously. The acetone 

peak was then used to calculate the column efficiency using the equation below.120 

 

N/m = 5.54(Ve/W½)2 1000/L 
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Where: 

N/m = Number of theoretical plates per meter. 

Ve = Elution volume (ml) 

W½ = Peak width at half height (ml) 

L = Height of Superdex bed (mm) 

 

For Superdex media, efficiency values of approximately 10 000 N/m should be obtained.120 

However, the best value achieved was 382 N/m. As a result of these problems and other 

limitations it was decided to look for alternative methods for separation.  

 

2.6.1.2 Anion Exchange HPLC 

Several mobile phases were assessed for their suitability for SFNG elution from the anion 

exchange phase. The basic chromatographic conditions used were kept constant throughout 

this part of the investigation and are shown in Table 2:11 in the method section. The first 

phase to be investigated was: 

A: 20 mM Tris-HCl, pH 9  

B: 20 mM Tris-HCl + 0.5M TMACl + 50 mM trisodium citrate, pH 9 

 

Gradient elution was employed with mobile phase B gradually increasing throughout the 

separation. The buffers used in this mobile phase should be compatible with ICP-MS. The 

ionic strength of the eluent was very high, owing to the presence of citrate, which has a 

triple negative charge. It was hoped that the high ionic strength eluent would be sufficient 

to elute the highly charged SFNG from the anion exchange phase. However, SFNG failed 

to elute with this mobile phase. As a result, the retention mechanism was thought to have 

some hydrophobic character rather than just ionic, thus 10% acetonitrile was added to 

mobile phase B. The high ionic strength phase containing organic solvent also failed to 

elute SFNG.  

 

Phosphorus buffered saline (PBS) was the next mobile phase to be investigated. SFNG was 

supplied in a solution containing 20 mM phosphate buffer and 150 mM sodium chloride at 
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pH 7.4. The probe was soluble and stable in this buffer, so mobile phases containing the 

following were prepared: 

A: 20 mM sodium dihydrogen phosphate, pH 7.2 

B: 20 mM  sodium dihydrogen phosphate, 0.5 M sodium chloride, 5.4 mM 

potassium chloride, pH 7.2 

 

Gradient elution was again carried out with a gradual increase of mobile phase B. SFNG 

did not appear to elute using the mobile phases outlined above. However, when the column 

was removed from the instrument and reconnected in the reverse flow direction, a huge 

absorbance was observed. Upon further inspection, it appeared that the signal slowly 

decreased over a period of ~12 minutes, suggesting that the signal was not due to the 

SFNG, but probably due to deposited material and contaminants on the top of the column.  

 

All previous anion exchange chromatography had been conducted with an escalating 

gradient of salt, thus increasing ionic strength in an attempt to elute the analyte. However, 

pH gradients had not yet been investigated. Anion exchange separation of proteins can be 

carried out using pH gradients as reported elsewhere,127, 128 and it was used in this study for 

the elution of SFNG. This method of elution involved using an initial mobile phase with a 

higher pH, and then gradually decreasing the mobile phase pH to the same pH as the 

protein isoelectric point (pI). At this stage, the positive and negative charges on the protein 

are balanced, so the protein net charge is zero and SFNG should elute. The buffers used to 

create a pH gradient were as follows: 

A: 25 mM Tris-HCl, pH 9 

B: 25 mM sodium dihydrogen phosphate, 25 mM trisodium citrate, pH 3 

 

The above buffers produced a gradient starting from pH 9 and decreasing to pH 3. The pKa 

values and buffering ranges of all three buffers overlapped, and therefore created a 

decreasing pH gradient throughout the elution. At pH 9, all the streptavidin carboxylic acid 

groups would have been ionised and therefore interacted with the anion exchanger. When 

the mobile phase composition gets to ~pH 5.5, the protein will have a net charge of zero, 

since this is the streptavidin isoelectric potential (pI). However, the mobile phase was taken 



146 

down to pH 3, which is two pH units below the protein pI. At pH 3 all the amine and acid 

groups on the protein were protonated, resulting in a net positive charge, which should 

result in SFNG elution. Despite efforts to elute the probe with pH gradients, no signal was 

observed.  

 

The manufacturer of SFNG was contacted and their advice was requested with respect to 

the chromatographic separation of the conjugate.95 After obtaining advice, a mobile phase 

containing 20% DMSO in 25 mM trisodium citrate, pH 9 was tested. DMSO solubilises the 

Alexa Fluor-488 fluorophore, so it was thought that DMSO was a good solvent to use in 

conjunction with the probe. No peaks were observed when the SFNG was injected into the 

column, however, the mobile phase was diluted two fold and the SFNG was re-injected. 

The aim of this was to weaken the mobile phase eluent strength and confirm that the probe 

was not eluting in the void volume and being masked by noise at the start of the injection. 

However, this was not the case and yet again, nothing was observed.  

 

Since none of the above mobile phases had successfully eluted the SFNG, degradation of 

the probe in solution was a consideration. However, even if the SFNG had dissociated in 

solution, the fluorophore and aromatic amino acids would have still been present resulting 

in some UV response. This suggested that the SFNG was being retained almost irreversibly 

on the phase. 

 

One anion that had not been investigated was sulfate. The sulfate anion is a very strong 

eluent in anion exchange chromatography; therefore, a buffer containing 50 mM 

ammonium sulfate at pH 3 was prepared. The mobile phase had a very high ionic strength 

and the pH was below the pI point of streptavidin, so the protein part of the probe should 

not have had any interaction with the phase using this eluent. The first blank injection 

carried out with this eluent resulted in a large peak with a retention time of 9 minutes. This 

huge absorbance was probably due to built up contamination on the column which was 

eluted with the strong eluent. A further blank injection did not give the same result. The 

SFNG injection exhibited a flat baseline, although a small peak in the baseline was 

observed at 10.4 minutes. Further SFNG injections gave a small peak at 10.4 minutes, 
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however, if this was due to the SFNG, the signal was very weak and the possibility of a 

contaminant in the sample was considered.  

 

Ion-pair HPLC was then investigated. The same chromatographic conditions detailed in 

Table 2:11 were employed, but the mobile phase consisted of 100 mM 

triethylamammonium acetate in 20% acetonitrile, pH 7 (isocratic). A response was 

observed at ~0.5 minutes, although the signal was weak and no better than that observed 

with the ammonium sulfate mobile phase. 

 

Although a lot of work was conducted with SFNG and anion exchange separations, no real 

success was obtained. It was concluded that the sulfonic acid groups on the Alexa Fluor-

488 dye were retained irreversibly on the anion exchange resin. Although a very small 

amount of SFNG may be eluted with a high ionic strength mobile phase, the recoveries 

would have been very small. Hence, alternative methods of separation were again 

investigated. 

 

2.6.1.3 Immobilised Metal Affinity Chromatography 

The column eluents collected from the phase during the separation procedure were scanned 

with a UV spectrometer between 200-400 nm for oligonucleotide detection, and            

200-600 nm for SFNG detection. Figure 2:28 shows the spectra of both the oligonucleotide 

and SFNG before they were applied to the phase. The oligonucleotide yielded a maximum 

at 256.40 nm, whilst SFNG gave an absorbance at 493.20 nm, which corresponded to the 

Alexa Fluor 488 absorbance (ε490 nm = 71 000 cm-1
 M

-1).129 However, a stronger absorbance 

was observed at approximately 260-280 nm for SFNG, corresponding to the nanogold 

particle, which as stated previously has an absorption coefficient of ~3 x 105 at 280 nm. 
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Figure 2:28: a) 10 µM 25 mer oligonucleotide spectrum before IMAC separation. b) SFNG spectrum 

before IMAC separation (0.18 µM nanogold and ~ 0.85 µM Alexa fluor-488). 
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One set of IMAC beads was used as a control in which deionised water was added to the 

phase. The aim of the control was to ensure no background absorbance from the phase was 

effecting the UV/vis detection of DNA or SFNG. The UV data from the control column 

fractions did not reveal any significant absorbance that would potentially interfere with the 

DNA or SFNG detection. 

 

The deionised water column eluents from the oligonucleotide and SFNG loaded IMAC 

phases did not reveal any absorbance, thus confirming that both the oligonucleotides and 

SFNG were retained on the IMAC phase. The three sodium hydroxide elution steps did 

result in oligonucleotide elution, which was shown by absorbance maxima at 256 nm. The 

overlaid spectra in Figure 2:29 show the first, second and third sodium hydroxide elution 

steps of the oligonucleotide from the IMAC phase. Recovery calculations revealed that 

approximately 90% of the oligonucleotide was recovered from the phase with sodium 

hydroxide elution. Recoveries of 55.3%, 27% and 9.3% were obtained in the first, second 

and third sodium hydroxide wash steps respectively.  

 
Figure 2:29: Overlaid spectra of the three sodium hydroxide elution steps for DNA elution from the 

IMAC phase. 
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Figure 2:30 shows the overlaid spectra corresponding to the three sodium hydroxide elution 

steps of SFNG from the IMAC phase. The spectra exhibit absorbance at 494 nm 

corresponding to the fluorophore, although the absorbance was very weak. The nanogold 

absorbance at 280 nm gave a better indication of elution than the Alexa Fluor 488 dye. 

Further sodium hydroxide elution fractions did not show any sign of the probe. It should be 

noted that the Alexa Fluor dye was only present at a concentration of ~0.85 µM in the 

original sample. Hence after sodium hydroxide elution, the fluorophore concentration and 

absorbance would have been very weak. 

 
 

Figure 2:30: Overlaid spectra for the three sodium hydroxide elution steps of SFNG from IMAC phase. 
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phosphorylated amino acids, then these would also be retained on the IMAC phase. 

However, if the specificity of the phase is altered by changing the immobilised metal to 

Ni(II), then the streptavidin may not be retained, but DNA should still display retention due 

to the imidazole groups on the purine rings interacting with Ni(II). This aspect has yet to be 

investigated.  

 

A further consideration is that the eluent has to be compatible with ICP-MS; hence 

alternative bases to sodium hydroxide will have to be found. Tetramethylammonium 

hydroxide (TMAH) or tetramethylammonium chloride (TMACl) may be suitable for the 

elution of the oligonucleotide conjugates from the IMAC phase. Due to lack of time IMAC 

separation was not pursued any further. 

 

2.6.1.4 Reversed Phase HPLC 

Mobile phases consisting of methanol-water and acetonitrile-water mixtures were used in 

an attempt to elute SFNG from a C18 phase. SFNG should have very little, if any retention 

on a non-polar C18 reverse phase column. As a result, the probe should be successfully 

eluted with high levels of recovery using mild conditions. Although organic solvents were 

used, they can be easily removed prior to ICP analysis, or the HPLC flow can be split post 

column to minimise the solvent flow to the plasma. Initially solutions containing SFNG or 

oligonucleotide only were injected onto the C18 column to establish the retention times of 

the two species.  

 

Initial tests employed an isocratic acetonitrile-water (50:50) mixture to elute SFNG from a 

C18 guard column. A UV response was obtained which was attributed to the elution of 

SFNG. As a result, the same sample was injected onto a C18 analytical column (Hypersil 

C18 column 250 mm x 4.6 mm) and additional peaks were observed in the SFNG 

chromatogram when compared to the blank injection, which were again attributed to SFNG 

eluting from the phase. Additional peaks at 1.27 and 1.82 minutes were observed in the 

SFNG chromatogram. However, these peaks eluted very quickly suggesting that there was 

very little interaction between the probe and stationary phase. As a result, the eluent 

strength was decreased by employing an isocratic methanol-water mixture (50:50). Upon 
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eluting the SFNG with the weaker solvent, a peak was observed at 1.94 minutes. The 

methanol content was reduced further so the mobile phase contained 35% methanol, which 

resulted in the SFNG eluting at 2.39 minutes. A sample containing 5’ biotinylated 24 mer 

was also injected on the column and eluted using the isocratic 35% methanol mobile phase, 

and a retention time of 1.45 minutes was observed. The chromatograms of the biotinylated 

24 mer and SFNG, eluted with 35% methanol are shown in Figure 2:31. 

 

 

 
Figure 2:31: a) 5' biotinylated 24 mer retention time marker. b) SFNG retention time marker. Both 

species eluted from a Hypersil C18 column (250 mm x 4.6 mm) with 35% methanol isocratic elution. 

Flow rate = 0.6 ml min
-1

, 10 µl injection volume. 260 nm detection wavelength. 
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The peak at 1.36 minutes displayed in Figure 2:31b was also observed in the blank 

injection and therefore not attributed to SFNG. The baseline in Figure 2:31b exhibited a 

negative absorbance at 3 minutes. This suggests that there was a positive absorbance from 

the mobile phase, which was removed upon eluting the SFNG, no explanation could be 

given since the mobile phase only consisted of methanol and water. Once it was established 

that the SFNG and unbound oligonucleotide had different retention times, a SFNG-DNA 

reaction mixture was prepared. Briefly, 125 µl SFNG (1.33 µM streptavidin) was added to 

68 µl biotinylated 24 mer oligonucleotide (5 µM). Hence the reaction mixture contained; 

0.34 nmoles biotinylated 24 mer and 0.17 nmoles streptavidin, which equated to 0.67 

nmoles of biotin binding sites (total of four biotin binding sites per streptavidin). A two 

fold excess of biotin binding sites was present in the reaction mixture. The tagging reaction 

mixture was placed in the refrigerator for 24 hours at 4 oC.95 After 24 hours, a 100 µl 

aliquot was taken and 55 µl of methanol was added to the aliquot. This was done to ensure 

the sample solvent and mobile phase compositions were matched in terms of organic 

solvent content. The sample was then injected and the isocratic mobile phase consisting of 

35% methanol in water was used to separate the mixture. Figure 2:32 shows the tagging 

reaction mixture chromatogram, where three main peaks were observed at; 1.42, 2.55 and 

3.04 minutes. The peaks at 1.42 and 2.55 minutes were thought to be the biotinylated 24 

mer and the unbound SFNG respectively, since these retention times were consistent with 

those seen for the retention time markers (see Figure 2:31). The additional peak at 3.04 

minutes was thought to be the SFNG-DNA conjugate. Three peaks were expected, 

however, the identity of the two remaining smaller peaks at 1.81 and 2.34 minutes were 

unknown. 
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Figure 2:32: Chromtogram of the SFNG-biotinylated DNA reaction mixture, eluted from a Hypersil 

C18 column (250 mm x 4.6 mm) with 35 % methanol, isocratic elution, 0.6 ml min
-1

 flow rate, 10 µl 

injection volume. 260 nm detection wavelength. 

 

Once it was established that the SFNG-DNA labelling mixture gave additional peaks to 

those seen in the SFNG and 24 mer retention time marker chromatograms, the sample was 

injected again, but fractions were collected from the column outlet at the following time 

periods throughout the separation; 1.2-1.7 minutes, 2.3-2.8 minutes and 3-3.5 minutes. 

These three fractions were denoted fractions 1, 2 and 3 respectively. The same fractions 

were also collected during injection and elution of the retention time markers and the 

sample blank (35% methanol). Each of the collected fractions consisted of 300 µl           

(0.6 ml min-1 flow rate which was collected for a total of 0.5 minutes in each fraction), but 

contained approximately 35% methanol. Once all the fractions had been collected, the 

methanol was allowed to evaporate. This was achieved by placing the samples in a heated 

(50 oC) water bath with a gentle stream of argon flowing over the collected fractions. The 

removal of methanol was necessary to ensure the samples were ICP-MS compatible. Also, 

by removing the organic solvent, the standards did not have to be matrix matched with the 

samples in terms of solvent content.   

 

Once the samples had been evaporated down to near dryness, they were reconstituted with 

water to a volume of 0.5 ml. Further dilutions were carried out on the re-suspended samples 

with 2% hydrochloric acid prior to ICP-MS analysis. Gold calibration standards               

(10 pg ml-1–1000 pg ml-1) were also prepared in 2% hydrochloric acid. These samples were 
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analysed on the Element 2 XR ICP-MS and the Au in each fraction was quantified. Table 

2:13 summarises the data and shows the Au concentration in each of the collected fractions. 

Table 2:13: Au concentrations in separated fractions. 

Sample Au conc. (ng ml
-1

) 

Blank fraction 1 0.22 

Blank fraction 2 0.08 

Blank fraction 3 0.10 

  

24 mer only fraction 1 0.12 

24 mer only fraction 2 0.13 

25 mer only fraction 3 0.16 

  

SFNG only fraction 1 0.67 

SFNG only fraction 2 1.08 

SFNG only fraction 3 0.52 

  

SFNG-DNA fraction 1 5.67 

SFNG-DNA fraction 2 2.28 

SFNG-DNA fraction 3 1.39 

 
The Au concentrations were relatively low in the blank and 24 mer oligonucleotide 

(retention time marker) fractions as expected. However, the second fraction of the SFNG 

retention time marker had elevated Au levels which confirmed that the unbound SFNG 

eluted between 2.3-2.8 minutes, which was consistent with the UV data (Figure 2:31b). The 

third peak at 3 minutes in the SFNG-DNA labelling mixture (Figure 2:32) was thought to 

be the conjugate. However, this fraction proved to contain the least amount of Au of all the 

tagging fractions. The first fraction contained the most Au, suggesting that the SFNG-DNA 

conjugate eluted between 1.2-1.7 minutes. One explanation is that the SFNG-DNA 

conjugate was so large (up to 91 500 Da) that it was totally excluded from the porous C18 

phase, thus eluting very quickly. The conjugate would also be highly charged due to the 

presence of the additional DNA molecules, also explaining why the conjugate would have 

very little retention on the C18 phase. It should also be noted that more than one biotin 

binding site on the streptavidin molecule may be available for binding, thus more than one 

conjugate species may be formed during the reaction. The SFNG probe could have one or 
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two biotinylated DNA molecules bound to the streptavidin protein, resulting in two 

potential conjugate species, each having different molecular weights and charges. Hence, 

the two additional peaks (1.81 and 2.34 minutes) observed in the tagging chromatogram 

(Figure 2:32) could also be conjugates. 

 

The next step was to carry out the separation on-line with ICP-MS. However, the methanol 

content in the mobile phase had to be reduced from 35% to less than 10%. There were two 

reasons for reducing the amount of organic modifier in the mobile phase. Firstly, 35% 

organic solvent could potentially make the plasma unstable and the high organic matrix 

may have suppressed Au ionisation. In addition, carbon deposition around the sampler cone 

will be more pronounced with higher organic solvent content resulting in signal drift and 

reduced sensitivity. The separation method was therefore modified so the mobile phase 

contained 5% methanol. The low level of organic solvent did not adversely affect the 

plasma and carbon deposition was minimal. Isocratic elution is preferred when using 

HPLC-ICP-MS, since the mobile phase composition remains constant resulting in constant 

plasma conditions. In contrast, gradient elution involves changing the mobile phase 

composition. Thus, the plasma conditions are also constantly changing with the changing 

matrix, which can result in varying signal intensities due to suppressed or enhanced analyte 

ionisation during the separation. 

 

Before the separation was carried out on-line, the effect of 5% methanol on Au signal 

intensity was established. Initially two solutions containing 1 ng ml-1 115In were prepared; 

one solution was prepared in 2% hydrochloric acid and the other was prepared in 5% 

methanol. The resulting signal intensity for In was 2.5 x 106 cps and 750 000 cps in the 

hydrochloric acid matrix and 5% methanol matrix respectively. Hence, a 33% reduction in 
115In signal was observed in the methanol matrix. Initially this was attributed to the 

increased matrix levels in the plasma having a cooling effect and thus reducing In 

ionisation. Two further solutions both containing Au at a concentration of 0.50 ng ml-1 

were also prepared. Again one solution was prepared in 2% hydrochloric acid and the other 

was prepared in 5% methanol. Unlike the In signal, signal intensities of 97 692 cps and  

116 111 cps were observed for the Au solutions in the hydrochloric acid and methanol 
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matrix respectively, resulting in a 19% increase in Au sensitivity in the presence of 

methanol. This was quite unexpected, since it was initially thought that the organic matrix 

would suppress Au ionisation resulting in reduced sensitivity. However, there have been 

numerous reports of carbon enhancing the signal intensity of elements having high first 

ionisation potentials (generally those elements with first ionisation potentials between 9-11 

eV).130-134 Such reports have concentrated on the signal enhancement for Se and As. It is 

now common practise to introduce carbon (either as a gas or organic solvent) to the sample 

introduction system when analysing Se or As to enhance sensitivity.130, 135, 136 Rodushkin et 

al.,137 and Allain et al.,133 reported that Au signal intensity (amongst other elements) was 

enhanced in the presence of carbon.137 Carbon induced enhancement has been explained by 

charge transfer reactions in the plasma, where carbon ions transfer charge to analyte ions 

which have a lower ionisation potential than carbon itself (11.3 eV).131 The proposed 

charge transfer mechanism was described by Hu et al.,132 and is summarised below. 

 

M + C+ → M+ + C 

Enhancement in signal has also been attributed to reduced surface tension due to the 

presence of organic solvent, which improves sample uptake and nebulisation efficiency.130 

Since the In signal intensity dramatically decreased in the presence of 5% methanol and the 

Au signal increased, it was unlikely that reduced surface tension was responsible for 

increasing Au signal in the above case, but rather attributed to the charge transfer 

mechanism.131, 132 In addition, volatile solvents are known to expand in the plasma and thus 

widen the central channel. Liu et al.,131 suggested that lighter elements diffuse more rapidly 

through the already expanded central channel than heavier analyte ions, thus a decreasing 

signal intensity is observed for lighter ions compared to heavier species.131 This argument 

would explain why the 115In signal decreased in 5% methanol, but the heavier 197Au signal 

intensity did not. In any case, the enhancement in analyte signal by the HPLC mobile phase 

was an advantage. 

 

The coupling of the HPLC and ICP-MS involved inserting a T-piece between the column 

exit and nebuliser. This enabled the eluent flow to be split, so only 200-300 µl min-1 of 

solvent entered the nebuliser. Figure 2:33 shows a schematic of the LC coupling and 
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illustrates how the mobile phase flow can be split with the aid of a T-piece. The aim was to 

limit the amount of organic solvent entering the plasma. The lengths of Teflon tubing used 

to connect the column to the nebuliser are shown in Figure 2:33; the internal diameter of 

the tubing was 150 µm. Both the lengths and diameters of tubing determine the proportion 

of flow splitting, a small internal diameter was required to minimise band broadening and 

ultimately retain resolution. A Waters µBondapak C18 column (300 mm x 3.9 mm) was 

employed for the HPLC-ICP-MS analysis of the SFNG-DNA reactions. 

 
Figure 2:33: Schematic showing the coupling of a HPLC column to a nebuliser with the aid of a flow 

splitter. 

 
The chromatograms in Figure 2:34 show the Au signals during elution of unbound SFNG 

(SFNG standard containing 21.12 ng ml-1 Au) and SFNG-DNA (24 mer biotinylated 

oligonucleotide) tagging mixture. The unbound SFNG eluted at 1.72 minutes as signified 

by the single Au peak in Figure 2:34a. Two Au peaks were observed in Figure 2:34b, the 

first peak at 1.06 minutes corresponding to the SFNG-DNA conjugate and the second peak 

at 1.80 minutes relating to the unbound SFNG, which had a retention time consistent with 

the unbound SFNG shown in Figure 2:34a. 
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Figure 2:34: a)

 197
Au chromatogram of unbound SFNG containing 21.12 ng ml

-1
 Au. b) 

197
Au 

chromatogram of SFNG-DNA reaction mixture containing 14.8 ng ml
-1

 Au. Both samples were eluted 

from a Waters µBondapak C18 column (300 mm x 3.9 mm, 10 µm) with 5% methanol isocratic mobile 

phase. 10 µl injection volume.  
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The retention times of the unbound SFNG and SFNG-DNA conjugate shown in Figure 2:34 

were quite different to those observed in Table 2:13 in which the eluting species were 

fraction collected and then analysed by ICP-MS. The reason for this was attributed to the 

change in stationary phase; the fraction collected samples were separated on a Hypersil C18 

column, but the on-line separation was achieved with a Waters C18 column. Although both 

columns contained a C18 phase, they originated from different manufacturers’ and had 

different dimensions, which may have effected the retention times. In addition, ionic 

strength was thought to have influenced the retention time; this aspect will be discussed 

later in this section.  

 

The SFNG-DNA conjugate was the first species to elute because of its large size and 

therefore, it was likely to be largely excluded from the C18 phase. More importantly, the 

bound SFNG carried a highly charged oligonucleotide, resulting in less hydrophobic 

interaction with the surface of the non-polar stationary phase. The void volume of the 

Waters µBondapak column was determined with a 100 µM solution of uracil, which eluted 

after 3.87 minutes. Therefore, both SFNG species eluted within the void volume, 

suggesting that they were totally excluded from the pore space in the column and were 

retained due to surface interactions. 

 

The SFNG-DNA reaction mixture shown in Figure 2:34 contained 0.5 nmoles biotinylated 

24 mer olignucleotide and 0.27 nmoles of streptavidin or 1.07 nmoles of biotin binding 

sites (four binding sites per streptavidin). Therefore, the above reaction mixture contained a 

2.14 molar excess of biotin binding sites compared to biotinylated DNA. The reaction can 

therefore be written in two different ways by considering either the number of moles of 

streptavidin or biotin binding sites in relation to the DNA. 

 

Reaction: DNA +     Streptavidin   →   DNA-Streptavidin   +   Streptavidin 
No. nmoles: 0.5 +     0.27   
Or 

Reaction: DNA +     Binding sites   →   DNA-Binding sites   +   Binding sites 
No. nmoles: 0.5 +     1.07 
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Due to steric restraints only ~two biotin binding sites per streptavidin will be accessible to 

biotin, resulting in 0.54 nmoles of available biotin binding sites, or effectively an equal 

number of moles of biotin and binding sites. If all the biotinylated DNA molecules are 

labelled it would result in two DNA molecules per streptavidin protein. More importantly, 

this scenario would result in all the SFNG being bound, thus only one Au peak 

corresponding to SFNG-DNA conjugate would be observed in Figure 2:34. Since this is not 

the case, the peaks in Figure 2:34 were integrated giving areas of; 50 130 and 57 399 for 

the 1.06 and 1.80 minute peak respectively. Thus 46.6% of SFNG in the sample was bound, 

or considering 0.27 nmoles of streptavidin was present, 0.124 nmoles of streptavidin was 

bound to DNA. Considering this information, a maximum of 50% DNA labelling (0.25 

nmoles DNA labelled) can be achieved and only if two DNA molecules bind per SFNG. 

The DNA labelling efficiency decreases to 25% (0.124 nmoles DNA labelled) if only one 

DNA binds per SFNG. These scenarios are summarised below. 

 

1:1 Reaction: DNA +     Streptavidin   →  1DNA-Streptavidin   +   Streptavidin 

No. nmoles: 0.5 +     0.27       →  0.124-0.124           +   0.146   

Or, if two DNA molecules bind to SFNG:   

2: 1 Reaction: DNA +     Streptavidin   →   2 DNA-Streptavidin   +   Streptavidin 

No. nmoles: 0.5 +     0.27       →       0.25-0.124             +   0.146 

 

Although the amount of bound SFNG can be established, the above calculation does not 

identify the number of occupied biotin binding sites per streptavidin molecule because the 

experiment tracks gold not DNA, or effectively the labelling stoichiometry. The preferred 

labelling ratio is 1 DNA:1 SFNG since it results in each DNA molecule being labelled with 

~ 80 Au atoms. If two DNA molecules bound to one SFNG in a 2:1 ratio, then the number 

of Au atoms per DNA decreases to 40. As explained in the above case, the ratio of unbound 

SFNG/SFNG-DNA peak areas would be the same irrespective of one or two DNA 

molecules binding per streptavidin. This aspect of SFNG labelling will be discussed again 

in subsequent sections. 
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In addition to labelling efficiency, the enhancement in signal due to SFNG labelling has to 

be calculated, which was achieved by preparing an Au and P calibration curve and 

comparing the gradients. The Au calibration standards were prepared in the concentration 

range 0.20 – 1.5 ng ml-1 and the P calibration standards ranged from 10-200 ng ml-1. The 

Element 2 XR ICP-MS was used in the low and medium resolution mode for Au and P 

respectively. Gradients of 265 765 and 1082 were obtained for Au and P calibrations 

respectively, thus, a 246 times greater response was obtained for Au compared to P. Of 

course the gradient for P is reduced by working at medium resolution, but that is a 

necessary setting for the measurement. The biotinylated oligonucleotides used in the above 

example were 24 nucleobases in length, thus each oligonucleotide possessed 24 P atoms. 

Considering each oligonucleotide was labelled with 80 Au atoms, there were 3.3 times as 

many Au atoms compared to P. Thus, the 246 Au enhancement factor can be multiplied by 

3.3 to give a total signal enhancement of 812 for Au labelled oligonucleotides, assuming 

there were 80 Au atoms per nano-particle. SFNG was assayed in a subsequent experiment 

(Section 2.6.1.4, Quantification) and the actual number of Au atoms per nano-particle 

determined.  

 

It should be noted at this point that the 246 fold enhancement in signal obtained by Au, 

which resulted in a 812 total signal enhancement for SFNG labelled oligonucleotides was 

much greater than the signal enhancement calculated for MMN labelled oligonucleotides 

on page 122 (section 2.4.2.2). In the case of MMN, Au gave a 123 times greater response 

than P, resulting in a 406 fold signal enhancement (working on assumption of 80 Au atoms) 

when the MMN were attached to the oligonucleotide. The same type of Au nano-particle is 

incorporated on both SFNG and MMN, consisting of approximately 80 Au atoms. 

However, the MMN experiments were carried out on the PQ ExCell quadrupole 

instrument, whilst the Element 2XR was used for the SFNG experiments described above. 

It can only be assumed that the sensitive detection of heavier elements in low resolution 

operation of the double focussing instrument was responsible for the greater Au response, 

which in turn resulted in greater Au enhancement factors for the SFNG labelling 

experiments.  
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The SFNG-DNA reaction mixture which was shown in Figure 2:34 was injected again, but 

at a concentration 10 times greater than that of Figure 2:34. The retention time of the 

unbound SFNG was 2.41 minutes, which was considerably later then that previously 

observed (Figure 2:34). However, the SFNG-DNA conjugate still had a retention time of 

1.06 minutes. SFNG was supplied in a solution containing 20 mM phosphate buffer and 

0.150 M sodium chloride. The more concentrated SFNG solution therefore contained more 

salt and hence had a higher ionic strength. Therefore, a plausible explanation is that the 

ionic strength had an effect on the streptavidin configuration in solution, which in turn may 

have effected the retention time of the unbound SFNG. However, the exact effect of ionic 

strength on the protein structural configuration was unknown. The retention time of the 

SFNG-DNA conjugate did not change, presumably due to the highly charged 

oligonucleotide molecules having very little affinity for the non-polar phase, thus the 

conjugate eluted at the same retention time as seen previously. Since the unbound SFNG 

retention time was dependent upon concentration, it was deemed necessary to inject 

retention time markers in every experiment to confirm the retention time of the unbound 

SFNG species and ensure the correct Au species was being employed for quantification. 

 

A control sample was also prepared, which involved adding non-biotinylated 

oligonucleotide (unmodified 25 mer) to a 3.6 fold molar excess of biotin binding sites. The 

reaction conditions were similar to those described above and the chromatogram is shown 

in Figure 2:35. A single Au peak was observed in Figure 2:35, with the retention time 

consistent with unbound SFNG. The absence of a SFNG-DNA peak (expected at ~1.0 

minutes), implies that the reaction was dependent on the biotin functionality on the 

oligonucleotide and was therefore site specific. 
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Figure 2:35:

 197
Au chromatogram of SFNG control reaction containing 3.6 fold molar excess of binding 

sites and unmodified 25 mer. Eluted from a Waters µBondapak C18 column (300 mm x 3.9 mm, 10 µm) 

with 5% methanol isocratic mobile phase. 10 µl injection volume.  

 

It has been shown that the SFNG labelling route is viable, but in order to validate the 

method used above, several factors need to be investigated:  

1. Instrument configuration: Need to ensure the coupling of the HPLC to the ICP-MS 

is suitable in terms of stability and sensitivity. 

2. Quantification: The response of nanogold needs to be compared against atomic 

spectrometry Au standard, since the nanogold clusters may behave different in the 

plasma to aqueous ionic Au. 

3. Mass balance: Is the amount of Au injected equal to the amount recovered post 

separation? A discrepancy in injected and recovered Au could indicate that the 

nanogold is adsorbing onto the stationary phase walls, or that the mobile phase is 

not strong enough to elute the nanogold.  

4. Labelling efficiency and labelling ratio: The percentage of SFNG labelled DNA 

needs to be calculated. In addition, the number of DNA molecules bound to each 

SFNG needs to be established in each reaction. 

Each of the above aspects will be considered in turn. 

1.80 min 
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1. Instrument Configuration 

Several SFNG-biotinylated DNA reactions were prepared, each contained different molar 

excesses of biotin binding sites in relation to biotinylated DNA. Reactions containing an 

equal number of moles of biotinylated DNA and binding sites, two fold excess, four fold 

excess and ten fold excess of biotin binding sites compared to DNA were prepared and 

were denoted 1:1, 1:2, 1:4 and 1:10 respectively. Each sample was incubated at 4 oC for 

approximately 24 hours before being diluted and injected onto a C18 HPLC column; the 

resulting Au signal was then detected by ICP-MS. The HPLC-ICP-MS parameters were 

similar to those used previously. Again, the eluent flow to the plasma was restricted to 

~200 µl min-1, by employing a flow splitter. The samples were diluted in deionised water 

prior to analysis, hence a blank sample consisting of deionised water was injected at regular 

intervals to assess the Au baseline and carry over. Figure 2:36 shows the chromatogram 

corresponding to the first blank injection, which was carried out before the samples were 

injected. 
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Figure 2:36: 

197
Au signal intensity during injection of a deionised water blank. Eluted from a Waters 

µBondapak C18 column (300 mm x 3.9 mm) with 5% methanol isocratic elution at 1 ml min
-1

, 10 µl 

injection volume. 

 

1.56 min 
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A peak at 1.56 minutes was clearly evident in Figure 2:36. This retention time was quite 

similar to the retention time of the unbound SFNG, thus the peak in the blank 

chromatogram was thought to be carry over of Au, presumably due to contamination in the 

injector system. As discussed previously Au has the disadvantage of being ‘sticky’ in 

nature, resulting in carry over. Further blank injections did not remove the peak, therefore, 

it was decided to integrate the peak in the blank and subtract the area from the samples 

during any quantification calculations. The chromatogram in Figure 2:36 also exhibits a 

couple of spikes, which were quite erratic and not reproducible and therefore thought to be 

artefacts. The chromatograms corresponding to the 1:1 and 1:2 DNA:binding site reaction 

mixtures are shown in Figure 2:37. These chromatograms demonstrate that the SFNG 

labelling reaction and separation were reproducible, with the bound and unbound SFNG 

species clearly resolved and detected. 
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Figure 2:37: a)

 197
Au signal intensity during injection of 1:1 DNA:biotin binding site reaction. b) 

197
Au 

signal intensity during injection of the 1:2 DNA:biotin binding site reaction. Both samples eluted from a 

Waters Bondapak C18 column (300 mm x 3.9 mm) with 5% methanol isocratic elution at 1 ml min
-1

, 10 

µl injection volume. 

 

a 

b 

1.03 min 

1.79 min 

1.05 min 

1.83 min 
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The 1:4 and 1:10 DNA:biotin binding site reactions did not exhibit the SFNG-DNA 

conjugate peak which was expected around 1 minute. Hence the chromatograms 

corresponding to these two failed reactions are not shown. Figure 2:38 shows an Au 

chromatogram of a deionised water blank injection which was injected after the above 

labelling mixtures.   
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Figure 2:38:

 197
Au signal intensity during injection of deionised water blank. Eluted from a Waters 

Bondapak C18 column (300 mm x 3.9 mm) with 5% methanol isocratic elution at 1 ml min
-1

, 10 µl 

injection volume. 

 

Figure 2:38 shows that the peak at 1.67 minutes is larger than that seen in the first blank 

injection in Figure 2:36. The increase in Au signal in the blank injections was thought to be 

due to the HPLC configuration. In normal operation of the HP 1090 LC system, the eluent 

flows through the column and then back into the instrument through the injector system. 

This has an effect of flushing the injector system. However, to minimise band broadening 

and to maintain resolution, the tubing connecting the column outlet and nebuliser was kept 

at a minimum length. As a result, the HPLC mobile phase was split post column, so ~20% 

of the flow went to the nebuliser and ~80% went directly to waste. The injector system 

flush was therefore by-passed, which may have resulted in the accumulation of SFNG in 

1.67 min 
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the injection system, thus causing carry over and producing small peaks in the blank 

injections. As a result, the coupling of the HPLC to the ICP-MS was modified. Briefly, the 

diode array UV detector that was integrated into the HP1090 was bypassed completely. The 

SFNG-DNA labelling reactions were diluted between 600-3500 fold with deionised water 

(depending on the Au concentration in the reaction mixtures) prior to ICP-MS analysis. 

These extremely low concentrations of SFNG and DNA were below the UV detector’s 

limit of detection. Hence, it was not deemed necessary to include the detector in the 

coupling. The flow splitter was employed again to achieve a 20:80 split in mobile phase 

post column, 20% was directed to the nebuliser as described previously, but the remaining 

80% was directed back into the HPLC, to flush the injector system. Although this did not 

completely eliminate carry over, it was reduced considerably. Complete removal of Au 

carry over between injections would require optimisation of the separation method. Aqua 

regia and hydrochloric acid have already been mentioned with regard to improving Au 

wash out time. However, these strong acids can not be used in conjunction with a silica 

stationary phase due the pH limitations of such phases (limited to pH 4-9). The addition of 

cysteine or another S containing species may be required in the mobile phase to complex 

Au and prevent adsorption onto the injector system, chromatographic phase and connection 

tubing between the column and nebuliser. However, S containing mobile phase additives 

was not investigated here. 

 
2. Quantification 

The SFNG was assayed to determine the number of Au atoms per nanogold particle. Two 

Au calibration curves were prepared, one for SFNG and one for an elemental Au standard. 

The slopes of the calibration curves were 4 510 624 (x axis expressed as nM streptavidin) 

and 265 217 (x axis expressed as ng ml-1) for SFNG and elemental Au respectively. From 

the data it was calculated that there were 86 Au atoms per nanogold particle. This figure is 

slightly higher than that given by the manufacturer, who state ~80 Au atoms per nanogold 

particle.95 However, the manufacturer states that there is an average of one nanogold 

particle to each streptavidin molecule,95 more than one nanogold particle per protein would 

increase the average number of Au atoms per particle and there may also be a small fraction 

of nanogold not bound to streptavidin. If either of these species were present they should be 
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resolved from the SFNG-DNA conjugate during HPLC separation. No evidence of 

additional peaks was observed in any of the chromatograms. The figure of 86 Au atoms per 

nanogold particle was used for further calculations, although this assay was only applied to 

one batch of SFNG, it is unknown whether the figure varies between batches. 

 

The enhancement in signal due to SFNG labelling assumes that the nanogold particles are 

completely ionised in the plasma and thus behave as Au atoms. Once the average number 

of Au atoms per nanogold particle was established, Au calibration curves for SFNG and 

elemental Au standards were compared for consistency. The gradients for the two sets of 

calibration data were 266 226 and 265 217 (x axis expressed as µg l-1 in both cases) for 

SFNG and elemental Au respectively. The two gradients were virtually identical, 

confirming that SFNG gave a similar response to the atomic Au solutions and is therefore 

ionised efficiently in the plasma. However, it should be noted that ICP-MS was employed 

to assay the SFNG to obtain the figure of 86 Au atoms per nano-particle. This figure was 

then used to prepare SFNG standard solutions and the slopes of SFNG and elemental Au 

calibration curves were compared, to check the assay data was correct. It does not however 

provide definitive proof that the nano-particles were completely processed within the 

plasma. This would require the figure of 86 Au atoms per nano-particle to come from an 

independent method. Recent work has suggested that for the plasma to process particles in 

a truly composition independent fashion requires them to be less than 90 nm in size (based 

upon the analysis of glass).102 Considering the nanogold particles were only 1.4 nm in 

diameter, it can be concluded that the particles were completely ionised. The presence of 

the fluorophore and streptavidin protein are not likely to have adversely effected the 

ionisation of the nanogold particle, since these are organic molecules, which as already 

discussed, may have beneficial effects due to their carbon content.  

 

The above analysis revealed that 86 Au atoms were present per nano-particle, considering 

these nano-particles are fully ionised in the plasma, a more accurate enhancement 

calculation can be conducted. In previous experiments biotinylated 24 mer oligonucleotides 

have been labelled with 86 Au atoms (as calculated above), resulting in 3.58 times more Au 

atoms compared to P atoms. Multiplying this figure by the Au enhancement factor of 246, 
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results in an 882 fold increase in signal for 24 mers labelled with SFNG, providing one 

DNA molecule binds to one SFNG.  

 

Although Au quantification can be achieved with SFNG solutions containing known 

concentrations of Au, an alternative method of quantifying Au signals was employed by 

Baranov et al.,10, 16 in which Ir was used as an internal standard. In addition, an acidic 

solution containing a known concentration of Tl was introduced post column via a T-piece 

just before the ICP sample introduction system. The ratio of Ir/Tl signals was employed to 

establish the stability of the system, whilst the Au signal was quantified using the Ir signal, 

which was expected to have a similar response to Au due to the similar first ionisation 

potentials and masses of Au and Ir.10, 16  

 

3. Mass Balance 

The 1:1 DNA:biotin binding site reaction that was observed above in Figure 2:37 was 

injected using the modified instrument configuration discussed above. A solution of 

unbound SFNG containing 9.34 ng ml-1 Au was also injected; this solution was used for 

quantifying Au in the separated peaks of the reaction mixture. The chromatogram of the 

standard and the re-injected 1:1 DNA:biotin binding site reaction can be seen in Figure 

2:39.  
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Figure 2:39:
 
a)

 197
Au signal intensity during injection of a SFNG standard containing 9.34 ng ml

-1
 Au. b) 

197
Au signal intensity during injection the equal molar biotin binding site reaction. Both samples eluted 

from a Waters µBondapak C18 column (300 mm x 3.9 mm) with 5% methanol isocratic elution at 1 ml 

min
-1

, 10 µl injection volume. 

a 

b 

1.78 min 

1.45 min 

0.76 min 
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The Au concentration in each of the peaks shown in Figure 2:39b was quantified using the 

SFNG standard peak area (Figure 2:39a). Briefly, the total peak area of the SFNG standard 

was divided by the Au concentration in the SFNG standard to give the unit area per ng ml-1 

of Au. From Figure 2:39b it was calculated that peak 1 at 0.76 minutes contained           

0.75 ng ml-1 Au, and peak 2 at 1.45 minutes contained 0.34 ng ml-1 Au, hence, the total Au 

recovered equated to 1.09 ng ml-1. However, the Au concentration of the injected reaction 

mixture was 11.3 ng ml-1, suggesting that only ~10% of the injected Au was recovered 

(note the injection volumes were the same so that concentration is mass equivalent). The 

same calculation was carried out on the 1:2 DNA:biotin binding site reaction (Figure 2:37) 

and a recovery of 10.6% was achieved. The discrepancy in the mass balance calculations 

was initially thought to be one of two factors: 

• SFNG and DNA were absorbing onto the walls of the polypropylene reaction 

vessels. 

• SFNG was being trapped on the column instead of being completely eluted. 

 
The Waters C18 column was cleaned in an attempt to remove residual Au and hence 

improve the baseline. The column was connected to the HPLC in the reversed flow 

direction (but not connected to the detector) and flushed with 5% methanol. It was hoped 

that any nanogold that had adsorbed at the head of the column would be removed by the 

continuous reversed flushing. The wash eluents were collected for subsequent ICP-MS 

analysis. Gold counts of ~1.4 x 106 cps were observed for the first column backflush, 

equating to ~2 ng ml-1 Au, which had collected at the head of the column. The Au signal 

intensity gradually decreased for subsequent reverse flush eluents, suggesting that SFNG 

had accumulated at the head of the column as expected.  

 

After thorough cleaning of the column, two fresh SFNG tagging samples were prepared. 

The first reaction contained 0.107 nmoles of biotin binding sites and 0.115 nmoles of 5’ 

biotinylated 24 mer oligonucleotide (2.24 µM), resulting in a 0.93 fold excess of binding 

sites (i.e. DNA slightly exceeded probe in terms of moles). This sample will be referred to 

as the 1:1 DNA:biotin binding site reaction. The second sample, which will be referred to 

as the 1:7.5 DNA: biotin binding site reaction, contained 0.44 nmoles biotin binding sites 
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and 58.7 pmoles of biotinylated DNA (2.24 µM), resulting in a 7.5 fold excess of binding 

sites. The two reactions mixtures were diluted so they contained an Au concentration of 

5.66 ng ml-1 and 5.55 ng ml-1 for the 1:1 and 1:7.5 DNA:biotin binding sites respectively. A 

SFNG standard containing 3.66 ng ml-1 Au was also prepared and used to quantify the Au 

contained in each of the peaks. After each injection, the column was disconnected from the 

nebuliser and reconnected to the HPLC system in the reverse flow direction. The column 

was then flushed in the reverse direction for approximately 2 minutes. During this time, the 

column eluent was collected and analysed. The aim was to establish whether any nanogold 

was accumulating at the head of the column during injection. It was hoped that this would 

help establish an accurate mass balance. The chromatograms corresponding to the 1:1 and 

1:7.5 DNA:biotin binding site reactions are shown in Figure 2:40. 
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Figure 2:40: a) 

197
Au signal intensity during injection of the 1:1 DNA:biotin binding site reaction 

mixture. b)
 197

Au signal intensity during injection of the 1:7.5 DNA:biotin binding site reaction mixture. 

Both samples eluted from a Waters µBondapak C18 column (300 mm x 3.9 mm) with 5% methanol 

isocratic elution at 1 ml min
-1

, 10 µl injection volume. 

b 

1.06 min 

1.60 min 

a 
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Duplicate injections of the SFNG standard gave an average peak area of 181 887 (RSD = 

0.75%), which was divided by the Au concentration of 3.66 ng ml-1 to give 49 695.90 unit 

area/ng ml-1 Au. The chromatogram corresponding to the 1:1 DNA:biotin binding site 

reaction (Figure 2:40a) revealed that 2.70 ng ml-1 and 3.07 ng ml-1 Au was present in the 

SFNG-DNA peak (0.98 minutes) and unbound SFNG peak (1.58 minutes) respectively, 

thus a total of 5.77 ng ml-1 Au was recovered. Considering 5.66 ng ml-1 Au was injected on 

the column, the resulting recovery was calculated to be 102%. The same calculation was 

performed on the 1:7.5 DNA:biotin binding site chromatogram in which 2.98 ng ml-1 and 

3.11 ng ml-1 Au was calculated for the 1.06 and 1.60 minute peak respectively. Therefore, a 

total of 6.09 ng ml-1 Au was recovered, resulting in a 109% recovery (5.55 ng ml-1 Au was 

injected on the column).  

 

The chromatograms in Figure 2:40 had an Au baseline of ~12 000 cps, which equated to 

approximately 70 pg ml-1 Au. This baseline level did not decrease, but remained constant. 

This continuous flux of Au was thought to be hydrophobically bound SNFG from previous 

injections slowly eluting from the column. Repeated injections of nanogold produced an 

accumulation of Au at the head of the column that could be reduced, but not totally 

removed by back flushing. The observed background Au signal may also have been 

enhanced due to the presence of 5% methanol in the mobile phase which was shown to 

increase Au signals by ~19%. The column eluents resulting from the reversed column flush 

post injection also revealed that ~70 pg ml-1 Au was present for both samples. This value of 

70 pg ml-1 was constant for all column backflushes, suggesting that no nanogold was 

depositing on the column head during the above experiment, and that all the Au was being 

eluted and thus detected.  

 

This data suggested that 100% recovery of the Au was possible if the column was cleaned 

before each injection of SFNG. These calculations ensure that all the Au is being detected, 

thus providing accurate quantification. The slightly elevated recoveries (>100%) were 

thought to be due to errors in background correction. It is hoped that this can be remedied 

by further improving the separation method. 
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The above chromatograms exhibited a dip in the baseline at approximately 1.4 minutes. 

This reduction in signal was consistent and observed in all chromatograms, suggesting it 

was an injection related event. The mobile phase consisted of 5% methanol, but the 

samples were diluted in deionised water. From the order of elution in Figure 2:40, it can be 

established that the SFNG-DNA conjugate eluted first, followed by the sample solvent, 

which contained a higher proportion of water compared to the mobile phase, and finally the 

unbound SFNG eluted. If the background Au was hydrophobically bound then the elution 

of the water sample solvent (weaker eluent than methanol) would transiently reduce the Au 

flux from the column. Further, reduced carbon load and higher surface tension of the water 

would reduce the Au signal, causing a temporary reduction in the baseline signal. In 

addition, a spike was observed in the 1:1 DNA:biotin binding site reaction at 1.35 minutes. 

This peak was found to be inconsistent and not reproducible, suggesting it was an artefact 

and not a true Au species. 

 
4. Labelling Efficiency and Labelling Ratio 

From the chromatogram in Figure 2:40b (1:7.5 DNA:binding site reaction), it can be 

concluded that 53.5% of the nanogold (compared to the amount injected) and hence 

streptavidin was bound to DNA. Considering 0.11 nmoles of streptavidin (0.44 nmoles 

binding sites) was present in the reaction, the number of moles of bound streptavidin was 

58.9 pmoles. If one biotinylated DNA molecule bound to one streptavidin protein, then 

58.9 pmoles of DNA also bound. Considering 58.7 pmoles of DNA was in the reaction 

mixture, 100.3% of the DNA was labelled with SFNG. This data suggests that with a 7.5 

molar excess of potential binding sites, or a 7.5/4 ~2 fold molar excess of nanogold probe, 

only one binding site per protein molecule was occupied.  

 

The labelling efficiency of the 1:1 DNA:biotin binding site reaction was also calculated as 

described above, but the labelling stoichiometry was not as straight forward to calculate. A 

total of 47.7% or 12.85 pmoles of SFNG was bound to DNA, if one DNA molecule bound 

to one streptavidin protein, then 12.85 pmoles of DNA would also be labelled. But 

considering 115 pmoles of biotinylated DNA was used in the reaction, this only equates to 

an 11.2% labelling efficiency. Conversely, two DNA molecules bound to one streptavidin 
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protein would result in 25.7 pmoles of labelled DNA and thus a 22.3% labelling efficiency. 

In this particular case there is more than one outcome; either one or two DNA molecules 

bound to one streptavidin.  

 

In an attempt to resolve this uncertainty, the retention time of the bound and unbound 

SFNG species were considered; if two DNA molecules bind to SFNG (2:1), the retention 

time of the species should be less than that of the 1:1 species which is known to elute at 

~1.06 minutes (Figure 2:40b), since the 2:1 species would be much larger and the 

separation has a significant size exclusion character. The retention time of the SFNG-DNA 

species for the equal molar reaction was 0.98 minutes (Figure 2:40a), which was shorter 

than the retention time of the 1:7.5 DNA:SFNG species (Figure 2:40b). However, the         

8 second difference in retention time between the two SFNG-DNA species was not 

considered significant enough to suggest that the SFNG species in Figure 2:40 were bound 

to different numbers of DNA molecules. A more accurate method of determining labelling 

stoichiometry has to be developed.    

   

It is accepted in ligand chemistry that as more ligands bind to a substrate such as a metal 

ion, the stepwise formation constants (Kn) generally decreases in the order K1>K2>K3, 

where the subscript numbers represent the increasing ligand number.138 Thus, the addition 

of subsequent ligands onto a substrate becomes more difficult. There are several reasons for 

this effect, namely: steric restraints and reduction in binding sites and ligand molecules 

upon successive binding and reduction in charge on the metal ion. It was expected that this 

would be the case for biotin binding to streptavidin, especially considering the 

oligonucleotide may contribute greater steric effects, and thus the preferred binding ratio 

was expected to be 1 DNA:1 SFNG. However a report by Williams et. al.,139 suggested 

otherwise. The binding of biotin to streptavidin is said to be positively cooperative, that is 

the binding of the first biotin moiety stabilises the streptavidin structure and actually 

promotes further biotin binding. Thus successive biotin binding occurs with increasing 

affinities.139 Although only 1-2 biotin binding sites are accessible on SFNG, it may be that 

two biotinylated oligonucleotides per streptavidin are actually favoured. However, it is 

unknown what effect the Alexa Fluor-488 molecules and Au nano-particle have on the 
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protein structure and if positively cooperative binding is still valid in these circumstances. 

The presence of these additional molecules may create larger steric effects, thus the 1:1 

DNA:SFNG binding ratio may actually be favoured. 

 

The SFNG-DNA reaction mixtures appeared to degrade over a period of a few weeks. 

When the samples were injected within two weeks of preparation, only one Au peak at 

~1.60 minutes was observed. This was attributed to the DNA degrading over time. It is 

possible that the DNA degraded in solution over time or even absorbed onto the walls of 

the sample vials. Such degradation would have ultimately resulted in the bound and 

unbound SFNG having similar molecular weights and charges and ultimately the same 

retention time. However, reproducible results were generally obtained when the SFNG-

DNA reactions were separated and detected within a few days of preparation. 

 

2.6.2 Summary 

The relative success of the SFNG labelling route was thought to be due to two factors. 

Firstly, both the SFNG and biotinylated DNA were stable in solution and at room 

temperature, resulting in easier sample handling. Specialised reaction conditions and 

extensive sample preparation procedures were not necessary. In addition, the labelling 

reaction was very easy and straight forward, which was attributed to the strong interaction 

between biotin and streptavidin. 

 

Several modes of separation were investigated in order to separate the bound and unbound 

SFNG. Numerous problems were encountered; gel filtration did not give adequate 

resolution and irreversible adsorption of the SFNG probe was observed on the anion 

exchange resin. IMAC did show some promise, although reversed phase HPLC was proven 

to be the most successful separation method. It was demonstrated that RP-HPLC gave good 

recoveries of SFNG. Also, the mobile phase was compatible with ICP-MS and the Au 

signal was enhanced in the methanol matrix, which was a further advantage. More 

importantly, the RP-HPLC method gave excellent resolution, with the bound and unbound 

SFNG being resolved within 3 minutes. There is however room for improvement with 
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respect to the reverse phase separation method, especially concerning carry-over. The 

addition of cysteine or another S containing molecule to the mobile phase may be necessary 

to prevent carry over between injections. The use of a non-porous resin or monolith column 

may also be beneficial, since these phases are more suited to macromolecule separations. In 

addition, polymeric monolithic phases such polystyrene divinylbenzene (PS-DVB) are 

more tolerant to extreme pH, thus acid solutions could be employed to remove residual Au. 

 

The improved SFNG-DNA binding efficiency compared to that of the MMN-thiol labelling 

route (~10% and 100% DNA labelling efficiencies achieved for the MMN and SFNG 

methods respectively) provided a much greater enhancement and detection power. The 

DNA signal could be enhanced by 882 fold when one DNA molecule bound to one SFNG 

in a 1:1 binding stoichiometry. When a 7.5 fold excess of SFNG was employed, a 1:1 

SFNG:DNA stoichiometry was observed, as demonstrated by the recovered DNA and Au. 

However, the stoichiometry was uncertain when a much smaller excess of SFNG was 

employed in the reaction. As a result, accurate methods of determining SFNG-DNA 

labelling stoichiometry need to be investigated further and this is currently one limitation of 

the method.  

 

Ultimately, two routes of nucleic acid labelling were identified using either MMN or 

SFNG. Both methods are capable of enhancing biomolecule signal and thus detection limits 

by ICP-MS, although there are numerous advantages and disadvantages associated with 

both methods. The preliminary results associated with the SFNG-biotinylated DNA 

labelling route have been published,17 although there is still room for improvement in this 

area of biomolecule signal enhancement.  

 

The vast majority of the time and effort put into developing the MMN and SFNG labelling 

procedures has concerned researching appropriate separation techniques to resolve the 

bound and unbound nanogold. The actual ICP-MS analysis has been the least time 

consuming and complicated. The following characterises the factors that are important in 

the separation and indicates how each of the methods investigated performed: 
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1. Good resolution of  the bound and unbound nanogold species 

• Low and inadequate resolution obtained by gel filtration 

• Good resolution achieved with anion exchange and RP-HPLC 

2. Reasonably short separation times 

• Long separation times observed with gel filtration (~20-60 minutes) 

• RP-HPLC baseline resolution within 3 minutes 

3. Mobile phase compatibility with ICP-MS 

• High salt levels in anion exchange HPLC are problematic 

• Methanol used in RP-HPLC was not troublesome with flow splitting 

4. On-line coupling capability with ICP-MS (also dependent upon point 3) 

• RP-HPLC coupling was fairly straight forward due to mobile phase and flow 

rate compatibility 

• IMAC coupling may be more technically demanding since eluent and sample 

introduction system may need modifying 

5. Good recoveries of nanogold species. 

• Poor SFNG recovery observed with anion exchange due to irreversible 

adsorption of SFNG onto phase. 

• Excellent recoveries (~100%) for RP-HPLC, since charged bio-molecules 

have very little interaction with C18 phase 
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3 Platinum Metallodrugs 

3.1 Introduction 

The treatment and diagnostic-imaging of disease is confined not only to organic 

compounds, but also employs inorganic metal complexes. Such inorganic compounds 

containing a metallic element to treat or diagnose disease are known as metallodrugs. There 

are a wide range of metals that are known to have therapeutic or diagnostic properties. 

These include some Pt complexes, which are known to have anti-tumour properties, 

likewise, Au36, 140, Tc36 and V140 amongst others have a niche in medicine. Table 3:1 

summarises some metallodrugs and their function in medicine and Figure 3:1 shows the 

structures of some common drug complexes.  

Table 3:1: Therapeutic functions of some metal complexes. 

Metal Function 

Platinum Anti-tumour agent141  

Ruthenium Anti-tumour agent141 

Rhodium Anti-tumour agent141 

Gold Treatment of arthritis and potential anti-tumour agent140 

Vanadium Anti-diabetic agent140 

Bismuth Anti-ulcer agent140 

Technicium Tissue imaging36  

 
It is important to understand a drug’s mechanism of action and potential side effects in 

order to develop future generations of drug with superior properties. More so, it is essential 

to ensure that the patient is receiving safe levels of the drug that are not posing a health risk 

greater than that of the disease itself. The metabolites of the metallodrug and its hydrolysis 

products also need to be assessed for their toxicity or potential biological activity.66 In 

addition, the transportation efficiency of the drug to reach the target site is important and 

may be dependent upon metallodrug-protein binding and releasing efficiency.142 
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Figure 3:1:   Examples of common therapeutic metallodrugs. 

 
The interactions of the drug with non-target species such as proteins may also of 

importance. For example, cisplatin (cis-diammindichloroplatinum(II)) is a cytotoxic 

compound, but when complexed to proteins, the drug exhibits no anti-tumour  

properties.141, 142 Conversely, ruthenium based anti-tumour drugs have been reported to 

maintain their activity upon binding to certain proteins.142 It has been known for some time 

that DNA is the target for Pt based metallodrugs. Extensive research has been carried out to 

establish how Pt based drugs interact with DNA and other non-target species.141-146  

 

3.1.1 Cisplatin 

Patients suffering with cancers of the head, neck, ovaries, testes or colon are treated with Pt 

based metallodrugs.36, 141, 144, 145, 147, 148 The most prominent Pt based metallodrug is 

cisplatin, which has demonstrated a huge success in treating certain tumours, but it has 

harsh side effects that include severe kidney complications145 and neurotoxicity.149 As a 

result, second and third generations of Pt drugs have been synthesised and investigated.  
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The Pt-based anti-cancer drugs such as cisplatin and oxaliplatin are known to interact with 

DNA in-vivo (and in-vitro) to form Pt-DNA adducts. DNA replication and transcription 

processes are thought to be inhibited by adduct formation.147-149 The hydrophobic cisplatin 

complex is capable of passing through cell membranes, but once in the low chloride 

medium of the cell cytoplasm, the Pt complex loses its chloride ligands and undergoes 

ligand exchange reactions with water molecules. This results in a reactive (hydrated) 

species that interacts with DNA nucleobases.147, 150 Numerous studies have shown that both 

cisplatin and oxaliplatin preferentially form adducts with guanine (G) nucleobases, 

followed by adenine (A) bases on DNA (see also Chapter 4).141, 148, 151 The vast majority 

(~60-65%) of adducts formed are intra-stranded cross-links between two neighbouring 

guanine bases (GG).144, 148, 149 Intra-stranded cross-links between neighbouring AG adducts 

are the next dominant species formed, accounting for approximately 25-30% of   

adducts.144, 149 Other minor adducts include: intra-stranded GNG (cross-links between non-

adjacent guanines), inter-stranded and monofunctional cross-links, which make up the 

remaining percentage of species produced.152 Figure 3:2 summarises the ligand exchange 

reactions and DNA binding observed with cisplatin.    

 

 
 

Figure 3:2: Cisplatin ligand exchange and DNA adduct formation. 
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Although Pt-AG adducts account for approximately 25-30% of adducts formed, Pt-GA 

adducts do not form with DNA. The reasons for this were explained by Mantri et. al.,153 

who reported that the intermediate formed prior to Pt-AG di-adduct formation was 

stabilised by a phosphate group on the DNA backbone. However, the same was not true for 

the formation of the Pt-GA di-adduct. Thus the formation of Pt-AG was kinetically more 

favourable compared to Pt-GA.153, 154 The types of Pt adducts formed with DNA are 

illustrated in Figure 3:3. 

 

3.1.2 Oxaliplatin 

Oxaliplatin is a third generation anti-tumour agent that is used for treating colorectal 

cancer.149, 155, 156 Although oxaliplatin has many side effects, these are less severe compared 

to cisplatin. In addition, oxaliplatin has been successful in treating cisplatin resistant cell 

lines and tumours.144, 155, 156 

 

Oxaliplatin undergoes ligand exchange in physiological conditions, where the oxalate 

ligand is replaced by two chloride ligands to form [Pt(dach)(Cl)2].
157 Once within the cell, 

the complex becomes hydrated,155 and forms adducts with DNA nucleobases, preferentially 

binding to guanine as in the case of cisplatin (Figure 3:3).149, 156 Oxaliplatin reacts with 

plasma proteins and like cisplatin becomes un-reactive when bound to proteins such as 

glutathione.155 Despite the similarities between cisplatin and oxaliplatin, numerous 

differences in their mechanisms have been reported. Firstly, oxaliplatin forms fewer cross-

links with DNA compared to cisplatin, yet it exhibits comparable cytotoxic           

activity.149, 155-158 Arnould et. al., reported that five times fewer oxaliplatin adducts were 

formed on colon cancer cell lines compared to cisplatin, for the same cytotoxic effect.155 

The DNA adducts formed by oxaliplatin are more hydrophobic than their cisplatin 

counterparts, due to the presence of the diaminocyclohexane (dach) ligand, and are thought 

to interact with hydrophobic regions of proteins.149 Also, the presence of the dach non-

leaving group results in oxaliplatin forming bulky adducts, which may disrupt DNA 

structure more than cisplatin.149, 155 Disruption to the conformation of DNA may have 

dramatic consequences on replication and transcription. 
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Figure 3:3: Intra-stranded and inter-stranded Pt-adducts formed with DNA. Note, ligand R refers to 

the non-leaving group, which is diaminocyclohexane in the case of oxaliplatin and ammonia in the case 

of cisplatin. 

 

3.1.3 Metallodrug Detection 

There are numerous biological assays designed for detecting Pt-DNA adducts, namely, the 

comet assay156, 159, 160 and post labelling assay (PLA).42, 161, 162 Both of these assays provide 

a way of detecting DNA damage by Pt drugs. The comet assay is a qualitative method of 

detecting DNA damage. Cells treated with Pt drugs are embedded in agarose and then 

irradiated with x-ray radiation, which induces DNA strand breaks and thus causes the DNA 

to relax. The DNA then electrophoretically migrates through the gel to form a comet like 

tail from the cell body. The presence of Pt cross-links retards DNA migration, therefore 

reducing tail movement which indicates the presence of cross-links.156, 159 The protocols, 

advantages and potential applications of this assay were discussed by Tice et. al.160 

 

The PLA provides a way of quantifying Pt-DNA adducts by employing a 32P label as 

illustrated in Figure 3:4. The assay involves treating the platinated DNA to an enzymatic 

digest prior to 32P labelling. Within the enzymatic mixture there are several enzymes, 

namely: DNase 1, snake venom phosphodiesterase (SVPD), nuclease P1 (NP1), shrimp 

alkaline phosphatase (SAP) and T4 polynucleotide kinase (T4PNK).42, 161 Following 
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incubation with cisplatin and the subsequent enzymatic digestion, the adducted sites are 

labelled with 32P. The reaction mixture is then separated by polyacrylamide gel 

electrophoresis (PAGE), and the separated radio-labelled di-nucleotides that represent 

adduct sites can then be detected.161 It has been reported that one adduct in 109-1010 

nucleotides can be detected with the PLA.151, 162, 163 It should be noted that the PLA is 

capable of detecting intra-stranded AG and GG cross-links, but not inter-stranded or mono-

functional cross-links. However, as already stated the inter-stranded GG and AG cross-

links account for ~90-95% of all adducts formed. 
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Figure 3:4: The post labelling assay. 
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carried out so the next enzyme, T4PNK can 

phosphorylate the di-nucleotides. It is crucial 

to note here that only the di-nucleotides are re-

phosphorylated, since T4PNK is a kinase 

enzyme that only uses polynucleotides as a 

substrate and not the mono-nucleotides. 

Therefore, only the di-nucleotides that 

represent previously platinated sites are 

phosphorylated with 32P. 
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The interactions of metallodrugs with biological molecules other than DNA are also of 

interest.141 For example, albumin accounts for ~52% of plasma proteins and contains many 

disulfide bonds, from cysteine and tryptophan residues, making it susceptible to cisplatin 

adduct formation.141 Methods such as; NMR, circular dichroism (CD) and fluorescence 

spectroscopy have been employed to study metallodrug-protein interactions.141 

Chromatographic techniques coupled with molecular mass spectrometry have also been 

employed for the structural characterisation of Pt species.151, 164-167 Molecular mass 

spectrometry can be employed to establish the targets of metallodrug binding. It will be 

described later how ESI-MS was employed to study the interaction of oxaliplatin with 

DNA nucleobases. 

 

ICP-MS is also suited to the study of metallodrug interactions, mainly due to the presence 

of the metal ion allowing for quantitative determination at very low levels in complex 

matrices.66, 168 The main disadvantage of ICP-MS is that the technique cannot distinguish 

between various adduct types (refer to Figure 3:3) since all structural information is lost in 

the plasma ionisation source, thus only total Pt is measured.169 This problem can be 

overcome by coupling chromatographic separation techniques to ICP-MS, which allows for 

the separation of different metallodrug species prior to ICP-MS analysis. This is important 

since biological systems are complex and many species of metallodrug adducts may form 

both in-vitro and in-vivo. HPLC with ICP-MS detection appears to be the method of choice 

for metallodrug studies.66, 142, 147, 151, 170-173 Szpunar amounst others have detailed the 

hyphenation of liquid chromatography with ICP-MS and has highlighted the advantages 

and limitations.66, 174 There have been several reports on the use of capillary electrophoresis 

coupled to ICP-MS for metallodrug research.175, 176 

 

Meczes et al., detailed the immunoreactivity of an antibody specific to cisplatin and 

carboplatin DNA adducts.152 It was established that the antibody recognises 1, 2 intra-

stranded GG and AG cisplatin adducts (Pt-GG and Pt-AG) with high sensitivity. However, 

factors such as the surrounding DNA sequence also appeared to effect antibody 

recognition.152 An earlier publication by Tilby et al.,177 also employed monoclonal 

antibodies to detect and quantify cisplatin and carboplatin adducts.177 The antibody 
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detection of cisplatin adducts was taken a step further by Liedert et al.,169 who employed 

two monoclonal antibodies specific to Pt-GG and Pt-AG adducts to quantify adducts in 

cells at clinically relevant levels.169  

 

Such reports demonstrate the array of instrumental and biological methods available for 

metallodrug research. This chapter will concentrate on developing an assay based on ICP-

MS for detecting and quantifying Pt-DNA adducts at the clinically important level, whilst 

the challenges associated with analysing biological samples by ICP-MS will be highlighted. 

 

3.2 Quantifying Pt adduct Formation by ICP-MS   

3.2.1 Introduction 

The aim of this research was to develop an ICP-MS method for determining Pt-DNA 

adducts in DNA samples after treatment with either cisplatin or oxaliplatin. Ultimately, the 

aim was to develop a clinical test suitable for determining Pt-DNA adducts in the DNA 

obtained from patients undergoing chemotherapy. An assay capable of determining Pt-

DNA adducts formed in-vivo should help identify patients who are responding effectively 

to the selected cancer drug. More importantly, it will potentially identify those patients who 

are not responding to the treatment, thus the treatment could be stopped and the unpleasant 

side effects minimised or avoided. This work was carried out in collaboration with Dr 

Rachel LePla, Dr Chris Harrington and Dr Don Jones from the Cancer Prevention and 

Biomarkers Research Group at Leicester University. The treatment of DNA with cisplatin 

and oxaliplatin, along with the PLA to confirm Pt binding, was carried out at Leicester 

University by Dr Rachel LePla. 

 

Although biological assays such as the PLA, comet assay and antibody detection methods 

are well established for detecting adduct formation at very low levels (refer to section 

3.1.3), they have their drawbacks. Firstly, the comet assay only provides qualitative 

information. The PLA is time consuming and expensive due to the range of enzymes 

employed to digest the DNA. In addition, the PLA utilises a radioisotope for adduct 

detection and quantification, which introduces additional hazards. Antibody methods of 
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detecting cisplatin-DNA adducts again may involve extensive sample preparation and there 

can be complications in adduct recognition, as detailed by Meczes.152 In comparison, an 

assay based on ICP-MS, which is capable of detecting trace levels of Pt, should allow 

adduct quantification with ease. Further, the method should be much less time consuming 

due to reduced sample preparation and rapid data acquisition.   

 

The challenge with this assay is that the Pt levels in DNA are likely to be very low. It has 

been reported by Welters et  al.,178 that 93 Pt-GG adducts and 30 Pt-AG adducts formed per 

107 nucleobases in a tumour biopsy.178 A review by Jamieson and Lippard145 also reported 

that as little as 9 Pt atoms are present per DNA molecule.145 However, the number of Pt 

adducts formed with genomic DNA varies between cell types due to numerous 

pharmacokinetic factors which were briefly discussed elsewhere.169 A quantitative method 

applicable to clinical samples (DNA obtained from chemotherapy patients) must be capable 

of detecting very low dose rates and thus ultra trace Pt levels. The amount of blood and 

hence DNA obtainable from a patient is limited, typically 10 ml blood can be taken from a 

patient. However, the number of white blood cells within the blood sample will vary 

depending on the health of the patient, thus the quantity of extractable DNA may vary 

significantly between patients. As a result of these factors, the ICP-MS method must be 

capable of not only detecting trace levels of Pt, but also trace levels of the adducts in very 

small quantities of DNA. 

 

Dr. Peter Winship was the first researcher within the Atomic Spectroscopy Group at 

Loughborough University to work on this area of research.179 Initial studies were conducted 

with the PQ ExCell quadrupole ICP-MS instrument, details of the initial experiments and 

results are reported elsewhere.179 Cisplatin and oxaliplatin adducts were successfully 

detected in calf thymus DNA (ctDNA) samples that were treated with drug doses ranging 

from 1 Pt per 100 nucleotides (1:100) to 1 Pt per 100 000 nucleotides (1:100K). However, 

the analysis was carried out on approximately 1 mg ctDNA.179 The work carried out by 

Winship was advanced in this chapter with the aid of a high resolution ICP-MS instrument 

and a different approach to sample preparation. The double focussing instrument enabled 

both trace levels of Pt and high levels of P associated with DNA backbone to be determined 
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simultaneously. In addition, due to the high sensitivity and low background levels 

associated with high resolution instruments, lower drug doses and thus lower levels of 

adducts could be detected, which were of more relevance to clinical studies.  

 

The research presented in this chapter was conducted on cisplatin and oxaliplatin treated 

ctDNA. These initial experiments employed ctDNA to establish the viability of the method 

before it was carried out on human cell lines or patient samples. Using ctDNA meant that 

larger quantities of DNA and thus Pt drug could be used to ensure the methods were viable, 

before progressing to the measurement of trace levels of adducts formed in-vivo in humans.  

 

3.2.2 Instrument Parameters 

An Element 2XR high resolution ICP-MS instrument (Thermo Finnigan, Bremen, 

Germany) was employed for all Pt and P determinations. The instrument was operated in 

standard solution mode with the basic parameters shown in Table 3:2. Any deviations or 

additional instrument parameters will be stated where appropriate. 

Table 3:2: Element 2XR instrument parameters. 

Cones Ni sampler and skimmer 

Nebuliser 200 µl min-1 Micromist (Glass Expansions, Victoria, Australia), or 

 100 µl min-1 PFA-ST (Elemental Scientific, Omaha, USA) 

Spray chamber Double pass or cyclonic (Glass Expansions, Victoria, Australia) 

Analytes 31P and 195Pt 

Magnet mass 30.968 (P) and 194.899 (Pt) 

Resolution Low (Pt) and medium (P) 

Mass range 30.968-30.978 (P) and 194.899-195.029 (Pt) 

Scan type E-scan 

Detection mode Triple 

Gas flows Cool = 15.5 l min-1 

Auxiliary = 0.82 l min-1 

Nebuliser = 1-1.13 l min-1 

Forward power 1240-1300  W 

 
The analogue secondary electron multiplier (SEM) and Faraday cup allowed the high P 

signal to be measured. Nickel cones were used in all analysis since the platinum cones 
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resulted in very high Pt background signals, which made the trace cisplatin and oxaliplatin 

determinations impossible. Normally platinum cones are preferred for samples containing 

high levels of carbon, and enable the use of oxygen addition to prevent carbon build up. 

This is not possible for Pt determinations and this in part led to the use of a digestion 

procedure to remove carbon as described later. 

 

3.2.2.1 Analysis of Whole ctDNA 

The treatment of the ctDNA was carried out at Leicester University by Dr. Rachel LePla of 

the Biomarkers and Cancer Prevention Research Group. Briefly, 1 mg of ctDNA was 

treated with cisplatin or oxaliplatin solution. The concentration and volume of Pt drug 

added to each ctDNA solution was dependent upon the required dose. For both drugs, doses 

of between 1 Pt per 100 nucleotides (1:100) to 1 Pt per 1 500 000 (1:1 500K) nucleotides 

were provided. After 24 hour incubation period at 37 oC with cisplatin or oxaliplatin, the 

ctDNA was precipitated with isopropanol and 3 M sodium acetate. The precipitate was then 

removed and washed three times with 70% ethanol solution to remove any unbound drug. 

All traces of organic solvent were then removed by vacuum centrifugation and the resulting 

ctDNA pellet was re-suspended in deionised water and supplied for analysis. The 

concentration of recovered DNA was calculated by Dr. LePla with UV/Vis spectroscopy. 

Both the cisplatin and oxaliplatin treated ctDNA samples described above were initially 

analysed by ICP-MS without any further sample preparation to establish total Pt content. 

Platinum binding was confirmed by performing the PLA, this was also carried out by Dr. 

LePla and is summarised in Figure 3:4.  

 

Solutions containing high concentrations of whole undigested ctDNA were delivered to a 

Micromist nebuliser with the aid of a peristaltic pump at a flow rate of ~200 µl min-1. A 

peristaltic pump was required for sample delivery due to the poor uptake and nebulisation 

of the viscous DNA solutions.  
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3.2.2.2 Analysis of Digested DNA 

In addition to the wide range of drug doses described above, a further set of cisplatin and 

oxaliplatin treated ctDNA was provided by Dr. LePla. These samples again contained 

ctDNA at a concentration of approximately 1.3 mg ml-1, but the ctDNA was treated with 

much lower doses of drug, namely: 1:100K, 1:300K, 1:500K, 1:1000K and 1:1500K of 

cisplatin or oxaliplatin. The sample preparation procedure was similar to that described 

above in section 3.2.2.1. These samples were subjected to a chemical digest to remove the 

organic matrix and improve the Pt signal of the lower dose samples. 

 

The obvious way to remove the ctDNA matrix was to perform an acid digest on the Pt 

treated DNA. The Biomarkers and Cancer Research Group at Leicester University use an 

ammonia hydrolysis method to cleave the Pt drug from the DNA. The method was detailed 

by Winship.179 Briefly, 0.5 ml cisplatin or oxaliplatin treated ctDNA solution was added to 

0.5 ml of 25% ammonia solution and incubated at 70 oC for 48 hours to cleave the drug 

from the DNA. The cleaved drug was then separated from the ctDNA by molecular weight 

centrifuge filters. These filters have a molecular weight cut-off of 10 000 Da, hence, the 

low molecular weight species such as unbound drug is filtered and collects towards the 

bottom of the centrifuge tube. Conversely, the high molecular weight ctDNA should not 

pass through, but becomes trapped on the filters resulting in separation of the cleaved drug 

and DNA for ICP-MS analysis. This method was used and investigated by Winship.179 

However, it was established that significant amounts of the drug was retained on the filter 

and thus not recovered at the base of the centrifuge tube. This was attributed to the 

ammonia hydrolysis method not efficiently cleaving the Pt drug; therefore, some Pt was 

still associated with the high molecular weight ctDNA and retained on the filter. In 

addition, a lot of P was detected at the base of the centrifuge tube, suggesting that some 

DNA was not being retained, but passing through the filter. This may have been due to the 

ammonia hydrolysis method partially digesting the DNA and the smaller fragments passing 

through the filter along with the Pt.179 Further, the efficiency of the filters may not have 

been 100% resulting in some Pt drug being retained and likewise some DNA passing 

through the filter.179 Since the ammonia hydrolysis and molecular weight filter method 

showed limitations, other methods of ctDNA removal were investigated.  
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A method detailed by Yamada et  al.,180 digested Pt treated ctDNA in the presence of nitric 

acid and hydrogen peroxide at 65 oC. The resulting digest solution could then be analysed 

directly by ICP-MS and was used to establish the involvement of certain proteins in adduct 

removal.180 A similar digest method employing nitric acid was also reported by Ghezzi et 

al.,168 The method reported by Yamada was successfully used to detect adducts in DNA 

quantities of ~10 µg.180 This method was employed in this study but modified slightly. 

Thus, 80 µl of nitric acid (~68%) was added to 100 µl treated ctDNA in a polypropylene 

tube. The acidified mixture was incubated at 65 oC for one hour. After the initial one hour 

period, 80 µl of hydrogen peroxide (30%) was added to the digest mixture and allowed to 

stand at 65 oC for a further four hours.180 The caps of the vials containing the digested 

mixture were then removed and a stream of argon gas was allowed to flow over the vials to 

aid evaporation. The samples were evaporated to dryness and then re-suspended in 2% 

hydrochloric acid prior to ICP-MS analysis. The additional step of evaporating the digest 

mixtures to dryness (thereby removing nitric acid and hydrogen peroxide), followed by re-

suspension with hydrochloric acid, was beneficial because it allows a pre-concentration 

step if required. In addition, hydrochloric acid is the preferred medium for Pt. The resulting 

digested ctDNA samples were delivered to the PFA-ST nebuliser by self aspiration.  

 

3.2.3 Results 

3.2.3.1 Analysis of Whole ctDNA 

Since ctDNA contains ~10% P, solutions containing known concentrations of ctDNA were 

used to prepare a calibration curve to enable P quantification. Initially, solutions containing 

between 1-3 mg ml-1 ctDNA were prepared for calibration. However, above 2 mg ml-1 the 

solutions gave non-linear responses, presumably due to poor sample transport and reduced 

nebulisation efficiency due to the viscosity of the solutions. As a result, the ctDNA 

solutions were diluted to concentrations ranging from 0.1-1 mg ml-1, the resulting 

calibration curve can be seen in Figure 3:5. 
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Figure 3:5: 
31

P signal intensity against ctDNA concentration.  

 

Figure 3:5 clearly shows that there is a deviation from linearity above 0.5 mg ml-1 ctDNA. 

This deviation was again likely to be due the viscosity of the solution at higher DNA 

concentrations, or possibly due to a matrix effect from carbon. Carbon has been recognised 

as being able to enhance the signal for some high ionisation potential elements such as 

Se,136 but here curvature towards the concentration axis occurred so it was assumed that 

viscosity was the major influence. Alternatively carbon deposition on the cones may have 

been occurring, but as indicated above (section 3.2.2), oxygen addition was not 

recommended because of the need to use Ni cones.181 The linearity of the above calibration 

curve improved upon omitting the 1 mg ml-1 ctDNA standard, as shown in Figure 3:6. 
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Figure 3:6: 
31

P signal intensity against ctDNA concentration (0.1-0.5 mg ml
-1

 ctDNA). 

 
Figure 3:5 and Figure 3:6 suggest that for efficient transport and nebulisation, the platinated 

ctDNA samples containing whole ctDNA should be diluted. Hence, oxaliplatin treated 

ctDNA samples were diluted two fold so they contained 0.5 mg ml-1 ctDNA. This was 

achieved by taking a ~250 µl aliquot of the stock ctDNA sample (1 mg ml-1) and diluting it 

with the same volume of deionised water to yield ctDNA samples containing ~0.50 mg ml-1 

ctDNA, which equated to each sample containing ~0.25 mg ctDNA. Those samples 

containing higher Pt doses were diluted further with a 0.5 mg ml-1 ctDNA sample solvent to 

ensure the matrix was constant for all samples.  

 

A ctDNA calibration curve was prepared by measuring the 31P signal of ctDNA solutions 

containing 0.1-0.75 mg ml-1 ctDNA. Platinum standard solutions (0.022-1.85 ng ml-1) were 

prepared to allow for quantification and were spiked with 0.5 mg ml-1 ctDNA to ensure 

approximate matrix matching. This was particularly important since at this stage it was 

unknown whether the ctDNA matrix would cause matrix effects, resulting in Pt signal 

suppression or enhancement. Unfortunately, acid wash solutions could not be used between 
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samples to minimise carry over and memory effects, due to the DNA precipitating in the 

presence of nitric and hydrochloric acid. In an effort to minimise carry over, deionised 

water was aspirated between each sample and a blank was also placed between samples to 

assess carry over. 

 

Even at 0.75 mg ml-1 ctDNA, a small degree of non-linear behaviour was displayed in the 

ctDNA calibration; however, the ctDNA calibration data was employed to establish the 

ctDNA concentration in each sample. From the determined ctDNA concentrations, the P 

concentration in each sample could be calculated since P makes up 10.069% of the mass of 

DNA (the average molecular weight of a nucleotide is 307.61 Da and the accurate mass of 

P is 30.9738). The Pt calibration was linear and Pt data were successfully obtained for 

oxaliplatin treated ctDNA. In addition to calculating the total Pt concentration associated 

with each sample, additional information could also obtained. Since the concentration of 

ctDNA was known, the number of nucleotides per litre could be calculated along with 

number of Pt atoms exposed per litre. Such information was used to calculate the number 

of Pt-DNA adducts formed. These calculations were originally employed and detailed by 

Winship,179 but are briefly described below in Equation 1.1-3. Table 3:3 summarises the 

data collected for oxaliplatin treated ctDNA. 

 

Equation 1.1: Number of nucleotides per litre 

No. Nucleotides per Litre
[ ]( ) ×







 ×=
61307

0010
.

.DNA
Avagadro’s Constant 

Where [DNA] is the concentration of DNA in mg l-1. 

 

Equation 1.2: Number of Pt atoms exposed per litre 

No. of Pt atoms exposed/litre = No. Nucleotides/litre x No. drug molecules/nucleotide 
 

Equation 1.3: The number of Pt-DNA adducts formed 

No. Pt-nucleotide adducts per litre [ ]( ) ×




 ×=
078195

0010
.

.Pt Avagadro’s Constant 

Where [Pt] is the concentration of Pt in mg l-1. 
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Note: 

307.61 = the average molecular weight of a polymerised (DNA incorporated) nucleotide. 

The average molecular weight of a free nucleotide is 325.61, but since polymerised 

nucleotides form through reaction with the 5’ phosphate of a free nucleotide and 3’ 

hydroxyl of the growing DNA chain, water is lost, hence a mass of 18 was subtracted from 

the average free nucleotide molecular weight of 325.61 to obtain 307.61. 

 

195.078 = the accurate relative atomic mass of Pt. 
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Table 3:3: Oxaliplatin data from treated ctDNA (0.5 mg ml
-1

 ctDNA matrix).  

Sample 
Dilution 

factor 

195Pt 

counts 

(cps) 

Pt conc 

(ng ml-1) 

Final Pt 

conc  

(ng ml-1) 

Final Pt 

conc  

(mg l-1) 

No. OxPt 

per 

nucleotide 

DNA 

conc  

(mg ml-1) 

UV data 

No. 

Nucleotides 

Per litre 

No. Pt 

atoms 

exposed 

per litre 

No. 

adducts 

per litre 

31P Counts 

(cps) 

DNA Conc 

(mg ml-1) 

ICP data 

31P Conc 

(mg l-1) 
Pt/P Ratio 

Control 1.93 316.70 -0.01 -0.02 0.0000 0.000000 1.17 2.29E+21 0.00E+00 0.00E+00 10210778.4 0.60 60.66 -3.84E-07 
1:500K 1.98 5604.40 0.27 0.54 0.0005 0.000002 1.01 1.98E+21 3.96E+15 1.65E+15 8839840.6 0.51 51.27 1.04E-05 
1:250K 2.00 9381.40 0.47 0.95 0.0009 0.000004 1.09 2.13E+21 8.50E+15 2.92E+15 8157923.7 0.46 46.60 2.03E-05 
1:100K 5.53 9524.20 0.48 2.66 0.0027 0.000010 1.03 2.01E+21 2.01E+16 8.20E+15 6953792.4 0.38 38.36 6.92E-05 
1:10K 18.99 22222.00 1.16 22.01 0.0220 0.000100 1.03 2.01E+21 2.01E+17 6.80E+16 6382520.1 0.34 34.45 6.39E-04 
1:5K 51.48 23149.70 1.21 62.22 0.0622 0.000200 1.12 2.19E+21 4.38E+17 1.92E+17 6664844.1 0.36 36.38 1.71E-03 

1:1000 279.37 24871.20 1.30 363.34 0.3633 0.001000 1.09 2.13E+21 2.13E+18 1.12E+18 6713488.9 0.36 36.72 9.90E-03 
1:500 760.48 9978.80 0.50 383.63 0.3836 0.002000 1.03 2.02E+21 4.05E+18 1.18E+18 6089746.8 0.32 32.45 1.18E-02 
1:300 717.56 26519.30 1.39 996.47 0.9965 0.003333 1.03 2.02E+21 6.72E+18 3.08E+18 6377861.4 0.34 34.42 2.90E-02 
1:200 1473.53 18143.40 0.94 1386.48 1.3865 0.005000 1.04 2.04E+21 1.02E+19 4.28E+18 6470596.6 0.35 35.05 3.96E-02 
1:150 1953.21 17222.80 0.89 1741.69 1.7417 0.006667 1.10 2.15E+21 1.43E+19 5.38E+18 6597623.3 0.36 35.92 4.85E-02 
1:100 3867.81 8872.10 0.45 1722.29 1.7223 0.010000 1.03 2.01E+21 2.01E+19 5.32E+18 7035644.9 0.39 38.92 4.42E-02 
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The ctDNA concentration associated with each sample was calculated by Dr. Rachel LePla 

to be ~1 mg ml-1 (determined with UV/vis spectroscopy), refer to column 8 of Table 3:3. 

However, each sample was diluted two fold prior to ICP-MS analysis to reduce the sample 

viscosity, resulting in each sample containing ~0.5 mg ml-1 ctDNA. In addition, any further 

sample dilutions were carried out with a 0.5 mg ml-1 ctDNA solution, so ultimately each 

sample should have contained ~0.5 mg ml-1 ctDNA. The ICP-MS determined ctDNA 

concentrations are shown in column 13 of Table 3:3, and should be half the value of the 

UV determined concentrations, i.e. ~0.5 mg ml-1. The ctDNA concentration in the control 

sample, which was the first ctDNA sample to be analysed, was calculated to be              

0.60 mg ml-1 by ICP-MS. If this value is multiplied by 1.93 to incorporate the dilution 

factor, a concentration of 1.16 mg ml-1 ctDNA is obtained, which is consistent with the UV 

data provided by Dr. LePla. However, the ICP-MS determined ctDNA concentrations 

gradually decreased as successive samples were aspirated, as signified by the decreasing P 

signal intensity. The P signal intensity and therefore ctDNA concentration for remaining 

samples was significantly lower than expected, indicating that unknown factors were 

effecting the analysis. Sample viscosity and high carbon content were initially though to be 

responsible for the variation in ctDNA concentration. Considering these observations, the 

UV determined ctDNA concentrations were used for subsequent calculations, whilst the 

ICP-MS determined ctDNA concentrations were deemed unreliable.  

 

The data shown in Table 3:3 indicates that between ~40-50% of the drug formed adducts. 

This can be seen by comparing the values in the two columns labelled; number of Pt atoms 

exposed per litre and number of adducts per litre. Taking the 1:1000 sample as an example, 

2.13 x 1018 Pt atoms were exposed per litre and 1.12 x 1018 adducts per litre formed, thus 

51% of the drug formed adducts with ctDNA. These values were much larger than 

expected, but it should be noted that these samples were prepared in-vitro with ctDNA, 

hence the DNA was acting as a bare ligand with no protection from the cell membrane or 

proteins as in the case of in-vivo preparations. Although the percentage of drug binding did 

vary slightly (~40-50%) between samples, the lowest percentage was observed for the 

1:100 sample where only 26% of the drug formed adducts. Presumably, this was due to the 
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larger dose of drug saturating the A and G bases, thus some of the drug was unable to form 

adducts.  

 

Considering that approximately 50% of Pt atoms formed adducts, the actual detection limit 

was not the lowest dose of 1:500 000, but in fact half of this value. Briefly, the lowest drug 

application or dose was 1 Pt per 500 000 nucleotides, which equates to 2 x 10-6 Pt atoms per 

nucleotide. If 50% of Pt atoms formed adducts, the adduct limit of detection in the above 

analysis was actually 1 x 10-6 Pt atoms per nucleotide (or 1 Pt per 1 x 106 nucleotides) in 

250 µg DNA. 

 

From the data in Table 3:3, it was also possible to establish a relationship between the 

number of adducts formed per litre and the number of oxaliplatin molecules per nucleotide. 

Figure 3:7 illustrates this relationship, whilst Figure 3:8 shows the linear relationship 

between the Pt/P concentration ratio (concentration in units of mg l-1 for both elements) and 

number of nucleotides per drug molecule. Note that the x axis in Figure 3:7 and Figure 3:8 

was derived from the data provided by Dr. LePla. 
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Figure 3:7: Number of oxaliplatin adducts per litre against number of oxaliplatin per nucleotide (0.25 

mg ctDNA).  
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Figure 3:8: Pt/P concentration ratio against number of nucleotides per oxaliplatin molecule (0.25 mg 

ctDNA).  

 
A linear relationship can be observed in Figure 3:7, demonstrating that the number of Pt-

DNA adducts formed per litre was directly proportional to the number of drug molecules 

per nucleotide. Therefore, as the number of drug molecules increased (increased dose rate), 

the number of adducts formed also increased in a linear relationship. In addition, the ratio 

of Pt/P concentration was also proportional to the number of drug molecules per nucleotide. 

Significant carbon deposition was observed around the orifice of the sampler cone upon 

completing the experiment. As a result, it was decided that the analysis should be repeated 

but the platinated ctDNA samples should be diluted further to reduce the carbon loading.  

 

In the repeated analysis, cisplatin and oxaliplatin treated ctDNA samples were diluted to 

0.25 mg ml-1 ctDNA. i.e. a four fold dilution on the original samples. This was achieved by 

taking ~250 µl aliquot of the stock ctDNA sample (containing ~1 mg ml-1 ctDNA) and 

adding ~750 µl deionised water to yield ctDNA samples containing 0.25 mg ml-1 ctDNA, 

which equated to ~ 0.25 mg ctDNA being analysed. Any further dilutions were carried out 

with a 0.25 mg ml-1 ctDNA sample solvent to keep the ctDNA concentration and matrix 
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constant. This resulted in the viscosity and carbon content being reduced even further. Pt 

standards ranging from 0.052-16.1 ng ml-1 in 0.25 mg ml-1 ctDNA were prepared. The 

results for oxaliplatin and cisplatin treated ctDNA can be observed in Table 3:4 and Table 

3:5 respectively. Equation 1.1-3 were used for the calculations.  
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Table 3:4:  Oxaliplatin data from treated ctDNA (0.25 mg ml
-1 

ctDNA matrix). 

Sample 
Dilution 

factor 

195Pt counts 

(cps) 

Pt conc 

(ng ml-1) 

Pt conc 

(mg l-1) 

No. oxPt 

per 

nucleotide 

DNA conc 

(mg ml-1) 

UV data 

No. 

nucleotides 

per litre 

No. Pt atoms 

exposed per 

litre 

No. 

adducts 

per litre 

31P Counts 

(cps) 

DNA conc 

(mg  ml-1) 

ICP data 

31P conc 

(mg l-1) 
Pt/P ratio 

Control 4.01 571.5 -0.2 -0.0002 0 1.17 2.29E+21 0.00E+00 0.00E+00 37021629.5 0.28 28.05 -0.000006 

1:500K 3.97 12899.1 0.3 0.0003 0.000002 1.01 1.98E+21 3.96E+15 8.16E+14 26562478.9 0.20 19.88 0.000013 

1:250K 6.60 16446.2 0.6 0.0006 0.000004 1.09 2.13E+21 8.50E+15 1.97E+15 16198761.5 0.12 11.78 0.000054 

1:100K 3.89 66544.1 2.0 0.0020 0.00001 1.03 2.01E+21 2.01E+16 6.30E+15 22938755.2 0.17 17.05 0.000120 

1:10K 3.81 565868.5 18.2 0.0182 0.0001 1.03 2.01E+21 2.01E+17 5.63E+16 25101105.1 0.19 18.74 0.000974 

1:5K 8.47 513739.2 36.8 0.0368 0.0002 1.12 2.19E+21 4.38E+17 1.14E+17 25505974.8 0.19 19.05 0.001931 

1:1000 32.79 650859.7 180.8 0.1808 0.001 1.09 2.13E+21 2.13E+18 5.58E+17 19145013.9 0.14 14.08 0.012840 

1:500 40.68 806645.9 278.4 0.2784 0.002 1.03 2.02E+21 4.05E+18 8.60E+17 13746893.5 0.10 9.86 0.028227 

1:300 100.82 514098.4 438.2 0.4382 0.003 1.03 2.02E+21 6.72E+18 1.35E+18 14497623.3 0.10 10.45 0.041930 

1:200 117.87 509984.8 508.1 0.5081 0.005 1.04 2.04E+21 1.02E+19 1.57E+18 13062797.4 0.09 9.33 0.054469 

1:150 166.20 549061.3 772.0 0.7720 0.007 1.10 2.15E+21 1.43E+19 2.38E+18 12658600.6 0.09 9.01 0.085646 

1:100 233.46 516125.6 1018.7 1.0187 0.01 1.03 2.01E+21 2.01E+19 3.15E+18 9619933.2 0.07 6.64 0.153444 

Table 3:5: Cisplatin data from treated ctDNA (0.25 mg ml
-1 

ctDNA matrix). 

Sample 
Dilution 

factor 

195Pt counts 

(cps) 

Pt conc 

(ng ml-1) 

Pt conc 

(mg l-1) 

No. cisPt 

per 

nucleotide 

DNA conc 

(mg ml-1) 

UV data 

No. 

nucleotides 

per litre 

No. Pt atoms 

exposed litre 

No. 

adducts 

per litre 

31P 

Counts 

(cps) 

DNA conc 

(mg ml-1) 

31P conc 

(mg l-1) 
Pt/P ratio 

Control 4.16 358.4 -0.2 -0.0002 0 1.03 2.01E+21 0.00E+00 0.00E+00 10825518.8 0.08 7.58 -0.000022 

1:500K 3.96 21885.9 0.6 0.0006 0.000002 1.12 2.20E+21 4.40E+15 1.75E+15 13122696.1 0.09 9.38 0.000061 

1:250K 4.00 36541.6 1.1 0.0011 0.000004 1.08 2.12E+21 8.47E+15 3.32E+15 9455398.3 0.06 6.51 0.000165 

1:100K 4.00 102866.9 3.3 0.0033 0.00001 1.15 2.25E+21 2.25E+16 1.03E+16 9980338.4 0.07 6.92 0.000482 

1:10K 20.53 118841.7 19.9 0.0199 0.0001 1.06 2.07E+21 2.07E+17 6.16E+16 6729739.1 0.04 4.38 0.004551 

1:5K 13.33 398607.7 44.8 0.0448 0.0002 1.15 2.26E+21 4.52E+17 1.38E+17 6148964.7 0.04 3.93 0.011406 

1:1000 8.42 2751573.3 197.5 0.1975 0.001 1.02 2.00E+21 2.00E+18 6.10E+17 5712337.7 0.04 3.59 0.055071 

1:500 194.97 310924 509.1 0.5091 0.002 1.13 2.22E+21 4.43E+18 1.57E+18 5205336.9 0.03 3.19 0.159630 

1:300 278.78 245536.7 572.3 0.5723 0.003 1.12 2.20E+21 7.32E+18 1.77E+18 5007022.8 0.03 3.03 0.188610 

1:200 474.53 249184.4 989.0 0.9890 0.005 1.17 2.28E+21 1.14E+19 3.05E+18 4861418.6 0.03 2.92 0.338613 

1:150 566.79 249283.2 1181.8 1.1818 0.007 1.08 2.12E+21 1.41E+19 3.65E+18 4857053.0 0.03 2.92 0.405084 

1:100 651.65 389693.1 2140.0 2.1400 0.01 1.10 2.15E+21 2.15E+19 6.61E+18 5101874.6 0.03 3.11 0.688403 
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The P signal intensities and therefore calculated ctDNA concentrations (columns 11 and 12 

respectively) in Table 3:4 and Table 3:5 were highly variable, even though all the samples 

contained 0.25 mg ml-1 ctDNA. In the above case, the oxaliplatin samples were analysed 

first followed by cisplatin. The ICP-MS determined ctDNA concentration of the oxaliplatin 

control sample was 0.28 mg ml-1, if the dilution factor of 4.01 is considered, a ctDNA 

concentration of 1.12 mg ml-1 is obtained, which is consistent with the UV determined 

concentration of 1.17 mg ml-1. The P signal intensities and therefore ICP determined 

ctDNA concentrations decreased steadily throughout the analysis, with ~7 fold decrease in 

signal observed during analysis of the oxaliplatin and cisplatin samples. The correlation 

between ICP-MS and UV determined ctDNA concentrations were expected to be closer in 

the more dilute ctDNA samples, due to the reduced matrix. However, this was not the case, 

the ICP-MS determined ctDNA concentrations in Table 3:3, which contained ~ 0.5 mg ml-1 

ctDNA were closer to the concentrations calculated by UV, whilst the more dilute ctDNA 

solutions (Table 3:4 and Table 3:5) gave the largest deviations. The sample introduction 

system was inspected post analysis for signs of blockages, but the nebuliser, torch and 

sample cones appeared to be free from such obstructions. Again, these spurious P counts 

were attributed to matrix effects, namely high carbon content and sample viscosity. 

Considering these observations, the ICP-MS determined ctDNA concentrations were 

considered to be unreliable, thus the UV determined ctDNA concentrations were used for 

further data analysis (e.g. to calculate the number of nucleotides per litre and the number of 

Pt atoms per nucleotide etc.). 

 

The total Pt concentrations for oxaliplatin (Table 3:4) were lower than those seen 

previously in Table 3:3. For example, the 1:100 oxaliplatin sample gave a total Pt 

concentration of 1.72 mg l-1 in the first experiment (Table 3:3) and 1.02 mg l-1 in the second 

experiment (Table 3:4), again pointing to the fact that matrix effects may be responsible. 

The long term continual aspiration of viscous, high carbon material may have caused the 

unstable and decreasing signals. This would also explain why the P signal intensities 

gradually decreased with the lowest P signals observed in the cisplatin samples. 
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The data in Table 3:4 and Table 3:5 shows that between 15-30% of oxaliplatin and 25-40% 

of cisplatin formed adducts. For both drugs, the highest percentage of Pt adduct formation 

is generally found at the lower drug doses (e.g. between 1:500K-1:1000). At doses greater 

than 1:1000 the percentage of Pt forming adducts generally decreased, with the lowest 

percentages generally found at the very highest dose rates of between 1:300-1:100. This 

suggests that a saturation point is reached and all available adduct sites on the DNA are 

occupied at the very high Pt doses. The percentage of oxaliplatin adducts was lower in the 

above experiment compared to the first analysis seen previously in Table 3:3. The reason 

for this can only be attributed to matrix effects, since both sets of data were obtained from 

the same set of samples. Figure 3:9 shows the relationship between the numbers of adducts 

per litre and number of drug molecules per nucleotide for oxaliplatin and cisplatin. Note 

that the values on the x axis (number of Pt atoms per litre) were calculated from the data 

given by Dr LePla. 
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Figure 3:9: Number of cisplatin and oxaliplatin adducts per litre formed against number Pt molecules 

per nucleotide (0.25 mg ctDNA). 
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Oxaliplatin 
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A linear relationship was again observed between the number of adducts formed and the 

number of drug molecules per nucleobase. This relationship was displayed by both drugs. 

However, from Figure 3:9 the gradient for the cisplatin data was twice as high as that for 

oxaliplatin (6x1020 and 3x1020 for cisplatin and oxaliplatin respectively), indicating that 

cisplatin formed more Pt-DNA adducts per litre compared to oxaliplatin. This observation 

is consistent with the reported literature, which states that cisplatin forms more adducts 

than oxaliplatin (see 3.1.2 above). Figure 3:10 shows the relationship between Pt/P ratio 

and the number of nucleotides per Pt for both cisplatin and oxaliplatin.  
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Figure 3:10: Pt/P ratio against the number of drug molecules per nucleotide (0.25 mg 
 
ctDNA). 

 

From Figure 3:10 it can be established that as the number of Pt molecules increased 

(increased dose rate), the ratio of Pt concentration/P concentration also increased in a linear 

fashion. The above data therefore supports the data shown in Figure 3:9, as dose rate 

increases, the number of adducts formed increases and thus the concentration of total bound 

Pt increases as expected.  

 

Oxaliplatin 
Cisplatin 
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It has been shown in the data presented so far in this chapter that the presence of the ctDNA 

matrix was problematic in terms of viscosity and carbon content. Carbon deposition on the 

sampler cone was significant and sample uptake was only possible with the aid of a 

peristaltic pump. The Element 2XR instrument gave a signal intensity of ~1.6x106 cps for  

1 ng ml-1 115In upon tuning prior to the above analysis (1x106 cps/ppb 115In is the quoted 

sensitivity by Thermo-Finnigan).65 Considering 195Pt is only 33% abundant and the first 

ionisation potential of Pt is approximately double that of In, a signal intensity of           

~256 000 cps was expected for 1 ng ml-1 195Pt, which equates to approximately 4x106 cps 

for a solution containing 16 ng ml-1 Pt. However, the highest Pt calibration standard of     

16 ng ml-1 only gave a signal intensity of ~1.9x106 cps, which was a 53% reduction of the 

expected Pt signal. These observations suggested that matrix effects were causing a large 

reduction in sensitivity. If the high carbon matrix is removed prior to analysis, better 

sensitivity should be obtained. To confirm that the ctDNA matrix was suppressing the Pt 

signal, two calibration curves were prepared; one set of calibration standards contained Pt 

in a 2% hydrochloric acid matrix, whilst the second set of standards contained Pt in a     

0.25 mg ml-1 ctDNA matrix. Both sets of standards ranged from 0.50-2 ng ml-1 Pt and the 

calibration curves can be seen in Figure 3:11. 
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Figure 3:11: Pt calibration curves in a 2% hydrochloric acid and 0.25 mg ml
-1

 ctDNA matrix. 

 
The data presented in Figure 3:11 shows that the gradients for the two calibrations were 

252 305 and 27 550 counts per ng ml-1 for the hydrochloric acid and ctDNA matrix 

respectively. Thus, by comparing the gradients of the two calibration curves, it was 

established that the 0.25 mg ml-1 ctDNA matrix suppressed Pt signal by 89%. In addition, 

the Pt limit of detection (LOD) was determined for both sets of calibration data using the 

formula shown in Equation 2. 

Equation 2: Limit of detection. 

Limit of detection
( )

m

SD blank×= 3
 

Where: 

SDblank = standard deviation of the blank. 

m = the gradient of the calibration slope. 

 

ctDNA matrix 

HCl matrix 
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The LOD formula shown above is dependent upon the instrument blank and sensitivity, the 

LOD for Pt was calculated to be 0.99 pg ml-1 and 6.38 pg ml-1 in the hydrochloric acid 

matrix and ctDNA matrix respectively. 

 

These results confirm that the ctDNA matrix was problematic and needed to be removed 

prior to ICP-MS analysis. By removing the high carbon matrix, the Pt response should be 

higher (~90% improvement in signal) and lower drug doses should be detected and 

quantified. Table 3:4 and Table 3:5 show that even when the lowest drug dose of 1:500 000 

was diluted four fold to contain 0.25 mg ml-1 ctDNA, the Pt counts were 12 514 cps and   

21 537 cps for oxaliplatin and cisplatin respectively. These signal intensities equated to 0.3 

and 0.6 ng ml-1 Pt. Hence, if the ctDNA matrix is removed the expected signal intensity for 

these low dose samples should be much higher than those observed in the above data 

tables.  

 

3.2.3.2 Analysis of Digested DNA 

Trial experiments were performed before the nitric acid/hydrogen peroxide digest 

procedure was carried out on the cisplatin and oxaliplatin treated ctDNA supplied by Dr. 

LePla. The trial experiments consisted of spiking a 1 mg ml-1 ctDNA solution with a Pt 

standard of known concentration (21 ng ml-1). A 100 mg aliquot of the Pt spiked ctDNA 

solution was then digested (in duplicate) as described in section 3.2.2.2. Upon completing 

the digest, the sample was evaporated to dryness and re-suspended in 1.5 ml hydrochloric 

acid (2% w/w). The resulting digest solutions contained 1.39 (digest A) and 1.45 ng ml-1 

(digest B) Pt in 2% hydrochloric acid. A Pt standard solution containing 1.37 ng ml-1 Pt in 

2% hydrochloric acid was prepared along with 1.4 ng ml-1 Pt standard solution in           

0.25 mg ml-1 ctDNA matrix. The signal intensities of all the Pt solutions were compared to 

establish whether the nitric acid/hydrogen peroxide digest was effective at digesting the 

ctDNA and therefore removing the non-spectroscopic interferences. The data is 

summarised in Figure 3:12. A control sample consisting of digested ctDNA in the absence 

of Pt standard was also prepared.  
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Figure 3:12: Pt signal intensity for digested DNA samples and Pt standards in hydrochloric acid and 

DNA matrix. 

 

The re-suspended digest samples gave very similar counts to the 1.37 ng ml-1 Pt standard in 

hydrochloric acid, whilst the solution containing Pt at a concentration of 1.4 ng ml-1 in   

0.25 mg ml-1 ctDNA resulted in very low counts as expected. An approximate eight fold 

difference in Pt signal intensity was observed between the ctDNA and aqueous acid matrix. 

From Figure 3:12 it can be concluded that the nitric acid/hydrogen peroxide digest was 

effective at digesting the organic matter, which resulted in reducing non-spectroscopic 

interferences. No matrix effects were observed in the digested DNA samples, this was 

confirmed by the equivalent Pt signal intensities in the digest samples and the 1.37 ng ml-1 

Pt standard in hydrochloric acid. In addition, the viscosity of the DNA solutions decreased 

after digestion, so self aspirating nebulisers could be employed, which had the advantage of 

improved signal stability and reduced sample consumption compared to pumped nebulisers.  

 

Once it was confirmed that the nitric acid/hydrogen peroxide procedure was successful in 

digesting the DNA and removing the matrix interferences, it was applied to ctDNA samples 

that had been treated with cisplatin or oxaliplatin. These samples were again prepared by 
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Dr. LePla at Leicester University. The following dose rates were supplied for both drugs: 

1:100K, 1:300K, 1:500K, 1:1000K and 1:1500K. Each sample stock solution contained 

approximately 1.3 mg ml-1 ctDNA and a 100 mg aliquot of each sample was initially taken 

and digested as described above, hence the actual mass of DNA digested was 

approximately 130 µg. After digestion, the samples were reduced to dryness and re-

suspended in 2% hydrochloric acid (0.5 ml), which was accurately weighed to establish the 

dilution factor for each sample. The results for the cisplatin and oxaliplatin samples are 

summarised in Table 3:6 and Table 3:7 respectively, where the mass of ctDNA digested is 

clearly shown. The Pt concentrations look reasonable, with the Pt concentration gradually 

increasing with increasing dose rate as expected for both drugs. The lowest cisplatin dose 

rate of 1:1500K gave a higher Pt signal than expected, as did the oxaliplatin 1:1000K 

sample. The reason for this could only be explained by potential contamination during the 

sample preparation procedure.  

Table 3:6: Pt signal intensity and concentration in digested cisplatin treated samples. 

Cisplatin 

sample 

Pt per 

nucleotide 

195
Pt counts 

(cps) 

Dilution 

factor 

Pt conc 

(ng ml
-1

) 

Mass of DNA 

digested (µg) 

Control 0.0000000 1201.1 4.17 0.13 115.18 
1:100K 0.0000100 241356.1 5.10 4.53 125.13 
1:300K 0.0000033 78917.3 5.18 1.60 138.42 
1:500K 0.0000020 58375.9 4.65 1.09 127.63 
1:1000K 0.0000010 35809.1 4.75 0.73 131.34 
1:1500K 0.0000007 76633.9 5.15 1.55 134.88 

 

Table 3:7: Pt signal intensity and concentration in digested oxaliplatin treated samples. 

OxPt 

sample  

Pt per 

nucleotide 

195
Pt counts 

(cps) 

Dilution 

factor 

Pt conc  

(ng ml
-1

) 

Mass of DNA 

digested (µg) 

Control 0.0000000 1425.0 2.05 0.003 130.00 
1:100K 0.0000100 78945.3 2.53 1.02 131.92 
1:300K 0.0000033 25969.6 2.51 0.32 132.73 
1:500K 0.0000020 21549.3 1.99 0.21 136.76 
1:1000K 0.0000010 24557.8 2.00 0.24 136.35 
1:1500K 0.0000007 11165.5 2.03 0.11 135.85 

 

Figure 3:13 shows the above data graphically, where the number of adducts formed was 

calculated as described previously and then plotted against the number of Pt atoms per 

nucleotide. It should be noted that the x axis (number of Pt atoms per nucleotide) was 
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calculated from the information given by Dr. Rachel Le Pla. A linear relationship between 

Pt signal and drug dose rate was observed as expected. The cisplatin 1:1500K and 

oxaliplatin 1:1000K results, which gave slightly higher Pt signals than expected, were 

included in Figure 3:13. Before these two data points were included in the graphs, 

regression analysis was carried out on the respective data sets where the standard error 

(95% confidence level) of the data was established, along with the predicted y values (No. 

Pt-DNA adducts formed per litre). It was shown in the suspect cisplatin and oxaliplatin 

samples that the number of Pt-DNA adducts formed per litre (determined by ICP-MS) was 

outside of the predicted y value ± 1 standard error (SE), but within ± 2 SE. Since 2 SE give 

the greatest confidence, it was decided not to omit the suspect data points but to include 

them in the graphs shown below.  
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Figure 3:13: Relationship between Pt signal and the number of Pt atoms per nucleotide for both 

cisplatin and oxaliplatin following digestion with nitric acid and hydrogen peroxide. 

 

The above sets of data illustrate that the nitric acid/hydrogen peroxide was effective at 

digesting the organic matrix and removing matrix effects. More importantly, the digest was 

applied to relatively small quantities of DNA (~130 µg) and still allowed for the very low 

Cisplatin 

Oxaliplatin 
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doses of Pt drug to be determined and quantified. The linearity of the data in Figure 3:13 

was poor compared to that seen in Figure 3:9, where whole ctDNA was analysed. This can 

be attributed to the lower quantities of DNA under analysis and the much lower drug 

application rates. 

 

Figure 3:12 illustrates that the Pt standard containing ctDNA matrix gave signal intensity 

eight times lower than the digested ctDNA containing Pt. Thus, the Pt signal intensities in 

Table 3:7 (acid digested ctDNA) were expected to be eight times greater than those in 

Table 3:4, which showed data for samples containing whole ctDNA at 0.25 mg ml-1. When 

the Pt counts were compared for equivalent amounts of ctDNA, ~1.5 times greater Pt signal 

intensity was obtained in the digested ctDNA samples (Table 3:7) compared to the whole 

ctDNA (Table 3:4).  Although a much larger increase in Pt signal intensity was expected, it 

should be noted that the two sets of data originated from different sets of samples, which 

could explain why the two sets of data do not completely correspond.  

 

The nitric acid/hydrogen peroxide digest was repeated on the Pt treated ctDNA samples, 

but a much lower quantity of sample and therefore DNA was digested. As stated 

previously, if the method is to be applied to patient samples, only small quantities of DNA 

may be obtained, so the method has to be suitable for use on approximately 10 µg of DNA. 

This quantity of DNA could realistically be obtained from patients, but 100 µg DNA or 

greater may not be feasible. The cisplatin treated ctDNA stock samples which were 

digested previously (see above experiments) were used in this analysis. Briefly, an aliquot 

of the cisplatin stock solution (~12 mg) was added to a polypropylene microcentrifuge vial, 

accurately weighed and then digested as described previously. Figure 3:14 shows the 

relationship between the number of Pt-DNA adducts formed against the number of Pt 

atoms per nucleotide for cisplatin treated ctDNA. The mass of ctDNA digested in this 

experiment ranged from 13-18 µg. Although, the data shows a general increase in Pt 

concentration with increasing dose rate, the 1:1000K sample from this batch exhibited very 

high Pt counts (~31527 cps). Again, regression analysis was carried out on the data, which 

showed that the 1:1000K data point was within the predicted y value ± 2 SE (95% 

confidence level) and included in Figure 3:14.  
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Figure 3:14: Relationship between the number of adducts formed and the number of drug molecules 

per nucleotide for cisplatin treated ctDNA digested with nitric acid and hydrogen peroxide. 

 
The next step involved digesting the oxaliplatin treated ctDNA samples along with a 

repeated attempt at digesting the cisplatin treated ctDNA. For both sets of samples 

approximately 12 µg ctDNA was digested. Both the 195Pt and 31P signals were measured for 

these two sets of samples, Figure 3:15 and Figure 3:16 show the data for these two digests. 

The cisplatin data was slightly better than that obtained for oxaliplatin. The oxaliplatin 

control and 1:300K samples gave very high Pt signals that were not consistent with the 

remaining samples. Regression analysis showed that the control was within ±2 SE of the 

predicted values, but the 1:300K sample was outside the predicted values. For this reason, 

the 1:300K sample was omitted from Figure 3:15 and Figure 3:16. Figure 3:15 illustrates 

the linear relationship between the number of Pt-DNA adducts formed and the number of 

drug molecules per nucleotide. It should be noted that the cisplatin samples again displayed 

greater Pt concentrations and therefore greater numbers of adducts than oxaliplatin as 

expected. Figure 3:16 shows the linear relationship between Pt/P ratios and the number of 

drug molecules per nucleotide, as expected the ratio increased with increased dose of drug. 

However, the linearity of these two sets of data was inferior to those seen in Figure 3:9. 
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This was again attributed to error associated with the low Pt signal intensities resulting 

from the small quantities of DNA analysed and the low dose rates. 
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Figure 3:15: The relationship between number of Pt-DNA adducts formed and the number of drug 

molecules per nucleotide, for both cisplatin and oxaliplatin treated ctDNA digested with nitric 

acid/hydrogen peroxide. Approximately 12 µg of ctDNA digested. 
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Figure 3:16: Pt/P ratio against the number of drug molecules per nucleotide for both cisplatin and 

oxaliplatin treated ctDNA digested with nitric acid/hydrogen peroxide. Approximately 12 µg of ctDNA 

digested. 
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3.2.4 Summary 

The application of ICP-MS to the detection and quantification of Pt-DNA adducts, formed 

after incubation with either cisplatin or oxaliplatin anti-cancer drugs has been 

demonstrated. It has been established that HR-ICP-MS can be employed for detecting the 

high levels of P associated with the DNA backbone and trace levels of Pt associated with 

Pt-DNA adducts. The DNA solutions could be analysed whole without additional sample 

preparation, and the Pt measured with doses as low as 1:500 000 nucleobases being 

detected. However, severe matrix effects were observed which resulted in a suppression of 

the Pt signal. These matrix effects were a consequence of the high carbon matrix which is 

associated with biological materials such as DNA. Carbon deposition on or around the 

orifice of the sampler cone was problematic and resulted in signal drift. In addition, the 

viscosity of the whole DNA solutions compromised sample uptake and nebulisation 

efficiency. These problems were overcome and lower drug dose rates were successfully 

detected by digesting the DNA in a mixture of nitric acid and hydrogen peroxide. Drug 

doses as low as 1:1 500 000 nucleobases could then be detected. 

 

In addition to drug doses of 1:1 500 000 being detected, such levels were successfully 

quantified in samples containing ~12 µg ctDNA when digested with nitric acid and 

hydrogen peroxide. This is particularly important if the method is to be applied to clinical 

samples, where DNA has to be extracted from blood samples obtained from chemotherapy 

patients and the quantity of DNA is restricted. However, ~12 µg DNA would be possible to 

obtain from patient blood samples.  

 

The research detailed in this chapter has illustrated the potential of ICP-MS in detecting 

and quantifying low doses of Pt in microgram quantities of DNA. The digest and analysis 

method detailed here was successfully employed during an MSc. Project carried out by 

Albano Fialho at Loughborough University.182 In this project, two lung cancer cell lines 

(A549 and H23) were treated with cisplatin or oxaliplatin. The digest method was then 

applied to 40 µg of extracted DNA, with the associated Pt successfully detected and 

quantified.182 The next step would be to extract blood from patients undergoing treatment 

with these drugs, extract and then analyse the DNA. If the extent of Pt-DNA adduct 
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formation can be detected in clinical samples, it could help identify those patients who are 

responding to treatment and those who are not responding as well. More importantly, if 

those patients who are not responding, are identified early in the treatment phase, the 

treatment could be stopped and the severe side effects associated with these drugs could be 

minimised. Levels of adduct formation will be much lower in-vivo, since the cell is exposed 

to the drug and not the DNA directly. However, clinical adduct levels may be higher than 

1:1500K measured here.  

 

A recent publication detailed very similar work to that discussed in this chapter.183 The 

authors described a method based on capillary LC-ICP-MS, which was used to separate and 

detect Pt-GG adducts, which were produced in-vivo upon treating D. Melanogaster with 

cisplatin.183 The authors studied the correlation between cisplatin adduct levels (determined 

by LC-ICP-MS) and genotoxicity (determined by the comet assay), however, the author did 

not study oxaliplatin.183 The reported detection limit for the capillary LC-ICP-MS method 

was 1 adduct per 106 nucleotides,183 which is similar to the doses detected in this chapter, 

although the author did not specify the total mass of DNA required to detect 1 Pt adduct per 

106 nucleotides. 
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4 Investigation of Oxaliplatin Interactions with DNA 

Nucleobases by means of Organic Mass 

Spectrometry 
 

4.1 Introduction 

There have been numerous investigations into the interactions of oxaliplatin with 

proteins141, 173 and the effect of DNA binding in the presence of specific proteins, 

particularly those rich in sulfur containing amino acids.141, 184, 185 Extensive studies 

investigating the interaction of oxaliplatin with DNA nucleobases have also been 

conducted. However, the techniques used to study oxaliplatin-DNA interactions have been 

predominantly x-ray crystallography, 186 NMR 144, 187 and biological assays such as the 

Comet assay.156 These techniques have their disadvantages, namely; crystals of a suitable 

quality are required for crystallography and relatively large quantities of high purity sample 

are required for NMR.188, 189 Mass spectrometry has been used to study and characterise 

cisplatin-DNA adducts, 151, 164, 190 but to our knowledge, the same has not been true for the 

study of oxaliplatin-DNA adducts. ESI-MS has been employed to investigate the structure 

of oxaliplatin adducts with methionine and guanine monophosphate (GMP).184 A LC-ESI-

MS/MS method has been developed previously to measure GG and AG intra-stranded 

cross-links in oxaliplatin treated DNA, where limits of detection for the two cross-links 

were determined.167 These authors reported proposed structures for the two major 

oxaliplatin adducts and their corresponding fragments, however, the source was operated in 

negative ion mode, not positive as used here, and detailed fragmentation pathways for the 

remaining oxaliplatin-DNA adducts were not investigated. Here the focus is on the 

interactions of oxaliplatin with the nucleobases adenine, guanine, cytosine and thymine, 

where the drug was combined with free nucleobases as opposed to oligonucleotides or 

intact DNA. This fundamental investigation provides the initial step towards a more 

complete understanding of the drug's interaction and binding mode with intact DNA where 

other factors such as steric strain and binding site geometry might impact upon binding 

location and stability of the drug complex.  
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A linear ion trap mass spectrometer employing ESI was employed here to study the binding 

of oxaliplatin to DNA nucleobases. Oxaliplatin was combined with each DNA nucleobase 

and the identities of all the resulting complexes were investigated using ESI-MS. The 

preferential binding of oxaliplatin to guanine and adenine in the presence of all four 

nucleobases will be discussed. It will also be demonstrated that ESI-MSn is an ideal 

technique for the study of oxaliplatin-nucleobase interactions since structural information 

can be obtained in relatively short periods of time and the disadvantages of NMR and x-ray 

crystallography are avoided.190  

 

In addition to demonstrating the potential of linear ion trap mass spectrometry in 

metallodrug studies, this chapter will also highlight the complementary nature of organic 

and inorganic mass spectrometry; namely, inorganic mass spectrometry was employed in 

the previous chapter to detect and quantify trace amounts of Pt drug bound to DNA. 

Conversely the following chapter details structural information and fragmentation pathways 

of oxaliplatin-nucleobase adducts.   

 

The work detailed in this chapter was conducted in the Atomic Spectrometry Research 

Group, under the supervision of Dr Barry Sharp and in collaboration with Dr Tamer 

Shoeib, who was a visiting academic from the British University in Egypt.  

 

4.2 Instrumentation and Reagents 

A Thermo Finnigan LTQ linear ion trap mass spectrometer (Thermo Finnigan, San Jose, 

California) was used for all mass spectrometric determinations. Version 2.0 of the Xcalibur 

software (Thermo Finnigan, San Jose, California) was employed for all data processing. 

The instrument was calibrated with a mixture of ultra mark and caffeine in accordance with 

the manufacturer’s recommendations. Resolution was calculated according to R=m/∆m. 

Resolving powers achieved were in the order of 1200 for higher mass di-adducts, although 

lower mass species exhibited resolving powers of approximately 800-1000. The LTQ Ion 

Max auto-tune routine was used to obtain settings for lens, quadrupole and octapole 

voltages for maximum transmission of the ions of interest. Helium gas admitted into the ion 

trap at a maintained pressure of approximately 10-3 Torr was used as the buffer gas to 
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improve the trapping efficiency and as the collision gas for collision induced dissociation 

(CID) experiments. Experiments designed to elucidate ion structures or fragmentation 

pathways were performed as follows: the ion of interest was selected with an isolation 

width set to 1 m/z units (unless stated otherwise), collisional activation was introduced by 

setting the activation amplitude (which defined the amplitude of the radio frequency (RF) 

voltage applied) at 25–35% of the maximum voltage available (determined empirically), 

and the activation Q setting (used to adjust the frequency of the RF-excitation voltage) was 

set at 0.25 unit. Sample solutions were continuously infused at a flow rate of 5 µl min-1 into 

the pneumatically assisted electrospray probe using dry nitrogen as the nebulising gas. The 

basic instrument operating conditions are summarised in Table 4:1. The instrument ion 

optics and gas flows were tuned daily with the analyte of interest to obtain maximum signal 

intensity and stability.  

Table 4:1: ESI-MS operating conditions. 

Scan type Positive ion 

Nebulising gas N2 

Flow rate 5 µl min-1 

Spray voltage 5-5.5 kV 

Sheath gas flow (arbitrary units) tuned daily (typically ~0-10) 

Auxiliary gas flow (arbitrary units) tuned daily (typically ~0-10) 

 
The nucleobases, adenine (A), guanine (G), cytosine (C) and thymine (T) were obtained 

from Fisher Scientific (Loughborough, UK), as was HPLC grade methanol. Oxaliplatin was 

kindly supplied by Dr. LePla, but the drug originated from Sanofi-Synthelab (Surrey, UK). 

The drug was in powder form and was dissolved in deionised water to a concentration of 

2.6 mg ml-1 (6.6 mM oxaliplatin) to form the stock solution, which was used to prepare 

further drug-nucleobase solutions. All solutions were prepared in 50% methanol in 

deionised water. 

 

Initial experiments concentrated on identifying the oxaliplatin parent ion and fragmentation 

products in the absence of nucleobase. Since oxaliplatin would be present in all solutions, it 

was considered important to become familiar with its fragmentation pathway before 

progressing to more complex mixtures containing nucleobases. As a result, a solution 



224 

containing oxaliplatin at a concentration of 3.3 mM in 50% methanol was prepared and 

infused into the mass spectrometer before the drug-nucleobase interactions were 

investigated. 

 

Initially four solutions containing oxaliplatin were prepared; each oxaliplatin solution 

contained a different base, so the drug was present in a mono-base solution. Two solutions 

containing the drug with all four nucleobases were prepared, one of these solutions 

contained oxaliplatin at an equi-molar concentration to each of the bases. The second mixed 

solution contained an excess of oxaliplatin in the presence of the four bases. A final 

solution containing oxaliplatin with adenine and guanine at near equal molar concentrations 

was also prepared. The concentration of drug and base in each solution is shown in Table 

4:2.  

Table 4:2: Concentration of oxaliplatin and nucleobase in individual and mixed base solutions. 

Solution Reagent Concentration 

1 3.3 mM oxaliplatin + 9.4 mM adenine 

2 1.6 mM oxaliplatin + 5.8 mM cytosine 

3 1.6 mM oxaliplatin + 1.6 mM guanine 

4 1.6 mM oxaliplatin + 8.3 mM thymine 

5 1.7 mM oxaliplatin + 1.6 mM A, C, G and T 

6 3.0 mM oxaliplatin + 0.46 mM A, C, G and T 

7 2.2 mM oxaliplatin +  1.5 mM adenine + 1.7 mM guanine 

 
The drug to nucleobase molar concentrations were adjusted to obtain clear spectra, 

consequently these ratios corresponded to the order of formation constants as indicated by 

the analysis of the mass spectra, which will be discussed in subsequent sections. Each 

solution was allowed to sit at room temperature overnight before being analysed. Solutions 

1-4 each contained oxaliplatin and a single nucleobase and were employed to confirm the 

formation of oxaliplatin adducts in each case. Solutions 5 and 6 were used to study the 

formation of oxaliplatin adducts in the presence of all four nucleobases. Further, solution 7 

was employed to study the preferential binding of oxaliplatin to adenine and guanine. 

 



225 

4.3 Results 

4.3.1 Oxaliplatin Analysis 

A 3.3 mM oxaliplatin solution absent of nucleobase was infused into the mass spectrometer 

and analysed using the instrument conditions summarised in Table 4:1. Prior to nucleobase 

binding oxaliplatin loses the oxalate ligand, which acts as a leaving group enabling adduct 

formation, whilst the diaminocylohexane (dach) ligand remains attached to the Pt centre. 

The full scan mass spectrum of the oxaliplatin sample exhibited a cluster of ions around m/z 

398 and 307, corresponding to the whole oxaliplatin complex and the oxaliplatin without 

the oxalate leaving group (Pt-dach) respectively. A full scan spectrum of the drug is shown 

in Figure 4:1.  

 
Figure 4:1: Full scan mass spectrum of 3.3 mM oxaliplatin. 
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Figure 4:1 shows that the dominant Pt containing species present in the mass spectrum 

were at m/z 307, 398 and 420. The Pt isotopic pattern corresponding to 194Pt (32.8%), 195Pt 

(33.8%), 196Pt (25.3%) and 198Pt (7.2%) was clearly observed for each of these dominant 

species, with the heights of the Pt peaks clearly represented the isotopic abundances which 

are shown in brackets above. The peak at m/z 365 was present in the majority of mass 

spectra, but could not be assigned and did not exhibit the characteristic Pt isotopic pattern, 

indicating that it did not correspond to a Pt containing species. Since the peak was present 

in mass spectra containing oxaliplatin only, it was attributed to an impurity or ingredient 

present in the drug. The Pt species at m/z 420 was thought to be a Na adduct of the 

oxaliplatin drug, whilst the remaining two species were initially thought to be the parent 

oxaliplatin ion (195Pt m/z 398) and the diaminocyclohexane platinum complex (195Pt m/z 

308). To confirm the two latter assumptions, the identity of the peaks at m/z 398 and       

m/z 308 were confirmed using MS/MS. The principles of tandem and multiple mass 

spectrometry were detailed in Chapter 1. Briefly, the ions of interest were selected and thus 

‘trapped’ within the quadrupole, whilst all other ions were ejected from the ion trap. 

Fragmentation was then induced by bombarding the selected parent ions with He collision 

gas. The resulting product ions were then scanned out of the quadrupole ion trap and 

detected to produce a MS/MS spectrum, which helped reveal the identity of the adducts. A 

further mass spectrometry experiment was sometimes possible (MS3) providing the ion 

signal was of sufficient intensity, which helped further confirm the identity of the species.  

 

The MS/MS spectrum of the parent ion (m/z 398) is shown in Figure 4:2. Note that the 

spectrum in Figure 4:2 was obtained using a peak isolation width of 10 Da; hence all the 

peaks ± 5 mass units from m/z 398 were selected and fragmented to give numerous product 

ions. As a result, the Pt isotopic pattern was observed for all product ions. 
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Figure 4:2: MS/MS spectrum of product ions obtained by CID of the oxaliplatin parent ion at m/z 398, 

collision energy = 20 eV, isolation width =10 Da.  

 

Figure 4:2 shows three main fragmentation product ions at m/z 308, 336 and 354. 

Unfortunately, since the ion signal was quite weak, further MS experiments could not 

carried out on these product ions. However, an attempt was made at identifying the 

molecular structure of the dominant product ions, as seen in Figure 4:2. It was thought that 

the isotopic peaks around m/z 354 corresponded to the parent ion minus a mass of 44, 

which equated to a loss of CO2 from the oxalate ligand. A mass loss of 62 was also 

observed to give product ions at m/z 336, which were attributed to the loss of CO2 + H2O, 

again from the oxalate ligand. The final product ions around m/z 308 corresponded to the 

diaminocyclohexane platinum (Pt-dach) complex, which is effectively oxaliplatin minus 

the oxalate leaving group. The structures shown in Figure 4:2 are thought to be the most 

rational, but were not definitively proven.  
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The three main isotopes of the oxaliplatin parent ion at m/z 397, 398 and 399 were then 

fragmented with a peak isolation width of 1 Da (peaks within ± 0.5 mass units of the ion of 

interest were selected and fragmented), the ion tree in Figure 4:3 summarises the product 

ions formed upon fragmenting each of the isotopic parent ions. The mass spectra from these 

experiments can be seen in Figure 9:1-Figure 9:3 in Appendix 2.1 (Section 9.1). 

 
Figure 4:3: Oxaliplatin fragmentation ion tree. 

 
As stated previously, oxaliplatin loses the oxalate ligand prior to nucleobase binding to 

form the Pt-dach species at m/z 308 (195Pt). Therefore, it was expected that the peaks 

corresponding to the Pt-dach species (m/z 308) and oxaliplatin parent ion (m/z 398) would 

be observed in all further mass spectra containing the drug.  

 

4.3.2 Evidence of Adduct Formation 

Upon infusing the oxaliplatin solutions containing individual nucleobase (oxaliplatin 

solutions 1-4, refer to Table 4:2), it was established that the drug formed both mono-

adducts (oxaliplatin bound to one nucleobase) and di-adducts (oxaliplatin bound to two 

nucleobases) with all four nucleobases, when present individually in solution. In all four 

mono-base solutions the complexes were formed at the expected mass-to-charge ratios and 

the identity of each species was further confirmed by performing multiple MS experiments 

on the ions of interest.  
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The mass spectra of each sample exhibited a cluster of ions around m/z 398 and 308; as 

discussed above, these isotopic peaks corresponded to the whole oxaliplatin complex and 

the Pt-dach species respectively. Table 4:3 summarises the mass-to-charge ratios of the 
194Pt containing ions observed in each of the oxaliplatin solutions. Although the masses in 

Table 4:3 refer to the 194Pt isotopic species, the Pt isotopic pattern was clearly observed for 

all adducts, further confirming the binding of the drug to the individual bases. For 

clarification the fragmentation of the 194Pt adducts will be discussed, although the same 

principles apply to the 195 and 196 Pt complexes.   

Table 4:3: Oxaliplatin adducts formed with individual DNA nucleobases. 

Ion m/z 

Adenine-oxaliplatin solution   
[adenine-H]+ 136 
194Pt(adenine)+ 442 
194Pt(adenine)2

+ 577 
Cytosine-oxaliplatin solution  
[cytosine-H]+ 112 
194Pt(cytosine)+ 418 
194Pt(cytosine)2

+ 529 
Guanine-oxaliplatin solution  
[guanine-H]+ 152 
194Pt(guanine)+ 458 
194Pt(guanine)2

+ 609 
Thymine-oxaliplatin solution  
[thymine-H]+ 127 
194Pt(thymine)+ 433 
194Pt(thymine)2

+ 559 
 

Each oxaliplatin-nucleobase di-adduct lost a neutral nucleobase upon CID, resulting in the 

formation of mono-adducts at the expected m/z. Fragmentation of the mono-adducts 

resulted in the loss of H2 and ammonia. The de-protonated ions were signified by product 

ions with m/z two and four mass units lower than the parent ion, suggesting successive 

loses of H2 from the complex. Such loses of neutral H2 molecules during CID has been 

reported elsewhere,191, 192 although the reported fragmentation occurred on Ag complexes 

as opposed to Pt complexes. The de-protonated mono-adducts further fragmented to lose a 

neutral base, thus numerous species around m/z 307 were observed. In addition, product 

ions having a mass difference of 17 were observed, which is consistent with ammonia 

removal. The fragmented H2 and ammonia could have originated from either the dach 

ligand or the nucleobases. The exact origin of these fragmented species cannot be 

definitively established. Finally, the neutral base was also removed from the mono-adducts 
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during CID to produce the free Pt-dach complex at m/z 307, as shown in Figure 4:4. The 

mass spectra, suggested structures and fragmentation pathways for each oxaliplatin-

nucleobase adduct are shown in Figure 4:4-Figure 4:11, where the species derived from 
194Pt are shown. The fragmentation pathways and structures shown are thought to be the 

most rational, but are not definitive.  

 

4.3.2.1 Oxaliplatin-Adenine Adduct Fragmentation 

Figure 4:4 shows the MS/MS spectra of both the mono and di- adducts of adenine, where 

the main peaks have been labelled with the proposed species. Figure 4:4 was derived from 

the 194Pt parent species only, thus the Pt isotopic pattern was not observed for the parent 

ion. In addition, because only one isotope was selected for CID, only one product ion 

isotope was observed and not the whole suite of Pt isotopes.  

 

Adenine base was lost from the di-adduct at m/z 577 upon CID to yield the mono-adduct at 

m/z 442 (see Figure 4:4a). The 194Pt-A adduct at m/z 442 fragmented further to give a 

dominant product ion at m/z 440, indicating the loss of H2 (see Figure 4:4b). The ions at m/z 

423 and 305 (Figure 4:4b) were thought to coincide with the loss of ammonia and adenine 

from the dominant product ion at m/z 440 respectively. The fragmentation pathway of 

oxaliplatin-adenine adducts is summarised in Figure 4:5; very similar schemes were 

observed for the remaining three oxaliplatin-nucleobase adducts. The structures in Figure 

4:5 show the Pt atom interacting with the N7 position of the adenine base (refer to Chapter 

1 for purine and pyrimidine ring numbering system), which is the most likely position due 

to its high nucleophilicity.151, 164, 183 However, the exact position of oxaliplatin-adenine 

interaction was not confirmed here and the structures shown are thought to be the most 

rational. The full scan mass spectrum of the oxaliplatin-adenine mono-base solution is 

shown in Figure 9:4 (Appendix 2.2). The mass spectra showing the fragmentation of the 

195 and 196 Pt-AA and Pt-A species are shown in Figure 9:5-Figure 9:8 in Appendix 2.2. 

In addition, the MS3 spectrum of the 195Pt-AA adduct is illustrated in Figure 9:9. These 

spectra were used to establish the fragmentation pathways illustrated in Figure 4:5. 



231 

 
Figure 4:4: MS/MS spectrum of product ions obtained by CID of: a) 

194
Pt-AA adduct at m/z 577, 

collision energy = 20 eV, isolation width = 1 Da. b) 
194

Pt-A adduct at m/z 442, collision energy = 20 eV, 

isolation width = 1 Da. 
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Figure 4:5: Proposed fragmentation pathway for 
194

Pt-adenine adducts. 
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4.3.2.2 Oxaliplatin-Guanine Adduct Fragmentation 

The 194Pt-GG ion at m/z 609 was selected and fragmented to give the 194Pt-G product ion at 

m/z 458, indicating the loss of guanine. Further fragmentation of the m/z 458 ion resulted in 

product ions, which are shown in the MS3 spectrum in Figure 4:6. It should again be noted 

that the guanine mono-adduct fragmented to produce many product ions, but the most 

dominant was that at m/z 456, resulting from the mono-adduct losing H2. The summarised 

fragmentation pathway and suggested product ion structures are shown in Figure 4:7. 

Figure 9:11-Figure 9:17 in Appendix 2.2 show the spectra corresponding to the full scan 

mass spectrum of the guanine mono-base solution, the MS/MS and MS3 spectra 

corresponding to the 195 and 196 Pt-GG and Pt-G adducts.  

 

As in the case of adenine, Figure 4:7 shows oxaliplatin forming adducts with the N7 

position of guanine, which is thought to be the most likely site of drug interaction.151, 164 In 

addition, the guanine oxygen atom is also shown to be interacting with the Pt centre via a 

dative bond. It has been reported that cis-[Pt(NH3)2]
2+ complexes such as cisplatin interact 

with both the N7 and oxygen atom on guanine, which subsequently disrupts GC base 

pairing in double stranded DNA.193 Considering both cisplatin and oxaliplatin behave 

similarly with DNA and proteins, it is not unrealistic to suspect that oxaliplatin also forms a 

dative bond with the oxygen atom on guanine as shown in Figure 4:7. 
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Figure 4:6: MS

3 
spectrum of product ions obtained by CID of the 

194
Pt-G adduct at m/z 458, which was 

obtained through CID of the 
194

Pt-GG ion at m/z 609.
 
Collision energy = 15 eV, isolation width = 1 Da. 
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Figure 4:7: Fragmentation pathway of oxaliplatin-guanine adducts. 
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4.3.2.3 Oxaliplatin-Thymine Adduct Fragmentation 

Fragmentation data was obtained only for the thymine mono-adduct, since the di-adduct 

(m/z 560) was present at very low levels and the signal for this ion was not sufficient to 

perform MSn experiments. It has already been suggested that oxaliplatin preferentially 

interacts with purine bases and this data suggests that the drug has a particularly low 

affinity for thymine, resulting in the very low abundance of the di-adduct. Figure 4:8 shows 

that the 194Pt-T ion at m/z 433 fragmented to give a dominant product ion at m/z 429, which 

is consistent with the removal of 2H2 from the mono-adduct. This is in contrast to the other 

three nucleobase adducts, which fragmented to form a dominant product ion with two less 

protons.  

 

Figure 4:9 shows the proposed structures and fragmentation pathway, whilst the spectra 

corresponding to full scan mass spectrum of the oxaliplatin-thymine solution and CID of 

the 195 and 196Pt-T adducts are in Appendix 2.2, Figure 9:18-Figure 9:20. There was very 

little reported in the literature regarding the co-ordination site of Pt drugs with thymine, 

presumably because these drugs do not readily interact with the pyrimidine bases. The Pt 

co-ordination site shown in Figure 4:9 is donated the N1 position. If the thymine was in the 

form of a nucleotide (i.e. bound to deoxyribose sugar), it would bind to the sugar through 

the N1 nitrogen atom (see Chapter 1 for nucleotide structures). However, since thymine is 

present without the sugar, the N1 position is the most nucleophilic, hence the most likely 

place for Pt co-ordination. Conversely, the other nitrogen atom in the thymine ring (N3) is 

adjacent to two carbonyl groups, which are highly electronegative and may result in the 

lone pair electrons on the N3 nitrogen atom being less available than those at the N1 

position. 
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Figure 4:8: MS/MS spectrum of product ions obtained from CID of the 

194
Pt-T adduct at m/z 433, 

collision energy = 20 eV, isolation width =1 Da. 
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Figure 4:9: Fragmentation pathway for oxaliplatin-thymine adducts. 
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4.3.2.4 Oxaliplatin-Cytosine Adduct Fragmentation 

Up until now discussions on adduct fragmentation have concentrated on the 194Pt species, 

however, the 195Pt species will be employed for the cytosine discussions to illustrate how 

all the Pt isotopic species behaved the same during CID. The MS/MS spectra for the mono 

and di-adduct are shown in Figure 4:10. Note, the spectrum in Figure 4:10a was obtained 

with an isolation width of 10 Da, thus all the parent ions ±5 mass units of m/z 530 would 

have been selected for MS/MS analysis, hence the presence of the ion at m/z 531. The 

cluster of ions around m/z 525 is most likely a result of proton removal from the various 

cytosine di-adducts during CID, with m/z 525 being the most abundant. The summarised 

fragmentation pathway and suggested structures are shown in Figure 4:11. The spectra 

corresponding to the full scan and tandem MS of the 196Pt-C and 195Pt-CC species are 

shown in Appendix 2.2, Figure 9:21-Figure 9:23. The structures shown in Figure 4:11 show 

the oxaliplatin co-ordinating to cytosine through the N3 position in addition to the oxygen 

atom. The N3 position is nucleophillic making it a likely co-ordination site for Pt. In 

addition, it has been reported that trans-Pt species can co-ordinate to cytosine through the 

N3 atom,194 as can cisplatin.183 
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Figure 4:10: MS/MS spectrum of product ions obtained by CID of: a) 

195
Pt-CC adduct at m/z 530, 

collision energy = 10 eV, isolation width = 10 Da.  b) 
195

Pt-C ion at m/z 419, collision energy = 20 eV, 

isolation width = 1 Da. 
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Figure 4:11: Fragmentation pathway of the oxaliplatin-cytosine adducts. 
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4.3.2.5 Branching Diagrams 

The successive loss of H2, ammonia and neutral nucleobases from the oxaliplatin adducts 

has been illustrated in Figure 4:4-Figure 4:11. Only small abundances of the protonated 

nucleobases were observed in the mass spectra upon CID, which was attributed to the 

nucleobases fragmenting to preferentially form neutral species. More importantly, this 

behaviour was consistent for all four nucleobase adducts. In addition to the product ions 

discussed above, numerous hydrated complexes of adenine and guanine were observed. It 

is known that Pt(II) complexes are more stable when co-ordinated to four ligands to 

produce square planar geometries. The reasons for this are well known and are discussed 

elsewhere.138 Thus, the formation of the mono-adducts gives the Pt atom a co-ordination of 

three, prompting the addition of a fourth ligand such as water to the Pt centre, creating a 

stable square planar complex. Since guanine preferentially binds to the drug, followed by 

adenine the complexes, [Pt(dach)G(H2O)]+ and [Pt(dach)A(H2O)]+ were evident in the 

spectra, whilst the hydrated complexes of cytosine and thymine were less evident due to the 

much lower affinities of these nucleobases to oxaliplatin.  

 

The branching diagrams in Figure 4:12 summarise the main adduct fragmentation, where 

the hydrated adenine and guanine fragments are included. The spectra showing the 

fragmentation of the three dominant Pt-G(H2O) species are shown in Appendix 2.2, Figure 

9:24-Figure 9:26. In each case the hydrated adduct was selected with isolation width of 1 

Da and fragmented to produce the corresponding Pt-G ion, which was selected and 

fragmented further in a MS3 experiment to produce many product ions characteristic of the 

Pt-G species that were discussed above for the guanine mono-base solution. Unfortunately, 

tandem MS was not conducted on the Pt-A(H2O) species at m/z 460, thus the identity of 

this species could not be definitively proven and no product ions are indicated. Note that 

the three dominant Pt isotopic species are included in Figure 4:12 to further show how all 

three isotopic complexes behaved similarly.  

 
It should be noted that Figure 4:12 shows a range of Pt-dach species, covering a mass range 

of approximately 4 Da that were formed upon fragmenting the mono-adducts. The range of 

Pt-dach masses were a consequence of proton loss from the mono-adducts. Each mono-
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adduct lost between two and six protons upon CID to form various deprotonated mono-base 

adducts. These deprotonated mono-adducts then fragmented further, losing the nucleobase 

to produce several deprotonated Pt-dach species. This effect was illustrated in the 

fragmentation pathways in Figure 4:5, Figure 4:7, Figure 4:9 and Figure 4:11 above.  
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Figure 4:12: Branching diagrams summarising the fragmentation of oxaliplatin nucleobase adducts.
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4.3.3 Isobaric Interferences 

Until now 194Pt species have been primarily used as examples when discussing 

fragmentation pathways, the reason being to simplify the discussions by concentrating 

on one isotope. In addition these species were mainly free from isobaric interferences, 

which are inevitable in these situations where complex spectra with multiple isotopes 

are being analysed. However, serious isobaric overlaps did occur between some species 

and are discussed here. Such interferences could have resulted in misinterpretation of 

mass spectra and therefore incorrect fragmentation pathways being constructed.  

 

The first such interference occurred between the 194Pt-A(H2O) and 196Pt-G complexes, 

which both have the same nominal mass of 460. Evidence of the 194Pt-A(H2O) species 

interfering with the 196Pt-G complex during single stage mass spectrometry can be seen 

in Figure 4:13, which shows a mass spectrum of the solution containing all four bases in 

the presence of excess drug. Figure 4:13 clearly shows the isotopes of the Pt-G species 

around m/z 459. The dominant guanine mono-adduct contained 195Pt, suggesting that 
195Pt-G at m/z 459 should be most abundant of all the Pt-G ions. However, from Figure 

4:13 the dominant ion was m/z 460, which corresponds to 196Pt-G. This can be 

explained since the 194Pt-A(H2O) ion, which also occurs at m/z 460 was contributing to 

the 196Pt-G signal, causing this peak to be larger than expected. This isobaric 

interference was observed in Figure 4:13 since the sample contained all four bases. In 

the absence of adenine, three main peaks at m/z 458, 459 and 460 were observed, 

corresponding to 194Pt-G, 195Pt-G and 196Pt-G respectively. See Figure 4:14, which 

shows that the relative abundance of the 458 and 460 peaks were roughly equal, whilst 

the 459 peak was dominant as expected. Likewise, in the absence of guanine, the 

oxaliplatin-adenine solution displayed isotopic peaks around m/z 461, again with the 

most abundant peak at m/z 461 due to the presence of the dominant 195Pt isotope. Refer 

to Figure 9:4 in Appendix 2.2 for the full scan mass spectrum of the oxaliplatin-adenine 

mono-base solution. As already stated, tandem MS was not carried out on the              

Pt-A(H2O) complexes, thus the observed species in Figure 4:13 were not investigated 

further.   
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Figure 4:13: Mass spectrum of product ions from the oxaliplatin solution containing all four 

nucleobases and an excess of drug, with the Pt-G and Pt-A(H2O) isotopes labelled. 
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Figure 4:14: Mass spectrum (expanded scale) of product ions obtained from the oxaliplatin-guanine 

mono-base solution, showing the Pt-G and Pt-G(H2O) isotopes. 

 
Such interferences were also possible with the 196Pt-C and [194Pt(dach)(C2O4)]Na+ drug 

adduct, both of which occur at the nominal mass of 420. The full scan mass spectrum of 

oxaliplatin in the absence of nucleobase is shown in Figure 4:1, where isotopic peaks 

around m/z 420 are clearly visible and where thought to correspond to the oxaliplatin-

Na+ adduct. However, these species were not investigated further by tandem mass 

spectrometry.  

 

Figure 9:22 in Appendix 2.2 shows the mass spectrum resulting from MS/MS of the 
196Pt-C adduct. The mass spectrum clearly shows the mono-adduct losing H2 (product 

ions at m/z 416 and 418) and cytosine base (product ions at m/z 305, 307 and 309). 

These observations are consistent with the fragmentation pathways shown in Figure 

4:11 and Figure 4:12, and suggest that although the 196Pt-C and [194Pt(dach)(C2O4)]Na+ 
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species have the same nominal mass, the spectrum and fragmentation pathway of the 
196Pt-C adduct can still be studied without interference from the oxaliplatin-Na+ adduct. 

 

4.3.4 Oxaliplatin Binding in the Presence of all Four Nucleobases 

Once it was confirmed that each base formed adducts with the drug, the solutions 

containing oxaliplatin together with all four bases were analysed. The full positive ion 

scan of the solution containing adenine, cytosine, guanine, thymine and oxaliplatin all at 

near equal molar concentrations is shown in Figure 4:15. The adducts corresponding to 

mono-adenine oxaliplatin (194Pt-A m/z 442), mono-guanine oxaliplatin (194Pt-G m/z 

458) and the mono cytosine adduct (194Pt-C m/z 418) were all observed in the mass 

spectrum shown in Figure 4:15. Initially the mono-adduct of thymine was thought to be 

absent from the spectrum, so tandem MS was not carried out on this species. However, 

later expansion of the full scan mass spectrum showed that the mono thymine adduct 

(194Pt-T m/z 434) was present, but only at very low levels. It should therefore be noted 

that Appendix 2.3 does not include tandem MS data for the Pt-T species. The di-adducts 

of adenine (194Pt-AA) and guanine (194Pt-GG) were also observed at m/z 577 and 609 

respectively. In addition, the di-adduct containing both adenine and guanine (194Pt-AG 

m/z 593) was also present. The identity of each adduct was again confirmed using 

multiple stage MS, refer to Figure 9:27-Figure 9:41 in Appendix 2.3 for all spectra 

corresponding to the fragmentation of the species observed in Figure 4:15. Various 

other peaks corresponding to unbound adenine, cytosine, guanine and thymine at       

m/z 136, 112, 152, 127 respectively were also observed. Peaks corresponding to 194Pt-

dach (m/z 307), mono-solvated Pt-dach ([194Pt dach(H2O)]+ m/z 324) and oxaliplatin 

(m/z 398) were also present in solution as expected. 
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Figure 4:15: Full scan mass spectrum of the oxaliplatin solution containing A, C, G and T. The 

oxaliplatin was present in a near equal molar concentration to each of the bases. 

 

Despite the abundance of adducts formed in the above solution, there were many 

adducts that were absent in the mixed nucleobase solution, but present in the individual 

nucleobase solutions. The absent adducts included the di-adducts of cytosine (Pt-CC 

m/z 529) and thymine (Pt-TT m/z 560). In addition, adducts corresponding to the mixed 

cytosine and thymine di-adducts were also absent. In summary, these results show when 

all four nucleobases were present in solution at near equi-molar concentration to the 

drug, oxaliplatin preferentially bound to guanine and adenine, as reported in the 

literature, cytosine formed adducts with oxaliplatin to a lesser extent, whilst the yield of 

thymine adducts was minimal.  

 

Cytosine and thymine oxaliplatin adducts were clearly observed from mixed base 

solutions, but only when the drug was present in a large molar excess in relation to the 
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nucleobases. Figure 4:16 shows the full scan mass spectrum of the drug solution which 

contained all four nucleobases in the presence of excess drug.  

 
Figure 4:16: Full scan mass spectrum of oxaliplatin solution containing excess drug with all four 

nucleobases. 

 
Numerous species were again present in the mass spectrum. Peaks at m/z 112 and 127 

corresponding to unbound cytosine and thymine respectively were again observed. 

Unbound adenine and guanine were also present at m/z 136 and 152 respectively, but 

the signals for these two species were very much weaker. The weaker adenine and 

guanine signals may be another indicator of the stronger binding of these bases to the 

drug. Alternatively, the degree of ionisation of adenine and guanine may have been 

lower than that of thymine and cytosine, resulting in a weaker signal for these two bases 

(although there was no evidence to support this in the other spectra).  

 
Mono-adducts corresponding to Pt-A (m/z 442), Pt-C (m/z 419), Pt-G (m/z 458) and    

Pt-T (m/z 433) were observed, as shown in Figure 4:16, but in contrast to equi-molar 

drug conditions, no di-adducts were evident. It has already been discussed that the 
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stepwise formation constants (Kn) generally decreases in the order K1>K2>K3>….Kn 

(where the subscript numbers represent the increasing ligand number) with successive 

ligand binding to a given metal.138 Thus, the addition of subsequent ligands onto a metal 

becomes less favourable; there are several reasons for this effect. Firstly, steric 

hindrance may make it difficult for more than one ligand to bind to the metal. Secondly, 

as more ligands bind to a metal centre, the charge density of the metal decreases, hence, 

subsequent ligands have reduced affinity. Finally, both the number of available 

coordination sites (balanced by metals exhibiting a preferred coordination number) and 

free ligand concentration are reduced with each successive binding.138 There are 

exceptions to these rules where structural changes to the co-ordination complex may 

increase subsequent formation constants.138 The data presented in Figure 4:16 

confirmed the general rules, when oxaliplatin was present in excess of the nucleobases, 

the drug preferentially bound to the minimum number of bases, which was one per drug 

molecule. The identity of the mono-adducts observed in Figure 4:16 was again 

confirmed with tandem mass spectrometry; the corresponding spectra are shown in 

Figure 9:42-Figure 9:47 in Appendix 2.4 and show how each of the mono-adduct 

species fragmented to produce the free drug along with numerous products consistent 

with the loss of protons and ammonia. The fragmentation pathways were similar to 

those outlined in Figure 4:12. 

 

4.3.5 Preferential Binding Studies 

The preferential binding of oxaliplatin with adenine and guanine was further 

investigated. The solution containing oxaliplatin with adenine and guanine only was 

infused into the mass spectrometer. The full scan MS of this sample is shown in Figure 

4:17. The di-adduct containing both adenine and guanine (Pt-AG) was selected and 

fragmented with increasing collision energies. The relative intensities of the parent ion 

(Pt-AG) and product ions (Pt-G and Pt-A) were recorded with every 1 eV increase in 

collision energy between 0-30 eV. The branching diagram of the oxaliplatin solution 

containing adenine and guanine is illustrated in Figure 4:18, where the 194Pt isotopic 

species was used to illustrate the fragmentation of the mixed di-adduct. The mass 

spectra showing the tandem MS of the mixed base di-adduct are shown in Figure 9:48-

Figure 9:52 in Appendix 2.4. Further, Figure 9:48-Figure 9:52 show how the mixed 
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base di-adduct fragmented to produce two distinct product ions, further MS3 

experiments on the product ions to confirm the presence of adenine and guanine.  

 

The 195Pt species was used during the experiment, since it was the most abundant and 

gave the largest signal intensity. Thus the 195Pt-AG (m/z 594), 195Pt-G (m/z 459) and 
195Pt-A (m/z 443) species were monitored when applying the increasing collision 

energies. The aim of this experiment was to establish the preferential binding and 

affinity of adenine and guanine to the drug.  

 

Figure 4:17: Full positive ion scan of the adenine, guanine and oxaliplatin solution. 
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Figure 4:18: Branching diagram summarising the fragmentation of the Pt-AG adduct. 

 
Upon increasing collision energy, the relative intensities of the product ions at m/z 459 

and 443 increased, whilst the parent ion (m/z 594) intensity decreased as expected. 

However, the relative intensities of the two product ions were not equal; the Pt-G 

product (m/z 459) was more abundant than the Pt-A (m/z 443) ion. Thus, guanine 

appeared to bind more strongly to the drug, whilst the adenine base was more likely to 

fragment. Figure 4:19 shows the relative intensities of all three ions during each 1 eV 

increase in collision energy. Note that the parent ion was the most abundant ion up until 

~20 eV, thus the x axis on Figure 4:19 only starts from 15 eV.  

 

Oxaliplatin + adenine + guanine 

MS/MS 

MS3 

194Pt-AG 
593 

194Pt-G 
458 

194Pt-A 
    442 

194Pt-dach 
305 

 

194Pt-dach 
305 
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Figure 4:19: Relative signal intensities of the Pt-AG adduct (m/z 594) and the product ions, Pt-G 

(m/z 459) and Pt-A (m/z 443) during increasing collision energies. 

  

Figure 4:19 clearly illustrates that at lower collision energies (<20 eV), the Pt-AG 

adduct (m/z 594) was the dominant species, but above this collision energy, the di-

adduct parent ion fragmented to form two mono-adduct product ions (Pt-G and Pt-A). 

 

Following the fragmentation of the Pt-AG adduct to form the Pt-A and Pt-G adducts, 

MS3 experiments were conducted, where the 195Pt-G ion was selected and fragmented 

with increasing increments of collision energy (1 eV increments) and the formation of 

the free drug (Pt-dach) and guanine base were monitored. The same was carried out on 

the 195Pt-A product ion. From these two sets of data (not shown), adenine fragmented 

from the drug at ~13 eV and guanine at 15 eV, again confirming that guanine had 

greater affinity for oxaliplatin compared to adenine. Virtually no peaks corresponding to 

unbound adenine and guanine bases were observed during the above mass spectrometry 

analyses, again suggesting that the unbound bases fragmented as neutral species.   

 

The experiment discussed above was only applied to the Pt-AG adduct and its 

corresponding product ions. A further area of research would be to conduct similar 
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studies on the other oxaliplatin adducts and compare the various nucleobase binding 

energies. 

 

4.4 Summary 

Oxaliplatin-nucleobase interactions have been studied using ESI-MSn. It was shown that 

oxaliplatin formed adducts with all four nucleobases when present individually in 

solution. Multiple stage ESI-MS data revealed successive losses of H2, ammonia and 

nucleobase from each of the adducts. The MSn data enabled detailed fragmentation 

pathways to be established for each oxaliplatin-nucleobase species and proposed 

structures for each product ion were presented, demonstrating the ease and versatility of 

ESI-MS for the study of drug-DNA interactions. 

 

The preferential binding of oxaliplatin to adenine and guanine was also verified by the 

small proportion of cytosine and thymine adducts formed in the mixed base solution. 

However, mono-adducts of all four bases were clearly observed when the drug was 

present in excess of all four bases. This follows the expected pattern of mono-

substitution being favoured over di-substitution and a reduction in successive formation 

constants. Further evidence of preferential adenine and guanine binding was shown 

when fragmenting the Pt-AG adduct. Two product ions corresponding to Pt-A and Pt-G 

were produced, however, the product corresponding to Pt-G was always dominant 

compared to Pt-A, suggesting that guanine remains attached to the metal, whilst adenine 

preferentially fragments, thus demonstrating that guanine has a greater affinity for the 

drug.  

 

It has been illustrated that linear ion trap ESI-MS can be employed for investigating 

oxaliplatin-DNA interactions. However, it should be noted that this study was 

conducted on free nucleobases as oppose to oligonucleotides or intact genomic DNA. 

Factors such as steric restraints may well effect oxaliplatin interactions with 

nucleobases incorporated in the DNA molecule. The next step would be to conduct 

these experiments on oxaliplatin treated oligonucleotides or genomic DNA and 

establish whether drug-base affinity is the same as discussed above. Detailed structural 

information can be revealed in relatively short periods of time, although confirmation of 
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structure still requires use of other techniques such NMR, crystallography or 

computational methods. 
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5 Anion Exchange HPLC-ICP-MS of Single 

Nucleotide Polymorphisms (SNPs) 
 

5.1 Introduction 

Previous chapters have demonstrated how the ICP-MS signal of DNA can be enhanced 

by means of metal nano-particle labelling, or by Pt adducts in the case of cisplatin and 

oxaliplatin treated DNA. This chapter illustrates how ICP-MS can be used to detect 

DNA by measuring the P associated with the sugar-phosphate backbone. A HPLC 

separation method was developed for separating nucleic acids which differ only by one 

nucleobase. The HPLC was then coupled to an ICP-MS to allow for on-line separation 

and element specific detection. The HPLC separation method was used in conjunction 

with P ICP-MS detection methods, developed by Peter Winship in the Analytical 

Atomic Spectroscopy Research Group as part of his PhD thesis.179 This chapter 

demonstrates the ease of coupling chromatographic systems to ICP-MS instruments and 

also the limitations of P detection by quadrupole ICP-MS. 

 

Single nucleotide polymorphisms (SNPs) are defined as a single incorrect nucleobase 

insertion into a gene sequence. Such errors are usually harmless and can occur in coding 

and non-coding regions of the genome. SNPs are the most common genetic variation 

and are utilised in evolution studies and population genetics.195 However, certain 

polymorphisms can cause serious genetic diseases.196 In addition, the way individuals 

react towards pharmaceuticals is sometimes determined by a certain SNP. As a result, 

the study of SNPs is of great interest to medicine and pharmaceutical research.195-197 

The ability to identify SNPs and use them as a diagnostic tool for disease, tailoring 

drugs to suit people with a certain polymorphisms and to predict how people with 

certain SNP will react to a drug is a desirable goal.195-197   

 

Two different 25 base length oligonucleotides (25 mers) were employed in this study. 

The oligonucleotides differed in base sequence by a single base thus mimicking a SNP. 

A method of separating the oligonucleotides by anion exchange HPLC coupled to ICP-

MS is detailed, although numerous publications have reported on similar hyphenated 

techniques.1, 32, 60, 198, 199 The HPLC system used in this study was complete with UV 
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absorption detection, thus the eluting oligonucleotides were detected due to the 

chromophores associated with the bases. In addition the ICP-MS detected the eluting 

nucleic acids by P which is contained in the sugar phosphate back bone. Two methods 

of P measurement were investigated; collision cell technology (CCT) with oxygen 

reaction gas and a cool plasma method. Collision/reaction cell methods of P 

measurement have been extensively studied using either O2 
9, 10, 52, 59 or He 1, 61, 62 

reaction gases, these methods were discussed in detail in Chapter 1. To our knowledge 

this is the first time the cool plasma method has been employed for P determinations in 

conjunction with nucleic acids. Both UV absorption and elemental mass spectrometry 

data were obtained during the chromatographic separations. Both sets of data confirmed 

that the oligonucleotides could be resolved on an anion exchange column. 

 

5.2 Instrumentation and Reagents 

The oligonucleotide 25 mers used in this part of the investigation were obtained from 

Invitrogen (Paisley, UK), the sequences are shown in Table 5:1 and are denoted 

unmodified 25 mers 1 and 2. The oligonucleotides were not modified with any 

additional functional groups and were diluted in 20 mM Tris-HCl buffer at pH 9 to a 

concentration of 10 µM.  

Table 5:1: Oligonucleotide Base Sequences. 

Oligonucleotide Sequence (5’→3’) 
Backbone 

Molecular Weight 

Unmodified 25 mer 1 TGA AGA AAT TCA GTT CAT AGC TTG T 7696 

Unmodified 25 mer 2 TGA AGA AAT TCA GTT CAT AGC TTG G 7721 

 
The stationary phase was a TSKgel-DNA-NPR analytical column (7.5 cm x 4.6 mm) 

and was obtained from Tosoh Bioscience (Stuttgart, Germany). Tetramethylammonium 

hydroxide (TMAH) was from Apollo Scientific (Stockport, Cheshire). Citric acid (free 

acid) and tris base was obtained from Sigma Aldrich. Ammonium chloride was obtained 

from Fluka (Buchs, Switerland). Hydrochloric acid (super pure acid grade) was from 

Romil (Cambridge, UK). Oxygen gas (99.999% purity) was obtained from BOC 

(Sussex, UK). 

 

A PQ ExCell ICP-MS instrument (Thermo Electron Corporation, Winsford, Cheshire) 

complete with a quadrupole mass filter and collision cell technology (CCT) was used 
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for the chromatographic detection of SNPs. The torch position and ion optics were 

tuned daily with 115In to obtain maximum sensitivity and stability. Both methods of P 

detection resulted in the formation of 31P16O+ at m/z 47 as discussed in Chapter 1. 

 

An Agilent HP 1090 series 2 HPLC system (Agilent Technologies, Waldbronn, 

Germany) was employed for all separations. The instrument was equipped with a 

variable wavelength UV detector (Applied Biosystems) and HP3396A integrator 

(Hewlett Packard), which was employed for the acquisition of UV data. The same 

mobile phases and chromatographic conditions were used for both methods of P 

detection and are summarised in Table 5:2. 

Table 5:2: HPLC parameters for the separation of SNPs. 

Parameter Setting 

Stationary Phase TSKgel-DNA-NPR, 7.5 cm x 4.6 mm, 2.5µm particle size 

Mobile phase A= 20 mM Tris-HCl, pH 9 

B= 20 mM Tris + 0.3 M Citrate + 0.1 M NH4Cl, pH 9 

Flow rate 0.7 ml min-1 

Injection Volume 5 µl 

Wavelength 257 nm 

Gradient  Time (min)           % B 

      0                       40 

    15                      100 

    20                      100 

Stop time 20 minutes 

Post time 4 minutes 

 

The UV detector outlet was connected directly to the back of a 1 ml min-1 Conikal 

nebuliser (Glass Expansions, Australia), using PEEK tubing. The HPLC eluent was not 

split post column as detailed in Chapter 2, but the entire column eluent entered the 

nebuliser. An impact bead spray chamber was also employed; the schematic in Figure 

5:1 illustrates the instrumental set-up. Any amendments to the chromatographic 

conditions will be stated where appropriate. The ICP-MS was operated in transient time 

resolved analysis (TRA) mode. 



260 

 

Figure 5:1: Schematic showing the HPLC and ICP-MS coupling. 

 

5.2.1 Collision Cell 

The first method investigated was that employing the CCT with O2 as the reaction gas, 

the ICP-MS operating conditions are summarised in Table 5:3. Note that the forward 

power was maintained at 1350 W, but O2 was bled into the collision cell to facilitate 
31P16O+ formation. 

Table 5:3: ICP-MS operating parameters for the collision cell method. 

Parameter Setting 

Gas Flows Cool = 12.8 l min-1 

Auxiliary = 0.80 l min-1 

Nebuliser = 1.0-1.2 l min-1 

Quadrupole bias + 1V 

Hexapole Bias  ~+ 7.5-8 V  

Forward Power 1350 W 

CCT O2 Flow  0.4 ml min-1 

Nebuliser 1 ml min-1 glass conikal 

Spray Chamber Impact bead 

 
The formation of 31P16O+ and the removal of polyatomic interferences were discussed 

extensively in Chapter 1. It was noted that 47Ti could potentially interfere with the 
31P16O+ signal; however, it is unlikely that 47Ti would be present in the biological 

samples and Ti readily reacts with oxygen to form an oxide at a higher m/z ratio.9  

  Detector 
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Waste 

Torch box 
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The Ion kinetic energy effect (IKEE) was implemented by adjusting the hexapole bias 

to 7.5-8 V. By applying a positive potential to the collision cell, the kinetic energy of 

the incoming plasma ions would be retarded, thus facilitating the reaction between 31P+ 

and O2 collision cell gas. The main P interferences at m/z 31 are 1H14N16O and 15N16O 

(refer to Table 1:5). It was discussed in section 1.3.2.2 that these polyatomic species do 

not react with O2 due to such reactions being thermodynamically and/or kinetically 

unfavourable, thus these polyatomic species would not interfere with 31P16O+.9 For these 

reasons, kinetic energy discrimination (KED) was not implemented and the quadrupole 

was maintained at a lower potential to the collision cell (1 V).  

 

5.2.2 Cool Plasma 

The second method employed a ‘cool plasma’ for measuring P, which used a forward 

power of 800 W compared with 1350 W used in standard and collision cell mode. At 

this lower forward power the formation of 31P16O+ occurs in the plasma which can then 

be directly measured. The operating parameters for the cool plasma method were 

identical to those above (Table 5:3); however, the collision cell and O2 reaction gas was 

not used, and the forward power was decreased to 800 W. Since the collision cell was 

not in operation, the hexapole bias was at the default setting (-1.93V). 

 

5.3 Results 

5.3.1 Collision Cell 

Retention time markers containing either 25 mer 1 or and 25 mer 2 were injected first 

using the chromatographic conditions outlined in Table 5:2. The UV chromatogram 

corresponding to 25 mer 1 is shown in Figure 5:2, in which a retention time of 15.24 

minutes was observed. 
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Figure 5:2: UV chromatogram of 25 mer 1 (10 µM) eluted from a TSKgel-DNA-NPR column (7.5 

cm x 4.6 mm), 40%B at 0 mins, 100%B at 15 mins and 100% B at 20 mins, 0.7 ml min
-1

, 5 µl 

injection volume, 260 nm detection wavelength. 

 
Figure 5:3 shows both the UV and mass spectrometry data during the elution of 25 mer 

2. It should be noted that both sets of data were obtained during a single injection of the 

oligonucleotide. A retention time of 16.01 minutes was obtained for 25 mer 2. 
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Figure 5:3: a) UV Chromatogram corresponding to 25 mer 2 (10 µM), 260 nm detection 

wavelength. b) ICP-MS 
47

PO signal intensity during elution of 25 mer 2. Oligonucleotide eluted 

from a TSKgel-DNA-NPR column (7.5 cm x 4.6 mm), 40%B at 0 mins, 100%B at 15 mins and 

100% B at 20 mins, 0.7 ml min
-1

, 5 µl injection volume. 
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Once it was confirmed that the two 25 mer oligonucleotides had different retention 

times, a mixture containing the two 25 mers at equal concentrations (10 µM) was 

injected and eluted using the same gradient. Refer to Figure 5:4 for the UV and mass 

spectrometry data for the 25 mer mixture, which shows how the two oligonucleotides 

were successfully resolved by the separation method. Again the two sets of data shown 

in Figure 5:4 were obtained simultaneously during a single injection of the 

oligonucleotide mixture. 
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Figure 5:4: a) UV Chromatogram corresponding the oligonucleotide mixture containing 25 mer 1 

and 2, each at a concentration of 10 µM, 260 nm detection wavelength. b) ICP-MS 
47

PO signal 

intensity during elution of the oligonucleotide mixture, eluted from a TSKgel-DNA-NPR column 

(7.5 cm x 4.6 mm), 40%B at 0 mins, 100%B at 15 mins and 100% B at 20 mins, 0.7 ml min
-1

, 5 µl 

injection volume. 
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Note that the retention times of the oligonucleotides in the 31P16O chromatograms 

shown in Figure 5:3b and Figure 5:4b are slightly earlier than the retention times 

observed in the UV chromatograms, even though the UV detector was positioned before 

the ICP-MS. Since there was no communication between the HPLC and ICP-MS, the 

ICP-MS data acquisition was started manually upon injection of the samples, thus the 

retention times observed with ICP-MS may not be as accurate as the UV retention 

times.  

 

The resolution between the two oligonucleotide peaks was calculated for both sets of 

data shown in Figure 5:4 and compared. Equation 3 was used for calculating resolution: 

Equation 3: Peak resolution Rs = 2(trb-tra)/(Wa + Wb) 

Where: 

tr = retention time of oligonucleotide 

W = peak width 

Subscript a and b refers to the first and second eluted oligonucleotide respectively. 

 
            Peak resolution using UV data: 

Rs = 2(15.95 - 15.18)/(0.4 + 0.4) 

= 1.93 

         Peak resolution using MS data: 

Rs = 2(15.94 - 15.16)/(0.44 + 0.44) 

= 1.77 

The resolution values obtained for both sets of data were above 1.50, which suggests 

that the oligonucleotides were baseline resolved. Although the resolution for the ICP-

MS data was slightly lower than that of the UV data, the loss in resolution was not 

significant and baseline resolution was still observed in the 31P16O chromatogram.  

 

The UV and ICP chromatograms exhibited a rising baseline. In the UV chromatograms 

this was attributed to the residual absorbance of citrate increasing as the citrate 

concentration increased during the gradient elution. Since ICP-MS is an elemental 

detector, the rising baseline in the 31P16O chromatograms was thought to be caused by 

interferences at m/z 47. The cause of interferences at this m/z was likely to be due to 

nitrogen and carbon based polyatomic species such as; 1H14N16O16O, 15N16O16O, 
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13C18O16O, 12C18O16O1H and 15N14N18O resulting from the mobile phase.134 Mobile 

phase B contained Tris base, ammonium chloride and citrate, so by increasing the 

proportion of mobile phase B during the gradient elution, the amount of nitrogen and 

carbon was also increasing. As a result, carbon and nitrogen based polyatomic 

interferences at m/z 47 would have increased resulting in the rising baseline. Since KED 

was not implemented, both the 31P16O+ analyte and the interfering polyatomic species 

from the plasma would have been transmitted through to the quadrupole and thus 

detected. In an attempt to reduce this rising baseline, the gradient was modified (Table 

5:4) to use a lower percentage of mobile phase B, but the run time was extended to 30 

minutes to compensate for the weaker gradient. 

Table 5:4: Shallow gradient used for the HPLC-ICP-MS of SNPs, in an attenpt to reduce the rising 

baseline. 

Time (min) % B 

0 50 

30 80 

 

Figure 5:5 shows the UV chromatogram and 31P16O+ signal intensity during elution of 

the oligonucleotide mixture using the above shallow gradient. Retention times of 22 and 

24.40 minutes were observed in the UV data for 25 mers 1 and 2 respectively. The 

peaks were broad, but well resolved with a 2.4 minute time gap between them; this is a 

consequence of the longer retention time. The ICP-MS data shows retention times of 

22.16 and 24.71 minutes which coincides with the UV chromatogram. However, the 

peaks were less well defined above the baseline. Although, a 2.4 minute peak separation 

is observed in the UV chromatogram, the peaks were broader and the calculated 

resolution (calculated using equation 3) was 1.78 and 1.96 for the UV and ICP data 

respectively, which was comparable to that obtained with the 20 minute gradient 

observed in Figure 5:4. In addition, although a lower background was achieved with the 

shallow gradient, more pronounced peaks were observed with the original 20 minute 

gradient (see Table 5:2). After considering the above factors it was decided that there 

was no analytical benefit of using the shallow gradient. 
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Figure 5:5: a) UV Chromatogram corresponding to 25 mer 1 and 2 each at a concentration of 10 

µM, 260 nm detection wavelength. b) ICP-MS 
47

PO signal intensity during elution of 25 mer 1 and 

2 mixture. Oligonucleotide eluted from a TSKgel-DNA-NPR column (7.5 cm x 4.6 mm), 50%B at 0 

min, 80%B at 30 min, 0.7 ml min
-1

, 5 µl injection volume. 

 

The choice of mobile phase was an important consideration when coupling HPLC to 

ICP-MS, since the ICP is not tolerant to organic solvents and high concentration 

buffers.62 This was a particularly important consideration when employing anion 

exchange chromatography, as this mode of separation employs an increasing gradient of 

salt to increase the ionic strength of the mobile phase and elute the analyte.36 Sodium 

chloride, typically up to 1 M is traditionally used for increasing the eluent ionic 

b 

a 

22.16 min 

24.71 min 

22.00 min 

24.47 min 
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strength. However, ICP-MS is not compatible with high concentrations of Na since it 

has a low first ionisation potential and is preferentially ionised over other elements 

including the analyte in the plasma. As a result, the plasma equilibrium is disrupted and 

analyte ionisation is suppressed, this is known as a non-spectral interference.27, 200 

Alternative salts therefore have to be considered. In this method, the gradient consisted 

of a mixture of citrate and ammonium chloride. At pH 9, citrate carries a triple negative 

charge, making it a very strong anion. However, for reasons not fully understood, citrate 

alone would not elute the 25 mer oligonucleotides, so ammonium chloride was also 

added to the eluent. Such a mixture of salts appeared to be ICP-MS compatible. 

 

Other mobile phases were investigated prior to the Tris, citrate and ammonium chloride 

gradient. One of the phases investigated was tetramethylammonium chloride (TMACl). 

This mobile phase appeared to be suitable for ICP-MS analysis but it resulted in severe 

suppression of the m/z 47 signal, thus the oligonucleotides were not being detected by 

ICP-MS, even though UV data clearly showed the oligonucleotides eluting. 

 

5.3.2 Cool Plasma 

The cool plasma method of 31P16O+ detection was also applied to the detection of SNPs. 

This involved reducing the plasma forward power to 800 W. The 25 mer mixture was 

injected and eluted using the 20 minute gradient outlined in Table 5:2, refer to Figure 

5:6 for the 31P16O+ chromatogram. The UV chromatogram is not shown, since it is 

identical to that seen in Figure 5:4a above. 
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Figure 5:6: ICP-MS 

31
P

16
O signal intensity during elution of 25 mer 1 and 2 mixture (10 µM). 

Oligonucleotide eluted from a TSKgel-DNA-NPR column (7.5 cm x 4.6 mm), 40%B at 0 mins, 

100%B at 15 mins and 100% B at 20 mins, 0.7 ml min
-1

, 5 µl injection volume.  

 

The oligonucleotides eluted around 15 minutes as shown in the UV chromatogram in 

Figure 5:4a, but Figure 5:6 only shows two very weak 31P16O+ peaks at 14.76 and 15.37 

minutes. The shallow gradient which was outlined in Table 5:4 was also applied to the 

cool plasma method and retention times of approximately 22 and 24 minutes were 

observed in the UV data, but no 31P16O+ peaks were observed when this gradient was 

used in conjunction with cool plasma method. The UV data confirmed that the 

oligonucleotides were eluting, but the ICP-MS data did not exhibit any 31P16O+ peaks at 

the corresponding retention times. One possible explanation is that at a low forward 

power, the plasma was unable to cope with the high matrix which consisted of high 

concentration salts from the mobile phase. The formation of 31P16O+ may have been 

suppressed in the plasma under such conditions, resulting in the absence of 31P16O+ 

peaks as the oligonucleotides eluted.  

 
 
 

14.76 min 
15.37 min 
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5.4 Summary for Anion Exchange HPLC-ICP-MS of SNP’s 

A method of separating and detecting DNA SNPs by HPLC-ICP-MS has been 

demonstrated. Anion exchange chromatography was successful in resolving 

oligonucleotides that differed in sequence by one base. In addition, ICP-MS with CCT 

was successful in detecting the P signal associated with DNA. Both UV and ICP-MS 

data was acquired simultaneously during the separation of the oligonucleotides, which 

enabled the retention times to be verified. Both sets of data corresponded well in terms 

of retention time. 

 

Two methods of P determination were discussed. The first method employed CCT and 

O2 reaction gas to convert P into 31P16O+. This method was successful in detecting the 

eluted oligonucleotides, with both species baseline resolved. More importantly, 

resolution was not lost upon the coupling of the HPLC to the ICP-MS. The cool plasma 

method of P detection was not successful. Even though the UV data confirmed that the 

oligonucleotides were eluting, the P signal in the ICP-MS data was very weak. As 

discussed above, the likely explanation for this is that the reduced plasma power and 

high matrix levels suppressed PO formation.  

 

A rising baseline was observed in the ICP data throughout the separation step, which 

was attributed to nitrogen and carbon based polyatomic interferences at m/z 47. The 

increasing gradient of tris-HCl, citrate and ammonium chloride was thought to be the 

cause of these increasing interferences. By employing KED the polyatomic 

interferences may have been prevented from entering the quadrupole, thus minimising 

the rising baseline at m/z 47 during the gradient elution. The application of KED is an 

aspect that should be investigated in the future.  

 

It has been demonstrated that the HPLC-ICP-MS method using CCT is suitable for 

detecting P containing species such as DNA. The HPLC-ICP-MS method developed in 

this chapter can be employed qualitatively, but quantitative analysis will be limited due 

to the gradient elution employed. It was briefly discussed in Chapter 2 that isocratic 

elution is preferred when coupling HPLC systems to ICP-MS, since the mobile phase 

composition is constant throughout the separation. Conversely, gradient elution results 

in a changing mobile phase composition which ultimately results in the plasma 
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conditions constantly changing throughout the separation step. This was evident in the 

rising baseline which was attributed to increasing mobile phase B as the elution 

progressed. Thus, it would be difficult to quantify separated analytes, since the degree 

of analyte ionisation may vary at different stages of the separation.201 An internal 

standard could be added to the mobile phase to assess the degree of signal suppression 

during the elution and should be considered for quantitative analysis.  
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6 Conclusions  

The application of elemental mass spectrometry in genomics and related research has 

been demonstrated in this thesis. It has been shown that nucleic acids can be detected by 

ICP-MS due to the high P content in the nucleic acid sugar phosphate backbone. 

However, there are numerous problems associated with P detection, particularly 

concerning its poor detection limit. This problem can be alleviated if the nucleic acid 

analyte is labelled with Au nano-particles. Gold has a lower ionisation potential than P 

and does not suffer the same polyatomic interferences owing to its higher mass. As a 

result, enhancements in nucleic acid detection by ICP-MS were observed for Au 

labelled oligonucleotides. Of the two labelling methods investigated, that employing 

biotin derivatised olignucleotides and streptavidin functionalised Au particles (SFNG) 

was the most successful. The SFNG-DNA conjugates were successfully separated from 

un-reacted SFNG with HPLC-ICP-MS. Labelling efficiencies of 100% were observed, 

which resulted in an 882 fold enhancement in signal for 25 mer oligonucleotides. More 

importantly, all the Au was recovered from the HPLC column. Much lower labelling 

efficiencies and hence signal enhancements were observed when labelling sulfhydryl 

derivatised oligonucleotides with maleimide functionalised Au nano-particles (MMN). 

This was attributed to the lengthy and difficult sample preparation required to initiate 

labelling. Further, both the sulfhydryl derivatised oligonucleotides and MMN were 

reactive once in solution or when exposed to air, adding to the difficulties. 

 

The labelling methods developed here have advantages over those already published. 

Firstly, both the SFNG and MMN methods are site specific and stiochiometery can be 

established.17 Secondly, these methods are not dependent on nucleic acid base sequence 

or peptide sequences,48 hence they can be applied to any bio-molecule possessing a 

biotin or sulfhydryl functionality. Further, the signal enhancement obtained with SFNG 

and MMN is only dependent on the efficiency of one conjugation step. This is in 

contrast to the peptide labelling method reported by Patel et  al., which was dependent 

on the protein-cDPTA derivatisation efficiency followed by the efficiency of Eu binding 

to the chelating agent.49 
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ICP-MS can be applied to clinical samples; this concept was demonstrated in Chapter 3, 

where ctDNA was treated with either cisplatin or oxaliplatin anti-cancer drugs. 

Although the treated ctDNA could be analysed by ICP-MS without any additional 

sample preparation, severe matrix effects resulted in Pt signal suppression. 

Consequently, digestion of the ctDNA resulted in decreased matrix effects and allowed 

Pt dose rates of 1Pt atom per 1 500 000 nucleotides to be detected in approximately     

12 µg DNA. Such a sensitive mass spectrometric method may have important 

implications in clinical research, where trace levels of metallodrug need to be detected 

and quantified in a limited amount of patient sample. Consequently, this approach was 

proven by an MSc. student who successfully applied the procedure to two cancer cell 

lines which were treated with cisplatin or oxaliplatin. 

 

Finally, the complementary nature of elemental and molecular mass spectrometry was 

highlighted in Chapter 4. Here, ESI linear ion trap mass spectrometry was employed to 

study the binding and subsequent fragmentation pathways of oxaliplatin with DNA 

nucleobases. Detailed fragmentation pathways could be established and proposed 

structures were presented.  

 

6.1 Further Research 

6.1.1 Improving Existing Methodologies 

The first aspect to consider is improving the methodologies developed in this thesis. It 

was established in Chapter 2 that RP-HPLC-ICP-MS could be used to separate SFNG-

DNA conjugates with the mass balance reaching 100%, suggesting that all the Au was 

recovered from the column. However, to ensure this was the case, the column had to be 

disconnected from the nebuliser and reverse flushed after each injection to ensure Au 

was not accumulating at the head of the column. This may be avoided if an S containing 

compound such as cysteine is added to the mobile phase to aid Au removal from the 

chromatographic phase and ICP sample introduction system. Gold has high affinity for 

S, so its addition to the mobile phase may ensure that all the injected Au is detected by 

the ICP-MS.  
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Another approach in improving the HPLC separation is to use polymeric 

chromatography phases such as PS-DVB instead of silica phases. Polymeric phases are 

generally more tolerant to extremes in pH compared to their silica counterparts. As a 

result, low concentrations of aqua regia or HCl may be added to the mobile phase to aid 

Au removal from the column. As discussed previously, Au is relatively soluble and 

stable in HCl, which may also result in its efficient removal. Monolithic polymeric 

phases are also more suited to the separation of large molecules such as DNA and 

proteins, owing to rapid diffusion and lack of intra-particular voids which hamper 

macromolecule separations.    

 

Another potential area for improvement is in the chromatography described in Chapter 

5. The baseline of the 31P16O chromatograms in this Chapter appeared to increase during 

gradient elution. The rising baseline was attributed to the increased formation of carbon 

and nitrogen containing polyatomic interferences at m/z 47, caused by the increasing 

amounts of citrate and ammonia chloride mobile phase. Although IKEE was 

implemented by applying a positive potential to the collision cell, KED was not 

implemented and the quadrupole bias was maintained at 1V. However, by increasing 

the positive potential on the quadrupole, it may be possible to discriminate between the 
31P16O analyte and polyatomic interferences, thus minimising the rising baseline during 

gradient elution. Such experiments were not conducted here, but may improve the 
31P16O chromatograms. 

6.1.2 Combining Elemental Labelling with Pt-DNA Adduct Detection 

The concept of signal enhancement by means of metal or nano-particle labelling has 

been demonstrated, as has the application of ICP-MS in the analysis of clinical samples. 

The next step in this research would be to combine these two aspects, namely to label 

Pt-DNA adducts with Au nano-particles to further increase the detection of Pt-DNA 

adducts by ICP-MS. This final section looks at two methods which could be employed 

to further enhance the detection of Pt-DNA adducts. Both methods utilise established 

biological techniques in conjunction with metal nano-particle labelling and elemental 

mass spectrometry. Although neither of these methods has been investigated, it is hoped 

that they will pave the way for future developments in both cancer research studies and 

elemental mass spectrometry. 
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6.1.2.1 Elemental Labelling with the Post Labelling Assay 

The nanogold labelling procedures observed in Chapter 2 could potentially be used to 

label Pt-DNA adducts formed after treatment with Pt drugs. SFNG was assayed in 

Chapter 2 and a figure of 86 Au atoms per nano-particle was calculated. The 

incorporation of 86 Au atoms onto the platinated sites would result in a significant 

enhancement in signal by ICP-MS, resulting in the detection of ultra trace levels of Pt-

DNA adducts.  

 

Platinum and Au have similar masses (m/z 195 and 197 respectively) and similar first 

ionisation potentials (Pt = 9 eV and Au = 9.2 eV), thus the two elements would be 

expected to give similar signals by ICP-MS. However, unlike Au which is 

monoisotopic, Pt has six isotopes with the most abundant at m/z 195 (33.8% abundant). 

Therefore, the 195Pt signal intensity would be expected to be 33% lower than the signal 

given by 197Au at the same concentration. Given that each nano-particle contains 86 Au 

atoms and Au gives three times greater signal than the most abundant Pt isotope, a total 

enhancement factor of 258 should be possible for nanogold labelled di-nucleotides 

compared to measuring Pt alone.   

 

The site specific labelling of Pt-DNA adducts with nanogold could be achieved if used 

in conjunction with the post labelling assay. Figure 3:4 illustrates the assay and shows 

how the adduct sites are converted to di-nucleotides upon enzymatic digestion. The final 

step in the assay requires the di-nucleotides to be phosphorylated at the 5’ end by the 

enzyme T4PNK, which only phosphorylates the di-nucleotides and hence the previously 

platinated sites. In the conventional PLA, 32P is used for phosphorylation. The digest 

mixture containing the radio-labelled di-nucleotides and mono-nucleotides can then be 

separated by gel electrophoresis and the 32P detected. However, in the case of elemental 

labelling, cold phosphorus can be used for phosphorylating the di-nucleotides and then 

the 5’ phosphate can be derivatised to incorporate either biotin or a sulfhydryl group. 

The newly incorporated reactive group can then be labelled with SFNG or MMN 

depending on the reactive group employed. The modified PLA is summarised in Figure 

6:1 and illustrates how the di-nucleotides, which represent previously platinated sites 

are specifically labelled with ~86 Au atoms, whilst the mono-nucleotides that 

correspond to the non-adducted sites are not labelled and thus not detected by ICP-MS. 
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Figure 6:1: Site specific nanogold labelling of Pt adducts using the PLA. 

 
Considering the same type of nanogold particle is present in both SFNG and MMN,95 

both nanogold labelling routes incorporate approximately 86 gold atoms onto the di-

nucleotides. This method could potentially allow for the ultra trace detection of Pt-DNA 

adducts by ICP-MS.  

6.1.2.2 Elemental Labelling of Adduct Recognition Antibodies 

Antibodies specific to cisplatin intra-stranded GG and AG cross-links have been 

identified and used in the analysis of Pt-DNA adducts and provide yet another 

alternative method of ultra sensitive adduct detection.152, 169, 177 Such antibodies could be 

used in a sandwich type immunoassay, where cisplatin treated DNA is incubated with 

adduct recognition antibodies. In a second step, a secondary antibody can then be 

employed to bind to the adduct recognition antibody. If the secondary antibody carries 

an Au or rare earth nano-particle, the ICP-MS detection of Pt adducts can be 

dramatically improved. Figure 6:2 shows the schematic of the potential method.  
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Figure 6:2: Potential metal nano-particle immunological assay combined with ICP-MS for 

cisplatin-DNA adduct detection. 

 

The actual enhancement in signal due to nano-particle labelled antibodies will 

inevitably be dependent upon the metal employed and the number of metal atoms 

present on the secondary antibody. In addition, the affinity of the selected secondary 

antibody to the primary antibody will effect the overall signal enhancement. The nano-

particle based immunological method should be capable of detecting between ~90-95% 

of all Pt species formed, since the antibodies recognise GG and AG intra-stranded 

cross-links.152, 169 However, the above method is only viable if a secondary antibody 

specific to the adduct recognition antibodies can be identified. In addition, the 

secondary antibody will have to be labelled with metal nano-particles, unless such metal 

containing antibodies are commercially available.  
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8 Appendix 1: TSKgel-DNA-NPR Phase 

The anion exchange stationary phase chosen for the separation of nucleic acids and 

nucleic acid-Au conjugates was a non-porous resin functionalised with 

diethylaminoethane (DEAE) anion exchanger. The structure of DEAE is illustrated in 

Figure 8:1. The phase has a pKa of approximately 11.2, so the tertiary amine functional 

group carries a positive charge at or below pH 9. Therefore, compounds carrying a 

negative charge are retained on the phase and positive or neutral species repel the phase 

and are eluted. However, a mixture of negatively charged compounds may be separated 

from one another if the species have different charge densities and /or hydrophobicities, 

since they will have different degrees of interaction with the phase. 

H2
C N

H2
C

CH2

H

CH2

CH3

CH3

ClO4

 
Figure 8:1:  Structure of the DEAE phase. 

 
The stationary phase is commercially known as; TSKgel-DEAE-NPR. A non-porous 

resin was chosen for the separation of large biomolecules, since the phase is free from 

intraparticular pores and voids. This has the advantage of preventing the large 

molecules becoming irreversibly trapped within the intraparticulate pores. Also, the 

mass transfer of the molecules is increased, which is advantageous due to the naturally 

low diffusivity observed with large biomolecules. Table 8:1 summarises the properties 

of the stationary phase. 

Table 8:1: properties of  the TSKgel-DEAE-NPR Stationary Phase. 

 Property TSKgel-DNA-NPR 

Dimensions 4.6 mm x 750 mm, 2.5 µm 

Pore size Non porous media 

pH stability 2-12 

Max salt conc ≤ 1 M 

Max organic solvent ≤ 20% 
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9 Appendix 2: LTQ Data from oxaliplatin-DNA 

adducts 

9.1 Appendix 2.1: Oxaliplatin Mass Spectrometry Data (in 

the absence of nucleobase) 

The following spectra were obtained from a 3.3 mM oxaliplatin solution in the absence 

of nucleobase.  

 

 
Figure 9:1: MS/MS spectrum of product ions obtained by CID of oxaliplatin parent ion at m/z 397, 

collision energy = 20 eV and isolation width = 1 Da.  
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Figure 9:2: MS/MS spectrum of product ions obtained by CID of oxaliplatin parent ion at m/z 398, 

collision energy = 20 eV and isolation width = 1 Da. 

 
Figure 9:3: MS/MS spectrum of product ions obtained by CID of oxaliplatin parent ion at m/z 399, 

collision energy = 20 eV and isolation width = 1 Da. 
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9.2 Appendix 2.2: Mass Spectrometry Data from Oxaliplatin 

Mono-Nucleobase Solutions 

Oxaliplatin-Adenine Mass Spectra 

 
Figure 9:4: Full scan mass spectrum of oxaliplatin-adenine mono-base solution. 
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Figure 9:5: MS/MS of product ions obtained by CID of the 

195
Pt-A adduct at m/z 443 to yield the 

free Pt drug at m/z 304-308 and free adenine base at m/z 136. Collision energy = 20 eV and isolation 

width =1 Da. 

 
Figure 9:6: MS/MS of product ions obtained by CID of the 

196
Pt-A adduct at m/z 444 to yield the 

free Pt drug at m/z 309 and free adenine base at m/z 136. Collision energy = 15 eV and isolation 

width =1 Da. 
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Figure 9:7: MS/MS spectrum of product ions obtained by CID of the 

195
Pt-AA adduct at m/z 578 to 

yield the 
195

Pt-A adduct at m/z 443. Collision energy = 20 eV and isolation width = 10 Da. 

 
Figure 9:8: MS/MS spectrum of product ions obtained by CID of the 

196
Pt-AA adduct at m/z 579 to 

yield the Pt-A adduct at m/z 444. Collision energy = 20 eV and isolation width = 1 Da. 
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Figure 9:9: MS

3 
spectrum of product ions obtained by CID of the 

195
Pt-A adduct at m/z 443 

(collision energy = 15 eV), which was obtained by CID of the 
195

Pt-AA adduct at m/z 578 using 

collision energy of 20 eV.  
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Oxaliplatin-Guanine Mass Spectra 

 
Figure 9:10: Full scan mass spectrum of the oxaliplatin-guanine mono-base solution. 
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Figure 9:11: MS/MS spectrum of product ions obtained by CID of the 

195
Pt-G adduct at m/z 459 to 

yield the free Pt drug at m/z 306 and free guanine base at m/z 152. Collision energy = 20 eV and 

isolation width = 1 Da. 

 
Figure 9:12: MS/MS spectrum of product ions obtained by CID of the 

196
Pt-G at m/z 460 to yield 

the free Pt drug at m/z 307 and free guanine base at m/z 152. Collision energy = 20 eV and isolation 

width = 1 Da. 
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Figure 9:13: MS/MS spectrum of product ions obtained by CID of the 

194
Pt-GG adduct at m/z 609 

to yield the Pt-G adduct at m/z 458. Collision energy = 20 eV and isolation width = 1 Da. 

 
Figure 9:14: MS/MS spectrum of product ions obtained by CID of the 

195
Pt-GG adduct at m/z 610 

to yield the 
195

Pt-G adduct at m/z 459. Collision energy =15 eV and isolation width = 10 Da. 
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Figure 9:15: MS/MS spectrum of product ions obtained by CID of the 

196
Pt-GG adduct at m/z 611 

to yield the 
196

Pt-G adduct at m/z 460. Collision energy =20 eV and isolation width = 1 Da. 

 
Figure 9:16: MS

3
 spectrum of product ions obtained by CID of the 

195
Pt-G adduct at m/z 459 

(collision energy = 15 eV), which was obtained by CID of the 
195

Pt-GG adduct at m/z 610 (collision 

energy = 20 eV). 
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Figure 9:17: MS

3
 spectrum of product ions obtained by CID of the 

196
Pt-G adduct at m/z 460 

(collision energy =15 eV), which was obtained by CID of the 
196

Pt-GG adduct at m/z 611 (collision 

energy = 20 eV). 
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Oxaliplatin-Thymine Mass Spectra 

 
Figure 9:18: Full scan mass spectrum of oxaliplatin-thymine mono-base solution. 
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Figure 9:19: MS/MS spectrum of product ions obtained by CID of the 

195
Pt-T adduct at m/z 434 to 

yield the free drug at m/z 306. Collision energy = 20 eV and isolation width = 1 Da. 

 
Figure 9:20: MS/MS spectrum of product ions obtained by CID of the 

196
Pt-T adduct at m/z 435 to 

yield the free drug at m/z 307. Collision energy = 20 eV and isolation width = 1 Da. 
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Oxaliplatin-Cytosine Mass Spectrometry Data 

 
Figure 9:21: Full scan mass spectrum of the oxaliplatin-cytosine mono-base solution. 

 
 



305 

 
Figure 9:22: MS/MS spectrum of product ions obtained by CID of the 

196
Pt-C adduct at m/z 420 to 

yield the free drug at m/z 307. Collision energy = 20 eV and isolation width = 1 Da. 

 
Figure 9:23: MS/MS spectrum of product ions obtained by CID of the 

195
Pt-CC adduct at m/z 530 to 

yield the mono-adduct, collision energy =20 eV and isolation width = 10 Da. 
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Hydrated Complexes of Guanine 

These spectra were obtained from the oxaliplatin-guanine mono-base solution and show 

how the hydrated guanine complex fragmented to form the Pt-G mono-adduct. Further 

CID was conducted on the Pt-G product ion to yield many product ions, which were 

characteristic to Pt-G fragmentation. 

 
Figure 9:24: MS

3 
spectrum of product ions obtained by CID of the 

194
Pt-G adduct at m/z 458, 

(collision energy = 20 eV) which was obtained by CID of the 
194

Pt-G(H2O) adduct at m/z 476. 

Collision energy of 15 eV 
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Figure 9:25: MS

3 
spectrum of product ions obtained by CID of the 

195
Pt-G adduct at m/z 459, 

(collision energy = 15 eV) which was obtained by CID of the 
195

Pt-G(H2O) adduct at m/z 477. 

Collision energy of 20 eV. 

 
Figure 9:26: MS

3 
spectrum of product ions obtained by CID of the 

196
Pt-G adduct at m/z 460, 

(collision energy = 20 eV) which was obtained by CID of the 
196

Pt-G(H2O) adduct at m/z 478, 

collision energy = 15 eV. 
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9.3 Appendix 2.3: Oxaliplatin mixture containing A, C, G 

and T in equal-molar proportions 

 
Figure 9:27: MS/MS spectrum of product ions obtained by CID of the 

196
Pt-C adduct at m/z 420 to 

yield the free drug at m/z 305. Collision energy = 15 eV and isolation width = 10 Da. 
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Figure 9:28: MS/MS spectrum of product ions obtained by CID of the 

196
Pt-C adduct at m/z 420 to 

yield the free drug at m/z 306. Collision energy = 20 eV and isolation width = 1 Da. 

 
Figure 9:29: MS/MS of spectrum of product ions obtained by CID of the Pt-A adduct at m/z 441 to 

yield the free drug at m/z 307. Collision energy = 15 eV and isolation width = 10 Da. 
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Figure 9:30: MS/MS spectrum of product ions obtained by CID of the 

195
Pt-A adduct at m/z 443 to 

yield the free Pt drug at m/z 308 and free adenine base at m/z 136. Collision energy = 20 eV and 

isolation width = 1 Da. 

 
Figure 9:31: MS/MS spectrum of product ions obtained by CID of the 

194
Pt-G adduct at m/z 458 to 

yield the free Pt drug at m/z 307. Collision energy = 15 eV and isolation width = 10 Da. 
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Figure 9:32: MS/MS spectrum of product ions obtained by CID of the 

195
Pt-G adduct at m/z 459 to 

yield the free Pt drug at m/z 306 and free guanine base at m/z 152. Collision energy = 20 eV and 

isolation width = 1 Da. 

 
Figure 9:33: MS/MS spectrum of product ions obtained by CID of the 

195
Pt-AA adduct at m/z 578 to 

yield the Pt-A adduct at m/z 443. Collision energy = 15 eV and isolation width = 10 Da. 
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Figure 9:34: MS/MS spectrum of product ions obtained by CID of the 

196
Pt-AA adduct at m/z 579 to 

yield the 
196

Pt-A adduct at m/z 444. Collision energy = 20 eV and isolation width = 1 Da. 

 
Figure 9:35: MS

3
 spectrum of product ions obtained by CID of the 

196
Pt-A adduct at m/z 444 

(collision energy = 20 eV and isolation width = 1 Da), which were obtained through CID of 
196

Pt-AA 

adduct at m/z 579 (collision energy = 20 eV and isolation width = 1).  
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Figure 9:36: MS/MS spectrum of product ions obtained by CID of the 

195
Pt-GG adduct at m/z 610 

to yield the Pt-G adduct at m/z 459. Collision energy = 15 eV and isolation width = 10 Da. 

 
Figure 9:37: MS/MS spectrum of product ions obtained by CID of the 

196
Pt-GG adduct at m/z 611 

to yield the 
196

Pt-G adduct at m/z 460. Collision energy = 20 eV and isolation width = 1 Da. 
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Figure 9:38: MS/MS spectrum of product ions obtained by CID of the Pt-AG adduct at m/z 592 to 

yield the Pt-G and Pt-A adduct at m/z 459 and 443 respectively. Collision energy = 20 eV and 

isolation width = 10 Da. 

 
Figure 9:39: MS/MS spectrum of product ions obtained by CID of the 

195
Pt-AG adduct at m/z 594 

to yield the 
195

Pt-A and 
195

Pt-G adducts at m/z 443 and 459 respectively. Collision energy = 20 eV 

and isolation width = 1 Da. 
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Figure 9:40: MS

3 
spectrum of product ions obtained by CID of the Pt-G adduct at m/z 459 (collision 

energy = 20 eV and isolation width = 10), which was obtained by CID of the Pt-AG adduct at m/z 

594 (collision energy = 15 eV and isolation width = 10 Da). 

 
Figure 9:41: MS

3 
spectrum of product ions obtained by CID of the Pt-A adduct at m/z 443 (collision 

energy = 15 eV), which was obtained by CID of the Pt-AG adduct at m/z 594 (collision energy = 20 

eV and isolation width = 10 Da). 
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9.4 Appendix 2.4: Oxaliplatin mixture containing A, C, G 

and T with an excess of oxaliplatin 

 
Figure 9:42: MS/MS spectrum of product ions obtained by CID of the 

196
Pt-C adduct at m/z 420 to 

yield the free Pt drug at m/z 307. Collision energy = 20 eV and isolation width =1 Da. 
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Figure 9:43: MS/MS spectrum of product ions obtained by CID of the 

195
Pt-T adduct at m/z 434 to 

yield the free Pt drug at m/z 306. Collision energy = 20 eV and isolation width =1 Da. 

 
Figure 9:44: MS/MS spectrum of product ions obtained by CID of the 

195
Pt-A adduct at m/z 443 to 

obtain the free Pt drug at m/z 308 and free adenine base at m/z 136. Collision energy =20 eV and 

isolation width =1 Da. 
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Figure 9:45: MS/MS spectrum of product ions obtained by CID of the 

194
Pt-G adduct at m/z 458 to 

yield the free Pt drug at m/z 305 and free guanine base at m/z 152. Collision energy = 20 eV and 

isolation width =1 Da. 

 
Figure 9:46: MS/MS spectrum of product ions obtained by CID of 

195
Pt-G(H2O) adduct at m/z 477 

to obtain the 
195

Pt-G adduct at m/z 459. Collision energy = 20 eV and isolation width = 1 Da. 
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Figure 9:47: MS

3 
spectrum of product ions formed by CID of the 

195
Pt-G adduct at m/z 459 

(collision energy = 20 eV), which was obtained by CID of the 
195

Pt-G(H2O) adduct at m/z 477 

(collision energy = 20 eV and isolation width = 1). 
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9.5 Appendix 2.5: Fragmentation of the Pt-AG adduct 

 
Figure 9:48: MS/MS spectrum of product ions obtained by CID of the Pt-AG adduct at m/z 594 to 

yield the Pt-G and Pt-A adducts at m/z 459 and 443 respectively. Collision energy = 20 eV and 

isolation width = 10 Da. 
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Figure 9:49: MS/MS spectrum of product ions obtained by CID of the 

194
Pt-AG adduct at m/z 593 

to yield the 
194

Pt-A adduct and 
194

Pt-G adduct at m/z 442 and 458 respectively. Collision energy = 20 

eV and isolation width = 1 Da. 

 
Figure 9:50: MS

3 
spectrum of product ions obtained by CID of the Pt-A adduct at m/z 443 (collision 

energy = 20 eV and isolation width = 10 Da), which were obtained by CID of Pt-AG adduct at m/z 

593 (collision energy = 20 eV and isolation width = 10 Da). 
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Figure 9:51: MS

3  
spectrum of product ions obtained by CID of the Pt-G adduct at m/z 458 (collision 

energy = 20 eV and isolation width = 10), which were obtained by CID of the Pt-AG adduct at m/z 

593 (collision energy = 20 eV and isolation width = 10 Da). 

 
Figure 9:52: MS

3 
spectrum of product ions obtained by CID of the 

194
Pt-G adduct at m/z 458 

(collision energy = 20 eV and isolation width = 1 Da), which was obtained by CID of the
 194

Pt-AG 

adduct at m/z 593 (collision energy = 20 eV and isolation width = 1 Da). 
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10 Appendix 3: Continued Professional Development 

Record 

Event Organisation/Department Date 

Attended 

Duration 

Statistics and Chemometrics Short 

Course 
Professor Miller, Chemistry 

October 

2004 
2 days 

PhD. Induction Professional Development 
October 

2004 
½ day 

Proteomics Seminar Waters Corporation 
November 

2004 
1 day 

Raman Spectroscopy Course 
Loughborough University, 

Physics Department 

11th -12th 

Nov 2004 
2 days 

Preparing to Teach Professional Development 19/11/04 ½ day 

Promoting Learning Professional Development 25/11/04 ½ day 

Supervising Practical Activities Professional Development 30/11/04 ½ day 

Laser Safety Training John Tyler, Physics  8th December ½ day 

Leicester University, Cancer 

Biomarkers and Prevention Group 

Dr. R. Le Pla, Leicester 

University 
13-14/09/05 2 days 

Waters Proteomics Seminar Waters Corporation 19/10/05 1 day 

Keeping your Research up-to Date Professional Development 17/11/05 ½ day 

Conference Presentation Skills (Parts 

A and B) 

Professional Development 24/01/06 & 

7/02/06 

1 day 

Presentation at Leicester University on 

the application of ICP-MS to Pt drug 

research. 

Leicester /Loughborough 

collaboration 

8/02/06 ½ day 

Biological Applications of Elemental 

and Molecular Mass Spectrometry 

RSC 16/03/06 1 day 

Reading for Research Professional Development 13/03/06 ½ day 

Personal Organisation and Time 

Management 

Professional Development 22/05/06 ½ day 

Career Management Professional Development 12/05/06 ½ day 

Getting the Most out of Supervision Professional Development 13/06/06 ½ day 

Managing Projects for PG and RA Professional Development 27/06/06 ½ day 

BNASS Conference, Glasgow 

Caledonian University. Presentation 

on the ICP-MS analysis of Au labelled 

nucleic acids. 

RSC 10-12th July 

2006 

3 days 
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Continued Professional Development continued: 

Event Organisation/Department Date 

Attended 

Duration 

Cricket Secretary Role:  

Taking and distributing minutes at 

monthly committee meetings. 

Issuing correspondence to club 

members. 

Organising end of season presentation 

evening 

 Nov 2005-

July 2007 

15 days 

Viva - What Happens? Professional Development 5/10/06 ½ day 

Visit to Loughborough High School 

(career management) 

 02/10/06 1 day 

Visit to Burleigh College (career 

management) 

 09/10/06 1 day 

Intellectual Property Professional Development 14/12/06 ½ day 

Successful Applications Professional Development 31/01/07 ½ day 

Toarmina Plasma Winter conference 

Oral presentation given on the 

analysis of Au labelled nuclic acids by 

HPLC-ICP-MS 

 Feb 2007 6 days 

Emerging Young Professionals 

Conference: 

Presentation given on the analysis of 

Au labelled nucleic acids by ICP-MS. 

Also attended team building exercises 

RSC – Analytical Science 

Network 

29-31/05/07 2 days 

Presentation given to MSc. students 

on the biological applications of ICP-

MS, followed by instrument 

demonstrations 

Chemistry  ½ day 
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11 Published Material 

Two journal articles were produced from this thesis; the first article detailed the 

enhancement of nucleic acid signal by nano-particle labelling, whilst the second 

publication discussed the study of oxaliplatin-nucleobase interactions by linear ion trap 

ESI-MS. These two research ares were outlined in Chapter 2 and 4 respectively. The 

full journal citations are shown below and the full published versions are shown on the 

following pages. 

 

S. L. Kerr and B. L. Sharp, Nano-particle labelling of nucleic acids for enhanced 

detection by inductively coupled plasma-mass spectrometry (ICP-MS), Chem. 

Commun., 2007, 4537-4539. 

 

S. L. Kerr, T. Shoeib and B. L. Sharp, A study of oxaliplatin-nucleobase interactions 

using ion trap, electrospray mass spectrometry, Anal. Bioanal. Chem., 2008, DOI 

10.1007/s00216-008-2128-3 

 

Publications in Preparation 

S. L. Kerr, P. D. Winship, R. Le Pla, C. Harrington, H. J. Reid, G. D. D. Jones and B. L. 

Sharp, Determination of cisplatin and oxaliplatin adducts by ICP-MS. 

 

P. D. Winship, S. L. Kerr and B. L. Sharp, Comparison of collision reaction cell and 

cold plasma methods of P detection by ICP-MS. 

 

 

 

 

 

 

 

 

 

 


