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Abstract 

This thesis is concerned with the deposition of nanoparticle films onto boron-doped 

diamond and tin-doped indium oxide (lTO) surfaces and the characterisation of the 

films using electron microscopy, powder diffraction methods and quartz crystal 

microbalance (QCM) data. The redox behaviour of the porous films was examined 

using cyclic voltammetry in various media to investigate potential electroanalytical 

applications. 

TiOz (anatase) mono-layer films were immobilised onto an inert boron-doped 

diamond substrate. Cyclic voltammetry experiments allowed two distinct steps in 

the reduction - protonation processes to be identified that are consistent with the 

formation of Ti(III) surface sites accompanied by the adsorption of protons. 

Preliminary data for electron transfer processes at the reduced TiOz surface such as 

the dihydrogen evolution process and the 2 electron - 2 proton reduction of maleic 

acid to succinic acid are discussed. 

Novel multi-layer TiOz films were deposited with a variety of organic binder 

molecules onto ITO substrates. The redox reactivity of Cuz+ with 1,4,7,10-

tetraazacyclododecane- 1,4,7, IO-tetrayl- tetrakis (methyl-phosphonic acid) in 

solution and immobilised on an electrode surface are investigated. The influences of 

film thickness, scan rate, and pH on the electrochemistry of immobilised 

pyrroloquinoline quinone was investigated with two possible electron transport 

processes observed. The thickness of TiOz phytate films was found to change the 

shape of the resulting cyclic voltammograms dramatically. Computer simulation 

and impedance spectroscopy allowed insights into the diffusion of electrons to be 

obtained. 1, 1 ~Ferrocenedimethanol was employed as an adsorbing redox system to 

study the voltammetric characteristics of carboxymethyl-y-cyclodextrin films and 

evidence for two distinct binding sites is considered. The apparent transport 

coefficients for dopamine and Ru(NHJ)6J+ are estimated for TiOz Nafion® films. 

The electrochemical processes in biphasic electrode systems for the oxidation of 

ix 
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water-insoluble N,N-didodecyl-N;N~diethyl-benzene-diamine (DDPD) pure and 

dissolved in di-(2-ethyl-hexyl)phosphate (HDOP) immersed in aqueous electrolyte 

media are described. Transfer of the anion from the aqueous electrolyte phase into 

the organic phase accompanies the oxidation of pure DDPD. In the presence of 

HOOP, oxidation is accompanied by proton exchange. The electrochemically driven 

proton exchange process occurs over a wide pH range. Organic microdroplet 

deposits of OOPD in HDOP at basal plane pyrolytic graphite electrodes are studied 

using voltammetric techniques and compared to the behaviour of organic 

microphase deposits in mesoporous Ti02 thin films. Two types of Ti02 thin film 

electrodes were investigated, (i) a 300-400 nm film on ITa and (ii) a 300-400 nm 

film on ITa sputter-coated with a 20 nm porous gold layer. The latter biphasic 

design is superior. 

Titanium carbide (TiC) nanoparticies were deposited onto ITa electrodes. Partial 

anodic oxidation and formation of novel core-shell TiC-Ti02 nanoparticies was 

observed at applied potentials positive of 0.3 V vs. SCE. Significant thermal 

oxidation of TiC nanoparticies by heating in air occurs at 250 °c leading to core

shell TiC-Ti02 nanoparticies, then Ti02 (anatase) at ca. 350 °c, and Ti02 (rutile) at 

temperatures higher than 750 °c. The electrocatalytic properties of the core-shell 

TiC-Ti02 nanoparticulate films were surveyed for the oxidation of hydroquinone, 

ascorbic acid, dopamine and nitric oxide (NO) in aqueous buffer media. 

Mono- and multi-layer Ce02 deposits on ITa are shown to be electrochemically 

active. A reduction assigned to a Ce(IV/III) process has been observed and follow

up chemistry in the presence of phosphate discovered. The interfacial formation of 

CeP04 has been proven and effects of the deposit type, pH and phosphate 

concentration on the process analysed. The electrochemistry of multi-layer Ce02 

nanoparticulate films in organic solvent is shown to be more stable. 

x 



Susan J. Stall Electroanalysis in Nanoparticle Assemblies Keywords 

Keywords 

Titania, titanium carbide, ceria, nanoparticie, assembly, ITO, cyclic voltammetry, 

biphasic voItammetry, electroanalysis. 

xi 



Susan J. StO/l 

a 

a 

A 

A 

A.C. 

ADC 

bppg 

BSE 

c 

C 

C 

CCD 

CC02 

CHHCA 

d 

D 

Dapp 

D.C. 

DDPD 

E 

EDX 

EELS 

Electroanalysis in Nanoparticie Assemblies 

List of Abbreviations 

activity of redox species (M) 

constant 

electrode area (m2
) 

frequency factor 

alternating current 

analogue to digital converter 

List of Abbreviations 

width in radians of the diffraction peaks (at half maximum height) of 

the test sample 

width in radians of the diffraction peaks (at half maximum height) of 

a highly crystalline standard sample (0.1°) 

basal plane pyrolytic graphite 

backscattered electrons 

concentration (M) 

capacitor 

capacitance (F) 

charged couple device 

cerium (IV) oxide or ceria 

I ,2,3,4,5,6-cyclohexanehexacarboxylic acid 

distance between discrete crystallographic planes 

diffusion coefficient (m2 S-I) 

apparent diffusion coefficient 

direct current 

N,N-Didodecyl-N;N' - diethyl-benzene-I ,4-diamine 

electron 

potential (V) 

energy-dispersive X-ray analysis 

equilibrium potential (V) 

electron energy-loss spectroscopy 

maximum potential amplitude (V) 

midpoint potential (V) 

formal reduction potential (V) 

xii 



Susan J. Stoft Electroanalysis in Nanoparticle Assemblies List of Abbreviations 

Ep peak potential (V) 

Epk peak potential (V) 

I frequency (Hz) 

10 resonant frequency of the fundamental mode of quartz crystal 

resonator (Hz) 

F Faraday constant (96485 C mor') 

FEGSEM field emission gun scanning electron microscopy 

GPES general purpose electrochemical system 

HDOP di-(2-ethyl-hexyl)phosphate or dioctylphosphate 

HOMO highest occupied molecular orbital 

i magnitude of current 

im maximum current amplitude (A) 

io standard exchange current 

ip peak current (A) 

I current (A) 

Ip peak current (A) 

Ip,a! Ip,c ratio ofthe anodic and cathodic peak current 

ITIES interface between two immiscible electrolyte solutions 

ITO tin-doped indium oxide 

j flux of reactant reaching the electrode surface (mol m-2 sol) 

k Boltzmann constant (1.381 x 10-23 JK-') 

ko heterogeneous rate constant 

K partitioning equilibrium partitioning coefficient 

K red binding constant 

LUMO lowest unoccupied molecular orbital 

m mass (g) 

MRI magnetic resonance imaging 

n integer 

n number of electrons 

NADH dihydronicotinamide adenine dinucleotide 

NO nitric oxide 

o oxidised form of redox species 

PAA poly(acrylic acid) 

xiii 



Susan J Stoll 

PAR 

PDDA 

PEI 

PQQ 

PSS 

q 

Q 

QCM 

r 

R 

R 

R 

R 

Ref. 

Electroanalysis in Nanoparticle Assemblies 

poly(allylamine hydrochloride) 

polydiaUyldimethylammonium 

poly(etherimide) 

pyrroloquinoline quinone 

poly(sodium 4-styrenesulfonate) 

charge density (C m-2
) 

tangent of the scattering angle in SAXS/W AXS 

quartz crystal microbalance 

particle radius 

reduced form of redox species 

resistor 

resistance (n) 

universal gas constant (8.3 14 JK-'mor') 

references 

List of Abbreviations 

[RJo 

RT 

concentration of reactant at the electrode surface (M) 

room temperature 

SAD 

SAXS 

SCE 

SED 

SEM 

STEM 

t 

t 

T 

TAPA 

selective area electron diffraction 

small angle X -ray scattering 

saturated calomel electrode 

secondary electrons detection 

scanning electron microscopy 

scanning transmission electron microscopy 

crystallite thickness (A) 

time (seconds) 

absolute temperature (K) 

1,4,7, I 0- tetraazacyclododecane- 1,4,7,1 O-tetrayl- tetrakis (methyl

phosphonic acid) 

TEM transmission electron microscopy 

TiC titanium carbide 

Ti02 titanium (IV) oxide or titania 

U potential (V) 

v potential scan rate (Vs-') 

V/rans potential scan rate transition point (Vs-') 

xiv 



Susan J Stall 

V 

WAXS 

x 

Xo 

XRD 

Zi 

Z 

Z' 

Z" 

a 

1] 

1] 

e 

e 
e 
,l 

Pi 

Electroanalysis in Nanoparticle Assemblies 

electrode volume (m3
) 

wide angle X-ray scattering 

potential (V) 

constant shift in potential (V) 

X-ray diffraction 

the charge of the ion 

impedance (n) 

real part of impedance (n) 

imaginary part of impedance (n) 

transfer coefficient 

film thickness (m) 

free energy of activation 

viscosity (centipoises) 

overpotential (V) 

List of Abbreviations 

angle between the atomic planes and the incident X-ray beam in 

XRD 

fraction of the electrode surface covered by the adsorbate 

phase difference in impedance spectroscopy 

wavelength (A) 

chemical potential (V) 

electrochemical potential (V) 

standard chemical potential (V) 

shear modulus of quartz (2.947 x 1011 g cm-I S2) 

density of quartz (2.648 g/cm3
) 

the electrical potential of the ion (V) 

xv 



Susan J. Stall Electroanalysis in Nanoparticle Assemblies Chapter I 

Chapter 1 

Introduction 

1.1. Aims 

The main aims of the work contained in this thesis were: 

I. To form new functionalised mesoporous membranes from inorganic Ti02 

and Ce02 nanoparticles and organic binder precursors, to investigate and 

characterise their properties, and to employ them as tools in electroanalysis. 

2. To investigate novel designs based on biphasic membranes in addition to 

simple membrane systems filled with one phase. 

3. To form, characterise and investigate potential electro-catalytic properties 

ofnanoparticle films composed of TiC and core-shell TiC-Ti02. 

1.2. Introduction to NanoparticIes 

A nanoparticle can be described as a microscopic particle whose size is between I 

run and 100 run in diameter. I Materials composed of nano-scale particles are of 

interest, as they have properties between those described by solid-state physics in 

bulk materials and the quantum effects of atoms and molecules.2 A range of 

chemical and physical properties have been shown to be dependent on the size of 

the particles, including optical properties, magnetic properties, melting points, and 

surface reactivity.3 An example of this is the ability to lower the sintering 

temperature of a material by bringing it into a nanoparticulate state. In the field of 

electrochemistry and fuel cell technology, another desirable property of materials 

constructed of nanoparticles, is a high chemical potential. This is due to an inherent 

large surface area to volume ratio and therefore the ability to convey a large number 

of active sites.4 
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Nanoparticles can be formed from a range of materials with various properties. For 

example metal,S dielectric6 and semiconductor7 nanoparticles have been formed, as 

well as hybrid structures such as core-shell nanoparticles.8 It is possible to form 

structures on a nanoscale, with nanospheres,9 nanorods,1O and nanotubes ll being just 

a few of the shapes that have been grown. More unusual nanostructures include 

semiconductor quantum dots l2 and nanocrystals. 13 The development of different 

shaped nanostructures with varying properties has led to their use in a wide range of 

areas, for instance power/energy,14 medical, 15 engineering,16 consumer goods,17 

environmental lS and electronic l9.20 applications. The applications of nanoparticles 

are not confined to recent years, with clusters of gold nanoparticles reported to have 

been used over 2000 years ago to generate vivid colours in Roman glass.2 

The manufacture of nanoparticles can be divided into four main synthetic routes, (i) 

wet chemical processes, (ii) mechanical processes, (iii) 'form-in-place' processes 

and (iv) gas phase synthesis. Wet chemical processes (e.g. colloidal chemistry and 

sol-gels), entail the mixture of well-defined quantities of ionic solutions under 

controlled heat, temperature and pressure conditions to promote the formation of 

insoluble compounds that precipitate out of solution. A large variety of mono

dispersed compounds can be produced cheaply using this technique (including 

inorganic, organic and some metals) with a high degree of control over the particle 

size. 

Mechanical processes (e.g. grinding and milling) are a simple, low cost method of 

producing fine inorganic and metal powder materials from coarse feedstock 

powders. Disadvantages include extensive particle size distributions, agglomeration 

of the powders and contamination from the process equipment. 'Form-in-place' 

processes (e.g. lithography, vacuum deposition and spray coatings) allow the 

fabrication of nanostructured layers and coatings on a substrate. These nanoparticle 

deposits can then be scraped from the substrate if necessary, to give a dry powder, 

however this tends to be an inefficient route for the production of dry nanoparticle 

powders. 

2 
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Gas phase synthesis consists of a number of techniques including laser ablation, 

flame pyrolysis, high temperature evaporation and plasma synthesis. Laser ablation 

involves the physical erosion and evaporation of a material onto a substrate and can 

be utilised to manufacture a large number of nanomaterials, however the production 

rates are slow. 

It is necessary to consider possible negative aspects of nanoparticles along with the 

good. In a world where the threat of terrorist attack is in the media on a regular 

basis, the idea of tailored microscopic particles being readily produced and released 

could cause concern. 

1.3. Film Deposition Techniques 

The ability to make organised films composed of macromolecules and nanoparticles 

is very important. There are many different methods used for the assembly of very 

thin films with varying levels of molecular order and stability. These include spin 

coating,21 solution casting,22 thermal deposition,23 layer-by-Iayer assembly,24 seIf

assembly,25 and Langmuir-Blodgett techniques.26 The optimum combinations of 

molecular order and stability of films will determine their practical usefulness.27 

Freestanding liquid crystalline films are among the most ordered macromolecular 

films28 but they are unstable. 

It is possible to construct amphiphile multi-layers with a thickness from 5-500 nm 

using the Langmuir-Blodgett (LB) method. The term Langmuir-Blodgett comes 

from the names of a research scientist and his assistant, Irving Langmuir and 

Katherine Blodgett, who discovered unique properties of thin films in the early 

1930s.29 

A LB film contains one or more layer of an organic material, deposited from the 

surface of a liquid onto a solid by immersing (or emersing) the solid substrate into 

(or from) the liquid. A mono-layer is added with each immersion or emersion step, 

as a result films with very accurate thickness can be formed. The mono-layers are 
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usually comprised of polar molecules with a hydrophilic head and a hydrophobic 

tail (e.g. fatty acids). The deposition process is schematically shown in Figure l.lA. 

The amphiphilic nature of the molecules dictates the orientation of the molecules at 

the interface (air/water or oil/water) in such a way that the polar head group is 

immersed in the water and that the long hydrocarbon chain is pointing towards air 

or oil. The hydrocarbon chain of the substance used for mono-layer studies has to be 

long enough in order to be able to form an insoluble mono-layer. Ifthe hydrocarbon 

chain is too short (though still insoluble in water), the amphiphile on the water 

surface tend to form micelles. These micelles are water soluble, which prevents the 

build-up of a mono-layer at the interface. Conversely if the length of the chain is too 

long the amphiphile tends to crystallize on the water surface and therefore does not 

form a mono-layer. The optimal length for the hydrocarbon chain is difficult to 

determine because the ability to form a film also depends on the polar component of 

the amphiphile. The amphiphile molecules are deposited onto the water surface in 

solution with a volatile organic solvent that evaporates to leave the floating mono

layer. Consequently it is necessary for the amphiphile to be soluble in an organic 

solvent that is highly volatile and water insoluble (chloroform or hexane are 

commonly used). 

A further complication of the LB technique is the need to maintain a constant 

molecular density or surface pressure while simultaneously dipping the solid 

substrate up and down through the liquid phase. This is achieved using a computer 

controlled feedback system between an electrobalance measuring the surface 

pressure and a barrier moving mechanism controlling the available area for the 

mono-layer molecules. 

The LB-technique is one of the most frequently used deposition procedures for the 

preparation of thin films as it enables (i) the precise control of the mono-layer 

thickness, (ii) homogeneous deposition of the mono-layer over large areas and (iii) 

the possibility to make multi-layer structures with varying layer composition. An 

additional advantage of the LB technique is that mono-layers can be deposited on 

almost any kind of solid substrate. 
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(A) 
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Figure 1.1. A) Deposition of a floating mono-layer on a solid substrate and (B) different types of 

deposited LB films.30 

The successive deposition of mono-layers on the same substrate leads to the 

production of different types of LB multi-layer films (see Figure 1.1 B). The most 

common example is the V-type multi-layer, which is produced when the mono-layer 

deposits to the solid substrate in both up and down directions. When the mono-layer 

deposits only in the up or down direction the multi-layer structure is called either Z

type or X-type. Intermediate structures are occasionally observed for some LB 

multi-layers and are often referred to be XV-type multi-layers 

However LB films possess inherent flaws at the lipid grain borders. The presence of 

inhomogenities in the floating mono-layer, high solution viscosity, incorrect surface 

conditions and contraction of the film while drying all contribute to possible flaws 

in the film deposited.3
! 
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In biomaterials in particular, another method called monolayer self-assembly can be 

applied to surface modification and is based on the strong preferential adsorption of 

a molecule to a substrate surface. Silane and thiol compounds have been shown to 

form dense mono-layers on silicon and gold surfaces respectively with the organic 

tail group pointing outwards from the substrate surface (see Figure 1.2).32 

Self-assembled mono-layer films form rapidly on the substrate, however it is often 

necessary to use adsorption times of IS hours or more to obtain well-ordered, 

defect-free films, furthermore adsorption times of two to three days are favoured for 

the formation of the highest-quality mono-layers. This technique typically allows 

the self-assembly of mono-layer films 2 - 5 run thick?3 The application of 

. molecules with different tail groups means the resulting chemical surface 

functionality can be widely varied. Alternatively, it is also possible to chemically 

functionalise the tail groups by performing reactions after assembly of the mono

layer. The deposition of molecules with a functional group on each end also allows 

the manufacture of multi-layer films. 

ill/ill/ 
SHSHSHSHSHSHSHSH 
I gold surface I 

Figure 1.2. Example of a self assembled mono-layer for a thiol compound on a gold substrate 

surface. 

An additional method that is widely used for the industrial manufacture of thin films 

is spin coating?4 A typical spin coating deposition process involves placing a 

solution of the film components onto the middle of a substrate and then spinning the 

substrate at high speed (typically around 3000 rpm). Centripetal acceleration will 

cause the fluid to spread across the surface, with excess fluid spinning off the edges 

of the substrate, leaving a thin layer of deposit on the surface. The applied solvent is 

usually volatile, and simultaneously evaporates, thus the higher the angular speed of 
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rotation, the thinner the film. The thickness of the film also depends on the nature of 

the solution (e.g. concentration, viscosity, drying rate, surface tension). Subtle 

variations in the parameters that define the spin process can therefore result in large 

variations in the coated film. After spinning is stopped many applications require 

that heat treatment or "firing" of the coating be performed along with any necessary 

further chemical modification. One of the most important factors in spin coating is 

repeatability since edge effects are often seen as the fluid flowing uniformly 

outward must form droplets at the edge to be thrown off and removed. 

Thermal deposition offers another method of depositing films, typically involving 

the accumulation of macromolecules onto a substrate in a controlled atmosphere at 

temperatures greater than 950 °C.lS However, these methods do not allow the 

molecular order in the films to be controlled. 

A further method for film self-assembly that utilises the alternate adsorption of 

oppositely charged macromolecules such as polymers,l6 nanoparticlesl7 and 

proteinsl8 was first reported by Decherl9 in 1991. The assembly ofaltemating layers 

of oppositely charged species is simple and provides the opportunity to form 5-500 

nm thick films with mono-layers of various substances and compositions. 

Successful layer-by-layer procedures are reported where the components possess 

high mass and multiple binding sites making the deposition sufficiently irreversible 

allowing the next layer to be deposited. Investigations into the influence of the 

average molecular weight of polymers on film formation noted that those with 

higher molecular weights typically produced more stable films.4o The average 

thickness of a single layer deposited wiJI depend on a number of other factors 

including the size and concentration of the two alternately charged species. For 

multi-layer films, the intermolecular forces (hydrophobic,41 ion-dipole, dipole

dipole and hydrogen bonding42) wiJI influence the structure ofthe film deposited. 

These multi-layer films deposited using layer-by-layer procedures have a lower 

molecular order than Langmuir-Blodgett or freestanding films (due to lack of mono

dispersity of the nanoparticle building block) but they have the advantage of high 

strength and easy preparation and modification?7 This layer-by-layer or directed 
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assembly methodology was employed here to form thin oxide - organic composite 

films for application in electroanaiysis. Investigating novel methods of 

manufacturing and applying nano-scale surface modified electrodes can have a 

number of benefits and may lead to new insights and mechanisms. 

1.4. Electrochemical Theory & Techniques 

1.4.1. Introduction to Electrochemistry & Electrode Processes 

The field of electrochemistry includes a large number oftopics43 including: 

1. Different phenomena (electrophoresis and corrosion) 

2. Devices (electroanalytical sensors, electrochromic displays, batteries and 

fuel cells) 

3. Technologies (e.g. the electroplating of metals and the large-scale 

production of aluminium and chlorine) 

The main focus of section 1.4 is the application of electrochemical methods to the 

study of chemical systems, however the basic principles of electrochemistry 

described are relevant to all three areas of interest listed above. 

Electrochemical experiments are concerned with the processes and factors that 

influence the transport of charge between two adjacent chemical phases, typically 

between an electronic conductor (electrode), immersed in an ionic conductor 

(electrolyte solution). Electrochemical experiments are achieved by completing an 

electrical circuit between two electrodes immersed in the solution phase. On 

application of a sufficient potential between the two electrodes in the presence of a 

suitable reactant, a current will start to flow. The flow of electrons in the electrode is 

transformed into a flow of cations and anions in solution. Chemical reactions are 

required to couple electron flow and ion flow and occur simultaneously at both 

electrodes. Usually only the process at one of the electrodes (the working electrode) 

is of interest. 
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A simple example of an electrode process involves the transfer of electrons between 

an inert metal electrode and an ion or molecule in solution. However electrode 

reactions are not restricted to simple electron transfer reactions and it is possible to 

observe a wide range of chemistry at an electrode surface.44 

For example, the reactant may be: 

1. Inorganic, organic or bioorganic 

2. Solid (including the electrode itself), a gas or the solvent as well as a 

dissolved species 

3. Neutral, cationic or anionic 

It is also possible that the electrode may not be a metal; alternatives include 

materials with metal type conductivity (e.g. carbons, oxides and conducting 

polymers), a semi-conductor or an insulator. The composition of the electrode can 

also vary greatly from a bulk material, to a coating on a conducting substrate or a 

complex structure (e.g. a porous gas electrode). 

1.4.2. Equilibrium Electrochemistry 

The simple case of an electron transfer process between an inert metal electrode and 

an ion or molecule in solution can be represented by equation 1.1 in which n 

electrons are transferred. 

(1.1) 

At equilibrium, i.e. in the absence of any net current, the concentrations of 0 

(oxidised form of redox species) and R (reduced form of redox species) are equal 

and cannot change, forcing the working electrode to take up the equilibrium 

potential for the solution. 

This equilibrium potential, E., may be measured directly using a digital voltmeter or 
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calculated from the Nemst equation (equation 1.2). 

E E
O· 2.3RT I aox 

e = e + og-
nF a"d 

(1.2) 

Where E is the electrode potential, R is the universal gas constant (8.314 JKlmorl), 

T is the absolute temperature (K), F is the Faraday constant (96485 C morl) and aox 

and ared are the activities of oxidised and reduced species respectively. For low 

concentrations, the activity of the ions is assumed to be equal to their 

concentrations. 

For the general electrode reaction in equation 1.3, the Nemst equation is given by 

equation 1.4, where E/ is the formal equilibrium electrode potential. 

pP + qQ + ne' c ~ xX + yY (1.3) 

(1.4) 

Ee"' is frequently replaced by Eeo, the standard equilibrium electrode potential, 

where the concentrations of 0 and R have unit activity and the potential is measured 

relative to the standard hydrogen electrode (SHE).45 

Equilibrium electrochemical measurements enable thermodynamic parameters 

(reaction free energies, entropies, and enthalpies) and equilibrium constants 

(solubility products and activities) to be readily obtained. 

1.4.3. Electrolysis 

The application of a potential (different to Ee) to the electrochemical cell will induce 

the flow of current, which stimulates the exchange of electrons between the 
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electrode and active molecules in solution (e.g. Fe3+). This exchange of electrons 

alters the oxidation state of the molecule, and electrolysis occurs. The transfer of 

electrons can occur in either direction, at an anode, electrons pass from the solution 

phase to the electrode as the electroactive species is oxidised (equation 1.5). 

F 2+ 3+ • 
e (aq) ~ Fe (aq) + e (m) (1.5) 

Conversely, at a cathode, the electron flow is in the opposite direction where a 

molecule in solution accepts an electron from the electrode so that the electroactive 

species in solution is reduced (equation 1.6). 

F 3+ - F 2+ e (aq) + e (m) ~ e (aq) (1.6) 

Many species are electro-active and the potential at which oxidation or reduction 

occurs is characteristic of the particular species.46,47,48 

The magnitude of the current (i) is given by equation 1.7. 

i=nFAj (1.7) 

Where n is the number of electrons, A is the electrode area (cm2), andj is the 'flux' 

of reactant reaching the electrode surface (mole cm-2 sol). For a kinetically limited 

process, j is defined by equation 1.8. 

j = ko[Rlo (1.8) 

Where ko is the heterogeneous rate constant for the electron transfer reaction and 

[Rlo the concentration ofthe reactant at the electrode surface. Equation 1.8 assumes 

that the reaction rate is first order, this is often but not always observed. 

The act of inducing a current through the electrochemical cell and the resultant 

conversion of the redox active species at the electrode/electrolyte interface, will 

alter [Rlo so that it is no longer equal to the concentration of R in the bulk of the 
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electrolyte solution. This can be explained by the tendency for the rate of depletion 

of R at the electrode surface through electrolysis to be faster than the rate at which 

R is replenished by diffusion from the bulk solution. 

The observed current therefore may be dependent on the mass transport of reactants 

and products to and from the electrode surface. Alternatively the rate-determining 

factor could be the rate of electron transfer. From the size of the current, both the 

thermodynamics (the ability of the molecules to exchange electrons) and the 

kinetics (chemical rate constant) can be determined. 

1.4.4. The Rate of Electron Transfer 

For the simple reaction (equation 1.9) where a single electron is transferred, the 

first-order heterogeneous rate constants for the forward (reductive) and back 

(oxidative) electron transfer reactions are defined by kred and kox. 

~ 
O +e' Ck .. D. (aq) (m) _ H(aq) (1.9) 

Using equations 1.7 and 1.8, the current for the reductive (ic) and oxidative (ia) 

components of reaction 1. 9 can be predicted. 

ic = FAk~d[olo 

ia = FAkoJRlo 

(1.1 0) 

(1.11 ) 

The net current, i, is equal to the sum of the anodic (ia) and cathodic (ic) currents, 

and can by estimated using equation 1.12. 

(1.12) 

At equilibrium, in the absence of any net flow of current, the fluxes of material 

(kred[O] 0 and kox[R] 0) to the electrode surface are balanced. 
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A number of parameters can control the rate of an electron transfer reaction 

including: 

I. The electrode potential 

2. Mass transport of redox species between the bulk solution and electrode 

surface 

3. Reactivity of the redox species, i.e. ease of oxidation or reduction 

4. Possible chemical reaction steps that precede or follow the electron transfer 

step 

5. The nature of the electrode surface 

6. The structure of the interfacial region over which the transfer of electrons 

occurs 

Assuming that electron transfer reactions behave in a comparable manner to 

chemical rate processes, it is possible to apply a transition state model (Figure 1.3) 

that views the transfer of electrons as proceeding by the reactants, O(aq) + e-(m), 

overcoming an energy barrier. The maximum in the free energy plot is called the 

transition state before the formation Of~aq), the product. 

G:I: 
G ...... f .. ·_ ........ 

~G1 

Reaction Coordinate 

Figure 1.3. Free energy plot for a simple one electron reduction of species O(,q)'" 

Equation 1.13 shows how transition state theory can be used to predict the rate of 

the reduction reaction (kred). 
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k A (
- t"G;,d ) 

"d = exp RT (1.13) 

Where t:.Gtred is the free energy of activation and A is a 'frequency factor' 

accounting for the rate of collision of the electroactive molecule with the electrode 

surface. 

1.4.5 The Butler-Volmer Equation 

The application of transition state theory to electrode kinetics leads to equation 1.14, 

the Butler-Volmer equation and the ability to predict how the observed current 

flowing at the working electrode varies as a function of the overpotential, 1/, and 

transfer coefficient, Cl. The first exponential term describes the anodic component 

current and the second term gives the cathodic contribution. The overpotential is the 

deviation of potential from the equilibrium potential whereas the transfer coefficient 

reflects the sensitivity of the transition state to the drop in potential between the 

electrode and electrolyte solution. Cl can take values between zero and one, if Cl is 

close to zero, the transition state resembles the reactants in its potential dependence, 

however, if Cl approaches one, the transition state behaves like the products. 

Typically for many reactions Cl is close to 0.5, suggesting that the transition state has 

intermediate properties. 

[ala {-aF17}) 
[0 ]bulk exp RT 

(1.14) 

If the solution under investigation is well stirred, the surface concentrations of the 

reactants will be equal to the concentration of reactant in the bulk solution. Under 

these conditions equation 1.14 can be simplified to give equation 1.15. 

(1.15) 
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Where the standard exchange current, io, is proportional to the standard rate constant 

(kO), and defined by equation 1.16. 

(1.16) 

The variation of current with overpotential predicted by equation 1.14 is shown in 

Figure 1.4 where the total current is the sum of the ic and io components. In going 

from either direction from Ee, the magnitude of the current rises rapidly due to the 

exponential factors dominating, but at extreme IJ, the current levels off. In these 

level regions, mass transfer rather than heterogeneous kinetics limits the current. 

400 300 200 

il;1 

1.0 

0.8 

0.6 
/ Total current 

0.4 / . , 

I, 

le" 0.2," 
______ )--... -\00 -200 -300 -400 

lOO •••• ------
Ee • -:'0.2 .' ,-

/ io -0.4 
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'l/mV 
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Figure 1.4. Plot to show the variation of current as a function of the overpotential. The dashed lines 

show the component currents ic and ia.43 

Figure 1.5 shows the variation of i with IJ predicted by equation 1.15 where no mass 

transfer effects are observed. For a 'reversible' electrode process, io is large (e.g. 

10-6 Alcm2
) and little or no applied overpotential is needed to drive the reaction 

resulting in the effortless flow of current in both cathodic and anodic directions 

(Figure 1.5a). Where io is small (i.e. 10-9 Alcm2
), for example in an 'irreversible' 

electron transfer reaction, a high overpotential is necessary to induce current flow 

(Figure I.5b). 
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Figure 1.5. Plot to show the variation of current as a function of the overpotential for (a) a reversible 

and (b) an irreversible electrode reaction." 

Figure 1.4 shows that at low values of overpotential (close to the equilibrium 

potential), both the anodic and cathodic current components in equation 1.15 are 

significant. However, if the overpotential is increased to a value where the anodic 

reaction is driven, it is possible to omit the cathodic component simplifying the 

Butler-Volmer equation (equation 1.17). 

I . I' (l-a)F (117) 
nl = nl. + RT 1'/ . 

Similarly, at negative overpotentials where the cathodic process is driven, it is 

possible to omit the anodic component (equation 1.18). 

In(-i)= Inio - ~~1'/ (1.18) 

Equations 1.17 and 1.18 are known as the Tafel equations which are typically 

applied in plots of In lil vs. overpotential or Tafel plots (Figure 1.6). Analysis of the 

slope results in an estimate for the transfer coefficient whereas the intercept of the 

extrapolated Tafel lines with the y -axis gives an estimate for the standard exchange 

current. 
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Figure 1.6. Tafel plots for the anodic and cathodic sections of a current - overpotential curve." 

For 11 values less than 10 mY, close to Ee, the cathodic and anodic exponential terms 

in equation 1.15 can be expanded. Neglecting squared and higher terms results in 

equation 1.19 which shows that the net current is linearly related to the 

overpotential in a narrow potential range near Ee. 

(1.19) 

The ratio of Illi is called the charge transfer resistance and relates to the reciprocal of 

the slope in i-Il curves where the curve passes through the origin, and acts as a 

'convenient index of kinetic facility,.43 

1.4.6. Mass Transport 

In order for electron transfer to proceed, the reactant species must be transported 

from the bulk solution to the electrode interface. The reaction products will 

themselves diffuse away from the electrode surface. Depending on the experimental 

conditions, three transport processes are significant, (i) diffusion, (ii) convection 

and (iii) migration (Figure 1.7). 
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Figure 1.7. Figure to represent the three different modes of mass transport for electroactive material 

in solution to the electrode surface." 

1.4.6.1. Diffusion 

Diffusion occurs when there are uneven concentration distributions and is therefore 

responsible for the transport of species from a region of concentrated solution to a 

region that is more dilute, until the composition of the system is equal. The rate of 

diffusion at a given point in solution is dependent on the concentration gradient. 

Fick's laws of diffusion allow the linear diffusion to a planar surface to be described 

quantitatively. Fick's first law (equation 1.20) describes the rate of diffusion (flux) 

of species A through a plane parallel to the electrode surface at distance x, where the 

concentration gradient is a[AVOx and DA is the diffusion coefficient (m2s·1
). 

J
. =-D alA] 

A Ox (1.20) 

Typically, the measure of change in concentration of the electroactive species at a 

certain point (e.g. adjacent to the electrode surface) as a function of time is of more 

use. This can be achieved by considering the difference in flux of species A entering 

through one plane and leaving through a parallel plane separated by distance ax 
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during the time interval of. Fick's second law (equation 1.21) allows the prediction 

of variation in concentration of A with time close to the electrode surface. 

orAl = D 0' [A] 
ot A Ox' 

(1.21 ) 

Diffusion is an integral part of an electrode reaction. For the simple electron transfer 

process in equation 1.1, the conversion of 0 to R at the electrode surface will lower 

the concentration of 0 at the surface relative to that in the bulk solution. Equally, 

the concentration of R at the electrode surface will be higher than in bulk solution. 

The resulting concentration gradients provide the driving force for diffusion. 

1.4.6.2. Convection 

Convection is the movement of species due to mechanical force acting on the 

electrolyte solution. 'Natural' convection can occur in unstirred solutions, where 

thermal gradients adjacent to the electrode surface are generated by the exo- or 

endo- thermicity of the electron transfer process. Alternatively, it is possible that a 

slight difference in density of the reactant in bulk solution and the product created at 

the electrode surface will cause movement of the solution in the cell. Natural 

convection is hard to predict and therefore generally undesirable. 

Forced convection can be achieved by introducing an external perturbation such as 

bubbling gas through the solution, pumping the solution, stirring the solution or by 

using hydrodynamic electrodes (rotating disc electrodes, channel electrodes and 

dropping mercury electrodes). The introduction of forced convection in certain 

electrochemical experiments swamps any influence from natural convection, 

ensuring greater experimental reproducibility. The use of hydrodynamic electrodes 

allows the flow of solution to be quantified and the pattern of mass transport to the 

electrode surface to be predicted. Equation 1.22 is the convection analogue of 

equation 1.21 where the concentration changes as a result of the movement of 

solution at a velocity VX ' 
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a[AL a[A] ----v --at x Ox 
(1.22) 

1.4.6.3. Migration 

Migration can be defined as the movement of charged particles due to electrostatic 

forces or potential gradient. A potential field is created in all electrochemical cells 

on application of a voltage and consequently migration will be influential in the 

transport of charged species through the cell solution and is shown to be the 

mechanism by which charge balance is maintained. The migratory flux is 

proportional to the ion concentration, the electric field and ionic mobility, which is 

dependent on the ionic charge, ionic size and solution viscosity. The influence of 

migration on the electroactive species in the electrochemical cell can be eliminated 

by addition of a high concentration chemically and electrochemically inert 

supporting electrolyte. The availability of background ions to preserve electro

neutrality ensures that electric fields do not build up in the cell solution as 

electrolysis proceeds. This ensures that the electroactive species must be transported 

to the electrode by diffusion and/or convection, with no migration. 

1.4.6.4. Transport in electrolysis 

Laboratory based electrochemical experiments are typically conducted under two 

classes of conditions, (a) diffusion only conditions and (b) convective-diffusion 

experiments. In experiments that are performed in totally unstirred solutions 

composed of a large excess of supporting electrolyte, diffusion is the predominant 

means of mass transport. Before the application of a potential, the solution 

composition is constant, however during the course of a simple electron transfer 

process, a concentration gradient is induced at the electrode surface, forcing a flux 

of species A from the bulk solution (equation 1.20). As the electrolysis reaction 

proceeds, a diffusion layer is established close to the electrode surface where [A]o 

does not equal [Ahulk' Figure 1.8 illustrates how the diffusion layer thickness grows 

as electrolysis continues. 
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Figure 1.8. A diagram illustrating the growth of the diffusion layer thickness as a function of time." 

A degree of natural convection will occur in the bulk solution limiting the ability of 

the diffusion layer to expand. The more natural convection occurs, the thinner the 

final diffusion layer thickness will be and the quicker it is possible to establish a 

constant or steady state diffusion layer thickness. Under steady state conditions 

transport in the diffusion layer occurs via diffusion alone, whilst natural mixing 

maintains [Ahulk outside the diffusion layer. 

Convective-diffusion experiments are carried out with a well-defined convective 

procedure in addition to diffusion providing extra reactant material at the electrode 

surface resulting in a larger current flow than under diffusion only conditions. 

Migration is still avoided by the addition of the supporting electrolyte. 

In contrast, industrial electrochemical processes can be conducted under a wide 

range of mass transport methods (unstirred solutions, gas purging, pumped 

electrolytes and moving electrodes) in order to obtain the necessary rate of mass 

transport at the minimum expenditure.44 

1.4.7. The Experimental Measurement of Electrolysis Mechanisms 

The measurement of electrode currents as a function of the applied voltage in 

electrolysis is known as voltammetry and can provide information about the 
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mechanism of the electrode process of interest. The theoretical concepts introduced 

in sections 1.4.1 - 1.4.6 form the basis for the interpretation of voltammetric 

experiments. 

The main instrumentation needed for voltammetry is a potentiostat, which applies a 

potential to the electrochemical cell and measures the resulting current. The 

voltammogram or plot of current versus the applied potential is displayed on a 

computer. Contemporary potentiostats typically use a three-electrode arrangement 

as shown in Figure 1.9. 

w 

Thermometer·-~I_ c 

Figure 1.9. Schematic showing a typical electrochemical cell, including R, the reference electrode, 

W, the working electrode, C the counter electrode, a thermometer and argon gas inlet/outlet. 

The desired potential is applied between a 'working electrode' and a 'reference 

electrode'. The electron transfer process of interest occurs at the working electrode. 

The 'counter electrode' provides the current necessary to sustain this electron 

transfer process. This configuration prevents the reference electrode from being 

subjected to large currents that could alter its potential. It is possible to use a two

electrode configuration when conducting low-current experiments. In this instance, 

the counter electrode is absent and the reference electrode is subjected to the entire 

cell current. 
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The working electrode can be fabricated from a range of materials, well-known 

examples include liquid mercury drops and discs composed of platinum, gold or 

carbon (glassy carbon or graphite). The composition of the working electrode in this 

investigation includes conducting substrates (boron doped diamond, tin-doped 

indium oxide and basal plane pyrolytic graphite) with and without mono/multi-layer 

nanoparticle deposits. 

The counter or auxiliary electrode is typically composed of a piece of platinum 

(gauze or wire) or carbon (rod or disc) of large surface area placed directly into the 

cell solution. As current flows through the counter electrode, it must have a 

sufficiently high surface area relative to the working electrode to ensure it does not 

limit the current flowing in the total circuit. As the current measured in a 

voltammetric experiment flows between the counter and working electrode, if a 

reduction reaction is being studied at the working electrode, a balancing oxidation 

reaction (e.g. electrolysis of the solvent) occurs at the counter electrode. Conversely 

if an oxidation process is studied at the working electrode, a reduction reaction 

occurs at the counter electrode. The use of a salt bridge in conjunction with the 

counter electrode in large-scale bulk electrolysis reactions conducted over a lengthy 

time scale minimises contamination of the cell solution with products generated at 

the counter electrode.49 The counter electrode in this investigation was a large piece 

of platinum gauze. 

A reference electrode is included to provide a well-defined potential with respect to 

which all measurements are made. The potential of the working electrode is held 

relative to a stable reference electrode. Many reference electrodes have been 

devised for electrochemical studies in aqueous and non-aqueous solvents including: 

I. Standard hydrogen electrode (SHE) 

Pt, H2 (a-I)IH+ (a-I) 

2. Saturated calomel electrode (SCE) (used in this investigation) 

HglHg2Ch (5)' KCI (aq.) 

3. Silver-silver chloride electrode 

Ag/ AgCI (5)' KCI (aq.) 
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4. Mercury-mercury (I) sulphate electrode 

Hg/Hg2S04 (5), K2S04 (aq.) 

5. With a non-aqueous solvent, a silver salt system may be preferred 

Ag/Ag+ (a.aIM AgN03 in CH3CN) 

Chapter I 

The primary reference is the SHE with a potential equal to av at all temperatures, 

however the SHE suffers from the disadvantages of being susceptible to poisoning 

and the inability to be used in solutions containing chemically reducible species. 

Reference electrodes composed of a metal in contact with one of its sparingly 

soluble salts, placed in a solution containing a strongly ionised salt with a common 

anion are of more use (e.g. SCE). The potential adopted by the reference electrode 

(relative to the SHE) is then controlled by the activity of the anion in solution due to 

the unit activity of reactants in standard states.47 Due to the difficulty in finding a 

reference electrode for non-aqueous solvent experiments that does not contaminate 

the electrolyte solution, Ag or Pt wire quasi-reference electrodes are frequently 

used. The unknown potential of the metal wire will not change during a series of 

measurements providing there is essentially no change in the bulk electrolyte 

solution allowing an acceptably reproducible reference potential to be achieved after 

calibration, typically using ferrocene.43 

The cell solution for typical electrochemical experiments contains a solvent, a high 

concentration of a background electrolyte and the electroactive species. A wide 

range of solvents is routinely used in electrochemical studies including water (the 

most common), acetonitrile, methanol, and tetrahydrofuran. The most important 

properties for the solvent are to be liquid at the experimental temperature and to be 

able to dissolve high concentrations of electrolyte to create a reasonably conducting 

solution. It is also essential that the solvent is compatible with the chemistry 

occurring at the electrode surface and that the reactant for the electrode process is 

soluble to the desired extent. 44 

The addition of a supporting electrolyte with a high degree of ionisation into cations 

and anions provides several important benefits including: 
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I. Increases the solution conductivity making it less resistive to the flow of 

current, resulting in current flow depending upon the interfacial reaction of 

interest and not bulk solution conductivity. 

2. Controls the distance at the electrode/solution interface over which the 

electrical potential drops (electrical double-layer) to approximately 10-20 A. 
This is essential for the prevention of migration as well as being compatible 

for electrons tunnelling between the electrode and reactant in solution. 

3. Maintains an effectively constant ionic strength in solution during 

electrolysis due to the relatively high concentration of supporting electrolyte 

compared to the concentration of reactants and products. This ensures that 

the activity coefficients of the reactants and products are equal and able to 

cancel out in the Nemst equation. 

The electrochemical cell contains an inlet! outlet for an inert gas that displaces 

electroactive oxygen from the solution. Typical inert gases include high purity 

nitrogen and argon. Nitrogen is normally used due to its low cost and wide 

availability however, for very air-sensitive conditions, argon is preferred as it is 

heavier than air.49 

In the absence of constant temperature conditions it is necessary to use an 

electrochemical cell with a thermostat-controlled jacket as voltammetric responses 

can display significant temperature dependence. 

Electrochemical experiments may be classified based on their time dependence. 

Often the current measured at the working electrode is independent of time and a 

function only of the applied potential. These are known as the steady-state 

conditions. Experiments with time dependence can give more information but are 

more complex to analyse. These are known as transient techniques. 

1.4.8. Linear Sweep Voltammetry 

A well-known and widely applied transient technique is voltammetry; it is easy to 

use and enables information to be obtained readily. Voltammetric experiments are 
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carried out in a stationary solution relying on diffusion to transport reactants to the 

electrode surface. The mass transport of the electroactive species A to the electrode 

surface can be predicted using equation 1.21 (Fick's second law). 

The potential of the working electrode is swept from an initial value El where A 

cannot undergo electron transfer, to a final potential E2, where the electron transfer 

is driven rapidly. The applied potential E is a function of the speed at which the 

potential is swept (vs) and the time of the sweep (I) given by equation 1.23. 

(1.23) 

The terms 'reversible' and 'irreversible' have been used to characterise two 

extremes in the electrode kinetics observed for the simple electron transfer process 

shown in equation 1.9. The difference in electrode kinetics produces voltammetric 

responses with characteristic features indicative for each of these extremes. 

Figure !.ID illustrates (a) the potential ramp and (b) the resulting current response 

for the O/R couple where it has (i) reversible and (ii) irreversible electrode kinetics. 

(a) (b) 

E 

ip 

i¥ 

El 1-"--

0 
Time El 

Figure 1.10. (a) The linear potential sweep and (b) corresponding current response for (i) a 

reversible and (ii) an irreversible electron transfer reaction." 

In the case of a reversible system, a substantial flow of current is observed when the 

electrode reaches a potential greater than E., the equilibrium potential. This 
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indicates that as soon as the redox process becomes thermodynamically viable it 

takes place as a result of rapid electron transfer. As the potential rises further, the 

electrochemical rate constant for the forward reaction increases causing a rise in 

current. Initially the current rises exponentially with potential but as larger 

potentials are applied (more negative for a reduction) the increase becomes less than 

exponential before reaching a maximum. The maximum in the current/voltage curve 

reflects the balance between the increasing rate constant and a decrease in surface 

concentration of reactant. 

The maximum current is known as the peak current or ip. Once the ip is reached, the 

size of the current flowing is controlled by the rate of diffusion of reactant to the 

electrode surface. The fall in current after ip is a result of the increase in diffusion 

layer thickness produced by further electrolysis of the solution. 

In contrast very little current flow is seen for the irreversible system until the 

potential is much greater than Ee. This is an example of the overpotential that has to 

be applied to drive the reaction. Therefore Ep occurs at larger potentials in 

irreversible systems. 

Two important points of comparison between reversible and irreversible 

voltammograms are the Ep and ip observed. 

For the reversible system, 

I. Ep is constant and independent of scan rate 

2. 
RT 

E p - E p = 2.20-
- nF 
2 

(1.24) 

3. ip is larger for a reversible system than for an irreversible system for the 

same voltage scan rate. 

The ip (A) can be determined using the Randles Sevcik equation (equation 1.2Sa and 

1.2Sb (assuming T is equal to 298 K» where n is the number of electrons, A is the 

electrode area (m2), D is the diffusion coefficient (m2s·1
), v is the potential scan rate 
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(Vs'\ [Alo is the concentration of A in the bulk solution (mol m'3), and in equation 

1.2Sb, the numerical constant has the units C mOrl V'If2. 

i = 0.446 nFA c ~nFVD 
P RT 

(J.2Sa) 

i p = 2.69xl OS n 3
/
2 
ADI/2V

I
/
2 [A 10 (1.2Sb) 

While for the irreversible electron transfer, 

I. I Ep I shifts by approximately 1.16 RT for each tenfold increase in v 
anF 

2. 
RT 

Ep-E =1.86-
l!. anF 
2 

(1.26) 

3. ip is smaller for an irreversible system than for a reversible system for the 

same voltage scan rate 

li I = 2 99 X 10' nJ/2 a 1/2 AD 1/
2

V 1/2 [Al p' As bulk (1.27) 

The differences reflect the contrasting electrode kinetics for the reversible and 

irreversible electrode processes. In the case of a reversible system the electrode 

kinetics are such that for potentials near E, both kred and kox are large, whereas 

electrolysis in irreversible systems proceeds with negligible back reaction. The 

terms reversible and irreversible are extreme cases; electron transfer processes with 

intermediate electrode kinetics exist and are typically referred to as quasi-reversible. 

For any system, ip is directly proportional to the concentration of reactant and 

increases with voltage scan rate, vs. The increase of ip with Vs can be explained by 

Fick's first law (equation 1.20). This equation indicates that ip reflects the 

concentration gradient of reactant near the electrode, which in turn is controlled by 

the diffusion layer thickness. If the electrode potential is swept more rapidly, 

relatively less time is available for electrolysis and the depletion of reactant near the 

electrode is reduced, resulting in a thinner diffusion layer and hence a steeper 

concentration gradient. The resulting larger flux gives rise to an enhanced ip•
45 
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1.4.9. Cyclic Voltammetry 

Linear sweep voltarnmetry can be extended so that when the potential reaches the 

value E2 the direction of sweep is reversed and the electrode potential is scanned 

back to the original value, El. This is known as cyclic voltarnmetry and is the main 

method employed here to characterise the mesoporous metal oxide film deposits 

produced. 

The shape of the forward sweep of the voltarnmogram is identical to that observed 

in linear-sweep voltarnmetry and will be dependent on the reversibility of the redox 

couple. On reaching E2, the potential is swept back; oxidising species R generated at 

the working electrode during the forward potential scan, resulting in a current 

response opposite in sign to the forward scan. The current initially increases due to 

the high concentration of R present in the diffusion layer and the more favourable 

rate constant as the potential becomes more positive. As R present in the diffusion 

layer is reconverted to 0, a peak is reached as before and the current drops. 

The reversibility of the system is again reflected in the Ep value and peak size seen 

in the reverse scan. Figure 1.11 shows the cyclic voltarnmograrn for a reversible 

redox couple where the forward and reverse ip are approximately the same size and 

separated by a potential of ca. 59 m V (at 25°C) independent of scan rate. 

i 

iO. '-'---p 

EO. 
p 

o~--~------~,-L-~ __ --~--~ 
-0.2 0.2 E-E • 

• red 
Jp 

Figure 1.11. Figure to show the important features of a cyclic voltammogram for a reversible redox 

system. Modified from reference 45. 

29 



Susan J. Sloft Eleclroanalysis in Nanoparlicle Assemblies Chapler I 

If n electrons are transferred the following points can be used as diagnostic tests for 

the form of cyclic voltammograms in a reversible electrode process at 298 K. 

1. M = lE'" - Ep"dl = 2.20 RT = 59 mV 
p P nF n 

2. lE p - E p/21 = 59 m V (Using equation 1.24) 
n 

3. 

4. i p oc vl/2 (Using the Randles Sevcik equation (equation 1.25» 

(1.28) 

5. Ep is constant and independent ofv and can be estimated from equation 1.29 

(J .29) 

6. At potentials beyond Ep , C2 oc t 

Again not all electron transfer processes are reversible, the cyclic voltammetric 

behaviour for an irreversible system shows a very large overpotential is needed for 

the reverse reaction meaning the reverse peak is only seen at potentials significantly 

greater than Ee. The size of the reverse peak with respect to the forward peak is 

dependent on the scan rate and can be completely absent when the reverse electron

transfer process does not occur at a measurable rate (Figure 1.12). 

ip 
Ep 

E·Ee 

Figure 1.12. Figure to show the cyclic voltammogram for an irreversible redox system. Modified 

from reference 49. 

30 



Susan J. Stall Electraanalysis in Nanoparticle Assemblies Chapter I 

This difference in voltammetric response allows the reversibility of the redox 

couple to be determined. If n electrons are transferred the following points can be 

used as diagnostic tests for the form of cyclic voltammograms in an irreversible 

electrode process. 

1. I'1E > 59 m V, if a reverse peak is observed 
p n 

2. IEp -EpI21=~ mV (Using equation 1.26) 
an 

3. ip ex; vl/2 (Using equation 1.27) 

4. I Ep I shifts by approximately 2Q. m V for each tenfold increase in v 
an 

For an intermediate case or quasi-reversible redox couple, a reverse peak similar in 

size to the forward sweep is observed but the peak to peak separation is now 

dependent on the scan rate and ip is no longer proportional to the square root of the 

scan rate (Figure I. I 3). 

i 

(a) E 

(c) (b) 

Figure 1.13. Figure to show the cyclic voltammogram for (a) an irreversible, (b) a reversible and (c) 

a quasi-reversible electron transfer reaction." 

If n electrons are transferred the following points can be used as diagnostic tests for 

the form of cyclic voltammograms in quasi-reversible electrode processes. 

I. ip increases with vl12
, but is not proportional 
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i OX 

2. .~d = 1 , provided etR = eto = 0.5 
Ip 

Chapter I 

3. t>.Ep > 59 mV, and increases with faster v as E;x shifts to more negative 
n 

potentials and E;'d shifts to more positive potentials with increasing v 

1.4.10. VoItammetry of Coupled Reactions 

Electrolysis is widely used to synthesise both organic and inorganic chemicals since 

the redox product is not always chemically stable and is therefore capable of 

undergoing further reaction at the electrode surface or in electrolyte solution. Cyclic 

voltammetry IS a useful technique for probing these complex electrolysis 

mechanisms by detecting and identifying reaction intermediates through the 

observed deviation from ideal reversible current responses. 

The reaction sequence of coupled voltammetric measurements is typically classified 

using an 'E' and 'c' notation where 'E' denotes a heterogeneous electron transfer at 

the electrode surface and 'c' represents a homogeneous chemical reaction in 

solution. 

1.4.10.1. The EC Mechanism 

The 'E' and 'c' terms appear in the order the reaction steps proceed, for example 

the EC reaction mechanism in Figure 1.1 4 shows an electron transfer (E) followed 

by a first-order homogeneous decay (C) of the electrochemically generated species 

(R).45 

E: O(aq) + ne'(m) ( ) Rtaq) 

C: Rtaq) kEC ) p(aq) 

Figure 1.14. Figure to illustrate an EC mechanism in a coupled electrolysis reaction." 
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For an EC reaction in an unstirred solution (i.e. under diffusion controlled mass 

transport) the initial electroactive species 0 is not lost by any homogeneous reaction 

and consequently [0] only changes as a result of diffusion described by equation 

1.21. However, it is necessary to modify the diffusion equation for species R to 

quantify the loss ofR via chemical reaction at a rate kEdR] (equation 1.30). 

a[Rt D a2 [RLk [R] at R &2 EC 
(1.30) 

Equation 1.30 indicates that the magnitude of the rate constant kEC will have a 

strong influence on [R] at the electrode surface and therefore if kEc is significantly 

fast then as soon as R is formed at the electrode surface, it is lost due to chemical 

reaction. Figure 1.15 shows the difference in cyclic voltammetry observed for an 

EC mechanism compared to that for a stable reversible electron transfer process. 

The forward voltammetric sweep is similar in both mechanisms, however in the 

return potential sweep, the reverse peak is lost since R has reacted. This is a 

chemically irreversible system rather than an electrochemically irreversible electron 

transfer that is dependent on a high overpotential to drive the reverse reaction. 

i 

Increasing rate 
- constant (kEe) 

Figure 1.15. Cyclic voltammograms to illustrate the influence of kEC in an EC mechanism on the 

observed current response.45 

If kEC is very slow, little or no difference is observed in the reverse sweep compared 

to the stable cyclic voltammetry, as R is not significantly depleted by reaction. 
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Intennediate reaction rates give rise to voltammograms where the size of the reverse 

peak varies reflecting the stability of the species R, therefore the relative heights of 

the back peaks can be used to estimate the rate of the chemical reaction in solution. 

It is necessary to consider the potential scan rate in the analysis of EC mechanisms, 

as when the timescale of the experiment is short with respect to the half-life of R 

(i.e. at fast v) there is less time for R to react resulting in an enhanced back peak in 

the voltammogram. Similarly at slower scan rates, more time is available for R to be 

converted to P and no reverse peak is observed. 

The magnitude of the rate constant is also seen to effect the position of the redox 

peak in the forward sweep. As the rate constant increases, the current response shifts 

anodically for a reduction (cathodically for an oxidation) as the electron transfer 

processes occurs more readily. This is a result of the chemical reaction step 

disturbing (by removing R) the equilibrium surface concentrations of 0 and R 

predicted by the Nemst equation at a particular potential. In order to re-establish the 

equilibrium at the electrode surface, the electron transfer reaction is driven towards 

the right-hand side, generating more species R creating an anodic shift in 

voltammetric wave.45 

1.4.10.2. The ECE Mechanism 

An extension of the EC reaction is the ECE electrolysis mechanism (Figure 1.16). 

The initial electrochemical and homogeneous chemical reaction steps are identical 

to the EC system however the product fonned in the chemical step is also 

electroactive. 

E: O(aq) + ne'(m) « ) R(aq) 

C: R(aq) 
k HeE ) M(aq) 

E: M(aq) + ne'(m) « ) p(aq) 

Figure 1.16. Figure to illustrate an ECE mechanism in a coupled electrolysis reaction." 
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The electron transfer step for the redox couple M/P may occur at a higher or lower 

potential depending on the relative ease of electron transfer compared to the redox 

couple OIR. Figure 1.17 shows the cyclic voltammogram recorded for an ECE 

mechanism where 0 is more readily reduced than M. In the forward reductive 

sweep, the first peak corresponds to the reduction of 0 to R followed by a second 

reduction peak at more negative potentials, where M is reduced to P. The magnitude 

of the second reduction peak will be dependent on the rate of chemical conversion 

ofR to M. In the reverse potential sweep, it is possible to observe the oxidation ofP 

to M and depending on kECE and the potential scan rate, a second oxidation peak 

may be seen where R is re-oxidised to O. At faster scan rates there is less time for R 

to react resulting in a decrease in the MIP redox response and an enhanced back 

peak in the OIR system. Similarly at slower scan rates, more time is available for R 

to be converted to M and little to no reverse oxidation peak is observed for the O/R 

couple. 

i 

Or----r~----~=---~E~ 

Figure 1.17. Cyclic voltammograms to illustrate the ECE reaction mechanism. Modified from 

reference 45. 

The ECE reaction mechanism can itself be extended when the species P from the 

second electrochemical step undergoes a homogeneous chemical reaction in 

solution (Figure 1.18). This is known as the ECEC electrolysis mechanism that can 

also be followed by additional E and C processes. 
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E: O(aq) + ne-Cm) c ~ ~aq) 

C: ~aq) -7 M(aq) 

E: M(aq) + ne-Cm) c ~ p(aq) 

C: p(aq) -7 Q(aq) 

Figure 1.18_ Figure to illustrate an ECEC mechanism in a coupled electrolysis reaction.44 

1.4.10.3. The EC/Mechanism 

A further coupled reaction mechanism of interest is the EC I reaction (Figure 1.19) 

where C I represents a catalytic process, which often corresponds to a clean and 

efficient means of improving chemical reactivity. The catalytic process takes place 

as R, the product of the electron transfer step, reacts with the substrate molecule Y 

in solution, re-oxidising 0 and forming species N. 

E: O(aq) + ne-Cm) c ~ ~aq) 

C': ~aq)+ Y(aq) -7 N(aq) + O(aq) 

Figure 1.19. Figure to illustrate an EC 'mechanism in a coupled electrolysis reaction.44 

A typical cyclic voltarnmogram for an EC I reaction is shown in Figure 1.20 where 

increasing concentrations of Y are present in solution. As the level of substrate Y 

increases, an enhancement in the current response is seen (as 0 is regenerated and 

able to be re-reduced) compared to the voltammetric behaviour when no substrate is 

present. The size of the catalytic current is consequently dependent on the rate of 

reaction of the catalytic step and the quantity of substrate present in solution. 
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i 

Figure 1.20. Cyclic voltammograms to illustrate the EC' reaction mechanism. Modified from 

reference 45. 

1.4.10.4. The EE Mechanism 

Section 1.4.10.2 illustrated that it is possible for multiple electron transfer steps to 

occur coupled by a homogeneous chemical reaction. However the transfer of 

multiple electrons can also be observed where a reactant is able to change oxidation 

state by more than one without the need for a chemical reaction intermediate step. 

The simplest example of a multiple electron transfer mechanism is the EE reaction 

where two electrons are transferred. This ability to alter the oxidation state of a 

molecule by more than one is typically seen in the electrochemistry of inorganic 

metals or organic electrochemistry .45 The EE reaction can either consist of one step 

involving the transfer of two electrons (Figure 1.21 a) or alternatively it may proceed 

via two consecutive single electron steps (Figure 1.2Ib). 

(a) 

(b) 

Figure 1.21. Figure to illustrate a CE mechanism in a coupled electrolysis reaction." 
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The consecutive reaction pathway is most common due to the relative ease in 

overcoming two small activation barriers compared to a single large energy barrier. 

The difference in the potential values E\ 0 and E2° will influence the voltammetric 

response meaning the electron transfer steps can either occur at similar or distinct 

potentials. Figure 1.22 shows the voltammogram obtained for a molecule 

undergoing two single, reversible electron transfer reactions. 

i 

E 

°Caq) + e(m)« • PCaq) 

PCaq) + e(m)« • RCaq) 

Figure 1.22. Cyclic voltammograms to illustrate an EE two-electron transfer reaction mechanism. 

Modified from reference 45. 

1.4.10.5. The CE Mechanism 

A final example of a coupled reaction mechanism is the CE electrolysis mechanism 

(Figure 1.23), where the electroactive species is not initially present in the bulk 

solution. However species Q, may be able to undergo a chemical reaction to form 0 

(the electroactive species) prior to undergoing the electron transfer step to give R. 

C: Q(aq) ----+ O(aq) 

E: O(aq) + ne'(m) ( , R(aq) 

Figure 1.23. Figure to illustrate a CE mechanism in a coupled electrolysis reaction." 
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1.4.11. Voltammetry of Surface Adsorbed Species 

An electrode reaction involving the electron transfer of a uniformly adsorbed 

surface layer of the electroactive couple OIR (equation 1.31) will have different 

voltammetric behaviour, compared to the solution-phase voltammogram for a 

stable, reversible electron transfer reaction. 

O(ads) + ne'(m) c ) ~ads) (1.31 ) 

Figure 1.24 shows the resulting ideal cyclic voltammogram for a surface adsorbed 

species that remains adsorbed to the electrode surface after reduction, and is 

consequently able to be reconverted to 0 in the reverse potential sweep. 

i 

E 

Figure 1.24. The ideal cyclic voltammogram for the reversible electron transfer reaction of a 

surface·adsorbed layer of reactant where the coverage of the adsorbed species follows a Langmuir 

isotherm.4s 

Both the reduction and oxidation peaks are symmetrical, with the current response 

dropping to zero after reaching a maximum, as the reactant is fully converted due to 

the absence of diffusional mass transport supplying fresh reactant from bulk 

solution. The number of sites available on the electrode surface where adsorption 

can occur will therefore control the properties of the voltammogram observed. The 

areas under the redox peaks are equal and a measure of the charge required for the 

electrochemical reaction allowing the quantity of electroactive material adsorbed on 

the electrode surface to be estimated. 
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Adsorption isotherms are used to quantify the relationship (at constant temperature), 

between the fraction of the surface covered by adsorbate in solution (8), its free 

energy of adsorption (L1GADS ) and the concentration of adsorbate in solution (c). 

The Langmuir adsorption isotherm (equation 1.32) assumes that adsorption cannot 

proceed beyond mono-layer coverage, that all binding sites are equivalent and that 

the electrode surface is uniform (where K is the equilibrium constant). 

8- Kxc 
-1+(Kxc) 

(1.32) 

Further assumptions of the Langmuir isotherm include that the ability of a molecule 

to adsorb at a given site is independent of the occupation of neighbouring sites and 

that there are no lateral interactions between adjacent adsorbed species and therefore 

the free energy of adsorption is independent of coverage (equation 1.33).44 

--=cexp ADS 8 (-L1G
O J 

1-8 RT 
(1.33) 

The following points can be used as diagnostic criteria for cyclic voltammograms 

for a redox couple adsorbed on the electrode surface with reversible electron 

transfer kinetics, where q is the charge density (C m·2). 

1. L1Ep =0 mV 

2. 

4. Ep are independent of v 

5. q A = qc ::; q monolayer 

Digression from ideal behaviour occurs when the surface-adsorbed species is 

unstable in either its charged or uncharged forms, or is desorbed during the potential 
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sweep. Any difference in the voltammetric behaviour can therefore be used to 

investigate the stability and nature of the adsorbed species interaction with the 

electrode surface. If the adsorbed species is slowly lost from the electrode surface 

after the initial electrochemical reaction, a decrease in the reverse peak current is 

expected, allowing the de sorption kinetics to be probed by varying the scan rate. 

1.4.12. A.C. Impedance Spectroscopy 

Impedance is a measure of the ability of a circuit to resist the flow of electrical 

currentSO similar to resistance (R). However, impedance is not limited by 

simplifying assumptions of obeying Ohm's law (equation 1.34) at all current (l) and 

voltage (E) levels and being independent offrequency. 

E 
R=

I 
(1.34) 

Electrochemical impedance is typically measured by applying an oscillating 

sinusoidal A.C. potential (equation 1.35) to an electrochemical cell and recording 

the A.C. current response (equation 1.36) that contains the excitation frequency and 

harmonics.4s 

E(t) = Em sin(2#) (1.35) 

i(t) = im sin(2# + B) (1.36) 

Where E(t) is the applied sinusoidal potential,! is the frequency measured, Em is the 

maximum amplitude, i(t) is the current response, im is the maximum current 

amplitude, t is time and B is the phase difference between E(t) and i(t}. NormaIly a 

small (1-10 m V) amplitude excitation signal is used in impedance measurements so 

that the cell's response is pseudo-linear and the current response is shifted in phase. 

Figure 1.25 shows a phase difference between the applied potential and the current 
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response of 1t12 for a capacitor. In the case of a resistor, no phase shift would be 

seen and the lines would overlap, i.e. e = o. 

E 
.g 
~ k-~~--~--~-----------
0. ' 
El ..: 

Time 

~ 
Phase lag between current and voltage 

Figure 1.25. The form of the applied potential used in A.C. impedance spectroscopy and the current 

response with a phase shift of n/2. 4S 

The response of electrical circuits to A.C. potentials can be described in terms of the 

impedance (Z) defined by equation 1.37, analogous to Ohm's law. 

(1.37) 

As the phase difference between current and voltage can take any value and is 

dependent on the frequency, the impedance can be calculated using equation 1.38. 

z(j) = Z' sin(2;ifi)- Z" cos(2;ifi) (1.38) 

Traditionally, complex impedance measurements are plotted with Z' (the real part) 

on the x-axis and -Z" (the imaginary part) on the y-axis for each frequency (Figure 

1.26). The vector from the origin to a point with coordinates (Z ~ -Z ') has a length 

equal to the impedance at an angle of e, the phase shift with the x-axis. Modem 

experimental methods allow the electrochemical cell to be connected directly to a 

frequency response analyser that automatically draws the impedance plots. The use 

of a three-electrode system and suitable reference electrode allows the impedance of 

a specific electrode/solution interface to be investigated.45 
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Figure 1.26. Impedance plot with the impedance vector and e shown. 
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The shape of the impedance plot will depend on the properties of the cell. For a 

capacitor, the impedance plot (Figure 1.27) takes the form of a vertical line along 

the y-axis, as Z '= 0 and - Z" = ( I ) where Cd is the differential capacitance. 
2tifCd 

Electrical circuit 

--11-

Increasing Frequency 

- Z" 

Z' 

Figure 1.27. Impedance plot for an electrical circuit containing a single electrolytic capacitor." 

For the case of a resistor and capacitor in series, a line is seen at Z' = R and 

- Z" = I (Figure 1.28). This is the type of plot expected for the metal oxide 
2tifCd 

films on an ITO surface where the film acts as the capacitor and the ITO as a 

resistor. 
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Figure 1.28. Impedance plot for an electrical circuit containing a resistor and capacitor in series." 

Another way of presenting the results from impedance measurements is shown in 

Figure 1.29 where the impedance and () are plotted as a function of the frequency 

applied. 

o Frequency (Hz) 10,000 

-90 

~ 
oL-~----~======~ 

o Frequency (Hz) 10,000 

Figure 1.29. Bode plot showing the effect of frequency (Hz) on the impedance and phase difference. 
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1.5. Electron Movement in Nanoparticles 

As previously stated in section 1.2, nanopartic1es can be formed with a variety of 

conducting properties that will affect the processes taking place in the metal oxide 

films. In order to understand the electron transfer between particles in the metal 

oxide films, it is necessary to look at the band theory and the energy levels of 

particles. 

Figure 1.30 demonstrates how a metallic state can be generated using the molecular 

orbital diagrams for the simplified example of lithium atoms. Figure 1.30a shows 

how two lithium atoms combine through the single 2s' electrons to form a doubly 

occupied binding molecular orbital (cr) and an unoccupied anti-bonding orbital (cr*). 

The combination of ten lithium atoms behaves in a similar way forming five doubly 

occupied binding molecular orbitals and five unoccupied anti-bonding orbitals 

(Figure 1.3 Ob ). The Pauli exclusion principle describes how the energy levels of 

identical overlapping electronic orbitals cannot be equal,s' and Figure 1.30c 

illustrates how the combination of an infinite number of lithium atoms leads to the 

formation of extended molecular orbitals, as the quasi-equivalent molecular orbitals 

can no longer be separated from each other. 

o· 

5x2s' 

Li Li, Li 5Li LilO 5Li Lioo 

Ca) (b) Cc) 

Figure 1.30. Formation ofa metallic state, exemplified by lithium.' 

In an ideal crystal, where there are far too many atoms to build up a molecular 

orbital diagram as in Figure 1.30c, the energy levels broaden into 2 distinct bands. 

The first is the valence band or highest occupied molecular orbital (HOMO). The 

second energy band is the conduction band or lowest unoccupied molecular orbital 
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(LUMO). Typically it is either holes in the valence band or mobile electrons in the 

conduction band that move electrical current around the solid. In semiconductors 

and insulators there is a band gap between the valence band and the conduction 

band (Figure 1.31). The application of an electrical potential acts to increase the 

energy of the electrons such that they have a higher energy than in the LUMO, and 

electron transfer becomes thermodynamically favourable. 

(a) 

Conduction 

band 1:J 
~Band 

gap 

Valenc~ .... band - I~J 

(b) 

Figure 1.3\. Band theory of solids for (a) metals, and (b) semiconductor! insulator 

In non-ideal situations, the conduction of electrons will change as impurities or 

dopants are introduced. Where an impurity accepts an electron from the valence 

band, a positive hole is generated in the valence band and the material is classified 

as a p-type semiconductor. It is also possible for an impurity to donate an electron to 

the conduction band, where the impurity electrons conduct to give an n-type 

semiconductor. 

The relation between the molecular orbital description of a finite molecular system 

and the infinite situation in a bulk metal is that the HOMO is now called the Fermi 

energy (EF), which is dependent on the density of the electrons and is therefore 

independent of the particle size. However the distance between energy levels is 

known to increase with decreasing particle size. Figure 1.32 shows the relationship 

between EF and the development of the density of states (DOS) as a function of 

energy from a molecular system to a bulk metal. In Figure 1.32a only well separated 

energy levels are present for a typical molecular state, whereas in Figure 1,32c, a 

characteristic band structure is observed, corresponding to an infinite number of 

non-differentiated electrons in bulk materials. Figure 1,32b iIlustrates the electronic 
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configuration of nanosized particles where there are near-degenerate electronic 

levels, i.e. the unstructured energy bands in a bulk material begin to split but 

without forming the truly discrete levels observed at the molecular level. 

E E E 

L-____ '"' DOS (E) DOS (E) DOS (E) 

(a) (b) (c) 

Figure 1.32. Formation of band structure for <a) a molecular state, (b) a nanoparticle with broadened 

energy states, and (c) a fully developed band structure consisting of sand d band.' 

The physical properties of semi-conductor particles have been shown to depend 

very sensitively on the particle size in a similar way to metals, where the spatial 

confinement of electronic (and vibrational) excitations dominates. The quantisation 

of electronic energy levels occurs with decreasing particle size «10 nm) 

manifesting in the widening of the bandgap between the valence band and the 

conduction band. 52 The restriction of electron mobility can therefore be reached by 

reducing the volume of the particle from a three-dimensional bulk material, to a 

two-dimensional quantum well, a one-dimensional quantum wire, and finally to the 

minute size of a "zero-dimensional" quantum dot. 

Titanium (IV) oxide and cerium (IV) oxide are both semi_conductors53
•
54 however 

the worse inter-particle electron transfer in mesoporous films means that movement 

of electrons through the films are slower than that recorded for a compact crystalline 

material. 55 It is assumed in nano-structured thin films that electron transport 

proceeds primarily via diffusion. A model where electrons move between localised 

band gap states by hopping between nanoparticles has been suggested. 56 
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1.6. Surface Imaging & Analysis Techniques 

1.6.1. Scanning Electron Microscopy 

Scanning Electron Microscopy (SEM) is a popular technique used to study the 

surface topography of samples57 where the first SEM was built in the 1960's. A 

typical SEM is capable of magnifications 1000 times greater than the best optical 

microscopes allowing sample imaging in the 10 nm range. 

Figure 1.33 shows a schematic of an SEM. It works by focusing a high-energy 

(typically 10 keY) beam of electrons across the surface of the sample held in a 

vacuum. The electrons are produced at the electron gun (usually a tungsten 

filament) by passing a large current through it, heating the filament to the 

thermionic emission temperature of electrons (approximately 2700 K). In a Field 

Emission Gun Scanning Electron Microscope (FEGSEM) the tungsten filament is 

replaced by a single crystal tungsten wire sharpened to a point. The wire cathode tip 

is surrounded by a high electric field that attracts electrons from the cathode. The 

FEG is able to generate much larger electron densities compared to the conventional 

tungsten filament. The increase in electron density allows a reduction in the beam 

diameter and therefore better resolution. The FEG system has been used in this 

investigation to obtain high resolution images of the nanoparticle film surfaces. 

mumination 
S}mm 

r-~~~~---i mp Electron gun \bltago 

lit condenser lens 

2nd condenserlens 

Objective aperture lens 

Figure 1.33. Schematic of a typical Scanning Electron Microscope 
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When the incident beam of electrons hit the sample surface, a number of energetic 

emissions can be recorded. 

I. The incident electrons cause low energy secondary electrons to be generated 

some of which escape from the surface. The secondary electrons emitted 

from the sample, are detected for example by attracting them onto a 

phosphor screen. This screen will glow and the intensity of the light is 

measured with a photo-multiplier. 

2. The incident electrons will also cause X-rays to be generated, which is the 

basis of the energy-dispersive X-ray analysis (EDX) technique providing 

information on the chemistry of individual particles. 

3. Some of the incident electrons may strike an atomic nucleus and bounce 

back into the vacuum. These electrons are known as primary backscattered 

electrons and can be detected with a backscattered electron detector. 

Backscattered electrons can also give information on the surface topography 

and the average atomic number of the area under the electron beam. 

Reducing the energy of the incident beam can increase the surface sensitivity of the 

SEM. This can be achieved by increasing the voltage on the sample to just below 

the incident beam energy. 

1.6.2. Transmission Electron Microscopy 

Transmission electron microscopy (TEM) is used widely for the micro-structural 

characterisation of materials.58 Using concepts developed by Knoll and Ruska, the 

first practical transmission electron microscope was built at the University of 

Toronto in 1938 by Prebus and Hillier. 

Similar to SEM, TEM utilises a focused high-energy (200 ke V) beam of electrons. 

Instead of being focused on the surface of the sample, the electron beam passes 

through the sample. These electrons are scattered at different angles depending on 
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the density of the atom it encounters and can either be un-deflected, deflected but 

loses no energy (elastically deflected), or loses a significant amount of energy and is 

probably deflected (inelastic ally scattered). The system of lens and apertures below 

the sample allows a contrasting image to be produced from the different scattered 

angles. The image is then formed as a shadow on a fluorescent screen, layer of 

photographic film or detected by a CCD camera. A schematic of a TEM is shown in 

Figure 1.34. A modem transmission electron microscope may have the capability to 

use 6 main techniques. 

1. Conventional imaging using bright-field (using only transmitted electrons) 

and dark-field (using only diffracted electrons) TEM. 

2. Measuring electron diffraction from selected areas of the sample using 

selective area electron diffraction, (SAD) allows the crystallography of 

specific areas in the sample to be studied. 

3. With a high resolution TEM it is possible to carry out phase-contrast 

imaging and atomic scale resolution. 

4. Elemental determination is possible using energy-dispersive X-ray 

spectroscopy (EDX) as in SEM. 

5. Electron energy-loss spectroscopy (EELS) can be used to measure the 

energy lost from the incident electrons to plasmons or core excitations. This 

enables information on the local chemistry and structure to be gathered. 

6. In scanning transmission electron microscopy or STEM, the narrow beam of 

electrons is moved in a raster pattern across the sample. At the same time it 

is possible to detect emitted X-rays, secondary electrons (SED) or 

backscattered electrons (BSE). 
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Figure 1.34. Schematic of a typical Transmission Electron Microscope with STEM capability. 58 

To enable the electrons to pass through the sample, it must be very thin (typically 

less than 100 nm). The limitation on sample size can result in a large amount of 

sample preparation being necessary. TEM images were obtained of the partially 

oxidised TiC nanoparticles. 

1.6.3. X-Ray Powder Diffraction 

XRD or X-ray diffraction is a technique for the analysis of crystalline materials. 59 

This is possible due to the elastic scattering (diffraction) of X-rays of known 

wavelength, A., from the electron clouds in atomic planes in the sample. The position 

of the diffraction peaks produced is a measure of the distance between discrete 

crystallographic planes within the sample while their intensity is directly 

proportional to the number of electrons (atoms) that are found in the atomic planes. 
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The condition for constructive wave interference and therefore strong diffraction 

from planes with spacing, d, is given by Bragg's law (equation 1.39). 

nA = 2d sin (8) (1.39) 

Where 8 is the angle between the atomic planes and the incident X-ray beam and n 

is an integer. Every crystalline solid will have a unique pattern of d-spacings 

(diffraction pattern) and the resultant diffraction pattern can be used to identify 

unknown crystalline phases, determine residual stresses, preferred orientation or 

grain size. It is therefore possible to identify solids with the same chemical 

composition, but different crystalline structure by their pattern of d-spacings. 

The Scherrer formula (equation 1.40) relates the thickness of a crystallite to the 

width of its diffraction peaks and is widely used to determine particle size 

distributions in clays and polymers: 

0.9,1, 
t--r=~=== 

- ~B~-B;cos8 
(1.40) 

Where t = crystaIIite thickness (A), Bm and Bs = width in radians of the diffraction 

peaks (at half maximum height) of the test sample and a highly crystalline standard 

(0.1) sample respectively, and A = wavelength of the X-ray beam (A). 

XRD was used to determine the size and structure of the Ti 02 and Ce02 metal oxide 

nanoparticles before and after heat treating at 500°C. The XRD technique was also 

used to determine the size and structure of the TiC nanoparticles before and after 

thermal oxidation over a range of temperatures. 
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1.6.4. Simultaneous Small-Angle X-Ray Scattering and Wide-Angle X-Ray 

Scattering (SAXS-WAXS) 

SAXSIWAXS or simultaneous small-angle X-ray scattering and wide-angle X-ray 

scattering is a similar technique to XRD, where the elastic scattering of X-rays is 

measured at both very low (0.1 - 10°) and wide angles (up to 40°). In the small angle 

range information about the average shape and size of macromolecules, distances in 

partially ordered materials, and pore sizes can be obtained. SAXS is able to 

determine structural information of molecules between approximately 5 and 25 nm 

in size. The SAXS technique has been applied to a large number of areas including 

colloids, metals, polymers, proteins and pharmaceuticals. The scattering angle is 

represented by Q, tangent of half the scattering angle, e, (see equation 1.41) due to 

the small angular range in SAXS.6o 

Q = 47Z'sinB 
A 

(1.41 ) 

Wide angle X -ray scattering is the same technique as SAXS only the distance from 

the sample to the detector is shorter allowing the diffraction at larger angles to be 

observed. WAXS is often used to determine the crystalline structure of polymers 

where the diffraction pattern generated allows the calculation of the chemical or 

phase composition, texture, and crystallite size. Modern instruments are capable of 

measuring small, intermediate and wide angle X-ray scattering. 

1.7. The Quartz Crystal Microbalance Technique 

QCM or quartz crystal microbalance is an analytical tool typically comprised of a 

thin AT-cut alpha quartz crystal with an electrode plated on each side (Figure 1.35). 

AT-cut crystals are often used as they can be cut to give a temperature coefficient 

close to zero at one or two temperatures. By connecting the electrodes to an 

oscillator and applying an AC voltage, the quartz crystal starts to oscillate at its 

resonance frequency due to the piezoelectric effect.61 
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Figure 1.35. Schematic drawing of (A) a quartz crystal resonator with ITO electrodes evaporated 

onto the surface and (8) the movement of a quartz disk with applied potential. The type of resonator 

used here operates at 9.1 MHz in air. 

Jacques and Pierre Curie were the first to discover the piezoelectric effect. 62 In 1880 

they applied a mechanical stress to the surface of various crystals (including quartz) 

and noted an electrical potential across the crystal with a magnitude proportional to 

the applied stress. The Curies also experimentally verified the 'converse 

piezoelectric effect' where an applied voltage across the surface of these crystals 

resulted in a corresponding mechanical strain. The converse piezoelectric effect is 

the basis of the QCM technique. 

Application of an electric potential across the AT-cut quartz crystal produces lattice 

strain and shear deformation proportional to the applied potential as the dipoles in 

the acentric material re-orientate (Figure 1.36). 
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++++++++++++++++ 

I I!!!!! I 
----------------

Figure 1.36. Schematic representation of th e converse pi ezoelectric effect for shear motion.62 

This deformation is elastic in quartz. An identical strain is produced on application 

of the opposite polarity. By alternating the direction of the potential across the 

crysta l surface it is poss ible to generate a transverse shear wave in the quartz crystal. 

This oscillat ion is genera lly very stable, Figure 1.37 shows a schematic of the 

transverse shear wave in a quartz crystal and a composite resonator where a layer of 

foreign material has been deposited onto the crystal. The wavelength is longer in the 

composite resonator due to the increase in thickness. This reduces the resonant 

frequency compared to the clean quartz crystal. 

1 Film deposition 

Figure 1.37. Schematic representation of the transverse shear wave in quartz crystal and a quartz 

crysta l and a layer of film " 

If a rigid layer is deposited evenly onto one or both of the electrodes the resonant 

freq uency will decrease proportionally to the mass of the adsorbed layer according 

to the Sauerbrey equation (equation 1.42). 

55 



Swum J. Slall £Ieclroanalysis in Nanoparlicle Assemblies 

.r - 2/0' Ilm 
IlJ =-~= 

A~ Pq f.1 q 

Chapter J 

( 1.42) 

Where Il/ = measured freq uency shift,1o = resonan t frequency of the fundamental 

mode of the crysta l, Ilm = mass change per unit area (g/cm\ A = piezo-e lectri call y 

acti ve area, Pq = density of quartz, 2.648 g/cm3
, and Ifq = shear modulus of quartz, 

2.947 x lOll g cm-I S2 

The lim itations of the Sauerbrey equat ion in general are due to non-ideal behaviour 

of the film deposited on the resonator surface, including non-uniformity and non

ri gid ity of the added film. 

The QCM system is very versati le and has been used in vacuum systems, in air and 

can also be made to resonate in liquids. This allows the QCM to have numerous 

app lications including gas phase analysis, immunosensors and drug analys is63 The 

QCM system is used in thi s investi gation to monitor the formation of the 

nanoparticle films on one side of the crystal in air. 

1.8. Biphasic Electrochemical Systems 

1.8.1. Introduction 

When two or more phases that are highl y immiscible with each other come into 

contact, a phase boundary is created. For example if a hydrophobic organ ic phase 

comes into contact with an aq ueous phase, a liquid I liquid interface is produced . 

The first direct e lectrochemical study of the interface between two immiscible 

electrol yte so lutions (!TIES) was carri ed out in 1902 by Nernst and Riesenfeld64 

where they observed the transfer of co loured inorganic ions between water and 

phenol on app lication of a vo ltage. 
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There are many important processes in nature and technology that occur at liquid I 
liquid interfaces such as membrane processes or phase transfer catalysis. The 

behav iour of both neutral and charged species at liquid I liquid interfaces can be 

examined and uti lised in vari ous studies.65
•
66 

1.8.2, Pal'titioning of eult'a l Molecules at Liquid I Liq uid Interfaces 

It is possible to define the chemical potential (J.1i) of a neutral species in a biphasic 

medium using eq uation 1.43, where J.1 iO is the standard chemica l potential and ai is 

the activ ity. 

11, = p ,o + RT In a, (l.43) 

After a time the spec ies will come to eq ui librium in the 2 phases so it is possible to 

assume the sum of the chemica l potentials in the water phase are equal to the sum of 

the chemical potentia Is in the organic phase. 

The potential difference (60 ,,,,/) can be determined by the ratio of activity of the 

neutral species in each phase. The ratio gives the equili brium coefficient (K 

panil iollmg) , 

a 
/).o-w 0 = RT In "",,,,,,, = RT I K ;"1 n p'IfIlIlOllll1g 

a "'atcr 

( 1.44) 

The higher the va lue of log Kow the more the compound prefers to be in the organic 

phase. Thi s allows the behaviour of various compounds to be compared. 

1.8.3. Pa rtitioning ofI onic Molecules a t Liquid I Liquid In te l'faces 

It is also possib le to study the partitioning of ions at liquid I liquid interfaces, in 

particular what happens if a salt is added to a biphas ic system. Cat ions and anions 
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will have different pre ferences of which phase they di stribute in . This creates a 

charge imbalance between phases resulting in ions distributing characteri stically at 

the interface . 

As with the ne utra l species it is possible to de fine the potenti al fo r each component. 

However in the case of charged spec ies it is the electrochemical potenti al (}1, ) that 

is calcul ated not the chemica l potenti al as shown in equati on 1.45, where z, is the 

charge of the ion and (P, is the electri ca l potential of the ion. 

}1, = It,O + RT ln a, + z,FI/J, ( 1.45) 

Agai n at equilibrium state, the sum of the potenti a ls in each phase is equal. This can 

be shown for the cati on and anion in each phase. The potenti al terms add up 

resulting in the potenti al term across the interface being relative to the ra ti o of ions 

in the biphas ic system as shown below (assuming that the cati on and anion have the 

same cha rge). 

Ft/J+Wllfl!r - Fr/J_wlIIl!r - Ft/J",o'1!.(lIUC + Ft/J-UrgO/llC = F 6 t/J 

= tJ.0- 1II J..i~ + RT In G+orWllllc + fl()-Il' J-l~ + RT In Cl- O
'X(/I1I" 

( I .46) 

CI+w(lfl!r CI_wml!r 

By im posi ng e lectroneutrality equation 1.46 can be simpl ifi ed , as there is no need to 

identi fy the positi ve and negative ions indi vidually: 

FtJ.t/J = flo-w J1~ + tJ.0-w J..I~ + 2RT In Clorglmlc ( I .47) 
Clwall!r 

The potenti al d ifference is determined by the rati o o f the acti viti es and thi s ratio in 

turn is dependent on the ind iv idual preferences o f ions. In the rare case o f the 

Gibb's energy fo r tra nsfer for both cati on and an ion being the same, there is no 

potenti al across the interface. This means that any imba lance will create a potential 

difference across the liquid I liquid interface. 
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The composition of the two solvent phases can be represented as a high 

concentration of one phase with a small concentration of the other that switches 

round at the interface (see Figure 1.38). The size of the interfac ial region is about I 

run. The lower the so lubility of one so lvent in the other, the thinner this interfc1cial 

region should be. 

.~ 

interfacial 
region 

I I 

• I 
• I 

J I-- --!-. 

phase 1 phase 2 

distance 

Figure 1.38. Figure represen.ing .he composit ion of the solvent phases and at the liquid I liquid 

interface.66 

As previously stated the orientation of the ions in each phase creates a potentia l 

difference across the interface. However at the interface electroneutrality does not 

hold and the ions di stribute as shown in Figure 1.39 below, with the cations in the 

organic phase and the anions in the aqueous phase. 

OIL 
PHASE 

charge 
distribution 

AQUEOUS 
PHASE 0 t--===""-----t-----=_ 

distance 

Figure 1.39. Schematic of the ion pairs present in th e interfacia l region and a plot of the charge 

density across th e in terface demonstrate there is a definite positive and negative region.64
.
66 
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1.8.4. Bipbasic Voltammetry 

The potential across the interface can be controlled electrochemica lly. I n a very 

simple case, it is possible to introduce two electrodes to the system (Figure I AOA). 

When a potential is applied between the two electrodes, charge propagates to the 

liquid I liquid interface. If a redox couple is present in each phase, electron transfer 

can be driven at the liquid I liquid interface (equation IA8). 

( 1.48) 

The basic scheme for electron transfer at the liquid I liquid interface is shown in 

Figure 1.408 where 0 I and RI are in phase I, and O2 and R 2 are in phase 2. The 

reduction of the species in phase 1 by the redox couple in phase 2 requires the 

movement of both species to the interfac ial reaction planes located at a distance a 

and b from the liquid I liquid interface, respectively.65 

(A) working counter 
electrode electrode 

liquid I liquid 

interface 

(B) r----a'· .,........b----, 

phase I ! : phase 2 

RI-- ~i : <l>~--02 , t . 
, e- ' 
! I ! 

' a. ! b O'-?'i ~2-R2 
Figure 1.40. (A) Two electrode configuration for th e study of th e interface between two immiscible 

solutions (lnES) and (B) a schematic representation of the heterogeneous electron tran sfer reaction 

driven at the liquid I liquid interface" 

A requirement for the study of electron transfer processes is the ability of the two 

phases to conduct electrica l charge. TIllS can be achieved typically by adding 

dissociating salts (similar to the addition of the supporting e lectrolyte described in 

section 1.4.7). 
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Alternati ve ly it is poss ible to drive the transfer o f ions at the interface between the 

two immisc ible phases . For example, when a redox couple in the organic phase 

undergoes ox idati on, the transfer of anions across the liquid [ liquid interface can 

occur simultaneously to maintain the overall electro neutrality of the oil phase 

(equation I A9). In the reverse reducti on step, the anion is expelled back into the 

aq ueous phase67 

( I A9) 

By positioning two electrodes (one counter and one reference) in each phase, it is 

possib le to expand on the simple system in Figure I AOA and apply a potenti al 

directly to the interface (F igure IAI). The potenti al can be scanned and the potential 

difference between the two reference electrodes measured. This allows the 

electrochemica l response or cycl ic vo ltammogram fo r the b iphasic ion transfer 

reacti on under investi gation to be probed. 

liquid [ liquid 
interface --l~" 

counter electrode 

phase I 

phase 2 

reference 
~~'" electrodes 

counter electrode 

Figure 1.4 1. Schematic of the electrolytic cell with a four-electrode configuration for the study of 

the ITI ES. 66 

The resulting cyclic vo ltammogram looks li ke a typica l cyclic voltammogram 

(Figure IA2) produced in a conventional e lectrochemical experi ment in that if you 

change the scan rate, the peak current will change allowing the partition coeffi cien t 

to be determined. Characteri sti c vo ltammetric responses can be recorded in the 

presence of di ffe rent species due to the variati on in transfe r potential. 
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Figure 1.42 . Dotted line is the typical cyclic vo ltammogram For the base electrolytes (aqueous phase 

= 0.0 I M l...i ,SO, and organic phase = 0.0 I M crystal vio let tetraphenylborate) only at a nitrobenzene I 
water interface, and the sol id line is the typica l cyclic voltall1lllogram for the transfer ofCIO,,- ions at 

the nitrobenzene I water interface.M 

The first experiments to be carried out in this area were reported towards the end of 

the 19th century, however, it was not until the work of Gavach in 1968 that interest 

in thi s area started to increase.66 This type of experiment can be util ised in many 

other types of studies allowing binding constants to be ca lculated64 and metal 

deposits to be fonned68 

It is also possible to use a similar biphasic system with oil/water/e lectrode where the 

triple interface is the site of electron/ion transfer. 67
,69 In these experiments, the 

working electrode surface is modified with the insoluble organic phase, which is 

then immersed into an aq ueous electrolyte so lution where the reference and counter 

electrode are located. Biphas ic vo itammetric measurements can then be carried out 

using a classical three-electrode potentiostat instead of the four-electrode 

potentiostal. The working electrode can be modified in a number of ways, wi th 

investi gations frequently reported for single droplet and random microdroplet array 

configurations. Experiments at droplet-modified electrodes are norma lly undertaken 

using unsupported organic materia l, thus enab ling the site of electron/ ion transfe r to 
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be loca li sed initiall y at the triple phase boundary with the reaction advancing toward 

the centre of the droplet. In chapter 4, this technique was utili sed to study the 

transfer of ions such as perchlorate, phosphate and protons between an aq ueous 

phase and organic phase immobi li sed on an e lectrode sur face. 
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Chapter 2 

Ti02 Mono-Layer Film Electrochemistry 

2.1. Introduction 

Titanium (I V) oxide, Ti02, is an abundant, relati vely cheap, versatil e material with a 

high chemica l stability and biocompatibility.1 Ti02 has consequently been used in a 

wide number of applications, ranging from use in pigments2 (in paper, cosmeti cs 

and paint), as photo-cata lysts] and to dimensionally stable electrodes 4 The use o f 

si ng le crysta l electrodes fo r the photoelectrochemical decom position o f water to 

hyd rogen and oxygen5 in 1972 promoted further interest in the photochemical 

properties of Ti0 2. The layer of semiconductor in the dye-sensiti sed so lar ce ll 

produced by G ratze l is obtained fro m a Ti02 co llo id 6 

The surface chemistry of Ti02 has been carefull y studied at polycrysta lline and at 

single crystal surfaces 7 Ti 02 has been investi gated ex tensively usua ll y in the form 

of thin meso- or microporous fil ms at inert e lectrodes,s at titan ium surfaces,9.lo.11 but 

also in the form of s ingle crystals. 12.1] 

The electrochemical properti es of mesoporous films of Ti02 have been intensely 

studied I4.15.16.17 and recentl y models have been developed IS to describe the 

capacitive and reacti ve properties of nano porous semi-conducting Ti02. A number 

of studies have a lso been carri ed out to investigate the conducti vity of nano

structured Ti02 films permeated with electro lyte. 19 However, relati vely little is 

known about the behaviour of individual Ti02 nanoparticies or ensembles of Ti02 

nanoparticies assembled into a mono-layer. It is shown here that electrochemical 

expe riments with mono- layer depos its ofTi 0 2 can be readil y conducted and prov ide 

data complementary to results from thick film and s ingle crysta l experiments. When 

immobi lized into a mono- layer of nanoparticles, Ti02 shows features s imilar to 

those of po lyoxometalate redox systems20 with surface site reduction (here 

Ti(lV/ III» and protonation. Ex periments were conducted at boron-doped diamo nd 

substrates. 
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Boron-doped diamond21 as an inert electrode material has fo und a wide range of 

app lications in electroana lysis,22 electro-synthesis,23 and waste treatment24 The 

chemicall y inert diamond surface combined with a wide accessib le potential 

window and low background current makes boron-doped diamond an idea l substrate 

material fo r the immobilisation of sensor probes25 Various types of nanoparticles 

(go ld,26,27 platinum28 and other metals,29 hydrous iron oxide,3o ruthenium ox ide,31 

and iridium oxide32
) have previously been immobilised at boron-doped diamond 

sur faces and investigated with vo ltammetric techniques. 

In this chapter, experiments are described in which titanium (IV) ox ide, Ti02 

(anatase), nanopa rti cles are adsorbed onto the surface of a po lycrystalline boron

doped diamond electrodes (industrially polished to mirror fini sh) and studied in 

aqueolls so lution environments. The reduction response for the Ti02 nanoparticles 

is proposed to be associated with the for mati on of surface Ti(Ill) and accompanied 

by the adsorption of protons. Two distinct types of sites for the reduction process 

associated w ith proton adso rption are observed. 

2.2. Experimental 

2.2. 1. C hemicals 

Deminerali sed and filtered water was taken from an Elga water purification system 

(Elga, High Wycombe, Bucks, UK) wi th a resistivity of not less than 18 MQ cm. 

Titan ium (IV) oxide sol (anatase, ca. 6 nm diameter, 30-35% in aqueous HN03, pH 

0-3 , TKS-202) was obtained from Tayca Corp., Osaka, Japan and diluted with 

deionised water. NaCI04, KOH, H3P04, HCI04, maleic acid, phytic acid 

dodecasod ium sa lt hydrate, K2HP04, and KH2P04 were obtained commercially in 

analytical or the highest purity grade avai lable. 

68 



SI/san J. StOIl Elecrroanalysis in Nanoparfic/e Assemblies Chapter 2 

2.2.2. Instrumentation 

Voltammetric measurements were performed with a computer contro ll ed Eco 

Chemie PGSTA T20 Autolab potentiostat system. Experiments were conducted in 

staircase vo ltammetry mode with a platinum gauze counter electrode and saturated 

ca lomel reference electrode (SCE (saturated KCI), REF40 I, Radiometer). 

Po lycrystall ine boron-doped diamond with mirror-fi nish po lish (mineral acid 

treated, doping level ca. 1021 cm·3, Wi ndsor Scientifi c, Slough, UK) obtained in the 

form of plates (5 mm x 5 mm x 0.6 mm) fo r use in e lectrochemical experiments 

(mounted with sil ver epoxy back contact in epoxy) and in the form of 3 mm 

diameter disks (fo r FEGSEM experiments). The work ing electrode surface was 

modi fi ed with a porous metal ox ide fil m. The coating of Ti02 was removed by 

polishing with wet a lumina (Buehler, 0.3 I1m). 

The 3-electrode system was set up in a glass cell (re fer to Figure 1.9) . Prior to 

conducting e lectrochemical experiments, all solutions were purged with argon 

(BOC, UK) to remove O2. All experiments were carri ed out at a temperature of 22 ± 

2°C. 

Scanning electron microscopy images were obtained with a Leo 1530 field emiss ion 

gun scanning electron microscope (FEGS EM) system. Prior to FEGSEM imaging, 

the sample surface was scratched with a scalpel blade. 

2.3. Reactivity of Ti02 Nanoparticle Mono-layers at Boron-Doped 

Diamond Electrodes 

2.3.1. Adsorption of Ti02 Nanoparticics onto Boron-Doped Diamond Surfaces 

Boron-doped diamond sur faces after treatment with mineral acids have oxygen 

functionali sed sur faces and allow some types of positive ly charged co llo ids to 

readily adsorb. It has been shown recently that boron-doped diamond a llows 

nanoparticul ate ox ides to be adsorbed onto the surface in the form of a very thin 

69 



S I/san J. StOIl Electroanalysis in Nanopartic/e Assemblies Chapter 2 

layer. This configuration with an inert and geometrica lly well-defined boron-doped 

diamond surface substrate (see Scheme 2.1) allows the electrochemical properties of 

the nanoparticle deposits to be studied and potential distribution effects within the 

oxide layer or within the pores of the oxide to be minimised. 

Active Nanoparticle 

lnert Substrate 

Scheme 2.1. Schematic drawin g ofan active nanoparticle deposit imm obil ised at an inert boron

doped diamond elect rode surface. 

Figure 2.1 shows a FEGSEM image of a boron-doped diamond surface modified 

with a layer of Ti02 nanoparticles adso rbed onto the electrode surface after being 

immersed manually in an aqueous 3 %wt Ti0 2 so lution for ca. 30 seconds and 

rinsed with de ionised water. 

Figure 2.1. FEGSEM image of a mono-layer deposit of TiO, nanoparticles (agglomerates o f 10-40 

nm diameter) on a boron-doped diamond substrate 

The diamond is flat and featureless and the Ti02 nanoparticles appear in the fo rm of 

aggregates of 10 - 40 nm diameter. In the lower part of the micrograph, the particles 

have been removed by scratching with a sca lpel blade. 
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2.3.2. Surface Electrochemistry of Ti02 Nanopa,·ticles at Boron-Doped 

Diamond Electrode Surfaces 

The vo hammetric response from a pol ished boron-doped diamond electrode 

immersed in aq ueous 0.1 M phosphate buffer at pH 7 between +0.5 V and - 1.8 V 

liS. SCE is featureless and consistent with a clean background (Figure 2.2). 

1. 0] 
;::; 20 

, , , , 
-1.5 -1.0 -0.5 0.0 

EIVvs. SCE 

Figure 2.2. Cyclic voltammograms for a clean boron-doped diamond plate electrode immersed in 

aqueous 0.1 M phosphate buffer pH 7 (scan rate 10 mYs '). 

After adsorption of a Ti02 mono-layer a new reduction response is detected 

commenci ng at a potential of - 0.8 V vs. SCE. The shape of this vo ltammetric 

response (see Figure 2.3A i) is characteristi c for Ti0 2 thin films and has been 

explained in terms of sequential filling electron ic states within the ox ide. t8 For Ti02 

films more extended than a mono-layer, th is vo ltammetric response is dominating 

the overal l behaviour. However, fo r the mo no- layer depos it new feat ures can be 

observed. Scanning the potentia l more negati ve a llows a new peak feature to be 

observed, which is less broad than the first reduction signa l. After reversal of the 

scan direction (see Figure 2.3A ii) two peak features are observed a lso during 

oxidation. Scanning the potential further into the negative potentia l range causes the 

ox idat ion peak to shi ft pos itively and a shoulder towards even more positive 

potentials develops. It is li kely that the shift in the oxidati on peak potential is 

assoc iated with a change in the proton binding at the Ti02 surface . 
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Figure 2.3. Cyclic vo ltammograms ror the reduct ion of a mono-layer deposi t ofTiO:~ nanoparticles 

at a 5 mm x 5 111111 boron-doped dial110nd plate e lectrode (A) immersed in aqueous 0.1 M phosphate 

bu ffe r pH 7 with variab le reversal potent ial (scan rate 100 mV'-'), (B) immersed in aqueous 0.1 M 

NaC IO,! I mM HClO, wi th variable reversal potent ial (scan rate 100 mVs"), (C) immersed in 

aqueous 0.1 M NaCIO,i 0.5 mM HCIO, with va riable scan ra le of (i) 1000, (ii ) 500, (i ii) 200, (iv) 

100 I11Vs", (D) immersed in aqueous 0.1 M aCIO,! 0.1 mM HCIO, wilh variable scan rale of (i) 

1000, (i i) 500, (iii) 200, (iv) 100 mVs" , and (E) immersed in aq ueous 0. 1 M NaC IOJ I mM HCIO, 

(i) wi lh I mM maleic acid and in (ii ) wilh I mM phylic ac id added (scan rale 100 mVs·'). 
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In order to explo re the invo lvement of protons in the T i02 reduction and re

oxidation processes, vo ltammetric experiments were conducted in un-buffe red 

aqueous 0.1 M NaCI0 4 with small concentrations of protons. Under these 

conditions, a similar set of vo ltammetri c responses are generated (see Figure 2.3B) 

and the two reduction peaks are again observed. Both the first and the second 

reduction signal are highly symmetri c (consistent with the presence of reversible 

surface states) and onl y when the potenti a l is scanned into more negati ve potentials, 

a shi ft of the oxidation peak occurs (probably associated with a gradual structural 

re-arrangement at the surface) . By reducing the concentration o f protons from I mM 

to 0.5 mM and finall y to 0.1 mM (see Figures 2.3B, C, and 0 , respecti ve ly) causes 

the second reduction peak to disappear and the first reduction peak to become 

smaller. This behaviour is consistent with a proton depletion effect within the 

aqueous solution phase and proves the direct involvement of protons in the 

reduction process. The Rand les Sevcik equation)) (equation 2. 1) allows the current 

peak fo r mass transport contro ll ed depletion of protons to be calculated. 

~nFvD = -0.446 n F A c - -
RT 

(2. 1 ) 

In thi s equation, the peak current (ip) for the reduction, is expressed in terms of n, 

the number of e lectrons transferred per pro ton (n = I), the Faraday constant (F), the 

geometric electrode area (A = 2.5 x 10-5 m2
), the scan rate (v = 0.1 VS-I ), the 

approx imate di ffusion coefficient for protons)4 D = I x 10-8 m2s- l
, the gas constant 

(R), and T, the absolute temperature. The calculated peak current for a proton 

concentration of 0.1 mM is ip = 2 1 x 10-6 A, consistent with the voltammetric results 

(see Figure 2.3 0 ). Therefore, it can be assumed that the reduction of Ti(lV) occurs 

accompanied by proton adsorpt ion, and that the two reduction peaks observed in 

Figure 2.3 may be attributed to two distinct binding sites fo r protons in the vicinity 

of Ti(lIl ) sites. A schematic drawing (see Scheme 2.2A) illustrates th is situation 

where one binding site is an ' outer' surface position (see Ha) whi le a second 

bind ing si te is located further within the nanoparticie surface (see Hb). 

The total number of binding s ites for both Ha and Hb can be estimated from the 
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charge under the voltammetric response (ca. 150 )lC) assuming one electron is 

transferred for every W bound. Equation 2.2 shows how the total number of 

electrons transferred during the reduction of Ti(IV) can be calculated, where Nil is 

the Avogadro constant. 

charge x N 
number of e- = A 

F 
(2.2) 

Taking into account the amount of Ti02 particles on the boron-doped diamond 

surface (see Figure 2.1 , ca. 10 12 particles on 5 mm x 5 mm) this suggests ca. 1000 

electrons per 6 run diameter Ti02 particle, consistent with a surface process (there 

are approximately 3300 Ti atoms per 6 run diameter anatase particle). 

H H II 
0\ P 0 lfFa 

O - Ti - 0 - T\/ f.It, HO 
/\ I ..... · 

o 0 / \ 0 , / ° ° Ti - O 
(A) 6 '0 

H H 
o 0 

\ / 
Tk O / \ 

o 0 

H H 
C = C , , OH 

O~ / C 
H H "c II o 0 H / 0 

\/ ~ 0 H H H O-p\- 0 - Ti -: 0 0 0 
o 0 I \ 0 , I \ / o 0 Ti - O - Tl ..... O 

/ \ / \ 
$) 0 0 0 0 

Scheme 2.2. A schemat ic represen tation of the TiO, nanoparticle surface wi th potential binding sites 

for (A) proton s and (8) ma leic acid. 

It is interesting to explore the kinet ic effects coupled to proton binding at the Ti0 2 

surface. At a sufficiently slow scan rate, the reduction process becomes chemically 

irreversible (see Figure 2.30) and proton reduction to dihydrogen has been 

suggested in the literature35.36 The oxidation response is diminished at a scan rate of 
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approx imately Vtrans;l;on = 0.5 VS- I and the rate constant for the surface process can be 

estimated as k = A M/at F V""n"",on = 2 X 10-) m2s- 1 (with Alolal '" 10-4 m2). However, in 
RT 

the presence of a higher concentration of protons, when the second reduction 

process occurs, the vo ltammetri c response becomes more reversible and the 

dihydrogen evolution process is apparently suppressed. The peak-shape of the 

second reduction process suggests a process 'deeper' within the surface (see Hb) and 

it may be speculated that thi s will reduce the ava ilability of electrons for the two

electron reduction of protons to dihyd rogen at s ites denoted Ha (see Scheme 2.2A). 

One possible imp lication of this observation is that small quantities of full y reduced 

Ti02 nanoparticles will behave chemica ll y different when compared to thicker 

layers of mesoporous TiOz. 

2.3_3. Electron Transfer Processes a t T i0 2 Nanopa rtic1es Adsor bed onto 

Boron-Doped Diamond E lectrode Surfaces 

The availability of electrons within the T i0 2 part icles and the avai labi lity of binding 

sites at the TiOz surface poses the question whether se lective reduction processes 

can be driven electrochemically at the Ti02 surface in the presence of the inert 

boron-doped diamond electrode surface. Electrochemical reduction processes at 

Ti02 electrodes have been well studied)7 and it has recently been reported that 

olefins with carboxylate group, such as maleic acid/8
,39 can be reduced electro

cata lytically at Ti02 e lectrodes. This report is confirmed here for the case of a single 

laye r ofTi02 nanoparticles. 

Figu re 2.3E shows the effect of adding maleic ac id (ca. I mM) into an aqueous 

solution of 0. 1 M aCI0 4 and I mM HCI04 . A new chemicall y irreversib le 

reduction response is observed at - 0.8 V vs. SCE consistent with the potential for 

the first reduction of the Ti02 surface . This process is not observed at a polished 

boron-doped diamond electrode (not shown) and therefore is entirely due to the 

presence of T iOz as 'electl'ocatalyst' (see Scheme 2.2B). Thi s is supported by the 

s imultaneous di sappearance of the anodic peak on add ition of maleic acid, 

indicat ing a heterogeneous redox catalysis reaction process, where the electro-
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generated Ti3+ species reduces maleic acid to succinic acid (equation 2.3) , and Ti4+ 

is regenerated39 Using equation 2. 1, the peak current for the two electron two 

proton reduction of maleic acid to succinic acid can be estimated as 130 pA, 

cons istent with the vo ltammetri c response recorded (see Figure 2.3E). 

H H 
\ / 
c = c 

/ \ 
HOOC COOH 

maleic acid 

H2 H2 
\ / 
C-C 

/ \ 
HOOC COOH 

succinic acid 
(2.3) 

The use of nanoparticu late Ti02 coated boron doped diamond electrodes allows a 

greater potential window to be investigated and therefore further insights into the 

site of the catalytic reduction process have been elucidated, with respect to the 

reduction of maleic acid at a Ti /ceramic Ti02 cathode39 Additional benefits in thi s 

work include the investi gation of lower concentrations of maleic acid under less 

extreme acidic conditions, resulting in a more defined peak for the reduction of 

maleic ac id and safer worki ng conditions respecti vely. 

Fina ll y, add ition of a competiti ve binder, here phytic acid (Figure 2.4), reduces the 

current for the electrocatalytic reduction process by binding to the Ti02 surface, 

decreasing the number of bindi ng sites avai lable for the electrocata lyti c reduction of 

maleic ac id (see Figure 2.3Eii) and possibly introduces a novel way of controlling 

reactivity and se lectivity at the Ti02 surface. 

Fig ure 2.4. Molecular structural unit of the phytate organic binder unit 
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There are several beneficial features of employing mono-layers or well -defi ned 

amounts of Ti02 electro-catalyst nanoparticies immobilised at boron-doped 

diamond electrodes. With thick film Ti02 electrodes, dihydrogen evolution can 

occur in competition to other beneficial reduction processes, but a thin film Ti02 

e lectrode and at sufficiently negative potentials, the suppression of the competing 

dihyd rogen evolution process appears to be possible. A catalytic reduction process 

may be optimised by judicial choice of proton concentration, olefin concentration, 

catalyst amount, and appl ied potential. In the future, the presence of a co-binder at 

the Ti02 surface may be employed to control the selectiv ity of the reduction process 

or to introduce chirali ty. 

2.4. Conclusions 

It has been shown that vo ltammetric experiments with mono-layer films of Ti02 

(anatase) nanoparticles at boron-doped diamond electrodes surfaces give insights 

into ox ide surface processes, the type and ava ilabi lity of binding sites, and the 

reactivity and the mechanism of surface processes. Boron-doped diamond is a 

versat ile and highl y beneficial substrate material and there may be real benefits (in 

terms of effi ciency and se lecti vity of electron transfer processes) in employing very 

thin films of nanoparticles on boron-doped diamond substrates 
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Chapter 3 

Electrochemical Processes in Ti02 Multi-Layer Films 

3.1. Introduction 

The formation and electrochemistry of titanjum (IV) ox ide nanoparticle multi-layer 

fi lms using various organic binder molecules are described in this chapter and the 

role of the binder molecule in the layer-by-layer deposition process is explored. 

Several types of binder systems have been employed over recent years to a llow 

nanoparticIe deposits to be formed in a layer-by-layer process. The ability of the 

negatively charge binder to adhere to the T iOz surface and to provide new binding 

s ites is most innportant. Systems used to date are summarised in Table 3. 1. 

Binder Description Ref. 

Phytic acid Phytic acid or phyta te has been used This 

in previous studies and is known to 
I Z work, , 

H,o~~, bind well to metal oxides includin g 

TiO, via the six ph osphate groups. 
OPO,H, 

Appl ications in clude th e study of 
H10 3PO 

OPO,H, cytoch rome c and haem oglob in . 

l,2 ,3,4,5,6-cyc1o hexa neh exa ca r boxyl ic 
) 

CHHCA has a very simil ar structure 

acid (CHHCA) to phytic acid and has agai n been 

shown to be a good binder to TiO, 

HOOC COOH nanoparticles via th e carboxylate 

~COOiOOH groups. Investigations into 

HOOC voltammetry with weakly adsorbed 
COOH 

redox system s have been reported. 
and other isomers 
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p-cyclodextrin 

Carboxymethyl-y-cyclodextrin 

2,7 ,9-trica rboxypyrroloquinoline 

quinone (PQQ) 

CooH 

HOOC HN 

Cellulose 

i: 
CH,OH 

o 0 CH 20H 

H07i;!:L7;l:t CH'J-H 

HO Oil ~o 
110 OH n 
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The application of p-cyciodextrin as 

a binder was un success ful in this 

in vesti gation using layer-by-Iayer 

deposition. Ultra th in TiO, p

cyciodextrin fi lm s have been 

described usin g a sol-gel deposi tion 

process for th e detection of aromatic 

compounds in water. 

The use of a carboxymethyl 

substituted cyclodextrin was morc 

successful in th e film formation due 

to th e favourable bi nding of th e 

carboxylate groups to th e T iO, 

nanoparticl e surface. 

PQQ was another success ful binder 

that binds to the TiO, nanoparticle 

surface via carboxylate groups 

allowing the format ion of novel 

TiO, PQQ mesoporolls film s. The 

orth o C=O groups are also possible 

binding sites. 

TiO, cellulose nanoparticle film s 

have been reported using layer-by-

layer and sol-gel deposi tion 

processes. Characterisation was 

carried out using TEM , SEM and 

XRD techniques. 

This 

4 
work, 

This 

5 
work, 

Th is 

work . 
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1,4,7, 10-tetraazacycJododeca lle-l,4, 7,10- TA PA has four identi cal 

tetrayl-tetra kis( methyl-phosphollic acid) 

(TAPA) 

Poly(a llylamille) (PAH) 

Polydiallyldi methyla m 1110 11 iu III (PDDA) 

Poly(etherill1ide) (PEI) 

Poly(styrenesulfonate) (PSS) 

• 

Poly(acrylic acid) (PAA) 

~ l g-oNl'1, 
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phosphonate pendant arm s that have 

been shown to be capable of bindin g 

to th e surface afTiO, nanoparticles. 

The use of polyelectrolytes such as 

PAH, PDDA, PEI , PSS or PAA in 

layer-by-Iayer deposition with TiO, 

is reported In the literature, 

describ ing film manufacture and 

applications such as gas sensing and 

noble metal binding. 

Thi s 

work . 

7.8.9.10.11 
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Nation • Previous reports include the use of Thi s 

TiO, Na fi on® single layer film s for work, 
12 

- [(CF, - CF,).- CF - CF, lp-
I 

hum idity sensing. Here, Nafion"' has 

(OCF, - CF)m- OCF,CF, - SO; M + been shown to be a success ful 
I binder in layer-by-Iayer deposition . CF, 

Table 3. 1. Table to summ arise the various binder molecules found in th e literature and employed in 

th is study wi th TiO, nanoparticles. 

The binder molecules employed in this chapter include carboxymethyl-y

cyclodextrin, and 1,4,7, 1 O-tetraazacyclododecane- 1,4,7, 1 O-tetray l- tetrakis (methyl 

- phosphonic acid) (TAP A) which were used as they have cyc lic structures capable 

of formmg inclusion complexes o r co-ordinat ing to metal ions. T he incorporation of 

pyrro loquino line quinone (PQQ) as a redox active binder within the semi

conducting T i0 2 film is demonstrated. Phyt ic ac id has been previously studied in 

the directed assembly of Ti0 2 mesoporous films. Here the influence of fi lm 

thickness on the conductivity and electrochemistry are demonstrated. This chapter 

conc ludes with the fo rmation and electrochemistry ofTi0 2 nanoparticle fIlms using 

the ionomer Nafion® as a highly effective binder. 

The multi-layer Ti02 binder films were deposited onto fl at glass substrates coated 

with a thin layer of tin-doped ind ium oxide o r ITO. ITO is typically composed of 

indium (I ll ) oxide (ln203) with various amounts of tin (IV) ox..ide (Sn0 2) dopant. 

ITO has a high (almost metallic) conductivity and high optical transparency, where 

higher leve ls of Sn02 doping results in a greater conductivity but decreased optica l 

transparency. ITO has consequently been employed in a vast number of areas 

including, transparent conductive coatings for displays (liquid crystal, fl at panel, 

plasma), touch panels, e lectronic ink applications, so lar ce lls, gas sensors, and 

antistatic coatings. Due to its chemical inertness over a wide potential window and 

low background current, ITO has a lso been widely used in e lectrochemical 

investigat ions. Various types of nanopartic les have been immobilised 

surfaces including go ld, J3 iron (IU) oxide, t4 plat inum, 15 titani um (rV) 

at ITO 

ox..ide 16 , 
silver,17 and silicon (IV) oxide.18 The high e lectrica l conductivity of ITO coated 
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glass and the lower cost compared to boron-doped diamond substrates makes [TO 

an idea l electrode substrate material for the immobilisation of multi-layer titanium 

([V) oxide sensor probes. 

3.2. Experimental 

3.2.1. Chemicals 

Demineralised and filtered water was taken from an Elga water purification system 

(Elga, High Wycombe, Bucks, UK) with a resistivity of not less than 18 MOhm cm. 

Titanium (IV) oxide so l (anatase, ca. 6 nm diameter, 30-35% in aq ueous HN03, pH 

0-3, TKS-202) was obtai ned from Tayca Corp., Osaka, Japan and diluted with 

deion ised water. P-cyclodextrin, carboxymethyl -y-cyclodextrin, pyrroloquinoline 

qui none, 1,4,7,1 O-tetraazacyclododecane- 1,4,7, 1 O-tetrayl- tetrakis (methyl

phosphonic acid), phytic acid dodecasodium sa lt hydrate, Nafion® perfluorinated 

ion-exchange res in (5 %wt solution in a mixture of lower a liphati c alcohols and 

water), absolu te ethanol, methanol, I, I '-fe rrocenedimethanol , dihyd ronicotinam ide 

adenine dinucleotide, dopamine, CuS04.5 H20 , [Ru(NH3)6]CI3, NaC104 , NaOH, 

H3P04, HC104, KOH, K2HP04, and KH2P04 were obtained commerciall y in 

ana lytical or the hi ghest purity grade available. 

3.2.2. Instrumentation 

Vol tammetri c measurements were performed with a computer controlled Eco 

Chemie PGSTA 1'20 Autolab potentiostat system. Experiments were conducted in 

staircase vo ltammetry mode with a platinum gauze counter e lectrode and saturated 

calomel reference electrode (SCE (saturated KCI), REF40 I, Rad iometer). The 

working electrode was a tin-eloped indium oxide (11'0) coated glass ( 10 mm x 60 

mm , resistivity 20 Ohm per square) with approxi mately 8% tin , obtained from 

Image Optics Components Ltd. (Basi ldon, Essex). The [TO electrode surface was 

modified with a porous metal ox ide film giving a geometri c working electrode area 
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of I cm2
, defined using Magic tape (Scotch 3D). Prior to conducting 

electrochemical experiments, all solutions were purged with argon (BOC, UK). All 

experiments were carried out at a temperature of 22 ± 2°C. An Elite tube furnace 

system was employed for cleaning ITO electrode surfaces (at 500°C in air) and for 

calcining metal oxide binder films (at 500°C in air). 

Scanning electron mlcroscopy Images were obtained with a Leo 1530 Field 

Emission Gun Scarming Electron Microscope (FEGSEM) system. Prior to 

FEGSEM imaging, the sample surface was scratched with a scalpel blade. 

Impedance spectroscopy experiments were carried out on a Solartron SI 1260 

impedance/ gain-phase ana lyser and a Solartron SI 1287 e lectrochemical interface. 

A quartz c rysta l oscillato r circuit (Oxford Electrodes) cOlmected to a frequency 

counter (Fluke, PM6680B) allowed the resonance frequency of the quartz crystal 

sensor to be monitored si multaneously to conducting vo ltammetric experiments. A 

Faraday cage was used to contain the quartz crysta l to minimise noise interference. 

The ana logue output of the counter was fed into the ADC input of an Autolab 

potentiostat system (Eco Chemie, Netherlands) and data processing was possible 

with GPES software (Eco Chemie, Netherlands). Layer-by-Iayer deposition 

processes were monitored with the crystal suspended in a ir. Droplets of solut ion 

were applied to one side of the crysta l and after rinsing and drying the frequency 

measured and monitored step-by-step . 

The s imultaneous small-angle X-ray scattering and wide-angle X-ray scattering 

(SAXS/W AX ) pattern of the Ti02 Na fi on® and Ti02 nanoparticle film s was 

obtained on a SAXSess system using a PW3830 X-ray generator and the X-ray 

image plates were observed using a Perkins Elmer Cyclone Storage Phosphor 

ystem. A multi-layer fi lm of Ti02 Nafion® and of pure Ti02 was produced on a 

thi n opt ica l microscopy cover plate fo r SAXS measurements. The patterns were 

reco rded in transm iss ion mode with Cu Ka radiation (1c = 1.5406) at 40 kV and 50 

mA over a wide region of 28 with an exposure time of 20 minutes. A background 

pattern from a clean cover plate was subtracted and the data corrected for slit 

smearing befo re fitting. 
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3.2.3. Deposition and Electrode Preparation Procedures 

Throughout this investigation, the majority of electrodes used were composed of 

metal oxides and organic binder molecules. Deposition of multi-layer mesoporous 

films of metal oxide and organic binder on ITO glass electrodes followed a layer

by- layer dip coating method.14 A clean ITO surface (washed with ethano l, rinsed 

with deionised water, dried, and 60 minute heat treatment at 500°C in air) was 

dipped into a solution ofTi02 nanoparticles for 30 seconds followed by rinsing with 

deionised water. The metal oxides form small agglomerates on the hydrophilic ITO 

surface. By dipping the resulting nanoparticle deposit into a solution of binder 

molecule such as phytic acid (40 mM in pH 3 aqueous solution) and rinsing, it is 

possible to reverse the surface charge. The dipping process was undertaken using a 

robotic Nima dip coating carousel (DSG - Carousel, Nima Technology, Coventry, 

UK) and repeated to give multi-layer deposits. 

Figure 3. 1 shows a schematic of the layer-by- Iayer deposition process, which relies 

on the electrostatic interaction between the positively charged metal oxide 

nanoparticle, applied in step one and the negat ively charged binder species applied 

in step two. Two rinse steps follow both step one and step two to remove excess 

unbound particles from the electrode surface. 

nanopartic/e =. binder =1 

1 -

\~_...., J \'-_-, ~_~ 
Y Y 

First layer Secolld layer 

Figure 3.1. Schematic drawing showing the steps involved in the directed assembly multi-layer 

structures based on the electrostatic interactions between the TiO, nanoparticles and a suitable multi

dentate binder molecule such as phytic acid. 
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The dip coating procedure can therefore be summari sed as the ITO coated substrate 

sequentially being immersed in 6 different pots, where pot I contained 3 %wt Ti02 

suspension, pots 2 and 3 contained deioni sed water, pot 4 contained the organic 

binder so lut ion and pots 5 and 6 contained deionised water. The ITO was held in 

so lution for 30 seconds in each pot with no drying stage in-between. Each pot of 

so lution is magnetically stirred tlu'oughout the depos ition procedure. For the layer

by-layer deposition of the Ti02 Nafion® films, pots 3 and 4 contained methanol 

instead of deionised water. 

The phys ica l and chemical properties of the organic binder mo lecules allow the 

structure and surface of the nanoparticle fi lm to be readil y modifi ed . The different 

binders used were phytic ac id (40 mM in pH 3 aqueous solution), carboxymethyl-y

cyclodextrin (0. 1 mM in deioni sed water) , pyrro loquinoline qu inone (PQQ) (0. 1 

mM in aqueous so lution), 1,4,7, I O-tetraazacyc lododecane- 1,4,7, I O-tetrayl-tetrakis 

(methyl-phosphonic acid) (TAPA) ( I mM in aq ueous so lution) and Nafion® (0.5 

%WI solution diluted with methanol from 5 %WI commercia l so lution). 

3.3. Forma tio n of TiOz-J ,4,7,JO-tetraazacyclododecane-l ,4,7, lO

tetrayl-tetra-kis(methyl-phosphonic acid) (TAP A) Multi-Layer 

Films 

3.3. 1. Introd uction 

Po lyazacycles with co-ord inating pendant arms are known to have many des irable 

properties such as being good li gands for transi ti on metal19 and lanthanide ions,zo 

fo rm ing thermodynamically stab le complexes with a high select ivity to metal ions21 

Polydentate li gands with acetic ac id substitutes have been shown to form 

thermodynamica ll y and kinetica ll y stab le complexes wi th more labi le meta l ions 

like the first row-transition metals and tri valent lanthanide ions2o The properti es of 

these li gands have been studied for use as magnetic resonance imaging (MRl) 

contrast agents22 and diagnostic/therape uti c rad iophannaceuticals23 Simi lar 
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resea rch has been ca rried out using azamacrocycles with phosphonic and phosphinic 

acid groups on pendant al"lns 24 The complexes with phosphorus ligands where 

found to have higher selecti vity in complexation compared to those with common 

acetate deri vatives, a long with sati sfactory thermodynamic stability25 

The properti es of the tetraphosphonate-substituted polyazacyc les make them 

in teresting to look at as potenti al binders in the layer-by-Iayer deposition process 

with metal ox ides sllch as Ti0 2. 

1,4 ,7, I O-tetraazacyclododecane-I ,4,7, I O-te trayl-tetrak is (methyl-phosphonic acid) 

(TAPA) is a large organic molecule with potential binding sites (phosphate groups) 

spread over a greater area. Figure 3.2 shows the structure of T APA, composed of a 

ring and fo ur identica l phosphonate pendant arms. 

Figure 3.2 . The structure of the 1,4,7, IO-tetraazacyclododecane- 1 ,4,7, IO-tetrayl-tetrak is(methyl

phosphon ic ac id) (TAPA) ligand . 

3.3_2_ Fonnation of Multi-Layer Ti02 TAPA Films 

In order to determine the success of the layer-by-Iayer depos ition process, FEGSEM 

images of a two layer and 15 layer Ti02 TAP A film were taken (shown in Figure 

3.3). It is clear to see that a mesoporous film was generated on the ITO surface, 

where the average th ickness fo r a 15 layer film equall ed 150 run . 
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Figu re 3.3. FEGSEM images of TiO, nanopaJ1ic le fil ms deposited layer-by-Iayer with 1,4 ,7, 10-

tetraazacyc lododecane- 1,4,7, 1 O-tetrayl-tetrak is (methyl-phosphonic acid) onto the surface of an ITO 

electrode with (A) a 2 layer TiO, TA PA film and (8 ) a 15 layer TiO, TAPA fi lm. 

The electron microscopy data can be supported by experiments with quartz crysta l 

oscillator measurements conducted in air. Figure 3.4 shows the subsequent 

reduction of the resonance frequency of an ITO coated quartz crystal resonator 

during the manual layer-by-Iayer deposi tion process of a lternating 3 wt% titanium 

(IV) oxide so l and I mM TAPA (see procedure given in section 3.2.3). Each Ti02 

TAPA layer is consistent with a 700 Hz change corresponding to 734 ng (according 

to the Sauerbrey equation26
). Rearranging the Sauerbrey equation gives the 

ex pression in equation 3.1 . 

/',.//1 A..r;;:;;;; 
= 

/',./ 2/0' 
(3.1) 

As the geometric resonator area, A = 0.2 cm2
, the frequency change corresponds to a 

mass increase with /',.m = -1 .05 ng Hz·1 (see experimental). 
/',./ 

By taking the particle density for a mono-layer (from the electron micrograph, 

Figu re 3.3A.) and the density of anatase, 3.9 g cm-3, the weight of a mono-layer of 

Ti02 particles can be estimated as 266 ng. This results in an estimate for the weight 

for a mono-layer of TAP A as ca. 468 ng (molecular weight 548 .3 g mor l
) or 8.5 x 

10. 10 mol per layer (ignoring the presence of water). 
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Figure 3.4. Plot of the reson ance frequen cy change for an ITO coated quan z crystal ( - ) during 

layer-by-Iayer deposition ofTiO, (- ) and TAPA ( - ). 

It is possible to see that the deposition process for a multi-layer film of Ti0 2- TAP A 

is successful. In order to investigate the metal binding properties of the TAPA 

ligand, preliminary Cu2
+ binding tests have been performed. 

3.3.3. Solution Phase Complexation of Cu2+ with T APA 

Tetraphosphonate-substituted polyazacycles are known to form stable complexes 

with metal ions including Cu2+, a readily available metal ion with knowo 

electrochemistry. Any complexation of Cu2+ with TAP A will influence the 

vo ltammetric response recorded. A method of studying a possible TAP A Cu2
+ 

complex was i_nvestigated using an addition experiment where increasing 

concentrations of the TAP A ligaod were added to I mM CUS04 in 0.1 M NaCI0 4 

electro lyte so lution. The solut ion was degassed with argon for approximately 15 

minutes after each addition of TAP A to fac il itate the mixing of TAP A throughout 

the solution. 
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Figure 3.5. Voltammogram s recorded fo r th e addition experim ent using glassy C working electrode 

in I mM CuSO. in 0. 1 M NaCIO •. Red line = plus 0 mM TAPA, black line = plus 0.5 mM TAPA, 

blue li ne = plus I mM TA PA, and green line = plus 2 mM TAPA. Scan rate 10 mVs'. Scan I is 

shown in each case. 

As increasing amounts of TAPA were added, the colour of the solution changed 

from colourless with 0 mM TAPA, to intense blue at 2 mM TAPA, indicating a 

successful complexation process is possible between T APA and aqueous Cu2+. The 

background voltammogram in the presence of no T APA shows a sharp stripping 

peak as copper (metal) is deposited (equation 3.2a and b). By adding a small amount 

of TAP A (0.5 mM), the nucleation process is changed and the peak current fo r 

oxidation increases. Interestingly, on additio n of further TAPA ( I mM), copper has 

to be removed from the TAP A complex to be oxidised and reduced. This results in a 

decrease in peak current and a shift to more negative potentia Is as the overpotential 

increases. With excess TAP A (2 mM), the copper peak has moved off the potential 

scale. It is possible in the presence of excess T APA, that polymerisation between 

unbound phosphonate ligands and copper ions in adjacent complexes occurs. 
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3.3.4. Immobilisation & Redox Reactivity of Cu2+ in Ti02 T APA Films 

Before introducing the metal cat ion to the complex, initial electrochemical testing of 

multi-layer deposits ofTiOz T APA on ITO in 0.1 M pH 7 phosphate buffer so lution 

were carried out, and typical Ti0 2 signals were observed. After a 30 second 

immersion into 0.1 M aqueous Cu2+ containing solution, a new but complex and 

unstable vo ltammetric response was observed (Figure 3.6). 

~ 50 ] 

..... 0 

I , I i I 

-1.0 -0.5 0.0 0.5 1.0 
E / V \6'. SCE 

Figure 3.6. Voltamm etry for a 15 layer deposit o fTiO, TAPA fi lm on ITO (i) before (black lin e) 

and (ii) aner (red line) being dipped into 0. 1 M CuSO, (.q ) so lution, rin sed and imm ersed in 0.1 M pH 

7 phosphate buffer solution . Scan rate 10 m Vs·' . Scan I is shown in each case. 

The exact electrochemistry associated with each copper redox response is not 

certain. However both the sharp stripping peak observed in Figure 3.5 at 0.05V and 

the broader peak at O.13V in Figure 3.6 have been recorded in a previous studl 7 

investigating the electrochemical reduction of Cu2
+ on platinum and diamond 

electrodes. A model involving a disproportionation mechanism (equation 3.2c) is 

used to explain the shape of the cyclic vo ltammogram in Figure 3.6 between - 0.5 V 

and 1.0 V. 

(3.2a) 

(3.2b) 

(3.2c) 
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However, a s imilar response was observed for Ti01 phytate film s (F igure 3.7) and 

simply attributed to binding ofci+ to phosphate groups. This suggests that only the 

Cu2+ weak ly adsorbed to the phosphate on the surface of the mesoporous Ti02 films 

is ox idised and reduced. 

(ii) 

-1.0 -0.5 0.0 0.5 1.0 

E /Vvs. SCE 

Figure 3.7 . Voltammetry fo r a 15 layer depos it ofTiO, phytate film on ITO (i) before and (ii ) after 

being dipped int o 0. 1 M CuSO, t.,,) so luti on, rinsed and immersed in 0. 1 M pH 7 phosphate buffer 

solution. Scan ra te 10 mVs· l
. Scan I is shown in each case. 

In conclusion, either the binding of Cu2+ to the immobilised TAPA or the flow of 

electrons through the semi-conducting film is not suffi cient to result in an 

analytically usefu l signal. The reactivity and analytical applicability of Ti02 TAPA 

films for other metal cations remains to be explored. 

3.4. Formation and E lectrochemistry 2,7,9-

tri ca l'boxypyrroloquinoline quinone (PQQ) M ulti-Layer Films 

3.4. 1. Introduction 

The structure of 2,7,9-tricarboxypyrro loquinoline qUtllone (pyrroloquinoline 

quinone, PQQ, or its older name, methoxatin, Figure 3.8) was determined using X

ray di ffraction ana lysis by Salisbury et al. in 197928
,29 and PQQ is now established 

as a cofactor for many quinoproteins. Quinoproteins are ox idoreductases that 
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conta in an ami no acid-derived o rthoquinone cofactor, the most common being 

PQQ, and are recognised as the third class of redox enzyme fo llowing pyridine 

nucleotide- and fl avin-dependent dehydrogenases29 

COOH 

HOOC 

COOH 

N 

o 0 

Figure 3.8 . Molecular structural unit of the PQQ organic binder unit. 

Studies into the structure and catalytic mechanism of PQQ and quinoproteins have 

been conducted29,30,3t,]2,33 with the most interest being reported in methanol and 

glucose dehydrogenases. 

The phys iologica l importance of PQQ has been a subject of recent studi 4,35,36 and 

although PQQ is not synthesised in mammals it can be read il y absorbed by the 

lower intestine after ingestion. Nicotinamides and fl av ins are essential co factors in 

enzyme catalysed redox reactions and are classified as vitamins as they must be 

supplied in the diet. PQQ is fo und in various foods, including meat and vegetables, 

and studies using mice37 fed on a PQQ-defic ient diet have been shown to develop 

poorly leading to interest in PQQ becoming classified as a new B vitamin. 

Analyti ca l uses of the coenzyme PQQ include the detection of a range of thiols,38,39 

where changes in thiollevels can be used to study proper physiological functions or 

in the diagnosis of d isease states . This is possible because the PQQ molecule is 

electrochemically act ive and ab le to directly undergo electron transfer with an 

electrode withou t the need fo r a mediator. T his allows PQQ to catalyse a number of 

reactions such as the ox idation of alcohols,4o glucose4t and amines. 42 The 

electrocata lytic ox idation of dihydronicotinamide adenine dinucleotide (NADH) on 

PQQ modified electrodes has also been reported, particularly in the presence of Ca2
+ 

ions. 43 
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The electrochemical and chemical properties of PQQ and ana logous quinoquinones 

were first recorded in the 1980 ' s44 and a single two electron reversible transfer was 

observed (F igure 3.9). 

COOH COOH 

HOOC HN HOOC 

COOH COOH 

N +2e·,+2H+ N 

) 
( 

0 0 -2e·, -2H+ OH OH 

PQQ PQQH 2 

Figure 3.9 . Schematic representation orthe redox process or PQQ." 

More recent s tudies using PQQ immobilised on silica gel modified with zirconium 

oxide have also been carri ed out45 and the effect of pH on the electrochemistry have 

been investigated 45,46,4) 

[n thi s chapter, a layer- by-Iaye r deposition process was employed to make TiOz 

PQQ mesoporous films on ITO surfaces where the carboxylate and ortho C=O 

groups in PQQ act as the binding sites. The e lectrochemistry of these films was 

investigated and the effect of film thickness, scan rate, and so lution pH studied. 

3.4.2. Formation & Reactivity of Multi-Layer TiOz PQQ Films 

The formation of the TiOz PQQ films was characterised using fi e ld emi ssion gun 

scanning electron microscopy (FEGSEM) and a quartz crystal microbalance (QCM) 

system . Figure 3. 10 shows the typical FEGSEM images for a 2 and 15 layer TiOz 

PQQ film . A much thinner film (80 nm) is generated with respect to the TiOz TAPA 

film s seen in the previous section. 
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Figu re 3.10. FEGSEM im ages of TiO, nanoparticle film s depos ited layer-by-Iayer with 

pyrroloquinoline quinone onto the surface o f an ITO electrode with (A) 2 layers TiO, PQQ film and 

(B) 15 layers TiO, PQQ. 

Figure 3.11 shows the subsequent reduction of the resonance frequency of an ITO 

coated quartz crystal resonator during the layer-by- Iayer deposition process of 

alternating 3 %wt titanium (IV) oxide so l and 0. 1 mM PQQ. Each Ti02 PQQ layer 

is consistent with a 349 Hz change corresponding to 366 ng. This gives a weight of 

a mono-layer ofTi02 particles as 240 ng plus 126 ng PQQ (molecular weight 330.2 

g mor' ) or 3.8 x 10-'0 mol per layer (on a 0.2 cm2 area) . 

~ 
9.082 • • • • • • • • ...... • • 

i 9.081 • • 
• • & • 

~ 9.080 • 
• • 

0 2 4 6 8 10 

Nwnber oflayers 

Figure 3.11. Plot of the resonance freq uen cy change for an ITO coated quartz crystal ( . ) durin g 

layer-by- Iayer deposition ofTiO, ( . ) and PQQ ( . ). 
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Cyclic vo ltammetry of PQQ so lutions using unmodified go ld or platinum electrodes 

have been reported where irreversible vo ltammograms are generated due to the 

difficult ies in the direct electron transfer between the e lectrodes and PQQ. However, 

the use of mod ified electrodes (e.g. self assembled thiolate mono- layers on go ld 

electrodes) allows the observation of the reversible redox couple expected fo r the 

two-electron t ransfer process in PQQ, at approximate ly - 0.13 V vs. SCE at pH 7. 

Cycl ic vo ltammograms obtained using carbon paste electrodes modified with a 

matrix of sil ica, zirconium oxide and PQQ exhibit the expected redox couple plus a 

second unexplained anodic peak.4l
,47 The composition of the electrode is therefore 

influentia l in the PQQ vo ltammetric response recorded. 

The initial electrochemical experiments in this investigation were carried out using 

cyclic vo ltammetry in 0. 1 M pH 7 phosphate buffe r so lution for 15, 30 and 45 layer 

Ti02 PQQ films on ITO. Figure 3. 12 shows the first and fift h scan recorded fo r the 

15 layer Ti0 2 PQQ fi lm, however all 3 mult i-layer films produced similar 

responses. In the first potential scan, only a very small oxidation signa l in the 

expected PQQ redox response is observed (process I) plus a new reduction peak at 

approximately - 0.6 V vs. SCE (process 11). After 5 scans, a more defined oxidation 

peak and corresponding reduction peak are observed for process I plus a decrease in 

the magnitude of the process Il reduction peak. 

1 2,5] 
:::; 0 

I , 
I 
I 

~ 
Procv",n 

-0.5 

, 
I 

Procen I 

0.0 0.5 1.0 
E!V18. SCE 

Figure 3. 12. Com pari son of th e firs t (red line) and fi ft h (b lue line) scan for a 15 layer TiO, PQQ fil m 

electrode in 0.1 M pH 7 phosphate bu ffer. Scan rate 100 m Vs". 
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Interestingly, after being held at O.S V for IS minutes (Figure 3. 13), a clear 

oxidation and slight reduction response for process I is seen (Emid = approximately -

0.2 V vs. SCE), and the process 11 reduction peak is similar in size to that initia ll y 

recorded (Figure 3. 12). The electrode was held at O.S V to ensure that the PQQ was 

fully re-oxidised enabling an improved PQQ redox response to be recorded. In the 

second scan the reduction peak for process I increases and has a greater degree of 

symmetry, however with repeated cycling the current response for both process I 

and process 11 decreases. 

~ 5] 
...... 0 

P''---"'" : , 

-
PrOcen I 

, , , 
PrOcen IT , 

-0.5 
I , 

0.0 0.5 
E IV w. SCE 

, 
1.0 

Figure 3. 13. Comparison of th e fi rst scans for a 15 layer T iO, PQQ film electrodes before (red line) 

and after (blue lin e) being held at 0.5 V for 15 minutes in 0.1 M pH 7 phosphate buffer. Scan ra te 

100 mV". 

The effect of the length of time the Ti0 2 PQQ electrode was held at O.S V fo r was 

investigated over a range o f S to 60 minutes, and a IS to 30 minute period of time at 

O. S V was seen to be optimum, producing a significant increase in the redox 

response of PQQ observed. 

The process of repeatedly holding the electrode at an oxidising potential of O.S V 

results in an even more defined current response fo r process I. Figure 3.14 shows 

the cyclic vo ltarnmograrns for a IS, 30 and 4S layer Ti0 2 PQQ film after being 

repeatedly held at O.S V for IS minutes fo ur times. It is now possible to observe the 

influence o f the film thickness on the PQQ vo ltammetric response. Firstly, a slight 

increase in the background capacitive current is seen with increasing fi lm thickness 
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due to the increase in Ti02 deposited in the nanoparticle film. Secondly, an increase 

in the peak current for process II is recorded as the amount of PQQ present 

increases. Next, an increase in the peak separation for process I is observed , in 

addition to a shift in the peak potential for process 11, to more negat ive potent ials 

with increasing fi lm thickness. This is most likely due to a decrease in the ease of 

electron flow trough the Ti02 PQQ nanoparticle film. By repeatedly ho lding the 

electrode at 0.5 V for shorter lengths of time instead of one long holding step, a 

more defmed vo ltammetric response is generated. A possible explanation for this is 

that surface re laxation/rearrangement occurs between holding steps fac ilitating the 

further re-oxidation ofPQQ. 

I 
I 
I 
I 

Process I 
I 
I 
I 
I 
I 
I 
I 

Process n 
, 

-0.5 
, 

0.0 
E/V16. SCE 

, , 
0.5 1.0 

Figure 3.14. Compar ison of the first scan for in creasing thickness TiO, PQQ film electrodes after 

bei ng held at 0.5 Y for 15 minutes fo r the fou rth time in 0 .1 M pH 7 phosphate buffer where (i) red 

line = 15 layers, (ii ) black line = 30 layers an d (iii ) blue line = 45 layers. Scan rate 100 mY.- ' . 

The effect of scan rate on the electrochemistry of the TiOz PQQ electrodes in 0.1 M 

pH 7 phosphate buffer so lution was investigated next . Figure 3.15 shows the linear 

proportional increase in oxidation peak current with scan rate (1-500 mVs·') 

expected for a surface confmed process, recorded from the cyclic vo ltammograms 

for process I at a 15 layer T iOz PQQ electrode. This indicates that the electron 

transfer process measured for PQQ in the TiOz mesoporous film is a surface process 

dependent on the flow of electrons to the electrode surface. In order to ' renew' the 

activity of the electrode, it was held at 0.5 V for 15 minutes between each scan rate. 
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Figure 3.1 S. Plot of th e natural log peak current (flA) for the oxidation peak in Process I again st the 

natural log scan rate (m Vs-') far th e first scan for 15 layer TiO, PQQ film elect rode after being held 

at 0.5 V for 15 minutes for the fourth tim e in 0.1 M pH 7 phosphate buffe r. 

I t is interesting to compare the charge under the reduction response with the 

estimated amount of PQQ on the electrode surface. Integration under the 

vo ltammetric response obtained at 100 mVs-1 fo r the 15 layer T i02 PQQ e lectrode 

g ives approximately 2 !lC. In comparison, fo r a mono-layer of PQQ adsorbed on 

Ti02 particles an expected charge, for a two-electron process, of 370 !lC can be 

calculated using equation 3.3. The number of electrons (e-) transferred in the two

electron reduction of PQQ was estimated as fo llows. The number of moles of PQQ 

in a mono-layer deposit in a 0.2 cm2 area, determined fro m the QCM data (see 

Figure 3.11 ), was multiplied to give the number of mo les of PQQ deposited in a 

mono-layer in a 1 cm2 area. The number of moles in a I cm2 area multiplied by the 

Avogadro constant (N,J equals the number of PQQ mo lecules present. Assuming 

100 % of the PQQ molecules are electrochemica lly active and a two-electron 

transfer process occurs, the number of e lectrons is equal to the number of PQQ 

molecules multiplied by two. 

number of e- x F 
charge = ---c-:---

N A 
(3.3) 

Therefore only around 0.55% of the deposit is electrochemica lly reduced with a 
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scan rate of 100 mVs· 1 and immersed in aqueous 0.1 M pH 7 phosphate buffer. 

Therefore a substantial amount of molecular binder (PQQ) appears to remain 

inactive. 

The presence of two reduction peaks indicates two different possible electro n 

transport processes, with process I at -0.2 V vs. SCE corresponding to electron 

transfer over the surface of the Ti02 PQQ film close to the ITO electrode interface 

(equation 3.4a). The second irreversible process Il reduction peak (equation 3Ab) 

seen at - 0.6 V vs. SCE could correspond to electron transfer through the TiOz 

nanoparticles away /Tom the rTO interface (Figure 3.16). This would explain (at 

least in part) the low charge under the reduction peaks. 

Process 1 

Figure 3. t 6. Diagram representing the Iwo possib le eleclron transport processes in TiO, PQQ films 

on ITO surfaces. 

Process !: PQQ (Ti02) + 2 e· (lTO) + 21{' (aq) . ) PQQH2 (TiOz) (3.4a) 

3.4.3. The Effect of pH on the Reactivity of Multi-Layer Ti01 PQQ Films. 

Next, an investigation into the effect of pH on the redox response in 0. 1 M 

phosphate buffer so lution was carried out for 15 laye r TiOz PQQ electrodes. A new 

electrode was used for each pH sol ution. Figure 3.17 shows a comparison of scans 

I, 2 and 50 at different pH. In Figure 3.9 the redox reaction of PQQ is shown to 

invol ve protons and equation 3.5 illustrates that the state of protonation of the PQQ 

surface is expected to directly cause the peak potential to shift in a Nernstian 

manner. 
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Figure 3.17. Comparison of the (i) first (red line), ( ii ) second (black line) and (iii) fiftieth (blue lin e) 

scan for 15 layer TiO, PQQ film electrode in (A) pH 2, (8) pH 5.5, and (C) pH 7 0. 1 M phosphate 

buffer solution. Scan rate lOO mV" . 

E = EO· + 2.3RT 10 [PQQ] + 2.3 RT 10 [W] ' 
2F g [PQQH , ] 2F g 

(3.5) 

By increasing the number of protons present, the peak potential for both processes I 
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and 11 are seen to shift to more positive potentials. At pH 5.5 it is also possible to 

see the beginning of another reduction peak associated with the Ti02 as seen in 

chapter 2. A reduced potential scan range is use at pH 2 to avo id recording the 

process III redox response. 

The reproducibility of the vo ltammetry over 50 cycles for a 15 layer Ti02 PQQ 

electrode at pH 2, pH 5.5 and pH 7 after the electrode had been held at 0.5 V for 30 

minutes three times is shown in Figure 3.17. As mentioned previously, process I 

becomes more symmetrical and decreases gradually with repeated cycling. Process 

11 shows a large decrease between scans 1 and 2 and a much more gradual decrease 

in subsequent scans. This could be due to poor reversibility and changes in the Ti02 

PQQ film conductivity, as the sur face of nanoparticle fi lm gradually rearranges with 

repeated potential cycling may increase the difficulties in the direct electron transfer 

between PQQ and the Ti02 nanopart icle support on ITO electrodes substrate. 

Figure 3. 18 shows the shift in peak potential for process I and process II as a 

function of pH for 15 layer Ti02 PQQ films. The shift in peak potential observed is 

consistent with the proton invo lvement in the PQQ redox reaction shown in Figure 

3.9 and described by the Nernst equation for PQQ (equation 3.5). 

0.2 • 

0.0 • 
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• rIl • 
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0 2 4 6 8 

pH 

Figure 3.18. Comparison of the peak potent ial (V) in th e first scan for 15 layer TiO, PQQ film 

electrodes after being held at 0.5 V for 30 minutes for the third time. Scan rate 100 mVs' in various 

pH 0. 1 M phosphate buffer. Process I oxidat ion: - . Process I reduction: - and Process II reduction: 

-
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3.4.4. The Electrocata lytic Oxidation of ADH at M ulti-Layer Ti0 2 PQQ 

Films 

As previously stated , PQQ is electrochemically active and capable of cata lysing 

many reactions such as the oxidation of NADI-I. Reports of PQQ modified 

electrodes and the electrocatal ysis of NADH include the use of electra-polymerised 

aminobenzene isomers and PQQ on various substrates48 and PQQ immobilized on 

sili ca gel modified with zirconium oxide.45 In thi s investigation, the ability of Ti02 

PQQ mesoporous films to electro-catalytically oxidise NADH was explored but no 

coupled process was observed. PQQ immobilised at the Ti02 surface appears to be 

catalytically ineffective or the flow of electrons to achieve an anodic process is 

simply too slow. 

3.5. Conductivity Effects in Multi-Layer T i02-Phyta te F ilms 

3.5. 1. Introd uction 

A small monomeric binder sllch as phytic acid (Figure 3.19), a naturall y occurring 

cyc lic hexaphosphate, has been shown to readi ly bind to oxide surfaces such as iron 

ox ide l 4 or titanium oxide49 in previous studies and is used here to probe the effect of 

film thickness on the conducti vity. 

Figu re 3. 19. Molecular slructural unit of the phytate organic binder unit. 
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3.5.2. Cyclic Voltammetry of Multi-Layer Ti02-Phytate Films 

The electrochemistry of Ti02 phytate films was examined in aqueous solutions 

producing a response simi lar to that described in previous studies50
,51 where a 

reduction and subsequent oxidation peak accompanied by proton insertion are 

observed (equation 3.6). 

Figure 3.20 shows the effect of increasing the number of layers of Ti02 phytate 

present at the electrode surface. It can clearly be seen that the reduction response 

steadily increases and a new stepped oxidat ion feature is observed for thicker films. 

The effect of thjckness on the voltarnmetric behaviour of Ti02 has not previously 

been investigated and is certainly important. By changing the number of layers, it is 

found that the shape of the resulting cyclic vo ltammograms change dramatically. 

, , , 
-1.0 -0.5 0.0 

E!Vvs. SCE 

Figure 3.20. Cycl ic vollammograms (scan rate 50 mVs" ) for the reduction of TiO, phytate 

nanoparticle film s deposited at ITO electrodes and immersed in 0.1 M NaCIO,. Fi lm s of TiO, 

phytate were grown with (i) 5, (ii) 10, (iii) 15, and (iv) 20 layers. The first scan is shown in each 

case. 

Us ing a model of a resistor and a capacitor in series (Figure 3.21) to represent the 

ITO and Ti02 film components respectively, it is possible to predict or 'simulate' 
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the shape of the voltammetric response expected. This allows insights into the 

diffusion of electrons to be obta ined as the electronic states in Ti02 are charged and 

di scharged. 

Resistor Capacitor 

Figure 3.2 1. Schematic of an electric circuit containing a resistor and capacitor in series represent ing 

the ITO surface and TiO, nanoparticle film components respect ive ly. 

In o rder to simulate the current response (equation 3.7), it is necessary to determine 

both the capacitance (C) with varying potential (U), and the integra l of current with 

time (i l,d!). 

U, fl ,dl 
J - ----

I R RC 
(3.7) 

The capacitance term required in equation 3.7 can be calculated by filling a 

polynomial expression (equation 3.8). 

C = Co + a + a, (x - xo)+ .:2{x-xo)' + .:2 {x - xo)' + ... am {x - xo)m { 
, , m } 

2 6 m! 
(3 .8) 

In thi s equation Co is the initial capacitance (F), a to a", are constants, x is the 

potential (V) and X o is a constant shift in potential (V). 

In a spreadsheet analysis, the initial current point is assumed to be Co mUltiplied by 

the scan rate (Vs"). This can then be used to calculate the integral of current with 

time (equation 3.9), where ilodl is equal to O. 

(3.9) 
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The product from equations 3.7 and 3.9 are then fed back into each other in a loop 

and the am constants in equation 3.8 manipulated to give the optimum fit to the 

experimental data recorded, thereby generating the simulated current response. 

Figure 3.22 shows the cycl ic vo ltammograms for the experimental and 'simulated' 

data for a 5 layer deposit ofTi0 2 phytate on an ITO substrate. The simulated current 

response is seen to be a good fit for most of the data points, especially in the region 

o V to -0.6 V and -1.1 V to -1.2 V. The first mismatch between the recorded 

vo ltammetry a nd simulation occurs in the size of the peak current (Jp), possibly due 

to a degree of irreversibility and hydrogen evolution. The second difference is 

observed in the steeper decl ine in current after Jp in the experimental 

vo ltammogram, which is not consistent with the simple RC model (see Figure 3.2 1). 

This is attributed to a sudden decrease in the number of charged electrons flowing 

fro m the Ti0 2 nanoparticle surface back to the ITO electrode. Aga in this is not 

incorporated into the simplistic ' simulation' and is an indication of the di ffus ion of 

electrons thro ugh the fi lm potentially allowing the diffusion coeffic ient to be 

estimated. In future, a better simulation model needs to be developed to account for 

electron diffusion effects. 
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Figure 3.22. Cyclic voltam mograms (scan rate 50 mVs") fo r th e (i) simu lated and (ii ) experimental 

data for the red uction of TiO, in a 5 layer T iO, ph yta te fi lm deposited at ITO electrodes and 

imm ersed in 0.1 M NaCIO,. 
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This mismatch between the experimental and simulated voltammetric data increases 

with film thickness as a steep shoulder is seen in the return oxidation potenti al 

sweep. 

3.5.3. A.C. Impedance Spectroscopy of M ulti-Layer Ti02-Phytate Films 

Next, A.C. impedance spectroscopy was used to investigate the resistance and 

capacitance for a 15 layer Ti02 phytate film on an ITO electrode in 0.1 M NaCI04 

at D.C. potentia Is of 0.5 V, 0 V, -0.25 V, -0.5 V, -0.75 V and - I V. The frequency 

was scanned from 50,000 I-I z to 0.5 l-lz with an AC amplitude of 10 m V at each 

potential. Figure 3.23 shows the effect of the frequency on theta, the phase 

difference and IZI, the impedance (see section 1.4. 12) for the range of set potentials. 

The changes in impedance and phase shift reflect the changes in the conductivity of 

the Ti02 phytate film at more negative potentials as the Ti02 redox process shown 

in Figure 3.20 occurs. 

Figure 3.23. Bode plots of IZI and theta as a function of frequency and plots of Z " (imaginary) vs. Z ' 

(real) (n ) for a 15 layer TiO, phytate mm on an ITO electrode over a range of potentials in 0.1 M 

NaCIO,. 

108 



SI/san J. Stoll Eleclroanalysis in Nanoparlic/e Assemblies Chapler 3 

Using the same model of a resistor and a capacitor in series (see Figure 3.21), 

theoretical values can be fi tted to the experimental data as seen in Figure 3.24. 

10 S 
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_ 10 4 
N - 10' 

10 2 
10- 1 100 10 1 10l ID' 10 4 ID S 

-20000 

Frequency (Hz:) = 
N 

-100 

-15 -10000 

j -SO 

.25 

0 
10 -1 100 10 1 10l 10' 10 4 IDS DD 

Frequeacy (Hz:) Z' 10000 

Figure 3.24. Bode plots of fit (green line) and experimental data of IZI and theta as a functi on of 

freq uency and plots of Z" (imaginary) vs. Z' (real) (n) for a 15 layer TiO, phylate fi Im on an ITO 

electrode at a potenti al of +0.5 V in 0. 1 M NaC IO,. 

By fitting the data, it is possible to calculate the resistance and capacitance at each 

potential for the Ti02 phytate film in NaCI0 4 solution. Interestingly, the resistance 

only varies by 30 n going fro m O.S V to - 1.0 V, compared to the 7899 ~F 

difference in capacitance. 

Potential (V) Resistance (n) Ca pacita nce ("F) 
0.50 562.3 14.2 

0.00 562.4 20.7 
-0.25 557.0 27.7 

-0 .5 0 555 .0 39.9 
-0 .75 543.9 899.2 
- 1.00 532.4 79 13.4 

figure 3.25. Table of resistance and capacitance values (to one d.p.) for a 15 layer TiO, phytate film 

on an ITO electrode over a range of potentials in 0.1 M NaCIO,. 
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A similar set of impedance measurements were conducted with a c lean ITO 

electrode in 0.1 M NaCI0 4 so lution. Figure 3.26 shows the Bode plot and plot of 

imag inary impedance vs. real impedance. The shape of the plots is simi lar at each 

set potential un like the case of the Ti0 2 phytate film where the impedance and theta 

both decreased at more negati ve potentials. 
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Figure 3.26 . Bode plots of IZI and theta as a function of frequency and plots of Z "(imaginary) vs. Z' 

(real) (n ) for an ITO electrode over a range of potentials in 0.1 M NaC IO,. 

Using the model of a res istor and a capacitor in series, values o f resistance and 

capacitance were calculated for the ITO electrode (Figure 3.27), as before there is 

litt le change in res istance with only a 2 1.5 n di fference between 0. 5 V and - 1.0 V. 

The ITO electrode also shows an 11.7 IlF change in capacitance, over the potential 

range. This ind icates that the ITO surface is behaving as a res istor and contributes 

very litt le to the change in capacitance of the system. 
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Potential (V) Res ista nce (Q ) Ca pac ita nce (~lF) 

0.50 582.6 7.8 

0.00 602 .2 10.7 

-0.25 605.9 14.0 

-0.50 603.8 15.9 

-0.75 604.1 18.0 
- 1.00 603.8 19.5 

Figure 3.27. Table of the resistance and capacitance values (to one d.p.) for an ITO electrode over a 

range of potentials in 0 . 1 M NaCI04 . 

In summary, the impedance dala reveal that only capacitive effects are observed as a 

funclion of applied potential. The res istance value is constanl and can be identified 

as mai nly due to the ITO fil m. This ana lysis is in agreement wilh the cycl ic 

vo ltammetri c response (see Figure 3.20) and suggests high electrica l conductivity 

and capaciti ve TiOz particle charging at negati ve potentials. 

3.5.4. The Effect of pH on the Reactivity of M ulti-Layer Ti02-Phyta te Films 

The effect of the proton activity on the TiOz based redox system and conducti vi ty is 

interesting. Figure 3.28 shows cyclic vo ltammograms obtai ned for a 15 layer film 

pre-treated in phosphate buffe r so lutions at various pH values. This was achieved by 

dipping the electrode into a 0.1 M phosphate bu ffer so lution of kn own pH followed 

by rinsing with water and re-immersing into aqueous 0.1 M NaC10 4. The TiOz 

phytate film itse lf behaves as a buffer and can store the pH information. In Figure 

3.28 it can be seen that the voltammetric response moves systemati cally to more 

posi tive potentials (60 m V per pH unit) with lower pH . 
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Figure 3.28. Cyclic voltammogram s (scan rate 50 m Vs·') for the red uction of a 15 layers TiO, 

phytate fi lm on ITO electrodes. The electrode was dipped into 0. 1 M phosphate butTer solutions of 

various pH values and then immersed in aqueous 0. 1 M NaC IO, for voltammetric analysis. The first 

scan is shown in each case. 

The state of protonation of the Ti02 surface directly causes energy levels to shift in 

a Nernstian manner. This can be explained with the surface activity of protons 

affecting the Ti(IV /Ill) reduction (equation 3.10). 

E = e · + 2.3RT 10 fTi 4

+ j+ 2.3RT 10 [I-r ] 
nF g TiJ+ nF g 

(3. 10) 

This Nernst equation is consistent with experimental results presented in chapter 2 

where the uptake of protons into the Ti02 lattice upon reduction was suggested. 
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3.6. Processes Ifl Ti02 Carboxymethyl-y-cycIodextrin Multi-Layer 

Films 

3.6.1. Introduction 

Unlike phyti c acid or CHHCA, which have a potential large number of co

ord ination sites in a small area i. e. on a cyclohexane ring, larger organic molecules 

such as cyclodextrins have their potential binding si tes (hydroxyl groups) spread 

over a greater area. Cyclodextrins are also known to have other des irable properti es 

(such as selecti ve bindi ng of analytes) that make them interesting to look at as 

potentia l binders in the layer-by-layer depos ition process with metal ox ides such as 

TiOz. 

Cyclodextrins (cycloamyloses, cyclomaltoses or Schardinger dex trins) are 

composed of glucopyranose units linked by u- ( 1-4) bonds to form cyclic 

o ligosacchari des, where the 3 main types of cyclodex trin di ffe r onl y by the number 

of glucopyranose uni ts present. a - cyclodextrin is comprised of 6 un its, ~ -

cyclodex trin is compri sed of7 uni ts and y - cyclodextrin is comprised of 8 units (see 

Figure 3.29). 

Figure 3.29. Figu re to show the structures of the 3 ma in types of cyc lodextrin, a - cyc lodextrin, P -
cyc lodextrin and y - cyc lodextrin . 

Apart from these naturally occurri ng cyclodextrins, many cyclodextrin derivati ves 

have been synthesised, usi ng fo r example ami nation, esteri fica tion or 

carboxymethylation of the hydroxy l groups of the cyclodextrins. 
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Cyclodextrins were first di scovered in 1891 by Villiers52 and work by Schardinger 

in the following yea rs led to the iso lation of several crystalline dextrins from the 

starch digest produced by certa in bacterium . The structures of a and ~ 

cyclodextrin were determined by X-ray crystallography in 1942 and y -

cyclodextrin in 1948. 

The ring li ke structure of the cyclodextrins creates a hydrophobic interior and 

hydrophi lic exterior. Cyclodex trins are known to form inclusion complexes with 

small compounds (e.g. with drugs)5) in the centre of the ring structure. The size of 

the cyclodextrin and the molecule trying to incorporate will determine the 

orientation of the molecule in the cyclodex trin. The ability of cyclodextrins to fo rm 

host-guest complexes54 has resulted in their use in a wide range of areas including 

cosmetics, foods, pharmaceutical s, and agricu ltural and chemical industries. 

Cyclodextrins have also been used as enzyme models due to the resemblance of the 

hydrophobic cavity to the binding sites of enzymes55
,56 

Ferrocene derivatives are known to interact with cyclodextrin (see Figure 3.30) to 

form weak complexes57 Ferrocene has been proposed5s in aqueous media to bind to 

a -cyclodextrin (with the first formation constant Krcd = 45 M-I), to ~-cyclodextrin 

(Krcd = 3200 M-I) and to y-cyclodextrin (Krcd = 155 M-2
) where the formation of a 

2: I ferrocene to cyclodextrin was suggested. Studies employing a vari ety of 

ferrocene derivati ves59 confi rmed the weak binding and in particular the binding 

constant for I, I ~ferrocenedimethanol to ~ -cyc lodextr i n in aqueous 0.2 M NaCI was 

reported as Krcd = 1400 M-I. 

Figu re 3.30. Structures of the inclusion complexes formed between ferrocenc with a-cyclodextrin, p
cyclodextrin and y-cyc lodextri n,60 
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Figure 3.3 1 shows the typical dimensions of y- cyclodextrin, how the subunits are 

orientated and the structu re of I, I ~ferrocened imethano l. Only one poss ible isomer 

o f the ca rboxymethyl-y-cyc lodextrin is shown. 

J6.9~ 

y 

"r 7A 
._1.. 

~H 
I 

Fe 

~H 

Figure 3.31. A schematic drawing to show the approximate dimensions and structure of 

carboxymethyl-y·cyclodextrin and the strllcture of I, I ~fe rrocenedimethano l. 

Here, binding constants fo r the interaction of I, I ~ ferrocened imethano l in aqueous 

0.1 M phosphate buffer so lutions at pH 7 and at pH 2 are determined . Binding of 

I, I '-ferrocenedimethanol to the Ti02 surface immobilised carboxymethyl-y

cyclodex trin is observed and shown to be consistent with the binding in so lution 

3.6.2. Fonnation of Mu lti-Laycr' Ti02 Carboxymcthyl-y-Cyclodextrin Films 

Initial deposi tion studies were carried out using ~ - cyclodextrin, the most w idely 

used and lowest priced cyc lodextrin, however, there was little or no film growth 

observed even after several deposition cycles due to the poor binding of the alcohol 

functiona l groups with the Ti02 nanoparticle surface. Next, due to the favo urable 

binding of Ti02 to carboxylate groups, carboxymethyl-"{-cyclodextrin was 

investigated a a binder molecule . y-<:yclodextrin is larger than ~ - cyc lodex trin, 

and will therefore have a greater number of fu nct ional binding sites present, and 

carboxymethyl-"{-<:yclodextrin combi nes thi s increased number of binding sites 
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with the favourab le binding ability of the carboxylate functional groups to the Ti0 1 

nanoparticie sur face. 

The layer- by-Iayer deposition process was much more successful uSll1g 

carboxymethyl-y- cyciodex trin and it was possible to develop fi lms of vari ous 

th icknesses. The deposition procedure invo lved alternately dipping ITO electrode 

substrates into so lutions of 0.3 %wt titanium (IV) oxide sol and aqueous O. I mM 

carboxymethyl-y-cyc lodex trin so lution. Two intermittent rins ing dips in di stilled 

water between so lution A and B were carried out (see experimental). The immersion 

tim e in the Ti01 so l and the so lution of carboxymethyl-y- cyclodextrin was set to 60 

seconds in order to ensure complexation of the adsorption process. However, time 

parameters fo r the depos ition have not been fu ll y optimised. Typical FEGSEM 

images of film de posits a re shown in Figure 3.32. The layer-by-Iayer growth is slow 

but gives ri se to a homogeneous fi lm on the electrode sur face . A key factor in the 

slow growth rate is the low concentration of Ti01 nanopm1icies. 

Fig u re 3.32. FEGSEM images of ti tanium oxide nanopartic le mms (ca. 6-IOnm d iameter) depos ited 

layer-by-Iayer with carboxymethyl-y-cyclodextr in o nto the surface o f an ITO electrode with (A) a 

sing le layer of TiO, particles, (8) a 10 layer depos it, and (C) a 30 layer deposi t of T iO, 

carboxymethyl-y-cyc lodextrin . 
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The e lectron microscopy data can be supported by experiments with quartz crystal 

oscillator measurements conducted in air. Figure 3.33 shows the subsequent 

reduction of the resonance frequency of an ITO coated quartz crystal resonator 

during the layer-by-Iayer deposition process. Each T i0 2 carboxymethyl-y

cyclodextrin layer is consistent with a 140 Hz change corresponding to 147 ng. The 

weight ofa mono-layer ofTi02 partic les can be estimated as 100 ng, which g ives a 

weight of 47 ng carboxymethy l-y-cyclodextrin (molecu lar weight 1471 g mor l
) or 

3.2 x 10-11 mo l per layer. 

9.0856 

• 
• 

9.0850 • • • • • • • • • • 
• • • 

9.0844 

• 
o 2 4 6 8 

Nwnber of layers 

Figure 3.33. Plot of the resonance frequen cy change for an ITO coated quartz crysta l ( . ) during 

layer-by-Iayer depos ition ofTiO, (- ) and carboxymethyl-y-cyclodextrin ( - ). 

3.6.3. Electrochemical C haracterisation of Ca rboxymethy I-y-Cyclod extrin in 

Solution and Nanoparticulate Ti02 Carboxymethyl-y-Cyclodextrin Films 

The binding of ferrocene derivatives into cyclodextrins is well known6J,62,63 and has 

been attributed to the ' hydrophobic' pocket in the cyclodextrin structure. The 

binding process can be studied vo ltammetrically in aqueous so lution. A weak 

complex is formed and as a result the peak current for the oxidation of the ferrocene 

derivative is expected to decrease. This effect is caused by the decrease in the 

dilfusion coefficient for the I, I ~ferrocenedimethano l complex upon binding to the 

cyclodextrin (see Figure 3.34.). This reduction in peak current has been observed 

and is described quantitatively in the literature.62,63,64 
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Figure 3.34. Cyc lic voltamonograms (scan rate 5 mY" ) obtained at a bare ITO electrode for the 

ox idat ion and re-reduction of I onM ferrocenedionethano l in aqueous 0. 1 M phosphate buffer pH 7 in 

the presence of (i) 0 mM , (ii ) I on M, and (iii) 2 mM carboxyonethyl-y-cyclodextrin. 

The reaction scheme in Figure 3.35 illustrates the full ' square' reaction scheme 

resulting fro m heterogeneous electron transfer and complexation. For the case of 

1,1 '-fe rrocenedimethanol bi nding to carboxymethyl-y-cyciodextrin, weak binding 

(in agreement with the literature6J
) can be suggested . This allows the reaction 

scheme to be simplified and therefore onl y part of the mechani sm highlighted grey 

needs to be considered . This corresponds to the electron transfer of the free I, I '. 

ferrocenedimethano l and binding of the reduced fo rm of the metal complex. 

Figure 3.35. 'Square scheme' of the ferrocened imethanol!carboxyonethyl-y-cyclodextrin redox 

system. 
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[n order to quantify the effect of the cyc[odextrin on the peak currents shown in 

Figure 3.34, a numerical simulation-based analysis employing the DigisimTM 

soft ware package was app[ied 6 5 For the simplified mechanism shown in Figure 

3.35, peak current data were simulated at variable concentrations of carboxymethy[

y-cyc lodextrin. With the approximate diffusion coeffi cient for I , I ( 

ferrocenedi methanol experimentall y determined, I x 10.9 nls-I,66 and the diffus ion 

coefficient fo r carboxymethyl-y-cyclodex trin estimated, 2 .6 x [0-10 m2s-1 (from the 

S k E· . [ . h' 67 D kT . d' f [ 69 ) . . to es- Instell1 re alIons Ip = -- assumll1g a lameter 0 . lUll It IS 
6mp-

possible to simulate the e ffect of I, I ( ferrocenedimethanol complexation with the 

carboxymethyl-y-cyclodextrin based on a simple fas t pre-equili brium step (C,evE 

mechanism). 

The rates for complexation and de-complexation were increased to decouple the 

numeri ca l simulation results from the rate constants and to make the s imulated Ip 

dependent on the equilibrium constant K,ed onl y. Figure 3.36 shows simulated 

normali sed peak currents as a function of the concentration of carboxymethy[-y

cyc lodextrin. The equili brium binding constant for a 0. 1 M phosphate buffer 

solution at pH 7 can be determined as K,ed = 1300 ± 200 M·I. Similarly, the 

equilibrium binding constant for a 0.1 M phosphate buffer at pH 2 was determined 

as K,ed = 1000 ± 200 M-I (data not shown) assuming I: I complex formation. In thi s 

data analysis approach the possible formation of complexes and aggregates other 

than the I : I complex are ignored. The assumption of the formati on of a I : I complex 

is plausible based on the bigger si ze of I, I ( ferrocenedimethano l compared to 

ferrocene. 
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Figure 3.36. A plot of the normalised peak current versus the concentration of carboxymethyl-y

cyclodextrin ( . ) together with data generated by simulation with Dig isim ™ (black lines). 

Next, the effect of the Ti02 carboxymethyl-y-cyclodextrin film on voltammetric 

response of ferrocenedimethanol was investigated. Figure 3.37 shows cyclic 

vo ltammograms obtained in aqueous 0.1 M phosphate buffer solutions at pH 7 and 

at pH 2 for the oxidation of 1,1 '-ferrocenedimethanol at a ID-layer modified ITO 

electrode. 
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Figure 3.37. Cyclic voltammograms (scan rate 5 m Vs' ) obtained for the oxidation and re-reduction 

of(i and ii ) I mM ferrocenedimethan ol in 0.1 M phosphate buffer pH 7 and (iii and iv) 0.5 mM 

ferrocenedim ethanol in 0.1 M ph osphate buffer pH 2. A clean ITO electrode (i and iii) and a 10 layer 

TiO, carboxymethyl-y-cyclodextrin film modified electrode (ii and iv) were used . 
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The vo ltammetric response observed for the oxidation and reduction of I, I ~ 

fe rrocenedi methano l at a Ti02 carboxymethyl-y-cyclodextrin fi lm at pH 7 (Figure 

3.37 ii), shows a reduction in the peak current and a widening of the peak-to-peak 

separation compared to the oxidation and reduction of I , I ~ferrocenedimethano l at a 

blank ITO electrode (Figure 3.37i). In spite of the thin nature of the fi lm, diffusion 

to the electrode surface is clearl y obstructed and a fUl1her decrease in the peak 

current is observed for thicker film s. [t is possible that the carboxymethyl-y

cyclodextrin unit very effecti vely fi ll s the pores in the Ti0 2 structure and limits 

access to the electrode surface. Trapping of the I, I ~ferrocenedimethanol molecule 

might also contribute to th is effect. 

[n pH 2 phosphate buffe r so lution, the vo ltammetric response observed for the 

oxidation and reduction of I, I ~ferrocenedimethanol at a Ti02 carboxymethyl-y

cyclodex trin film shows a pronounced reduction in peak current (F igure 3.37iv) 

compared to the oxidat ion and reduction of I , I '-ferrocenedimethanol at a blank [TO 

electrode (F igure 3.37i ii ). The carboxylic acid functionalities in carboxymethyl-y

cyclodextrin are likely to be protonated/uncharged under these condit ions (PH 2), 

which might Improve fi lm permeabi li ty and conductivity. Alternative[y, it is 

necessary to consider that the carboxymethyl-y-cyclodex trin ring may have 

decomposed, leaving a Ti0 2 fi lm . It is interesting to note that ca lcination of the 

Ti02 film s (at 500°C in air to remove all organic components) produces full y 

permeable fil ms that behave essent iall y li ke a bare ITO electrode therefore the 

interaction of I, I '-ferrocenedi methanol with the cyclodextrin unit is important. 

3.6.4. Adso"ption and Rcactivity of FClToccncdimcthanol in Nanoparticulatc 

Ti02 Carboxymcthyl-y-Cyclodcxtrin Multi-Layer Films 

Nex t, the adsorption of I, I ~ferrocenedimethano l into Ti02 carboxymethyl-y

cyclodextrin host film s was investigated. There was no obvious direct signature of 

surface adsorpt ion in voltammetric data shown in Figure 3.37, but the weak bind ing 

characteristics of the carboxymethyl-y-cyclodextrin towards the redox acti ve I, I ~ 
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ferrocenedimethanol molecule is expected. Dipping an ITO electrode with a multi-

layer deposit of Ti02 carboxymethyl-y-cyc lodextrin into mM 1,1 '-

ferrocenedimethano l for 30 seconds, rinsing with distilled water, and immersion 

into a c lean 0.1 M phosphate buffer so lution at pH 7, allows the bound I, I '

ferrocenedimethanol to be observed vo ltammetricaUy. Figure 3.38 shows typica l 

voltammetric responses obtained for (i) a 30 layer Ti02 carboxymethyl-y

cyclodextrin fi lm and (i i) a 10 layer Ti02 carboxymethyl-y-cyclodextrin fi lm 

modified [TO electrode. It can be seen that the voltammetric response for the 

oxidation of I, I ~ferrocenedimethano l increases with layer thickness, however the 

loss of 1,1 '-ferriciniumdimethano l from the electrode surface after oxidation results 

in a diminished peak current response for the re-reduction process. 

The charge under the vo ltammetric oxidation peaks for the 10 layer and the 30 layer 

electrodes, I !le and 3 !le respectively, demonstrates that the voltammetric signal is 

corre lated to the film thickness. However, additiona l factors such as the rinsing step 

and the immersion time before the experiment also affect the magnitude of the 

voltammetric signal due to the weak adsorption of I, I '-ferrocenedimethanol. The 

maximum charge expected (for strong binding) based on quartz crystal 

microbalance experiments is 9 !le per Ti02 carboxymethyl-y-cyc lodextrin layer. 

(i) 

Cii) 

, , , I , 
o 0.2 0.4 0.6 0.8 
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Figure 3.38. Cyclic vol tammograms (scan rate 10 mY'-' ) for th e oxidation and re·reduction of 1, 1 ~ 

ferrocenedimethano l adsorbed onto (i) a 30 layer and (ii ) a 10 layer T iO, carboxymethyl·y· 

cyclodextrin film on an ITO electrode immersed in aqueous 0.1 M phosphate buffer at pH 7 after 

adsorpt ion of 1.0 mM I, I ' ·ferrocenedimethanol in aq ueous 0. 1 M phosphate buffer at pH 7. 
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The stability of the complex formed between I, I ~ferrocenedimethanol and 

carboxymethyl-y-cyclodextrin over repeated cycling of a 30 layer deposit Ti02 

carboxymethyl-y-cyclodextrin film can be seen in Figure 3.39. During the repeated 

oxidation and re-reduction, a decrease in the peak current is observed connected to 

the loss of the 1,1 '-ferriciniumdimethanol away from the electrode surface. 
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Figure 3.39. Cyclic voitammograms (scan rate 10 m Vs·' ) obtained for the oxidation and re-reduction 

of 1,1 ~ferrocen edim ethanol adsorbed onto a 30 layer deposit TiO, carboxymethyl-y-cyclodextrin 

film on ITO and immersed in aqueous 0.1 M phosphate buffer at pH 7 after immersion in 1.0 mM 

1,1 ~ferrocenedimethanol in aqueous 0. 1 M phosphate buffer at pH 7 (i) scan I (ii) scan 5 and (iii) 

scan 10. 

Next, the effect of the concentration of I, I '-ferrocenedimethano l during the 

adsorption process is investigated. If the binding constant at pH 7, Kroo = 1300 ± 200 

M-I , is employed in a Langmuirian binding model, an approximate ly linear 

relationship between the concentration of 1, 1 '-ferrocenedimethanol during the 

adsorption step and the vo ltammetric response in buffer so lution is expected. Figure 

3.40 shows that this is indeed the case. 
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Figure 3.40. Cyclic voltammograms (scan rate 50 mVs" ) for the oxidation and re-reduction of I, I ~ 

ferrocenedimethanol adsorbed onto a 10 layer deposit TiO, carboxymelhyl-y-cyc lodextrin film on 

ITO in aqueous 0.1 M phosphate buffer at pH 7 after immersion in (i) 0 mM, (ii) 0.1 25 mM, (i ii) 

0.25, (iv) 0.5 mM, and (v) 1.0 mM 1,1 ~ferrocenedim ethanol in aqueous 0. 1 M phosphate buffer at 

pH 7. 

Increasing the concentration of I, 1 ~ferrocenedimethano l from 0.125 mM to 1 mM 

clearly increases the voltammetric response. Furthermore, two distinct oxidation 

potentials can be identified, with peaks at ca. 0.4 V vs. SCE and at 0.3 V vs. SCE. 

The two peaks must relate to different binding sites in the Ti02 carboxymethyl-y

cyclodextrin films. Whether these correspond to differences in binding with the buLk 

of the fiLm relative to interaction at the edge of the nanoparticle film deposit, or 

different orientations of the carboxymethyl-y-cyc lodextrin on the Ti02 surface is yet 

to be determined. Both vo ltammetric responses are observed at a potential positive 

compared to the reversible potential of 1, I ~ferrocenedimethano l in homogeneous 

solut ion and this is indicative of weaker binding of the 1,1 '-ferriciniumdimethanol 

oxidation product68 
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Figure 3.41. Cyclic vollammograms (scan rate 50 mY Si) obtained for th e ox idation and re

reduction of I, I ~ferrocenedim ethanol adsorbed onto a 10 layer deposit TiO, carboxymeth yl-y

cyclodextrin film on ITO and imm ersed in aqueous 0.1 M phosphate buffer at pH 2. 1 after 

immersion in (i) 0 mM , (ii) 0.125 mM, (iii) 0.25 , (iv) 0.5 mM, and (v) 1.0 mM 1,1 ~ 

ferrocenedimethanol in aq ueous O. I M phosphate buffer at pH 7. 

Similar experiments were conducted in phosphate buffer at pH 2 (see Figure 3.41). 

Again it is possible to see two oxidation peaks for the vo ltammetric processes for 

the immobilized 1, 1 ~ferrocenedimethanol at 0.26 V vs. SCE and 0.29 V vs. SCE, 

more negative compared to the processes observed at pH 7. This suggests that the 

I, 1 ~ferric iniumdimethanol oxidation product remains bound at pH 2 (at pH 7 ion 

pairing with the anionic carboxymethyl group might play a role in the de

complexation). The nature of the two distinct binding sites is again believed to be 

associated with either the mode of binding of carboxymethyl-y-cyclodextrin onto 

the Ti02 surface, e.g. side-on versus face-on, or due to edge effects within the fi lm. 

However, further experimental work with other guest spec ies and new experimental 

approaches will be required to ga in further insights into the mechanistic effects of 

the complexationlde-complexation process in Ti02 films. 

[n summary, Ti02 - carboxymethyl-y-cyclodextrin nanoparticle films have been 

successfu lly deposited using a layer-by-Iayer technique onto ITO substrates. The 
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binding of I, I '-ferrocenedimethal101 to the Ti02 surface immobili sed 

carboxymethyl-y-cyc lodextrin is observed and shown to be consistent with binding 

in so lution 

3.7. Charge Transport in Ti02 Nafion® Multi-Layer Films 

3.7.1. Introduction 

ation® is a copolymer with a tetrafluoroethylene backbone funct ionalised with 

perfluorovinyl groups terminated with sulfonate groups (Figure 3.42) and was 

synthesised in 1962 by Wait her Grot of Du Pont de Nemours69 Na tion® is the first 

class of commercial polymers with ionic properties and has a number of 

advantageous properties inc luding its ionic nature and chemica l stability, Another 

beneficial property o fNafion® is an operating temperature range up to 190°C due to 

the Teflon® backbone of the polymer, which itself is used as a non-stick coating 

particularly on pans where a high thermal stabi lity is desired . 

Figu re 3.42. Structure of Nafioll iJl repeal unit where the cati on M is Na, n varies between 5 and 14, p 

varies between 200 and 600, and 111 typica lly eq uals I. 70 

The ionic nature ofNa fi on® means it is highl y conducting to cations, spec ifica ll y to 

protons and water. The level of hydration in the membrane can directly affect the 

, b' l' 71 ton perm ea 1 Ity, 

Na fion® has found many applicati ons that util ise its ion selectivity, These inc lude in 

industry for the e lectro lysis of NaCI so lutions,72 in energy production in fue l cell s 
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and batleri es,73.74 and in electrochemical sensors75.76.77 The fluorinated carbons 

combined with the already withdrawing sulfonate groups and the stabi lis ing effect 

of the polymer matri x make Na fi on® an ex tremely strong acid. This has lead to 

Nafion® being used as a super-acid catalyst especiall y in organic chemistry/8 with 

new possibil ities being currently investigated 79 

afion® mod ified electrodes were ori ginall y introduced by Rubinstein and Bard in 

198080 and are able to incorporate a wide range of electroacti ve cations onto the 

electrode surface by electrostatic bi nding. Charge transport in Nafi on® coated 

electrodes can occur by electron self-exchange, phys ica l di ffusion or a combination 

of the two mechanisms, dependi ng on the nature of the electroacti ve cations81 

The use of nano-Ti02INa fi on® modified electrodes has been reported for a range of 

app lications includ ing, NO sensors,82 humidity sensors,12 photocatalysis,83.84 and 

sensing trace levels of do pamine. 85 

The overall negati ve charge and ava il ab ility of Na fi on® in a so luti on of lower 

aliphat ic alco hols and water are idea l for the use of Nafion® as a binder molecule. 

This investigation looks at the fo rmation of Ti0 2 and afion® multi-layer films on 

[TO substrates usi ng the layer-by-Iayer depos it ion process. The abi lity ofNafion® to 

act as an ion exchange substrate allowed the charge transport of positive analytes in 

Ti02 Na fion® films in aq ueous so lution to be studied. 

3.7.2. Formation ofTiOz Na fion® Multi-Layer Films 

Using the layer-by-Iayer deposition process described previously 111 the 

experimental section, Ti0 2 Nafion® multi-layer film s were generated on ITO 

substrates . Fi gure 3.43 shows the typical FEGSEM images for 2 and 15 layer Ti02 

Nafi on® films. It is possible to see that the Ti0 2 and Nafion® nanoparticles initially 

form small clusters of aggregates of approxi mately 40 nm diameter on the ITO 

surface and after fu rther deposition cycles, a mesoporous fi lm is observed where a 

15 layer Ti0 2 Nafion® fi lm is approximately 300 nm thick. 
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Figure 3.43. FEGSEM im ages of TiO, nanoparticle film s deposited layer-by-Iayer wit h afion" 

onto th e surface of an ITO electrode with (A) a 2 layer T iO, Nafion" film and (B) a 15 layers TiO, 

Na fi on" film . 

The electron microscopy data again can be supported by experiments with quartz 

crystal osci llator measurements conducted in air. Figure 3.44 shows the subsequent 

reduction of the resonance frequency of an ITO coated quartz crystal resonator 

during the layer-by-Iayer depos ition process. This consisted of alternating 3 wt% 

titanium (IV) oxide sol and 0.5 wt% Nafion®. Each Ti02 Nafion® layer is consistent 

with a 560 Hz change corresponding to 588 ng. This gives a weight of 443 ng Ti02 

and 145 ng Nafion®. 

9.085 

~ 
• • • • 

....... 
9_082 • • 

i • • • • • • • • g. • • • • 4) 9.079 • • ~ 

0 2 4 6 8 10 

Nmnber of layers 

Figure 3.44. A plot of the resonan ce frequency change for an ITO coated quartz crysta l ( . ) during 

layer-by-Iayer deposition ofTiO, ( . ) and afion" ( - ). 
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3.7.3. SAXS-WAXS Characterisation of Mesoporous T i0 2 Nafion® Films 

The further characterisation of the Ti02 Nafion® nanoparticle fi lms was obtained 

using the simultaneous small-angle X-ray scattering and wide-angle X-ray 

scattering (SAXS/W AXS) technique. Figure 3.45 shows the intensity of the 

scattered X-ray diffraction pattern fo r both Ti0 2 Nafion® and pure Ti0 2 

nanoparticle fi lms. The experimental data can be fitted to a model to determine the 

structure of the nanoparticle fi lms. 
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Figure 3.45. Experimental data for (i) TiO, film only (black dots), and (ii) TiO, Na fi on to (green 

dots) and theoret ical fit for (ii i) TiO, (red line). 

The model is that of iso lated polydisperse spheres (polydispersity 0.295) with a 

mean radius of 39 A ± I A (assuming no interaction between each sphere) and is 

seen to be a good fit for the Ti0 2 fi lm between 0.04 and 0.1 A-I ind icating that there 

is no co lloidal crystallinity. The divergence between the fi t and experimental data at 

greater values of Q suggests possible interact ion between spheres. A step in the 

intensity level is observed in the Ti02 Nafion® and pure Ti02 film at 0.04 A-I and 

0.08 k l respectively that relates to the size of the part icle or aggregate spheres. It is 

possible to establish that the Ti0 2 Nafion<ti> spheres are almost double the size of 

pure Ti0 2 nanoparticles however a more complex structure is present which is not 
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easily modelled with conventional approaches. From FEGSEM images (see Figure 

3.43) a raspberry-type packing or hierarchical clustering seems to occur. The step in 

intensity level at 0.02 A· I and 0.04 A·I in the TiOz Nafion® and pure TiOz film 

respectively, can be attributed to an artefact generated after the subtraction of the 

background scattering pattern. 

3.7.4. Electrochemistry of Mesoporous Ti02 Nafion® Films 

The electrochemistry of the Ti02 Nafion® fi lms was investigated in 0.1 M pH 7 

phosphate buffer solution over a wide potential window. Figure 3.46 shows the 

change in voltammetric response over six potential cycles, where the redox response 

for Ti(IV) becomes more apparent. In chapter 2, the reduction ofTi02 nanoparticles 

was shown to be accompanied by proton insertion. The ability of Nafion® to 

transport protons could influence the reduction ofTiOz. 

:! 50] 
...... ° 

, 
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(ii) 
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, 
-0.5 
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0.0 0.5 LO 
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Figure 3.46. Cyclic voltammetry for 10 layers TiO, Nafion~ wh ere (i) scan I (ii ) scan 2 and (iii) 

scan 6 in 0.1 M pH 7 phosphate buffer solution. Scan rate 50 mY.-' . 

The sixth scan shown above in Figure 3.46iii is typical for what is expected in Ti02 

ftlms with and without binder molecules. 
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3.7.5. Electl'ochcmistry of Mcsoporous Ti02 Nafion® Films with Dopamine 

Next the electrochemistry of multi-l ayer Ti02 Nafion® films was inves tigated in the 

presence of dopamine cations. Dopamine undergoes a two-electron oxidation as 

shown in equation 3. 11 . 

(3. I I) 

The Ti02 Nafion® film s were dipped into a 2 mM so lution of dopamine in 0.1 M pH 

7 phosphate buffer for 60 seconds, rinsed with deioni sed water and then immersed 

in 0.1 M pH 7 phosphate buffer solution. The resulting cyclic vo ltammogram !s 

shown in Figure 3.47i. 

A similar investigation was carried out using a modified 10 layer Ti02 Nafion® 

film. The modification process entailed the calcination of the Ti02 Nafion® films at 

500°C to remove the Nafion® particles initially deposited and to bring the remaining 

Ti02 particles closer together. The ca lcined electrode was then soaked in Nafion® 

so lution for three hours to rei ntroduce a negati ve surface charge and ion selecti vity. 

This al lowed the influence of the film structure on the di ffus ion of the dopamine 

through the fi Im to be observed . 

The shape of the vo ltammetry in Fi gure 3.47 is very different from that expected for 

a surface-confined species (i.e. symmetrical narrow peaks wi th a peak separation 

near to zero). Instead, the peaks are broader and more diffusion-like with a peak 

separation o f 0.7 V (non-calcined film) or 1.1 V (calcined film) at a scan rate of 100 

I11VS· !. A large peak separation typically indicates a slow heterogeneous electron 

transfer. 86 The relati ve size of the oxidation peak to the fo llowing reduction peak at 

100 m Vs'! indicates that either the ox idation product is lost from the Ti02 Nafion® 

film during the experiment, or more likely, that the ox idation product polymerises 

irreversibly87 A more symmetrical voltammetric response is observed at fas ter scan 

rates, as less time is avai lable fo r the chemical reaction and po lymeri sati on steps, 

leaving a greater concentration of dopamine ab le to be re-reduced. 
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Figure 3.47. Cyclic voltammelry for ( i) a 10 layer TiO, Nafion~ film and (i i) a mod ified 10 layer 

TiO, Nafion* film , in 0.1 M pH 7 phosphale buffer solulion afier a 60 second dip in 0. 1 M pH 7 

phosphale buffer solulion + 2 mM dopamine. Scan rale 50 mVs". Scan I shown in each case. 

The electrochemical oxidation of dopamine has been suggested to proceed via an 

ECC reaction process (shown in Figure 3.48), where the protonated dopamine 

species (molecule I) undergoes two consecutive one-electron transfer steps to 

produce the dopamine ortho-quinone (molecule 2). [fmolecule 2 loses a proton, two 

chemical reactions can occur. Figure 3.48c illustrates the intra-molecular cyclisation 

reaction that generates 5,5-dihydroxyindoline (molecule 3) and Figure 3.48d shows 

the formation of an aminochrome (molecule 4). Molecule 4 is able to polymerise 

readily to melanin-like products on the electrode surface (Figure 3.48e), inhibiting 

the reverse reduction electron transfer reaction of molecule 2 back to molecule 1.87 

Figure 3.47 indicates that both the calcined and non-calcined electrodes behave in a 

similar way with the greater amount ofNafion® present in tbe calcined film giving 

rise to the larger peak current (Jp) response in Figure 3.47ii. 
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figure 3.48. The ECC electrochemical process suggested for the ox idat ion of dopamine." 

The number o f dopamine ions incorporated into the Ti02 Nafion® film is dependent 

on a number of factors. These inc lude the size and charge of the dopamine cation, 

its concentration in the electrolyte solution, and on the concentration of competing 

Na + ions. The incorporation of dopamine will also depend on the Nafion® film 

thickness, which w ill determine the amount of sulfonate groups present and the 

dopamine di ffusion in the film 88 

The apparent diffusion coeffi cients for charge transport of dopan1ine were 

calculated to determine how fast the dopamine di ffuses through the mesoporous 

Ti02 Nafion® film. Dopami ne on ly has a low positive charge potenti all y hindering 

its transport tlu'ough the Nafion® film . However thi s can be overcome due to the 

hydrophobic nature of dopamine and the affi nity o f Nafion® for hydrophobic 

cations89 
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A 10 layer Ti02 Nafion® film was dipped in 2 mM dopamine in 0. 1 M pH 7 

phosphate buffer and cycled over a range of potential scan rates (500, 200, 100, 50, 

20, 10, 5, 2, and I mVs· l
) in 0. 1 M pH 7 phosphate buffer. The same process was 

applied to the modified 10 layer Ti02 Nafion® film. By plotting the natural log of 

the oxidation peak current height against the natural log of the scan rate (v) (Figure 

3.49) a transition between a slope of 1 and slope 0[0.5 can be calculated (vlm"s), 

Vtra. 

calcined 

/ ~ 
D~-<J ~- . 
__ • vtra. 

• non-calcined 
film 

-4 -2 o 
In (v/Vs-I) 

Figure 3.49. A plot of the natural log of the oxidation peak height for the dopamine redox system as 

a fun ction of the natural log of th e scan rate for (i) a 10 layer TiO, Na fi on'" fil m and (ii ) a modified 

10 layer TiO, Nafion'" fi lm, in 0.1 M pH 7 phosphate buffer solution. 

This transition point corresponds to the change from fast scan rates, where Jp IS 

proportional to -.Jv (equation 3. 12) to the case of slow scan rates, where Ip IS 

proportional to v (equation 3.1 3). By combining these two equations, equation 3. 14 

is obtained for the "transition point" and used to calculate the apparent diffusion 

coefficient (Dapp) for both fi lms. 

Jp = 0.446nFAC~nFvD 
RT 

n' F' n' F ' 
J = --vVc=--vA& 

p 4RT 4 RT 

(3. 12) 

(3 .1 3) 
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D = nV,,,,,,,, F (_8_)' 
"pp RT 1.784 

(3. 14) 

Where II' is the peak current (A), n is the number of e lectrons, F is the Faraday 

constant (9648S Cmor 1), A is the electrode area, c is the concentration of dopamine 

in the fi lm, v is the scan rate, D is the di ffusio n coefficient (cm2s-1), R is the gas 

constant (8.3 14 JK- 1mor 1), T is the temperature (K), and V = A x 0 or electrode 

vol ume = area x fi lm thickness. The thickness of the 10 laye r films is assumed to be 

150nm. 

Usi ng equatio n 3. 14 , D app is estimated as 2.Sx I 0-8 cm2s-1 for the non-calcined film 

and 2.0x I 0-8 cm2s-1 for the ca lc ined fi lm. The values for the apparent di ffusion 

coefficients are similar to those reported for the oxidation of dopamine at Nafion® 

coated glassy carbon electrodes89 where Dapp = I.Sx I 0-9cm2S- 1. This suggests that 

D opp depends on the diffusion of dopamine in the Nafion® films or (less likely) 

e lectrons hopping between dopamine molecules. 

3.7.6. Elcctrochcmistry of Mcsoporous Ti02 Nafion® Films with Ru(NH3)6
3
+ 

Next, a similar set of experiments were carried out in the presence of 0.3 mM 

Ru(N I-IJ)6J+ ions which undergo a single electron ox idation as shown in equation 

3. 15. 

(3 . IS) 

Figure 3.50 shows the voltammetri c response for a 10 layer Ti02 Nafion® film after 

being dipped into a 0.3 mM so lution of Ru(N I-IJ)6J+ for 60 seconds and then 

immersed in 0.1 M pH 7 phosphate bu ffer so lution. A modifi ed 10 layer Ti02 

Nafion® film (after calcining at SOO°C and reintroduction of the Nafion~ was 

studied in comparison. As seen in section 3.7.S , the modified TiOz Nafion® film 

produced a greater vo ltammetric response as wel l as a larger background capaci tive 

current. 
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Figure 3.50. Yoltam metry for (i) 10 layers TiO, afion" and (ii) 10 layers T iO, Nafion" calcined at 

500' C and soaked in Nafi on"', in 0 . 1 M pH 7 ph osphate buffer solution after a 60 second dip in 0. 1 M 

pH 7 phosphate bulTer solut ion + 0.3 mM Ru(N H,),H Scan rate 50 mY". Scan I shown in each 

case. 

The apparent di ffus ion coefficient for charge transport of Ru(NH 3)6
3+ was 

calculated as before to determine how fast the cation di ffuses through the Ti0 2 

Na fion® fi lm. Figure 3.5 1 shows Vlmns for both electrodes and using equation 3. 14, 

Dapp was estimated as 2. 1 x 10-8 cm2s-1 and 1.1 x 10-8 cm2s-1 for the non-calcined 

fi lm and the calcined film respect ively. 
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fi gure 3.51. A plot of the na tura l log of the oxidation peak height for the Ru( H,),H redox system 

as a function of the natural log of the scan rate for (i) a 10 layer TiO, a fi on" fil m and (ii) a 

modified 10 layer TiO, Nafi on" fi lm , in 0. 1 M pH 7 phosph ate bu ffer solut ion. 
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The similarity in D app calculated for dopamine and Ru(N H3)63+ illustrates that the 

physica l processes involved in diffusion must be the same and due to the presence 

ofNafi on®. 

3.8. Conclusions 

It has been shown that multi-layer films ofTi0 2 nanoparticles (as structure provider 

and as electrical condu it) are readil y fo rmed with a range of binder molecules, with 

novel multi-layer film s containing Ti02 and TAPA units (as functional part and 

organic binder) being formed in a layer-by- Iayer process. The redox reacti vi ty of 

TAPA with Cu2
+ in the so lution phase has been investigated and it is possible to see 

that TAPA forms stable complexes with Cu2
+ ions in so lution. However when the 

TAP A is inunobilised on an electrode surface, the electrochemistry changes 

ind icating that the Cu2+ complex is forming in a less stable fashion. Binding of Cu2+ 

to phosphonate without incorporation into TAP A is likely. 

ovel multi-layer films containing Ti02 nanopartic les (as structure provider and as 

electri cal conduit) and PQQ units (as functional part and organic binder) were 

formed in a layer-by-Iayer process. The influences of film thickness, scan rate, and 

pH on the e lectrochemi stry of PQQ have been investigated with two poss ible 

electron transport processes observed . 

Both the fi lm thickness and the solution pH have a considerable effect on the 

electrochemical response and simplified models for thi s type of process have been 

developed for Ti02 phytate multi-layer films . Impedance spectroscopy has been 

used to measure the conducti vity of multi-layers ofTi02 fi lms in aqueous so lution. 

It has been shown that novel multi-layer films containing Ti02 nanoparticles (as 

structure provider and as electrical conduit) and cyclodextrin units (as functional 

part and organic binder) can be formed in a layer-by-Iayer process. The cyclodextrin 

remains intact and weak complexation of I, I (ferrocened imethanol is clearl y 
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detected in homogeneous so lution at pH 7 and at pH 2 with the assoc iated binding 

constants, Krcd = 1300 ± 200 M· I and Krcd = 1000 ± 200 M· I
, respectively. When 

immobilised onto the surface of Ti02, the carboxymethyl-y-cyclodextri n retains its 

binding ab il ity and the Langmuir constant has been shown to be approximately 

consistent with the homogeneous binding constant. Two di stinct types of binding 

are observed possibly due to geometry or environmental effects. In future this kind 

of film can be formed with a stronger binding interaction or combined in a multi

layer sensor system based on the electronic effects of binding. 

Finall y, the abi lity to form Ti02 nanopart icu late films with Nafion® using a layer

by-layer process has been demonstrated and the apparent transport coefficients for 

dopamine and Ru(NH])63
+ have been estimated. It has been shown that transport is 

complete ly independent of the inert Ti0 2 host matrix . 
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Chapter 4 

Electrochemical Processes at Biphasic Electrodes 

Immobilised in Mesoporous Nanoparticle Films 

4.1. Introd uction 

Biphasic e lectrochemica l processes are of interest in a wide number of areas such as 

ion partitioning and sensing, biological membrane processes, and phase transfer 

cata lysis. I This means that the development of novel biphas ic electrode systems is 

important. Biphasic electrodes consist of an organic (or oil) phase in contact with an 

aq ueous electro lyte phase and in simul taneous contact with the electrode surface. 

The benefi ts of electrodes based on single droplets2
,) or arrays of microdroplets4 of 

wate r-insoluble liquids have been the subject of recent reports. The e lectrochemical 

po la ri sation of arrays comprised of microdroplet phases containing a femtolitre 

vo lume of redox active material has been descri beds Benefits demonstrated include 

(i) the elim ination for the need of a supporting electrolyte intentionally added to the 

organic phase, (ii) no electro lyte limi tation to the potentia l fo r ion transfer reactions, 

and (iii ) very small electrode or droplet size6 

Initial stud ies on microdroplet redox systems based on tetraalkylphenylenediamines 

were reported in 1997 7 The electrochemica l properties of a wider range of systems 

have been investigated in subsequent years8 

Applications fo r the microdroplet systems include electroanalysis,9 

e lectrocatalysis,IO and photoelectrochemical processes in microenvironments. 11 The 

detection of liquid I liqu id ion transfer processes at the triple phase boundary 

(electrode I oil I aqueous e lectrolyte) has attracted attention for the determination of 

Gibbs free energies 12 with app lications especia lly in pharmaceutical research.13
,14 

Microdroplet redox systems have been investigated on a range of e lectrode 

materials including the immobili sation of electrochem ica ll y acti ve liqu ids within 
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hydrophobic silicate-carbon matrices15, 16,17,18, 19 and in hydrophobic silicate thin 

fi lms20 This indicates that porous host materia ls are suitable substrates fo r the study 

of biphasic electrochemical processes. 

In order to study bipbasic electrode systems, diffe rent types of exper iments may be 

envisaged. A microdroplet system could be fo rmed on a flat electrode (see Figure 

4. 1 A), e.g. made of basal plane pyro lyt ic graphite. Alternatively, the organic phase 

can be deposited onto a thin mesoporousfi lm of metal oxide particles (see Figure 

4.1 B). Finally, the metal oxide host structure can be coated with a metal (e.g. by 

gold sputter coating) and the resulting e lectrode might offer an even more extended 

triple phase boundary (see Figure 4.1 C). All three types of experiments are 

described and compared here. 

CA) x-

(B) 
x-

x-

CC) 

Figure 4.1. A schematic representing the trip le interface on (A) a bppg electrode surface (8) a thin 

metal oxide film on an ITO surface and (C) a thin metal oxide film on an ITO surface with a 20 nm 

sputter coated layer of gold. 
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The aim of the novel electrode designs in Figure 4.1 Band C, was to allow the 

depos ition of the organic phase onto an e lectrode with a more defined surface 

structure and poros ity (i.e. removal of the rando m crevices and microdroplet array 

seen in bppg) . A fu rther potential benefi t of the metal ox ide mesoporous fi lm 

electrodes is the improvement in the extent of the triple interface, and consequently 

an increase in the current response observed. 

4.2. Ex perimental 

4.2.1. Chemicals 

Demineral ised and filtered water was taken from an Elga water purifi cation system 

(Elga, High Wycombe, Bucks, UK) with a resisti vity o f not less than 18 MO cm. 

Titani um (IV) ox ide so l (anatase, ca. 6 nm diameter, 30-35% in aqueous J-fN0 3, pH 

0-3, TKS-202) was obtained fro m Tayca Corp., Osaka, Japan and diluted with 

deionised water. N,N-Didodecyl-N'N' - d iethyl-benzene-I ,4-diamine (DDPD) was 

prepared by Colin Hayman fo llowing a literature method.21 Di-(2-ethyl

hexyl)phosphate (HOOP), anhydrous acetonitri le, aCl0 4, NaOH, H3P04, HCl0 4, 

KOH, K2HP04, and KH2P0 4 were obtained commercia ll y in analytical or the highest 

puri ty grade avai lable. 

4.2.2. Instrumentation 

Voltammetric measurements were perfo rmed with a computer controlled Eco 

Chemie PGSTA T20 Autolab potentiostat system. Experiments were conducted in 

stai rcase vo ltammetry mode with a platinum gauze counter electrode and saturated 

ca lomel refe rence electrode (SCE (satu rated KCl), REF40 I , Radiometer). The 

working electrode was either a carbon working electrode made from a 4.9 nun 

diameter basal plane pyrolytic graphite disc (Le Carbon, UK) or a tin-doped indium 

ox ide (lTO) coated glass ( 10 mm x 60 mm, resisti vity 20 0 per square) with 

approx imately 8% tin, obtained from Image Optics Components Ltd . (Basildon, 
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Essex). The ITO electrode surface was modified with a porous metal oxide film 

giving a geometric working electrode area of I cm2 

Prior to conducting electrochemical experi ments, a ll solutions were purged with 

argon (BOC, UK). All experiments were carried out at a temperature of 22 ± 2°C. 

An Elite tube furnace system was employed for cleaning ITO electrode surfaces (at 

500°C in a ir) and for calcining metal ox ide binder fi lms (at 500°C in ai r) prior to 

go ld coating in a Polaron sputter coating unit. 

Scanning e lectron microscopy images were obtained with a Leo 1530 Field 

Emiss ion Gun Scanning Electron Microscope (FEGSEM) system. Prior to 

FEGSEM imaging, the sample surface was scratched wi th a scalpel blade. 

4.2.3. Deposition and Electrode Preparation Procedures 

The DDPD and HDOP liquids were deposited onto three types of work ing electrode 

surface by evaporation from an acetonitrile so lution using a micropipette. The 

majori ty of experimental work was carried out using a 4 .9 mm diameter basal plane 

pyrolytic graphite electrode. The graphite electrode surface was renewed by 

polishing on a fine (PI 000) grade carborundum paper. Two further types of working 

electrode were fabricated using the layer-by-Iayer deposition technique described in 

section 3.2.3, where mesoporous films of Ti02 phytate were deposited on ITO 

coated glass electrodes. After the deposition of IS layers, the Ti0 2 phytate films 

were dried (in air, at room temperature) and calcined (for 60 minutes) to remove the 

organic phytate material. The second working electrode substrate consisted of this 

ca lcined porous Ti02 fi lm, whereas the third working electrode investigated 

consisted of the calc ined porous Ti02 film plus a sputter coated 20 nm thi ck porous 

go ld layer on top of the Ti0 2 film surface. 
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4.3. The Oxidation of N,N-Didodecyl-N~N' - diethyl-benzene-l,4-

diamine (DDPD) Deposited as Microdroplets onto Basal Plane 

Pyrolytic Graphite Electrodes 

N,N-didodecyl-N;W·diethylphenylenediamine (DDPD) is a highly water inso luble 

organic substance. It is thi s hydrophobicity that a llows the study of the oxidation of 

the phenylenediamine deri vati ve coupled to ion transfer from the aqueous phase 

into the organic phase. The DDPD liquid was deposited onto a basal plane pyrol ytic 

graphi te (bppg) electrode by evaporation of an acetonitrile solution. This resulted in 

the fo rmat ion of a random array of microdroplets of the organic phase on the 

e lectrode surface, with the tri ple interface shown in Figure 4. 1 A. Figure 4.2 shows a 

typical FEGSEM image of a bppg electrode surface. It is possible to ex plai n the 

tendency of the droplet depos its to fo rm microdroplet arrays and to penetrate into 

the crevices and imperfections of the e lectrode surface8 

Figure 4.2. FEGSEM images fo r a basal plane pyrolytic graphite electrode. 

When the DDPD microdroplet array is immersed into aqueous 0. 1 M NaCI04 it is 

possible to observe the electrochemical oxidation coupled to the trans fer of CI0 4-

using cycl ic vo ltammetry. The vo ltammograms produced (see Figure 4.3) have a 

characteristi c sharp and well defi ned peak with a midpoint potential (Em Id) of 0. 12 V 

vs. SCE, that tS consistent wi th prevtous investigations UStng 

tetraoctl yphenylenediamines2J The process is chemica ll y highly reversible and 
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changing the scan rate produces an approximately linear increase in peak current 

indicative of the absence of diffusion control. 

250 

i 

o -+ 

I 

-0.2 
i i 

0.0 0.2 
E I Vl6'. SCE 

Ci) 
Cn) 
(iii) 
(iv) 

I 

0.4 

Figure 4.3. Cycl ic voltammograms obta ined for th e ox idation an d re·reduction of mi crodroplets of 

1.3 flg DDPD (2.6 nm ol) on a 4.9 mm diameter basa l plane pyrolyt ic graphite electrode, scan rates 

( i) lOO, (i i) 50, (iii) 20, and (iv) 10 mVs ' in 0.1 M NaCIO,. 

A proposed equation for the overall electrochemical reaction coupled to ion transfer 

process is given below, process I. The product formed after completion of the 

oxidation process can be thought of as an ionic liquid.6 

Process I (4.1 ) 

For a deposit of 1.3 fIg (2.6 nmol) of DD PO a charge under the oxidation peak of 

ca. 180 fIe can be detected. This suggests a ca. 70% conversion of the deposit. The 

efficiency of the process tends to improve at lower scan rates and with low amounts 

of deposit. However, complete conversion is observed rarely, presumably due to 

material trapped in crevices at the electrode surface. 

Figure 4.4 illustrates the increase in peak current with increasing vo lumes of DD PO 

deposited on the graphite electrode where each I 0 ~t1 depos it conta ins 1.3 fIg 
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DDPD. However, a saturation po int is reached at approximately 60 ~l DDPD (7.8 

~g, 15.6 nmol) and any further increase in vo lume results in a lower peak current. 

For example, the voltammetry for a 70 ~l deposit of DDPD resembles that for a 50 

~l deposit of DDPD (not shown). This indicates that with larger vo lumes of DDPD 

depos it, the micro droplet array is disrupted reducing the avai lable e lectroactive 

surface area at the liquid I liquid interface. 

500 

o -

-0.2 0.0 0.2 
E IVl6. SCE 

(i) 

, 
0.4 

Figure 4.4. Figure to show the voltammetric respon se of the oxidation and re-reduction of increasing 

amounts of DDPD deposits, from (i) 10 "I to (ii) 60 " I in 10 " I aliquots on 4.9 mm diameter bp pg 

electrode in 0.1 M NaC IO,. Scan rate 100 mV". 

4.4. The Oxidation of DDPD within Microdroplets of 

Dioctylphosphoric Acid (HDOP) Deposited as Microdroplets 

onto Basa l Plane Pyrolytic Graphite Electrodes 

In previous invest igat ions it has been observed that the derivatives of 

phenylened iamines can be easi ly protonated in the presence of hydrophobic 

anions22 A change from anion transfer (process J) to proton transfer occurred as a 

funct ion of the anion hydrophobicity and pH. Here it is shown that the limiting case 

of a water insoluble ac id can be chosen to switch the anion transfer entirely to 

proton transfer over a range of pH. This was achieved by depositing the virtually 
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water insoluble liquid di-(2-ethyl-hexyl)phosphate (HDOP) from acetonitrile onto 

the DDPD microdroplets on the bppg electrode surface. HOOP can be thought of as 

a extremely hydrophobic acid and the interaction of this acid with the DDPD base 

produces an unusual liquid acid-base complex in the organic phase (see Figure 4.5). 

Figure 4.5. Structure of th e acid-base comp lex formed between HDOP and DDPD. 

By immersing the deposits of the acid-base complex deposited onto a bppg 

electrode into an aqueous 0.1 M solution ofNaCI04 and applying a potential, a new 

vo ltammetric response is observed. The new oxidation process is seen at a more 

positive potential with an Emid of 0.34 V vs. SCE (see Figure 4.6B). 

100 CA) (B) 

i 

-o -

-0.2 0.0 0.2 0.4 
E/V18. SCE 

Figure 4.6. Th e cyclic voltammograms (scan rate 100 m Vs") for th e ox idation and re-reduction of 

microdroplets of (A) 1.3 ~g DDPD (2.6 nmol) and (B) 1.3 ~g DDPD plus 4.3 ~g HDOP (13 nm ol) 

on a 4.9 mm diameter bppg electrode in aqueous 0 .1 M NaCIO, . 

150 



Susan J. SIOI/ Eleclroal1alysis ill Nanoparlicie Assemblies Chapler 4 

In the presence of HDOP, process I is not seen even though it would occur at a more 

negative potential to the new process observed. It is possible to identify the new 

process based on the voltammetric data as a one-electron oxidation of the HDOP

DDPD complex. This is accompanied by the expulsion ofa proton from the organic 

phase to the un-buffered aqueous phase (see below). 

Process 11: [HDOP-DDP0loil) -t [DPO·-ODPDJ + W(aq) + e· (4.2) 

For a I: I acid to base ratio deposit, process I is reduced and process n is 

dominating. The absence of the response for process I in the presence of HOOP 

supports the acid-base complex formation theory. However, during repeated cycling 

of the potential, the depletion of the Process II signal is observed along with the re

emergence of the Process I signal (see Figure 4.7). This could be caused by the 

depletion of HDOP at the liquid I liquid interface by loss or slow hydrolysis. 

100 

~ 
(i) 

........ ..... 
0 -

(ii) 

, , 
-0.3 0.0 0.3 0.6 

E /VlS. SCE 

figure 4.7. The cyclic voltammogram s (scan rate 100 mV,') for the repeated cycl ing of the 

oxidation and re-reduction of microdroplets of a I: I acid to base mole ratio deposit on a 4.9 mm 

diam eter bppg electrode in aqueous O. I M NaC IO, where (i) scan I (red lin e) and (ii) scan 15 (very 

light blue lin e). 
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Experiments using a higher acid: base ratio determined that there was no significant 

change in the electrochemical process on increasing the amount of HDOP 

deposited. However a systematic shift in the vo ltammetric response to more positive 

potentia Is was observed (see Figure 4.8). 

125 
(ii) (iii) 

\ / 
o --

, 
-0.3 o~ o 0:3 

E/V18. SCE 

Figure 4.8. The cyclic voltammograms (scan rate 100 mVs") for oxidation and re-reduction of 

microdroplets of various DDPD:HDOP mole ratios deposited on a 4 .9 mm diameter bp pg electrode 

in aqueous 0.1 M NaC IO, for (i) 1:0, (ii) I: I and (iii) 1:5. 

Next, experiments were carried out in aqueous buffer so lutions. Figure 4.9 shows a 

typical voltammogram for the oxidation of micro droplets ofDDPD deposited onto a 

bppg electrode surface and immersed in 0.1 M pH 7 phosphate buffer so lution. It is 

possible to observe the electro-insertion reaction for phosphate (Process III) at E"'id 

= 0.35 V vs. SCE. 
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17.5 

o -
-0.2 0.0 0.2 0.4 

EIVw. SCE 

Figure 4.9. Cycl ic vo ltammograms (scan rate 10 mVs·l
) obta ined for the oxidation and re-reduction 

of microdroplets of 1.3 ~lg DDPD (2.6 nmol) deposi ted onto a 4 .9 mm diameter bp pg immersed in 

0.1 M pH 7 phosphate buffer. 

This process is more complex than the OOPO in NaCI0 4 and it is on ly cautiously23 

beli eved to be associated w ith the co-inserti on of potassium (see Process Ill). 

Process Ill: 

In the presence of HOOP, the voltaI1lmetri c characteristi cs observed change 

dram ati ca ll y. Figure 4. 10 shows the vo ltammograms obtained for ODPD to HOOP 

mass ratios of 1 :0, I :3, and 1: 12. The response fo r process II is again seen, and a 

small shift in Emid to more negative va lues is observed with increasing amounts of 

HOO P. The trend is consistent with that predicted based on the appropriate Nernst 

equation deri ved for Process II (equation 4.4). 

E = EO· + RT In DPO- DDPD+ oil) 
F HDOP DDPD oil) 

(4.4) 
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Where R denotes the gas constant, T the absolute temperature, F the Faraday 

constant, and the reversib le ha lf-ce ll potential is re lated to activities in both the 

aqueous and the organic phase. 

17.5 

....... 

..... 

o --
-0.2 

(iii) (ii) (i) 

, 
0.0 0.2 0.4 
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Figure 4.10. Cyclic voltamm ograms (scan rate 10 mV s") obtained for the oxidation and re-reduction 

of micro droplets of J.3 ~g DDPD (2.6 nmol) with (i) 0 ~g HDOP (0 nm ol), (i i) 3.9 ~g HDOP ( 10.4 

nmol), and (iii) 15.6 ~g HDOP (46 .8 nmol) deposited onto a 4.9 mm diameter bppg immersed in 0. 1 

M pH 7 phosphate buffer. 

The addition of a I: I DDPD:HDOP deposit results in an incomplete complexation 

process and both Process 11 and Process III redox responses are observed. The 

add ition of further HOOP to the electrode surface (1:3 ODPD:HDOP mass ratio) 

results in Ihe observation of Process II only. The charge under the voltammetric 

oxidation response increases with the addition of more HDOP up to a mass ratio of 

1: 12 DDPD:HDOP. However, the addition of further amounts of HDOP results in 

the decrease in charge under both the oxidation and reduction voltammetric peaks. 

This could be explained by the addition of further HDOP increasing the droplet size, 

decreasing the concentration of DDPD and consequently resulting in reduced 

currents and reactant conversion. The features of the voltammograms produced 

suggest that the addition of HOOP up to a critical amount of approximately 15.6 fig 

HDOP improves mass transport via diffusion in the organic phase. 
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Integration of the current under the ox idation peak in Figure 4.1 Oiii gives a total 

charge of CG. 70 ~t C. This result is consistent with a one-electron electrolysis of CG. 

30% of the 2.6 nmol OOPO present at the electrode surface (process II). 

Next, the effect of the proton acti vity on the vo ltammetric response was examined. 

Figure 4. 11 shows typ ical vo ltammetric responses obtained fo r the oxidation of 

microdroplets containing a \: 16 mixture of OOPO to HOOP (by mass) deposited 

onto a bppg electrode and immersed in aqueous phosphate buffer so lutio n. 

pHIO 7 4.5 2 
I 

-0.2 0.0 0.2 0.4 0.6 

EIVw. SCE 

Figure 4. 11 . The ox idation and rc-reduction or microdroplets of I: 16 DDPD to HDOP depos ited 

onto 4.9 mm diameter bppg electrode immersed in aqueous 0. 1 M phosphate bufre r at va rious proton 

activities. 

The midpoint potential for the voltammogram is systematicall y shifted to more 

positive potentials with increasing proton acti vity (see Figure 4. 11 ). By changing 

the pH of the phosphate buffer so lution causes a clear shift in midpoint potential of 

41 ± 6 mY per pH unit. The exact cause of the sub-Nernstian behaviour remains 

open, however the sub-Nernst ian shift in response is consistent wi th that reported 

fo r OOPO: HDOP deposits on gold electrodes24 and has been tentatively attributed 

to the weak coupling of the proton activities in the aqueous and organic phases . If 

the proton activities in the organic drop lets and in the aqueous electrolyte solution 

were independent, al l the protons from inside the droplets would be expected to 
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move in to the aqueous phase during the electrochemical process, and the shi ft in 

midpoint potential would have been 59 m V. Conversely, if the proton concentration 

d id not change during the reaction process, no shift in midpoint potential would be 

observed. Coupling of the proton concentrat ions inside and outside of the droplets 

could occur if the surfaces of the droplets become charged during the 

electrochemical process. In th is situation, a part of the protons will not participate in 

the phase transfer process resulting in the sub-Nernstian shi ft in the response fo r 

Process 11 . The size of the organic droplet deposits may influence the shi ft in 

midpo int potential, where smaller droplets cause a greater degree of surface 

charging, decreasing the shift in potential. 

4.5. The Oxidation of DDPD Deposited as a Liquid Film into 

Mesoporous Ti02 

In order to improve the experimenta l des ign of the biphas ic electrodes and to go 

away from random arrays of microdroplets on graphite, new mesoporous ox ide 

based structures were investigated. The films are composed of Ti0 2 nanoparticles of 

ca. 6 nm diameter which are deposited as a 300-400 nm fi lm on ITO glass 

electrodes as descri bed in the experimental section. The purpose of the Ti02 

nanoparticles was to stabi li se the liquid I liquid interface and acid-base complex 

depos ited, and fac ilitate electron conduction by behaving as interfacia l conduits for 

electrons. The ITO electrode substrate provides a stable, conducting materi al that is 

electrochemicall y inert in the potential window of interest that readil y binds to the 

metal oxide nanoparticles. Figure 4.1 2 shows a FEGSEM image of a typical 

ca lcined T iOz film depos it after scratching the surface of the film with a clean 

scalpe l. 
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Figure 4.12. FEGSEM image for TiO, fi lm (300-400 nm thickness) on an ITO electrode. 

A DDPD deposit on a clean ITO electrode immersed in aqueous O. I M NaCI0 4 , 

shows no clear vo ltarnmetric response associated with Process I. It is possible that 

the lack of redox response may be due to the bare [TO substrate being insufficiently 

conducting to effectively catalyse the simultaneous electron transfer and ion transfer 

process. Alternatively, the DDPD deposit may be unstable on the bare ITO 

electrode surface and therefore dissociates in the bulk electrolyte solution on 

immersion in aqueous solut ion. 
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Figure 4.13. Cyclic voltammograms obta in ed for (i) a blank ITO, and (i i) the ox idation and re· 

reduct ion of microdroplets of 1.3 ~g DDPD (2.6 nmol) on a blank ITO (scan rates lOO mY") 

imm ersed in 0.1 M NaCI0 4 . 

In contrast, using a similar deposit of DDPD on a mesoporous Ti02 fi lm electrode 

immersed in aqueous 0.1 M NaCl0 4, it is possible to clear ly see both the oxidation 
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and the re-reduction of DDPD (process I). In Figure 4.14 the oxidation of 1.3 Ilg 

DDPD (2.6 nrnol) deposited onto a 10 mm2 Ti02 coated electrode is shown at 

various scan rates. Changing the scan rate causes an approximate ly linear increase 

in the peak current expected for a surface confined process. 
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Figure 4.14. Cyclic voltammograms obtained for th e ox idation and re-reduction of microdrop lets of 

1.3 Ilg DDPD (2.6 nm ol) on a 15 layer Ti0 2 film on ITO (scan rates (i) 50, (ii) 20, and (iii) 10 mYs" ) 

imm ersed in 0.1 M NaCIO •. 

Integration of the area under the oxidation peak at 50 mVs-1 gives a charge of ca. 50 

IlC that corresponds to a conversion of ca. 20%. This is low when compared to the 

result seen on the graphite electrode, signify ing a lower, less efficient site of 

reaction (triple phase boundary). Also there is a much greater peak-to-peak 

separation produced that increases with scan rate, indicating there is a slow kinetic 

step in the oxidation and re-reduction of DDPD on the Ti02 film electrodes. 

However, the mesoporous Ti02 based electrode is clearly working and suitable for 

biphasic processes. A way of improving the efficiency may be found by optimising 

the film thickness and composition. Ti02 is known to be electrically conducting to a 

small degree25
,26 and therefore a possible electrode process could involve electron 

transfer between the Ti02 nanoparticles and the liquid I liquid interface fo llowed by 

electron conduction in the ITO surface (the triple interface is illustrated in Figure 

4.1B). 
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ex t, an electrode coated wi th a mesoporous T iOz fi lm as used above was sputter

coated with a cC!. 20 lUll layer of gold and investigated. The role of the gold layer is 

to increase the efficiency of the electrode process due to a greater conductivity than 

TiOz and to further extend the three phase boundary (shown in Figure 4. 1 C). The 

TiOz film acts as a reservo ir of a continuous phase of the redox liquid and as a 

support fo r the liquid I liquid interface. A typical FEGSEM of the electrode surface 

is shown in Figure 4.15 where it is poss ible to see the porous nature of the gold 

layer conveyed by the porous nature of the under-lying metal ox ide layer. 

Figure 4. 15. FEGSEM image for TiO, film (300-400 nm thickness) plus a sputter-coated go ld layer 

(ca. 20 nm) on an ITO electrode. 

Us ing similar condi tions to the experiments carried out in the absence of a gold 

layer, the vo ltammetri c response of a 1.3 ,tg (2.6 lllllol) deposit of DDPD was 

reco rded (see Figure 4.16) . 
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Figure 4.16. Cycl ic voltam mograms obtain ed for the ox idation and re·reduction of mi cro drop lets of 

J.3 ~g DDPD (2.6 nm ol) on a 15 layer TiO, film with a 20 nm gold layer on ITO imm ersed in 0. 1 M 

NaC I0 4 . Scan rates of (i) 100, (ii ) 50, (i ii ) 20, and (iv) 10 mVs" were investigated. 

The voltammetric response is greatly improved compared to the TiOz with no go ld 

layer, with the conversion reaching 64% (at 100 mVs" ) and a much smaller peak

to-peak separation. This indicates that the metal oxide fi lm with the go ld layer gives 

a better composition for the electrode fo r the purpose of providing a contact 

between a redox liquid (DDPD) with a conductive substrate. Increas ing the potential 

scan rate results in an increase in the peak current as well as improving the quality 

of the vo ltammetric response observed. Again the redox conversion could be greatly 

improved by methodically changing the membrane thickness, hydrophobicity, or the 

amount of oil phase deposited onto the electrode surface. 

The oxidative current seen at approximately 0.45 V vs. SCE is observed for the 

blank ITO substrate and all three of the working e lectrode configurations, and is 

believed to be a combination of the limit of the electrolyte so lution and the second 

DDPD oxidation reaction. However, in order to verifY this it is necessary to increase 

the potential window to include more positive potentia Is. If the potential scan range 

is increased too far fo r the go ld coated TiOz modified e lectrode, the redox activity 

of the gold sputter coated layer may be observed at approximately 0.5 V vs. SCE. 
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4.6. The Oxidation of DDPD within a Liquid Film of HDOP 

Deposited into Mesoporous Ti02 

As with the bppg electrode, vo ltammetric responses were recorded using the OOPO: 

HDOP system. First, the behaviour of the OOPO: HDOP deposited on a clean ITO 

electrode immersed in 0.1 M pH 7 phosphate buffer solution was investigated. 

Figure 4.17 shows the voltarnmetric response for an unmodified ITO electrode 

before and after the deposition of the acid: base complex, with only a very small, 

broad response associated with Process II and a small oxidation peak for Process JII 

observed. This indicates that the OOPO is not 100% complexed by the HOOP 

similar to the bppg voltammetry and therefore a larger deposit of HDOP is required 

to eliminate the Process III peak. The lack of redox response may again be due to an 

insuffic ient conductivity or an unstable organic deposit. 
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Figure 4. 17. Cyclic voltam mograms obtained for (i) a blank ITO, and (ii) th e oxidation and re

reduction of microdroplets of 1: 1 OOPO: HOOP ratio on a blank ITO (scan rates 100 mY, ') 

immersed in 0.1 M phosphate buffer (p H 7). 

Next, 1.5 ~g DOPO (3.0 nmol) in 36.8 ~g HOOP (114.0 nmol) ( I :38 mo le ratio) 

was deposited onto an ITO electrode with a 300-400 nm mesoporous Ti0 2 film both 

with and without a 20 nm sputter-coated gold layer. The large volume of HDOP 
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was necessary to ensure the Ti02 electrode was satisfactorily coated, due to a 

difficulty with the HDOP acetonitrile solution to interact with the DDPD coated 

meta l oxide surface. 

Figure 4. IS shows the voltammetric response fo r the oxidation and re-reduction of 

the acid-base complex recorded using the mesoporous oxide film without a go ld 

sputter coated layer, in 0.1 M pH 7 phosphate buffer so lution. In Figure 4.ISii it is 

possible to see that the peak-to-peak separation is very wide, suggesting that the 

transfer of electrons and protons between the organic and aqueous phases is very 

slow and highly irreversible. It is therefore possible to state that the Ti02 porous 

film modified with the DDPD: HDOP complex is not a suitable probe for pH. The 

influence of potential scan rate was investigated, with faster scan rates increasing 

both the background and reduction current response, however, the Process 11 

oxidation current response is missing at faster scan rates (F igure 4. ISi) . Increasing 

the potential window to include more positive potentia Is for faster scan rates does 

not result in the observation of the Process 11 oxidation response, just an increase in 

the oxidative current seen at 0.45 V vs. SCE. 
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Figure 4.18. Cyclic voltammetry obtained for the ox idat ion and re-reduction of micro droplets o f 1.5 

~g DDPD (3 .0 nmol) with 36.8 fig HDOP ( I 14.0 nmol) deposited onto a 15 layer TiO, film on ITO 

imm ersed in aqueous 0.1 M phosphate buffer (pH 7). Scan rate ( i) 100 mV'- ' and ( ii) 10 mV '- '. 
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After gold coating the mesoporous Ti02 films, the voltammetric behaviour changes. 

Figure 4.19 shows the typical vo ltammetric responses obtained at pH 7 similar to 

those obtained at bppg electrodes. The voltammetry is stable and the charge under 

the peak is consistent with ca. 20% conversion. 
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Figure 4. 19. Cyclic voltammogram s (scan rate 100 mVs") for th e oxidation and re-reduction of 

microdroplets of 1.5 ~g DDPD (3.0 nm ol) togeth er with 36.8 ~g HDOP ( 114.0 nm ol) deposited onto 

an electrode with 15 layers ofTiO, on ITO and gold sputter coated (ca. 20 nm) immersed in aqueous 

0.1 M ph osphate buffer (p H 7). (i) scan I and (ii) scan 3. 

The capacitive background current observed here is increased due to the higher 

surface area of the porous gold and a Faradaic background response is observed 

starting at 0.5 V vs. SCE due to the ox.idation of gold. However, the pH dependent 

signal for the oxidation of DDPD accompanied by proton exchange (Process 11) is 

clearly observed. A shift in this signal of approximately 53 ± 6 m V per pH unit is 

observed (see Figure 4.20). This indicates that the Ti02 supported go ld electrode is 

more sensitive to the pH compared to the biphasic system at a bppg electrode. 
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Figure 4.20. Plot of mid point potential versus pH for 1.5 Ilg DDPD and 57 Ilg HDOP deposited 

onto an electrode wi th 15 layers TiO, on ITO and gold sputter coated (ca. 20 nm) immersed in 

aqueous 0.1 M phosphate buffer (pH 1.6, 4.2, 7, 11.3). 

4.7. Conclusions 

Electrochemical processes in biphasic e lectrodes have been shown first using a 

basal plane pyrolytic graphite electrode and second employing a novel mesoporous 

oxide host structure with and without an outer go ld layer. The biphasic system 

consists of a highly insoluble hydrophobic organic substance, DDPD, deposited 

onto the electrode and immersed in aqueous electrolyte solution. By applying a 

voltage to this system, it was possible to observe the transfer of phosphate and Cl04• 

anions between the aqueous and organic phase. The transfer of only protons (for 

monitoring proton activity) over a wide range of pH values was also observed by 

adding a hydrophobic organic acid (dioctylpbospbate). The biphas ic system 

deposited onto the basal plane pyrolytic graphite electrodes gave the most efficient 

electrochemical responses however the use of mesoporous oxide membrane 

electrodes with an outer gold layer has also been shown to be effective for the 

observation of simultaneous electron and ion transfer. The ability of mesoporous 

Ti02 to conduct electrons in the presence of aqueous media could make an 

important contribution to the overall reaction mechanism. More experimental work 

will be required to explain the processes in tbe mesoporous Ti02 film in more detail 

and to develop better electrodes for bipbasic redox systems. In future, the use of 
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micro-structured oxide films coated with individual sens ing liquids for various types 

of anionic and cationic analytes may be envisaged. Some general conclusions about 

the formation of triple phase boundary zones have been drawn 
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Chapter 5 

Electrochemical Properties of Core-Shell TiC - Ti02 

Nanoparticle Films Immobilised at ITO Electrode Surfaces 

5.1. Introduction 

Titanium (IV) carbide, TiC, is a typical early transition meta l carbide with many 

desirable material properties such as extreme hardness, high e lectrical conductivity, 

and a high melting point, ideal fo r use as wear resistant coatings. I Further 

advantageous properties include catalytic activit/ and electrocata lytic activity,3 

which is highly beneficia l for applications as a potential electrode or sensor 

materi al. Very little is known about the electrochemical properties of TiC materials 

however a lot is known about the e lectrochemical and surface4 properties of 

mesoporous and nanoparticulate Ti025.6.7.s Models have been developed9 to 

describe the capaci ti ve and reacti ve properties of nanoporous semi-conducting Ti02. 

Ti02 is an important materia l in e lectrochemistry,IO photochemistryll and in sensor 

systems. 12 In combination with other more electrically conducti ng transition metal 

ox ides, Ti02 is employed in dimensionally stable anodes l3 and in a hydrogen

reduced conducting form in Ebonex ™ electrodes14 Composi tes of Ti02 and carbon 

have been employed to combine the surface reacti vity of T i02 and the electri cal 

cond uctivity of graphite. IS 

In thi s study the core-she ll nanostructure approach is app lied to Ti02 systems. 

Incorporation of a second component with Ti02 to form core-shell structures has 

attracted recent interest with a variety of app lications in catalysis. These include 

BaFel 2019 - Ti02 core-shell nanoparticles fo r improving photo-catalysis l6 and the 

use of Ti02 - Ag core-shell structures for catalys is and improved electronic 

transportation.'7 Other studies describe the use of Ti02 - silica core-shell collo idal 

particles for optical trapping applicationsls and the use of Ti0 2 coated polystyrene 

core-shell spheres for e lectronic ink.19 
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Ti02 behaves like an insulator over a wide range of potentials20 [t is shown here 

that by introducing TiC cores, it is possible to increase conducti vity whil st 

maintaining an acti ve Ti02 surface. Micron-scale core-shell composites ofTi02 and 

TiC have been formed recently through controlled thermal-plasma oxidation.2l 

TEM observations of oxide scale formed on TiC single crystals with different faces 

have been reported using thermal ox idationH Reducing the size of the TiC particles 

to nanoparticies can provide an exceptionall y high surface area fo r adsorption and 

electrocatalysis . T i0 2 is a known biocompatible substrate materi al for the 

adsorption of proteins and small redox acti ve molecules23 

The vo ltammetric detection of small bio logica ll y important molecules such as 

ascorbic acid or quinols fo r example hydroquinone and dopamine, is of considerable 

interest and these systems are employed here as model systems. A variety of 

methods have been uti lised, for instance electrochemical detection in capillary 

electrophoresis,24 or the use of modified electrodes using polyaniline25 or graphite 

reinforced by carbon26 In vol tammetric measurements of ex tra cellular fluid , 

ascorbic acid is reported as being the main interfering molecule with dopamine27 

Depending on the conditions of the experiment, the sur face charge of the Ti02 may 

help separating the responses for the negati vely charged ascorbic acid and the 

pos iti vely charged dopamine. 

The abi lity to detect levels of nitric ox ide (NO) has attracted significant interest due 

to its important ro le in many physio logical processes28 NO is also a tox ic air 

pollutant generated by vehicle engines and power plants. Chemiluminescence, 

colorimetry, fluorometry, and electrochemical techniques have all been utilised in 

the study of NO,29 where the first electrochemical sensor for NO in biological 

samples was published in 1989 by Shibuki . [n 1992, an electrode composed of a 

metalloporphyrin deposited on a carbonfiber electrode was reported. Further work 

showed that detection of NO was also poss ible using carbon fibers alone or carbon 

fibers modified with porphyrins with no coordinated meta1. 30 The use of nano

materials in electrochemical sensors fo r the detection of NO include the application 

ofnano-gold collo ids, carbon nanotubes and a nano-Ti02INafion® composite film 3 l 

The meta l-li ke conducti vity of TiC may allow the over-potential often associated 
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with NO oxidation to be reduced. The reversible reduction of [Ru(NH3)6]CI3 and the 

electrocatalyti c behav ior for the ox idation of hydro quino ne, dopamine, ascorbic acid 

and NO using core-shell TiC-Ti0 2 nanoparticie fi lms on ITO electrode surfaces is 

investigated here. 

5.2. Experimental 

5.2.1. Chemicals 

Deminerali sed and filtered water was taken from an Elga water purification system 

(Elga, High Wycombe, Bucks, UK) with a resisti vity of not less than 18 MQ cm. 

TiC nanoparticies (20-30 lUll diameter) were obta ined from Good fe llow, UK. 

Methanol, L-ascorbic acid, hydroquinone, dopanl ine, NO, [Ru(NH3)6]CI3, NaN02, 

NaOH, l-h P0 4, KOH, K2HP0 4, and KH2P0 4 were obtained commercially in 

analyti cal or the highest purity grade available. N itric ox ide saturated solution (1.8 

mm ol dm-3) 31 was obtained by bubbling NO pure ga through 10 ml deoxygenated 

di stilled water for 30 minutes and kept under an AI atmosphere until use. 

5.2.2. Instrumentation 

Vo ltammetri c measurements were performed with a computer controlled Eco 

Chemie PGSTA T20 Autolab potent iostat system. Experiments were conducted in 

staircase vo ltammetry mode with a platinum gauze counter electrode and saturated 

calomel reference electrode (SCE (saturated KCl), REF40 I, Rad iometer). The 

working electrode was a tin-doped ind ium ox ide (lTO) coated glass ( 10 mm x 60 

mm, resistivity 20 Q per square) with approx imately 8% tin, obtained from Image 

Opti cs Components Ltd. (Basildon, Essex). The ITO electrode surface was modified 

with a porous ti tan ium carbide fil m giving a geometric working electrode area of I 

cm2 An Elite tube furnace system was employed for cieaning ITO electrode 

surfaces (at 500°C in a ir) and for calcining titani um carbide films (at 500°C in air). 

Prior to conducting electrochemical experiments, a ll so lutions were purged with 
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argon (BOC, UK). All electrochemical experiments were carried out at a 

temperature of 22 ± 2°C. 

Scanning electron microscopy Images were obtained with a Leo 1530 Field 

Emiss ion Gun ScalUling Electron Microscope (FEGSEM) system. Transmission 

electron microscopy images were obtained with a JEOL JEM-2000FX electron 

microscope. 

A quartz crystal oscillator circuit (Oxford Electrodes) connected to a frequency 

counter (Fluke, PM6680B) allowed the resonance frequency of the quartz crystal 

sensor to be monitored simultaneously to conducting voltammetric experiments. A 

Faraday cage was used to contain the quartz crystal to minimize noise interference. 

The analogue output of the counter was fed into the ADC input of an Auto lab 

potentiostat system (Eco Chemie, Netherl ands) and data process ing was poss ible 

with GPES software (Eco Chemie, Netherlands). The repeated deposition processes 

was monitored with the crystal suspended in air. Droplets of so lution were applied 

to one side of the crystal and after drying the frequency measured and monitored 

step-by-step. 

XRD measurements were obtained on a Bruker 08 Advance powder diffractometer 

fitted with primary monochromator using Cu K ed radiation and an Anton Parr HTK 

1200 heated sample stage. 

5.3. Deposition and Characterisation of TiC Na noparticle Films on 

ITO 

Mesoporous films of T iC were deposited following a repeated depos ition coating 

method. A clean ITa surface (washed with ethanol and deionised water, dried, and 

60 minute heat treatment at 500°C in air) was dipped into a suspension of TiC 

nanopatticles in methanol (0.03 g TiC in 10 cm3 methanol, di spersed by short 

ultrasonication). After 30 seconds the ITO electrode was removed and the methanol 

allowed to evaporate in air at room temperature. This leaves a permanently adhered 
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film of TiC particles on the ITO electrode surface . By repeated ly dipping the 

resulting nanoparticle deposit into the TiC suspension, thicker deposits of TiC were 

produced on the ITO surface. Typical electron microscopy images of a fi ve ' layer' 

deposit are shown in Figure 5.1. It can be seen that the typ ical particle size is 20-30 

till1 and that agglomerates of spherical nanoparticles dominate. The repeated 

deposition growth is slow and gives rise to a patchy, porous film on the electrode 

surface. A key factor in the slow growth rate is the low concentration of TiC 

nanoparticles (0.3 %wt.). This allows control of the average film thickness. 

Figu re 5. 1. A FEGSEM image of the ti tanium carbide nanopan icJe film manufactured after 5 

depositions, on an ITO substrate. 

The electron microscopy data is supported by experiments with a quartz crystal 

microbalance system. Figure 5.2 shows the reduction of the resonance frequency of 

an ITO coated quartz crystal resonator during the repeated deposition process. Each 

deposition reduces the resonance frequency by approximately 1230 Hz, which 

corresponds to 1.29 ~g (accord ing to the Sauerbrey equation,32 see experimental). 

Furthermore, the weight of TiC (molecular weight 59.91 g mort ) can be estimated 

as 2.2 x 10-8 mol per layer (on a 0.2 cm2 area of the quartz resonator). 
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Figure S.2. Plot or the resonan ce fTequen cy change ror an ITO coated quartz crystal durin g 

I1m 
repeated deposition or TiC. The frequency change corresponds to a mass increase with - = 1.05 

"'I 
ng Hz' (see experim en tal). 

Next, the TiC nanoparticle films were characterised electrochemically after 

immersion in 0.1 M phosphate buffer so lution pH 7. Voltarnmetric experiments were 

conducted over a wide potential window with 3 new processes observed compared 

to a clean ITO electrode (Figure 5.3). Firstly, a large irreversible anodic 

electrochemical response at a potential of I V vs. SCE is generated. The current fo r 

this oxidat ion is directly proportional to the average TiC film thickness or the 

amount of TiC deposited. This anodic response is dominating during the first 

potential cycle and can be att ributed to a possible surface reaction, which is resulting 

in carbon oxidation and formation of hydro lysed titanium oxide film (equation 5.1). 

« • Ti02 + CO/· + 8 e- + 10 W (5. 1 ) 

The charge under the anodic response, CG. 6 mC fo r a 'one layer' deposit, is 

consistent with approximately 10-8 mol or 10% of the TiC deposit. It can be 

proposed that a surface oxidation occurs and a thin film of Ti02 is formed around 

the TiC particles. 

172 



Susan J. SIOII Eleclroanalysis in Nanoparticle Assemblies Chapler 5 

The second notable feature is a capacitive background current that is agam 

proportional with the average thickness of TiC film. Third ly, it is possible to see a 

redox response at a potential of -0.8 V vs. SCE. The shape of this vo ltammetric 

response is characteristic for Ti02 thin films and has been explained in terms of 

sequential filling electronic states within the oxide.9 
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Figure 5.3. Cyclic voltammograms (scan rale 50 mVs') oblain ed for (a) scan I and (b) scan 2 of 

Ihe irrevers ible surface oxidalion of TiC fi lm s wilh increasi ng Ihicknesses in aqueous 0 .1 M 

phosphale butTer pH 7. 

By initially scanning to negative potentials prior to the electrochernical oxidation of 

the TiC, the change in redox response associated with the formation of the titanium 
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(IV) oxide film becomes more apparent (refer to Figure 5.4.), confirming the process 

shown in equation I. 

1.8 .- Scanl 

o Soan 10 

, , , 
-10 0.0 10 

E /VlB. SCE 

Figure 5.4. Cyclic voltammograms (scan rate 20 mV") obtained for (a) scan I and (b) scan 10 of 

th e irreversibl e surface ox idation of a ' 10 layer' T iC film in aqueous 0.1 M ph osph ate buffer pH 7. 

I n order to determine whether a "visible" shell of titanium oxide was formed on the 

TiC nanopart icIe surface after electrochemicaI oxidation, transmission electron 

microscopy (TEM) images were obtained. Figure 5.5 confirms that an amorphous 

shell., approximately 2 nm in thickness, is indeed formed on the surface of the TiC 

nanoparticIes upon electrochemical oxidation. 

20nm 
~ 

Figure 5.5. TEM of core-shell titanium carbide - ti tan ium oxide Danopart icles form ed after the 

irreversible surface oxidat ion of TiC nanopart icles in aq ueous 0.1 M phosphate buffer pH 7. 
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From Figure 5.5 it appears as if most particles are affected by the surface oxidation 

but it is difficult to judge the uniformity of the conversion. The resulting particles are 

suggested to have "core-shell" nature based on the symmetric coating of particles 

with oxide. 

5.4. Thermal Oxidation of Titanium Carbide Nanoparticles to TiC

Ti02 Core-Shell Nanoparticles 

As a second approach for the formation of Ti02 surface layers thermal oxidation in 

air was investigated. When heated in air at 500·C, the black TiC nanoparticles were 

converted into a white nanoparticulate material. A ' 5 layer' TiC film was thermally 

oxidised at 500°C for 30 minutes and a typical FEGSEM in1age is shown in Figure 

5.6. In comparison with Figure 5.1 , the appearance of the nanoparticles does not 

change significantly during thermal treatment. 

Figure 5.6. FEGSEM im age of titanium carbide nanopartic le film manufactured afier 5 

depositions, on an ITO substrate after thermal oxidation at 500' C for 30 minutes. 

Using equat ions 5.2, 5.3 and 5.4, it is possible to calculate that an increase in partic le 

vo lume and radius (r) is expected. Based on the vo lume per formula unit (room 

temperature densities (P) are for anatase = 3.89 glcm3 and for TiC = 4.93 glcm\ 
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which is 20.3 N for TiC and 34.1 N for Ti02, an increase in vo lume by 69% is 

expected (increase in radius 19%). 

fi I 
. RMM 

mass per ormu a untl = --
N A 

mass 
volume= --

p 

0.75 x volume 
r =' 

(5.2) 

(5.3) 

(5.4) 

To further quantiry this process and to confirm the identity of the white 

nanoparticles, TiC nanoparticles were gradually thermally oxid ised in air under XRD 

conditions (Figure 5.7). The sample was heated at 2°C/minute and held at 

temperature for 30 minutes before data were collected between 20-80° 2-G using a 

0.0147° 2-G step over a period 000 minutes . 
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Figure 5.7. Plot of XRD data for the gradual thermal ox idation of TiC to TiO, (anatase) at 350' C 

and TiO, (rutile) at temperatures greater than 700' C. The vertical straight lines refer to th e 

expected peak positions for anatase (red line), rutile (dark green) and TiC (black)" 
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The standard powder diffraction patterns expected for TiC, Ti02 (anatase), and for 

Ti02 (rutile) can be clearly identified]} At 300°C the TiC phase is seen to be 

reacting and at 350°C oxidation to the anatase form of Ti02 has occurred. A grey 

intermediate product is obtained at 300°C. This intermediate product shows clear 

core-she ll structure when investigated by TEM (see Figure 5.8). At temperatures 

greater than 700°C, the crystal structure of the rutile form ofTi02 starts to appear. 

20nm -

Figure 5.8. TEM image of core-shell titanium carbide - titanium oxide nanoparticles obtained after 

the thermal surface oxidat ion of TiC nanoparticles at 300°C for 30 minutes in air. 

Figure 5.9 shows a plot of the percentage composition for the TiC nanopartic\es 

with gradual thermal oxidation in ai r. The transition from TiC to anatase occurs 

rapidly over a 50°C range compared to the more gradual transition from anatase to 

rutile at higher temperature. 
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Figure 5.9. Plot of percent composition ror TiC nanoparticles over gradual therma l oxidation in air 

under XRD conditions. 

A possible reaction for the surface oxidation of TiC is shown in equation 5.5. 

TiC + 20, --+ TiO, + CO, (5.5) 

The Scherrer equation, I = J 0.9A (t = average crystaJJite size (A), Bm and 
B,; - B,' cose 

B, = width in radians of the diffraction peaks (at half maximum height) of the test 

sample and a highly crystalline standard (0.1 °) sample respectively, and A is 

wavelength of the X-ray beam = 1.5406 A) relates the average size of a crystal grain 

to the width of its diffraction peaks. As a result it is possible to show the average 

particle or gra.in size of the TiC are very similar before (approximately 30 nm) and 

after thermal oxidation at 500°C (approximately 28 nm). This result is consistent 

with the electron rnicroscopy observations (see Figure 5.1.). 

Next, the vo ltan1J1letry of thermally oxidised TiC nanoparticle films was investigated. 

The effect of thermal oxidation on the background electrochernical properties of TiC 

films was investigated in 0.1 M phosphate buffer solution pH 7 as before. Figure 

5. 10 shows the cyclic vo ltan1l1lograrns for the first and second scans for a ' 10 layer' 

TiC film with no prior thermal oxidation and a ' 10 layer' partially oxidized TiC-

178 



SI/sail J. SIOIt Elec/roanalysis in Nanoparlicle Assemblies Chap/er 5 

anatase core-shell film produced after 30 minutes thermal oxidation of a TiC ftlm at 

300·C. Data for a ' 10 layer' anatase film produced after 30 minutes thermal 

oxidation of a TiC film at SOO·C are also shown. 

(A) 
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E /Vvs. SCE 
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-1.0 0.0 1.0 2.0 
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Figure 5.10. Cyclic voltammograms (scan rate 50 mVs" ) obtained for (a) scan I and (b) scan 2 of 

th e irreversible surface oxidati on of TiC film s after therma l ox idat ion in aq ueous 0.1 M ph osp hate 

buffer pH 7. 

The partially oxidised TiC-Ti02 core-shell nanoparticle fi.lm demonstrates a large 

decrease in the electrochemical surface oxidation and slight decrease in background 

capacit ive current compared to the TiC ftIm. An increase in Ihe Ti(TV /I ll) redox 

response at negative potentials is also seen. This is as expected due to the decrease 

in size of the highly conductive TiC core and increase in the amount of surface Ti02 

prior to the electrochemical experiments . The anatase film shows background 

capacitive currents similar to a clean ITO electrode and no surface TiC oxidation. 
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The Ti(lVIIII) redox response is similar to that for the partially oxidised TiC-Ti02 

core-shell nanoparticles. These results clearly show that electrochemical and thermal 

oxidation result in similarly behaved core-shell structures. Next, the electrochemical 

properties for some model redox systems at TiC-Ti02 core-shell nanoparticle 

modified electrodes are investigated. 

5.5. The Reversible Reduction of Ru(NH3)6
3
+ Bound onto 

Nanoparticulate Titanium Carbide 

To ascertain the ability of the nanoparticulate TiC films to act as electrochemically 

active sites, the standard redox couple of Ru(NH))/' (equation 5.6) was studied 

using cyclic vo ltarnmetry. 

(5.6) 

Figure 5. 11 shows the multi-cycle voltarnmetric response for a '10 layer' TiC film in 

pH 7 phosphate buffer solution before and after being dipped into 0.02 M 

Ru(NH))/' . 

- > 

, , , 
-0.5 0.0 0.5 

E IV 16'. SCE 

Figure 5.11. Cyclic vol tammogram (scan rate 50 mVs") of 10 layers T iC on ITO (i) before (red 

line) and ( ii ) after (blue line scan I, green line scan 2, cyan line scan 3, black line scan 14 and 

magenta line scan 20) dipping in 0.02 M Ru(N H,).", in 0.1 M phosphate buffer pH 7. 
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The reversible reduction of Ru(NH3)63+ is observed whjch is an indication of binding 

of Ru(NH3) 63+ to the phosphate decorated TiC nanoparticle surface. The signal is 

observed over 20 scans but the analyte is slowly lost from the electrode surface. A 

large peak separation of 202 mV is recorded, almost double that reported using a 

polycrystalline TiC film on a Ti substrate.3 This can be expected due to some cell 

resistance and the considerable peak current. Interestingly the ratio of the peak 

currents, Ip . .I Ip.c equals 0.9 in both cases supporting highly reversible behaviour and 

good electrical conductivity. 

5.6. The Electrocatalytic Oxidation of Hydroquinone on 

Nanoparticulate Titanium Carbide 

It has been demonstrated recently that bulk TiC is an attractive electrode material for 

electroanalytical processes and that in particular quinone systems show fast electron 

transfer.3 Here, the effect of TiC nanoparticles on electrochemical processes is 

surveyed for comparison. The electrocatalytjc oxidation of 2 mM hydroquinone in 

0.1 M phosphate buffer pH 7 with new TiC films is shown in Figure 5.12 (equation 

5.7). 

HO~ 

~ OH 

~ 

-2e -lli 
---+ -+2e+2I-f 

O~ 

~O 
(5.7) 

For the oxidation of hydroquinone usmg only a clean ITO electrode, a peak 

separation of 2.26 V is observed, as a large overpotential is necessary before 

oxidation and reduction are possible. In contrast, in the first scan using a porous ' 5 

layer' TiC film, a much more reversible process (peak separation of 0.89 V) is 

produced. Increasing the amount of TiC further decreases the peak-to-peak 

separation to 0.6 1 V (see Figure 5. 12A). 
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The electrochemical surface oxidation of TiC is seen in the first oxidation cycle as 

before. Interestingly, the hydroquinone oxidation and re-reduction responses are not 

affected by the formation of the TiC-Ti02 core-shell structure (see Figure 5.128). 

The interaction of the surface with the hydroquinone as well as the electrical 

conductivity appear to be very effective. The reactivity towards hydroquinone 

remains even after cycling to +2 V. The shape of the voltarnmogram fo r the 

oxidation and reduction of hydroquinone is consistent with that seen in the 

literature.3 
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Figure S.12. Cycl ic voltammogram s (scan rate 50 mVs" ) obtain ed for (a) scan I and (b) scan 2 of 

the irreversible surface ox idat ion of TiC film s with increasing thicknesses in aqueous 0 .1 M 

phosphate butTer pH 7 in the presence of2 mM hydroq uinone. 

For TiC films with only ' I layer', a much lower loading of TiC is achieved. Figure 

5. J 3 shows the oxidation and reduction of2 mM hydroquinone using a very thin TiC 
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electrode at slower scan rates. The same type of almost sigmoid voltammetric 

response is seen at 50 mVs· ' (data not shown). The dependence of the sigmoidal 

voltammogram on scan rate indicates that a micro array of TiC nanopart icles IS 

present and overlapping diffusion zones are responsible for the shape. 

400 ~---=>-- 5 mVs-l 

_--= ____ lmVs-l 

o 
i i i i i i 

-1.0 -0.5 0.0 0.5 1.0 1.5 
E /Vvs. SCE 

Figure 5.13. Cycl ic voltammograms (scan rates 5 mY,- ' and I mY'-') for scan 2 of the ox idation of 

2 mM hydroquinone using a' I layer' TiC film in aqueous 0.1 M phosphate buffer pH 7. 

Using similar ' 10 layer' TiC film electrodes, both oxidation and reduction can be 

recorded for hydro quinone concentrations as low as 10 nM (Figure 5.14A), 

compared to a blank ITO electrode where the lowest concentration to produce a 

visible reduction peak is 80 nM (Figure 5.14B). 
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Figure 5.14. Cyclic voltammogram s (scan rate 100 mYs') for (A) scan 3 ofa ' 10 layer' TiC film 

in ( i) aqueous 0.1 M phosphate buffer pH 7 and (ii) in aqueous 0 .1 M phosphate buffer pH 7 plus 

10 nM hyd roquinone and (B) scan I of a clean ITO electrode in (i ii) aqueous 0. 1 M phosphate 

buffer pH 7 and (iv) in aqueous 0.1 M phosphate buffer pH 7 plus 80 nM hydroquinone. 

Next, the effect of TiC thermal oxidation on the electrocatalytic oxidation of 

hydroquinone was also investigated. Using a ' 10 layer' TiC film heat treated at 

increasing temperatures, it is shown that as the TiC film is graduaUy oxidised, the 

electrocatalytic nature of the film decreases (Figure 5.1 5). 
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Figure S. IS. Cyclic voltamm ograms (scan rate 50 mVs·') obtain ed for (a) scan I and (b) scan 2 of 

the irreversible surface oxidation of' 10 layer' TiC film s aft er th ermal oxidat ion in aq ueous 0. 1 M 

ph osphate bu ffer pH 7 in the presence of2 mM hydroq uinone. 

The treatment at 300°C clearly reduces the electrocatalytic effect (peak-to-peak 

separation) and the magnitude of the current but a well-defined current is still 

observed. Only after complete conversion to Ti02 (anatase) the signal for the 

hydroquinone oxidation is lost. This indicates (i) a need for the highly conductive 

TiC core and (ii) that even with a substantial Ti02 shell a high level of 

electrocatalytic reactivity can be maintained. 

5.7. The Electrocatalytic Oxidation of Ascorbic Acid on 

Nanopartic ulate Tita nium Carbide 

The electrocatalyt ic oxidation of 2 mM ascorbic acid was investigated in 0. 1 M 

phosphate buffer solution pH 7 using a ' IO-layer' TiC film electrode and compared 

to data obtained with a clean ITO (Figure 5.16). The process is assumed to be 2-

electron in nature (equation 5.8). 
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HO OH 

HO~O 
HO 

Chapter 5 

(5 .8) 

For both electrodes, a single irreversible oxidation peak is produced, consistent with 

experiments carried out with other modified electrodes. 27 As for the oxidation of 

hydroquinone, the greater conductivity and reactivity of TiC results in the oxidation 

for ascorbic acid at lower potentials. After surface oxidation of the TiC in scan 1, 

electrocatalysis of ascorbic acid is still maintained in scan 2. 
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Figure 5.16. Cyclic voltammograms (scan rate 50 mYs·' ) obtained for (a) scan I and (b) scan 2 of 

the irreversible surface oxidation of a < I 0 layer' TiC fi lm and clean ITO in aqueous 0.1 M 

phosphate buffer pH 7 in th e presence of2 mM ascorbic acid. 
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Substantial oxidation of ascorbic acid occurs at potentials of CG. 0 V vs SCE and the 

magnitude of the current is proportional to ascorbic acid concentration. As for the 

hydroquinone experiments, the effect of analyte concentration on the voltammetry 

was investigated using a ' 10 layer' TiC film electrode. Oxidation of asco rbic acid 

was recorded for both a TiC electrode (Figure 5.17 A) and a blank ITO electrode 

(Figure 5.178) for concentrations as low as 50 nM ascorbic acid. 
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Figure 5.17. Cyclic voltammograms (scan rate 100 m Vs') for (A) scan 3 of a ' 10 layer' TiC film 

in (i) aqueous 0.1 M phosphate bulTer pH 7 and (ii) in aqueous 0. 1 M phosphate bulTer pH 7 plus 

50 nM ascorbic acid and (B) scan I of a clean ITO electrode in (iii) aqueous 0.1 M phosphate 

bulTer pH 7 and (iv) in aqueous 0.1 M phosphate bulTer pH 7 plus 50 nM ascorbic acid 

187 



SI/sail J. Stoll Electroallalysis in Nanoparticle Assemblies Chapter 5 

5.8. The Electrocatalytic Oxidation of Dopamine on Nanoparticulate 

Titanium Carbide 

A similar experiment was carried out in the presence of2 mM dopamine and 2 broad 

oxidation and reduction peaks are observed (see Figure 5.18) in the absence of TiC. 

The oxidation and re-reduction of dopamine (equation 5.9) at clean ITO was highly 

irreversible and in the presence of TiC nanoparticles almost reversible responses 

(consistent with previous studies27
) are observed. 

HO~NH'+ -2'- -2H+ O~NH3+ 
I ~ 

HO fi +2'- +21-1'" 0 ~ 
(5 .9) 

The oxidation of dopamine occurs with a peak current proportional to dopamine 

concentration and at a potential approximately 0.1 V more positive compared to the 

oxidation of ascorbic acid under the same conditions. 
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Figure 5.18. Cyclic voltamm ograms (scan rate 50 mY,' ) obtain ed for (a) scan I and (b) scan 2 of 

th e irreversible surface oxidat ion of a '10 layer ' T iC film and clean ITO in aq ueous 0.1 M 

phosphate buffer pH 7 in the presence of 2 mM dopami ne. 

Using a ' 10 layer' TiC film electrode (Figure 5.19A) and a blank ITO electrode 

(Figure 5. 19B), redox responses can be recorded fo r dopamine concentrations as 

low as 10 nM, five times lower than the lowest concentration of ascorbic acid to 

produce a visible vo ltammetric response. 
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Figure 5.19. Cycl ic voltammograms (scan rate 100 mY") for (A) scan 3 ofa ' 10 layer' TiC fi lm 

in (i) aqueous 0.1 M phosphate buffer pH 7 and (ii) in aqueous 0.1 M phosph ate buffer pH 7 plus 

10 nM dopamine and (8) scan I ofa clean ITO electrode in (iii) aq ueous 0. 1 M phosphate buffer 

pH 7 and (iv) in aqueous 0.1 M phosphate buffer pH 7 plus 10 nM dopamin e. 

The reactivity of TiC-Ti02 core-shell nanopart icles has been surveyed only in 

aqueous phosphate buffer media here. However, the reactivity of the surface can be 

expected to change depending on the availability of surface sites and the ability of 

the analyte to reversibly bind to the surface. 
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5.9. Tbe Electrocatalytic Oxidation of Nitric Oxide on 

Nanoparticulate Titanium Carbide 

The quantitative detection of nitric oxide (NO) in biological models is difficult due to 

the low concentration and relatively short half life caused by its high chemical 

reactivity with O2 or haemoglobin to form nitrite (NO; ) or nitrate (NO)")J I Here the 

ability of TiC nanoparticulate films to catalyse the oxidation of NO in aqueous 

solution is investigated. 

Using a ' I O-Iayer' TiC film electrode, the voltammetric response was recorded in 0.1 

M pH 7 phosphate buffer so lution before and after the addition of 60 I1M NO as 

shown in Figure 5.20. Two oxidation peaks are seen, the first much smaller peak 

(peak I) at approximately 0.64 V vs. SCE and a bigger broad peak (peak 2) at 

approximately 0.92 V vs. SCE. 
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Figure S.20. Cycli c voltammogram s (scan rate 100 mYs' ) obtained ror a ' 10 layer ' TiC film in 

aqueous 0.1 M phosphate buffer pH 7 (i) before and (ii ) after the add ition or 60 ~M NO. 

After scanning to a more positive potential and generating the core - shell TiC-Ti02 

nanoparticle film, both the oxidation signals are lost (Figure 5.2 1). In comparison, 

the electrocatalytic oxidation of hydroquinone, dopamine, and ascorbic acid, is 
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retained after the complete surface oxidation of the TiC nanoparticles. This indicates 

that the Ti02 surface is not ideal for the oxidation of NO. 

2 

_ - (i) 

._ (ii) 

o 
, , i , , 

0.0 0.5 1.0 1.5 2.0 
EIV1B. SCE 

Figure 5.21. Cyclic voltamm ograms (scan rate 100 mVs-' ) obtained for a ' 10 layer' TiC fi lm in 

aqueous 0.1 M phosphate butTer pH 7 in the presence of 60 ~M NO (i) before and (ii ) after th e 

irreversible surface oxidation. 

The presence of two oxidation peaks and the high reactivity of NO, it is necessary to 

consider that after the initial one electron oxidat ion (equation 5.1 0a), the NO+ 

species generated reacts with the aqueous environment forming N02- (equation 

5. IOb) which subsequently undergoes a further 2 electron transfer process (equation 

5. IOc) .3 1 

NO --t NO+ + e-

NO+ + H20 --t N02- + 2W 

N02- + H20 --t N03- + 2W + 2e-

(5. lOa) 

(5 .I Ob) 

(5. IOc) 

To verifY this, the oxidation of N02- was investigated. Using a fresh' I O-Iayer' TiC 

film electrode, the vo ltammetric response was recorded in 0.1 M pH 7 phosphate 

buffer solution before and after the addition of 60 j!M N02-, however no oxidation 

peak was observed. On increasing the level of N02- to 600 j!M a broad oxidation 

peak is observed as shown in Figure 5.22 at a similar potential to peak 2 in the NO 
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experiment. This indicates that peak 1 corresponds to equation 5.1 Oa, the oxidation 

of NO and peak 2 corresponds to equation 5.1 Oc. 

1.3 

o 
, , , 

0.0 0.5 1.0 
E/VlB. SCE 

Figure 5.22. Cyclic voltammograms (scan rate 100 mVs' ) obtained for a ' 10 layer' T iC film in 

aqueous 0.1 M ph osphate buffe r pH 7 (i) before and (i i) a fter th e addition of 600 ~M NO,'. 

By scanning to more negative potentials and observing the electrochemical surface 

oxidat ion, the catalytic oxidation peak for N0 2' is lost as shown in Figure 5.23. 

........ 
'-0 

1.3 
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, , 

0.0 0.5 

~- (i) 

- (ii) 

, , , 
1.0 1.5 2.0 

E/VlB. SCE 

Figure 5.23. Cycl ic voltamm ograms (scan ra te 100 mVs' ) obtain ed for a ' 10 layer' TiC film in 

aqueous 0. 1 M phosph ate buffer pH 7 in the presence of 600 ~M NO,' (i) before and (ii ) a fter the 

irreversible surface oxidation of T iC nanop, rticl es. 
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NO gives a bigger response with respect to 0 2', indicating a preferred sensing 

system. Both signals are lost in the background in the initial scans and low 

concentrations. 

5.10. Conclusions 

It has been shown that TiC nanoparticles can be electrochemically and thermally 

oxidised to give core-shell TiC-Ti02 nanoparticles. The shape and appearance of 

the particles is not affected by the so lid state transformation from TiC to Ti02 and 

the oxide film appears to grow symmetrically around the particles. However, the 

electrical properties change from those of a good conductor to a semi-conductor. 

Core-shell TiC-Ti02 nanoparticles represent a novel electro-catalyticall y active 

material for porous thin film or other types of composite electrodes e.g. pastes. 

Cata lyt ic effects have been demonstrated for ox idation of hydroquinone, dopamine, 

ascorbic acid and nitric oxide. Ti02 shell s provide adsorption sites and well defined 

surface properties whereas TiC cores provide conductivity over a wide potential 

wi ndow. Analytes of interest for futu re work include other quinones (e.g. catechol), 

carbon monoxide, ammonia, (hiols, and hydrocarbons3 4 
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Chapter 6 

Electrochemical Characterisation of Mesoporous Ce02 

Nanoparticle Films 

6.1. Introduction 

Ce02 is used widely in a number of fields including as a polishing material, I and 

membrane material for filters.2 Cerium (IV) oxide has been used as a substrate for 

heterogeneous catalysts and is a component in automobile exhausts,3 providing a 

high oxygen storage capacity4 Further applications of Ce02 include as thin films 

for anti-corrosion coatings,5 and in so lid oxide fuel cells.6 In electrochromism, Ce02 

thin films have been employed in smart windows as io n storage materials or counter 

electrodes7 because of its high optical transparency in the visible region and its 

ability to exchange cations and electrons.s Ce02 may be regarded (and often is) as 

an inert oxide with little electrochemical activity.9,lo However, it is shown here, that 

Ce02 is electrochemically active and exhibits a rich surface electrochemistry in 

aqueous phosphate buffer solvents. 

Ce02 can be obtained in the form of a so l and nanoparticles can be adsorbed onto 

electrode surfaces. Furthermore, by applying suitable binder molecules, multi-layer 

films can be formed and the thickness of the resulting mesoporous Ce02 surface 

layer can be controlled. 

Work in this chapter demonstrates (i) the surface electrochemistry of Ce02, (ii) 

effect of the binder molecule on multi-layer formation and electrochemistry, (iii) the 

formation of new phosphate phases during electrochemical reduction of Ce02 in 

aqueous phosphate buffer so lution and (iv) the electrochemistry of multi-layer Ce02 

nanoparticle films in organic so lvent. 
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6.2. Experimental 

6.2.1. Chemicals 

Demineralised and filtered water was taken from an Elga water purification system 

(Elga, High Wycombe, Bucks, UK) with a resistivity of not less than 18 MOhm cm. 

Cerium (IV) oxide so l (ceranite, ca. 10-20 nm diameter, 20% in aq ueous HN03, pH 

2-3) was obtained from Nyaco l Nano Technologies, Inc., MA, USA and diluted 50-

fold with deionised water. Phytic acid dodecasodium salt hydrate, 1,2,3,4,5,6-

cyclohexanehexacarboxylic acid monohydrate, acetonitrile, tetrabutylammonium 

hexafluorophosphate, cerium (Ill) carbonate, NaOH, HN03, H3P04, KCI, KOH, 

K2HP04, and KH2P04 were obtained commercially in analytical or the highest purity 

grade available. 

6.2.2. Instrumentation 

Voltammetric measurements were performed with a computer contro lled Eco 

Chemie POST A T20 Auto lab potentiostat system. Experiments were conducted in 

staircase voltammetry mode with a platinum gauze counter electrode and saturated 

calomel reference electrode (SCE (saturated KCI), REF401, Radiometer). Tbe 

working e lectrode was a tin-doped indium oxide (ITO) coated glass (10 mm x 60 

mm, resistivity 20 n per square) with approximately 8% tin, obtained from Image 

Optics Components Ltd. (Basildon, Essex). The ITO electrode surface was modified 

with a porous metal oxide film giving a geometric working electrode area of I cm2
, 

defined using Magic tape (Scotch 3D). 

A quartz crystal oscillator circuit (Oxford Electrodes) connected to a frequency 

counter (F luke, PM6680B) allowed tbe resonance frequency of the quartz crystal 

sensor to be monitored simultaneously to conducting voltammetric experiments. A 

Faraday cage was used to contain the quartz crystal to minimise noise interference. 

The analogue output of the counter was fed into tbe ADC input of an Auto lab 

potentiostat system (Eco Chernie, Netherlands) and data processing was possible 
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with GPES software (Eco Chemie, Netherlands). Layer-by-Iayer deposition 

processes were monitored with the crystal suspended in air. Droplets of solution 

were applied to one side of the crystal and after rinsing and drying the freq uency 

measured and monitored step-by-step. 

Prior to conducting electrochemical experiments, all solutions were purged with 

argon (BOC, UK). All experiments were carried out at a temperature of 22 ± 2°C. 

An Elite tube furnace system was employed for cleaning ITO electrode surfaces (at 

500°C in air) and for calcining metal oxide binder ftlms (at 500°C in air). 

Scanning electron rrucroscopy unages were obtained with a Leo 1530 Field 

Emission Gun Scanning Electron Microscope (FEGSEM) system. Prior to 

FEGSEM imaging, the sample surface was scratched with a sca lpel blade. XRD 

measurements were obtained on a Bruker 08 Advance powder diffractometer fitted 

with a PSD detector and using Cu K a l radiation. 

6.2.3. Deposition and Electrode Preparation Procedures 

Deposition of multi-layer mesoporous films of metal oxide and organic binder on 

ITO glass electrodes followed a layer-by-Iayer dip coating method described in 

sect ion 3.2.3 where pot I contained 0.4 %wt cerium (IV) oxide sol. The dipping 

process was undertaken using a robotic Nima dip coating carousel (DSG -

Carousel, N irna Technology, Coventry, UK) and repeated to give multi-layer 

deposits. The di fferent binders used were phyt ic acid (40 mM in pH 3 aqueous 

solution), and \ ,2,3,4,5,6- cyclohexanehexacarboxylic acid monohydrate (CHHCA) 

( \ 0 mM in aqueous solution). 
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6.3. Layer-by-Layer Deposition of Ce02 with Molecular Binders 

In this investigation the deposition ofCe02 nanoparticles onto a clean ITO electrode 

surface occurs spontaneously upon dipping the electrode into a solution of cerium 

(IV) oxide so l for 60 seconds. It is possible to immerse these mono-layers of metal 

oxides into a so lution of appropriate binder and build up multiple layers on the ITO 

coated glass surface as with the Ti02 films, shown in Figure 3. I in Chapter 3. 

Figure 6.1 shows a typical FEGSEM image with a scratch line indicating a clean 

electrode surface. Deposited Ce02 nanoparticles are typically 10-20 nrn in diameter 

and some agglomerates are visible. 

CB) 

-I 
Figure 6.1. FEGSEM images of cerium oxide nanoparticJes (ca. 10-20 nm diameter) deposited 

layer-by-Iayer with phytie acid binder onto the surface of an ITO doped glass slide. In (A) a singl e 

layer CeO, deposit and in (B) a 20 layer deposit after furnace treatment are shown. 

The electron microscopy data in Figure 6.1 can be supported by experiments with 

quartz crystal oscil lator measurements conducted in air. Figure 6.2 shows the 

subsequent reduction of the resonance frequency of an ITO coated quartz crystal 

resonator during the layer-by-Iayer deposition process of Ce02 with the binder 

molecules, phytic acid and CHHCA. 
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Figure 6.2. A plot of the resonance frequency change for an ITO coated quartz crystal (_ ,+ ) duri ng 

layer-by-Iayer deposition of (A) CeO, (. ) with phyt ic acid ( . ) and (B) CeO, (+) with CHHCA (+). 

For the depos ition of Ce02 with phytic acid, each Ce02 phytate layer is consistent 

with a 72 Hz change corresponding to 76 ng (according to the Sauerbrey 

equation tt
), this gives a weight of approximately 60 ng Ce02 and 16 ng phytic acid 

(molecular weight 924 g mor t) or 3.2 x 10-11 mol per layer (ignoring the presence 

of water). For the deposition of Ce02 with CHHCA, each Ce02 CHHCA layer is 

consistent with a 100 Hz change corresponding to 105 ng, this gives a weight of 

approximately 70 ng Ce02 and 35 ng CHHCA (molecular weight 366 g mo r 1
) or 

9.5 x 10-11 mol per layer. 

6.4. Reactivity of CeOz Nanoparticle Mono- and Multi-layers 

The mono-layer of Ce02 nanopartic les formed on ITO electrode surfaces is 

electrochemically active. Voltarnmograrns shown in Figure 6.3 have been obtained 

in aqueous 0.1 M phosphate buffer so lution (see Figure 6.3 i and ii) and in 0.1 M 

KCI (see Figure 6.3 ii i). In the presence of KCI a strong reduction response starting 

at a potential of 0.25 V vs. SCE is clearly detected. This reduction response is 

reversible and upon scanning the potential positive corresponding oxidation 

responses are observed. The voltammetric signal remains stable over several 
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potential cycles and is attributed to a Ce(lV/IlI) process at the nanoparticle surface. 

(I 

~20 ] 
... 0] 

Process I 

, 
-0.5 

Process IT 

(m) 

, 
0.0 0.5 1.0 

E /Vvs. SCE 

Figure 6.3. (i) Cyclic voltammogram (scan rate 100 m Vs') of a clean ITO glass electrode in 

aq ueous 0. 1 M phosphate buffer solution at pH 7 (ii) Cyclic voltammogram (scan rate 100 mVs") 

obtained for a I layer CeO, nanoparticie fi lm on ITO in aqueous 0. 1 M phosphate buffer solution at 

pH 7. The blue li ne corresponds to scan I and the green line scan 2. (iii) Cycli c voltamm ogram (scan 

rate 100 mVs') obtained for a I layer CeO, nan oparticie film on [TO in aqueous 0.1 M KC. 

It is interesting to compare the charge under the reduction response with the 

estimated amount of Ce02 on the electrode surface. Integration of the charge under 

the vo ltammetric response shown in Figure 6.3ii i gives ca. 80 flC. In comparison, 

fo r a mono-layer of 10 run diameter Ce02 particles an expected charge for a one

electron process of 2 mC can be calculated. Therefore roughly about 5% of the 

deposit is electrochemica lly reduced and re-oxidised with a scan rate of 0.1 Vs·1 and 

immersed in aqueous 0.1 M KC!. It can be assumed that only the surface of the 
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Ce02 nanoparticles is affected. 

Cyclic vo ltammograrns obta ined in the presence of phosphate anions reveal dist inct 

differences (see Figure 6.3). The initial reduction process at Emid = -0.28 V vs. SCE 

is now considerably smaller in current (Process I) and a new voltammetric response 

is detected at a potential of Emid = 0.42 V vs. SCE (Process II). The signal associated 

with Process II only occurs after reduction in Process I and a gradual change with 

currents for Process I decreasing and currents for Process II increasing is observed 

upon continuous potential cycling (see Figure 6.3ii). Therefore a slow chemical 

reaction step, presumably the formation of a solid phosphate, must be responsib le 

for this conversion. In order to prove this hypothesis cerium (III) phosphate was 

prepared by direct precipitation from Ce(III) solution with phosphate. A clean ITO 

electrode brought into contact with the CeP04 precipitate, dried in air, and re

immersed in aqueous 0. 1 M phosphate buffer shows voltammetric responses only 

for Process II (not shown). Therefore Process II is identified as Ce(IVIIII) 

phosphate redox system present most likely on the surface of the Ce02 

nanoparticles. 

In comparison to the similar experiments for Ti02 films in chapter 2, the more inert 

nature of the Ti02 with respect to Ce02 allows charging and discharging process,<s 

to occur reversibly. The difference in behaviour can be explained based on the 

crystal structure ofTi02 (anatase) and Ce02 (ceranite). The former anatase structure 

has Ti(IV) coordinated in a distorted octahedron with bond distances of 1.96 to 2.05 

A. In contrast, in ceranite Ce(IV) is coordinated to eight oxygen atoms in a f1uorite 

structure (see Figure 6.4) with 2.34 A bond length. The Ce4
+ - 0 2- bond is weaker, 

and after reduction to Ce(IlI), rapid ligand exchange occurs. 

203 



SI/san J. SIOII Eleclroanalysis in Nanopartic/e Assemblies Chapter 6 

CA) 

• Ti (B) 
o 

Ce 

o 

Figure 6.4. Figure to ill ustrate the difference in the crystal fo rm s for (A) anatase TiO, 12 and (B) 

fluorite structure of Ce02.1J 

In order to obtain more information about this redox system, experiments were 

conducted in different concentrations of phosphate (in aqueous KCI solution to 

maintain an overall electrolyte so lution ionic strength of approximately 0.1 M) and 

at various proton activities. Figure 6.5 shows the effect of phosphate concentration. 

The reduction response for Process I can clearly be seen to depend on the phosphate 

concentration. The higher the phosphate concentrat ion the smaller is t his 

vo ltarnmetric signal. Continuous potential cycling « i) scan 2 to (ii) scan 15 are 

shown) leads to an increase in peak currents for Process II but the effect of the 

phosphate concentration dominates. Figure 6.5D shows a comparison of the 

ftfteenth scan of cyclic vo ltammograms for phosphate concentrations of 0.1 M, 0.01 

M, I mM, and 0.1 mM. A clear trend is observed with higher phosphate 

concentrations suppressing the vo ltarnmetric responses. Apparently, phosphate is 

inhibiting the formation of cerium (Ill) phosphate probably due to the reduced 

solubility of the reaction product in the presence of higher phosphate 

concentrations. 
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Figure 6.5. Mu lticycle voitamm ograms (scan rate 100 m Vs') for ITO electrodes with I layer CeO, 

on ITO in the presence of (A) 10 mM (8) I mM and (C) 0.1 mM phosphate in KCI. Scans 2, 5, 7, 9, 

11 , 13 and 15 are shown . (D) Shows a com parison of scan 15 with varying phosphate concentration. 
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The midpoint potential for Process 11 is sensitive to both phosphate concentration 

and proton activity (see Figure 6.6) and the slopes observed are 24 mV per decadic 

change in phosphate concentration and 62 m V per pH unit. This allows Process I 

and Process /I to be tentatively assigned (see equation 6.1 and 6.2). 

Process I: Ce4+ (Ce02) + e" (lTO) + ~ Ce3+ (Ce02) (6.1 ) 

Process ll : 

~ 3 CeP04(surface) + H3P04 (aq) (6.2) 

The product of the reduction reaction in Process 1, Ce(l/l)02, is assumed to react 

with phosphate in the aqueous so lution phase to give Ce(IlI)P04 at the surface of 

the nanoparticle deposit. It is very likely that so lid structures are fonmed in a 

hydrated state rather than according to sum formulas. This can be further supported 

with the increase of the voltammetric response as a function of film thickness (see 

below). Independent experiments were performed by precipitating Ce(IlI)P04 from 

aqueous so lution and testing the voltarnmetric response of the prec ipitate. The result 

strongly confirms the interpretation of Process 11. 
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Figure 6.6. Plots of the midpoint potential (scan rate of 100 mV,') for process 11 vs. SCE for a 

single layer CeO, nanoparticle film on ITO against (A) the log of ph osphate concentrat ion in solution 

and (B) the pH of a I mM phosphate buffer solution in aqueous 0.1 M KC\. 

The deposition of Ce02 nanoparticles can be continued in the presence of a suitable 

binder molecule. Multi-layer deposits of Ce02 lead to increased voltammetric 

signals both Faradaic and capacitive in nature (see below), probably due to an 

electronic conduction process involving Ce(IV!IlI) surface states. 

Figures 6.7 and 6.8 show the multicycle voltammograms obtained for ITO 

electrodes with multi-layer Ce02 phytate film deposits after calcining (see 

experimental) in the presence of I mM phosphate buffer at pH 7. As seen in the 

mono-layer experiments without calcination, a gradual change in the peak current is 

observed upon scanning to negative potentia Is for process I and for process 11. 

Process II is observed in the first cycle probably due to the presence of phosphate 

during calcinations. XRD powder diffraction experiments show that the cerunite 

crystal structure is not changed during the calcining process at 500°C. 

207 



SI/san J. SlolI Eleclroanalysis ill Nalloparlicle Assemblies Chapler6 

Process I Process IT 

~15] 
..... 0 

, , , , 
-0.5 0.0 0.5 1.0 

E IVvs. SCE 

Figure 6.7. Cycli c voltamm ograms (scan rate 100 m Vs' ) for the reduction of a 2 layer CeO, phytate 

film on ITO after calcinat ions. The electrode is im mersed in I mM phosphate buffe r at pH 7 in 

aq ueous 0.1 M KCI. Scans 1,2, 3, 4, 6, 8 and 10 are shown . 

By doubl ing the amount of Ce02 phytate fi lm deposited onto the ITO electrode 

surface, the peak current recorded is approximately doubled (see Figure 6.8). 

Calcining the meta l oxide fi lms is also shown to increase the current response, this 

again can be explained by the increase in conductivity as electron transport through 

the oxide structure becomes easier due to the lower inter-particle distance. 

Process I Process IT 

, , , , 
-0.5 0.0 0.5 1.0 

E IV vs. SCE 

Figure 6.8. Cycl ic voltamm ograms (scan rate 100 mVs ') for the red uction ofa 4 layer CeO, phytate 

film on ITO after calcin ations. The electrode is immersed in I mM phosphate buffer at pH 7 in 

aqueous O. I M KCI. Scans 1, 2,3,4,6, 8 and 10 are shown. 
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Next, a similar set of experiments were conducted usmg 1,2,3,4,5,6-

cyclohexanehexacarboxylic acid monohydrate (CHHCA) as a binder in the place of 

the phytic acid. In Figure 6.9 the multicycle vo ltammograms obtained for ITO 

electrodes with multi-layer Ce02 CHHCA deposits in the presence of I mM 

phosphate are shown. As with the phyt ic acid binder, the expected changes in peak 

current corresponding to process I and 11 are clearly being generated. This indicates 

that not only does CHHCA function as a good binder fo r metal ox ide particles such 

as Ce02 but also enables the study of process 11 without the possible interference of 

the phosphates on the phyt ic acid binder molecules. The current responses using tbe 

CHHCA binder are greater than those recorded for the calcined phytic acid binder. 

However, there is less of an effect observed on doubling the film thickness. 

Proc_I Proc_n 

CA) 

(B) 

, , , , 
-0.5 0.0 0.5 1.0 

E/Vvs. SCE 

Figure 6.9. Mult i-layer cyclic voltammograms (scan rate 100 mVs· ') for (A) 2 layers and (8) 4 

layers ofCeO, - CHHCA deposit on ITO in the presence of aqueous phosphate solu tion ( I mM, pH 

7) in 0.1 M KC), Scans 1,2, 3, 4, 6, 8 and 10 are shown in each case. 

Next, similar vo itammograms were recorded fo r calcined Ce02 CHHCA fi lms. 

Again it is possible to see the effects heat-treating the Ce02 binder depos its has on 
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the electrochemical response in the presence of 1 mM phosphate (see Figure 6. 10). 

The difference in rate of change in the peak current fo r process 1 and 11 for the 

calcined electrodes is demonstrated (slower changes at calcined electrodes) and 

consistent with data for the calcined Ce02 phytate deposits. 

( I 
Process I Proeess IT 

CA) 

~ 30] 
..... 0 

(B) 

, • j , 
-0.5 0.0 0.5 1.0 

E I V vs. SCE 

Figure 6. 10. Mult i·layer cyclic voltammograms (scan rate 100 mY'-' ) for (A) 2 layers and (B) 4 

layers ofCeO, - CHHCA deposit on ITO, heat treated at 500°C, and immersed in aqueous phosphate 

solution (I mM, pH 7) in 0.1 M KC!. Scans 1, 2,3, 4, 6, 8 and 10 are shown in each case. 

Next the electrochemistry of Ce02 nanoparticie fi lms was investigated in organic 

so lvents. 
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6.5. Reactivity of Ce02 Nanoparticie Films in Organic Solvents 

The voltammetry of Ce02 in aqueous media is very similar to that for Ti02 but the 

Ce02 is less stable. In organic solvents Ce02 should be much more stable towards 

disso lution and stable vo ltamrnetric signals should be obtained. Figure 6. 11 shows 

the voltamrnetry for a 10 layer Ce02 phytate deposit in 0.1 M hexaflurophosphate in 

acetonitrile. The voltammetric response for Process and Ce(J V 1111) 

electrochemistry is seen to decrease slightly, as in aqueous KCl so lution. However, 

the Ce02 nanoparticie fLlm appears more stable in the organic solvent compared to 

in aqueous solution with no redox peak assoc iated with process 11 and the formation 

ofCeP04 being observed. 

ProceaI 

(l 

, , , o , , 
-1.0 -0.5 0.0 0.5 1.0 1.5 

EIVlB. SCE 

Figure 6.11 . Cyclic voltammogram (scan rate 100 mY .. ') for (i) a clean [TO glass electrode and (ii) 

a 10 layer CeO, phytate film deposited onto ITO and immersed in 0.1 M hexaflurophosphate in 

acetonitrile. The bl ue line corresponds to scan I and th e green line scan 2. 

ext, the effect of scan rate on the electrochemistry of the Ce02 phytate 

nanoparticle films was investigated, with both the Faradaic and capacit ive currents 
. . 
mcreasmg. 
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Figure 6.12. Cyclic voltammogram at various scan rates of a 10 layer CeO, phytate film deposited 

onto ITO and immersed in 0.1 M hexaflurophosphate in acetonitrile. The red lin e corresponds to a 

scan rate of 100 mV,', blue line to 200 mV,' and the green line to 500 mV,I 

6.6. Conclusions 

It has been shown that Ce02 is electrochemically active and not inert. A Fe<ibct'ion 

assigned to a Ce(lV/Ill) process has been observed and follow-up chemistry in the 

presence of phosphate discovered. The interfacial formation of CeP04 has been 

proven and effects of the type of deposit, the phosphate concentration and pH on the 

process analysed. 

In future, it is possible to use and exploit the abi lity of Ce02 nanoparticles to form 

surface cerium phosphates and to give distinct electrochemical responses. The study 

could be expanded to other analytes such as arsenates and chromates to allow a 

novel way of determining small concentrations in solution. The importance of Ce4+ 

as an oxidation reagent in organic chemistry could lead to novel surface 

electrochemical processes with a heterogeneous Ce(lV) system. 

2 12 



SI/sail 1. SIO/l Eleclroallalysis ill Nalloparlic/e Assemblies Chapler 6 

6.7 References 

I J.L. Yuan, B.H. Lu, X. Lin, L.B. Zhang, S.M. Ji, J. Maler. Processing Technol. 

129 (2002) 171 

2 R.V. Siriwardane, l A. Poston Jr, E.P. Fisher, T.H. Lee, S.E. Dorris, U. 

Balachandran, App l. Surf Sci. 2 17 (2003) 43 

3 S. Matsumoto , Calal. Today 90 (2004) 183 

4 D. Uy, A.E. O'Neill, L. Xu, W.H. Weber, R.W. McCabe, Appl. Calal. B 41 (2003) 

269 

5 N. Mora, E. Cano, J.L. Polo, J.M. Puente, J.M. Bastidas, Corros. Sci. 46 (2004) 

563 

6 J. Ma, T.S. Zhang, L.B. Kong, P. Hing, S.H. Chan, J. Power Sources 132 (2004) 

7 1 

7 C.G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G.A. Niklasson, D. Ronnow, M. 

Stromme Mattsson, M. Veszelei, G. Vaivars, Sol. Energy 63 (1998) 199 

' M. Veszelei, M. Stromme Mattsson, L. Kullman, A. Azens, C.G. Granqvist, Sol. 

Energy Maler. Sol. Cells 56 (1999) 223 

9 For a review see M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid Stale lonics, 

129 (2000) 63 

10 A.J. Bard (Ed.), Encyclopedia of EleClrochemislry oflhe Elemenls Vol. VI, 

Marcel Dek.ker, TNC Chapter VI-2 1976 

11 M.D. Ward, in I. Rubinstein (Ed.), Physical Eleclrochemistry , Marcel Dekker, 

New York, 1995, p. 293 

12 G. Silversmit, H. Poelman, L. Fiermans, R. De Gryse, Solid Slale Commun. , 11 9 

(200 1) 101 

13 A.Q. Wang, T.D. Golden, J. Electrochem. Soc., 150 (2003) C{)16 

213 



SIISCII1 J. Slall Eleclraanalysis in Nanoparlicle Assemblies Conclusions / SIIIllmGlY 

Conclusions / Summa,-y 

The wo rk carri ed out fo r thi s thesis is subdivided into fi ve main experimenta l 

chapters descri bing (i) the characteri sati on of Ti 0 2 (anatase) mono-layer 

nanoparticle films, (ii ) electrochemical processes in T i02 mul ti-l ayer fi lms, (ii i) 

work on novel biphas ic electrode systems based on mesoporous nanoparti cle 

assemb lies, ( iv) wo rk w ith thin fi lms of TiC nanoparticles, and (v) wo rk with Ce02 

nanoparticle assemblies. 

Mono and mul ti-l ayer film s of Ti 0 2 (anatase) nanoparticles have been formed at 

boron-doped dia mond a nd tin-doped indium oxide (lTO) coated glass e lectrode 

sur faces respective ly. The layer-by- Iayer deposited film s were characterised using 

fie ld emission gun scanni ng electron microscopy (FEGSEM), the quartz crysta l 

microba lance technique, cyc lic vo ltammetry, and impedance spectroscopy glVll1g 

insights in to ox ide surface processes. The incorporatio n o f different binder 

molecules (ca rbox ymethyl-y-cyclodex tri n, 1,4,7, I O-tetraazacyclododecane-

1,4,7, I O-tetray l- tetrak is(methyl-phosphonic ac id , phytic acid , pyrro loquinoline 

qui none and Nafion®) into the multi-layer Ti0 2 (anatase) nanoparticle film s a llowed 

further insights into the electron transport and transfer at the T i0 2 I liquid interface 

to be obta ined . Possible analyti cal appli cati ons fo r the novel T i0 2 films have been 

explored. 

The transport of anions and protons 111 biphasic electrode processes has been 

demonstrated on basa l plane pyro lytic graphite di scs and in mesoporous Ti02 

(anatase) nanoparticl e membranes on ITO substrates. 

It has been shown that T iC nanoparti cles can be depos ited onto ITO substrates and 

electrochemica ll y oxid ised to give core-shell TiC-Ti02 nanopartic les, characteri sed 

using FEGSEM, transmission electron microscopy, and cycl ic vo ltammetry. The 

use of therma l oxidatio n to generate core-she ll T iC-Ti0 2 nanoparti cles has a lso been 

demonstrated under X-ray diffraction condi tions duri ng heating in air. Core-she ll 

T iC-Ti0 2 nanopart icles represent a nove l electro-catalytica ll y acti ve materi al fo r 

mesoporous th in fi lm or other types of compos ite electrodes. 
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T he surface elect rochemistry of Ce02 nanopart icle film s and the effect of the binder 

molecu le on multi- layer for mation and electrochemistry have been shown. A new 

phosphate phase is fo rmed during electrochemica l reducti on of Ce02 in aqueous 

phosphate buffer so lution that is sensiti ve to phosphate concentration and pH. The 

electrochemistry o f multi-layer Ce02 nanoparticulate fi lms in organic so lvent is 

shown to be more stab le. 
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