
Loughborough University
Institutional Repository

Semantic interoperability in
ad-hoc computing
environments

This item was submitted to Loughborough University's Institutional Repository
by the/an author.

Additional Information:

• A Doctoral Thesis. Submitted in partial ful�lment of the requirements for
the award of Doctor of Philosophy of Loughborough University.

Metadata Record: https://dspace.lboro.ac.uk/2134/3072

Please cite the published version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenGrey Repository

https://core.ac.uk/display/40039948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dspace.lboro.ac.uk/2134/3072

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Semantic Interoperability in ad-hoc

Computing Environments

by

José Ignacio Rendo Fernández

A Doctoral Thesis

Submitted in partial fulfilment
of the requirements for the award of

Doctor of Philosophy

of

Loughborough University

June 2007

c© José Ignacio Rendo Fernández, 2007

This thesis is dedicated to

Maŕıa Paz and José, my parents.

i

Acknowledgements

First, I would like to thank Loughborough University, and specially the Computer

Science department for placing their trust in me.

To Dr. I.W. Phillips, my most sincere gratitude for his supervision, wise advise,

support, friendship and help provided during this there years in Loughborough.

I would like to thank my parents, José and Maŕıa Paz, and my brother Ángel,

who always are with me, even they live 2000 miles from Loughborough.

Infinite gratitude to the owner of my heart, my beloved Isabel. Her love,

support and advice give me the will and the strength to keep going. Also, my

gratitude to her parents, Carlos and Felisa, who make me feel like their third son.

Once again, I always be grateful to all Computer Science department staff and

students for all the assistance given during my PhD. Specially, I am very grateful

to Jose A. Hernandez who wisely advised me to start this PhD and John Whitley,

for the ubiquitous help given during these years.

Finally, thanks to all friends who have share with me these three years.

ii

Abstract

This thesis introduces a novel approach in which multiple heterogeneous devices

collaborate to provide useful applications in an ad-hoc network.

This thesis proposes a smart home as a particular ubiquitous computing sce-

nario considering all the requirements given by the literature for succeed in this

kind of systems. To that end, we envision a horizontally integrated smart home

built up from independent components that provide services. These components

are described with enough syntactic, semantic and pragmatic knowledge to accom-

plish spontaneous collaboration. The objective of these collaboration is domestic

use, that is, the provision of valuable services for home residents capable of sup-

porting users in their daily activities. Moreover, for the system to be attractive

for potential customers, it should offer high levels of trust and reliability, all of

them not at an excessive price.

To achieve this goal, this thesis proposes to study the synergies available when

an ontological description of home device functionality is paired with a formal

method. We propose an ad-hoc home network in which components are home

devices modelled as processes represented as semantic services by means of the

Web Service Ontology (OWL-S). In addition, such services are specified, verified

and implemented by means of the Communicating Sequential Processes (CSP), a

process algebra for describing concurrent systems.

The utilisation of an ontology brings the desired levels of knowledge for a sys-

tem to compose services in a ad-hoc environment. Services are composed by a

goal based system in order to satisfy user needs. Such system is capable of under-

staning, both service representations and user context information. Furthermore,

the inclusion of a formal method contributes with additional semantics to check

that such compositions will be correctly implemented and executed, achieving the

levels of reliability and costs reduction (costs derived form the design, development

iii

and implementation of the system) needed for a smart home to succeed.

Keywords: Ubiquitous computing, ad-hoc, smart home, OWL-S, CSP, on-

tology, formal method

iv

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Scope, Aims and Method . 1

1.2 Ubiquitous Computing . 2

1.3 Smart Home . 3

1.4 Smart Home Requirements . 5

1.5 Proposal . 7

1.6 Thesis Structure . 9

2 Methodology 10

2.1 Literature Review . 10

2.2 Ontology and Formal Method Criteria 11

2.2.1 Ontology . 11

2.2.2 Formal Method . 13

2.3 Alternatives . 15

2.4 Election . 15

3 State of the Art Analysis 17

3.1 Comparative Framework . 19

3.1.1 Horizontal Integration . 19

3.1.2 Spontaneous Collaboration 22

3.1.3 Design for Domestic Use . 24

3.1.4 Reliability . 25

v

3.1.5 Cost . 25

4 Smart Home Proposal 27

4.1 Ontologies and Formal Methods . 27

4.2 Smart Home Proposal . 29

5 Semantic Home Device Services 31

5.1 Web Service Ontology (OWL-S) . 31

5.2 CONON: The Context Ontology . 33

5.3 Service Representation . 33

5.3.1 Static Service Representation 34

5.3.2 Dynamic Service Representation 36

6 Formal Specification of Home Appliance Services 42

6.1 Communicating Sequential Processes (CSP) 42

6.2 CSP Translation . 44

6.2.1 Static Representation . 44

6.2.2 Dynamic Representation . 48

6.2.3 Service Refinement . 50

7 Implementations of Home Appliance Services 54

7.1 CSP implementations . 54

7.1.1 occam . 54

7.1.2 Java CSP (JCSP) . 55

7.1.3 Communicating Threads for Java (CTJ) 55

7.1.4 C++ CSP . 56

7.1.5 Handle C . 56

7.2 CSP Service Implementation . 56

7.2.1 JCSP Service Implementation 57

7.2.2 Channel Implementation . 60

7.3 Service Grounding . 62

7.3.1 UDP Service Grounding . 62

8 Examples of Home Appliance Services 64

8.1 Simulator . 64

8.2 Orchestration Node . 67

8.2.1 Service Composition . 68

8.3 Examples of Home Device Services 71

8.3.1 HVAC System . 71

8.3.2 AV System . 80

vi

8.3.3 Communication System . 84

8.3.4 More Examples. Ac-Hoc Composition 85

9 Conclusions, Contributions, and Future Work 89

9.1 Conclusions . 89

9.2 Contributions . 91

9.3 Future Work . 92

Bibliography 97

vii

List of Figures

1.1 Smart Home Proposal . 8

4.1 Ontologies and Formal Method Relation in an Smart Home Project 28

4.2 Smart Home Proposal . 29

5.1 OWL-S Class Diagram . 32

5.2 CONON Upper Ontology . 33

5.3 LufService Class Diagram . 34

5.4 LufProcess Class Diagram . 35

5.5 Data Communication . 35

5.6 Washing Machine Service . 36

5.7 Activity Class Diagram . 37

5.8 Activity Effects Class Diagram . 38

5.9 Types of Activities . 38

5.10 Home Automation Activity . 39

5.11 Activity Diagram . 40

5.12 WashingLaundry Activity Diagram 40

6.1 Static Representation of a LufService 45

6.2 EventWashingStatus Diagram . 47

6.3 CSP Activity Process Diagram . 48

7.1 Relation between Services and Devices 57

7.2 UDP Channel Implementation . 60

7.3 LufGrounding Class . 63

8.1 Simulator . 65

8.2 Washing Machine Interface . 66

viii

8.3 Simulator and Central Node Connection 66

8.4 Central Node Process Diagram . 67

8.5 StartWashing Effect . 69

8.6 Activity associated with measuring the livingroom temperature . . 73

8.7 Home Temperature Evolution . 80

8.8 Activities Related with the DVD Service 82

8.9 Simulation of the AV System . 83

8.10 Simulation of the Communication System 86

ix

List of Tables

1.1 Research challenges in ubiquitous computing 3

1.2 Smart Home Drawbacks . 4

1.3 User Concerns Toward a Smart Home 5

1.4 Smart Home Requirements . 6

1.5 Relations . 7

2.1 Ontologies and Requirements . 12

2.2 Formal Methods and Requirements 14

3.1 Ubiquitous Computing Technologies 20

3.2 Ubiquitous Computing Technologies based on the Semantic Web . . 21

3.3 Smart Home Technologies . 22

6.1 CSPM Operators . 43

8.1 Heat Room Activity Triggers . 72

8.2 Heat Pump Evolution . 80

8.3 State Diagram for Activity WatchingVideo 81

x

Listings

7.1 Washing Machine service declaration in JCSP 58

7.2 Washing Machine service run method 59

7.3 Washing Machime instantation . 61

xi

Chapter 1

Introduction

1.1 Motivation

1.1.1 Scope, Aims and Method

In Latin, ad hoc literally means ”for this,” further meaning ”for this purpose only,

” and thus usually temporary. In computing science, an ad-hoc (or ”spontaneous”)

network is a network in which some of the nodes are part of the network only for

the duration of a communications session or, in the case of mobile or portable

devices, while in some close proximity to the rest of the network.

The aim of this thesis is to enhance communication between components in an

ad-hoc computing environment in order to achieve interoperability between them.

To that end, this thesis present a rich semantic description of components in order

to understand what function each component performs.

In particular, the focus is on achieving automatic collaboration between home

devices for helping inhabitants in their daily activities. This kind of home is known

as a “smart home”. For example, imagine an householder watching one of their

favorite DVD movies in a darkened lounge. After a while, he decides to go bed.

Just after the user has left the lounge, some kind of intelligent system acting on

the user’s behalf pauses the DVD and switch off the lounge lights. Once the user is

in his room, he changes his mind and decides to continue watching the movie in his

laptop screen. To that purpose, he turns on his laptop. The system notices that

a device capable of rendering the DVD movie, that is the laptop, has joined the

home network. Automatically the system offers to the user the service of continue

watching the movie on the laptop screen, so the user can continue watching the

movie in his bedroom, only by switching on his laptop.

The proposed semantic description for home devices is based on a set of re-

1

Chapter 1. Introduction 2

quirements for a smart home to succeed. Considering a smart home as a subcase

of an ubiquitous computing environment, the requirements for the semantic de-

scription are derived from the research challenges for ubiquitous computing, users’

concerns toward a smart home and the requirements for smart home found in the

literature.

The methods used include systematically surveying literature and available

information, designing and implementing prototypes to prove the feasibility of the

proposed ideas, creating models and concepts that generalise the prototypes, and

evaluation of the proposed solutions.

Next sections on this chapter discuss about the ubiquitous computing and the

smart home concepts. A brief introduction of the semantic description of devices

proposed in this thesis is presented afterwards. Finally, last section describes the

structure of this document.

1.2 Ubiquitous Computing

One of the hottest current topics in Computer Science is ubiquitous or pervasive

computing. One justification of this assertion stems from the number of terms

related to this topic, such as “invisible computing”, “always connected” or “nat-

ural interfaces”. There is no lack of authors pointing ubiquitous computing as

a revolution for industries and a new source of income through the generation of

new value added services [73, 38, 65]. It is not strange that the governments of the

most powerful economies of the world have included in their agendas the develop-

ment of the ubiquitous computing paradigm. For example, in 2003 the Japanese

government has encouraged the U-Japan as the IT strategy for revitalising the

Japanese economy through the use of ubiquitous computing technologies [78].

The ubiquitous term comes from the Latin and means “everywhere”. In the IT

world, the term started to be popular in the United States in 1988. The concept

is also known as “pervasive computing”, “ambient intelligence” or “ubiquitous

networking”. Ubiquitous computing central is invisibility, meaning embedding

computation into the environment and everyday objects would enable people to

interact with information-processing devices more naturally and casually than they

currently do [104]. To achieve the concept of ubiquitous computing, researchers

on this topic have found the challengues listed on table 1.1 [47, 64, 36].

Chapter 1. Introduction 3

Challenge Description
Seamless component It is widely accepted that for an ubiquitous

interaction system to succeed it needs to be build up of
independent components capable of interacting
between each other

Adaption to changes Typically, ubiquitous computing applications
in the environment involve multiple mobile and heterogeneous

devices. Ideally, an ubiquitous computing
application should not be affected by alterations
in its context, such for example, a change or
failure in the resources needed for the application

Task analysis and Components should be combined in order to help
component interaction users in their daily activities. Therefore, an

automatic recognition of such activities it is needed
to bring valuable applications to the user

Generation of effective To ensure revenue when deploying and operating
business models ubiquitous computing applications

Provision of trust and Ubiquitous computing applications must be robust
confidentiality to end and reliable. Besides, there needs to be a balance

users between security and privacy

Table 1.1: Research challenges in ubiquitous computing

This thesis is motivated by the creation of ubiquitous computing-based appli-

cations for helping householders in their daily activities. This scenario, known as

“smart home”, has risen the interest of not only electrical and consumer electronics

industries, but also service providers.

Before presenting in more detail the smart home concept, we can introduce

some of the solutions proposed by industry to pursue this objective. On one side,

there exist technologies directly designed for home automation, such as X-10,

CeBus, HAVi or HES. On the other side, services architectures protocols such as

web services, UPnP or Jini have been proposed as an uniform way of accessing

home appliance functionality. All of these standards are designed to provide a

common access for home appliances in order to facilitate home automation. In

addition, the combination of these standards with the arriving of Internet access

and wireless networks will enhance the ad-hoc nature of home networks. However,

none of these technologies on their own are enough to offer a complete ubiquitous

computing scenario for home residents.

1.3 Smart Home

A “smart home” can be defined as: “A residence equipped with computing and

information technology, which anticipates and responds to the needs of the occu-

Chapter 1. Introduction 4

pants, working to promote their comfort, convenience, security and entertainment

through the management of technology within the home and connections to the

world beyond” [33].

Although a great number of companies and academic institutions have tried to

implement the smart home concept, none of them have completely succeed. Table

1.2 summarises some reasons for such failure [33].

Drawback Description
Lack of common protocol Typically, smart homes are implemented with

proprietary technology, which raises
interoperability issues

High initial investment At present, home automation suppliers do
form the consumer not offer enough value for potential customers

because current solutions do not satisfy user
needs

Technology push by It seems that smart home providers do not
suppliers consider user aims. In fact, customers are

not attracted by the products marketed by
suppliers

Little usability It seems that suppliers do not put much
evaluation by suppliers attention to the evaluation of the usability

of smart home products

Table 1.2: Smart Home Drawbacks

Some of these drawbacks start to be overcame. Advances in microelectronics

and communications have reduced the initial set-up and purchase costs. How-

ever, the last two obstacles require more effort from suppliers, considering not

only technological aspects, but also social. The nature of a home life is complex,

involving people with different ages, concerns, tastes and skills. The study of such

a complex environment will help smart home designers to understand what user

needs are [82]. Accordingly, Loughborough University has performed a study of

what the requirements and expectations toward smart homes are [54]. General-

ising the results of this study, table 1.3 plots the main concerns of people about

smart homes.

Chapter 1. Introduction 5

User Concern Description
Cost This issue includes worries about the

excessive expenses of initial investment
and maintenance of the system

Reliability In most of the cases, users relate smart
homes with IT, and hence with previous
bad experiences with computers

Security, privacy and In this area, personal physical security
safety and data protection are the most important

users’ worries
Flexibility Smart homes should be adaptable enough to

adjust to different user preferences. For
example, some people do not accept for the
smart home to anticipate their intentions
while others do

Convenience In relation with the previous topic, it
seems desirable a system capable of helping
home residents when needed

Maintaining independence It is widely accepted that a smart home
and keeping active should not completely remove home residents

from the household control
Future proof technology People consider that a smart home should be

a lasting product

Table 1.3: User Concerns Toward a Smart Home

From the previous discussion, it is possible to propose that the reasons for

smart home poor market acceptance and the expectations towards and smart

home can be tackled from the research challenges for ubiquitous computing listed

on table 1.1. Next section goes deeper in this assertion.

1.4 Smart Home Requirements

The world of smart homes is populated with different alternatives, which share

a poor market acceptance. This failure has been justified because of the lack of

attention of smart home suppliers to user requirements. Under this situation, the

objective of this thesis is to propose a semantic description of home devices based

on the discussion performed in the two previous sections. Accordingly, table 1.4

plots several requirements to achieve the aim of this thesis [48]:

Chapter 1. Introduction 6

Requirement Description
Horizontal integration The proposed system should be built up of

independent components. These components
should be capable of interacting between them

Spontaneous Component collaboration should be accomplished
collaboration with little planning in advance. As a

consequence, it is needed an agreement in the
syntax and semantics of the functionality
offered by each component

Design for domestic use One of the aims of the proposed smart home
is to support home residents in their daily
activities. To understand these activities,
the proposed smart home should be capable of
acquiring and managing the information related
to the context of the house occupants such as
location, time or the set of home appliances
used. In connection to the previous objective,
not only a syntactical and semantic agreement
between components is needed, but also pragmatic,
in order to distinguish in which situations a
component might be useful or not

Reliability One of the common characteristics of home
appliances and devices is their reliability.
It is not surprising that a smart home would
raise the same expectation in potential customers.
For this reason, one objective is to investigate
how these devices are designed to apply the same
procedures to a smart home

Low cost This objective focus in reducing the cost in all
the stages involved from the development to the final
deployment of the smart home. Particular interest
will be taken to component design and implementation.
This objective should not compromise the previous
ones

Table 1.4: Smart Home Requirements

The requirements for a smart home described in table 1.4 are closely related

with research challenges in ubiquitous computing, the reasons for smart home

failures and the expectations of user’s towards a smart home described in the

previous sections. Accordingly, table 1.5 plots this relation.

Chapter 1. Introduction 7

Requirement Challenge Drawback Concern
Horizontal * Seamless component * Lack of common * Easy of use
integration interaction protocol * Convenience

* Flexibility
Spontaneous * Adaption to changes * Lack of common * Easy of use
collaboration in the environment protocol * Convenience

* Flexibility
Design for * Task analysis and * Little usability *Easy of use

domestic use component association evaluation by * Convenience
suppliers * Flexibility
* Technology push
by suppliers

Reliability * Provision of trust * Little usability * Reliability
and confidentiality evaluation by * Security, privacy
to the user suppliers and safety

* Future proof of
technology

Cost * Generation of * High initial * Cost
effective business investment from
models the consumer

* Technology push
by suppliers

Table 1.5: Relations

In order to achieve the semantic description of devices following the require-

ments of table 1.5, a deep study of the current technologies for ubiquitous com-

puting and smart homes should be carried out. This analysis will serve as a way

to acquire the needed knowledge to understand how a smart home topic should be

tackled. With this information, the next objective is the development a framework

for a smart home. Once the framework is defined, the proposal is validated with

the implementation of a prototype. Finally, the last objective of this thesis is to

analyse the work and extract some conclusions.

1.5 Proposal

This work proposes a novel model in which home devices functionality is offered

as services modelled by a set of embedded processes, which are composed in a

dataflow network. These processes are described by an ontology which is subse-

quently verified and implemented by means of a formal method. The principal

aim and contribution of this approach is to develop a description of home devices

which addresses the set of requirements listed on table 1.4.

The semantics are given by the Semantic Markup for Web Services (OWL-

S) [17], an upper ontology for describing web services and their composition. In

Chapter 1. Introduction 8

OWL-S, services are modeled as atomic or composite processes. Both of these

specify a set of inputs with preconditions, and a set of outputs with effects. The

functionality of a service is encapsulated in a profile (class ServiceProfile) while

its operation, that is, how it works, is described by the process model (class

ServiceModel). The implementation details are wrapped in a service grounding

declaration (class ServiceDeclaration).

The chosen formal method is (Communicating Sequential Processes) CSP [62,

94]. It is a notation for describing concurrent systems whose component processes

interact with each other by communication. Our aim is to find a procedure that,

given a service description in the OWL-S service model, finds the most suitable

implementation for the service.

Figure 1.1: Smart Home Proposal

As shown in figure 4.2 , firstly, the service model description is translated to

CSP, which gives a formal view of the service. At this level, it is possible to check

the correctness of the service in terms of deadlocks and other topics related with

concurrent systems. Once the service is proved safe, with the use of predefined

procedures it is possible to obtain the desired implementation.

The objective of this proposal is to achieve a semantic description of devices

meeting the requirements for a smart home plotted on table 1.4. Firstly, the use

of a service oriented architecture bring the desired modularity in order to achieve

the horizontal integration. Secondly, the ontological nature of OWL-S gives the

desired semantics for achieving spontaneous collaboration and opens the door for a

design for domestic use. Finally, the adoption of a formal method gives high levels

of reliability and the opportunity of achieve cheap hardware implementations.

Chapter 1. Introduction 9

1.6 Thesis Structure

The present document has been divided in nine chapters. To clarify the reading

of them, this section introduces some comments.

The present chapter, Chapter 1, is intended to show the motivation and the

objectives of this thesis.

In Chapter 2, the research methods used in this thesis are introduced. The

focus of this chapter is on the criteria for performing the literature review and the

reasons for choosin OWL-S and CSP.

Chapter 2 involves the starting point for this thesis. It introduces the cur-

rent technologies for ubiquitous computing and smart homes. The chapter ranges

from the early trials to achieve home automation to the latest technologies for

ubiquitous computing. The analysis is based on how the technologies tackle the

requirements presented in Chapter 1. For example, it is analysed how the hori-

zontal integration is achieved determining the network protocols involved.

A proposal for a smart home is introduced in Chapter 4 based on the infor-

mation gathered in Chapter 3.

In Chapter 5, the proposal introduced in Chapter 4 is extended. Chapter 5

focus principally on how to achieve the objectives 1 and 2 and opens the door of

how to accomplish objectives 2 and 5 by means of the utilisation of OWL-S.

Chapter 6 and Chapter 7 continue extending the model introduced in Chap-

ter 4. The aim of these two chapters is the presentation of how to succeed in

objectives 2 and 5 with the utilisation of CSP.

In Chapter 8, a simulator of a smart home is presented as a proof of con-

cept. Several subsystems inside a home such a HVAC control and AV system are

modelled with the proposal introduced in chapters 4, 5,6 and 7.

Finally, Chapter 9 resumes all the conclusions extracted in this thesis and

defines the future lines of research to improve this work.

Chapter 2

Methodology

This chapter shows the basis of the decisions adopted in this thesis. The steps

taken are:

• Literature review

• As the proposal includes de combination of an ontology with a formal method:

Inclusion/exclusion criteria for choosing the ontology

Inclusion/exclusion criteria for choosing the formal method

2.1 Literature Review

The objective of the literature review is to acquire a broad knowledge about the

topics of this thesis, those are, ubiquitous computing and smart home. The main

focus is on studying how the most popular projects for smart home and ubiquitous

computing solve the requirements pointed in chapter 1.

In order to carry out the literature review, firstly, classical home automation

standards such as X10 and CEbus are studied. Typically, these approaches fo-

cus on achieving horizontal integration through the definition of well established

interfaces between home devices, opening the door to the achievement of the sec-

ond requirement, that is, the accomplishment of seamless component interaction.

However, it is possible to see how these standards have a poor market acceptance,

maybe, because of the lack of attention of suppliers to user needs.

After studying home automation standards, the second step in the literature

review focus on projects from academia related to achieve a smart home. The

main difference with home automation standards is that in this case, there exists

some kind of intelligence acting on users’ behalf in order to help householders in

10

Chapter 2. Methodology 11

their daily activities. These approaches mainly focus on meeting the requirement

relative to the design for domestic use.

The next step in the literature review points to the study of ubiquitous comput-

ing projects, regardless to their main deployment environment (office, home ...).

This area of the literature review is especially important because it introduces the

use of ontologies and formal methods. Especially interesting are those projects

which propose the use of the semantic web in ubiquitous computing projects.

Next sections in this chapter introduces the basis followed in order to combine a

formal method and an ontology for achieving the aim of this thesis.

2.2 Ontology and Formal Method Criteria

In order to accomplish the aim of this thesis, the achievement of a rich semantic

description of components based on the requirements for a smart home introduced

in chapter 1, we propose the combination of an ontology and a formal method.

To facilitate this integration, we propose a framework in which several ontologies

and formal methods are studied independently, regarding of how they resolve the

requirements of chapter 1.

The best solution for our approach will be the combination of an ontology with

a formal method which best meets the requirements for a smart home with less

difficulties. For example, OWL-S solves the requirement of horizontal integration

with the representation of devices functionality as services which can be modeled

as processes. CSP is based on the composition of processes. OWL-S and CPS has

the common approach of modeling components as processes in order to meet the

requirement of horizontal integration, which facilitates their integration.

In order to find the best combination of a formal method and an ontology, next

sections introduces some ontologies and formal methods.

2.2.1 Ontology

To achieve semantic interoperability in ad-hoc environments, as the title of this

thesis says, some kind of agreement between components is needed. Accordingly,

research in ubiquitous computing points to the use of ontologies as the way of

achieving semantic interoperability [60, 36].

An ontology can be considered as an agreed terminology by providing concepts,

and relationships between the concepts. In this work, an especial interest is taken

on ontologies which address automatic web service composition because of the

similarity of this challenge with the aim of this thesis. As it is shown in table 2.1,

the following ontologies are studied:

Chapter 2. Methodology 12

ONTOLOGY
Requirement OWL-S WSMO GAS
Horizontal Services, Services Gadgets
integration processes

Spontaneous Profiles(inputs, Goals, mediators, Synapses, plugs,
collaboration outputs, effects, orcherstation, eGadgetsWorld

preconditions), choreography
composite processes

Design for Enhanced with Use of upper Use of upper
domestic use other ontologies ontologies ontologies
Reliability N/A N/A N/A

Cost Use of standards Use of standards N/A
for the semantic for the semantic
web (OWL) web (OWL)

Table 2.1: Ontologies and Requirements

• OWL-S (Ontology for Web Services) [17]: Is an ontology based on OWL

to describe web services. OWL-S leverages on OWL to support capability

based discovery of Web services, automatic composition of Web Services and

Support automatic invocation of Web services

• WSMO (Web Service Modeling Ontology) [30]: Is an ontology and

conceptual framework to describe Web services and related aspects. It is

based on the Web Service Modeling Framework (WSMF).

• GAS (Gatgetware Architectural Style) Ontology [43]: It describes

the hierarchy of basic concepts and the local capabilities and experience of

GAS components (eGadgets). It is encoded in XML and contains a set of

basic terms that are understandable by all eGatgets and a mechanism to

translate local definitions using the basic terms.

The first two requirements for a smart home (horizontal integration and

spontaneous collaboration) are related with the capabilities of the ontologies

plotted in table 2.1 to achieve automatic composition.

Horizontal integration is addressed through the decomposition of systems in

basic building blocks: services in OWL-S and WSMO and eGadgets in GAS. These

building blocks represent an abstraction of the functionality offered by a device.

The semantics enclosed in each component (services or eGadgets) is the key

factor to achieve spontaneous collaboration. In OWL-S, the functional descrip-

tion of the service is expressed in terms of the transformation produced by the

service. It specifies the inputs required by the service and the outputs generated;

furthermore, since a service may require external conditions to be satisfied, and it

has the effect of changing such conditions, the profile describes the preconditions

Chapter 2. Methodology 13

required by the service and the expected effects that result from the execution of

the service. With this information, services are composed to achieve more complex

ones connecting processes with compatible input/outputs or effect/results. This

combination of services use primitives imported from formal methods, such as two

processes running in parallel or in sequence.

In WSMO, service functionality is expressed in terms of the goals expected from

users’ towards services and the capabilities of each service. With this information,

services are composed as a set of if - then -else structures (choreography), or using

a goal based approach (orchestration).

In GAS, service functionality is exposed through plugs, a kind of input/output

so composition is achieved through the combination on compatible plugs.

In all the cases, the design for domestic use is addressed with ontologies

which represent the deployment environment. The solution for this requirement is

immediate in WSMO and GAS, which offers upper ontologies in their respective

frameworks to that purpose. However, OWL-S on its own does not satisfy this

requirement, making necessary the inclusion on external ontologies.

Finally, cost reduction is addressed with the utilization of standards, like in

OWL-S and WSMO.

2.2.2 Formal Method

The following section analyzes several formal methods focusing on how the meet

they requirements for a smart home. Because there are a great amount of formal

methods, it would be very difficult to analyse all of them. For this reason, in this

section only the following four methods are considered:

• CSP (Communicating Sequential Processes) [62], because is a pro-

cess algebra for the specification of concurrent systems capable of being

implemented in hardware or software. In fact, process algebras have been

recommended as one of the best approaches for web service composition, a

challenge very similar to the aim of this thesis.

• Ambient Calculi [41], because is a process algebra specially designed for

the specification of mobile applications.

• Z [34], because is a very popular formal method.

• Petri Nets [84], because is a very popular family of formal methods that

have used before in the specification of web service composition.

Table 2.2 introduces how each one of the introduced formal methods meets

each one of the requirements for a smart home.

Chapter 2. Methodology 14

FORMAL METHOD
Requirement CSP A. Calculi Z Petri Nets
Horizontal Processes Processes Schemas Places,
integration transitions,

arcs
Spontaneous Channels, channels, Operations, Transitions
collaboration primitives primitives constrains
Design for N/A N/A N/A N/A

domestic use
Reliability Model Model Type and Model

checker checker constrain checker
checker

Cost Hardware/ Agents No code Hardware/
Software generation Software
implementation implementation

Table 2.2: Formal Methods and Requirements

Each one of the introduced formal methods specifies systems through the com-

bination of building blocks. In our analysis, these building blocks determine how

each formal method meets the requirement of Horizontal Integration. For ex-

ample, CSP and Ambient calculi use processes as the essential building blocks,

while Z uses schemas, a kind of data structure with operations.

How the building blocks communicate or interact between them is how the

Spontaneous Collaboration requirement is met. Accordingly, while in CSP

processes interact between them by means of primitives such as ”Parallel or Se-

quential” and special sinchronisation structures called channels, in Z schemas in-

teract through operations, similarly as in the Object Oriented paradigm.

The formality inherent to each one of the methods ensures some level of Re-

liability. In this thesis, it is considered the way in which it is possible to ensure

that a specification satisfies some criteria. For example, in CSP and Ambient

Calculi by means of model checker it is possible to proof in the development stage

if a system implementation is going to behave in the same way as an specification.

For example, imagine a home equiped with two systems: one responsible for en-

suring the environmental securty keeping all windows and other system capable

of controlling the home indoor temperature managing windows and blinds. In a

summer night, the temperature control system will open the windows, while the

security system will close them. This will end up in an infinite loop in which the

windows are constantly opening and closing. The power of CSP and Ambient

Calculi is that behaviour can be detected in advance, and hence corrected in the

design stage.

Chapter 2. Methodology 15

2.3 Alternatives

This section introduces some possible alternatives for the combination of an ontol-

ogy and a formal method. As it was said before, the best combination will be that

one in which the formal method and the ontology coincide in the way of meeting

all the requirements for a smart home. However, this solution will be very difficult

to achieve.

In our study, the combination of OWL-S with CSP or Ambient Calculi offers

the best solution because they coincide in two requirements, more than the rest of

combinations. Both, OWL-S and CSP or Ambient Calculi decompose systems in

processes, and combine them by means of primitives such as Sequence, or Parallel.

In fact, the channel concept of CSP and Ambient Calculi has the equivalence in

the concept of inputs and outputs of OWL-S processes. Only the concept of

preconditions and effects has no direct equivalence in CSP and Ambient Calculi.

Both, CSP and Ambient Calculi belong to a family of formal methods called

formal algebras. The main difference between them is that Ambient Calculi is

designed to address mobile applications. On the one hand, most of the implemen-

tations of Ambient Calculi are based on agent technology. In general, a distributed

implementation of agent technology needs capacity of computation in devices, in

order to run the agents. On the other hand, CSP specifications can be imple-

mented directly in hardware. Comparing both approaches, agents and hardware

implementation, it seems that CSP meets better the cost requirement than Am-

bient Calculi.

Another possible alternative will be the utilization of Petri Nets as the formal

method. This approach is not new, and has been taken before in the specification

and analysis of web service compositions in OWL-S [80, 76]. However, literature

points to process algebras as a better solution for web service formalisation, as

they offer better composability features than Petri Nets [95].

Finally, an interesting alternative is the combination of WSMO with Petri Nets.

WSMO service composition (orcherstation or choreography) is based on abstract

state machines, which can be easily modeled with Petri Nets [96]. However, it is

convenient to remember that CSP has better composability features than Petri

Nets.

2.4 Election

In conclusion, in this thesis, the best approach is the combination of OWL-S

and CSP. The first reason of this choice stems from the coincidences in model-

ing components as processes with interfaces (channels in CSP and input/outputs

Chapter 2. Methodology 16

in OWL-S) capable of being combined to offer more complex services (that are

modeled with processes, as well). Secondly, CSP specifications are easily imple-

mented as it is supported by several popular programming languages, such as Java

[12, 6] and C++ [39] or specific CSP based languages such as occam [26]. Thirdly,

the inherent composability characteristics of CSP, points to the use of CSP for

succeeding in the aim of this thesis.

From the previous analysis, if CSP is chosen as the formal method, the best

ontology for meeting the requirements of the smart home is OWL-S. Another

reason for choosing OWL-S against WSMO is because at the time of developing

this thesis, OWL-S was under the process of standarisation by W3C and it was

used successfully in several ubiquitous computing projects. We think that these

characteristics of OWL-S will mature the technology, and hence, help in meeting

the requirements of Reliability and Cost.

The chosen combination of OWL-S and CSP properly meets four of the five

requirements, those are: horizontal integration, spontaneous collaboration, relia-

bility and cost. Although the design for domestic use is not addressed directly,

it is possible to meet it with the inclusion of an ontology for modeling context

information.

This chapter has presented the process followed to conclude the main proposal

of this thesis, that is, the combination of an ontology and a formal method in

order to acomplish a smart home framework. The next chapter includes the first

step in this process, that is, the literature review.

Chapter 3

State of the Art Analysis

This chapter is a review of the past, present and future technologies involved in

the implementation of smart home and ubiquitous computing applications. The

connecting thread of this literature review is the five requirements introduced in

chapter 1 for a smart home: horizontal integration, spontaneous collaboration,

and design for domestic use, reliability and cost.

Basically it has been identified the following approaches:

• Research in smart home: This chapter introduces some of the numerous

smart home projects [66], which fulfill or at least aim to, the requirements

presented on Chapter 1.

• Research in ubiquitous computing: A smart home can be though of

as a particular ubiquitous computing environment. As a consequence, it is

worth to study general purpose ubiquitous computing projects suitable for

being adapted to a smart home.

• Research in ubiquitous computing based on the semantic web,

where device operability is achieved by means of the technologies of the

semantic web.

The earliest approaches to achieve a smart home were the technologies for

home automation. The main objective of these technologies was to develop a

common framework in order for home appliances to communicate between them.

Accordingly, the common approach was to develop communication protocols over

the power line. At the beginning, the communication protocols used were very

simple, involving only a naming agreement for home appliances and the commu-

nication of simple commands (on/off), like in X-10 [32]. It is estimated that X-10

compatible products can be found in over 10 million American homes. This is

17

Chapter 3. State of the Art Analysis 18

because it has so many advantages over other types of remote control products

and systems: inexpensive, no new wiring is required and is very simple to install.

However, its principal disadvantage is that X-10 is only suitable for sending very

simple commands, making necessary to complete it to succeed in the achievement

of a true smart home.

Later, the complexity was increased with the utilization of protocols involving

almost all the layers of the OSI tower and the utilization of complex data struc-

tures to describe home appliances, like in the Consumer Electronic Bus (CeBUS).

In this technology, the Common Application Language (CAL) is used for specify-

ing appliance features and communication. The standard covers communication

via the 110V AC powerline (PLC), twisted pair (TP) cable, coax cable, RF and

Infrared. The disadvantages of CEBus are the relatively few products currently

available and the very high cost of those products.

One of the main promising efforts in home automation is the Home Electronic

System (HES) [11]. In HES, home appliances are organised in a hierarchy of de-

vices and subdevices. A subdevice which has no more subdevices is considered

a set of objects. Each object may have several members and methods for moni-

toring, controlling or invoking features of the subdevice. Key device functionality

will be encoded in XML (eXtended Markup Language), enabling web communi-

cation. This metadata will be stored in a registry in order to make the standard

expandable to new products. It seems that HES has only advantages. However,

the time to complete the standard (it is incomplete at the moment) is the principal

disadvantage of HES.

Other home automation standard is OSGi [16], which uses the concept of

service as the basic building block. OSGi can be though of as an environment

in which device funtionality is managed by means of Java interfaces. However,

devices do not implement directly OSGi, making necessary the completion of OSGi

with other technologies, like X-10 or CeBUS. Other home automation standard is

HAVi, a standard optimised for Audio Video devices interoperability, which is its

principal advantage.

This introduction has presented some of the most popular home automation

standards. However, there are still more approaches for achieving home automa-

tion. For the interested reader, an exhaustive directory of home automation stan-

dards is provided by the Continental Automated Buildings Association (CABA)

[4].

In summary, home automation standards only provide the necessary middle-

ware for home devices communication and remote access. These standards do

not provide a truly smart home on their own. To overcome this drawback, next

sections introduces some projects related with the smart home and ubiquitous

Chapter 3. State of the Art Analysis 19

computing.

3.1 Comparative Framework

In order to understand how the different solutions for smart home and ubiquitous

computing solve the challenges presented as objectives for this thesis, a systematic

study should be done. This study is carried out decomposing each challenge in

different aspects, which are exposed in the following lines:

• Horizontal Integration: The basic objective of this challenge is to build up

a ubiquitous computing scenario by the integration of components. Among

other factors, this topic involves the study of the mechanism used for compo-

nents to cooperate or middleware, the network protocols required and how

device functionality is modeled and represented.

• Spontaneous Collaboration: In relation with the previous objective, this

topic requires the study of the level of expressiveness given to each com-

ponent. This knowledge is essential to achieve the needed syntactic and

semantic agreement. In addition, this objective comprises the study of the

instruments related to the representation of context information, and the set

of algorithms used to interpret such information.

• Domestic Use: This objective includes the declaration of the principal

objective for technology studied.

• Reliability: Aspects such as the use of standard protocols, tools and the

methodology adopted for software development are studied under this chal-

lenge.

• Cost: Multiple factors influence the final price of a smart home product.

In this thesis, reliability and the use of standard protocols and tools are

considered as factors to reduce costs.

Tables 3.1, 3.2 and 3.3 summarise the information gathered in this literature

review. Related with the utilisation of ontologies, we have taken special interest

to that projects that try to achieve pervasiveness through the use of the semantic

web [23]. Next sections clarify all the information presented in these tables.

3.1.1 Horizontal Integration

The basic objective of this requirement is the achievement of complex applications

by the integration of simple components. The study of this requirement includes

Chapter 3. State of the Art Analysis 20

Aura Oxygen Endeavour

Challenge

Horizontal Integration

Network Protocol TCP/IP TCP or UDP HTTP, WAP, ...

Ninja

Device Functionality Services Pebbles Components Operators

XML XML

Spontaneous Collaboration

Common tags and attributes Common tags and attributes Common tags and attributes Common tags and attributes

Semantic agreement

Domestic Use

Type of approach

Reliability

Standard protocols Yes Yes Yes Yes

Helping tools No Yes. Library Yes

Formal methods No Input-Output Automata Yes

Portolano
http://www.cs.cmu.edu/~aura/ http://www.oxygen.lcs.mit.edu/ http://portolano.cs.washington.edu/ http://endeavour.cs .berkeley.edu/

Network technologies which
provide essential services
such as security, discovery,
location and adaptation to
environmental changes.

Middleware CORBA, RPC, COM depending
on the connector nature

Grid protocol, Resilient Overlay
Network for optimal routing
and adaptation to changes.
Chord and the Intentional
Naming System for service
discovery.

one.world

Device Functionality
representation

XML, APIs tuples

Syntactic agreement

Representation of user
activities as coalitions of
services.

GOALS and Pebbles.
Representation of an user
goal

Importing and exporting event
handlers

Operator transformations and
proxies

Minimise user distraction.
Balance between an attentive
and learning home

Help potential users in their
daily tasks through
automation and collaboration
technologies and natural
interfaces. Attentive home.

Universal access to information
and understanding of user
activities. Attentive home.

Making more convenient for
people to interact with
information, devices, and other
people.

IOA-Tookit,

Yes. Tuples and space sharing

Table 3.1: Ubiquitous Computing Technologies

topics such as the how components are modelled, the communication protocol and

middleware between components and how components are physically represented.

The most common approach to represent components is by means of services.

Generally, a service represents the functionality of a device. Sometimes there exists

exceptions to this affirmation. For example, in the Aware Home project services

are though of as a kind of actuator in the environment, and in Aura, services

are considered as parts or steps of user activities. An interesting alternative to

modeling components as services appears in Oxygen [18]. In this project, the basic

building blocks are ”Pebbles” [19]. Pebbles are platform-independent software

components, capable of being assembled dynamically from goals. In addition,

Pebbles are under research at Cambridge University in order to incorporate this

technology to the AutoHan project [2]. Topics such as the incorporation of the

semantic web and the creation of tools for inferring future behaviour of Pebbles

compositions are new challenges for this technology.

Commonly, communication between components is achieved through the use

of standard Internet protocols such as TCP, UDP, HTTP and SOAP. Although

the use of internet protocols seems very valuable to facilitate device interopera-

tion, nowadays is difficult to find home appliances with capacity of engage in these

protocols. This challenge would be solved, for example with the incorporation of

X-10 devices and gateways between the X-10 and Internet networks. Based on

internet protocols, the most sophisticated approach for component communica-

tion is the use of service discovery architectures. Service discovery architectures

Chapter 3. State of the Art Analysis 21

TEC Web Services GAS
NA NA

Challenge

Horizontal Integration

Network Protocol HTTP, SOAP HTTP, SOAP

Web Services GAS-OS

Device Functionality Services Services

XML XML XML

Spontaneous Collaboration

OWL OWL

Semantic agreement

Domestic Use

Type of approach

Reliability

Standard protocols Yes Yes Yes

Helping tools Yes. OWL-S API, pellet Editor Editor

Formal methods No No No

http://taskcomputing.org/

Bluetooth, IEEE 802.11

Middleware Web Services, UpnP

eGadgets

Device Functionality
representation

Syntactic agreement Common attributes and
tags

OWL-S. Input and output
compatibility

OWL-S plus
ontologies for
context information

GAS ontology. Plugs and
synapse

Intended to help users in
their task letting them to
focus in what they want to
accomplish instead of how.

Focus on how a
service flow can be
automatically
composed using
syntactic, semantic
and pragmatic
knowledge.

Enable people to
compose ubiquitous
computing applications by
combining services
offered by everyday
devices

Table 3.2: Ubiquitous Computing Technologies based on the Semantic Web

provide a framework capable of achieving seamless inter-device discovery and com-

munication. As a consequence, research in ubiquitous computing points to service

oriented architectures in which devices expose their functionality as a set of ser-

vices [59, 91, 108].

The middleware used for components to cooperate differs between projects.

Fortunately it is possible to classify them in two classes: standard midlewares

such as CORBA, Web Services or UPnP used in Aura [1, 102] or TEC [24, 74] or,

particular communication layers such as one.world [56] or Ninja [55], designed for

Endeavour [7] or Portolano [20]. Standard middlewares have the advantage of en-

suring broad support and the capability of integration with legacy systems. How-

ever, sometimes standard home appliances can not engage in standard protocols

because the lack of resources. In this case, the utilization of custom middlewares,

specially designed for low resources devices will solve this challenge. The choice

of the middleware will depend on the kind of components to integrate.

It seems clear the trend is to model device functionality as services represented

in XML. However, the schema adopted depends on the middleware used. For

example, UPnP [28] based projects require the use of UPnP schema while the

utilisation of Web Services requires the use of WSDL. The lack of a common

schema to interpret device funtionality can lead to interoperability issues. To

overcome this drawback, an approach to give uniformity for device representations

Chapter 3. State of the Art Analysis 22

Home_n The Aware Home The Adaptive Home

Challenge

Horizontal Integration

Network Protocol Ethernet, UDP, TCP/IP, HTTP TPC/IP, HTTP X-10

XML over HTTP ACHE architecture.

Device Functionality Applets, specific modules, cabinets Context widgets

NA XML NA

Spontaneous Collaboration

NA Common tags and attributes Mathematical formulas

Semantic agreement NA Objects and relations between them

Domestic Use

Type of approach

Reliability

Standard protocols Yes Yes Yes

Helping tools Yes No

Formal methods No No No

http://architecture.mit.edu/house_n/ http://www.awarehome.gatech.edu/ http://www.cs.colorado.edu/~mozer/house/

Middleware Specific APIs

Device regulators, set point generators,
predictors, state transformations and
occupancy models.

Device Functionality
representation

Syntactic agreement

Valuation of the energy cost and discomfort
offered by each device

A mean to automatically control the
environment, but instead to help its
occupants learn how to control the
environment on their own. Attentive
home

Creation of a smart home capable of
enhancing and keeping independent
the life of its occupants. Attentive
home

Smart home capable of modifying itself by
observing the lifestyle and aspirations of the
home residents, and learning to and
conform their needs. Adaptive home

Sensor Toolkit, Kitchen design tool,
context data tools,

Table 3.3: Smart Home Technologies

includes the use of the semantic web. Especially interesting are those projects that

use semantic web for describing device functionality. In this case, the Resource

Description Framework (RDF) [22], which is based on XML, is the support for

developing service descriptions. RDF facilitates the automatic interpretation of

information by means of a set of well known rules to represent information.

This section has presented different ways for meeting the requirement of hor-

izontal integration. The next step involves the interpretation of the semantics of

each component in order to understand its functionality. This challenge is the

topic of the next section.

3.1.2 Spontaneous Collaboration

Proper spontaneous collaboration claims for components to cooperate without

any planning in advance. To achieve this challenge, the syntactic and semantic

agreement on components should be in accordance with the strategy for component

composition.

Typically, the needed semantics to achieve spontaneous collaboration is ob-

tained by means of the agreement in concepts through a common vocabulary. For

example, in Aura, services are described in XML and services of the same type

may share a vocabulary in the form of tags for referencing common attributes.

In Aura, the key feature is to explicitly model user tasks as coalitions of abstract

services. Examples of tasks are writing a paper, preparing a presentation, and

examples of services are a video player or a text editor. Under this approach, the

system can recognise when a task can be supported in an environment as it knows

the services that compose the task.

In some projects, specially those ones for ubiquitous computing, the approach

Chapter 3. State of the Art Analysis 23

of a common vocabulary is formalised through the use of ontologies, like in TEC

or in GAS. The TEC technology is implemented with existing Internet standards;

using web clients, OWL-S for semantic service descriptions, and UPnP and Web

Services for service invocation. With a similar approach, the Web-Based Seman-

tic Pervasive Computing Services project [72] proposes a ubiquitous computing

scenario focusing on how a service flow can be automatically composed using

syntactic, semantic and pragmatic knowledge. In this case, OWL-S and its com-

bination with other ontologies give the semantic knowledge needed to understand

service descriptions. Especially interesting is the use of the CONON ontology

[103], which gives the needed pragmatic knowledge by means of representing user

context information.

In general, when ontologies are used for giving semantics, services are composed

by means of intelligent systems capable of understanding service descriptions. For

example, is common the combination of services by means of goal based systems,

which try to match services with compatible preconditions/effects, in a goal di-

rected approach. Another technique for service composition is the utilisation of

rule based systems, in which a set of rules govern how services may be composed.

For example, imagine a system feed with a rule that connects all devices with

compatible input/outputs. With this system, if the householder decides to switch

on his TV and his digital camera, if the system detects that both devices have

compatible input and outputs, they will be connected, offering to the user the

service of watching his pictures on his TV.

An alternative way for achieving device composition is presented in the Adap-

tive Home [25]. In this project, the control system is implemented as a neural

network which learns the behavioural patterns of home residents [77]. This ap-

proach has been considered for other smart home projects, as well [45]. With the

information of behavioural patterns of home residents, the system performs the

required actions to accommodate user necessities. Examples of system achieve-

ments include: detecting water usage patterns, such that hot water is never used

in the middle of the day on weekdays, allowing the water heater to shut off at

those times; inferring occupant whereabouts and activities and predicting when

the occupants will return home and determining when to start heating the house

so that a comfortable temperature is reached by the time the occupants arrive.

In this project device descriptions are enhanced with measures of the cost and

satisfaction feel by the user. These magnitudes are needed for the neural network

which rules device composition.

As we have discussed, the typical way of achieving spontaneous collaboration is

by means of an intelligent system capable of interpreting the semantics offered by

home devices. The objective of this intelligent system is to offer to the householder

Chapter 3. State of the Art Analysis 24

useful applications for their daily activities. This objective coincides with the

requirement of design for domestic use of this thesis. How this requirement would

be achieved is the topic of the next section.

3.1.3 Design for Domestic Use

This challenge establishes a clear frontier between smart home and ubiquitous

computing projects. In general, smart homes are designed for domestic use, while

ubiquitous computing projects are generally designed for an office environment.

For smart homes, the principal aim is to help users in their daily activities.

However, there are still some small differences in the objectives of the various

projects studied in this thesis. For example, the Home n project [10] uses ubiq-

uitous computing for empowering home residents with information to make deci-

sions, keeping home residents active, and conscious of their sense of control [63].

As another example, the Aware Home project focus in the design of appropriate

experiences for house residents, especially for elderly adults to keep independence.

In the Aware Home project, researchers have developed applications to allow seam-

less communication between the home resident and its family [79, 100], memory

remainders for daily tasks or home assistants to control home devices with simple

voice commands or gestures.

In the case of smart homes, it is possible to differentiate between learning and

attentive homes [33]. On the one hand, learning homes include projects in which

a system records the patterns of behaviour of home residents to anticipate user

needs and hence, control the technology, like the Adaptive Home. On the other

hand, the attentive homes monitor constantly user activities and context in order

to control home devices in anticipation to user needs. Examples of attentive home

projects are Home n and the Aware Home.

Commonly, ubiquitous computing applications are designed for office environ-

ments. In fact, the origin of ubiquitous computing was to enhance office activities.

The utilisation of ubiquitous computing technologies for domestic use requires the

adaptation of the semantic and pragmatic knowledge attached to these applica-

tions to a home environment. For example, the TEC project will require the

specification of services for home appliances while the Web-Based Semantic Per-

vasive Computing Services project lacks of specific ontologies for representing the

proper context of a home environment.

Shortening, it is possible to relate the way in which different projects tackle

the requirement of design for domestic use with the users’ concerns towards an

smart home presented in table 1.3. Typically, these concerns include the need of

keeping householders active and independent and the necessity of a smart home

Chapter 3. State of the Art Analysis 25

to anticipate user needs. In fact, the need of reliable systems is another concern

of potential smart home consumers. This requirement, is the topic of the next

section.

3.1.4 Reliability

The objective of this requirement is to create trust in the final smart home con-

sumer. In this discussion, the use of standard protocols and tools and the use of

formal methods are considered factors to enhance the reliability of applications.

A common way to achieve reliability proposes the use of standard well known

protocols for component communication, as it was introduced in section 1.3. In

general terms, well known standard protocols benefit from wide use and testing,

which improve their reliability.

Another approach to provide reliability involves the use of tools for developing

ubiquitous computing scenarios and automatic code generation. It seems that the

use of this kind of tools might reduce the amount of errors derived from software

development. This is the case of the Toolkit for Rapid Prototyping of Context-

Aware Applications, which belongs to the Aware Home project.

An interesting approach coming from the world of hardware design points to

the use of formal methods in all stages of a smart home project, as it is proposed

in the Portolano [20, 50] and the Oxygen projects [18]. This approach allows

developers to predict how the system is going to behave, detect errors in the

design process, and consequently achieve better levels of reliability in the final

implementation [42].

The implementation of realiable systems have many advantages, being one of

them the reduction of costs derived from system failures. Next section goes deeper

on how a reduction of cost can be achieved when tackling the challenge of a smart

home.

3.1.5 Cost

Costs of deploying and maintaining smart homes are one of the main concerns

of potential home users. In fact, cost reduction may enhance the achievement

of effective business models for ubiquitous computing applications, one of the

challenges for ubiqutious computing systems. In this thesis, the cost reduction

strategy focuses on two factors: Reliability and low cost implementations.

The implementation of reliable systems, as it is described in the previous sec-

tion, will reduce developing, implementation and maintenance costs. The use of

formal methods allows the detection of errors in the development stage, before

system implementation and deployment. This will notably reduce costs as it is

Chapter 3. State of the Art Analysis 26

much simpler to correct errors when the system is designed than once the system

is implemented and deployed [81, 37].

The use of standard protocols for achieving reliability will benefit from seam-

less system integration, no learning curves and the use of well known tools and

methods. However, sometimes the implementation of these protocols, specially

those ones designed for Internet, might be complicated for simple home devices.

For example, the use of a web service requires devices to host a web server, which

might be very demanding for a simple light switch. The use of tools for system

prototyping may reduce the development costs and achieve more reliable systems,

as well [58].

Secondly, an implementation of smart home requires some kind of intelligence

and resources deployed on home appliances in order to engage in a communication

protocol. The lower this amount of intelligence, the smaller the cost of the final

smart home implementation. In light of this, the achievement of simple commu-

nication protocols will allow the use of hardware close implementations, which

benefit from low manufacturing costs.

This chapter has presented the different approaches found in the literature to

tackle the challenge of a smart home, focusing on how the different projects studied

meet the requirements presented in chapter 1. It seems that those requirements

would be fit by the use of a service oriented architecture in which services are

represented by an ontology and modeled with a formal method. The objective of

the next chapter is to give a deeper point of view of this assertion.

Chapter 4

Smart Home Proposal

The analysis performed in the previous chapter has provided some guidelines for

achieving a smart home. Firstly, the most widely accepted way of achieving hori-

zontal integration is through the representation of device functionality as services

which interact by means of standard Internet protocols and middlewares. Sec-

ondly, the use of ontologies combined with rule-based and goal systems seems to

be the best approach to achieve spontaneous collaboration. Thirdly, in order for

potential customers to perceive value from a smart home, it should be designed as

flexible as possible, that is, capable of being attentive or learning, depending on

user needs. In the fourth place, the combination of standard protocols, provision

of tools for system development and the integration of formal methods provides

the needed level of reliability for a smart home to succeed. Finally, the combina-

tion of all the guidelines formerly presented will reduce the cost of the final smart

home.

4.1 Ontologies and Formal Methods

From the analysis done in Chapter 3, it seems that all requirements presented

in this thesis for a smart home may be achieved through the combination of an

ontology and a formal method. To reinforce this affirmation, figure 4.1 plots the

requirements introduced for a smart home. Firstly, research in ubiquitous com-

puting points to architectures in which components are modelled as services. Once

established that components will be modelled as services, the second requirement,

spontaneous collaboration, demands a rich semantic and syntactic description of

such services. Thirdly, the design for domestic use requires the understanding of

user activities and intention. Several algorithms have been proposed to achieve this

goal, sharing all of them the necessity of modelling context information. It seems

27

Chapter 4. Smart Home Proposal 28

that all these requirements can be fulfilled with the use of service-oriented archi-

tectures in which services and context information may be represented through

ontologies [60].

At the bottom of figure 4.1, the reliability requirement suggests the study of

a smart home under the discipline of distributed and embedded systems. On one

hand, home device cooperation requests the adoption of distributed computing

techniques. On the other hand, most of these devices participating in such kind of

cooperation are controlled by embedded systems. During the 70s, both topics, dis-

tributed and embedded systems, started to be analysed with formal methods [67].

In fact, the Information Society Technologies Advisory Group (ISTAG), which

acts as an European Commission consultant recommends the use of formal meth-

ods in the design process of ubiquitous technologies [53]. Accordingly, well known

standards for home networks such as IEEE 1394 or HAVi have been designed with

the help of formal methods [51]. Especially interesting are those formal methods

which allow the automatic generation of code, that is, the final implementation of

the specification.

Horizontal

Integration

Reliability

Domestic

Use

Spontaneous

Collaboration

Low Cost

Smart Home

requires

requires requires

requires requires

* Service Architectures

* Standard Protocols

implies implies

* Syntactic, semantic and

pragmatic agreement

implies

* Context Information

implies

* Simple implementations

implies

* Concurrent and Embedded

Systems

ONTOLOGIES

FORMAL METHODS

Figure 4.1: Ontologies and Formal Method Relation in an Smart Home Project

A similar challenge to horizontal integration and spontaneous collaboration

has raised in the world of web services. Web service composition is a current

area of research with important results for this thesis. In light of this, several

projects attempt to facilitate web service composition. Business Process Execution

Language for Web Services (BPEL) [3] and XLANG [31], together with OWL-S

[17], are examples of these projects. All these projects model web services as

Chapter 4. Smart Home Proposal 29

processes that may interact with each other. The main difference between BPEL,

XLANG and OWL-S is that OWL-S is an ontology, while BPEL and XLANG

are not. As a consequence, BPEL and XLANG lack the needed semantics for

achieving automatic service composition [75].

In connection with the combination of ontologies and formal methods, the

formal verification of web service orchestration has been justified because of the

susceptibility of business processes to errors due to the high level of concurrency,

distributed computing and dependency of external entities of these applications

[35]. This challenge has been tackled applying formal analysis to OWL-S [80, 76]

and BPEL models [95]. These projects translate composed services to Petri nets

and process algebras respectively, mainly, for verification purposes. As it was

discussed in chapter 2, we propose the utilisation of process algebras, because

they provide better composability features than Petri nets [95].

4.2 Smart Home Proposal

Accordingly to the previous section, this work proposes a model in which home

appliance services are offered by a set of embedded processes, which are composed

in a dataflow network [90]. These processes are described by an ontology which

is subsequently verified and implemented by means of a formal method, as shown

in figure 4.2

The semantics is given by the Semantic Markup for Web Services (OWL-S),

an upper ontology for describing web services and their composition. The cho-

sen formal method is (Communicating Sequential Processes) CSP [62, 94]. It is

a process algebra for describing concurrent systems whose component processes

interact with each other by communication. CSP specifications are easily imple-

mented as it is supported by several popular programming languages, such as

Figure 4.2: Smart Home Proposal

Chapter 4. Smart Home Proposal 30

Java [105, 61] and C++ [39] or specific CSP based languages such as occam [26].

The aim is to find a procedure that, given a service description in the OWL-S

service model, finds the most suitable implementation for the service [88]. The

service model description is translated to CSP, which gives a formal view of the

service. At this level, it is possible to check the correctness of the service in terms

of deadlocks and other topics related with concurrent systems. Once the service

is proved safe, with the use of predefined procedures it is possible to obtain the

desired implementation.

Chapter 5

Semantic Home Device Services

The main purpose of this chapter is to achieve an ontological representation of

home appliances services. Not only this representation should be rich enough for

automatic service composition, but also capable of being safely implemented in a

wide range of devices. We propose an upper ontology for describing user-centred

device services, based on OWL-S and the context ontology CONON. The proposed

layout facilitates the service implementation and provides the needed classes for

developers to specify in which situations a service might be used.

An analogy occurs with systems specified in UML. Such kind of systems are

comprised by not only a static representation of classes, objects, methods and their

relations, but also the uses of cases of such elements. The static representation

might be enough for the software engineer to obtain a system implementation by

means of automatic code generator tools. The use of case diagrams will provide

all the information necessary for understanding how the service will behave in

particular situations.

The chapter starts with an introduction to OWL-S and CONON. An ontology

for modelling home appliance devices is then presented.

5.1 Web Service Ontology (OWL-S)

OWL-S is a proposal based on OWL (Ontology Web Language) [27] which specifies

an upper ontology for service composition, providing three different knowledge

types about a service, as it is shown in figure 5.1.

31

Chapter 5. Semantic Home Device Services 32

service:Service

Class

service:ServiceModel

Class

service:serviceProfile

Class

service:ServiceGrounding

Class

service:describedByservice:presents service:supports

Figure 5.1: OWL-S Class Diagram

Class service:ServiceProfile 1 provides all the information about service capa-

bilities . This class specifies a service as a set of inputs, outputs, preconditions

and results. With this information, web services are composed by means of class

service:serviceModel, which gives a process view of services. Once services are

composed, class service:ServiceGrounding offers all details about their invocation.

Among other information related to a service, class service:ServiceProfile presents

what function the service computes. This information is expressed in terms of the

transformation that the service produces. Particularly, the profile specifies the

inputs required by the service and the outputs generated. Moreover, the profile

describes the required preconditions by the service and the expected effects that

result from the service execution. This functionality is exposed through properties

profile:hasInput2 , profile:hasOutput, profile:hasPrecondition and profile:hasResult.

A service profile is a simplified view of a service, since it only gives informa-

tion about what a service does. To give a more detailed perspective, the ser-

vice:ServiceModel class describes services as processes. There exist atomic pro-

cesses that only transform inputs to outputs, and composite processes that are

composed by other processes (atomic or composite) using control constructs such

as Sequence, If − Then − Else or Choice.

The execution of an OWL-S service can be compared with a combination of

remote procedure calls. The OWL-S grounding specifies all the semantics of the

parameters to be provided when executing these calls, and the semantics that

is returned in messages when the services succeed or fail. A software service

user should be able to interpret the grounding class to understand what input is

necessary to invoke the service, and what information will be returned.

1service is the namespace for http://www.daml.org/services/owl-s/1.1/Service.owl
2profile is the namespace for http://www.daml.org/services/owl-s/1.1/Profile.owl

Chapter 5. Semantic Home Device Services 33

5.2 CONON: The Context Ontology

CONtext ONtology (CONON) [103] is an OWL encoded upper ontology for mod-

elling context in ubiquitous computing environments. Particular ubiquitous sce-

narios will extend the diagram presented in figure 5.2.

Agent

CompEntity

rdfs:subClassOf

Application

rdfs:subClassOf

Service

rdfs:subClassOf

Network

rdfs:subClassOf

IndoorSpace

Location

rdfs:subClassOf

OutdoorSpace

rdfs:subClassOf

DeducedActivity

Activity

rdfs:subClassOf

ScheduledActivity

rdfs:subClassOf

ContextEntity

rdfs:subClassOf rdfs:subClassOf rdfs:subClassOf

Person

rdfs:subClassOf

]

Figure 5.2: CONON Upper Ontology

As is shown in figure 5.2, the CONON authors assume that context informa-

tion can be grouped in four main categories: computational entities, geographical

position, people and activities. These four categories are represented by classes

CompEntity, Location, Person and Activity, respectively.

Class Location represents the geographical position of the rest of CONON

elements. This class has two subclasess, IndoorSpace and OutdoorSpace, which

represent places inside and outside the home environment, respectively. People

are represented by the class Person and their related activities by classes De-

ducedActivity and ScheduledActivity, which are subclasses of Activity. Finally,

class CompEntity involves all the computational entities which may represent

part of the user context, such as devices, services, applications and the network

for these entities to communicate.

5.3 Service Representation

In this thesis, device functionality is published as services. For these services,

we propose an ontological representation which is composed by two points of

view. Firstly, a static representation based on OWL-S is intended to give enough

syntactic and semantic information on how to use a service. In addition, this static

information should be capable of being translated to CSP, in order to obtain the

service implementation. Secondly, since the static representation does not provide

enough knowledge for composing valuable services for home residents, we propose

a dynamic service perspective based on the CONON ontology.

Chapter 5. Semantic Home Device Services 34

5.3.1 Static Service Representation

Our aim is to find a procedure such that, given a service description in OWL-

S, a correct implementation for the service is obtained. It seems that this goal

can be achieved by exploiting the similarities between OWL-S and CSP. Both

of them specify systems in terms of processes and their interfaces (inputs and

outputs in OWL-S and channels in CSP). However, not all OWL-S structures have

their symmetrical in CSP and vice-versa. For this reason, we propose an upper

ontology for developing services, mainly based on OWL-S, which instances can be

automatically translated to CSP and subsequently, to a CSP based language in

order to implement the service.

In our model, a service is responsible for offering the functionality of a device.

Each service has a state and may offer a set of atomic procedures called actions to

read or modify the state. Services may be interested in the state of other services,

especially, when the state changes. For this reason, every service may output

changes in its state through special outputs called events 3. Finally, some services

may be capable of streaming data. This feature is represented by plugs, which act

as ports to input or output data.

To extend OWL-S to fit the proposed model, the first step involves subclass-

ing service:Service, profile:Profile, process:Proccess and grounding:Grounding with

owlsx:LufService 4, owlsx:LufProfile, owlsx:LufProccess and owlsx:LufGrounding,

as it is shown in figure 5.3.

service:presents* service:describedBy service:supports*

owlsx:LufService

owlsx:LufProfile owlsx:LufProcess owlsx:LufGrounding

Figure 5.3: LufService Class Diagram

The principal elements of an instance of owlsx:LufService, such as the state,

plugs, actions and events are exposed through class owlsx:LufProcess, as it is

plotted in figure 5.4. The state, events, plugs and actions are attached to a

service through properties owlsx:hasStateVariable, owlsx:hasEvent, owlsx:hasPlug

and owlsx:hasAction, which range to instances of classes owlsx:State, owlsx:Event,

3This vision of events is different than the CSP definition of events
4owlsx is the namespace for http://www.lboro.ac.uk/owlsextension.owl

Chapter 5. Semantic Home Device Services 35

owlsx:Plug and owlsx:Action, respectively. The set of constrains of how a service

can be invoked are stablised by means of a set of preconditions/effects, which are

detailed in the next sections of this thesis.

owlsx:Event

owlsx:StateVariable

owlsx:announces owlsx:isAnnouncedBy

owlsx:Plug

owlsx:OutputPlug

rdfs:sufClassOf

owlsx:InputPlug

rdfs:sufClassOf

owlsx:LufProcess

owlsx:hasEvent

owlsx:hasStateVariable

owlsx:hasPlug

owlsx:Action

owlsx:hasAction

Figure 5.4: LufProcess Class Diagram

Events and state variables are related through property owlsx:isAnnouncedBy.

The relation between actions and state variables is represented by rules of the style

“if action A is invoked, then something occurs with state variable S”. This kind

of action consequence is represented as instances of classes owlsx:SetStateResult

and owlsx:GetStateResults respectively. Both classes relate state variables, inputs,

outputs and literal values by means of the bindings attached to their properties

owlsx:withStateVariableBinding and process:withOutputBinding.

owlsx:MultimediaItem

owlsx:Plug

owlsx:communicatesOnPlug

owlsx:ContentType

owlsx:hasContentType

owlsx:hasContentType

owlsx:DocumentType

rdfs:subClassOf

owlsx:ImageType

rdfs:subClassOf

owlsx:AudioType

rdfs:subClassOf

owlsx:VideoType

rdfs:subClassOf

Figure 5.5: Data Communication

As is shown in figure 5.5, data communication is achieved with class owlsx:Plug.

The data format associated to each plug is attached with property owlsx:hasContentType.

In this work, four data formats are considered, represented with classes owlsx:Audio,

owlsx:Video, owlsx:Image and owlsx:Document. The particular piece of data trans-

Chapter 5. Semantic Home Device Services 36

mitted on a plug is modelled as an instance of class owlsx:MultimediaItem. A mul-

timedia item contains information about the data transmitted and it is related to

a plug through property owlsx:communicatesOnPlug.

Consider a simple service for controlling a washing machine plotted in figure

5.6. This service has four operations and two state variables. Operations Open-

Door and CloseDoor are responsible for setting the value of the state variable

DoorStatus, which represents whether the washing machine door is open or close.

The running status of the washing machine is indicated by a state variable called

WashingStatus, which is controlled by the operations StartWashing and Stop-

Washing. The type of each state variable is indicated by the value of property

process:parameterType. In addition, both state variables are initialised to their

default values, as it is indicated by property process:parameterValue.

WashingMachineService

WashingMachineProcess

service:describedBy

StartWashing

owlsx:hasAction

StopWashing

owlsx:hasAction

CloseDoor

owlsx:hasAction

OpenDoor

owlsx:hasAction

WashingStatus

process:parameterType PossibleWashingStatus

process:parameterValue WM_STOPPED

owlsx:hasStateVariable

EventWashingStatus

owlsx:hasEvent

DoorStatus

process:parameterType PossibleDoorStatus

process:parameterValue WM_CLOSE

owlsx:hasStateVariable

EventDoorStatus

owlsx:hasEvent

owlsx:isAnnouncedBy owlsx:isAnnouncedBy

Figure 5.6: Washing Machine Service

5.3.2 Dynamic Service Representation

The static representation gives enough syntactic and semantic information about

how to use a service. This information comprises aspects such as how a service can

be interconnected, by means of its plugs, and what is the consequence of invoking

determined actions on the state variables. However, this knowledge is not enough

for composing valuable services for home residents, as it does not represent what

user needs are. In order for developers to provide user-centred device services,

service developers might specify the activities in which the device service might

be involved. For example, a DVD might imply a user engaged in watching a

film. A truly user-centred design demands considering all requirements for the

home resident to use a service [99]. Continuing with the example, watching a film

requires the sight and hearing senses from the user.

Chapter 5. Semantic Home Device Services 37

To allow developers to specify the activities related with services, we propose

to extend the CONON ontology, paying special attention to the Activity class.

owlsx:Activity

owlsx:duration xsd:string

owlsx:start-time xsd:string

rdf:Thing

owlsx:neesParameter

owlsx:Location

owlsx:locatedIn

owlsx:EnvironmentalEffect

owlsx:hasEnvironmentalEffect

owlsx:UserEffect

owlsx:hasUserEffect

Figure 5.7: Activity Class Diagram

As is shown in figure 5.7, an activity might be located in a physical place

through the owlsx:locatedIn property. Properties owlx:duration and owlx:starttime

relate an activity to its duration and starting temporal point. In addition, prop-

erty owlsx:needsParameter is used to attach a parameter to the activity. This

parameter should be interpreted according to the semantics given to the type of

activity considered.

Activities might have effects on the environment or on the user himself. De-

termining such activities and effects is complicated because of the complexity of

the household environment [82]. For example, opening a window has the environ-

mental effect of heating up or cooling, depending on the temperature difference

between the room and the outside, while answering a phone has the user effect

of keeping busy his speaking and listening skills. In this thesis, we have adopted

a simple approach in which activity effects are modelled in the contex ontology

by means of classes owlsx:EnvironmentalEffect and owlsx:UserEffect which are

subclasses of owlsx:ActivityEffect, as is shown in figure 5.8.

Chapter 5. Semantic Home Device Services 38

Figure 5.8: Activity Effects Class Diagram

In this work, activities are classified depending on the nature of the effect

caused, as it is shown in figure 5.9. Firstly, a division between automation activi-

ties, class owlsx:HomeAutomation, and user activities, class owlsx:UserActivity, is

defined.

owlsx:HomeAutomationActivity

owlsx:Activity

rdfs:subClassOf

owlsx:UserActivity

rdfs:subClassOf

Figure 5.9: Types of Activities

Figure 5.10 represents the first type of activities, which belongs to the set of

Chapter 5. Semantic Home Device Services 39

tasks related the monitoring and control of some environmental variables inside a

home, such as the temperature or the level of noise. These activities relates a state

variable (property owlsx:needsParameter), a location and an environmental mag-

nitude. The relation among these entities is determined by the particular subclass

of owlsx:HomeAutomation and the type of environmental effect attached. This is

the reason for defining classes owlsx:SensingActivity, owlsx:ActuatorAutomation

and owlsx:DiagnosisActivity. The semantics given to these activities allows the

differentiation of whether a service acts as a sensor, actuator or a diagnosis de-

vice. As an example, a service for increasing the temperature might have at-

tached an actuator activity which indicates that the value of one of its state

variables, and hence an action, will increase the temperature of a particular loca-

tion. This activity should have attached an environmental effect with the values

owlsx : INCREASE and owlsx : Temperature for properties owlsx : hasMode and

owlsx : hasMagnitude respectively. A deep description of automation activities is

presented in Chapter 8 with the implementation of an HVAC System.

owlsx:HomeAutomationActivity

owlsx:ActuatorActivity

rdfs:subClassOf

owlsx:SensorActivity

rdfs:subClassOf

owlsx:DiagnosisActivity

rdfs:subClassOf

Figure 5.10: Home Automation Activity

The second type of activities, user activities, represents the rest of tasks related

to the user. In this group, actions such as watching a television or listening to the

radio are examples of user activities. These type of activities may have attached

effects of type owlsx:EnvironmentalEffect or owlsx:UserEffect.

Each activity defines a life cycle defined by its state (property owlsx:ActivityStatus)

and the state transitions (properties owlsx:startTrigger, owlsx:suspendTrigger and

owlsx:stopTrigger). As indicated in figure 5.11, each activity should be active, sus-

pended or stopped depending on the value of property owlsx:ActivityStatus which

ranges from owlsx:ACTIVE, owlsx:SUSPENDED and owlsx:STOPPED.

Triggers encode information as a set of rules that determine the state of an

activity. These rules define context information such as the value of service state

variables or user locations.

The enhancement of activities with state and triggers allows manipulation of

this information both with a forward rule-based and a goal systems. On the one

Chapter 5. Semantic Home Device Services 40

Figure 5.11: Activity Diagram

hand, with the forward schema, it is possible for a rule based system to inference

the status of each activity through the knowledge of the trigger state. On the

other hand, the status of an activity can be thought of as a goal which can be

achieved setting the proper triggers to a particular value. This is the strategy

adopted in the simulator introduced in Chapter 8.

Let us consider the user activity WashingLaundry, which is associated with

the washing machine service presented in figure 5.6. This activity can be only

active or stopped. Figure 5.12 indicates the transitions between these two states

depending on the value of the state variable WashingStatus.

Figure 5.12: WashingLaundry Activity Diagram

Every time that the WashingStatus state variable is set to WM STOPPED ,

a rule-based system may deduce that activity WashingLaundry is stopped. At

the same time, a goal-based system may inference that the required procedure

to stop this activity is to set to WM STOPPED the value of the state variable

WashingStatus through action StopWashing .

This chapter has introduced the semantic level of our approach. It was pre-

sented a upper ontology for modeling home devices services and their related con-

Chapter 5. Semantic Home Device Services 41

text information. The main objective of this part of our framework is to achieve

the requirements of horizontal integration, spontaneous collaboration and design

for domestic use. Next chapter completes this framework with the incorporation

of the formal algebra CSP, which principal objective is the achievement of the

requirement relative to reliability.

Chapter 6

Formal Specification of Home Appliance

Services

This chapter presents a procedure by which, a CSP specification for a service is

obtained given its description with the ontology presented in Chapter 5. This

provides two benefits. Firstly, the formal specification of the static part of each

service allows developers to automatically obtain service implementations based

on CSP. Secondly, due to the CSP refinement technique, a formal specification of

the service dynamic part permits determining how a service is going to behave in

terms of the activities involved.

After a brief introduction to CSP, the rules for how a service should be trans-

lated to CSP are presented. These rules differentiate between the static and

dynamic parts of the service. Finally, a technique based on CSP refinement is

presented to predict the behaviour of services in a particular context.

6.1 Communicating Sequential Processes (CSP)

CSP (Communicating Sequential Process) is a process algebra for modelling con-

current systems devised by C.R.Hoare [62]. In CSP, the behaviour of a process

is described by the sequence of events or actions that it may perform. Table 6.1

plots part of the notation used in CSP. In this table, it is assumed that a and b

are elements of the sets A and B respectively, which are the alphabets of processes

P and Q respectively. A process alphabet is the set of events that it is allowed to

perform.

Important in CSP is the concept of channel. Events of the form c!v stand

for the transmission of message v on channel c. Each channel has a type which

declares the set of values which can be passed on it. If T is the type of channel c,

then the set of events related with c is {c!t | t ∈ T}. Based on this abstraction,

42

Chapter 6. Formal Specification of Home Appliance Services 43

Table 6.1: CSPM Operators

Operator Behaviour
Prefixing (− >) a → P is a process that behaves like P after doing

event a
Sequence (;) P ; Q represents a process that behaves like Q after

behaving like P
Choice (|) a → P | b → Q is a process which can either engage

in event a and then behave like P , or do event b and
then behave like Q

Parallel (||) PA ||B Q is a process that behaves as the concurrent
composition of P and Q , but requires synchronisation
between P and Q in the events belonging to the
intersection of A and B

process c!v → P communicates the message v on channel c and then behaves like

P . Its symmetrical is process c?x : T → P(x), which is ready to communicate

any value of x ∈ T and then behave like P(x).

For example, every DVD player offers several commands to the user, such as

play, pause and stop.

DVD ACTION (play) = doPlay → SKIP
DVD ACTION (pause) = doPause → SKIP
DVD ACTION (stop) = doStop → SKIP

DVD PLAYER = c?x : T →
DVD ACTION (x);
DVD PLAYER

Typically, this functionality is accessed through a remote control.

DVD REMOTE = c!play → DVD REMOTE |
c!pause → DVD REMOTE |
c!stop → DVD REMOTE

Both processes, the DVD player and the remote communicate on a channel

called c of type T = {play , pause, stop}. Hence, the communication between both

processes is expressed by:

DVD = DVD REMOTE c ||c DVD PLAYER

In CSP it is said that a process P is refined by process Q when the relation

Q ⊑ P is asserted. There are two types of refinement: traces and failures. On one

Chapter 6. Formal Specification of Home Appliance Services 44

hand, trace refinement (Q ⊑T P) determines if process P at most, engages in the

same sequence of events as process Q does. On the other hand, failure refinement

(Q ⊑F P) determines if process P , at least, engages in the same sequence events

as process Q does.

For example, process Spec represents the desired behaviour of the communica-

tion of the remote control and the DVD player, ensuring that actions invoked in

the first process corresponds to actions in the second process.

Spec = c.play → doPlay → Spec |
c.pause → doPause → Spec |
c.stop → doStop → Spec

Because both tests Spec ⊑T DVD and Spec ⊑F DVD are asserted as valid,

it is possible to ensure that process DVD satisfies the specification Spec, that is,

DVD and Spec behave in the same way.

6.2 CSP Translation

Once the service is declared in OWL-S following the layout presented in Chapter 5,

it is ready for being translated to a set of CSP equations. This section is intended

to present the rules for doing such translation, based in previous works of how to

translate Universal Modelling Language (UML) specifications and shared variables

to CSP [46, 98].

A service has a static and a dynamic representation. On the one hand, the

static representation is targeted to assist developers in the implementation stage of

a service. It focuses on how the service composed by actions, state variables, events

and plugs should be implemented. On the other hand, the dynamic representation

of a service is a CSP formalisation of the activities related to the service. The

static representation alone only ensures that the service is correctly implemented

in terms of deadlock and livelock. Fortunately, due to the refinement technique, it

is possible to predict what are the consequences of invoking determined services.

These consequences are measured in terms of the activities that the user is engaged

in.

6.2.1 Static Representation

The static representation of a service corresponds to a CSP process which schema

is plotted in Figure 6.1.

In the static model, users can interact with the service through channels call

and return. The first one serves for invoking the desired action on the service and

Chapter 6. Formal Specification of Home Appliance Services 45

Service

Action1

ActionN

Action2call return

event

outputPluginputPlug

Figure 6.1: Static Representation of a LufService

sending the required input parameters. The return channel is used to retrieve the

output results. Changes on the state may be communicated on channel event .

As an example, the washing machine service presented in figure 5.6 can be

formalised in CSP with the following set of equations.

PossibleWashingStatus ::= WM WASHING | WM STOPPED
PossibleDoorStatus ::= WM OPEN | WM CLOSE

VOCABULARY ::= action | event | parametervalue
ACTION ::= opendoor | closedoor | startwashing | stopwashing
EVENT ::= eventwashingstatus | eventdoorstatus

WM CALL PROTOCOL = {(action, x) | x ∈ ACTION }
WM RETURN PROTOCOL = {(action, x) | x ∈ ACTION }
WM EVENT PROTOCOL = {(x , y , (z ,w)) | x ∈ {event},

y ∈ {eventwashingstatus},
z ∈ {parametervalue},
w ∈ PossibleWashingStatus}

∪
{(x , a, (z , b)) | x ∈ {event},
a ∈ {eventdoorstatus},
z ∈ {parametervalue},
b ∈ PossibleDoorStatus}

Chapter 6. Formal Specification of Home Appliance Services 46

WM (ws , ds) =
wm call .(action, startwashing) →
(wm event !(event , eventwashingstatus ,

(parametervalue,WM WASHING)) →
Skip < ws 6∈ {WM WASHING} > Skip);

wm return.(action, startwashing) →
WM (WM WASHING , ds) |
wm call .(action, stopwashing) →
(wm event !(event , eventwashingstatus ,

(parametervalue,WM STOPPED)) →
Skip < ws 6∈ {WM STOPPED} > Skip);

wm return.(action, stopwashing) →
WM (WM STOPPED , ds) |
wm call .(action, opendoor) →
(wm event !(event , eventdoorstatus ,

(parametervalue,WM OPEN)) →
Skip < ds 6∈ {WM OPEN } > Skip);

wm return.(action, opendoor) →
WM (ws ,WM OPEN) |
wm call .(action, closedoor) →
(wm event !(event , eventdoorstatus ,

(parametervalue,WM CLOSE)) →
Skip < ds 6∈ {WM CLOSE} > Skip);

wm return.(action, closedoor) →
WM (ws ,WM CLOSE)

For each state variable, a parameter for the main process is generated. The

CSP type used over each parameter is derived from the process:parameterType

property of each state variable. In this case, the enumerated classes PossibleWash-

ingStatus and PossibleDoorStatus are mapped to the PossibleWashingStatus and

PossibleDoorStatus CSP declarations. In order to interact with the service, the

protocol of wm call channel is the desired action to invoke followed by its param-

eters, those are, the OWL-S inputs of the actions. The same reasoning is applied

for the return protocol, with the outputs of the action. Again, the CSP types

are derived from the process:parameterType property of inputs and outputs. In

this case, no inputs or outputs are specified. Every time that the state changes a

message with the new value will be output on channel wm event . Other processes

interested on this event should listen on this channel.

The alphabets of channels, wm call , wm return and wm event are lists of el-

ements delimited by parentheses. These data structures are called S-Expressions

[93] and are used in the Lisp programming language and as mark-up in communi-

cations protocols like IMAP. The use of S-Expressions allows seamless translation

of data represented in the ontology [69] to CSPM (CSPM is the machine readable

version of CSP which is the input to the model checker tools). The principal

Chapter 6. Formal Specification of Home Appliance Services 47

advantage of this approach is the capability of extremelly simple devices (devices

with low computational resources) of enganging in a very flexible communication

protocol. For example, it is well known the flexibility of XML. However, it is also

known the demanding computational resources in order to parse XML messages.

The approach of S-Expressions tries to combine the flexibility of XML but with a

less complex parsing schema.

The translation of an OWL-S declaration to a set of S-Expressions is sim-

ple. Every OWL-S declaration can be decomposed as a set of triples, since

OWL-S is based on RDF. For each triple, a tuple is generated, which is a S-

Expression itself. As said before, the protocol over channels are derived from

the process:parameterType property of OWL-S parameters (inputs, outputs, state

variables, events and plugs). We propose that each OWL-S parameter should

be mapped to a tuple (a S-Expression) derived from the decomposition in triples

of the argument hold by property process:parameterType. For example, figure

6.2 shows the OWL-S declaration for event EventWashingStatus of the washing

machine service presented in figure 5.6.

Figure 6.2: EventWashingStatus Diagram

The schema plotted in figure 6.2 can be represented with the following set of

triples.

(rdf : type,EventWashingStatus , owlsx : Event)
(process : parameterValue,EventWashingStatus ,WM WASHING)

These triples are translated the following member of set WM EVENT PROTOCOL,

which is the alphabet of channel wm event .

(event , eventwashingstatus , (parametervalue,WM WASHING))

Chapter 6. Formal Specification of Home Appliance Services 48

In this example, triples of the form (rdf : type, x , y) are translated to S-

Expressions of the form (y , x). Triples of the form (p 6= rdf : type, s , o) are

translated to the S-Expression (t , s , (p, o)) where t is the type of s , that is, the

triple (rdf : type, s , t) is true. To generalise the procedures of translating from

RDF triples to S-Expressions and vice-versa, we propose the following grammar.

< individual > = (< type >,< name >, [< properties >])
< properties > = < property >, [< properties >]

< property > = (< propertyName >,< propertyValue >)
< propertyValue > = < string >|< individual >

< type > = < string >

< name > = < string >

< propertyName > = < string >

< string > = any word consisting of letters, numbers, and special
characteres

This grammar is the output of a function f which translates a RDF triple to
a S-Expression.

f (rdf : type, x , y) = (y , x)
if x is of type y

f (p, s , o) = (f (rdf : type, t , s), (p, f (o)))
if s is of type t and p 6= rdf : type

f (o) = o if o belongs to an enumerated class
f (o) = (f (rdf : type, o, r), {(pi , f (vi))}i=1...N)

if o is of type r and there exist N
triples of the form (pi , o, vi) where i = 1 . . .N

6.2.2 Dynamic Representation

The set of activities related to a service represents its dynamic part. Service

activities are modelled with a transition diagram. In CSP, these diagrams are

displayed as processes as it is presented in figure 6.3.

Figure 6.3: CSP Activity Process Diagram

Each activity communicates its state (ACTIVE , SUSPENDED or STOPPED) on

channel activity . The transitions between activity states are governed by a set of

rules called triggers. In this thesis, only triggers related with state variables are

Chapter 6. Formal Specification of Home Appliance Services 49

considered for a CSP translation. Accordingly, activities are modelled as processes

listening on the event channels. Activity processes have a state which is the set

composed of the state variables which are the triggers of the activity considered.

As an example, let us consider the activities related to the washing machine

service presented in figure 5.6. In this case, a new activity is introduced related to

the task of collecting the laundry from the washing machine called CollectLaundry .

These activities depends on the values of the state variables WashingStatus and

DoorStatus . In this case, the activities of the washing machine are modelled as one

process with a state composed with the values of the state variables WashingStatus

and DoorStatus .

ACTIVITY ::= washinglaundry | collectlaundry
ACTIVITYSTATUS ::= ACTIVE | SUSPENDED | STOPPED

WM Activities(WM STOPPED ,WM CLOSE) =
wm event !(event , eventdoorstatus , (parametervalue,WM OPEN)) →
activity .collectlaundry .ACTIVE →
WM Activities(WM STOPPED ,WM OPEN) |
wm event !(event , eventwashingstatus , (parametervalue,WM WASHING)) →
activity .washinglaundry .ACTIVE →
WM Activities(WM WASHING ,WM CLOSE)

WM Activities(WM WASHING ,WM CLOSE) =
wm event !(event , eventdoorstatus , (parametervalue,WM OPEN)) →
activity .collectlaundry .ACTIVE →
WM Activities(WM WASHING ,WM OPEN) |
wm event !(event , eventwashingstatus , (parametervalue,WM STOPPED)) →
activity .washinglaundry .STOPPED →
WM Activities(WM STOPPED ,WM CLOSE)

WM Activities(WM STOPPED ,WM OPEN) =
wm event !(event , eventdoorstatus , (parametervalue,WM CLOSE)) →
activity .collectlaundry .STOPPED →
WM Activities(WM STOPPED ,WM CLOSE) |
wm event !(event , eventwashingstatus , (parametervalue,WM WASHING)) →
activity .washinglaundry .ACTIVE →
WM Activities(WM WASHING ,WM OPEN)

Chapter 6. Formal Specification of Home Appliance Services 50

WM Activities(WM WASHING ,WM OPEN) =
wm event !(event , eventdoorstatus , (parametervalue,WM CLOSE)) →
activity .collectlaundry .STOPPED →
WM Activities(WM WASHING ,WM CLOSE) |
wm event !(event , eventwashingstatus , (parametervalue,WM STOPPED)) →
activity .washinglaundry .STOPPED →
WM Activities(WM STOPPED ,WM OPEN)

The dynamic perspective of the washing machine service is offered by pro-

cess WM Activities . This process communicates with process WM by means on

channel wm event and broadcast activity status through channel activity .

6.2.3 Service Refinement

Refinement is the technique which permits to check of whether a process satisfies

a specification. In this proposal, the refinement procedure is used to verify if

particular actions taken on a service correspond with the desired activities. This

For example, the refinement can be used to check if every time that the action

startwashing is invoked on service WM the activity WashingLaundry is active.

Firstly, the whole service specification is constructed as the combination of the

static and dynamic parts.

WM Init =
WM (WM STOPPED ,WM CLOSE)
|[wm event]|
(activity .washinglaundry .STOPPED →
activity .collectlaundry .STOPPED →
WM Activities(WM STOPPED ,WM CLOSE))
\ {wm event}

The communication of events activity.washinglaundry.STOPPED and activ-

ity.collectlaundry.STOPPED is intended to broadcast the initial state of the ac-

tivities. The following equation is a process called WashingLaundry Start which

invokes action startwashing .

WashingLaundry Start =
wm call !(action, startwashing) →
wm return?(action, startwashing) →
STOP

For being executed action startwashing , processes WM and WashingLaun-

dry Start should be synchronised on channels wm call and wm return.

Chapter 6. Formal Specification of Home Appliance Services 51

WashingLaundry StartWM =
WM Init
|[{wm call ,wm return}]|
WashingLaundry Start

The specification of process WashingLaundry StartWM declares that the final

state of activity WashingLaundry should be ACTIVE . This behaviour is expressed

by means of process WashingLaundry StartSpec.

WashingLaundry StartSpec =
activity .washinglaundry .STOPPED →
activity .collectlaundry .STOPPED →
activity .washinglaundry .ACTIVE → STOP

The first two events in WashingLaundry StartSpec correspond to the initial

state of the activities. Finally, the refinement tests needed to prove true are:

WashingLaundry StartSpec ⊑T WashingLaundry StartWM \ TOTAL
WashingLaundry StartSpec ⊑F WashingLaundry StartWM \ TOTAL

where TOTAL represents the set of CSP events that are hidden. In this case,

the representation of set TOTAL is:

TOTAL = {wm call ,wm return}

Because both test are asserted to true, it is possible to confirm that the result

of invoking action startwashing is to set the state of activity WashingLaundry to

ACTIVE .

Refinement tests can be combined to check more complex services. For ex-

ample, imagine an intelligent system that has decided the following sequence of

activities. First, starting activity CollectLaundry to introduce new clothes onto

the washing machine. Later, stopping activity CollectLaundry by closing the wash-

ing machine door and later, starting activity washing machine. This behaviour is

expressed in CSP by means of process Full WashingSpec.

Full WashingSpec =
activity .washinglaundry .STOPPED →
activity .collectlaundry .STOPPED →
activity .collectlaundry .ACTIVE →
activity .collectlaundry .STOPPED →
activity .washinglaundry .ACTIVE →
STOP

Chapter 6. Formal Specification of Home Appliance Services 52

The implementation for this specification involves opening and later closing the

washing machine door. Once the door is closed, the washing machine can start

washing the laundry. These actions are carried out by process Full Washing.

Full Washing =
wm call !(action, opendoor) →
wm return?(action, opendoor) →
wm call !(action, closedoor) →
wm return?(action, closedoor) →
wm call !(action, startwashing) →
wm return?(action, startwashing) →
STOP

In order to execute the actions declared in process Full Washing, this pro-

cess should be synchronised with process WM Init on channels wm call and

wm return.

Full WashingWM =
WM Init
|[{wm call ,wm return}]|
Full Washing

In this case, the tests we needed to prove are:

Full WashingSpec ⊑T Full WashingWM \ TOTAL
Full WashingSpec ⊑F Full WashingWM \ TOTAL

Process Full WashingWM satisfies the specification Full WashingWMSpec be-

cause both tests are asserted to true.

The refinement technique can be used to detect that a process does not satisfy

a specification. Imagine that process Full Washing is changed to produce process

Full WashingFail .

Full WashingFail =
wm call !(action, opendoor) →
wm return?(action, opendoor) →
wm call !(action, closedoor) →
wm return?(action, closedoor) →
wm call !(action, stopwashing) →
wm return?(action, stopwashing) →
STOP

In this case, process Full WashingFail does not satisfy the specification Full WashingSpec.

Chapter 6. Formal Specification of Home Appliance Services 53

This is because action stopwashing is invoked instead action startwashing . Be-

cause of this, activity WashingLaundry is never started, so the specification is not

satisfied.

This chapter has proposed a scheme for meeting the requirement of reliability.

This requirement is addressed by means of a formal method, which allow the

identification of system errors during the design stage, and the prediction of system

behaviour. Next chapter extends this formality introducing how the high level

services specifications in OWL-S and CSP can be implemented in a CSP based

communication system.

Chapter 7

Implementations of Home Appliance

Services

This chapter presents how a service interface can be implemented taking into

account not only the technology used, but also the network protocol used to facil-

itate service communication. Firstly, different solutions to implement CSP spec-

ifications are presented, focusing on how channels and process are represented.

Secondly, since service implementations can not be completely abstracted from

the underlying network, a grounding ontology based on the UDP protocol is in-

troduced. Finally, the washing machine service presented in previous chapters is

implemented in Java following its CSP specification.

7.1 CSP implementations

Since CSP was first described by Hoare, it has evolved considerably. As a conse-

quence, several projects have produced tools to implement systems directly in a

CSP style. This is the case of the occam language, the Java APIs JCSP and CTJ,

and the C++ library CSP++. The rest of the section is intended to provide an

overview of these CSP implementations.

7.1.1 occam

Occam [26] (it should be written always in lowercase, occam) is an imperative

procedural language originally designed for programming in the INMOS transputer

microprocessors. Fortunately, nowadays there exist occam compilers for other

platforms such as Linux.

One of the principal characteristics of occam is that indentation and formatting

are crucial for parsing the code. CSP Process operators such as sequence (;),

54

Chapter 7. Implementations of Home Appliance Services 55

parallel (‖) and choice (|) have their equivalence in occam with the reserved words

SEQ, PAR and ALT respectively.

Occam processes communicate through channels. The nomenclature is the

same as in CSP, c!v and c?v stands for sending and receiving message v on channel

c respectively.

One of the principal advantages of occam is that it is possible to achieve

lightweight implementations. Occam works as an assembler language for trans-

puter microprocessors. Particularly interesting is the 2.5 version of occam known

as Kent Retargettable occam Compiler (KRoC) [107]. KRoC was developed by

the University of Kent and offers new features such as recursion, mobile channels

and the possibility of interconnecting process over a TCP/IP network [97]

7.1.2 Java CSP (JCSP)

The Java CSP (JCSP) library [12, 105], developed by the university of Kent,

provides concurrency and communication primitives that allow the construction

of CSP-based programs within a single Java Virtual Machine.

Since JCSP is a Java API, all CSP elements are introduced as classes. Each

process is encapsulated on an object that implements the CSProcess interface. A

JCSP process is implemented as an independent thread of execution. The thread

scheduling is done by the Java Virutal Machine (JVM), which makes the use of

JCSP in real applications dependant on the operating system.

Communication between processes is achieved by channel objects, which act

as data pipes between threads. Any message is communicated by reference but

integer types. There are one to one, one to many, many to one and many to many

channels. Several buffering policies can be specified on channels such as infinite

or zero buffering. JCSP processes can be combined in a CSP style by means of

classes, Sequence, Parallel, and Alternative for CSP operators (;), (‖) and (|).

JCSP is a free library for academic purposes. There also exists a commercial

version called JCSP Network edition [106] which allows communication between

processes residing in different virtual machines. This commercial edition supports

the principal network protocols, such as TCP/IP, USB, IEEE 1394 and IEEE

1355.

7.1.3 Communicating Threads for Java (CTJ)

CTJ [6, 61] is a Java extension for supporting real time systems. This API was

developed by the University of Twente and has many similarities with JCSP. In

CTJ, processes are encapsulated as objects which may synchronise on channels

Chapter 7. Implementations of Home Appliance Services 56

objects. Like the other CSP implementations, CJT processes can be composed in

sequence, parallel and choice.

In contrast to to JCSP, CTJ integrates its own real-time kernel, not relying

thread scheduling to the JVM. In CTJ, channels are always any to any and mes-

sages are passed by value, instead by reference. This message passing policy makes

communication between processes independent if the channel is based on shared

memory or a network protocol.

By default, CJT channels use shared memory as the communication mech-

anism. The default communication policy under a channel can be modified by

specifying and object of class LinkDriver on the channel constructor. The stan-

dard CTJ distribution offers several implementations of LinkDriver class that

support communication between TCP and UDP networks.

7.1.4 C++ CSP

C++CSP [39] is a library which provides an Object Oriented API similar to JCSP

but with a fast kernel support. C++CSP supports channels, processes, parallel

communication and alternatives.

C++ CSP gives support to the concept of mobile objects. This feature is

supported by means of a “smart pointer” class that ensures that there exists only

one reference to the mobile object. This technique gives the illusion that the

object “moves” between processes.

Distributed applications can be implemented in C++CSP, as well. There exists

a C++CSP network edition [40], which supports TCP/IP networking and it is

based on KRoC.Net.

7.1.5 Handle C

Handle-C [9] is a programming language based on C which provides concurrency

and communication based on CSP. Handle-C programs are designed to be compiled

and mapped to reconfigurable hardware platforms such as FPGAs.

7.2 CSP Service Implementation

In service architectures, especially the one treated in this thesis, services are ab-

stractions for accessing device functionality. Sometimes, a service may be the

device itself, such as a service for switching on or off the light represented in CSP

and implemented directly in hardware. However, it most of the cases, services and

devices represent different entities. In this case, a service implementation requires

Chapter 7. Implementations of Home Appliance Services 57

the consideration of the software and hardware characteristics of the represented

device, such as operating system, memory, or power consumption.

In order to homogenise all device characteristics, it is assumed that all devices

functionality can be accessed by a library of functions that can be called from C

or Java code. In this case, a service implementation is like a gateway to access a

device library, as it is plotted in figure 7.1

Figure 7.1: Relation between Services and Devices

With this assumption, the rest of the section is intended to present how a service

should be implemented. This procedure is explained by the implementation in

JCSP of the washing machine service presented in previous chapters.

7.2.1 JCSP Service Implementation

The following section is a simplification of how a service should be implemented.

Topics such as the service registration and the interaction service-device are omit-

ted to keep concepts clear.

The first aspect to consider is that it is only needed to implement the service

static part. Each service is modelled as a process providing three channels, call ,

return and event . Plugs are not implemented as JCSP channels. How plugs are

implemented is presented in next sections.

In JCSP, a process is represented by a class which implements the interface

CSProcess . In this case, the implementation for the washing machine should be

started with the lines of code presented in listings 7.1.

Chapter 7. Implementations of Home Appliance Services 58

1 public class WashingMachineService implements CSProcess{
2 private ChannelInput ca l lChanne l ;
3 private ChannelOutput returnChannel ;
4 private ChannelOutput eventChannel ;
5

6 private St r ing wash ingstatus = ”WMSTOPPED” ;
7 private St r ing door s ta tus = ”WMCLOSE” ;
8

9 public WashingMachineService (
10 ChannelInput callChan ,
11 ChannelOutput returnChan ,
12 ChannelOutput eventChan ,
13) {
14 ca l lChanne l = cal lChan ;
15 returnChannel = returnChan ;
16 eventChannel = eventChan ;
17 }
18

19 public void run () {
20 // Body o f the s e r v i c e
21 }
22 }

Listing 7.1: Washing Machine service declaration in JCSP

Channels call , return and event are represented by objects callChannel , returnChannel

and eventChannel . ChannelInput and ChannelOutput define the interfaces for

reading and writing messages on channels respectively. The use of interfaces

avoids giving details of how channels are implemented. This abstraction makes

the presented service declaration independent of the mechanism for channel com-

munication.

The body of the service is encapsulated in the method run, which is declared in

interface CSProcess . The string attributes washingstatus and doorstatus represent

the WashingStatus and DoorStatus state variables, respectively. Both variables

are initialised to their default values.

Process WashingMachineService should be responsible for waiting on object

callChannel for action requests. According to the received action, the service

may change some state variable values and, as a consequence, write on object

eventChannel such changes. Finally, the service should communicate the ending

of the requested action and its returning values on object returnChannel . This

behaviour is codified in the method run as it is shown in listings 7.2.

Chapter 7. Implementations of Home Appliance Services 59

1 public void run () {
2 while (true) {
3 St r ing ac t i on = ca l lChanne l . read () . t oS t r i ng () ;
4 Str ingToken ize r s t = new Str ingToken ize r (act ion , ” () \n”) ;
5 i f (s t . countTokens () == 2) {
6 St r ing actionType = s t . nextToken () ;
7 St r ing actionName = s t . nextToken () ;
8 i f (actionType . equa l s (
9 ”http ://www. lboro . ac . uk/ owl sextens i on . owl#Action”)) {

10 i f (actionName . equa l s (base + ”StartWashing”)) {
11 i f (! wash ingstatus . equa l s (”WMWASHING”) {
12 // Take ac t i on s on the dev i c e
13 washingstatus = ”WMWASHING” ;
14 eventChannel . wr i t e (wash ingstatus) ;
15 }
16 returnChannel . wr i t e (ac t i on) ;
17 } else i f (actionName . equa l s (base + ”StopWashing”)) {
18 i f (! wash ingstatus . equa l s (”WMSTOPPED”) {
19 // Take ac t i on s on the dev i c e
20 washingstatus = ”WMSTOPPED” ;
21 eventChannel . wr i t e (wash ingstatus) ;
22 }
23 returnChannel . wr i t e (ac t i on) ;
24 } else i f (actionName . equa l s (base + ”OpenDoor”)) {
25 i f (! door s ta tus . equa l s (”WMOPEN”) {
26 // Take ac t i on s on the dev i c e
27 door s ta tus = ”WMOPEN” ;
28 eventChannel . wr i t e (door s ta tus) ;
29 }
30 returnChannel . wr i t e (ac t i on) ;
31 } else i f (actionName . equa l s (base + ”CloseDoor”)) {
32 i f (! door s ta tus . equa l s (”WMCLOSE”) {
33 // Take ac t i on s on the dev i c e
34 door s ta tus = ”WM CLOSE” ;
35 eventChannel . wr i t e (door s ta tus) ;
36 }
37 returnChannel . wr i t e (ac t i on) ;
38 }
39 }
40 }
41 }

Listing 7.2: Washing Machine service run method

The run method consists on an infinite loop waiting for reading action requests on

object callChannel . Actions are codified as S-Expressions, so the way of parsing

them is to decompose each S-Expression as a set of tokens. This task is done

by the standard class StringTokenizer of the java.util package. Once the correct

action is determined by the set of conditional statements, the service takes the

corresponding actions on the device by using its corresponding API. After this

Chapter 7. Implementations of Home Appliance Services 60

operation, the service actualises the corresponding state variable and writes its

new value on object eventChannel .

7.2.2 Channel Implementation

The previous section has introduced how to implement a service. However, the

presented implementation does not specify how channels are instantiated. By de-

fault, the JCSP standard API provides classes for instantiating channels objects

which use shared memory as the communication policy. However, in a real ubiq-

uitous computing scenario, devices may not reside in the same machine, therefore,

it may be impossible for them to share memory. Consequently, an underlying

network is needed to facilitate device communication.

As was introduced in chapter 3, there exist many networks for device commu-

nication, ranging from specific home automation networks to well known Internet

protocols. In this work, the network protocol chosen to evaluate service intercom-

munication is UDP. The nature of a home network suggests the use of a lightweight

protocol such as UDP. In fact, UDP shares common features with another efficient

protocols such as IEEE 1355, which has been proposed as solution for inter-device

communication [86]. The UML diagram plotted in figure 7.2 shows how UDP

Figure 7.2: UDP Channel Implementation

channels are implemented. The management of the UDP protocol and channel

synchronisation is based on the UDP link driver offered by CTJ and it is encap-

sulated in the abstract class UDPChannel. Channel instances should be created

by means of classes UDPChannelInput and UDPChannelOutput which implement

the ChannelInput and ChannelOutput interfaces respectively.

In UDP, applications are identified by an IP address and a port number. Co-

incidentally, we propose the use of an IP address per service and a port number

per input channel in a service. This means that for a given service the call chan-

nel is identified by the service host name and a port number. Output channels

do not have any port assigned because UDP is based on datagrams and not in

Chapter 7. Implementations of Home Appliance Services 61

connections. In UDP, when one application needs to send a message to a receiver

application, the first one will output a datagram which includes the host and port

number of the remote application. Because UDP is connectionless, there is no

need to establish a connection between the output and input applications, which

involves the use of port numbers in both sides.

To manage output communication on a device, each service should be run in

parallel with a communication manager process. The communication manager of

each service is responsible for relating each return and event channel to input ports

in other services, when required. For each output channel, the communication

manager keeps a list with the destination ports. Every time that a new message

is written on an output channel, the connection manager broadcasts the message

to all the ports contained in the corresponding list. Each communication manager

has an input channel called connect which serves to request a communication

between and output channel in the managed service and a remote port.

For example, let us imagine that the washing machine service implemented

in the previous section resides on a device with a host name called “washingma-

chine.home”. Channels call and connect are represented by objects callChannel

and connectChannel and assigned to ports 50000 and 50001, respectively. The

piece of Java code that instantiates the service is presented in listings 7.3.

1 f ina l int c a l lPo r t = 50000;
2 f ina l int connect ionPort = 50001;
3 UDPChannelInput ca l lChanne l = new UDPChannelInput (c a l lPo r t) ;
4 One2OneChannel returnChannel = new One2OneChannel () ;
5 Any2OneChannel eventChannel = new Any2OneChannel () ;
6 UDPChannelInput connectChannel = new UDPChannelInput (

connect ionPort) ;
7

8 WashingMachineService washingMachineService =
9 new WashingMachineService (ca l lChannel ,

10 returnChannel ,
11 eventChannel) ;
12 WashingMachineCM washingMachineCM =
13 new WashingMachineCM(connectChannel ,
14 returnChannel ,
15 eventChannel) ;
16

17 Pa r a l l e l par = new Pa r a l l e l () ;
18 par . addProcess (washingMachineService) ;
19 par . addProcess (washingMachineCM) ;
20 par . run () ;

Listing 7.3: Washing Machime instantation

Chapter 7. Implementations of Home Appliance Services 62

7.3 Service Grounding

OWL-S was originally designed to provide an ontological perspective of web ser-

vices. In a similar way that the OWL-S class service:Grounding gives details of

how a web service should be accessed, it is needed a grounding class which indi-

cates how to interact with the services presented in this thesis. There needs to

develop a set of classes which indicate how channels call , return and event are

accessed.

The first step to develop a service grounding is to determine what the mech-

anism for accessing a service is. In the standard OWL-S ontology there exists

class grounding:WSDLGrounding 1, which is a specification of how OWL-S ser-

vices with WSDL interfaces should be reached. In this work, UDP is the network

protocol chosen.

7.3.1 UDP Service Grounding

UDP utilises ports to allow application-to-application communication. For each

input channel we propose the use of an UDP port. Therefore, the main purpose

of the service grounding is to indicate the UDP ports for each channel.

As is shown in figure 7.3, for each service there exists an instance of class

owlsx:LufGrounding. The meat of the process grounding is represented by class

owlsx:LufProcessGrounding which is attached to class owlsx:LufGrounding by

means of property owlsx:hasLufProcessGrounding. The data needed to access a

channel implemented with the UDP protocol is encapsulated with class owlsx:UDPChannel.

This class has only two properties owlsx:host and owlsx:port, which represent the

IP address of the machine hosting the device and the port in which the channel is

reading data.

1grounding is the namespace for http://www.daml.org/services/owl-s/1.1/Grounding.

owl

Chapter 7. Implementations of Home Appliance Services 63

owlsx:LufService

owlsx:LufGrounding

service:supports

service:ServiceGrounding

rdfs:subClassOf

owlsx:Channel

owlsx:UDPChannel

owlsx:host

owlsx:port

xsd:string

xsd:integer

rdfs:subClassOf

owlsx:Plug

owlsx:supportedByChannel

owlsx:RTPChannel

owlsx:LufProcessGrounding

owlsx:hasLufProcessGrounding

owlsx:hasReturnChannel owlsx:hasCallChannel owlsx:hasEventChannel

rdfs:subClassOf

Figure 7.3: LufGrounding Class

In this thesis and for simulation purposes, plugs are implemented using the

Java Media Framework (JMF) [13] which allows the programming of multime-

dia applications. The communication of audio video frames between devices is

achieved through the Real Time Transport Protocol (RTP) [83] which relies on

UDP. For this reason, class owlsx:RTPChannel has been introduced. In addition,

a plug is related with a channel through property owlsx:supportedByChannel.

At the end of this chapter, the framework for implementing smart home services

is presented. Firslty, chapter 5 has introduced how an ontology is used to model

the semantics of home devices funtionality. In chapter 6 it was indicated how this

semantic description of home devices can be translated to the process algebra CSP.

This chapter has introduced how these CPS specifications can be implemented in

Java. In order to offer a proof of concept of this framework, next chapter presents

a simulator in which several service composition are presented.

Chapter 8

Examples of Home Appliance Services

Previous chapters have introduced device services represented in OWL-S capable

of being composed (by choreography or orchestration) to offer valuable advantages

in every day life for home residents. In addition, such representation is derived

from the formal algebra CSP, which allows developers to implement device services

in a systematic way. This chapter is intended to work as a proof of concept of

such device representation.

Firstly, a service orchestration node for service composition is presented. This

node is called central node and is responsible for the registration of new services

and context information and for the composition and execution of new services.

Secondly, a simulator hosting several devices and capable of generating user con-

text information is introduced.

Finally, several home subsystems implemented with the proposed theory are

analysed in the presented simulator. All of these examples meet the requirements

for an smart home, preserving the ad-hoc nature of the approach of this thesis.

The choosen examples shown are ordered in ascending order accordingly to their

ad-hoc level. In light of this, the first example is an HVAC system in which all

participating services are registered when the example is started. The second and

the third examples include a simulated home user that moves between different

rooms, discovering new devices and increasing the ad-hoc nature of the exam-

ple. Finally, the last example is totally ad-hoc, due to the ”hot” connection and

detection of new devices in the home network.

8.1 Simulator

The simulator is a Java based application for reproducing a home environment.

The interaction between the simulator and the developer is achieved by a graphical

64

Chapter 8. Examples of Home Appliance Services 65

user interface. As shown in figure 8.1, the left hand side of the interface reproduces

a house plan consisting on a living room, a home office, a master bedroom, a

bathroom, a small bedroom for children, a kitchen and a corridor. All rooms

are equipped with windows and doors and may contain several devices which are

represented as services. The right hand side serves to monitor and control some

context information related to environmental variables such as temperature or

noise.

Figure 8.1: Simulator

The person using the simulator can generate context information related to

user location and device services. The home occupant is represented by an icon

which can be translated among rooms by using the second button of the mouse.

Device functionality can be accessed making a single click with the mouse on the

desired device, as it is shown in figure 8.2 for the Washing Machine device.

Chapter 8. Examples of Home Appliance Services 66

Figure 8.2: Washing Machine Interface

Each device in the simulator hosts at least one service representing its func-

tionality. Service orcherstration is achieved by another Java application called the

central node, which is described in the next section. In order for the central node

to be aware of the context information generated in the simulator, each service

connects its event channel to the registryEvent channel in the central node as it

is shown in figure 8.3. In this case, actions in the simulator will be transformed

in useful context information in the central node. With this information, the cen-

tral node deduces the state of the activities in which the virtual home resident

is engaged, determines a set of goals for the user and executes the set of actions

needed to achieve such goals.

Service#1

Service#1Service#N

Service#2

Simulator

Central Node
registryEvent

event#1

event#2

event#N

Figure 8.3: Simulator and Central Node Connection

Chapter 8. Examples of Home Appliance Services 67

8.2 Orchestration Node

Device services exhibit their functionality as a set of state variables, events, ac-

tions, plugs and activities. This information is needed in order to combine the

execution of several actions to achieve a predetermined goal.

In service orchestration, which is usually used in private environments, a cen-

tral node takes control over the device services and coordinates the execution of

different actions on the services involved in the operation. To achieve this task,

the central node should be aware of not only the services deployed in the home

environment, but also the context information. Accordingly, we propose a central

node which acts as a service register, service composer and context information

register.

Figure 8.4: Central Node Process Diagram

Figure 8.4 displays the CSP-process model of the central node. The Register

process is in charge of listening on channel registryService for new services ready to

check. For services to be deregistered there exists a channel deRegistryService and

a DeRegister process. The Register process integrates an OWL-S to CSP parser in

order to check if the service is free of deadlock and livelock. Once the service has

been proved safe, it is stored in the database and a signal to process Composer is

send through channel ch1. The Composer process integrates a rule based system

implemented in the Java Expert System Shell (Jess) [14], which is in charge of

orchestrate registered services. Jess is arule engine and scripting language written

entirely in the Java language. Jess supports the development of rule-based expert

systems which can be tightly coupled to code written in the Java language.

Service composition is governed by a set of pre-programmed rules. These rules

are derived from the ontological description of services and, it is presented in

next sections, they allow a goal oriented approach for service composition. The

services generated by the Composer process are sent to process Checker to prove

Chapter 8. Examples of Home Appliance Services 68

that the new services satisfy a set of specifications attached to each service. If a

service satisfies the specification, is sent to the Executer process for its execution.

Changes in state variables and context information are registered in the central

node by process EventRegister . This process waits for new events on channel

registryEvent for being stored in the data base. Each time that a new event is

received, the Composer starts the reasoning engine to find out new services.

8.2.1 Service Composition

The meat of the node is inside process Composer , which has an rule-based en-

gine embedded. This engine is implemented in Jess and is fed with the available

services, context information, and a set of rules for composing services.

The basic idea is to manage the information about services and context infor-

mation both, with a forward and backward engine.

Firstly, the information about the relation between actions and state variables

is codified as a rule which has as the antecedent the invocation of the action and

as a consequent, the change in the involved state variable. For example, in the

washing machine service the relation between action StartWashing and the state

variable WashingStatus is codified with rule startwashingrule − 1.

startwashingrule − 1 =

(process : process , ?perform, StartWashing)

⇒

(process : parameterValue,WashingStatus ,WM WASHING)

With rule startwashingrule−1, every time that action StartWashing is invoked,

the value of the state variable WashingStatus will be set to WM WASHING . In

the ontology, this rule is attached to action StartWashing by means of an instance

of class process : Result , as it is indicated in figure 8.5.

By reversing startwashingrule − 1 rule, it is also possible to obtain a kind of

goal system capable of inferencing that StartWashing is the needed action to set to

WM WASHING the state variable WashingStatus . This relation can be indicated

with rules startwashingrule − 2 and startwashingrule − 3.

startwashingrule − 2 =

(need − triple(process : parameterValue,WashingStatus ,WM WASHING))

⇒

(need − triple(process : process , ?perform, StartWashing))

Chapter 8. Examples of Home Appliance Services 69

startwashingrule − 3 =

(need − triple(process : process , ?perform, StartWashing))

⇒

executeAction(StartWashing)

Basically, function executeAction places its argument, which is an action, in a

queue which will be sent to the Executer process. All actions in this queue will

be composed in a sequence process.

The derivation of these set of rules done for the washing machine service is

done for all actions attached to a service. This task is done by process Register

for each new service. With this information the system will always know which

actions to invoke in order to set the desired value for an state variable.

The same reasoning is applicable for activities and triggers as well. Firstly a

forward reasoning can be applied to inference the state of the activity based on the

value of the triggers. For example, for activity WashingLaundry of the washing

machine service, it will be needed to generate the following set of rules.

washinglaundry − start − 1 =

(process : parameterValue,WashingStatus ,WM WASHING)

⇒

(owlsx : activitystatus ,WashingLaundry ,ACTIVE)

StartWashingEffect

expr:expressionBody (process:parameterValue, WashingStatus, WM_WASHING)

owlsx:Jess

expr:expressionLanguage

StartWashing

StartWashingResult

process:hasResult

process:hasEffect

Figure 8.5: StartWashing Effect

Chapter 8. Examples of Home Appliance Services 70

washinglaundry − stop − 1 =

(process : parameterValue,WashingStatus ,WM STOPPED)

⇒

(owlsx : activitystatus ,WashingLaundry , STOPPED)

Both rules, washinglaundry − start − 1 and washinglaundry − stop − 1 indicate

that if the value of state variable WashingStatus is WM WASHING , activity

WashingLaundry is active and if the value is WM STOPPED the activity is

stopped. The name of activity triggers take more sense with this point of view,

because they are the conditions for firing the rules which will change activity

status.

By reversing these rules, is possible to obtain a backward version, as well.

washinglaundry − start − 2 =

(need − triple(owlsx : activitystatus ,WashingLaundry ,ACTIVE))

⇒

(need − triple(process : parameterValue,WashingStatus ,WM WASHING))

washinglaundry − stop − 2 =

(need − triple(owlsx : activitystatus ,WashingLaundry , STOPPED))

⇒

(need − triple(process : parameterValue,WashingStatus ,WM STOPPED))

With these new rules, it is possible to establish a system is which goals are

established as states in activities. For example, it is possible to inference that

StartWashing is the needed action to active WashingLaundry activity. When fact

need − triple(owlsx : activityStatus , StartWashing ,ACTIVE)

is inserted in the knoledge base, then rule washinglaundry − start − 2 will be

fired, inserting in the engine fact

need − triple(process : parameterValue,WashingStatus ,WM WASHING)

which will fire rule startwashingrule−2, which will fire rule startwashingrule−3,

which will perform action executeAction(StartWashing) which will execute action

StartWashing

Accordingly, in order to set an activity to a desired status, the only needed

procedure is to insert in the knowledge base a fact of the form:

Chapter 8. Examples of Home Appliance Services 71

need − triple(owlsx : activityStatus , ?targetActivity , ?targetStatus)

To that end, we have created three functions, activeActivity , suspendActivity

and stopActivity which set to ACTIVE , SUSPENDED and STOPPED the status

of the activity which is the argument of these functions.

Based on this idea, this analysis is done by process Register for each new

process. The rules that govern service composition are designed to manage the

state of activities based on context information. The result of firing these rules

is a chain of actions composed as a sequence of processes and executed by the

Executer process.

8.3 Examples of Home Device Services

The following section presents and HVAC System, an AV System and a Com-

munication System. Each system comprises a set of devices with their respective

services and activities associated and a set of rules stored in the central node to

manipulate such services. All systems are tested with the simulator to check if the

approach presented in this thesis is capable of meet the requirements for a smart

home introduced in chapter 1. Before results from examples are presented, it is

possible to advance that horizontal integration is achieved by the implementation

as independent process of each service offered by each device. The focus of the

examples is in showing how our approach satisfies reliability (HVAC system ex-

ample), and hence the low cost requirement, and spontaneuos collaboration and

design for domestic use (AV and communication systems examples)

Because of performance issues, the Checker process is disabled, so services

generated for the central node are executed directly, without being tested with

the refinement technique. This is because the time needed to do a model checking

analysis is extremely high for an ubiquitous application. Overcoming this problem

will be a future line of research beyond this project.

8.3.1 HVAC System

HVAC (heating, ventilation and air-conditioning) generally refers to the climate

control of a building. The HVAC System considered in this section is based on the

UPnP standard for HVAC systems [29] and is responsible for heating and cooling

the home plan presented in the simulator section, involving the following devices:

• Heat Pump. It is the source of heat or cold. There is only one for all rooms

and it can be in one of three modes: heating, cooling, or off.

Chapter 8. Examples of Home Appliance Services 72

• Valve. It is responsible for controlling when the warm or cold air enters in

a room. There is only one valve per room. A valve is allowed to hold one of

these two values: close and open.

• Temperature Sensor. Is responsible for measuring the temperature of a

room. There is one per room.

• Temperature Selector. There is a temperature selector device per room

to allow the user to set the desired temperature.

Semantic Representation of an HVAC System

Each of the devices formerly presented hosts a service to accesses its functional-

ity. The HeatPumpService resides in the Heat Pump device. The service has a

state variable called PumpMode which can have only there values: HP HEATING ,

HP COOLING and HP OFF . This state variable is accessed by actions StartHeating ,

StartCooling and Stop.

The ValveControllerService represents the functionality of the Valve device.

The service offers two actions called CloseValve and OpenValve which set the value

of the state variable ValveState to V CLOSE and V OPEN respectively. This

service has two activities of type ActuatorActivity attached, called Heat Room

and Cool Room. These activities describe the effects on the environment when

they are active. Taking activity Heat Room, the attachments of values owlsx :

INCREASE and owlsx : Temperature to properties owlsx : hasMode and owlsx :

hasMagnitude, indicate that whenever this activity is active the temperature will

be increased.

The state of activity Heat Room depends on the value of the state variables

PumpMode and ValveState. Table 8.1 shows that every time that the Heat pump

Table 8.1: Heat Room Activity Triggers

ActivityStatus ValveState PumpMode
ACTIVE V OPEN HP HEATING

SUSPENDED V CLOSE HP HEATING
STOPPED V CLOSE HP OFF

V OPEN HP OFF
V OPEN HP COOLING

is in the HP HEATING mode and the corresponding valve is open the activity is

activated. The activity is stopped whenever the Heat pump is off or cooling and

the valve open. Finally, when the valve is closed the activity is suspended.

Chapter 8. Examples of Home Appliance Services 73

The Temperature Sensor device hosts the TemperatureSensorService service.

It has only one state variable called CurrentTemperature which is not controlled by

any action. The TemperatureSensorService is associated with an activity of type

SensorActivity . This kind of activity relates a state variable, a location and an en-

vironmental magnitude. The semantics given to a SensorActivity determines that

the state variable involved represents the environmental magnitude on the specified

location. For example, figure 8.6 illustrates how activity MeasuringTemperature

relates the state variable CurrentTemperature with the temperature in location

LivingRoom.

io

owlsx:needsParameterowlsx:hasEnvironmentalEffect

owlsx:hasMode

owlsx:locatedIn

LivingRoom

owlsx:MEASURING

MeasuringTemperatureEffect

owlsx:SensorActivity

CurrentTemperature

MeasuringTemperature

owlsx:hasMagnitude = owlsx:Temperature

Figure 8.6: Activity associated with measuring the livingroom temperature

The TemperatureSelectorService displays the functionality of the temperature

selector device. It has a state variable called TemperatureSetPoint which is ac-

cessed by action SetTemperatureSetPoint . This service has attached four activi-

ties of type DiagnosisActivity , which indicate how the home resident perceives the

room temperature. For example, there is an activity called Room Slightly Cold

which specifies that the room temperature is lower than the indicated in the vari-

able TemperatureSetPoint . In addition, activity Room Cold communicates that

the temperature is two degrees lower than in the variable TemperatureSetPoint .

Both activities assert that the room is cold. While the first one suggests that

the room is a little bit cold, the second one specifies that is too cold. The same

reasoning is applied to activities Room Slightly Hot and Room Hot .

Rules to Control the HVAC System

The HVAC System is controlled by the central node with a set of general purpose

rules [52]. For cooling a house there are two rules. The first one is called decrease−

magnitude−1 and declares that every time that a room is slightly hot and there is

Chapter 8. Examples of Home Appliance Services 74

an activity that is increasing the temperature, such activity should be suspended

or stopped. The second rule is, decrease −magnitude − 2, for starting an activity

which decreases the room temperature whenever a room is declared too hot. These

two rules are formalised in the following lines of code.

decrease − temperature − 1 =
(rdf : type, ?activity1, owlsx : DiagnosisActivity) ∧
(owlsx : activityStatus , ?activity1, owlsx : ACTIVE) ∧
(owlsx : hasEnvironmentalEffect , ?activity1, ?effect1) ∧
(owlsx : hasMagnitude, ?effect1, owlsx : Temperature) ∧
(owlsx : hasMode, ?effect1, owlsx : SLIGHTLY HIGH) ∧
(owlsx : locatedIn, ?activity1, ?location) ∧
(rdf : type, ?activity2, owlsx : ActuatorActivity) ∧
(owlsx : activityStatus , ?activity2, owlsx : ACTIVE) ∧
(owlsx : hasEnvironmentalEffect , ?activity2, ?effect2) ∧
(owlsx : hasMagnitude, ?effect2, owlsx : Temperature) ∧
(owlsx : hasMode, ?effect2, owlsx : INCREASE) ∧
(owlsx : locatedIn, ?activity2, ?location) ∧
⇒
add − temp − rooms − ok(?location)
suspendActivity(?activity2)
if (is − home − temp − ok)then stopActivity(?activity2)

decrease − temperature − 2 =
(rdf : type, ?activity1, owlsx : DiagnosisActivity) ∧
(owlsx : activityStatus , ?activity1, owlsx : ACTIVE) ∧
(owlsx : hasEnvironmentalEffect , ?activity1, ?effect1) ∧
(owlsx : hasMagnitude, ?effect1, owlsx : Temperature) ∧
(owlsx : hasMode, ?effect1, owlsx : TOO HIGH) ∧
(owlsx : locatedIn, ?activity1, ?location) ∧
(rdf : type, ?activity2, owlsx : ActuatorActivity) ∧
¬(owlsx : activityStatus , ?activity2, owlsx : ACTIVE) ∧
(owlsx : hasEnvironmentalEffect , ?activity2, ?effect2) ∧
(owlsx : hasMagnitude, ?effect2, owlsx : Temperature) ∧
(owlsx : hasMode, ?effect2, owlsx : DECREASE) ∧
(owlsx : locatedIn, ?activity2, ?location) ∧
⇒
rem − temp − rooms − ok(?location)
startActivity(?activity2)

With these two rules, the temperature of each room oscillates between the

value indicated in the state variable TemperatureSetPoint plus minus one Celsius

degree. The results of firing these are different sequence processes which will set to

HP COOLING or HP OFF the heat pump or set to V OPEN and V CLOSE

the corresponding valve.

Chapter 8. Examples of Home Appliance Services 75

Similarly, to heat a room there exist rules increase − temperature − 1 and

increase−temperature−2. Another feature of these rules is that they are designed

to avoid transitions of the Heat Pump from cooling to heating and vice-versa,

which can damage seriously the heat pump.

Formal Specification of the HVAC System

Generally, the presented rules generate services which are responsible to set the

correct mode in the heat pump and to open or close the corresponding valves. In

this section, the CSP model for these services is presented. Firstly, the models for

a Heat Pump and a Valve Controller are presented. Secondly, a service responsible

to cool a room is introduced. Finally, the introduced service is studied with the

refinement technique.

The HVAC System is composed by several services. However, to keep clear

concepts, only the Valve Controller and the Heat Pump are considered.

Firstly, the static representation of the HVAC system comprises the following

equations.

PossibleHeatPumpState ::= HP OFF | HP COOLING | HP HEATING
PossibleValveState ::= V OPEN | V CLOSE

VOCABULARY ::= action | event | parametervalue
V ACTION ::= openvalve | closevalve |
HP ACTION ::= startcooling | startheating | stop
V EVENT ::= eventvalvestate
HP EVEN ::= eventheatpumpstate

V CALL PROTOCOL = {(action, x) | x ∈ V ACTION }
V RETURN PROTOCOL = {(action, x) | x ∈ V ACTION }
V EVENT PROTOCOL = {(x , y , (z ,w)) |

x ∈ {event},
y ∈ {eventvalvestate},
z ∈ {parametervalue},
w ∈ PossibleValveState}

HP CALL PROTOCOL = {(action, x) | x ∈ HP ACTION }
HP RETURN PROTOCOL = {(action, x) | x ∈ HP ACTION }
HP EVENT PROTOCOL = {(x , y , (z ,w)) |

x ∈ {event},
y ∈ {eventheatpumpstate},
z ∈ {parametervalue},
w ∈ PossibleHeatPumpState}

Chapter 8. Examples of Home Appliance Services 76

For the Heat Pump there exists the HP process:

HP(hps) =
hp call .(action, startcooling) →
(hp event !(event , eventheatpumpstate,

(parametervalue,HP COOLING)) →
Skip < hps 6∈ {HP COOLING} > Skip);

hp return.(action, startcooling) →
HP(HP COOLING) |
hp call .(action, startheating) →
(hp event !(event , eventheatpumpstate,

(parametervalue,HP HEATING)) →
Skip < hps 6∈ {HP HEATING} > Skip);

hp return.(action, startheating) →
HP(HP HEATING) |
hp call .(action, stop) →
(hp event !(event , eventheatpumpstate,

(parametervalue,HP OFF)) →
Skip < hps 6∈ {HP OFF} > Skip);

hp return.(action, stop) →
HP(HP OFF)

And for the Valve, there exists the V process:

V (vs) =
v call .(action, openvalve) →
(v event !(event , eventvalvestate,

(parametervalue,V OPEN)) →
Skip < vs 6∈ {V OPEN } > Skip);

v return.(action, openvalve) →
V (V OPEN) |
v call .(action, closevalve) →
(v event !(event , eventvalvestate,

(parametervalue,V CLOSE)) →
Skip < vs 6∈ {V CLOSE} > Skip);

v return.(action, closevalve) →
V (V CLOSE)

Secondly, only the Valve Controller services has related activities.

Chapter 8. Examples of Home Appliance Services 77

V Activities(HP OFF ,V CLOSE) =
v event !(event , eventvalvestate, (parametervalue,V OPEN)) →
V Activities(HP OFF ,V OPEN) |
hp event !(event , eventheatpumpstate, (parametervalue,HP HEATING)) →
activity .heatroom.SUSPENDED →
V Activities(HP HEATING ,V CLOSE) |
hp event !(event , eventheatpumpstate, (parametervalue,HP COOLING)) →
activity .coolroom.SUSPENDED →
V Activities(HP COOLING ,V CLOSE)

V Activities(HP OFF ,V OPEN) =
v event !(event , eventvalvestate, (parametervalue,V CLOSE)) →
V Activities(HP OFF ,V CLOSE) |
hp event !(event , eventheatpumpstate, (parametervalue,HP HEATING)) →
activity .heatroom.ACTIVE →
V Activities(HP HEATING ,V OPEN) |
hp event !(event , eventheatpumpstate, (parametervalue,HP COOLING)) →
activity .coolroom.ACTIVE →
V Activities(HP COOLING ,V OPEN)

V Activities(HP HEATING ,V CLOSE) =
v event !(event , v eventvalvestate, (parametervalue,V OPEN)) →
activity .heatroom.ACTIVE →
V Activities(HP HEATING ,V OPEN) |
hp event !(event , hp eventheatpumpstate, (parametervalue,HP COOLING)) →
activity .coolroom.SUSPENDED → activity .heatroom.STOPPED →
V Activities(HP COOLING ,V CLOSE) |
hp event !(event , hp eventheatpumpstate, (parametervalue,HP OFF)) →
activity .heatroom.STOPPED →
V Activities(HP OFF ,V CLOSE)

V Activities(HP HEATING ,V OPEN) =
v event !(event , eventvalvestate, (parametervalue,V CLOSE)) →
activity .heatroom.SUSPENDED →
V Activities(HP COOLING ,V CLOSE) |
hp event !(event , eventheatpumpstate, (parametervalue,HP COOLING)) →
activity .coolroom.ACTIVE → activity .heatroom.STOPPED →
V Activities(HP COOLING ,V OPEN) |
hp event !(event , eventheatpumpstate, (parametervalue,HP OFF)) →
activity .heatroom.STOPPED →
V Activities(HP OFF ,V OPEN)

Chapter 8. Examples of Home Appliance Services 78

V Activities(HP COOLING ,V CLOSE) =
v event !(event , eventvalvestate, (parametervalue,V OPEN)) →
activity .coolroom.ACTIVE →
V Activities(HP COOLING ,V OPEN) |
hp event !(event , eventheatpumpstate, (parametervalue,HP HEATING)) →
activity .coolroom.STOPPED → activity .heatroom.SUSPENDED →
V Activities(HP HEATING ,V CLOSE) |
hp event !(event , eventheatpumpstate, (parametervalue,HP OFF)) →
activity .coolroom.STOPPED →
V Activities(HP OFF ,V CLOSE)

V Activities(HP COOLING ,V OPEN) =
v event !(event , eventvalvestate, (parametervalue,V CLOSE)) →
activity .coolroom.SUSPENDED →
V Activities(HP COOLING ,V CLOSE) |
hp event !(event , eventheatpumpstate, (parametervalue,HP HEATING)) →
activity .coolroom.STOPPED → activity .heatroom.ACTIVE →
V Activities(HP HEATING ,V OPEN) |
hp event !(event , eventheatpumpstate, (parametervalue,HP OFF)) →
activity .coolroom.STOPPED →
V Activities(HP OFF ,V OPEN)

Finally, the refinement technique allows to check if the service is going to

behave as expected.

HVAC Init =
(HP Init ||| V Init)
|[{hp event , v event}]|
(activity .coolroom.STOPPED → activity .heatroom.STOPPED →
V ActivitiesInit)
\ {hp event , v event}

The presented scenario is for a situation in wich is needed to cool a room when

the heat pump is in the OFF model and the corresponding valve is closed. The

result of firing rules decrease − temperature − 1 and decrease − temperature − 2 is

the sequence of actions OpenValve and StartCooling , as it is indicated in process

HVAC Start Cooling .

HVAC Start Cooling =
v call !(action, v openvalve) →
v return!(action, v openvalve) →
hp call?(action, hp startcooling) →
hp return!(action, hp startcooling) →
STOP

Chapter 8. Examples of Home Appliance Services 79

HVAC Start Cooling System =
HVAC Init
|[{v call , v return, hp call , hp return}]|
HVAC Start Cooling

HVAC Start Cooling Spec =
activity .coolroom.STOPPED →
activity .heatroom.STOPPED →
activity .coolroom.ACTIVE →
STOP

EVENT = {hp event , v event}
CALL = {v call , hp call}

RETURN = {v return, hp return}
TOTAL = CALL ∪ RETURN ∪ EVENT

HVAC Start Cooling Spec ⊑T HVAC Start Cooling System \ TOTAL
HVAC Start Cooling Spec ⊑F HVAC Start Cooling System \ TOTAL

The refinement tests are asserted, so the service is going to cool a room. In

the definition of HVAC Start Cooling Spec, the first to events communicated are

the initial values of the activities.

HVAC System Simulation Results

The HVAC system presented has been tested in the simulated home. Figure 8.7

shows how the temperature of each room of the simulated home is controlled by

the HVAC system. The plot shows that after the transitory (caused for all the

services being registered), the temperature of all home rooms is kept between 20

and 22 Celsius degrees, being the value of the temperature selector 21 degrees.

The rules presented include the use of three functions, is − home − temp − ok ,

add−temp−rooms−ok and rem−temp−rooms−ok . The first one returns a true

value if all the controlled rooms in the smart home are not with temperature values

neither too high nor low. The other two functions serve to monitor how many

rooms are in the correct range of temperature. The addition of these functions

ensures an efficient use of the HVAC System, being the heat pump in the OFF

mode whenever all the temperatures of the home rooms are inside the control

values. Table 8.2 plots the amount of time in which the heap pump is in each mode

and the average temperature of the home depending on the outside temperature.

In addition, it is possible to ensure that there was not any transition between

the COOLING to the HEATING mode and vice-versa, which will may damage

seriously the heat pump. The analysis of the data presented in table 8.2 shows

Chapter 8. Examples of Home Appliance Services 80

Home Temperature

0

5

10

15

20

25

30

35

40

45

1 27 53 79 105131157183209235261287

n

T
e
m

p
e
ra

tu
re

 (
ºC

)
Outside

Masterbedroom

KidBedroom

Livingroom

Bathroom

Homeoffice

Bathroom

Figure 8.7: Home Temperature Evolution

Table 8.2: Heat Pump Evolution

Outside Temp (oC) Home Temp (oC) COOLING OFF HEATING
40 21.46 87.51 % 14.29% 0.00%
23 21.55 12.50 % 87.50% 0.00%
7 21.59 0.00 % 57.89% 42.11%

that the closer the outside temperature is to the target temperature (21 oC), the

more time the heat pump is in the OFF mode, saving energy and hence, the users

money.

The focus of this example is on demostrating how a several devices can coop-

erate y a safe way. In fact, more that 30 threads run in the same virtual machine

without any problem. The example was run for a full night, without any degra-

dation of the system, showing the stability of the approach. The example shows

how the incormporation of CSP allows the implementation of stable and reliable

systems composed of an important number of threads in a seamless way.

8.3.2 AV System

The Audio Video System presented in this thesis is inspired by UPnP MediaSender

and MediaRenderer [15] specifications and it is composed by a DVD Player, a

Screen and an Amplifier.

By default, not all services of this subsystem are registered in the central

node. This is indicated with the X icon presented in some devices in the living

Chapter 8. Examples of Home Appliance Services 81

room simulated. To register all the services embedded in a device, it is needed to

press the second button on the mouse on the device icon and choose de Register

option. The same operation is required for deregistering a registered device, but

choosing the DeRegister option. This approach is intended to show the ad-hoc

nature of the implemented system, showing how new devices are registered on the

system.

Semantic Representation of the AV System

The DVD Player hosts a service called DVD PlayerService which offers four oper-

ations, Play , Pause and Stop for controlling the state variable TransportState and

SetMultimediaItem, for setting the value of the state variable CurrentMultimediaItem,

which is of type MultimediaItem. The service offers two output plugs, one for video

and other for audio. This service has two activities related, WatchingVideo and

ListeningAudio, one for the task of watching a video and another for listening

audio. The state of both activities depends on the value of the state variable

TransportState and whether the output plugs are connected or not, as it is shown

in table 8.3. These activities, WatchingVideo and ListeningAudio, have several

Table 8.3: State Diagram for Activity WatchingVideo

ActivityStatus TransportState
ACTIVE PLAYING

SUSPENDED PAUSED
STOPPED STOPPED

effects in the user. Figure 8.8 indicates that activity WatchingVideo requires the

sight sense from the user, while activity ListeningAudio requires the hearing sense.

The other two devices, the Screen and the Amplifier have attached two services,

ScreenService and AmplifierService. The first service offers an input plug of type

VideoType while the second one an input plug of type AudioType. These services

do not have any activity attached to them.

Rules to Control the AV System

The principal rules for controlling the AV System are intended to establish con-

nections between compatible plugs. To that end, rule connect − plug connects

plugs only if they have the same type.

Chapter 8. Examples of Home Appliance Services 82

owlsx:requiresUserSkill

rdf:type

owlsx:hasUserEffect

rdf:type

owlsx:hasUserEffect

owlsx:requiresUserSkill

owlsx:Sight

ListeningDVDAudioEffect1

owlsx:Hearing

WatchingDVDVideo

owlsx:UserActivity

WatchingDVDVideoEffect1

ListeningDVDAudio

Figure 8.8: Activities Related with the DVD Service

connect − plug =
(service : describedBy , ?inputService, ?inputProcess) ∧
(owlsx : hasInputPlug , ?inputProcess , ?inPlug) ∧
(owlsx : hasContentType, ?inputPlug , ?contentT) ∧
(service : presents , ?inputService, ?inputProfile) ∧
(owlsx : hasLocation, ?inputProfile, ?location) ∧
(owlsx : isLocatedIn, ?user , ?location) ∧
(service : describedBy , ?outputService, ?outputProcess) ∧
(owlsx : hasInputPlug , ?outputProcess , ?outPlug) ∧
(owlsx : hasContentType, ?outputPlug , ?contentT) ∧
(owlsx : communicatesOnPlug , ?multimediaItem, ?outputPlug) ∧
(owlsx : hasContentType, ?multimediaItem, ?contentT) ∧
⇒
bind(?binding , concat(?inPlug , ?outPlug , ?contentT , “InputPlugB ′′)
(rdf : type, ?binding , owlsx : InputPlugBinding)
(process : toParam, ?binding , ?inPlug)
bind(?valueOf , concat(“ValueOf ′′

, ?outPlug)
(process : theVar , ?valueOf , ?outPlug)
(process : valuesource, ?binding , ?valueOf)

The presented rule introduces context information since not only are compat-

ible plugs for establishing a connection needed, but also the presence of the user

in the same location as the input device. Services and locations are related by

means of the service profile, through property owlsx:hasLocation. For example,

there is not sense in establishing a connection between the DVD and the Screen

if the user is not in the same place as the Screen. In addition, compatible plugs

are determined by the value of state variable CurrentMultimediaItem, which is

linked with an output plug through property owlsx : communicatesOnPlug . The

Chapter 8. Examples of Home Appliance Services 83

result of the rule is an instance of class process : Binding which represents the

connection between the two plugs.

Formal Representation of the AV System

The formal specification of the AV System is rather more complicated than the

other systems because the triggers of the related activities depends, not only on

state variables, but also on connections. For that reason, the only formal model

for this system corresponds to the static view of the services involved, those are,

the DVD PlayerService, the ScreenService and the AmplifierService.

AV System Simulation Results

The rule that governs the establishment of connections considers the type of the

multimedia file selected in the DVD Service. Given an user in the same location

as the screen and the amplifier device, when an item composed of audio and video

is selected, the central node will establish two connections, one between the DVD

and the amplifier for the audio and another between the DVD and the screen for

the video. This case of use is presented in figure 8.9.

Figure 8.9: Simulation of the AV System

The ad-hoc nature of this example comes from two different sources. Firstly,

every time that the user changes its location, new devices are available for offering

Chapter 8. Examples of Home Appliance Services 84

useful services. Secondly, due to the ad-hoc nature of the PDA introduced, the

example shows how new devices are detected and as a consecuence, how new

services offered. Opposite, the example shows how services are removed every

time that some of its components disappear from the home network.

8.3.3 Communication System

The communication system is simple and it is formed only by one device which

corresponds with a telephone. The purpose of this system is to show how different

systems can interact between them.

Semantic Representation of the Communication

A service called PhoneService with all the functionality is hosted by the device.

This service has a state variable called PhoneState which is controlled through

two operations Answer and Hangup, to set its value to SPEAKING and IDLE

respectively.

Only one activity is associated with this service, called UserSpeaking . This

activity is of type UserActivity and requires the hearing sense of the user whenever

is active.

Rules for Controlling the Communication System

In this thesis, only one rule is dedicated to control the communication system.

This rule is intended to schedule incompatible activities. We have defined that

two activities are incompatible when they require the same skill from the user,

that is, they have the same value for property owlsx : requiresUserSkill . The

intention of this policy is to adapt activities to user context following ubiquitous

computing patterns [71, 5].

Particularly, whenever two active activities require the hearing sense from the

user, the implemented rule will suspend the oldest one, that is, the activity which

was active before.

Chapter 8. Examples of Home Appliance Services 85

incompatible − activities =
(owlsx : activityStatus , ?activity1,ACTIVE) ∧
(owlsx : hasUserEffect , ?activity1, ?userEffect1) ∧
(owlsx : requiresUserSkill , ?userEffect1,HEARING) ∧
(owlsx : activityStatus , ?activity2,ACTIVE) ∧
(owlsx : hasUserEffect , ?activity2, ?userEffect2) ∧
(owlsx : requiresUserSkill , ?userEffect2,HEARING) ∧
isOlder(?activity1, ?activity2)
⇒
suspendActivity(?activity1)

The consequence of rule incompatible−activities is the suspension of the oldest

activity which is determined with the function isOlder .

Formal Representation of the Communication System

The CSP specification of service PhoneService and its related activity follows the

same patterns as the previous systems presented in this chapter.

Simulation Results of the Communication System

The simulation of the communication system shows its interaction with the AV

System. As a scenario, an activity ListeningAudio is started. From the schema

plotted in figure 8.8, this activity requires the hearing sense from the user. When

this activity is active, action Answer is performed on service PhoneService which

starts activity UserSpeaking . This event fires rule incompatible − activities which

suspends activity ListeningAudio by invoking action Pause on service DVD Service.

Figure 8.10 illustrates this situation, showing how the PhoneService is ready to

be hang up and the DVD Service is waiting for button play to be pressed. The

rule works in such as way that in the opposite situation, when the UserSpeaking

is activated before activity ListeningAudio, the first one is not suspended, since

this activity does not offer a suspend trigger.

8.3.4 More Examples. Ac-Hoc Composition

Previous examples may seem a little bit static. To emphasise the ad-hoc character

of this work, another scenario is presented, involving mobile devices.

Let us imagine a home resident watching his favourite DVD film in his living

room alone. Before the end of the film, the user decides to go to bed, leaving

the living room and heading to the master bedroom. The system detects that

the user is not in the same location as the screen and hence, pauses the DVD by

ordering to suspend activity WatchingDVD . When the user arrives at the master

bedroom, he changes his mind and decides to keep watching the previous film,

Chapter 8. Examples of Home Appliance Services 86

but on his PDA. To that end, he switches on his PDA, which encapsulates two

services, one called PortableScreen with an input plug of type video, and another

called PortableSpeaker with an input plug of type audio. Subsequently, the system

discovers the PDA and, by means of rule connect − plug , two connections will be

established between the DVD and the PDA, one for video and another for audio.

In addition, the system is aware that the connections between the DVD, the Screen

and the Amplifier are not necessary, so it disconnects these services. Now the user

is ready to continue watching the film in his PDA.

To achieve this goal, a couple of new rules are needed.

Figure 8.10: Simulation of the Communication System

Chapter 8. Examples of Home Appliance Services 87

incompatible − connection =
(owlsx : isLocatedIn, ?user , ?userLoc) ∧
(rdf : type, ?activity , owlsx : UserActivity) ∧
(owlsx : needsParameter , ?activity , ?multimediaItem) ∧
(owlsx : communicatesOnPlug , ?multimediaItem, ?outputPlug) ∧
(process : theVar , ?valueOf , ?outputPlug) ∧
(process : valueSource, ?outputPlug , ?oldBinding))
(process : toParam, ?oldBinding , ?oldInputPlug) ∧
(owlsx : hasInputPlug , ?oldInputProcess , ?oldInputPlug))
(service : describedBy , ?oldInputService, ?oldInputProcess) ∧
(service : presents , ?oldInputService, ?oldInputProfile) ∧
(owlsx : hasLocation, ?oldInputProfile, ?oldLoc) ∧
(process : toParam, ?newBinding , ?newInputPlug) ∧
(owlsx : hasInputPlug , ?newInputProcess , ?newInputPlug))
(service : describedBy , ?newInputService, ?newInputProcess) ∧
(service : presents , ?newInputService, ?newInputProfile) ∧
(owlsx : hasLocation, ?newInputProfile, ?userLoc)
⇒
deleteConnection(?oldBinding)

incompatible − activities − 2 =
(rdf : type, ?activity , owlsx : UserActivity) ∧
(owlsx : activityStatus , ?activity ,ACTIVE) ∧
(owlsx : hasUserEffect , ?activity , ?userEffect) ∧
((owlsx : requiresUserSkill , ?userEffect ,HEARING) ∨

(owlsx : requiresUserSkill , ?userEffect , SIGHT))
(owlsx : locatedIn, ?activity , ?activityLoc) ∧
isEmpty(?activityLoc)
⇒
suspendActivity(?activity)

The first rule incompatible − connection is in charge of deleting a connection

when it is not needed. This is the case of the connection between the DVD and

the Screen when the user is in the masterbedroom and there is another connection

between the DVD and the PDA. It seems that the intention of the user is to use

the connection in which the input device is located in the same place as the user.

This makes the other connection unnecessary.

The second rule incompatible − activities − 2 suspends user activities that

require the user presence whenever the user leaves the same location as the activity

has.

This example focuses on how the system adaptes the services offered to the

user accordingly with its current activities, that is, the design for domestic use.

This chapter is intended to show how the proposal works by means of sev-

eral examples. Next chapter summarises this experience and all the information

Chapter 8. Examples of Home Appliance Services 88

presented in this thesis in order to present the conclusions extracted to the reader.

Chapter 9

Conclusions, Contributions, and Future

Work

In the previous chapters, it was proposed a framework for implementing ad-hoc

service composition in a home network considering the requirements established

in chapter 1. The proposal involves describing rich semantic services, which are

correctly implemented and capable of being deployed in heterogeneous devices.

9.1 Conclusions

This thesis has presented a novel framework for allowing seamless device coopera-

tion in ad-hoc environment. In fact, this thesis has presented the integration of an

ontology with a formal method in order to accomplish an smart home implemen-

tation. This smart home implementation meets a set of requirements needed for

that kind of systems to succed. Those requirement are found in the literature and

comprise the following topics: horizontal integration, spontaneous collaboration,

design for domestic use, reliability and low cost.

Horizontal integration is achieved by modelling home device functionality (com-

ponents) as services. Such services are described in OWL-S and a context based

ontology which gives a rich semantic and pragmatic knowledge about device func-

tionality. Due to the process view of OWL-S, such services can be specified in

the formal algebra CSP for service verification and implementation. With this

architecture, services act as the perfect building blocks for developing ubiquitous

applications. In order to facilitate communication, we have implemented a comu-

nication protocol based on S-Expressions which facilitate the integration of simple

and complex devices.

A great advantage of OWL-S is its process of standardisation at W3C. With the

advent of Internet, this feature will allow a seamless integration of home device

89

Chapter 9. Conclusions, Contributions, and Future Work 90

services with services outside the home environment, as they are described in

the same language. The only difference between the services described in this

thesis and the traditional OWL-S services implemented in WSDL is the grounding

interface. To overcome this challenge, the only needed update is to provide a

WSDL interface for home devices, as the profile and service model remain the

same. Another solution will propose the codification of SOAP messages with

S-Expressions.

The needed syntactical, semantic and pragmatic agreements for spontaneous

or ad-hoc collaboration are provided by the use of OWL, OWL-S and CONON.

This knowledge is managed by a rule based system which outputs new service

combinations to help users in their daily activities. As it is known, OWL-S is

an effort for achieving automatic web service composition. The use of OWL-S

permits the reuse of this vast knowledge to be applied in a smart home. Artificial

Intelligence techniques such as HTN planning can be applied in this project as

they have performed successfully with OWL-S [101].

The design for domestic use is the more open topic in this work. In the proposed

simulator, neither an attentive nor learning strategy has been proposed. The aim

of the simulator is two show how the knowledge supplied by services might be

used to achieve service composition, and not as a final implementation of the

smart home. As it has been introduced in the literature review chapter, several

strategies can be adopted to achieve this goal. In light of this, an important effort

is being carried out at Loughborough University with the aim of modelling user

intention through the use of the semiotics concept. It seems that this technique

can be applied as an upper layer on this thesis to improve the domestic use of this

project [44, 57].

One of the main reason for the introduction of CSP in this project is the

need of the achievement of a high level of reliability in the final implementation

of the smart home. The use of CSP allows the detection of typical problems

in distributed applications such as deadlocks and livelocks plus the prediction of

the behaviour of the system due to the refinement technique. This test can be

done automatically thanks to the model checker tools available, such as FDR2

and Probe [8]. In light of this and in connection with the provision of supporting

tools, a tool for specifying services in the ontology introduced in chapter 5 has

been proposed. The tool is an extension of the OWL-S pluging [49] for Protege

[21] which provides a connection with FDR2 to check if the services specified are

deterministic and free of deadlock and livelock [89].

The cost reduction is intended to stem from the achievement of the previous

requirements. Another reason of the introduction of CSP is the possibility of ob-

taining lightweight implementations, close as hardware as much as possible. This

Chapter 9. Conclusions, Contributions, and Future Work 91

feature, plus the inclusion of S-Expressions, may reduce the final cost of the de-

vices capable of supporting the technology proposed in this thesis. In addition, the

existence of automatic tools for code generation from CSP specifications [87, 85]

will permit a rapid development of applications. Although multiple solutions can

be used for providing communication between different implementations of CSP

such as RMI or CORBA [92], the utilisation of a protocol in S-Expressions allows

better interoperation between different service implementations, independently of

their nature, as XML does.

9.2 Contributions

The principal contribution of this thesis is the achievement of a framework capable

of spontaneous and correct integration of heterogeneous components in an ad-hoc

environment.

Although ontologies and formal methods have been combined before for web

service composition, this is the first time that OWL-S, context ontologies and CSP

are combined. In addition, the application of this combination is beyond the web

services world, being applicable to any ad-hoc environment. The flexibility given

by the OWL-S ontology, plus the wide range of possible CSP implementations

bring several advantages when developing ubiquitous computing applications.

Firstly, the enhanced semantics achieved with the combination of OWL-S and

CSP establishes a direct path between the ontological representation to the fi-

nal implementation of the service, opening the door for the creation of tools for

automatic code generation. For example, this means that will be possible to es-

tablish a clear relation between the OWL-S representation of a light switch and

its hardware implementation in an FPGA programmed in Handle-C.

Secondly, the correspondence between a OWL-S representation and its CSP

specification permits the verification of service behaviour before its implementa-

tion. In addition, intelligent systems may validate service compositions specified

in OWL-S with the refinement technique, understanding how the service is going

to behave before its execution. This aspect becomes particularly interesting when

studying unsuspected behaviours between different subsystems, difficulty known

as feature interaction problem [68, 70]. Both possibilities enhance to a great extent

the reliability of the final system and hence, reduce the costs derived from system

failures.

Thirdly, the inclusion of S-Expresion as the framework for message communi-

cation allows a flexible and lightweight protocol for service communication. This

scheme notably helps in the achievement of the requirements of horizontal inte-

gration, spontaneous collaboration and low cost implementation as it combines

Chapter 9. Conclusions, Contributions, and Future Work 92

the independence of XML with the advantages of a lightweight message parsing

procedure.

In the fourth place, a JCSP based service implementation has been presented

in order to show how it is possible to obtain service implementations from service

specifications in CSP.

Finally, a framework was proposed to understand what are the key require-

ments when an smart home needs to be implemented. Accordingly, this thesis

proposes a methodology for the combination of formal methods and ontologies.

The aim of this methodology is to procure the seamless combination of an ontology

and a formal method which best satisfies the requirements for an smart home.

9.3 Future Work

The future lines of research from this project are addressed to overcome the prin-

cipal problems found.

Firstly, the verification of services compositions is a expensive task in time and

resources, making sometimes impracticable the refinement analysis before service

execution. Solutions to overcome this problem points to the optimisation of the

CSP service definitions in order to increase the performance of the model checker.

Secondly, the refinement technique takes only into account context information

related to state variables. It would be worth the incorporation of techniques to

translate more context information to CSP, and hence, improve the verification of

the final system. However, this line of research has to consider the time constrain

needed for the model checker and explained in the previous paragraph.

Finally, it will be desirable to develop a set of mechanisms for the achievement

of a service implementation from the OWL-S representation. Special interest

should be taken to hardware implementations, as they will notably reduce the

costs derived from a final smart home product.

Glossary

CSP (Communicating Sequential Processes) A mathematical theory for describ-

ing Parallel applications developed by C.A.R.Hoare. It is possible to prove

correctness of programs described using CSP.

Formal Method Collection of mathematical structures, together with a precise syntax for

defining instances of those structures and organising them into domain-

specific abstractions. It should be associated with a method for eliciting

these abstractions and transforming them.

JCSP (Java CSP) JCSP is a binding of the occam/CSP parallel computing model

for Java. Basic packages provide processes, channels, parallel and choice

(ALT) constructors. A channel interface to the Java AWT components is

also included.

Jess (Java Expert System Shell) The Java Expert System Shell. You write declar-

ative rules, if/then, and the system generates code that does artificial rea-

soning to find solutions to your constraints. The Jess language is a sort of

Javafied Lisp.

Jini Sun’s protocol for devices to identify each other using TCP/IP protocol. It

will be used in small devices like telephones. It allows you to plug a new

device into the system while everything is running. The device automatically

finds out about everything else on the net and vice versa. The device can

create Java objects that can be passed around the net. This allows other

devices on the net to start using the new device and vice versa without

needing to install any software.

occam The occam language was designed to implement the CSP model for the

Transputer processor.

93

Chapter 9. Conclusions, Contributions, and Future Work 94

Ontology A branch of study concerned with the nature and relations of being, or things

which exist.

OWL (Ontology Web Language) A set of markup languages which are designed for

use by applications that need to process the content of information instead

of just presenting information to humans. OWL ontologies describe the

hierarchical organization of ideas in a domain, in a way that can be parsed

and understood by software. OWL has more facilities for expressing meaning

and semantics than XML, RDF, and RDF-S, and thus OWL goes beyond

these languages in its ability to represent machine interpretable content on

the Web. OWL is part of the W3C recommendations related to the Semantic

Web.

OWL-S (Ontology Web Language for Services) a core set of markup language con-

structs for describing the properties and capabilities of Web services in un-

ambiguous, computer-interpretable form. OWL-S is based on ontologies of

objects and concepts defined using OWL.

Petri Net A Petri net (also known as a place/transition net or P/T net) is one of several

mathematical representations of discrete distributed systems. As a modeling

language, it graphically depicts the structure of a distributed system as a

directed bipartite graph with annotations.

RDF (Resource Description Framework) RDF is designed to provide an infrastruc-

ture supporting Meta Data across many WWW-based activities. RDF is the

result of a number of Meta Data communities bringing together their needs

to provide a robust and flexible architecture for supporting Meta Data on

the Internet and the WWW. Example applications include site maps, con-

tent ratings, stream channel definitions, search engine data collection, digital

library collections, and distributed authoring. RDF allows different appli-

cation communities to define the Meta Data property set that best serves

the needs of each community. RDF provides a uniform and interoperable

means to exchange the Meta Data between programs and across the WWW.

Furthermore, RDF provides a means for publishing both a human-readable

and a machine-understandable definition of the property set itself. RDF uses

XML as the transfer syntax in order to leverage other tools and code bases

being built around XML.

Semantic Web The Web of data with meaning in the sense that a computer program can

learn enough about what the data means to process it.

Chapter 9. Conclusions, Contributions, and Future Work 95

S-Expression A s-expression is the basic syntactic unit of Lisp in its textual form: either

a list, or Lisp atom. Many Emacs commands operate on sexps. The term

‘sexp’ is generalized to languages other than Lisp, to mean a syntactically

recognizable expression.

SOAP (Simple Object Access Protocol) A lightweight, XML based protocol for

passing objects between components in a decentralized distributed environ-

ment. The SOAP protocol includes an envelope that defines a framework

for describing what is in a message and how to process it, a set of encod-

ing rules for expressing datatypes, and a convention for representing remote

procedure calls and responses. SOAP may use HTTP or other protocols as

the transport mechanism.

UDDI (Universal Description, Discovery and Integration) business registry and

repository for storing information about businesses and the electronic ser-

vices they offer. UDDI creates a standard interoperable platform that en-

ables companies and applications to quickly, easily and dynamically find and

use Web Services over the internet.

UPnP (Universal Plug and Play) Universal Plug and Play is a networking archi-

tecture developed by a consortium of companies to ensure easy connectivity

between products from different vendors. UPnP devices should be able to

connect to a network automatically, handling identification and other pro-

cesses on the fly. The standards developed by the UPnP Forum are media-,

platform-, and device-independent.

URI (Universal Resource Identifier) The string (often starting with http:) that is

used to identify anything on the Web.

W3C A standards organization which produced the standards for XML, XSL, and

HTTP among many others.

Web Services A service is a component performing a task, perhaps over a network. A web

service can be identified by a URI. Its public interfaces and bindings are

described using XML. It’s definition can be discovered by clients who can

interact with the web service using it’s definition.

WSDL (Web Service Description Language) WSDL is an XML vocabulary for de-

scribing network services as a set of endpoints operating on messages. The

operations and messages are described abstractly, and then bound to a con-

crete network protocol and message format. Note that the acronym WSDL

is commonly pronounced ”WizDel”.

Chapter 9. Conclusions, Contributions, and Future Work 96

WSML (Web Service Modeling Language) a language framework for semantic Web

services, based on the conceptual model of WSMO. WSML provides means

to describe semantic Web services and its related aspects, i.e. ontologies,

web Services, goals, and mediators. Those descriptions aim at automating

Web service related tasks such as discovery, mediation and invocation

WSMO (Web Service Modeling Ontology) WSMO is a meta-model for Semantic Web

services related aspects.

XML (eXtended Markup Language) A text based markup language that is fast

becoming the standard for data interchange. The language is extensible

because you are free to use any tags you wish to describe the data. XML is

a descendant of SGML.

Bibliography

[1] Aura Project at the Carnegie Mellon University. http://www-2.cs.cmu.

edu/~aura/.

[2] AUTOHAN Web Site. Available at: http://www.cl.cam.ac.uk/

Research/SRG/HAN/AutoHAN/.

[3] Business Process Execution Language for Web Services version 1.1,

(BPEL4WS). Available at: http://www-128.ibm.com/developerworks/

library/specification/ws-bpel/.

[4] CABA Standards and Protocols. Available at: http://www.caba.org/

standard/index.html.

[5] Chart of Patterns in Ubiquitous and Context Computing. Available at:

http://kettle.cs.berkeley.edu/ubicomp.

[6] Communicating Threads for Java (CTJ). http://www.ce.utwente.nl/

javapp/.

[7] Endeavour Project at the University of Berkeley. Available at: http://

endeavour.cs.berkeley.edu.

[8] Formal Systems Europe Ltd. Available at: http://www.fsel.com.

[9] Handel-C, Software Compiled System Design. Available at: http://www.

celoxica.com/methodology/handelc.asp.

[10] The Home n Project. Available at http://architecture.mit.edu/house_

n/intro.html.

97

Bibliography 98

[11] ISO/IEC JTC1 SC25 WG1 Home Electronic System Standards. Available

at: http://hes-standards.org/.

[12] Java Communicating Sequential Processes (JCSP). Available at: http:

//wotug.ukc.ac.uk/parallel/languages/java/jcsp/.

[13] Java Media Framework API (JMF). Available at: http://java.sun.com/

products/java-media/jmf/.

[14] Jess, The Rule Egine for the Java Platform. Available at: http://www.

jessrules.com.

[15] MediaServer v 1.0 and MediaRenderer v 1.0. Available at: http://www.

upnp.org/standardizeddcps/mediaserver.asp.

[16] OSGi Web Site. Available at: http://www.osgi.org/.

[17] OWL-based Web Service Ontology, OWL-S. Available at: http://www.

daml.org/services/owl-s/.

[18] Oxygen Project at the Massachusetts Institute of Technology. Available at:

http://oxygen.lcs.mit.edu.

[19] Pebbles in Oxygen and Autohan. Available at: http://www.cl.cam.ac.

uk/Research/SRG/HAN/pebbles/.

[20] Portolano Project at the University of Washington. Available at: http:

//portolano.cs.washington.edu.

[21] Protege. Available at: http://protege.standford.edu/.

[22] Resource Description Framework (RDF). Available at: http://www.w3c.

org/RDF/.

[23] Semantic Web at W3C. Available at: http://www.w3.org/2001/sw/.

[24] Task Computing. http://taskcomputing.org/.

[25] The Adaptative House at Colorado University. Available at: http://www.

cs.colorado.edu/~mozer/house/.

[26] The Occam Archive. http://vl.fmnet.info/occam/.

[27] The Web Ontology language (OWL). Available at: http://www.w3.org/

2004/OWL/.

[28] UPnP Forum. Available at: http://www.upnp.org.

Bibliography 99

[29] UPnP Specification of HVAC Systems (HVAC 1.1). Available at: http:

//www.upnp.org/standardizeddcps/hvac.asp.

[30] Web Service Modeling Ontology, WSMO. Available at: http://www.wsmo.

org.

[31] Web Services for Business Process Design (XLANG). Available at: http:

//www.gotdotnet.com/team/xml-wsspecs/xlang-c/default.htm.

[32] X-10 Forum. Available at: http://www.x10.com/support/tech_index.

html.

[33] Inside the Smart Home, chapter 2. Harper, R, 2003.

[34] J-R Abrial, S. A Schuman, and B. Meyer. A Specification Language, in On

the Construction of Programs. Cambridge University Press, 1980.

[35] J. Arias Fisteus. Definition of a Formal Model for the Verification of Busi-

ness Processes. PhD thesis, Universidad Carlos III de Madrid, Madrid,

Spain, Sep 2005. In Spanish.

[36] G. Banavar and A. Bernstein. Software Infrastructure and Design Chal-

lenges for Ubiquitous Computing Applications. Communications of the

ACM, 45(12):92–96, Dec 2002.

[37] B. Boehm and V. R Basili. Software Defect Reduction Top 10 List. IEEE

Computer, 34(1):135–137, Jan 2001.

[38] J. Bohn, V. Coroama, M. Langheinrich, F. Mattern, and M. Rohs. Social,

Economic, and Ethical Implications of Ambient Intelligence and Ubiquitous

Computing. In W. Weber, J. Rabaey, and E. Aarts, editors, Ambient Intel-

ligence, pages 5–29. Springer-Verlag, 2005.

[39] N. Brown and P.H. Welch. An Introduction to the Kent C++CSP Library. In

CPA 03: Communicating Process Architectures 2003, Concurrent Systems

Engineering Series, pages 139–156, Enschede, Netherlands, Sep 2003. IOS

Press.

[40] N. C. Brown. C++CSP Networked. In CPA 04: Communicating Process

Architectures 2004, pages 185–200, Oxford, UK, Sep 2004. IOS Press.

[41] L Cardelli and A.D Gordon. Mobile Ambients. In First International Confer-

ence on Foundations of Software Science and Computation Structure, March

1998.

Bibliography 100

[42] H. C. B. Cheng. Applying Formal Methods in Automated Software De-

velopment. Journal of Computer and Software Engineering, 2(2):137–164,

1994.

[43] E. Chirstopoulou and A. Kameas. GAS Ontology: An Ontology for Col-

laboration among Ubiquitous Computing Devices. International Journal of

Human - Computer Studies, 62(5):664 – 685, May 2005.

[44] J. H. Connolly, I. W. Phillips, and L. Hawizy. A Semiotic Framework for Re-

search into Self-Configuring Computer Networks. In IWOS 05: Proceedings

of the 8th International Workshop on Organisational Semiotics, Tolouse,

France, Jun 2005.

[45] D. Cook, M. Youngblood, E. Heierman, K. Gopalratnam, S. Rao, A. Litvin,

and F. Khawaja. Mavhome: An Agent-Based Smart Home. In PerCom 03:

Procceedings of 1st IEEE International Conference ov Pervasive Computing

and Communications, pages 521 – 524, Fort Worth, Texas, USA, Mar 2003.

IEEE Computer Society.

[46] J. Davies and C. Crichton. Concurrency and Refinement in the Unified Mod-

eling Language. Formal Aspects of Computing, 15(2-3):118–145, November

2003.

[47] N. Davies and H. Gellersen. Beyond Prototypes: Challenges in Deploying

Ubiquitous Systems. IEEE Pervasive Computing, 1(1):26–35, Jan 2002.

[48] W. K. Edwards and R. E. Grinter. At Home with Ubiquitous Computing:

Seven Challenges. In UbiComp ’01: Proceedings of the 3rd international

conference on Ubiquitous Computing, Atlanta, Georgia, USA, Sep-Oct 2001.

Springer-Verlag.

[49] D. Elenius, G. Denker, D. Martin, F. Gilham, J. Khouri, S. Sadaati, and

R. Senanayake. The OWL-S Editor - A Development Tool for Semantic

Web Services. In ESWC 05: Proceedings of the 2nd European Semantic Web

Conference, pages 78–92, Heraklion, Greece, May 2005. Springer Berlin.

[50] M. Esler, J. Hightower, T. Anderson, and G. Borriello. Next Century Chal-

lenges: Data-Centric Networking for Invisible Computing. The Portolano

Project at the University of Washington. In MobiCom ’99: Proceedings of

the 5th annual ACM/IEEE international conference on Mobile computing

and networking, pages 256–262, Seattle, Washington, United States, Aug

1999. ACM Press.

Bibliography 101

[51] W. Fokkink, I. van Langevelde, and Y. Usenko. How can I be Sure that my

DVD Player Understands my TV? ERCIM News 47, pages 34–35, Oct

2001. Available at: http://www.ercim.org/publication/Ercim_News/

enw47/fokkink.html.

[52] E. Friedman-Hill. Jess in Action : Java Rule-Based Systems (In Action

Series). Manning Publications, 2002.

[53] A. Fuggetta. Software Technologies, Embedded Systems and Dis- tributed

Systems. A European Strategy Towards an Ambient Intelligent Environ-

ment. Technical report, Information Society Technologies (IST), Jun 2002.

[54] W. Green, D. Gyi, R. Kalawsky, and D. Atkins. Capturing User Require-

ments for an Integrated Home Environment. In NordiCHI ’04: Proceedings

of the Third Nordic Conference on Human-Computer Interaction, pages 255–

258, Tampere, Finland, Oct 2004. ACM Press.

[55] S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer, D. Culler, N. Borisov,

S. Czerwinski, R. Gummadi, J. Hill, A. Joseph, R. H. Katz, Z. M. Mao,

S. Ross, B. Zhao, and R. C. Holte. The Ninja Architecture for Robust

Internet-Scale Systems and Services. IEEE Computer Networks. Special

Issue on Pervasive Computing, 35(4):473–497, Mar 2001.

[56] R. Grimm, J. Davis, E. Lemar, M. MacBeth, S. Swanson, T. Anderson,

B. Bershad, G. Borriello, S. Gribble, and D. Wetherall. System Support

for Pervasive Computing Applications. ACM Transactions on Computer

Systems, 24(2):421–486, Nov 2004.

[57] L. Hawizy, J. H. Connolly, and I. W. Phillips. Intention Modeling: A Semi-

otic View. In Proceedings of the IADIS International Conference. Applied

Computing, San Sebastián, Spain, Feb 2006.

[58] C. Heitmeyer. A panacea or Academic Poppycock: Formal Methods Revis-

ited. In HASE ’05: Proceedings of the Ninth IEEE International Symposium

on High-Assurance Systems Engineering, pages 3–7, Heidelberg,Germany,

Oct 2005. IEEE Computer Society.

[59] S. Helal. Standars for Service Discovery and Delivery. IEEE Pervasive

Computing, 1(3):95–100, 2002.

[60] S. Helal. Programming Pervasive Spaces. IEEE Pervasive Computing,

4(1):84–87, Mar 2005.

Bibliography 102

[61] G.H Hilderink, A.W.P Bakkers, and J.F Broenink. A Distributed Real-

Time Java System Based on CSP. In Proceedings of the Third IEEE Inter-

national Symposium on Object-Oriented Real-Time Distributed Computing,

Mar 2000.

[62] Hoare, C.A.R. Communicating Sequential Processes. Prentice Hall Interna-

tional, 2003.

[63] S. S. Intille. Designing a Home of the Future. IEEE Pervasive Computing,

1(2):76–82, Apr 2002.

[64] IST Advisory Group (ISTAG). Ambient Intelligence: From Vision to Re-

ality. In G. Riva, F. Vatalaro, F. Davide, and M Alcañiz, editors, Ambient

Intelligence. IOS Press, 2005.

[65] L. M. Jessup and D. Robey. The Relevance of Social Issues in Ubiquitous

Computing Environments. Communications of the ACM, 45(12):88–91, Dec

2002.

[66] L. Jiang, L. Da-You, and B. Yang. Smart Home Research. In Third Interna-

tional Conference on Machine Learning and Cybernetics, Shanghai, China,

Aug 2004.

[67] S. D. Johnson. Formal Methods in Embedded Design. IEEE Compututer

Society, 36(11):104–106, Nov 2003.

[68] D. O. Kech and P. J. Kuehn. The Feature and Service Interaction Problem

in Telecomunications Systems: A Survey. IEEE Transactions on Software

Engineering, 24(10):779–796, Oct 1998.

[69] S. Koide, J. Aasman, and S Haflich. OWL vs. Object Oriented Programming.

In SWESE 05: Proceedings of the International Workshop on Semantic Web

Enabled Software Engineering, Galway, Ireland, Nov 2005.

[70] M. Kolberg, E. H Magill, and M. Wilson. Compatibility Issues between Ser-

vices Supporting Networked Appliances. IEEE Communications Magazine,

41(11):136–147, Nov 2003.

[71] J. A. Landay and G. Borriello. Design Patterns for Ubiquitous Computing.

IEEE Compututer Society, 36(8):93–5, Aug 2003.

[72] Y. Lee, S. A. Chun, and J. Geller. Web-Based Semantic Pervasive Comput-

ing Services. IEEE Intelligent Informatics Bulletin, 4(2):4–15, Dec 2004.

Bibliography 103

[73] K. Lyytinen and Y. Yoo. Issues and Challenges in Ubiquitous Computing.

Communications of the ACM, 45(12):63–66, Dec 2002.

[74] R. Masuoka, B. Parsia, Y. Labrouu, and E. Sirin. Ontology-Enabled Per-

vasive Computing Applications. IEEE Intelligent Systems, 18(5):68–72, feb

2003.

[75] S. McIlraith and D. Mandell. Comparison of DAML-S and BPEL4WS.

Technical report, Knowledge Systems Lab, Stanford University, 2002.

[76] D. Moldt and J. Ortmann. A Conceptual and Practical Framework for Web-

Based Processes in Multi-Agent Systems. In AAMAS’04: Proceedings of the

Third International Joint Conference on Autonomous Agents and Multiagent

Systems, pages 1464–1465, New York, New York, Aug 2004. IEEE Computer

Society.

[77] M. C. Mozer. The Neural Network House: An Environment that Adapts

to its Inhabitants. In Proceedings of the American Association for Artificial

Intelligence Spring Symposium on Intelligent Environments, pages 110–114,

Menlo, Park, CA, 1998. AAAI Press.

[78] T. Murakami. Establishing the Ubiquitous Network Environment in Japan.

Technical Report 66, Nomura Research Institute, Jul 2003.

[79] E.D. Mynatt, J. Rowan, S. Craighill, and A. Jacobs. Digital Family Por-

traits: Providing Peace of Mind for Extended Family Members. In Pro-

ceedings of the ACM Conference on Human Factors in Computing Systems,

Seattle, Washington, USA, Jun 2001. ACM Press.

[80] S. Narayanan and S. A. McIlraith. Simulation, Verification and Automated

Composition of Web Services. In WWW ’02: Proceedings of the 11th in-

ternational conference on World Wide Web, pages 77–88, Honolulu, Hawaii,

USA, May 2002. ACM Press.

[81] M. Newman. Software Errors Cost U.S. Economy $59.5 Billion Annually

NIST Assesses Technical Needs of Industry to Improve Software-Testing.

Technical report, National Institute of Standards and Technology (NIST),

2002.

[82] J. O’Brien, T. Rodden, M. Rouncefield, and J Hughes. At Home with

the Technology: An Ethnographic Study of a Set-Top-Box Trial. ACM

Transactions in Computer-Human Interactaction, 6(3):282–308, Sep 1999.

[83] C. Perkins. RTP: Audio and Video for the Internet. Addison-Wesley, 2003.

Bibliography 104

[84] J. L. Peterson. Petri Nets. ACM Computing Surveys, 9(3):223–252, 1977.

[85] J. D. Phillips and G. S. Stiles. An Automatic Translation of CSP to Handel-

C. In CPA 04: Communicating Process Architectures 2004, pages 19–38,

Oxford, UK, Sep 2004. IOS Press.

[86] K. Pugh. Configuration, Discovery and Mapping of a Home Network. IEE

Proceedings - Software, 150(2):155–160, Apr 2003.

[87] V. Raju, L. Rong, and G. S. Stiles. Automatic Conversion of CSP to CTJ,

JCSP, and CCSP.

[88] J.I. Rendo and I.W. Phillips. Pervasive Computing with OWL-S and a

Formal Method. Conference Supplement of the UBICOMP 05 hold in Tokyo,

Japan, Sep 2005.

[89] J.I. Rendo Fernández and I.W. Phillips. Ad-Hod Networking with OWL-S

and CSP. In IEEE IS 06: Proceedings of 3rd IEEE Conference on Intelligent

Systems, London, UK, Sep 2006. IEEE Computer Society.

[90] J.I Rendo Fernández, I.W. Phillips, and A.W. Lawrence. A CSP Based

Ontology for a Smart Home. In Proceedings of the IADIS International

Conference WWW/Internet 2004, Madrid, Spain, October 2004.

[91] G. G. Richard. Service Advertisement and Discovery: Enabling Universal

Device Cooperation. IEEE Internet Computing, 4(5):18–26, Sep 2000.

[92] A. Ripke, A.R Allen, and Y. Feng. Distributed Computing using Channel

Communications in Java. In CPA 03: Communicating Process Architec-

tures 2003, Concurrent Systems Engineering Series, pages 1–16, Enschede,

Netherlands, Sep. IOS Press.

[93] R. Rivest. S-Expressions. Available at: http://theory.lcs.mit.edu/

~rivest/sexp.txt, Nov 1997.

[94] A. W Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.

[95] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web

Services using Process Algebra. In ICWS ’04: Proceedings of the IEEE In-

ternational Conference on Web Services (ICWS’04), San Diego, California,

USA, Jun 2004. IEEE Computer Society.

[96] W Schonfeld. Interacting Abstract State Machines. In the 28th Annual

Conference of the German Society of Computer Science, Technical Report,

Magdeburg University, 1998.

Bibliography 105

[97] M. Schweigler, F. Barnes, and P.H. Welch. Flexible, Transparent and Dy-

namic occam Networking with KRoC.net. In CPA 03: Communicating Pro-

cess Architectures 2003, pages 199–224, Enschede, Netherlands, Sep 2003.

IOS Press.

[98] F. Scuglik. Formal Specification of Shared Variables Using CSP. In

ECBS’04: Proceedings of the 11th IEEE International Conference and

Workshop on the Engineering of Computer-Based Systems, Brno, Czech Re-

public, May 2004. IEEE Computer Society.

[99] B. Sharpe. Information Appliances. An Introduction. Available

at: http://www.appliancestudio.com/publications/whitepapers/

ApplianceIntro.pdf, Jun 2001. Apliance Studio Ltd. White Paper.

[100] I. Siio, J. Rowan, and E. Mynatt. Peek-a-drawer: Communication by Fur-

niture. In Extended Abstracts of the ACM Conference on Human Factors

in Computing Systems, pages 582–583, Minneapolis, Minnesota, USA, Apr

2002. ACM Press.

[101] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN Planning for Web

Service Composition Using SHOP2. Journal of Web Semantics, 1(4):377–

396, 2004.

[102] J. P. Sousa and D. Garlan. Aura: An Architectural Framework for User

Mobility in Ubiquitous Computig Environments. In Software Architecture:

System Design, Development and Maintance. Proceedings of the 3rd Working

IEEE/IFIP Conference on Software Architecture, pages 29–43, Montreal,

Canada, Aug 2002. Kluwer, B.V.

[103] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung. Ontology Based Con-

text Modeling and Reasoning using OWL. In PERCOMW ’04: Proceedings

of the Second IEEE Annual Conference on Pervasive Computing and Com-

munications Workshops, Orlando, FL, USA, Orlando,FL, USA 2004. IEEE

Computer Society.

[104] M. Weiser. The computer for the 21st century. Scientific American,

265(3):66–75, Jan 1991.

[105] P. H. Welch. Java Threads in the Light of occam/CSP. pages 259–284, Apr

1998.

[106] P.H. Welch, J.R. Aldous, and J. Foster. CSP networking for java (JCSP.net).

In ICCS 02: International Conference on Computational Science, pages 695–

708, Apr 2002.

Bibliography 106

[107] P.H Welch and D.C. Wood. The Kent Retargetable occam Compiler. In

Parallel Processing Developments, Proceedings of WoTUG 19, pages 143–

166, Nottingham, UK, Mar 1996. IOS Press.

[108] F. Zhu, M.W. Mutka, and L.M. Ni. Service Discovery in Pervasive Comput-

ing Environments. IEEE Pervasive Computing, 4(4):81–90, Oct 2005.

