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Abstract 

The present thesis is primarily motivated by the will to provide help for decision

making on the overall layout of a house or a housing development in the very 

early stages of design from the point of view of energy efficiency and thermal 

comfort. This study contributes towards a deeper understanding of thermal 

interactions between a house and its adjacent enclosed open spaces. It 

addresses the contribution of the yard design, i.e. placement, size and type 

towards the development of a comfortable microclimate within the yard itself, as 

well as the reduction of total energy demands of the house for mechanical 

heating and cooling. The focus is put on the applicability of the results and 

findings are expressed in form of a decision-making aid. 

This research also makes empirical and analytical assessments on the validity of 

some existing methods and tools that are used for understanding the nature of 

microclimates in small scales and proposes methods for their improvement, 

particularly when used in conjunction with standard tools for the assessment of 

indoor climates. These methods are also demonstrated through an exemplary 

application in an archetypal setting and the results of the exemplary case are 

analysed to reach a decision on the most advisable design layouts for the 

buildings in the example. 

As a result, this work emphasises on the importance of private outdoor spaces 

and how their careful design can benefit occupiers, investors and the 

environment. 

Keywords: simulation, outdoor thermal comfort, energy consumption, house/yard 

configuration, courtyard, Iran, Isfahan 
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1.1 Necessity of the study 
"Pairi daeza" is an Old Persian term, meaning a garden enclosed with walls. From 

this origin are the words "pardis" in Modern Persian, "paradis" in Old French, 

"paradisus" in Late Latin, ''paradeisos'' in Greek, "firdaus" in Arabic and ''paradise'' in 

English (Skeat 2007). 

Figure 1.1 Paradise; A garden enclosed with walls (researcher's personal collection) 

A private Eden garden has deep roots in Iranian art and culture. An Iranian mind's 

obsession with combining wall and garden, brick and flower, mass and space, man-

made and natural and private and open has resulted in a phenomenon called "the 

Iranian courtyard". An Iranian courtyard is more than just a garden that is used for 

growing vegetables and flowers. It is more like one of the rooms of the house. In fact, 

it is the biggest, the most central, the most public and, therefore, the most important 
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room of the house. It is the only place in the house that none of the family members 

need anybody else's permission to enter and, for that reason, it is the most 

frequently used part of the house and the centre of the family life. It is where, when 

weather permits, most of the family activities take place, activities such as family 

gathering, dining, entertaining guests, praying and sleeping. 

Figure 1.2 Fin mansion, Kashan, Isfahan province, Iran (Personal collection) 

Central courtyards have been the focal point of the Iranian house design for 

centuries (Pope 1982). Courtyard houses have comprised the dominant majority of 

all houses in Iranian cities and in many rural parts (Memarian 1998). It was only in 

the twentieth century that some other alternative designs started to gain popularity. 

The new generation of Iranian architects, the graduates of European schools of art 

and engineering, introduced new fashionable designs that were faster and cheaper 

to build and easier to host the modern age needs and lifestyle (Heydari 2000). With 

the help of Governmental legislations and investments, this modern fashion grew 
19 



very quickly and took over most of the cities in Iran in less than 50 years. The fast 

growing oil industry and the fascinating idea of complete four season comfort in the 

modern houses sounded convincing enough to Iranians to convert each central 

courtyard house to a multi-storey complex of flats. (Malekzadeh 2002) 

Figure 1.3 Modern Tehran, Iran (personal collection) 

The simultaneous occurrence of an economic crisis (energy crisis) and a cultural one 

(postmodern movement) in the 1970s society of Iran made policymakers, designers 

and the public reconsider their fascination with this lifestyle. The Energy crisis, 

although provided the country with a vast amount of money in a very short time, led 

to an increasingly faster draining of oil resources and the general worry of the 

exhaustion of these reserves. Postmodernism, on the other hand, triggered the 

reminiscence of a serene, beautiful and comfortable living environment in historical 

traditions of architecture. 
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Ever since then, the discussion of choosing one of these two trends (traditional 

central courtyard or modern western-style, with 'yard) against the other has been 

going on among Iranian designers. Some have looked at this matter from a cultural 

perspective, some from an economic one and others from social, political, 

aesthetical et cetera. One of the important aspects of this discussion has always 

been the matter of energy efficiency and thermal comfort. Some have claimed that 

central courtyard houses are more energy efficient and their open spaces 

(courtyards) are more thermally comfortable compared to block houses of similar 

size and construction (Heydari 2000). Some accept the higher thermal comfort 

sensed within the courtyards but argue that this comfort is not worth the extra money 

spent on heating and cooling of central designs (Abulqasemi 1995). A third group 

divide the issue into two parts (the placement of the courtyard and its interior design) 

and discuss that there is no evidence that courtyards are more comfortable than 

other types of open spaces and that the higher thermal comfort normally associated 

with them is, in fact, due to the amount and the design of features like plants and 

water in the courtyards (Diba 1996). 

Therefore, the question remains. Has the placement of the open space in a building 

got anything to do with the level of energy consumed in that building or the level of 

thermal comfort achieved within that open space? This thesis will try to find a general 

answer to this question using a quantitative approach and to suggest a method for 

finding a definitive answer to this question in any specific case. 

Now and amidst a second and much bigger energy crisis (Figure 1.4), the 

importance of studies like this is becoming more and more obvious, especially 
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considering that in the year 2007 more than 15% of this expensive energy was used 

for heating and cooling of residential buildings (US Department of Energy 2008). 

Nominal Dollars per Barrel 
200~--------~----r-------------~ 

History Projections 

150 

100 

50 

Oil Pri-::e 

o~------------~------------~ 
1980 1995 2005 2015 2030 

Figure 1.4 World oil prices 1980-2030 (DOE/EIA 2008) 

1.2 Objectives of the study 
The present work is primarily motivated by the will to provide help for decision-

making on the overall layout of a house or a housing development in the very early 

stages of design from the point of view of energy efficiency and thermal comfort. This 

study seeks to contribute towards a deeper understanding of thermal interactions 

between a house and its adjacent enclosed open spaces. It addresses the 

contribution of the yard design, i.e. placement, size and type towards the 

development of a comfortable microclimate within the yard itself, as well as the 

reduction of total energy demands of the house for mechanical heating and cooling. 

The focus is put on the applicability of the results, i.e. expressed in form of a 

decision-making aid. 

Using the proposed method, a set of archetypal house designs are then studied to 

demonstrate the application of this procedure in a real design process. The results of 

this study is presented in form of a ranking list of the design types most suitable for 
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the defined problem (Le. consumes the least amount of energy and offers the 

highest thermal comfort level). 

A further objective of the work is to assess and validate the existing methods and 

tools used for understanding the nature of microclimates in small scales and propose 

methods for their improvement, particularly when used in conjunction with standard 

tools for the assessment of indoor climates. In order to validate these tools,an 

analytical model is designed and a series of field measurements are conducted. 

Comparing the results of these measurements and models against the values 

predicted by the tools under investigation will provide a clear understanding of the 

level of validity of these tools. 

Furthermore, proposing a method for integrating indoor and outdoor simulation 

programs, which is an essential stage of the present research and all similar studies, 

is a further objective of this thesis. 

Also a focus on gathering and presenting the existing knowledge on outdoor thermal 

comfort, as part of the metrics studied in this study, is essential. 

As a result, this work intends to emphasise on the importance of private outdoor 

spaces and how their careful design can benefit occupiers, investors and the 

environment. 

1.3 Methodology 
The method used to achieve the objectives of the research is to establish a process 

of assessment for different available design types and then demonstrate its 

application through an example. The example will be based on the real weather data 

from a selected climate and will consist of all common combinations of house and 
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yard in that climate. The combination types will be simplified and categorised into 

generic comparable archetypes and modelled and simulated under the weather data 

of a whole year in order to give an indication of the level of energy consumption and 

thermal comfort in each type. The results will be presented in the form of a ranking 

list of the priorities that could be advised to the decision-makers. 

Therefore, the present research is mainly carried out by using a numerical 

methodology. The reason behind this choice is mainly its involvement with the 

outdoor comfort issue. One reason for the very limited number of field studies on 

outdoor thermal comfort is certainly the huge number of outdoor climatic variables 

and processes involved. This complexity makes it difficult to perform comprehensive 

field measurements and is probably the reason why most investigations concentrate 

on air temperature and humidity, which are much easier to measure. Indeed, it is 

costly to record continuously and for a large sample of outdoor environments all

wave radiation flux densities from the three dimensional surroundings of a human 

body, in addition to the commonly measured meteorological factors (Le. air 

temperature, wind speed, and vapour pressure). 

In this respect, numerical modelling, properly validated, has a distinct advantage 

over comprehensive field measurements and is, therefore, a powerful alternative for 

outdoor climate issues (e.g. Arnfield 1990a, Mills 1997, Capeluto and Shaviv 2001, 

Kristl and Krainer 2003, Bourbia and Awbi 2004, Asawa et al. 2004). In a review of 

the state of research development in urban climatology during the last two decades, 

Arnfield (2003) drew attention to the growing popularity of numerical simulation, 

described as a methodology perfectly suited to dealing with the complexities and 

non-linearities of urban climate systems. 
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Hence, the present research is mainly carried out by using a numerical methodology 

supported by validation, so that a series of geometries combined with various yard 

placements and other arrangements could be analysed and compared. 

Simulation models vary substantially in many aspects: their physical basis, temporal 

and spatial resolution, input and output quantities, etc. (see Chapter 2). One of the 

tasks of this work will be to study, assess, select and validate two simulation 

programmes, one dealing with the thermal performance of the buildings and the 

other with the open spaces. Validation of numerical models is not an easy task, and 

as already noticed by Arnfield (2003), unfortunately, lags behind their creation and 

when performed, is often weak, relying more on plausibility of outputs than on direct 

comparison with process variables. According to the author, this is not surprising, 

because the difficulty of measuring such variables is a prime reason why numerical 

modelling is so popular, and a closer collaboration between modellers and field 

climatologists is encouraged to close the methodological gap (AIi-Toudert 2005). 

Therefore, an analytical model and the results of a short-term field measurement 

have also been conducted and are presented to allow further comparison and 

discussion. 

Assessing comfort outdoors is not easy and methodological differences observed in 

the related literature make any comparison with available results difficult, and this will 

be discussed in the next chapter. Basically, comfort can be assessed by means of 

comfort indices. In this thesis available outdoor thermal comfort indices and their 

advantages and disadvantages will be discussed and one of them will be selected 

for the purpose of the study. 
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1.4 Structure of the thesis 
Chapter 2 summarizes the most significant findings related to passive strategies to 

reduce energy consumption of a building and to achieve, assess and predict human 

comfort outdoors. Chapter 3 describes the physical processes which govern the 

model ENVI-met, a recently developed simulation tool for the outdoor environment, 

with a focus on the assessment of the validity of those of particular relevance in the 

framework of this research. the issues around linking the two main simulation tools 

of the study (ENVI-met and TRNSYS) are discussed comprehensively in Chapter 4. 

TRNSYS is a well-established simulation tool for modelling building thermal 

performance. In addition, an application of the method discussed in the previous 

chapter is introduced, modelled and simulated in Chapter 5 and the method for 

handling the simulation results is explained. A general discussion on the 

achievements and limitations of the research follows in Chapter 6. It includes a 

number of proposals for future studies in this field. 

Remark: Symbols used in this work correspond to those commonly used in the 

international literature. Yet and for convenience of the reader, the nomenclature 

used to describe TRNSYS and ENVI-met is kept unchanged from the original source 

(TRNSYS 2008, Bruse 1999). Therefore, some physical quantities are referred to 

with more than one symbol or under more than one measurement unit system 

through this manuscript. 
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2 . Literature Review 
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2.1 Design strategies for reducing energy consumption 

Before the advent of the industrial era and mechanisation, man depended on natural 

sources of energy and available local materials in forming his habitat according to his 

physiological needs. Over many centuries, people everywhere appear to have 

learned to interact with their climate. They built houses that were more or less 

satisfactory in providing them with the microclimate that they needed. This is what 

led many researchers to this fact that In consideration of climatic design the 

traditional houses have a lot of advantages (Rapaport 1969, Konya 1980). As 

Koenigsberger (1973) states, obviously not every traditional building is climate

sensitive, but there are some important lessons that can be learnt from studying 

them. 

The importance of climatic consideration in housing design is clear, because a 

principal purpose of housing is to change the microclimate surrounding a person. In 

fact, the essence of climatic building design is that it recognises the role of the 

building as a mediator between the external climate as provided by nature, and the 

internal climate as required for the comfort of occupants (Baker 1987). Givoni (1994) 

notes that architectural means for achieving climatic design include such 

conventional design elements as the layout of buildings, orientation, size, location 

and detail of windows, shading devices, thermal resistance and heat capacity of its 

envelope. 

In the hot arid zone of Iran, climatic consideration in traditional housing design has 

always been very important. There is no doubt that climate had its impact on a 

number of design and construction elements of traditional houses, such as internal 

circulation, external orientation and the use of materials and architectural elements. 
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In the past, people were forced to devise ways to cool their houses with only natural 

sources of energy and physical phenomena. It is, therefore, worthwhile to investigate 

these strategies in order to produce new strategies for the houses of today in 

response to questions such as the choice of a suitable site for houses, right 

direction, best shape, thermal capacity of materials and the choice of heating and 

cooling systems. Some of these strategies are here described. 

When the outdoor temperature is higher than the indoor temperature, the roof and 

walls are exposed to the sun and are heated. They transmit this heat to the inner 

room surfaces, where it raises the temperature of the air in contact with room 

surfaces by convection. Heat is radiated and intercepted by people and objects 

indoors, thereby affecting thermal comfort. In hot countries it is popularly believed 

that the roof is the main heating element of a house followed by the walls (Givoni 

1976). 

On the other hand the thermal performance of roofs is closely associated with the 

issue of ceiling height. It is generally believed that high ceilings are more effective in 

providing cool interiors in buildings in hot dry areas than lower ceilings (Saini 1962). 

It is interesting that in the traditional houses in Iran, summer parts and the "Ivan" (a 

vaulted open ended hall) often have high ceilings of more than 3.30m which is also 

recommended by Givoni (Givoni 1962 and 1976). 

Some of the other strategies used in vernacular designs are to reduce the surfaces 

exposed to the sun and to increase wall thickness in order to provide suitable 

thermal capacity. The exposed surfaces are also reduced by constructing houses 

attached to each other with common walls, in a cluster form. Distributing main rooms 

around a deep courtyard with plants, trees and shrubs in it, has been a very common 
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strategy to decrease solar radiation gain and trap the cool night air for several hours 

into the next morning (Tavassoli 1980). 

In designing buildings for the hot arid zone, openings are of high importance and 

must get enough attention to minimise direct sunshine into internal spaces. For this 

purpose, doors and windows are built in small sizes and protected by shading and 

insulating devices. Windows, wherever possible, are situated high in walls (Saini 

1973). Living in basements, especially in summer afternoons, is another strategy to 

use the relatively low ground temperature, when the air temperature is too hot 

(Heydari 2000). 

Rational planning of vegetation can offer significant shade, which is important for site 

temperature reductions. Atkinson (1962) has produced a comprehensive list of 

various available forms of vegetation. These have been set out according to their 

shape, size and density of foliage, which affect their shade-producing qualities. 

Large and deep cisterns under the rooms on the northern side of the courtyard 

(rooms normally used in the Summer) have been an important device for being filled 

with cold water in winter and then cooling the surrounding environment through the 

summer by providing a continuous and natural evaporation of water from their 

surfaces (Bahadori 1979). 

Based on what was discussed above, the climatic housing design strategies, which 

are considered suitable for the hot dry zone of Iran are summarised in the following 

pages. The first strategy, using courtyards in the centre of the building, obviously is 

concerned with the overall design layout of the building. The other three categories, 

however, discuss strategies that could be used in conjunction with any type or style 

of design and, as mentioned in the previous chapter, assessing the importance of 
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the overall design of the building against these factors is the main objective of this 

study. 

2.1.1 Central courtyards 

One of the specific strategies that is often recommended for housing design in hot 

climates is housing in a compact layout with some open spaces within. This 

recommendation is considered important in providing thermal comfort both indoors 

and outdoors (Heydari 2000). Following paragraphs briefly describe why people, 

particularly in hot arid climates, have used central courtyard buildings as an answer 

to their thermal comfort issue in such a harsh weather and why this type of design is 

one of the most popular solutions to this problem. 

According to Givoni (1994), without any cooling system and by appropriate building 

design, the indoor maximum temperature can be lowered by up to aOc below the 

outdoor level. Within a closed indoor space, solar radiation can be eliminated and 

the mean radiant temperature is usually close to the indoor air temperature. Inside 

the house people are usually protected from direct exposure to solar radiation, and 

the radiant heat load is not a significant factor affecting comfort. However, outdoors 

the reflected solar radiation and emitted long-wave radiation from surrounding hot 

surfaces like the ground can cause significant radiant heat load and therefore should 

be minimised. 

It must be noted that outdoor spaces can be cooled by systems that may not be 

used indoors, including wet walls and droplet fountains. Some of the systems 

suitable for cooling open spaces can use water that is not suitable for indoor 
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evaporative coolers. For example, they can use brackish water, which is often 

available in arid regions (Givoni 1994). 

As Givoni (1994) mentioned, having an outdoor living space (like a courtyard) in the 

house, cannot guarantee thermal comfort. In fact a poorly designed open space may 

elevate indoor temperature of adjacent rooms and cause poor ventilation in the 

rooms located on the leeward side. This has been demonstrated in a study done by 

Etzion (2003), who measured air temperatures at one-metre height in two 

courtyards. Both courtyards had concrete pavement over the whole of their ground. 

Different measurements in both daytime and night showed that the temperatures in 

the two courtyards were very similar and both were much higher than the ambient air 

in the open space nearly at the same height. The average minimum temperature 

was higher by about 0.5°C and maximum by about 2.3°C. 

In hot climates the phenomenon of outgoing radiation, whereby the earth and 

buildings on it lose heat, becomes an important natural cooling system. As Donham 

(1960) describes in the early morning before sunrise, the outer surfaces of buildings 

are at their minimum temperature as is the outside air temperature. After sunrise, 

sun rays make a small angle .with the horizon and the effect on the surface is still 

minimal. As the sun 'moves', the intensity of its radiation becomes greater and the 

sunlit surfaces are heated up, hence the flow of heat within the surrounding walls 

and ceilings starts reversing its direction and heat flows inward. At this time the 

indoor temperature of the rooms is lower than outdoors. The temperature reaches its 

maximum in the afternoon. After sunset the sky becomes much colder than the 

external surfaces of the building. Because of this the external surfaces lose heat and 

the temperature of the adjacent layer of air gradually decreases. The cold air, being 
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denser than the relatively warmer air near the ground, tends to sink down. Exchange 

between this cold air and the warmer indoor air takes place through the opening in 

the surrounding walls and the outward heat flow through the materials of walls and 

roof as well. On the other hand, as evening advances, the warm outdoor air that was 

heated directly by the sun and indirectly by the warm building rises and is gradually 

replaced by the already cooled night air from above. This cool air, if entrapped by a 

courtyard, accumulates around the building in laminar layers and seeps into the 

surrounding rooms, cooling them (Don ham 1960). 

These brief descriptions show why people, in order to enhance their thermal comfort, 

have used the courtyard, and why this phenomenon created the courtyard house 

concept. This concept, which is briefly explained here and comprehensively 

examined later, is one of the most popular answers to the issue of placement of 

open spaces in a house. 

Some studies have been directed towards recommending that a small courtyard for 

providing a satisfactory condition is most suitable (Donham 1960, Olgyay 1963 and 

Koenigsberger 1973). This is because, if the courtyard's size is kept small enough to 

achieve shade during the day, it will allow less thermal impact and more heat 

dissipation from surrounding indoor spaces. Olgyay (1963) has shown that the 

optimum form of a courtyard is a rectangle in plan having a proportion of 1 :1.3. 

Importantly the height around the courtyard is the most important factor of courtyard 

plan size. As an experience when traditional houses in Iran were built on one floor 

the parapets of the houses were built well above the roofline, the reason again being 

a need to create shade and protection. This also gave the courtyard a greater depth 
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and made the house's courtyard a well-defined, more comfortable place. In many 

houses another desirable method of creating shade is to construct roof overhangs. 

However, most hot arid zones are located in lower latitudes (below 35° North or 

above 35° South) in which the angle of the sun during the summer is high, close to 

zenith: this makes the design of self-shading courtyards (which shade themselves by 

their own geometrical layout) almost impossible. In arid regions shading the outdoor 

spaces by trees and plants is nonmally considered one of the best ways for providing 

comfortable conditions. However, growing trees and other vegetation for the purpose 

of shading the courtyards is not an easy task, due to the lack of water and the harsh 

climate. In every traditional courtyard in Iran the use of two or four small gardens 

(about 1.5 m) and a small pond between them is usual (Memarian, 1998). 

Another important element for lowering the air temperature inside a courtyard and, 

consequently, its adjacent indoor spaces is the paving in the courtyard. In fact 

treatment can be applied in courtyards to lower the surface temperature by the use 

of suitable paving materials and cooling the paving of the area itself. Paving heats up 

quickly causing both painful glare and reflected heat radiation toward the inside of 

the house (Koenigsberger 1973). In the early morning the paving receives the diffuse 

radiation coming from the sky and from the surrounding walls. As the sun rises, the 

ground surface loses heat to the adjacent cold air layer. The rising heated air is 

replaced by relatively colder air until the air temperature inside the courtyard reaches 

that of the outside air. The duration of paving exposure to intense radiation is greater 

than that of any vertical wall; this accounts for the criticality of the treatment of its 

surface. However, for lowering air temperature the material and colour of paving and 

the amount of moisture and shade of pavement are important. In the hot dry zone of 
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Iran burnt clay brick for pavement is one of the most widely used materials. The light 

colour, the good absorption of water and the ability of evaporation of water in time of 

need and availability are some of the burnt clay brick's good properties. 

It could be observed, as a result of what was discussed in this section, that although 

this type of house architecture (central courtyard housing) is considered beneficial in 

some climates, the amount of architectural and constructional details normally 

associated with this design can significantly confound the effect of the design itself in 

comparison to other factors. Most of the details discussed so far are unique to this 

design type. However, there are some other architectural and constructional 

considerations that could significantly affect the energy performance of any type of 

design and three of the most important strategies of this kind are explained in the 

following sections. 

2.1.2 Materials 

In hot dry areas, external surfaces (such as walls and roof) and their materials are 

important factors in providing thermal comfort. The major function of the walls in hot 

dry areas is to protect against solar radiation and high daytime outdoor 

temperatures, and to control the inward flow of both heat and hot air for most of the 

day during the summer seasons. In this way heat capacity of the walls is quite 

important because it moderates the rate of heat flow in and out of the building 

interior, and hence the indoor temperature fluctuations. On the other hand, such 

walls cool slowly at night and have higher nocturnal temperatures than low heat 

capacity structures (Givoni 1976). 
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Thermal mass can act as a regulator, smoothing temperature swings, delaying peak 

temperature, decreasing mean radiant temperature and providing better comfort 

conditions. Givoni conducted an experiment for the effectiveness of mass in lowering 

the indoor air temperatures. He chose two buildings with the same heat loss 

coefficient but with different mass levels: a low-mass (conventional stud wall 

construction) and a high-mass building (insulated concrete walls) were monitored 

during summer (Givoni 1998). One of the experimental conditions was to close un

shaded windows day and night. The indoor average temperatures of both buildings 

at different mass levels were different and all were above the outdoor maxima. The 

maximum temperature elevation of the low mass building was about 6.7°e above the 

outdoors' maxima while that of the high mass building was about 4Se. Fathy (1986) 

conducted tests on experimental buildings. The materials used in one of the two 

examined buildings were 50cm thick mud brick walls and roof and prefabricated 

concrete panel walls and roof with thickness of 10cm in the other building. The air 

temperature fluctuation inside the mud brick building did not exceed 2°e during the 

24 hours period, varying from 21-23°e which is within the comfort zone. On the other 

hand the maximum air temperature inside the prefabricated building reached 36°e, 

or 13°e higher than the mud brick model and 9°e higher than outdoor air 

temperature. The indoor temperature of the prefabricated concrete room is higher 

than the thermal comfort level most of the day. These examples have shown the 

importance of mass in buildings and since most of the historical central courtyard 

houses have used a high-mass construction (normally thick mud brick walls and 

roofs), it is very important to distinguish between the share of these structures in 

regulating the indoor temperature as opposed to the share of the central courtyard 

as a design element. 
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On the other hand, surface treatment and the selection of a wall's colour will 

influence the thermal behaviour of the building and can help in reducing the heat 

load. Light colours will reflect a large part of the incident solar radiation, thus much 

less heat will actually enter the building fabric. Bansal (1992) performed some 

experiments on the effect of colour on the interior temperatures in a hot dry climate 

by using two similar enclosures, one of which was black and the other white. The 

black enclosure recorded a maximum temperature which was re more than the 

white painted enclosure during hours of maximum solar radiation. Use of light 

colours in traditional parts of hot dry cities in Iran shows how people know the 

importance of colour. External roof colour also is the main determining factor for the 

roof temperature pattern and consequently for occupants' comfort. The effect of roof 

colour on its surface temperature is of course related to the thermal resistance and 

heat capacity of the roof structure. Givoni (1976) argues that the differences between 

the ceiling temperatures on the black and whitewashed roofs were much greater for 

a 7cm thick roof than for that of 20cm thick. 

2.1.3 Windows 

The other building elements that are considered of great importance in the thermal 

performance of the buildings in hot dry regions are windows. Large windows may 

increase solar heat gain and glare discomfort, reinforcing the notion that small 

windows are more suitable in such a climate. But with special design details large 

windows can provide thermal advantages (Bansal 1992). When highly insulated 

shutters are added to large operable windows, their thermal effect can be adjusted to 

varying needs, both diurnally and annually. In summer the shutters can be closed 

during hot hours. Then light will filter into the house only through the small areas 
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provided by the shutter. In the evening the shutters and the windows can be opened 

for increasing the rate of cooling of the interior. In winter, large southern windows 

can provide significant direct solar heating of the interior. Closing the insulated 

shutters during the night traps the heat indoors and reduces the rate of cooling. This 

helps to maintain comfortable indoor night temperature (Givoni 1998). It should be 

important for designers to know that heat gain through windows, per unit area, is 

much higher than through walls or roofs. The question is: how does the importance 

of windows in defining the level of energy consumption and thermal comfort compare 

to that of the positioning of outdoor space in the building design. This is a question 

that this thesis intends to answer. 

2.1.4 Roof 

In hot countries it is popularly believed that the roof is the main heating element of a 

house (Givoni 1976). Thus, a popular idea for providing indoor comfort conditions is 

to shade the roof more naturally by designing it to suit local traditions. One or two 

small rooms in the roof level with suitable overhangs have two functions which are 

shading the roof during the day and providing physiologically comfortable areas 

during sleep time. These rooms can be used by younger people (considering that 

during days they are out of the house or with parents for having food and other 

family activities). In this way the parapets around the roof can be used. Parapets not 

only make it a safe place for children, but also it is a good element for more shade 

on the roof. The high parapet has two other benefits: first, it shields the roof from the 

dusty summer winds and second the courtyards and streets can be narrow, so that 

the parapets shade the neighbouring elements, reducing the solar heat load. 
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The shape and height of the roof is also important. In hot areas mud domes are a 

common means of covering spaces. The form of the dome allows winds to cool its 

surface easily and it also ensures minimal frequency of intense radiation at anyone 

point. The double dome is considered as an excellent solution to the problem of 

intense radiation (Heydari 2000). The space between the inner and outer dome acts 

as an insulation layer. Therefore, under intense summer solar radiation, the outer 

dome becomes extremely hot, while the inner dome remains cool. Circulation of air 

between the two domes reduces the radiation problem. 

2.1.5 Discussion 
So far in this chapter different conventional methods for reducing the energy needs 

of a building have been discussed. To comply with the requirements of the present 

research the main emphasis of this discussion was put on one-family residential 

buildings in hot-arid climates. The strategies mentioned in this literature review could 

be seen as general guidelines for designing in this climate. 

However, it is worth mentioning here another set of strategies that could serve the 

same purpose. These strategies, which could be labeled as 'adaptive strategies', 

include precautions practiced by the occupants of the building in order to lower their 

energy needs. Heydari (2000) lists the following as some of the adaptive strategies 

practiced in Iranian vernacular houses: 

Selecting the roof and courtyard for sleeping in the hot season. 

Opening windows and doors during sleeping time, while sleeping 

outdoors. 
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Using wooden sofa-beds on the pond in the courtyard for sitting and 

sleeping 

Using felt carpets during cold season 

- Serving hot meals during cold season and cold meals during hot 

season. 

- Changing sleeping time and working time in different seasons. 

Using different clothing for different seasons 

Using the rooms on the shaded side of the courtyard in summer 

and the opposite side in winter. 

If designed and executed properly, these two categories of strategies could have a 

significant effect on the reduction of the energy needed for heating and cooling of a 

building through providing an extended number of thermally comfortable hours in all 

or part of the building spaces, indoors and outdoors. Identifying and understanding 

these strategies and eliminating their asymmetric effect on different design styles (by 

either applying them to or removing them from all styles) before starting to compare 

their effectiveness, will help to clarify the influence of the overall geometric design of 

the building as the sole comparison metric between all possible design solutions. 

2.2 Thermal comfort 
Strategies discussed in the previous section were mainly concerned with the energy 

consumption and, as a result, provided some direct or indirect indications about the 

thermal comfort inside buildings. This section focuses on methods to quantify and 

compare the thermal sensation of the occupiers and users of the private open 
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spaces of a house based on the available knowledge of thermal comfort both indoors 

and outdoors. This thermal sensation is one of the major factors to determine the 

degree of usability of the exterior grounds of a house, as a potential extra living 

space for the family (see 1.2.2). 

The existing knowledge base on indoor thermal comfort is quite extensive and up-to

date. However, when dealing with outdoor thermal comfort, it is observed that 

although various researchers have accomplished significant findings in this area, a 

methodical updated literature review of these works is the missing link in this area of 

knowledge. The most significant recent collections in this field are the ones provided 

by Chun et al (2004) concentrating on transitional spaces (like entrances and 

hallways) and by AIi-Toudert (2005) mainly dealing with street canyons. An obvious 

lack of a revised literature review, especially after the latest changes in the concept 

and standards of thermal comfort (as suggested for example by ASHRAE 2004), is 

observable. This intensifies the need for a revision of the existing knowledge on 

indoor and, particularly, outdoor thermal comfort both for the purpose of this 

research and for similar studies. Following pages are presented with the intention to 

fill this gap in the existing knowledge. 

The energy exchanges between a person and the surrounding environment is 

illustrated in Fig. 5.1 and expressed by the following heat energy balance equation 

(Fanger 1970): 

(2.1 ) 

41 



Natural and 
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Figure 2.1 The components of the human heat balance (Ali-Toudert 2005 after Houghton 1985) 

All terms of equation 5.1 are expressed in (W), where is the metabolic rate (Le. 

internal energy production by oxidation of food), W the physical work output, Q' the 

net radiation balance of the body, QH the convective heat flow (sensible), QL the 

latent heat flow for diffusion of water vapour, Qsw latent heat flow due to evaporation 

of sweat, QRE respiratory heat flux (sum of heat flow for heating and humidifying the 

inspired air) and S is the storage heat flow for heating (positive value) or cooling 

(negative value) the body. 
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The detailed mathematical expressions describing each of these terms are 

thoroughly documented (e.g. Fanger 1970, Gagge et al. 1971, Gagge et al. 1986, 

Hoppe 1984, VDI 1998, ASHRAE 2001a). Basically, the body state influences many 

of these heat fluxes through body temperatures and skin wetness. The 

environmental factors also affect a number of individual terms as follows: 

QH = f(I'a, v); QRE = f(I'a, RH); Qsw = f(RH, v); and Q' = f(I'mrJ. 

Equation (2.1) is the basis for all human energy balance models for indoors as well 

as for outdoors. The differences between the various existing models are attributable 

to their specific methods for calculating personal data required to solve this equation. 

2.2.1 Indoor thermal comfort 
Although achieving thermal comfort in the living and working space is not a new 

concern for designers and architects, the first attempts to measure, scale and 

quantify the sense of comfort by human beings can only be traced back to the 20th 

century. Before then, the understanding of comfort had only been related to the 

factors of light, heat and ventilation (Gossauer and Wagner 2007). After the first few 

attempts to suggest a method for measuring the effect of environment on occupants 

and users (e.g. Houghton and Yaglou 1923, Mayo 1930, Bedford 1936, Missenard 

1948) it was Fanger (1970) who finally came up with a set of equations to explain the 

nature of thermal interactions between the body and its surrounding environment 

together with a practical approach for thermal comfort assessment. 

This set of equations establishes a theoretical human body in thermal equilibrium 

with its environment. Metabolic-based heat gains are offset with heat losses through 

conduction (in a small negligible amount), convection, radiation and evaporation. The 

thermal comfort equations account for variations in activity level, posture, clothing 
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insulation, air movement, plus dry bulb, wet bulb and radiant temperatures 

(Anderson 1999). The model he proposed, and later discussed in more details by 

others such as Doherty (1988) and Oseland (1995), has been the basis for the 

thermal comfort criteria embedded in standards ASHRAE Standard 55 (ASHRAE 

2004) and ISO Standard 7730 (ISO 1994). 

Fanger also proposed a method by which the actual thermal sensation could be 

predicted. His assumption for this was that the sensation experienced by a person 

was a function of the physiological strain imposed on the person by the environment. 

This he defined as "the difference between the internal heat production and the heat 

loss to the actual environment for a man kept at the comfort values for skin 

temperature and sweat production at the actual activity level" (Fanger1970). He 

calculated this extra load for people involved in climate chamber experiments and 

plotted their comfort vote against it. Thus he was able to predict what comfort vote 

would arise from a given set of environmental conditions for a given clothing 

insulation and metabolic rate. Tables of PMV (Predicted Mean Vote) are available for 

different environments for given clothing and metabolic rates (Humphreys and Nicol 

1998). The fact that PMV is an indicator of the mean vote by the users puts a limit on 

understanding the thermal sensation of individuals. For example, a mean vote of 0 

(completely comfortable) for a room could be an average between two votes at 

opposite ends of the scale range and therefore does not provide any indication on 

how comfortable the individuals in the room might be. 

To correct this restriction Fanger extended the PMV to predict the proportion of any 

population that will be dissatisfied with the environment. A person's dissatisfaction 

was defined in tenms of their comfort vote. Those who vote outside the central three 
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scaling points on the ASHRAE scale were counted as dissatisfied. PPD (Predicted 

Percentage Dissatisfied) is defined in terms of the PMV, and adds no information to 

that already available in PMV (Gossauer and Wagner 2007). 

Gagge and Nishi (1977) argued that to consider the human body as one uniform 

source of heat in interaction with its environment is too assumptive, and so proposed 

their "two-node model" (Gagge and Nishi 1977) based on considering two different 

values for body core temperature and skin temperature. Using a more extended 

knowledge of human physiology as well as the increasing calculation power of 

modern computers, others elaborated this idea in more detail and added to the 

number of body layers and parts that needed to be considered separately when 

interacting with each other and with the surrounding environment. As a result, a 

number of more sophisticated human thermal regulation models have become 

available from which the following are mentioned: Stolwijk's 25-node model (Stolwijk 

and Hardy 1977), Sue's 41-node model (Sue 1989), Fiala's 51-node model (Fiala et 

al 1999), Wissler's 225-node model (Wissler 1964) and Fu's 3000-node model (Fu 

1995). 

In general, all these models can be considered as attempts to develop a better 

understanding and application for Fanger's equations. They are all based on the 

experiments on average adult subjects in standard clothing and under predetermined 

environmental conditions in climate chambers. 

The basic idea of this category of models, described by Nicol and Humphreys (1998) 

as "rational" models, could be summarised as follows: 

Thermal comfort of a person is defined by three parameters: 

a) the body is in heat balance; 
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b) sweat rate is within comfort limits; 

c) mean skin temperature is within comfort limits. 

These three conditions cannot be met only by keeping the ambient air temperature 

within a certain range. In fact, according to Fanger (1970), the interaction of six 

fundamental factors defines the human thermal environment and its sensation of 

comfort: 

a) Ambient air temperature (Ta). 

b) Radiant temperature (T mrt): in which a change of 1°C can be offset by a 1°C 

change in Ta. 

c) Wind speed: with a change rate of 0.1 m/sec for each OSC change in Ta (up 

to 1SC). 

d) Humidity: a 10% change in relative humidity can be offset by a 0.3°C change 

in Ta. 

e) Metabolic rate: in which an increase of 17.5 Watts (above resting level) is 

equivalent to a 1°C increase in Ta. 

f) Clothing insulation (clo): a change of 1 clo is equivalent to a Ta change of 5°C 

at rest and 10°C while exercising. (Shapiro and Epstein 1984) 

This class of thermal comfort models can produce repeatable predictions on the level 

of thermal comfort under standard and constant conditions in climate chambers, but 

in dealing with the constantly changing conditions of real living and working spaces 

they show serious restrictions. De Dear and others (1997) demonstrated that in their 

field surveys the level of dissatisfaction expressed by users was lower than that 

predicted by the PPD model. It seems like, in real life, "If a change occurs such as to 
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produce discomfort, people react in ways which tend to restore their comfort" (Nicol 

and Humphreys 2006). In other words, people show some level of adaptation with 

their environment and in more extreme conditions this adaptation becomes more 

evident. This idea provided the foundation for a new kind of thermal comfort model 

called by De Dear and others (1997) the "adaptive model". 

This adaptive approach accounts for the dynamic relation between people and their 

everyday environments, paying attention to the adaptations people make to their 

clothing and to their thermal environment to secure comfort (De Dear et al 1997). 

The principal research method is field survey. People are asked for their response to 

their thermal environment, which is measured at the time. Notes of the clothing and 

of the activity may be taken, from which the thermal insulation of the ensembles and 

the metabolic rates of the people can be estimated. The opening or closing of the 

windows, the raising or lowering of blinds, and the switching on or off of fans may be 

noted, together with any other actions that people take to ensure their thermal 

comfort (Humphreys et al 2007). 

The adaptive model, as a result of the field surveys, proposes that in addition to the 

6 factors listed by Fanger (temperature, humidity, thermal radiation, wind speed, 

clothing insulation and activity) factors like exposure time, human physiological 

condition, psychological perception, and adaptive behaviours also affect thermal 

comfort of individuals (Nikolopoulou & Steemers 2003, Soligo et al. 1998,; 

Stathopoulos et al. 1999). 

One of the important conclusions made by the adaptive model is that people show 

more resistance to cold weather in winter time compared to summer and also show 
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more resistance to heat in summer in comparison to winter. In other words, the 

comfort temperature (Te) is a function of outdoor temperature (To) : 

Te= 13.5 + 0.54 To (2.2) (Humphreys and Nicol 2000) 

This was reflected in ANSI/ASHRAE Standard 55-2004, "Thermal Environmental 

Conditions for Human Occupancy" as two separate comfort zones for summer and 

winter. 

2.2.2 Outdoor thermal comfort 
The early comfort assessment methods applied outdoors have generally been 

adjusted from those originally conceived for indoors, and are based on the 

assumption that the conventional theory of thermal comfort developed for indoor 

applications can be generalized to outdoor settings without modification. However, 

this approach has been proved inappropriate (Becker et al. 2003, Nikolopoulou et al. 

2001, Spagnolo & De Dear 2003). When outdoors, people expect different climatic 

conditions and usually dress differently, according to the prevailing weather 

conditions. In addition, people outdoors may be exposed to intense solar radiation 

and winds, which will modify greatly their response towards the environment (Givoni 

& Noguchi 2004). Owing to the range of experiences and expectations of people 

outdoors, it is hypothesized that the acceptable comfort range of outdoor spaces 

should be wider than that of the indoor context (Jitkhajornwanich & Pitts 1998, 

Spagnolo & de Dear 2003). Outdoor thermal comfort has been receiving increasing 

attention and a diversity of studies including field surveys, wind tunnel experiments 

and computer simulations have been conducted in the past couple of decades 

(Arens & Bosselmann 1989, Ramirez 1991, Ramos & Steemers 2003). The following 

material outlines the most relevant studies to the area of concern of the present 
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research (assessment of thermal comfort in small enclosed outdoor spaces like 

courtyards etc.) and discusses their results and conclusions. 

Leonard Hill's research (1919) is cited as the first recorded attempt to correlate 

atmospheric cooling power with sensation. He established the Kata thermometer for 

measuring the cooling rate of the atmosphere. His dry Kata was similar to an 

ordinary thermometer heated to a temperature above that of normal human blood 

(37°C or 98.4 OF). With the thermometer exposed to the path of wind, but shaded 

from the direct rays of the sun, the time required for the alcohol or mercury in the 

bulb to cool from one Fahrenheit degree above to one degree below blood 

temperature was recorded and averaged for a temperature drop of one degree. 

He expressed his observations on the cooling rate of the wind via the following 

formula: 

H = (0.15 + 0.182.J;;)(98° - T) (2.3) 

Where H is the dry cooling power of the atmosphere (mCal / cm' . S), v the wind 

velocity (mph) and T the dry-bulb temperature (OF). 

He also measured the wet cooling power of the atmosphere by a Kata thermometer 

wrapped in a piece of wet cloth. The added rate of cooling by evaporation was 

recorded by reading the thermometer in the same manner as the dry Kata. The 

results of these experiments were expressed in the form of a second equation: 

H' = H + (0.085 + 0.1 02Vv) x V(F - 1)' (2.4) 

Where H' , H are the wet and dry cooling power of the atmosphere (mCal / cm'·S) 

respectively, v the wind velocity (mph), F the saturation vapour pressure at 36.5°C 

(45.4 mm Hg), and f is the vapour pressure of the air (mm Hg). 
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During the 1920s and 1930s numerous students and investigators of the subject, 

including Hill, Angus, Newbold, Vernon, Bedford, Warner, McConnell, Yaglou, 

Dokoff, Griffith, Flack, Soper, Gold, Hargood, Ash and others perfected or used the 

Kata thermometer and led to its general, although limited, acceptance (Siple and 

Passel 1945). Some of these studies concentrated on improving Hill's Kata 

thermometer or replacing it by a device that could represent the content, shape and 

size of the human body or could account for the effect of irradiative heat gains in a 

better way. To name only some of these devices, the' Davos frigorimeter (Dorno 

1926), the heated copper globe (Vernon and Warner 1932), the recording 

Eupatheoscope (Dutton 1933) and the Pfleiderer-Buttner frigorigraph (1937) could 

be mentioned. 

Among this category of studies, Ernest Gold's research (1935) is of special 

importance, particularly for the present study. Gold came up with a means of 

predicting the thermal sensation of a human body when exposed to the outdoor 

environmental factors. Based on the data gathered from his own observations, he 

introduced a simple formula, describing the heat loss of a body as a simple function 

of air temperature and wind speed: 

(2.5)(Gold 1935) 

Where H is the heat loss of the body (callm%", Ta the air temperature (OF) and v 

the wind speed (mph). 

He also proposed a modifying factor to account for different levels of sunshine 

intensity: 

a reduction of 630 W/m 2 in the heat loss when in full sun; 
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290 W/m2 in light cloud; 

and 125 W/m2 with thick clouds. 

Based on his observations, he suggested a descriptive thermal sensation scale of 

eleven grades ranging from "bitterly cold" to "pleasant" to "unbearably hot". This 

descriptive approach, with modifications, became the basis for explaining the level of 

thermal comfort in all subsequent models. 

Parallel to these studies, there is evidence of extensive research on the nature of 

human thermal comfort in Germany during the 12 years leading to the Second World 

War. These studies are, to date, largely unknown but one can suggest that their 

results have been considered in the papers published in the U. S. in the early post

war years. For example, the U. S. army researchers, Major Paul Siple and Charles 

Passel, in the paper "Measurements of Dry Atmospheric Cooling in Subfreezing 

Temperatures" published in 1945 (Siple and Passel 1945), list the works of 11 

different German researchers from that period in their list of references without 

mentioning their works in the main text. 

Siple and Passel introduced the wind-chill index, one of the first thermal comfort 

indices applicable to the outdoor environment that, with proper modifications, can still 

be used for specific weather conditions. The results of their studies give a new 

equation for the effect of outdoor air temperature and wind speed on the heat loss of 

the human body: 

H = (33 - To)( .JIOOv + 10.45 -v) (2.6) 

Where H is the heat loss from the body (Keal / rn' hr ), v the wind speed (m/s) and Ta 

the air temperature (OC). 
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The studies carried out by Hill, Gold and Siple-Passel all deal with environments with 

low, sometimes very low, temperatures. Other studies (e.g. MacFarlane 1958, Webb 

1959) showed a discrepancy of comfort perception between people of different 

climatic zones. MacFarlane even suggested a method of adjusting comfort 

temperature zones for variations in latitude, relative humidity, solar radiation, and 

wind speed (Penwarden 1973). 

In an attempt to combine MacFarlane's idea of "thermal comfort zones" with 

Humphrey's model for thermal comfort in indoor environments, Penwarden (1973) 

suggested the following formula for predicting outdoor thermal comfort with an 

emphasis on direct solar radiation: 

(2.7) 

h Body core temperature = (37 .C) 

Ta: Outdoor air temperature (·C) 

MDu: Metabolic rate of heat production per square metre of body surface (Wlm2) 

k: Proportion of metabolic heat dissipated by means other than evaporation "" 0.8 

Rb: Thermal resistance of body tissues (m2
. ·CIW) ranging from 0.04 m2:CNV (onset 

of sweating) to 0.09 m2:CNV (onset of shivering) 

Rc: Thermal resistance of clothing (m2
. ·CIW) (1 clo = 0.155 m2:CNV) 

s: Solar heat input per square metre of body surface (WI m2
) Max. about 120 WI m2 

v: Wind speed (mls) 

A large number of studies have been conducted in recent decades to determine 

specific outdoor comfort criteria for specific climates (for example Jithkajornwanich 
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and Pitt's survey in Thailand 1998, Forwood and associates' survey in Australia 

2000, Sasaki and others' study on four different cities in Japan 2000, Ahmed's 

Research in Bangladesh 2003, Givoni and colleagues' research in Japan and Israel 

2003 and Nicol and others' study in the UK 2006). Among these local studies, a few 

deal with smaller outdoor spaces and, therefore, are of particular importance for the 

current research.' 

One of the first major studies in this field was Tacken's experiment (1989) to 

investigate the comfortable range of wind speed for outdoor relaxation in urban 

areas of Netherlands. To show how wind speed can, in relation to solar radiation, 

affect the sense of comfort outdoors, he developed the following formula: 

P = -O.329+0.215Ta -O.6v+O.0024S (2.8) 

where P is the perception of climate, scaled from 1 to 7, with 4 representing neutral 

conditions, Ta air temperature ("C), v wind speed (mls) and S solar radiation on land 

(Wlm2
). 

The EU funded project, RUROS. (Rediscovering the Urban Realm and Open 

Spaces), in 2001 had aimed to "examine and evaluate a wide range of comfort 

. conditions -thermal, visual, audible - across Europe, and develop a series of comfort 

models for different climatic contexts at the scale of the urban block". As part of this 

project, thermal comfort surveys and modelling have been carried out in 17 case 

study sites all over Europe (Ramos & Steemers, 2003). 

The case study in Greece that was conducted by Nicolopoulou resulted in 

particularly interesting conclusions. This study observed a large pool of 1500 

subjects during four different seasons in Athens (Nikolopoulou et aI., 2003). As a 
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result, a formula for outdoor thermal comfort as a function of air temperature, globe 

temperature, wind speed and relative humidity was developed: 

ASV = 0.06IT. +0.09ITg_. -0.324v+O.003RH -1.455 

Where: 

(2.9) 

ASV: Actual sensation vote, scale from -2 (very cold) to +2 (very hot) and neutral at 

O. 

Ta: Air temperature (0C) 

Tg•a: Difference between globe temperature and air temperature (Tg-Ta) (0C) 

v: Wind speed m/s 

RH: Relative humidity % 

This study also suggests a replacement formula to predict the ASV based on the 

data from a nearby meteorological station: 

ASV = O.034T .. + 0.000 IS' -0.086v' -O.OOIRH' -0.412 (2.10) 

Where: 

ASV: Actual sensation vote, scale from -2 (very cold) to +2 (very hot) with 0 

representing the neutral sensation 

Ta: Air temperature at the meteorological station (oG) 

S': Solar radiation at the meteorological station (Wlm2) 

v': Wind speed at the meteorological station (mls) 

RH': Relative humidity at the meteorological station (%) 
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The study points out that the main problem with deriving a mean radiant temperature 

from solar radiation at the meteorological station is ignoring the effect of shading and 

therefore achieving the same ASV for both shaded and sunny areas in one space. 

A critical issue in assessing the human thermal comfort outdoors is the need for the 

mean radiant temperature (T mrt), which sums up all short-wave and long-wave 

radiation fluxes absorbed by a human body. T mrt is the key variable in evaluating the 

thermal sensation outdoors under sunny conditions regardless of the comfort index 

used (e.g. Mayer and Hbppe 1987, Jendritzky et al. 1990, Mayer 1993, Spagnolo 

and De Dear 2003). T mrt is, by definition, the uniform temperature of an imaginary 

black enclosure in which an occupant would exchange the same amount of radiant 

heat as in the actual non-uniform enclosure (ASHRAE 2001 b). However, its accurate 

calculation in outdoor spaces is not easy, particularly in complex urban 

environments. This, certainly, explains the usual focus on air temperature and air 

humidity in comfort related studies as these are easier to measure. 

Theoretically, T mrt applicable outdoors is given by the following formula (Fanger 

1970): 

(2.11) 

where the surroundings are divided into n isothermal surfaces, for each one E; 0Nm-

2) is the long-wave radiation component (Ei = a B EO; T/). D; 0Nm-2) is the diffuse and 

diffusely reflected short-wave radiation component F; is the angle weighting factor, I 

0Nm-2
) is the direct solar radiation impinging normal to the surface, h is the surface 

projection factor which is a function of the sun height and the body posture, a k is the 
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absorption coefficient of the irradiated body surface for short-wave radiation (= 0.7). 

E p is the emissivity of the human body (= 0.97), and a B is the Stefan-Boltzmann 

The calculation of the angle factor Fi is the most problematic aspect when dividing 

the environment into several surfaces. A procedure for calculating the angle factors 

is given by Fanger (1970) for simple shapes, but the task becomes much more 

complicated for complex urban forms and simplifications are thus necessary. 

Several calculation procedures for T mrt do exist, depending on whether it is modelled 

or measured. As discussed before, the procedure used in this thesis is based on 

modeling. However, a full understanding of the modeling process needs a careful 

consideration of methods of direct measurement of mean radiant temperature. One 

method, for instance, is to divide the human surroundings in two hemispheres 

upwards and downwards and with the weighting factor Fi set to 0.5 for each of the 

two directions (e.g. Jendritzky et al. 1990, Pickup and de Dear 1999). Although 

easier to use, this method is probably only reliable for unobstructed open spaces. 

Obstruction effects may be added if fish-eye photography is used to replace Fi 

(Watson and Johnsson 1988, Chalfoun 2001). Yet, all surface temperatures as well 

as direct and diffuse short-wave radiation components are still required. 

To avoid such difficulties, the most suitable method would be to use an integral 

radiation instrument. Such an instrument exists for indoor purposes, i.e. a globe 

thermometer (e.g. Givoni 1976, ASHRAE 2001b). The globe thermometer consists of 

a hollow sphere (usually 15 cm in diameter), with a flat black paint coating and a 

thermometer bulb at its centre. The temperature assumed by the globe at equilibrium 
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results from a balance between the heat gained or lost by radiation and convection. 

Empirical formulas derive T mrt from the globe temperature Tg, together with Ta and v 

(Givoni 1976, ASHRAE 2001b). Alternatively, a comfort index can be directly 

calculated, namely the Wet Bulb Globe Temperature (WBGT) , usually used for 

assessing comfort in working spaces (Givoni 1976, ISO 1989, ASHRAE 2001b). 

The globe thermometer gives a good approximation of T mrt indoors, where the heat 

irradiated from the surroundings is rather uniform. However, the globe thermometer 

is less suitable outdoors for several reasons, including the non-homogeneity of the 

radiant environment induced by the additional solar beam radiation. Moreover, 

because of its spherical shape, the globe thermometer may be well approximated for 

a seated person, as it averages the absorbed radiation equally from all directions, 

but not for a standing person for which the lateral fluxes are dominant. T mrt, integrally 

obtained, assumes equal energy absorption from a human body in both long-wave 

and short-wave ranges, and the black colour overestimates the absorption of short

wave radiation, unless it is replaced by a grey globe more suitable to describe 

normal clothing (ASHRAE 2001b). Finally, the globe thermometer is not convenient 

because it needs a relatively long time to reach equilibrium (15-20 minutes). 

Alternatively, one can use a smaller and light-coloured sphere for faster response of 

the instrument (ASHRAE 2001 b). Despite these disadvantages, it has been 

implemented for outdoors issues, e.g. for workspaces outdoors (wet globe bulb 

temperature, WGBT) or even in social surveys (Nikolopoulou et al. 2001, RUROS 

2004). To date, there is no reliable instrument for integral measurement of T mrt 

outdoors, even though some attempts have been made (e.g. Brown and Gillespie 

1986, Krys and Brown 1990). 
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With respect to the issue of outdoor thermal comfort in a rectangular courtyard, the 

modelling technique adopted in this study for measuring T mrt (OC) is based on the 

technique proposed by Hoppe (1992) for considering all radiation fluxes, angle 

factors, human shape, etc. in the calculations. In this method, the surrounding 

environment is divided into six main directions (upwards, downwards and the four 

lateral orientations) and T mrt expressed by: 

(2.12) 

with Srad given by: 

6 

Srod = ~)V,(ak ·K; +a; .L;} (2.13) 
i=l 

Here, the related angle factors are the percentage of the hemisphere taken up by 

each part of the body in each direction and expressed as a fraction (W;), the short

wave (K; in Wmo2
) and long-wave (L; in Wmo2

) heat fluxes are summed as the mean 

radiation flux density (Srad in Wmo2
). TV; equals 0.22 for lateral directions and 0.06 for 

upwards and downwards directions for a standing body that is assumed to be 

cylindrical. Pyranometers and pyrgeometers, arranged in the six directions, are 

required for the measurement of the short-wave and long-wave radiation fluxes, 

respectively. This method is accurate but costly and time-consuming, making it 

difficult to implement in extensive measuring campaigns. Hence, the lack of an easy 

and reliable method for determining T mrt accounts for the main difficulty in conducting 

comprehensive investigations on comfort outdoors. To tackle this problem, the 

analytical approach developed in this research for modelling surface temperatures in 

a courtyard for specific situations (Chapter 3) uses the radiosity approach to 

integrate all long-wave and short-wave radiative heat exchanges to and from a 

58 



surface into one metric and also applies a number of other simplifications to reduce 

the number of surfaces involved in the microclimate of a courtyard in order to assess 

their interactions more easily. 

Modelling T mrt also requires simplifications. Surface temperatures are here an 

additional limitation, and are only accurately determined if substrate and wall heat 

storage are included. The method used in the outdoor environment simulation 

programme ENVI-met relies on sky view factors, and is detailed in the next chapter. 

2.2.3 Outdoor thermal comfort indices 
A large number of thermal indices exist and this might be confusing at first, but in 

fact, most of them share many common features and can be classified into two 

groups: empirical or rational. These indices are well documented (e.g. Givoni 1976, 

Houghton 1985, ASHRAE 2001a) and some of them are listed as examples: 

Index Definition 

Empirical indices 

ET 
set in Monograms and represent the instantaneous thermal sensation 

Effective Temperature estimated experimentally as a combination ofT •• RH and v 

RT 
comparable to ET but tested for a longer time to meet assumed thermal 

Resultant Temperature equilibrium 

HOP 
temperature of a uniform environment at a relative humidity RH = 100% in 

Humid Operative which a person loses the same total amount of heat from skin as the actual 

Temperature environment (comparable to ET" but RH equals 50% for HOP) 

arithmetic average of T. and T mrt, that is including solar and infrared radiant 

OP fluxes 

Operative Temperature weighted by exchange coefficients 

WCI 
based on the rate of heat loss from exposed skin caused by wind and cold 

Wind Chill Index and is function of T. and v, suitable for winter conditions 

59 



Rational indices 

ITS 
assumes that within the range of conditions where it is possible to maintain 

Index of Thermal thermal equilibrium, sweat is secreted at sufficient rate to achieve evaporative 

Stress cooling. 

ratio of the total evaporative heat loss E,k required to thermal equilibrium to 
HSI 

the maximum of evaporative heat loss Em" possible for the environment, for 

Heat Stress Index steady-state conditions (S,,,,=S,,,,,,=O) and Tak= 35'C constant 

ET' 
temperature of a standard environment (RH = 50%, Ta = T mrt, V < 0.15 m8-1) in 

new Effective which the subject would experience the same sweating SW and T,k as in the 

Temperature actual environment. It is calculated for light activity and light clothing. 

SET' similar to ET' but with clothing variable. Clothing is standardized for activity 

Standard Effective 
concerned. 

Temperature Reference indoor conditions are: Tmrt= T.; RH = 50% ; v = 0.15 mS·1. 

OUT_SET' 

Outdoor Standard similar to SET' but adapted to outdoors by taking into account the solar 

Effective Temperature radiation fluxes. 

PMVand PT 
PMV expresses the variance on a scale from -3 to+3 from a balanced human 

Predicted mean vote 
heat budget and PT the temperature of a standardized environment which 

Perceived achieves the same PMV as the real environment. Clothing and activity are 

Temperature variables. 

PET 
temperature at which in a typical indoor setting: T mrt= T.; VP = 1200 Pa ; v = 

Physiologically 0.1 mS·1, the heat balance of the human body (light activity, 0.9clo) is 

Equivalent maintained with core and skin temperature equal to those under actual 

Temperature conditions. unit: 'C. 

Table 2.1 Selected thermal comfort indIces for Indoors and outdoors (after AiI-Toudert, 2005) 

2.2.4 Index selection process 
The indices of the former group (empirical indices), generally developed earlier, are 

based on measurements with subjects or on simplified relationships that do not 

necessarily follow theory (ASHRAE 2001a). These are often limited to the estimation 

of the combined effect of air temperature, air humidity and air speed on people in 

sedentary activity (Givoni 1976). Yet, these empirical indices ignore the important 

role of human physiology, activity, clothing, and other personal data (height, weight, 
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age, sex). Rational indices are more recent, promoted by the recent development of 

computing techniques, and rely on the human energy balance. Here, the heat 

transfer theory applies as a rational starting point to describe the various sensible 

and latent radiation flux exchanges, together with some empirical expressions 

describing the effects of known physiological regulatory controls (ASHRAE 2001a). It 

is , therefore, more relevant to use one of the indices in the second category for the 

purpose of this research and since the main concern here is the thermal sensitivity of 

the users of the outdoor spaces, the choice between the thermal comfort indices is 

narrowed down to the last three indices in the list: OUT SET', PMVand PET. 

Comparing these three indices, a number of remarks could be made about them and 

their limitations: 

• Theoretically, PET and OUT_SET have the advantage on PMV in that it takes 

into account the thermoregulations of a human body and are therefore more 

accurate for extreme conditions (typically outdoors). 

• To choose between PET and OUT_SET', the two programs were tested for 

identical hot outdoor conditions (using the data from Chapter 3) and the same IcI 

and metabolic rate. OUT_SET' provided systematically lower values, following a 

linear relationship: OUT_SET' = 0.73 PET + 3.1, with a very high correlation 

coefficient R = 0.9998. In fact, OUT_SET' is about 27 % lower because 

OUT_SET' considers a relative humidity RH = 50 % in the reference indoor 

situation which is changing with Ta. This interdependence inhibits partly the 

assessment of thermal stress, whereas PET considers a vapour pressure of 12 

hPa which is a constant water content in the air independent from Ta. Hence, this 

makes PET more accurate than OUT_SET. 
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Based on this selection process, the thermal comfort index PET (Physiologically 

Equivalent Temperature) is chosen as the metric for the prediction of thermal 

sensation of the users of the outdoor spaces in this specific study. However, it has to 

be mentioned here that for studies dealing with subjective votes obtained from social 

surveys, which must take into account the actual personal data, PMV and 

OUT_SET" seem to be better choices. That is because they set Icl and the activity as 

variables, which means that the human adaptive behaviour is included, whereas 

these are kept invariable in PET, meaning that only the thermal environment is 

assessed. However, since the main emphasis of the present study is on analytical 

assessment of thermal comfort (as opposed to subjective approach), PET 

demonstrates a higher suitability to the needs of this research. 
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3 . Simulating outdoor environments 
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Open spaces of small-scale buildings, which are the main concern of the present 

research, have been reported to provide a microclimate effect showing different 

climatic conditions from their surroundings (Givoni 1994; Etzion 2003). This means 

that, when dealing with, for example, a building with a courtyard, the air temperature 

measured inside the courtyard normally can be different from the air temperature . 

above the roof top. This was also supported by the findings of the measurements 

conducted at Loughborough University (Malekzadeh and Loveday 2008; please see 

Appendix A). 

Therefore, the first step towards finding the impact of the surrounding environment 

on the thermal environment of a building is to determine this surrounding 

environment in an acceptable level of detail. This section deals with available 

methods for solving this problem. One of the introduced tools will be chosen, 

validated and used for further analysis of thermal interactions of the building and its 

surroundings. 

3.1. Outdoor simulation programmes 
The use of numerical methods for urban climate issues has a distinct advantage over 

comprehensive field measurements. Their "versatility in dealing with the manifold 

variables and atmospheric processes" make them increasingly popular (Arnfield 

2003). Urban climate models can be first classified according to their scale, which 

can range from kilometres to a few centimetres. Usually, models developed for urban 

climate purposes, like studying urban heat islands, use a large space resolution (e.g. 

Gross 1991, Masson 2000). These are probably more suitable for urban planning 

issues (scale up to 1/5000) rather than for urban design issues (- 1/500). The 
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following review addresses the microclimatic numerical models from the latter 

category, in which scales are more relevant to the house and yard dimensions of 

interest of this research. 

Urban microclimate models vary substantially according to their physical basis and 

their temporal and spatial resolution. At the microscale, three-dimensional (3D) wind 

flow models are the most well founded (e.g. Eichorn 1989, Johnsson and Hunter 

1995), while those including all hydrological, thermal and energy processes are very 

few, inter-alia because very time-consuming to calculate the multiple effects of all of 

these climatic variables on each other. Such models are often simplified by 

assuming several parameterisations and limitations in order to save time and solve 

problems linked to variables that are difficult to determine. Typically, these models 

use simplified turbulence schemes (e.g. Mills 1993, Arnfield 2000). Urban canyon 

models are also typical examples: 2D rather than 3D, they focus on the prediction of 

energy fluxes and assume predefined street configurations, with buildings of uniform 

shape and height, dry surfaces, no vegetation (no latent heat) and no heat storage in 

the building fabric (e.g. Herbert et al. 1998). Alternatively, models which combine 3D 

flow modelling and 2D energy modelling are faster and more accurate (e.g. Arnfield 

et al. 1998). Other models are more empirical and are based on equations derived 

from few available measured data, which may make them context specific, e.g. 

Nunez and Oke (1980) or the CTTC model (Swaid and Hoffman 1990, Shashua-8ar 

and Hoffman 2000). Moreover, many of these models deal with the· open space 

volume as a whole, i.e. all calculations are made for one point at ground level, and 

spatial differences within the open space are not considered. By contrast, CAO

based models seek to reproduce with precision the 3D outdoor scene, as these 
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models are especially relevant to designers (e.g. Teller and Azar 2001, Asawa et al. 

2004) and possibly assess the interdependence between indoors and outdoors in 

terms of daylight and sunlight availability on the outdoor surfaces, e.g. SOLENE 

(Groleau and Miguet 1998). The focus in these models is on the calculation of the 

surface temperatures and mean radiant temperatures that form the boundary 

surfaces of the open space. Yet, most of the weather data (wind speed, Ta, etc.) are 

assumed to be known. 

Furthermore, very few microclimate models assess the thermal comfort that result 

from the urban microclimate changes (Teller and Azar 2001, Asawa et al. 2004). 

This is mainly due to the difficulties in determining the radiation fluxes between the 

surroundings of a human body and complex urban areas. The issue of modelling 

outdoor thermal comfort is thus often dealt with using simplified and averaged 

methods, in which many atmospheric processes are removed. These are then 

replaced by data set as inputs by the user, which assumes their availability (e.g. 

daily data for v, Ta, RH). For instance, thermal comfort in the model TOWNSCOPE 

(Teller and Azar 2001) is calculated on a daily basis, however, with Ta, v, RH, and Ts 

assumed as mean daily average values that are held constant during the simulation. 

Clearly, ·this is a very coarse approach. 

Finally, a decisive aspect in choosing a model is the output information. The outputs 

may vary from only one variable prognosis, e.g. Ta (Swaid and Hoffman 1990), to a 

detailed microclimate description, e.g. ENVI-met (Bruse 1999). 

3.2. ENVI-met 
Although the more recent version, 3.1, of the three dimensional model ENVI-met was 

introduced during the completion of this research, the version used here, due to its 

66 



availability at the time of initiation of the study, is version 3.0 (Bruse 1999). Ali

Toudert (2005) mentions that the major advantage of ENVI-met is that it is one of the 

first models that seeks to reproduce the major processes in the atmosphere that 

affect the microclimate on a well-founded physical basis (Le. the fundamental laws of 

fluid dynamics and thermodynamics). According to the objectives of the present 

work, ENVI-met presents several advantages: 

1. ENVI-met simulates the microclimatic dynamics within a daily cycle. The model is 

in-stationary (Le. the total heat loss from the model does not have to be equal to the 

total heat production) and non-hydrostatic (does not assume equal air pressures for 

all points at the same height) and predicts all exchange processes including wind 

flow, turbulence, radiation fluxes, temperature and humidity. 

2. A detailed representation of complex outdoor structures is possible, Le. buildings 

with various shapes and heights or design details like galleries and irregular 

geometrical forms. This makes it suitable for modelling and predicting conditions in a 

courtyard. The vegetation is handled not only as a porous obstacle to wind and solar 

radiation, but also by including the physiological processes of evapotranspiration 

(evaporation and plant transpiration from the earth's land surface to atmosphere) and 

photosynthesis. Various types of vegetation with specific properties can be used. 

The soil is also considered as a volume composed of several layers and the ground 

can be of various types. 

3. The high spatial resolution (up to 0.5 m horizontally) and the high temporal 

resolution (up to 10 s) allow a fine grading of the microclimatic changes, especially 

sensible to geometry and pertinent for thermal comfort issues since these 

dimensions are of human scale. 
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4. A key variable for outdoor comfort, i.e. mean radiant temperature T mrt of 

surrounding surfaces, is also calculated. 

Fig. 3.1 shows the construction scheme of ENVI-met, which is composed of a 3D 

core model (including atmospheric, vegetation and soil sub-models) and 1 D border 

model. The task of the 3D core model is to simulate all processes inside the actual 

model area. The upper horizontal boundary and the vertical windward boundary act 

as interface of the 1 D border model and the 3D core model. The 1 D border model 

extends the simulated area to the height H = 2500 m (i.e. an average depth of the 

atmospheric boundary layer) and transfers all start values to the upper limits of the 

3D volume needed for the actual simulation. 

The core area to be simulated is a volume of the dimensions (X, Y, Z) plotted into n 

grid modules. Z is determined by the maximum height Hmax of the urban elements 

within the model (Z ~ 2Hmax). Each module (~x, ~ y, ~z) can either be a part of a 

building, of vegetation, or of an open space (e.g. courtyard) and possible oblique 

urban forms have to be approximated in steps. At ground level, the first grid is 

vertically subdivided into five equal parts in order to record thoroughly the 

microclimate near the surface. 

The soil model provides the system with the surface temperatures and humidity. The 

soil model is 1 D, except for the grids of the ground surface which are connected in 

3D for ensuring homogeneity. The nesting grids consist of a "buffer zone", which acts 

as an offset of the actual edges of the model area in order to avoid numerical 

disturbances, i.e. boundary effects. The nesting grids also ensure a representative 

3D profile of the wind at the windward boundary by adjusting the initial 1 D wind 

profile. These grids get progressively larger as their distance from the core model 
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increases and are composed of two soils types. The nesting area extends at least to 

double the height of the highest obstacles in the model area (2Hmax) beyond the 

actual modelled area. 

The equations that govern ENVI-met are too numerous to be presented in detail 

here. Only parts of the model documentations (Bruse and Fleer 1998, Bruse 1999, 

Bruse 2004, Ali-Toudert 2005) that are directly related to the present study are 

quoted in this section. 

at H= 150Om, 11, \', e q inpllts, constant 
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Figure 3.1 General schema of the ENVI-met model including the boundaries (AB-Toudert 2005) 

3.2.1. The atmospheric model 

x 

ID soil model 
3/ayers 

H=-1.75m 

The atmospheric model predicts the evolution of the wind flow (speed and direction), 

turbulence, temperature, humidity, short-wave and long-wave radiations fluxes. It is 

based on the fundamental laws of dynamics and thermodynamics of fluids, i.e. 
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equations of conservation of mass, momentum, heat and moisture (e.g. Garrat 

1992). 

The distribution of the potential temperature e and the specific humidity q inside the 

atmosphere is given by the combined advection-diffusion equation with internal 

source/sink terms: 

(3.1 ) 

(3.2) 

where Oh and Qq are used to link heat and vapour exchanges between the foliage 

surface and the surrounding air. These quantities are provided by the vegetation 

model and since this study intends to minimise all effective factors other than the 

geometry of the building, the chosen vegetation model will effect in a value of zero 

for both Qh and Oq. Kh and Kq are the diffusion coefficients for heat and vapour. The 

vertical divergence of long-wave radiation aRn,lwjaz accounts for cooling and 

heating effects of radiative fluxes. 

The atmospheric long-wave radiation depends on air temperature, as well as on 

absorption and emission coefficients for each single air layer. The actual absorption 

and emission coefficients of air depends on the water content but also on gases like 

carbon dioxide C02 and ozone 03. Yet, only absorption due to water (i.e. VP) is 

taken into account (Paltridge and Platt 1976, Gross 1991) because of the complex 

absorptive relationships as well as the lack of information about the vertical 

distribution of carbon dioxide C02 and ozone 0 3. Hence, the long-wave atmospheric 
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radiation at a height z, if not modified by vegetation, can be approximated after 

integration for n single layers (Paltridge and Platt 1976) by: 

N 

Rtw(z) = L CTB T 4 (n) [cn(l + Ill) - cn(l)] (3.3) 
n=l 

where I is the water content in the layer between the height z and the lower layer n, 

E n is the emissivity of a layer nand T is the absolute temperature. 

The short-wave radiation fluxes at the model boundary R;w are calculated with the 

integration of the radiation intensity of the sun 10 in the wavelength range of A = 

0.29/lm to A = 4.0/lm. 

(3.4) 

10 is available from tables (Houghton 1977). The optical mass m is a function of the 

solar height h, the Rayleigh scattering (i.e. et R = 0.00816 A -4) and Mies scattering ( 

et M = A - 1.3 (3 tr). The absolute amount of direct short-wave radiation at the model 

boundary R~w,dir is obtained after the deduction of the energy quantity absorbed 

Rsw,abs by the water contained in the atmosphere after Liljequist (1979), namely: 

(3.5) 

The short-wave diffuse radiation R~W,dif for cloudless sky conditions depends on the 

direct solar radiation flux and the sun height cl> and is estimated after Brown and 

Isfalt, (1974): 

R~W,dif = f(R~w,dir' 0) (3.6) 
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For cloudy sky conditions, the direct solar radiation R~w,dir is reduced according to 

Taesler and Anderson (1984). 

The ground surface temperature is calculated by solving the energy balance of the 

surface: 

Rsw,net + Rtw,net - Go - Ho - LEo = 0 (3.7) 

where Rsw,netiS the net short-wave radiation received by the surface, R/w,net is the net 

long-wave radiation, G is the soil heat flux, Ho and LEo are the sensible and latent 

turbulent heat flux, respectively. The calculation of R/w,net is complex and includes the 

effects of buildings and vegetation, which could be studied in furth~r detail in 

software documentations (e.g. Bruse 2004). This is particularly relevant for 

determining courtyard surface temperatures, necessary for evaluating thermal 

comfort in courtyard. 

Similar to the ground surface, the energy balance of a wall or roof surface is given 

by: 

Rsw,net + R;:;;~net - Hw,r - Qw,r = 0 (3.8) 

where Hwand Qw,rare the turbulent sensible heat flux and the heat flux through the 

roof or wall, respectively. Rsw,net and R;:;;~net are net short-wave and long-wave 

radiation fluxes, the equations of which can be derived from the literature (e.g. 

Koenigsberger et al. 1973, Markus and Morris 1980). 

3.2.2. The human-biometeorological dimension 
A discussion of the importance of T mrt for thermal comfort issues and the difficulty 

related to its determination was presented in section 2.2. In this respect, ENVI-Met 
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gives a good approximation of T mrt at yard level, which is expressed for each grid 

point (z) as follows (Bruse 1999): 

(3.9) 

The surrounding environment in the courtyard consists of the building surfaces, the 

free atmosphere (sky) and the ground surface. All radiation fluxes, i.e. direct 

irradiance It(z), diffuse and diffusely-reflected solar radiation Dt(z) as well as the total 

long-wave radiation fluxes Et{z} from the atmosphere, ground and walls, are taken 

into account by ENVI-met. 

At street level, Et{z} is assumed to originate as 50 % from the upper hemisphere (sky 

and buildings) and 50 % from the ground. This is only valid at street level and further 

approximation is performed for higher grids. 

3.2.3. Boundary conditions and course of a simulation 
Fig. 3.1, shown previously, illustrates the following description. The equations used 

in the boundary model are a 1 D simplified form of those used in the 3D model with 

some parameterisations when necessary. The vertical wind inflow profile up to a 

height of 2500 m is calculated with the 1 D model by applying a logarithmic law, 

based on the input values of the horizontal wind (u, v) at 10 m height above ground 

and on the roughness length zoo 

The initial temperature ( e start) given as an input parameter at a height of 2500 m is 

set to the whole vertical profile assuming start conditions of neutrality. A vertical 

gradient forms if the initial surface temperature differs from the initial air temperature. 

The surface temperature is provided to the 1 D model by the soil sub-model, and is 
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calculated on the basis of three input values of soil temperatures and soil humidity. 

The air humidity profile is linear and is calculated by means of input values at 2500 

m i.e. if2500m and the relative humidity RH at 2 m. Turbulence quantities E and E are 

constant at 2500 m and are function of the local friction velocity u' (a reference wind 

velocity applied to motion near the ground where the shearing stress is often 

assumed to be independent of height and proportional to the square of the mean 

velocity). The surface temperature and humidity are provided by the 3D model as 

mean values of the nesting area related values. 

The initialisation of the 10 model is run during a period of 8 hours with a time step of 

b. t = 1 s until the interactions between all start values reach a steady state, i.e. 

dKmldt < 10-3m2. S-2. The atmospheric equations are solved by integration of the 

variables in the following order: IT,"D, e, if, E and E, and the exchange coefficients 

Km, Kh, and Kq. 

Start values at the inflow boundary of the 3D model are provided by the 10 boundary 

model as a vertical profile. The transition from 10 to 3D schemes needs an 

adjustment in non-homogenous urban surroundings. This is solved by the use of the 

3D nesting area. On the horizontal boundary, homogeneity is assumed. Wall and 

roof temperatures are calculated at all physical boundaries in the model area. The 

wind speed components at building grids are set following a no-slip condition i.e. u = 

v = w = O. The wind field is adjusted to the presence of the obstacles gradually 

during the initializing phase (diastrophic phase). At the ground surface (z = 0) and on 

the walls, E and E are calculated as a function of u' from the flow components 
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tangential to the surface. It is assumed that no gradient exists between the two last 

grids close to the outflow border. 

The actual 3D simulation includes, in the following order, the calculations of soil 

parameters (T, 1)), surface quantities (To, qo, as), radiation update, the update of 

wind components (u, v, w), pressure perturbation p', turbulence quantities E, E, Km, 

Kh , Kq , and air temperature and humidity e, q. The process is repeated once the 

1 D model is updated again. 

Numerically, all differential equations are approximated using the finite difference 

method and solved forward-in-time. Time steps adopted vary depending on the 

quantity to be calculated. The main time step is 10 minutes for the wind flow 

calculations. Smaller time steps are used for E- E system to obtain numerically 

stable solution (3 minutes). 

Solar radiation is usually updated in larger time-steps and can be set by the user. To 

solve the advection-diffusion equation, dynamic pressure is removed from the 

equations of motion and auxiliary flow components are calculated, these are then 

corrected by incorporating the dynamic pressure which has been separately defined 

by means of the Poisson equation (Bruse 2004). 

3.3. Empirical validation of ENVI-met 

Numerical climate modelling was discussed to be a promising approach for 

describing the urban microclimate and its underlying processes. However, the 

simulation tool used in this research, ENVI-met, is a relatively new simulation 

program without much commercial application up to the present moment and the 

developers accept that it is still under the process of constant development (ENVI-
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met website 2008). Therefore, it is advisable to approach this software, like any other 

new untried tool, with a level of caution. This section addresses the two main 

concerns about ENVI-met from the viewpoint of this research and tests the software 

via different methods to evaluate its suitability for the desired purpose. 

As mentioned earlier, the two tasks expected from ENVI-met during this study are as 

follows: 

- to predict the air temperature in different locations in a courtyard or a yard; 

- and to predict the temperatures observable on the outer face of a wall, facing 

the courtyard. 

In order to validate the performance of the program in the first field (Le. predicting 

outdoor air temperature) , a number of ENVI-met simulations were run for, and 

compared to, the climate conditions that prevailed on the observation day in order to 

test the ability of the model to simulate the climate conditions of 3 courtyards and 

their built-up surroundings. These courtyards are situated in the West Park of 

Loughborough University campus in Loughborough, UK and the data collection has 

been performed by a small group of researchers, lead by the author of this thesis. 

Each courtyard and its surroundings were built up in ENVI-met with a grid resolution 

of 1 x 1 x 1 m. To increase the accuracy of the near surface climate, the grid box 

closest to the ground and surrounding walls was further subdivided into five equally 

thick layers (Le. !:J.Z = 0.2 m). Later boundary conditions were chosen so that 

downstream conditions were copied to the inflow profile. 
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The Following section describes the details of the measurements and simulations 

performed on one of the courtyards and also present the results for the rest of the 

cases. 

3.3.1. Courtyard microclimate: Observations 

Figure 3.2 The three observed courtyards: 1) Aeronautical Engineering Department; 2) Chemical 
Engineering Department; 3) Physics Department x) Physics Department weather station (Satellite image 
from Google Maps UK 2009) 

Three Courtyards (1 to 3 in Figure 3.2) were selected to be observed for a 24 hours 

period during a typical summer day in Loughborough, UK. The values for air 

temperature in the courtyards were to be measured in 3 hour intervals and compared 

to the ones predicted by ENVI-met for a similar setting. All selected courtyards were 

of similar size and orientation and situated close to each other in order to make the 

results more comparable and easier to form a conclusion. To be able to distinguish 

other factors affecting the air temperature, values of relative humidity and wind 

speed were also measured and shade patterns were recorded. Observed factors 

77 



were also compared to the values measured by the experimental weather station 

(marked by white X in Figure 3.2) on the rooftop of one of the surrounding buildings 

in order to investigate the modifying effect of courtyards on outdoor weather. 

/) Observation procedure 

Figure 3.3 Whirling hygrometer for measuring dry bulb and wet bulb themperalures 

Figure 3.4 Digital anemometer for measuring wind speed 
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The observations were conducted through a full 24 hour period starting from midday 

of the 29th of June, 2006. The group measured dry bulb and wet bulb temperatures 

(by a simple whirling hygrometer (Figure 3.3) and vertical and horizontal air speed 

(by a digital handheld anemometer; Figure 3.4) at 5 points within each courtyard (the 

middle point and at points approximately 1.5m from each corner; e.g. Figure 3.5) and 

at two different heights (approximately 0.2m and 2.5m). 

Air temperature and wind speed in each courtyard were calculated by averaging 

between the 5 values measured at each observation time. The air humidity were 

extracted from the standard table accompanying the whirling hygrometer, the 

contents of which are presented in table 3.1) 
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Figure 3.5 Measurement points in courtyard 2 
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Dry bulb Dry-bulb temperature minus wet-bulb temperature 
temp.,oC (Dry-bulb depression), °c 

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 
2 84 68 52 37 22 8 
4 85 71 57 43 29 16 3 
6 86 73 60 48 35 24 11 
8 87 75 63 51 40 29 19 8 
10 88 77 66 55 44 34 24 15 6 
12 89 78 68 58 48 39 29 21 12 
14 90 79 70 60 51 42 34 26 18 10 
16 90 81 71 63 54 46 38 30 23 15 
18 91 82 73 65 57 49 41 34 27 20 7 
20 91 83 74 66 59 51 44 37 31 24 12 
22 92 83 76 68 61 54 47 40 34 28 17 6 
24 92 84 77 69 62 56 49 43 37 31 20 10 
26 92 85 78 71 64 58 51 46 40 34 24 14 5 
28 93 85 78 72 65 59 53 48 42 37 27 18 9 

30 93 86 79 73 67 61 55 50 44 39 30 21 13 5 
32 93 86 80 74 68 62 57 51 46 41 32 24 16 9 
34 93 87 81 75 69 63 58 53 48 43 35 26 19 12 5 
36 94 87 81 75 70 64 59 54 50 45 37 29 21 15 8 
38 94 88 82 76 71 66 61 56 51 47 39 31 24 17 11 .. • Table 3.1 RelatIve humIdIty (10) based on dry-bulb and wet-bulb temperatures 

/I) Observation results 

Although, the air movements measured during the 24 hours of observation, both in 

the courtyard and in the weather station on the rooftop, were of a low speed (from 

0.15 to 1 m/s), in general, the courtyards tend to prove calmer than the general 

outdoor (up to 0.6 m/s lower wind speed) during slightly more turbulent times. In 

contrast, when the outdoor air velocity falls below 0.3 m/s, the average wind speed 

inside courtyards is up to 0.3 m/s higher (Figure 3.6). 

Values recorded for relative humidity, apart from around the time of the watering of 

the trees and the lawn in the courtyards (e.g. at 18.00 hrs in courtyard 3), show a 
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maximum of 2 to 3% difference from the humidity outside. This is not enough to base 

a conclusion on the effect of courtyards on relative humidity (Figure 3.7). 

Air temperatures in all courtyards prove to be lower than the air temperature outside 

(by up to 2 OK) during the warmer times of afternoon (from midday to sunset). 

Through the night, this difference is gradually reduced and in the early hours of 

morning becomes very insignificant (Figure 3.8). The same pattern is also noticed 

when considering each of the 5 measurement points in each courtyard separately. 

This is in consistence with the results of some previous studies on microclimatic 

effect of courtyards, some of which were introduced in literature review (Chapter 

2).The latter category of measured values (air temperatures) is of main concern in 

this thesis and, therefore, will be subject of more emphasis when compared to the 

values predicted by ENVI-met for similar settings. 
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3.3.2. Courtyard microclimate: Simulations 

At this stage the climatic and structural environment of the observed case is to be 

mode led in ENVI-met and the values for average air temperature are to be simulated 

for a period of 24 hours. The predicted values will then be compared to the ones 

directly measured on site and similarities and differences will be discussed to form a 

bas~ for determining the validity of ENVI-met for outdoor simulations sought by this 

research. 

I) Simulation settings 

Clearly the accuracy of simulation results is highly dependent on the accuracy of the 

input data and, therefore, maximum effort has been put into creating a setting as 

close as possible to the one at the time of observation. In addition to the standard 

program settings (described in 3.2), structural features like the size of the courtyards, 

the height of the surrounding buildings, the orientation of the buildings (+360 from 

East-West axis), number, location, size and density of the trees inside courtyards 

and colour and material of surrounding surfaces were defined according to the 

existing conditions at the time of observations (Figure 3.9). It should be mentioned 

here that Figure 3.9 only shows the major 10X10 m grid of the settings. The actual 

simulation grid is a fine 1X1 m grid to enable a more detailed reading of the changes 

in air temperatures 

. Furthermore, the climatic data gathered on the rooftop of one of buildings (Figure 

3.2) in addition to the horizontal and vertical angles of the apparent position of the 

sun (a graphical representation of which is shown in Figure 3.10) were used to 

define the climatic conditions of the simulation. 
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Figure 3.10 apparent position of the sun during the first day of observations (www.sunposition.info 2006) 

A number of simplifications had to be made during the modeling process due to the 

restrictions by the program and/or limitations in the data gathered: 

As exhibited earlier, the wind speeds at the time of observation were very low 

(always below 1 m/s) and, consequently, the effects of them on the conditions 

and results of the current simulations are not expected to be significant. 

Therefore, to avoid the complications caused by varying air speeds, the wind 
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speed during the period of simulations was chosen as a constant value of 0.5 

m/s in the main wind direction recorded on the day (South-West). 

- Although the outer surface of the walls surrounding courtyards consisted of 

different materials (brick, glass, exposed concrete etc) with different colours, 

the restrictions dictated by the program made it necessary to use a 

homogenous surface with characteristics similar to the ones of brick (which 

composes the highest percentage of the surfaces in all three courtyards). 

- The ground surface was also assumed to be uniform for the same reason and 

short grass, for being, in reality, the major cover of the ground surface in the 

area of observation (Figure 3.2), was chosen as this uniform surface. 

- Apart from the three courtyards and buildings surrounding them, the rest of 

. the neighbouring buildings and plant cover have been replaced by the ground 

surface defined in the previous paragraph (Figure 3.9). Since the focus is 

exclusively on the environment inside courtyards, the elements beyond the 

immediate surroundings of the courtyards could be, practically, considered of 

no or very little significance in the simulations (figure 3.2). 

/I) Simulation results 

Figure 3.11 shows the average air temperature of tile courtyards as predicted by 

ENVI-met in comparison with those recorded for the surrounding area. The values 

shown in this diagram are an average between the predicted temperature values for 

the simulation grids corresponding to the 5 measurement spots in the observation 

process (e.g. Figure 3.5). 
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Predicted air temperatures for different sites 

28 

26 __ courtyard 1 

...... courtyard 2 
22 

20 
~Courtyard 3 

18 

16 

I 
_Outside 

14 i I 

s;) s;) 
~<;l "",<;l <:s 

,,<O?<:> "v'':''?<:> <:><;s?<:> c:g;?<:> <:>ro?<:> <:>rS;?<:> "",?<:> 

Time (hrs) 

Figure 3.11 Average air temperature of the courtyards as predicted by ENVI-met 

It shows a very close relationship between the air temperatures in all three 

courtyards as well as between the courtyards and the general outdoor. The 

maximum difference between the predicted values and outside air temperature 

occurs during the warmest time of the day and is about 1°K, which is less than half of 

what was recorded during direct observations. More importantly, this difference is in 

the opposite direction, meaning that unlike what really happened and was measured 

in the observation stage, ENVI-met predicts a higher temperature in the courtyards in 

the afternoon and lower temperatures in early morning. This is a concerning 

inconsistency and needs to be investigated in more depth. 

3.3.3. Discussion 
To address this concern, the air temperatures observed at each of the 5 

measurement stations in each courtyard (e.g. Figure 3.12) were plotted against the 
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temperatures predicted for the corresponding simulation grid in ENVI-met. An 

example of the results is shown in Figures 3.13 and 3.14. 
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Figure 3.13 Observed and predicted air temperatures for the middle point of one of courtyards 
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It is clear from the first diagram (Figure 3.13) that ENVI-met predictions for the air 

temperature at the centre of the courtyard agree very closely with the actual air 

temperature at that point as directly measured during the period of observation. The 

difference between the two is never more than 0.5 oK and therefore the divergence 

observed in the averaged air temperature values cannot be contributed to this point. 
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Figure 3.14 Observed and predicted air temperatures for the northern corner of one of courtyards 

The observation/simulation point situated at the northern corner of the courtyard 

(station 2), however, shows higher differences between measured and simulated air 

temperatures. These differences are visible during day and night. The day-time air 

temperatures predicted for this station by ENVI-met could be up to 1.5 oK higher than 

real temperatures (in the afternoon). By observing the other 13 stations, It could be 

concluded that ENVI-met assumes a faster heat gain (compared to reality) for the 

corner points when they are in the sun and, in the same way, a faster heat loss when 
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they are in the shade. This could be attributed to a known limitation in ENVI-met in 

the way it deals with the heat storage in surfaces. Such a limitation has been 

reported before this by Ali-Toudert (2005) and is a plausible reason for faster 

changes in the surface temperatures and, consequently in the temperature of the air 

near those surfaces. 

Since, in each courtyard, there are four corner points for each central point, when 

averaging between the 5, these fluctuations in air temperatures makes the average 

result invalid. To examine this theory, a second set of average air temperatures is 

produced, but this time with excluding the squares adjacent to the walls. This 

average is shown in Figure 3.15 together with the average of observed air 

temperatures and it proves a very close coherence with actual values. The difference 

between the two sets is never more than 0.5 degrees, which considering the 

Average air temperature as predicted by ENVI-met after 
corrections vs. observed average air temperature 
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Figure 3.15 comparison between measured average air temperature and simulated average air 
temperature after excluding the layer of air next to sutiaces. 
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elimination of surrounding squares and also the simplifications described earlier, 

could be accepted as a good agreement and a validation for the way ENVI-met 

predicts air temperatures. 

3.4. Analytical validation of ENVI·met 

As a result of what was presented in the previous section, although the results 

derived from ENVI-met for air temperatures in the courtyard are, in general, reliable 

in the scale of the present research, part of these results (Le. the part related to the 

edges of the courtyard) cannot be used because of a potential weakness in ENVI

met in calculating the heat storage effect of the walls and, consequently, surface 

temperatures. Regarding the accuracy of the results given by ENVI-met for 

simulated courtyards, daily surface temperatures could be divided in two main 

categories: 

- Diurnal surface temperatures 

The difference observed between real day-time temperatures of the air close to the 

walls of a courtyard as measured directly and the same set of temperatures as 

predicted by ENVI-met is far greater than any acceptable level (e.g. Figure 3.14). 

This fact in addition to previous studies mentioning the lack of a reliable approach in 

ENVI-met for predicting surface temperatures (e.g. Ali-Toudert 2005), leads to the 

conclusion that to correct this divergence, the best advisable way is to use a second 

tool with more validation in this area and link that tool with ENVI-met. Next chapter 

will present a detailed approach to this linking as part of a broader integration of 

ENVI-met with an indoor simulation program named TRNSYS. 
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- Nocturnal surface temperatures 

The two-program approach mentioned above could also be used for any night-time 

simulation of surface temperatures and, in fact, that is exactly how the surface 

temperatures will be dealt with in following two chapters. However, as seen in Figure 

3.14 and repeated in other similar simulations, the difference between observed and 

simulated air temperatures near the walls, during the night, is in a reasonably small 

range and this small difference could be attributed to the simplifications made in the 

simulation process. Therefore, although neither day-time nor night-time surface 

temperatures offered by ENVI-met will be used in this research, in this section an 

attempt will be made to assess the accuracy of ENVI-met in predicting surface 

temperatures during night. The analytical method presented here intends to provide 

an accurate th,eoretical basis for validating the software in regards to the present 

problem. 

3.4.1. Defining the problem 
An analytical solution is needed for determining the surface temperatures of the 

walls surrounding a courtyard in a steady state (Le. the total amounts of heat gained 

and lost by the courtyard are equal) based on the heat exchanges on its surrounding 

surfaces. These surfaces are defined as follows: 

- Sky: A fictitious 2D black body (with zero reflection) lying on the top surface of 

the courtyard. Sky temperature (Ts) is taken as known as it can be calculated 

independently from the conditions within courtyard (Garg and Prakash 2000). 

- Floor: A diffuse grey object, forming the bottom surface of the courtyard. 

Methods for calculating ground temperature are well documented (e.g. 
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Figure 3.16 Surfaces surrounding the courtyard in isometric view (left) and cross section view (right) 

Titanova et al 1996) and will be adopted in this research. The temperature 

determined by one of these methods (Tf) is taken as one of the known 

parameters in the current analytical model. 

- Wall: A 3D diffuse grey surface surrounding all vertical sides of the courtyard 

with the assumption that all characteristics of the four surrounding walls, 

including the air temperatures on both sides of the walls, are identical on all 

four surrounding sides. The temperature of this surface (the surface of the 

wall facing the courtyard) is shown as T wand is the unknown of the problem 

defined by this model. 

3.4.2. Basic equations 
The analytical model presented here, considers all three 

methods of heat transfer between these different 

surfaces and through the surrounding walls. The basis 

of this approach is the simple idea of energy balance in 

a wall: 

Qcond = Qconv + QR (3.10) 

Qcond 

Figure 3.17 Enegy balance on the 
wall surface 
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Where, 

Qeond is the heat loss through the conduction in the wall; 

Qconv, the heat loss from the surface of the wall to the outdoor air through 

convection; 

and QR, the net amount of heat radiated by the outer surface of the wall to other 

surrounding surfaces. 

These three factors have been discussed in much detail in reference books. 

Equations presented here are from "Heat Transfer: A Practical Approach" by Yunus 

A. <;engel (2003): 

I) (3.11 ) 

In which, 

Aw is surface of the wall in m2
; 

Tr is surface temperature of the wall on the inner surface in oK; 

Tw is surface temperature of the wall on the outer surface in oK; 

and Rw is thermal resistance of the wall in m2 K/W. 

11) (3.12) 

Where, 

he is convective coefficient of the wall in W / m 2oC: 

and Ta is temperature of the layer of outside air next to the wall in OK. 
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Ill) OR is diffuse radiosity (Le. net amount of emitted and reflected radiation) of 

the wall and, by definition, is equal to the integral of the hemispherical 

spectral radiosity (JA) over the spectrum: 

(3.13) 

Where, h. is equal to integral over the hemispherical solid angle of the sum of 

emitted and reflected radiant intensities. In the case of the walls surrounding the 

courtyard in this model, since the only two surfaces emitting and receiving 

radiated heat to and from the wall enclose are floor and sky surfaces, OR will be: 

(3.14) 

Where, 

Fws and Fwr are sky and floor view factors for the enclosure wall, Js, Jw and J, are 

equal to total radiative energy leaving the sky, wall and floor surface per unit 

area. 

Equation (3.10) can be rewritten by replacing its components with their equals from 

equations (3.11), (3.12) and (3.14): 

(3.15) 

On the other hand, when considering radiative heat exchanges within the courtyard 

in the model, since all exchanges happen between three objects: the top surface 

(sky), which is a black body, the bottom surface (floor) and the surrounding surface 
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(wall), which are both diffuse grey objects, the radiosity equation (3.13) could be 

rewritten and rearranged for each surface as follows: 

4 1- Ew ( ()) rrTw = Iw + FwsUw - Is) + FWf Iw - it 
Ew 

rrTs 4 
= Is 

the parameters in which are recognised as follows: 

a (Stefan-Boltzmann's constant = 5.67 x 10-8 ) 

Ts (Sky temperature in OK) 

Tt (Floor temperature in° K) 

Ew (Emissivity of the surrounding wall) 

Et (Emissivity of the floor) 

- Es (Emissivity of the sky = 1) 

- Fts (Sky view factor for the floor) 

- Ffw (Wall view factor for the floor) 

3.4.3. Derivation of the analytical model 
Plan 

(3.16) 

(3.17) 

(3.18) 

A model is needed for calculating T w by using the fundamental equations described 

in (3.4.2). Apart from Jw and Jf (that are defined by T w), all other parameters 

introduced are either constant numbers (e.g. a), calculable by models independent 

from the courtyard heat exchange system (e.g. Ts and Tf) or defined in the specific 

case (e.g. emissivity and view factors of each surface). 
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To distinct T w as the only unknown of the problem, first Jw and J, must be extracted 

from (3.16) and (3.17) as functions for T w, then T w can be solved from equation 

(3.15). 

- Step one: Defining J, as a function of Tw 

Multiplying both sides of equation (3.16) by Ef gives: 

aTf 4Ef = frEf + Ffslf - Ffsls + Ffwff - Ffwlw - EfFfdf + EfFfds - EfFfwfr + EfFfwlw 

and therefore, 

So, fr can be defined as: 

or: 

and since Ffs + Ffw = 1, therefore: 

By defining these two new factors: 

- T4 Tf - a f Ef 

(3.19) 

(3.21) 

(3.22) 

(3.23) 
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equation (3.23) could be re-arranged as: 

- Step 2: Defining Jw as a function of T w: 

The two Sides of equation (3.16) can also be multiplied by cw: 

aTw 4 Cw = Iwcw + (1 - cw) (FwsClw - Is) + FwrVw -lr)) 

And if: 

Then: 

'w = Iwcw + Ew (FwsClw - Is) + FwrVw -lr)) 

By replacing Jf by its equal from (3.24): 

'w = Iwcw + Ew (FwsClw - Is) + Fwr (fw - 'r - Er(FrJs + FrwIw))) 

which can be rearranged as: 

or: 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) . 
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By moving all other parameters to one side of the equation, Jw will be: 

(3.30) 

or: 

(3.31) 

- Step three: Finding Tw 

By replacing J! and Jw from (3.24) and (3.31) in equation (3.15), Tw is now the only 

unknown parameter in this equation and can be easily calculated. 

3.4.4. Application of the model 
This section shows, through an example, how the analytical model developed in this 

thesis for predicting the temperature of wall surfaces facing a courtyard can be 

applied to a typical courtyard. This example can be later used for validating ENVI-

met's performance in predicting same parameter. 

- Defining the problem: 

To avoid the complications of calculating multiple view factors, the courtyard 

selected here, is a cubic courtyard with the dimensions of 6X6X6 m. Emissivity of the 

floor and the walls are also taken to be identical and equal to 0.85. Walls also have a 

thermal resistance of 0.5 and a convective coefficient for natural convection of 

4 W 1m2 °C. Temperature on the outer surface of the walls (the side facing courtyard) 

is to be calculated using following known temperatures: 

• Temperature on the inner surface of the walls (facing indoors): 21°C 
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• Mean air temperature of the courtyard: 18°C 

• Sky temperature: 12 °C 
• Floor surface temperature: 18°C 

- Mathematical Interpretation of the problem: 

• Cubic courtyard :. Fts = Fws = Fwt = 0.2; Ftw = 0.8 

• ew = et = 0.85 

• he = 4 W/m 2 °C 
• Tr = 294 oK 
• Ta = 291 oK 
• Ts = 285 oK 
• Tt = 291 oK 

• Rw = 0.5 m2KjW 

• Tw =? 

Solution: 

Sky is assumed to be a black body and therefore: 

Is = uT/ = 5.67 x 10-8 x 285 4 = 374.08 

By definition: 

Et = 1- et 

and since in the problem Ew and Et are assumed equal. then: 

Et = Ew = 1 - ew = 1 - 0.85 = 0.15 

Tt is also defined as: 

Tt = UT/et = 5.67 x 10-8 x 2914 x 0.85 = 345.60 

By putting above values in equation (3.31): 

Iw 

(a) 

(b) 

(c) 

(d) 

(e) 

5.67 X 10-8 x Tw 4 x 0.85 + 0.15(0.2 x 374.08 + 0.2(345.6 + 0.15 x 0.2 x 374.08)) 
= 

1 + 0.2 x 0.8(0.85 + 0.85 - 0.85 x 0.85 - 1) 
4.82 x 1O-8Tw 

4 + 21.93 
= 

1 

thusIw is: 

Iw = 4.82 x 10-8Tw 4 + 21.93 (f) 
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and when put in (3.24): 

it = 345.60 + 0.15 (0.2 x 374.08 + 0.8 x (4.82 x 1O-8Tw 
4 + 21.93)) 

. = 345.60 + 0.15(74.82 + 3.86 x 10-8Tw 
4 + 17.54) 

So: 

it = 0.58 x 1O-8 Tw 
4 + 359.45 

Equation (3.15) can be now rewritten as: 

294- Tw 
0.5 = 4(Tw - 291) 

+ (0.2(4.82 x 1O-8Tw 
4 + 21.93 - 374.08) 

+ 0.2(4.82 x 1O-8Tw 
4 + 21.93 - 0.58 x 1O-8Tw 

4 
- 359.45)) 

or: 

588 - 2Tw = 4Tw - 1164 + 0.96 x 10-8Tw 
4 

- 70.43 + 0.85 x 10-8 Tw 
4 

- 67.5 

Therefore: 

1.81 x 10-8Tw 
4 + 6Tw = 1889.93 

and as a result: 

3.4.5. Cross-validation against ENVI-met 

(g) 

(h) 

To validate the results predicted by the analytical model presented in this chapter 

against those predicted by ENVI-met, a model must be constructed in ENVI-met that 

represents all the settings defined for the courtyard in 3.4.4. This means that all 

characteristics of different surfaces as well as environmental features should be 

exactly identical to what was introduced in the example above. 

Environmental factors used here (Le. temperature and convective coefficient 

of the air and ground temperature) are all part of the normal input data to the 

programme and can be easily set equal to the ones in the example problem. 
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Emissivity of the floor surface could also be added directly to the programme 

and, therefore, complete the setting for one of the three surfaces (floor 

surface). 

- The fictitious black body surface on top of the courtyard (representing sky) 

cannot be directly added to the model. However, since the only heat 

exchange happening between the sky surface and other components of the 

model is through radiation, only defining the emissivity of the sky (£s=1) and its 

view factor from other surfaces will suffice to cover the impact of this surface. 

- A major part of the analytical model is concerned with solving the heat 

balance on the wall surrounding the courtyard and without considering this 

part, the biggest surface of the model cannot be defined. This needs setting 

the conditions on both sides of the wall, the side facing outside (the courtyard) 

and the side facing inside (the room). ENVI-met is an outdoor simulation 

program and has not been designed to deal with indoor environment and is, 

therefore, incapable of doing this. 

This establishes the need to use an indoor simulation programme in conjunction with 

ENVI-met to deal with the issue of heat balance on the walls. Next chapter is 

dedicated to developing a method to facilitate the use of these two simulation tools 

(ENVI-met for the outdoor environment and TRNSYS for the indoors) in an 

integrated manner. When, by using this method, the conditions on both sides of the 

wall are defined and set, the exact conditions of the courtyard, described in 3.4.4 can 

be simulated and since the settings in both methods (analytical modelling and 

simulation) are identical, this constitutes a good test for agreement. 
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For now and without having an established method for using these two programs 

together, the indoor and outdoor simulations needed here can be performed 

separately and the results can be linked to make a conclusion. 

- Plan: 

Having the courtyard in a steady state, by definition, means that the amount of heat 

entering the courtyard should be equal to the amount of heat leaving it. In the 

absence of solar radiation (night-time), the entering of heat energy happens through 

the walls and from the rooms if the temperature of the inner surface of the wall is 

more than the outer surface (in the opposite case, the argument can be reversed). 

The energy gained this way is transferred either by convection to the air in the 

courtyard or by radiation to other surrounding surfaces (Figure 3.17). If the air 

temperature in the courtyard is kept constant, this means that the air in the courtyard 

is not receiving any of the energy entering the system and all of this energy is lost 

through radiation. This fact can be a good base for the parallel simulation of the heat 

entering the courtyard through the walls (by TRNSYS) and the heat lost through 

radiation to sky and/or floor (by ENVI-met). 

Therefore, the plan is to find the surface temperature, at which all the heat entering 

the courtyard through the walls is lost by radiation to other surfaces. The entering 

heat can be calculated by TRNSYS, which is capable of solving the energy balance 

of the wall. The calculation of the radiative heat loss, while the outdoor air 

temperature is constant, is also a task that ENVI-met can deal with. 
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Step 1) Calculating heat gain by TRNSYS: 

The wall between the courtyard and its surrounding indoor space was simulated in 

TRNSYS, under a constant temperature of 294°K (after the problem described in 

3.4.4) for the inner surface of the wall and a steadily changing temperature of 290 to 

2950 K for the outer surface of the wall during a 10 hour period (after an 8 hour 

initialisation stage). Simulations calculated the amount of heat loss from the room 

through the wall (which is equal to the heat, gained by the courtyard) through these 

changes. The results for these simulations are presented in Figure 3.18. 

The diagram shows a linear relation between the temperature of the outer surface of 

the wall and the energy lost through it. At 294°K (when the temperatures of the 

surfaces on two sides of the wall are equal) there is no heat exchange through the 
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Figure 3.18 the amount of heat entering the courtyard for different outer surface temperatures 
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wall. As would be expected, for values lower than 294°K (when the courtyard is 

colder than the room), the heat moves in positive direction (from room towards 

courtyard) and for higher temperatures (when courtyard is warmer) in the opposite 

direction. 

- Step 2) Calculating heat loss by ENVI-met: 

To run the simulation, the model of the courtyard and its 

surrounding building is structured as in Figure (3.19). 

This figure shows a simple 6x6 m courtyard surrounded 

by a 6 m high wall with a thickness of 0.5 m (lowest 

possible dimension for an object in ENVI-met). To 

minimise the possible effects of the surrounding 

environment, the whole simulation area was limited to 

• 

Figure 3.19 The core simulated area 

this small setting and the nesting grid (as defined in 3.2) started immediately behind 

the surrounding wall. A grid by size of 0.5m was formed across the courtyard and the 

air temperature in all grid cells next to the wall (bold cells in Figure 3.18) was kept 

constant at Ta (291 OK in the presented example) and the amount of radiative heat 

loss from the surface of the wall was calculated for different surface temperatures. 

In this simulation, like TRNSYS simulations described above, an initialisation period 

of 8 hours was observed and then during a 10 hour period, the temperature of the 

surface of the wall (Le. the surface, facing courtyard) changed steadily through a 10 

hour period from 2900 K to 295°K. The total amount of the heat moving out from the 

courtyard was calculated in each stage and the results were plotted in a diagram that 

is presented in Figure 3.20. 
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It is observed from the diagram that when the courtyard walls are cold (T w<292.2°K), 

the courtyard is a recipient of energy from the environment and by heating up the 

wall surfaces of the courtyard, the courtyard reaches a state that starts emitting 

energy to its surroundings. 

Energy emitted by the courtyard as calculated by ENVI-met 
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Figure 3.20 The amount of heat leaving the courtyard for different outer surface temperatures 

Step 3) Cross validation 

Comparing the two diagrams presented in Figures 3.18 and 3.20, shows that at 

exact surface temperature of 292.8°K (for the outer surface of the walls surrounding 

the courtyard) the amounts of energy received and produced by courtyard as a 

system are equal. In other words, when the surface temperatures reach this point, 

the courtyard is at a steady state. This is in complete agreement with the results 

produced by the analytical model for this courtyard (3.4.4). 
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This confirms that although simulating surface temperatures based on the indoor 

environment of the buildings is outside the abilities of ENVI-met, calculation of the 

relations between these surface temperatures and other environmental factors in the 

surroundings by ENVI-met have a satisfactory degree of accuracy. 

Energy gained and lost by the courtyard 
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Figure 3. 21 comparing the amount of energy gained and lost by the courtyard for different surface 
temperatures 

3.5 Discussion 
In this chapter, candidate outdoor simulation programmes were reviewed and their 

relevance to the needs of this thesis was investigated. This investigation led to 

selecting ENVI-met as the simulation tool used in this research for studying 

environmental conditions outdoors. A brief review of the basics of ENVI-met 

modelling and simulation was also presented to show the approach taken by the 

program in modelling and simulation of outdoor environment. 
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Known concerns about ENVI-met were also discussed and the need for further 

validation was established. Two different validation approaches were applied and the 

results achieved by these approaches can be summarised as follows: 

The empirical validation approach showed some inconsistencies between the 

average air temperatures measured in three courtyards and the average air 

temperature predicted by ENVI-met; 

This inconsistency were further investigated and its relation with the 

inaccuracy of the predicted surface temperatures was confirmed; 

The air temperatures calculated for areas of the courtyard far enough from the 

surrounding walls proved to show good agreement with direct observations; 

The surface temperatures predicted by ENVI-met, particularly during daytime, 

did not show a satisfactory level of accuracy. However, it was argued that this 

could be solved by coupling ENVI-met with an indoor simulation program; 

The analytical validation approach proved that when linked with an indoor 

simulation program, ENVI-met's treatment of the energy emitted and received 

by surrounding surfaces is acceptably accurate. 

As a result of these two sets of validations, ENVI-met can be considered a reliable 

tool for predicting the environmental conditions outdoors, provided that careful 

consideration is applied on the surface temperatures of the walls as affected by their 

indoor environment. Chapter four will discuss these considerations as part of a 

broader idea of integrating the processes of indoor and outdoor simulation. 
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4 . Integrated simulation of indoor and outdoor environments 
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ENVI-met simulations that were introduced in Chapter 3, predict the outdoor 

conditions in the open space. They also provide information needed for simulating 

the indoor conditions in a building through an appropriate programme. To do this, it 

is necessary to appropriately connect 'outdoor' and 'indoor' simulation programmes. 

This is one of the tasks of this research that is discussed in this chapter. 

In order to achieve this goal, some of the available simulation packages dealing with 

the indoor environment are discussed in this chapter and one of them is selected to 

perform the task required by this research. Afterwards, the process of connecting 

this programme with ENVI-met, to provide the basis for an integiated method of 

simulating indoor and outdoor environments, is explained. The chapter will also 

discuss how this integrated method could be utilised in the process of decision

making at the design stage of a building or an urban development. 

4.1. Indoor simulation programmes 

Compared to simulation programmes dealing with outdoor conditions, there is a 

wider range of indoor energy performance simulation tools. Crawley et al (2005) list 

25 of these simulation tools that are currently used and promoted. Here, eight of 

these tools are reviewed based on the extent of their use in academic and/or 

professional environments, availability to the researcher and relevance to the current 

study. A short introduction on these eight programmes (as introduced by Crawley et 

al 2005) is presented in following paragraphs. From the review, the most appropriate 

tool for this research is selected and introduced. 
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4.1.1. BSim Version 4.4.12.11 

(www.bsim.dk ) 

BSim provides user-friendly simulation of detailed, combined hygrothermal 

simulations of buildings and constructions. The package comprise several modules: 

SimView (graphic editor), tsbi5 (building simulation), SimLight (daylight), XSun 

(direct sunlight and shadowing), SimPV (photovoltaic power), NatVent (natural 

ventilation) and SimDxf (import from CAD). BSim has been used extensively over the 

past 20 years, previously under the name tsbi3. Today BSim is the most commonly 

used tool in Denmark, and with increasing interest in other countries, for energy 

design of buildings and for moisture analysis. 

4.1.2. EnergyPlus Version 1.2.2, April 2005 

(www.energyplus.gov ) 

EnergyPlus is a modular, structured code based on the most popular features and 

capabilities of BLAST and DOE-2.1 E. It is a simulation engine with input and output 

of text files. Loads calculated (by a heat balance engine) at a user-specified time 

step (15 minute default) are passed to the building systems simulation module at the 

same time step. The EnergyPlus building systems simulation module, with a variable 

time step, calculates heating and cooling system and plant and electrical system 

response. This integrated solution provides more accurate space temperature 

prediction, crucial for system and plant sizing and occupant comfort calculations. 

Integrated simulation also allows users to evaluate realistic system controls, 

moisture adsorption and desorption in building elements, radiant heating and cooling 

systems, and inter-zone air flow. 
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. 4.1.3. ESP-r Version 10.1, February 2005 

(www.esru.strath.ac.uklPrograms/ESP-r.htm ) 

ESP is a general purpose, multi-domain (building thermal, inter-zone air flow, intra

zone air movement, HVAC systems and electrical power flow) simulation 

environment which has been under development for more than 25 years. It follows 

the pattern of "simulation follows description" where additional technical domain 

solvers are invoked as the building and system description evolves. Users control 

the complexity of the geometric, environmental control and operations to match the 

requirements of particular projects. It supports an explicit energy balance in each 

zone and at each surface. ESP-r is distributed under a GPL license. The web site 

also includes an extensive publications list, example models, source code, tutorials 

and resources for developers. 

4.1.4. lOA ICE Version 3.0, build 15, April 2005 

(www.egua.se/ice ) 

lOA Indoor Climate and Energy (lOA ICE) is based on a general simulation platform 

for modular systems, lOA Simulation Environment. Physical systems from several 

domains are in lOA described using symbolic equations, stated in either or both of 

the simulation languages Neutral Model Format (NMF) or Modelica. lOA ICE offers 

separated but integrated user interfaces to different user categories: 

• Wizard interfaces lead the user through the steps of building a model for a specific 

type of study. The Internet browser based lOA Room wizard calculates cooling and 

heating load. 
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• Standard interface for users to formulate a simulation model using domain specific 

concepts and objects, such as zones, radiators and windows. 

• Advanced level interface - where the user is able to browse and edit the 

mathematical model of the system. 

• NMF and/or Modelica programming - for developers. 

4.1.5. IES <VE> Version 5.2, December 2004 

(www.iesve.com ) 

The IES <Virtual Environment> (IES <VE» is an integrated suite of applications 

linked by a common user interface and a single integrated data model. <Virtual 

Environment> modules include: 

• ModellT - geometry creation and editing 

• ApacheCalc - loads analysis 

• ApacheSim - thermal 

• MacroFlo - natural ventilation 

• Apache HVAC - component based HVAC 

• SunCast - shading visualisation and analysis 

• MicroFlo - 3D computational fluid dynamics 

• FlucsPro/Radiance - lighting design 

• DEFT - model optimisation 

• LifeCycle - life-cycle energy and cost analysis 

• Simulex - building evacuation 

The program provides an environment for the detailed evaluation of building and 

system designs, allowing them to be optimized with regard to comfort criteria and 

energy use. 
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4.1.6. PowerDomus Version 1.5, September 2005 

(www.pucpr.br/lst ) 

PowerDomus is a whole-building simulation tool for analysis of both thermal comfort 

and energy use. It has been developed to model coupled heat and moisture transfer 

in buildings when subjected to any kind of climate conditions, i.e., considering both 

vapor diffusion and capillary migration. Its models predict temperature and moisture 

content profiles within multi-layer walls for any time step and temperature and 

relative humidity for each zone. 

PowerDomus allows users to visualize the sun path and inter-buildings shading 

effects and provides reports with graphical results of zone temperature and relative 

humidity, PMV and PPD, thermal loads statistics, temperature and moisture content 

within user-selectable walls/roofs, surface vapor fluxes and daily-integrated moisture 

sorption/ desorption capacity. 

4.1.7. Tas Version 9.0.7, May 2005 

(www.edsl.net ) 

Tas is a suite of software products, which simulate the dynamic thermal performance 

of buildings and their systems. The main module is Tas Building Designer, which 

performs dynamic building simulation with integrated natural and forced airflow. It 

has a 3D graphics based geometry input that includes a CAD link. Tas Systems is a 

HVAC systems/controls simulator, which may be directly coupled with the building 

simulator. It performs automatic airflow and plant sizing and total energy demand. 

The third module, Tas Ambiens, is a robust and simple to use 2D CFD package 

which produces a cross section of micro climate variation in a space. Tas combines 
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dynamic thermal simulation of the building structure with natural ventilation 

calculations which include advanced control functions on aperture opening and the 

ability to simulate complex mixed mode systems. The software has heating and 

cooling plant sizing procedures, which include optimum start. Tas has 20 years of 

commercial use in the UK and around the world. 

4.1.8. TRNSYS Version 16.0.37, February 2005 

(www.sel.me.wisc.edu/trnsys ) 

TRNSYS is a transient system simulation program with a modular structure that was 

designed to solve complex energy system problems by breaking the problem down 

into a series of smaller components. TRNSYS components (referred to as "Types") 

may be as simple as a pump or pipe, or as complicated as a multi-zone building 

model. The components are configured and assembled using a fully integrated visual 

interface known as the TRNSYS Simulation Studio, and building input data is 

entered through a dedicated visual interface (TRNBuild). The simulation engine then 

solves the system of algebraic and differential equations that represent the whole 

system. In building simulations, all HVAC-system components are solved 

simultaneously with the building envelope thermal balance and the air network at 

each time step. In addition to a detailed multizone building model, the TRNSYS 

library includes components for solar thermal and photovoltaic systems, low energy 

buildings and HVAC systems, renewable energy systems, cogeneration, fuel cells, 

etc. 

The modular nature of TRNSYS facilitates the addition of new mathematical models 

to the program. In addition to the ability to develop new components in any 
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programming language, the program allows user to directly embed components 

implemented using other software (e.g. Matlab/Simulink, ExceINBA, and EES). 

TRNSYS can also generate executables that allow non-expert to run parametric 

stUdies. 

4.2. Programme selection 

To choose one of these tools for the purpose of this research, the first step is to 

define a set of criteria that narrows down the choices. These criteria, and the ability 

of the programmes to meet them, are summarized in Table 4.1. 

As this table shows, all seven programmes show good quality in the area of 

simulation solutions they use i.e. they are all capable of simulating different 

components of the building and their interactions at the same time and they all have 

Table 4.1 Contrasting the capabilities of building energy performance simulation programs 

Features .. .. " " A E a: 0 Cl) w w e ,. ,., 
2 > 

E eo v " ;r. Cl) .. Ui " « Cl) ;: z 
r:- e Q !!! 

0 Cl) '" ID W Il. W ... 
Simulation solution 

· Simultaneous loads, system and plant solution x x x x x x x x 

• Space temperature based on loads~systems feedback x x x x x x x x 

· Floating room temperatures x x x x x x x x 

Time step approach 

• User-selected for zone/environment interaction x x x x x x x 

· User-selected for both building and systems x x x x x 

Full Geometric Description 

• Walls, roofs, floors x x x x x x x x 

Number of surfaces, zones, systems and equipment unlimited x x x x x x x x 

Generate hourly data from monthly averages x x 

Estimate diffuse radiation from global radiation x x x x 

Weather data processing and editing x x x x 
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a solution for calculating room temperatures without using any type of environmental 

control that, as shown later in this chapter, is one of the defining factors of this 

research. All programmes are also capable of dealing with different geometric 

characteristics for an indefinite number of interacting surfaces, which due to the 

complexity of some of the simulations in this study, will become very important. 

Tas, BSim and EnergyPlus, due to their limitations in adapting themselves to the 

time steps chosen by the user, for observing either the building or its electrical and 

mechanical systems, cannot be the best choices for this study. For Tas this limitation 

also extends to the user's ability in selecting the frequency of time steps in the 

interaction of indoor and outdoor environments, which is one of the basic ideas of 

this research and could not be compromised. 

One of the other requirements of the study is the need for hourly data for the whole 

duration of the simulations and very often this information is not readily available. 

There are methods to generate these hourly data from daily or even monthly 

averages with acceptable approximate answers. Among the four remaining 

. programmes only IES <VE> and TRNSYS offer ways to do this task. This narrows 

down our selection process to only two choices. 

The reason that makes TRNSYS a better choice in comparison to the other 

candidate, is the option provided by this programme for processing and editing all or 

some of the weather data for trying different scenarios. This can be done by either 

direct editing of the weather file or adding a new component (or Type in TRNSYS 

terminology), separate from the weather file, to make necessary amendments on the 

data affecting the building. When transferring data between ENVI-met and TRNSYS 

(an example of which was presented in 3.4), this potential proves very helpful. 
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4.3. TRNSYS components 

The creators of TRNSYS describe it as "a modular simulation program that was 

designed to solve complex energy system problems by breaking the problem down 

into a series of smaller components" (trnsys.com 2006). These components are 

called "types" in TRNSYS terminology and may be as simple as a pipe, or as 

complicated as a mUlti-zone building model. The components are configured and 

assembled using a visual interface known as the TRNSYS Simulation Studio, and 

building input data is entered through another visual interface (TRNBuild). The 

simulation engine then solves the system of algebraic and differential equations that 

represent the whole system (trnsys.com 2006). 

In addition to a detailed mUlti-zone building model, the TRNSYS library includes 

components for "solar thermal and photovoltaic systems, low energy buildings and 

HVAC systems, renewable energy systems, cogeneration, fuel cells and hydrogen 

systems", etc (trnsys.com2006). In this section some of the Types used in this thesis 

are briefly introduced (after Solar Energy Laboratory 2006) and will be referred to 

only with their type numbers from now on. 

Type65d 

Equa Type67 Type34 

Figure 4.1 TRNSYS types used in this thesis 
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The order, in which these types are finally used, is demonstrated in Figure 4. At this 

stage, this figure is just to introduce the way different types are connected in 

TRNSYS. The reasoning behind the formation of this model is gradually explained in 

this chapter. 

4.3.1. Type 56a 

This component models the thermal behaviour of a building having up to 25 thermal 

zones. The building description is read by this component from a set of external files 

having the extensions *.bui, *.bld, and *.trn. The files can be generated based on 

user supplied information by running the processor program called TRNBuild. This 

Type generates its own set of monthly and hourly summary output files. Using this 

component allows distinction between different parts of building interiors in regards 

to their adjacent indoor and outdoor spaces. 

4.3.2. Type 34 

This component computes the solar radiation on a vertical receiver shaded by an 

overhang and/or wingwall. A shaded receiver may include left and/or right hand wing 

walls that extend above and/or below the receiver. The receiver may also include an 

overhang that can be placed at the top or above the receiver. The overhang may 

extend to the right and left of the receiver. In Chapter 5 of this thesis, Type 34 is 

used to define the shadings over the windows of the simulated buildings. 

4.3.3. Type 65d 

The on line graphics component is used to display selected system variables while 

the simulation is progressing. This component provides variable information and 

allows users to immediately see if the system is not performing as desired. The 

selected variables will be displayed in a separate plot window on the screen. In the 
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simulations carried out for the current study, this type was used only as a means of 

controlling the process and the output data is not displayed via this component. As a 

common language between TRNSYS and ENVI-met, Microsoft Excel was used for 

transferring data between the two. 

4.3.4. Type 67 

Type 67 reads a file containing the angular heights of obstructions that shade a 

series of openings. For each opening, a numerical ID in ascending order is provided 

on the first line of the data file. The second line contains the slope of each opening. 

The third line contains the azimuth of each opening. The fourth line contains a series 

of absolute surface angles; angles for which obstruction heights will later be 

provided. The fifth and subsequent lines of the data file each contain the angular 

height of an arbitrary obstruction as seen from the centre of an aperture while 

looking in the direction of one of the above provided surface azimuth angles. 

Type 67 takes two inputs that give the angle of the sun, two inputs that give total and 

diffuse radiation on the horizontal and then two inputs for each opening that give the 

beam and diffuse radiation on each opening. The component returns eleven outputs 

for each opening in the file. The first output is the fraction of beam radiation that is 

visible from the opening. The second is the shaded beam radiation on the opening. 

The third output is the fraction of diffuse radiation incident on the surface. The fourth 

and fifth outputs give the shaded diffuse and shaded total radiation respectively (both 

on the plane of the opening). Output six through eleven (for each opening) give the 

same values in the plane of the horizontal. 

This type is of very high importance when comparing different configurations of 

buildings around an open spac;e (such as a courtyard). The shading caused on 
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surfaces and openings by external objects can be considered as one of the main 

differences between different design layouts and this component can deal with this 

element in the investigations. 

4.3.5. Type 6gb 

This component determines an effective sky temperature, which is used to calculate 

the long-wave radiation exchange between an arbitrary external surface and the 

atmosphere. The effective sky temperature is always lower than the current ambient 

temperature. The black sky on a clear night for example, is assigned a low effective 

sky temperature to account for the additional radiative losses from a surface 

exposed to the sky. In this Type, the cloudiness of the sky can also be calculated 

based on user provided dry bulb and dew point temperatures. 

4.3.6. Type 33e 

This component takes as input the dry bulb temperature and relative humidity of 

moist air and calls the TRNSYS Psychrometrics routine, returning the following 

corresponding moist air properties: dry bulb temperature, dew point temperature, wet 

bulb temperature, relative humidity, absolute humidity ratio and enthalpy. 

This Type is used as one of the main tools to link TRNSYS to ENVI-met in this 

chapter. It enables user to override the input air temperature and relative humidity 

calculated in TRNSYS by those given by ENVI-met at any point and will be 

frequently used in this chapter. 

4.3.7. Type 109-TMY2 

This component serves the main purpose of reading weather data at regular time 

intervals from a data file, converting it to a desired system of units and processing 
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the solar radiation data to obtain tilted surface radiation and angle of incidence for an 

arbitrary number of surfaces. The weather data file used in this program can be 

either the real weather data to simulate the general environment surrounding a 

building, or the data that are given as an output of previous simulations by ENVI-met. 

In this chapter, this component is used, inter alia, for transferring surface radiation 

values from ENVI-met to TRNSYS. 

4.4. Integrating indoor and outdoor simulations 

It was discussed in full detail in Chapter 3 that for achieving reliable results for the 

thermal interactions on and around the walls separating an indoor environment and a 

small enclosed outdoor environment (like a courtyard), there has to be a simulation 

programme able of simultaneous consideration of the interactions on both sides of 

this wall. In the same chapter, the process of dual application of ENVI-met and 

TRNSYS for achieving accurate results for surface temperatures of the wall 

surrounding the courtyard was demonstrated and the importance of an integrated 

use of these two programmes in similar investigations was expressed. 

In this section, the two aforementioned simulation programmes, TRNSYS for indoor 

simulations and ENVI-met for "outdoor" simulations are linked in order to assess the 

energy performance of a small scale house as influenced by its adjacent outdoor 

space conditions (e.g. the courtyard). The Following pages report on the challenges 

encountered in establishing the interaction between the two programmes, together 

with approaches that have been used to solve some of the problems. The objective 

is to establish a method that enables a designer to evaluate and compare heating 

and cooling energy demands for a range of house designs, in singular and multiple 

urban configurations, as well as the thermal conditions of the adjacent outdoor space 
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(yard or courtyard) and their effect on outdoor thermal comfort. For this reason, air 

temperature is taken as the main defining factor and the major metric of the energy 

performance in the building as well as its state of thermal comfort. This is because 

the air temperature is the variable being treated in the simulation process. All other 

environmental factors such as humidity, air speed, etc. can be given as given 

constant values for all configurations examined, and, therefore, have an equal 

impact on all types in situations tested. This work will provide the basis for the 

development of a simulation tool that addresses the thermal interaction between 

indoor and adjacent outdoor spaces in an integrated manner. 

4.4.1. Setting 

To achieve this, a hypothetical courtyard house is created and used as an exemplar 

case to demonstrate the procedure. This is the same courtyard house model used in 

3.4.4 and 3.5.5 for cross-validation of ENVI-met and the analytical model for 

predicting nocturnal surface temperatures in a courtyard presented in Chapter 3. 

Simulations will be run for this house under sample yearly weather data to assess 

the climatic impacts on the building. The step-by-step procedure to do this is 

explained in the following pages. The information sought by this procedure are 

metrics for both energy consumption inside the building and thermal comfort outside 

in the courtyard, in a way that allows comparison between similar buildings. 

The main parameters discussed in this section are as follows: 

- To: Outdoor air temperature. This is the temperature of the air wrapping the building 

from outside, for example, the air temperature as measured on the rooftop. 
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- Ty: Air temperature in the courtyard. This was demonstrated to be different from To 

(e.g. Figure 3.8). 

- h Air temperature in the room adjacent to the courtyard. 

- Ts: surface temperature on the outer surface of the wall surrounding the courtyard 

(the surface facing the courtyard) 

4.4.2. Procedure 

The procedure of connecting the two programs is discussed here in 8 steps. Each 

step introduces the input and output data to the procedure and the tool responsible 

for performing the simulation for that step. The function of each step is also 

illustrated via a schematic presentation and further explained by the application of 

that function to a simple courtyard building. The first three steps presented here 

cover the concept of correcting diurnal surface temperatures as was described in full 

detail in Chapter 3. Steps 4 to 8 advance the method into predicting heating and 

cooling loads of the building and thermal comfort environment of the courtyard. 

- Step 1: 

• Program used: ENVI-met 

• Input data: To and the sun's position from the weather file 

• Output data: Ts and Ty 

• Description: By running a basic ENVI-met simulation under defined weather 

data (either called by ENVI-met from a *.txt file or input manually in the 

program's input file with the extension *.var), a range of air temperatures for 

each 3D cell in the grid of the courtyard and surface temperatures for each 2D 

cell in the grid of the surface of each wall at desired time intervals are 
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predicted and an average temperature for the selected cells is calculated. 

This output data is saved in the output file (with ".edi extension). The data in 

this file is exported to an MS Excel workbook (with the extension ".xls). 

• Depiction: 

Figure 4.2 Schematic presentation of step 1 

Outside air temperature for a normal day in May in Isfahan, 
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Figure 4.3 T. from the weather data 
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Application: ENVI-met simulations were performed for a courtyard (as described in 

3.4.5 and illustrated in Figure 3.19) under the weather data from a normal day in May 

in the city of Isfahan, Iran (figure 4.3). As an output of these simulations, a set of air 

temperature values for all the grid cells in the environment of the courtyard (average 

values plotted in Figure 4.4) and a set of surface temperatures for all the grid cells of 

the outer surface of the walls (average values for the wall facing south demonstrated 

in Figure 4.5) are produced. 

Average air temperature in the courtyard as predicted by 
ENVI-met (Step 1) 
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Figure 4.4 T, as predicted by ENVI·met (Step 1) 

• Discussion: As elaborated in Chapter 3 (3.3 and 3.4), these values should not 

be taken as the final results for either air temperature in the courtyard or 

surface temperatures of the surrounding walls. These values need to be 

entered to TRNSYS heat balance calculations on the walls surrounding the 

courtyard in order to reflect the effect of heat storage in the wall. 
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- Step 2: 

• Program used: TRNSYS 

• Input data: Ty and T. from Step 1, the sun's position and To from the weather 

file 

• Output data: Ti 

• Description: The building is simulated by TRNSYS, using the usual weather 

data and the solar irradiation on all sides apart from the side facing the 

courtyard. The heat gains from solar irradiation on walls surrounding the 

courtyard is replaced by a wall, the surfaces of which are kept in temperatures 

equal to the T. temperatures calculated by ENVI-met in Step 1. A separate set 

of outside air temperatures (corresponding to Ty values from Step 1) are also 

added in Type109-TMY2 to apply on these walls. Results for air temperatures 
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inside the rooms surrounding the courtyard (Ti) are collected from Type 65d in 

the form of •. xls files. 

• Depiction: 

TRNSYS 
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Figure 4.6 Schematic presentation of step 2 

• Application: TRNSYS simulations (with the conditions explained above) were 

performed for a central courtyard building with the same specifications as the 

one simulated in ENVI-met in Step 1. As an output of these simulations, a set 

of air temperature values for all the grid cells in the environment of the indoor 

spaces of the building surrounding the courtyard (average values ploUed in 

Figure 4.7) are produced. 

• Discussion: The air temperature inside the room, given by this step in the 

simulation, is determined as an effect of the fabricated surface temperatures 

imposed on the outer surface of the courtyard wall. After finding the values for 

Ti, a second TRNSYS simulation, this time with free running surface 
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temperatures, is needed to determine more accurate values for Ts. This will 

be covered in step 3. 

Average Indoor air temperature as predicted by TRNSYS 
(Step 2) 
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Figure 4.7 T, as predicted by TRNSYS (Step 2) 

- Step 3: 

• Program used: TRNSYS 

• Input data: To from the weather file, Ty from Step 1 and Ti from Step 2 

• Output data: Ts 

• Description: A second run of TRNSYS simulation is performed to correct the 

surface temperatures of the walls facing the courtyard predicted by ENVI-met 

in Step 1. In this run, the outdoor air temperatures (Ti) are considered given 

(from Step 2) and a new set of surface temperatures (Ts) are calculated in 

Type 56a. Ty is also treated as known and the values calculated in Step 1 are 

entered in Type109-TMY2 in a process similar to what was described in Step 
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2. The results of the simulation of Ts, reported by Type 65d, are exported to 

an Excel workbook. 

• Depiction: 
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TRNSYS 

Figure 4.8 Schematic presentation of step 3 

• Application: The temperature grid of the outer surface of the walls surrounding 

the simulated courtyard (calculated previously in Step 1) is corrected in this 

phase, using the consideration of the indoor environment. An average 

example of these results is demonstrated in Figure 4.9. 

• Discussion: As mentioned in Chapter 3, in this phase of the simulation 

process, the values for Ts calculated by ENVI-met were replaced by more 

accurate predictions by TRNSYS. It is a plausible argument that this new set 

of surface temperatures will, in reverse, affect the air temperature in the 

courtyard (Ty). This effect will be discussed in the Step 4. 
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Average surface temperature on the northern wall of the 
courtyard as predicted by TRNSYS (Step 3) 
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Figure 4.9 T, as predicted by TRNSYS (Step 3) 

- Step 4: 

• Program used: ENVI-met and TRNSYS 

• Input data: T. from Step 3 and To from the weather file and internal iterations 

• Output data: Ty and T. 

• Description: To calculate the air temperatures across the courtyard grid (Ty), 

the new set of surface temperatures (T.) from Step 3 are run in ENVI-met for 

a second time. This will result in a new set of values for Ty that will, in return, 

lead to the conclusion of the need for a new calculation for surface 

temperatures (T.) via TRNSYS. The effects of these two parameters on each 

other should be simulated for an adequate number of times, until the results 

are deemed accurate. 
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• Depiction: 

Envi-met 

TRNSYS 

Figure 4.10 Schematic presentation of step 4 

Application: The results for Ts from Step 3 (e.g. Figure 4.9) will be used as an input 

into ENVI-met to generate new values for Ty. Similarly, to account for the effect of 

the new Ty on surface temperatures, a new TRNSYS simulation can be performed. 

The results of this simulation (Ts values) are again fed back to ENVI-met to address 

the changes in Ty values. These iterations must go on until the difference between 

two consecutive sets of results (for both Ty and Ts) for all grid cells is restricted in an 

acceptable range. For the typical building simulated here, a maximum of 0.5 °C 

difference between two consecutive sets of results is taken as reasonable. The 

average values for courtyard air temperatures and surface temperatures on the 

northern wall of the courtyard are presented in Figures 4.11 and 4.12. 
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Figure 4.11 Ty after iterations 

Average surface temperature on the northern wall of the 
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• Discussion: By calculating final corrected values for the temperature of the 

air and the surfaces around the building, all the required data are defined 

for running a final round of simulations in TRNSYS, in order to determine 

the finalised set of values for air temperatures inside the building (Ti). 

- Step 5: 

• Program used: TRNSYS 

• Input data: To from the weather file, Ty and Ts from Step 4 

• Output data: Ti 

• Description: By defining a proxy Type 109-TMY2 component for courtyard 

surfaces and replacing the outdoor temperatures (To) with courtyard air 

temperatures (Ty) from Step 4 and fixing the surface temperatures of these 

walls (in Type 56a) on the values resulted from Step 4, values for indoor air 

temperature of the building (Ti) can be finalised. 

• Depiction: 

TRNSYS 

Figure 4.13 Schematic presentation of step 5 
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• Application: grids for the outer surface temperatures of the walls surrounding 

the simulated courtyard and the air temperatures inside the courtyard 

(calculated previously in Step 4) are used in this phase, in order to generate 

the final set of values for indoor air temperature in the building simulated. An 

average example of these results is demonstrated in Figure 4.14. 

• Discussion: Ti calculated in this step is a prediction of the actual air 

temperatures that can be measured inside the building. These values can 

contribute to the assessment of the thermal sensation and consecutively, the 

amount of heating or cooling needed to maintain this sensation within an 

acceptable range inside the building. These heating and cooling loads are 

calculated in the next step. 

Final average indoor air temperature as predicted by TRNSYS 
(Step 5) 
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Figure 4.14 Final T, as predicted by TRNSYS 
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- Step 6: 

• Program used: TRNSYS 

• Input data: T; from Step 5 and set temperatures from local regulations 

• Output data: Set T; and heating and cooling loads 

• Description: In order to keep indoor air temperatures within the accepted 

range of thermal comfort; as defined by local regulations, a certain amount of 

either cooling or heating might be needed. This defines the heating and 

cooling loads of the building within the simulation period and is calculable by 

Type 56a in TRNSYS. 

• Depiction: 

1---+1 Heating/Cooling r----¥ Consumption· 

Figure 4.15 Schematic presentation of step 6 

• Application: Local regulations suggest that, in order to maintain the level of 

thermal sensation of the users of a residential building in Isfahan within an 

acceptable range (from slightly cool to slightly warm), the average indoor air 

temperatures should be kept in a range of 18.3 to 23.7°C (BHRC 2004). This 

means that, in the example provided here (Figure 4.14), no cooling is needed 

throughout the day and the indoor environment of the building only needs 

some heating in the early hours of the morning (from 04:00 to 09:00 Hrs). 

Therefore the exact heating and cooling loads of the building for the day of 

this simulation, as calculated by TRNSYS, are as follows: 

Cooling load: 0 
Heating load: 36.54 kWH 
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On the other hand, controlling air temperatures between these two limits will 

eliminate the values beyond the limits from the set of actual indoor air 

temperatures (Figure 4.16). 
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Figure 4.16 T, after setting temperature limits 
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• Discussion: The results of this step provide a metric that makes different 

buildings comparable in regards to their level of energy consumption, which is 

one of the main objectives of the current research. On the other hand, by 

eliminating the temperatures outside thermal comfort range, changes in the 

energy balance on the walls (e.g. surface temperatures) is expected. A last 

TRNSYS simulation will provide the actual surface temperatures. 
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- Step 7: 

• Program used: TRNSYS 

• Input data: Ti from step 6, Ty from Step 4 and To from weather file 

• Output data: Ts 

• Description: Continuing TRNSYS simulation performed in step 6 under the set 

temperatures demonstrated in Figure 4.16 will result in a new set of surface 

temperatures (Ts). 

• Depiction: 

Figure 4.17 Schematic presentation of step 7 

• Application: The final set of indoor air temperatures (figure 4.16) are used 

together with other environmental data to generate the final values for the 

surface temperatures across the grid cells over the outer surface of the walls 

surrounding the courtyard. Average of these values for one of the walls is 

exhibited in Figure 4.18. 
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Average of actual surface temperatures on the outer surface 
of the northen wall of the courtyard (step 7) 
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Figure 4.18 Final values for T. 

• Discussion: Final Ts values, predicted here, form one of the defining 

parameters for making a conclusion on the level of thermal comfort in the 

courtyard. They also have a significant role in predicting final values for air 

temperature in the courtyard, the other determining factor in the thermal 

comfort in the courtyard. 

- Step 8: 

• Program used: ENVI-met 

• Input data: Ts from Step 7 and To from weather file 

• Output data: Ty 

• Description: A final run of ENVI-met simulation is needed to determine the air 

temperatures (Ty) of all grid cells across the courtyard. The values for the air 

temperature in the surrounding environment (To) are called from the weather 
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data file and the surface temperatures on the courtyard side of the walls (Ts) 

are entered in the data input file (*.var). Results are predicted by ENVI-met 

and placed in the output file (with extension *.edi) and can be exported to and 

plotted in a * .xls file. 

• Depiction: 

Envi-met 

Figure 4.19 Schematic presentation of steps 8 

• Application: The final set of wall surface temperatures (an example of which 

was presented in figure 4.18) are used together with other environmental data 

to generate the final values for the air temperatures across the grid cells over 

the courtyard. Average of these values is exhibited in Figure 4.20. 

• Discussion: Final Ty values, predicted here, in addition to the Ts values, 

predicted in Step 7, form the defining parameters for making a conclusion on 

the level of thermal comfort in the courtyard and if processed through a 

suitable tool, are able to predict the number of thermally comfortable hours in 

the courtyard. 
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Average of the actual air temperatures across the courtyard 
(Step 8) 
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Figure 4.20 Final values for Ty 

- Step 9: 

• Index used: PET 

• Input data: Ts from Step 7 and Ty from Step 8 

• Output data: Thermal comfort in the courtyard 

• Description: By calculating Ty and Ts in the environment of the courtyard, 

through the method described in this chapter, the only remaining unknown 

factors in predicting the level of thermal comfort in the courtyard are given. 

This means that, at this stage by using a suitable outdoor thermal comfort 

index, thermal sensation of the users in all grid cells across the courtyard can 

be predicted. 

Sections 2.2.3 and 2.2.4 presented a detailed discussion on the selection 

process leading to adopting PET index (Hoppe 1999) as the outdoor thermal 

comfort index used in this study. Values calculated for PET (Physiologically 
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Equivalent temperature) are measured in °C and represent "the temperature 

at which in a typical indoor setting: T mrt = Ta ; VP = 12h Pa ; v = 0.1 ms-1
, the 

heat balance of the human body (light activity, 0.9e10) is maintained with core 

and skin temperature equal to those under actual conditions" (Ali-Toudert 

2005). Table 4.2 demonstrates how different PET values compare with PMV 

ranges and existing definitions for different levels of thermal perception and 

physiological stress. 

Table 4.2 Oefinition of PET ranges (Matzarakis 1999) 

PMV PET Thermal Grade of physiological 
(OC) perception stress 

Very cold Extreme cold stress 

-3.5 4 

Cold Strong cold stress 

-2.5 8 

Cool Moderate cold stress 

-1.5 13 

Slightly cool Slight cold stress 

-0.5 18 

Comfortable No thermal stress 

0.5 23 

Slightly warm Slight heat stress 

1.5 29 

Warm Moderate heat stress 

2.5 35 

Hot Strong heat stress 

3.5 41 

Very hot Extreme heat stress 
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• Depiction: 

Outdoor thermall--_______ .w Comfort 
comfort index 

Figure 4.21 Schematic presentation of step 9 

• Application: PET values for all grid cells of the simulated courtyard are 

calculated. Figure 4.22 shows an example of the PET values calculated for 

the simulated courtyard at 15:00 hrs on the day of simulations and at a height 

of 1m above the ground. These values span from 15 to 35°C (from slightly 

cool to warm), where almost half of the courtyard is within a complete 

thermally comfortable range (from 18 to 23 QC). 

PET 

D29-35°C 
D23-29°C 
o 18-230C 
11 13-18°C 

Figure 4.22 PET distribution across the pian view of the courtyard 

• Discussion: The percentage of the area of the courtyard that falls within the 

acceptable level of thermal comfort range can be a determining factor on 

whether, at the specific time of the day in question, the simulated courtyard is 
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comfortable enough to be usable. In the example provided in Figure 4.22, 

almost half of the area of the courtyard can provide a comfortable 

environment with no thermal stress. If the grid cells with a PET value between 

13 to 29°C (from slightly cool to slightly warm) are considered 'comfortable' 

for the activities the courtyard accommodates, about 77% of the area of the 

courtyard will be usable at this time. In this thesis, to judge whether a specific 

time of the day is thermally comfortable or uncomfortable, the following 

criterion was erected and adopted. If the number of useable squares of the 

grid (grid cells with a PET value greater than 13°C and smaller than 29°C) 

equalled or exceeded one third of the total number of the squares in the grid 

at a given time, then that particular time will be referred as 'comfortable'. All 

other observation times, where there is not enough useable area in the 

courtyard, are considered thermally uncomfortable. 

4.5 Summary 
The procedure introduced in this chapter and visualised by the flowchart in figure 

4.23 is aimed to offer comparable metrics between different designs for a given 

building. These metrics cover two general fields: the energy consumption level in the 

building, and the thermal comfort level in its adjacent open space. The results of this 

set of simulations, when compared with the ones for other alternative house/yard 

designs can produce a ranking on the advantage of each type from the specific point 

of view of energy consumption and outdoor thermal comfort. In addition, 

environmental, financial and cultural factors can be separately taken into account to 

help decision-makers on selecting the most advisable design. 
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Figure 4.23 Schematic presentation of the overall procedure 

A secondary contribution of the developed procedure is its potential application in 

future simulation programmes in order to integrate the two areas of indoor and 

outdoor simulations. It should be stated here that the completion of this procedure as 

an applicable tool highly depends on the development of the following three'areas: 

- A comprehensive simulation tool for outdoor climate - As discussed in the last 

two chapters, ENVI-met is still on its path towards completion. Some of the 

challenges caused by this matter were addressed in this chapter through 

innovative procedures. It is essential to have an outdoor simulation tool 

capable of tackling these problems in a more automated way. 
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- A reliable outdoor comfort index - Chapter 2 discussed in full detail about the 

ideas and theories on outdoor thermal comfort. It was mentioned there that 

many of the proposed indices for outdoor thermal comfort are highly 

dependent on the standard thermal comfort indices developed for indoor 

environments. The newer approaches, like the adaptive theory, seem to be a 

good answer to the problem of predicting outdoor thermal comfort conditions, 

but as long as there is no mathematical and computable indices for them, 

their usage will remain very difficult. 

- A weighting system for compared results - The results given by this procedure 

cover two separate areas of comfort and energy consumption. The normal 

procedure in building design consists of minimising the costs of construction 

and maintenance of the building, while maintaining the thermal comfort 

indicators within an acceptable range. When talking about outdoor thermal 

comfort, however, the occurrence of some uncomfortable times is inevitable. 

Therefore, here the main concern is to maintain a balance between 

minimising the costs and maximising the comfortable times. An understanding 

between different stakeholders on the level of importance of each of these two 

sides is essential. Moreover, there are many other factors that determine the 

final design of a building, factors such as the overall cost of construction as 

well as maintenance, the social factors and lifestyle and local regulations. 

Giving a proper weight to each of these is a matter outside the concept of this 

research and should be dealt with according to the specific situation of each 

case. What this research has provided, is an approach for evaluating building 

energy use, together with the outdoor thermal comfort in space adjacent to 

the building. 
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5 . Application of the method 
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In this chapter an exemplary case is introduced and demonstrated in order to apply 

the methods and approaches in the previous chapter through this example. 

Application of the overall approach that has been developed constitutes the ability to 

offer a ranking and comparison system as one of the objectives of the research. The 

details of the results provided by simulation are presented and the method, through 

which the level of advisability of different designs could be ranked, is discussed. 

Such a ranking could be used as a guide for decision-making about the type of 

building design and urban layout that is most advisable for similar cases from the 

point of view of energy consumption and usability of the adjacent outdoor space from 

the perspective of thermal comfort. 

5.1 Climatic data 

It was discussed in Chapter two that the microclimatic effect of small open spaces 

like courtyards is more noticeable in places with higher fluctuations in diurnal 

temperatures. One of the main factors defining the level of temperature difference 

between day and night in a place is the amount of water vapour present in the air. 

Compared to dry air, water has a much higher thermal capacity that can play the role 

of a thermal regulator and therefore, the higher the relative humidity of air in one 

place, the lower its diurnal temperature difference. 

In the present research, it seems more advantageous to consider the exemplary 

case in a place with higher daily fluctuations in the temperature, because larger 

fluctuations make it easier to study how the changes in the predicted air 

temperatures follow (or differ from) the changes in the outside temperature. For this 

reason, the weather data used in this example is the hourly data gathered and 
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calculated for a normal year for the City of Isfahan in the hot-arid climate of Central 

Iran (IRIMO 2006). 

Isfahan (also spelt as Esfahan) with geographic coordinates of 51°, 40' E and 32°, 

31' N is located at an elevation of 1500 to 1600 metres above sea level in the plain 

of the River Zayandeh Rud , at the foothills of the Zagros mountain range in Iran. 

The general climate of the city is temperate with regular seasons. No geological 

Figure 5.1 Location of Isfahan in Iranian Plateau (IRIMO 2006) 
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obstacles exist within 90 km north of Isfahan, allowing cool northern winds to blow 

from this direction. 

Despite this, Isfahan is still very hot during the summer with maxima typically around 

36°C. However, with low humidity and moderate temperatures at night, the climate 

can be well within the thermal comfort range during summer nights. In winter, days 

are mild but nights can be very cold and snowfalls could occasionally occur. 

However, with an annual precipitation of 113 millimetres, on the whole, Isfahan's 

climate is classified as extremely dry. 

Month Average Temperature (OC) Relative Average 
Sunlight humidity Precipitation 
(hours) Average Record (%) (mm) 

Min Max Min Max ani pm 

Jan 7 -4 8 -19 18 74 53 15 

Feb 7 -2 12 -14 23 68 40 10 

March 9 3 16 -11 28 57 33 25 

April 8 8 22 -3 31 55 25 15 

May 10 12 28 3 36 50 27 5 

June 12 17 33 9 43 42 18 0 

July 11 19 37 9 42 41 15 0 

Aug 11 18 36 12 42 42 15 0 

Se pt 10 13 32 6 38 44 19 0 

Oct 8 8 25 -1 33 51 24 3 

Nov 8 3 17 -9 25 64 35 15 

Dec 7 -2 11 -13 23 72 45 20 

Table 5.1 Isfahan cllmatologlcal normals for the period 1951-2005 (data from IRIMO 2006) 
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Figure 5. 21sfahan climatological norma Is for the period 1951-2005 (data from IRIMO 2006) 

The data on the main characteristics of the normal weather in Isfahan (based on the 

data reported by IRIMO 2006) are presented in Table 5.1 and Figure 5.2. 

5.2 House/yard combination types 

To achieve the aim of the research (Le. to suggest a method for making comparison 

between different designs available for a building from the perspective of energy 

consumption and thermal comfort) a set of different designs for a hypothetical 

building or a hypothetical block of buildings is needed. The objective of this part of 

the thesis is to apply the approach developed earlier to arrive at a prioritised ranking 

of these design types based on their energy consumption and the thermal comfort of 

the users of the outdoor spaces of the house. 

These design types must cover the common housing styles for the area of study as 

well as alternative designs applicable to this specific case and since the emphasis of 

this study is on both indoor and outdoor thermal performance of the houses, the 

main factor for classification of the design styles chosen is the way these indoor and 
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outdoor spaces are combined. In other words, the design types studied here should 

cover all different styles of house/yard combinations that are currently used or could 

be used for the hot-arid climate of Iran. 

Memarian (1998) provides an extended typology of traditional Iranian houses from 

different points of view. One of the classification methods he uses is based on the 

layout of the buildings in regards to the design of their open spaces (e.g. courtyards). 

In his works he categorises traditional Iranian houses based on the number, size and 

location of the courtyards. This latter viewpoint is the one that is most related to the 

area of concern of the present research. 

Out of 95 typical vernacular Persian houses studied by Memarian, 88 of them (93%) 

fall among one of the following 4 categories: 

- Central courtyard houses: houses with a central open space and with all possible 

surrounding walls in common with a neighbouring house; 

- Single standing central courtyard houses: same as above, only with no adjacent 

neighbours and therefore with windows on the outer wall; 

- Single standing block houses: or pavilions with no adjacent neighbours and no 

open space in the middle; 

- Front yard houses: houses with one yard on one side of the building (south side if 

feasible). 

Heydari's study (Heydari 2000) on old and modern houses in Iran shows that these 

categories are still being practiced by Iranian architects today. Some of them, like 

single standing courtyards, have become less common, whilst others, like front yard 
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houses, have gained enormous popularity. He also mentions two new emerging 

trends that were very rarely used in the tradition of Iranian architecture but their 

application is becoming too frequent to remain categorised as exceptions. These two 

emerging trends relate to the following design types: 

- Semidetached houses: houses with one adjacent neighbour on one side and open 

spaces on other three; 

- Terraced houses: or row houses, which are joined with two neighbouring buildings 

on two sides and have one front yard and one back yard (on the northern and 

southern sides of the building). 

To limit the complexities found in real urban texture and to examine and compare the 

impact of geometry alone, a number of simplified or archetypal forms that could 

represent the six mentioned types are needed in this research. Results of a study on 

these simplified forms can then be investigated more methodically and the results 

can be interpreted more easily. 

This type of study is not unprecedented. Martin and March (1972) have developed a 

similar system by choosing and simplifying six archetypes to represent the six most 

common types of built forms in European and North American urban areas. Their 

system of choice and definition of these simplified archetypes became very popular 

in generic studies and were extensively adopted during the last three decades in 

various kinds of researches (Ratti et al 2003). 
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Figure 5.3 Generic urban forms. based on Martin and March (1972) From left to right: pavilions, terraces, 

slabs, terrace-courts, pavilion-courts and courts (Ratti et al 2003) 

Although the categories introduced in Martin and March's work are not fully 

applicable to the Iranian housing styles and although they are initially generated for a 

comparative land use study between different designs, a modified version of the 

method used in their system is developed and adopted in the present study. The 

attractiveness of these generic forms mainly lies in their simple and repeatable 

characteristics, thus eliminating the complexities found in real urban sites and 

allowing for a more systematic comparative analysis of geometry and built form. 

Using the design types introduced by Memarian (1998) and Heydari (2000) and the 

method proposed by Martin and March (1972), different designs to be studied in this 

thesis are defined as shown in Figure 5.4. From now on in this thesis, these different 

designs for house and yard combination layouts are simply called 'types'. The six 

types presented here are considered in an urban block of identical buildings so that 

the effects could be studied both in singular form and in the bigger scale of a small 

urban complex. The urban blocks in their initial size consist of 8 buildings in two 

joined rows extended in East-West direction. 
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1..-_--1 __ ....L. __ ...1.._----I Type 2: Front yard 

'-__ L-_"";'L..._.....IL..._...J Type 3: Terraced 

I....._-IL..._.....II..-_.....I'--_...J Type 4: Semidetached 

'-_....JI..-_-L __ ..L_----I Type 5: Detached 

Figure 5.4 Generic urban forms used in the exemplary case 
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5.3 Building specifications 

The Following paragraphs show how the maximum effort has been made to keep all 

specifications considered for all different designs mentioned in previous section) 

apart from their geometry) similar to each other, so that the effects observed in the 

simulations could be exclusively attributed to the way the building and its open space 

are combined. 

Each type consists of 8 square plots of land covering an area of 324 m2
. In order to 

allow some variability in the interior design of the building and the yards and 

considering that designing a functional indoor or outdoor space (except for a very 

limited number of spaces like corridors or utility rooms etc.) in a very narrow place is 

almost impossible, the minimum acceptable width for any indoor or outdoor space is 

fixed at 3 m. The following figures show that based on this limitation, some of the six 

types in the example need to be built in two storeys, provided that the total area of 

the indoor space and consequently the volume of the indoor air are kept constant. 

This is an important issue because, in order to be able to make a comparison 

between different types in regards to their energy consumption, the volume of the air 

that needs to be heated or cooled must be kept equal. Therefore, if the nature of the 

layout of a specific type does not permit achieving the desired air volume in one 

storey, the total area of indoor space will be distributed in two storeys. 

As seen in these figures, the area of the land occupied by one house in each of the 

types is kept equal to 324 m2 and the total floor area equal to 216 m2 (±O.3 m2
). With 

a ceiling height of 3 m, the total air volume inside all types will be almost identical 

and equal to 648(±1) m3
. 
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Type 1 - Central courtyard 

Land area= 324 m2 

Built area = 215.84 m2 

Number of storeys = 1 

Floor area = 215.84 m2 

Indoor Air volume = 647.52 m' 

Type 2 - Front yard 

Land area= 324 m2 

Built area = 216 m2 

Number of storeys = 1 

Floor area = 216 m2 

Indoor Air volume = 648 m' 

Type 3 - Terraced 

Land area= 324 m2 

Built area = 108 m2 

Number of storeys = 2 

Floor area = 216 m2 

Indoor Air volume = 648 m' 

Type 4 - Semidetached 

Land area= 324 m2 

Built area = 108.11 m2 

Number of storeys = 2 

Floor area = 216.22 m2 

Indoor Air volume = 648.65 m' 
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Type 5 - Detached 

Land area= 324 m' 

Built area = 108.16 m' 

Number of storeys = 2 

Floor area = 216_32 m' 

Indoor Air volume = 648_96 m3 

Type 6 - Detached court 

Land area= 324 m' 

Built area = 108.11 m' 

Number of storeys = 2 

Floor area = 216_22 m' 

Indoor Air volume = 648_65 m3 

Figure 5.6 provides a three dimensional presentation of the types mentioned in 

Figure 5.5. As seen in this figure, design types 1 and 2 consist of one storey 

buildings and the rest of the types are formed in two storeys to keep the total floor 

area and air 'volume of all types identical. These three dimensional models will be 

defined in both ENVI-met and TRNSYS according to the method presented in 

Chapter 4 and results will be discussed. 

The percentage of the windows used on each wall is decided by the local regulations 

according to the national targets for reducing energy consumption of residential 

buildings in Iran (INBC19 2000). According to these regulations, the window area on 

a wall facing south must not exceed 50% of the total surface area of that wall. The 
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Figure 5.6 Three dimensional presentation of the 6 types over urban area 

corresponding figure is equal to 80% for a Northern wall and 15% for the walls facing 

East or west. These maximum values have been used in all simulations presented 

here. 

The areas of the individual windows are also kept within the same building codes 

(INBC19 2000). Based on this standard, and assuming a fixed height of 1.5 m for all 

windows, the width of the windows simulated on each of the North, South, East and 

West facing walls will be 3, 2 and 0.5 metres respectively. All these windows are 

double-glazed with a total U-value of 2.8 Wm-2K-1 with convective heat transfer 

coefficient of 3 and 18 Wm-2
K"1 for front (inside surface) and back (outside surface) 

respectively. Window frames are also considered to have an area equal to 20% of 

the overall area of the windows with a U-value of 2.27 Wm-2K-1 and a solar 

absorptance of 0.6. 
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INBC19 (2000) also suggests the use of a chart for the size of fixed shading devices 

for the windows on each wall. According to this chart, the South facing windows with 

the above size will have an overhang and two side wingwalls all of 0.5 m depth. All 

North facing windows will have only one 0.3 m deep wingwall on the side towards 

west. Also Eastern and Western windows will only have wingwalls, on the side 

towards South. These wingwalls will be 0.5 deep. 

All external walls will consist of a 0.24 m wide layer of brick, 0.1 m of insulation and a 

plaster layer of thickness 0.015 m. Walls in common between neighbours will be 

separated by a 0.2 m gap. Thermal characteristics of these layers are summarised in 

table 5.2: 

Conductivity Capacity Density (kg/m") 

(Wm-1K-1) (Whkg-1K-1) 

Brick 0.889 0.278 1800 

Insulation 0.04 0.222 40 

Plaster 1.389 0.278 2000 

.. Table 5.2 Thermal characteristIcs of the layers of the external walls 

The remaining conditions for which all outdoor simulations were run consist of the 

following factors: 

Ground Reflectance: 0.2 

Ground slope: 0 

Wind velocity: 0.1 m/s (constant) 
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Relative humidity: 50% (constant) 

Atmospheric pressure: 1 At (constant) 

Density of air: 1.2 kg/m3 

Specific heat of air: 0.281 Wh/kgK 

Heat of vaporisation of water: 0.682 kWh/kg 

5.4. Results 
After describing the procedure of combining the application of two already available 

simulation tools, ENVI-Met (for investigating the thermal performance of the buildings 

in connection to the conditions and of the surrounding natural and built environment) 

and TRNSYS (to study the thermal conditions of indoor living spaces), in Chapter 4, 

the present chapter has, so far, presented the initial data needed to apply this 

procedure to the process of decision-making in the early stages of designing the 

layout of a real building or neighbourhood. This was done through covering the 

details of the data needed for running these simulations for a hypothetical setting 

and under sample weather conditions. 

This data, when processed through the integral procedure of indoor and outdoor 

simulation, as introduced in Chapter 4, can provide the information and the results 

needed to suggest a ranking of the different designs based on their indoor and 

outdoor thermal performance. This section will discuss these results (for energy 

consumption of different types as well as the level of thermal comfort sensed in their 

adjacent open spaces) and proposes ways for generalisation of the method based 

on the considered exemplary case. 
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5.4.1. Energy consumption in the buildings 
A combination of two simulation programs, ENVI-met and TRNSYS, was used 

(based on the method described in Chapter 4) to calculate the amount of energy 

consumed in each type of the design layouts introduced earlier in this chapter. The 

results of these calculations are presented in the comparative diagrams presented in 

following pages. 

Heating Load for a Block of 8 Buildings 
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Figure 5.7 Monthly and yearly heating loads of different types 
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Figure 5.7 demonstrates the significant impact of the design layout on heating 

energy demands of the buildings with similar specifications. In the example 

presented in this chapter, Type 6 (Detached court house in figure 5.4) needs about 

20% more energy for heating up the building in comparison to type 5 (detached 

house). This might be attributed to the smaller area of exposed surfaces to the air in 

type 6, compared to type 5. To investigate this theory, the 'surface to volume ratio' of 

all types are calculated and their relation with the level of heating energy 
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consumption is studied. As an example, the method for calculating surface to volume 

ratio for type 1 is presented here: 

Surface area: 

The urban block Type 1, presented with its dimensions in Figure 5.8, consists of 12 

external walls, each with the dimensions 18 x 3 metres. There are also a total of 32 

internal walls (courtyard walls) with the dimension 10.4 x 3. The roof area of each 

house is also equal to 215.84 (Figure 5.5). 

Figure 5.8 Dimensions of Type 1 

Therefore the total area of the outer surface of the block is: 

12x18x3+32x1 0.4x3+8x215.84=64B+99B.4+1726.72=3373.12 m2 

The total air volume inside the buildings of the block can also be determined as B 

times 647.52 m3 (Figure 5.5): 

Bx647.52=51BO.16 m3 
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and therefore, the total surface to volume ratio of the block is equal to: 

3373.12/5180.16=0.65 m-1 

Figure 5.9 shows this ratio for all types in the exemplary case in comparison to the 

total heating load as predicted in Figure 5.7. 
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Figure 5.9 Comparative study of the effect of 'surface area to volume ratio' on heating loads 

It is a rarely debated rule of thumb that "the higher the surface area to volume ratio 

of a building, the more the energy consumption of that building". Comparing the 

general trends of the two diagrams in Figure 5.9 demonstrates that this rule, up to a 

high extent, is relevant to the example discussed here. However, the diagram also 

shows that this rule, on its own, is not a completely accurate way for ranking the 

energy demands of different designs at least when considering heating demands of 

buildings. For example, although type 5, in Figure 5.9, shows a higher surface area 

to volume ratio in comparison to type 4, its heating load is, in fact, slightly smaller 
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than that of type 4. This provides further evidence on the necessity of the integrated 

simulation of indoor and outdoor environments of a building, to which a method was 

introduced in this thesis. 

Cooling loads of the buildings, also, show the great impact of the design layout on 

energy consumption of a house (Figure 5.10). 

1.40E+05 

1.20E+05 

1.00E+05 

:E' 8.00E+04 

~ 
:; 6.00E+04 
IV .s 4.00E+04 
DJ 

:§ 2.00E+04 
8 
() O.OOE+OO 

Figure 5.10 Monthly and yearly cooling loads of different types 
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In fact, the effects of house/yard configuration on energy consumption of buildings is, 

arguably, much more obvious in warmer times of the year. The biggest consumer of 

cooling energy, as demonstrated by figure 5.10, is Type 3 (terraced housing), which 

in comparison to the most energy efficient type in summer (Type 5), has an energy 

consumption of about 60% higher. This is a clear indication of the importance of the 

subject of this thesis (Le. integrated design of indoor and outdoor environment of the 
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building for best energy efficiency), particularly in places with longer and harsher hot 

seasons. 

Comparing these results with the surface area to volume ratio of different types 

shows, one more time, that considering only surface area to volume ratio is not an 

accurate way of understanding the level of energy consumption in a building in 

comparison to another. 
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Figure 5.11 Comparative study of the effect of 'surface area to volume ratio' on cooling loads 

Now, by adding the total cooling and heating demands of each block and averaging 

for a single house, the average early energy consumption of each type is calculated 

(Figure 5.12). This values show that, if designed properly, a house in the studied 

case can save up to 10 MWh energy in a year. That is equal to 35% of the total 

energy used in some of the studied types. The potential of each type in energy 

saving could be used as a measurable metric when comparing with other types and 
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is one of the results sought by this exemplary case to allow selecting one of these 

types as the most advisable type for these specific conditions. 

Total Energy Consumption by different Types 
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Figure 5.12 Average yearly energy consumption per house 

5.4.2 Thermal comfort in the open spaces 
The method for assessing the level of thermal comfort in an open space adjacent to 

a building was explained in Chapter4. Using this method for the building types in the 

current exemplary case will offer a comparable metric, through which the buildings in 

question can be ranked according to the level of thermal comfort of the users of their 

open spaces. Figure 5.13 shows the total yearly number of thermally comfortable 

hours for each type compared to the number of thermally comfortable hours outside 

the built area. 

This diagram shows that, for example, when comparing types 5 and 6, it is observed 

that only through selecting the right type of combination of building and yard in a 

house, more than 1000 hours (about 12% of the whole duration of a year) is added 
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to the number of thermally comfortable hours outdoor. This means that in 

comparison to Type 5, private outdoor grounds of Type 6 are usable by the 

occupants for a further 12% of the time. In cultures, like Iranian culture, in which 

people value outdoor family activities in the privacy of their enclosed yards or 

courtyards, this can be considered as a defining factor, when selecting between 

different design types. 

3000 

~ 2500 

~ 
~ 2000 
~ 

1500 

1000 

500 

o 
Wealher Station Type 1 

Number ofThennally Comfortable Hours in a Year 

Type :3 

Type 

TypeS TypeS 

Figure 5.13 Comparative outdoor thermal comfort of all house types 

5.4.3. Decision-making 
The knowledge acquired through this process on the advantages and disadvantages 

of different design types can form the basis for the professional advice of an expert 

of energy and thermal comfort on the type of design layout that is more suitable for a 

specific house or a housing development. This knowledge, however, is not enough 

on its own and many other factors, which are out of the prospect of the current 

thesis, must be considered when making the final decision on the design of a house 

or a series of houses. 
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For example, the effect of the lifestyle of the occupiers and users of a house cannot 

be ignored when deciding about the nature and characteristics of the outdoor living 

spaces of a house. In Iran, for instance, the idea of having a private outdoor space 

that serves as one of the main family rooms of the house has always been an 

important part of residence traditions. This will act in favour of those 'types' that 

provide more privacy (e.g. central courtyard house) when the choice between 

different types is given. 

Cost effectiveness is another factor that has to be considered in this matter. Different 

design types, essentially, mean different construction costs and most probably 

different maintenance costs too. Consideration of this one fact could mean a major 

change in the order of the previously mentioned rankings if a house that is found to 

be more energy efficient or thermally more comfortable, imposes a substantially 

more expensive option on the client. 

Environmental issues also must not be forgotten. Short-term and long-term impacts 

of the building on its environment or environment's impact on the house can make a 

certain design type unfeasible. For example, in a country with too many rainy days 

during a year, the nature and intensity of utilisation of the outdoor space of a house 

is much more limited in comparison with a place with large numbers of sunny days. 

In the same way, the air pollution can restrict the potential of the most skilfully 

designed courtyards for being used as an outdoor living space. 

Therefore, in a real decision-making process many experts should be present to 

assess all different possibilities from different viewpoints. The matter under the focus 

of this study is to assess the advisability of a house design in regards to its energy 

consumption and the thermal comfort offered by its open space. Even this 
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'advisability' could be interpreted differently in different cases. The weight given to 

each side of these considerations (Le. energy consumption or thermal comfort) can 

vary substantially from case to case and from place to place. In some cases, for 

reasons such as high prices of energy, the outdoor thermal comfort argument could 

even sound irrelevant. In some other cases, however, because of the lifestyle of the 

household, usability of the yard or courtyard could become of the same importance 

as energy consumption or even more important. 

Just to demonstrate an example of the procedure, here an equal importance for both 

sides of this problem (energy consumption and thermal comfort) is assumed. As a 

comparable measure between different types that covers both energy consumption 

and outdoor thermal comfort, 'advisability' is defined as follows. Advisability is 

calculated by adding up the percentage of the improvement that each type can offer 

in comparison to the worst option in both energy consumption and outdoor thermal 

comfort. 

In this example, the building design marked as 'Type 6' showed the highest energy 

consumption among all types. The amount of improvement in energy saving that 

each type can offer, when compared to Type 6, is demonstrated in Figure 5.14. 

Further to the answers derived for the specific design case, presented in this 

example, as to which of the defined archetypes can be most suitable in this case, the 

results obtained from this comparison can also be interpreted as a general guide for 

the overall layout of small residential buildings in this climate and in similar places. 
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Energy saved by each type compared to Type 6 
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Figure 5.14 Yearly energy consumption improvement offered by each type. compared to Type 6 

Diagram presented in Figure 5.14 clearly shows that, in this climate, small houses 

that are built in two storeys (Types 3 to 6), if not designed carefully, could in general 

consume more energy compared to single-storey houses that contain the same 

volume of air (Types 1 and 2). Apart from the reduced amount of natural heat gain 

and heat loss from and to the ground surface (because the entire upper storey is 

built on occupied spaces with similar indoor temperatures), two-storey buildings also 

have a larger window area (twice that of a single-storey building on similar surfaces) 

that could contribute to a weaker environmental control. 

Also in each category (single-storey houses and two-storey houses), a direct 

relationship is observed between the deepness of the building plan and its energy 

saving. This means that, in climates like that of Isfahan, long and narrow plans are 

less favourable when wider options are available. 
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Thermal comfort improvement offered by each type compared 
to Type 5 

• thermal comfort .. 1 

Figure 5.15 Yearly improvement in the number of outdoor thermal comfort hours compared to type 5 

On the other hand, when looking at the thermal comfort offered by each layout type, 

Type 5 provides the lowest number of thermal comfort hours in its open space 

among all types. The amount of improvement in outdoor thermal comfort, offered by 

each of the other types, is plotted in Figure 5.15. 

Analysing these results reveals that, in this climate, the two factors that define which 

type's open space is more desirable than the other are the 'enclosure' level of the 

open space and its 'flexibility'. As seen in the diagram, Types 1 and 6 (row central 

courtyard house and detached central courtyard house) that have a courtyard 

enclosed on all four sides by the house building offer a much higher level of thermal 

comfort compared to other types. Flexibility of the open space (Le. offering different 

areas with distinct different level of solar irradiation) makes the open space usable in 

a much wider variety of hours. Sunnier corners accommodate for colder times of the 
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day (or year) and areas protected from the sun make the open space a pleasant 

place for hot hours. For example, the main difference between Types 2 and 3 is the 

fact that Type 2 has only one south-facing front yard, whereas, in type 3 a backyard 

is also provided for the house. 

When the two values from these two diagrams are combined for each type, the value 

of 'advisability' of each type from the perspective of energy consumption and thermal 

comfort is defined. Figure 5.16 presents the level of advisability of each of the design 

types introduced in this example for the conditions defined by the local weather. 

As figure 5.16 demonstrates, Type 1, central courtyard house is the most advisable 

design for the conditions of this example, followed closely by Type 2 (front yard 

house). Fully detached block houses (Type 5), on the other hand, prove to be the 

least advisable alternative. 
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Figure 5.16 Final advisability of each type - an energy consumption and thermal comfort perspective 
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5.5. Discussion 

In conclusion, the data needed for applying this procedure consists of the following 

categories: 

- Architectural details: Obviously the more detailed the design specifications of 

a model, the more accurate the results obtained by that model. However, 

considering that this sort of study normally takes place in the very early stages 

of the design, having a full understanding of all architectural details seems 

very unlikely. In the exemplary case discussed in this chapter, all potentially 

applicable designs were categorised and simplified to their basic geometrical 

characteristics based on a well-established common method. Therefore, in 

the simulation stage, they could be treated as real-scale geometrical shapes 

made out of construction materials and put under outdoor weather conditions. 

That means that no internal layout or furniture or garden and water features or 

lifestyles could affect the results of the simulations. 

Constructional details: Unlike the previous category, most of the data needed 

in this category are normally known at the early stages (at least to the extent 

needed by these tools). This knowledge comes from either the standards or 

codes of practice as legislated by relevant local authorities or from the norms 

of the trade practiced by a specific design consultant. In the present example 

of the application of the method, part of the data mentioned to be derived from 

local standards and norms. Most of other data are based on the suggestions 

by common acceptable construction practices as described by references or 

simply the default values suggested by the simulation programmes. 
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- Weather data: Since the microclimate built by the building and its adjacent 

open space is the main area of concern in this study, accessing the local data 

in a microclimate scale is of ultimate importance here. However, this data is 

very rarely available in that scale and therefore, the closest weather 

conditions have to be treated as the most relevant. The weather data used in 

this example are the data on a normal year based on a 55 year record. This 

plus the local patterns of sun movement that is directly calculated by both 

TRNSYS and ENVI-Met as well as average thermal properties for the 

surrounding natural elements (like air and water vapour) as proposed by 

references will provide all the information needed for running the required 

simulations. 

These data were processed through the integral procedure of indoor and outdoor 

simulation, as introduced in Chapter 4, and provide the information and the 

results needed to suggest a ranking of the different designs based on their indoor 

and outdoor thermal performance. Conclusions can be made based on the 

results of this exemplary case as follows: 

• The example shows up to 35% saving on the annual energy bill of the building 

only as a result of the placement of the open space in a building. This is a 

strong proof for the necessity of further studies like this thesis on the correct 

application of the abilities of different architectural configurations of indoor and 

outdoor spaces in buildings. 

• This energy saving is more obvious in the cooling demands of the building 

(45% compared to 20% saving in heating demands). This could be interpreted 
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as the higher importance of studies like this for regions with longer and 

warmer summers. 

• Selecting the appropriate type of yard/building combination could also 

increase the number of thermally comfortable hours of the open space by 

more than 1000 hours (about 12% of a year) and, as mentioned before, this 

could prove to be a big advantage for families and cultures that value an 

outdoor living space. 
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6. ConclusIons 
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This chapter presents the conclusions made as a result of the research presented 

into his thesis. The chapter is divided into three sections. In the first section the ways 

in which this thesis could be considered beneficial to the academic or professional· 

communities are discussed. The second section reviews challenges that remain in 

the more general application of the findings of this study and the last section deals 

with what could be done in future studies to meet these challenges. 

6.1 Contributions of the research 
Contributions· of the presented study could be discussed under three main 

categories: contributions to the knowledge of heat transfer and thermal comfort, 

contributions to improving existing simulation tools and contributions that are 

beneficial to the architects, designers and decision-makers of new urban 

developments. 

6.1.1Contribution to the academia 
• An analytical model of the thermal performance of a courtyard has been 

developed. Based on the radiosity approach, the model is capable of 

predicting the inner surface temperatures of a rectangular courtyard based on 

the air temperature in the courtyard and that in the rooms surrounding the 

courtyard. The conditions have been modeled at night, in the absence of solar 

radiation and have the potential of being further developed for the daytime, 

inclusive of the effect of solar radiation. Predictions from the model were used 

as part of an inter-model comparison for validating the output of ENVI-met, a 

simulation tool for predicting thermal behaviour in outdoor spaces. 

6.1.2 Contributions to simulation practices 
• The research provides further validation of ENVI-met, particularly in the area 

of predicting air temperatures. As mentioned before, currently there are not 
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many outdoor thermal simulation tools available to researchers. One of the 

most promising programmes available for this purpose at the moment is 

ENVI-Met that was used in this research as one of the two main tools of 

simulation. It was also argued that ENVI-Met, being a newly introduced 

programme and still under development, needed to be approached cautiously. 

What was needed from ENVI-Met in this research included information on the 

air temperature and surface temperatures of the open spaces. To validate the 

results given by ENVI-Met on these two areas, a number of approaches were' 

considered. These approaches, in addition to the analytical model introduced 

before, included the identification of real outdoor spaces and then modelling 

their thermal behaviour with ENVI-met, followed by comparing the predictions 

with measured data. In general, ENVI-Met proved to be suitable for the 

purpose of this research with some corrections and assumptions. The main 

correction, applied by cross-feeding the data between ENVI-Met and 

TRNSYS, was made to account. for the problem encountered in ENVI-Met 

with regards to considering thermal capacity of the walls when calculating the 

wall energy balances. The assumption made was to minimise the effect of air 

speed by considering a very slow constant flow of air through all simulations. 

This measure was taken because of the inaccurate results predicted by ENVI

Met in comparison to the data measured on site during periods of significant 

and variable air speeds in the courtyard. These methods established the 

validity of the values predicted by ENVI-met for air temperature in the 

courtyard for low wind speeds. Nocturnal Surface temperatures of the 

courtyard walls, as calculated by ENVI-met, were also verified to be accurate. 
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However, daytime surface temperatures did not meet the standards of this 

research and were replaced by the results from TRNSYS. 

• Introducing a technique for simulating indoor adjoining outdoor thermal 

environments based on the linking of two simulation programmes (TRNSYS 

and ENVI-met) is considered as another significant contribution of this 

research. Since there are presently no simulation programmes capable of 

considering indoor and outdoor heat transfer simultaneously, leading to 

interactions between the environments inside and around a building being 

ignored, an alternative approach had to be taken in order to achieve one of 

the main goals of the study, namely to assess the effects of the design of the 

outdoor spaces on the thermal environment inside the building. This 

alternative approach aimed at determining a suitable interaction between two 

programmes (TRNSYS and ENVI-Met), and proposed the nature of the data 

needed to be transferred from one to another. This was fully covered in 

Chapter 4 and was represented in a flowchart (Figure 4.22). Until a fully 

integrated simulation tool becomes available, this flowchart could be used in 

all similar situations where the interactions between indoor and outdoor 

thermal environments are investigated. It could also be altered for linking 

other pairs of programmes for specific needs of other stUdies. 

6.1.3 Contributions to architectural and urban design practices 
• This research established the effects of the location and positioning of an 

outdoor space that adjoins a building on indoor energy consumption and 

outdoor thermal comfort and that these effects are quantifiable by the 

technique presented in this thesis. An example of the application of the 

method, presented in Chapter 5, demonstrated that with all other conditions 
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treated as equal, a change in the placement of the private outdoor space of a 

house, can make a substantial change to both the energy consumption of a 

household and the occupants' sensation of thermal comfort in the private 

outdoor spaces of their home. The results of the exemplary application of the 

method showed a cut of around 35% in the energy consumption of the 

building and a rise of more than 12% in the number of thermally comfortable 

hours achievable in the yard of a house, resulting solely from the positioning 

of the yard. These numbers will certainly be different in different cases, but 

confirm that such a study before finalising the layout of a design is definitely 

worthwhile. 

• This thesis also presented a means for evaluating the placement of houses 

and their adjoining outdoor spaces within a housing development, in terms of 

energy consumption and outdoor thermal comfort. This could be considered 

the main contribution of this research because its achievement was one of the 

main aims of the research from the very beginning. The method introduced 

here, and later demonstrated through a sample study, could be used in any 

similar case, where a decision is to be made on the type of design selected 

for a new housing development. The means to evaluate the advisability of one 

design type over another from the point of view of energy consumption and 

outdoor thermal comfort, when combined with other social, economic and 

cultural factors, could be a very valuable tool in the hands of those who are in 

the process of making the decision for the final design adopted. This could 

concern all stakeholders in the process of the design, including policymakers, 

architectural and urban designers, investors, owners and most importantly 

occupiers and users. 
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• For example, it was established that for a climate like that of Isfahan, the two 

main factors to consider in the design of a house to make it more energy 

efficient are lower number of storeys and deeper plan layouts. Similarly, it was 

concluded that private open spaces adjacent to a house in this climate can be 

designed for offering a higher thermal comfort level if enclosed by the building 

on more sides and provide different areas with different level of solar 

radiation. Similar method can be applied for drawing such general results in 

other climatic situations. 

6.2 Limitations of the research 
In this section a number of limitations of the research are mentioned, together with 

suggestions for improvement. Some of these limitations were caused by the present 

lack of available knowledge in the field and some by the improvements that are yet 

to be made in the existing simulation programmes. 

6.2.1 The outdoor thermal comfort index 
Chapter 2 discussed in detail the process of selecting an outdoor thermal comfort 

index. As a result of this process, the index PET (physiological equivalent 

temperature) was selected. It was argued that PET offers, by far, the most accurate 

account of the human body's response to different environmental conditions and 

especially extreme conditions. The criticism made of PET is the same as that made 

of any other comfort index based solely on experiments and calculations rather than 

individuals' experiences and perceptions - that of ignoring the psychological aspects 

of man's interactions with his environment. The adaptive thermal comfort model 

offers an alternative to this genre of models but still fails to offer a definitive index, a 

metric that encompasses all factors affecting a person's thermal comfort in one 

comparable number. This means that, for example, the results offered for thermal 

181 



comfort in the open spaces of the houses could be different if psychological 

adaptations of the users were to be taken into account. This, however, does not 

make the decision-making process, proposed in this research, invalid, since the part 

concerning outdoor thermal comfort is, in fact, the last step of the process and its 

results are not used in other parts. So, whenever an improved index for outdoor 

thermal comfort becomes available in the future, it could be easily incorporated into 

the procedure presented here. 

6.2.2 Difficulty in considering air movement variations 
The findings of this study are for the conditions of low or zero wind speed. Wind 

speed variations could thus have an effect on the results of this study. Local patterns 

of seasonal winds have always been an important factor in determining the final 

design of a house. The comparisons made between the results predicted by ENVI-

Met against what was measured on site during the times of higher air speeds and 

turbulence, demonstrated a discrepancy in air temperature values. Based on this 

observation, the decision was made to continue thermal simulations by limiting the 

wind speed to very low values (the condition for which ENVI-Met results proved to be 

highly reliable). As discussed in chapter 3, this might have been caused by a variety 

of reasons (including reasons outside ENVI-Met's performance), but nevertheless it 

is not recommended to use the technique presented in situations where wind speeds 

in the surrounding area exceed 1 m/so 

6.2.3 The weighting system between different influencing factors 
To present the final ranking on the advisability of the types in Chapter 5, an equal 

weight was attributed to both the factors of energy efficiency and outdoor thermal 

comfort. In the same chapter it was discussed that this weighting regime was only an 

assumption and, in fact, it will be very difficult to give precise weights to these two 
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virtually incomparable factors. This is because energy consumption is an idea 

dealing with economic and financial subjects (among others) and comparing such a 

subject with thermal comfort, which in essence contains a psychological and can 

differ from person to person and from society to society. The weights one can give to 

each of these two factors will depend very much on the economic and social status 

of the users and how much they are prepared to spend on their comfort when using 

the private outdoor spaces of their houses. It also depends on the culture and 

lifestyle of the household and the importance to them of having an outdoor living 

space. There are many other factors that could change the balance of this weighting 

scheme (e.g. air pollution, number of rainy hours and days, surrounding buildings 

etc.) and these have to be considered separately for each individual case. 

6.3 Recommendations for further work 
The in-depth consideration of the questions addressed by this research has opened 

new perspectives on the matter. Some of these perspectives focus on how such a 

study can be done with more accuracy in similar cases, and some deal with ways to 

exploit the results presented and the methods proposed in this thesis. 

6.3.1 Development of an adaptive thermal comfort index 
The importance of achieving a reliable and comprehensive outdoor thermal comfort 

index has been stated here more than once, but it is worth mentioning again that the 

existing knowledge on human physiological and behavioural response to the 

environment is at a level that seems to be a good base for the researchers in the 

area to start a serious effort in establishing an adaptive thermal comfort index. 

Although at the moment it is hard to predict if such an index would be inclusive of 

both indoor and outdoor thenmal comfort senses of the users, the basic ideas of the 
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adaptive comfort model seem to be universal and therefore applicable to both 

indoors and outdoors. 

6.3.2 Day-time analytical model for wall temperatures 
The analytical model for predicting surface temperatures of a courtyard that was one 

of the main contributions of this research could be developed into a comprehensive 

model by considering different times of the day and different sizes and shapes of 

courtyard. The simple night-time model presented here provides all the basics for the 

development of such a comprehensive model. 

6.3.3 Further validation of ENVI-Met 
From the point of view of this research the question of the validity of ENVI-Met under 

the conditions of high speed and high turbulence air movements remains 

unanswered. As mentioned before, this by no means should be taken as a verdict 

against ENVI-Met but rather as a "no verdict" in the case. The simplifications made 

for the reason of this research might be a crucial factor in delivering different 

predictions from direct observations and it is suggested that further validation is 

undertaken for the conditions of faster, more turbulent winds. 

6.3.4 An integrated simulation programme 
In this study, ENVI-Met and TRNSYS were linked via feeding the outputs of one 

programme to the other one and vice versa. It is recommended that this process is 

automated via suitable software approach. Alternatively, an integrated simulation tool 

could be developed, capable of considering continuous interaction of indoor and 

outdoor environments through walls and windows. 

6.3.5 Developing and improving the decision-making tool 
Finally, this thesis was aimed at providing help and guidance to those involved in a 

process of decision-making at the earliest stages of design procedure (sketch-design 
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phase). This, in itself, could be made into a tool that enables its users to proceed 

faster in those early stages of the design instead of manually going through all the 

stages given this thesis. Such a tool will be improved even further if the proposed 

improvements on an outdoor thermal index and a reliable integrated simulation tool 

have been delivered. The development of such a comprehensive tool will be of high 

benefit to all stakeholders in the design process of a building or an urban 

development and in the long term will be beneficial to the users and occupiers of the 

buildings by offering more flexibility for them in using both indoor and outdoor spaces 

and also in reducing their dependence on fossil fuels for heating and cooling of their 

homes. The work presented in this thesis provides the basis for such future 

developments. 
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Appendix A 

Paper presented to Windsor International Conference 2008, "Air-Conditioning & the 
Low Carbon Cooling Challenge": 

Towards the Integrated Thermal Simulation of Indoor and Outdoor 
Building Spaces 

M. Malekzadeh and D. L. Loveday 

Department of Civil and Building Engineering, 

Loughborough University, Loughborough, LE11 3TU, UK 

Abstract 

In this paper, a standard "Indoor" simulation programme (TRNSYS) and an "outdoor" 

simulation programme (ENVI-met) have been linked in order to assess the energy 

performance of some typical Iranian housing designs as influenced by their adjacent 

outdoor space conditions. The paper reports on the challenges encountered in 

establishing the interaction between the two programmes, together with approaches 

that could be used to solve some of the problems. Following a description of the 

approach, results are presented of the heating and cooling energy demands for a 

range of house designs, in both singular and urban multiple configurations. Thermal 

conditions of the adjacent outdoor space (yard or courtyard) are also predicted and 

their effect on outdoor thermal comfort is assessed. The work provides the basis for 

the development of a simulation tool that addresses the thermal interaction between 

indoor and adjacent outdoor spaces in an integrated manner. 

Keywords: TRNSYS, ENVI-met, courtyard, Iran, outdoor thermal comfort 
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1. Introduction 

In many cultures the private outdoor space adjacent to a building fulfils an important 

function. In the UK, for example, the classic concept of the "English country garden" 

conveys a cultural gravitas that is comparable to that of the "central courtyard" of 

Iranian houses. Central courtyard buildings (Figure 1) were the main building type for 

Iranian houses for many centuries, but despite their cultural, historical and artistic 

values, the energy efficiency and thermal comfort of central courtyard buildings have 

been subject to debate in recent decades. For many years, most researchers have 

suggested deep forms for the buildings in a hot-arid climate (Olgyay 1963, Ratti 

2003) - forms as close as possible to a cube with the least amount of wall and roof 

area exposed to the harsh weather outside. 

Presently, this idea of box-like housing is the most frequently-practiced concept in 

most Iranian cities and in many rural areas. However, now and after practising this 

research-based idea for a few decades, doubts have arisen about the energy 

performance of these box-like buildings, in particular with regard to the level of 

thermal comfort they offer both indoors and in their enclosed open spaces. Some 

surveys (Merghani 2001) suggest much less need for heating and especially cooling 

Figure I: Borujerdis' House, Kashan, Isfahan Province, Iran 
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in some old central courtyard buildings compared to the more recent types where 

front or rear yards are provided. This suggestion is supported by public opinion 

surveys, indicating that the historical central courtyard building type is assumed to be 

thermally more comfortable, particularly in summer time (Heydari 2000). It has· also 

been argued that this perceived comfort advantage of the historical type of housing 

could be a result of many different factors (Gooje 2003). Some of these factors could 

include: 

Figure 2. A combination of courtyards of different sizes - isfahan, Iran (Tavassoli 1983) 

- height of indoor spaces allowing for replacement of the rising heated air with fresh 

and cool air; 

- high walls adding to the shaded area of the open space; 

- heavy materials used in the construction of the walls, providing high thermal 

capacity, insulation and heat exchange lag time; 

- additional architectural intricacies serving a secondary role as shading devices; 
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- bigger size of the traditional houses offering some flexibility in using different parts 

of the house in different weather situations; 

- the impression that central courtyards are simply more usable and therefore 

enjoyable; 

- the extent to which foliage and water features are used in historical houses, which 

could contribute to evaporative cooling as well as providing some extra shading; 

- the compact urban texture of traditional neighbourhoods (Figure 2) leaving a 

minimum percentage of the wall area exposed to outside conditions. 

A strong argument that could be made here is that applying these additional features 

might improve the comfort sense in any building type. Therefore, it is impossible to 

conclude whether the suggested enhanced perception of comfort in the vernacular 

housing type is in any way an effect of the placement of the courtyard in the centre of 

the building. 

In order to develop a better understanding of the impact of the placement of the 

adjacent open space (such as a courtyard) on the performance of the whole building, 

research has been carried out at Loughborough University towards developing a 

comparison method between different house/yard combination styles in the design 

layout of a residential building. The results of this research can contribute to the 

process of decision-making when selecting the general style of future housing 

developments based on the local weather situation. 

2. Positioning of Outdoor Space in House Design - An Energy Efficiency and 

Thermal Comfort Perspective 

As discussed in the introduction, a direct comparison between the different house 

design types is impossible, unless we strip the different compared types from their 

additional features (or simplify them) until we are left with the position of the open 

space as the only difference between the types. Computer simulation offers the most 

convenient way to perform this comparison. 
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Following an extended review of the programmes available for Simulating thermal 

performance of buildings and because of the current lack of simulation software 

capable of dealing with both the building and its adjacent open space, two 

programmes were selected to simulate separately the conditions inside the building 

and in the adjacent open space. 

There are a good variety of well-established programmes for simulating and 

predicting the thermal conditions inside a closed building. Among them TRNSYS, 

being one of the most widely validated programmes (SEL 2008) and offering a user

friendly environment and an efficient technical support, was chosen to study the 

indoor thermal condition of the buildings. 

For the outdoors aspect of the simulations, on the other hand, there are limited 

choices available. ENVI-met is a relatively new programme offering a modelling 

solution to predict the interactions between surfaces and the air of the outdoor 

environment. In addition to the validation results available (AIi-Toudert 2005), further 

analytical modelling and direct measurements were carried out during this research 

to determine whether ENVI-met could be used as a functional tool, suitable for the 

purpose of modelling the outdoor thermal environment in spaces adjacent to 

buildings. 

3. Case Study 

A hypothetical plot of land in Isfahan, central Iran, was chosen, assumed to be in the 

process of general planning for a new residential development project. The aim of 

the research was to develop a design/decision method that should be capable of 

recommending the type of house/yard combination that offers less energy 

consumption by the building and a greater number of hours of thermal comfort both 

inside the building and in the private open space adjacent to it. The assumed plot of 

land was an urban block with given dimensions, bordered by local access ways from 

all sides and including 8 equally-sized and shaped pieces of land in two rows of 4. 

Different commonly-used house/yard combinations applicable to this case were 

studied, categorized and simplified based on a method suggested by research at the 
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University of Cambridge (Ratti 2003). As a result, 6 different types of housing 

designs were set up. Each of these types is a simplified representation of one of the 

house/yard configurations studied here (Figures 3 and 4) 

'ID' ·'::0·.········ ..... ·0· ····.· .... ,···'···0' ... ·'.'·····1 
, . 

Type Type 

'"'<''''' . "",0''" "0'F'"'' , 

"""" .' ':,:.' ·',:,1:':, .. ' . ···'·.U:': .. 

Type Type 

Type Type 

Figure 3. Six simplified house/yard combination types 

All the types occupy equal areas of land, as well as having equal areas under their 

roofs. The total building volume, the height of the internal spaces, the materials used 

in the walls and their thickness, and the percentage of the window area in each 

direction are equal in all cases. There are no added active or passive cooling or 

heating systems in any of the building types, and every effort has been made to keep 

all the specifications of the types similar to each other, in order to restrict the 

differences between them to being only their design layout. 
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Figure 4. A 3D view of the six simplified house/yard combination types 

4. Procedure 

The procedure adopted was to focus on air temperature as the defining factor 

between the types as a metric of their energy performance as well as their state of 

thermal comfort. All other environmental factors such as humidity, air speed, etc. 

were assumed to be identical and, therefore, bearing an equal impact on all types. 

4.1. Air Temperature in the Courtyard 

Part of the data needed by TRNSYS for determining the air temperature inside a 

building (t;) is the air temperature outside the building (to). Surveys show that the air 

temperature' measured inside an enclosed open space (such as a courtyard) is, in 

most cases, different from the air temperature measured at the nearest weather 

station (Heydari 2000). 

Figure 5 presents the plan view of a central courtyard house in Isfahan, Iran and 

Figure 6 shows the average temperature values measured at the middle point of the 

courtyard by a research group from the University of Isfahan (Heydarpour 2002) for a 
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Figure 5. Polsheer House - Isfahan, Iran (Heydarpour 2002) 

period of 24 hours, in comparison with the general outdoor air temperatures from the 

meteorological data for the same day. Observed temperatures in the courtyard show 

different values from the ones recorded at the nearest weather station (about 2.5 km 

away). 

The Moderating Effect of The Courtyard on Air Temperature 
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Figure 6. Air temperature inside and outside the courtyard 
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In this study, ty represents the temperature inside the adjacent outdoor space 

(courtyard or yard), while to (outdoor air temperature) is the air temperature recorded 

at the weather station, which has been assumed to apply to all other surfaces of the 

building, including the roof. 

4.2. Courtyard Air and Surface Temperatures Found by ENVI-met 

To acquire a full set of hourly ty values for the courtyard of each of the assumed 

house types of section 3, the ENVI-met programme was run using the hourly data 

from the weather file, assuming that the surface temperature (ts) of all courtyard 

inner walls at the initiation point of the simulation is equal to to. To account for this 

assumption, the same data were processed on 2 consecutive days and the results of 

the second day were selected as the one represented in the research. 
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Figure 7. Air temperature in the courtyard before correcting for the effect of heat storage 

Figure 7 shows the average air temperature of the courtyard for Type 1 (the central 

courtyard house in Figure 3) based on the temperatures predicted by ENVI-met at a 
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height of 1 m above the ground for a 1 metre by 1 metre grid across the courtyard 

during a hot summer day in the city of Isfahan, Iran. 

Comparing this set of temperature values (ty) with the general outdoor temperature 

(To), shows some difference between the two, but this difference is far too small to 

confirm (among other studies) the results from direct measurements in Isfahan 

(Figure 6) of the moderating effect of the courtyards in both day and night. Moreover, 

the air temperature was found to be almost uniform in the courtyard air volume with 

insignificant warming up of air close to irradiated surfaces. This disagrees with field 

study results (e.g. Heydarpour 2002) and the results obtained from a similar 

experiment conducted in a university courtyard type building in Loughborough that 

both show higher air temperatures near the irradiated walls and an average air 

temperature in the courtyard that differs from the outdoor air temperature. This can 

be partly attributable to neglecting the heat storage property of the walls by ENVI

met. This problem, however, could be solved through TRNSYS in the next section. 
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Figure 8. Average surface temperature of the south facing wall by ENVI-met 

Figure 8 presents the average surface temperature (ts) for a south-facing wall in the 

same simulation by ENVI-met. The surface temperature curve shows a very close 

adherence to the changes of the air temperature and does not comply with the 

results obtained from the measurements that demonstrate a time difference between 
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the rise and fall of the two diagrams. Once more, this could be attributed to ignoring 

the heat storage in the simulation. 

4.3. Indoor Air Temperature and Corrected Surface Temperature by TRNSYS 

At this stage, a TRNSYS simulation could be run, using the air temperature recorded 

at the nearest weather station in addition to the new air temperature in the courtyard 

(predicted by ENVI-met). In order to supply the two different sets of surrounding air 

temperatures to the simulation, the courtyard was treated as an adjacent room with a 

changing predefined set of air temperatures, and then the heating effect of solar 

irradiation on different walls was calculated and added. This simulation predicts the 

average air temperature inside the building (t;) together with a new temperature for 

the outer surface of the courtyard wall (h.). As presented in Figure 10, this new set 

of surface temperatures show a noticeable difference from the ones derived from 

ENVI-met earlier and signifies the delay time caused by the heat storage in walls. 
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Figure 9. Indoor air temperature as predicted by TRNSYS 
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Figure 10. Surface temperature as predicted by TRNSYS 

4.4. Corrected Courtyard Air Temperature by Iterations Between ENVI-met and 

TRNSYS 
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Figure 11. Air temperature in the courtyard after considering the effect of heat storage 
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It is observed (Figure 11) that running ENVI-met once again, but this time using the 

corrected surface temperatures, could result in new values for the air temperature in 

the open space (t2y). 

This suggests the need for a set of iterations between the two programmes in order 

to obtain the final values for indoor and outdoor air temperature as well as the 

surface temperature of the walls facing the courtyard. These iterations were 

repeated until the difference between the last two successive approximations of ti 

achieved an acceptable degree of accuracy for this study (O.5°C). Figure 12 presents 

the final results for Ti on the selected day of the year for a single central courtyard 

house. These results could be used in calculating the heating and cooling loads of 

the building for that specific day. 
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Figure 2. Final indoor temperature after iterations 
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4.5. Calculating Heating and Cooling Loads by TRNSYS 

So far in these simulations, no added heating or cooling has been considered, but in 

order to achieve the minimum thermal comfort inside the building, a set temperature 

range of 20 to 26°C is needed to be maintained by some cooling and/or heating 

device (ASHRAE 2004). This will result in a new set of values for indoor air 

temperature in 

the room, called T,. Repeating the procedure described above for other months of 

the year, hourly Ti and T, values for a whole year of standard weather data can be 

calculated (a sample of which has been presented in Figures 13 and 14). 

I • 
! 

.,., 
Simulation TIm. -8760.00 [hr) 

Figure 3. hourly indoor temperature before adding heating or cooling (Types 3,4,5) 

These two sets of temperatures could be used to predict the heating and cooling 

loads of this building type. Figures 15 and 16 show the comparative diagram of 

yearly heating and cooling loads for all six types of the buildings depicted in Figure 3. 

This could be used as one of the main decisive factors for choosing the type that 

offers the best thermal performance. In this case, house designs Type 2 and Type 5 

offer the minimum annual heating and cooling loads, respectively. 
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Figure 4. Final indoor air temperature for a normal year (Types 3,4,5) 
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Figure 5. Monthly and yearly heating loads for the urban block (all types) 
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Figure 6. Monthly and yearly cooling loads for the urban block <an types) 
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These diagrams also show the significant impact of the design layout on energy 

demands of the buildings with similar specifications. It can also be argued that this 

difference is more critical in the cooling loads of the buildings and therefore making 

the choice of an appropriate design, more important in places with longer hot 

seasons. 

4.6. Final Values for Courtyard Air and Surface Temperatures 

The difference between the room temperature (Tr) and the last set of Ti values 

(Figures 13 and 14) also points out the need to perform a last set of simulations to 

find out the final values for the surface temperatures of the walls that face the 

courtyard (by TRNSYS) and the air temperature in the courtyard (by ENVI-met). 

These values provide a key factor to determine the level of thermal comfort in the 

courtyard (namely the air and mean radiant temperatures that could be experienced 

in that space). 
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Figure 17. Final air temperatures in the courtyard after iterations 
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Figure 7. Final surface temperatures for one of the walls in the courtyard 
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4.7. Assessing Thermal Comfort in the Courtyard 

Outdoor thermal comfort is a field of knowledge that is still largely under 

development. A few indices have been introduced to deal with this situation, each 

has its limitations (Ali-Toudert 2005). For the purpose of this study, the PET value 

index (H6ppe 1999) has been adopted as it has been found to be more accurate 

than most of the others, at least for subjects in sedentary conditions. Figure 19 

shows an example of the PET values calculated for building type 1 for a March 

afternoon. 

These values are calculated at a height of 1 m above the ground for a 1 metre by 1 

metre grid across the courtyard (see Figure 19 for an example). To judge whether 

this specific time of the day is thermally comfortable or uncomfortable, the criterion 

that was adopted was as follows. If the number of useable squares of the grid 

equalled or exceeded one third of the total number of the squares in the grid at a 

certain calculation time, then that particular time would be referred as "comfortable". 

All other observation times, where there is not enough useable area in the courtyard, 

[Type 1] PET Distribution (March· 2pm) 

A B D E F G H J K 

PET Values 

_24_25 
_23_24 

022-23 

_21·22 
C20-21 
.19-20 
018-19 
017-18 
.16-17 
1::l15-16 

Figure 19. A sample set of PET values accross the plan view of the courtyard in Type I 
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were considered thermally uncomfortable. "Usability" was also defined as being 

located in the PET range of 18 to 23°C which corresponds to the range of -0.5 to 

+0.5 on the PMV scale. (Matzarakis 1999). 

Figure 20 shows the total number of comfortable hours in all six house types during 

a normal year and is another key factor that can be used to select the most effective 

house type. In this case house design Type 6 offers the greatest number of hours of 
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Figure 8. Comparative outdoor thermal comfort of all house types 

TypeS 

outdoor thermal comfort as experienced in its courtyard and surrounding open 

space. 

5. Conclusion 

This paper has reported on the establishment of links between two simulation 

programmes (TRNSYS and ENVI-met) for the purpose of describing the integrated 

thermal performance of buildings and an immediately adjacent outdoor space (a yard 

or a courtyard). The complexities involved have been described and techniques for 

overcoming them have been explained. 
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The combination of simulations obtained is capable of predicting heating and cooling 

loads of the buildings in question together with the outdoor thermal comfort that 

might be expected in their adjacent outdoor spaces. For a range of typical house 

design types, a ranking in terms of these metrics has been presented. Work is 

continuing to develop the technique into a decision-making tool for selecting house 

designs, inclusive of urban layout, cost-effectiveness and social acceptability for the 

respective cultures. 
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