
RATIONAL MONOID AND

SEMIGROUP AUTOMATA

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2010

Elaine L. Render

School of Mathematics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenGrey Repository

https://core.ac.uk/display/40037789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Abstract 6

Declaration 7

Copyright Statement 8

Acknowledgements 9

1 Introduction 10

2 Preliminaries 15

2.1 Algebraic notions . 15

2.2 Finite automata . 21

2.3 Grammars . 29

2.4 Decision problems for groups and semigroups 32

2.5 Language families . 34

3 M-automata 38

3.1 Cyclic and abelian groups . 42

3.2 Free groups . 43

3.3 Polycyclic monoids . 45

3.4 Nilpotent groups . 48

4 Monoid automata and their extensions 54

4.1 The structure of a monoid . 54

4.2 Rational monoid automata . 63

2

4.3 Transductions and closure properties 67

4.4 Adjoining a zero . 72

5 Polycyclic monoids 79

5.1 The structure of rational subsets . 79

5.2 Rational polycyclic monoid automata 85

6 Completely simple semigroups 95

6.1 Rational subsets . 96

6.2 Rational semigroup automata . 102

Bibliography 110

Word count 38527

3

List of Tables

2.1 The closure properties of various classes of language families. 36

2.2 Familiar language families and their closure properties. 37

4

List of Figures

3.1 A B2-automaton accepting the language {aibjcidj | i, j ∈ N}. 48

3.2 A H-automaton accepting the set {xpyqzpq | p, q ≥ 0} 52

3.3 A H-automaton accepting the set {xpq | p, q > 1} 53

3.4 A H-automaton accepting the set {xpypn | p ∈ N} 53

5.1 A rational B-automaton with target set {qp}, accepting the language

{aibiajbj | i, j ≥ 0}. 91

5

The University of Manchester

Elaine L. Render
Doctor of Philosophy
Rational Monoid and Semigroup Automata
June 28, 2010

We consider a natural extension to the definition of M-automata which allows the
automaton to make use of more of the structure of the monoid M , and by removing
the reliance on an identity element, allows the definition of S-automata for S an
arbitrary semigroup. In the case of monoids, the resulting automata are equivalent
to valence automata with rational target sets which arise in the theory of regulated
rewriting. We focus on the polycyclic monoids, and show that for polycyclic monoids
of rank 2 or more they accept precisely the context-free languages. The case of
the bicyclic monoid is also considered. In the process we prove a number of in-
teresting results about rational subsets in polycyclic monoids; as a consequence we
prove the decidability of the rational subset membership problem, and the closure
of the class of rational subsets under intersection and complement. In the case of
semigroups, we consider the important class of completely simple and completely 0-
simple semigroups, obtaining a complete characterisation of the classes of languages
corresponding to such semigroups, in terms of their maximal subgroups. In the pro-
cess, we obtain a number of interesting results about rational subsets of Rees matrix
semigroups.

6

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

7

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any administrative,

promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in accor-

dance with the regulations of the John Rylands University Library of Manch-

ester. Details of these regulations may be obtained from the Librarian. This

page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Property

Rights”) and any reproductions of copyright works, for example graphs and

tables (“Reproductions”), which may be described in this thesis, may not be

owned by the author and may be owned by third parties. Such Intellectual

Property Rights and Reproductions cannot and must not be made available

for use without the prior written permission of the owner(s) of the relevant

Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

exploitation of this thesis, the Copyright and any Intellectual Property Rights

and/or Reproductions described in it may take place is available from the Head

of the School of Mathematics.

8

Acknowledgements

I would like to thank Mark Kambites, whose meticulous attention to detail has hope-

fully rubbed off on me; Sasha Borovik, without whom I would probably not be in

this position today and my mother, for putting up with me being a poverty stricken

student for so many years longer than most.

9

Chapter 1

Introduction

The effectiveness of algebraic methods in classical automata theory is long established.

For example, for a given finite automaton there exists an associated semigroup whose

structure completely encapsulates the action of the automaton, the so called syntactic

semigroup.

By adding a memory register to a classical finite automaton, the accepting power

can be increased. Language families such as the context-free languages may be defined

in this way. G-automata are finite automata augmented with a memory register

which may at any time contain an element of a given group G. Computation in the

memory register takes the form of right multiplication by elements of G; the identity

element of the group defines the accepting configuration of the register, allowing us

to think about G-automata languages. This is a natural algebraic generalisation of

the memory registers appearing in the definition of automata such as those accepting

the context-free languages.

It turns out that many formal language classes may be redefined using G-automata,

providing a unifying approach to classical language families generated by automata

with memory storage such as the context-free languages [22] and the counter lan-

guages [40]. This reinterpretation of disparate memory structures and their actions

in an algebraic framework has allowed results and techniques from algebra to aid in

new discoveries in formal language theory.

One particular area of interest in combinatorial group theory is the subject of

10

CHAPTER 1. INTRODUCTION 11

decision problems, such as deciding whether a given group element is equivalent to

the identity element of the group. The rational subset problem, that is, the problem

of deciding if a given word belongs to a given rational subset (or equivalently, if it is

accepted by a given automaton) generalises a number of interesting decision problems

such as the word problem. G-automata have helped provide new related results, see

for example [18, 23, 34].

We may also consider M-automata where M is a monoid, rather than a group.

M-automata are closely related to regulated rewriting systems, and in particular the

valence grammars introduced by Pãun [45]: the languages accepted by M-automata

are exactly the languages generated by regular M-valence grammars [20].

While M-automata appear at first sight to provide much more flexibility than

their group counterparts, the extent to which such an automaton can fully utilise

the structure of the register monoid is somewhat limited. Indeed, if the register ever

contains an element of a proper ideal, then no sequence of actions of the automaton

can cause it to contain the identity again; thus, the automaton has entered a “fail”

state from which it can never accept a word. It follows that the automaton can make

effective use of only that part of the monoid which does not lie in a proper ideal.

A natural way to circumvent this weakness is to weaken the requirement that

the identity element be the sole accepting configuration of the register, and instead

permit a more general set of initial and terminal configurations. Permitting more

general terminal sets was first suggested in [22], and has recently reappeared in the

study of regulated rewriting systems, where the introduction of valence grammars

with target sets leads naturally to a corresponding notion of a valence automaton

with target set [19, 20].

If we are to retain the advantages of monoid automata, as an elegant and easily

manipulated way of describing important language classes, it is clearly necessary

to place some kind of restriction on the class of subsets permitted for initial and

terminal configurations. Obvious choices include the finite subsets or the finitely

generated submonoids, but from a computational perspective, the most natural choice

seems to be the more general rational subsets of the monoid. These sets, which have

CHAPTER 1. INTRODUCTION 12

been the subject of intensive study by both mathematicians and computer scientists

(see for example [4, 37, 47, 52, 54]), are general enough to significantly add to the

power of monoid automata, while remaining sufficiently well-behaved to permit the

development of a meaningful theory.

The main objective of this thesis is to lay the foundations for the systematic study

of monoid automata with rational initial and accepting sets.

Since the introduction of more general initial and terminal sets removes the special

role played by the identity element we are able to consider automata with an S-register

where S is an arbitrary semigroup perhaps without an identity element. We believe it

may be possible to extend even further the success of monoid automata as an elegant

algebraic description of important language classes, and to use them to study the

structure of more general semigroups.

The rest of this thesis is arranged as follows: in Chapter 2 we recall some elemen-

tary definitions from semigroup theory and introduce finite automata. The properties

of languages accepted by finite automata are explored in detail, for automata defined

over the free monoid (yielding the regular languages), and for finite automata de-

fined over more general semigroups. Grammars as a tool for language generation

are introduced, including context-free grammars and regulated grammars, which are

closely linked to M-automata. After a brief consideration of the links between the

decision problems of combinatorial group and semigroup theory and formal language

theory, we define notions of grouping for languages, culminating in a discussion of

the classical Chomsky hierarchy and the language families usually included within it.

In Chapter 3 we collect together in a cohesive form results from the literature

relating to M-automata for M taken from specific families of groups and monoids.

Finite, cyclic and commutative monoids and groups are considered first, including a

number of results connecting the word problems of such groups with M-automata

defined over them. We next consider the free groups, which are closely linked to the

context-free languages. Similarly connected are the polycyclic monoids; an impor-

tant result of Chomsky and Schutzenberger concerning context-free languages may

be reinterpreted using free groups and polycyclic monoids. Lastly in this chapter we

CHAPTER 1. INTRODUCTION 13

explore the possibilities for nilpotent groups, giving a simple example which demon-

strates their potential as an interesting class of groups for study in an M-automaton

context.

In Chapter 4 we look at the structural properties of monoids such as ideals and zero

elements, and consider simple, 0-simple, completely simple and completely 0-simple

monoids. We prove a number of results concerning the resulting limitations on the

functioning of M-automata defined over monoids with these properties. The first part

of the chapter culminates in a result analogous to an important result of Mitrana and

Stiebe [40] which appears in Chapter 3, and a result outlining the potential properties

of the class of languages accepted by M-automata for a given monoid M . We next

introduce rational M-automata, the extended definition of M-automata discussed

above, and consider some foundational properties of these automata with respect to

monoid structure.

In Chapter 5 we explore our extended definition of M-automata for monoids

taken from the important class of polycyclic monoids. The polycyclic monoid of

rank n is the natural algebraic model of a pushdown store on an n letter alphabet.

For M a polycyclic monoid of rank 2 or more, it is well known that M-automata

are equivalent to pushdown automata, and hence that the languages accepted are

precisely the context-free languages. The polycyclic monoid of rank 1 is called the

bicyclic monoid, and as we shall have seen in Chapter 3 bicyclic monoid automata

accept precisely the partially blind one-counter languages as defined by Greibach [26].

We first study the structure of rational subsets in polycyclic monoids, and then use

these results to prove the relationship between rational polycyclic monoid automata

languages and the context-free languages.

In Chapter 6 we consider completely 0-simple semigroups. Semigroups of this

type may be characterised using Rees matrix semigroups constructed from groups.

These constructions play a crucial role in the structure theory of semigroups, making

them an interesting candidate for study in the context of our extended S-automaton

definition. We first study the relationship between rational subsets and the Rees

matrix construction, in the process proving a number of results about the structure of

CHAPTER 1. INTRODUCTION 14

rational subsets of completely 0-simple semigroups. We then go on to give a complete

description of the classes of language accepted by rational S-automata where S is a

completely simple or completely 0-simple semigroup.

Chapter 2

Preliminaries

In this chapter we introduce some fundamental algebraic and language theoretic

definitions and results which will be the basis for the rest of this thesis.

2.1 Algebraic notions

We begin by introducing some algebraic notions. A binary operation on a set S is a

mapping which takes ordered pairs of elements of S to single elements of S:

f : S × S → S.

We usually write this a · b = c, and in fact when the operation in question is clear,

the dot will be omitted. Such a binary operation is said to be associative if for all

a, b, c ∈ S,

(a · b) · c = a · (b · c).

A semigroup S is a set together with an associative binary operation. An element

e ∈ S is called a neutral or identity element of the semigroup if for all a ∈ S,

ae = ea = e.

A semigroup S with a neutral element is called a monoid . We will usually denote

such an identity element by 1.

An element a ∈ S is said to have an inverse element, denoted a−1, if

aa−1 = a−1a = e

15

CHAPTER 2. PRELIMINARIES 16

where e is the identity element of our monoid. A monoid in which every element has

an inverse is called a group.

Let T, U be subsets of a semigroup S. We extend the definition of multiplication

in the semigroup to subsets as follows.

T · U = {t · u | t ∈ T, u ∈ U}

where · denotes the associative binary operation in the semigroup. As in the case

of individual elements, we conventionally will not include the dot, and note that

multiplication of subsets is also associative.

A subsemigroup S ′ of a semigroup S is a subset of S which is closed under the

associative binary operation of S. A submonoid S ′ of a semigroup S is a subset of

S which is closed under the binary operation of S and contains an element e ∈ S ′

which behaves as an identity element in S ′. That is, S ′ is a monoid. A subgroup of a

semigroup S is a subset S ′ of S which is itself a group. We use the notation S ≥ S ′

or for S ′ a proper subgroup (S ′ 6= S) S > S ′.

For a subgroup H of a group G a left coset of H in G is a subset of the form

gH = {gh | h ∈ H} and a right coset is one of the form Hg = {hg | h ∈ H} for

some g ∈ G. The cardinality of the set of distinct left cosets is always equal to the

cardinality of the set of distinct right cosets for any given subgroup H . This number

is called the index of the subgroup H in G. A subgroup N of G is called normal if

for all n ∈ N and g ∈ G, gng−1 ∈ N . An important example of a normal subgroup

is the centre of G, defined

Z(G) = {z ∈ G | zg = gz ∀g ∈ G},

the set of elements which commute with every element of G.

A binary relation ∼ on a set S is simply a collection of ordered pairs of the form

(a, b) ∈ S × S. If the pair (a, b) is in our relation ∼ then we may write a ∼ b, “a

is ∼ related to b”. Given a binary relation ∼ on a semigroup S we say that ∼ is a

congruence relation, or simply congruence, if it satisfies the following four properties.

(i) For all a ∈ S, a ∼ a (reflexivity);

CHAPTER 2. PRELIMINARIES 17

(ii) For all a, b ∈ S, if a ∼ b then b ∼ a (symmetry);

(iii) For all a, b, c ∈ S, if a ∼ b and b ∼ c then a ∼ c (transitivity);

(iv) For all a, a′, b, b′ ∈ S, if a ∼ a′ and b ∼ b′ then ab ∼ a′b′ (compatibility).

A binary relation satisfying the first three conditions is called an equivalence relation.

Every relation on a semigroup S (that is, every subset of S × S) is contained in a

unique minimal congruence on S, called the congruence generated by the relation.

Given two relations R ⊆ X × Y and S ⊆ Y × Z over sets X, Y and Z, the

composition of R and S is the set

R ◦ S = {(x, z) | ∃y ∈ Y : (x, y) ∈ R ∧ (y, z) ∈ S} ⊆ X × Z.

A semigroup (homo)morphism is a mapping from one semigroup into another

which respects the operations of the two semigroups, that is, φ : S → S ′ where S

and S ′ are semigroups and where (aφ)(bφ) = (ab)φ for all a, b ∈ S (the convention

throughout will be to apply maps on the right). We denote by Sφ the image of the

whole of S under the morphism φ, that is, the set {s′ ∈ S ′ | s′ = sφ for some s ∈ S}.

We say that Sφ is a homomorphic image of S. For an element s′ ∈ S ′ we call an

element s ∈ S such that sφ = s′ an inverse image of s′ and write s′φ−1 for the set

of all inverse images of s′. An injective and surjective homomorphism is called an

isomorphism. If there exists an isomorphism between two semigroups S and S ′ we

say that they are isomorphic, denoted S ∼= S ′.

For a given congruence ∼ the equivalence classes induced form a semigroup with

multiplication defined by

[a][b] = [ab]

where [a] denotes the equivalence class containing a. The semigroup defined in this

way is denoted S/ ∼. The map a 7→ [a] is a surjective morphism from S onto S/ ∼.

One of the most natural types of semigroup, monoid or group in terms of its

structure is a free one. In full generality we have the following definition. Let F

be an algebra in a class C of algebras. Then F is free in C if there is a subset

CHAPTER 2. PRELIMINARIES 18

X ⊆ F such that every function from X to an algebra M ∈ C extends uniquely to a

morphism from F to M .

Thinking in terms of the types of structures we shall encounter, let A be a finite

alphabet of symbols. Then we denote by A∗ the free monoid on A, and by A+ the

free semigroup on A. The free group on A is denoted FA. A more intuitive definition

of free objects will follow in Section 2.1 below.

For a monoid or group M , we call a surjective morphism σ : X∗ →M from a free

monoid X∗ to the monoid M a choice of generators for M , and the elements of the

set X the generators of M . The choice of generators is called finite if X is finite.

A presentation for a monoid M is of the form

〈X | R〉

where X is a set of generators, and R ⊆ X∗ × X∗. The monoid M is then derived

from the presentation as M = X∗/ ∼ where ∼ is the smallest congruence containing

the relations in R. Since the map X∗ →M is a surjective morphism it is a choice of

generators for M . The presentation is called finite if A and R are finite.

For general semigroups a choice of generators is a surjective morphism σ : A+ → S

from the free semigroup A+ to S. Again we refer to elements of the set A as generators

of S. A semigroup presentation for a semigroup S takes the form 〈A | R〉 where A is

a generating set for S and the semigroup is as before derived from the presentation

as A+/ ∼ where ∼ is the smallest congruence containing the relations R ⊆ A+ ×A+.

A monoid or semigroup is said to be finitely generated if it admits a finite choice

of generators, and finitely presented if it is isomorphic to the monoid derived from a

finite presentation.

For two semigroups S and S ′ there are many ways to construct new semigroups

from them. The one which will be most useful throughout this thesis will be the

direct product :

S × S ′ = {(s, s′) | s ∈ S, s′ ∈ S ′}.

The direct product of two semigroups is a semigroup itself under the operation

(s, s′)(t, t′) = (st, s′t′)

CHAPTER 2. PRELIMINARIES 19

and is naturally generated by the set {X ∪X ′} where X and X ′ are generating sets

for the semigroups S and S ′ respectively.

Another way we may wish to produce new semigroups from existing ones is to

adjoin new elements with specific interesting properties. Since the existence of an

identity element in a semigroup often makes calculations more straightforward, we

begin by considering adjoining an identity element. Let S be a semigroup. We denote

by S1 the semigroup obtained from S by adjoining an identity element 1, where

S1 =

S If S contains an identity element,

S ∪ {1} otherwise.

We extend the multiplication of S to S1 in the unique way which makes 1 an identity

element.

Another interesting type of element which we may wish to adjoin to a semigroup

is a zero. For S a semigroup we call an element 0 ∈ S a zero element if for all x ∈ S

we have

0x = x0 = 0

and define S0, the semigroup with zero to be

S0 =

S ∪ {0} if S has no zero element,

S otherwise

with multiplication defined by

st =

s · t If s, t ∈ S, s, t 6= 0,

0 otherwise.

A useful way of considering the structure of a semigroup is using Green’s relations

[10]. We say that two elements a, b ∈ S are L -related , written aL b if and only if

S1a = S1b. Similarly we say that a and b are R-related , written aRb if and only

if aS1 = bS1. If for elements a, b ∈ S we have S1aS1 = S1bS1 we say that a and

b are J -related , written aJ b. We call an equivalence class of L -related elements

an L -class , an equivalence class of R-related elements is called an R-class and an

equivalence class of J -related elements is called a J -class . For a given element

CHAPTER 2. PRELIMINARIES 20

a ∈ S, we denote the L -class containing a by La, and the R-class containing a by

Ra.

Proposition 2.1.1 ([33]). The relations L and R commute.

Proof. Let a, b ∈ S and assume that (a, b) ∈ L ◦ R. Then there exists some c ∈ S

such that aL c and cRb. Hence there exist elements x, , y, u, v ∈ S such that

xa = c cu = b

yc = a bv = c.

Let d = ycu ∈ S. Then

au = ycu = d dv = ycuv = ybv = yc = a

and we may conclude that aRd. Similarly

yb = ycu = d xd = xycu = xau = cu = b

and dL b. Therefore L ◦ R ⊆ R ◦ L . The other direction is proved similarly.

The relation D is the join of the relations L and R. Since L and R commute it

is the smallest equivalence relation containing both L and R. An equivalence class of

D-related elements is called a D-class. We define the H relation as H =L ∩R, the

intersection of the L and R relations. An equivalence class of H -related elements

is called an H -class.

An ideal I of a semigroup S is a subset I of S with the property that S1IS1 ⊆ I.

Notice in particular that an ideal is a subsemigroup. We say that an ideal is proper

if it is properly contained in the semigroup S (I 6= S). To each ideal I is associated

a congruence ρI on S such that (s, t) ∈ ρI if and only if either s, t ∈ I or s = t. The

quotient monoid, usually denoted S/I , is called a Rees quotient , and takes the form

S/I = {I} ∪ {{x} | x ∈ S \ I},

CHAPTER 2. PRELIMINARIES 21

though it is isomorphic to S \ I ∪ {0} with the binary operation defined

st =

s · t If s, t, s · t ∈ S \ I

0 otherwise

where · is the binary operation of the original semigroup S. It is most convenient to

consider it in this way.

The free monoid

The monoids which will feature most prominently in this thesis will be the finitely

generated free monoids. It is these structures which form the basis for all of formal

language theory. In this section we introduce some related definitions.

Let Σ be a finite alphabet of symbols. Then we denote by Σ∗ the set of all finite

strings of symbols from Σ and by ǫ the empty string. We call such strings words.

Under the operation of concatenation and with the neutral element ǫ, Σ∗ forms a free

monoid. We refer to ǫ as the empty word . We denote by |w| the length of a given

word and by |w|a the number of occurrences of some given letter a ∈ Σ in the word.

A word u ∈ Σ∗ is said to be a factor of a word w ∈ Σ∗ if there exist words v, z ∈ Σ∗

such that w = vuz. If we can choose v = ǫ we say that u is a left factor of w; if we

can choose z = ǫ we say that u is a right factor of w.

2.2 Finite automata

Next, we introduce some basic ideas from formal language theory; we begin with

finite automata.

Finite automata and regular languages

The most intuitive way to define finite automata is using graphs. A finite graph is a

tuple (V,E) where V is a finite set of vertices and E is a finite set of edges connecting

certain vertices together; each edge is a two element subset of V . A directed graph is

a graph where each edge is endowed with a direction (that is, an edge is considered to

CHAPTER 2. PRELIMINARIES 22

start at one vertex and end at another). A finite automaton over Σ∗ is a finite directed

graph with each edge labelled by an element of Σ or by ǫ, and with a distinguished

initial vertex and a set of distinguished terminal vertices. In the sequel vertices will

be referred to as states . A word w ∈ Σ∗ is accepted by the automaton if there exists a

sequence of consecutive edges (a path), connecting the initial state with some terminal

state labelled cumulatively with w. That is, there exists a path with edges labelled

w1, . . . , wn for some n ∈ N with w1w2 . . . wn = w. The set of all words accepted by

the automaton is often denoted L or for an automaton A sometimes L(A), and is

called the language accepted by A. Such a language is called rational or regular .

A finite automaton as defined above is called deterministic if no edges are labelled

by ǫ and for each a ∈ Σ and for each state q in the automaton there exists at

most one edge starting at q labelled by a. If this is not the case we say that the

automaton is non-deterministic. In the case of regular languages, we may always

find a deterministic finite automaton accepting the same language as a given non-

deterministic automaton [32].

We refer to edges in a finite automaton which have label ǫ as ǫ-transitions. Note

that in the case of regular languages, if there exists a finite automaton accepting

the language which includes ǫ-transitions we may always find another automaton

accepting precisely the same language which contains no ǫ-transitions [32]. For a

given edge from a state p to a state q it will be useful to refer to p as the source state

of the edge, and q as the target state of the edge.

It is reasonable to consider automata with edges labelled by words w ∈ Σ∗ rather

than simply letters from Σ. However, usually it will be more convenient to use

the latter labelling since they are equivalent. Indeed, consider an automaton with

edges labelled from Σ∗. Then an edge labelled by w ∈ Σ∗ with w = w1 . . . wn (for

wi ∈ Σ, i = 1, . . . , n) may be split into n consecutive edges, each labelled by wi for

i = 1, . . . , n.

An obvious question to ask is whether the condition that there be a unique initial

state is necessary. We define a generalised finite automaton to be a finite automaton

with a set of distinguished initial states. Then a word w ∈ Σ∗ is accepted by A if

CHAPTER 2. PRELIMINARIES 23

there exists a path labelled by w connecting an initial state q to a terminal state q′.

We shall see below (Proposition 2.2.4) that this generalisation adds no extra power

to the automaton.

We define the notation A∗ for a set A to be the set of all possible strings consisting

of the concatenation of zero or more words from A. For example, let A = {10, 11},

then

{10, 11}∗ = {ǫ, 10, 11, 1011, 1110, 1010, 1111, . . .}

is the submonoid generated by A. We call this operation the Kleene star . Note that

this use of the ∗ notation is in line with our previous use to define a free monoid. We

also use the notation A+, which denotes the set of all possible strings which are the

concatenation of one or more words from A, that is, A+ = A∗ \ ǫ (where ǫ 6∈ A). The

complement of a language L ⊆ Σ∗ is the set Σ∗ \L of all strings over the alphabet Σ

which do not appear in L.

The regular languages are equivalent in expressive power to languages built from

regular expressions [32]. Such expressions are defined inductively as follows.

• ∅ is a regular expression and denotes the empty set.

• The empty word ǫ, and each a ∈ Σ is a regular expression denoted {ǫ} and {a}

respectively.

• If E1, E2 are regular expressions then so are E1 ∪ E2 and E1E2.

• If E1 is a regular expression then so is E∗
1 .

For a regular expression E we write L(E) for the language denoted by E.

We say that a property is testable if there exists some finite terminating algorithm

which decides if the property is satisfied by a given structure.

Proposition 2.2.1 ([32]). Emptiness of regular languages is testable, that is, there

exists an algorithm which, given as input a finite automaton, decides if the language

which it accepts is empty.

CHAPTER 2. PRELIMINARIES 24

A useful tool for showing that a given language is not regular is the so called

pumping lemma for regular sets. It says that, given a sufficiently long word in a

regular language, we may find a subword conforming to certain properties which may

be “pumped”, that is, repeated any number of times, and the resulting word will still

be contained in the original language.

Lemma 2.2.2 (The Pumping Lemma for Regular Languages, [32]). Let L ⊆ Σ∗ be a

regular language. Then there exists a constant n ∈ N such that if z ∈ Σ∗ is any word

in L with |z| ≥ n we may write z = uvw such that

• |uv| ≤ n,

• |v| ≥ 1 and

• for all i ≥ 0, uviw ∈ L.

Furthermore, n may be chosen to be no greater than the number of states in the

smallest finite automaton accepting L.

A subset S of a monoid M is said to be recognisable if there exists a finite monoid

N , a homomorphism φ : M → N and a subset T of N such that S = Tφ−1. When

the monoid M is taken to be the free monoid Σ∗ on a finite alphabet Σ the set

of recognisable subsets is exactly the set of regular languages, that is, the rational

subsets of Σ∗. This result is known as Kleene’s Theorem.

Theorem 2.2.3 (Kleene’s Theorem, [32]). Let Σ be a finite alphabet. The recognisable

subsets of Σ∗ are exactly the regular languages.

Finite automata over more general semigroups

We now shift our focus from the free monoid to semigroups in general. Let S be a

semigroup. Then the set of rational subsets of S is defined to be the closure of the set

of finite subsets of S under union, subset multiplication (and hence concatenation)

and generation of submonoids. An alternative and equivalent definition can be given

in terms of finite automata.

CHAPTER 2. PRELIMINARIES 25

If S is a semigroup then a finite automaton over S is a finite directed graph with

each edge labelled by an element of S, and with a distinguished initial state and a set

of distinguished terminal states. An element s ∈ S is accepted by the automaton if

there exists some path connecting the initial state with some terminal state labelled

cumulatively with s. That is, there exists a path with edges labelled s1, . . . , sn for

some n ∈ N with s1 ·s2 · . . . ·sn = s where · denotes the operation in the semigroup S.

The subset accepted is the set of all elements accepted; a subset of S is accepted by

a finite automaton precisely when it is a rational subset of S as defined above. The

rational subsets of Σ are the regular languages and the rational subsets of a general

semigroup S are the homomorphic images in S of regular languages.

It should be noted that rational subsets of semigroups are not as well behaved

as languages over the free monoid. Some of the concepts discussed in the previous

section, such as determinism, do not make sense in this more general setting.

We extend the definition of a generalised finite automaton presented previously to

semigroups as follows: A generalised finite automaton over a semigroup S is a finite

automaton defined over S which, instead of a single unique initial state, may have

some set of initial states I ⊆ Q where Q is the state set.

Proposition 2.2.4. Let L ⊆ S be a subset of the semigroup S, accepted by a gener-

alised finite automaton. Then L is rational.

Proof. Let A be a generalised finite automaton such that L(A) = L and let I ⊆ Q

be the set of initial states where Q is the state set of A.

Let B be an identical copy of A. We add a new state qs to B which we designate

as the unique initial state. For each edge connecting some q ∈ I to some state q′

labelled by a we add an edge labelled by a connecting qs to q′. We repeat this for

each q ∈ S and a ∈ Σ.

The resulting automaton accepts exactly the language L.

A related result is the following.

Proposition 2.2.5. Let L,K ⊆ S be two rational subsets of a semigroup S. Then

L ∪K is also rational.

CHAPTER 2. PRELIMINARIES 26

Proof. Let A and B be two finite automata over S accepting the sets L and K

respectively. By taking the set of initial states to consist of the initial state of A with

the initial state of B we may view A and B as a single generalised finite automaton

(albeit one with two unconnected components). By Proposition 2.2.4 there exists

a finite automaton over S with a single initial state accepting the set L ∪ K as

required.

We note that given two rational subsets over the same semigroup S, their inter-

section may not necessarily again be a rational subset. Since regular languages are

defined over a free monoid there exists a unique way to write any given element with

respect to a specific generating set. In the case of general semigroups, this is not the

case, and hence though an element s ∈ S may appear in two rational sets R,R′ ⊆ S,

it may appear differently, and hence the letter by letter comparison of the words as

they appear in the automata which is implied in the intersection construction for the

regular case may result in a conclusion of inequality.

Recall Kleene’s theorem from the previous section. Though Kleene’s theorem

does not apply in full generality for semigroups, there are many examples of semi-

groups and monoids which do satisfy an analogue of Kleene’s theorem. We call such

semigroups Kleene semigroups, or Kleene monoids in the case of monoids. A com-

plete characterisation of the class of Kleene monoids has not yet been found, but

many attempts have been made. Examples of classes of Kleene monoids include the

Amar-Putzolu monoids [1] and small overlap monoids [36].

Both Amar-Putzolu monoids and small overlap monoids fall into the class of

rational monoids [52]. Monoids of this type have multiplication which is in some

sense “simple”. We may describe a monoid M using its generating set X and its

surjective choice of generators map σ : X∗ → M . Clearly there may be a number

of elements x ∈ X∗ which are mapped to a given element m ∈ M . By choosing one

unique such x to be the representative of m in X∗, we may construct a map from X∗

to itself. Then a monoid M is rational if there exists a function constructed in this

way which is rational, that is, it is a rational relation which is functional (see Section

CHAPTER 2. PRELIMINARIES 27

2.2 for more on rational relations).

As it turns out, all rational monoids are Kleene [52]. The converse however is not

true [46].

We require the following result about rational subsets of groups, which is well

known.

Proposition 2.2.6. Let G be a group. If X ⊆ G is rational then the subset X−1 =

{x−1 | x ∈ X} is also rational.

Proof. Let X ⊆ G be a rational subset of a group G. Then X is accepted by some

finite automaton A. We construct a new generalised automaton B with

• state set Q where Q was the state set of A,

• initial state set F where F was the set of terminal states of A,

• unique terminal state q0 where q0 was the initial state of A and

• for each edge from state p to q labelled by g ∈ G in A an edge from q to p in

B labelled by g−1 ∈ G.

It is clear that the resulting automaton accepts exactly the set X−1 and so by Propo-

sition 2.2.4, X−1 is rational.

Rational transductions and homomorphisms

We begin by defining rational relations. Relations, and by extension, transductions,

are a useful tool for showing the inclusion of languages in certain language classes.

Let Ω and Σ be finite alphabets, and consider a finite automaton over the direct

product Ω+ × Σ∗; the subset R of Ω+ × Σ∗ that it recognizes is called a rational

relation. Hence a rational relation is simply a rational subset of the direct product

of the given free semigroups or monoids. The image of a language L ⊆ Ω+ under

the relation R is defined to be the set of words y ∈ Σ∗ such that (x, y) ∈ R for some

x ∈ L.

CHAPTER 2. PRELIMINARIES 28

The following theorem by Nivat gives a useful characterisation of rational rela-

tions. We note first a definition: the projection of (X ∪Y)∗ onto X∗ is the morphism

πX : (X ∪ Y)∗ → X∗ uniquely defined by πX(x) = x for x ∈ X and πX(x′) = 1 for

x′ ∈ Y . We define the projection of (X ∪ Y)∗ onto Y ∗ similarly.

Theorem 2.2.7 ([5]). Let X and Y be alphabets. The following are equivalent.

(i) A ⊂ X∗ × Y ∗ is a rational relation;

(ii) There exists an alphabet Z, two morphisms ϕ : Z∗ → X∗ and ψ : Z∗ → Y ∗ and

a regular language K ⊂ Z∗ such that

A = {(hϕ, hψ) | h ∈ K};

If X ∩ Y = ∅ then we may choose Z to be X ∪ Y and ψ = πX, ϕ = πY .

The definition of rational relation holds also for arbitrary monoids: let M,M ′

be monoids. Then a finite automaton over the direct product M × M ′ recognises

a rational relation R ⊆ M ×M ′. We define the image of a set R ⊆ M as for free

monoids above.

A rational relation between free monoids is called a rational transduction. An

automaton recognising a rational transduction is called a rational transducer. In the

sequel we shall use the term ‘rational transduction of X’ to mean ‘the image under

a rational transduction of X’.

Theorem 2.2.8 ([5]). Homomorphisms and inverse homomorphisms are examples

of rational transductions. For every regular language L ⊆ X∗, there exists a rational

transduction σ ⊆ X∗ ×X∗ such that for any K ⊆ X∗, Kσ = K ∩ L.

We may extend the results of the theorem from single elements of X∗ to subsets

of X∗ (and Y ∗) and conclude the following.

Theorem 2.2.9 ([5]). Rational transductions preserve regular and context-free lan-

guages. That is, the image Aρ of a set A under a rational transduction ρ is regular

if A is regular, and is context-free if A is context-free.

CHAPTER 2. PRELIMINARIES 29

Rational transductions also have the following useful property.

Theorem 2.2.10 ([5]). The composition of two rational transductions is again a

rational transduction.

2.3 Grammars

An important tool in the definition of useful language classes are grammars. The

most general type of grammar is a type-0 or unrestricted grammar. An unrestricted

grammar is a tuple (V, T, P, S) where

• V is a finite set of variables;

• T is a finite set of terminals;

• P is a finite set of productions; each production is of the form α → β where

α, β ∈ (V ∪ T)∗ with α 6= ǫ and

• S is a special variable called the start symbol .

When dealing with grammars a number of conventions allow us to represent them

using just a list of productions. We use capital letters from the beginning of the

alphabet to denote variables; the letter S is reserved for the start symbol. Lower-case

letters from the beginning of the alphabet are used to denote terminals, and lower-

case letters from the end of the alphabet are used to denote strings of terminals.

Mixed strings of variables and terminals are denoted by lower-case letters from the

Greek alphabet.

In order to define the language derived from a given grammar we first must define

two relations, ⇒G and ⇒∗
G, between strings in (V ∪ T)∗. If α → β is a production of

P and δ and γ are any two strings in (V ∪T)∗ then δαγ ⇒G δβγ. That is, two strings

are related by ⇒G when the second is obtained from the first by one application of

some production. We say that δβγ is directly derived from δαγ. The relation ⇒∗
G

is the transitive and reflexive closure of ⇒G. If α ⇒∗
G β we say that β is derived

from α, hence β is a derivation of α. The language generated by G, denoted L(G)

CHAPTER 2. PRELIMINARIES 30

is the set {w | w ∈ T ∗, S ⇒∗
G w}. Hence a string is in L(G) if it consists solely of

terminals and can be derived from the start symbol S. A language derived from an

unrestricted grammar is called recursively enumerable.

If we begin with an unrestricted grammar but then insist that productions must

be length increasing, that is, for every production α → β in P we have |β| ≥ |α| then

we have what is called a context sensitive grammar . Such grammars in turn define

the context sensitive languages, or CSLs.

In fact there also exist so called regular grammars, which provide an alternative

characterisation of the regular languages.

Context-free languages and pushdown automata

The most relevant grammar derived language class for us will be the context-free

languages, defined using context-free grammars. The context-free languages are im-

portant for defining programming languages and for parsing, as well as being useful

for many other string processing applications.

Formally we define a context-free grammar G to be a grammar (V, T, P, S) with

the condition that each production is of the form A → α where A is a variable and

α is a string of symbols from (V ∪ T)∗.

Then a language L is called context-free if it is L(G) for some context-free grammar

G.

An equivalent way to define the context-free languages is by using pushdown

automata. Formally we define a pushdown automaton to be a tuple (Q,Σ,Γ, δ, q0)

where

• Q is a finite set of states;

• Σ is the finite input alphabet;

• Γ is the finite stack alphabet, including a bottom of stack marker ⊥;

• δ is a transition relation mapping Q× (Σ∪ {ǫ})×Γ to finite subsets of Q×Γ∗;

• q0 ∈ Q is the initial state.

CHAPTER 2. PRELIMINARIES 31

Informally a pushdown automaton is a finite automaton which, as well as its usual

function, has control over a stack . A stack is essentially a list with a ‘first in, last out’

access rule. We refer to adding a new element to the list as pushing and removing an

element from the list as popping .

Implicitly on initialisation of a run of a pushdown automaton we add the bottom

of stack marker to the bottom of the stack. Then a word w ∈ Σ∗ is accepted by the

automaton if there exists a path from the initial state of the automaton labelled by

w such that the sequence of stack operations labelling the path result in the stack

containing only the bottom of stack marker after the word has been read. That is,

δ∗(q0, w,⊥) = (q,⊥) for some q ∈ Q where δ∗ is the transitive, reflexive closure of δ.

We have defined the acceptance condition of a pushdown automaton in terms

of the configuration of the stack. However, an alternative manner of acceptance

for pushdown automata is often used, which resembles more closely the traditional

acceptance condition for finite automata (that is, we have terminal states). These two

types of acceptance condition are equivalent in the sense that if a set can be accepted

by empty stack by one pushdown automaton, then there exists another pushdown

automaton which will accept the set by terminal state and vice versa.

A useful property of context-free languages is the satisfaction of the pumping

lemma for context-free languages. This pumping lemma, like the one given for regular

languages (Lemma 2.2.2), provides a tool for proving that a given language is not

context-free.

Lemma 2.3.1 ([32]). Let L ⊆ Σ∗ be a context-free language. Then there exists an

integer n > 0 such that any word z ∈ L with |z| ≥ n can be written as z = uvwxy

with substrings u, v, w, x, y such that

• |vx| ≥ 1,

• |vwx| ≤ n and

• uviwxiy ∈ L for all i ≥ 0.

CHAPTER 2. PRELIMINARIES 32

Regulated grammars

Other types of grammar particularly relevant here include regulated grammars. Such

systems are often also called ‘grammars with controlled derivations’, since these types

of grammars can take some kind of control over the productions applied in the deriva-

tion step (see [12] for a general overview). Valence grammars [45] are an example

of regulated grammars. A valence grammar is a context-free grammar within which

integer values (valences) are assigned to each production. A derivation is then judged

to be valid or not by adding the valences in the derivation; a total of zero gives a

valid derivation. This definition can then be extended to other monoids (using the

identity element of the monoid as the acceptance condition). Similar is the notion of

weighted grammars suggested by Salomaa in [53].

Formally, a (context-free) valence grammar over a monoidM is a tuple (V, T, P, S,M)

where V , T , and S are defined as for a context-free grammar, and the set P ⊆

V × (V ∪ T)∗ ×M is a finite set of valence rules. For a valence rule (A → α,m),

the production A → α is a production in the usual sense of context-free gram-

mars, and m ∈ M is called the valence of the rule. The relation ⇒ is defined as

(w,m) ⇒ (w′, m′) if and only if there exists a rule (A→ α, n) such that w = w1Aw2,

w′ = w1αw2 and m′ = mn. Then the language generated by the grammar G is

L(G) = {w ∈ T ∗ | (S, 1) ⇒∗ (w, 1)} where 1 is the identity element of the monoid

M .

2.4 Decision problems for groups and semigroups

In this section we consider the relationship between formal language theory and the

decision problems of combinatorial group and semigroup theory.

Let G be a group. The word problem for a group G with respect to a choice of

generators σ : X∗ → G is the language of all words w ∈ X∗ such that wσ = 1 in G.

We denote the word problem of a group G by WP (G).

In the case of monoids, the identity language of a monoid M with choice of

generators σ : X∗ → M is the set of words w ∈ X∗ such that wσ = 1, that is, the set

CHAPTER 2. PRELIMINARIES 33

of words over the generating set of the monoid which represent the identity element

in M . We use the notation ID(M) for the identity language of a monoid M . In the

case of direct products of monoids we consider the identity language with respect to

the natural generating set.

The rational subset membership problem for a semigroup S is the algorithmic

problem of deciding, given a rational subset of S (specified using an automaton over

a fixed generating alphabet) and an element of S (specified as a word over the same

generating alphabet), whether the given element belongs to the given subset. The

decidability of this problem is well-known to be independent of the chosen gener-

ating set [37, Corollary 3.4]. Grunschlag [29] showed that it is a virtual property

(for groups), that is, it is preserved under finite extensions and taking finite index

subgroups.

In fact the rational subset membership problem is a generalisation of many inter-

esting decision problems in combinatorial group theory; we discuss some examples.

The word problem is the problem of deciding, given a word over the generating set of

a group G, whether the word represents the identity element of the group. We note

the difference between this and the definition presented previously. It should be clear

from the context which definition we are referring to in the sequel. The generalised

word problem or subgroup membership problem is the problem of deciding, given a

finite set of elements of the group G (specified as words over a generating set), and

another element g ∈ G (specified using the same generating set), whether or not the

element g is contained within the subgroup generated by our set of elements. This

problem can be broadened further still by considering submonoids or subsemigroups.

Since (finitely generated) subgroups, submonoids and subsemigroups are examples

of rational subsets, the rational subset membership problem is a natural generalisa-

tion. It is well known that the rational subset membership problem is decidable for

free groups and for free abelian groups [3, 29].

We say that a decision problem is uniformly decidable if there exists some algo-

rithm which, given some presentation for a group, produces an algorithm which can

solve the decision problem for the given group.

CHAPTER 2. PRELIMINARIES 34

2.5 Language families

An important focus of formal language theory is to understand the connections be-

tween the many language classes. To this end, we define particular types of language

classes by their closure properties.

A family of languages is a collection of languages containing at least one non-

empty language. An ǫ-free homomorphism is a morphism h between free monoids

such that h(a) 6= ǫ for any a 6= ǫ. If a family of languages is closed under ǫ-free

homomorphisms, inverse homomorphisms and intersection with regular languages,

we call such a family a trio or faithful cone of languages. The context sensitive

languages are an example of a trio of languages.

A faithful cone closed under arbitrary morphisms is termed a full trio or rational

cone of languages. The regular languages and the recursively enumerable sets are both

examples of full trios. An equivalent formulation of the definition of a rational cone

is by asking that the family be closed under rational transductions [5, Section V.2].

We note that no mention has yet been made of those operations contributing to

the definition of regular expressions. If a family of languages is a rational cone and

is also closed under union, we call the family a semi-AFL.

If a family of languages is a trio but further is closed under union, concatenation

and positive closure we say that it is an AFL. The positive closure or +-closure of a

language L is the set

L+ =
∞
⋃

i=1

Li,

that is, the set of languages is closed under subsemigroup generation. If an AFL is

also closed under arbitrary homomorphism (it is a full trio) we say that it is a full

AFL.

We may also define a family of languages in terms of one key language. If for

some language L the language family F is the least AFL containing L, we say that

F is principal . It is also usual to say that the principal AFL is generated by L. We

summarize this section in Figure 2.1. In Figure 2.2 we compare the closure properties

of the language classes which we have seen in this chapter. We denote the regular

CHAPTER 2. PRELIMINARIES 35

languages by REG, the context free languages by CFL, the context sensitive languages

by CSL and the recursively enumerable sets by RE.

Included in the table are a number of language families which will be defined

in the next chapter. The blind counter languages are denoted by BLIND and the

partially blind counter languages by PBLIND. The prefix 1- denotes a single counter,

so for example 1-PBLIND denotes the partially blind one counter languages.

The Chomsky hierarchy traditionally refers to the relative inclusions of the classes

of regular, context-free, context sensitive and recursively enumerable languages, al-

though some authors now use the term more widely. The four classical language

classes are arranged as follows in the hierarchy

REG ⊂ CFL ⊂ CSL ⊂ RE.

CHAPTER 2. PRELIMINARIES 36

ǫ-free

morphisms

inverse

morphisms

arbitrary

morphisms

∩ REG union concat +-

closure

trio

X X X

faithful
cone

X X X

full trio

X X X X

rational
cone

X X X X

semi-
AFL

X X X X

full
semi-AFL

X X X X X

AFL

X X X X X X

full AFL

X X X X X X X

Table 2.1: The closure properties of various classes of language families.

CHAPTER 2. PRELIMINARIES 37

semi-AFL full semi-AFL AFL full AFL

REG X

CFL X

CSL X

RE X

1-PBLIND X

PBLIND X

1-BLIND X

BLIND X

Table 2.2: Familiar language families and their closure properties.

Chapter 3

M-automata

In this chapter we introduce the usual definition of a monoid automaton, and con-

sider related results. Many results featuring M-automata for M a specific type of

group or monoid are scattered across the computer science literature. Such results

have provided important insights in combinatorial group theory and formal language

theory. One aim of this chapter is to collect some such results together in a coherent

and consistent form. We also establish some new foundational results.

Let M be a monoid with identity 1 and let Σ be a finite alphabet. An M-

automaton (or monoid automaton when we do not need to refer to a specific monoid)

over Σ is a finite automaton over the direct product M×Σ. We say that the automa-

ton accepts a word w ∈ Σ∗ if it accepts (1, w), that is if there exists a path connecting

the initial state to some terminal state labelled by (1, w). Intuitively, we visualise an

M-automaton as a finite automaton augmented with a memory register which can

store an element of M ; the register is initialized to the identity element, is modified

by right multiplication by element of M , and for a word to be accepted the element

present in the memory register on completion must be the identity element. We write

F1(M) for the class of all languages accepted by M-automata, or equivalently for the

class of languages accepted by regular M-valence automata [20], that is, finite state

automata where each transition is assigned a valence taken from the monoid M . Va-

lence automata are the natural automata theoretic partner to valence grammars -

instead of assigning valences to productions, they are assigned to transitions in the

38

CHAPTER 3. M-AUTOMATA 39

automaton.

We first note a number of well known and obvious results about M-automata

languages, which are never the less very useful.

Proposition 3.0.1. Let L ⊆ Σ∗ be a language and let σ : X∗ →M be a finite choice

of distinct generators for a monoid M . Then L is accepted by an M-automaton if

and only if it is accepted by an M-automaton having edge labels from M only of the

form m = xσ where x ∈ X ∪ {ǫ}.

Proof. Let A be anM-automaton accepting the language L, without redundant states

and edges. We may write A as an M-automaton with edge labels from M only of

the form xσ for some x ∈ X by splitting any edges labelled by m ∈M with m 6= xσ

for some x ∈ X. That is, if m = (x1 . . . xn)σ (with x1, . . . , xn ∈ X) we replace the

edge labelled by (m,w) ∈ M × Σ∗ with a sequence of edges, beginning with an edge

(x1σ, w) and followed sequentially by edges (xiσ, ǫ) for i = 2, . . . , n. In this way we

achieve an automaton with the required condition which accepts the same language

as the original M-automaton A.

Proposition 3.0.2 ([35]). Let L ⊆ Σ∗ be a language and M be a finitely generated

monoid. Then the following are equivalent.

(i) L is accepted by an M-automaton;

(ii) L is a rational transduction of the identity language of M with respect to some

finite generating set;

(iii) L is a rational transduction of the identity language of M with respect to every

finite generating set.

Proof. Assume first that (i) is true. We shall prove that (i) implies (iii). Let σ : X∗ →

M be a finite choice of generators for M . Then by Proposition 3.0.1 there exists an

M-automaton A with edge labels from M of the form m = xσ where x ∈ X ∪ {ǫ}.

We construct a rational transducer from X∗ to Σ∗ from the resulting automaton by

replacing edge labels of the form (xσ, w) ∈M×Σ∗ with (x, w) ∈ X×Σ∗. Now w ∈ L

CHAPTER 3. M-AUTOMATA 40

if and only if A has a path from the initial state to some terminal state labelled by

((x1σ)(x2σ) . . . (xnσ), w) for some x1, . . . , xn ∈ X such that (x1 . . . xn)σ = 1. But

this is true exactly if the transducer has an accepting path labelled (x1 . . . xn, w) for

some x1 . . . xn in the identity language of M . Then, since our choice of generators

was arbitrary, (iii) holds.

To show that (ii) implies (i), assume that (ii) holds. Then there exists a finite

choice of generators σ : X∗ → M and a rational transducer A fromX∗ to Σ∗ such that

L is the image of the identity language of M under the transduction. We construct an

M-automaton accepting L by replacing each edge label of the form (x, w) ∈ X∗×Σ∗

with (m,w) ∈M ×Σ∗ where xσ = m. It follows easily that the resulting automaton

is an M-automaton accepting the language L.

Since the monoid M is assumed to be finitely generated, it is immediate that (iii)

implies (ii), which completes the proof.

Another proposition which will be useful is the following.

Proposition 3.0.3. Let M and N be monoids with N a submonoid of M . Then

F1(N) ⊆ F1(M).

Proof. Let A be an N -automaton accepting the language L ⊆ Σ∗. Since N ⊆ M

every edge label in A lies in M × Σ∗, so we may regard A as an M-automaton. It is

clear from the definitions that it accepts the same language.

Before moving on to finite groups, we make some more general observations about

finite monoids.

Proposition 3.0.4. Let M be a monoid. Then F1(M) contains the regular languages.

Proof. Let L ⊆ Σ∗ be a regular language. Then there exists a finite automaton over

Σ∗ accepting precisely L. Applying the transformation

Σ∗ →M × Σ∗ x 7→ (1, x)

CHAPTER 3. M-AUTOMATA 41

to the edge labels we obtain an M-automaton A accepting precisely the language L

as required.

For the next propositions we require the use of one of Green’s relations - recall

that two elements a, b ∈ S are R-related, aRb if and only if aS1 = bS1. In the

following propositions we will use the fact that for two elements a, b ∈ S, aRb if

and only if there exist elements s, s′ ∈ S1 such that as = b and bs′ = a. A similar

equivalence exists for L -related elements. Recall that for an element a ∈ S, Ra

denotes the R-class containing the element a.

Proposition 3.0.5. Let M be a finitely generated monoid with R1 finite. Then

F1(M) is equal to the regular languages.

Proof. Proposition 3.0.4 above tells us that F1(M) contains the regular languages, so

we need only show that every language in F1(M) is regular.

Let ϕ : X∗ → M be a finite choice of generators for M and let L ∈ F1(M). Then

L is a rational transduction of the identity language of M by Proposition 3.0.2. By

Theorem 2.2.9 it suffices to show that the identity language of M is regular.

We define a finite automaton over the free monoidX∗ with state set R1 and unique

initial and terminal state the identity element. Two states p and q are connected by

an edge labelled by x ∈ X if and only if p(xϕ) = q. Since R1 is finite and X is

finite the state set and edge set of our automaton must be finite, and the automaton

accepts precisely the identity language of M . Therefore the identity language of M

is a regular language, and the result follows.

A group G is called locally finite if all finitely generated subgroups of G are finite.

Mitrana and Stiebe proved the following.

Theorem 3.0.6 ([40]). For any group G, F1(G) is equal to the regular languages if

and only if G is locally finite.

If we consider locally finite monoids (where all finitely generated submonoids

are finite) however, we cannot conclude the same result. Below we shall give an

CHAPTER 3. M-AUTOMATA 42

exact characterisation of monoids M such that F1(M) is equal to the class of regular

languages.

3.1 Cyclic and abelian groups

Since finite groups have been covered implicitly in the previous section, we next

consider the case of cyclic groups. We need only consider the infinite cyclic group

Z = 〈x〉. Z-automata are sometimes also referred to as blind one-counter automata,

where they are presented as finite automata augmented with a single integer counter

which cannot be read. We will use both notations interchangeably.

For a group G and a property P (for example, the property of being finite, cyclic,

abelian, free) we say that the group G is virtually P if there exists a subgroup of

finite index in G which has the property P . From the perspective of word problems

of cyclic groups, a result of Herbst [31], extended by Elston and Ostheimer [18] is the

following.

Theorem 3.1.1. Let G be a finitely generated group. Then the word problem of G

is accepted by a Z-automaton if and only if G is virtually cyclic.

The natural next class of groups to consider are the free abelian groups of rank

n. A free abelian group of rank n is isomorphic to Z
n, a direct product of n cyclic

groups. Again, it is straight forward to see that the definition of Z
n-automata is

equivalent to that of blind n-counter machines [35]. The proof of the corresponding

result about word problems is much more involved than for cyclic groups however.

Theorem 3.1.2 ([16]). Let G be a finitely generated group. The word problem of G

is accepted by a Z
n-automaton if and only if G is virtually free abelian of rank n or

less.

The result is proved by establishing bounding results for minimal elements of

intersections of semilinear sets. These results are then applied to conclude that a

group whose word problem is accepted by a Z
n-automaton must have polynomial

growth of degree less than n. A seminal result of Gromov [28] states that a group has

CHAPTER 3. M-AUTOMATA 43

polynomial growth if and only if the group is virtually nilpotent, and thus G must

be virtually nilpotent in the case of the theorem. Finally applying a combinatorial

result of Mitrana and Stiebe [40], the result is achieved.

3.2 Free groups

Recall the formal categorical definition of a free group from Chapter 2. The (unique

up to isomorphism) free group on n generators has monoid presentation

Fn = 〈x1, . . . , xn, x
−1
1 , . . . , x−1

n | x1x
−1
1 = x−1

1 x1 = . . . = xnx
−1
n = x−1

n xn = 1〉.

The free groups provide the basis for all study in combinatorial group theory since

any group G is a quotient of a free group. Indeed, if G is a group there exists a free

group F and a normal subgroup N of F such that G ∼= F/N , that is, G is isomorphic

to the quotient of F by N .

An important property of free groups is the following.

Theorem 3.2.1 ([38]). The free group on n letters for n ≥ 2 embeds in the free group

on two letters, F2.

This result often allows us to talk just about the free group on two letters.

The Dyck languages consist of balanced strings of parenthesis, so the word (()())

would be included but the word ()((would not. The one-sided Dyck language allows

only pairing of parentheses in the usual way, so we may pair and cancel () but not

)(. When both of these pairings are allowed we call the resulting language the two-

sided Dyck language. Chomsky and Schützenberger made the following important

observation.

Theorem 3.2.2 ([9]). Let L ⊆ Σ∗ be a language. The following are equivalent.

(i) L is context-free.

(ii) L is a rational transduction of the one-sided Dyck language on two pairs of

parentheses.

CHAPTER 3. M-AUTOMATA 44

(iii) L is a rational transduction of the two-sided Dyck language on two pairs of

parentheses.

Even without an understanding of rational transductions, it is easy to see the

equivalence between the two-sided Dyck language and the word problem of the free

group. For example, consider the two-sided Dyck language on two pairs of parentheses

and the free group of rank two generated by x1 and x2. Applying a straight forward

substitution:

(→ x1,) → x−1
1 ,

[→ x2,] → x−1
2 ,

we can see the equivalence of the word

(()[][])

from the two-sided Dyck language with the word

x1x1x
−1
1 x2x

−1
2 x2x

−1
2 x−1

1 = 1

from the free group. So using Proposition 3.0.2 we may restate the equivalence of

parts (i) and (iii) of Theorem 3.2.2 as follows.

Theorem 3.2.3. Let L ⊆ Σ∗ be a language. Then L is context-free if and only if L

is accepted by a F2-automaton.

A direct algebraic proof of this result was first claimed by Mitrana and Dassow

[13], however the proof was incorrect as described in [11]. A correct proof was provided

by Corson [11]. The observation of equivalence between this result and part of the

Chomsky and Schützenberger result was made in [35].

We will deal with the other the equivalence of parts (i) and (ii) of the Chomsky

and Schützenberger theorem in the following section.

Results of Muller and Schupp [42, 43] combined with a result of Dunwoody [14]

give a result about word problems for the context-free case.

CHAPTER 3. M-AUTOMATA 45

Theorem 3.2.4. Let G be a finitely generated group. The word problem of G is

context-free if and only if G is virtually free.

Letting X = {x1, x2, x
−1
1 , x−1

2 } and Y = {y1, y2, y
−1
1 , y−1

2 } be two disjoint sets we

define the group F2 × F2 with monoid presentation

〈X, Y | x1x
−1
1 = x−1

1 x1 = x2x
−1
2 = x−1

2 x2 = 1 xy = yx, x ∈ X, y ∈ Y 〉,

the direct product of two copies of the free group on two letters. With respect to this

group, Mitrana and Stiebe observed another interesting property.

Theorem 3.2.5 ([41]). F1(F2 × F2) is exactly the family of recursively enumerable

languages.

3.3 Polycyclic monoids

Let X be a set. The polycyclic monoid on X is the monoid P (X) generated, under

the operation of composition of relations, by the partial bijections of the form

px : X∗ → X∗, w 7→ wx

and

qx : X∗x → X∗, wx 7→ w.

The monoid P (X) is a natural algebraic model of a pushdown store or stack on the

alphabet X, with px and qx corresponding to the elementary operations of pushing

x and popping x (where defined) respectively, and composition to performing these

operations in sequence.

Clearly for any x ∈ X, the composition pxqx is the identity map. On the other

hand, if x and y are distinct letters inX, then pxqy is the empty map which constitutes

a zero element in P (X). In the case |X| = 1, say X = {x}, the monoid P (X) is

called the bicyclic monoid , and is often denoted B. The partial bijections px and qx

alone (which we shall often denote just p and q) do not generate the empty map, and

so the bicyclic monoid does not have a zero element; to avoid having to treat it as a

CHAPTER 3. M-AUTOMATA 46

special case, it is convenient to write P 0(X) for the union of P (X) with the empty

map; thus we have P 0(X) = P (X) if |X| ≥ 2 but P 0(X) isomorphic to P (X) with a

zero adjoined if |X| = 1.

Let PX = {px | x ∈ X} and QX = {qx | x ∈ X}, and let z be a new symbol not

in PX ∪QX which will represent the zero element. Let ΣX = PX ∪QX ∪ {z}. Then

there is an obvious surjective morphism σ : Σ∗
X → P 0(X), and indeed P 0(X) admits

the monoid presentation

P 0(X) = 〈ΣX | pxqx = 1, pxqy = z,

zpx = zqx = pxz = qxz = zz = z for all x, y ∈ X, x 6= y〉.

Returning to the Chomsky and Schützenberger result for context-free languages (The-

orem 3.2.2), we conclude that the identity language of P (X) (|X| = n, n ≥ 2) is

precisely equivalent to the one-sided Dyck language on 2n letters.

Theorem 3.3.1 ([22, 34]). For |X| ≥ 2 a P (X)-automaton is equivalent to a push-

down automaton with stack alphabet X, so that the language class F1(P (X)) is exactly

the class of context-free languages.

The bicyclic monoid and counter automata

The bicyclic monoid is the simplest example of a polycyclic monoid, though from a

language theoretic perspective it is arguably the most interesting. It has presentation

〈p, q | pq = 1〉

but can be thought of more easily as being the monoid of operations on a counter

which cannot take negative values. Let p denote ‘add one to the counter’ and let q

denote ‘subtract one from the counter’. Then if we read the string pq the net effect

is the identity. Note that qp 6= 1, since this would go against our assumption that

we cannot drop below zero in our counter. B-automata are precisely partially blind

one-counter automata as defined by Greibach [26], and hence Bn-automata are also

referred to as partially blind n-counter automata. As with their blind counterparts,

CHAPTER 3. M-AUTOMATA 47

we will use both notations interchangeably. We note that the identity language of B

is precisely the one-sided Dyck language on a single pair of parentheses. Elements of

the bicyclic monoid then take the form qmpn with m,n non-negative integers.

We have already noted the equivalence of the one-sided Dyck language on n pairs

of parenthesis to the identity language of the polycyclic monoid of order n. Hence

the identity language of the bicyclic monoid is equal to the one-sided Dyck language

on a single pair of parenthesis. Similarly we have observed the equivalence of the

two-sided Dyck language on n pairs of parenthesis to the word problem of the free

group on n letters when n ≥ 2. It is easy to see that for a single pair of parenthesis

we have precisely the word problem of Z.

Proposition 3.3.2 ([6]). The one-sided Dyck language on one pair of parenthesis

is not the image of the two-sided Dyck language on one pair of parenthesis under a

rational transduction, and vice versa.

Combining this with Proposition 3.0.2 we may conclude:

Theorem 3.3.3. F1(Z) and F1(B) are incomparable under inclusion.

While F1(B) clearly contains only context-free languages, if we consider M-

automata defined over the direct product of two copies of the bicyclic monoid, that

is, partially blind two-counter automata, we have the following result.

Proposition 3.3.4. F1(B
2) is not contained in the set of context-free languages.

Proof. We claim that F1(B
2) contains languages such as

L = {aibjcidj | i, j ≥ 1}

which do not satisfy the pumping lemma for context-free languages. Indeed, let B1

and B2 be two disjoint copies of the bicyclic monoid, with sets of generators {p1, q1}

and {p2, q2} respectively. Then the language above is accepted by the B1 × B2-

automaton shown in Figure 3.1.

It suffices to show that the language L does not satisfy the pumping lemma

for context-free languages (Lemma 2.3.1). We assume for a contradiction that L

CHAPTER 3. M-AUTOMATA 48

q0 q1 q2 q3
(1, 1, ǫ) (1, 1, ǫ) (1, 1, ǫ)

(p1, 1, a) (1, p2, b) (q1, 1, c) (1, q2, d)

Figure 3.1: A B2-automaton accepting the language {aibjcidj | i, j ∈ N}.

satisfies the lemma, and let m ∈ N be the pumping length for L. Consider a word

z = ambncmdn ∈ L with n > m. Clearly |z| ≥ m. Now we must consider where the

strings to be pumped must lie within the word z. Recall that to satisfy the pumping

lemma, we must first be able to factorise the word as z = uvwxy so that uvjwxjy ∈ L

for all i ≥ 1 and |vxy| ≤ m. Clearly we have two options. Either

(i) We let v = ai and y = ci for some 1 ≤ i < m or

(ii) We let v = bi and y = di for some 1 ≤ i < m.

Recall that a condition of the pumping lemma states that the subword vxy must

have length less than or equal to the pumping length m. But in case (i) the length of

vxy is at least n which was defined to be greater than m. In case (ii), the length of

vxy must also be strictly greater than m, and hence we cannot satisfy the conditions

of the pumping lemma and we have a contradiction.

Therefore the language L does not satisfy the pumping lemma for context-free

languages, and so by Proposition 3.0.2 there exists a language in F1(B
2) which is not

context-free.

3.4 Nilpotent groups

Let H and K be normal subgroups of a group G. If H/K is contained in the centre

of G/K then H/K is called a central factor of G. A group G is nilpotent if and only

if it has a finite series of normal subgroups

G = G0 ≥ G1 ≥ . . . ≥ Gr = 1

CHAPTER 3. M-AUTOMATA 49

such that Gi−1/Gi is a central factor of G for each i = 1, . . . , r. The smallest value

of the length r of such a series for a group G is called the nilpotency class of G. So

for example, abelian groups are nilpotent of class 1.

Results relating G-automata and word problems have so far been limited for G a

nilpotent group. However automata over nilpotent groups accept a class of languages

which have some interesting properties, and for this reason we briefly mention them.

One result is the following.

Theorem 3.4.1 ([21]). Let G be a finitely generated nilpotent group of class c. Then

the word problem of G is context sensitive.

It has been claimed in [15] that this result combined with Proposition 3.0.2 is suffi-

cient to imply a result similar to Theorems 3.0.6 and 3.2.3 above for nilpotent groups:

a result saying that languages accepted by G-automata where G is a nilpotent group

are context-sensitive. However, this would require the closure of the context-sensitive

languages under rational transductions. The family of context-sensitive languages

is not closed under arbitrary morphisms and hence since arbitrary morphisms are

examples of rational transductions, the family of context sensitive languages is not

closed under rational transductions [39]. Thus all we may really conclude is that the

G-automata languages where G is a finitely generated nilpotent group of class c are

recursively enumerable, a significantly weaker result.

The discrete Heisenberg group

In this section we explore the formal language properties of one of the simplest of

the nilpotent groups, the discrete Heisenberg group. Recall that a group G is called

torsion if every element has finite order, that is, for each x ∈ G there exists some

n ∈ N such that xn = 1, the identity element of the group. A group is torsion-free if

the only element of finite order is the identity element.

The discrete Heisenberg group is a non-abelian, torsion-free, nilpotent group of

class two. It is one of the simplest examples of a nilpotent group to present and

understand. It may be presented as a matrix group generated by the following two

CHAPTER 3. M-AUTOMATA 50

3 × 3 matrices.

a =

1 1 0

0 1 0

0 0 1

, b =

1 0 0

0 1 1

0 0 1

.

The form of the generators imply the relations

[a, [a, b]] = 1, [b, [a, b]] = 1,

(where in this case square brackets denote the commutator a−1b−1ab). In fact these

relations suffice to define the group, so that it has presentation

〈 a, b | [a, [a, b]] = 1 = [b, [a, b]] 〉.

Thinking in terms of a group presentation it is more straightforward to define a

new generator c = [a, b] giving the presentation

〈a, b, c | ab = bac, ac = ca, bc = cb〉.

The central series of H has the form

{1} ≤ 〈c〉 ≤ H

where 〈c〉 = [H,H] = Z(H) (where [H,H] denotes the commutator subgroup, the

subgroup generated by all the commutators).

Since H is torsion-free and finitely generated we may refine the upper central

series to form a central series

H = H0 > H1 > . . . > Hn = 1

for which each Hi−1/Hi is an infinite cyclic group. Then for H we have the following:

H > 〈b, c〉 > 〈c〉 > 1.

We now choose elements ui to form our canonical basis [30] such thatGi−1 is generated

by Gi and ui for each i = 0, . . . n where in our case n = 2. This allows us to write any

element x ∈ H in the form x = ui
1u

j
2u

k
3 where u = (u1, u2, u3) is the canonical basis

CHAPTER 3. M-AUTOMATA 51

and for some i, j, k ∈ Z the canonical parameters of x. Hence the canonical basis of

H is u = (a, b, c) so that any element x ∈ H may be written uniquely as x = aibjck.

We note the close association of the Heisenberg group with the naive quadratic

sorting algorithm bubble sort. Starting with a word consisting of letters a, b and their

inverses, we convert the word to normal form, by commuting a’s and b’s, thus adding

powers of c to the end of the word. In fact, the result is an alphabetized word, with

the power of c encoding the number of ‘swaps’ which were necessary.

A useful way of presenting elements of the Heisenberg group is as integer triples

representing the canonical parameters of a given element in H . Then the standard

matrix multiplication in the group appears very differently and we have the following.

(aibjck) · (aubvcw) = (ai+u, bj+v, ck+w+uj).

In terms of automata in this presentation, we can look at incrementing the ‘coun-

ters’ as follows. In fact what we are able to do is view a, b and c as operators on the

group (by right multiplication) and hence on the three counters.

(i, j, k) · (1, 0, 0) = (i+ 1, j, k);

(i, j, k) · (0, 1, 0) = (i, j + 1, k + i);

(i, j, k) · (0, 0, 1) = (i, j, k + 1).

In order to demonstrate the interesting properties present in languages accepted by

nilpotent group automata, we include three examples of Heisenberg automata, that is,

G-automata where G is the discrete Heisenberg group, whose languages demonstrate

some form of multiplication. In Figure 3.2 we have a Heisenberg automaton accepting

the language {xpyqzpq | p, q ≥ 0}. Indeed, an accepting path through the automaton

must have label (apbqa−p′b−q′c−r, xpyqzr) for some p, q, r ∈ N. Using the normal form

for H we may conclude:

(apbqa−p′b−q′c−r, xpyqzr) = (xpyqzr, apa−p′bqb−q′c−r)

= (xpyqzr, ap−p′bq−q′cp
′q−r).

CHAPTER 3. M-AUTOMATA 52

Then ap−p′bq−q′cp
′q−r = 1 in H if and only if p = p′, q = q′ and hence p′q = pq = r

and the automaton accepts precisely {xpyqzpq | p, q ≥ 0} as required.

In Figure 3.3 we have a Heisenberg automaton accepting composite numbers. An

accepting path through the automaton must have label (apbqa−p′b−q′cn, xn) and using

the normal form as above we see

(apbqa−p′b−q′cn, xn) = (ap−p′bq−q′cn, xn)

and since ap−p′bq−q′cn = 1 in H we have p = p′ and q = q′, so n = pq and the

automaton accepts precisely the set {xpq | p, q > 1} as required.

In Figure 3.4 we have a Heisenberg automaton accepting the language {xpypn | p ∈

N}. An accepting path through the automaton has label ((abna−1b−n)pc−p′, xpyp′).

Reasoning as before, we use the normal form to conclude

((abna−1b−n)pc−p′, xpyp′) = ((a1−1bn−n)pcpn−p′, xpyp′)

= (cpn−p′, xpyp′).

The path is accepting if and only if cpn−p′ = 1 in H and so p′ = pn as required.

q0��
��

- q1��
��

q2��
��

q3��
��

q4��
��

-
/

(a, x)

/

(b, y)

-
(1, ǫ)

-
(1, ǫ) /

(a−1, ǫ)

/

(b−1, ǫ)

/

(c−1, z)

-
(1, ǫ)

-
(1, ǫ)

Figure 3.2: A H-automaton accepting the set {xpyqzpq | p, q ≥ 0}

With respect to the existing language classes covered in this thesis, we make the

following obvious observation.

Proposition 3.4.2. F1(Z
2) ⊆ F1(H).

Proof. Since H ≥ 〈a, c〉 ∼= Z
2, we see that Z

2 is a submonoid of H . Then by Propo-

sition 3.0.3 the result follows.

CHAPTER 3. M-AUTOMATA 53

q0��
��

- q1��
��

q2��
��

q3��
��

q4��
��

q5��
��

-
/

(a, ǫ)

-
(a2, ǫ)

-
(b2, ǫ) /

(b, ǫ)

/

(a−1, ǫ)

/

(b−1, ǫ)

-
(1, ǫ)

-
(1, ǫ)

-
(1, ǫ) /

(c−1, x)

Figure 3.3: A H-automaton accepting the set {xpq | p, q > 1}

q0��
��

-

q1��
��

q2��
��

q3��
��

q4��
��
��
��

*

(a, ǫ)

w

(bn, x)

�
(a−1, ǫ)

o

(b−n, ǫ)

-
(c−1, y) /

(c−1, y)

Figure 3.4: A H-automaton accepting the set {xpypn | p ∈ N}

Consequently we also have F1(Z), REG ⊆ F1(H). So we conclude that even

for a relatively simple choice of nilpotent group, the positioning of the corresponding

language class within the Chomsky hierarchy is already very interesting. This subject

is deserving of further study.

Chapter 4

Monoid automata and their

extensions

In this chapter we consider the properties of M-automata over general monoids and

semigroups, and what effect extending the definition of monoid automata has on these

properties. We first examine the interactions of M-automata with the structure of a

given monoid, noting some limitations on the power of M-automata which result. We

then consider a natural extension to the definition which circumvents some of these

limitations. Some of the material in this chapter has been published in [49, 50, 51].

4.1 The structure of a monoid

The aim of this section is to show that the extent to which an M-automaton can

make use of the structure of a general monoid M is severely limited. There are

many interesting structural properties of monoids, such as ideals, identity and zero

elements, which as we shall see in what follows, can effect the way in which monoid

automata behave. Finally in this section we use our observations to present a theorem

outlining the types of language class which can be derived from monoid automata.

Proposition 4.1.1. Let I be a proper ideal of a monoidM . Then F1(M) = F1(M/I).

Proof. Suppose L ∈ F1(M), and let A be an M-automaton accepting L. First notice

that any path containing an edge of the form (x, w) with x ∈ I will itself have label

54

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 55

with first component in I; in particular, since I is a proper ideal, 1 /∈ I and such a

path cannot be an accepting path. It follows that we may remove any such edges

without changing the language accepted, so that we may assume without loss of

generality that A has no such edges. Now for any x1, . . . , xn ∈M \ I, it follows from

the definition of M/I that x1 . . . xn = 1 in M if and only if {x1} . . . {xn} = {1} in

M/I. If we let B be the (M/I)-automaton obtained from A by replacing edge labels

of the form (x, w) with ({x}, w), it follows from the above fact that A has a path

from the initial vertex to a terminal vertex labelled (1, w) if and only if B has a path

from the initial vertex to a terminal vertex labelled ({1}, w). Hence B accepts the

language L and L ∈ F1(M/I).

Conversely, if L ∈ F1(M/I) then L is accepted by some (M/I)-automaton. We

may assume without loss of generality that B has no edges labelled by the zero

element I. Indeed let w ∈ L and assume that there exists an edge in the accepting

path labelled by w which is labelled by the zero element I. Then the cumulative label

of the whole path must be I, which contradicts our assumption. We now obtain from

B a new M-automaton A by replacing edge labels of the form ({x}, w) with (x, w).

Since for x1, . . . , xn ∈ M \ I, x1 . . . xn = 1 if and only if {x1} . . . {xn} = {1}, any

accepting path through B will also be an accepting path in A. So A accepts exactly

L, and so L ∈ F1(M).

Recall that a monoid M is called simple if it does not contain any proper ideals.

Similarly a monoid M with zero is called 0-simple if the only ideals are {0} and M

itself and additionally M2 6= {0}. The latter condition excludes only the 2 element

null semigroup and forces M2 = M .

Corollary 4.1.2. For every monoid M there is a simple or 0-simple monoid N such

that F1(M) = F1(N).

Proof. If M has no proper ideals then it is simple, so we are done. Otherwise, let I

be the union of all the proper ideals of M . Then I is an ideal and, since the identity

element 1 does not lie in any proper ideal, 1 /∈ I and I is a proper ideal of M . Set

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 56

N = M/I and assume for a contradiction that there exists some J ⊆ N , a proper

non-zero ideal. But if J is an ideal of N , J ′ = {x ∈ M | {x} ∈ J} ∪ I must be a

proper ideal of M . But this contradicts our assumption that N was exactly the result

of removing all proper ideals from M , and so J = N and N has no proper non-zero

ideals. Hence either N2 = {0} or N is 0-simple. In the former case N is the 2 element

null semigroup so by Proposition 3.0.5, F1(N) = REG = F1({1}) where {1} is the

trivial monoid which is simple. Otherwise N is 0-simple and by Proposition 4.1.1 we

have F1(M) = F1(M/I) = F1(N) as required.

Corollary 4.1.2 tells us that the usual theory of M-automata really only involves

the very restricted classes of simple and 0-simple monoids. The following proposition

deals with a special case with respect to zero, and says that we may restrict our study

further in this particular situation.

Proposition 4.1.3. Let M be a monoid. Then F1(M
0) = F1(M).

Proof. That F1(M) ⊆ F1(M
0) follows immediately from Proposition 3.0.3 since M ⊂

M0, so we need only prove the converse. Suppose L ∈ F1(M
0), and let A be an

M0-automaton accepting L.

As in the proof of Proposition 4.1.1 we first note that any path containing an edge

labelled by zero must itself have label zero. However, for a word to be accepted we

must have the identity element present in the memory register on reaching a terminal

state in the automaton, and hence we conclude that any accepting path through A

must not contain an edge with first component zero.

It follows that we may remove all edges whose first label component is zero

from the automaton without affecting the language accepted, obtaining a new M0-

automaton B which accepts the language L. But now since M is a submonoid of

M0, B may be interpreted as an M-automaton accepting L, so that L ∈ F1(M) as

required.

Recall that an idempotent element e in a semigroup S is an element such that

ee = e. Further, an idempotent element e is called primitive if for every non-zero

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 57

idempotent f such that ef = fe = f we have e = f . A semigroup is completely

simple [respectively, completely 0-simple] if it is simple [0-simple] and has a primitive

idempotent. For more information about completely simple and completely 0-simple

semigroups, see [33]. An alternative but very useful characterisation of completely

simple and completely 0-simple semigroups comes from the Rees theorem, which we

outline below.

Let T be a semigroup, 0 be a new symbol not in T and let I, J be non-empty sets.

Let P = (Pji) be a J × I matrix with entries in T ∪ {0}. We define a new semigroup

with set of elements

(I × T × J) ∪ {0}

and multiplication defined by

(i, t, j)(i′, t′, j′) =

(i, tPji′t
′, j′) ifPji′ 6= 0

0 otherwise,

and

(i, t, j)0 = 0(i, t, j) = 00 = 0.

It is simple to verify that this binary operation is associative; we call the semigroup

constructed in this way a Rees matrix semigroup with zero over T , and denote it

M0(T ; I, J ;P). The semigroup T is called the base semigroup and the matrix P the

sandwich matrix of the construction. If P contains no zero entries then I × T × J

forms a subsemigroup of M0(T ; I, J ;P), called a Rees matrix semigroup (without

zero) over T and denoted M(T ; I, J ;P).

Rees matrix semigroups play a crucial role in much of the structural theory of

semigroups. Of particular importance is the case that the base semigroup T is a

group G. A Rees matrix semigroup with zero over a group is called regular [10] if

every row and every column of the sandwich matrix contains a non-zero entry. The

importance of this construction can be seen from the following seminal result of Rees

[48].

Theorem 4.1.4 (The Rees Theorem). Let S = M0(G; I, J ;P) be a regular Rees

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 58

matrix semigroup constructed as above with G a group. Then S is a completely 0-

simple semigroup. Conversely, every completely 0-simple semigroup is isomorphic to

one constructed in this way.

As a corollary, we have a similar result for semigroups without zero.

Corollary 4.1.5. Let S = M(G; I, J ;P) be a Rees matrix semigroup (without zero)

constructed as above with G a group. Then S is completely simple. Conversely, every

completely simple semigroup is isomorphic to one constructed in this way.

The final aim in this section will be to provide a theorem classifying possibilities

for F1(M) for M a monoid. We first note some useful results from [10].

Theorem 4.1.6. Let e be a non-zero idempotent of a 0-simple semigroup S which is

not completely 0-simple. Then S contains a copy of the bicyclic monoid having e as

an identity element.

Proposition 4.1.7. A completely 0-simple semigroup contains an identity element

if and only if it is isomorphic to G0 for some group G.

Proof. Let S = M0(G; I, J ;P) be a completely 0-simple semigroup containing an

identity element e = (i, g, j) say. For every i′ ∈ I we have

(i′, g, j) = e(i′, g, j) = (i, gPji′, j)

and so we may conclude that i = i′. Thus |I| = 1 and symmetrically |J | = 1. Clearly

Pji 6= 0 and so S \{0} is a subsemigroup. It will therefore suffice to show that S \{0}

is a group. Let (i, h, j) ∈ S \ {0} and consider the element (i, P−1
ji h

−1g, j). Then

(i, h, j)(i, P−1
ji h

−1g, j) = (i, hPjiP
−1
ji h

−1g, j) = (i, g, j) = e.

So every element in S \ {0} has a right inverse, and so we conclude that S \ {0} is a

group as required. The converse is clear.

We use these facts to prove the following, which is well known.

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 59

Corollary 4.1.8. A simple [0-simple] monoid with identity e is either a group [re-

spectively, a group with 0 adjoined] or contains a copy of the bicyclic monoid as a

submonoid having e as its identity element.

Proof. Let M be a 0-simple monoid with identity element 1. If M is completely

0-simple then Proposition 4.1.7 tells us that M is a group with zero adjoined. If M

is not completely 0-simple we may apply Theorem 4.1.6 to conclude that M contains

a copy of the bicyclic monoid as a submonoid.

Now let M be a simple monoid (that is, M contains no zero element). If M is

completely simple then we may adjoin a zero element to give a completely 0-simple

monoid M0. We may then apply Proposition 4.1.7 to see that M must be a group.

If M is not completely simple, then after adjoining a zero we may apply Theorem

4.1.6 to conclude that M0 contains a copy of the bicyclic monoid. Let N ⊆ M be a

subsemigroup isomorphic to the bicyclic monoid. Since the bicyclic monoid B does

not contain a zero element, 0 6∈ N . So N ⊆ M0 and the simple monoid M contains

a copy of the bicyclic monoid as a submonoid.

Recall that a group is called torsion if every element has finite order, that is, for

each x ∈ G there exists some n ∈ N such that xn = 1. Combining the previous

proposition with Propositions 4.1.1 and Corollary 4.1.7 we now obtain the following.

Theorem 4.1.9. Let M be a monoid. Then either F1(M) = F1(G) for some group

G, or F1(M) contains the partially blind one-counter languages.

Proof. Let M be a monoid. Corollary 4.1.2 tells us that F1(M) is equal to F1(N) for

some simple or 0-simple monoid N . Corollary 4.1.8 says that N is either a group (or

a group with zero adjoined) or contains a copy of the bicyclic monoid. If N is a group

then we are done. If N is a group with zero adjoined we may apply Proposition 4.1.3

to see that F1(N) = F1(G) for some group G. The remaining possibility is that N

contains a copy of the bicyclic monoid, in which case F1(N) contains the partially

blind one-counter languages.

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 60

Before proving the key result of this section, we wish to recall Mitrana and Stiebe’s

result, appearing as Theorem 3.0.6 in this thesis, which says that F1(G) is equal to

the regular languages if and only if G is locally finite. We have already observed that

this result does not hold in the monoid case, but we are now in a position to prove

the following.

Theorem 4.1.10. For any monoid M , F1(M) is equal to the regular languages if

and only if every finitely generated submonoid of M has R1 finite.

Proof. Let M be a monoid in which every finitely generated submonoid has R1 finite.

Let L ⊆ F1(M) and let A be an M-automaton accepting L. Let Y be the submonoid

of M generated by elements which appear as edge labels in A. Then A is a Y -

automaton accepting L, so L ∈ F1(Y). Now Y is a finitely generated submonoid of

M , so by assumption Y has finite R1 class. It follows by Proposition 3.0.5 that L is

regular.

For the converse of the theorem we prove the contrapositive statement that if

every finitely generated submonoid of M does not have finite R1 class there must

exist non-regular languages in F1(M). Suppose then that M has a finitely generated

submonoid N with R1 infinite. Consider the Rees quotient monoid N ′ = N/(N \J1)

where J1 is the J class of 1. Of course, N ′ ∼= N \(N \J1)∪{0} = J1∪{0}, unless

0 6∈ N in which case N ′ = J1. Hence N ′ consists of a single J -class and we can

conclude [10] that N ′ is 0-simple (or simple in the case that 0 6∈ N). By Proposition

4.1.1 F1(N) = F1(N
′). Our assumption that R1 is infinite tells us that N ′ is infinite

since R1 is contained in N ′. We may also conclude that N ′ is finitely generated since

N ′ is a quotient of a finitely generated monoid N .

If N ′ is completely simple or completely 0-simple then, since it is a monoid and

hence contains an identity element, by Proposition 4.1.7 N ′ is equal to a group G

or a group with zero adjoined G0. Applying Proposition 4.1.3 we see that in either

case F1(N) = F1(N
′) = F1(G). We have already established that N ′ is finitely

generated and hence that G is finitely generated, and that N ′ is infinite. Hence G

is not locally finite and we may apply Theorem 3.0.6 to conclude that F1(G) must

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 61

contain a non-regular language.

If N ′ is not completely simple or completely 0-simple then by Proposition 4.1.8

N ′ contains a copy of the bicyclic monoid as a submonoid. Then F1(B) is contained

in F1(N
′) and F1(N

′) contains non-regular languages. But since F1(N
′) ⊆ F1(M) we

conclude that F1(M) contains non-regular languages.

Proposition 4.1.11. Let M be a monoid. Then F1(M) either

(i) is equal to the regular languages;

(ii) contains the blind one-counter languages;

(iii) contains the partially blind one-counter languages or

(iv) is equal to F1(G) for G an infinite torsion group which is not locally finite.

Proof. By Theorem 4.1.9 either F1(M) contains the partially blind one-counter lan-

guages, or F1(M) = F1(G) for some group G. In the former case it is immediate that

(iii) holds. So suppose F1(M) = F1(G) for some group G.

If G is not a torsion group then it has an element of infinite order; this element

generates a subgroup isomorphic to Z, from which it follows that F1(G) contains the

class F1(Z) of blind one-counter languages and (ii) holds. Now by [35, Proposition 1],

every language in F1(G) is in F1(H) for some finitely generated subgroup H of G. If

G is locally finite, then such an H must be finite, and so every language in F1(G)

is regular. Since F1(G) certainly contains the regular languages, (i) holds. There

remains only the case in which G is a torsion group which is not locally finite, in

which case (iv) holds.

We next aim to establish some mutual exclusivity properties on the conditions of

Proposition 4.1.11. The following observation was made by Elder and Mintz [17], but

has not been published. The proof given is the author’s own.

Proposition 4.1.12. Let G be a torsion group, and let H be a group. If the word

problem of H is accepted by a G-automaton then H is torsion.

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 62

Proof. We assume for a contradiction that the word problem of H is accepted by a

G-automaton A but H is not a torsion group. Then there exists an element h ∈ H

which has infinite order. Let σ : X∗ → H be a choice of generators for H ; clearly

we may choose σ such that there exists w ∈ X with wσ = h. Then ww−1 = 1

and is contained in the word problem of H . For i ∈ N, we also may conclude that

wiw−i ∈ WP (H) and hence is accepted by A. Let πi denote an accepting path for

wiw−i in A. For some i, there must exist a loop in πi, of the form (g, wk) for some

k > 0 and g ∈ G. We call this loop τ . Since G is torsion, there exists some l > 0

such that gl = 1. Now by iterating the loop τ l + 1 times we obtain a new loop τ l+1

labelled (gl+1 = g, wlk+k).

We now replace τ with the new loop τ l+1 in the path πi. Since τ and τ l+1 have the

same label from G the new path is accepting, and has label wi+lkw−i from H . Hence

the element wi+lkw−i is contained in the word problem of H . But then hlk = 1, which

contradicts our assumption that h had infinite order. Therefore we conclude that any

group H whose word problem is accepted by a G-automaton must be torsion.

And so with respect to Proposition 4.1.11 above we have:

Corollary 4.1.13. Let G be an infinite torsion group. Then F1(G) cannot contain

the blind one-counter languages.

Proof. In Section 3.1 we noted that the blind one-counter languages are defined to

be precisely the languages accepted by Z-automata. In particular, the word problem

of Z is a blind one-counter language. Since Z is not torsion, the result follows from

Theorem 4.1.12 above.

We note also that F1(G) for G an infinite torsion group must always contain non-

regular languages (for example, the word problem of G). It follows that conditions

(i) and (iv) in Proposition 4.1.11 are mutually exclusive.

The theorem is of particular interest because torsion groups which are not locally

finite are rather rare and difficult to construct. Any locally finite group is certainly

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 63

torsion, however the converse is not true. The Burnside problem is one of the oldest

and most famous questions in group theory, and remained unsolved for many decades.

The Burnside problem in its original form is the following.

If G is a torsion group (that is, all elements have finite order), and G is

finitely generated, then is G necessarily a finite group?

The answer to this question was shown to be negative in 1964 by Golod and Shafare-

vich [25]. Variations on this original problem are still not entirely settled however.

It would be interesting to study the language classes F1(G) corresponding to

particular known examples of infinite torsion groups [24, 27, 44].

4.2 Rational monoid automata

In Section 4.1, we saw that the extent to which traditional monoid automata can

utilise the differences in structure between groups and monoids was limited. In this

section, we consider a generalisation which allows us to make use of the full structure

of arbitrary monoids. By removing the reliance on an identity element we are also

able to consider more general semigroups.

Let S be a semigroup and Σ a finite alphabet. We define a rational S-automaton

over Σ to be a finite automaton over the direct product S×Σ∗ with a distinguished ini-

tial state, a set of distinguished terminal states, and two rational subsets X0, X1 ⊆ S

called the initial set and terminal set respectively. The automaton accepts a word

w ∈ Σ∗ if there exists x0 ∈ X0 and x ∈ S such that x0x ∈ X1, and (x, w) labels a

path from the initial state to a terminal state in the automaton. For S a semigroup,

we let FRat(S) denote the set of languages accepted by rational S-automata. We shall

first deal with the case where S is a monoid.

The following proposition says that, for M a monoid, the initial set may be taken

to be {1} without loss of generality.

Proposition 4.2.1. Let M be a monoid with identity 1, and L ⊆ Σ∗ a language. If

L ∈ FRat(M) is accepted by a rational M-automaton with initial set X0 ⊆ M and

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 64

terminal set X1 ⊆ M then L is accepted by a rational M-automaton with initial set

{1} and terminal set X1.

Proof. Let B be a rational monoid automaton with initial set X0 ⊆M and terminal

set X1 ⊆M which accepts the language L. Since X0 is a rational subset of M there

exists some finite automaton over M which accepts X0. Applying the map x 7→ (x, ǫ)

to the edge labels of that produces an automaton over M × Σ∗ which we call A.

Now we construct a new M-automaton C with

• state set the disjoint union Q = QA ∪ QB where QA is the state set of A and

QB is the state set of B;

• finite alphabet Σ;

• all of the edges of A and B;

• edges labelled (1, ǫ) connecting the terminal states of A to the initial state of

B;

• initial state the initial state of A;

• terminal states the terminal states of B.

Then an accepting path through C consists of a path (x0, ǫ) (with x0 ∈ X0)

connecting the initial state to some terminal state of A, followed by an ǫ-transition,

followed by a path connecting the initial state of B to a terminal state of B labelled

by (x, w) with x ∈M . Now a word w ∈ Σ∗ is accepted by the original automaton B

precisely if there exists x0 ∈ X0 and an accepting path through B labelled by (x, w)

such that x0x ∈ X1. Hence w ∈ L implies that w is accepted by C.

For the other implication, let w be accepted by C. Then we may break down the

accepting path labelled by w in C as (x0, ǫ)(x, w) for some x0, x ∈M with x0x ∈ X1

and (x, w) accepted by B. Moreover, by construction, x0 ∈ X0, and hence w ∈ L as

required.

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 65

Proposition 4.2.2. Let M be a monoid. Then F1(M) ⊆ FRat(M).

Proof. Since the set {1} is a rational subset of M (accepted by the automaton with

a single state and only one looped edge labelled by the identity element 1), an M-

automaton with initial set {1} and terminal set {1} is a rational M-automaton. But

this is precisely the usual definition of an M-automaton, and so the result follows.

In the case that the register monoid is a group G, it transpires that rational G-

automata are no more powerful than standard G-automata. This result is an obvious

consequence of [19, Theorem 2.5] and Proposition 4.2.1 above, but for completeness

and accessibility, we provide here a direct proof in the language of monoid automata.

Proposition 4.2.3. Let G be a group. Then

FRat(G) = F1(G).

Proof. By Proposition 4.2.2, F1(G) ⊆ FRat(G). Conversely, suppose L ∈ FRat(G).

By Proposition 4.2.1 there is a rational G-automaton accepting L with initial set {1}.

Let A be some G-automaton with terminal rational subset X accepting the lan-

guage L. Since X is a rational subset of G, by Proposition 2.2.6 the set X−1 = {x−1 |

x ∈ X} is also a rational subset of G. Consider a finite automaton accepting the set

X−1. The automaton has edges labelled by elements of G. By applying the map

ϕ : G→ G× Σ∗, g 7→ (g, ǫ)

to the edge labels we obtain a new automaton (over G × Σ∗) such that every path

from the initial state to some terminal state has label (x−1, ǫ) for x ∈ X. We call this

automaton B.

We construct a new G-automaton C with

• state set Q = QA ∪QB, the disjoint union of the state sets of A and B;

• finite alphabet Σ;

• all of the edges of A and B;

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 66

• edges labelled (1, ǫ) connecting the terminal states of A to the initial state of

B;

• initial state the initial state of A;

• terminal states the terminal states of the automaton B.

Let w be accepted by C. Then an accepting path labelled by w may be factorised

(x1, w1)(1, ǫ)(x2, w2) with x1x2 = 1 ∈ G and w = w1w2. Then x2 = x−1
1 and x1 ∈ X

and x2 = x−1
1 ∈ X−1. Since all edges from B have righthand label ǫ, w = w1 and

hence w ∈ L.

Conversely, let w ∈ L. Then there exists an accepting path in A with label (x, w)

with x ∈ X. Thene x−1 ∈ X−1 is such that xx−1 = 1 and hence there exists an

accepting path through B labelled by x−1. By construction there exists an accepting

path through C with label (x1x−1, w) and hence w is accepted by C.

So the automaton C constructed in this way is in fact a G-automaton accepting

the language L, which completes the proof.

A number of more general results about semigroups will prove useful later. Though

a rational subset K of a semigroup S is certainly the homomorphic image of a regular

language, the full pre-image of K in the free monoid need not be regular. It is this

observation which informs the following result.

Proposition 4.2.4. Let σ : X+ → S be a finite choice of generators for a semigroup

S. If K ⊆ S is a subset of S such that K ′ = {w ∈ X+ | wσ ∈ K} is regular and

R ⊆ S is a rational subset then R \K is also a rational subset of S.

Proof. Since R ⊆ S is a rational subset, there exists some regular language L ⊆ X+

such that Lσ = R. Clearly L \K ′ is regular, and since (L \K ′)σ = R \K the result

follows.

In the special case of a semigroup with a zero element, we have the following

obvious consequence.

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 67

Corollary 4.2.5. Let σ : X+ → S be a finite choice of generators for a semigroup

S with zero. If {w ∈ X+ | wσ = 0} is regular and R ⊆ S is a rational subset then

R \ {0} is also a rational subset of S.

Proposition 4.2.6. Let S be a semigroup without zero and σ : X+ → S0 be a finite

choice of generators for S0. Then the set {z ∈ X+ | zσ = 0} is regular.

Proof. Let Z = {x ∈ X | xσ = 0}. Since S is a subsemigroup of S0, a word w ∈ X+

such that wσ = 0 must contain some z ∈ Z. Then the set

{z ∈ X+ | zσ = 0} =
⋃

z∈Z

X∗zX∗

is regular.

4.3 Transductions and closure properties

In this section we study the relationship between rational transductions and rational

monoid and semigroup automata. We have already considered rational transductions

for regular languages (Section 2.2), and noted the generalisation of these results to

traditional monoid automata (Proposition 3.0.2). We now give an analogous result

for rational monoid automata.

Proposition 4.3.1. Let M be a monoid, L ⊂ Σ∗ a language and X ⊆ M a subset.

Then the following are equivalent.

(i) L is accepted by an M-automaton with initial set {1} and target set X;

(ii) there exists an alphabet Ω and a morphism ω : Ω∗ →M such that L is a rational

transduction of Xω−1.

If M is finitely generated then the following condition is also equivalent to those above.

(iii) For every choice of generators ω : Ω∗ →M for M , L is a rational transduction

of Xω−1.

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 68

Proof. The proof follows the same pattern as Proposition 3.0.2.

To show that (i) implies (ii), suppose L is accepted by an M-automaton with

initial set {1} and target set X. Choose a finite alphabet Ω and a map ω : Ω∗ → M

such that the image Ω∗ω contains every element ofM which forms the first component

of an edge label in the automaton. We now obtain from the automaton a transducer

over Ω∗ × Σ∗ by replacing each edge label (m, x) with (w, x) where w ∈ Ω∗ is some

word such that wω = m.

Now w ∈ L if and only if there is a path connecting an initial state in the M-

automaton to a terminal state labelled by (m,w) for some m ∈ X. But this holds

if and only if there exists a path through the transducer defined above labelled by

(x, w) for some x ∈ Xω−1. Hence L is the image under a rational transduction of the

set Xω−1 as required.

To show that (ii) implies (i), suppose we are given a map ω : Ω∗ → M , and a

rational transducer such that L is the image of Xω−1 under the transduction. We

construct an M-automaton from the transducer by replacing edge labels of the form

(xω−1, w) with (x, w), taking initial set {1} and terminal set X. We show that the

automaton constructed in this way accepts precisely the language L.

Let w ∈ L. Then there exists a path through the transducer labelled by (xω−1, w)

where x ∈ X. So there exists a path through the automaton labelled by (x, w), and

hence w is accepted by the automaton. Conversely, suppose w ∈ Σ∗ is accepted by the

M-automaton constructed above. Then there exists a path through the automaton

labelled (x, w) for some x ∈ X. Hence there exists a path through the transducer

labelled by (xω−1, w) and hence w ∈ L as required.

Suppose now that M is finitely generated. Clearly, (iii) implies (ii). Finally, if (ii)

holds then we can extend ω arbitrarily to a finite choice of generators ω′ : (Ω′)∗ →M .

Since under this choice of generators, the labelling of the rational transducer will not

change, the desired property follows as above, so that (iii) holds.

Proposition 4.3.2 below gives a characterisation of classes of languages accepted by

M-automata with rational target sets in terms of rational subsets and transductions.

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 69

Proposition 4.3.2. Let M be a monoid and L ⊆ Σ∗ a language. Then the following

are equivalent.

(i) L ∈ FRat(M);

(ii) there exists a finite alphabet Ω, a morphism ω : Ω∗ → M and a rational subset

X ⊆M such that L is a rational transduction of Xω−1.

If M is finitely generated then the following condition is also equivalent to those above.

(iii) There exists a rational subset X ⊆ M such that for every finite choice of gen-

erators ω : Ω∗ → M for M , L is a rational transduction of Xω−1.

Proof. Let L ⊆ Σ∗ be a language satisfying (i). Then by Proposition 4.2.1 there

exists a rational M-automaton with initial set {1} and rational target set X ⊆ M

accepting L. Then L satisfies property (i) of Proposition 4.3.1 from which it follows

that (ii) holds. The other implications are proven similarly.

Proposition 4.3.3. FRat(M) is a rational cone. In particular, it is closed under mor-

phism, inverse morphism, intersection with regular languages, and (since it contains

a non-empty language) union with regular languages.

Proof. Since rational transductions are closed under composition (Theorem 2.2.10)

we conclude that FRat(M) consists precisely of languages L ⊆ Σ∗ which are rational

transductions of rational subsets of M by Proposition 4.3.2 above. Hence FRat(M) is

closed under rational transductions and the result follows immediately from Theorem

2.2.8.

Next we wish to widen the scope of our study to semigroups. We first need a

more general definition.

Let X0, X1 ⊆ S be subsets of a semigroup S. Then their set difference is the set

X−1
0 X1 = {x ∈ S | x0x = x1 for some x0 ∈ X0, x1 ∈ X1}.

We say that a subset X ⊆ S is a rational set difference if there exist rational subsets

X0, X1 ⊆ S such that X = X−1
0 X1. Note that in a group, the rational set differences

are exactly the rational subsets, but in a general semigroup this does not hold.

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 70

The following statement is a semigroup analogue of Proposition 4.3.1. Since we are

working with semigroups which do not necessarily have identity elements, relations

in the Proposition below take the form ρ ⊆ Ω+ × Σ∗.

Proposition 4.3.4. Let X0 and X1 be subsets of a semigroup S, and let L ⊆ Σ∗ be

a language. Then the following are equivalent:

(i) L is accepted by an S-automaton with initial set X0 and terminal set X1;

(ii) there exists a finite alphabet Ω, a morphism ω : Ω+ → S and a rational relation

ρ ⊆ Ω+ × Σ∗ such that

L = (X−1
0 X1)ω

−1ρ.

If S is finitely generated then the following condition is also equivalent to those above.

(iii) For every finite choice of generators ω : Ω+ → S for S, there exists a rational

relation ρ ⊆ Ω+ × Σ∗ such that

L = (X−1
0 X1)ω

−1ρ.

Proof. The proof is similar to the proof of Proposition 4.3.2. To show that (i) implies

(ii), suppose that L is accepted by an S-automaton A with initial set X0 and terminal

set X1. Choose a finite alphabet Ω and a map ω : Ω+ → S such that the image Ω+ω

contains every element of S which forms the first component of an edge label in the

automaton. We now obtain from A a finite automaton B over Ω+ ×Σ∗ by replacing

each edge label (s, x) with (w, x) for some w ∈ Ω+ such that wω = s. The automaton

resulting from this change of labelling defines a rational relation ρ ⊆ Ω+ × Σ∗.

Let X ⊆ S denote the set of elements of S labelling paths through A connecting

the initial state to a terminal state. Then a word w ∈ Σ∗ is accepted by A if and only

if there exists a path from the initial state to a terminal state labelled by (x, w) for

some x ∈ X ∩X−1
0 X1. So let w ∈ L with accepting path (x, w) for some x ∈ S. Then

x ∈ X−1
0 X1, and there exists a path through B labelled by (y, w) ∈ Ω+ × Σ∗ such

that yω = x. So (y, w) ∈ ρ and w = (xω−1)ρ as required. The converse is similar.

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 71

For (ii) implies (i), suppose we are given a map ω : Ω+ → S and an automaton B

over Ω+×Σ∗ such that L is the image under the relation accepted by B (that is, ρ) of

the language (X−1
0 X1)ω

−1. We construct from B a new automaton A over S×Σ∗ by

applying the map ω to the first component of each edge label. Considering A as an

S-automaton with initial set X0 and terminal set X1, we let (x, w) ∈ Ω+ × Σ∗ label

an accepting path through the automaton B. On applying ω we obtain an accepting

path through the automaton A of the form (s, w) ∈ S × Σ∗. Now since s ∈ X−1
0 X1,

there exists some x0 ∈ X0 such that x0s ∈ X1 and so w ∈ L, hence A accepts the

language L. Again the converse is similar.

Suppose now that S is finitely generated. Clearly (iii) implies (ii). Conversely,

if (ii) holds then we may extend ω arbitrarily to a finite choice of generators ω′ :

(Ω′)+ → S. Since Ω ⊆ Ω′, we may consider the rational relation ρ as a rational

relation over (Ω′)+ × Σ∗ and so L = (X−1
0 X1)ω

−1ρ and (iii) holds.

As a corollary, we immediately obtain the following characterisation for language

classes of the form FRat(S).

Corollary 4.3.5. Let S be a semigroup and L ⊂ Σ∗ a language. Then the following

are equivalent.

(i) L ∈ FRat(S);

(ii) there exists an alphabet Ω, a morphism ω : Ω+ → S, a rational set difference

X ⊆ S and a rational relation ρ ⊆ Ω+ × Σ∗ such that L = Xω−1ρ.

If S is finitely generated then the following condition is also equivalent to those above.

(iii) There exists a rational set difference X ⊆ S such that for every finite choice of

generators ω : Ω+ → S for S, there exists a rational relation ρ ⊆ Ω+ ×Σ∗ such

that L = Xω−1ρ.

Proof. Let L ⊆ Σ∗ be a language satisfying (i). Then there exists a rational S-

automaton A with rational initial and terminal sets X0 and X1 respectively accepting

L. Let X = X−1
0 X1. Then L satisfies (i) in Proposition 4.3.4 from which it follows

that (ii) holds. The other implications are proved similarly.

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 72

Note that, unlike in the monoid case, we cannot conclude that FRat(S) is a rational

cone. This is because the composition of a rational relation in Ω+×Σ∗ with a rational

transduction from Σ∗ to another free monoid Γ∗ need not be a rational relation in

Ω+ × Γ∗ (although it will be rational in Ω∗ × Γ∗).

4.4 Adjoining a zero

In this section we consider the operation of adjoining a zero to a given monoid, and

how this may affect the language classes corresponding to the resulting monoids.

We shall need the following simple result.

Theorem 4.4.1. Let M be a monoid. Then FRat(M
0) = FRat(M).

Proof. Let L ⊆ Σ∗ be accepted by a rational M-automaton with initial set X0 and

terminal set X1. Since M ⊂ M0, it is clear that the rational sets X0 and X1 are

rational subsets ofM0. Similarly, for every m ∈M labelling an edge in the automaton

it is clear that m ∈ M0. Thus the automaton is also a rational M0-automaton and

accepts precisely the language L ⊆ Σ∗. Hence we conclude that FRat(M) ⊂ FRat(M
0).

Conversely, suppose L ∈ FRat(M
0). Then by Proposition 4.2.1 we may choose

a rational M0-automaton A accepting L with initial set {1}. Let X1 ⊆ M be the

terminal set of the automaton A.

Let L0 be the language of words w ⊆ Σ∗ such that (0, w) labels a path from the

initial state to a terminal state. Let L1 be the set of words w such that (m,w) labels

a path from the initial state to a terminal state for some m ∈ X1 \{0}. Clearly either

L = L0 ∪ L1 (in the case that 0 ∈ X1) or L = L1 (if 0 /∈ X1). We claim that L0 is

regular and that L1 ∈ FRat(M). By Proposition 4.3.3 this will suffice to complete the

proof.

The argument to show that L1 ∈ FRat(M) is very similar to the proof of Propo-

sition 4.1.3. We construct from the rational M0-automaton A a new rational M-

automaton B by simply removing each edge which has a label of the form (0, m).

The new automaton B has initial set {1} and terminal set X1 \ {0}. It is straight-

forward to show, using exactly the same techniques as in Proposition 4.1.3, that B

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 73

accepts exactly the language L1.

It remains to prove that L0 is regular. Let Q be the vertex set of the automaton

A, and let Q0 = {q0 | q ∈ Q} and Q1 = {q1 | q ∈ Q} be disjoint copies of Q. We

define from A a finite automaton C with

• state set Q0 ∪Q1;

• for each edge in A from p to q with label of the form (m, x) (m 6= 0)

– an edge from p0 to q0 labelled x and

– an edge from p1 to q1 labelled x;

• for each edge in A from p to q with label of the form (0, x)

– an edge from p0 to q1 labelled x and

– an edge from p1 to q1 labelled x;

• initial state q0 where q is the initial state of A; and

• terminal states q1 whenever q is a terminal state of A.

We claim that C accepts exactly the set L0. Let w ∈ L0. Then there exists an

accepting path π through A labelled (0, w). It follows from the definition of M0 that

no product of non-zero elements can equal 0; hence, this path must traverse at least

one edge labelled (0, x) for some x ∈ Σ∗. Suppose then that π = π1π2π3 where π1 is

a path from the initial vertex to a vertex p with label (m1, w1), π2 is the first edge in

the path encountered with label 0, an edge from p to a vertex q with label (0, x) say,

and π3 is a path from q to a terminal vertex with label (m3, w3). Then there exists a

path in C from the initial vertex to p0 labelled w1, an edge from p0 to q1 with label

x, and an edge from q1 to a terminal vertex with label w3. Hence, w = w1xw3 is

accepted by C, as required.

Conversely suppose w ∈ L(C), and let π be an accepting path for w. Notice

that the initial vertex of C lies in Q0 while all the terminal vertices lie in Q1. Then

π = π1π2π3 where π1 is a path from the initial vertex to some p0 with label w1, π2

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 74

is an edge from p0 to some q1 with label x, π3 is a path from q1 to a terminal vertex

with label w3 where w = w1xw3. It follows easily from the definition of C that there

exists a path in A from the initial vertex to p with label of the form (m1, w1); an

edge from p to q with label (0, x) and a path from q to a terminal vertex with label

of the form (m3, w3). Thus, A accepts (m10m3, w1xw3) = (0, w) so that w ∈ L0 as

required.

To prove a similar result in the general case of semigroups, we require a few more

results.

Lemma 4.4.2. Let σ : X+ → S be a finite choice of generators for a semigroup S

and let X0, X1 ⊆ S be such that there exist words w ∈ X+ of arbitrarily high length

with wσ ∈ X−1
0 X1. Then the set of languages accepted by S-automata with initial set

X0 and terminal set X1 contains the regular languages.

Proof. Let A be a finite automaton accepting a regular language L ⊆ Σ∗. We con-

struct a new S-automaton B from A with initial set X0 and terminal set X1 with

• state set the state set of A plus a new state qt which will be the unique terminal

state;

• for each edge connecting a state p to a state q in A labeled by w ∈ Σ∗ and for

each x ∈ X an edge from the state p to the state q in B labeled by (xσ, w);

• for each terminal state q in A and each x ∈ X an edge from the state q to the

state qt in B labeled by (xσ, ǫ);

• the initial states of the S-automaton B will be the same as the initial states of

A and

• for each x ∈ X we also add a loop at the state qt labeled by (xσ, ǫ).

Since the automaton A and the set X are finite the edge set of B will be finite; we

claim the S-automaton constructed in this way accepts precisely the language L.

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 75

Let w ∈ Σ∗ be accepted by B. Then since every edge in B with righthand edge

label not equal to ǫ has an equivalent edge in A with the same label from Σ∗ we may

easily conclude that w ∈ L.

Conversely let w ∈ L with |w| = n. Let x ∈ X+ be such that x = x1 . . . xk with

k > n and xσ ∈ X−1
0 X1. Then there exists a path in B connecting the initial state

to some state q such that q was a terminal state in A labeled by ((x1 . . . xn)σ, w)

followed by an edge from q to the terminal state qt labeled by ((xn+1)σ, ǫ). There

also exists a closed path at qt labeled by ((xn+2 . . . xk)σ, ǫ) and so since x ∈ X−1
0 X1

we may conclude that w is accepted by the S-automaton B with initial set X0 and

terminal set X1 as required.

Lemma 4.4.3. Let σ : X+ → S be a finite choice of generators for a semigroup S.

Let X0, X1 ⊆ S be such that there is an upper bound on the length of words w ∈ X+

such that wσ ∈ X−1
0 X1. Then every language L ⊆ Σ∗ accepted by an S-automaton

with initial set X0 and terminal set X1 must be finite.

Proof. Suppose for a contradiction that A is an S-automaton with initial set X0 and

terminal set X1 such that X0 and X1 satisfy the condition above, and the language

L ⊆ Σ∗ accepted by A is infinite. Since L is infinite A must contain paths of arbitrary

length connecting the initial state to some terminal state. For each s ∈ S labelling

an edge in A let ws ∈ X+ be a word such that wsσ = s. For each path π in A let

wπ = ws1
ws2

. . . wsn
where each si denotes a successive edge label from S on the path.

If a path π is accepting then wπσ ∈ X−1
0 X1 and clearly |wπ| is greater than or equal

to the number of edges in the path. So the set of all words wπ such that π is an

accepting path contains words of arbitrary length such that wπ ∈ X−1
0 X1 giving the

required contradiction.

Proposition 4.4.4. For any semigroup S the family of languages FRat(S) contains

the regular languages.

Proof. Note first that S may not be finitely generated. Choose any finitely generated

subsemigroup S ′ of S and letX0 = X1 = S ′. By Lemma 4.4.2 for any regular language

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 76

L ⊆ Σ∗ we may construct an S-automaton with initial and terminal set S accepting

L and hence the regular languages are contained in FRat(S) as required.

Theorem 4.4.5. For S a finitely generated semigroup the language family FRat(S)

is closed under union with regular languages.

Proof. Let σ : X+ → S be a finite choice of generators for S and let L ⊆ Σ∗ be a

language in FRat(S) accepted by a rational S-automaton with initial set X0 ⊆ S and

terminal set X1 ⊆ S. We let K ⊆ Σ∗ be a regular language. Now if the set X−1
0 X1

contains the image under σ of words of arbitrarily long length over the generating set

X, by Lemma 4.4.2 we may construct a rational S-automaton B with initial set X0

and terminal set X1 accepting precisely the language K. It remains to show that we

may ‘merge’ the S-automata A and B to form a rational S-automaton C with the

same initial and terminal set as A and B accepting precisely the union L ∪K. The

format of the proof is similar in spirit to the proof of Proposition 2.2.4.

We construct the S-automaton C from A and B. Let QA and QB denote the state

sets of A and B respectively, and let q0 and q′0 denote the initial states of A and B.

C has:

• state set the disjoint union QA ∪QB;

• a single initial state q having all of the outgoing edges of both q0 and q′0;

• all other edges of A and B;

• terminal state set FA ∪ FB where FA is the set of terminal states of A and FB

is the set of terminal states in B.

A straightforward argument allows us to conclude that the S-automaton constructed

in this way accepts precisely the union L ∪K as required.

It remains to deal with the case that the set X−1
0 X1 contains only words wσ

where w is of length smaller than some upper bound. In this case by Lemma 4.4.3

the language L must be finite and hence regular. So the union L∪K is again a regular

language and we may apply Proposition 4.4.4 to conclude that L∪K is contained in

FRat(S) as required. This completes the proof.

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 77

We are finally in a position to prove a semigroup analogue of Theorem 4.4.1.

Theorem 4.4.6. For S a finitely generated semigroup, FRat(S) = FRat(S
0).

Proof. Let A be a rational S-automaton with initial set X0 and terminal set X1

accepting the language L ⊆ Σ∗. Since S ⊂ S0 it is clear that X0 and X1 are contained

in S0 and that each s ∈ S labelling an edge in A is also contained in S0. Hence we

may conclude that FRat(S) ⊆ FRat(S
0) and so we need only prove the converse.

Let A be a rational S0-automaton with initial setX0 and terminal setX1 accepting

the language L ⊆ Σ∗. If 0 is not contained in either X0 or X1 then a path labeled by

zero can never be accepting and we may consider A as a rational S-automaton and

clearly L ⊆ FRat(S).

If 0 ∈ X0 but 0 6∈ X1 then {0}−1X1 ⊂ X−1
0 X1 is empty and it is easily seen that

by taking the initial set to be X0 \ {0} we may consider A as a rational S-automaton

and L ⊆ FRat(S) as required. Note that since the zero is adjoined to S, Proposition

4.2.6 says that the set of words over the generators of S which are mapped to zero

under σ is regular, and hence by Corollary 4.2.5 if the set X0 is rational then so is

X0 \ {0}.

If 0 ∈ X0 and 0 ∈ X1 then L consists of all words w ∈ Σ∗ such that (x, w) labels

a path connecting the initial state of A to some terminal state of A for some x ∈ S.

Hence L is regular and by Proposition 4.4.4 is contained in FRat(S) as required.

The final case to consider occurs when 0 6∈ X0 and 0 ∈ X1. Clearly we may write

L = L0 ∪ L1 where L1 is accepted by an S-automaton with 0 not in the initial or

terminal sets and L0 is accepted by an S0-automaton with initial and terminal set

{0}. Applying the same methods as in the proof of Theorem 4.4.1 we conclude that

L0 is regular and L1 ∈ FRat(S), and by Theorem 4.4.5 this suffices to complete the

proof.

Finally, we turn our attention to the case of groups. Combining Proposition 4.2.3

and Theorem 4.4.1 gives us the following immediate corollary.

Corollary 4.4.7. Let G be a group. Then FRat(G
0) = F1(G).

CHAPTER 4. MONOID AUTOMATA AND THEIR EXTENSIONS 78

Proof. Let L be a language accepted by the rational G0-automaton A with initial set

X0 and terminal set X1. Then by Theorem 4.4.1 there exists a rational G-automaton

B accepting the same language L. Now Proposition 4.2.3 says that there exists a

G-automaton with initial and terminal sets equal to the identity element accepting

L. Hence L ∈ F1(G).

The converse is clear.

Chapter 5

Polycyclic monoids

In this chapter we turn our attention to the classes FRat(P (X)) of languages accepted

by polycyclic monoid automata with rational target sets. Recall that the polycyclic

monoids form the natural algebraic model of pushdown stores. Some of the material

in this chapter has been published in [49, 50].

For |X| ≥ 2, it transpires that every language accepted by a P (X)-automaton with

rational target set is accepted by a P (X)-automaton, and hence that FRat(P (X)) is

the class of context-free languages. In order to prove this, we will need some results

about rational subsets of polycyclic monoids, which we establish using techniques

from string rewriting theory. These results may be of independent interest.

5.1 The structure of rational subsets

In this section we consider a normal form for elements of polycyclic monoids, and how

this form affects the structure of the rational subsets. We begin with a definition.

A monadic string rewriting system Λ over an alphabet Σ is a subset of Σ∗ ×{Σ∪

{ǫ}}. We normally write an element (w, x) ∈ Λ as w → x. Then we write u ⇒ v if

u = rws ∈ Σ∗ and v = rxs ∈ Σ∗ with w → x. Denote by ⇒∗ the transitive, reflexive

closure of the relation ⇒. If u⇒∗ v we say that u is an ancestor of v under Λ and v

is a descendant of u under Λ; we write LΛ for the set of all descendants of words in

L. The set of words which cannot be reduced any further under the rewriting system

79

CHAPTER 5. POLYCYCLIC MONOIDS 80

Λ are called the Λ-irreducible words.

We note that the image of any regular set under a finite monadic string rewriting

system will again be a regular set [8], a useful property which we shall use in the

sequel. For more information on such systems see [7, 8].

Theorem 5.1.1. Let X be a finite alphabet and R a rational subset of P 0(X), and

let σ : Σ∗
X → P 0(X) be a finite choice of generators. Then there exists a regular

language

L ⊆ Q∗
XP

∗
X ∪ {z}

such that Lσ = R. Moreover, there is an algorithm which, given an automaton recog-

nizing a regular language G ⊆ Σ∗
X, constructs an automaton recognising a language

L ⊆ Q∗
XP

∗
X ∪ {z} with Lσ = Gσ.

Proof. Since R is rational, there exists a regular languageK ⊆ Σ∗
X such thatKσ = R.

We define a monadic rewriting system Λ on Σ∗
X with the following rules:

pxqx → ǫ, pxqy → z, zqx → z,

pxz → z, zpx → z, qxz → z,

zz → z

for all x, y ∈ X with x 6= y.

Note that the only combination of two letters which is not featured in the rewriting

rules above is of the form qxpy for x, y ∈ X. We may conclude then that the language

of Λ-irreducible words is exactly Q∗
XP

∗
X ∪ {z}, since the rewriting rules reduce all

other letter combinations to z or the empty word. With this in mind, we define

L = KΛ ∩ (Q∗
XP

∗
X ∪ {z})

Certainly L is regular, and moreover an automaton for L can be effectively computed

from an automaton for K. Thus, it will suffice to show that Lσ = R.

By definition Lσ ⊆ (KΛ)σ, and since the rewriting rules are all relations satisfied

in P 0(X),

(KΛ)σ ⊆ Kσ = R.

CHAPTER 5. POLYCYCLIC MONOIDS 81

Conversely, if s ∈ R then s = wσ for some w ∈ K. Since the rules of Λ are all

length-reducing w must have an irreducible descendant, say w′. But now w′ ∈ L and

w′σ = wσ = s so that s ∈ Lσ. Thus, Lσ = R as required.

As a corollary we obtain a corresponding result for bicyclic monoids.

Corollary 5.1.2. Let R be a rational subset of a bicyclic monoid B, and σ : {p, q}∗ →

B the natural surjective morphism. Then there exists a regular language L ⊆ q∗p∗

such that Lσ = R. Moreover, there is an algorithm which, given an automaton

recognizing a regular language G ⊆ {p, q}∗, constructs an automaton recognising a

language L ⊆ q∗p∗ with Lσ = Gσ.

Proof. Let R ⊆ B be a rational subset of the bicyclic monoid. Since B is a submonoid

of B0, R is a rational subset of B0. We extend σ to σ′ : {p, q, z}∗ → B0 by setting

zσ′ = 0. By Theorem 5.1.1, there exists a regular language of the form L ⊆ q∗p∗∪{z}

such that Lσ = R. But z 6∈ L since zσ′ = 0 6∈ R and so L ⊆ q∗p∗ and Lσ = R as

required. Moreover, the automaton for L can be effectively computed.

Before proceeding to apply the theorem to polycyclic monoid automata with ra-

tional target sets, we note some general consequences of Theorem 5.1.1 for rational

subsets of polycyclic monoids. A collection of subsets of a given base set is called a

boolean algebra if it is closed under union, intersection and complement within the

base set.

Corollary 5.1.3. The rational subsets of any finitely generated polycyclic monoid

form a boolean algebra. Moreover, the operations of union, intersection and comple-

ment are effectively computable.

Proof. Let L and K be rational subsets of a finitely generated polycyclic monoid.

Then there exist finite automata A and B over the monoid accepting L and K

respectively. By Proposition 2.2.5 we may conclude that the set of rational subsets

of a finitely generated polycyclic monoid is effectively closed under union.

CHAPTER 5. POLYCYCLIC MONOIDS 82

Let L denote the complement of a set L. Then we may describe intersection in

terms of union and complement as follows:

L ∩K = L ∪K

where L and K are sets. Hence it suffices to show that the rational subsets of

polycyclic monoids are closed (effectively) under complement. To this end, suppose

first that R is a rational subset of a finitely generated polycyclic monoid P (X) with

|X| ≥ 2 so that P (X) = P 0(X). Then by Theorem 5.1.1, there is a regular language

L ⊆ (Q∗
XP

∗
X ∪{z}) such that Lσ = R. Let K = (Q∗

XP
∗
X ∪{z})\L. Then K is regular

and, since Q∗
XP

∗
X ∪ {z} contains a unique representative for every element of P (X),

it is readily verified that Kσ = P (X) \ (Lσ). Thus, P (X) \ (Lσ) is a rational subset

of P (X), as required.

For effective computation of complements, observe that given an automaton rec-

ognizing a language R ⊆ Σ∗
X , we can by Theorem 5.1.1 construct an automaton

recognizing a regular language L ⊆ (Q∗
XP

∗
X ∪ {z}) with Lσ = Rσ. Clearly we can

then compute the complement K = (Q∗
XP

∗
X ∪ {z}) \ L of L in (Q∗

XP
∗
X ∪ {z}), and

since Kσ = P (X) \ (Lσ), this suffices.

In the case that |X| = 1, the statement can be proved in a similar way but using

Corollary 5.1.2 in place of Theorem 5.1.1.

As another corollary, we obtain the decidability of the rational subset problem for

finitely generated polycyclic monoids.

Corollary 5.1.4. Finitely generated polycyclic monoids have decidable rational subset

problem.

Proof. Let |X| ≥ 2 [respectively, |X| = 1]. Suppose we are given a rational subset R

of P (X) (specified as an automaton over Σ∗
X [respectively {p, q}∗]) and an element

w (specified as a word in the appropriate alphabet). Clearly, we can compute {w} ⊂

P (X) as a regular language. Indeed, let |w| = n. Then we construct an automaton

with n + 1 states (labelled 1 to n + 1) and n edges. We let state 1 be the initial

state, and state n+ 1 be the single terminal state. Then state i is connected to state

CHAPTER 5. POLYCYCLIC MONOIDS 83

i+ 1 via an edge labelled by the ith letter of w. By Corollary 5.1.3 we can compute

a regular language K ⊆ Σ∗
X [respectively, {p, q}∗] such that Kσ = R ∩ {w}σ. So

wσ ∈ R if and only if R ∩ {w}σ is non-empty, that is, if and only if K is non-empty.

Since emptiness of regular languages is testable (Proposition 2.2.1), this completes

the proof.

Before returning to our main task of proving that FRat(M) = F1(M) for M

a polycyclic monoid of rank 2 or more, that is, that polycyclic monoid automata

with rational target sets accept only context-free languages, we need some more

preliminary results.

Corollary 5.1.5. Let R be a rational subset of P 0(X) and suppose that 0 /∈ R. Then

there exists an integer n and regular languages Q1, . . . , Qn ⊆ Q∗
X and P1, . . . , Pn ⊆ P ∗

X

such that

R =
n
⋃

i=1

(QiPi)σ.

Proof. By Theorem 5.1.1, there is a regular language L ⊆ Q∗
XP

∗
X such that Lσ = R.

Let A be a finite automaton accepting L, with vertices numbered 1, . . . , n. Suppose

without loss of generality that the edges in A are labelled by single letters from

QX ∪ PX . For each i let Qi be the set of all words in Q∗
X which label paths from the

initial vertex to vertex i. Similarly, let Pi be the set of all words in P ∗
X which label

words from vertex i to a terminal vertex. It is easily seen that Qi and Pi are regular.

Now if w ∈ QiPi then w = uv where u ∈ Q∗
X labels a path from the initial vertex

to vertex i, and v ∈ P ∗
X labels a path from vertex i to a terminal vertex. Hence

uv = w labels a path from the initial vertex to a terminal vertex, and so w ∈ L.

Conversely, if w ∈ L ⊆ Q∗
XP

∗
X then w admits a factorisation w = uv where u ∈ Q∗

X

and v ∈ P ∗
X . Since the edge labels in A are single letters, an accepting path for w

must consist of a path from the initial vertex to some vertex i labelled u, followed by

a path from i to a terminal vertex labelled v. It follows that u ∈ Qi and v ∈ Pi, so

that w ∈ QiPi. Thus we have

L =

n
⋃

i=1

QiPi

CHAPTER 5. POLYCYCLIC MONOIDS 84

and so

R = Lσ =

(

n
⋃

i=1

QiPi

)

σ =

n
⋃

i=1

(QiPi) σ

as required.

For the next proposition, we will need some notation. For a word q = qx1
qx2

. . . qxn
∈

Q∗
X , we let q′ = pxn

. . . px2
px1

∈ P ∗
X . Similarly for a word p = px1

px2
. . . pxn

∈ Q∗
X ,

we let p′ = qxn
. . . qx2

qx1
∈ Q∗

X . Note that p′′ = p and q′′ = q. Note also that p′σ is

the unique right inverse of pσ, and q′σ is the unique left inverse of qσ. Recall that a

right [respectively, left] inverse of an element a ∈ M is an element b ∈ M such that

ab = 1 [respectively, ba = 1].

Proposition 5.1.6. Let u ∈ Σ∗
X, and let q ∈ Q∗

X and p ∈ P ∗
X. Then uσ = (qp)σ if

and only if there exists a factorisation u = u1u2 such that (q′u1)σ = 1 = (u2p
′)σ.

Proof. Suppose first that uσ = (qp)σ. Let Λ be the monadic rewriting system defined

in the proof of Theorem 5.1.1. Then u is reduced by Λ to qp. Notice that the only rules

in Λ which can be applied to words not representing zero remove factors representing

the identity; it follows easily that u admits a factorisation u = u1u2 where u1σ = qσ

and u2σ = pσ. Now we have

(q′u1)σ = (q′σ)(u1σ) = (q′σ)(qσ) = 1

and symmetrically

(u2p
′)σ = (u2σ)(p′σ) = (pσ)(p′σ) = 1

as required.

Conversely, qσ is the unique right inverse of q′σ, so if

(q′u1)σ = (q′σ)(u1σ) = 1

then we must have u1σ = qσ. Similarly, if (u2p
′)σ = 1 then u2σ = pσ, and so we

deduce that

uσ = (u1u2)σ = (qp)σ

as required.

CHAPTER 5. POLYCYCLIC MONOIDS 85

5.2 Rational polycyclic monoid automata

We are now ready to prove our main theorem about M-automata with rational target

sets where M is a polycyclic monoid.

Theorem 5.2.1. Suppose L ∈ FRat(P
0(X)). Then L is a finite union of languages,

each of which is the concatenation of one or two languages in F1(P
0(X)).

Proof. Let M = P 0(X) and let A be an M-automaton with rational target set R

accepting the language L. By Corollary 5.1.5 there exists an integer n and regular

languages Q1, . . . , Qn ⊆ Q∗
X and P1, . . . Pn ⊆ P ∗

X such that

R = R0 ∪
n
⋃

i=1

(QiPi)σ.

where either R0 = ∅ or R0 = {0} depending on whether 0 ∈ R. For 1 ≤ i ≤ n, we let

Ri = (QiPi)σ. We wish to split the language L into a union of languages in a similar

way. Consider the rational subset Ri for some i ∈ {0, . . . , n}.

For i = 0, . . . , n let Ai be the M-automaton with the same states and edges as A,

but with rational target set Ri. Letting Li be the language accepted by Ai, we see

that

L = L0 ∪ L1 ∪ · · · ∪ Ln.

Clearly it suffices to show that each Li is a finite union of languages, each of which

is the concatenation of at most two languages in F1(M).

We begin with L0. If R0 = ∅ then L0 = ∅, so assume that R0 = {0}. Let

Z = {u ∈ Σ∗
X | uσ = 0} and W = {w ∈ Σ∗

X | wσ = 1}. By considering the rewriting

system Λ from the proof of Theorem 5.1.1 we note that the only rule which has z

on the right hand side but does not contain a z on the left hand side is the rule:

pxqy → z. The other rules with z on the right tell us that any expression containing

z will eventually reduce to just z. So we conclude that u ∈ Z if and only if either

u contains the letter z, or u factorizes as u1pxu2qyu3 where x, y ∈ X, x 6= y and

u1, u2, u3 ∈ Σ∗
X are such that u2 represents the identity, that is, such that u2 ∈ W .

CHAPTER 5. POLYCYCLIC MONOIDS 86

Thus,

Z = Σ∗
X {z} Σ∗

X ∪
⋃

x,y∈X,x 6=y

Σ∗
X {px} W {qy} Σ∗

X .

Let ψ1 = {ǫ} × Σ∗
X and ψ2 = {(w,w) | w ∈ Σ∗

X}. Clearly ψ1, ψ2 ⊆ Σ∗
X × Σ∗

X are

rational, so

ψ = ψ1(ǫ, z)ψ1 ∪
⋃

x,y∈X,x 6=y

ψ1(ǫ, px)ψ2(ǫ, qy)ψ1

is also rational. We claim that Z = ψ(W). Indeed, suppose (u, v) ∈ ψ for some

u ∈ W . Then either u = ǫ and v contains the letter z so that v ∈ Z or there exists

some x, y ∈ X with x 6= y such that (u, v) ∈ ψ1(ǫ, px)ψ2(ǫ, qy)ψ1. In the latter case

we must have (u, v) = (w, v1pxwqyv2) for some v1, v2 ∈ Σ∗
X . But since w = u ∈ W we

have v = v1pxuqyv2 = v1pxqyv2 and so v ∈ Z as required.

Conversely, assume that v ∈ Z. Then either v is equal to z or v = v1pxwqyv2 for

some v1, v2 ∈ Σ∗
X , x 6= y and w ∈W . In the former case (ǫ, v) ∈ ψ1(ǫ, z)ψ1 ⊆ ψ which

since ǫ ∈W means that v ∈ ψ(W). In the latter case (w, v) ∈ ψ1(ǫ, px)w(ǫ, qy)ψ1 ⊆ ψ

and so v is again in ψ(W) as required. This proves that the set Z is a rational

transduction of W .

By Proposition 4.3.4, L0 is a rational transduction of the language Z. Since

the class of rational transductions is closed under composition (Theorem 2.2.10), it

follows that L is a rational transduction of W, and hence by Proposition 3.0.2 that

L0 ∈ F1(M), as required.

We now turn our attention to the languages Li for i ≥ 1. Recall that Li is accepted

by an M-automaton with target set Ri = (QiPi)σ. Let

P ′
i = {(p′, ǫ) | p ∈ Pi} ⊆ Q∗

X × Σ∗

and similarly

Q′
i = {(q′, ǫ) | q ∈ Qi} ⊆ P ∗

X × Σ∗.

It is clear that the languages P ′
i and Q′

i are rational. Indeed, given a finite automaton

accepting Pi one may construct an automaton accepting P ′
i in the same manner as

in the proof of Proposition 2.2.6. Let AP and AQ be finite automata accepting P ′
i

CHAPTER 5. POLYCYCLIC MONOIDS 87

and Q′
i respectively, and assume without loss of generality that the first component

of every edge label is either a single letter in ΣX or the empty word ǫ.

By Proposition 4.3.4 there is a rational transduction ρ ⊆ Σ∗
X ×Σ∗ (depending on

i) such that w ∈ Li if and only if (u, w) ∈ ρ for some u ∈ Σ∗
X such that uσ ∈ Ri. Let

A be an automaton recognizing ρ, again with the property that the first component

of every edge label is either a single letter in ΣX or the empty word ǫ. We construct

a new automaton B with

• vertex set the disjoint union of the state sets of AQ, A, and AP ;

• all the edges of AQ, A and AP ;

• initial vertex the initial vertex of AQ;

• terminal vertices the terminal vertices of AP ;

• an extra edge, labelled (ǫ, ǫ), from each terminal vertex of AQ to the initial

vertex of A and

• an extra edge labelled (ǫ, ǫ), from each terminal vertex of A to the initial vertex

of AP .

It is immediate that B recognizes the relation

τ = Q′
iρP

′
i = {(q′xp′, w) | q ∈ Qi, p ∈ Pi, (x, w) ∈ ρ} ⊆ Σ∗

X × Σ∗

and again has the property that the first component of every edge label is either a

single letter or the empty word.

Let Q be the vertex set of A, viewed as a subset of the vertex set of B. For each

vertex y ∈ Q, we let Ky be the language of all words w such that (u, w) labels a path

in B from the initial vertex of B to y for some u with uσ = 1. By considering B as

a transducer but with terminal vertex y, we see that Ky is a rational transduction

of the identity language of P (X), and hence by Proposition 4.3.4 lies in the class

F1(P (X)).

Dually, we let Ly be the language of all words w such that (u, w) labels a path in

B from y to a terminal vertex for some u with uσ = 1. This time by considering B as

CHAPTER 5. POLYCYCLIC MONOIDS 88

a transducer but with initial vertex y, we see that Ly is also a rational transduction

of the identity language of P (X), and hence also lies in F1(P (X)).

We claim that

Li =
⋃

y∈Q

KyLy,

which will clearly suffice to complete the proof.

Suppose first that w ∈ Li. Then there exists a word u ∈ Σ∗
X such that uσ ∈ Ri

and that (u, w) ∈ ρ. Since Ri = (QiPi)σ we have uσ = (qp)σ for some q ∈ Qi and

p ∈ Pi. Note that (q′up′, w) ∈ τ is accepted by B. By Proposition 5.1.6, u admits a

factorization u = u1u2 such that (q′u1)σ = 1 and (u2p
′)σ = 1. Now in view of our

assumption on the edge labels of B, w must admit a factorization w = w1w2 such

that B has a path from the initial vertex to some vertex y labelled (q′u1, w1) and

a path from y to a terminal vertex labelled (u2p
′, w2); moreover, the vertex y can

clearly be assumed to lie in Q. Since (q′u1)σ = 1 = (u2p
′)σ, it follows that w1 ∈ Ky

and w2 ∈ Ly so that w = w1w2 ∈ KyLy, as required.

Conversely, suppose y ∈ Q and that w = w1w2 where w1 ∈ Ky and w2 ∈ Ly. Then

B has a path from the initial vertex to vertex y labelled (u1, w1) and a path from the

vertex y to a terminal vertex labelled (u2, w2) for some u1 and u2 with u1σ = u2σ = 1.

Since y ∈ Q, it follows from the definition of B that u1 = q′v1 and u2 = v2p
′ for some

q ∈ Qi and p ∈ Pi and v1 and v2 such that (v1v2, w) ∈ ρ. But now

(q′v1)σ = u1σ = 1,

and

(v2p
′)σ = u2σ = 1,

so we deduce by Proposition 5.1.6 that v1σ = qσ and v2σ = pσ. But then

(v1v2)σ = (qp)σ ∈ Ri ⊆ R

and (v1v2, w) ∈ ρ, from which it follows that w ∈ Li as required.

CHAPTER 5. POLYCYCLIC MONOIDS 89

Thus, we have written L as a finite union of languages Li where each Li either lies

in F1(M) (in the case i = 0) or is a finite union of concatenations of two languages

in F1(M). This completes the proof.

In the case that |X| ≥ 2, we have P 0(X) = P (X) and F1(P (X)) is the class of

context-free languages, which is closed under both finite union and concatenation.

Hence, we obtain the following easy consequence.

Theorem 5.2.2. If |X| ≥ 2 then FRat(P (X)) is the class of context-free languages.

Proof. By Theorem 5.2.1 the family of languages FRat(P (X)) for |X| = 2 contains

only languages which are a finite union of concatenations of one or two languages

from F1(P (X). By Theorem 3.3.1 F1(P (X)) is exactly the family of context free lan-

guages. Since F1(P (X)) is closed under union and concatenation (Proposition 5.1.3),

FRat(P (X)) ⊆ F1(P (X)). But from Proposition 4.2.2, F1(P (X)) ⊆ FRat(P (X)), and

the result follows.

In the case |X| = 1, we have that P 0(X) is isomorphic to the bicyclic monoid

B = P (X) with a zero adjoined. Combining Theorem 5.2.1 with Proposition 4.1.3

and Theorem 4.4.1 we thus obtain:

Corollary 5.2.3. Every language in FRat(B) is a finite union of languages, each of

which is the concatenation of one or two partially blind one-counter languages.

Proof. From Theorem 5.2.1 we may conclude that languages in FRat(B) take the form

of a finite union of languages, each of which is a concatenation of one or two languages

from F1(B
0). By Proposition 4.1.3 F1(B

0) = F1(B) and hence each language in the

union is a concatenation of one or two languages from F1(B). F1(B) is exactly the

family of partially blind one-counter languages, and the result follows.

Since the class F1(B) of partially blind one-counter languages is not closed under

concatenation, we cannot conclude that FRat(B) = F1(B). Indeed, the following

result shows that this is not the case.

CHAPTER 5. POLYCYCLIC MONOIDS 90

Theorem 5.2.4. The language

{aibiajbj | i, j ≥ 0} ⊆ {a, b}∗

lies in FRat(B) but not in F1(B).

Proof. Let L = {aibiajbj | i, j ≥ 0}. First, we claim that the B-automaton with

rational target set shown in Figure 5.1 accepts the language L. Indeed, it is easily

seen to accept exactly pairs of the form

(pi0qi1qppi2qi3 , ai0bi1ai2bi3) = (pi0qi1+1pi2+1qi3 , ai0bi1ai2bi3)

for i0, i1, i2, in ∈ N.

First assume that i0 > i1. Then using the fact that pq = 1

pi0qi1+1pi2+1qi3 = pjpi2+1qi3 6= qp

for j ≥ 0. If i0 < i1 then

pi0qi1+1pi2+1qi3 = qjpi2+1qi3 6= qp

with j > 1. So we conclude that i0 = i1 if pi0qi1+1pi2+1qi3 = qp. Next, assume that

i2 > i3. Then

pi0qi1+1pi2+1qi3 = qpj 6= qp

as j > 1. If i2 < i3 then

pi0qi1+1pi2+1qi3 = qj+1 6= qp,

j > 1. On the other hand if i0 = i1 and i2 = i3 then pi0qi1+1pi2+1qi3 = qp. This

suffices to establish the claim that L ∈ FRat(B).

Assume now for a contradiction that L ∈ F1(B). Then there exists a B-automaton

A accepting L, with N vertices say. For i ≥ 0 let πi be an accepting path for aibiaibi.

Suppose without loss of generality that the right-hand sides of edge labels in A are

all a, b or ǫ. Then we can write πi = αiβiγiδi and where αi has label (si, a
i), βi has

label (ti, b
i), γi has label (ui, a

i) and δi has label (vi, b
i) for some si, ti, ui, vi ∈ B.

CHAPTER 5. POLYCYCLIC MONOIDS 91

The proof will proceed by considering loops (that is, closed paths) in the au-

tomaton A; we begin by introducing some terminology to describe particular types

of loops. A loop with label (qkpj, x) is called an increment loop if j > k, a stable loop

if k = j and a decrement loop if k > j. We call the loop an epsilon loop if x = ǫ and

a non-epsilon loop otherwise. A path which does not traverse any loops is called a

simple path.

First notice that since there are only finitely many simple paths, there exists a

constant K such that every simple path in A has label of the form (qgph, x) with

g + h < K.

Consider paths of the form αi. We claim that for all but at most KN values of

i, the path αi contains a non-epsilon increment loop. For all i ≥ N , we can write

αi = α
(1)
i α

(2)
i where α

(1)
i has label (s

(1)
i , ai−N) and α

(2)
i has label (s

(2)
i , aN).

Note that the only elements of B which generate a right ideal [left ideal] including

the identity element, are those of the form pk [respectively qk] for some k ≥ 0. Thus,

we must have that both si and s
(1)
i are powers of p, and that vi is a power of q. In

particular, we can let fi ≥ 0 be such that s
(1)
i = pfi.

Next suppose i is such that α
(1)
i does not traverse an increment loop. Let α′

i be

the path obtained from α
(1)
i by removing all loops, and suppose α′

i has label (qgph, al).

Since none of the loops removed were increment loops, it follows easily that

fi ≤ h− g ≤ h+ g ≤ K.

Suppose now for a contradiction than more than KN values of i ≥ N are such that

α′
i contains no increment loop. Then by the pigeonhole principle, there exist i 6= j

q0��
��

- q1��
��

q2��
��

q3��
��

-
/

(p, a)

/

(q, b)

-
(1, ǫ) /

(p, a)

/

(q, b)

-
(qp, ǫ)

-
(1, ǫ)

Figure 5.1: A rational B-automaton with target set {qp}, accepting the language
{aibiajbj | i, j ≥ 0}.

CHAPTER 5. POLYCYCLIC MONOIDS 92

with i ≥ N and j ≥ N such that fi = fj and the paths α
(1)
i and α

(1)
j end at the same

state. But now the composition α
(1)
i α

(2)
j βjγjδj is an accepting path with label

(s
(1)
i s

(2)
j tjujvj , a

i−NaNbjajbj) = (pfis
(2)
j tjujvj, a

ibjajbj)

= (s
(1)
j s

(2)
j tjujvj, a

ibjajbj)

= (sjtjujvj, a
ibjajbj)

= (1, aibjajbj)

so that aibjajbj is accepted by A, giving a contradiction. Thus, we have established

that for all but KN values of i ≥ N , the path α
(1)
i must traverse an increment loop.

Hence, for all but KN +N = (K + 1)N values of i ≥ 0, the path α
(1)
i must traverse

an increment loop.

Now let i be such that α
(1)
i traverses an increment loop and suppose for a con-

tradiction that αi does not traverse a non-epsilon increment loop. Consider the path

α
(2)
i . Clearly, since this path has label with right-hand-side aN , and the right-hand-

sides of edge labels in the automaton are single letters or ǫ, this path must traverse

a non-epsilon loop. Since αi does not traverse a non-epsilon increment loop, α
(2)
i

must traverse a non-epsilon stable or decrement loop, say with label (qgph, ak) where

0 ≤ h ≤ g and 0 < k. We also know that α
(1)
i traverses an epsilon increment loop,

say with label (qxpy, ǫ) where 0 ≤ x < y. Clearly, by traversing the latter loop an

additional (g − h) times and the former loop an additional (y − x) times, we obtain

an accepting path for the word ai+(y−x)kbiaibi, which gives the required contradiction.

Thus, we have shown that for all but at most (K + 1)N values of i, the path

αi traverses a non-epsilon increment loop. A left-right symmetric argument can be

used to establish firstly that each vi = qgi for some gi ≥ 0, and then that for i

sufficiently large, δi must traverse a non-epsilon decrement loop. Thus, for all but at

most 2(K + 1)N values of i, the paths αi and δi traverse respectively a non-epsilon

increment loop and a non-epsilon decrement loop.

Now choose i such that this holds, and let (qjpk, am) be the label of the subpath

of πi consisting of traversals of a non-epsilon increment loop in αi and let (qj′pk′

, bm
′

)

similarly label the subpath consisting of traversals of a non-epsilon decrement loop

CHAPTER 5. POLYCYCLIC MONOIDS 93

in δi where k > j, k′ > j′ and m,m′ > 0. Let π′
i be the path obtained from πi by

traversing the given increment loop path an additional j′ − k′ times, and the given

decrement loop path an additional k − j times. Then πi has label of the form

(

t(qjpk)(j′−k′)+1u(qj′pk′

)(k−j)+1v, ai+m(j′−k′)biaibi+m′(k−j)
)

where t, u and v are such that π has label

(

tqjpkuqj′pk′

v, aibiaibi
)

so that in particular tqjpkuqj′pk′

v = 1. Now by our argument above regarding right

and left ideals, the element tqj ∈ B must be a power of p, while qj′v ∈ B must be

a power of q. Noting that powers of p commute with each other, and powers of q

commute with each other, we get

t(qjpk)(j′−k′)+1u(qj′pk′

)(k−j)+1v = tqjp(k−j)(j′−k′)pkuqj′q(k−j)(j′−k′)pk′

v

= p(k−j)(j′−k′)tqjpkuqj′pk′

vq(k−j)(j′−k′)

= p(k−j)(j′−k′)1q(k−j)(j′−k′)

= 1.

Therefore π′
i is an accepting path. Thus, the automaton accepts the word

ai+m(j′−k′)biaibi+m′(k−j)

which is not in the language L, giving the required contradiction. This completes the

proof that L 6∈ F1(B).

It is possible, however, to describe concatenations of partially blind one-counter

languages using partially blind two-counter automata. Indeed more generally we have

the following proposition.

Proposition 5.2.5. Let M1 and M2 be monoids and L1 and L2 languages over the

same alphabet. If L1 ∈ F1(M1) and L2 ∈ F1(M2) then L1L2 ∈ F1(M1 ×M2).

Proof. By Proposition 4.3.4 for i = 1, 2 there are alphabets Ωi, morphisms ωi : Ω∗
i →

Mi and rational transductions ρi ⊆ Ω∗
i × Σ∗ such that Li = {1}ω−1

i ρi. Assume

CHAPTER 5. POLYCYCLIC MONOIDS 94

without loss of generality that Ω1 and Ω2 are disjoint, and let Ω = Ω1 ∪ Ω2. Then

there is a natural morphism ω : Ω∗ → M1 ×M2 extending ω1, ω2. Now let ρ be the

product of ρ1 and ρ2:

ρ = {(u1u2, w1w2, | (u1, w1) ∈ ρ1, (u2, w2) ∈ ρ2)} ⊆ Ω∗ × Σ∗.

Then ρ is a rational transduction from Ω∗ to Σ∗. Clearly, if u1 ∈ Ω∗
1 and u2 ∈ Ω∗

2 then

u1u2 represents the identity element in M1 ×M2 if and only if u1 and u2 represent

the identity elements in M1 and M2 respectively. It follows that w is in the image

under ρ of the identity language of M1 ×M2 if and only if w = w1w2 where w1 ∈ L1

and w2 ∈ L2, so that w ∈ L1L2. Thus, L1L2 is a rational transduction of the identity

language of M1 ×M2, so applying Proposition 3.0.2 we see that L1L2 ∈ F1(M1 ×M2)

as required.

Corollary 5.2.6. FRat(B) ⊆ F1(B
2) ∩ CFL.

Proof. Since classes of the form F1(M) are closed under union, Theorem 5.2.1 and

Proposition 5.2.5 combine to give the inclusion of FRat(B) in F1(B
2). Also since B

is a submonoid of P (X) with |X| = 2, FRat(B) ⊆ FRat(P (X)) = CFL by Theorem

5.2.2.

Chapter 6

Completely simple semigroups

In this chapter we consider language classes FRat(S) for semigroups S taken from the

important classes of completely simple and completely 0-simple semigroups. Some of

the material in this chapter has been published in [51].

Given the context of our study, the property of being finitely generated is of much

importance. The following results from [2] precisely characterise the conditions under

which a given Rees matrix semigroup may be finitely generated.

Theorem 6.0.7. Let T be a semigroup, let I and J be index sets, let P = (Pji)j∈J,i∈I

be a J×I matrix with entries from T , and let U be the ideal of T generated by the set

{Pji | j ∈ J, i ∈ I} of all entries of P . Then the Rees matrix semigroup M(T ; I, J ;P)

is finitely generated if and only if the following three conditions are satisfied:

(i) both I and J are finite;

(ii) T is finitely generated;

(iii) the set T \ U is finite.

Let M0(T ; I, J ;P) be a Rees matrix semigroup with T a semigroup with zero. By

noting the fact that we may construct a Rees matrix semigroup with zero by taking

the Rees quotient of M(T 0; I, J ;P) with respect to the ideal I ×{0}× J , and that if

the index sets I and J are finite then necessarily the ideal is finite, we conclude the

following.

95

CHAPTER 6. COMPLETELY SIMPLE SEMIGROUPS 96

Corollary 6.0.8. Let T be a semigroup with zero, let I and J be index sets, and let

P = (Pji)j∈J,i∈I be a J × I matrix with entries from T , and let U be the ideal of T

generated by the set {pji | j ∈ J, i ∈ I} of all entries of P . Then the Rees matrix

semigroup with zero M0(T ; I, J ;P) is finitely generated if and only if the following

three conditions are satisfied:

(i) both I and J are finite;

(ii) T is finitely generated;

(iii) the set T \ U is finite.

6.1 Rational subsets

In this section we consider the Rees matrix construction and how this affects the

structure of the rational subsets of general Rees matrix semigroups and completely

simple semigroups.

We require the following proposition.

Proposition 6.1.1. Let S = M0(T ; I, J ;P) be a Rees matrix semigroup with zero

over a semigroup T , and let X ⊆ S be a rational subset. Then the set

Xij = {g ∈ T | (i, g, j) ∈ X}

is a rational subset of T .

Proof. Let A be a finite automaton over S accepting the rational subset X with state

set Q. Let J ′ be the set of all j′ ∈ J which appear in edge labels of A; note that J ′

is necessarily finite. We construct from A a new finite automaton B over T with

• state set (Q× J ′) ∪ {q′0} where q′0 is a new symbol;

• start state q′0;

• terminal states (q, j) such that q is a terminal state of A;

CHAPTER 6. COMPLETELY SIMPLE SEMIGROUPS 97

• an edge from q′0 to (q1, j1) labelled t1 whenever A has an edge from the initial

state to q1 labelled (i, t1, j1);

• for every j1 ∈ J ′, an edge from (q1, j1) to (q2, j2) labelled Pj1i2t2 whenever A

has an edge from q1 to q2 labelled (i2, t2, j2) with Pj1i2 6= 0.

Since J ′ is finite and A has finitely many states and edges, we deduce that B has

finitely many states and edges. Next we must show that the subset accepted by B is

exactly Xij. Let t ∈ Xij. Then (i, t, j) ∈ X labels a path in A from the initial state

to some terminal state. Clearly this path cannot contain edges labelled 0, so it must

have the form

p0

(i1,t1,j1)
−−−−−→ p1

(i2,t2,j2)
−−−−−→ p2

(i3,t3,j3)
−−−−−→ . . .

(im−1,tm−1,jm−1)
−−−−−−−−−−→ pm−1

(im,tm,jm)
−−−−−−→ pm

where p0 is the initial state of A and pm is a terminal state. Since the path is labelled

(i, t, j) we have

(i, t, j) = (i1, t1, j1)(i2, t2, j2) . . . (im, tm, jm)

so that i1 = i, jm = j. Now it follows easily from the construction of B that there

exists a path

q′
0

t1−→ (p1, j1)
Pj1i2

t2
−−−−→ (p2, j2) . . . (pm−1, jm−1)

Pjm−1im tm
−−−−−−→ (pm, j),

where (pm, j) is a terminal state of B, so that B accepts

t = t1Pj1i2t2Pj2i3 . . . Pjm−1imtm.

Thus Xij ⊆ L(B).

Conversely, assume that t ∈ T is accepted by B. Then there exists a path through

B from the initial state to some terminal state labelled with t. It follows from the

definition of B that this path must have the form

q′
0

t1−→ (p1, j1)
Pj1i2

t2
−−−−→ (p2, j2) . . . (pm−1, jm−1)

Pjm−1im tm
−−−−−−→ (pm, j),

where pm is a terminal state in A,

t = t1Pj1i2t2Pj2i3t3 . . . Pjm−1imtm

CHAPTER 6. COMPLETELY SIMPLE SEMIGROUPS 98

and A has a path

p0

(i,t1,j1)
−−−−→ p1

(i2,t2,j2)
−−−−−→ p2

(i3,t3,j3)
−−−−−→ . . .

(im−1,tm−1,jm−1)
−−−−−−−−−−→ pm−1

(im,tm,j)
−−−−−→ pm

where p0 is the initial state of A. Hence, A accepts the element

(i, t1, j1)(i2, t2, j2) . . . (im, tm, j) = (i, t1Pj1i2t2Pj2i3t3 . . . Pjm−1imtm, j)

= (i, t, j).

So (i, t, j) ∈ X and hence t ∈ Xij .

So the automaton B accepts exactly the set Xij , and hence Xij is a rational subset

of T .

As a corollary, we obtain a result about the intersections of rational subsets with

maximal subgroups in completely simple semigroups.

Corollary 6.1.2. Let H be a maximal subgroup of a completely simple or completely

0-simple semigroup S. Let X be a rational subset of S. Then X ∩ H is a rational

subset of H.

Proof. By the Rees theorem, we may assume that S is a Rees matrix semigroup

without zero - M(G; I, J ;P), or a regular Rees matrix semigroup with zero - S =

M0(G; I, J ;P), over a group G. It follows easily from the definition of the Rees

matrix construction that either H = {0} or

H = {(i, g, j) | g ∈ G}

for some i ∈ I and j ∈ J with Pji 6= 0. In the former case the result is trivial, so we

assume the latter. By Proposition 6.1.1, the set

Xij = {g ∈ G | (i, g, j) ∈ X} = {g ∈ G | (i, g, j) ∈ H ∩X}

is a rational subset of G. It follows that

PjiXij = {Pjig | g ∈ Xij} = {Pjig | (i, g, j) ∈ X}

CHAPTER 6. COMPLETELY SIMPLE SEMIGROUPS 99

is also a rational subset of G. Now define a map

φ : G→ H, g 7→ (i, P−1
ji g, j)

where P−1
ji is the inverse of Pji in the group G. It is readily verified that φ is an

isomorphism from G to H , and so the image

(PjiXij)φ = {(i, P−1
ji g, j) | g ∈ PjiXij}

= {(i, P−1
ji Pjig, j) | (i, g, j) ∈ X}

= {(i, g, j) | (i, g, j) ∈ X}

= X ∩H

is a rational subset of H , as required.

In a completely simple semigroup, where every element lies in a maximal sub-

group, Corollary 6.1.2 easily yields the following complete characterisation of rational

subsets.

Theorem 6.1.3. The rational subsets of a completely simple semigroup are exactly

the finite unions of rational subsets of maximal subgroups.

Proof. Let S be a completely simple semigroup. If X1, . . . , Xn are rational subsets

of maximal subgroups of S then certainly they are rational subsets of S, and by

Proposition 2.2.5 so is their union.

Conversely, suppose X is a rational subset of S. Then X is accepted by a finite

automaton over S. Let I ′ ⊆ I and J ′ ⊆ J be the sets of indices appearing in edge

labels of the automaton. Then let P ′ denote the |I ′|×|J ′| sandwich matrix consisting

of only those rows and columns appearing in I ′ and J ′. Similarly let G′ ⊆ G be the

subgroup generated by elements g ∈ G appearing in edge labels in the automaton and

elements P ′
ji appearing in the sandwich matrix P ′. Let S ′ = M(G′; I ′, J ′;P ′) be the

Rees matrix semigroup constructed from these sets. Since the automaton is finite it is

clear to see that the sets I ′ and J ′ are finite, and thatG′ is finitely generated. Similarly

the matrix P ′ cannot contain any zero entries and so by the Rees theorem S ′ is

completely simple. We also note that the ideal of G′ generated by elements appearing

CHAPTER 6. COMPLETELY SIMPLE SEMIGROUPS 100

in P ′ is precisely the group G′ and hence by Theorem 6.0.7 we see that S ′ is finitely

generated. So X lies inside a finitely generated completely simple subsemigroup S ′

of S. Now S ′ is the union of finitely many maximal subgroups, so X is the union

of its intersections with these subgroups. By Corollary 6.1.2 these intersections are

rational, so X is a finite union of rational subsets of maximal subgroups of S ′. But

maximal subgroups of S ′ are subgroups of S, and hence lie in maximal subgroups of

S ′. It follows that X is a finite union of rational subsets of maximal subgroups of S,

as required.

Proposition 6.1.4. Let S = M(T ; I, J ;P) or S = M0(T ; I, J ;P) be a Rees matrix

semigroup with or without zero over a semigroup T , and let P ′ ⊆ T be the set of

non-zero entries of the sandwich matrix P . Suppose T = P ′T or T = TP ′. Then for

any i ∈ I, j ∈ J and rational subset X of T , the set

{(i, t, j) | t ∈ X}

is a rational subset of S.

Proof. By symmetry of assumption, it suffices to consider the case in which T = P ′T .

Let A be a finite automaton over T accepting X, with state set Q. Let Y ⊆ T be

the set of edge labels in A, and for every t ∈ Y , choose jt ∈ J , it ∈ I and st ∈ T such

that t = Pjtitst. Let

J ′ = {jt | t ∈ Y } ∪ {j}.

Then J ′ is a finite subset of J . We define a new automaton B over S with

• state set (Q× J ′) ∪ {q0} where q0 is a new symbol;

• initial state q0;

• terminal states (q, j) such that q is a terminal state of A;

• for every edge in A from the start state to a state q labelled t, and every j′ ∈ J ′,

an edge from q0 to (q, j′) labelled (i, t, j′);

• for every edge in A from a state p to a state q labelled t, and every j′ ∈ J ′, an

edge from (p, jt) to (q, j′) labelled (it, st, j
′).

CHAPTER 6. COMPLETELY SIMPLE SEMIGROUPS 101

We first note that since J ′ and Q are finite, the state set of the new automaton B

is also finite. Let x ∈ X. Then there exists a path through A connecting the initial

state to a terminal state labelled by x. Assume that the accepting path is labelled

by x = x1x2 . . . xn for xi ∈ Y for i = 1, . . . , n, with the xi not necessarily distinct. By

construction, for every edge from state p to state q in A labelled by t there exists an

edge labelled by (it, st, j
′) from state (p, jt) to state (q, j′) for every j′ ∈ J ′. If we set

jk = jxk+1
for k = 1, . . . , n−1, and set jn = j then it follows that B has an accepting

path labelled

(i, x1, jx2
)(ix2

, sx2
, jx3

) . . . (ixn
, sxn

, j) = (i, x1Pjx2
ix2
sx2

. . . sxn−1
Pjxn ixn

sxn
, j)

= (i, x1x2 . . . xn, j)

= (i, x, j)

and so (i, x, j) is accepted by B and i× L(A) × j ⊆ L(B).

For the other direction, let (i, x, j) ∈ L(B). Then there exists a path connect-

ing the initial state to some terminal state labelled by (i, x, j). It follows from the

definition of B that the path has label

(i, x1, j2)(i2, s2, j3) . . . (in, sn, j)

for x1, s2, . . . sn ∈ Y (not necessarily distinct) and j2, . . . jn ∈ J ′ (again, not neces-

sarily distinct). Since the path has label (i, x, j) we have that

x1Pj2i2s2 . . . sn−1Pjninsn = x.

Let xk = Pjkiksk for k = 2, . . . , n, then x = x1 . . . xn. So, reversing the construc-

tion, there exists a path through A labelled by x1x2 . . . xn as required. Thus the set

{(i, x, j) | x ∈ X} is accepted by the automaton B.

Note in particular that the conditions on the sandwich matrix in the hypothesis

of Proposition 6.1.4 are satisfied in the case of a regular Rees matrix construction

over a group.

As a corollary we obtain a result about the decidability of the rational subset

problem for completely simple and completely 0-simple semigroups.

CHAPTER 6. COMPLETELY SIMPLE SEMIGROUPS 102

Corollary 6.1.5. Let S = M(T ; I, J ;P) or S = M0(T ; I, J ;P) be a finitely generated

Rees matrix semigroup with or without zero over a semigroup T . If T has decidable

rational subset problem then S has decidable rational subset problem.

Proof. We prove the statement for Rees matrix semigroups with zero. Since any Rees

matrix semigroup S without zero may be embedded into a Rees matrix semigroup

S ′ with zero with the same maximal non-zero subgroup, and FRat(S) ⊆ FRat(S
′), the

result follows easily for Rees matrix semigroups without zero. It may also be proven

directly by a similar method to below.

Let ω : Ω∗ → T and σ : Σ∗ → S be finite choices of generators for T and S

respectively. For every x ∈ Σ such that xσ 6= 0, suppose xσ = (ix, gx, jx) and let

wx ∈ Ω∗ be a word with wxω = gx. For j ∈ J and i ∈ I such that Pji 6= 0 let wji ∈ Ω∗

be a word with wjiω = Pji.

Now suppose we are given a word w = w1 . . . wn ∈ Σ∗, where each wi ∈ Σ, and a

rational subset X of S. Clearly, we can test whether w represents 0 and, in the case

that it does, whether 0 ∈ X. Assume now that w does not represent 0. Then

wσ = (w1σ) . . . (wnσ) = (iw1
, gw1

Pjw1
iw2
gw2

. . . gwn
, jwn

).

Let Y = {t ∈ T | (iw1
, t, jwn

) ∈ X}, so that wσ ∈ X if and only if

(wgw1
wjw1

iw2
wgw2

. . . wgwn
)ω = gw1

Pjw1
iw2
gw2

. . . gwn
∈ Y. (6.1)

Now by Proposition 6.1.1, Y is rational and it follows moreover from the proof that

we can effectively compute an automaton for Y . By assumption, we can solve the

rational subset problem for Y , so we can decide whether (6.1) holds, as required.

6.2 Rational semigroup automata

We now turn our attention to languages accepted by rational S-automata, where S

is a Rees matrix semigroup. The first lemma will prove useful later.

Lemma 6.2.1. Let S = M0(G; I, J ;P) be a Rees matrix semigroup with zero and

let ω : Ω+ → S be a choice of generators for S. Then the set {z ∈ Ω+ | zω = 0} is

regular.

CHAPTER 6. COMPLETELY SIMPLE SEMIGROUPS 103

Proof. For each x ∈ Ω such that xω 6= 0 suppose xω = (ix, gx, jx). Let w ∈ Ω+. Then

wω = 0 if and only if either w ∈ Ω∗xΩ∗ where x ∈ Ω is such that xω = 0 or there

exist two consecutive generators in w, x and y say, such that Pjxiy = 0.

In the former case the subset of generators x ∈ Ω such that xσ = 0 is necessarily

finite since Ω is finite. Call this set Ω′.

In the latter case, the set of all possible pairs of generators x, y ∈ Ω such that

Pjxiy = 0 is also finite. Call this set P ′.

Then we may write the set {z ∈ Ω+ | zω = 0} as

Ω∗Ω′Ω∗ ∪ Ω∗P ′Ω∗

so the set in question is regular.

The next lemma simplifies the case of Rees matrix semigroups with zero, by

allowing us to restrict attention to automata for which neither the initial set nor the

terminal set contain zero.

Lemma 6.2.2. Let S = M0(T ; I, J ;P) be a finitely generated Rees matrix semigroup

with zero over a semigroup T , and suppose P contains a non-zero entry. If L ∈

FRat(S) then L is accepted by an S-automaton with rational initial and terminal sets

neither of which contain 0.

Proof. Suppose L is accepted by an S-automaton A with rational initial set X0 and

rational terminal set X1. Suppose first that 0 ∈ X0. If also 0 ∈ X1 then we have

0x ∈ X1 for all x ∈ S, so the language accepted is just the set of all words w such

that (x, w) labels a path from the initial vertex to a terminal vertex of A for some

x ∈ S. It follows that L is regular. We claim that L is accepted by an S-automaton

with rational initial and terminal set S \ {0}. We note that by Lemma 6.2.1 and

Proposition 4.2.4 this set is rational because S is rational. Indeed, let (i, t, j) ∈ S

such that Pji 6= 0 for some t ∈ T . Then (i, t, j)n 6= 0 for all n ∈ N and hence for

an appropriate choice of generators σ : Ω+ → S there exist words of arbitrarily high

length over Ω whose image under σ is contained in S \ {0}. So we may apply Lemma

CHAPTER 6. COMPLETELY SIMPLE SEMIGROUPS 104

4.4.2 to conclude that the regular language L is accepted by an S-automaton without

zero in the initial or terminal sets.

On the other hand, if 0 /∈ X1 then there is no x ∈ S such that 0x ∈ X1; hence we

may replace the initial set X0 with X0 \{0} without changing the language accepted.

Indeed, we note that {0}σ−1 is regular by Lemma 6.2.1 and hence by Proposition

4.2.4 X0 \ {0} is rational if X0 is rational. Thus, we may assume that 0 /∈ X0.

Clearly we can write L = L0 ∪ L1 where L1 is accepted by a S-automaton with

initial set X0 and terminal set X1 \ {0}, and L0 is accepted by an S-automaton with

terminal set {0} and rational initial set X0. We show first that L0 is regular.

Let σ : Ω∗ → S be a finite choice of generators for S. For each x ∈ Ω such that

xσ 6= 0 suppose xσ = (ix, gx, jx). Now let K ⊆ Ω∗ be the set of all words representing

elements of the initial set of A, and let K ′ ⊆ Ω be the (necessarily finite) set of all

final letters of words in K. It is easily seen that the language

{v ∈ Ω∗ | (wv)σ = 0 for some w ∈ K}

is regular. Indeed, by a similar argument to Lemma 6.2.1 it consists of all words

which

1. contain a generator representing zero; or

2. contain consecutive generators x and y with Pjxiy = 0; or

3. start with a generator y with Pjxiy = 0 for some x ∈ K ′

and so can be easily described by a regular expression.

It now follows from Proposition 4.3.4 that L0 is a rational transduction of a regular

language and hence is itself regular. It follows that L is the union of L1 with a regular

language.

We next note that by combining Lemma 6.2.1 and Proposition 4.2.4 if X1 is

rational then X1 \ {0} is also rational. Now if X−1
0 (X1 \ {0}) contains elements

wσ such that w ∈ Ω+ is of arbitrarily high length then by Lemma 4.4.2 the set

of languages accepted by S-automata with initial set X0 and terminal set X1 \ {0}

CHAPTER 6. COMPLETELY SIMPLE SEMIGROUPS 105

contains the regular languages. It follows that both L0 and L1 are accepted by S-

automata with initial set X0 and terminal set X1 \ {0}. Now just as in the proof of

Theorem 4.4.5 we may construct an S-automaton with initial set X0 and terminal

set X1 \ {0} which accepts the union L = L0 ∪ L1.

On the other hand if there exists an upper bound on the length of words w ∈ Ω+

such that wσ ∈ X−1
0 (X1 \ {0}) then by Lemma 4.4.3 every language accepted by

S-automata with initial set X0 and terminal set X1 \ {0} is finite and hence regular.

Therefore the language L1 is itself regular, and the union L0 ∪L1 is regular. Now by

Lemma 6.2.1 the set S \ {0} is rational. We set X ′
0 = X ′

1 = S \ {0}, then by Lemma

4.4.2 there exists an S-automaton with initial set X ′
0 and terminal set X ′

! accepting

the union L0 ∪ L1 as required.

This completes the proof.

We note that completely 0-simple semigroups satisfy the conditions of the above

lemma. We are now ready to prove the main theorem of this section, the essence

of which is that rational S-automata where S is a completely simple or completely

0-simple semigroup are no more powerful than G-automata where G is the maximal

subgroup of S.

Theorem 6.2.3. Let S be a completely simple or completely 0-simple semigroup with

maximal non-zero subgroup G. Then

FRat(S) = FRat(G) = F1(G).

Proof. That FRat(G) = F1(G) is Theorem 4.2.3, while the inclusion FRat(G) ⊆

FRat(S) is immediate. Hence, we need only prove that FRat(S) ⊆ FRat(G). It follows

easily from the Rees theorem that every completely simple semigroup S embeds in

a completely 0-simple semigroup S ′ with the same maximal non-zero subgroup, so

that FRat(S) ⊆ FRat(S
′). Hence, it suffices to prove the result in the case that S is

completely 0-simple.

Suppose, then, that S is completely 0-simple. By the Rees theorem, we may

assume that S is a regular Rees matrix semigroup M0(G0; I, J ;P) where G is a

CHAPTER 6. COMPLETELY SIMPLE SEMIGROUPS 106

group. Suppose now that a language L ⊆ Σ∗ lies in FRat(S). Let A be a rational

S-automaton accepting L, with initial rational set X0 ⊆ S and terminal rational set

X1 ⊆ S. By Lemma 6.2.2, we may assume that 0 /∈ X0 and 0 /∈ X1.

Let C and D be automata over S accepting X0 and X1 respectively. Since C,

D and A have only finitely many edges between them, we may choose finite subsets

I ′ ⊆ I and J ′ ⊆ J such that the edge labels of C and D all lie in I ′ × G × J ′, and

the edge labels of A all lie in (I ′ ×G× J ′) × Σ∗.

For each i ∈ I ′ and j ∈ J ′, we let Xij = {g ∈ G | (i, g, j) ∈ X0}. By Proposition

6.1.1, each Xij is a rational subset of G. It follows that

X ′
ij = Xij × {ǫ}

is a rational subset of G× Σ∗; let Cij be an automaton accepting X ′
ij .

Similarly, for each i ∈ I ′ and j ∈ J ′ we define Yij = {g−1 ∈ G | (i, g, j) ∈ X1}. By

Propositions 6.1.1 and 2.2.6, Yij is a rational subset of G, and so

Y ′
ij = Yij × {ǫ}

is a rational subset of G× Σ∗; let Dij be an automaton accepting Y ′
ij.

Assume without loss of generality that the automaton A and all the automata Cij

and Dij have disjoint state sets. We construct from these automata a G-automaton

B with

• state set the union of the state sets of Cij and Dij (for i ∈ I ′ and j ∈ J ′)

together with I ′ ×Q× J ′ where Q is the state set of A, and a new state q′0;

• initial state q′0;

• terminal states the terminal states of the automata Dij;

• all the edges of the automata Cij and Dij ;

• for each i ∈ I ′ and j ∈ J ′, an edge from q′0 to the initial state of Cij labelled

(1, ǫ);

CHAPTER 6. COMPLETELY SIMPLE SEMIGROUPS 107

• for each i ∈ I ′ and j ∈ J ′, an edge from each terminal state of Cij to (i, q0, j)

labelled (1, ǫ), where q0 is the initial state for A;

• for each edge in A from p to q labelled ((i, g, j), w) and each i′ ∈ I ′ and j′ ∈ J ′,

an edge from (i′, p, j′) to (i′, q, j) labelled (Pj′ig, w);

• for each i ∈ I ′, j ∈ J ′ and terminal state p of A, an edge from (i, p, j) to the

initial state of Dij labelled (1, ǫ).

Since I ′, J ′ and all the automata A, Cij and Dij are finite, it follows that the G-

automaton B is finite. We now show that B accepts the language L.

Let w ∈ L. Then there exists a path through the automatonA labelled ((i, g, j), w)

connecting the initial state with some terminal state (pt say), such that

(i0, g0, j0)(i, g, j) = (i′, g′, j′) ∈ X1

for some (i0, g0, j0) ∈ X0. Suppose this path has the form

q0

((i1,g1,j1),x1)
−−−−−−−−→ q1

((i2,g2,j2),x2)
−−−−−−−−→ q2

((i3,g3,j3),x3)
−−−−−−−−→ . . .qm−1

((im,gm,jm),xm)
−−−−−−−−−→ qm

where q0 is the initial state and qm = pt is a terminal state of A and w = x1 . . . xm.

Note that we must have i′ = i0, j
′ = jm and

g = g1Pj1i2g2 . . . Pjm−1imgm.

Now by construction, B has a path π2 of the form

(i0,q0, j0)
(Pj0i1

g1,x1)
−−−−−−−→ (i0,q1, j1)

(Pj1i2
g2,x2)

−−−−−−−→ (i0,q2, j2)
(Pj2i3

g3,x3)
−−−−−−−→ . . .

. . .
(Pjm−1imgm,xm)
−−−−−−−−−−→ (i0,qm, jm)

Moreover, from the fact that (i0, g0, j0) ∈ X0 we see that g0 ∈ Xi0j0, so that (g0, ǫ) ∈

X ′
i0j0

. Hence, (g0, ǫ) labels a path in Ci0j0 from the initial state to a terminal state.

Since the first part of the automaton B contains an exact copy of Ci0j0, whose terminal

states are connected in B to a copy of the initial state of A, it follows that (g0, ǫ)

labels a path π1 in B from the initial state q′0 to (i0, q0, j0) where q0 was the initial

CHAPTER 6. COMPLETELY SIMPLE SEMIGROUPS 108

state of A. Similarly, since (i′, g′, j′) ∈ X1 we deduce that ((g′)−1, ǫ) ∈ Yi′j′ = Yi0jm

so that B has a path π3 from (i0, qm, jm) to a terminal state labelled ((g′)−1, ǫ).

Composing the paths π1, π2 and π3, we see that B has a path from the initial

state to a terminal state with label

(g0Pj0i1g1Pj1i2g2 . . . Pjm−1imgm(g′)−1, x1x2 . . . xm)

But we know that (i0, g0, j0)(i, g, j) = (i′, g′, j′), so we must have

g0Pj0i1g1Pj1i2g2 . . . Pjm−1imgm = g′

and hence

g0Pj0i1g1Pj1i2g2 . . . Pjm−1imgm(g′)−1 = 1.

It follows that w is accepted by the G-automaton B, as required.

Conversely, suppose w is accepted by the G-automaton B. Then there is a path

in B from the initial state to a terminal state labelled (1, w). We deduce easily from

the construction of B that this path must have the form π1π2π3 where

• π1 runs from the start state to some state (i0, q0, j0) with label of the form (g0, ǫ)

for some g0 ∈ Xi0j0, so that (i0, g0, j0) ∈ X0;

• π2 runs from (i0, q0, j0) to a state (i0, qm, jm) where qm is a terminal state of A

and

• π3 runs from (i0, qm, jm) to a terminal state with label ((g′)−1, ǫ) where (g′)−1 ∈

Yi0jm
, so that (i0, g

′, jm) ∈ X1.

Moreover, π2 must have the form

(i0,q0, j0)
(Pj0i1

g1,x1)
−−−−−−−→ (i0,q1, j1)

(Pj1i2
g2,x2)

−−−−−−−→ (i0,q2, j2)
(Pj2i3

g3,x3)
−−−−−−−→ . . .

. . .
(Pjm−1,imgm,xm)
−−−−−−−−−−→ (i0,qm, jm)

where, since the label of the entire path π is (1, w), we must have w = x1 . . . xm and

g0Pj0i1g1 . . . Pjm−1imgm(g′)−1 = 1, that is,

g0Pj0i1g1 . . . Pjm−1imgm = g′.

CHAPTER 6. COMPLETELY SIMPLE SEMIGROUPS 109

We deduce from the path above and the construction of B that A has a path

q0

((i1,g1,j1),x1)
−−−−−−−−→ q1

((i2,g2,j2),x2)
−−−−−−−−→ q2

((i3,g3,j3),x3)
−−−−−−−−→ . . .qm−1

((im,gm,jm),xm)
−−−−−−−−−→ qm

Since q0 and qm are initial and terminal states of A respectively, it follows that A

accepts (x, w) where

x = (i1, g1, j1)(i2, g2, j2) . . . (im, gm, jm).

But (i0, g0, j0) lies in X0 and

(i0, g0, j0)x = (i0, g0, j0)(i1, g1, j1) . . . (im, gm, jm)

= (i0, g0Pj0i1g1 . . . Pjm−1imgm, jm)

= (i0, g
′, jm)

lies in X1, from which we deduce that the rational S-automaton A accepts the word

w, and so w ∈ L as required.

Bibliography

[1] V. Amar and G. Putzolu. Generalizations of regular events. Inform. Confr.,

8:56–63, 1965.

[2] H. Ayik and N. Ruskuc. Generators and relations of Rees matrix semigroups.

Proceedings of the Edinburgh Mathematical Society, 42:481 –495, 1999.

[3] M. Benois. Parties rationnelles du groupe libre. C. R. Acad. Sci. Paris, Ser. A

269:1188–1190, 1969.

[4] J. Berstel. Memento sur les transductions rationnelles. In Actes de l’Ecole de

Printemps sur les langages algébriques. Bonascre, Arige, 1973.

[5] J. Berstel. Transductions and Context-Free Languages. Teubner Studienbucher,

Stuttgart, 1979.

[6] L. Boasson. Two iteration theorems for some families of languages. Journal of

Computer and System Sciences, 7:583–596, 1973.

[7] R.V. Book, M. Jantzen, and C. Wrathall. Monadic Thue systems. Theoretical

Computer Science, 19:231–251, 1982.

[8] R.V. Book and F. Otto. String rewriting systems. Springer Verlag, New York,

1993.

[9] N. Chomsky and M. P. Schutzenberger. The algebraic theory of context-free

languages. In P. Braffort and D. Hirschberg, editors, Computer Programming

and Formal Languages, pages 118–161. 1963.

110

BIBLIOGRAPHY 111

[10] A.H. Clifford and G.B. Preston. The Algebraic Theory of Semigroups, volume 1.

American Mathematical Society, 1961.

[11] J. M. Corson. Extended finite automata and word problems. International

Journal of Algebra and Computation, 15(3):455–466, 2005.

[12] J. Dassow. Grammars and regulated rewriting, pages 249 – 275. Springer, 2004.

[13] J. Dassow and V. Mitrana. Finite automata over the free generated groups.

International Journal of Algebra and Computation, 10(6):725–738, 2000.

[14] M. J. Dunwoody. The accessibility of finitely presented groups. Inventiones

Mathematicae, 81(3):449–457, 1985.

[15] M. Elder. G-automata, counter languages and the Chomsky heirarchy. In Groups

St. Andrews 2005, volume 339 of London Mathematical Society Lecture Notes

Series, 2005.

[16] M. Elder, M. Kambites, and G. Ostheimer. On groups and counter automata.

International Journal of Algebra and Computation, 18:1345 – 1364, 2006.

[17] M. Elder and A. Mintz. (private communication).

[18] G.Z. Elston and G. Ostheimer. On groups whose word problem is solved by a

counter automaton. Theoretical Computer Science, 320(2-3), 2004.

[19] H. Fernau and R. Stiebe. Valence grammars with target sets. In S. Yu M. Ito,

Gh. Paun, editor, Words, Semigroups and Transductions, pages 129–140. World

Scientific, Singapore, 2001.

[20] H. Fernau and R. Stiebe. Sequential grammars and automata with valences.

Theoretical Computer Science, 276:377–405, 2002.

[21] S. M. Gersten, D. Holt, and T. Riley. Isoperimetric inequalities for nilpotent

groups. Geometric and functional analysis, 13(4):795–814, 2003.

BIBLIOGRAPHY 112

[22] R.H. Gilman. Formal languages and infinite groups. In Geometric and Compu-

tational Perspectives on Infinite Groups (Minneapolis, MN and New Brunswick,

NJ, 1994), DIMACS Series, volume 25 of Discrete Mathematics and Theoretical

Computer Science, Providence RI, 1996. American Mathematical Society.

[23] R.H. Gilman and M. Shapiro. On groups whose word problem is solved by a

nested stack automaton. arXiv:math.GR/9812028, 1998.

[24] E.S. Golod. Some problems of Burnside type. In Proc. Internat. Congr. Math.

(Moscow, 1966), pages 284–289, Moscow, 1968.

[25] E.S. Golod and I.R. Shafarevich. On the class field tower. Izv. Akad. Nauk SSSR,

28:261–272, 1964.

[26] S.A. Greibach. Remarks on blind and partially blind one-way multicounter ma-

chines. Theoretical Computer Science, 7(3):311–324, 1978.

[27] R.I. Grigorchuk. On Burnside’s problem on periodic groups. Functional Anal.

Appl., 14(1):41–43, 1980.

[28] M. Gromov. Groups of polynomial growth and expanding maps. Publications

Mathematiques I.H.E.S., 53, 1981.

[29] Z. Grunschlag. Algorithms in Geometric Group Theory. PhD thesis, University

of California at Berkeley, 1990.

[30] P. Hall. The Edmonton Notes on Nilpotent Groups. Queen Mary College Math-

ematics Notes, 1969.

[31] T. Herbst. On a subclass of context-free groups. RAIRO Inform. Theor. Appl.,

25(3):255–272, 1991.

[32] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, 1979.

[33] J.M. Howie. Fundamentals of Semigroup Theory. Clarendon Press, 1995.

BIBLIOGRAPHY 113

[34] M. Kambites. Word problems recognisable by deterministic blind monoid au-

tomata. Theoretical Computer Science, 362(1), 2006.

[35] M. Kambites. Formal languages and groups as memory. Communications in

Algebra, 37:193–208, 2009.

[36] M. Kambites. Small overlap monoids II: automatic structures and normal forms.

Journal of Algebra, 321:2302–2316, 2009.

[37] M. Kambites, P.V. Silva, and B. Steinberg. On the rational subset problem for

groups. J. Algebra, 309(2):622–639, 2007.

[38] R.C. Lyndon and P.E. Schupp. Combinatorial Group Theory. Springer, 2001.

[39] A. Mateescu and A. Salomaa. Aspects of Classical Language Theory, pages 175–

252. Springer, 1997.

[40] V. Mitrana and R. Stiebe. The accepting power of finite automata over groups.

In New Trends in Formal Languages, volume 1218 of Lecture Notes in Computer

Science. Springer, Berlin, 1997.

[41] V. Mitrana and R. Stiebe. Extended finite automata over groups. Discrete

Applied Mathematics, 108:287–300, 2001.

[42] D. E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and

second order logic. Theoretical Computer Science, 37:5175, 1985.

[43] D.E. Muller and P.E. Schupp. Groups, the theory of ends, and context-free

languages. J. Comput. System Sci., 26(3):295–310, 1983.

[44] A. Yu. Ol’shanskii. The Novikov-Adyan theorem. Mat. Sb. (N.S.), 118(2):203–

235, 1982.

[45] Gh. Paun. A new generative device: valence grammars. Rev. Roumaine Math.

Pures Appl., XXV(6):911–924, 1980.

BIBLIOGRAPHY 114

[46] M. Pelletier and J. Sakarovitch. Easy multiplications II. extensions of rational

semigroups. Information and Computation, 88(1):18–59, 1990.

[47] V. Red’ko and L. Lisovik. Regular events in semigroups. Problems of Cybernetics,

37:155–184, 1980.

[48] D. Rees. On semi-groups. Proceedings of the Cambridge Philosophical Society,

36:387–400, 1940.

[49] E. Render and M. Kambites. Polycyclic and bicyclic valence automata. In

Language and Automata Theory and Applications 2008, volume 5196 of Lecture

Notes in Computer Science, pages 464 – 475. 2008.

[50] E. Render and M. Kambites. Rational subsets of polycyclic monoids and valence

automata. Information and Computation, 207(11):1329 – 1339, 2009.

[51] E. Render and M. Kambites. Semigroup automata with rational initial and

terminal sets. Theoretical Computer Science, 411(7-9):1004 – 1012, 2010.

[52] J. Sakarovitch. Easy multiplications. I. The realm of Kleene’s theorem. Infor-

mation and Computation, 74(3):173–197, 1987.

[53] A.K. Salomaa. Probabilistic and weighted grammars. Information and Control,

15:529–544, 1969.

[54] J.B. Stephen. Inverse monoids and rational subsets of related groups. Semigroup

Forum, 46(1):98–108, 1993.

Index

ǫ-transition, 22

AFL, 34

full AFL, 34

principal, 34

semi-AFL, 34

ancestor, 79

associative, 15

automaton

finite, 22, 25

generalised, 22, 22–23, 25

Heisenberg, 51

monoid, 38

pushdown, 30

valence, 38

binary operation, 15

binary relation, 16

blind, 35

Burnside problem, 63

centre, 16

choice of generators, 18, 39

Chomsky and Schützenberger, 43, 46

commutative, 16

commutator, 50

subgroup, 50

compatibility, 17

complement, 23

cone

faithful, 34

rational, 34, 69

congruence, 16

coset, 16

left, 16

right, 16

counter

blind, 42

one-counter, 42

partially blind, 46

D relation, 20

D-class, 20

derivation, 29

descendant, 79

deterministic, 22, 25

direct product, 18

Dyck language, 43, 46

edge, 21

element

identity, 15

inverse, 15, 27

115

INDEX 116

zero, 19

emptiness, 23

empty word, 21

equivalence relation, 17

factor, 21

left, 21

right, 21

family of languages, 34

finitely generated, 18

finitely presented, 18

free, 17

generators, 18

grammar, 29

context-free, 30

context-sensitive, 30

regular, 30

type-0, 29

unrestricted, 29

valence, 11, 32

graph, 21

directed, 21

Green’s relations, 19–20

group, 16

cyclic, 42

finite, 42

free, 18

free abelian, 42

Heisenberg, 49, 49–53

infinite torsion, 62

infinite torsion, not locally finite, 61

nilpotent, 48, 48–53

canonical basis, 50

H relation, 20

H -class, 20

homomorphism, 17

ideal, 20, 54

proper, 20

idempotent, 56

index, 16

isomorphism, 17

J -class, 19

J -relation, 19

Kleene star, 23

Kleene’s theorem, 24

L -class, 19

L -relation, 19

language, 22

context-free, 28, 30, 31, 35, 44, 46, 89

context-sensitive, 30, 35, 49

identity, 32, 39

rational, 22

regular, 22, 28, 35

length, 21

locally finite, 41

M-automaton, 38

monoid, 15

INDEX 117

bicyclic, 45, 46

finite, 40

free, 18, 21

Kleene, 26

polycyclic, 45

rational, 26

morphism, 17, 28

ǫ-free, 34

homomorphic image, 17

non-deterministic, 22

partially blind, 35

path, 22

pop, 31, 45

positive closure, 34

presentation, 18

primitive, 56

production, 29

pumping lemma

context-free, 31

regular sets, 24

push, 31, 45

R-class, 19

R-relation, 19

rational relation, 27, 27–28

rational subset, 24, 25

rational subset problem, 33, 82

rational transduction, 28

recognisable, 24

recursively enumerable, 30, 35, 49

Rees quotient, 20

reflexive, 16

regular expression, 23

relation

composition of, 17

rewriting system, 79

monadic, 79

S-automaton

rational, 63

semigroup, 15

S0, 19

S1, 19

0-simple, 55

completely 0-simple, 57

completely simple, 57

free, 18

Kleene, 26

Rees matrix, 57

regular, 57

simple, 55

syntactic, 10

with zero, 19

set difference, 69

rational, 69

simple, 55

0-simple, 55

stack, 31, 45

start symbol, 29

state, 22

INDEX 118

source, 22

target, 22

subgroup, 16

normal, 16

proper, 16

subgroup membership problem, 33

submonoid, 16, 40

subsemigroup, 16

symmetric, 17

terminal, 29

testable, 23

torsion, 49, 61

torsion free, 49

transitive, 17

trio, 34

full, 34

uniformly decidable, 33

variable, 29

vertex, 21

virtually, 42

word, 21

word problem, 32, 33, 42, 45

generalised, 33

