
CRANFIELD UNIVERSITY

SCHOOL OF ENGINEERING

PhD THESIS

2009

D KLANN

The Role of Information Technology in the Airport Business:

A Retail-Weighted Resource Management Approach

for Capacity-Constrained Airports

Supervisor: Dr R. Pagliari

Academic Year 2003 to 2009

This thesis is submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy.

© Cranfield University, 2009. All rights reserved. No part of this publication may be

reproduced without the written permission of the copyright holder.

ABSTRACT I

Much research has been undertaken to gain insight into business alignment of IT. This

alignment basically aims to improve a firm’s performance by an improved

harmonization of the business function and the IT function within a firm. The thesis

discusses previous approaches and constructs an overall framework, which a potential

approach needs to fit in.

Being in a highly regulated industry, for airports there is little space left to increase

revenues. However, the retailing business has proven to be an area that may contribute

towards higher income for airport operators. Consequently, airport management should

focus on supporting this business segment. Nevertheless, it needs to be taken into

account that smooth airport operations are a precondition for successful retailing

business at an airport.

Applying the concept of information intensity, the processes of gate allocation and

airport retailing have been determined to appraise the potential that may be realized

upon (improved) synchronization of the two. It has been found that the lever is largest

in the planning phase (i.e. prior to operations), and thus support by means of

information technology (for information distribution and improved planning) may help

to enable an improved overall retail performance.

In order to determine potential variables, which might influence the output, a process

decomposition has been conducted along with the development of an appropriate

information model.

The derived research model has been tested in different scenarios. For this purpose an

adequate gate allocation algorithm has been developed and implemented in a purpose-

written piece of software. To calibrate the model, actual data (several hundred thousand

data items from Frankfurt Airport) from two flight plan seasons has been used.

Key findings: The results show that under the conditions described it seems feasible to

increase retail sales in the magnitude of 9% to 21%. The most influential factors

(besides the constraining rule set and a retail area’s specific performance) proved to be a

flight’s minimum and maximum time at a gate as well as its buffer time at gate.

However, as some of the preconditions may not be accepted by airport management or

national regulators, the results may be taken as an indication for cost incurred, in case

the suggested approach is not considered.

The transferability to other airport business models and limitations of the research

approach are discussed at the end along with suggestions for future areas of research.

Keywords:
gate assignment problem, retail sales, algorithm, combinatorial explosion, business process engineering,
information intensity, data model, simulation framework.

List of Contents II

ABSTRACT I
LIST OF CONTENTS II
LIST OF FIGURES IV
LIST OF TABLES VI
ACKNOWLEDGEMENTS VII
ABBREVIATIONS VIII

1 INTRODUCTION .. 1

1.1 General .. 2
1.2 Motivation ... 3
1.3 Thesis title ... 4
1.4 Aim and objective (demarcation) .. 5
1.5 Potential contribution to knowledge ... 7
1.6 Organisation of this paper ... 8

2 SETTING THE SCENE ... 9
2.1 Success factors in the airport industry .. 10
2.2 Alignment of business and information technology ... 12
2.3 Gate allocation .. 24

2.3.1 Use of a resource management system (RMS) .. 28
2.4 Airport retailing .. 31
2.5 Integral view and research question .. 37

3 METHODOLOGY ... 39
3.1 Choice of methodology (Justification) .. 40
3.2 Business context and scope ... 40

3.2.1 ‘Information Intensity’ model applied to airport business ... 42
3.2.2 Applicable airport environment ... 44
3.2.3 Business process decomposition for airport retailing .. 46
3.2.4 Business process decomposition for gate allocation.. 49
3.2.5 Airport information model in context of business processes examined 51

3.3 Formulation of conceptual research model ... 57
3.4 Identification of information / data needed ... 60

3.4.1 Infrastructural (reference) data .. 61
3.4.2 Flight schedules ... 63
3.4.3 Retail sales data ... 64
3.4.4 Rule set .. 66

3.5 From conceptual research model towards a quantitative model ... 67
3.6 Approach to determine improved solutions .. 70

3.6.1 Type of problem and mathematical considerations ... 70
3.6.2 Heuristic approach versus deterministic approach .. 75
3.6.3 Deterministic algorithm for retail-oriented gate allocation ... 77

3.7 Simulation environment .. 88
3.7.1 Components ... 89
3.7.2 Implementation .. 98

4 ANALYSIS .. 102
4.1 Set of current flight data ... 103

4.1.1 Seasonality .. 103
4.1.2 Traffic distribution (passengers, flights) ... 108
4.1.3 Retail area factors and sales figures (model calibration) ... 110
4.1.4 Sales per passenger .. 117
4.1.5 Sales per flight ... 118
4.1.6 Comparison of retail sales (actual traffic vs. seasonal planning) ... 119
4.1.7 Figures regarding flight operations ... 120

List of Contents III

4.1.7.1 Delay .. 121
4.1.7.2 Turnaround times ... 122
4.1.7.3 Gate changes versus changes in retail areas ... 124

4.1.8 Causality: Falsification using correlations .. 125
4.1.9 Summary: set of current flight data ... 126

4.2 Scenario technique .. 127
4.2.1 Elements describing a scenario ... 127
4.2.2 Standard assumptions, rule set .. 128
4.2.3 Scenarios ... 130

4.3 Simulation runs ... 134
4.4 Analysis of results ... 136

4.4.1 Result of baseline scenario compared to actual result ... 137
4.4.2 Scenario results in order of retail sales result .. 138

5 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEA RCH 146
5.1 Recommended actions for airport managers ... 148
5.2 The role of IT: Strategic implications for airport policy ... 150
5.3 Transferability ... 151

5.3.1 Different players in same business context ... 151
5.3.2 Individual aspects to be considered ... 153

5.4 Limitations of research undertaken ... 154
5.5 Contributions .. 156
5.6 Areas for future research ... 156

6 LIST OF REFERENCES ... 159

7 BIBLIOGRAPHY ... 166

8 APPENDIX A .. 173
8.1 Overview of functions and procedures ... 173
8.2 Source code of software .. 174

8.2.1 Main File ... 175
8.2.2 Include File .. 278

9 APPENDIX B .. 283
9.1 Sample output of ABC data (raw) ... 283
9.2 Sample output of ABC data (formatted) ... 284
9.3 Sample output of simulation run (gate allocation, header) ... 285
9.4 Sample output of simulation run (gate allocation, detail) ... 285
9.5 Sample output of simulation run (flight schedule) .. 286
9.6 Outline of report summary (sales, passengers per weekday and retail area) 288
9.7 Subset of full report (actual passenger distribution) ... 289
9.8 Subset of full report (improved revenue distribution) ... 289
9.9 Excerpt from summary report of simulation results.. 290
9.10 Simulation result: baseline scenario vs. actual traffic (passengers) ... 291
9.11 Simulation result: baseline scenario vs. actual traffic (sales) ... 292

List of Figures IV

Figure 1: Factors of airport competitiveness. Source: Park (2003, p. 354). ... 11
Figure 2: Strategic alignment framework (for a global enterprise). Source: Peppard (1998, p. 10). 12
Figure 3: Strategic alignment according to Henderson and Venkatraman. [...]. ... 13
Figure 4: An IT investment framework. Adopted from Ross and Beath (2002). 14
Figure 5: Structure of balanced scorecard. Source: Kaplan and Norton (1992, p.72). 15
Figure 6: Impact of IT investments on productivity at industry level. Research model. [...]. 17
Figure 7: Different architectural layers. (own illustration). .. 20
Figure 8: The different IT architectural layers in context of their two dimensions. (own illustration). 21
Figure 9: Generic IT systems landscape at an airport according to an implementation scenario [...]......... 22
Figure 10: Research topic placed within body of knowledge (of IT alignment). 23
Figure 11: Model framework according to Hamzawi (1986, p. 193). .. 25
Figure 12: Structured body of knowledge of the gate assignment problem (GAP). 27
Figure 13: Resource management system (effort distribution 1). ... 28
Figure 14: Resource management system (effort distribution 2). ... 29
Figure 15: Basic structure of Hildebrandt's (1988) 3-factor-model of store image [...]. 33
Figure 16: Drivers to retail success - Control and impact. Source: Fraport AG. .. 36
Figure 17: Business context of research project. .. 41
Figure 18: Value chain of an airport with focus on use of technology. .. 42
Figure 19: Information intensity matrix, applied to airports... 43
Figure 20: IDEF0 legend of an activity .. 45
Figure 21: Decomposition of retail process, top level. ... 46
Figure 22: Decomposition of retail process, 2nd level... 47
Figure 23: Decomposition of gate allocation process, top level. .. 49
Figure 24: Decomposition of gate allocation process, 2nd level. ... 50
Figure 25: Resource Management Data Flow Chart (Source: Kelemen, 2005, p. 22)................................ 51
Figure 26: Airport information model (outline) in context of research. ... 52
Figure 27: Airport information model, domain: flight. .. 53
Figure 28: Airport information model, domain: airport infrastructure. .. 54
Figure 29: Airport information model, domain: flight event. ... 55
Figure 30: Conceptual research model with underlying statement (H.1). .. 57
Figure 31: Context of conceptual research model. ... 58
Figure 32: Basic terminal layout, Frankfurt Airport. .. 62
Figure 33: Timeline of flight plan seasons. .. 63
Figure 34: Card-deck example transferred to gate allocation context (1). .. 72
Figure 35: Card-deck example transferred to gate allocation context (2). .. 73
Figure 36: Flowchart of a basic genetic algorithm. .. 75
Figure 37: Proposed solution (framed branches) within GAP classification. ... 77
Figure 38: Algorithm for gate allocation, top level. ... 81
Figure 39: Algorithm to compose an allocation (recursive search of solution space). 86
Figure 40: Basic architecture of simulation workbench. .. 89
Figure 41: Data categories in simulation software, implemented as flat files. ... 90
Figure 42: Function tree of simulation software, top level. .. 91
Figure 43: Functions for data cleansing. .. 92
Figure 44: Functions to manage reference data. ... 94
Figure 45: Functions to produce basic statistics (descriptive data). ... 95
Figure 46: The heat map function. .. 95
Figure 47: Screenshot of animated categorized data. ... 96
Figure 48: Geographical representation of categorized data. ... 97
Figure 49: Example of source code displayed within integrated development environment. 99
Figure 50: Sample display output during a simulation run. .. 100
Figure 51: Formal seasonality in the research context. .. 104
Figure 52: Seasonality within actual data (summer and winter). .. 105
Figure 53: Seasonality within actual data (weeks in July). ... 106
Figure 54: Seasonality within actual data (daily traffic waves). ... 107
Figure 55: Distribution of passengers (sums) per retail area. ... 108
Figure 56: Distribution of passengers (sums) per day of week. ... 108

List of Figures V

Figure 57: Retail sales for each day within research period. .. 113
Figure 58: Accumulated sales per country (ABC-curve, summer season). .. 114
Figure 59: Accumulated sales per country (ABC-curve, winter season). ... 114
Figure 60: Top 15 countries in sales (summer season). .. 114
Figure 61: Top 15 countries in sales (winter season). .. 115
Figure 62: Distribution of retail sales (sums) per retail area (basis: actual data). 116
Figure 63: Distribution of retail sales (sums) per day of week (basis: actual data). 116
Figure 64: Sales per departing PAX, based on daily average. .. 117
Figure 65: Sales per departing flight, based on daily average. ... 118
Figure 66: Distribution of passengers (sums) per retail area (seasonal plan). .. 119
Figure 67: Distribution of passengers (sums) per day of week (seasonal plan).. 119
Figure 68: Gate changes resulting in changes of retail area. .. 124
Figure 69: Excerpt of a sample gate allocation as procuded by the simulation workbench. 135
Figure 70: Comparison of actual figures to those of the baseline scenario. ... 137
Figure 71: Application of methodology at other airports. .. 152
Figure 72: Screenshot of software's function/procedure list. Source: Author. ... 173

List of Tables VI

Table 1: Enablers and inhibitors to alignment. Adopted from Luftman et al. (1999) 14
Table 2: Selection of literature in the field of business alignment of IT. ... 16
Table 3: Basic definition of retail areas. ... 62
Table 4: Retail-worthiness of countries (selection) at Frankfurt Airport in 2007. 65
Table 5: Number of potential combinations in (initially) reduced solution space. 74
Table 6: Directory to source code of algorithm. ... 82
Table 7: Combinatorial example (1): reduced solution space. ... 83
Table 8: Combinatorial example (2): retail area combinations. ... 83
Table 9: Combinatorial example (3): resulting retail sales. .. 84
Table 10: Combinatorial example (4): optimum combination. .. 84
Table 11: Pseudo-code for different implementations of the factorial function. .. 85
Table 12: Distribution of departing passengers across retail areas for each day of a week [...]. 108
Table 13: Distribution of (daily average) number of flights per weekday. ... 109
Table 14: Retail area factors derived from actual data. .. 110
Table 15: Distribution of retail sales (in EUR) across retail areas for each day of a week [...]. 115
Table 16: Sales (in EUR) per departing passenger per retail area and day of week (both seasons). 118
Table 17: Distribution of departing passengers (seasonal plan) across retail areas [...]. 119
Table 18: Frequency of occurrences of delay minutes (both seasons). .. 121
Table 19: Frequency of occurrences of standard ground time entries (summer season). 122
Table 20: Frequency of occurrences of standard ground time entries (winter season). 122
Table 21: Frequency of occurrences of standard ground time entries (both seasons). 123
Table 22: Correlation coefficients for daily aggregated (averaged) [...] 125
Table 23: Correlation coefficients for passengers, sales [...]. ... 126
Table 24: Definition of baseline scenario. .. 130
Table 25: Scenario definitions (Group 1). .. 132
Table 26: Scenario definitions (Group 2). .. 133
Table 27: Scenario results (Group 1), sorted by sales result. ... 138
Table 28: Violations of alliance rule per day of week. ... 139
Table 29: Violations of alliance rule: frequency classes. ... 140
Table 30: Scenario results (Group 2), sorted by sales result. .. 141
Table 31: Scenario results (Group 3). ... 143

Acknowledgements VII

As the creation of this thesis would not have led to such a satisfying result without the

involvement of many people, this is to those who deserve special thanks.

In particular, I would like to thank my supervisor Dr Romano Pagliari.

Besides his valuable expertise, his confidence and patience throughout the past five

years very much contributed towards achievement of this work on a part-time basis.

Many colleagues at Fraport, friends and loved ones are thanked for continuous support.

Abbreviations VIII

2-D Two-dimensional
A/L Airline
A/P Airport
ACI Airports Council International
ADM Airport Data Management
ASI Airport Systems Integration
ATC Air Traffic Control
ATD Actual Time of Departure
BHS Baggage Handling System
BPR Business Process Re-engineering.
CDM Collaborative Decision Making
COM Component Object Model
DDE Dynamic Data Exchange
DF Duty free
DLL Dynamic Link Library
EPOS Electronic Point of Sale
ETD Estimated Time of Departure
EU European Union
F&B Food and beverage
FIDS Flight Information Display System
FK Foreign Key
FSS Flight Scheduling System
GA Genetic Algorithm
GAP Gate Assignment Problem
GHS Ground Handling System
GUI Graphical User Interface
IATA International Air Transport Association
ICAM Integrated Computer-Aided Manufacturing
IDE Integrated Development Environment
IDEF0 Integrated Definition 0
IDEF1X Integrated Definition 1 extended
IP Integer Problem
LP Linear Programming
NP Non-deterministic Polynomial Time
OAG Official Airline Guide
OLE Object Linking and Embedding
PAX Passenger(s)
PC Personal Computer
PNR Passenger Name Record
PSS Personnel Scheduling System
QAP Quadratic Assignment Problem
QoS Quality of Service
RAM Random Access Memory
RAS Resource Availability System
RMS Resource Management System
SDR Special drawing rights
SPT Simplifying Passenger Travel
SQL Structured Query Language
STD Scheduled Time of Departure
U.K. United Kingdom
U.S. United States (of America)
VBA Visual Basic for Applications

1

1 INTRODUCTION

Introduction
Setting the

Scene

1. INTRODUCTION

Setting the

Scene
Methodology Analysis

1. INTRODUCTION

Conclusion

INTRODUCTION 2

1. INTRODUCTION

This thesis explores the complex relationships between airport operations, retail

management and information technology. It focuses attentions to the commercial

imperative associated with retail activity and the operational requirements of efficient

airport operations. Although many quantitative aspects included, this thesis does not

claim to be an operations research work. However, it aims to support management with

findings based on both qualitative and quantitative research.

1.1 General

The overall purpose of this chapter is to provide the reader with a general understanding

of the research project. Therefore, an outline comprising the aim and possible objectives

is given along with the topic's placement within the air transport industry’s context.

Past research focused on the relationship between investment into information

technology (IT) and the outcome on the (financial) business side. Usually, positive

correlation is found, but causal relationship unclear (Hu and Quan, 2005). This research

project aims to overcome the most common deficit identified in previous pieces of

research: Lack of detail and causality dilution.1

From an IT perspective: As with any resource (e.g. human labour, land or capital) it is

not the pure existence of IT as such that contributes to a firm’s success, rather than its

intelligent use. Contribution can be in form of commodity services (e.g. email, desktop

office support) or in form of highly specialized support for a variety of functions within

an enterprise. However, there is no ‘one is more important than the other’. Important is

the balance of the two. Furthermore, the information intensity of a business process is

proportional to the contribution of IT towards a good process performance (compared to

less information intensive processes).2

From an airport’s perspective: As part of a highly regulated industry, airports are left

little space to increase their revenues. However, the retailing business has proven to

contribute to increasing revenues for airport operators.3 Consequently, airport

management should focus on its retail segment. Nevertheless, it needs to be taken into

1 Financial performance measures are usually subject to a variety of influences other than information

technology. So, it is often difficult to separate IT’s contribution.
2 See Porter and Millar (1985).
3 Cerovic (1998), Freathy and O’Connell (1998 various), Airport Council International (2007) in

Graham (2008).

INTRODUCTION 3

account that smooth airport operations are a precondition for successful retailing

business at an airport.

From both perspectives: To guide passengers physically through retail offering strongly

depends on operational processes, one of them being stand and gate allocation. In

complex, information intensive environments, the gate allocation process is usually

supported by specialized IT systems.4

This is exactly where this paper steps in to evaluate information technology’s

contribution towards retail success at an airport.

1.2 Motivation

The author has chosen this topic for two reasons.

With an airport operations background in mind, it is seen as a challenge to ‘think out-of-

the-box’ in terms of combining operational and commercial airport processes. In

discussions he has often found that operational reasons prohibit potential improvements

regarding the overall airport product. Unfortunately, without any deeper investigations,

possible variations of the way business is conducted have not been pursued. It is the

objective to demonstrate that varying processes or business rules enables an

improvement of the overall business outcome.

Secondly, from his past role as Corporate Information Architect the author is challenged

to demonstrate the potential to be found within intelligent usage of existing

information.5 In context with the aforementioned, this implies the merge of information

from different business processes.

In a more specific way the thesis title paraphrases the outlined research endeavour.

4 A more detailed view on ‘information intensity’ (Porter and Millar, 1985) is provided in Chapter 3.2.1.
5 The word ‘information’ is used as a general term, whereas the word ‘data’ refers to information in a

digitized form (e.g. in an electronic data base or in electronic files).

INTRODUCTION 4

1.3 Thesis title

For the purpose of this paper the main elements of the thesis title are to be understood as

described below.

Role of information technology

The role of information technology is often described around terms like ‘strategic

alignment of IT’ or simply ‘commodity’. Within this paper this considerable bandwidth

is reduced to business process support by means of information distribution and applied

methods of operations research (e.g. simulations).

Airport Business

The main players in focus of research are the airport operator, airlines and retail store

operators (includes duty free, speciality retail, food & beverage). Nevertheless, other

partners in the airport community like air traffic control, immigration/border control,

customs and ground handling service providers also contribute to the airport business

environment and would need to be considered regarding any proposed changes.

However, the research topic targets at a single airport per investigation with the main

players in mind as mentioned above.

Resource Management

In general, airport resources include airport slots, runways, taxiways, parking stands,

gates, terminal space, check-in counters, baggage belts, and facilities for customs or

border control. It has to be taken into account that planning the use or allocation of a

resource usually is accompanied by the allocation of adequate personnel.

In this paper the process referred to comprises the resources of gates. A ‘stand’ is

synonymous with the parking space that an aircraft needs, in accordance with specific

requirements (e.g. aircraft size versus stand size). A ‘gate’ is synonymous with the

space within a terminal building from where the boarding process starts. Boarding can

either start into an aircraft (contact gate) or into a bus taking the passengers to an

aircraft parked on a remote stand (bus gate6). Research undertaken assumes that in case

a gate could be allocated, there would be a contact stand associated with this gate, or a

remote stand would have to be allocated for that flight. Staff dispatch or integrated

allocation planning for other types of resources are not subject to the research project.

6 This includes a setup where passengers leave the terminal building via stairs and walk across the

apron area towards the parking aircraft they depart with.

INTRODUCTION 5

Retail-Weighted Approach

As the success of airport retailing depends on many factors7, possible support is to be

found in different areas. The research project addresses one of the most influential

factors towards retail spending: the nationality of the (departing) passenger.

‘Retail-weighted’ in the context of this paper means to harmonize the distribution of

passengers with suitable nationality through allocation of flights (aircraft) to favourable

retail areas at an airport. Nonetheless, a defined minimum of operational requirements

will need to be considered within the gate allocation process.

Airports

The main characteristic of airports in focus of research is that their gate resources are

constrained in a way that allocation cannot be done without planning. This implies that

there is strong demand for gates (departure and arrival) and the retail offering is not the

same for each gate. Airports with a centralized retail zone are in a position to offer

service provided by the same retail stores to all passengers of all flights. In such a

constellation the gate allocation does not need to be improved8 towards retailing,

because all passengers would use the same retail area. However, in case of a more

heterogeneous offering (e.g. decentralized stores, closer to the gates, different stores,

different retail areas) it might be worth it matching the retail offer with passenger

demand.

So, capacity-constrained does not mean scarce resources in terms of the runway system

or terminal space in general, but focuses on the inter-dependency of retail offering and

available gates at a specific point in time.

Having outlined the main elements of the thesis title, the next section of this chapter

specifies the project’s aim and objectives.

1.4 Aim and objective (demarcation)

The following defines more precisely what is aimed to achieve (and what not). Thereby

it will be possible to evaluate later on, whether the steps chosen in methodology have

led to successful results.

7 Freathy and O’Connell (1998c, 2000a), Omar (2001), Kim and Shin (2001), Geuens et al. (2004).
8 It has to be mentioned that in this paper the word forms of ‘improvement’ are given preference to the

word forms of ‘optimization’. This aims to avoid any ambiguity with the meaning of ‘optimization’ in
the field of operations research. The latter is not subject to this thesis.

INTRODUCTION 6

The overall aim of the research project is formulated as follows:

To appraise in how far the use of information technology may foster a

core airport operational process (i.e. gate allocation) taking into account

the requirements of an airport commercial process (i.e. airport retailing).

(AIM)

However, as the overall aim is still broad, it has been divided into single objectives to

support its achievement. The objectives are:

To determine the limits of general purpose methods to model business

alignment of IT, and placement of the research topic within existing

frameworks.

(O.1)

To develop a possible extension or a more specific application of existing

methods in a way that the derived methodology may be used for further

processes in the airport business environment.

(O.2)

To construct a conceptual model describing the relationship between

airport retailing and gate allocation. The model should be based on

process structure (in form of a business process decomposition), as well

as on information structure (in form of a data model). Furthermore, it

should be quantifiable for later simulation purposes.

(O.3)

To develop an algorithm for the gate allocation process that copes for the

needs of supporting the retailing process (i.e. an increased sales result).

(O.4)

To develop an independent simulation environment with implementation

of the algorithm as outlined in O.4.

(O.5)

INTRODUCTION 7

Upon fulfilment of the above objectives, it should be possible to verify the following

statement:9

Retail revenue (sales)10 at capacity-constrained airports11 can be increased

by applying specific criteria (rules, preconditions) in the gate allocation

process.

(H.1)

The following section briefly outlines the areas where the research project aims to

contribute to the body of knowledge.

1.5 Potential contribution to knowledge

Prior to a more detailed discussion in the literature review, this section provides the

reader with the main areas aiming to contribute towards the body of knowledge.

Following the methodology as outlined in Porter and Millar (1985), the concept of

information intensity has been partially applied to the airport business for the first time.

Furthermore, in a generic model two specific airport processes have been combined in a

way to show a potential increase in their output. As a major part of this, a retail sales

improving multi-objective gate allocation algorithm has been developed for

implementation on standard PC hardware. In consequence, this generic model12 has

been implemented in form of a simulation workbench (piece of software), so that is has

been possible to carry out sensitivity analyses. No other case study applies a similar

large amount of real airport data to a gate allocation algorithm, and no research has been

found with the above improvement objective.

Finally, (based on real world figures) new insight aims to be provided into the financial

potential that is incorporated in combining the two airport processes examined when

supported by a specific IT solution.

9 Due to the fact that this thesis does not aim to be of quantitative operations research nature, the word

‘statement’ is given preference to the word ‘hypothesis’.
10 Depending on the retail business model of an airport, sales may be revenue of the airport operator or

of the retail operator. In case of the latter, only a proportion of sales will be revenue for the airport. In
the context of this paper it is aimed to increase overall sales, regardless how it will be shared amongst
the business partners.

11 To be understood as described in explanation of thesis title.
12 The quantified conceptual research model.

INTRODUCTION 8

1.6 Organisation of this paper

Chapter 2 sets the scene. After a brief description of the current status of the airport

industry, a literature review provides more insight regarding current discussions in the

areas of ‘business alignment of IT’, ‘gate allocation’ and ‘airport retailing’. Deriving

from that, the research question is formulated concluding the chapter.

Chapter 3 presents the research approach in form of the methodology. This comprises a

detailed view on the chosen business processes, the formulation of the conceptual

research model, the data needed, and a quantification of the model. As a focal point of

the research project, a sales improving gate allocation algorithm is developed along with

an explanation for its intended application in form of scenarios. Finally, and within this

piece of research a major portion of work, the self-developed simulation environment, is

introduced in more detail. In order to derive insight out of the simulation runs, within

Chapter 4 different scenarios are discussed, and the results of simulation runs are

analysed for sensitivity. Having gained an impression about operational and financial

feasibility of certain set-ups, Chapter 5 discusses the approaches’ transferability to

other airports or players in the airport business and proposes actions to transfer the

findings into airport policy. Limitations of the research undertaken are outlined as well,

and finally, areas for future research are proposed and conclude this thesis.

9

2 SETTING THE SCENE

Introduction
Setting the

Scene

SETTING THE SCENE

2. SETTING THE SCENE

Setting the

Scene
Methodology Analysis

2. SETTING THE SCENE

Conclusion

SETTING THE SCENE 10

2. SETTING THE SCENE

The research topic’s comprehensive nature leads to the situation that there is no field in

literature comprising all sub-topics. So the objective of this chapter is to provide a basis

for the research project and to familiarize the reader with the individual topics. Before

the fields of information technology alignment towards business, airport gate allocation

and airport retailing will be discussed, an introductory chapter aims to outline the key

areas an airport may concentrate on to improve its competitive situation.

2.1 Success factors in the airport industry

The airport business can be seen both being a service industry and being part of

(national) infrastructure. On the one hand, demand for service may change at short

notice and also regarding its characteristics. This usually involves changing streams of

revenue from the customers (e.g. airlines, passengers). On the other hand, the

infrastructural characteristics of this industry incur capital cost for long periods on the

owners of an airport (often up to thirty years, e.g. for runways). So, a major challenge

within airport management would be to address the different business cycles found in

this industry (i.e. amongst the different business partners) with proper investments.

In a more general way, Michael Porter’s widely known concept of the ‘competitive

forces’ (Porter, M.E. 1980 and 1998) places any company into its competitive

environment, determined by the power of buyers, the power of suppliers, the substitute

of products and services, possible new entrants and existing competitors. The same

applies to airports (e.g. high speed rail as a substitute for certain air services).

Based on Porter's works, Park (2003) applies the above to the airport industry. He

identifies factors to structure an airport's competitive advantage (see Figure 1). In the

context of the research topic a core question focuses around the potential contribution of

information technology (IT) within these groups of factors.13 Many of the factors are

predetermined e.g. by the location of an airport. In such cases technology may

compensate for disadvantages (e.g. specialized radar equipment to compensate for

prevailing conditions of poor visibility due to bad weather). More examples

demonstrate that IT may support various areas in the airport business.

13 Examples for IT support may be for each of Park’s factor groups: Spatial factors: noise monitoring;

econometric airport model on spreadsheet. Demand factors: route development tools; market research
tools; Facility factors: computer aided facility management; capacity simulation. Managerial factors:
management information systems; business intelligence applications. Service factors: passenger way
finding support; dispatch of cleaning staff.

SETTING THE SCENE 11

Figure 1: Factors of airport competitiveness. Source: Park (2003, p. 354).

Usually, there are certain categories, which IT support may be divided into:

• control of processes or machines (e.g. baggage sortation)

• information distribution (e.g. display of flight information to public)

• administrative support (e.g. invoicing, automated purchase orders, decision

support, planning, marketing).

In addition, there are different technical elements within IT that contribute towards a

successful IT function, like:

• hardware infrastructure (e.g. physical networks, storage units, processing units)

• software infrastructure (e.g. operating systems, message bus, mail system)

• commodity software applications (office support like spreadsheet, word

processing, electronic calendar)

• specialized software applications (e.g. flight information display system,

baggage tracking system, airport operational database).

Besides these rather tangible elements there is also the intangible element of managing

the IT function (usually referred to as IT management or IT governance). It is assumed

that only if all different aspects are carefully aligned, IT may contribute towards the

success of an airport. Furthermore, the different players in the airport context may

contribute to a variety of the above aspects. An airline, for example, may be provider of

SETTING THE SCENE 12

IT infrastructure at U.S. American airports, but paying to use the same type IT

infrastructure at European airports. Examples for the above application of IT are subject

to various works.14 To obtain more insight into a potential contribution of the IT role at

an airport the topic is further explored in the following chapters.

2.2 Alignment of business and information technology

Very well-covered in literature, 'alignment' is usually thought of a business strategy's

match with its support through the IT function within an enterprise.15

Although the airport business is a world-spanning industry, global alignment models

like that of Peppard (1998), apply to airports not in every aspect. In his model (see

Figure 2) the global business drivers definitely would also need to be considered in

airport business. Nevertheless, a global business model as referred to in his framework

would assume an airport to be an international player. But only some of the major

airport operators or large construction companies are. However, applied to the research

context usually the airlines incorporate elements of a global business model (e.g. in

form of alliances or stations at a variety of international destinations they serve).

Applied to the IT strategy

context it means to provide the

IT function in alignment with

the business requirements at

any location it is needed. In

consequence, an international

airport (not being part of a

global airport group) would

need to address the (global)

needs of its airline partners on

the airport premises.

Figure 2: Strategic alignment framework (for a global enterprise).
Source: Peppard (1998, p. 10).

14 Bloem, E.A., Blom, H.A.P. and Schaik, van F.J. (2002); Bonnke, J. (1999); Button, K., Lall, S.,

Stough, R. and Trice, M. (1999); Esper, T.L. and Williams, L.R. (2003); Feldman, J.M. (1999);
Forster, P.W. and Regan, A.C. (2001); Hill, L. (2002); Montealegre, R. (2000); Neufville, de R.
(1994); Pitt, M., Wai, F.K. and Teck, P.C. (2002); Reinheimer, S. (1998); Wiese, P. (2003 a, b);
Seamster, Th.L. and Kanki, B.G. (2002). (The latter more in the context of an airline’s electronic
flight bag.)

15 A complete overview of the ‘alignment’ – topic would be far beyond the scope of this paper.
Nevertheless, models and concept relevant for this work are introduced. A more comprehensive
review can be found in Pollalis (2003).

SETTING THE SCENE 13

For example, this can be to simply comply with the various customers’ IT standards or

the other way round to support them using local but airport-wide technology standards.

Without emphasis on a global aspect (but with possibility to consider it) Henderson and

Venkatraman (1993) also point out that the business function and the IT function would

need to be linked together (Figure 3). In addition to this functional fit, they claim that

within each function there has to exist a strategic fit. This requires both business

strategy and IT strategy to organize each their own support organization (administrative

infrastructure, IT architectures, processes, skills).

Figure 3: Strategic alignment according to Henderson and Venkatraman. Source: Avison, D. et al. (2004).

Not extending existing models, but asking for the reasons of possible alignment

Luftman et al. (1999) focussed on the enablers and inhibitors in their study16. They

found that there are the following contributing factors regarding alignment:

16 1992-1997, more than 500 fortune 1000 U.S. firms in 15 industries.

SETTING THE SCENE 14

Enablers Inhibitors
• Senior executive support for IT
• IT involved in strategy development
• IT understands the business
• Business/IT partnership
• Well-prioritized IT projects
• IT demonstrates leadership

• IT/business lack close relationship
• IT does not prioritize well
• IT fails to meet its commitments
• IT does not understand business
• Senior executives do not support IT
• IT management lacks leadership

Table 1: Enablers and inhibitors to alignment. Adopted from Luftman et al. (1999)

Most of the alignment models assume that there is a certain budget that the IT function

spends in order to support the business function in a desired way. In Table 1 arguments

like ‘IT understands the business’ or ‘well-prioritized IT projects’ suggest such an

assumption. However, the IT budget needs to be split into different portions in order to

deliver IT services in the long run. For example, it may become necessary to invest into

IT infrastructure in order to cope with future business requirements (compare Figure 3).

But in case business strategy changes in a way that its innovative component shall be

stressed, a different type of IT investment would become necessary. Although in the

models above not explicitly mentioned, the investment function needs to be a core part

of business/IT alignment, too. A framework that supports this idea is presented by Ross

and Beath (2002).

Figure 4: An IT investment framework. Adopted from Ross and Beath (2002).

Such an approach may help to decide which projects to realize e.g. within an annual (or

rolling) investment process. For example with the help of a scoring model, the projects

can be prioritized against each other, but only within the category they belong to. The

SETTING THE SCENE 15

categories (process improvement, renewal, transformation, experiments) themselves

have to be prioritized (according to business requirements and consequent IT

necessities) and then budgeted.

Given the situation that projects have been approved by internal bodies of an enterprise

there should be a clear understanding of the output not only of the project itself, but

moreover of the investment throughout its entire life (or at least to an agreed point in

time, e.g. some point after amortization). Therefore, it is necessary to define and

measure the desirable outcome, which justified the investment upfront. A well-known

approach to manage this from different perspectives has been presented by Kaplan and

Norton (1992). As can be observed in Figure 5 there are no explicit links towards the IT

function. Nevertheless, it complements Porter’s (1980) model, and Park’s (2003) ideas

also fit into the idea of the balanced scorecard. For example, the scorecard’s ‘customer

perspective’ may fall under Porter’s ‘power of buyers’ and Park’s ‘service factors’.

Figure 5: Structure of balanced scorecard. Source: Kaplan and Norton (1992, p.72).

In the scorecard the respective goal may be to increase customer satisfaction, measured

in a monthly index, based on feedback from customers.

So far, models have been identified that describe the relationship between the IT

function and the business function. Furthermore, it is possible to describe the output that

shall be generated through investments.

SETTING THE SCENE 16

A number of additional works address the aforementioned alignment question under

different aspects and partly incorporate the performance aspect.

A summary is provided in Table 2.

Main Aspect Relevance Source

Case study Comprehensive application of alignment issues Feurer, Chaharbaghi,
Weber and Wargin (2000)

Case study Relevance of telecommunications in different
industries as input for IT strategy

Browdy (1999)

Case study Association of IT investment and survival of a
company (in the U.S. railroad industry).

Cline and Guynes (2004)

Case study IT alignment planning process Peak et al. (2005)

Elements of alignment Foundation works on alignment Luftman et al. (1993),
Luftman (2003)

Challenges of alignment Organisational conditions, economic return of IT
investments

D’Souza and Mukherjee
(2004).

Convergence of IT and
business process
management

IT as an enabler for business performance
management

Melchert and Winter
(2004)

Interaction of IT and
business unit

Dependency of internal IS functions on interaction
model

Gordon and Gordon
(2000)

IT financial management,
service management

3-tier IT service hierarchy Cohn (2003)

Marketing The market factor influenced by IT strategy. Adams, Haines and
McLellan (2003)

Performance
measurement
(benchmarking)

Applying Performance Metrics to internal IS
organisation

Clark / Lee (2002)

Performance
measurement (general)

Foundation work on performance measuring Eccles (1991)

Performance
measurement (IT)

Assessment of productivity impact Loveman (1994)

Performance
measurement (IT)

Measures for: IT effectiveness and IT efficiency Rau (2004)

Strategy Shows link between business strategy and business
performance measuring

Kaplan and Norton (2004)

Strategy Shows different stakeholder views on strategy Kaplan and Norton (2000)

Strategy Factors that influence strategic goals (management-
centric view)

Clarke (1994)

Strategy Gap between opportunity through IT and its
utilisation. Strategic value of IT.

Benjamin, Rockart, Scott,
Morton and Wyman
(1984)

Strategy, IT applications,
IT operations, IT
architecture, financial
tools, people

Comprehensive approach, taking alignment into
account as well as governance (both corporate and
IT). Highlights limitations of financial tools usually
in place.

Mack and Frey (various
2002, 2003)

Table 2: Selection of literature in the field of business alignment of IT.

SETTING THE SCENE 17

The different aspects within the works above show that the IT function in a company

consists of many individual disciplines that need to be taken into account (e.g.

operations, architecture, development, finance). Nevertheless, to this point nothing is

said in respect to a (quantifiable) contribution of the IT function towards business

performance.

In accordance with most models Pollalis (2003) acknowledges the need for integration

of the IT function and the business function. His study surveyed business and IT

personnel from banking institutes. Applying a “Gestalt approach or taxonomic

perspective [that] attempts to analyze the various components of organizations

simultaneously, without assuming any directionality of relationships”17 he identified

that organizations with a consistent and high level of technological integration,

functional integration and strategic integration outperform those with poor technological

integration. Functional integration is seen as a prerequisite (but not being sufficient) for

a high performing organization.

At industry level Hu and Quan (2005) examined eight different industries regarding the

impact of IT investments on productivity. They agree that according to Porter and

Millar (1985) those firms would benefit most from investments into IT whose value

chain and products are most information-intensive.18 Figure 6 provides an outline of

their research model.

Figure 6: Impact of IT investments on productivity at industry level. Research model. Source: Hu and Quan
(2005, p. 43).

However, they observed that in previous research the question of causality has often

been neglected. So would high productivity be due to a high level of IT investment, or

is the latter only possible because of high productivity? Hu and Quan addressed this

17 Pollalis (2003, p. 476).
18 Regarding the methodology of Porter and Millar, see also Chapter 3.2.1.

SETTING THE SCENE 18

with a Granger causality model that “can simultaneously test all possible causal

relationships between two variables without any predetermined causal assumptions.”19

Their results show that in six out of eight industries IT investments positively contribute

towards an industry’s productivity.20 However, applying the concept of information

intensity, they assume that industries with a high ratio of IT investment to total capital

investment bear high value chain information intensity. No further causal classification

of industries within Porter and Millar’s Information-Intensity-Matrix has been

conducted. No industry-specific reasons have been provided that explain the observed

causality.21

Glazer (1991, p.6) supports that the “notion of information intensity provides an

operationalization that can be used as the basis for a series of hypotheses about the

effects of the changing information environment on business activity.” He suggests a

model that exploits the value of information within transactions.

Hu and Quan note that in “a recent meta analysis of firm-level IT payoff studies, Kohli

and Devaraj (2003) also suggested that productivity-based measures are more suitable

for capturing IT investment payoff than profitability-based measures because

productivity measures are less likely to be confounded by external factors.”22

Many of the aforementioned approaches lack to produce (or do not ask for) the details

needed in order to be used as a comprehensive tool for management guidance.

Gartner's23 Total Value of Opportunity (TVO) Approach24 is found to provide this

completeness and level of detail.

It is “a metrics-based approach to measuring business performance based on three

important factors: risk, time and the effectiveness of converting projected value into

actual business benefit.” (Apfel, 2002). As such it aims to determine the value of an IT-

enabled business initiative25, to cope for future uncertainty and to consider alignment

through organisational diagnostics.

19 Hu and Quan (2005, p. 46).
20 And a feedback loop has been detected: high productivity also contributes to high IT investment.
21 Apart from the general causal relationship in the model of Porter and Millar (1985).
22 Hu and Quan (2005, p. 43).
23 Gartner is an IT research firm and consultancy.
24 Apfel (2002). Apfel and Smith (2003).
25 Such an initiative is usually spoken of as an ‘IT project’. The latter term is often misleading because

usually only projects around IT infrastructure are pure IT projects. The remainder are business
projects with IT portions included.

SETTING THE SCENE 19

The key value questions to be answered by this approach are as follows (Apfel and

Smith, 2003): “...
• What is the initiative?
• How will we measure the business value?
• What does the technology do?
• How much benefit will we receive?
• How much will it cost?
• How do we take into account future uncertainty?
• Is the enterprise positioned to exploit these capabilities? ...”

For each of the questions there is a set of standard tools or best practices that can be

applied to provide for a sufficient answer. The aforementioned balanced scorecard

approach and its extension to strategy maps (Kaplan and Norton, 2000 and 2004) linked

to performance measures would be such a possible best practice methodology.26 As

mentioned before, a scorecard of its own would not reflect the IT portion of an

investment.

In order to link business context to IT investments, Gartner identifies five needs that

have to be considered to actually derive business value from IT.

Given the TVO approach and consideration of the question that needs to be addressed in

order to realise the benefits from investments into IT the following five pillars are seen

as a foundation:
• Strategic Alignment
• Risk (assessment)
• Business Process Impact
• Direct Payback
• IT Architecture

Apart from the last pillar (IT architecture), the first four are independent from a business

support function. However, they need to be applied to a specific industry in order to

make them work (e.g. using industry-specific key performance indicators to measure

and compare business process impact). So, it is the IT architecture that enables (or

inhibits) the realisation of a projected business benefit. This discipline constitutes a

huge lever regarding benefits realisation. IT architecture or mostly spoken of as

enterprise architecture is a very broad field and well covered in literature and research.

Many frameworks and models have emerged within this discipline. It would be far

26 Corresponding question within TVO: How will we measure the business value?

SETTING THE SCENE 20

beyond the scope of this work to discuss them here. However, for the research topic it is

helpful to understand the concept of the different architectural layers.

In practice27 the author used the illustration in Figure 7 to distinguish between the

different architectural layers. In order to achieve both functional and technological

integration (as found important for alignment by Pollalis, 2003), it is essential to map

the various activities (in business processes) to a corresponding technological

implementation. However, the technological implementation is usually observed as a

‘black-box’ by users of IT.

Figure 7: Different architectural layers. (own illustration).

In most cases they perceive IT in form of a software application’s user interface.

Usually, via such an interface interactions are triggered and results provided.

In rare cases there is direct access to the data layer of an IT solution. For reasons of data

security and integrity such an access is usually handled via the application layer. The

infrastructure of an IT solution can be both hardware (e.g. physical network, computers,

disk arrays) and software (e.g. operating systems, application servers).

As indicated above, normally there is an interface to the user (‘client’ or ‘frontend’).

Furthermore, a ‘backend’ and sometimes a sort of ‘midend’28 might be part of an IT

solution. Each of those ‘-ends’ may be found for each of the architectural layers. For

example, a software program may both store and manage data locally within the client-

application and exchange data with a centralized data store in the ‘backend’. In such a

27 Concurrently to research work, the author has designed the future enterprise IT architecture of

Frankfurt Airport, covering their business model. Precise verbal communication has been key to
successful gathering of business requirements, based on the Rational Unified Process.

28 This is not exactly the same as ‚middleware‘. The term ‘middleware’ is usually applied to messaging
software in the ‘midend’.

SETTING THE SCENE 21

scenario the software routines that transfer the data between ‘frontend’ and ‘backend’

would be referred to as the ‘midend’ (within the data layer).

Another aspect is important for a proper understanding between IT function and

business function, and often looked at in a late stage of requirements gathering: the

different life-cycles of an IT solution require different IT environments a solution is

embedded into. Usually, a user of IT has in mind the production environment when

speaking of e.g. an application. Nevertheless, an IT solution first needs to be developed

(or tailored, or configured), and then tested before it is run within the production

environment. Furthermore, the management of the production environment as such

normally requires an environment of its own: the operations environment (e.g. systems

management, network management).

So, the basic four architectural layers are to be discussed in context of the two

dimensions (IT environment and the ‘-ends’). Figure 8 summarizes this.

Figure 8: The different IT architectural layers in context of their two dimensions. (own illustration).

This research project seeks IT contribution within the production environment.

Nevertheless, such an IT solution should have as few requirements as possible towards

the other environments (to keep cost low for development and at run-time).

The amount and type of IT solutions found at an airport vary considerably, and are

much dependent on size and business model of an airport. The range may be from half-

a-dozen IT applications to several hundred IT applications.

As a first common attempt within the aviation industry the International Air Transport

Association (IATA) and the Airports Council International (ACI) introduced an

implementation scenario for IT solutions at an airport (Figure 9). Although the scenario

SETTING THE SCENE 22

is not quite specific regarding the architectural layers and the dimensions, the basic idea

becomes evident: A common platform for the shared use of information.

The major IT solutions of the different players at an airport are supposed to use an

individual sub-set of information from a centralized airport data store (ADM in Figure

9). At that time, the focus was on current information in respect to flight operations.29

A sort of ‘midend’ across all architectural layers is defined by the airport systems

integration guidelines (ASI in Figure 9). These basically aim to enable the exchange of

information amongst the players (possibly in an automated manner).

Figure 9: Generic IT systems landscape at an airport according to an implementation scenario by IATA and
ACI (April 1998). Illustration adopted by author.

The implementation scenario as presented in Figure 9 is independent from an airport’s

business model as long as the (technical) integration of the business processes (or

functions) by means of information exchange is considered.

In respect to alignment of business function and IT function for airports it can be

concluded that most of the alignment models may be applied to the research context.

However, a lack of causality in the relationship between IT as an input factor and

business performance (in form of quantifiable output) limit the statements of many

models. Porter’s value chain and the concept of information intensity seem to be a

vehicle to identify processes that influence (more than others) business performance in

case they were supported by IT.

29 Nowadays a shared pool of information is also basis for common business intelligence initiatives.

Such an initiative may be the shared goal to measure (and analyse) punctuality figures, e.g. in the
context of collaborative decision making (CDM).

SETTING THE SCENE 23

Thus a model capable to show any (monetary) potential realized upon proper IT support

of a business process would contribute as follows:

• existing alignment models may be tested with an actual application

• a methodology around such a model may be applied to explore more business

processes in the airport environment – in consequence enabling a holistic view

over an airport in that respect.

Most alignment models imply a proper IT support, which basically means a well

designed and implemented IT solution. In order to determine the potential that may be

realized upon application of such IT support, a specialized IT solution would need to be

developed. Its design and underlying information model further contribute to existing

knowledge. Referring to objective O.1 Figure 10 (visually) places the research topic, so

far, within existing knowledge and indicates its possible contribution as outlined above.

Figure 10: Research topic placed within body of knowledge (of IT alignment).

SETTING THE SCENE 24

Furthermore, following the steps (1) through (6) in Figure 10 may suggest a way to

investigate additional business processes for potential improvement.30

Within the methodology chapters it will be explained why the gate allocation process

seems to be a good candidate for IT support. Nevertheless, a brief review of existing

research in this field identifies gaps that will further support process selection.31

2.3 Gate allocation

In literature ‘gate allocation’ is often referred to as ‘gate assignment’. The topic is well

known and usually called the ‘gate assignment problem (GAP)’. It is “an easily-

understood but difficult to solve problem.” (Haghani and Chen, 1998). Some

researchers regard it as an airport task. Some rather see it from an airline perspective.

As mentioned in the introductory chapters, this is usually due to the airport model the

individual researcher was exposed to while conducting studies. Nevertheless, there are

airports where both airport operator and airline(s) perform the gate allocation task either

for separate local areas or in a collaborative way for a defined shared local area.

However, as expressed by Murty et al. (2008, p.3), the “dynamic operational

environment in modern busy airports, increasing numbers of flights and volumes of

traffic, uncertainty (random deviations in data elements like arrival, departure times

from flight time tables and schedules), its multi-objective nature, and its combinatorial

complexity make the flight-gate allocation a very complicated decision problem both

from a theoretical and a practical point of view.”

The GAP is an integer problem (IP), which can be addressed with the linear

programming (LP) method. “The basic constraints of the IP are that one aircraft is to be

assigned to only one gate and two aircraft cannot be assigned to the same gate when

their apron times overlap.” Haghani and Chen (1998, p.440).

Usually, there is at least one objective to solve the GAP for (e.g. passenger walking

distance). In such a case the problem type is called a ‘quadratic assignment problem’

(QAP). A detailed discussion is presented in Haghani and Chen (1998) and Dorndorf et

al. (2007). “The gate assignment problem is an NP-hard32 problem (Obata, 1979)” in

Haghani and Chen (1998, p. 438). And for quadratic assignment problems that “are NP-

30 In response to objective O.2 and in preparation for O.3.
31 Because of the complex nature of the topic, the reader is supported to (re-)establish the link between

an individual aspect discussed and the overall alignment question in many paragraphs headed
‘ [ALIGNMENT ASPECT]’.

32 NP (non-deterministic polynomial time) is a complexity class in computational complexity theory.

SETTING THE SCENE 25

hard (there are no polynomial time bound algorithms for their solution), only implicit

enumeration methods are known for solving them optimally.” (Haghani and Chen,

1998, p. 441). Also Lam et al. (2002, p. 104) confirm that “in technical terms, the gate

assignment problem is combinatorial in nature, NP-hard, and cannot be optimized easily

within a practical time frame.”

This may be one reason for the intense research dedicated to the GAP. As usually, there

are computers involved in solving different formulations of the GAP with various

methods, also technical advances led to new approaches and implementations.33

Previous approaches in gate allocation can be clustered by “assignment methods,

problem solving methods and objective function used.” (Cheng 1997, p.838).

Assignment methods may be either sequential (following a strict order), parallel

(consider all flights and all gates concurrently) or grouped in a problem-oriented way

(i.e. combination of the previous two methods). An early implementation of the

sequential assignment method is that of Hamzawi (1986). His basic framework (see

Figure 11) is still valid for most

approaches that aim to implement

solutions of the GAP. He applied his

model’s implementation as a planning

tool at several Canadian airports. Also

Mangoubi and Mathaisel (1985)

followed a sequential approach, but

applied a heuristic problem solving

method to it.

Figure 11: Model framework according to Hamzawi (1986, p. 193).

However, solutions of higher quality34 are usually found applying a parallel assignment

method. Owing to the combinatorial nature of the problem, Babic et al. (1984) as well

as Mangoubi and Mathaisel (1985) found early that by following a pure parallel

assignment method, it is barely possible to compute a solution. Hence, the problem-

oriented group assignment method promised to work better for many researchers.

Regarding the problem solving method, three groups of approaches are found:

mathematical programming approaches, heuristics and knowledge-based approaches.

33 Compare also the change from mainframe to microcomputers in Hamzawi 1986, p.191.
34 A solution has a higher quality the more constraints and multiple objectives are considered in solution

finding. The closer to reality, the higher is the solution quality in this context.

SETTING THE SCENE 26

While the first deliver exact solutions applying various mathematical programming

methods like branch-and-bound, linear programming (with relaxation) or pure integer

programming, its main disadvantage is the huge amount of computing time necessary.35

Researchers in this area also claim that it is very complex or impractical to change the

objective function, whereas practitioners often regard solutions as too simple, because

the objective functions do not reflect real world. Tosic (1992) also stresses the

challenges with a large number of flights and gates.

To overcome the timing problem, many heuristics have been tried as problem solving

method for all assignment methods. Early approaches have been conducted by

Mangoubi and Mathaisel, or by Hamzawi for sequential assignment, and then later for

problem-oriented group assignments. According to Cheng (1997) six heuristics have

been tested by Zhang et al. (1994) producing favourable results. Gu and Chung (1999)

applied a genetic algorithm heuristic to the GAP, and most recently Hu and Di Paolo

(2007). Ding et al. (2004) used a greedy algorithm with tabu search. A year later they

[Ding et al. (2005)] applied a pure simulated annealing approach and to improve timing,

then a hybrid simulated annealing with tabu search approach delivered good results.

With a different focus, also Yan and Tang (2007) implemented their model with a

heuristic method. However, a drawback of heuristics is often that they are specialized

for a certain situation. So, for a different setting of the problem it might become

necessary to implement another heuristic.

The third group of problem solving method – knowledge-based approaches – is usually

implemented in form of expert systems (Brazile and Swigger, 1988; Shifrin, 1988;

Gosling 1990; Srihari and Muthukrisnan, 1991; Su and Srihari, 1993; Cheng, 1997;

Cheng, 1998). In this context an expert system is usually understood as a system36 that

comprises the knowledge of personnel, which usually performs the gate allocation task.

Such knowledge is captured in form of rules37. Furthermore, it may be decided whether

a system is used purely for planning purpose or also for real-time assignments. In terms

of interaction it may further be distinguished between user-interference during flight

operations being permitted, or an autonomously running system. Expert systems are

35 This is due to the combinatorial explosion.
36 Here a system is the implementation of an assignment method (sequential, parallel, problem-oriented)

following the knowledge-based approach as the problem solving method.
37 There may be different types of rules: [a] hard rules (conflicts); [b] soft rules: [b.1] dependency rules

(e.g. between resources), [b.2] preference rules (e.g. airline wishes) [b.3] complex rules (e.g.
passenger way combinations). Furthermore, rules may have specific situations or time windows when
they are applied or when explicitly not.

SETTING THE SCENE 27

good solutions to cope with uncertainty, and to extend the knowledge-base (e.g. the

rules). Unfortunately, in order to consider a large number of rules, similar to the

mathematical programming approach, computing time becomes long.

Yan and Tang (2007) recognize that previous approaches38 have not addressed the

dynamic nature of gate assignments. So in their comprehensive work they developed a

heuristic approach and tested it successfully at Taiwan Taoyuan International Airport

(formerly, Chiang Kai-shek International Airport). The main components of their model

include a stochastic flight delay gate assignment model for the planned gate

assignments, a reassignment rule to be applied in real-time operations and two penalty

adjustment methods (e.g. one for passenger waiting time). Their work is partly based on

previous work of Yan, Shieh and Chen (2002) who addressed stochastic flight delays,

and flexible buffer times39 in the context of gate assignments.

Figure 12 summarizes and structures the main aspects of the above discussion.

Figure 12: Structured body of knowledge of the gate assignment problem (GAP).

It is observed that previous approaches purely focus on operations, and that they do not

show any application in commercial airport processes (e.g. retailing). Using

38 They mention: Braaksma (1977), Babic et al. (1984), Mangoubi and Mathaisel (1985), Vanderstraetan

and Bergeron (1988), Bihr (1990), Zhang et al. (1994), Cheng (1997), Yan and Chang (1998),
Haghani and Chen (1998), Bolat (1999, 2000), and Yan and Huo (2001).

39 Earlier works of Hassounah and Steuart (1993), Yan and Chang (1998), and Yan and Huo (2001)
already used buffer times to address the delay aspect. However, those buffer times were fixed.

SETTING THE SCENE 28

deterministic approaches, a large number of both gates and flights is not believed to be

computable in an appropriate amount of time40. This paper also tries to contribute in that

respect.

2.3.1 Use of a resource management system (RMS)

As mentioned above, gate allocation may be supported by means of information

technology. Depending on the amount of traffic that needs to be handled at an airport

and on the level of IT integration, it is usually a resource management system used for

that task. Many of the systems on the market are able to account for different types of

resources (e.g. check-in counters, gates and stands, baggage-carrousels). Some of them

allow for defining dependencies between the types of resource. According to the

author’s experience only such a holistic view copes for the high process integration at

an airport.

However, the main objective in the use of an RMS41 is to reduce the overall effort in the

allocation (planning) process (, or in a situation of dense traffic to enable allocation at

all). As indicated in Figure 13, the use of an RMS may help to reduce the effort of

manual allocation planning.

Figure 13: Resource management system (effort distribution 1).

40 Neither for real-time operations, nor for planning phase.
41 Here ‘RMS’ is to be understood as a gate allocation system.

SETTING THE SCENE 29

Usually, such a system allows for definition of rules42 in the allocation planning

process. Depending on the degree of automation, the distribution of effort will change.

The more automation it is enabled in the system, the less manual planning effort there

will be necessary. This effort highly depends on the system’s capability to define or

formulate allocation rules and on the complexity of such rules. It is upon the allocation

planning staff to find the most suitable ‘mix’ between manual and automated planning.

Other determinants in this question are the required update frequency and the time and

resources given for the allocation planning task. For example, the effort distribution

[I (b)] in Figure 13 describes a situation that is mainly handled by staff with little RMS

support. Whereas [II(b)] heavily builds on systems support, and less manual effort is

required. Ideally, a situation of reduced overall effort [(a)] is to be achieved. As

mentioned above, this sort of ‘break-even-point’ in distribution effort has to be

determined by the allocation planning staff. Usually, there is a danger of ‘over-

automation’ trying to incorporate each and every exception into the system’s rule-set.

The maintenance effort will increase and the rule-set may become logically inconsistent.

This in return leads to increased manual effort at the time of operations where such

inconsistencies may be discovered and (then under time pressure) coped for. In case of

non-discovery, the service level provided would be reduced or in worst case a safety-

critical situation may arise.

However, more often a situation is found as shown in Figure 14.

Figure 14: Resource management system (effort distribution 2).

42 This forms part of the knowledge base in expert systems.

SETTING THE SCENE 30

The distribution of effort as indicated in [III] describes a highly automated allocation

planning process with economies of scale in the rule definition task. For example, this

might be the case upon adding an additional carrier to the planning task, belonging to an

airline alliance that has already been modelled in the rule-set. The same would apply to

an additional frequency of an existing flight (e.g. from 4/7 to 5/7).

As described above, many aspects need to be taken into account using a resource

management system. However, an RMS as such is no guarantee at all to improve the

gate allocation process.

[ALIGNMENT ASPECT]43

The alignment of the IT function and the business function also depends on proper IT

support for business processes. The better an IT solution addresses the real conditions

in the business, more suitable it is. An RMS that considers many business objectives and

thus incorporates expert knowledge is well placed to support the business process in

question. Therefore, a process-tailored piece of software seems to foster alignment

(compare, Figure 10, (3) and (5)).

Finally, there is the field of airport retailing that is discussed in the next chapter to

provide sufficient background for the research project.

43 In order to establish and maintain a strong link to the alignment aspect, explicit notes headlined

‘ [ALIGNMENT ASPECT]’are provided for the reader.

SETTING THE SCENE 31

2.4 Airport retailing

Although existent since 194744, from an academic perspective, airport retailing was

widely neglected before the 1990s (Freathy and O’Connell, 1998c).45 However, with the

ongoing privatizations in the airport industry pressure on airport charges became a

common scenario and thus new sources of revenue have been sought. So already in

1996 the commercial offer at airports contributed between 36% and 56% towards the

overall income (ACI Datamonitor, in Cerovic 1998, p.12). In Europe in 2006 the spread

was between approx. 22% and over 60% (study of annual reports, presented as chart in

Graham, 2008). Usually, the more passengers an airport caters, the higher that share

seems to be.

The commercial income (usually referred to as non-aeronautical revenue) is often

spread into the categories of: retail, car parking, car rental, property, advertising, and

other. Within the ‘retail’-category the following sub-categories are found: duty free and

tax free, currency exchange, food & beverage, specialty retail concessions (airside and

landside), and other (amongst others: Doganis, 1992; Freathy and O’Connell, 1998c,

Graham, 2008).

In addition to the abovementioned reason of new pressures in the course of airport

privatizations, and along with crises that hit the air transport industry, there might be

another reason why not much academic literature exists on airport retailing:

The general business function of ‘retailing’ has been widely explored by researchers

from many perspectives. Hence, much of that knowledge in form of concepts,

methodologies, paradigms and so forth has been simply applied to the airport retailing

business as well. Airports seem to be ‘just another place to sell goods and services’.

Fernie (1995) regards airport retailing as a niche market, but with high spending

customers. He compared the socio-economic classifications of passengers at U.K.

airports with customers at the Metro Centre, Gateshead (near Newcastle Upon Tyne,

U.K.) and discovered the high sales potential within typical passengers. So, in

consequence the well-known concept of customer segmentation has been applied to the

airport business by many researchers and practitioners as well (Freathy and O’Connell,

1998c; 2000a; Omar, 2001; Kim and Shin 2001; Geuens et al. 2004; Davitt 2005;

Appold and Kasarda, 2006). Typical segments are (Freathy and O’Connell, 2000a):

44 1947 Shannon (Republic of Ireland) became the first airport with a duty-free shop (Freathy and

O’Connell, 1998c, p.7).
45 Nevertheless, much knowledge is present in form of conference presentations or market studies.

SETTING THE SCENE 32

• domestic vs. international vs. transit

• short-haul vs. long-haul

• scheduled vs. non-scheduled

• business vs. pleasure

• intra-EU vs. non-intra-EU

Geuens et al. (2004) developed a passenger typology consisting of three classes (mood

shoppers, apathetic or indifferent shoppers, and shopping lovers). As main shopping

motivations for profiling they suggest factors that are: airport-related, atmospheric,

experiential, and functional. Bork (2007) observes changed reasons to buy in an airport

environment: from past reasons like cheap prices, rational reasons and a uniform

product offer, he characterizes that modern airport shoppers:

• try to make bargains,

• seek the emotional buying experience,

• expect a variety of fancy products,

• lack time,

• are well-informed,

• and that their demographic background is today much broader, due to decreased

fares.

Within their work on market segmentation in Europe Freathy and O’Connell (2000a)

determine the following factors in their ‘propensity-to-buy-function’:

• tax environment (both direct and indirect taxation in the country of destination);

• lifestyle (culture, social class, disposable income, leisure time available);

• product types (merchandise mix, range and depth, number of branded goods

available);

• retail environment (ambience of the airport, accessibility to retail outlets, store

design and layout, staff attitudes and product knowledge);

• perceived value (the utility that accrues to the individual by purchasing or

owning the product).

SETTING THE SCENE 33

The more mature the airport retail business becomes, the more concepts will be tried to

transfer from conventional (high street) retail market to the airport environment. For

example, in many airports around the globe can be observed that Hildebrandt’s (1988)

‘3-factor-model’ of store image is successfully applied.

Figure 15: Basic structure of Hildebrandt's (1988) 3-factor-model of store image (illustrated by author).

Another known area from conventional retailing applied to airport retailing is that of

impulse purchasing. Omar (2001) carried out a study asking 252 passengers and

concludes that only when a passenger believes that acting on an impulse is appropriate,

he or she shops. But what stimulates an impulse in the airport environment? Crawford

and Melewar (2003) reviewed this aspect in more detail. They find the following airport

impulse purchasing stimuli (p. 93):

• Value driven
• Holidays
• Gift giving
• Guilt
• Reward

• Occasion driven
• Forgotten items
• Confusion
• Exclusivity
• Disposal of foreign currency

In order to address this in airport retailing, they suggest an impulse-strategy-

formulation, which contains the following elements:

• Reduce stress and anxiety
• Induce browsing

• Reduce normative traits
• Pure impulse

In a more comprehensive study of Entwistle (2007) more than 30,000 passengers from

20 airports constitute the basis for his postulation to conduct passenger segmentation for

each part of an airport, and apply it to retailing and passenger flow control.

However, most contributing factors in most pieces of research are the number of

passengers46 along with their nationality (comprising many socio-cultural aspects).

46 Appold and Kasarda (2006) in a detailed analysis of 75 U.S. airports.

SETTING THE SCENE 34

Entwistle as well as other researchers (Freathy and O’Connell; Bork, 2007; Buendia and

de Barros, 2008; Graham 2008) acknowledge that apart from the passenger profile, it is

the dwell time throughout the passenger process that very much contributes towards the

retail success.47 This can firstly be explained by the time available to spent money and

secondly by the influence on a passenger’s mood (or stress level). In a very broad sense

the dwell time on airside is determined by the processing at security checks (inflow) and

by the boarding process (outflow). An adjacent area (not covered here, but in industry),

which directly contributes to the dwell time issue is the management of the passenger

(flow) process. Initiatives like ‘simplifying passenger travel’ (SPT), try to design the

process in a way, that a passenger may pass through the airport terminal as seamless as

possible. This is both: good for retail, because the shopping mood may improve, and it

is bad for sales, because a seamless (and predictable) flow may lead to a later arrival at

the airport. And in case the amount of time a passenger arrives later is more than the

amount of time a passenger saves because of SPT-improved flow, the dwell time is

likely to decrease.

Another area from classical retail that entered into discussion is the support of the

(airport) retail supply chain (Freathy and O’Connell, 1998a). The main area of potential

is to better satisfy demand with (just-in-time) supply. In the airport environment this is

even more import (compared to high street), because storage space is scarce and

expensive, and secondly quick reaction to anticipated (but changing) traffic flows may

help to increase sales result considerably.

A core element within the IT support of the supply chain is the electronic point of sale

(EPOS). This is (together with information from the passenger) a huge lever in market

intelligence. More advanced retailers (and airports) use the data gathered from EPOS

devices (cash-points, pay-terminals) to profile and analyse passenger purchases.

Usually, information like the items purchased (price and quantity), and the flight

number are stored. With introduction of 2-D bar-coded boarding passes the information

gathering has become even easier. Theoretically, even more information may be

generated from that.48

47 Usually: higher ‘footfall’, ‘penetration-rate’ and ‘conversion-rate’ when passengers have sufficient

time.
48 As the airline possesses the passenger name record (PNR), any purchase may be drilled down to an

individual. So, in case of many purchases per individual for a single flight event, a (personal) way
tracking profile may easily be generated. As a next step the passenger information would need to be
deleted and an anonymous set of passenger tracks through the terminal building would be available.
For pure tracking purpose the PNR is not even necessary.

SETTING THE SCENE 35

Two more areas of research in airport retailing were identified:

Firstly, reactions to the abolishment of duty free within the European Union were

addressed by Freathy and O’Connell (2000b). And secondly, the management aspect

itself (relationship: airport operator, retailer, supplier) was studied. Freathy and

O’Connell (1998b) looked at the buying function in airport retailing with focus on:

• Buying structure in airport management retail operation

• Buying structure for retailer with domestic and airport stores

• Criteria for selection of new suppliers

• Supplier evaluation

• Effectiveness and efficiency of buying function.

Kim and Shin (2001) revealed in their survey that the commercial involvement of an

airport in retail operations is one of the success factors for airport retailing.49 The

commercial involvement comprises aspects like:

• Wholly-owned subsidiary

• Direct operation

• Direct lease

• Joint venture

• Fee management contract

• Master concessionaire

• Developer approach

They find that the master concessionaire approach is “the most appropriate method of

managing airport concessions.” (Kim and Shin, 2001, p.149)

49 Other success factors mentioned are: total traffic handled, total amount of space allocation (in

connection with layout and location), passenger characteristics, characteristics of contracts and rental
fees, marketing strategy, and pricing strategy. For a view on marketing strategy in airport retailing see
also Bork (2007).

SETTING THE SCENE 36

The above is seen similar at Frankfurt Airport. Figure 16 provides a further view on

potential drivers of airport retail success in respect to the influence that the airport

operator in the role of a master concessionaire has on its concessionaires:

Figure 16: Drivers to retail success - Control and impact. Source: Fraport AG.

However, high impact drivers on retail success like passenger number and passenger

mix, as well as the medium impact driver of passenger process/dwell time are to some

extent under control of the airport operations function. Although the foremost control on

passenger number and mix is executed by the airlines, the airport should try to benefit

from that ‘general passenger offer’ and in consequence tailor it to maximise spending

potential.

Similar to collaborative decision making initiatives (CDM), the question of a common,

shared goal between the airport operator, the airlines and the retailers arises. Who shall

benefit from retailing activities? Besides the service level aspect there is the question of

single till vs. dual till. What is considered in airport revenues what will enter –or cross-

subsidize– airport charges? Munich Airport for example established a close relationship

with Deutsche Lufthansa in a way that for Terminal 2 they coordinate all aviation and

non-aviation activities based on their respective core competencies. The financial result

is shared. (Kerkloh, 2007).

The author of this paper observes that in most cases those areas of conventional (high

street) retailing that needed adaption to the airport environment (because of an airport’s

SETTING THE SCENE 37

characteristics or ongoing changes) have been subject to academic discussion. Other

retail-related areas may be systematically explored for application at airports.

For example, technology is seen to further contribute in many fields:

• Automated supply chain management

• Information provisioning of the passenger (e.g. flight status)

• Information gathering about the passenger (e.g. upon purchase or within

passenger flow)

• Information provisioning of the retail outlets (about schedules and passenger

demographics)

• Information provisioning of airport operator by retailer (purchase data)

Or from a functional view: in operations, planning, and strategy (business intelligence).

 [ALIGNMENT ASPECT]

A precondition for alignment of the IT function and the business function is that the

processing of information in any form supports the business processes. The airport

retail sector seems to have many information processing aspects that may be supported

by the use of suitable IT (compare, Figure 10, (2)). Another issue has to be placed in the

alignment aspect: the output of the retail function is measurable in form of retail sales

figures. So, the element of performance measurement can easily be addressed

(compare, Figure 10, (6)).

So far, the areas of business alignment of IT, of gate allocation (gate assignment

problem) and that of airport retailing have been reviewed.

In each area useful ideas have been identified that can be further explored within this

research project. Nevertheless, it is emphasized that a specialized view on a single topic

may produce promising results, but usually fails upon transfer into practice. Therefore,

an integral view is suggested.

2.5 Integral view and research question

Supporting Pollalis’ (2003) view, in this paper the role of IT in the airport business is

understood as part of a well-integrated organizational system spanning over enterprise

boundaries. The relationship between the business partners shall be governed by

functional integration, information sharing and collaboration along the value chain(s).

SETTING THE SCENE 38

Taking the above discussion into account, the research question is composed of (AIM)

and (H.1), and formulated as follows:

Does it seem feasible to increase retail sales at airports to a certain extent when

applying specific criteria to the gate allocation process?

In order to answer the research question, a suitable methodology has been worked out.

The next chapter explains the approach and its elements in detail.

39

3 METHODOLOGY

Introduction
Setting the

Scene

3. METHODOLOGY

Setting the

Scene
Methodology Analysis

METHODOLOGY

Conclusion

METHODOLOGY 40

3. METHODOLOGY

To address the research question, it is essential to break down such a task into its

elements and plan its stepwise accomplishment. The methodology aims to present a

detailed view on the business processes in focus, develop the conceptual research

model, identify the data needed, and to refine the model. To be able to quantify a

possible output of the model, it was essential to develop a gate allocation algorithm.

A detailed view on the improvement approach and the self-developed simulation

environment finalize this chapter.

3.1 Choice of methodology (Justification)

The chosen approach of systems thinking with its associated methods allows to

decompose the system into its individual elements and to develop an idea about the

ideal solution. This aims to design (synthesize) the elements and their relationships in

such a way as to optimize the system as a whole regarding its achievements of

objectives.50 Those elements found in a business context are to be understood as

business processes producing a certain output. Much of that output depends on

information as an input. At the same time the output can be information itself. Thus,

strong emphasis has been put on information processing within the examined business

processes.

The following chapters will choose business processes, which form part of an empirical

analysis with much character of operations research. However, this is just used to

produce an output on the business side, which might differ from the output observed

without that form of IT support. So, the example explored can be seen as a vehicle to

demonstrate that application of the various aspects of business/IT alignment may

produce improved results on the business side.

3.2 Business context and scope

The airport business is a complex and highly regulated environment. To determine a

source of potential benefits, all processes highly dependent on information processing

are subject to further investigation.

50 According to Koreimann (1995, p.7), in a translation from German by the author, in Klann (2001, 7).

Also here the expression ‘to optimize’ is to be understood in the sense of ‘to improve’.

METHODOLOGY 41

Figure 17 shows the examined business context from a broader perspective. Depending

on an airport operator’s business model and its level of vertical integration, there might

be a shift of functions from one business partner to another.51 An example for this

shows the field of ground handling operations. They can be conducted by the airport

operator, one or more airlines, or else by one or more ground handling companies. Also

a mixture of the aforementioned can be found.

Figure 17: Business context of research project.

Regardless of the organizational setup concerning the business partners involved, the

flow of information and the need for information to perform the business functions

remain constant. Changes in organizational boundaries (both within an organization and

between different legal entities) will reflect in the necessity of interfaces between them,

without superseding the need for a proper information flow. Consequently, the business

context shown in Figure 17 is valid for various airport business models. However, in

practice it requires great efforts between organizations agreeing on the use and

exchange of information (also on a technological basis).52

The ‘information intensity’ model shall help to identify those processes in the business

context carrying a higher improved output potential.

51 So are passengers increasingly import as a customer for airport authorities (compare Jarach, 2001).
52 The latter is usually spoken of as Electronic Data Interchange (EDI), but it has to be mentioned that

also within a legal entity such information transfer is regulated and technically implemented. In that
case it is referred to as data integration, often as part of Enterprise Application Integration (EAI).

METHODOLOGY 42

3.2.1 ‘Information Intensity’ model applied to airport b usiness

According to the model of Porter and Millar (1985), competitive advantage lies in the

intensity of its processed information, both within a firm’s value chain and within a

firm’s products. Consequently, in a first step an airport value chain has been modelled

following the original concept of Porter (1980).

Figure 18 shows that a variety of activities within the value chain depend on

information processing.53

Figure 18: Value chain of an airport with focus on use of technology.

To gain competitive advantage based on the value chain, Porter and Millar (1985)

suggest the following steps:

1. Assess information intensity
2. Determine the role of information technology in industry structure
3. Identify and rank the ways in which information technology might create

competitive advantage
4. Investigate how information technology might spawn new businesses
5. Develop a plan for taking advantage of information technology

Of particular interest to the research topic is the assessment of information intensity and

the last point in a form of suggesting a possible application of the findings.

As a vehicle to assess the information intensity, a corresponding matrix has been

applied to the airport business (Figure 19).

53 Compare also Albers et al. (2005), Fig. 2, which has a slightly different focus on the value chain.

METHODOLOGY 43

Matrix determination indicators according to Porter and Millar (1985):

For potentially high information intensity in the value chain:

• a large number of suppliers or customers with whom the company deals directly,
• a product requiring a large quantity of information in selling,
• a product line with many distinct product varieties,
• a product composed of many parts,
• [a product with] a large number of steps in a company’s manufacturing process,
• [a product with] a long cycle time from the initial order to the delivered product.

For potentially high information intensity in the product:

• a product that mainly provides information,
• a product whose operation involves substantial information processing,
• a product whose use requires the buyer to process a lot of information,
• a product requiring especially high costs for buyer training,
• a product that has many alternative uses or
• [a product that] is sold to a buyer with high information intensity in his or her

own business.

Figure 19: Information intensity matrix, applied to airports.

Once the information-intensive processes have been identified, they can be analysed in

detail.

The basis of this paper had to be a highly information-intensive airport process with a

potential influence on a commercial airport process.

METHODOLOGY 44

The processes (1), (2), (8), (10) and (12) shown in Figure 19 were potential candidates.

Process (8) was taken off the list for not being an airport’s operational process. Air

traffic control (10) forms part of airport operations, however, it is usually handled by

national authorities rather than an airport operator. Both processes (1) and (12) highly

influence the commercial process of airport retailing as they are significantly involved

in feeding retail with potential customers. The core difference between them is the time

factor. The seasonal flight plan (process 12) is usually produced one to two seasons in

advance. The stand and gate allocation process (1) spans within the current flight plan

up to the actual hour of operation. However, the basic task of allocating flights (aircraft)

to gates is the same in both processes. Therefore, a generic process of stand and gate

allocation serves as a basis for further research.

[ALIGNMENT ASPECT]

A core aspect in the alignment of the IT function and the business function is that

business processes are supported, which are likely take advantage of information

processing more than others (compare, Figure 10, (2)). Note: Other processes from

Figure 19 could also have been taken for analysis regarding IT support and potentially

different output. However, according to the information intensity matrix preference was

given to the gate allocation process. In case of different processes chosen, major parts

within the methodology chapter would need to address process analysis and output

generation specific to those processes.

3.2.2 Applicable airport environment

As mentioned earlier, the airport type or its business model plays a certain role in the

research context. This might be to an extent that it may not be the airport operator alone

who would be in a position to control the relevant processes and the flow of information

within the context looked at. Furthermore, it is important that there exists a retail offer

at the airport in question and the allocation of flights to gates somehow determine which

part of that offer can be used by a passenger. Thus, it is a basic prerequisite to apply the

research project to an airport of decentralized retail areas with a diversified range of

products. In case there would be a homogeneous or a centralized retail offer, from a

sales perspective, there would be no difference in the location of gates that flights are

METHODOLOGY 45

allocated to. So, one precondition for the research project’s meaningful application has

been identified.

A further prerequisite are constrained gate resources that serve a certain retail area;

improved allocation is only necessary where there is insufficient terminal space within a

favourable retail area.

The type of airport may have an influence on the overall result. Typical characteristics

for airport classification are:

• Type: hub-and-spoke, origin & destination (O&D)

• Size: Small, medium, large

• Geo-political characteristics: national, international, continental, inter-

continental

As retail sales depend on the nationality and number of passengers, highly frequented

international (inter-continental) hub-airports provide the best setting for a large lever in

increased sales. Nevertheless, highly frequented international O&D airports are no less

likely to increase retail sales. Usually, duty-free shops are the drivers of retail sales

predominantly generated upon departure.

For the sake of deeper insight, this paper breaks down the two business processes in

question in a way usually applied within business

process re-engineering (BPR). The notation used is

called IDEF054, one of the standard notations in

BPR. Figure 20 outlines that the central element,

an activity, is described by its input and the output

it produces. There may be controls (e.g. rules,

environment) restricting the activity to a certain

extent. Mechanisms (e.g. tools) may be used as an

aid for the activity to produce its output.
Figure 20: IDEF0 legend of an activity

Finally, an activity may start (call) concurrent activities or may invoke another activity,

which in return produces output as an input for the calling activity (iterations or loops of

processes may be modelled that way).

54 IDEF0: Integrated Definition (Originally stood for ICAM Definition. ICAM was the Integrated

Computer-Aided Manufacturing initiative of the U.S. Air Force). It is a method to model functions,
activities or processes in a structured way. IDEF0 is a member of a notation family used for processes,
information, and simulation.

METHODOLOGY 46

3.2.3 Business process decomposition for airport retailing

Using the methodology and notation introduced in the previous chapter, the process of

airport retailing can be described as shown in Figure 21.

The main input to generate sales (and finally revenue) within the retail process is the

number of passengers (PAX). The mechanisms that support that activity are of course

the retail offering itself (retail, food & beverage, duty free), as well as means of

information technology (e.g. systems for planning, selling)

Figure 21: Decomposition of retail process, top level.

Unfortunately, there are many constraints that put a burden on the retail generation

process. The retail business as such is already subject to many laws and regulations (e.g.

competition law, law to protect minors). In addition to that, national trade law (customs

regulations) applies, as well. Furthermore, the general economic situation (tax rates,

currency rates, level of unemployment, etc.) constrain the process performance even

more. This applies to both the country of the airport in question, as well as to a

passenger’s country of origin. Finally, a third source of constraints limits the processes’

ability to perform favourable output: Requirements from an operational perspective.

Those may be as simple as the application of safety procedures (e.g. wing tip clearance

METHODOLOGY 47

of aircraft, operational time buffers to cope for unexpected events, air traffic control

permissions, or mandatory sequence of events in the turnaround process of an aircraft).

The task of retail sales generation can be compared with a standard task in logistics, and

may be formulated as:

‘Provide the maximum number of passengers of the right mix to a tailored retail

offering in a relaxing atmosphere with enough time to spend money.’

Consequently, at the next level of detail in Figure 22 the process has been broken down

(decomposition) into four sub-processes (or activities):55

1. Maximize number of PAX

2. Optimize General Structure of PAX

3. Optimize Retail Offer

4. Optimize PAX Dwell Time

Figure 22: Decomposition of retail process, 2nd level.

55 For clarification: the decomposition aims to provide a better understanding of the process. It is not

aimed to improve the four sub-processes as such.

METHODOLOGY 48

When analysing the retail process, it has to be mentioned that it needs to be looked at

from two different time frames. Firstly, there is a planning phase in which you create

the overall determinants for future business potential. For example, the destinations

served by airlines determine passengers’ origin to a large extent. Therefore, already in

the phase of seasonal flight planning the basic structure of passenger mix is determined.

The dimension of time during a day of operation is basically determined by the slots

granted to airlines. Even earlier than a flight plan season ahead, the general retail offer

(shop mix) determines to a certain level the potential in sales from retail. However,

there is a second phase within the current flight plan season. Within that phase a couple

of times, the seasonal plan will be refined (due to changes in schedules, for technical

reasons or also for weather reasons). These iterations (or updates) continue up to the

moment of operations. A major portion of the above mentioned task is about bringing

passengers to the retail offer.56

However, having identified major contributing factors towards retailing, it is not aimed

to maximize the number of passengers, to improve the general structure of passengers,

to change the retail offering or to improve the passenger dwell time on an overall basis.

In fact, the approach in this paper aims to improve the fit of passengers towards the

existing retail offering in terms of their nationality (derived from a flight’s country of

destination).

As identified earlier, the second process investigated in this paper – gate allocation – is

very much in a position to conduct that distribution task. Applying the same notation,

the next chapter discusses it in more detail.

56 Although it needs to be mentioned that also the retail offer itself may actively locate near favourable

passengers (e.g. approaching waiting passengers in a queue with movable booths).

METHODOLOGY 49

3.2.4 Business process decomposition for gate allocation

The same that has been mentioned above regarding timing (planning phase and then

continuous updates until moment of operations) applies to the gate allocation process.

Figure 23 outlines the gate allocation process from a top level.

Figure 23: Decomposition of gate allocation process, top level.

The major inputs to the gate allocation process are the passengers, the flights (with their

scheduled times) and the gate infrastructure. The latter might be regarded as a

mechanism as well (like information technology and personnel), but because of

infrastructure being an indispensable resource for the whole process, it has been taken

as one of the input factors. The output of the gate allocation process is an allocation plan

that satisfies the various requirements. Here the major stakeholder is the operations

function. It is operations that actually conducts the allocation and tries to incorporate the

majority of requirements57. Part of the overall infrastructure may not be usable for a

specific flight, because of restrictions in terms of space limitations or simply due to

maintenance in progress. Therefore, the remaining available infrastructure may be

considerably less than the overall infrastructure. The improvement element within the

allocation (planning) process usually tries to address this challenge.

57 A typical airline customer requirement is usually to be allocated close to alliance partners, to a

connecting flight, to an own business lounge or close to check-in facilities for a specific flight.

METHODOLOGY 50

Figure 24: Decomposition of gate allocation process, 2nd level.

The closer to the day of operations the more updates will be due to technical reasons,

due to weather, or due to other operational reasons. Therefore, the activities [1] through

[3] in Figure 24 are usually run several times until the day of operations has been

reached. As many business partners are involved in the whole process, especially in data

provisioning, the quality of an allocation highly depends on the timely delivery of

information. Regarding the output portion of the process (the allocation plan) many

stakeholders depend on it for their own process (resource) planning. Those stakeholders

include: immigrations, customs, ground handling services, security staff, outbound

border control, airline check-in staff and retail outlets.

To this point, the major inputs and constraining factors58 of the gate allocation process

and of the retailing process are determined.

58 ‘Control arrows’ in any IDEF0 diagram represent constraints. For the gate allocation process these are

basically: Aviation regulations, customer requirements, available infrastructure and weather.

METHODOLOGY 51

The business context and scope were described from a process point of view. However,

as information is found to play an important role in value creation, the next chapter

introduces an information model tailored to the business context. Again, the notation

chosen is from within the IDEF family59.

3.2.5 Airport information model in context of business processes examined

Before the research context-specific information model is discussed, a typical purely

operational view – similar to the IATA/ACI scenario (see Figure 9) – is presented by

Kelemen (2005). The model supports the integration aspect and suggests a data flow as

outlined in Figure 25.

Figure 25: Resource Management Data Flow Chart (Source: Kelemen, 2005, p. 22).

This overview helps to identify the broader context and links that need to be in place for

planning and operations, but for the research topic there are both: missing elements and

unnecessary elements. Hence, this research project suggests an information model that

focuses on only those entities that will play a role in later process of solution finding.

The business context described above comprises various players and two major business

processes. However, as a smooth-running gate allocation process is a prerequisite for an

improved retailing process, the information model emphasizes operational aspects

within the business context.

59 IDEF1X is member of the IDEF family and used for data modelling.

METHODOLOGY 52

Figure 26 shows the major entities60 playing a role in the research context.

Figure 26: Airport information model (outline) in context of research.

An important assumption within actual airport business as well as within the research

project is that the country of a flight’s destination airport determines the nationality of

the majority of passengers on that flight. For this reason there is no explicit entity for

passengers within the information model. Nevertheless, the number of passengers on

board is found in the entity ‘FLIGHT EVENTS’.

The research context (and thus in the information model) differentiates between a

FLIGHT and a FLIGHT EVENT. A flight is more of a placeholder for an actual flight

that is planned to take place in the future61, whereas a flight event is an actual

occurrence of a planned flight. In order to cope for referential integrity of the

60 The information containers are usually referred to as entities. On a lower level (e.g. on database level)

an entity would be implemented as a database table. Furthermore, it has to be noted that the main
purpose of the information model is to explain the business context, rather than being a foundation for
database generation. The detailed model (visually behind the major entities) will be partly explained
below.

61 Note: in the information model an explicit history aspect has not been implemented. In order to
analyze past settings, a time stamp would need to be applied to all relevant information, like countries,
aircraft types, terminal buildings, etc. Usually this constitutes a major piece of work within the data
cleansing task.

FLIGHTS

AIRLINES

AIRPORTS
AIRCRAFT

FLIGHT

EVENTS

TERMINALS

GATES

RETAIL AREAS

STANDS

METHODOLOGY 53

information model, consequently there cannot be an entry in FLIGHT EVENT without

a corresponding entry within the FLIGHT entity.

So, the first is dependent on the latter. These types of relationships are expressed in the

information model, developed as part of this research project. As outlined in Figure 27,

a flight is mainly defined by its airline, the country of origin or destination, a possible

alliance membership, and its ‘relative retail factor’.

Figure 27: Airport information model, domain: fligh t.

The relative retail factor describes the spending behaviour of passengers on that flight in

relation to other flights departing from the airport being investigated. It is also referred

to as ‘relative retail-worthiness’.

METHODOLOGY 54

The second major domain within the information model comprises all entities around

the airport infrastructure.62

Figure 28: Airport information model, domain: airpo rt infrastructure.

The entities modelled in Figure 28 describe that an airport consists of terminals, and

belongs to a country. The latter is important because it determines the spending

behaviour of passengers to a destination airport. This information is used in case no

flight-specific spending information would be available. Terminal information is

important to cope for alliance-specific gate allocation. In order to account for physical

constraints both for aircraft and passengers, corresponding attributes have been

incorporated in the entities of gates and stands.

To address overall retail performance, retail areas are described in terms of relative

factors (in comparison to other retail areas at the airport in question). A retail area

consists of at least one gate from where passengers may leave the terminal building to

board a plane. The boarding process can be either directly into the aircraft (e.g. via a

62 It has to be emphasized that only those entities (and associated attributes) have been incorporated into

the model as found relevant for the research project. A comprehensive information model of the
airport domain (incl. airlines and air traffic control) easily spans over several hundred entities.

METHODOLOGY 55

bridge or via a stair case and short walk across the apron area), or more indirectly into a

bus, which then transfers the passengers to the aircraft.

Finally, the information model describes the flight event itself. A flight event is based

on all the reference information found in the aforementioned domains.

Figure 29: Airport information model, domain: fligh t event.

As to be observed in Figure 29 the most important characteristic of a flight event is that

it contains current information about the conduct of operations. So, relevant information

like time estimates, aircraft changes, but most notably stand and gate changes will be

updated in this domain.

METHODOLOGY 56

Up to this point, the business context has been described in general, as well as in terms

of process decompositions and in form of an information model.

[ALIGNMENT ASPECT]

The better (and usually more detailed) a business process and its use of information is

known, the more likely it is that the IT function can produce a solution, which fulfils

business requirements (compare, Figure 10, (3) and (5)).

In the next chapter this foundation is used to develop a conceptual research model.

METHODOLOGY 57

3.3 Formulation of conceptual research model

The conceptual research model aims to visually represent potential relationships

between its elements. Further, it aims to outline where changes within the model might

reflect changes in process output.

Basically, it describes two different ways, how the processes in focus may interoperate

with each other. In the first set-up the gate allocation process is focused purely on

operational goals. The process draws its information from its own data sources and

produces output (performs) according to a rule set, which is defined for sole use of

operations. Similar to that, the retailing process works on an own information basis and

applies its own rule set to conduct business.

Figure 30: Conceptual research model with underlying statement (H.1).

As no joint seasonal planning takes place here (situation leading to s1), retailing

basically plans on a day-to-day basis. This means that no long-term customer-oriented

offering can be accounted for in the supply chain. With a clear seasonal outlook of the

flights to be expected in a certain retail area, this aspect may be addressed.

The major difference in the second set-up is that both processes make use of a shared

pool of information, and most importantly perform according to a harmonized rule set.

The latter copes for rules that are important for both functions, e.g. maximum number of

passengers in a retail area at any time, or preference of specific flights in a certain retail

area, based on their retail-worthiness. For each of these requirements meaningful values

need to be agreed on. The sum of these agreements form the harmonized rule set.

METHODOLOGY 58

In order to achieve such an aligned base of both information and business rules (as

shown in Figure 30, in the s2 column), there needs to be close coordination (amongst

retailing and gate allocation) during the planning phase of a seasonal flight plan. Such a

joint common approach allows for better harmonization of the retail offering and the

supply with passengers.

Thus, in Figure 30 the basic underlying statement, introduced as (H.1) in Chapter 1.4,

claims that retail sales could be increased, if gate allocation would focus on retailing. As

mentioned above, this can be accomplished by a joint seasonal flight planning process

based on shared information and a harmonized rule-set. The latter would need to

incorporate only a minimum of hard constraints as to achieve high levels of freedom for

the (retail-favoured) improvement purpose.

Nevertheless, it must not be omitted that the increase in retail sales may come at a cost

on the operational side. The following puts the conceptual model into context.

Figure 31: Context of conceptual research model.

As shown in Figure 31, the overall income generated from operations and retailing is

based on total traffic. Within the research context only passenger flights will be looked

at. At constrained airports this might be a factor to consider, because changes in gate

allocation may result in higher traffic load on the apron and taxiways. This in

consequence may have an impact on cargo flights, taxiing to and from the runway.

METHODOLOGY 59

There is another simplification in the model. Retail sales will only be calculated for

departing traffic (incl. the departing portion of transfers, and transits). There are two

reasons for that. Firstly, there is only a very limited amount of sales produced by arrival

passengers (almost no arrival duty free in Europe). Secondly, the retail sales data is

purely based on departing passengers. Thus only passenger traffic FDEP + FTR enters the

research model. The gate allocation algorithm will need to apply certain rules for the

allocation process. These rules suggest some hard constraints (‘NO-GOs’) and soft

constraints (‘if-possibles’) to be applied in the allocation planning process.

In a business environment the following questions would need to be answered:

• Does income from retailing set off additional cost at operations when allocated

‘retail-friendly’?

• Are there ways to reduce opportunity cost at retailing when allocated

‘operations-friendly’?

• To which extent is operations in a position to allocate flights in a retail-favoured

way?

However, as a detailed view on additional cost at operations would be beyond the scope

of this project, the conceptual model examines Ra (in Figure 31) in different scenarios

and compares it to Rb. The latter is derived from the retail result that actual allocations

would have produced. Those (‘real-world’) allocations had been conducted to achieve

operational goals. This way a potential increase in retail sales (S2 > S1, Figure 30)

should be determined or disproved. The main factors contributing to additional cost at

operations will be discussed with the limitations of this piece of research in Chapter 5.4.

Having identified the processes’ activities and the information structure of the research

context, in a next step the specific information to be gathered will be described in more

detail.

[ALIGNMENT ASPECT]

The first alignment aspect here is that IT supports to integrate business functions

(compare, Figure 10, (3) and (5)). Secondly, the aspect of performance measurement

(retail sales) is incorporated in the discussion (compare, Figure 10, (6)).

METHODOLOGY 60

3.4 Identification of information / data needed

From the process decompositions and the data model, introduced above, the required

information entities can be identified. In general, it has to be differentiated between

infrastructural data63, flight schedules, retail sales data, and the rule set64.

In order to construct a test bed for the to-be-developed algorithm and simulation

software, that ought to be able to cope with high loads of traffic, data from Frankfurt

Airport was used. Here, two very important aspects needed to be considered:

Firstly and most important, a precondition regarding the use of data at all, was to make

it anonymous to such an extent that it cannot be deduced towards individual actual

flight numbers or airlines without explicit permission of the respective data owner. In

consequence, all output generated by the software will be in terms of references

(running index numbers), or aggregated to an extent that this information could be

found in public as well. A third form of information used is that of relative index

numbers (e.g. sales of a flight in relation to the overall average of sales, expressed as a

factor or percentage).

However, in order to cross-check and validate the output, it would be possible to apply a

sort of translation table to the output, so as to derive original flights numbers.65

Secondly, the data had to be prepared for usage in the research project. At this, a minor

aspect has been to extract the data out of existing systems into file formats like flat text

files or files in some sort of spreadsheet format. Far more work intensive has been

another task within so called data cleansing, i.e. to achieve logical consistency and

integrity.

A few examples may highlight that:

(1) Codes for countries, airports and other reference data had to be standardized: Is

the code for SPAIN = E, ES, SP, or else?

(2) To cope for the factor of time: Some of the data sources had different definitions

of the member states of the European Union, of former Yugoslavia, the former

Russian Federation, and so on.

(3) There have been departing flights with no passengers on board but massive

sales.

63 Also referred to as reference data.
64 The rule set will be introduced in Chapter 3.4.4 and described in more detail in Chapter 4.2.2.
65 With permission of data owners only.

METHODOLOGY 61

(4) To cope for cancelled flights or flights with an aircraft change after boarding.

(5) In actual flight data there were flights, which did not exist in the corresponding

seasonal flight plan.

Many more of those aspects had to be taken into account before using the data to

describe the current (as-is) situation and to calibrate the research model.

Many of the above aspects could be addressed with simple SQL66 statements. In that

case flat file data was imported into a plain and empty MySQL database and worked on

with AnySQL Maestro67. More complex data cleansing tasks have either been

accomplished with self-written software routines (part of source code in Appendix A,

Chapter 8.2.1) or in case of only few occurrences of change with an advanced multi-

purpose text editor68.

The data cleansing task is both very important for sound results of an analysis and very

time consuming.69

The following chapters describe the different types of data used for further research.

3.4.1 Infrastructural (reference) data

In order to describe the physical set-up of an airport along with the main players

(airlines, retailers, passengers) in the research context, information had to be gathered

about:

• the airport layout (terminal buildings, piers, gates, gate hold rooms, retail areas),

• aircraft data (type, wing span code)

• airlines (codes, membership in alliances)

• destinations (airport codes, countries)

As Frankfurt Airport was taken as the sample airport for initial application of the

research topic, a summary of most important data is provided below.

The airport complex consists of two passenger terminal buildings. As can be seen in

Figure 32, there are five piers (A through E). For the time period looked at during

research, the terminals have been connected via a people mover (‘Sky Line’) and via

shuttle busses. A total of 153 gates have been used. Remote aircraft stands have not

66 SQL: Structured Query Language is a standard for data retrieval and manipulation.
67 AnySQL Maestro is a multi-purpose admin tool for database management, control and development.

MySQL is a relational database management system. Both systems are available for free.
68 The software taken for this was, Multi-Edit 2006, which is a commercial product.
69 The data cleansing task took 2-3 weeks.

METHODOLOGY 62

been looked at in detail.70 For each of the gates its area in square meters and the

maximum aircraft type it can serve (in terms of wing span code) have been gathered.

Figure 32: Basic terminal layout, Frankfurt Airport .

Seven retail areas have been defined (R1 through R7). They comprise the following

gates:

Retail Area Gates Remarks

R1 A1 – A65 EU, some non-EU

R2 B1– B19 EU

R3 B20 – B59 Transit, non-EU

R4 C1 – C22 EU, non-EU

R5 D1 – D31 EU, non-EU

R6 D40 – D54 EU, non-EU, bus gates (spare) went into operation within

research time window

R7 E1 – E26 EU, non-EU

Table 3: Basic definition of retail areas.

The retail areas are different in terms of their offering, their atmosphere, the passenger

streams they serve, and of course in their location.

The data on aircraft basically consists of 219 different types of aircraft with their

respective wing span code, ranging from 15 (smallest) to 1 (largest).

According to the data set, a number of 195 airlines served Frankfurt Airport in the time

frame looked at. They served destinations with 1,597 different flights (flight numbers)

during summer season and respectively 1,102 flights (flight numbers) during winter

season.

The different airline alliances taken into consideration for the gate allocation task were:

Star Alliance, SkyTeam, and Oneworld.

70 This will be explained in Chapter 4.2.2 (standard assumptions).

METHODOLOGY 63

Various destinations in 106 different countries have been identified and considered in

their retail performance.

3.4.2 Flight schedules

 The period of time that is investigated includes two flight plan seasons:

Figure 33: Timeline of flight plan seasons.

• summer season 2006 (2006-03-26 to 2006-10-28)

• winter season 2006/07 (2006-10-29 to 2007-03-24)

When talking about flight schedules it needs to be differentiated between actual flight

data and the seasonal flight plan. The first reflects the traffic situation based on actual

data (comprising scheduled time of departure (STD), last updated estimated time of

departure (ETD) and the actual time of departure (ATD)). The seasonal flight plan e.g.

lacks of course ETD and ATD. Furthermore, it has to be mentioned that after the slot

return date airlines still return slots or make changes to their schedules. So the STD in

the set of current flight data reflects the last change in STD since the seasonal flight plan

has become valid. This may be as close as up to just prior to the day of operations.

In addition to that, it has to be taken into account that a seasonal flight plan usually

consists of just a single (peak) week per flight plan season. Such a week is then taken as

a master to allocate the flights of the following week (on a rolling day basis).

The original set of data made available for research consisted of more than two million

data records with approximately fifty entries (fields) per record. So in total about one

hundred million data items had to be pre-processed. After non-passenger flights (e.g.

cargo, governmental, rescue) have been filtered out, and the above mentioned data

cleansing tasks have been applied to the data set, still a remainder of 229,430 records

(summer: 140,962; winter: 88,468) was left.

METHODOLOGY 64

3.4.3 Retail sales data

An improved gate allocation would not be possible without any information regarding

the contribution of passengers on a flight towards retail sales.

As introduced above, the sales result depends on many different factors. A major (if not

most important) role plays the number of passengers and their country of origin (the

latter is assumed to be in close relation to a flight’s destination).

Depending on the business model that an airport applies to retailing, it is the retailer or

the airport operator who gathers data on individual purchases (usually at point of sale).

In order to obtain information that relates a purchase to a flight, very often the boarding

pass is scanned, or a combined data gathering consisting of passport scan and manual

entry of flight number is conducted.

This information is crucial to identify any levers towards improved sales. Thus both, the

airport operator and the retailer(s) should have a vast interest to make best possible use

of this information. In some contracts between airport operator and retailer there can be

found regulations regarding the shared use of such sales information. Such information

may be at a very detailed level (e.g. on a transaction basis) or it may be on an

aggregated level (both summed values and relative index values).

For the purpose of this research project such information has been provided by Fraport

AG (the operator of Frankfurt Airport). They have obtained the information (on a more

detailed level) from the major retailer on their premises (Gebr. Heinemann).

METHODOLOGY 65

So, the retail data used is in form of a relative index (retail-worthiness), on the basis of

average sales. The aggregation level is flight-specific. However, as this level of detail

would obtain no permission to be published from the data owners, the information

presented in this paper had to be aggregated on a country-specific level (see Table 4).

Nevertheless, for the improvement process (algorithm and simulation software) the

flight-specific level of detail has been applied.

Table 4: Retail-worthiness of countries (selection) at Frankfurt Airport in 2007.

An initial analysis of the data shows that occasionally there is a considerable bandwidth

in the flights’ individual retail-worthiness to the same country of destination. For

example, a flight to New York may be at 180% of average retail sales, whereas a flight

to Dallas achieves a rating of e.g. 300%. As mentioned above, the data provided

contains information on a flight-specific level. Country-specific data is simply the

weighted average of all flights to that country.

However, there is a drawback regarding the data provided: Due to the fact that the time

frame is not the same as used with the operational (actual and seasonal) flight data, and

the absolute retail figures are derived from annual reports, instead of directly from the

METHODOLOGY 66

same data source of retail-worthiness figures, a comparison has to be drawn with care.

So, an absolute statement regarding the actual retail results in respect to operations

cannot be drawn. This needs to be taken into account in the interpretation of the results.

Nevertheless, for the purpose of research the data provided is a test environment, which

is still close to real conditions. It may be due to the different time frame (retail data is

from calendar year 2007), and certainly as well due to data inconsistencies that for some

of the flights in the operational data no counterpart in the retail data could be identified.

In such a case (within the data cleansing process) flights to the same destination airport

have been taken to determine the retail-worthiness of the flight in question.

In case no flight with the same destination could be found, the country-specific value

was applied. There has been no case of a flight (not included in retail data) to a

destination in a country for which no retail-worthiness was known. Within the data

cleansing process much effort had to be put into the correct representation of countries,

because much inconsistency on a logical basis was determined (e.g. different

representation of former Soviet Union countries in retail data compared to operational

data).

However, the retail data provided allows further use in analysis and simulation.

Furthermore, the anonymous nature of the information provided should encourage the

application at different airports.

As introduced with the conceptual research model in Chapter 3.3, the rule set plays a

vital rule for the overall result. The next chapter describes this in more detail.

3.4.4 Rule set

Very often business rules are not explicitly defined or written down somewhere. For

example, many shops prepare for passengers by observing the information provided on

public flight displays. The preparation may be as simple as to re-arrange shelves

depending on the next major flight to be expected. Slightly different, in operations,

business rules are often stored in IT systems and / or formally noted in operational

directives (or similar). The better these two sets of business rules are harmonized with

each other, the smoother and more successful business will be conducted. The planning

task will try to identify competing rules and prioritize their application. Rules may also

be complementary to each other (e.g. successful application of rule 1 will allow rule 2 to

produce better results). The core business of a process usually follows rules that are

indifferent to those of another processes’ core business.

METHODOLOGY 67

No explicit data on rules has been provided from a third party. However, for the

algorithm and its simulation a set of rules and assumptions will have to apply. The

details on that will be explored in Chapter 4.2.2.

3.5 From conceptual research model towards a quantitative model

By nature, the conceptual research model is just specific enough to describe the overall

system, its elements and relations. In order to be able to verify the statement (H.1) the

model needs to be quantified. Therefore, the conceptual research model is transferred

into a quantitative model. The main element to be determined is retail sales in different

scenarios. The base scenario describes an allocation that is operations-favoured. The

other scenarios will be retail-favoured with a minimum set of operational rules to be

considered. Some of the operational parameters and the retail parameters will be altered,

in order to identify changes in retail sales.

Thus ‘retail sales’ is the core element that needs to be quantified. The different business

conditions will be coped for by the gate allocation algorithm.

The following elements determine retail sales (S) in the model:

P Number of passengers on a flight.

SDF

(Sales Duty Free)
Average duty free spending of a passenger.

FDFR

(Factor Duty Free � Retail)
A factor, which expresses the relation of duty free sales to overall
retail sales (including specialty retail, and food & beverage).

As the retail data provided only accounts for duty free sales,
there needs to be a factor in place to model overall retail sales.

So, SDF and FDFR cope for the overall (average) retail spending of
a passenger.

FFLIGHT

(Factor FLIGHT-specific)
A factor, which expresses the flight-specific retail behaviour of
its passengers.

Each flight (same flight number throughout the observation)
shows a specific retail spending behaviour (retail-worthiness).
FFLIGHT expresses this.

FAREA

(Factor Retail AREA-specific)
A factor, which expresses the location-dependent retail
performance of a gate (belonging to a retail area).

Gates within the terminal building are grouped into retail areas.
Each retail area has a specific sales performance.

FAREA expresses this and contributes in addition to the
aforementioned factors.

METHODOLOGY 68

Sales for any single flight (SFLIGHT) is the product of the factors above, where SDF and

FDFR in combination describe the average retail spending71, but still regardless of the

flight number and the location where the flight is allocated at. This is then coped for by

FFLIGHT and FAREA. As also those values have been defined and derived as factors, sales

can be described as: SFLIGHT � P SDF FDFR FFLIGHT FAREA (EQ.1)

Usually, there will be one or more flights to be allocated at a specific time. For this

reason a day has been divided into 288 time intervals each representing 5 minutes of

time. The number of flights (nF) per interval is basically determined by the flight

schedule for that day. Therefore, sales for a single time interval would be:

Sinterval � ��P SDF FDFR FFLIGHT FAREA��
��
��� (EQ.2)

The gate allocation algorithm’s task would be to maximize sales under the constraints of

a specific scenario. Therefore, the sales result of an improved time interval is:

Sinterval�max� � "#$%&%'()��P SDF FDFR FFLIGHT FAREA��
��
��� * (EQ.3)

Consequently, a day’s improved retail sales figure may be expressed as:

Sday�max� � � -"#$%&%'()��P SDF FDFR FFLIGHT FAREA��
��
��� *

.
/011

2�� (EQ.4)

71 In consequence, the as long as product of SDF and FDFR represent an airport’s figure for passengers

average retail spending, the individual factors are less important. However, they may be used, in case
only duty free sales data would be available.

METHODOLOGY 69

Applied to the period of time that the research project investigates, where Dstart = start

date, i.e. 2006-03-26, and Dend = end date, i.e. 2007-03-27, the sales figure (S2) as

expressed in the conceptual research model would then be:

S2 � � -� -"#$%&%'()��P SDF FDFR FFLIGHT FAREA��
��
��� *

.
/011

2�� /
4

56�4
4�572892 (EQ.5)

The conceptual research model claims in (H.1) that S2 > S1, where S1 represents the

sales result based on actual allocation (i.e. not retail-focussed). This leads to the

quantitative research model:

� -� -"#$%&%'()��P SDF FDFR FFLIGHT FAREA��
��
��� *

.
/011

2�� /
4

 56�4
4�572892

: � -� -;<=>#?)��P SDF FDFR FFLIGHT FAREA��
��
��� *

.
/011

2�� /
4

56�4
4�572892

(EQ.6)

Finally, it has to be mentioned that there may be potential inter-dependencies between

FFLIGHT and FAREA. For example, may a flight with a low FFLIGHT be ‘developed’

towards a higher FFLIGHT when allocated in a retail area with a high FAREA (nothing else

changed)? And may a retail area with low FAREA be ‘developed’ towards an increased

FAREA when only flights with high FFLIGHT would be allocated to its gates (nothing else

changed)? Such inter-dependencies may exist, but are not further investigated in this

thesis.

[ALIGNMENT ASPECT]

It is tried to model the real business world by identification of relevant data and thus

enabling any potential IT solution to produce more meaningful output compared to a

situation with pure artificial data (compare, Figure 10, (3) and (5)). The quantification

of the conceptual research model supports determination of retail sales, and thereby

supports performance measurement (compare, Figure 10, (6)).

METHODOLOGY 70

The next chapters describe the approach to determine an improved S2 as derived from

the research model.

3.6 Approach to determine improved solutions

As discovered above, the model aims to maximize the retail result of flights in a specific

time interval. Given a certain number of flights in each interval72 and a maximum

number of known gates, the improvement task is to find the best possible (and valid)

combination.

3.6.1 Type of problem and mathematical considerations

In addition to the general problem description in Chapter 2.3 the following helps to

better understand the specific challenge within this paper. The task is to solve a

combinatorial optimization problem within discrete mathematics. The following may

describe the dimensions of the possible solution space and suggests a way to reduce

solution space considerably.

Usually, there are up to 11 flights scheduled for departure within a single time interval.

Those flights may be allocated to any of the possible 153 gates.

So, at first sight there may be as many solutions as possible permutations. At second

sight, it has to be clarified that a flight will only be allocated once (and only once) at

one of the 153 gates within a specific time interval. In addition, the sequence of the

elements does not matter. This defines a sub-set of permutations, called combinations.

Of course, depending on the period of time that a flight remains at the gate (for

turnaround and / or boarding) such a gate would not be available to other flights in

consecutive time intervals until the flight left the gate (and a potential buffer time would

have elapsed).

Consequently, the number of 153 gates will decrease with more and more flights

already being allocated. In order to cope with business requirements, many of the

constraints (like aircraft size vs. gate size, alliance membership) will further decrease

the possible number of gates. Finally, a certain number of ‘eligible gates’ will remain as

candidates for allocation.73

72 Deviation from the (reference) flight schedule is to be kept to a minimum.
73 This is similar to the approach of Murty et al. (2008).

METHODOLOGY 71

However, the solution space is still very large for computational solving, because the

number of potential solutions to be looked at in terms of their retail result seems to be

calculated according to the general formula:

Where:

C is the number of combinations from a set

n is the number of possible gate-flight allocations to choose from (i.e.
the product of: for each flight all possible gates)

k is the number of gates to be chosen (i.e. number of flights that need to
be allocated within a specific time interval)

As the definition of combinatorial problems tends to mislead, if not too familiar with it,

a simple (often-used) example will be transferred to the gate allocation problem.

The example is the calculation of all possible combinations of a five-card hand taken

from an Anglo-American style fifty-two card-deck.

The number of combinations would be:

C � AB0B C � B0!B!�B0EB�! � 2,598,960.

In order to apply this to the gate allocation problem, the figure of 52 needs to be broken

down into its factors of 13 cards per suit. Figure 34 shows a first translation into the

research problem’s context:

METHODOLOGY 72

Figure 34: Card-deck example transferred to gate allocation context (1).

For the combinatorial problem this would lead to a value for n of:

n = 11 flights ·153 gates = 1683.

So, for a single time interval, in worst case (n= 1683, k = 11) the number of

combinations would be:

C � ��L1M�!��!��L1ME���! � 3.9274226487240218209005140924565(S 4700.

Actual flight data more often shows a case like this (n ≈ 9·65 = 585, k = 9):

C � B1B!T!�B1BET�! � 20,786,604,884,463,688,985.

Assuming that only half the day so many flights (9 per interval) would need to be

allocated, there would still be 144 intervals, totalling

2,993,271,103,362,771,213,840 (combinations) trial allocations per day.

Keeping in mind that 364 days within the two flight plan seasons are to be looked at,

this approach does not promise to be feasible in terms of computing power available.

However, most importantly, this approach would not be correct and valid.

METHODOLOGY 73

The abovementioned transfer to the research context misleads in a certain point: a valid

5-card hand may very well be 5 to 9 of clubs:

Figure 35: Card-deck example transferred to gate allocation context (2).

However, in research context this would mean that a possible flight-gate-combination

would be something like flight #28 at gates B4, B5, B6, B7 and B8 at the same time.

This of course is not possible (nor is it allowed or makes sense).

For the correct representation of the problem the combinatorial rules have to be applied.

The rule of product states that for x possibilities of performing A and for y possibilities

of performing B there are x·y possibilities of performing both under the condition that A

and B can be performed at the same time (so that they are not mutually exclusive, which

would mean either A or B can be performed, but not both74).

Applied to the research context this would mean:

For each flight to be allocated, exactly one gate (at a time) out of 153 gates needs to be

chosen. With 11 flights and 153 gates this results into

15311 = 1,075,488,420,943,298,174,695,497 combinations.

With 9 flights out of 65 gates, it still leads to

659 = 20,711,912,837,890,625 combinations.

Although this is already far less than before (approx. to the factor of 1,000), it is still too

huge for ordinary computation power.

For this reason, the possible solutions space had to be reduced.

The goal is to find the optimal valid (i.e. under the constraints given) combination of

flights and gates. Here ‘optimal’ means to achieve a high retail result. As introduced

above, the latter depends on the retail area, which a flight is allocated to (and thus only

indirectly on the gate itself). This simple change promises to reduce solution space to a

large extent. As there are only seven possible retail areas (R1-R7), the corresponding

number of combinations per time interval would be:

74 In such a case the rule of sum would apply.

METHODOLOGY 74

Number
of flights

Number of combinations

11 7 11 1,977,326,743
10 7 10 282,475,249
9 7 9 40,353,607
8 7 8 5,764,801
7 7 7 823,543
6 7 6 117,649
5 7 5 16,807
4 7 4 2,401
3 7 3 343
2 7 2 49
1 7 1 7

Table 5: Number of potential combinations in (initially) reduced solution space.

A day with just 144 intervals with 9 flights would then require 5,810,919,408

combinations (and 2,115,174,664,512 for all 364 days75) to be generated, tested for

validity and calculated for revenue. However, despite this enormous reduction in the

number of possible solutions, it still constitutes a burden to compute them. In addition

to that, the objective to determine variables that influence the result requires different

scenarios to be tested. In consequence, the computing effort would need to be multiplied

by the number of scenarios.

The means chosen to overcome this challenge are discussed in the next two chapters.

75 Decimal notation has been chosen where possible to avoid ambiguity in naming convention (e.g.

1,240,565,629,343,040 in American system would be approx. 1.2 Quadrillion, in British system it
would be approx. 1.2 Thousand Billion), and for better imagination compared to scientific notation.
(Am: Thousand < Million < Billion < Trillion < Quadrillion < Quintillion <...;
 Br: Thousand < Million < Thousand Million < Billion < Thousand Billion <Trillion-...)

METHODOLOGY 75

3.6.2 Heuristic approach versus deterministic approach

Previous research on the gate assignment problem state that good results (especially

with a multi-objective function) have been achieved, using heuristics (e.g. Haghani and

Cheng, 1998). So, at the beginning of the research project a heuristic approach has been

followed, implementing the improvement part of retail sales by means of a genetic

algorithm (GA). In general, with such

an approach relatively good solutions

can be found in a short (or defined)

period of time. However, the solutions

found may not be the optimum result.

The basic GA usually follows an

approach as outlined in Figure 36. The

solution to a problem is called a

chromosome. Each chromosome has

different genes. The value of a gene is

called an allele. A population (i.e. a

generation) consists of many

individuals (chromosomes). The

genetic operators (selection, crossover,

insertion, mutation) generate (or breed)

a new generation. The fitness of the

generation usually is one of the

stopping criteria for the algorithm. The

coding of a chromosome is often

represented by values of ‘0’ and ‘1’.

Figure 36: Flowchart of a basic genetic algorithm.

However, as this would only describe the genotype, it is important to define a ‘real

world representation’, called a phenotype. For example, the value (allele) of ‘1’ on a

certain gene of a chromosome may indicate that gate ‘B46’ is occupied. In order to

implement such a GA in software, the respective procedures for the major steps as

outlined in Figure 36 would need to be developed. Because of the complex validity

checks of a solution and the revenue calculation, it was not feasible to use standard GA

METHODOLOGY 76

packages. A trial has been conducted using a Microsoft Excel-based GA add-in76. The

pre-processing and coding into the genotype has been done using self-developed

software. Then an automated hand-over to an Excel spreadsheet has been initiated.77

Within Excel the add-in and some self-written VBA78-code generated a possible

solution by means of the GA. The result was then handed back to the custom software,

which translated the genotype backwards into a phenotype. Finally, validity and revenue

of the suggested solution have been determined. Unfortunately, the inter-programme

communication by means of OLE (and also by means of a shared file) took far too

much time to produce results. A complete development of a specialized GA package

with specific genetic operators and rates for mutation and crossover would have had to

be developed as no ready to use packages or suitable programming libraries could be

found.79 But as the objectives of this paper require a usable environment for scenario

simulations, a more feasible way had to be looked for.

With further reduction of the solution space or with stepwise elimination of possible

solutions that do not promise to be valid or to improve the so far best solutions, a

deterministic approach was looked at.80 The basic difference towards a heuristic

approach is that each possible element in the solution space is considered. Thus at the

end of such an algorithm the result can be described in definite terms.

Nevertheless, in order to minimize processing time, the algorithm uses an optimistic

approach to determine the solution. Such an approach has not been seen before, but

found useful in the problem’s context. The next chapter describes this in detail.

76 Product called: Evolver.
77 Hand-over was realized by means of COM automation (OLE).
78 VBA: Visual Basic for Applications is a Microsoft Office internal programming language.
79 Note: There are both free and commercial GA packages available. But either the price was too high,

the implementation turned out to be too complicated (given the time constraints) or they did not
support the Windows programming environment (using DLLs).

80 Similar to a branch-and-bound approach.

METHODOLOGY 77

3.6.3 Deterministic algorithm for retail-oriented gate allocation

In reference to the gate assignment problem (GAP) classification within the literature

review the proposed solution is characterized in Figure 37:

Figure 37: Proposed solution (framed branches) within GAP classification.

The problem-oriented group assignment method has been chosen, because firstly the

sequential approach would not have left any room for improvement and no strict order

(as defined by this approach) was given within each time interval. Secondly, the parallel

assignment method would waste computing power (by unnecessarily expanding

solution space) because of the problem’s nature. Trying to assign a flight at e.g. 11:55

and at 16:20 concurrently is not necessary. So, reducing the parallelism to a 5 minute

interval, and working on those intervals in a time-wise order, classify the approach

being a so-called ‘problem-oriented group assignment method’.

Regarding the problem solving method a heuristic approach would have been as valid as

a deterministic approach. For reasons as outlined in the previous chapter, basically a

deterministic (mathematical programming) approach has been followed. In order to

produce ‘closer-to-real-life’ solutions, expert knowledge in form of many constraining

METHODOLOGY 78

factors have been incorporated in the solution finding process. This is referred to as

‘knowledge-based approach’. A good example of such expert knowledge is the ‘gate

inter-dependency’. This simply means that a certain gate is only usable when a defined

dependent gate (usually in direct neighbourhood) is not occupied. Another example

from within the objective function constraining factors is the retail-worthiness of a

flight (as already explained in Chapter 3.4.3 and introduced as FFLIGHT in Chapter 3.5).

Additional objectives might have been considered (e.g. airport business lounges), but at

the same time would have reduced solution space. Therefore, only the most influential

ones in respect to retail sales and gate allocation have been considered. Customer (i.e.

airline) wishes have been summarized in the alliance rule (Chapter 3.4.1, pre-last

paragraph).

Furthermore, it needs to be mentioned that because of the fact that a whole year of

actual flight data has been used, also any charter flight in that time has been considered

in the process.

The algorithm addresses solution finding for exactly one day. In order to calculate many

days, it simply needs to be run once per improvement candidate (day). The basic

assumption is that there is a fixed flight schedule, which is not altered prior to the

allocation process. In a case within the allocation process, where flights cannot be

allocated as requested, they will obtain an ETD, which is later compared to the STD.

Flights that could not be allocated during a day at all, will lead to a corresponding result

of the algorithm (‘no successful allocation possible’). This would indicate that the flight

schedule may be too tight, too few gates were available or too many restrictions have

been put into the rule-set. In such a case allocation will abort and a re-design of the

flight schedule is suggested.81

81 In the case of Frankfurt Airport’s traffic this did not occur.

METHODOLOGY 79

The algorithm basically consists of three phases and applies an enumeration type of

approach:

Phase one does pre-processing like:82

• Determination of flights that need to be allocated in the time interval to be

improved. This comprises flights scheduled in the current time interval and

flights that may not have been allocated in the previous interval(s).

• Determination of those gates, which are still available in the current time

interval. Due to the nature of the algorithm (time-wise strictly moving forward,

never backwards) a gate will always be available long enough once it has been

detected available in an interval. A gate can be unavailable for many reasons.

This will be discussed in Chapter 4.2.2 (standard assumptions, rule set).

• Determination of those gates, which are eligible for each of the flights. A gate

can turn out to be not eligible for many reasons. This too will be discussed in

Chapter 4.2.2.

• Determination (i.e. calculation) of revenue for any possible flight–gate–

combination (and for flight–retail area–combination).

Phase two conducts the core combinatorial task, which consists of:

• Production of solution candidates on a retail area basis. As mentioned before,

production of solution candidates on a retail area basis considerably reduces

solution space, but at the same time introduces a first element of optimism to the

algorithm. This is because there may be an available gate in a retail area, but as

more than one flight may find a certain retail area to be the most suitable one,

there may be not enough free gates in that retail area for all flights to be

allocated.

• Storage of a certain number of the best solution candidates in a solution stack.

The stack has been sized 5000 elements, which means that in descending order

the best 5000 solution candidates will be tested for allocation on a gate basis

later. The number of possible elements in the solution stack basically describes

the level of optimism to find a valid solution. The higher the number the less

optimistic (i.e. more pessimistic) solution finding is appraised to be. For

example, a stack size of one element (most optimistic) would mean that only the

82 Determination of gates in phase one is similar to Murty et al. (2008).

METHODOLOGY 80

best solution would be stored and later on (in phase three) tested for allocation

on a gate basis.

• Limitation of processing time. The combinatorial task was constraint to 60

seconds per interval. This means that no more combinations will be produced

after that time will have elapsed. This allows running the algorithm unattended

(i.e. not risking to wait endlessly in case of a so-called combinatorial explosion

when for example 20 instead of 11 flights would need allocation in a specific

time interval). This introduces another element of optimism to the algorithm.

Phase three does post-processing like:

• To try an initial gate allocation for the suggested optimum combination(s) of

flight and retail area. In case no combination of the solution stack could be

allocated, a second iteration without the constraint of alliance membership83 is

tried.84

• Block any gates in a retail area that would be too crowded by passengers in case

additional flights would be allocated there (a standard value of 1.5 square meters

per passenger in gate hold room has been applied85).

83 This rule turns an allocation trial invalid in case a flight of a member airline of an alliance would be

allocated to gates not associated with that alliance. However, in simulation runs this situation did
occur in one scenario only.

84 Not modelled into the Nassi-Schneiderman-diagram for reasons of overview and simplicity.
85 IATA recommendations: 0.6 to 1.4 m2 for gate hold rooms and 1.0 to 2.7 m2 for long term waiting

space (Kazda and Caves, 2000, p.253).

METHODOLOGY 81

Figure 38 shows the above-described basic algorithm in Nassi-Schneiderman notation:

Figure 38: Algorithm for gate allocation, top level.

In order to appraise the quality of the solution, an internal variable sums up the

difference between the retail results of the combination allocated and the best

combination of the solution stack. This sort of opportunity cost indicates how much

additional money could have been earned in case enough gates would have been

available (or fewer constraints would have been applied). Nevertheless, under the

conditions given always the optimum (feasible) combination is allocated.

The modular structure of the algorithm allows for a different implementation of the

combinatorial part. For example, it would also be possible to fill the solution stack with

combinations, resulting from a heuristic approach. Another possibility would be to fill it

on a gate basis (instead of retail area basis) with a then possible reduction of solution

stack to one element only.

METHODOLOGY 82

The implementation of the algorithm forms part of the simulation environment, which

will be introduced in Chapter 3.7. Being an important element of this research work, the

source code, is provided in Appendix A.

Due to the fact that the source code comprises several thousand lines, it may be difficult

to browse through in this paper version of the thesis.

Hence, for convenient access, Table 6 guides the reader towards the corresponding

sections of the algorithm’s core parts. The names of functions and procedures are

similar to those in the diagram of Figure 38.

Function or procedure page

OPTI_Run() 242

OPTI_FindSolution() 243

OPTI_Determine_FlightsToBeAllocatedInTimeInterval() 261

OPTI_Determine_AvailableGatesInInterval() 260

OPTI_DependendGateIsFree() 267

OPTI_Determine_EligibleGatesForFlight() 261

OPTI_IsValidGate() 261

OPTI_Determine_EligibleRetailAreasForFlight() 263

OPTI_Determine_RevenueForFlightInSpecificRetailArea () 263

OPTI_Determine_RevenueForFlightAtSpecificGates() 26 4

OPTI_Determine_MaxTheoRevenue() 276

OPTI_CombiTwoElements() [with recursive call] 250

OPTI_IsValidRACombi() 268

OPTI_Avoid_RetailArea_PAX_OverLoad() 275

OPTI_BlockGatesInRetailAreaInTimeInterval() 276

Table 6: Directory to source code of algorithm.

METHODOLOGY 83

In order to explain the process of combination in the research context, the following will

serve as an exemplary run:

• There are 7 retail areas given (#1 to #7).

• There are 3 flights to be allocated (#21, #28, #32).

• Each valid combination results in sales (intersection of row and column in the

tables below).

As learned in the chapter about the mathematical background of the problem, the

number of combinations would be 37 = 343. So, a total of 343 possible combinations

would enter the solution stack. But due to the nature of the research problem, (and as a

further means of reduction in solution space) only the eligible (instead of the available)

retail areas will be allowed to enter the combinatorial solution finding process. Thus the

possible number of solutions will be less than that of a standard combinatorial problem.

 ELIGIBLE RETAIL AREAS
 1 2 3 4 5 6 7

F
L

IG
H

T

21 --- --- --- --- 55 27 37
28 19 17 28 101 7 55 66
32 7 5 10 120 --- --- ---

Table 7: Combinatorial example (1): reduced solution space.

According to the rule of product in the situation as given in Table 7 there will be

3·7·4 = 84 combinations.

The bold figures indicate the retail area with the highest results for each flight. In case

there were enough free gates in these retail areas, the combination of

flight #21 in retail area #5 ; flight #28 in retail area #4 ; flight #32 in retail area #4

would produce the highest revenue.

The combinatorial search would need to scan through the complete solution space as

indicated in Table 8.86

5-1-1 5-2-1 5-3-1 5-4-1 ... 5-7-1 6-1-1 ... 7-7-1
5-1-2 5-2-2 5-3-2 5-4-2 ... 5-7-2 6-1-2 ... 7-7-2
5-1-3 5-2-3 5-3-3 5-4-3 ... 5-7-3 6-1-3 ... 7-7-3
5-1-4 5-2-4 5-3-4 5-4-4 ... 5-7-4 6-1-4 ... 7-7-4

Table 8: Combinatorial example (2): retail area combinations.

86 Note: in a recursive implementation, the solution generation would start at the end with 7-7-4. From

that point all prior recursive calls will be terminated in reverse order of calling, and thus building the
individual solutions (see also below).

METHODOLOGY 84

The grey highlighted combinations from the above table are shown with their respective

sales result in Table 9.

5-1-1 5-2-1 5-7-1 6-1-1 7-7-1
55+19+7=

81
55+17+7=

79
... 55+66+7=

128
27+19+7=

53
... 37+66+7=

110
Table 9: Combinatorial example (3): resulting retail sales.

As mentioned before, the maximum retail sales figure would be produced with the retail

area combination as shown in Table 10.

 5-4-4
... 55+101+120=

276
...

Table 10: Combinatorial example (4): optimum combination.

Given a solution stack size of only 10 elements, the 10 best combinations (in terms of

highest sales result) would then be returned to phase three of the algorithm as described

above. The reason is found in the way eligible retail areas are determined. An area may

only be eligible if at least one gate is available in that retail area (and the other

constraints are met). However, in case exactly one gate is available, but two flights

would need to be allocated to it, a conflict arises. As mentioned before, this trade-off for

reduction of solution space is addressed by the solution stack. Additionally, phase two

of the algorithm addresses this issue in a way that a combination is only entered into the

solution stack, if there are as many free gates in a retail area as there are flights that

require gates in this same retail area.

As learned from the above example, it would be possible to run in loops through the

solution space. However, as the degree of nesting differs, a varying number of loop

levels (and iterations at each level) would need to be implemented in software. A more

elegant way to describe and implement the above search of the solution space is by

application of a recursive approach.

The same way a factorial number can be calculated both ways, the phase two of the

algorithm is implemented in a recursive manner.

METHODOLOGY 85

To outline the two different approaches possible, Table 11 provides an example for the

calculation of the factorial of 3, where 3! = 3 · 2 · 1 = 6.

A recursive approach87 would define it as 3 times the factorial of 2. (3! = 3 · 2!)

Iterative approach Recursive approach

FACTORIAL (3) = 3 · 2 · 1 FACTORIAL (3) = 3 · FACTO RIAL (2)

n := 3
f := factorial(n)

function factorial(n)
 t := n
 for i := t-1 to 1 step -1
 t := t * i
 next i
 return t
end function

n := 3
f := factorial(n)

function factorial(n)
 if n<=1 then
 return 1
 else
 return n * factorial(n-1)
 end if
end function

Table 11: Pseudo-code for different implementations of the factorial function.

Most important in definition and implementation of recursions is that the end of a

recursion has to be defined and that it is detected prior to the next recursive call.

In the factorial example this would be the situation of 1!=1 and 0!=1.

With the aforementioned in mind, Figure 39 presents a flow chart of the recursive

implementation of phase two of the gate allocation algorithm. In that phase the reduced

solution space is searched in a recursive (and partly optimistic) manner.

87 An implemented recursion basically means that a function calls itself.

recursive call

with updated

parameter

METHODOLOGY 86

The initial call (to the START entry point) is conducted from within phase two of the

gate allocation algorithm.

Figure 39: Algorithm to compose an allocation (recursive search of solution space).

After having returned from the initial recursive call (which will be the last one to close)

the recursive implementation of the combinatorial search algorithm hands over control

back to the calling point, which was in phase two of the gate allocation algorithm.

METHODOLOGY 87

As defined, the algorithm performs recursive calls of itself until the last flight is reached

(dotted lines in Figure 39). So a first retail area will be determined. Starting with the last

flight, then a second retail area will be chosen for the pre-last flight and so on. Each

time when stopping-criteria are met, a recursion ends and control jumps back one level.

Within this level then the values are still the same compared to the moment in which

control had been handed over to the level it just returns from. This way a solution builds

up ‘from the tail’. Solutions, which are both valid and ‘fit’ enough, will enter the

solution stack. This stack is available to the calling function in phase two of the gate

allocation algorithm.

With the implementation of the above it would become possible to run complete

allocations with different settings. In order to detect potential sensitivity of certain

parameters a systematic approach was necessary. Chapter 4.2 will discuss the different

scenarios in detail.

[ALIGNMENT ASPECT]

The previous chapters aimed to provide the foundation for an IT solution that is capable

of producing desired output in an environment, which has as little requirements as

possible regarding computing power in order to keep investment cost and operations

cost low (compare, Figure 10, (4) and (5)).

However, in order to be able to conduct simulation runs, an appropriate simulation

environment needed to be developed. As this constitutes a major part of the research

work undertaken, the following chapters specify the individual elements of the

simulation environment, its implementation and general processing characteristics.

METHODOLOGY 88

3.7 Simulation environment

As the term simulation is subject to misleading interpretation a brief outline of its

meaning in the research context is given below.

The method of simulation (by means of the simulation environment) will be used to

analyse the conceptual research model (using different scenarios for a sensitivity

analysis). The latter is an abstract system subject to analysis. As a first step in this

deductive approach the conceptual model was refined towards a quantitative model. In

order to gain insight regarding that model, its individual elements will need to be

analysed. Any knowledge gained from those individual aspects may help to explain the

model itself.88

It is advantageous to use simulation in a situation where sole theoretical treatment of a

question would lose transparency or is simply impractical.

This paper understands simulation as the numerical study of the quantitative research

model. Visualization of simulation results is not a core part of the simulation

environment. As most often used in an airport context89 a discrete, event-driven

simulation model is applied within this research.

The objective of the simulation environment is to represent the quantitative research

model. It has to be able to generate output depending on different input parameters. It is

aimed to use it as a kind of ‘research workbench’, and explicitly not to be a product of

its own. More specific requirements are listed below:

• Ability to produce output in an acceptable amount of time on standard personal

computer hardware.

• Ability to run different scenarios independently from each other on the same

machine (or to split a scenario into several parts and merge the results after

simulation runs have finished). In case of a multiple-core processor make use of

all available cores for the simulation task.

• Allow for different data sources as input.

• Produce output that can be worked on with any standard software (e.g. Excel).

• Enable remote administration from anywhere in the world.

• Does not cost any money (except for own development effort) to operate.

88 This in return would then be an inductive approach.
89 Compare also Cheng (1998, p. 226-227).

METHODOLOGY 89

With the requirements in mind, a general architecture of the ‘simulation workbench’ has

been designed.

3.7.1 Components

The architecture follows the basic principle of Input�Processing�Output.

The input source can either be in form of data files or be manual input for information

like dates of the simulation time frame (i.e. start date, end date).

Figure 40 shows the basic structure.90

Figure 40: Basic architecture of simulation workbench.

Derived from the Airport Information Model (see Chapter 3.2.5), the simulation

software needs to comprise those elements necessary to compute scenarios as described

in the quantitative research model. In addition, there is data necessary for internal tasks

of the software. These tasks include checks on files used, user-modes, or number of

concurrently started instances of the software.

90 A detailed description of the software architecture with all functions and procedures explained would

be beyond the scope (and not in focus) of this paper. Nevertheless, the core part has been introduced
in form of the gate allocation algorithm. The source code is provided in Appendix A.

METHODOLOGY 90

So, basically there are three core categories of data the simulation workbench processes:

• reference data,

• working data,

• administrative data.

Additionally, in a fourth category there is various data generated for output (reports,

messages on display). Figure 41 visualizes this in greater detail.

Figure 41: Data categories in simulation software, implemented as flat files.

In order to comply with most of the simulation workbenches’ requirements storage of

data has been implemented in form of flat text files. This allows for easy access directly

by the software, and for easy generation of multiple instances with no additional

administrative overhead and no additional run-time overhead.91 However, in a

professional production environment the use of database management systems is

encouraged for reasons of internal data integrity and access security.

91 And of course no additional cost is generated.

METHODOLOGY 91

Further, the degree of normalization chosen is a compromise between highly normalized

information entities (usually 3rd normal form) and explicit redundancy.92 For example,

in 3rd normal form within a data record of a specific flight the attribute (field) of ‘gate’

would need to reference to another entity (table) which contains all gates. Such an entry

would be a reference pointer to the nth element in the ‘gate’-table. This usually ensures

referential integrity. However, in the case of the simulation workbench, the software

itself copes for that and allows for some degree of redundancy. In addition, the above

makes it easier for third-party products to work with the output generated by the

software.

As the basic architecture suggests, the data worked with is for input, processing and

output. These tasks are usually accomplished by functions or procedures.93

In order to provide an overview of the basic functions (and procedures), Figure 42

shows the major functional elements of the software.

Figure 42: Function tree of simulation software, top level.

92 Usually, in data warehousing (as part of business intelligence) there is a high level of explicit

redundancy. This positively contributes to performance and transparency regarding the information
stored in a data cube.

93 The different terms ‘function’ and ‘procedure’ are used to indicate that a ‘function’ is expected to
return a value whereas a ‘procedure’ does not. Nevertheless, depending on the scope and visibility of
programme variables, a procedure may change globally defined variables and thus indirectly act as a
function. On the other hand, a function may return a dummy value that is not considered any further in
the programme (and thus acting like a procedure).

METHODOLOGY 92

In general, it can be distinguished between functions94 that are somehow interactive to

the user of the workbench (main functions) and those that perform their work in the

background (support functions). Within the main functions it can be further

differentiated between those that serve the core data cleansing and simulation task, and

those that help the user to plan tasks as well as to keep track on her/his activities within

the simulation environment.

The main data functions (Figure 42, point 1.1.) perform a variety of tasks on the data

necessary for analysis as well as for preparation, conduct and report of simulation runs.

However, some initial work on the data (e.g. extraction from original data sources,

initial filtering of data) has been performed using tools like standard database

management systems or professional text editors.

The following functions were applied to the resulting data set.

‘Update flight DF factor (1.1.1.1.)’ works on the element of FFLIGHT as introduced in

Chapter 3.5. It uses flight-specific data provided by the retailing business unit and

updates each record of the

overall data set (summer

season, winter season) with

most current retail

information. This function

can also be used to run a

‘what-if’ analysis in which

specific flights (perhaps

with additional marketing

support) are tested to

perform differently from

observed data.
Figure 43: Functions for data cleansing.

The ‘Update retail area (1.1.1.2.)’ function determines the retail area a flight belongs to

and enters this information into each record of the overall data set. There are two

occasions when this function needs to be run:

94 Here the term ‘function’ is used in its general meaning of functional element, comprising both

functions and procedures.

METHODOLOGY 93

• after changes in flight schedule in terms of new flights in the schedule

• after the definition of a retail area has been modified (e.g. gate ‘C1’ no longer

belongs to retail area ‘R3’, but to ‘R4’

After an entry of the retail area has changed (for a record) another function needs to be

run, in order to maintain logical integrity. The software offers to perform the ‘Update

retail area (1.1.1.3.)’ function automatically. The currently defined factor (FAREA as

described in Chapter 3.5) is entered into the record depending on its current entry of

retail area. For both functions (1.1.1.2. and 1.1.1.3.) it can be chosen, whether to update

values for actual flight data or for seasonal planning data. The same applies to the ‘Calc

flight revenue (1.1.1.4.)’ function. It updates the entries for the revenue (sales)

generated by a flight according to the data in its record. As the original set of data had to

be filtered, truncated and otherwise modified several times within the data cleansing

task, an updated index helped to keep track of that task. As mentioned in a previous

chapter, an index is used to make data anonymous. Function ‘Re-index records

(1.1.1.5.)’ simply updates that index.

As it is a goal to provide simulation results for a year of data that reflects as close as

possible actual flight data, the seasonal planning data had to be worked into it.

Unfortunately, such planning data usually comprises only a (reference) week of flight

schedule. Thus the planning data had to be mapped against the overall current data set

(summer season and winter season). This is accomplished by the function ’Update with

seasonal planning data (1.1.1.6.)’.

Some flight records were missing the information of a standard ground time. But as this

information is important in the gate allocation process, realistic values had to be

determined for those cases missing that information. The function ‘Calc average

standard ground time (1.1.1.7.)’ determines such a value for each aircraft type, based on

the average of standard ground times of known flights. Those values are then stored in a

table for later use in the function ‘Fill missing ground times (1.1.1.8.)’.

Having introduced above that the retail potential depends on a flight’s destination

country, this information is crucial to the overall simulation task. Unfortunately, this

information was not included in the data given. Hence, this information had to be

generated via a ‘linking’ table that included destination (airport) information along with

country information. The function ‘Update country info (1.1.1.9.)’ enriches the overall

data set with this information.

METHODOLOGY 94

Flights that did not have an actual time of departure or no passengers on board, have

been excluded from that data set using ‘Delete records without: ATD, ACTUAL PAX

(1.1.1.10.)’ 95 Usually, these flights had been cancelled well in advance or had been

renamed as different flights. However, the data entries in the original set had not been

deleted before having made available to this research.

For those flights that did not have an entry for actual time of departure (ATD), but did

provide an entry for actual passengers (ACTUAL PAX), either the entry for estimated

(ETD) or – as 2nd priority – scheduled (STD) time of departure has been taken as an

ATD. This is accomplished by the function: ‘Fill (assumed) ATD (1.1.1.11.)’.

In order to test flight data and sales data for correlation regarding any delays incurred,

function ’Calc delay minutes (per flight) (1.1.1.12.)’ determined delay minutes on a per

flight basis.

In order to detect cases that might not have been covered by the data cleansing functions

different queries have been run on the most current data set. Function ‘Report into error

files (1.1.1.13.)’ e.g. summarizes possible integrity problems into different files for later

inspection.

As mentioned before, the data cleansing task has been very time consuming but

constitutes the foundation for any further analysis.

In order to change parameters, which contribute to the quantitative research model and

which reflect changes in the business environment, the simulation workbench offers a

set of simple functions to perform that task.

Functions (1.1.2.1.) to (1.1.2.5.) allow

for editing of factors as described along

with the quantitative research model. The

Function ‘Retail area definition

(1.1.2.6.)’ determines, which gate

belongs to which retail area. After the

definition of such an area has changed,

all dependent functions need to be run

accordingly.
Figure 44: Functions to manage reference data.

95 Deletions counted for less than 0.1 per cent of the data set.

METHODOLOGY 95

As all of the sub-functions of ‘edit reference data (1.1.2.)’ basically enable editing of

data in text files they do not automatically cope for integrity. Therefore, it is required

that the user (researcher) addresses it.

In order to produce individual data items for basic descriptive statistics they have to be

extracted from the data set. Any field in question can be exported to a file that may be

read by third party software. The level of aggregation and the export format is designed

in a way to enable standard spreadsheet software (e.g. Microsoft Excel or Sun’s

OpenOffice Calc) to read the data.96

Figure 45: Functions to produce basic statistics (descriptive data).

Sometimes airports use the number of gate changes as an indication for planning

quality. This can be misleading in case it is not very well defined, at what time and for

what reason a gate allocation has been changed (incl. the complete change history of a

flight). However, the retailer will only be in a position to address changes in passengers

(distribution) until a certain point in time. So, the more stable an allocation plan is

compared to (then) actual operations, the higher is a plan’s quality from a retail

perspective. Notably, the element to compare is not a gate, but a retail area.

Consequently, the function ‘Report changes (gate, retail area) (1.1.3.3)’ reports the

degree to which gate changes lead to changes in retail area allocations.97

Usually, visualization is a good means to provide an overview of a system. Secondly,

categorization of a (theoretical) system’s elements helps to simplify complex structures

or content. For this reason a function has been integrated to visualize various fields of

flight data using colour-coded categorized information on a sort of Gantt chart.

Figure 46: The heat map function.

96 Without any form of aggregation the total of almost 230,000 data records would not be able to be

imported into e.g. Excel, because the maximum amount of approx. 65,000 lines would have been
exceeded.

97 For an analysis, see below Chapter 4.1.7.3.

METHODOLOGY 96

After a selection of the field to be visualized, the values for the categories have to be

defined. For example, an absolute retail revenue (sales) value per flight of 270 to 300

(Euros) may define an average. This is referred to as the ‘B’ category. Only the ‘B’

category needs to be defined. For this specific field higher values are regarded to as

better results. Therefore, values of more than 300 (Euros) will define category ‘A’

whereas those of below 270 (Euros) define category ‘C’. The visual representation will

be colour-coded as green (A), yellow (B) and red (C).

After having entered the start date, a week of data will be analyzed and output is

generated in form of text files (in delimited format for easy spreadsheet import). Those

text files contain the small letters ‘a’, ‘b’ and ‘c’ at positions where there is a flight (at

intersection of time interval and gate). This form of output allows standard spreadsheet

software to import and automatically colourize the data. In Appendix B, the Chapters

9.1 and 9.2 provide an example of the above.

However, the same output is also used for an internal visual representation of the

categorized data. Furthermore, the seven days generated can be view quickly one after

another in a sort of animation. This feature allows for easy recognition of stable portions

within the data, as well as for areas of e.g. under-performance.

The heat map function is useful to obtain a brief overview of the situation.

Figure 47: Screenshot of animated categorized data.

The mouse cursor can be moved around in the map. Information about its ‘logical

position’ is shown on the left hand side of the screen (TIME, GATE). For example,

Figure 47 shows the following situation:

METHODOLOGY 97

The data set contains the week starting on March, 26th 2006. The current day shown is

the 7th day of the data set, representing weekday 6 (a Saturday). The field is that of the

flight-specific duty free factor (FFLIGHT). Category ‘B’ is defined as 75 to 150. The

mouse cursor is located over the logical position of gate ‘B46’ at a time of ’14:55’.

Even the simple map as shown in Figure 47 helps to identify the different traffic waves

(especially to be observed at the B-gates with much international/intercontinental traffic

whereas constant feeder traffic at the A-gates along with the associated time shift makes

it slightly harder to determine the traffic waves in that area).

In a consulting context a different form of visualization (geographical representation) of

the same data might be a more appropriate approach.98

Figure 48: Geographical representation of categorized data.

Finally, the simulation workbench makes use of various support functions (Figure 42,

point 2). Those functions support internal tasks and the development of the software

itself. Secondly, they consist of many routines for conversions, calculations and

translation of many ‘real word’ object names to their internal (computable)

representations. An important support task has been implemented in most functions for

the data cleansing task: a safety feature, which is to shift data that will be replaced by a

newer version into a directory for historiography.

In order to implement the simulation workbench in a first step it had to be developed

and then to be set operational on standard personal computer hardware.

98 This approach is not (yet) implemented in the software.

METHODOLOGY 98

3.7.2 Implementation

The Software development environment looked for had to comply with the

requirements as defined at the beginning of Chapter 3.7. Additionally, from a

development perspective, the following requirements had to be satisfied:

• Support of a structured general purpose programming language

• Availability of standard elements of an integrated development environment

(IDE) like syntax-colouring, debugging, integrated start of compilation runs

• Production of 32 bit executable code for corresponding Microsoft Windows

platforms that

o is very fast at run-time

o makes very efficient use of internal memory

o allows for large amount of internal memory to be used for variables

o allows to communicate with other Windows software by standard means

like OLE (COM automation)

• Support of standard elements of a graphical user interface (GUI) like dialog

boxes or menus

• Support of individual graphical elements to be defined (e.g. bars, lines)

• Avoidance of any Microsoft Windows (operating system) administrative

overhead (e.g. for windowing technique)

• Ability to use standard dynamic link libraries (DLLs) in case of certain

functionality would be available from a third party provider

From past experience, and after having checked against all requirements the PowerBasic

development environment with the JellyFish pro editor has been chosen for the

development task. The appropriate compiler within the PowerBasic family is one to

generate 32 bit windows console applications.99 This way it was possible to avoid speed

disadvantages that usually come along with standard Windows applications, but still be

able to make use of a standard graphical user interface and of the wide availability of

the Windows platform. Figure 49 provides a sample screenshot of source code in the

integrated development environment. It displays 60 out of approx. 10,300 lines of code.

Without navigation support it would not have been possible to develop the software in

just a couple of weeks. The source code listing can be found in Appendix A.

99 The product is called PowerBasic Console Compiler 4 (‘PB/CC’).

METHODOLOGY 99

Figure 49: Example of source code displayed within integrated development environment.

The resulting executable software has the size of just about 227 kilobytes of disk space.

During a simulation task it consumes approximately 5 megabytes of internal memory

(RAM). This allows to run it on virtually any 32 bit Windows machine.

As a simulation run may take a long time to complete (depending on the schedule, the

settings and number of days to be allocated), two aspects have found to be important

and addressed within the software:

Firstly, there may be the danger of any unexpected event that could cause the software

to discontinue (e.g. internal software error, power failure, hardware failure). To cope for

such a case the results of a completed day of simulations are written onto hard disk.

This way only the last day worked on may be lost in case of an unexpected stop of the

software. A simulation run can be continued right after the last day known to be valid.

METHODOLOGY 100

Secondly, the user is informed regarding any progress of the current simulation run. As

shown in Figure 50, there are six core information elements:

(1) Shows the current day that an allocation is worked on

(2) Shows the time when the current simulation run started

(3) Shows the specific time interval (1 to 288) that is worked on

(4) Shows the number of flights that need allocation in this time interval (i.e. those

not allocated in previous interval and those scheduled for departure in the

current time interval)

(5) Shows the flight numbers (internal anonymous reference number) that apply for

allocation in the current time interval

(6) Shows under each of the flights from (5) the (amount) number of eligible gates,

which that flight may be allocated to

Figure 50: Sample display output during a simulation run.

For example, the situation as shown in Figure 50 provides information about the

theoretical size of the solution space. Without any of the earlier introduced

improvement methods the number of possible solutions would be100:

 63·63·63·63·63·63·63·108·45·108
= 637·1082·45
= 2,067,492,157,885,974,960

100 Before allocation of the first flight in this interval there are 63 possible gates for each of the flights

#422, #423, #424, #425, #426, #428, #429, and 108 possible gates for flight #432 as well as for flight
#469, and 45 possible gates for flight #450.

METHODOLOGY 101

However, with reduction of the solution space and run on basic personal computer

hardware it usually took 3 to 10 seconds (60 as a maximum) to finish the allocation task

for such an interval.

The software allows to be run independently in multiple instances on the same machine

at the same time. This in consequence allows for a simulation to be either spread into

separate parts, or separate (different) simulations to be run concurrently. Either way

enables to make full use of multi-core processors. During simulation runs for the

research project usually three of the four cores of the processor installed have been used

for computing.

Summarizing Chapter 3, it can be noted that a detailed view on the business context

(both in terms of processes and data) helped to formulate a conceptual research model.

Then having identified the information needed helped to refine the conceptual model

towards a quantitative research model, fulfilling objective (O.3). The type and size of

the research problem required a highly improving approach that basically consists of a

newly developed multi-phase gate allocation algorithm with optimistic elements and

recursive search of solution space. As introduced, such an algorithm would satisfy

objective (O.4). Finally, as required according to objective (O.5), a corresponding

simulation environment (‘workbench’) has been developed and described along with its

implementation.

[ALIGNMENT ASPECT]

The previous chapters described an IT solution that is capable of producing desired

output in an environment, which has as little requirements as possible regarding

computing power in order to keep investment cost and operations cost low (compare,

Figure 10, (4) and (5)).

The above enables to analyze actual flight data as well as to conduct simulations runs.

The latter is necessary to verify the statement (H.1) as outlined earlier in this paper.

Details on these issues will be provided in the next chapters.

102

4 ANALYSIS

Introduction
Setting the

Scene

4.

Setting the

Scene
Methodology Analysis

4. ANALYSIS

Conclusion

ANALYSIS 103

4. ANALYSIS

This chapter builds on top of what has been developed within the methodology. Thus

the simulation workbench will be used to support analysis of actual flight data and to

perform simulation runs for a sensitivity analysis of retail-focussed gate allocation

plans.

Finally, the objective of this analysis is an answer that aims to evaluate the statement

(H.1) as introduced in Chapter 1.4.

4.1 Set of current flight data

As introduced in the methodology, different data sources had to be merged in order to

be able to work on a single set of valid data. This data set comprises information of

actual operations that were carried out during the period of observation101.

Much of that information102 can be used to identify candidate parameters for the

sensitivity analysis. For this reason, aspects of seasonality and possible correlations

have been looked at in more detail.

4.1.1 Seasonality

The business environment literally defines a certain degree of seasonality – the flight

plan season. In order to cope with different demand, the transport industry has emerged

to conduct business in two seasons per year. Notably, this does not reflect a calendar

year but two flight plan seasons last for 12 months. A summer season usually starts in

spring and ends in autumn whereas the winter season spans over the remainder (autumn

to spring of the next year). Thus it needs to be considered that comparisons will only be

valid within a season or when expressly different seasons are to be compared. For

example the comparison of the month February to the month of July would not be valid,

because they are in different flight plan seasons. However, a comparison of the two

might very well be valid when the objective would be to compare a month in winter to a

month in summer. In most cases comparisons will be on a seasonal correct rolling basis.

In the above example, a usual comparison would be to compare February of a year to

February of another year.

101 Introduced in Chapter 3.4: 229,430 records; 195 airlines; 1,597 flights (summer); 1,102 flights

(winter); 219 aircraft types.
102 In addition to the results of the qualitative analysis performed within the methodology chapters – the

business process decompositions.

ANALYSIS 104

As introduced earlier within the research project the period of time looked at spans over:

• summer season 2006 (2006-03-26 to 2006-10-28)
• winter season 2006/07 (2006-10-29 to 2007-03-24)

The next level of detail in terms of seasonality as defined by the business environment

is that of a week. A flight plan for a season basically consists of multiple (same) weeks.

For example, a flight ‘XY007’ may operate on days103 2, 3, 4, 5, during winter season

and on all seven days of a week during summer season. Such a week is then usually

applied to all weeks during the corresponding flight plan season (see Figure 51).

However, actual operations are subject to interference for reasons of weather, technical

issues or else.

In order to obtain an allocation planning result that is as close as possible to actual

operations, for the seasonal flight plan data it has been tried to match flights with those

of actual operations.104

Figure 51: Formal seasonality in the research context.

The above describes formal seasonality as defined by the business environment itself.

However, there are more seasonal elements to be discovered in the data provided.

103 Days of a week are usually referred to as numbers, e.g. 1=Monday, 2=Tuesday, and so on.
104 This has been performed within the data cleansing task.

ANALYSIS 105

The actual distribution of passengers and flights105 is shown in Figure 52. It can clearly

be differentiated between summer season and winter season. The latter incorporates

lower values for both flights and passengers. An ‘outlier’ can be observed during days

of Christmas at the end of the calendar year.

Figure 52: Seasonality within actual data (summer and winter).

As explained above, there is no seasonal interval for a month but for a week. Figure 52

shows those weekly intervals. The observed values for flights tend to be more stable

than those for passengers. This is expected to be, because the variation of passengers on

board of a flight is higher than that of flights themselves. On a weekly basis, different

values for flights would only occur in case of cancellations or unplanned (co-ordinated

on short notice) flights.

105 As explained along with the research model, only departing flights are looked at. If not stated

otherwise the term ‘flight’ will refer to a ‘departure’ or the departing portion of a transit or transfer
flight.

ANALYSIS 106

A drill down into data of the above figure provides a better view on the weekly

seasonality.

Figure 53: Seasonality within actual data (weeks in July).

The abovementioned differences in the values for flights and passengers can be clearly

observed in Figure 53. If taken the maximum values for both flights and passengers the

peak falls on the same day of a week (Friday). This is different should the minimum

values be applied. Nevertheless, a weekly seasonal component is observed very well.

ANALYSIS 107

In addition to the above, actual flight data discloses another seasonal component. As

mentioned in the chapter about methodology, the simulation workbench provides the

possibility to visualize categorized data on a daily basis (see also Figure 47). Such a

snapshot is provided in Figure 54.

Figure 54: Seasonality within actual data (daily traffic waves).

The visualization shows data from a Wednesday (2006-07-05).106

Along the vertical direction all gates are represented, whereas horizontally the

dimension of time during a day is shown. The black dashed lines indicate the

boundaries between the seasonal component of a so-called ‘traffic wave’.

Interestingly, for the (allocation) improvement task, there are not necessarily those

peaks within a traffic wave that require the maximum computing resources. This is due

to the fact that the number of available gates is usually small during those specific time

intervals. Consequently, the possible solution space is reduced.

No further seasonal components were determined. However, seasonality (as a

systematic element of time series data) incorporates the dimension of time.

Geographical differences regarding an object looked at are not subject to seasonality.

106 Categorized data represents departure delays where colour-code yellow means a delay of 14 to 29

minutes. For the purpose to identify seasonality, a categorization is not necessary.

ANALYSIS 108

For example, in the abovementioned context the airport as a whole has been the object

of investigation (and not a certain part of it).

Nevertheless, the major concern within the research topic is retail sales, and thus the

spread of traffic over retail areas is of interest and thus provided below.

4.1.2 Traffic distribution (passengers, flights)

Based on the definition of retail areas (see Table 3) the distribution of passengers

provides a first view on the utilization of (gate) resources.

Table 12: Distribution of departing passengers across retail areas for each day of a week (both seasons).

Table 12 shows the distribution of passengers (an indication for traffic) across the retail

areas defined. Individual figures vary considerably. In average, fewest passengers have

been observed on a Saturday in retail area R6 and most on a Friday in retail area R1. So,

utilization varies much amongst the different areas.

The sum values (or presented as percentage in Figure 55) show that the vast majority

(approx. 72%) of passengers use two retail areas both in Terminal 1.

Figure 55: Distribution of passengers (sums) per
retail area.

Figure 56: Distribution of passengers (sums) per
day of week.

ANALYSIS 109

No such differences can be observed regarding the spread across the days of a week.

Friday is in terms of passengers the strongest day, whereas Tuesday accounts for the

weakest (Figure 56).

However, these figures represent the entire period of time looked at (summer season and

winter season). Therefore, they seem to be quite evenly spread.

As introduced in Figure 52 and Figure 53, the number of flights also follows the

aforementioned seasonality. Flights are spread in a similar way over a week. Based on

the average number of flights per day, the strongest day is found on a Monday (693

flights) and the weakest on a Sunday (387 flights). However, the mode values explain

the traffic distribution closer to reality, because they incorporate the frequencies of

occurrence. Here, Friday is the strongest day (665 flights) and Saturday accounts for the

weakest (617 flights). Table 13 summarizes the above.

 MON TUE WED THU FRI SAT SUN

MAX 693 678 679 692 688 655 670

MIN 399 484 499 501 512 482 387

MODE 633 638 634 626 665 617 648

Table 13: Distribution of (daily average) number of flights per weekday.

The above insight is useful input for a shortened approach towards seasonal flight

planning, as the strongest day(s) may be taken as an indicator for the feasibility of a

draft flight plan.

Nevertheless, it is the aim to improve the retail result by means of an adjusted gate

allocation. Therefore, the individual retail areas have been looked at in terms of their

relative sales performance.

ANALYSIS 110

4.1.3 Retail area factors and sales figures (model calibration)

As mentioned above, the spread of flights and their relative retail performance can be

observed, which is important for later simulations. The combination of actual flight data

and retail data lead to the possibility to calculate an individual factor for each retail area.

These factors indicate a relative retail performance. In Table 14 below the factor of 1.00

represents as a baseline the retail area with the smallest flight-specific retail

performance found.107

Table 14: Retail area factors derived from actual data.

A basic conclusion to be drawn from the above is that the retail areas differ in

performance. Although R1 counts for the most flights, it is only second (after R3) when

it comes to the weighted performance108. So, R3 outperforms R1 despite the

107 It has to be mentioned, that retail area performance is partially explained by the retail performance of

flights allocated therein. So, there is a mutual influence of flights and retail area performance.
Nevertheless, a proportion thereof is also due the retail offering. The research model assumes that the
retail area factors remain unchanged for different allocations.

108 The term ‘weighted’ means that the retail area factor is taken into account. So, for descriptive purpose
the absolute and relative weight of a retail area is expressed as the ‘weighted performance’. The
weighted factor (3rd listing of Table 14, ‘Weighted F.’) simply expresses a combined value of both
seasons.

ANALYSIS 111

considerably less traffic it serves (compared to R1). Hence theoretically, in case it

would be possible to re-allocate traffic to R3 retail sales should increase.

In order to obtain an idea of the sales figures for Frankfurt Airport for further

calculations the following average retail area factors have been applied109:

R1= 1.0 R2= 1.1 R3= 2.2 R4= 1.4 R5= 1.4 R6= 1.7 R7= 2.1

Basic sales figures reflecting those of Frankfurt (as to be found in their annual

reports110), have been calculated. The following has been applied to calibrate the

research model:

Firstly, average sales per departing passenger have been calculated, according to the

quantitative research model with the following parameters:

P number of passengers on a flight according to actual flight data

SDF average duty free spending of a passenger 1.20 EUR (1.50 as first trial value)
(according to model calibration)

FDFR a factor, which expresses the relation of duty
free sales to overall retail sales (including
specialty retail, and food & beverage)

1.43
(i.e. 70% DF, 30% Retail, F&B)111

FFLIGHT a factor, which expresses the flight-specific
retail behaviour of its passengers

according to retail data

FAREA a factor, which expresses the location-
dependent retail performance of a gate
(belonging to a retail area)

according to simulation workbench
software (R1 to R7, see above)

The choice of SDF and FDFR really depends on the data available for the airport in

question. For example, in case there were no FDFR available at all, but SDF would be

known, FDFR can be set to 1.00 and the model still works. Therefore, the exact values of

SDF and FDFR will not influence the overall result, as long as their product express the

average retail spending behaviour at that airport (not yet taking into account flight-

specific and location-dependent retail performance).

109 The average retail area factors (rounded values from Table 14) have been applied to cope for the

complete year of observations, as no sales data has been made available on a seasonal basis.
110 See Fraport (2006, p. 55) and Fraport (2007, pp. 32-33).
111 Centre for Airport Studies (2001, p.97): Sales per passenger on a global average, normalized to

Special Drawing Rights (year 2000): DF (70%), specialty retail (15%), F&B (7%), currency exchange
(8%). This figure has been used, because no other valid figure had been available to the author at the
time of writing the thesis. As long as the calibration of the model parameters SDF and FDFR is carried
out, there is no side-effect on the overall result (see below).

ANALYSIS 112

Derived from:

The expected sales figure would be 2.88 · 27.34 = 78.74 Mio Euros (78,844,664 without

rounding). So, for model parameter FDFR the following applies:

100% = 2.88 (70% = 2.02; 30% = 0.87), and FDFR � 0.110.U0 = 1.43. (see 112)

Using FDFR and a trial value for SDF of 1.50 leads to an annual sales figure of

98,242,677.78 in the model. So the corrective factor for SDF would be 0.80.

112 In case of a different ratio (than that taken from the Centre for Airport Studies, e.g. 50%), FDFR would

have been different. In consequence, a different corrective factor for SDF would have been calculated,
leading to a new SDF. However, the overall application of the two factors in the retail sales formula on
a per-flight-record-basis for both seasons would lead to the same results. So, depending on the
information available, and after calibration of the model, any combination of SDF and FDFR will lead to
results as being discussed below. As long as an airport knows the average retail spending of a
passenger, SDF may be set to that value and FDFR may then be set to 1.00.

ANALYSIS 113

Using the corrected value for SDF (= 1.20) results in a sales figure of 78,594,143.54,

which is close to the expected figure of 78,844,664.

The above (SDF = 1.20; FDFR = 1.43) leads to a distribution of daily sales figures as to

be observed in Figure 57.

Figure 57: Retail sales for each day within research period.

Total sales within summer season summed up to approx. 50.0 Mio Euros, and the

corresponding figure for the winter season was calculated to be 28.6 Mio Euros.

More insight regarding contribution to this retail result can be gained from the next four

figures showing the different countries’ sales performance.

Having grouped the flights by destination countries and accumulated their sales

contribution, states that (for both summer season and winter season) flights to 10

countries account for approx. 50% of sales, and approx. 80% of sales results from

flights to 30 different countries of destination (see Figure 58 and Figure 59).

ANALYSIS 114

Figure 58: Accumulated sales per country (ABC-curve, summer season).

Figure 59: Accumulated sales per country (ABC-curve, winter season).

Approx. 61% of sales are produced by flights into 15 different countries. However, the

percentages do not vary between summer season and winter season, but the contributors

to that result are slightly different.

Figure 60: Top 15 countries in sales (summer season).

ANALYSIS 115

Whereas the most contributing positions remain unchanged, in the second half the

countries’ individual retail results are similar, only minor changes occur.

Figure 61: Top 15 countries in sales (winter season).

For example, Spain is a summer destination not found amongst the top 15 countries in

the winter season. Whereas Hong Kong is not amongst the top 15 in summer, but in

winter.

Taking into account that according to Table 4 some of the above countries (e.g. Spain or

Germany) have poor retail-worthiness, the amount of traffic compensates for this to a

large extent.

Further insight is derived from the distribution of retail sales across the different retail

areas. As expected from the aforementioned (passenger distribution, different

performance of retail areas) there should be considerably different figures in sales for

each of the retail areas.

Table 15: Distribution of retail sales (in EUR) across retail areas for each day of a week (both seasons).

The minimum sales figure is observed on a Saturday in retail area R6, and the

maximum is found on a Friday in retail area R3. However, the maximum number of

passengers had been observed for the same day of week in R1 (compare Table 12). The

performance factor of R3 leads to this better result.

ANALYSIS 116

Regarding their relative contribution to the overall retail result R1 and R3 are most

important (see Figure 62). R1’s favourable position is due to its volume of passengers.

Therefore, there are basically two ways to improve the retail result. Firstly, given the

retail factor of R1 is the lowest, an increase here would improve sales considerably.

Secondly, traffic from R1 would need to be re-allocated towards gates in retail areas

with higher FAREA. A simulation of the different scenarios (introduced beginning of

Chapter 4.2) will need to cope for this.

Figure 62: Distribution of retail sales (sums) per
retail area (basis: actual data).

Figure 63: Distribution of retail sales (sums) per
day of week (basis: actual data).

Far more homogeneous is the distribution of retail sales over the days of a week and

follows very closely the corresponding distribution of passengers (compare Figure 56).

As the absolute numbers of passengers and the flight schedule as such will not be

altered by any scenario the simulation results’ percentage figures on a per-weekday-

basis for sales are not expected to be much different from actual figures.113

The introduction of the conceptual research model mentioned how smoothly running

operations are a precondition to the (improved) generation of retail sales. So, later on

some selected operational figures will provide more insight into this area of research.

113 Passenger figures have to be the same of course.

ANALYSIS 117

4.1.4 Sales per passenger

Having gained knowledge about the individual absolute figures of passengers, flights

and sales, there are two ratios that describe the situation regarding sales more precisely:

‘sales per passenger’ (Figure 64, Table 16) and ‘sales per flight’ (Figure 65).

Figure 64: Sales per departing PAX, based on daily average.

The curve of average sales per passenger shows two to four inclines (two major ones:

June to August, October to December). As expected, the average sales figure is about

2.88 EUR per passenger.

From a retail perspective the Saturday is close to a typical business day. Average sales

is 2.88 EUR per passenger, which is the most common daily average for that figure.

Table 16 emphasizes the strong sales performance of R3 compared to R1. Despite its

high retail performance (4.89 EUR per passenger), R7 only counts for 9% of overall

retail sales (see Figure 62). This is basically due to the low proportion (5%) of overall

passengers that are handled through gates in R7 (see Figure 55).

ANALYSIS 118

Table 16: Sales (in EUR) per departing passenger per retail area and day of week (both seasons).

Consequently, the improvement algorithm is expected to exploit this potential through a

retail-favoured gate allocation.

4.1.5 Sales per flight

However, the smallest allocation unit is not a passenger, but a flight. In general, it

would be expected that the ratio of sales per flight is similar to that of sales per

passenger.

Figure 65: Sales per departing flight, based on daily average.

ANALYSIS 119

Nevertheless, as Figure 65 indicates in the period of September to the beginning of

December a reciprocal slope (compared to passengers) can be observed. Sales per

passenger increased during that time whereas sales per flight decreased. This means that

in this period passenger numbers decreased to a larger extent than the number of flights

decreased. The fact that the values in Figure 65 represent already daily averaged sales

figures, hides extreme values for individual flights. These can be located at more than

8,000 Euros per flight.

4.1.6 Comparison of retail sales (actual traffic vs. seasonal planning)

According to the conceptual research model, a retail-focussed gate allocation ought to

be the basis for seasonal flight planning. But already in the present situation there is a

seasonal flight planning process in place, which produces an allocation plan. The

resulting distribution of passengers over the retail areas is shown in Table 17 and Figure

66, whereas Figure 67 shows it per day of week.

Table 17: Distribution of departing passengers (seasonal plan) across retail areas for each day of a week (both
seasons).

Figure 66: Distribution of passengers (sums) per retail
area (seasonal plan).

Figure 67: Distribution of passengers (sums) per
day of week (seasonal plan).

ANALYSIS 120

Compared to the distribution of passengers from actual operations (Figure 55, Figure

56, Table 12) there is almost no difference. The slight difference is partly due to the fact

that it had to be coped for incomplete seasonal flight plan data.

Only those records with entries for both actual sales and seasonal plan sales have been

incorporated into the above table and figures (on seasonal plan data). Taking this as the

common overlap in data, it leads to an overall retail sales result of 74,831,642 (seasonal

planning) versus 75,247,166 (actual operations).

Given the more than 99% identical result may be a strong indication for the high degree

of influence that the seasonal flight planning result has towards the actual sales result.

The operational explanation for this effect is provided below in Chapter 4.1.7.3.

In order to gain more insight into the performance of the operations function, selected

observations are provided below.

4.1.7 Figures regarding flight operations

In the context of the conceptual research model (see Figure 31) it is spoken of

‘additional cost at operations’. However, also without a focus on retailing (in the gate

allocation process) there are elements that cause a burden to flight operations. Some of

them have been looked at more closely, in order to determine a possible relevance for

the formulation of scenarios.

ANALYSIS 121

4.1.7.1 Delay

In order to cope for a certain factor of uncertainty in operations, actual delay minutes

are used as an indication.

Using the actual flight data provided, the data fields of ‘scheduled time of departure’

and ‘actual time of departure’ provide the possibility to calculate such a figure for

delay.114

Divided into 11 delay classes of different duration (in minutes), Table 18 shows the

distribution of frequencies of delay minutes:

Table 18: Frequency of occurrences of delay minutes (both seasons).

The information from this table is used as an input for later scenario definition. A

scenario parameter representing a ‘buffer time’ will indicate that a gate needs to be

blocked for a certain time after the previous flight on that gate has departed.

Thus, in order to construct a ‘close-to-real-world’ scenario and according to Table 18,

there will need to be applied buffer times of 15 and 20 minutes.

114 It is not aimed to match one of the several (more or less official) definitions for ‘delay’, but to provide

an indication of ‘disturbance’ in operations. For the purpose of research, delays that lead to a re-
scheduled flight on another day have been omitted.

ANALYSIS 122

4.1.7.2 Turnaround times

The time an aircraft takes between on-block and off-block is referred to as turnaround

time. In the flight data this is called standard ground time. The simulation will use this

as follows: An aircraft arrives at the gate at a time t1 and leaves it at time t2. The time t2-

t1 is the standard ground time. It is assumed that an aircraft will remain at a gate during

that time (not being towed away in between). The gate allocation will calculate

backwards from t2. That means the standard ground time will have an influence on the

gate allocation process. In order to obtain some insight to determine meaningful values

for that parameter in scenario construction, frequencies of occurrence have been

computed.

Table 19: Frequency of occurrences of standard ground time entries (summer season).

Table 20: Frequency of occurrences of standard ground time entries (winter season).

A number of 10 classes have been defined. Classes 1 to 9 are of 30 minutes duration,

whereas the 10th class copes for all remaining flights (with upper boundary of 720

ANALYSIS 123

minutes). Both seasons (Table 19 and Table 20) are similar in terms of their frequency

distribution across the classes.

Due to incomplete (actual) data there is a difference of 1,486 flights between total

amount of flights and those with an entry for the standard ground time. Nevertheless,

the data obtained is still very sufficient to get insight regarding the entry of standard

ground times.

The overall frequency distribution can be observed in Table 21.

Table 21: Frequency of occurrences of standard ground time entries (both seasons).

For scenario construction this can be interpreted and used as follows:

If a scenario would prescribe a maximum value for standard ground time, all values

higher than such a maximum value would be reduced to that value.115 So, high values

for standard ground time would be closer to actual traffic, whereas a value of e.g. 120

minutes would cause 22,936 flights (i.e. approx. 10%) to decrease standard ground time.

But it is exactly such a reduction that generates higher flexibility in the gate allocation

process, because a gate would be become vacant earlier.

A minimum value for a standard ground time means that all values below such a

minimum value would be increased to that value.116 So, low values for standard ground

time would be closer to actual traffic (as in actual flight plan data), but they might

include unrealistic short turnaround times. A value of e.g. 61 minutes would cause

173,499 flights (i.e. approx. 76%) to increase standard ground time. This of course

limits the gate allocation process’ ability to find retail-favoured gates, because a gate

would be occupied for a longer time.

115 Thus, urging an airline to increase speed in turnaround of that flight.
116 This might be useful to cope for unrealistic low values in actual flight (plan) data.

ANALYSIS 124

4.1.7.3 Gate changes versus changes in retail areas

According to the conceptual research model another aspect that needs to be looked at, is

that of joint planning (between retail and operations)117. It is assumed that there is a

remarkable impact of planning towards the retail result. In reverse conclusion this

would assume that actual operations do not influence the planning basis to such a large

extent, that a planning phase would become needless.

Therefore, the seasonal flight plan data has been compared to actual flight data. A

proportion of 94% of the data contained information on both, actual gates and gates

according to seasonal flight planning.

Figure 68: Gate changes resulting in changes of retail area.

Thereof 89% provided different entries for a gate (i.e. a gate change) 118, but only 22%

also led to a change in retail area. There is a ratio of 3.2 to 5.3 (average of 4.1) between

gate change and a change of retail area.

This supports the conclusion from Chapter 4.1.6 that despite of a considerable amount

of gate changes (but relatively fewer changes in retail areas) the retail result is very

much per-determined by the output of the planning process. In addition, this also backs

part of the basic statement as expressed in the conceptual research model.

117 Compare again Figure 30.
118 At Taoyuan International Airport, Taipei (Taiwan) there is a goal value of only 10% changes between

the pre-planned day and the current day of operations.

ANALYSIS 125

4.1.8 Causality: Falsification using correlations

Finally, in order to obtain an even more complete picture regarding possible

contributions towards the retail sales result, simple correlations have been determined.

The purpose is not to determine any specific causality. Furthermore, it is aimed to

identify, whether a variable may not be of any contribution towards the sales result. In

case there was no correlation between two variables, a necessary (but not sufficient)

precondition for causality would be missing. Therefore, by means of falsification, non-

contributing variables may be detected.

An initial set of correlations have been based on aggregated (average per day) figures.

They included figures for number of flights (FLIGHTS), number of passengers (PAX),

amount of delay in minutes (DELAY), and retail sales result (SALES).

FLIGHTS PAX DELAY SALES

FLIGHTS 1.00 0.74 0.35 0.60

PAX

1.00 0.41 0.92

DELAY

1.00 0.39

SALES

1.00
Table 22: Correlation coefficients for daily aggregated (averaged) values
of flights, passengers, delay (minutes), and sales.

As can be observed in Table 22 (and as expected), correlation exists to a certain extent

(not further tested for significance) between each pair of variables. As mentioned above,

this does not explain any causality, but implies that the causal modal may be valid

(otherwise a null correlation would have falsified the model).

A note regarding DELAY: An assumption here might be that passengers purchase more

goods when their flight is delayed. However, this would require the possibility to have a

shopping facility close to the corresponding gate (in case the passengers have already

proceeded to the gate and wait there for boarding). So, a decentralized (gate hold room

– based) retail offer might support increased sales in case of delays. Nevertheless, in

many cases the pure retail shopping will already have been done until the point a

passenger starts waiting in the gate hold room. So, an increase in overall spending might

be in the food and beverage category. Furthermore, a causal relationship between

DELAY and SALES would assume that the delay incurred prior to boarding of the

aircraft. Realistically, very often boarding is on time, but while being on position or on

taxiway delay minutes sum up. As the data for this piece of research provides no insight

regarding the reasons for delay, the factor DELAY is not considered further in the gate

allocation process.

ANALYSIS 126

The data basis of Table 22 is a daily average for each variable. However, the model as

specified in Chapter 3.5 builds on the individual flight event. Therefore, a second

‘falsification’ attempt has been conducted. This time DELAY has not been looked at for

the reasons discussed above, but the flight-specific retail factor (FFLIGHT) has been

incorporated instead. The sample size consists of 229,430 events. In addition to Table

22, potential correlation has been looked at on a per-day-of-week-basis (see Table 23).

Again, the causal model has not been falsified, because correlations have been

determined for each pair looked at.

Table 23: Correlation coefficients for passengers, sales and flight-specific retail factor, based on single flight
events, grouped by weekday.

As a consequence of the above findings the number of passengers, together with the

flight-specific retail factor remain within the quantitative research model.

4.1.9 Summary: set of current flight data

Summarizing the so far analysis of actual flight data used for research, it can be said

that it provided sufficient insight to calibrate the quantitative research model and to

determine potentially contributing factors towards the retail result.

Those factors include the number of passengers, number of flights, performance of

individual retail areas and that of individual flights. Furthermore, possible values for

turnaround times have been determined. And finally, the importance of planning

towards actual operations has been demonstrated in terms of gate changes and sales

result.

ANALYSIS 127

[ALIGNMENT ASPECT]

Similar to the comments within the methodology section, it needs to be stated that a

good understanding of the real business world may enable a potential IT solution to

produce more meaningful output (compare, Figure 10, (3) and (5)). Therefore, the data

available has been analysed to some detail and will be used for a more efficient use of

the simulation environment (better parameters => less trials necessary).

With the knowledge gained from the above and the simulation environment as

introduced in the methodology chapter, further analysis has been undertaken in form of

scenario simulations.

4.2 Scenario technique

As introduced in the methodology chapters, it is aimed to increase the retail result

through application of the tailored gate allocation algorithm. Here the so far determined

contributing and constraining factors need to be considered. In order to improve the

result, variations of those factors would help to determine possible influence towards

the sales figures. In addition, variation of those factors would allow for representation of

different business setups.

The scenario technique copes for the above and is therefore chosen to obtain more

insight into the area of research. The chapters below describe the scenario settings and

the results delivered by the simulation environment. Analysis of the latter, finally tries

to explain the contributing factors within the business environment.

4.2.1 Elements describing a scenario

Basically, a scenario consists of a flight schedule (for one or more days) to be allocated

within a business setting making use of a certain airport infrastructure.

The schedule is fixed and will only be altered in case some flights could not be

allocated for the time as requested. For all scenarios the time frame taken is the

combined period of summer season 2006 and winter season 2006/07.

The (to-be-allocated) flight schedule is based on actual flight data, not on the seasonal

planning data for the period above.

ANALYSIS 128

Most elements of the reference data as introduced in the methodology chapter (see

Figure 41) e.g. including definitions for gates and retail areas or airline alliances further

describe a scenario.

In addition to the above there is commercial data describing a scenario. These items are

those as introduced with the quantitative research model (SDF, FDFR, FFLIGHT, FAREA).

Finally, there are operational parameters completing the description of a scenario. These

are:

• minimum time a flight is assumed to be on a gate position

• maximum time a flight is allowed to be on a gate position

• a mandatory buffer time that needs to be elapsed before a next flight is allowed

to be allocated to the same gate.

Although the above already describe a business setting (scenario) to a large extent, it

still does not reflect reality. Being a model, some assumptions had to be made and

certain rules had to be applied.

4.2.2 Standard assumptions, rule set

A very basic assumption is that gate allocation is solely conducted for departing flights.

The standard ground time is to cope for that. For example, a flight arrives as an

INBOUND. This flight (the aircraft) is then either to be allocated to the gate it will

depart from as OUTBOUND according to the gate allocation plan, or it would need to

be towed to a remote parking stand or to a next OUTBOUND gate position.119

Another assumption is that the gate allocation plan uses both contact gates and bus

gates. This means that e.g. ‘gate B26’ in the meaning of passenger boarding gate within

the terminal building is associated to ‘gate B26’ in the meaning of a parking (stand)

position for an aircraft. So, in case of utilization of bus gates it has been assumed that

there is an existing remote stand for the aircraft of that flight. Finally, in case an

INBOUND flight would remain for too long on a contact gate position, it is assumed

that it is towed away to a remote stand.

The flight schedule – as an input basis for the allocation algorithm – uses the scheduled

time of departure (STD) as the objective to be met in allocation. Everything is

119 For example, this is standard procedure in Frankfurt. At Singapore Changi Airport wide-body aircraft

are towed from contact gate to remote stand within 55 minutes after arrival (and back within 100
minutes from STD). Even shorter times apply for smaller aircraft types.

ANALYSIS 129

calculated backwards from STD. So, a gate becomes vacant in the allocation process at

STD plus time for an operational buffer120. The combination of a flight’s ‘standard

ground time’, its ‘STD’ and a ‘scenarios-specific buffer time’ represent the time frame

between ‘on-block-time’121 and ‘STD’, which would include the taxi-out time. For

example, if in a scenario a flight is allocated to leave gate at STD of ’13:55’ and a

buffer of 20 minutes is applied, that gate would become available again at ’14:15’. In

reality the gate would become available as many minutes earlier as the taxi-out time for

that flight would be. There should be no essential distortion towards the overall

allocation result.

It is assumed that too crowded retail areas are to be avoided. Therefore, in most

scenarios a value of 1.5 square meters per passenger has been applied to cope for that

requirement.122 The computation of the available space per gate considers the gate

waiting area only. That means that the space in and between shops that is (usually)

outside the waiting area would be available in addition the 1.5 square meters per

passenger. Thus, in cases where the gate allocation algorithm has blocked gates in a

retail area due to passenger congestion, still more than the 1.5 square meters might have

been available (taking entire space available into account).

120 Wu et al. (2004) also apply a buffer to minimize system costs from operational uncertainty. Yan et al.

(2001, p.415) use a buffer time to “resolve minor delays that often occur in real-time operations.”
121 Also referred to as ‘on-chocks’.
122 Compare also phase three of gate allocation algorithm.

ANALYSIS 130

4.2.3 Scenarios

With the aforementioned in mind a couple of scenarios have been defined. A first

scenario tries to closely reflect the actual situation, but with desirable and realistic

constraints regarding the times at a gate. This scenario is called the ‘baseline scenario’.

However, as sensitivity of the different parameters was to be tested, further scenarios

describe different operational settings, different commercial settings, different definition

of a retail area and a different mutual exclusive use of gate pairs.

Based on the analysis of the actual flight data, the baseline scenario applied the

following settings to the simulation run:

Parameter Value

Average duty free spending of a passenger (SDF) 1.20

Factor to express relation of duty free to overall retail (FDFR) 1.43

Retail area factors: R1, R2, R3, R4, R5, R6, R7 1.0 1.1 2.2 1.4 1.4 1.7 2.1

Minutes at gate (minimum) 45

Minutes at gate (maximum) 180

Buffer time 20

Retail area definition (gates in retail area) According to Table 3

Function-switch to avoid over-crowded retail areas ON

Number of gate pairs for exclusive use 36

(according to the real situation in

Frankfurt at the time of observation)

Table 24: Definition of baseline scenario.

 [ALIGNMENT ASPECT]

In order to produce meaningful results, it is tried to simulate the real business world

situation as closely as possible (compare, Figure 10, (3), (5) and (6)). The scenario

definitons cope for aspects that reflect situatuions found at Frankfurt Airport.

ANALYSIS 131

The output of the scenario simulations is discussed after the description of scenarios.

The following other situations have been aimed to model in scenarios, too:

• A turnaround time that is ‘tuned’ for marketing purpose will be increased to

average values

• A turnaround time shall cope for a minimum ground handling setup time at the

position and for the factor of uncertainty in the overall time on ground (e.g. late

passengers, missing equipment)

• An expedited turnaround for large aircraft

• An increased duty free spending per passenger

• The possibility to have overcrowded retail areas

• The promotion or enhancement of a specific retail area, so that its factor FAREA

will improve

• The situation of a homogeneous retail area performance (no differences in FAREA)

• Some of the gates will be assigned to another retail area, because way finding or

physical settings have changed

The resulting scenario definitions can be seen in the tables below.

Within the scenarios of ‘Group 1’ (Table 25) the baseline scenario can be found

(scenario AD-S_F11). In general, the scenarios of ‘Group 1’ use parameters that are

close to Frankfurt’s situation in terms of retail area definition, the values for SDF, FDFR

and FAREA. ‘Group 1’ scenarios are used to verify the statement (H.1) and answer the

research question.

ANALYSIS 132

Table 25: Scenario definitions (Group 1).

Values for the times at gate and buffer time vary according to the different situations

aimed to simulate. The column ‘total time’ just sums up the time values of the previous

columns. This does not indicate for how long an aircraft actually remained at the gate,

but sets the constraints. So ‘total time’ must not be mistaken as an indicator for a

passengers time to stay in the gate area or retail area.

Scenarios S_F8, S_F9 and S_F10 virtually eliminated all time restrictions, which

basically feeds the gate allocation algorithm with the actual flight schedule ‘as-is’.

Additionally, in scenario S_F10 further 12 gate pairs have been declared mutually

exclusive. Scenario S_F11 describes S_F1, but with a total of 36 gate pairs123 that

cannot be used at the same time (S_F11 is the baseline scenario). In addition to that,

scenario S_F12 increases the minimum time at gate to 90 minutes, which implies an

increase of the safety buffer for flights that filed a standard ground time of less than 90

minutes. S_F12 also compares to S_F3, but with 30 additional gate pairs that are not to

be used at the same time.

123 The following 36 gate pairs have not been allowed to be allocated at the same time: A4/A5, A11/A51,

A12/A52, A13/A53, A14/A54, A15/A55, A16/A56, A17/A57, A18/A58, A19/A59, A20/A60,
A21/A61, A22/A62, A23/A63, A25/A65, B1/B3, B1/B4, B2/B5, B3/B4, B6/B7, B8/B9, B9/B41,
B19/B20, D40/D50, D41/D51, D42/D52, D43/D53, D44/D54, E10/E23, E10/E11, E11/E24, E12/E25,
E13/E26, E21/E22, E23/E24, E25/E26.

ANALYSIS 133

The scenarios of ‘Group 2’ (Table 26) describe a situation different from Frankfurt with

changed values for SDF, and FAREA and a larger variety of combinations of the various

parameters, and only 6 gate pairs for mutual exclusive use.

Table 26: Scenario definitions (Group 2).

A third group of scenarios (not shown in a separate table) simulate the same situations

as given within ‘Group 2’, but with a different definition of retail area R2 and R3. In

that group R3 comprises also the gates B11, B12, B13 and B19, which belonged to R2

in ‘Group 2’ scenarios. This group of scenarios has been designed to show the effect,

which e.g. an enhancement of the retail environment for certain gates may have.

ANALYSIS 134

So, a total of 50 scenarios have been defined124 and will be computed in order to

determine whether there might be a possible improvement compared to the situation of

actual sales and to determine contributing factors.

4.3 Simulation runs

Using the simulation workbench as introduced in Chapter 3.7, except for two (see

above), all scenarios have been run on the same computer – usually three scenarios

concurrently. Depending on the parameter settings a single run125 lasted between 4 and

14.5 hours. On a quad-core processor each instance of the software consumed 25% (i.e.

one core) of processing power.

For each scenario the output generated consisted of a gate allocation plan and a schedule

for each day simulated. After a simulation run, the corresponding daily schedules have

been combined into an annual schedule used for summary reporting.

So, in total 18,200 gate allocation plans (each with 44,064 data items), 18,200 daily

schedules (each with approx. 23,400 data items), 50 annual schedules (each with

8,947,770 data items) and 50 summary reports (each with 384 data items) have been

generated by the simulation runs.126

Unfortunately, due to the large format of an allocation plan, it is not possible to fit into

this paper piece of work (similar with schedules and summary report).127 However, in

order to get an idea about a gate allocation plan Figure 69 provides an excerpt.

124 Scenarios C-S3 and G-S7 (Group 2) have been run on different machines to test timing and the

deterministic character of the algorithm.
125 Not split and not run concurrently in itself, but run concurrently with simulation of other scenarios.
126 In addition to that a ‘cross-check-scenario’ has been simulated to compare explicitly the time period

for which both retail data and actual operational data was available. This scenario is based on the
baseline-scenario.

127 Compressed samples are provided in Appendix B, Chapters 9.3 to 9.6.

ANALYSIS 135

Figure 69: Excerpt of a sample gate allocation as procuded by the simulation workbench.

In general, the above is to be read gate per gate, from top to bottom. The figures at the

intersection of gate and time indicate the internal index of a flight. The time a gate is not

occupied is indicated by ‘8888’ (1). The situation of (2) shows a flight (#177) that

remains for 55 minutes at the gate (11 time intervals). The gate is blocked an additional

15 minutes (4) by a buffer (indicated by ‘7777’). As mentioned before, a situation may

arise where a retail area may become too crowded. In those cases the algorithm blocks

any gate in that retail area for the next time interval until the situation will have

improved again. This is indicated by ‘6666’ in (3).

Except for scenario S_F12 (Group 1), during none of the simulation runs a flight has

been unable to be allocated in the time interval as requested. Internally, the workbench

computed the following two additional values for each simulation run:

1. A sort of opportunity cost has been computed, indicating how much additional

sales might have been generated in case enough gates in the preferred retail

areas would have been available. The values ranged between 2.46% and 7.58%

(4.35% average).

2. Another sort of opportunity cost has been computed, indicating how much sales

have not been generated because not the best trial in the solution stack could be

ANALYSIS 136

allocated successfully. The values ranged between 0.10% and 0.19% (0.15%

average). In other words, the algorithm achieved in average 99.85% of the

possible retail sales under the constraints given.

The massive amount of simulation data have basically been aggregated in the 50

summary reports and transferred into a spreadsheet for further analysis.

4.4 Analysis of results

The following analysis is basically based on quantitative measures. In the analysis the

qualitative aspect of gate allocations is not looked at in detail. Nevertheless, basic

quality aspects have been satisfied by means of the simulation parameters as introduced

above.

In order to obtain more insight into the individual contributors of an improved retail

result, a more differentiated view is provided below.

ANALYSIS 137

4.4.1 Result of baseline scenario compared to actual result

The overall outcome of the baseline scenario is an increase in sales of approx. 17% (i.e.

approx. 13.5 million Euros). This was achieved by a re-distribution of flights (and

consequently passengers) across the retail areas. Figure 70 shows this on an average

daily basis.

Figure 70: Comparison of actual figures to those of the baseline scenario.

From relatively low performing R1 approx. 85% of passengers have been shifted

towards R3 and R4.128 And within Terminal 2 almost all flights from gates associated

with R5 have been shifted to R7.

As expected, the amount of passengers per day remained the same129. Average increase

of sales per day was evenly distributed across each day of week (approx. 17%). So, the

potential in increased sales was not dependent on the day of week.

The observed loss of sales in R1 and R5 is more than compensated by increased sales in

the remaining retail areas. For example, one precondition that can be derived from the

above figures is that the (passengers’) way to the gates of R3 would need to be able to

cope for more than 18,000 additional passengers per day. This means that e.g. all check-

128 As gates in R3 are for transit and non-EU flights, passengers that depart from R3 would need to accept

border control checks unless other ways are found to address that issue. In a real world situation this
may constitute a major challenge to overcome, because sufficient inspection capacity needs to be
arranged for.

129 The algorithm does not shift across the change of day.

ANALYSIS 138

points (e.g. security, outbound border control) would need to provide sufficient capacity

for those passenger flows.

Detailed figures of this comparison, both on passengers and sales can be found in

Appendix B, Chapters 9.10 and 9.11.

4.4.2 Scenario results in order of retail sales result

In order to get an idea of the most enhancing (or limiting) factors a list of all scenarios

(and respective results) is provided below.

Table 27: Scenario results (Group 1), sorted by sales result.

Within ‘Group 1’ scenarios, the different operational times at a gate have been altered.

There is no direct relationship between the total time (sum of individual time

parameters) and the sales result to be observed. Nevertheless, it can be observed that the

higher the value for the minimum time at gate (remaining parameters unchanged) the

less increase in potential sales was achieved (W-Y; X-Z; T-U-V). The difference

observed here was approx. 3% less sales increase per 15 minutes additional time at the

gate. According to the frequency of occurrence of standard ground times (see again

Table 21) this could be expected. Any increase above 45 minutes will lead to an

increase of the standard ground time during simulation runs. Therefore, the gate

resources will be occupied for a longer period and there is less possibility to allocate

flights to retail-favoured gates. The potential solution space is reduced. The same can be

observed with the buffer time (W-X; Y-Z).

ANALYSIS 139

From an operations perspective it has been observed that only in AE (scenario F_12,

Group 1) the alliance rule had to be disobeyed in several cases. On 332 out of 364 days

in one specific time interval per day it has not been possible to allocate flights in

accordance with that rule. Regarding ‘gate use’ it needs to be mentioned that in cases

where there are high restrictions due to minimum or maximum time at gate or buffer

time, a high number of mutually exclusive gate pairs lead to re-allocation of flights that

are then allowed to disobey the alliance rule. This in consequence may lead to increased

retail sales (in case an alliance rule would have forced a flight to be allocated in a retail

area with a lower FAREA, compared to allocation without alliance rule). This effect can

be observed in scenarios (AE-V; AC-AB). The scenario pair (T-AD) performed as

expected, because neither of minimum time or maximum time at gate have constrained

the allocation algorithm to an extent that the alliance rule had to be disobeyed. Thus, in

this case flights have only occasionally been allocated to gates in retail areas with less

sales potential (but: no allocation into a ‘non-alliance-compliant’, higher FAREA) retail

area. For clarification and in reference to the above discussion regarding standard

ground times, it is re-stated that it really depends on the data in the flight plan (which

feeds the simulation runs) whether or not e.g. maximum time at gate influences the sales

result. The more the value for ‘maximum time at gate’ forces a flight to free a gate, the

higher the potential for increased retail sales.

Returning to the observed violations of the alliance rule it needs to be mentioned that

the spread across the day of week is quite even (Table 28). However, looking at those

time intervals that caused to violate the alliance rule most often, the distribution is not

as even. For example, the Wednesdays seem to have a flight schedule that does not

cause problems at specific times, but violations are spread all over the day (49

observations, but only 14 amongst the top contributing intervals).

 MON TUE WED THU FRI SAT SUN

 Number of times

rule disobeyed (both seasons)
49 45 49 47 48 49 45

M
o

st
 v

io
la

ti
n

g

in
te

rv
a

ls
 Interval 134 (11:05) 22 12 5 28 14 24 19

Interval 91 (07:30) 0 14 0 0 15 3 1

Interval 104 (08:35) 0 0 0 0 0 7 14

Interval 99 (08:10) 4 0 0 9 8 0 0

Interval 136 (11:15) 3 2 9 0 0 0 1

Table 28: Violations of alliance rule per day of week.

Violations of the alliance rule are due to dense traffic at those times. They occur usually

during the four traffic waves (compare Figure 54). Nevertheless, as indicated above and

ANALYSIS 140

shown in Table 29 the overview of frequency distribution of occurrences may provide

input for flight planners. For example, flights may be slightly shifted (e.g. +/- five

minutes) in order to de-peak the situation.

Number of days

rule disobeyed
124 33 21 11-16 5-10 1-4

In the following

time interval(s)

134 91 104;

99

136;

108;

106; 92

204; 203;

202; 138;

137; 107;

98

259; 258; 250; 248; 246; 205;

195; 151; 149; 148; 139; 115;

114; 112; 111; 110; 109; 105;

103; 102; 100

Table 29: Violations of alliance rule: frequency classes.

AE (scenario F_12, Group 1) compared to AD (scenario F_11, Group 1) shows the only

difference in an increase of the value for ‘minimum time at gate’ from 45 to 90 minutes.

This means that each flight is given at least 90 minutes at a gate regardless what has

been filed in the schedule. In case a flight arrives late or would not yet have been towed

to a gate, the gate would already have been reserved for that flight. This of course incurs

a considerable negative impact on gate allocation planning. Nonetheless, it copes for the

factor of uncertainty in operations (the same as with the buffer time) and should

decrease (short-term) operational delays.

Despite this burden simulation results still lead to increased sales of approx. 14%

compared to actual sales (and no 100% compliance with alliance rule).

Observations in ‘Group 2’ and ‘Group 3’ show similar results for the maximum time at

gate (reciprocally, because the lower that time the larger the solution space would be).

According to Table 21 approx. 22,000 flights would stay an hour less at a gate in case

the maximum gate time would be reduced from 180 to 120 minutes. This increase in

solution space can also be seen in a better sales result (W-T, Group 1).130

Nevertheless, a change of one (or more) time parameters is no guarantee for an

improved result. Although the solution space may be increased, the structure of the

flight schedule may outweigh this in a form that at certain times of a day (time intervals

in the algorithm) a later time at gate (because of reduced maximum time at gate) may

cause congestion in that time interval. This in consequence reduces (not increases)

solution space and sales may be less.

130 Although here buffer time is also reduced by five minutes. But results from ‘Group 2’ and ‘Group 3’

support this as well.

ANALYSIS 141

So for an overall optimum it is important to first de-peak the flight schedule (small

shifts may be sufficient) and then start allocation planning, or to allow the gate

allocation algorithm to vary e.g. buffer time by 5 to 10 minutes.

The results of ‘Group 2’ (Table 30) provide more insight towards potential contribution

of individual parameters.

Table 30: Scenario results (Group 2), sorted by sales result.

As expected an improved performance of the individual retail areas led directly to an

increase in sales. And of course, as long as a flight could be allocated there would be no

difference between different scenarios (N-O-P). In such a case the allocation rules cause

the algorithm to distribute flights evenly across all retail areas, always starting with the

first available gate, and as each retail area has the same FAREA (2.0), it leads to same

retail sales131. Once more it has to be mentioned that the columns ‘minimum time’,

‘maximum time’ or ‘total time’ are not related to a passenger’s dwell time, but to the

aircraft. In fact, they limit the algorithm’s capability to determine favourable gates.

The constraint to avoid over-crowded retail areas barely had an effect on the result (Q-

A; S-C; R-B). In general, a different number of ‘6666’ blockages does not necessarily

lead to a different retail result. In fact it is the structure of the flight schedule in

131 Compare precondition for research subject in Chapter 1.3, paragraph ‚Airports‘.

ANALYSIS 142

conjunction with the time(s) at gate and the buffer time that determine the ‘net gate

supply’ in each single time interval. So, in case an ‘over-crowded-situation’ occurs at a

time when there are eligible gates in a retail area with a similar FAREA, almost nothing

changes. But in case the only eligible gates would have been detected in a retail area

with a lower FAREA, then the retail result would have decreased accordingly.

Comparing scenarios (L) and (M) delivers the expected higher result for (M), because of

its higher FAREA value for R1. Compared to scenario (L) in scenario (M) more flights

(and resulting passengers) have been allocated at R1, so that no flight needed to be

allocated in R4. And as expected (due to allocation rule set), almost nothing changed in

R5, R6, R7.132

For the reason of clarification it is mentioned again that the total time column does not

relate by any means to a passenger’s duration in retail areas, and thus does not directly

imply anything regarding the retail result.

As introduced with the scenario description (see Chapter 4.2.3) the third group has a

different definition of retail areas in terms of the gates they comprise. Everything else

remains unchanged.

132 Details can be found in form of an excerpt from a summary report produced by the simulation

workbench in Appendix B).

ANALYSIS 143

As observed in Table 31 the overall result of ‘Group 3’ scenarios is similar to that of

‘Group 2’. Due to the fact that the attribution of the four gates changed from R2 in

‘Group 2’ to R3 in ‘Group 3’, more gates had the possibility to perform with an

increased factor (2.0 instead of 1.5). In consequence, a slightly overall increased sales

result could be achieved in this group.

Table 31: Scenario results (Group 3).

So, the (retail-wise) enhancement or different utilization of gates directly resulted in an

improved sales result. Nothing else is different in ‘Group 3’ scenarios. The slight

changes in order result from the changed attribution of gates to the retail areas R2 and

R3.

Therefore, any explanation given for Table 30 also applies to Table 31.

The elements that contributed most regarding the shift of passengers were (a) the retail

area factors and (b) the rule set. The latter has basically been responsible for a

separation between Terminal 1 and Terminal 2. As it would have been too far apart

from real conditions no simulations without the basic rule set have been conducted.133

133 Constraint relaxation has only been necessary in scenario F_12, Group 1.

ANALYSIS 144

Best results could be achieved with those scenarios not constraining gate allocation by

too much time reserves and with a maximum number of gates for concurrent use.

In some scenarios it could be observed that almost the complete traffic via a certain

retail area was distributed to other retail areas, so that theoretically the gates would not

have been allocated during the entire season at all.

According to the simulations of ‘Group 1’ the financial benefit would have been

between 7.4 million and 16.6 million Euros.134 However, these figures would need to be

set in relation to the additional cost at operations, and they need to be looked at along

with the assumptions that have been taken for granted in each scenario.

Finally, a cross-check has been run with a scenario comparing only the period of time

for which both retail data and actual operational data has been available (2007-01-01 to

2007-03-24; i.e. 50,175 flight events). The retail area factors taken were those from the

winter season (compare Table 14). Everything else has been taken as defined in the

baseline scenario (Group 1, S_F11). The results show an increase in sales revenue from

approx. 16.4 million Euros to 19.8 million Euros (i.e. almost 21%).

The overall results strongly suggest that under the constraints given there is

considerable potential to increase retail sales compared to actual sales (latter with no

retail focus in the gate allocation process). The achieved values range from approx. 9%

to approx. 21% increased sales across the scenarios from Group 1.

This assesses the statement (H.1) to be feasible and

answers the research question raised in Chapter 2.5 to be true.

Despite the potential drawbacks because of assumptions and available data, there is still

a positive statement regarding a possible application of the above. However, applying

the above at different airports may alter some of those assumptions and may result in a

different outcome.

134 Keeping in mind that only a proportion thereof will be obtained by the airport operator, depending on

the contracts with the retailers.

ANALYSIS 145

[ALIGNMENT ASPECT]

Having compared a process output with and without additional support of the IT

function (process integration on data layer and on business rules layer, and IT

application for gate allocation planning task), a to some extent positive contribution has

been determined. So, the example – derived from application of the information

intensity concept – seems to support the assumption of positive impact of business/IT

alignment on a business’ output.

The main conclusions, a guideline for application at other airports, limitations of the

approach undertaken as well as further areas of research are discussed in the concluding

chapter.

146

5 CONCLUSIONS AND RECOMMENDATIONS FOR
RESEARCH

Introduction
Setting the

Scene

S AND RECOMMENDATIONS FOR

5. CONCLUSIONS

RECOMMENDATIONS
FOR FURTHER RESEARCH

Setting the

Scene
Methodology Analysis

S AND RECOMMENDATIONS FOR FURTHER

CONCLUSIONS
AND

RECOMMENDATIONS
FOR FURTHER RESEARCH

Conclusion

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 147

5. CONCLUSION AND RECOMMENDATIONS FOR FURTHER RESEARCH

Having applied the research methodology to a specific business context, the results

achieved are promising. In addition to the achievement regarding the statement (H.1)

(see previous chapter), the aim and objectives have been achieved as follows:

(AIM) To appraise in how far(A) the use of information technology(B) may foster a core airport
operational process (i.e. gate allocation) taking into account the requirements of an airport
commercial process (i.e. airport retailing).

� (A) Extent: Approx. percentage change in retail revenue (results in Chapter 4)
(B) Use of IT:

• IT-supported process decomposition (Chapters 3.2.3 and 3.2.4)
• IT-supported data modelling (Chapter 3.2.5)
• IT-supported simulation of business rules to produce operationally feasible allocation

plans (Chapters 3.4.4, 3.7, 4.2, 4.3)
• IT-supported monetary evaluation of produced allocation plans (Chapter 4.3)

(O.1) To determine the limits of general purpose methods to model business alignment of IT(A), and
placement of the research topic within existing frameworks.(B)

� (A) Limits
• Lack of causality (IT as input; monetary figures as output); compare discussion in

Chapter 2.2 and the resulting application of the information intensity model.
• Assumption that there would be appropriate IT support available. This has been

addressed by actual development of a tailored software application taking into
account constraints of IT architecture and the element of cost.

(B) Placement
• Summarizing the discussion in Chapter 2.2, Figure 10 places the research topic

within existing frameworks.

(O.2) To develop a possible extension or a more specific application of existing methods(A) in a way
that the derived methodology may be used for further processes in the airport business
environment.(B)

� (A) Application
• Partly application of the concept of information intensity by modelling an airports

value chain (Figure 18) and placement of airport processes in the information
intensity matrix (Figure 19).

(B) Further processes in airport environment
• Basically all of the processes in information intensity matrix may be a candidate for

IT support. The latter would need to be derived from a detailed analysis of the
processes chosen. As suggested, methods for analysis may be process decomposition
and information modelling.

(O.3) To construct a conceptual model(A) describing the relationship between airport retailing and
gate allocation. The model should be based on process structure (in form of a business
process decomposition)(B), as well as on information structure (in form of a data model)(C).
Furthermore, it should be quantifiable for later simulation purposes.(D)

� (A) A conceptual model has been presented in Chapter 3.3.
(B) A business process decomposition has been conducted in Chapters 3.2.3 and 3.2.4.
(C) A data model has been developed in Chapter 3.2.5.
(D) A quantified model has been developed in Chapter 3.5.

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 148

(O.4) To develop an algorithm for the gate allocation process that copes for the needs of supporting
the retailing process (i.e. an increased sales result).

� A problem-tailored algorithm has been developed in Chapter 3.6.3.

(O.5) To develop an independent simulation environment with implementation of the algorithm as
outlined in O.4.

� The simulation environment has been developed. Chapter 3.7 describes its basic elements.

In summary the following alignment aspects have been addressed135:

• IT support is aligned with industry (compare, Figure 10, (1)).

• IT support is aligned with own value chain (compare, Figure 10, (2)).

• IT support is aligned with own business processes (compare, Figure 10, (2)).

• IT support is aligned with own information flows (compare, Figure 10, (2)).

• IT support is aligned with business function, because it understands own

business (compare, Figure 10, (2) and (3)).

• IT support is aligned with business as the IT function considers IT investments to

increase business output or to decrease cost, and in line with budgets (compare,

Figure 10, (4)).

• IT support is aligned with business as requirements of IT architecture are

considered in the IT solution (here hardware and software requirements)

(compare, Figure 10, (5)).

• IT support is aligned with business as the change in business output (to some

extent) can be measured (compare, Figure 10, (6)).

Transferring the knowledge gained from the research work, a couple of action items

have been derived and are proposed to airport managers in the following chapter.

5.1 Recommended actions for airport managers

Simulation results suggest that for a possible increase in sales, the following aspects are

recommended for immediate consideration:

1. Integrate the ‘retail-orientation objective’ in the seasonal flight planning process.

2. Identify the most contributing flights requiring the least change in current

operational setting. Initiate re-allocation of those flights.

135 Compare also the links to alignment, marked as ‘[ALIGNMENT ASPECT]‘ throughout the thesis.

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 149

3. Depending on the level of automation in the gate allocation process and on the

IT systems used to support the allocation planning task, a corresponding rule set

shall be complemented by rules that allow for a retail-orientation.

4. In order to increase awareness, add a ‘retail revenue tag’ to each allocation plan.

For further consideration the following is suggested:

5. Consider elements that allow most flexible use in regard to investment in

terminal infrastructure.

6. Appraise any procedure that constrains a free gate allocation regarding the

potential opportunity cost incurred (because of possibly less retail sales). Foster

the application of such a measure to be used into any associated discussion (e.g.

allocation wishes of airlines, or limited use of infrastructure due to

implementation of security rules based on political decisions).

7. Depending on the level of integrated resource planning (check-in counters,

gates, stands, security check points, baggage belts, etc.) incorporate findings into

overall planning model.

For a minimum, there should be an awareness regarding the sales aspect in the gate

allocation planning process. This ought to be present in any corresponding discussion as

mentioned above in point 6.

At Frankfurt Airport – as a direct result from having presented first findings of this

research – the seasonal flight planning department have picked up the idea of a ‘revenue

tag’ in conjunction with any planned allocation (compare above). A prototype software

solution has been developed to add such a tag to any allocation plan. Furthermore,

flight plan data has been analysed for candidate flights to be re-allocated for a

potentially more retail-favoured gate. In case there is the possibility to do so, those

flights will be re-allocated and corresponding changes in actual retail revenue will be

analysed. And finally, the magnitude of the individual retail area factors (FAREA) are

being analysed for qualitative contributors. This would allow for a more detailed model

in respect to FAREA. In summary, Frankfurt’s awareness regarding the potential

embedded in combining gate allocation in seasonal flight planning and retail business

has been increased considerably.

However, having taken the processes of gate allocation and retailing as an example to

demonstrate possible contribution from the IT function, this aspect is summarized

below on a more strategic level.

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 150

5.2 The role of IT: Strategic implications for airport policy

The discussion so far has started with a broad view on the contribution of information

(technology) within the airport business environment, and has then become very

specific to produce a quasi quantitative result.

From a more strategic view (in addition to implications already mentioned above) an

airport should be aware of the financial potential that can be realized upon consequent

analysis and harmonization of the most information intensive processes in its business

environment. In some situations such an analysis may even lead to new products or

services to be offered.

However, a prerequisite would be to have a repository of processes and information

flows for the entire business environment. Usually, such a repository is not available at

all or only for individual players in the business context. Nevertheless, at least an

integrated high level view on processes and information flows would be necessary to

gain any advantage. This implies that all partners at an airport should be encouraged to

contribute towards such an integral view. In most cases it will be the airport operator or

the major airline at an airport that already has a majority of processes and information

entities documented in a form to be usable in the above context.

So, in the business units, roles in charge of

• information quality assurance (incl. data quality and business intelligence),

• business process engineering,

• new service development, product development,

along with the enabling counterparts of the IT department should establish regular

communication with the corresponding roles of their partners in the airport

environment. On a more formal basis such an information exchange may be fostered via

appropriate sections in an airport’s user agreement. Such an agreement may require any

user at the airport to submit certain pieces of information to (e.g.) the airport’s IT

department.

However, owing to the nature of the airport industry, each business setting at an airport

is to a large extent unique. Therefore, an application of research methodology and

simulation workbench for other airports needs to consider certain aspects to be

discussed below.

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 151

5.3 Transferability

In general, the methodology and scenarios can be applied to other airports as well.

As outlined in the previous chapters, there are certain preconditions and assumptions

that have to be met in order to obtain simulation results as described before.

However, exactly those constraints may limit the application of the above in respect to

other airports. The following discusses different aspects to be considered when trying to

apply the research methodology to a different business set up.

5.3.1 Different players in same business context

First of all, there needs to be a constellation in place allowing for a seasonal flight

planning process that considers both operational and commercial aspects. As long as

such a process exists, it does not matter whether a certain player (process owner) is

within the same legal entity or a business partner (from another company or authority).

Usually, the airport operator, the retailer(s) and the airlines would need to support the

common goal of increased retail sales. This is very similar to all initiatives around

collaborative decision making (CDM) where the airport operator, the airlines and air

traffic control need to agree to a single shared goal, which is to increase the

performance of the overall ‘system airport’. This means that there need to be incentives

in place that over-compensate drawbacks from individual operational decisions.

The level of vertical or horizontal integration at an airport does not really matter, if there

is a common understanding (embedded in contracts) between all players involved.

As introduced in Chapter 3.2.2 in general the research topic can be applied to airports of

different type. Nevertheless, there will be a significant bandwidth in terms of potential

additional sales generation.

Regardless the airport environment in which it is aimed to apply the methodology and

the simulation workbench, a couple of aspects need to be considered in doing so.

In general, an application at another airport would need to be conducted as outlined in

Figure 71.

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 152

Figure 71: Application of methodology at other airports.

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 153

5.3.2 Individual aspects to be considered

During the data cleansing task it became very evident that complete and consistent data

comprising infrastructural data, flight plan data and retail data is crucial to the overall

ability to apply the research topic to other airports.

It has to be stressed that the formal requirements from methodology and especially from

the simulation workbench are minimal. After data cleansing, corresponding plain text

files of delimited line format are sufficient in terms of data source.

The most effort will need to be put into the data gathering itself and the data cleansing

task. Data gathering will depend on the number of players and the level of integration

amongst them.

A challenge in the data cleansing task will be to match commercial (retail) data with

standard flight plan data. Based on the retail data (and together with retail experts from

the airport in concern) the different retail areas would need to be identified and

corresponding retail area factors need to be determined.

In case there were any aspects in the infrastructural layout of an airport not covered by

the gate definition, but necessary for the overall gate allocation process, this would need

to be re-programmed within the simulation workbench.

The same applies to the rule set. Constraints like aircraft size, gate size, alliance

affiliation or passenger density within retail areas are considered within the simulation

model. Still to be integrated would need to be e.g. capacity measures of points within

the passenger (way finding) process like security check points – or in general the

definition of passenger ways (e.g. via a waypoint matrix in terms of distance and time).

The latter is especially important to airports performing a hub function with a large

proportion of transfer passengers.136

Given the targeted heterogeneous retail setting as described in Chapter 3.2.2 the basic

requirement to transfer application of the research topic to other airports would be to

obtain flight-specific retail sales data. Further important information to be obtained

from the retailers would be an indication regarding the maximum number of passengers

to be catered for at a time. In the research model only the floor space of the gate (hold)

rooms has been considered. There are more aspects to be considered when applying

136 The number of passengers at a time in a location may also be determined using agent-based simulation

methods (and tools). Such a method is usually more flexible regarding changes in infrastructure
setting.

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 154

research results in practice. This is also due to the model character and scope of this

piece of work and will be discussed below.

5.4 Limitations of research undertaken

The author acknowledges that the research presented in this paper is limited and cannot

be generalized without consideration of its assumptions and shortcomings.

Mentioned with the introduction of the conceptual research model, there are

assumptions underlying the model, and there are simplifications compared to the real

world. This enabled to examine the research object to a great level of detail. Given the

amount of time and other resources, it would not have been possible to produce this

piece of research if incorporated all aspects of the business environment.

• A major assumption within the research model is that there may incur additional

cost at operations (e.g. ground handling services). This might be in case there

would be an increased number of tows, or the turnaround of a flight would

require more personnel in order to be handled within a certain (shorter) period of

time. Although the scenarios defined have applied turnaround times close to

actual figures, there may be side-effects not yet discovered. In order to

determine the magnitude of such additional cost at operations simulations of

apron traffic and of the aircraft turnaround process would be necessary.

• An important assumption within the allocation constraints has been the

eligibility of gates for both Schengen and non-Schengen flights. This of course

increases the solution space for the allocation task. Therefore, within an airport’s

infrastructure a most flexible arrangement of security check-points (all central or

all de-central) and border-crossing inspections would be a necessity to harvest

the full potential of the approach in this paper.

• Another aspect limiting the overall result is that it was taken for granted that the

airport in question would be able to assure hub-connectivity regardless of the

gate allocation, as long as the alliance affiliation rule is obeyed.

• Regarding the generation of retail sales is has been assumed that the country of

destination of a flight explains to a great extent the nationality of its passengers,

and this in consequence the retail spending behaviour. Other contributing

factors, like shopping atmosphere, passenger dwell-time or passenger-specific

shop arrangements have not been considered directly in the model. The retail

area factor summarizes all those aspects in a single figure.

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 155

• A retail area’s performance is also due to the specific flights allocated therein.

So, there is a mutual influence of flights and retail area performance. A

proportion of that performance is due the retail offering itself, but another

proportion is solely due to the passengers’ nationality (see above). The research

model assumes that the retail area factors remain unchanged for different

allocations. An adjustment would be necessary to cope for this.

• As it was not in scope of this paper, it has not explicitly looked at alternative

ways to enhance retail revenue in case gate allocation would not have been

improved for retail objectives. However, possibilities here would be to launch

customer segment-specific promotions, to gain more intelligence about shopping

behaviour in specific retail areas, to adapt retail offering (and shop advertising)

even faster to the actual flow of passengers, just to name a few.

• Regarding the infrastructure it was assumed that the gates would be available

throughout the year. This is of course not the case in real operations. However, it

can be either addressed by definition of a minimum (‘guaranteed’) number of

gates or by different scenarios (and simulations) for different infrastructure

settings. The model and (with minor modification) the simulation workbench

would be able to consider changed infrastructure.

• The gate allocation algorithm aims to find the best possible solution within a

specific time interval. The ruling element is the flight schedule. For this reason

sort of local optima will be produced. It is not looked at whether a slight change

of the flight plan might produce better results.

• Another limitation lies in the current implementation of the algorithm all

flights of a time interval will be shifted into the next interval in case not all of

them could be allocated in the current interval. An identification of the optimum

flight combination with as many flights as possible to be allocated in the current

time interval with the remainder as candidate flights in the next interval would

be an improved implementation of the algorithm. Furthermore, this may be

complemented by some sort of priority function, so that those flights will receive

certain preference in the next time interval.137 However, as the above case did

not occur, the results produced should be valid. Nonetheless, in case of a flight

schedule being more dense, compared to the one used, it may become necessary

to change the implementation (i.e. the simulation workbench software).

137 Similar to the penalty adjustment methods in Yan and Tang (2007).

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 156

Despite the above limitations, the simulation results have shown that there is a potential

to increase retail sales. Such an increase has (theoretically) become possible because of

two information intensive airport processes were analysed and to some extent

harmonized. This may be applied in broader scope by airport management in a way as

mentioned above.

5.5 Contributions

Despite of its limitations the thesis aims to have contributed to the body of knowledge

as follows:

• The concept of information intensity by Porter and Millar (1985) has partially

been applied to the airport business for the first time.

• In a generic model two specific airport processes from different business

domains have been combined in a way to show a potential increase in their

output. This aimed to contribute towards understanding of the mutual

dependency of processes within the airport business environment.

• A retail sales improving multi-objective gate allocation algorithm has been

developed and implemented on standard PC hardware. This algorithm addressed

the specific (retail-enhancement vs. gate assignments) problem for the first time.

• Furthermore, the ‘optimistic elements’ within the algorithm and the approach to

reduce the solution space upfront have not been found in current body of

knowledge before.

• The implementation in form of a simulation workbench (piece of software),

helped to carry out a sensitivity analysis. An application (case study) with a

similar large amount of real airport data to test a gate allocation algorithm has

not been found, so far.

As occasionally suggested in-between, individual aspects of the research undertaken

may be explored in more detail or expanded in scope.

5.6 Areas for future research

This paper has addressed many aspects within the research context. Nonetheless, the

defined scope of work and limitations as described above suggest areas for further

research.

It would complement the work in this paper to describe the relationship between the

retail area factor and a flight-specific retail factor. As mentioned in Chapter 5.4 there

should be some form of mutual influence between the two. For example, in empirical

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 157

studies the different elements contributing to the sales result of a retail area may be

examined. Then specific flights may intentionally be allocated to gates associated with a

different retail area. However, a very detailed observation of the operations environment

in the terminal building would be necessary in order to be able to exclude any

misleading influences. For example, information given upon check-in can be very

influential towards the buying behaviour of passengers.138 The result of such a study

would help to modify the model in a way that the retail area factors would adjust within

a simulation run (depending on the flights allocated within the corresponding retail

area).

In addition to the above, the approach may be complemented by the following aspects:

• A more sophisticated rule set would allow to model real conditions to a greater

level of detail (more process points in passengers’ way).

• Alternatively, the concept of retail areas and the resulting objective function may

be implemented into various other gate assignment models (see review in

Chapter 2.3) for a more complete simulation.

• A multi-step approach may support solution finding in case of a flight (plan)

schedule is too busy (or not balanced). Such an approach would first need to try

to smoothen the peaks within the schedule. Only then in a second run the

allocation algorithm as described in this paper would be applied.

• As mentioned in the chapter about ‘limitations’, a (quantitative) model

describing additional cost at operations would help to set the results obtained in

this piece of work a step further towards practice conditions.

Not found in current body of knowledge, but seen to be very useful is a test bed for the

various gate allocation algorithms that exist. It has been observed that researchers in

almost every case define their own testing environment for the solutions they suggest.

Thus a performance comparison in terms of solution quality and computing time is not

feasible. Hence, a standardized research environment that copes for various airport

scenarios (different layouts, different flight schedules, etc.) would allow to better

evaluate a proposed gate allocation solution method. In addition, a standard set of real

airport data from airports of various categories would help to bridge the gap between

academic research and application in practice.

138 So observed in a case in Frankfurt where passengers were told at check-in that there would be no

opportunity to purchase duty-free goods after security check (due to construction work on that day).
According to the retail department, the sales figures for that flight have been significantly different
from those of other days for the same flight.

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 158

Finally, as indicated within the strategic implications, there should be further business

processes to be identified, analysed and if possible harmonized in a way to produce

more favourable output. Figure 19 and the model of information intensity may help to

identify such processes the same way as they supported to identify the potential that has

been determined upon application of a retail-weighted gate allocation process. When the

majority of airport-specific processes would have been analysed as suggested in this

paper, a comparison at industry level139 might help to appraise the potential derived

from an aligned IT function more precisely.

139 Compare Hu and Quan (2005).

List of References 159

6 List of References

Adams, Chr., Haines, M. and McLellan, L. (2003). Key Go-to-Market Issues Lead to IT Business
Strategy Success. Gartner Dataquest - Research Brief, ITSV-WW-DP-0530. Gartner Research,
Stamford, Connecticut.

Albers, S., Koch, B. and Ruff, Chr. (2005). Strategic alliances between airlines and airports —
theoretical assessment and practical evidence. Journal of Air Transport Management, Vol. 11,
49–58.

Apfel, A. (2002). The Total Value of Opportunity Approach. Research Note, DF-17-0235. Gartner
Research, Stamford, Connecticut.

Apfel, A. (2003a). BVIT: Frameworks and Methodologies That Work. Research Note, AV-19-4195.
Gartner Research, Stamford, Connecticut.

Apfel, A. (2003b). How Enterprises Can Reduce Costs Even More. Research Note, LE-19-6332.
Gartner Research, Stamford, Connecticut.

Apfel, A. and Smith, M. (2003). TVO Methodology: Valuing IT Investments via the Gartner Business
Performance Framework. Research Note, R-19-1910. Gartner Research, Stamford,
Connecticut.

Appold, St. J. and Kasarda, J. (2006). The appropriate scale of US airport retail activities. Journal of
Air Transport Management, Vol. 12 (2006) 277–287.

Avison, D., Jones, J., Powell, Ph. and Wilson, D. (2004). Using and validating the strategic alignment
model. Journal of Strategic Information Systems, Vol. 13 (2004), 223–246.

Babic, O., Teodorovic, D., Tosic, V. (1984). Aircraft stand assignment to minimize walking. Journal
of Transportation Engineering. 110, 55–66.

Benjamin, R.I., Rockart J.F., Scott Morton, M.S. and Wyman J. (1984). Information Technology: A
Strategic Opportunity. Sloan Management Review, Spring 1984, 3-10.

Bihr, R. (1990). A conceptual solution to the aircraft gate assignment problem using 0,1 linear
programming. Computers & Industrial Engineering, Vol. 19 (1-4), 280-284.

Bloem, E.A., Blom, H.A.P. and Schaik, van F.J. (2002). Advanced Data Fusion for Airport
Surveillance. Technical Paper, NLR-TP-2002-052. National Aerospace Laboratory, NLR.

Bolat, A. (1999). Assigning arriving flights at an airport to the available gates. Journal of the
Operational Research Society, Vol. 50, 23–34.

Bolat, A. (2000). Procedures for providing robust gate assignments for arriving aircrafts. European
Journal of Operational Research, Vol. 120, 63–80.

Bolat, A. (2001). Models and a genetic algorithm for static aircraft gate assignment problem. Journal
of the Operational Research Society, Vol. 52, 1107-20.

Bonnke, J. (1999). Friendlier Airports: The Goal of Delta's Top Technology Project. Software
Magazin, 6/99, 10.

Bork, A. (2007). Developing a retail marketing strategy to promote both airport and retailers.
AIRPORT MANAGEMENT, Vol. 1, NO. 4, 348–356 JULY-SEPTEMBER 2007.

Braaksma, J.P. (1977). Reducing walking distance at existing airports. Airport Forum, 135–145.

Brazile, R.P. and Swigger, K.M. (1988). GATES: An airline gate assignment and tracking expert
system. IEEE Expert, 33-39.

Browdy, Th. (1999). The corporate information and communications hierarchy: Technological
management in modern enterprises. Auerbach Publications, 41-10-27. 1999.

List of References 160

Buendia, M. and de Barros, A.G. (2008). Critical Update of the Post-Security Retail Space Design in
Passenger Departure Terminals. Aerlines Magazine, e-zine edition 40.

Button, K., Lall, S., Stough, R. and Trice, M. (1999). High-technology employment and hub airports.
Journal of Air Transport Management, Vol. 5, 53-59.

Carr, N.G. (2003). IT Doesn't Matter. Harvard Business Review, May 2003, 41-49.

Cerovic, M. (1998). Global Airport Retailing. Business Insights Consumer Report. Datamonitor.
London.

Cheng, Y. (1997). A knowledge-based airport gate assignment system integrated with mathematical
programming. Computers and Industrial Engineering, Vol. 32, 837–852.

Cheng, Y. (1998). A rule-based reactive model for the simulation of aircraft on airport gates.
Knowledge-Based Systems, Vol. 10 (1998) 225-236.

Clark, L. and Lee, M. (2002). Applying Performance Metrics and Benchmarking to the IT Services
Organization (Executive Summary). Research Note, ITSV-WW-EX-0130. Gartner Research,
Stamford, Connecticut.

Clarke, R. (1994). The Path of Development of Strategic Information Systems Theory. INTERNET
RESOURCE: http://www.anu.edu.au/people/ Roger.Clarke/SOS/ StratISTh.html, retrieved on
24 April 2004.

Cline, M., K. and Guynes, St. C. (2004). IT Investment Is Strategic to a Firm's Survival. Information
Strategy: The Executive's Journal, Spring 2004, 39-47.

Cohn, M.D. (2003). Service Management for Information Technology: The Evolving Role of IT
Financial Management. Auerbach Publications, 10/03, 42-10-25.

Correia, A.R., Wirasinghe, S.C. and de Barros, A.G. (2008). A global index for level of service
evaluation at airport passenger terminals. Transportation Research Part E, Vol. 44 (2008) 607–
620.

Crawford, G., Melewar, T.C. (2003). The importance of impulse purchasing behaviour in the
international airport environment. Journal of Consumer Behaviour, Vol. 3, Issue 1, pp. 85-98.

D’Souza, D. and Mukherjee, D. (2004). Overcoming the Challenges of Aligning IT with Business.
Information Strategy: The Executive's Journal, Winter 2004, 23-31.

Davitt, D. (2005). Catering for Change. Travel Retailer International. Sep/Oct2005, pp28-35.

Ding, H., Lim. A. Rodrigues, B. and Zhu, Y. (2004). Aircraft and Gate Scheduling Optimization at
Airports. Proceedings of the 37th Hawaii International Conference on System Sciences – 2004.

Ding, H., Lim. A. Rodrigues, B. and Zhu, Y. (2005). The over-constrained airport gate assignment
problem. Computers & Operations Research, Vol. 32 (2005) 1867–1880.

Doganis, R. (1992). The airport Business. Routledge, London.

Dorndorf, U., Drexl, A., Nikulin, Y., and Pesch, E. (2007) Flight gate scheduling: State-of-the-art and
recent developments, Omega - International Journal of Management Science, Vol. 35(3), 326-
334.

Eccles, R.G. (1991). The Performance Measurement Manifesto. Harvard Business Review, Jan-Feb
1991, 131-137.

Entwistle, M. (2007). Customer service and airport retail: Stimulate passenger spending. AIRPORT
MANAGEMENT, Vol. 1, NO. 2, 151–157 JANUARY–MARCH 2007.

Esper, T.L. and Williams, L.R. (2003). The Value of Collaborative Transportation Management
(CTM): Its Relationship to CPFR and Information Technology. Transportation Journal,
Summer 2003, 55-65.

List of References 161

Fernie, J. (1995). The coming of the fourth wave: new forms of retail out-of-town development.
International Journal of Retail & Distribution Management, Volume 23 · Number 1 · 1995 ·
pp. 4–11.

Feurer, R., Chaharbaghi, K., Weber, M. and Wargin, J. (2000). Aligning Strategies, Processes, And
IT: A Case Study. Information Systems Management, Winter 2000.

Forster, P.W. and Regan, A.C. (2001). Electronic Integration in the Air Cargo Industry: An
Information Processing Model of On-Time Performance. Transportation Journal, Summer
2001, 46-61.

Fraport (2006). Geschäftsbericht 2006. (Annual report), Fraport AG, Frankfurt, Germany.

Fraport (2007). Geschäftsbericht 2007. (Annual report), Fraport AG, Frankfurt, Germany.

Freathy, P. and O'Connell, F. (1998a). Supply chain relationships within airport retailing.
International Journal of Physical Distribution& Logistics Management, Vol. 28, No. 6, 1998,
pp. 451-462.

Freathy, P. and O'Connell, F. (1998b). The role of the buying function in airport retailing.
International Journal of Retail & Distribution Management, Vol. 26, No. 6, 1998, 247-256.

Freathy, P. and O'Connell, F. (1998c). European Airport Retailing: Growth Strategies for the New
Millenium. Macmillan, London.

Freathy, P. and O'Connell, F. (1999). A Typology of European Airport Retailing. The Service
Industries Journal. 19:3, 119-134.

Freathy, P. and O'Connell, F. (2000a). Market segmentation in the European airport sector. Marketing
Intelligence & Planning. 18/3 [2000], 102-111.

Freathy, P. and O'Connell, F. (2000b). Strategic Reactions to the Abolition of Duty Free: Examples
from the European Airport Sector. European Management Journal, Vol. 18, No. 6, pp. 638–
645, 2000.

Freathy, Paul. (2004). The commercialisation of European airports: successful strategies in a decade of
turbulence? Journal of Air Transport Management, Vol. 10, 191–197.

Geuens, M., Vantomme, D. and Brengman, M. (2004). Developing a typology of airport shoppers.
Tourism Management, Vol. 25 (2004) 615–622.

Glazer, R. (1991). Marketing in an Information-Intensive Environment: Strategic Implications of
Knowledge as an Asset. Journal of Marketing; Oct 1991; 55, 4.

Gordon, J.R. and Gordon, St. R. (2000). Structuring The Interaction Between IT And Business Units.
Information Systems Management, Winter 2000.

Gosling, G.D. (1990). Design of an expert system for aircraft gate assignment. Transportation
Research-A, Vol. 24 (1), 59-69.

Graham, A. (2008). How important are commercial revenues to today’s airports? Journal of Air
Transport Management. (in press, doi: 10.1016/j.jairtraman.2008.11.004)

Gu, Y., Chung, C.A. (1999). Genetic algorithm approach to aircraft gate reassignment problem.
Journal of Transportation Engineering 125, 384–389.

Haghani, A. and Chen, M.C. (1998). Optimizing gate assignments at airport terminals. Transportation
Research-A, Vol. 32 (6), 437-454.

List of References 162

Hamzawi, S.G. (1986). Management and planning of airport gate capacity: A microcomputer-based
gate assignment simulation model. Transportation Planning and Technology. Vol. 11, 189–
202.

Hassounah, M.I. and Steuart, G.N. (1993). Demand for Aircraft Gates. Transportation Research
Record, Vol. 1423, 26–33.

Henderson, J.C. and Venkatraman, N. (1993). Strategic alignment: Leveraging information technology
for transforming organizations. IBM Systems Journal, Vol. 38, No. 2&3, 1999, 472-484,
(Reprint from Vol. 32, No. 1, 1993).

Hildebrandt, L. (1988). Store Image and the Prediction of Performance in Retailing. Journal of
Business Research, Vol. 17, pp. 91-100 (1988)

Hill, L. (2002). Digital Airport. Air Transport World, September 2002, 63-66.

Hsu, Ch.-I. and Chao, Ch.-Ch. (2005). Space allocation for commercial activities at international
passenger terminals. Transportation Research Part E, Vol. 41 (2005) 29–51.

Hu, Q. and Plant, R. T. (2001). An empirical study of the causal relationship between IT investment
and firm performance. Information Resource Management Journal, Vol. 14(3), 15–26.

Hu, Q. and Quan, J. (2005). Evaluating the impact of IT investments on productivity: a causal analysis
at industry level. International Journal of Information Management, Vol. 25, 39–53.

Hu, X.-B. and Di Paolo, E. (2007). An Efficient Genetic Algorithm with Uniform Crossover for the
Multi-Objective Airport Gate Assignment Problem. Conference Paper at 2007 IEEE Congress
on Evolutionary Computation (CEC2007), 25-28 Sep 2007, Singapore.

Jarach, David. (2001). The evolution of airport management practices: towards a multi-point, multi-
service, marketing-driven firm. Journal of Air Transport Management, Vol. 7, 119-125.

Kaplan, R.S. and Norton, D.P. (1992). The Balanced Scorecard: Measures That Drive Performance.
Harvard Business Review, January-February 1992, 71-79.

Kaplan, R.S. and Norton, D.P. (2000). Having Trouble with your Strategy? Then Map It. Harvard
Business Review, September-October 2000, 167-176.

Kaplan, R.S. and Norton, D.P. (2004). How Strategy Maps Frame an Organization's Objectives.
Finance Executive, March-April 2004, 40-45.

Kazda, A. and Caves, R.E. (2000). Airport Design and Operation. Elsevier Science Ltd. Oxford,
United Kingdom.

Kelemen, Z. (2005). Resource Management System – The first step to the airport information system
integration. PERIODICA POLYTECHNICA SER. TRANSP. ENG, Vol. 33, NO. 1–2, PP. 15–
24 (2005).

Kerkloh, M. (2007). Munich Airport’s Terminal 2: A successful airport-airline collaboration.
AIRPORT MANAGEMENT, Vol. 1, NO. 4, 330–337 JULY–SEPTEMBER 2007.

Kim, H. and Shin, J. (2001). A contextual investigation of the operation and management of airport
concessions. Tourism Management, Vol. 23, 149–155.

Klann, D. (2001). Impact of e-commerce on an airline's inventory systems with possibilities to
monitor and reduce fraud. Unpublished M.Sc. Thesis - Cranfield University, School of
Mechanical Engineering, 2001.

Kohli, R., and Devaraj, S. (2003). Measuring information technology payoff: a meta analysis of
structural variables in firm-level empirical research. Information Systems Research, 14(2), 127–
145.

Koreimann, D.S. (1995). Grundlagen der Software-Entwicklung. 2., durchges. Aufl. Oldenbourg,
München.

List of References 163

Lam, S.H., Cao, J.-M. and Fan, H. (2002). Development of an intelligent agent for airport gate
assignment. Journal of Air Transportation, Vol. 7, No. 2 – 2002.

Lam, W.H.K., Tam, M.L., Wong, S.C. and Wirasinghe, S.C. (2003). Wayfinding in the passenger
terminal of Hong Kong International Airport. Journal of Air Transport Management, Vol. 9,
73-81.

Lim, A., Rodrigues, B. and Zhu, Y. (2005). Airport Gate Scheduling with Time Windows. Artificial
Intelligence Review (2005) 24:5–31.

Loveman, G. W. (1994). An assessment of the productivity impact on information technologies. In T.
J. Allen, & M. S. Morton, Information technology and the corporation of the 1990s: Research
studies. Cambridge: MIT Press.

Luftman, J. (2003). Assessing IT/Business Alignment. Information Strategy: The Executive's Journal.
Fall 2003, 7-14.

Luftman, J., Papp, R. and Brier, T. (1999). Enablers and Inhibitors of Business-IT Alignment.
Communications of the Association for Information Systems, Vol. 1, Article 1, March 1999.

Luftman, J.N., Lewis, P.R. and Oldach, S.H. (1993). Transforming the enterprise: The alignment of
business and information technology strategies. IBM Systems Journal. Armonk: 1993, Vol. 32,
No. 1; 198-221.

Mack, R. (2002). How to Tell If a Strategic Statement Is 'Strategic'. Research Note, TU-18-0143.
Gartner Research, Stamford, Connecticut.

Mack, R. (2003a). Management Update: An Alternative Approach to Creating an IT Strategy.
Research Note, IGG-01012003-04. Gartner Research, Stamford, Connecticut.

Mack, R. (2003b). Real IT Strategies: Steps 1 to 4 — Laying a Foundation. Research Note, R-21-
4074. Gartner Research, Stamford, Connecticut.

Mack, R. and Frey, N. (2002). Six Building Blocks for Creating Real IT Strategies. Research Note, R-
17-3607. Gartner Research, Stamford, Connecticut.

Melchert, F. and Winter, R. (2004). The Enabling Role of Information Technology for Business
Performance Management. DSS2004 Conference Proceedings. Institute of Information
Management, University of St. Gallen, St. Gallen, Switzerland.

Montealegre, R. (2000). De-Escalating Information Technology Projects: Lessons From The Denver
International Airport. MIS Quarterly, Vol. 24, No. 3, 417-447.

Murty, K.G., Wan, Y.W., Yu, V.F., Dann, J. and Lee, R. (2008). Developing a DSS for Allocating
Gates to Flights At An International Airport. Unpublished. March 2008.

Neufville, de R. (1994). The baggage system at Denver: prospects and lessons. Journal of Air
Transport Management, Vol. 1, 229-236.

Obata, T. (1979) The Quadratic Assignment Problem: Evaluation of Exact and Heuristic Algorithms.
Tech. Report TRS-7901, Rensselaer Polytechnic Institute, Troy, New York.

Omar, O. (2001). Airport Retailing: Examining Airline Passengers’ Impulsive Shopping Behaviour.
Journal of Euromarketing, Vol. 11(1) 2001.

Park, Y. (1999). A methodology for establishing operational standards of airport passenger terminals.
Journal of Air Transport Management, Vol. 5, 73-80.

Park, Y. (2003). An analysis for the competitive strength of Asian major airports. Journal of Air
Transport Management, Vol. 9, 353-360.

Peak, D., Guynesa, C. St., Kroon, V. (2005). Information technology Alignment Planning—a case
study. Information & Management, Vol. 42 (2005), 619–633.

Peppard, J. (1998). IS/IT Management in the Global Enterprise: A Framework for Strategic

List of References 164

Alignment. Cranfield School of Management Working Papers, SWP 9/98.

Peppard, J. and Ward, J. (2004). Beyond strategic information systems: towards an IS capability.
Journal of Strategic Information Systems, Vol. 13, 167–194.

Peppard, J., Edwards, Chr. and Lambert, R. (1999). A Governance Framework for Information
Management in the Global Enterprise. Paper for BIT World'99 Conference, Cape Town, South
Africa.

Pitt, M., Wai, F.K. and Teck, P.C. (2002). Technology selection in airport passenger and baggage
systems. Facilities, Vol. 20, No. 10, 314-326.

Pollalis, Y.A. (2003). Patterns of co-alignment in information-intensive organizations: business
performance through integration strategies. International Journal of Information Management,
Vol. 23, 469–492.

Porter, M.E. (1980). Competitive Strategy: Techniques for Analyzing Industries and Competitors. Free
Press, New York.

Porter, M.E. (1998). On Competition. Harvard Business Review Book, Cambridge.

Porter, M.E. and Millar, V.E. (1985). How Information Gives You Competitive Advantage. Harvard
Business Review, JULY-AUGUST 1985, 2-13.

Rau, K.G. (2004). The CIO Dashboard Performance Management Program: Measuring and Managing
the Value of IT. Information Strategy: The Executive's Journal, Winter 2004, 6-17.

Reinheimer, S. (1998). Marktorientierte elektronische Koordination zwischenbetrieblicher
Geschäftsprozesse in der Luftfracht. dissertation.de, Verlag im Internet, ISBN 3-933342-11-2.
Berlin, Germany.

Ross, J.W. and Beath, C.M. (2002). Beyond the Business Case: New Approaches to IT Investment.
MIT Sloan Management Review, 51-59.

Rowley, J. and Slack, F. (1999). The retail experience in airport departure lounges: reaching for
timelessness and placelessness. International Marketing Review, Vol. 16 No. 4/5, 1999, pp.
363-375.

Seamster, Th.L. and Kanki, B.G. (2002). Aviation Information Management - From Documents to
Data. Ashgate Publishing Limited. Aldershot, England.

Shifrin, C.A. (1988). Gate assignment expert system reduces delays at United’s hubs. Aviation Week
& Space Technology. January 5, 148-149 (1988).

Srihari, K. and Muthukrishnan, R. (1991). An expert system methodology for an aircraft-gate
assignment. Computers & Industrial Engineering, Vol. 21(1-4), 101-105.

Su, Y.Y. and Srihari, K. (1993). A knowledge based aircraft-gate assignment advisor. Computers and
Industrial Engineering, Vol. 25, 123–126.

Tosic, V. (1992). A review of airport passenger terminal operations analysis and modeling.
Transportation Research-A, Vol. 26 (1), 3-26.

Vanderstraetan, G. and Bergeron, M. (1988). Automatic assignment of aircraft to gates at a terminal.
Computers and Industrial Engineering, Vol.14, 15–25.

Wiese, P. (2003a). A CEO Perspective on Strategic Use of IT. Aerospace and Defense - 2003
Information Technology Survey. Experience, Results. Computer Sciences Corporation (CSC),
El Segundo, California, USA.

Wiese, P. (2003b). Summary: Aerospace and Defense - 2003 Information Technology Survey.
Experience, Results. Computer Sciences Corporation (CSC), El Segundo, California, USA.

Wu, Ch.-L. (2005). Inherent delays and operational reliability of airline schedules. Journal of Air
Transport Management 11 (2005) 273–282.

List of References 165

Wu, Ch.-L. and Caves, R.E. (2000). Aircraft operational costs and turnaround efficiency at airports.
Journal of Air Transport Management, Vol. 6, 201-208.

Yan, S. and Chang, C.M. (1998). A network model for gate assignment. Journal of Advanced
Transportation, Vol. 32, 176–189.

Yan, S. and Huo, C.M. (2001). Optimization of multiple objective gate assignments. Transportation
Research A, Vol. 35, 413–432.

Yan, S. and Tang, C.H. (2007). A heuristic approach for airport gate assignments for stochastic flight
delays. European Journal of Operational Research, Vol. 180 (2007) 547–567.

Yan, S., Chang, K.Ch. and Tang, Ch.-H. (2005). Minimizing inconsistencies in airport common-use
checking counter assignments with a variable number of counters. Journal of Air Transport
Management, Vol. 11 (2005) 107–116.

Yan, S., Shieh, C.W., Chen, M. (2002). A simulation framework for evaluating airport gate
assignments. Transportation Research A, Vol. 36, 885–898.

Yan, S., Tang, C.H. and Chen, M. (2004). A model and a solution algorithm for airport common use
check-in counter assignments. Transportation Research Part A, Vol. 38 (2004) 101–125.

Zachman, J.A. (1987). A Framework for Information Systems Architecture. IBM Systems Journal,
Vol. 26, no. 3, 1987. IBM Publication G321-5298.

Zhang, S.X., Cesarone, J. and Miller, F.G. (1994). Comparative study of an aircraft assignment
problem at a large International airport. Journal of Industrial Engineering, (13): 203-212.

Bibliography 166

7 Bibliography

Aaker, David A. (2001). Strategic Market Management. 6th Ed., John Wiley & Sons, Inc. New York,
USA.

Abdelghanya, A., Abdelghanyb, K. and Narasimhanc, R. (2006). Scheduling baggage-handling
facilities in congested airports. Journal of Air Transport Management, Vol. 12 (2006) 76–81.

Abeyratne, Ruwantissa I.R. (2001). Revenue and investment management of privatized airports and
air navigation services - a regulatory perspective. Journal of Air Transport Management, Vol.
7, 217-230.

Airport Council International, 2007. ACI Airport Economics Survey 2006. ACI, Geneva.

Alexopoulos, E. and Theodoulidis, B. (2003). The generic information business model. International
Journal of Information Management, Vol. 23, 323–336.

Anderson, R. (2003). MSBs Must Prioritize to Reduce Application Portfolio Costs. Research Note,
COM-20-3434. Gartner Research, Stamford, Connecticut.

Angeles, R., Corritore, C.L., Basu, S.C. and Nath R. (2001). Success factors for domestic and
international electronic data interchange (EDI) implementation for US firms. International
Journal of Information Management, Vol. 21, 329–347.

Antoniou, P.H., Ansoff, H.I. (2004). Strategic Management of Technology. Technology Analysis &
Strategic Management, Vol. 16, No. 2, 275–291, June 2004

Appel, W. (2003). Enterprise Architecture: An In-Depth Study. Paper of EPAS, Meta-Group.

Bailey, K. and Francis, K. (2008). Managing information flows for improved value chain
performance. International Journal of Production Economics, Vol. 111 (2008) 2–12.

Banks, T. (2008). Design work booms with rise in airport retail spend. Design Week. 28.08.2008.

Barnes, Stuart J. (2002). The mobile commerce value chain: analysis and future developments.
International Journal of Information Management, Vol. 22, 91–108.

Baum, C. (2003). Designing Government Enterprise Architecture. Research Note, TU-20-5535.
Gartner Research, Stamford, Connecticut.

Bergey, J.K., Northrop, L.M., Smith, D.B. (1999). Enterprise Framework for the Disciplined
Evolution of Legacy Systems. Information Strategy - The Executive's Journal, Vol. 16, No. 1,
15-35.

Braganza, A. (2004). Rethinking the data–information–knowledge hierarchy: towards a case-based
model. International Journal of Information Management, Vol. 24, 347–356.

Browning, J. (2002). Three Pillars to SMB IT Value: Strategy, Architecture and Organization.
Research Note, LE-17-1208. Gartner Research, Stamford, Connecticut.

Buchanan, R. (Unknown). Enterprise Architecture and Strategic Planning Synergies. EPAS, META
Group.

Buytendijk, F. (2004a). Every Scorecard needs a strategy map. Research Note, COM-22-6893.
Gartner Research, Stamford, Connecticut.

Buytendijk, F. (2004b). High-Performance Organizations Need A Values-Based Scorecard. Research
Note, DF-23-5153. Gartner Research, Stamford, Connecticut.

Capri, S., Ignaccolo, M. (2004). Genetic algorithms for solving the aircraft-sequencing problem: the
introduction of departures into the dynamic model. Journal of Air Transport Management, Vol.
10, 345–351.

Bibliography 167

Centre for Airport Studies. (2001). Airport Retail Study 2000/2001. Arthur Anderson Services
Practice, Sydney.

Dallas, S. (2002). CIO Update: IT Governance Rules to Boost IS Organization and Business Unit
Credibility. Research Note, IGG-12042002-03. Gartner Research, Stamford, Connecticut.

Daugherty, P.J., Richey, G.R., Genchev, St.E. and Chen, H. (2005). Reverse logistics: superior
performance through focused resource commitments to information technology.
Transportation Research Part E, Vol. 41, 77–92.

Davies, G. (1995). Bringing stores to shoppers – not shoppers to stores. International Journal of Retail
& Distribution Management, Volume 23, Number, 1, 1995, 18–23.

Dehninga, B. and Stratopoulos, Th. (2003). Determinants of a sustainable competitive advantage due
to an IT-enabled strategy. Journal of Strategic Information Systems, Vol. 12, 7–28.

DeJarnett, L. (2004). Notes From The Editor: The Great Debate: Does IT Really Matter?. Information
Strategy: The Executive's Journal, Spring 2004, 3-5.

Doganis, R. (2001). The airline business in the 21st century. Routledge, London.

Drakos, N. and Casonato, R. (2002). Maintaining Flexibility Through Architectural Choices. Research
Note, COM-16-8855. Gartner Research, Stamford, Connecticut.

Drobik, A. (2002). Enterprise Architecture: The Business Issues and Drivers. Research Note, AV-17-
3971. Gartner Research, Stamford, Connecticut.

Duggan, J. and Light, M. (2002). AD Portfolio Management: Tolerate, Integrate or Eliminate.
Research Note, COM-15-2917. Gartner Research, Stamford, Connecticut.

Dürr, E. and Giannopoulos, G.A. (2003). SITS: a system for uniform intermodal freight transport
information exchange. International Journal of Transport Management, Vol. 1, 175–186.

Eastwood, G. (2008). Building the Responsive Enterprise – The evolution of BI, CRM and integrated
information management. Business Insights Technology Reports, November 2008.

Feiman, J. (2003). Selecting Alternatives in IT: A Decision-Making Model. Research Note, DF-18-
7438. Gartner Research, Stamford, Connecticut.

Feld, Ch.S. and Stoddard, D.B. (2004). Getting IT Right. Harvard Business Review, February 2004,
72-79.

Feldman, J. (2002). First Class IT-Service. Network Computing, 17 April 2002, 44-49.

Feldman, J.M. (1999). Controlling the Airport Data Grid. Air Transport World, 6/99, 35-42.

Fenn, J. and Linden, A. (2003). Take the Initiative When Planning Your IT Strategy. Research Note,
LE-20-7215. Gartner Research, Stamford, Connecticut.

Fiala, P. (2005). Information sharing in supply chains. Omega, Vol. 33, 419–423.

Fine, Ch.H. and Porteus, E.L. (1989). Dynamic Process Improvement. Operations Research, Vol. 37,
No. 4, July-August 1989, 580-591.

Francis, G., Humphreys, I. and Fry, J. (2002). The benchmarking of airport performance. Journal of
Air Transport Management, Vol. 8, 239-247.

Francis, G., Humphreys, I. and Fry, J. (2005). The nature and prevalence of the use of performance
measurement techniques by airlines. Journal of Air Transport Management, Vol. 11, 207–217.

Fuglseth, A.M. and Grønhaug, K. (2002). Theory-driven construction and analysis of cause maps.
International Journal of Information Management, Vol. 22, 357–376.

Fulton, R. (2003). Defining the Business Value of IT. Research Note, DF-18-3219. Gartner Research,
Stamford, Connecticut.

Bibliography 168

Gerrard, M. (2000). Minimizing IT Investment Risk Upfront. Research Note, TU-09-9047. Gartner
Research, Stamford, Connecticut.

Gerrard, M. (2001). Managing Risk When Making IT Investment Decisions. Research Note, SPA-14-
3116. Gartner Research, Stamford, Connecticut.

Gerrard, M. (2003). CIO Update: How to Make IT Centralization a Success. Research Note, IGG-
01292003-03. Gartner Research, Stamford, Connecticut.

Gillen, D. and Lall, A. (2002). The economics of the Internet, the new economy and opportunities for
airports. Journal of Air Transport Management, Vol. 8, 49-62.

Gomolski, B. (2003a). Management Update: Enterprises Should Assess How Their IT Spending
Stacks Up. Research Note, IGG-08132003-01. Gartner Research, Stamford, Connecticut.

Gomolski, B. (2003b). Managing the Finances of the IS Internal Service Company. Research Note,
COM-19-4393. Gartner Research, Stamford, Connecticut.

Gomolski, B. (2004). Ensure the Accuracy of Your IT Spending Analysis. Research Note, COM-22-
6998. Gartner Research, Stamford, Connecticut.

Gomolski, B. and Mack, R. (2002a). Financial Management Is Key to IS Organizations' Success.
Research Note, K-18-9798. Gartner Research, Stamford, Connecticut.

Gomolski, B. and Mack, R. (2002b). IT Budgeting to Be Co-opted by Just-in-Time Funding. Research
Note, COM-18-7157. Gartner Research, Stamford, Connecticut.

Goodwin, R. (2002). Transportation Industry IT Spending, 2000-2005 (Executive Summary).
Research Note, ITSV-WW-EX-0131. Gartner Research, Stamford, Connecticut.

Gordon, J.R.M., Lee, P.-M., Lucas Jr. and Henry C. (2005). A resource-based view of competitive
advantage at the Port of Singapore. Journal of Strategic Information Systems, Vol. 14, 69–86.

Gorry, A.G., Scott M. and Michael S. (1989). A Framework for Management Information Systems.
Sloan Management Review, Spring 1989, 49-61.

Gregor, S., Martin, M., Fernandez, W., Stern, St. and Vitale, M. (2006). The transformational
dimension in the realization of business value from information technology. Journal of
Strategic Information Systems, Vol. 15 (2006) 249–270.

Gunasekaran, A., Love, P.E.D., Rahimi, F. and Miele, R. (2001). A model for investment justification
in information technology projects. International Journal of Information Management, Vol. 21,
349–364.

Hamzaee, R.G. and Vasigh, B. (2000). A simple revenue-cost perspective on US airport operations.
Journal of Air Transport Management, Vol. 6, 61-64.

Holloway, St. (1997). Straight and Level: Practical airline economics. Ashgate Publishing, Aldershot,
UK, (Reprinted 2000, twice).

Holly, A. (2000). Non-Aviation Revenues. Airport Magazine, May-June 2000, 14-15.

Howard, S. and Anderson, R. (2002). Strategy, Architecture and Communications Best Practices.
Research Note, COM-17-3003. Gartner Research, Stamford, Connecticut.

Humphreys, I. and Francis, G. (2002). Performance measurement: a review of airports. International
Journal of Transport Management, Vol. 1, 79–85.

Ittner, Chr.D. and Larcker, D.F. (2003). Comint Up Short On Nonfinancial Performance
Measurement. Harvard Business Review, November 2003, 88-95.

James, G. (2002). Business Processes: A Compass for Architecture. Research Note, COM-16-8746.
Gartner Research, Stamford, Connecticut.

Jones, N. (2002). Why Are IT Investments So Often a Disappointment? Research Note, COM-16-
5005. Gartner Research, Stamford, Connecticut.

Bibliography 169

Kaipia, R. and Hartiala, H. (2006). Information-sharing in supply chains: five proposals on how to
proceed. The International Journal of Logistics Management, Vol. 17 No. 3, 2006, pp. 377-
393.

Kemppainen, K., Nieminen J. and Vepsäläinen, A.P.J. (2007). Estimating the costs of airport
congestion due to fast connections. Journal of Air Transport Management, Vol. 13 (2007) 169–
174.

Knox, M. (2003). Cost-Only Infrastructure Omits Future Revenue Potential. Research Note, SPA-20-
0427. Gartner Research, Stamford, Connecticut.

Kocharekar, R. (2004). An IT Architecture For Nimble Organizations: Managing Access From
Cyberspace. Information Systems Management, Spring 2004, 22-30.

Kohl, N., Larsen, A., Larsen, J. Ross, A. and Tiourine, S. (2007). Airline disruption management –
perspectives, experiences and outlook. Journal of Air Transport Management, Vol. 13 (2007)
149–162.

Kreizman, G. (2003). IT Governance in Transition. Research Note, AV-19-0737. Gartner Research,
Stamford, Connecticut.

Kulatilaka, N. and Venkatraman, N. (2001). Strategic Options in the Digital Era. Business Strategy
Review, Vol. 12, No. 4, 7-15.

Lapkin, A. and Rosser, B. (2003). Architecture Is Not About Technology. Research Note, TG-20-
2290. Gartner Research, Stamford, Connecticut.

Lim, D. and Palvia, P.C. (2001). EDI in strategic supply chain: impact on customer service.
International Journal of Information Management, Vol. 21, 193–211.

Loebbecke, C. and Powell, P. (1998). Competitive Advantage from IT in Logistics: The Integrated
Transport Tracking System. International Journal of Information Management, Vol. 18 (1),
17-27.

Machuca, J.A.D. and Barajas, R.P. (2004). The impact of electronic data interchange on reducing
bullwhip effect and supply chain inventory costs. Transportation Research Part E, Vol. 40
(2004) 209–228.

Mahoney, J. (2003). Consolidating IT: How to Score the Benefits and Barriers. Research Note, TG-
19-4710. Gartner Research, Stamford, Connecticut.

Mangoubi, R.S. and Mathaisel, D.F.X. (1985). Optimizing gate assignment at airport terminals.
Transportation Science, Vol. 19 (2), 173-188.

Matlus, R. (2004). Developing SLAs to Demonstrate the Business Value of IT. Research Note, COM-
21-7511. Gartner Research, Stamford, Connecticut.

Miller, D.J. (2006). Technological diversity, related diversification, and firm performance. Strategic
Management Journal, Vol. 27: 601–619 (2006).

Moodie, M. (2007). Analysing airport commercial revenues. In: Airport Council International. ACI
Airport Economics Survey 2006. 20-25.

Murphy, T. (2002). Focusing Purely on Finance is Bad for Your Financials. Gartner G2 Report.
September 2002. Gartner Research, Stamford, Connecticut.

Murray, J.P. (2004). Judging IT Department Performance. Information Systems Management, Spring
2004, 72-77.

Newman, S. and Lloyd Jones, T. (1999). Airport and Travel Terminal Retailing: Strategies, Trends
and Market Dynamics. Ravenfox Publishing, London.

Page, S.N. and Rivera, Ivan. (2003). Relocating, Reallocating and Rethinking Concession Space.
Airport Magazine, January-February 2003, 14-15.

Bibliography 170

Palmer, J.W. and Griffith, D.A. (1998). Information intensity: A paradigm for understanding web site
design. Journal of Marketing Theory and Practice. Summer 1998; 6, 3; p. 38.

Panarella, A. (2002a). CEO and CIO Update: Case Studies Showing How IT Contributes to Business
Success. Research Note, IGG-07312002-03. Gartner Research, Stamford, Connecticut.

Panarella, A. (2002b). How IT Contributes to Business Success: Case Studies. Research Note, COM-
16-6873. Gartner Research, Stamford, Connecticut.

Pantazi, M.-A.A. and Georgopoulos, N.B. (2006). Investigating the impact of business-process-
competent information systems (ISs) on business performance. Managing Service Quality,
Vol.16 No. 4, pp. 421-434.

Peacock, E. and Tanniru, M. (2005). Activity-based justification of IT investments. Information &
Management, Vol. 42, 415–424.

Prakash, A.C. (1998). Leveraging the Potential of Strategic Systems. Information Systems
Management, Winter 1998.

Raval, V. (2003). Productivity and Information Technology. Information Strategy: The Executive's
Journal, Fall 2003, 37-40.

Rivard, S., Raymond, L. and Verreault, D. (2006). Resource-based view and competitive strategy: An
integrated model of the contribution of information technology to firm performance. Journal of
Strategic Information Systems, Vol. 15 (2006) 29–50.

Roberts, J. (2002). The Elusive Business Value of IT. Research Note, AV-17-2862. Gartner Research,
Stamford, Connecticut.

Roberts, J. (2003a). A Holistic Framework for Business Excellence. Research Note, TU-19-5797.
Gartner Research, Stamford, Connecticut.

Roberts, J. (2003b). The Business Value of IT Vendors. Research Note, DF-18-9870. Gartner
Research, Stamford, Connecticut.

Roberts, J. (2003c). The Business Value of the IT Application Portfolio. Research Note, DF-18-9665.
Gartner Research, Stamford, Connecticut.

Rosser, B. (2001). The Gartner Portfolio Management Tool for IT Investment. Research Note, TU-14-
0675. Gartner Research, Stamford, Connecticut.

Rosser, B. (2002a). A Practical Format for IT Architecture Guidelines. Research Note, TU-14-4319.
Gartner Research, Stamford, Connecticut.

Rosser, B. (2002b). Developing an Outline for Strategic IS Plans. Research Note, TU-15-9367.
Gartner Research, Stamford, Connecticut.

Rosser, B. (2002c). Mapping Architectural Styles to the Enterprise Framework. Research Note, COM-
16-9013. Gartner Research, Stamford, Connecticut.

Rosser, B. (2002d). What Is an Architectural Style? Research Note, COM-17-7016. Gartner Research,
Stamford, Connecticut.

Rosser, B. (2003a). Business Drivers as Guides to Architecture Choices. Research Note, AV-20-4094.
Gartner Research, Stamford, Connecticut.

Rosser, B. (2003b). Business Process Styles Can Benefit From Architecture. Research Note, TG-20-
1350. Gartner Research, Stamford, Connecticut.

Rosser, B. (2003c). Justifying Investments in Enterprise IT Architecture. Research Note, COM-19-
4452. Gartner Research, Stamford, Connecticut.

Bibliography 171

Salaün, Y. and Flores, K. (2001). Information quality: meeting the needs of the consumer.
International Journal of Information Management, Vol. 21, 21-37.

Salmela, H. and Spil, T.A.M. (2002). Dynamic and emergent information systems strategy
formulation and implementation. International Journal of Information Management, Vol. 22,
441–460.

Salwen, J. (2002). Enterprise Operations Management - Business Process Framework. Auerbach
Publications, 8/02, 41-01-36.

Santos, B.D. and Sussman, L. (2000). Improving the return on IT investment: the productivity
paradox. International Journal of Information Management, Vol. 20, 429-440.

Schulman, J. (2003). Ground Your Architecture in the Needs of Your Business. Research Note, LE-
20-4594. Gartner Research, Stamford, Connecticut.

Schulte, R. and Natis, Y. (2003). Event-Driven Architecture Complements SOA. Decision
Framework. Research Note. DF-20-1154. Gartner Research, Stamford, Connecticut.

Sechrest, L. (2002). Aligning IT and Business Objectives: The Role of Surveys. Research Note,
COM-16-9154. Gartner Research, Stamford, Connecticut.

Seneviratne, P.N. and Martel, N. (1991). Variables influencing performance of air terminal buildings.
Transportation Planning and Technology. Vol. 16, 1177–1179.

Shaw, St. (1999). Airline Marketing and Management. 4th Ed., Ashgate Publishing, Aldershot, UK.
(Reprinted 2000).

Silva, L., Figueroa, E.B. and Gonzalez-Reinhart, J. (2007). Interpreting IS alignment: A multiple case
study in professional organizations. Information and Organization. Information and
Organization, Vol. 17 (2007) 232–265.

Sinur, J. (2002). Business Models: The Architecture That Pays for Itself. Research Note, COM-17-
0438. Gartner Research, Stamford, Connecticut.

Sowa, J.F. and Zachman, J.A. (1992). Extending and Formalizing the Framework for Information
Systems Architecture. IBM Systems Journal, Vol. 31, no. 3, 1992. IBM Publication G321-
5488.

Spanos, Y.E., Lioukas, S. (2001). An examination into the causal logic of rent generation: contrasting
Porter’s competitive strategy framework and the resource-based perspective. Strategic
Management Journal, Vol. 22: 907–934 (2001).

Stamatopoulos, M.A., Zografos, K.G. and Odoni, A.R. (2004). A decision support system for airport
strategic planning. Transportation Research, Part C, Vol. 12, 91–117.

Stelter, D., Fechtel, A., Desai, P., Deimler, M., Koehler, M. and Sutherland, G. (2004). Airports -
Dawn of a New Era. Report. The Boston Consulting Group GmbH, Munich, Germany.

Stross, A. and Page, S.N. (2001). The Lure of Concession Revenues: How Do U.S. Airports Really
Compare? Airport Magazine, September-October 2001, 20-22.

Taller, M. (2002). A Guide For The Canadian Retail Travel Services Industry – New Strategies and
Business Models. Report. Trellis Consulting, the Trellis Group, Inc.

Talon, P.P. (2007). Does IT pay to focus? An analysis of IT business value under single and multi-
focused business strategies. Journal of Strategic Information Systems, Vol. 16 (2007) 278–300.

Tarafdar, M. and Gordon, St.R. (2007). Understanding the influence of information systems
competencies on process innovation: A resource-based view. Journal of Strategic Information
Systems, Vol. 16 (2007) 353–392.

Thornton, C. (1999). Are We Aligned Yet?. Auerbach Publications: IT Performance Improvement,
Volume 1, No. 12, 1+4-8.

Bibliography 172

Tiboldi, T. (2008). Marketing strategy and airport revenue at FlyBalaton Airport. AIRPORT
MANAGEMENT, Vol. 2, NO. 2, 153–157 JANUARY–MARCH 2008.

Tingling, P. and Parent, M. (2004). An exploration of enterprise technology selection and evaluation.
Journal of Strategic Information Systems, Vol. 13, 329–354.

Vail III, E.F. (2002). Causal Architecture: Bringing The Zachman Framework To Life. Information
Systems Management, Summer 2002, 8-19.

Vasigh, B. and Hamazaee, R.G. (1998). A comparative analysis of econometric performance of US
commercial airports. Journal of Air Transport Management, Vol. 4, 209-216.

Vasigh, B. and Haririan, M. (2003). An Empirical Investigation of Financial and Operational
Efficiency of Private Versus Public Airports. Journal of Air Transportation, Vol. 8, No. 1, 91-
110.

Wagner, Chr. (2004). Enterprise strategy management systems: current and next generation. Journal
of Strategic Information Systems, Vol. 13, 105–128.

Wainwright, D. and Waring, T. (2004). Three domains for implementing integrated information
systems: redressing the balance between technology, strategic and organisational analysis.
International Journal of Information Management, Vol. 24, 329–346.

Wallace, M. (1995). Survey: Practical Applications of Constraint Programming. Unpublished.
Imperial College, London. September 1995.

Walsh, P. (1996). Finding key performance drivers: Some new tools. TOTAL QUALITY
MANAGEMENT, Vol. 7, No. 5, 509-519.

Wijnhoven, F. Spil, T. Stegwee, R. and Tjang, R.A.Fa. (2006). Post-merger IT integration strategies:
An IT alignment perspective. Journal of Strategic Information Systems, Vol. 15 (2006) 5–28.

Woodword, G. (2002). A departure for retailers. Design Week. 14 November 2002.

Wybolt, N.J. (1999). Information Management: Strategy, Systems and Technology. The Workgroup
Model for Enterprise Architectures. Auerbach Publications, 8/99, 3-01-65.

Xu, J.F. and Bailey, G. (2001). “The airport gate assignment problem: Mathematical model and a tabu
search algorithm,” Proceedings of the 34th Hawaii International Conference on System
Sciences, IEEE, p.10.

Zhang, A. and Zhang Y. (2001). Airport charges and cost recovery: the long-run view. Journal of Air
Transport Management, Vol. 7, 75-78.

Zhang, T. and Zhang, D. (2007). Agent-based simulation of consumer purchase decision-making and
the decoy effect. Journal of Business Research, Vol. 60 (2007) 912–922.

APPENDIX A 173

8 APPENDIX A

8.1 Overview of functions and procedures

Figure 72: Screenshot of software's function/procedure list. Source: Author.

APPENDIX A 174

8.2 Source code of software

The software has been written in the PowerBasic programming language. The

programming editor allows for syntax colouring and very long lines. Due to the thesis’

format restrictions many lines of source code will be broken into the next line.

The source code of some functions that are not deemed necessary here has not been

included in the following printout.

APPENDIX A 175

8.2.1 Main File

‘-- --- ----------------
' MAIN PROGRAM: START
‘-- --- ----------------

FUNCTION PBMain PRIVATE AS LONG

 ‘-- ---
 '--- GLOBAL VARIABLES ---
 ‘-- ---

 '-----------------------
 ' FILENAMES
 '-----------------------

 'PATHS
 '-----

 GLOBAL PATH_APPLICATION AS STRING 'directo ry that contains the
application (.exe-file)
 GLOBAL PATH_DATA AS STRING
 'directory that contains all data files
 GLOBAL PATH_HISTORY AS STRING
 'directory that contains files that have been back ed up (.txt -> datetimestamp.txt)
 GLOBAL PATH_SCENARIOS AS STR ING 'directory that contains results of scenarios (opti runs):
(1) daily flight schedules (2) daily allocations

 'FILES
 '-----
 GLOBAL FILE_SUMMER AS STRING 'this is
the working/current version of the summmer season
 GLOBAL FILE_WINTER AS STRING 'this is
the working/current version of the winter season
 GLOBAL FILE_SS AS STRING
 'Seasonal Flight Plan (Summer)
 GLOBAL FILE_WS AS STRING
 'Seasonal Flight Plan (Winter)

 '--- ORG DATA FILES --------------------------- --------

 GLOBAL FILE_ORG AS STRING
 'PreOrgFile (fixed field length)

 '--- ERROR FILES ------------------------------ --------

 GLOBAL FILE_ERR AS STRING
 'Error Queue for QS reasons
 GLOBAL FILE_ERR2 AS STRING
 'ErrQueue with airport codes that are not in refer ence list (FILE_AIRPORTS)
 GLOBAL FILE_ERR_03 AS STRING
 'ErrFile (flights with no ATD)
 GLOBAL FILE_ERR_04 AS STRING
 'ErrFile (flights with no actual pax)
 GLOBAL FILE_ERR_05 AS STRING
 'ErrFile (flights with no flight pax DF factor)
 GLOBAL FILE_ERR_06 AS STRING 'ErrFile
(flights with a delay of 9999)
 GLOBAL FILE_ERR_07 AS STRING
 'ErrFile (flights of season flight plan with no ma tch in OrgDataFile)
 GLOBAL FILE_ERR_08 AS STRING
 'ErrFile (flights with no DF factor)

 '--- MISC FILES ------------------------------- --------

 GLOBAL FILE_WSC AS STRING 'File with A/C and WingSpanCodes
 GLOBAL FILE_GROUNDTIME AS STRING 'File with A /C and average standard ground times
 GLOBAL FILE_GATE AS STRING 'File with Gates used
 GLOBAL FILE_GATE_INFRA AS STRING 'File with Description of Gates
 GLOBAL FILE_FLIRTORG AS STRING 'original FLIR T data (for verification and fallback)'
 GLOBAL FILE_FLIRT AS STRING 'FLIRT data (for verification and fallback)
 GLOBAL FILE_OAG AS STRING 'File with flight numbers and destination airports
 GLOBAL FILE_DF_FLIGHT AS STRING 'File WITH Du ty Free factors per flight (e.g. BA8733;88,0)
 GLOBAL FILE_DF_COUNTRY AS STRING 'File WITH Duty Free factors per country (e.g.
GERMANY;73,5)
 GLOBAL FILE_RETAILAREAFACTORS AS STRING 'File WITH factors FOR each retail area (rel. Retail
factor, e.g. R2;3,4)
 GLOBAL FILE_RETAIL_AREA_DEF AS STRING 'File w ith the definition of the retail areas
 GLOBAL FILE_REVPERPAX AS STRING 'File with A verage (Retail) Revenue Per PAX
 GLOBAL FILE_DF_RETAIL_FACTOR AS STRING 'Duty Free Retail Factor
 GLOBAL FILE_GANTTVIEW AS STRING 'File used fo r import in EXCEL spreadsheet with conditional
formatting
 GLOBAL FILE_TIMEINDEX AS STRING 'File with an index for times during a day (00:00, 00:05, .. 24: 00)
 GLOBAL FILE_HEATCAT AS STRING 'File that defines the category according to which the heat map is
generated
 GLOBAL FILE_AIRPORTS AS STRING 'File with up dated AP codes (Russian Federation,
Yugoslavia, ...)
 GLOBAL FILE_AIRLINES AS STRING 'File with Ai rline Codes
 GLOBAL FILE_PAX001 AS STRING 'PAX data file used for import into EXCEL for pax stats

APPENDIX A 176

 GLOBAL FILE_OPTIPARAMETERS AS STRING 'File with (GA) optimization parameters
 GLOBAL FILE_AIRLINEALLIANCES AS STRING 'File with members of airline alliances

 '-----------------------
 ' OTHER
 '-----------------------

 GLOBAL DEBUG_COUNTER_1 AS DOUBLE
 GLOBAL DEBUG_COUNTER_2 AS DOUBLE
 GLOBAL DEBUG_COUNTER_3 AS DOUBLE
 GLOBAL DEBUG_COUNTER_4 AS DOUBLE
 GLOBAL DEBUG_COUNTER_5 AS DOUBLE

 GLOBAL DEBUG_PRINT AS INTEGER

 GLOBAL gHeatCat_B_From AS LONG
 GLOBAL gHeatCat_B_To AS LONG

 GLOBAL gNumberOfGates AS INTEGER
 GLOBAL gNumberOfAircraftTypes AS INTEGER

 GLOBAL RUNMODE AS STRING

 GLOBAL gVarNumber_1_TimerFunc AS DOUBLE
 GLOBAL gVarNumber_2_TimerFunc AS DOUBLE
 GLOBAL gVarNumber_3_TimerFunc AS DOUBLE

 GLOBAL gVarString_1_TimerFunc AS STRING
 GLOBAL gVarString_2_TimerFunc AS STRING
 GLOBAL gVarString_3_TimerFunc AS STRING

 GLOBAL gTimeCalcNumber_1 AS LONG
 GLOBAL gTimeCalcNumber_2 AS LONG
 GLOBAL gTimeCalcNumber_3 AS LONG
 GLOBAL gTimeCalcNumber_4 AS LONG

 '--- FOR OPTIMIZATION RUNS ---

 GLOBAL gDKGA_NumberOfRecords AS LONG

 GLOBAL gDKGA_MinutesAtGateMINIMUM AS INTEGER 'in file FILE_OPTIPARAMETERS
 GLOBAL gDKGA_MinutesAtGateMAXIMUM AS INTEGER 'in file FILE_OPTIPARAMETERS
 GLOBAL gBufferIntervals AS INTEGER 'in file FILE_OPTIPARAMETERS

 '-- --- -----------

 DIM lMenuItem AS LOCAL LONG
 DIM lResult AS LOCAL LONG
 DIM sMenu(1 TO %MAXMENUBUFFER) AS LOCAL STRING
 LOCAL i AS INTEGER

 RUNMODE = "CRANFIELD"

APPENDIX A 177

‘-- --- ----------------
' SUBs / FUNCTIONs
‘-- --- ----------------

FUNCTION TitleBarTime(lNotUsed&) AS LONG

 ConsoleTitle "Current Time: " + TIME$

 IF RIGHT$(TIME$,1) = "0" THEN
 ConsoleIcon %IDI_HAND
 ELSE
 ConsoleIcon %IDI_ASTERISK
 END IF

END FUNCTION

‘-- --- ----------------
--- ------------------

SUB SPLASHBOX(sText$)

 SplashBoxShow 1+%BOLD, _
 0, _
 %CONSOLE_CENTER, _
 %CONSOLE_CENTER, _
 sText$, _
 "" , _
 "" , _
 0, _
 %TRUE

 SLEEP 1000
 SplashBoxHide

END SUB

‘-- --- ----------------

'-- --- ----------------

FUNCTION OpenFileDialog(BYVAL hWnd AS LONG, _ ' parent window
 BYVAL sCaption AS STRING, _ ' caption
 BYREF sFileNames AS STRING, _ ' filename
 BYVAL sInitialDir AS STRING , _ ' start directory
 BYVAL sFilter AS STRING, _ ' filename filter
 BYVAL sDefExtension AS STRI NG, _ ' default extension
 BYREF lFlags AS LONG) AS LO NG ' flags

 DIM tOFN AS LOCAL OPENFILENAME
 DIM sRetVal AS LOCAL STRING

 sRetVal = STRING$(1024,0)
 MID$(sRetVal,1) = sFileNames

 REPLACE "|" WITH CHR$(0) IN sFilter

 IF LEN(sInitialDir) = 0 THEN
 sInitialDir = CURDIR$
 END IF

 tOFN.lStructSize = SIZEOF(tOFN)
 tOFN.hWndOwner = hWnd
 tOFN.lpstrFilter = STRPTR(sFilter)
 tOFN.nFilterIndex = 1
 tOFN.lpstrFile = STRPTR(sRetVal)
 tOFN.nMaxFile = LEN(sRetVal)
 tOFN.lpstrInitialDir = STRPTR(sInitialDir)
 IF LEN(sCaption) THEN
 tOFN.lpstrTitle = STRPTR(sCaption)
 END IF
 tOFN.Flags = lFlags OR %OFN_ENABLEH OOK OR %OFN_EXPLORER
 tOFN.lpfnHook = CODEPTR(OfnHook)
 tOFN.lpstrDefExt = STRPTR(sDefExtension)

 'This function returns zero (0) if the user sel ects Cancel or Close.
 FUNCTION = GETOPENFILENAME(tOFN)

 sFileNames = sRetVal
 lFlags = tOFN.Flags

END FUNCTION

'-- --- ----------------

‘-- ---------------------------------------
'--- SYSTEM ADMIN FUNCTIONS ---
‘-- ---------------------------------------

SUB LogEntry(BYVAL SenderFunction AS STRING, BYVAL LogText AS STRING)

 'writes information with a time stamp into a log f ile

APPENDIX A 178

 DIM FileHandle AS INTEGER

 FileHandle = FREEFILE

 OPEN PATH_APPLICATION+$FILE_ACTLOG FOR APPEND AS # FileHandle
 PRINT #FileHandle, DATE$ + ";" + TIME$ + ";" + Se nderFunction + SPACE$(50-LEN(SenderFunction)) +
";" UCASE$(LogText)
 CLOSE #FileHandle

END SUB 'LogEntry()

‘-- ---------------------------------------

SUB ShowWaitBox(BYVAL DurationSecs AS INTEGER)

 LOCAL hBmp AS LONG

 LOCAL h, w, hGW AS LONG

 h = 100
 w = 200

 GRAPHIC WINDOW "Processing...", LocOfCol(22), L ocOfRow(5), w, h TO hGW

 GRAPHIC ATTACH hGW, 0&, REDRAW
 GRAPHIC COLOR RGB(0,0,0), RGB(255,255,255)
 GRAPHIC CLEAR

 GRAPHIC BITMAP LOAD PATH_APPLICATION+"WaitBox.b mp", 200, 100 TO hBmp
 GRAPHIC COPY hBmp, 0 TO (1, 1)
 GRAPHIC REDRAW

 SLEEP DurationSecs*1000

 GRAPHIC BITMAP END
 GRAPHIC WINDOW END

END SUB 'ShowWaitBox()

‘-- ---------------------------------------

FUNCTION aeroCUBEInit() AS INTEGER

 'for initializaton at start of program
 LOCAL FUNCTION_PART AS INTEGER
 LOCAL FUNCTION_PART2 AS INTEGER
 LOCAL lErrorOccurred AS LONG
 LOCAL VariableCounter AS INTEGER
 LOCAL FoundIndexPosition AS LONG
 LOCAL VariableNotFoundMsg AS STRING
 LOCAL FileNotFoundTest AS LONG

 LOCAL INI_Line AS STRING
 LOCAL OpsDataLine AS STRING

 LOCAL LineCounter AS LONG

 '-- --

 lErrorOccurred = %FALSE
 FUNCTION_PART = 1
 FUNCTION_PART2 = 1
 VariableCounter = 0

 FUNCTION = %TRUE 'return %FALSE if you want the program to end.

 ON ERROR GOTO ErrorTrap

 cls
 PRINT
 PRINT "Reading of .ini-File and initialization of variables..."

 CALL LogEntry(FUNCNAME$, "------------------------ ---------")
 CALL LogEntry(FUNCNAME$, "START PROGRAM")
 CALL LogEntry(FUNCNAME$, "------------------------ ---------")

 'frist count number of valid variable entries i n in-file --------------------------

 OPEN PATH_APPLICATION+$FILE_INI FOR INPUT AS #1
 WHILE NOT EOF(1)
 LINE INPUT #1, INI_Line
 IF LEFT$(INI_Line, 2) <> "//" AND LEN(TRIM$(IN I_Line)) > 0 THEN
 INCR VariableCounter
 END IF
 WEND 'EOF(1)

APPENDIX A 179

 CLOSE #1

 IF VariableCounter <> %NumberOfGLOBALsUsed THEN
 ERROR %WrongNumberOfGlobalVars
 END IF

 FUNCTION_PART = 2

 'then define an array and read variables ------ ------------------------------------

 DIM aINI_Variables(1 TO VariableCounter, 1 TO 2) AS STRING
 OPEN PATH_APPLICATION+$FILE_INI FOR INPUT AS #1

 VariableCounter = 0

 WHILE NOT EOF(1)

 LINE INPUT #1, INI_Line

 IF LEFT$(INI_Line, 2) <> "//" AND LEN(TRIM$(IN I_Line)) > 0 THEN
 INCR VariableCounter
 aINI_Variables(VariableCounter, 1) = UCASE$(TRIM $(PARSE$(INI_Line, ";", 1))) 'Name of
Variable
 aINI_Variables(VariableCounter, 2) = UCASE$(TRIM $(PARSE$(INI_Line, ";", 2))) 'Content
of Variable
 END IF

 WEND 'EOF(1)

 CLOSE #1

 '--- ---------------------------------
 'check on the 39 variables and initialize them ------------------------------------
 '-- ------------------------------------

 '------------------------------
 ' +++ FILENAMES DEFINITIONS +++
 '------------------------------

 '-----
 'PATHS
 '-----

 '--- PATH_APPLICATION ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="PATH_APPLICATION", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 PATH_APPLICATION = aINI_Variables(FoundIndexPosit ion, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: PATH_APPLIC ATION = " + PATH_APPLICATION)
 FileNotFoundTest = GETATTR(aINI_Variables(FoundIn dexPosition, 2))
 ELSE
 VariableNotFoundMsg = "PATH_APPLICATION"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- PATH_DATA ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="PATH_DATA", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 PATH_DATA = aINI_Variables(FoundIndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: PATH_DATA = " + PATH_DATA)
 FileNotFoundTest = GETATTR(aINI_Variables(FoundIn dexPosition, 2))
 ELSE
 VariableNotFoundMsg = "PATH_DATA"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- PATH_HISTORY ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="PATH_HISTORY", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 PATH_HISTORY = aINI_Variables(FoundIndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: PATH_HISTOR Y = " + PATH_HISTORY)
 FileNotFoundTest = GETATTR(aINI_Variables(FoundIn dexPosition, 2))
 ELSE
 VariableNotFoundMsg = "PATH_HISTORY"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- PATH_SCENARIOS ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="PATH_SCENARIOS", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 PATH_SCENARIOS = aINI_Variables(FoundIndexPositio n, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: PATH_SCENAR IOS = " + PATH_SCENARIOS)
 FileNotFoundTest = GETATTR(aINI_Variables(FoundIn dexPosition, 2))
 ELSE
 VariableNotFoundMsg = "PATH_SCENARIOS"
 ERROR %APP_FILE_NOT_FOUND

APPENDIX A 180

 END IF

 '-----
 'FILES
 '-----

 FUNCTION_PART2 = 2

 '--- FILE_SUMMER ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_SUMMER", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_SUMMER = PATH_DATA + aINI_Variables(FoundInd exPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_SUMMER = " + FILE_SUMMER)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_SUMMER"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_WINTER ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_WINTER", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_WINTER = PATH_DATA + aINI_Variables(FoundInd exPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_WINTER = " + FILE_WINTER)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_WINTER"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_SS ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_SS", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_SS = PATH_DATA + aINI_Variables(FoundIndexPo sition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_SS = " + FILE_SS)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_SS"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_WS ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_WS", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_WS = PATH_DATA + aINI_Variables(FoundIndexPo sition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_WS = " + FILE_WS)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_WS"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '-----------------------
 '--- ORG DATA FILES ----
 '-----------------------

 '--- FILE_ORG ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_ORG", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_ORG = PATH_DATA + aINI_Variables(FoundIndexP osition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_ORG = " + FILE_ORG)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_ORG"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '-------------------
 '--- ERROR FILES ---
 '-------------------

 '--- FILE_ERR ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_ERR", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_ERR = PATH_DATA + aINI_Variables(FoundIndexP osition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_ERR = " + FILE_ERR)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_ERR"
 ERROR %APP_FILE_NOT_FOUND
 END IF

APPENDIX A 181

 '--- FILE_ERR2 ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_ERR2", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_ERR2 = PATH_DATA + aINI_Variables(FoundIndex Position, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_ERR2 = " + FILE_ERR2)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_ERR2"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_ERR_03 ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_ERR_03", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_ERR_03 = PATH_DATA + aINI_Variables(FoundInd exPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_ERR_03 = " + FILE_ERR_03)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_ERR_03"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_ERR_04 ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_ERR_04", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_ERR_04 = PATH_DATA + aINI_Variables(FoundInd exPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_ERR_04 = " + FILE_ERR_04)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_ERR_04"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_ERR_05 ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_ERR_05", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_ERR_05 = PATH_DATA + aINI_Variables(FoundInd exPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_ERR_05 = " + FILE_ERR_05)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_ERR_05"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_ERR_06 ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_ERR_06", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_ERR_06 = PATH_DATA + aINI_Variables(FoundInd exPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_ERR_06 = " + FILE_ERR_06)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_ERR_06"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_ERR_07 ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_ERR_07", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_ERR_07 = PATH_DATA + aINI_Variables(FoundInd exPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_ERR_07 = " + FILE_ERR_07)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_ERR_07"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_ERR_08 ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_ERR_08", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_ERR_08 = PATH_DATA + aINI_Variables(FoundInd exPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_ERR_08 = " + FILE_ERR_08)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_ERR_08"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '------------------
 '--- MISC FILES ---
 '------------------

APPENDIX A 182

 '--- FILE_WSC ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_WSC", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_WSC = PATH_DATA + aINI_Variables(FoundIndexP osition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_WSC = " + FILE_WSC)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))

 'Count Number Of AircraftTypes and store in global variable (for multiple use in software)
 OPEN FILE_WSC FOR INPUT AS #1
 LineCounter = 0
 WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 IF LEFT$(OpsDataLine, 2) <> "//" AND LE N(TRIM$(OpsDataLine)) > 0 THEN
 INCR LineCounter
 END IF
 WEND 'eof(1)
 CLOSE #1
 gNumberOfAircraftTypes = LineCounter
 ELSE
 VariableNotFoundMsg = "FILE_WSC"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_GROUNDTIME ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_GROUNDTIME", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_GROUNDTIME = PATH_DATA + aINI_Variables(Foun dIndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_GROUND TIME = " + FILE_GROUNDTIME)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_GROUNDTIME"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_GATE ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_GATE", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_GATE = PATH_DATA + aINI_Variables(FoundIndex Position, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_GATE = " + FILE_GATE)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_GATE"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_GATE_INFRA ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_GATE_INFRA", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_GATE_INFRA = PATH_DATA + aINI_Variables(Foun dIndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_GATE_I NFRA = " + FILE_GATE_INFRA)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))

 'Count Number Of Gates and store in global variab le (for multiple use in software)
 OPEN FILE_GATE_INFRA FOR INPUT AS #1
 LineCounter = 0
 WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 IF LEFT$(OpsDataLine, 2) <> "//" AND LE N(TRIM$(OpsDataLine)) > 0 THEN
 INCR LineCounter
 END IF
 WEND 'eof(1)
 CLOSE #1
 gNumberOfGates = LineCounter
 ELSE
 VariableNotFoundMsg = "FILE_GATE_INFRA"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_FLIRTORG ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_FLIRTORG", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_FLIRTORG = PATH_DATA + aINI_Variables(FoundI ndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_FLIRTO RG = " + FILE_FLIRTORG)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_FLIRTORG"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_FLIRT ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_FLIRT", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_FLIRT = PATH_DATA + aINI_Variables(FoundInde xPosition, 2)

APPENDIX A 183

 CALL LogEntry(FUNCNAME$, "Initialize: FILE_FLIRT = " + FILE_FLIRT)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_FLIRT"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_OAG ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_OAG", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_OAG = PATH_DATA + aINI_Variables(FoundIndexP osition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_OAG = " + FILE_OAG)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_OAG"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_DF_FLIGHT ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_DF_FLIGHT", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_DF_FLIGHT = PATH_DATA + aINI_Variables(Found IndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_DF_FLI GHT = " + FILE_DF_FLIGHT)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_DF_FLIGHT"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_DF_COUNTRY ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_DF_COUNTRY", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_DF_COUNTRY = PATH_DATA + aINI_Variables(Foun dIndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_DF_COU NTRY = " + FILE_DF_COUNTRY)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_DF_COUNTRY"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_RETAILAREAFACTORS ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_RETAILAREAFACTORS", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_RETAILAREAFACTORS = PATH_DATA + aINI_Variabl es(FoundIndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_RETAIL AREAFACTORS = " + FILE_RETAILAREAFACTORS)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_RETAILAREAFACTORS"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_RETAIL_AREA_DEF ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_RETAIL_AREA_DEF", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_RETAIL_AREA_DEF = PATH_DATA + aINI_Variables (FoundIndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_RETAIL _AREA_DEF = " + FILE_RETAIL_AREA_DEF)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_RETAIL_AREA_DEF"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_REVPERPAX ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_REVPERPAX", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_REVPERPAX = PATH_DATA + aINI_Variables(Found IndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_REVPER PAX = " + FILE_REVPERPAX)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_REVPERPAX"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_DF_RETAIL_FACTOR ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_DF_RETAIL_FACTOR", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_DF_RETAIL_FACTOR = PATH_DATA + aINI_Variable s(FoundIndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_DF_RET AIL_FACTOR = " + FILE_DF_RETAIL_FACTOR)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_DF_RETAIL_FACTOR"

APPENDIX A 184

 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_GANTTVIEW ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_GANTTVIEW", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_GANTTVIEW = PATH_DATA + aINI_Variables(Found IndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_GANTTV IEW = " + FILE_GANTTVIEW)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_GANTTVIEW"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_TIMEINDEX ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_TIMEINDEX", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_TIMEINDEX = PATH_DATA + aINI_Variables(Found IndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_TIMEIN DEX = " + FILE_TIMEINDEX)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_TIMEINDEX"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_AIRPORTS ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_AIRPORTS", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_AIRPORTS = PATH_DATA + aINI_Variables(FoundI ndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_AIRPOR TS = " + FILE_AIRPORTS)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_AIRPORTS"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_AIRLINES ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_AIRLINES", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_AIRLINES = PATH_DATA + aINI_Variables(FoundI ndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_AIRLIN ES = " + FILE_AIRLINES)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_AIRLINES"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_PAX001 ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_PAX001", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_PAX001 = PATH_DATA + aINI_Variables(FoundInd exPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_PAX001 = " + FILE_PAX001)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_PAX001"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_HEATCAT ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_HEATCAT", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_HEATCAT = PATH_DATA + aINI_Variables(FoundIn dexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_HEATCA T = " + FILE_HEATCAT)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))

 OPEN FILE_HEATCAT FOR INPUT AS #1
 WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 IF LEFT$(OpsDataLine, 2) <> "//" AND LEN(T RIM$(OpsDataLine)) > 0 THEN
 gHeatCat_B_From = VAL(PARSE$(OpsDat aLine, ";", 1))
 gHeatCat_B_To = VAL(PARSE$(OpsDataL ine, ";", 2))
 END IF
 WEND 'EOF(1)
 CLOSE #1
 ELSE
 VariableNotFoundMsg = "FILE_HEATCAT"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_OPTIPARAMETERS ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_OPTIPARAMETERS", TO FoundIndexPosition

APPENDIX A 185

 IF FoundIndexPosition <> 0 THEN
 FILE_OPTIPARAMETERS = PATH_DATA + aINI_Variables(FoundIndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_OPTIPA RAMETERS = " + FILE_OPTIPARAMETERS)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_OPTIPARAMETERS"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- FILE_AIRLINEALLIANCES ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="FILE_AIRLINEALLIANCES", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 FILE_AIRLINEALLIANCES = PATH_DATA + aINI_Variable s(FoundIndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: FILE_AIRLIN EALLIANCES = " + FILE_AIRLINEALLIANCES)
 FileNotFoundTest = GETATTR(PATH_DATA + aINI_Varia bles(FoundIndexPosition, 2))
 ELSE
 VariableNotFoundMsg = "FILE_AIRLINEALLIANCES"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 '--- RUNMODE ---

 FoundIndexPosition = 0
 ARRAY SCAN aINI_Variables(1,1) FOR VariableCounter , ="RUNMODE", TO FoundIndexPosition
 IF FoundIndexPosition <> 0 THEN
 RUNMODE = aINI_Variables(FoundIndexPosition, 2)
 CALL LogEntry(FUNCNAME$, "Initialize: RUNMODE = " + RUNMODE)
 ELSE
 VariableNotFoundMsg = "RUNMODE"
 ERROR %APP_FILE_NOT_FOUND
 END IF

 'check whether all files exist at the place acc ording to ini-file ------------------

 '-- --

 FF_WINMAIN_RESUME:
 IF lErrorOccurred = %TRUE THEN

 ConsoleMessageBox "Terminating Program.",%O KONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0

 CALL LogEntry(FUNCNAME$, "-------------------- -------------")
 CALL LogEntry(FUNCNAME$, "EXIT PROGRAM: DURING IN ITIALIZATION")
 CALL LogEntry(FUNCNAME$, "----------------------- ----------")

 FUNCTION = %FALSE
 END IF

 cls

 '-- --
 EXIT FUNCTION
 '-- --
 ErrorTrap:

 lErrorOccurred = %TRUE

 SELECT CASE FUNCTION_PART

 CASE 1

 IF ERR = %WrongNumberOfGlobalVars THEN
 CALL LogEntry(FUNCNAME$, "initialize: wrong number of variables in .ini-file")
 ConsoleMessageBox "Number of variables: " + STR$(VariableCounter) + "\n" + _
 "(Expected: " + STR$(%NumberOfGLOBALsUsed) + ")\n" + _
 "--> Check .ini-
file",%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 ELSE
 ConsoleMessageBox "INI-file is
missing.",%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EX CLAMATION,0
 END IF

 CASE 2
 SELECT CASE ERR
 CASE %APP_FILE_NOT_FOUND
 ConsoleMessageBox "Variable not found in i ni.file: " +
VariableNotFoundMsg,%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 CASE %ERR_FILENOTFOUND, %ERR_PATHFILEACCESS ERROR
 IF FUNCTION_PART2 = 1 THEN
 ConsoleMessageBox "Not found on medium : " +
aINI_Variables(FoundIndexPosition, 2),%OKONLY+%EXCL AMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 CALL LogEntry(FUNCNAME$, "initialize: not found on medium:
" + aINI_Variables(FoundIndexPosition, 2))
 ELSEIF FUNCTION_PART2 = 2 THEN
 ConsoleMessageBox "Not found on medium : " + PATH_DATA +
aINI_Variables(FoundIndexPosition, 2),%OKONLY+%EXCL AMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 CALL LogEntry(FUNCNAME$, "initialize: not found on medium:
" + PATH_DATA + aINI_Variables(FoundIndexPosition, 2))
 ELSE
 ConsoleMessageBox "Not found on medium: " +
aINI_Variables(FoundIndexPosition, 2),%OKONLY+%EXCL AMATIONBOX,"WARNING",%IDI_EXCLAMATION,0

APPENDIX A 186

 CALL LogEntry(FUNCNAME$, "initialize: not found on medium:
" + aINI_Variables(FoundIndexPosition, 2))
 END IF

 CASE ELSE
 ConsoleMessageBox "ERROR OCCURRED: " + STR$(ERR) + " " +
ERROR$,%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 CALL LogEntry(FUNCNAME$, "Else: " +
aINI_Variables(FoundIndexPosition, 2))
 END SELECT

 END SELECT

 RESUME FF_WINMAIN_RESUME

 '--- ---

END FUNCTION 'aeroCUBEInit()

‘-- ---------------------------------------
'--- MAIN DATA FUNCTIONS ---
‘-- ---------------------------------------

SUB LoadOpsData_Country(BYVAL FileName AS STRING)

 'fills the destination country info into data f ile
 'Lookup airport of destination according to fli ght number in OAG file
 'if match, determine the country that belongs t o the destination city code

 CALL LogEntry(FUNCNAME$, "START")

 '--- Declarations ----------------------------- -----------------

 DIM OAG_RawData AS STRING

 DIM OAG_FlightNumber(%AmountOfFlights) AS STRIN G * 8
 DIM OAG_FlightDestCity(%AmountOfFlights) AS STR ING * 3

 DIM lPosition AS LONG
 DIM APDataLine(%AmountOfAirports) AS STRING

 DIM AllRecs AS LONG

 DIM OpsDataLine AS STRING
 DIM FieldValue AS STRING
 DIM LineField(36) AS STRING
 DIM FieldCounter AS LONG
 DIM LineCounter AS LONG
 DIM i AS LONG 'general purpose loop counter
 DIM ArrayPointer AS LONG
 DIM lFoundAirport AS INTEGER

 DIM SecStart AS LONG
 DIM SecCurrent AS LONG

 LOCAL hWin AS DWORD ' To create and show a Grap hic window on screen

 'Initialization ------------------------------- ---------------

 OpsDataLine = ""
 FieldValue = ""
 FieldCounter = 0
 LineCounter = 0

 '-- ---------------

 'open OrgData csv-formatted file (season)
 OPEN FileName FOR INPUT AS #1

 'open OAG flight plan data for destination AP / country
 OPEN FILE_OAG FOR INPUT AS #3

 'open airport reference file with countries in it
 OPEN FILE_AIRPORTS FOR INPUT AS #2 'for third run with updated country info (Russia, Yugoslavia, ...)

 'open new target file
 OPEN LEFT$(FileName, LEN(FileName)-4) + ".new" FOR OUTPUT AS #5

 'ErrQueue with airport codes that are not in re ference list (AP_CODES.TXT)
 OPEN FILE_ERR2 FOR OUTPUT AS #6

 '-- -------------------------------

 GRAPHIC WINDOW "Processing...", 500, 300, 450, 130 TO hWin

APPENDIX A 187

 GRAPHIC ATTACH hWin, 0
 GRAPHIC SET FOCUS

 SecStart = TIMER

 '-- -------------------------------

 'read airport reference data into array
 LineCounter = 1
 WHILE ISFALSE EOF(3) AND LineCounter < %AmountO fFlights
 LINE INPUT #3, OAG_RawData
 OAG_FlightNumber(LineCounter) = LEFT$(OAG_R awData, 8)
 OAG_FlightDestCity(LineCounter) = MID$(OAG_ RawData, 17, 3)

 INCR LineCounter
 WEND
 CLOSE #3

 FILESCAN #1, RECORDS TO AllRecs 'used for progr ess calculation

 'read country reference data into array
 LineCounter = 1
 WHILE ISFALSE EOF(2) AND LineCounter < %AmountO fAirports

 LINE INPUT #2, APDataLine(LineCounter)

 'Structure of APDataLine
 'POS Meaning
 '---------------------------
 '01-03 = IATA 3-Letter-Code
 '09-12 = ICAO 4-Letter-Code
 '17-39 = City
 '40-68 = Country
 '69-EOL = Airport Name

 INCR LineCounter

 WEND 'EOF(2)
 CLOSE #2

 'read OrgData and enhance by country entry
 LineCounter = 1

 SecCurrent = TIMER
 SecStart = SecCurrent

 ArrayPointer = 1

 WHILE ISFALSE EOF(1) 'AND LineCounter < 10 ' ch eck if at end of file

 'show progress on screen each 10 seconds
 IF TIMER >= SecCurrent + 10 THEN
 SecCurrent = TIMER
 GRAPHIC SET POS (30, 30)
 GRAPHIC PRINT "Processing... " STR$(Lin eCounter) & " OF " & STR$(AllRecs) & " = " &
STR$(INT((LineCounter/AllRecs)*100)) & " % "
 END IF

 LINE INPUT #1, OpsDataLine
 'parse the OpsDataLine and fill the field v ariables

 FieldValue = ""
 FieldCounter = 1

 FOR i = 1 TO LEN(OpsDataLine)
 IF MID$(OpsDataLine, i,1) <> ";" THEN
 'still in same field
 FieldValue = FieldValue + MID$(OpsD ataLine, i,1)
 ELSE
 'field changes, so fill content int o LineFieldArray
 LineField(FieldCounter) = FieldValu e
 INCR FieldCounter
 FieldValue = ""
 END IF
 NEXT i

 'Lookup airport of destination according to flight number
 'field 02 is flight number
 'ARRAY SCAN OAG_FlightNumber(), =LineField(02), TO lPosition

 lPosition = 0
 FOR i = 1 TO %AmountOfFlights
 IF OAG_FlightNumber(i) = LEFT$(LineFiel d(03),8) THEN 'left$-function because of flight n umbers like
"FUA00108F"
 lPosition = i
 i = %AmountOfFlights
 END IF
 NEXT i

 IF lPosition = 0 THEN

APPENDIX A 188

 'no match found, so set country to "--- "
 LineField(27) = "---"

 ELSE

 'match, so determine the country that b elongs to the destination city code
 'Lookup destination country
 'field 27 is destination country
 LineField(27) = "..."
 lFoundAirport = 0
 FOR i = 1 TO %AmountOfAirports

 'city codes match ?
 IF LEFT$(APDataLine(i),3) = OAG_Fli ghtDestCity(lPosition) THEN
 'store determined country in ac cording LineField
 LineField(27) = RTRIM$(MID$(APD ataLine(i),40,28))
 i = %AmountOfAirports + 1
 lFoundAirport = 1
 END IF

 NEXT i

 IF lFoundAirport = 0 THEN
 'if there has not been a match in the A P_CODES.TXT
 PRINT #6, OAG_FlightDestCity(lPosit ion)
 END IF

 END IF

 'Write enhanced line into new output file

 OpsDataLine = ""
 FOR i = 1 TO 36
 OpsDataLine = OpsDataLine + TRIM$(LineF ield(i)) + ";"
 NEXT i

 PRINT #5, OpsDataLine

 INCR LineCounter

 WEND 'EOF(1)
 GRAPHIC WINDOW END

 CLOSE #1
 CLOSE #5
 CLOSE #6

 CALL ShiftFileIntoHistory(LEFT$(FileName, LEN(F ileName)-4))

 CALL LogEntry(FUNCNAME$, "END")

END SUB 'LoadOpsData_Country()

‘-- ---------------------------------------

SUB CalcDelayMinutes(BYVAL FileName AS STRING)

 CALL LogEntry(FUNCNAME$, "START: " + FileName)

 'calculate the difference between STD und ATD i n minutes

 DIM OpsDataLine AS STRING

 DIM i AS LONG 'general purpose loop counter

 'open season origin file
 OPEN FileName FOR INPUT AS #1

 'open new target file
 OPEN LEFT$(FileName, LEN(FileName)-4) + ".new" FOR OUTPUT AS #2

 WHILE ISFALSE EOF(1)

 LINE INPUT #1, OpsDataLine

 OpsDataLine = StringUpdate(OpsDataLine, %FI ELD_DelayMinutes, DelayMin(PARSE$(OpsdataLine, ";", %FIELD_STD),
PARSE$(OpsdataLine, ";", %FIELD_ATD)))

 'write updated file
 PRINT #2, OpsDataLine

 WEND 'EOF(1)

 CLOSE #1
 CLOSE #2

 CALL ShiftFileIntoHistory(LEFT$(FileName, LEN(File Name)-4))
 CALL LogEntry(FUNCNAME$, "END: " + FileName)

END SUB 'CalcDelayMinutes()

APPENDIX A 189

‘-- ---------------------------------------

FUNCTION DelayMin(BYVAL STD AS STRING, BYVAL ATD AS STRING) AS STRING

 IF STD = "" OR ATD = "" THEN

 'missing value(s)

 DelayMin = "8888"

 ELSE

 IF LEFT$(STD,8) = LEFT$(ATD,8) THEN
 '--> same day
 'calc difference, e.g. 1630 and 1736

 DelayMin = TRIM$(STR$(((VAL(MID$(ATD ,9,2)) * 60) + VAL(MID$(ATD,11,2))) - _
 ((VAL(MID$(STD ,9,2)) * 60) + VAL(MID$(STD,11,2))) _
) _
)

 ELSE 'not same day

 IF LEFT$(ATD,8) = NextDay(LEFT$(STD,8)) THEN

 DelayMin = TRIM$(STR$((((23-VAL(MID$(STD,9,2))) * 60) + (60 - VAL(MID$(STD,11,2)))) + _
 ((VAL(M ID$(ATD,9,2)) * 60) + VAL(MID$(ATD,11,2))) _
) _
)

 ELSE
 'if departure not even at next day then mark record with '9999'
 DelayMin = "9999"
 END IF

 END IF 'same day

 END IF

END FUNCTION 'DelayMin()

‘-- ---------------------------------------

FUNCTION NextDay(BYVAL yyyymmdd AS STRING) AS STRIN G

 'returns a string that represents the next day date of the input string

 LOCAL year AS INTEGER, n_year AS INTEGER
 LOCAL month AS INTEGER, n_month AS INTEGER
 LOCAL day AS INTEGER, n_day AS INTEGER

 LOCAL lMonthChange AS INTEGER
 LOCAL lYearChange AS INTEGER

 '-- ----------------

 'default in case of invalid input format causes problems

 NextDay = "YYYYMMDD"

 year = VAL(LEFT$(yyyymmdd,4))
 month = VAL(MID$(yyyymmdd,5,2))
 day = VAL(RIGHT$(yyyymmdd,2))

 'very rough check for valid date
 IF year > 1900 AND year <3000 AND month >0 AND month <13 AND day >0 AND day <32 THEN

 lMonthChange = %FALSE
 lYearChange = %FALSE

 '--- day ---
 SELECT CASE month

 CASE 1, 3, 5, 7, 8, 10, 12
 IF day <31 THEN
 n_day = day + 1
 ELSE
 n_day = 1
 lMonthChange = %TRUE
 END IF

 CASE 4, 6, 9, 11
 IF day <30 THEN
 n_day = day + 1
 ELSE
 n_day = 1
 lMonthChange = %TRUE

APPENDIX A 190

 END IF

 CASE 2
 IF year/4 = INT(year/4) THEN 'leap year
 IF day <29 THEN
 n_day = day + 1
 ELSE
 n_day = 1
 lMonthChange = %TRUE
 END IF
 ELSE
 IF day <28 THEN
 n_day = day + 1
 ELSE
 n_day = 1
 lMonthChange = %TRUE
 END IF
 END IF

 END SELECT

 '--- month ---
 IF lMonthChange = %TRUE THEN

 IF month = 12 THEN
 n_month = 1
 lYearChange = %TRUE
 ELSE
 n_month = month + 1
 END IF
 ELSE
 n_month = month
 END IF

 '--- year ---
 IF lYearChange = %TRUE THEN
 n_year = year + 1
 ELSE
 n_year = year
 END IF

 NextDay = TRIM$(STR$(n_year)) + TRIM$(REP EAT$(2-LEN(TRIM$(STR$(n_month))), "0") + TRIM$(STR $(n_month))) + _
 TRIM$(REP EAT$(2-LEN(TRIM$(STR$(n_day))), "0") + TRIM$(STR$(n_day)))
 END IF

END FUNCTION 'NextDay()

‘-- ---------------------------------------

SUB Flight_DF_Factor(BYVAL FileName AS STRING)

 'fill relative duty free factor for each known flight number

 CALL LogEntry(FUNCNAME$, "START: " + FileName)

 DIM OpsDataLine AS STRING
 DIM FieldValue AS STRING
 DIM LineField(1 TO 36) AS STRING
 DIM FieldCounter AS LONG

 DIM LineCounter AS LONG
 DIM TotalLines AS LONG

 LOCAL NumberOfRecords AS LONG
 LOCAL lResult AS LONG

 DIM i AS LONG 'general purpose loop counter

 '-- --- ---------

 OPEN FileName FOR INPUT AS #1
 FILESCAN #1, RECORDS TO NumberOfRecords

 OPEN LEFT$(FileName, LEN(FileName)-4) + ".new" FOR OUTPUT AS #2

 OPEN FILE_ERR_08 FOR APPEND AS #4
 PRINT #4, "ENTRY: " + DATE$ + " / " + TIME$ + " / " + FileName

 OPEN FILE_DF_Flight FOR INPUT AS #3
 FILESCAN #3, RECORDS TO TotalLines
 DIM aDF(TotalLines,2) AS STRING

 'START: read all DF (flight) data into array fo r later use -------------

 LineCounter = 1

 WHILE NOT EOF(3)

 LINE INPUT #3, OpsDataLine

 IF LEFT$(OpsDataLine,2) <> "//" THEN 'no co mment line in data file

APPENDIX A 191

 aDF(LineCounter,1) = EXTRACT$(OpsDataLi ne, ANY ";") 'get flight number
 aDF(LineCounter,1) = LEFT$(aDF(LineCoun ter,1), LEN(aDF(LineCounter,1))-4) & "0" &
RIGHT$(aDF(LineCounter,1),4) 'insert the "0" for fo rmat reason
 aDF(LineCounter,2) = RIGHT$(OpsDataLine , (LEN(OpsDataLine) - INSTR(OpsDataLine, ANY ";"))) 'get DF factor

 '---> e.g. [1] (1)AB4916 (2)47,1
 INCR LineCounter
 END IF

 WEND 'EOF(3)

 CLOSE #3

 'END: read all DF (flight) data into array fo r later use -------------

 '-- -------------------------

 OPEN FILE_DF_Country FOR INPUT AS #3
 FILESCAN #3, RECORDS TO TotalLines
 DIM aDFCountry(TotalLines,3) AS STRING

 'START: read all DF (country) data into array f or later use ------------

 LineCounter = 1

 WHILE NOT EOF(3)

 LINE INPUT #3, OpsDataLine

 IF LEFT$(OpsDataLine,2) <> "//" THEN 'no co mment line in data file
 aDFCountry(LineCounter,1) = PARSE$(OpsD ataLine, ";", 1)
 aDFCountry(LineCounter,2) = PARSE$(OpsD ataLine, ";", 2)
 aDFCountry(LineCounter,3) = PARSE$(OpsD ataLine, ";", 3)
 '---> e.g. [1] (1)DE (2)GERMANY (3)77,4
 '---> e.g. [2] (1)FR (2)FRANCE (3)93,5
 '...
 INCR LineCounter
 END IF

 WEND 'EOF(3)

 CLOSE #3

 'END: read all DF (country) data into array f or later use ------------

 '-- -------------------------

 'and now fill the org data file

 'choose to update only empty fields or to updat e all fields with new values

 lResult = ConsoleMessageBox("Update empty DF fa ctors only [YES] or update/overwrite current conten t of field [NO]
?", %YESNO+%HANDBOX+%DEFBUTTON1, "WARNING", %IDI_QUESTION, %FALSE)

 ProgressBoxShow %NOCANCEL, 1,%CONSOLE_CENTER, %CONSOLE_CENTER, "Processing "+TRIM$(USING$("###,###,## #",
NumberOfRecords))+ " Records.", "Reading file...", %FALSE

 LineCounter = 1

 WHILE ISFALSE EOF(1)

 LINE INPUT #1, OpsDataLine

 'parse the OpsDataLine and fill the field v ariables

 FieldValue = ""
 FieldCounter = 1

 ProgressBoxUpdate INT(LineCounter/NumberOfR ecords*100)

 FOR i = 1 TO LEN(OpsDataLine)
 IF MID$(OpsDataLine, i,1) <> ";" THEN
 'still in same field
 FieldValue = FieldValue + MID$(OpsD ataLine, i, 1)
 ELSE
 'field changes, so fill content int o LineFieldArray
 LineField(FieldCounter) = FieldValu e
 INCR FieldCounter
 FieldValue = ""
 END IF
 NEXT i

 'in case choice was to update/overwrite curr ent content of field or
 'there are still error entries (division by zero) from imported EXCEL source file

 IF lResult = %NOBUTTON OR LineField(%FIELD_F lightPAXDFfactor) = "#DIV/0!" THEN
 'get it from flight number reference
 LineField(%FIELD_FlightPAXDFfactor) = Get DutyFreeFactor(LineField(%FIELD_FlightNumber),
aDF())
 END IF

 'if no DF factor has been found for flight number then use DF country data
 IF LineField(%FIELD_FlightPAXDFfactor) ="XXX" THE N

APPENDIX A 192

 LineField(%FIELD_FlightPAXDFfactor) = GetDFCount ryFactor(LEFT$(LineField(27),2),
aDFcountry())
 PRINT #4, "[Check 1: Country DF factor used] " + JOIN$(LineField(), ";")
 END IF

 'if still no DF factor has been found write addit ionally into error file
 IF LineField(%FIELD_FlightPAXDFfactor) ="XXX" THE N
 PRINT #4, "[Check 2: No DF factor found] " + JOI N$(LineField(), ";")
 END IF

 'write updated file

 OpsDataLine = ""
 FOR i = 1 TO 36
 OpsDataLine = OpsDataLine + TRIM$(LineF ield(i)) + ";"
 NEXT i

 'omit flights: LH 02989, LH 09998, ZZ-Fligh ts (because of being dummy flights)

 IF LineField(%FIELD_FlightNumber) <> "LH 02 989" AND LineField(%FIELD_FlightNumber) <> "LH 0999 8" AND
LEFT$(LineField(%FIELD_FlightNumber), 3) <> "ZZ " T HEN
 PRINT #2, OpsDataLine
 END IF

 INCR LineCounter

 WEND 'EOF(1)

 ProgressBoxHide

 CLOSE #1
 CLOSE #2
 CLOSE #4

 ConsoleMessageBox "Check on ErrorQueue_08. It MAY have been updated.",%DEFAULT,"INFO",%DEFAULT,0'

 CALL ShiftFileIntoHistory(LEFT$(FileName, LEN(File Name)-4))
 CALL LogEntry(FUNCNAME$, "END: " + FileName)

END SUB 'Flight_DF_Factor()

‘-- ---------------------------------------

FUNCTION GetDutyFreeFactor(BYVAL FlightNo AS STRING , BYREF aDFTable() AS STRING) AS STRING

 DIM i AS LONG
 DIM UpperArrayBoundary AS LONG

 UpperArrayBoundary = UBOUND(aDFTable,1)
 FlightNo = REMOVE$(FlightNo, " ")

 GetDutyFreeFactor = "XXX" ' default value

 FOR i = 1 TO UpperArrayBoundary

 IF FlightNo = REMOVE$(aDFTable(i,1), " ") THEN
 '--> so the flight numbers match
 GetDutyFreeFactor = aDFTable(i,2) 'ret urn the Duty Free factor
 i= UpperArrayBoundary 'to exit the loop
 END IF

 NEXT i

END FUNCTION 'GetDutyFreeFactor

‘-- ---------------------------------------

FUNCTION GetDFCountryFactor(BYVAL Country AS STRING , BYREF aDFcountry() AS STRING) AS STRING

 'scans array of DF factors per country for a speci fic country and returns DF factor
 'if no match has been found "XXX" is returned

 DIM i AS LONG

 GetDFCountryFactor = "XXX"

 FOR i = 1 TO UBOUND(aDFcountry)

 IF TRIM$(aDFcountry(i,1)) = TRIM$(Country) THEN
 GetDFCountryFactor = aDFcountry(i,3) 'return DF factor
 END IF

 NEXT i

END FUNCTION 'GetDFCountryFactor()

APPENDIX A 193

‘-- ---------------------------------------

SUB FillRetailArea(BYVAL FileName AS STRING, BYVAL PurposeIndicator AS INTEGER)

 CALL LogEntry(FUNCNAME$, "START: " + FileName)

 'depending on gate fill the actual retail area that a DEP flight belongs to

 '-------- DECLARATIONS ------------------------ ---------------

 DIM OpsDataLine AS STRING

 DIM Field_FLTNO AS STRING
 DIM Field_COUNTRY AS STRING
 DIM Field_GATE AS STRING
 DIM Field_CKIHALL AS STRING

 DIM Field_RETAILAREA AS STRING

 LOCAL LineCounter AS LONG
 LOCAL TotalLines AS LONG

 LOCAL lResult AS LONG

 LOCAL GatesFound AS LONG
 LOCAL GatesNotFound AS LONG

 '-------- ROUTINE ----------------------------- ---------------

 CALL ShowWaitBox(1)

 OPEN FileName FOR INPUT AS #1
 OPEN LEFT$(FileName, LEN(FileName)-4) + ".new" FOR OUTPUT AS #2

 'first count number of defined retail areas and then define array and read them

 OPEN FILE_RETAIL_AREA_DEF FOR INPUT AS #3

 LineCounter = 1
 WHILE NOT EOF(3)
 LINE INPUT #3, OpsDataLine

 IF LEFT$(OpsDataLine,2) <> "//" THEN 'no co mment line in data file
 INCR LineCounter
 END IF
 WEND 'eof(3)
 CLOSE #3

 DIM aRetailArea(1 TO LineCounter) AS STRING

 'now read areas
 OPEN FILE_RETAIL_AREA_DEF FOR INPUT AS #3
 LineCounter = 1
 WHILE NOT EOF(3)
 LINE INPUT #3, OpsDataLine
 IF LEFT$(OpsDataLine,2) <> "//" THEN 'no co mment line in data file
 aRetailArea(LineCounter) = OpsDataLine
 INCR LineCounter
 END IF
 WEND 'eof(3)
 CLOSE #3

 'read gate info

 OPEN FILE_ERR FOR APPEND AS #99
 PRINT #99, REPEAT$(LEN(FileName)+24+3, "-")
 PRINT #99, "Actual gates entry count: " + FileN ame
 PRINT #99, DATE$ + " / " + TIME$

 FILESCAN #1, RECORDS TO TotalLines
 ProgressBoxShow %NOCANCEL, 1,%CONSOLE_CENTER, % CONSOLE_CENTER, "Processing "+TRIM$(USING$("###,### ,###",
TotalLines))+ " Records.", "Reading file...", %FALS E

 LineCounter = 1

 GatesFound = 0
 GatesNotFound = 0

 WHILE ISFALSE EOF(1)

 LINE INPUT #1, OpsDataLine

 'determine retail area

 Field_FLTNO = PARSE$(OpsDataLine, ";", %F IELD_FlightNumber)
 Field_COUNTRY = PARSE$(OpsDataLine, ";", % FIELD_DestCountry)
 Field_CKIHALL = PARSE$(OpsDataLine, ";", % FIELD_CKIHall)

APPENDIX A 194

 SELECT CASE PurposeIndicator

 CASE 1
 Field_GATE = PARSE$(OpsDataLine, " ;", %FIELD_Gate_Actual)
 CASE 2
 Field_GATE = PARSE$(OpsDataLine, " ;", %FIELD_Gate_Season)
 CASE 3
 Field_GATE = PARSE$(OpsDataLine, " ;", %FIELD_Gate_Opti)

 CASE ELSE

 ConsoleMessageBox "THIS MESSEGE SHO ULD NOT APPEAR DURING RUNTIME: WRONG PURPOSEINDICATOR!!!", _
 %OKONLY+%EXCLAM ATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 CLOSE #99
 CLOSE #2
 CLOSE #1
 EXIT SUB

 END SELECT

 Field_RETAILAREA = GetRetailArea(aRetailAre a(), Field_FLTNO, Field_COUNTRY, Field_GATE, Field_ CKIHALL,
GatesFound, GatesNotFound)

 SELECT CASE PurposeIndicator
 CASE 1
 OpsDataLine = StringUpdate(OpsDataL ine, %FIELD_RetailAreaActual, Field_RETAILAREA)
 CASE 2
 OpsDataLine = StringUpdate(OpsDataL ine, %FIELD_RetailAreaSeason, Field_RETAILAREA)
 CASE 3
 OpsDataLine = StringUpdate(OpsDataL ine, %FIELD_RetailAreaOpti, Field_RETAILAREA)
 END SELECT

 ProgressBoxUpdate INT(LineCounter/TotalLine s*100)

 PRINT #2, OpsDataLine
 INCR LineCounter

 WEND 'EOF(1)

 PRINT #99, "Gates found= "; TRIM$(USING$("###,# ##,###", GatesFound))
 PRINT #99, "Gates not found= "; TRIM$(USING$("# ##,###,###", GatesNotFound))

 '---------------------------------
 CLOSE #99
 '---------------------------------

 CLOSE #1
 CLOSE #2

 ProgressBoxHide

 CALL ShiftFileIntoHistory(LEFT$(FileName, LEN(F ileName)-4))

 lResult = ConsoleMessageBox("You should update retail area FACTOR now. Proceed ?", %YESNO+%HANDBOX +%DEFBUTTON1,
"WARNING", %IDI_QUESTION, %FALSE)
 IF lResult = %NOBUTTON THEN
 CALL LogEntry(FUNCNAME$, "NO UPDATE ON RETA IL AREA FACTOR CHOSEN " + FileName)
 ConsoleMessageBox "Data will be inconsisten t, if you do not update manually then.\n\nDATA->DAT A CLEANING-
>UPDATE RETAIL AREA FACTOR",_
 %OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCL AMATION,0
 ELSE
 CALL LogEntry(FUNCNAME$, "AUTOMATIC UPDATE ON RETAIL AREA FACTOR CHOSEN " + FileName)
 cls : PRINT "Processing season..."
 CALL FillRetailAreaFactor(FileName, Purpose Indicator) 'current working season
 ConsoleMessageBox "Retail areas factors hav e been filled into data set.",%DEFAULT,"INFO",%DEFA ULT,0
 cls
 END IF

 CALL LogEntry(FUNCNAME$, "END: " + FileName)

END SUB 'FillRetailArea()

‘-- ---------------------------------------

FUNCTION GetRetailArea(BYREF RetailAreaDef() AS ST RING, BYVAL FltNo AS STRING, BYVAL FltDestCountry A S STRING, _
 BYVAL Gate AS STRING, BYVAL CKI_hall AS STRING, BYREF GatesFound AS LONG , BYR EF GatesNotFound
AS LONG) AS STRING

 'determine retail area by given gate info

 'Retail Areas (defined in File FILE_RETAIL_AREA _DEF)
 '-- ------
 'e.g.
 'R1= A1-65
 'R2= B1-19 'not in transit
 'R3= B20-59 'transit
 'R4= C (all gates)
 'R5= D1-31
 'R6= D40-54 'spare bus gates
 'R7= E1-26

APPENDIX A 195

 LOCAL i AS LONG

 IF Gate <> "" THEN 'a gate exists

 'default value (in case of non-matching gat e name)
 GetRetailArea = "RX"

 FOR i = 1 TO UBOUND(RetailAreaDef)

 IF INSTR(1, RetailAreaDef(i), Gate) > 0 THEN
 GetRetailArea = LEFT$(RetailAreaDef(i),2)
 INCR GatesFound
 i = UBOUND(RetailAreaDef)
 END IF

 NEXT i

 ELSE 'no gate exists

 INCR GatesNotFound

 'default value (in case of empty gate name)
 GetRetailArea = "RY"

 'but in case CheckIn hall is known then all ocate as follows
 IF CKI_hall = "C" THEN
 GetRetailArea = "R4"

 ELSEIF CKI_hall = "D" THEN

 IF LEFT$(FltNo, 2) = "BA" THEN
 GetRetailArea = "R6"
 ELSE
 GetRetailArea = "R5"
 END IF

 ELSEIF CKI_hall = "E" THEN
 GetRetailArea = "R7"

 ELSE 'CKI hall A or B

 IF Is_EU_flight(FltDestCountry) = %TRUE THEN

 IF LEFT$(FltNo, 2) = "LH" THEN
 'in case of Lufthansa flight, m ost probably: finger A
 GetRetailArea = "R1" 'Lufthansa
 ELSE
 GetRetailArea = "R2" 'non-trans it (non-LH, EU)
 END IF

 ELSE 'non-EU
 GetRetailArea = "R3" 'transit
 END IF

 END IF

 END IF ' Gate <> ""

END FUNCTION 'GetRetailArea

'-- ------------------------

FUNCTION Is_EU_flight(BYVAL FltDestCountry AS STRIN G) AS INTEGER

 SELECT CASE LEFT$(FltDestCountry, 2)

 CASE "AT", "BE", "BG", "CY", "CZ", "DK", "E E", "FI", "FR", _
 "DE", "GR", "HU", "IE", "IT", "LV", "L T", "LU", "MT", _
 "NL", "PL", "PT", "RO", "SI", "ES", "S E", "GB"

 Is_EU_flight = %TRUE

 CASE ELSE

 Is_EU_flight = %FALSE 'means: it is non -EU

 END SELECT

END FUNCTION 'Is_EU_flight(FltDestCountry)

‘-- ---------------------------------------

SUB FillRetailAreaFactor(BYVAL FileName AS STRING, BYVAL PurposeIndicator AS INTEGER)

 CALL LogEntry(FUNCNAME$, "START")

APPENDIX A 196

 'fills retail area factor dependend on actual r etail area
 'the factor is drawn from a table, indicating t he relative performance
 'of each retail area compared to average

 '-------- DECLARATIONS ------------------------ ---------------

 DIM OpsDataLine AS STRING
 DIM LineCounter AS LONG
 DIM TotalLines AS LONG
 LOCAL ProgressTotal AS LONG

 DIM i AS LONG 'general purpose loop counter

 '-------- ROUTINE ----------------------------- ---------------

 OPEN FILE_RetailAreaFactors FOR INPUT AS #1

 'open season origin file
 OPEN FileName FOR INPUT AS #2
 FILESCAN #2, RECORDS TO ProgressTotal

 'open new target file
 OPEN LEFT$(FileName, LEN(FileName)-4) + ".new" FOR OUTPUT AS #3

 FILESCAN #1, RECORDS TO TotalLines
 DIM aRF(TotalLines,2) AS STRING

 'START: read all RF data into array for later u se ---------------------

 LineCounter = 1
 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 IF LEFT$(OpsDataLine,2) <> "//" THEN 'no co mment line in data file
 aRF(LineCounter,1) = LEFT$(OpsDataLine, 2)
 aRF(LineCounter,2) = RIGHT$(OpsDataLine , (LEN(OpsDataLine) - INSTR(OpsDataLine, ANY ";"))) 'get RF factor
 INCR LineCounter
 END IF

 WEND 'EOF(1)

 CLOSE #1

 'END: read all RF data into array for later u se ---------------------

 LineCounter = 1
 ProgressBoxShow %NOCANCEL, 1,%CONSOLE_CENTER, % CONSOLE_CENTER, "Processing "+TRIM$(USING$("###,### ,###",
ProgressTotal))+ " Records.", "Reading file...", %F ALSE
 WHILE ISFALSE EOF(2)

 LINE INPUT #2, OpsDataLine

 SELECT CASE PurposeIndicator

 CASE 1
 OpsDataLine = StringUpDate(OpsDataL ine, %FIELD_RetailAreaFactorActual,
GetRetailFactor(PARSE$(OpsDataLine, ";", %FIELD_Ret ailAreaActual), aRF()))
 CASE 2
 OpsDataLine = StringUpDate(OpsDataL ine, %FIELD_RetailAreaFactorSeason,
GetRetailFactor(PARSE$(OpsDataLine, ";", %FIELD_Ret ailAreaSeason), aRF()))
 CASE 3
 OpsDataLine = StringUpDate(OpsDataL ine, %FIELD_RetailAreaFactorOpti,
GetRetailFactor(PARSE$(OpsDataLine, ";", %FIELD_Ret ailAreaOpti), aRF()))

 CASE ELSE

 ConsoleMessageBox "THIS MESSEGE SHO ULD NOT APPEAR DURING RUNTIME: WRONG PURPOSEINDICATOR!!!", _
 %OKONLY+%EXCLAM ATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 CLOSE #3
 CLOSE #2
 EXIT SUB

 END SELECT

 'write updated file
 PRINT #3, OpsDataLine

 INCR LineCounter
 ProgressBoxUpdate INT(LineCounter/ProgressT otal*100)

 WEND 'EOF(2)

 ProgressBoxHide

 CLOSE #2
 CLOSE #3

APPENDIX A 197

 CALL ShiftFileIntoHistory(LEFT$(FileName, LEN(File Name)-4))
 CALL LogEntry(FUNCNAME$, "END")

 cls
 PRINT
 PRINT "Cleaning up..."
 PRINT

END SUB 'FillRetailAreaFactor()

‘-- ---------------------------------------

FUNCTION GetRetailFactor(BYVAL RetailArea AS STRING , BYREF aRFTable() AS STRING) AS STRING

 DIM i AS LONG
 DIM UpperArrayBoundary AS LONG

 UpperArrayBoundary = UBOUND(aRFTable,1)
 RetailArea = REMOVE$(RetailArea, " ")

 GetRetailFactor = "XXX" 'de fault value

 FOR i = 1 TO UpperArrayBoundary

 IF RetailArea = REMOVE$(aRFTable(i,1), " ") THEN
 '--> so the retail area matches
 GetRetailFactor = aRFTable(i,2) 'retur n the retail area factor
 i= UpperArrayBoundary 'to exit the loop

 END IF

 NEXT i

END FUNCTION 'GetRetailFactor

‘-- ---------------------------------------

SUB FillErrorQueue(BYVAL FileName AS STRING)

 '-------- DECLARATIONS ------------------------ ---------------

 DIM OpsDataLine AS STRING

 '-------- ROUTINE ----------------------------- ---------------

 'open season origin file
 OPEN FileName FOR INPUT AS #1

 'open output file (error queue)
 OPEN FILE_ERR FOR APPEND AS #2

 WHILE ISFALSE EOF(1)

 LINE INPUT #1, OpsDataLine

 'parse the OpsDataLine and fill the field v ariables

 '---------------- determine specific error situations -- ----

 IF PARSE$(OpsDataLine, ";", %FIELD_PAX_Act ual) = "" THEN
 'write into ErrFile
 PRINT #2, DATE$ + ";" + TIME$ + ";" + O psDataLine
 END IF

 WEND 'EOF(1)

 CLOSE #1
 CLOSE #2

 ConsoleMessageBox "Error queue appended: " + FI LE_ERR,%DEFAULT,"INFO",%DEFAULT,0

END SUB 'FillErrorQueue()

‘-- ---------------------------------------

SUB UpDateOAGFile(hWndForm AS DWORD)

APPENDIX A 198

 CALL LogEntry(FUNCNAME$, "START")

 ' uses OrgDataFile to determine the destination airport (first a/p after FRA)
 ' write new OAG_File

 ' assumes that info is valid for both summer an d winter season

 ' after this sub routine has run, LoadOpsDataCo untry and FillRetailArea needs TO run again

 '-------- DECLARATIONS ------------------------ ---------------

 DIM OpsDataLine AS STRING
 DIM OAGDataLine AS STRING
 DIM UniqueFlightNumbers (1 TO 15000) AS STRING
 DIM ArrayPointer AS LONG
 DIM IsInArray AS INTEGER
 DIM i AS LONG

 DIM lResult AS LONG

 '-------- ROUTINE ----------------------------- ---------------

 OPEN FILE_ORG FOR INPUT AS #1
 OPEN FILE_OAG FOR OUTPUT AS #2

 ArrayPointer = 1

 WHILE ISFALSE EOF(1)

 LINE INPUT #1, OpsDataLine

 'parse the OpsDataLine and construct OAGDat aLine

 OAGDataLine = MID$(OpsDataLine, 9, 8) + SPA CE$(8) + MID$(OpsDataLine, 606, 3)

 'if not yet in OAG_File

 IsInArray = 0

 FOR i = 1 TO ArrayPointer 'test each elem ent in array

 IF UniqueFlightNumbers(i) = MID$(OpsDat aLine, 9, 8) THEN
 'is already in array
 i = ArrayPointer 'to exit the loop
 IsInArray = 1
 END IF

 NEXT i

 IF IsInArray = 0 THEN ' if not yet in array
 'insert into array
 ARRAY INSERT UniqueFlightNumbers(), MID$ (OpsDataLine, 9, 8)
 INCR ArrayPointer
 'write into OAG_File
 PRINT #2, OAGDataLine
 END IF

 WEND 'EOF(1)

 CLOSE #1
 CLOSE #2

 'after this sub routine has run, LoadOpsDataCou ntry and FillRetailArea needs TO run again

 lResult = ConsoleMessageBox("Country and retail info needs to be updated. Update now?",
%YESNO+%HANDBOX+%DEFBUTTON1, "WARNING", %IDI_QUESTION, %FALSE)

 IF lResult = %YESBUTTON THEN

 'update country info
 ConsoleMessageBox "country: summer season",%DE FAULT,"INFO",%DEFAULT,0
 ConsoleMessageBox "country: winter season",%DE FAULT,"INFO",%DEFAULT,0

 'update retail area
 ConsoleMessageBox "retail area: summer season" ,%DEFAULT,"INFO",%DEFAULT,0
 ConsoleMessageBox "retail area: winter season" ,%DEFAULT,"INFO",%DEFAULT,0

 'update retail area factor
 ConsoleMessageBox "retail area factor: summ er season",%DEFAULT,"INFO",%DEFAULT,0
 ConsoleMessageBox "retail area factor: winter season",%DEFAULT,"INFO",%DEFAULT,0

 'update retail revenue
 ConsoleMessageBox "retail revenue: summer seas on",%DEFAULT,"INFO",%DEFAULT,0
 ConsoleMessageBox "retail revenue: winter seas on",%DEFAULT,"INFO",%DEFAULT,0

 ELSE
 ConsoleMessageBox "BE AWARE TO UPDATE MANUALLY THEN.",%DEFAULT,"INFO",%DEFAULT,0
 CALL LogEntry(FUNCNAME$, "no automatic update cho sen")
 END IF

APPENDIX A 199

 CALL LogEntry(FUNCNAME$, "END")

END SUB 'UpDateOAGFile()

‘-- ---------------------------------------

SUB GenerateWingSpanCode()

 'uses ORG data file to determine different type s of A/C and their WingSpanCode

 '-------- DECLARATIONS ------------------------ ---------------

 DIM UniqueACType (1 TO 300) AS STRING
 DIM OpsDataLine AS STRING
 DIM IsInArray AS INTEGER
 DIM ArrayPointer AS LONG

 DIM i AS LONG

 '-------- ROUTINE ----------------------------- ---------------

 OPEN FILE_ORG FOR INPUT AS #1
 OPEN FILE_WSC FOR OUTPUT AS #2

 ArrayPointer = 1

 WHILE ISFALSE EOF(1)

 LINE INPUT #1, OpsDataLine

 IsInArray = 0

 'if not yet in AC_array

 FOR i = 1 TO ArrayPointer 'test each elem ent in array

 IF LEFT$(UniqueACType(i), 4) = MID$(Ops DataLine, 63, 4) THEN
 'is already in array
 i = ArrayPointer 'to exit the loop
 IsInArray = 1
 END IF

 NEXT i

 IF IsInArray = 0 THEN ' if not yet in array

 'insert into array if there is a valid W ing Span Code
 IF MID$(OpsDataLine, 480, 2) <> " " THE N
 ARRAY INSERT UniqueACType(), MID$(O psDataLine, 63, 4) + ";" + MID$(OpsDataLine, 480, 2)
 PRINT #2, TRIM$(MID$(OpsDataLine, 6 3, 4)) + ";" + TRIM$(MID$(OpsDataLine, 480, 2)) ' e.g. "B744;02"
 INCR ArrayPointer
 END IF

 END IF

 WEND 'EOF(1)

 CLOSE #1
 CLOSE #2

END SUB 'GenerateWingSpanCode()

‘-- ---------------------------------------

SUB GenerateAvgGroundTime()

 CALL LogEntry(FUNCNAME$, "START")

 'uses ORG data file to determine different type s of A/C and their average standard ground time
 'round values to the next 5 minutes and write o utput file

 '-------- DECLARATIONS ------------------------ ---------------

 DIM UniqueACType (1 TO 300, 1 TO 3) AS STRING
 DIM OpsDataLine AS STRING
 DIM IsInArray AS INTEGER
 DIM ArrayPointer AS LONG

 DIM i AS LONG

 '-------- ROUTINE ----------------------------- ---------------

 OPEN FILE_ORG FOR INPUT AS #1
 OPEN FILE_GROUNDTIME FOR OUTPUT AS #2

APPENDIX A 200

 ArrayPointer = 1

 WHILE ISFALSE EOF(1)

 LINE INPUT #1, OpsDataLine

 IsInArray = 0

 'if not yet in AC_array

 FOR i = 1 TO ArrayPointer 'test each elem ent in array

 IF TRIM$(LEFT$(UniqueACType(i,1), 4)) = TRIM$(MID$(OpsDataLine, 63, 4)) THEN
 'is already in array
 'insert into array if there is a va lid Standard Ground Time
 IF LEN(TRIM$(MID$(OpsDataLine, 582, 4))) > 0 AND VAL(TRIM$(MID$(OpsDataLine, 582, 4)))
<> 0 THEN
 UniqueACType(i,2) = STR$(VAL(Uniqu eACType(i,2)) + VAL(MID$(OpsDataLine, 582, 4))) 'A dd
standard ground time to current sum
 UniqueACType(i,3) = STR$(VAL(Uniqu eACType(i,3)) + 1)
 'increase occurance by 1
 i = ArrayPointer 'to exit the loop
 IsInArray = 1
 END IF
 END IF

 NEXT i

 IF IsInArray = 0 THEN ' if not yet in array

 'insert into array if there is a valid S tandard Ground Time
 IF LEN(TRIM$(MID$(OpsDataLine, 582, 4))) > 0 AND VAL(TRIM$(MID$(OpsDataLine, 582, 4))) <> 0 THEN
 ARRAY INSERT UniqueACType(1,1), TRI M$(MID$(OpsDataLine, 63, 4)) ' A/C type
 ARRAY INSERT UniqueACType(1,2), TRI M$(MID$(OpsDataLine, 582, 4)) ' Standard Ground
Time
 ARRAY INSERT UniqueACType(1,3), "1"
 ' First occurrence
 INCR ArrayPointer
 END IF

 END IF

 WEND 'EOF(1)

 FOR i = 1 TO ArrayPointer
 IF VAL(UniqueACType(i,3)) <> 0 AND VAL(UniqueACTy pe(i,2)) <> 0 THEN

 PRINT #2, UniqueACType(i,1) + ";" + TRIM$(STR$(
INT((ROUND((VAL(UniqueACType(i,2)) / VAL(UniqueACTy pe(i,3))), 0)+4)/5)*5))

 END IF
 NEXT i

 CLOSE #1
 CLOSE #2

 CALL LogEntry(FUNCNAME$, "END")

END SUB 'GenerateAvgGroundTime()

‘-- ---------------------------------------

SUB FillGroundTime(BYVAL FileName AS STRING)

 CALL LogEntry(FUNCNAME$, "START")

 'fills the standard ground time field for records that are empty at that field
 'data source is a computed avg ground time taken f rom an ABA orgiginal data set

 '-------- DECLARATIONS ------------------------ ---------------

 DIM TotalLines AS LONG
 DIM OpsDataLine AS STRING
 DIM LineCounter AS LONG

 '-------- ROUTINE ----------------------------- ---------------

 OPEN FileName FOR INPUT AS #1
 OPEN FILE_GroundTime FOR INPUT AS #2

 OPEN LEFT$(FileName, LEN(FileName)-4) + ".new" FOR OUTPUT AS #3

 'read all avg ground times into an array ------ ---------------

 FILESCAN #2, RECORDS TO TotalLines
 DIM aGroundTimes(1 TO TotalLines+1, 1 TO 2) AS STRING

 LineCounter = 1
 WHILE NOT EOF(2)

 LINE INPUT #2, OpsDataLine
 aGroundTimes(LineCounter, 1) = PARSE$(OpsDataLine , ";", 1)

APPENDIX A 201

 aGroundTimes(LineCounter, 2) = PARSE$(OpsDataLine , ";", 2)
 INCR LineCounter

 WEND 'EOF(2)

 'test for each record in OrgData if standard gr ound time is filled
 'in case not fill it with a value from aGroundT imes Array

 LineCounter = 0

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'if there is no standard ground time (field 25)
 IF VAL(PARSE$(OpsDataLine, ";", %FIELD_StdGroundT ime)) = 0 THEN

 'look up A/C type in ground time array, store po sition in LineCounter
 ARRAY SCAN aGroundTimes(), =PARSE$(OpsDataLine, ";", %FIELD_ACType), TO LineCounter

 'if A/C type found
 IF LineCounter <> 0 THEN
 'take/fill avg ground time from array as standa rd ground time
 OpsDataLine = StringUpdate(OpsDataLine, %FIELD_ StdGroundTime,
aGroundTimes(LineCounter,2))
 ELSE
 ConsoleMessageBox "No entry for STANDARD GR OUND TIME found !!!" + _
 "/nAC type: " + PARSE$(Op sDataLine, ";",
%FIELD_ACType),%DEFAULT,"INFO",%DEFAULT,0
 END IF
 ELSE
 'reformat ground time (eliminate leading zeros)
 OpsDataLine = StringUpdate(OpsDataLine, %FIELD_S tdGroundTime,
TRIM$(STR$(VAL(PARSE$(OpsDataLine, ";", %FIELD_StdG roundTime)))))
 END IF

 PRINT #3, OpsDataLine

 WEND 'EOF(1)

 CLOSE #1
 CLOSE #2
 CLOSE #3

 CALL ShiftFileIntoHistory(LEFT$(FileName, LEN(F ileName)-4))

 CALL LogEntry(FUNCNAME$, "END")

END SUB 'FillGroundTime()

‘-- ---------------------------------------

SUB GenerateGatesUsed()

 CALL LogEntry(FUNCNAME$, "START")

 'uses ORG data file to determine different gate s

 '-------- DECLARATIONS ------------------------ ---------------

 DIM UniqueGateType (1 TO 1000) AS STRING
 DIM OpsDataLine AS STRING
 DIM IsInArray AS INTEGER
 DIM ArrayPointer AS LONG

 DIM i AS LONG 'general purpose loop counter

 '-------- ROUTINE ----------------------------- ---------------

 OPEN FILE_ORG FOR INPUT AS #1
 OPEN FILE_GATE FOR OUTPUT AS #2

 ArrayPointer = 1

 WHILE ISFALSE EOF(1)

 LINE INPUT #1, OpsDataLine

 IsInArray = 0

 'if not yet in AC_array

 FOR i = 1 TO ArrayPointer 'test each elem ent in array

 IF LEFT$(UniqueGateType(i),4) = MID$(Op sDataLine, 361, 4) THEN
 'is already in array
 i = ArrayPointer 'to exit the loop
 IsInArray = 1
 END IF

APPENDIX A 202

 NEXT i

 IF IsInArray = 0 THEN ' if not yet in array

 ARRAY INSERT UniqueGateType(), MID$(OpsD ataLine, 361, 4) + ";000"
 PRINT #2, MID$(OpsDataLine, 361, 4) + "; 000" 'e.g. "A13;000"
 INCR ArrayPointer

 END IF

 WEND 'EOF(1)

 CLOSE #1
 CLOSE #2

 CALL LogEntry(FUNCNAME$, "END")

END SUB 'GenerateGatesUsed()

‘-- ---------------------------------------

SUB FillFlightRevenueSpecific(BYVAL FileName AS STR ING, BYVAL PurposeIndicator AS INTEGER)

 CALL LogEntry(FUNCNAME$, "START")

 'calculates the retail revenue for each flight

 'formula:
 ' retail revenue per flight = Numbe rOfPax * AvgDFRevenue * (FlightPaxDFfactor /100) *
DF->RetailFactor * RetailAreaFactor
 ' = %FIEL D_PAX_Actual * RevPerPax * (%FIELD_FlightPAXD Ffactor / 100) *
FILE_DF_RETAIL_FACTOR * %FIELD_RetailAreaFactor[Act ual|Season|Opti]
 ' = 2 33 * 0,80 * (121,6/100) *
3,4 * 2,7
 ' = 2600, 95

 '-------- DECLARATIONS ------------------------ ---------------

 DIM OpsDataLine AS STRING

 DIM Revenue AS STRING
 DIM DF_RetailFactor AS STRING
 DIM RevPerPax AS CUR
 DIM FlightPaxDFfactor AS STRING
 DIM RetailAreaFactor AS STRING
 DIM LineCounter AS LONG
 DIM TotalLines AS LONG

 '-------- ROUTINE ----------------------------- ---------------

 OPEN FILE_DF_RETAIL_FACTOR FOR INPUT AS #1 'File with DF->RetailFactor value

 'open season origin file
 OPEN FileName FOR INPUT AS #2
 FILESCAN #2, RECORDS TO TotalLines

 'open new target file
 OPEN LEFT$(FileName, LEN(FileName)-4) + ".new" FOR OUTPUT AS #3

 'START: read DF->RetailFactor for later use --- --- ----------------
--

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'the first non-comment-line in file is to b e the DF_RetailFactor value
 IF LEFT$(OpsDataLine,2) <> "//" THEN 'no co mment line in data file

 REPLACE "," WITH "." IN OpsDataLine 'ju st in case a comma instead of decimal point is used ("3,40" -->
"3.40")

 DF_RetailFactor = OpsDataLine

 END IF

 WEND 'EOF(1)

 CLOSE #1

 'END: read DF->RetailFactor later use --------- --- ----------------
--

 OPEN FILE_RevPerPax FOR INPUT AS #1 'File with Average (DF) Revenue Per PAX

 'START: read avg. PAX-DF-Revenue for later use --- ----------------
--

 WHILE NOT EOF(1)

APPENDIX A 203

 LINE INPUT #1, OpsDataLine

 'the first non-comment-line in file is to b e the RevPerPax value
 IF LEFT$(OpsDataLine,2) <> "//" THEN 'no co mment line in data file

 REPLACE "," WITH "." IN OpsDataLine 'ju st in case a comma instead of decimal point is used ("5,80" -->
"5.80")

 RevPerPax = VAL(OpsDataLine)

 END IF

 WEND 'EOF(1)

 CLOSE #1

 'END: read avg. PAX-DF-Revenue for later use -- --- ----------------

 ProgressBoxShow %NOCANCEL, 1,%CONSOLE_CENTER, % CONSOLE_CENTER, "Processing "+TRIM$(USING$("###,### ,###",
TotalLines))+ " Records.", "Calculating Revenue..." , %FALSE
 LineCounter = 1
 WHILE ISFALSE EOF(2)

 LINE INPUT #2, OpsDataLine

 'convert FlightPaxDFfactor into a decimal v alue format
 FlightPaxDFfactor = PARSE$(OpsDataLine, ";" , %FIELD_FlightPAXDFfactor)
 REPLACE "," WITH "." IN FlightPaxDFfactor ' just in case a comma instead of decimal point is us ed ("121,6" -->
"121.6")

 SELECT CASE PurposeIndicator
 CASE 1
 RetailAreaFactor = PARSE$(OpsDataLine, ";", %FIELD_RetailAreaFactorActual)
 CASE 2
 RetailAreaFactor = PARSE$(OpsDataLine, ";", %FIELD_RetailAreaFactorSeason)
 CASE 3
 RetailAreaFactor = PARSE$(OpsDataLine, ";", %FIELD_RetailAreaFactorOpti)
 CASE ELSE
 ConsoleMessageBox "THIS MESSEGE SHO ULD NOT APPEAR DURING RUNTIME: WRONG PURPOSEINDICATOR!!!", _
 %OKONLY+%EXCLAM ATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 CLOSE #3
 CLOSE #2
 EXIT SUB
 END SELECT

 'convert RetailAreaFactor into a decimal va lue format
 REPLACE "," WITH "." IN RetailAreaFactor 'j ust in case a comma instead of decimal point is use d ("2,7" -->
"2.7")

 'formula:
 ' retail revenue per flight = N umberOfPax * AvgDFRevenue * (FlightPaxDFfa ctor/100)
* DF->RetailFactor * RetailAreaFactor
 ' = % FIELD_PAX_Actual * RevPerPax * (%FIELD_Flight PAXDFfactor /
100) * FILE_DF_RETAIL_FACTOR * %FIELD_RetailAreaFac tor[Actual|Season|Opti]
 ' = 233 * 0,80 * (121,6/100)
* 3,4 * 2,7
 ' = 2 600,95

 'calculate revenue

 IF VAL(RetailAreaFactor) <> 0 THEN 'for th e case SEASON or OPTI is chosen and values of "XXX" or similar are
found
 Revenue = TRIM$(STR$(ROUND (_
 RevPerPax * _
 VAL(PARSE$(OpsD ataLine, ";", %FIELD_PAX_Actual)) * VAL(FlightPaxD Ffactor) / 100 *
_
 VAL(DF_RetailFa ctor) * _
 VAL(RetailAreaF actor) _
 ,2)))

 'convert Revenue back into a comma valu e format
 'REPLACE "." WITH "," IN Revenue ' e.g. "121.6" --> "121,6")
 ELSE
 Revenue = "XXX"
 END IF

 SELECT CASE PurposeIndicator
 CASE 1
 OpsDataLine = StringUpDate(OpsDataL ine, %FIELD_RetailRevenueActual, Revenue)
 CASE 2
 OpsDataLine = StringUpDate(OpsDataL ine, %FIELD_RetailRevenueSeason, Revenue)
 CASE 3
 OpsDataLine = StringUpDate(OpsDataL ine, %FIELD_RetailRevenueOpti, Revenue)
 END SELECT

APPENDIX A 204

 ProgressBoxUpdate INT(LineCounter/TotalLine s*100)
 INCR LineCounter

 PRINT #3, OpsDataLine

 WEND 'EOF(2)

 CLOSE #2
 CLOSE #3

 ProgressBoxHide

 CALL ShiftFileIntoHistory(LEFT$(FileName, LEN(Fil eName)-4))
 CALL LogEntry(FUNCNAME$, "END")

END SUB 'FillFlightRevenueSpecific()

‘-- ---------------------------------------

SUB ReIndex(BYVAL FileName AS STRING)

 CALL LogEntry(FUNCNAME$, "START")

 '(re-)index the data file

 '-------- DECLARATIONS ------------------------ ---------------

 DIM OpsDataLine AS STRING
 DIM LineCounter AS LONG
 DIM FileNameText AS STRING

 DIM lResult AS LONG

 '-------- ROUTINE ----------------------------- ---------------

' IF LEN(FileName) > 20 THEN
' FileNameText = RIGHT$(FileName,20)
' ELSE
 FileNameText = FileName
' END IF

 lResult = ConsoleMessageBox("Are you sure to re -index file: " + TRIM$(FileNameText) + " ?",
%YESNO+%HANDBOX+%DEFBUTTON2, "WARNING", %IDI_QUESTION, %FALSE)

 IF lResult = %YESBUTTON THEN

 'open season origin file
 OPEN FileName FOR INPUT AS #1

 'open new target file
 OPEN LEFT$(FileName, LEN(FileName)-4) + ".new" FO R OUTPUT AS #2

 LineCounter = 1
 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine
 PRINT #2, StringUpdate(OpsDataLine, %FIELD _RecID, TRIM$(STR$(LineCounter)))
 INCR LineCounter

 WEND 'EOF(1)

 CLOSE #1
 CLOSE #2

 ConsoleMessageBox "File re-indexed.",%DEFAULT, "INFO",%DEFAULT,0

 CALL ShiftFileIntoHistory(LEFT$(FileName, LEN(FileName)-4))

 ELSE
 ConsoleMessageBox "Nothing re-indexed.",%DEFAULT, "INFO",%DEFAULT,0
 END IF

 CALL LogEntry(FUNCNAME$, "END: " + FileName)

END SUB 'ReIndex()

‘-- ---------------------------------------

SUB ReadAllRecsIntoArray(BYVAL FileName AS STRING)

 CALL LogEntry(FUNCNAME$, "START: " + FileName)

 '-------- DECLARATIONS ------------------------ ---------------

APPENDIX A 205

 DIM OpsDataLine AS STRING
 DIM FieldValue AS STRING
 DIM FieldCounter AS LONG

 DIM TotalLines AS LONG
 DIM LineCounter AS LONG

 DIM i AS LONG 'general purpose loop counter

 DIM lResult AS LONG

 '-------- ROUTINE ----------------------------- ---------------

 'if called for more seasons in one run do not over write error files

 lResult = ConsoleMessageBox("Overwrite error fi les?", %YESNO+%HANDBOX+%DEFBUTTON2, "WARNING", %IDI_QUESTION,
%FALSE)

 IF lResult = %YESBUTTON THEN

 ConsoleMessageBox "Error files will be
overwritten.",%OKONLY+%EXCLAMATIONBOX,"INFO",%IDI_E XCLAMATION,0

 CALL LogEntry(FUNCNAME$, "overwrite error files")

 OPEN FILE_ERR_03 FOR OUTPUT AS #1
 CLOSE #1

 OPEN FILE_ERR_04 FOR OUTPUT AS #1
 CLOSE #1

 OPEN FILE_ERR_05 FOR OUTPUT AS #1
 CLOSE #1

 OPEN FILE_ERR_06 FOR OUTPUT AS #1
 CLOSE #1

 ELSE
 ConsoleMessageBox "Any error record found will b e
appended.",%OKONLY+%EXCLAMATIONBOX,"INFO",%IDI_EXCL AMATION,0

 CALL LogEntry(FUNCNAME$, "append to error files")
 END IF

 CALL ShowWaitBox(1)

 OPEN FileName FOR INPUT AS #1

 FILESCAN #1, RECORDS TO TotalLines
 DIM FlightRec(1 TO TotalLines+1, 1 TO 36) AS ST RING

 PRINT : PRINT "Number of records to be processe d: " + TRIM$(USING$("###,###,###", TotalLines))

 ProgressBoxShow %NOCANCEL, 1,%CONSOLE_CENTER, % CONSOLE_CENTER, "Processing "+TRIM$(USING$("###,### ,###",
TotalLines))+ " Records.", "Reading file...", %FALS E

 LineCounter = 1

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'parse the OpsDataLine and fill the field v ariables

 FieldValue = ""
 FieldCounter = 1

 FOR i = 1 TO LEN(OpsDataLine)
 IF MID$(OpsDataLine, i,1) <> ";" THEN
 'still in same field
 FieldValue = FieldValue + MID$(OpsD ataLine, i, 1)
 ELSE
 'field changes, so fill content int o FlightRec Array
 FlightRec(LineCounter, FieldCounter) = FieldValue
 INCR FieldCounter
 FieldValue = ""
 END IF
 NEXT i

 ProgressBoxUpdate INT(LineCounter/TotalLine s*100)

 INCR LineCounter

 WEND 'EOF(1)

 ProgressBoxHide

 CLOSE #1

 '---------- SOME MORE DATA CLEANING (REPORTS) - -------------------

APPENDIX A 206

 '-- -----
 '---------- flights with no ATD --------------- -----
 '-- -----

 CALL LogEntry(FUNCNAME$, "report flights with n o ATD into error file 03")
 PRINT : PRINT "Checking flights with no ATD..."

 OPEN FILE_ERR_03 FOR APPEND AS #1
 PRINT #1, "ENTRY: " + DATE$ + " / " + TIME$ + " / " + FileName

 FOR i = 1 TO TotalLines

 OpsDataLine = ""

 IF FlightRec(i, 6) = "" THEN
 'no ATD
 CALL WriteRec(FlightRec(), i)
 END IF

 NEXT i

 CLOSE #1

 '-- -----
 '---------- flights with no pax actual -------- -----
 '-- -----

 CALL LogEntry(FUNCNAME$, "report flight with no actual pax in error file 04")
 PRINT "Checking flights with no ACTUAL PAX..."

 OPEN FILE_ERR_04 FOR APPEND AS #1
 PRINT #1, "ENTRY: " + DATE$ + " / " + TIME$ + " / " + FileName

 FOR i = 1 TO TotalLines

 OpsDataLine = ""

 IF FlightRec(i, 19) = "" THEN
 'no actual pax
 CALL WriteRec(FlightRec(), i)
 END IF

 NEXT i

 CLOSE #1

 '-- -----
 '---------- flights with no DF PAX factor ----- -----
 '-- -----

 CALL LogEntry(FUNCNAME$, "report flights with n o DF pax factor into error file 05")
 PRINT "Checking flights with no PAX DF factor.. ."

 OPEN FILE_ERR_05 FOR APPEND AS #1
 PRINT #1, "ENTRY: " + DATE$ + " / " + TIME$ + " / " + FileName

 FOR i = 1 TO TotalLines

 OpsDataLine = ""

 IF FlightRec(i, 26) = "" OR FlightRec(i, 26) = "XXX" THEN
 'no flight pax DF factor
 CALL WriteRec(FlightRec(), i)
 END IF

 NEXT i

 CLOSE #1

 '-- -----
 '---------- flights with a delay of "9999" ---- -----
 '-- -----

 CALL LogEntry(FUNCNAME$, "report files with a d elay of '9999' into error file 06")
 PRINT "Checking flights with a delay of '9999'. .."

 OPEN FILE_ERR_06 FOR APPEND AS #1
 PRINT #1, "ENTRY: " + DATE$ + " / " + TIME$ + " / " + FileName

 FOR i = 1 TO TotalLines

 OpsDataLine = ""

 IF FlightRec(i, 7) = "9999" THEN
 'unspecified delay minutes
 CALL WriteRec(FlightRec(), i)
 END IF

 NEXT i

 CLOSE #1

APPENDIX A 207

 ConsoleMessageBox "Check on Error Files: \n\n 3 (no ATD) , 4 (no pax actual), \n 5 (no pax DF fact or), 6 (delay OF
9999).",%DEFAULT,"INFO",%DEFAULT,0

 '---------- SOME SAMPLE STATISTICS ------------ -------------------

 '---------- list of countries ----------------- -------
 '---------- list of airlines ------------------ -------
 '---------- avg pax DF factor per country ----- -------
 '---------- total pax actual ------------------ -------
 '---------- total pax booked ------------------ -------
 '---------- total pax per gate ---------------- -------
 '---------- total pax per retail area --------- -------
 '---------- total pax per country ------------- -------
 '---------- total pax per airline ------------- -------
 '---------- total revenue --------------------- -------
 '---------- total revenue per gate ------------ -------
 '---------- total revenue per retail area ----- -------
 '---------- avg revenue per gate per pax ------ -------
 '---------- avg revenue per retail area per pax ------
 '---------- list with number of gates used per day ---

 CALL LogEntry(FUNCNAME$, "END: " + FileName)

 cls
 PRINT
 PRINT "Cleaning up..."
 PRINT

END SUB 'ReadAllRecsIntoArray()

‘-- ---------------------------------------

SUB WriteRec(BYREF FlightArray() AS STRING, BYVAL L ineCounter AS LONG)

 'assumes that file handle #1 is opened for outp ut

 DIM FieldCounter AS LONG
 DIM OpsDataLine AS STRING

 OpsDataLine = ""
 FOR FieldCounter = 1 TO 36
 OpsDataLine = OpsDataLine + FlightArray(Lin eCounter, FieldCounter) + ";"
 NEXT FieldCounter

 PRINT #1, OpsDataLine

END SUB 'WriteRec(BYREF FlightArray() AS STRING, BY VAL LineCounter AS LONG)

‘-- ---------------------------------------

FUNCTION StringUpdate(BYVAL StringData AS STRING, B YVAL FieldNumber AS INTEGER, BYVAL UpDateText AS ST RING) AS STRING

 DIM Occurrences AS LONG

 Occurrences = PARSECOUNT(StringData, ANY ";")

 IF Occurrences > 1 THEN

 DIM aSearch(1 TO Occurrences) AS STRING

 PARSE StringData, aSearch(), ANY ";"
 aSearch(FieldNumber) = UpDateText

 StringUpDate = JOIN$(aSearch(), ";")
 ELSE
 StringUpDate = StringData
 END IF

END FUNCTION 'StringUpDate()

‘-- ---------------------------------------

SUB FillPlanningSeason()

 CALL LogEntry(FUNCNAME$, "START")

 'fills OrgDataFile with seasonal planning data
 'summer season 2006 and winter season 2006/2007

 'seasonal planning data is available for a week (so called reference week)
 'the days within reference week have been mappe d to whole season

 '-------- DECLARATIONS ------------------------ ---------------

APPENDIX A 208

 DIM OpsDataLine AS STRING

 DIM TotalLines AS LONG
 DIM FieldCounter AS INTEGER
 DIM FieldValue AS STRING
 DIM LineCounter AS LONG

 DIM i AS LONG 'general pu rpose loop counter

 DIM OrgDataRec AS LONG 'loop count er
 DIM SeasonRec AS LONG 'loop count er

 '-------- ROUTINE ----------------------------- ---------------

 OPEN FILE_ERR_07 FOR OUTPUT AS #2 'err or queue that will contain records of
 'seaso nal flight plan with no matches in OrgDataFile

 '--------------- Summer Season ---------------- -------

 CALL LogEntry(FUNCNAME$, "fill summer seasonal plan data into array")

 OPEN FILE_SS FOR INPUT AS #1

 FILESCAN #1, RECORDS TO TotalLines
 DIM aSummerSeason(1 TO TotalLines+1, 1 TO 7) AS STRING

 LineCounter = 1

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'parse the OpsDataLine and fill the field v ariables

 FieldValue = ""
 FieldCounter = 1

 FOR i = 1 TO LEN(OpsDataLine)
 IF MID$(OpsDataLine, i,1) <> ";" THEN
 'still in same field
 FieldValue = FieldValue + MID$(OpsD ataLine, i, 1)
 ELSE
 'field changes, so fill content int o FlightRec Array
 aSummerSeason(LineCounter, FieldCou nter) = FieldValue
 INCR FieldCounter
 FieldValue = ""
 END IF
 NEXT i

 INCR LineCounter

 WEND 'EOF(1)

 CLOSE #1

 '--------------- Winter Season ---------------- -------

 CALL LogEntry(FUNCNAME$, "fill winter seasonal plan data into array")

 OPEN FILE_WS FOR INPUT AS #1

 FILESCAN #1, RECORDS TO TotalLines
 DIM aWinterSeason(1 TO TotalLines+1, 1 TO 7) AS STRING

 LineCounter = 1

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'parse the OpsDataLine and fill the field v ariables

 FieldValue = ""
 FieldCounter = 1

 FOR i = 1 TO LEN(OpsDataLine)
 IF MID$(OpsDataLine, i,1) <> ";" THEN
 'still in same field
 FieldValue = FieldValue + MID$(OpsD ataLine, i, 1)
 ELSE
 'field changes, so fill content int o FlightRec Array
 aWinterSeason(LineCounter, FieldCou nter) = FieldValue
 INCR FieldCounter
 FieldValue = ""
 END IF
 NEXT i

 INCR LineCounter

 WEND 'EOF(1)

 CLOSE #1

APPENDIX A 209

 '------------- OrgDataFile SUMMER ------------- --------------

 CALL LogEntry(FUNCNAME$, "fill summer org data into array")

 OPEN FILE_SUMMER FOR INPUT AS #1

 FILESCAN #1, RECORDS TO TotalLines
 DIM aOrgDataFileSummer(1 TO TotalLines+1, 1 TO 36) AS STRING

 LineCounter = 1

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'parse the OpsDataLine and fill the field v ariables

 FieldValue = ""
 FieldCounter = 1

 FOR i = 1 TO LEN(OpsDataLine)
 IF MID$(OpsDataLine, i,1) <> ";" THEN
 'still in same field
 FieldValue = FieldValue + MID$(OpsD ataLine, i, 1)
 ELSE
 'field changes, so fill content int o FlightRec Array
 aOrgDataFileSummer(LineCounter, Fie ldCounter) = FieldValue
 INCR FieldCounter
 FieldValue = ""
 END IF
 NEXT i

 INCR LineCounter

 WEND 'EOF(1)

 CLOSE #1

 '------------- OrgDataFile WINTER ------------- --------------

 CALL LogEntry(FUNCNAME$, "fill winter org data into array")

 OPEN FILE_WINTER FOR INPUT AS #1

 FILESCAN #1, RECORDS TO TotalLines
 DIM aOrgDataFileWinter(1 TO TotalLines+1, 1 TO 36) AS STRING

 LineCounter = 1

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'parse the OpsDataLine and fill the field v ariables

 FieldValue = ""
 FieldCounter = 1

 FOR i = 1 TO LEN(OpsDataLine)
 IF MID$(OpsDataLine, i,1) <> ";" THEN
 'still in same field
 FieldValue = FieldValue + MID$(OpsD ataLine, i, 1)
 ELSE
 'field changes, so fill content int o FlightRec Array
 aOrgDataFileWinter(LineCounter, Fie ldCounter) = FieldValue
 INCR FieldCounter
 FieldValue = ""
 END IF
 NEXT i

 INCR LineCounter

 WEND 'EOF(1)

 CLOSE #1

 '----------- summer ------------------------------ ----

 CALL LogEntry(FUNCNAME$, "match summer org data and plan data")

 FOR OrgDataRec = 1 TO UBOUND(aOrgDataFileSummer , 1)

 'default values for NO MATCH (if th ere was a match, these values will be overwritten)

 aOrgDataFileSummer(OrgDataRec, 20) = "XXX" 'pax seasonal plan
 aOrgDataFileSummer(OrgDataRec, 14) = "XXX" 'gate seasonal plan
 aOrgDataFileSummer(OrgDataRec, 15) = "XXX" 'pos seasonal plan

 FOR SeasonRec = 1 TO UBOUND(aSummer Season, 1)

 'do number of weekday and fligh t number match ?
 'match means: day of week AND f light number

APPENDIX A 210

 IF TRIM$(aOrgDataFileSummer(Org DataRec, 2)) = TRIM$(aSummerSeason(SeasonRec, 1)) A ND _
 TRIM$(aOrgDataFileSummer(Org DataRec, 3)) = TRIM$(aSummerSeason(SeasonRec, 2)) T HEN

 'yes, they match, so fill O rgDataFileRec with:
 'Number of pax plan / Gate seasonal / pos seasonal
 aOrgDataFileSummer(OrgDataR ec, 20) = aSummerSeason(SeasonRec, 5) 'pax seasonal
plan
 aOrgDataFileSummer(OrgDataR ec, 14) = aSummerSeason(SeasonRec, 6) 'gate seasonal
plan
 aOrgDataFileSummer(OrgDataR ec, 15) = aSummerSeason(SeasonRec, 7) 'pos seasonal
plan

 END IF

 NEXT SeasonRec

 'if there has been no match, it mea ns that there has not been an equivalent of Season record in
OrgDataFile
 'the correspondent OrgDataFile reco rd is written into an error file, indicating the se ason

 IF aOrgDataFileSummer(OrgDataRec, 20) = "XXX" AND _
 aOrgDataFileSummer(OrgDataRec, 14) = "XXX" AND _
 aOrgDataFileSummer(OrgDataRec, 15) = "XXX" THEN

 'write into ERROR file
 PRINT #2, TRIM$(aOrgDataFileS ummer(OrgDataRec, 1)) + ";" + _
 TRIM$(aOrgDataFileS ummer(OrgDataRec, 2)) + ";" + _
 TRIM$(aOrgDataFileS ummer(OrgDataRec, 3)) + ";SUMMER"

 END IF

 NEXT OrgDataRec

 '----------- winter --------------------------- -------

 CALL LogEntry(FUNCNAME$, "match winter org data and plan data")

 FOR OrgDataRec = 1 TO UBOUND(aOrgDataFileWinter , 1)

 'default values for NO MATCH (if th ere was a match, these values will be overwritten)

 aOrgDataFileWinter(OrgDataRec, 20) = "XXX" 'pax seasonal plan
 aOrgDataFileWinter(OrgDataRec, 14) = "XXX" 'gate seasonal plan
 aOrgDataFileWinter(OrgDataRec, 15) = "XXX" 'pos seasonal plan

 FOR SeasonRec = 1 TO UBOUND(aSummer Season, 1)

 'do number of weekday and fligh t number match ?
 'match means: day of week AND f light number

 IF TRIM$(aOrgDataFileWinter(Org DataRec, 2)) = TRIM$(aWinterSeason(SeasonRec, 1)) A ND _
 TRIM$(aOrgDataFileWinter(Org DataRec, 3)) = TRIM$(aWinterSeason(SeasonRec, 2)) T HEN

 'yes, they match, so fill O rgDataFileRec with:
 'Number of pax plan / Gate seasonal / pos seasonal
 aOrgDataFileWinter(OrgDataR ec, 20) = aWinterSeason(SeasonRec, 5) 'pax seasonal
plan
 aOrgDataFileWinter(OrgDataR ec, 14) = aWinterSeason(SeasonRec, 6) 'gate seasonal
plan
 aOrgDataFileWinter(OrgDataR ec, 15) = aWinterSeason(SeasonRec, 7) 'pos seasonal
plan

 END IF

 NEXT SeasonRec

 'if there has been no match, it mea ns that there has not been an equivalent of Season record in
OrgDataFile
 'the correspondent OrgDataFile reco rd is written into an error file, indicating the se ason

 IF aOrgDataFileWinter(OrgDataRec, 20) = "XXX" AND _
 aOrgDataFileWinter(OrgDataRec, 14) = "XXX" AND _
 aOrgDataFileWinter(OrgDataRec, 15) = "XXX" THEN

 'write into ERROR file
 PRINT #2, TRIM$(aOrgDataFileW inter(OrgDataRec, 1)) + ";" + _
 TRIM$(aOrgDataFileW inter(OrgDataRec, 2)) + ";" + _
 TRIM$(aOrgDataFileW inter(OrgDataRec, 3)) + ";WINTER"

 END IF

 NEXT OrgDataRec

 '--- ------------------------------

 'finally write updated OrgDataFile (Summer)

 CALL LogEntry(FUNCNAME$, "generate new summer o rg data file")

 OPEN LEFT$(FILE_SUMMER, LEN(FILE_SUMMER)-4) + " .new" FOR OUTPUT AS #1

 FOR OrgDataRec = 1 TO UBOUND(aOrgDataFileSummer , 1)

APPENDIX A 211

 CALL WriteRec(aOrgDataFileSummer(), OrgData Rec)
 NEXT OrgDataRec

 CLOSE #1 'updated OrgDataFile (Summer)
 CLOSE #2 'ErrorQueue

 '-- -------------------------------

 'finally write updated OrgDataFile (Winter)

 CALL LogEntry(FUNCNAME$, "generate new winter o rg data file")

 OPEN LEFT$(FILE_WINTER, LEN(FILE_WINTER)-4) + " .new" FOR OUTPUT AS #1

 FOR OrgDataRec = 1 TO UBOUND(aOrgDataFileWinter , 1)
 CALL WriteRec(aOrgDataFileWinter(), OrgData Rec)
 NEXT OrgDataRec

 CLOSE #1 'updated OrgDataFile (Winter)
 CLOSE #2 'ErrorQueue

 CALL ShiftFileIntoHistory(LEFT$(FILE_SUMMER, LEN (FILE_SUMMER)-4))
 CALL ShiftFileIntoHistory(LEFT$(FILE_WINTER, LEN (FILE_WINTER)-4))

 CALL LogEntry(FUNCNAME$, "END")

END SUB' FillPlanningSeason()

‘-- ---------------------------------------

SUB GenerateGanttData()

 CALL LogEntry(FUNCNAME$, "START")

 'allows to select 1 day (on ATD basis),
 'classify retail DATA into a/b/c,
 'write a semicolon delimted file for an import int o an EXCEL file with conditional formatting for dis play

 'select day
 'read day's flight info into array
 'generate empty array for later output file (ti me,gates), i.e. (290, 153)
 'for each record determine
 ' data: ATD, Standard Ground Time, Gate
 ' determine fields of export matrix to be fill ed (e.g. 00:10-01:30/Gate A8)
 ' determine category (a/b/c --> color code in EXCEL display)

 '-------- DECLARATIONS -------------------------- -------------

 DIM OpsDataLine AS STRING

 DIM TotalLines AS LONG
 DIM LineCounter AS LONG

 LOCAL FieldValue AS STRING
 LOCAL FieldCounter AS INTEGER

 LOCAL lCategoryChange AS LONG
 DIM SelectedDate AS STRING
 DIM NumberOfSelectedRecords AS LONG

 DIM SelectedFlightRecs(1 TO %MaxDeparturesPerDa y) AS STRING

 DIM GanttArray(1 TO 288, 1 TO gNumberOfGates) A S STRING '(5-min-time slice, gates) e. g. (13:45, B46)
 DIM TimeIndex (1 TO 288) AS STRING
 LOCAL TimeIndexForATD AS INTEGER
 LOCAL TimeIndexForSTD AS INTEGER

 DIM MaxGroundPeriods AS LONG
 LOCAL TaxiOutPeriods AS INTEGER

 DIM i AS LONG 'general purpose loop counter
 DIM j AS LONG 'general purpose loop counter
 DIM z AS LONG 'general purpose loop counter

 DIM OutputDay AS INTEGER

 DIM FlightRec(1 TO 10, 1 TO 36) AS STRING ' dum my DIM, so that the REDIM works...

 DIM lErrorOccurred AS INTEGER

 DIM sFieldItems (1 TO 5) AS STRING 'potential fields for output
 LOCAL sResult AS STRING
 LOCAL nResult AS INTEGER
 LOCAL HeatCatLine AS STRING

 LOCAL HigherLowerIsBetter AS STRING

 '-------- ROUTINE ----------------------------- ---------------
 ON ERROR GOTO ErrorTrap

APPENDIX A 212

 TaxiOutPeriods = 2 'i.e. 2*5 = 10 minutes (use d to cope for taxi-out time, as gate is free in the sense of retail
usage)

 '----- Select a field for Heat Map view -----

 'field 1 is record ID which does not make sense to export

 sFieldItems(1) = "Delay Minutes"
 sFieldItems(2) = "Flight PAX DF Factor"
 sFieldItems(3) = "Retail Revenue (actual)"
 sFieldItems(4) = "Retail Revenue (season)"
 sFieldItems(5) = "Retail Revenue (opti)"

 sResult = ConsoleListBox(20090, _
 LocOfCol(22), _
 LocOfRow(5),_
 "Please select a field for A/B/C Ga ntt view...", _
 "Field Selection", _
 sFieldItems(), _
 2, _
 %RETURN_INDEX, _
 0)

 nResult = VAL(sResult)

 SELECT CASE nResult
 CASE 1
 nResult = %FIELD_DelayMinutes
 HigherLowerIsBetter = "L"
 CASE 2
 nResult = %FIELD_FlightPAXDFfactor
 HigherLowerIsBetter = "H"
 CASE 3
 nResult = %FIELD_RetailRevenueActual
 HigherLowerIsBetter = "H"
 CASE 4
 nResult = %FIELD_RetailRevenueSeason
 HigherLowerIsBetter = "H"
 CASE 5
 nResult = %FIELD_RetailRevenueOpti
 HigherLowerIsBetter = "H"
 END SELECT

 '-------- confirm/change current HEAT MAP CATEG ORY BOUNDARIES ------
 lCategoryChange = ConsoleMessageBox("Current B- Category is: " + TRIM$(STR$(gHeatCat_B_From)) + "-" +
TRIM$(STR$(gHeatCat_B_To)) + _
 "\n\nWould you like to change [YES] or keep [NO] values?\n", _
 %YESNO+%HAN DBOX+%DEFBUTTON1, "INFO", %IDI_QUESTION, %FALSE)

 DO
 IF lCategoryChange = %YESBUTTON THEN
 CALL LogEntry(FUNCNAME$, "START: Edi t HEATCAT-File")
 SHELL "notepad.exe " + FILE_HEATCAT
 CALL LogEntry(FUNCNAME$, "END: Edit HEATCAT-File")
 OPEN FILE_HEATCAT FOR INPUT AS #1
 WHILE NOT EOF(1)
 LINE INPUT #1, HeatCatLine
 IF LEFT$(HeatCatLine, 2) <> "//" A ND LEN(TRIM$(HeatCatLine)) > 0 THEN
 gHeatCat_B_From = VAL(PARSE $(HeatCatLine, ";", 1))
 gHeatCat_B_To = VAL(PARSE$(HeatCatLine, ";", 2))
 END IF
 WEND 'EOF(1)
 CLOSE #1
 IF gHeatCat_B_From < gHeatCat_B_To THEN
 EXIT DO
 ELSE
 ConsoleMessageBox "CHECK: HeatC at B" + STR$(gHeatCat_B_From) +" - "+
STR$(gHeatCat_B_To),%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 END IF
 ELSE
 EXIT DO
 END IF
 LOOP

 '-------- select day (ATD is relevant field) to process ------

 SelectedDate = "2006-03-26"

 SelectedDate = REMOVE$(ConsoleInputBox$(1, %CEN TER, %CENTER, _
 "Enter start date of week (Format: YYYY-MM-DD)", _
 "Select Week for Export", SelectedDate, 0, %FALSE), ANY " -")

 '-------- read all relevant records into an arr ay ---------------------

 IF LEN(SelectedDate) = 8 AND NOT ConsoleInputBo xCancel THEN
 'if a date has been entered

 cls

 '-------- fill target array with category data -- -------------

APPENDIX A 213

 OPEN FILE_TIMEINDEX FOR INPUT AS #1

 LineCounter = 1
 WHILE NOT EOF(1)
 LINE INPUT #1, TimeIndex(LineCounter)
 INCR LineCounter
 WEND 'EOF(1)

 CLOSE #1

 'ConsoleMessageBox "TimeIndex has been read ." & STR$(LineCounter),%DEFAULT,"INFO",%DEFAULT,0

 '-------- read gate index info into array - -------------------

 OPEN FILE_GATE_INFRA FOR INPUT AS #1

 FILESCAN #1, RECORDS TO TotalLines
 DIM GateArray(1 TO TotalLines+1, 1 TO 7) AS ST RING

 LineCounter = 1
 WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 IF LEFT$(OpsDataLine, 2) <> "//" THEN 'b ypass comment lines

 'parse the OpsDataLine and fill the field variables

 FieldValue = ""
 FieldCounter = 1

 FOR i = 1 TO LEN(OpsDataLine)
 IF MID$(OpsDataLine, i,1) <> ";" THEN
 'still in same field
 FieldValue = FieldValue + MID$(Op sDataLine, i, 1)
 ELSE
 'field changes, so fill content i nto Gate Array
 GateArray(LineCounter, FieldCount er) = FieldValue
 INCR FieldCounter
 FieldValue = ""
 END IF
 NEXT i

 INCR LineCounter

 END IF
 WEND 'EOF(1)

 CLOSE #1

 'ConsoleMessageBox "GateIndex has been read ." & STR$(LineCounter),%DEFAULT,"INFO",%DEFAULT,0

 '-- --------------------------------
 '---- for each of the day beginning with Se lectedDate ---------------------
 '-- --------------------------------

 FOR OutputDay = 1 TO 7 ' one week of data t o be generated

 PRINT "Working on flight data... " + Se lectedDate + " (" + TRIM$(STR$(OutputDay)) + " of 7)"

 'delete position in array for use on next day
 FOR i = 1 TO 288 'TimeIndex
 FOR j = 1 TO gNumberOfGates 'GateIndex
 GanttArray(i, j) = ""
 NEXT j
 NEXT i

 '---- try summer season --------------------- ----

 PRINT "Trying summer season.";

 LineCounter = 1

 CLOSE #1
 OPEN FILE_SUMMER FOR INPUT AS #1
 FILESCAN #1, RECORDS TO TotalLines
 '--- REDIM +++ REDIM +++ REDIM +++ REDIM + ++ REDIM +++ REDIM +++ REDIM ---
 REDIM FlightRec(1 TO TotalLines+1, 1 TO 36) AS STRING
 '--- REDIM +++ REDIM +++ REDIM +++ REDI M +++ REDIM +++ REDIM +++ REDIM ---

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'store only in array if ATD-Date match es the selected date
 IF LEFT$(PARSE$(OpsDataLine, ";", %FIE LD_ATD),8) = SelectedDate THEN
 SelectedFlightRecs(LineCounter) = OpsDataLine
 INCR LineCounter
 END IF

 WEND 'EOF(1)

 CLOSE #1

 'try winter season only if there was no t a match in summer season (i.e. LineCounter is sti ll 1)

APPENDIX A 214

 IF LineCounter = 1 THEN

 '---- try winter season ---------------- ---------

 PRINT " -- NOT FOUND."
 PRINT "Trying winter season.";

 OPEN FILE_WINTER FOR INPUT AS #1

 FILESCAN #1, RECORDS TO TotalLines
 '--- REDIM +++ REDIM +++ REDIM +++ RED IM +++ REDIM +++ REDIM +++ REDIM ---
 REDIM FlightRec(1 TO TotalLines+1, 1 T O 36) AS STRING
 '--- REDIM +++ REDIM +++ REDIM +++ RED IM +++ REDIM +++ REDIM +++ REDIM ---

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'store only in array if ATD-Date match es the selected date
 IF LEFT$(PARSE$(OpsDataLine, ";", %FIE LD_ATD),8) = SelectedDate THEN
 SelectedFlightRecs(LineCounter) = OpsDataLine
 INCR LineCounter
 END IF

 WEND 'EOF(1)

 IF LineCounter > 1 THEN
 PRINT " -- FOUND."
 NumberOfSelectedRecords = LineCoun ter
 ELSE
 PRINT " -- NOT FOUND."
 NumberOfSelectedRecords = 0
 END IF

 CLOSE #1
 ELSE
 NumberOfSelectedRecords = LineCount er
 PRINT " -- FOUND." 'in SUMMER(!) se ason
 END IF

 PRINT "Number of Records on that day = " & STR$(NumberOfSelectedRecords)
 PRINT

 'ConsoleMessageBox "Number of Records on t hat day = " &
STR$(NumberOfSelectedRecords),%DEFAULT,"INFO",%DEFA ULT,0

 '-------- generate gantt array -------- -----------------------

 FOR LineCounter = 1 TO NumberOfSelectedRec ords

 MaxGroundPeriods = 0

 'check which 5-min. time index the ATD falls into ([001]00:00-[288]23:55)

 'TimeIndexForATD = (hours*12) + INT (minutes/5) + 1
 TimeIndexForATD = VAL(MID$(PARSE$(S electedFlightRecs(LineCounter), ";", %FIELD_ATD), 9 , 2)) * 12
'hours
 TimeIndexForATD = TimeIndexForATD + INT(VAL(MID$(PARSE$(SelectedFlightRecs(LineCounter),";",
%FIELD_ATD), 11, 2)) / 5)
 TimeIndexForATD = TimeIndexForATD + 1

 'TimeIndexForSTD = (hours*12) + INT (minutes/5) + 1
 TimeIndexForSTD = VAL(MID$(PARSE$(S electedFlightRecs(LineCounter), ";", %FIELD_STD), 9 , 2)) * 12
'hours
 TimeIndexForSTD = TimeIndexForSTD + INT(VAL(MID$(PARSE$(SelectedFlightRecs(LineCounter),";",
%FIELD_STD), 11, 2)) / 5)
 TimeIndexForSTD = TimeIndexForSTD + 1

 'only for flights with an ATD and w ith an actual gate
 IF PARSE$(SelectedFlightRecs(LineCo unter), ";", %FIELD_ATD) <> "" AND
PARSE$(SelectedFlightRecs(LineCounter), ";", %FIELD _Gate_Actual) <> "" THEN

 'the following cases cope for long delays or early take offs
 'CASE(I) : delay >= standard g round time(SGT) or delay < 0, so FROM= ATD-SGT, TO= ATD-TaxiOutTime
 'CASE(II): delay < standard g round time(SGT), so FROM= STD-SGT, TO= ATD-TaxiOutT ime

 'the difference would be for t he cases of prior to midnight
 IF VAL(PARSE$(SelectedFlightRe cs(LineCounter), ";", %FIELD_DelayMinutes)) >=
VAL(PARSE$(SelectedFlightRecs(LineCounter), ";", %F IELD_StdGroundTime)) OR _
 VAL(PARSE$(SelectedFlightRe cs(LineCounter), ";", %FIELD_DelayMinutes)) < 0 THE N

 'test for a FROM time prior to midnight
 IF INT(VAL(PARSE$(SelectedF lightRecs(LineCounter), ";", %FIELD_StdGroundTime)) /5) >
TimeIndexForATD THEN
 'FROM would be previous day (prior to 00:00) so let it start at (FROM) 00: 00
 'calculate the MaxGroun dPeriods (5-min-intervals), based on FROM= ATD-SGT, (TO= ATD-
TaxiOutTime)
 MaxGroundPeriods = Time IndexForATD
 ELSE
 'FROM is on current day

APPENDIX A 215

 'calculate the MaxGroun dPeriods (5-min-intervals), based on FROM= ATD-SGT, (TO= ATD-
TaxiOutTime)
 MaxGroundPeriods = INT(VAL(PARSE$(SelectedFlightRecs(LineCounter), ";",
%FIELD_StdGroundTime))/5)
 END IF

 'fill the GANTTARRAY
 FOR j = 0 TO MaxGroundPerio ds

 'TimeIndexForATD-j ==> go back i n time, to cope for standard ground time
 IF TimeIndexForATD-TaxiOutPeriod s-j > 0 THEN 'fill the target array with the
value of target field (nResult)
 GanttArray(TimeIndexForATD-T axiOutPeriods-j,
GetGateColumn(PARSE$(SelectedFlightRecs(LineCounter), ";", %FIELD_Gate_Actual), GateArray())) = _

GetCategoryABC(PARSE$(SelectedFlightRecs(LineCounte r), ";", nResult), HigherLowerIsBetter)
 END IF

 NEXT j

 ELSE 'CASE(II)

 'delay < SGT
 'test for a FROM time prior to midnight
 IF INT(VAL(PARSE$(SelectedF lightRecs(LineCounter), ";", %FIELD_StdGroundTime)) /5) >
TimeIndexForSTD THEN
 'FROM would be previous day (prior to 00:00) so let it start at (FROM) 00: 00
 'calculate the MaxGroun dPeriods (5-min-intervals), based on FROM= STD-SGT, (TO= ATD-
TaxiOutTime)
 MaxGroundPeriods = Time IndexForSTD
 ELSE
 'FROM is on current day
 'calculate the MaxGroun dPeriods (5-min-intervals), based on FROM= ATD-SGT, (TO= ATD-
TaxiOutTime)
 MaxGroundPeriods = INT(VAL(PARSE$(SelectedFlightRecs(LineCounter), ";",
%FIELD_StdGroundTime))/5)
 END IF

 'fill the GANTTARRAY
 FOR j = 0 TO MaxGroundPerio ds

 'TimeIndexForSTD-j ==> go back i n time, to cope for standard ground time
 IF TimeIndexForSTD-TaxiOutPeriod s-j > 0 THEN 'fill the target array with the
value of target field (nResult)
 GanttArray(TimeIndexForSTD-T axiOutPeriods-j, GetGateColumn(
PARSE$(SelectedFlightRecs(LineCounter), ";", %FIELD _Gate_Actual), GateArray())) = _

GetCategoryABC(PARSE$(SelectedFlightRecs(LineCounte r), ";", nResult), HigherLowerIsBetter)

 END IF

 NEXT j

 END IF 'CASE I and II

 END IF 'only flights with ATD and w ith actual gate

 NEXT LineCounter

 'ConsoleMessageBox "Gantt Array has been gene rated. ",%DEFAULT,"INFO",%DEFAULT,0

 '-------- write output file for GANTT view in EXCEL ----------

 IF NumberOfSelectedRecords > 0 THEN

 OPEN FILE_GANTTVIEW + "_" + SelectedDate + ".TXT" FOR OUTPUT AS #2
 PRINT #2, "// Field : " + sFiel dItems(VAL(sResult))
 PRINT #2, "// Category B: " + TRIM$ (STR$(gHeatCat_B_From)) + "-" + TRIM$(STR$(gHeatCat _B_To))
 PRINT #2, "//"

 FOR i = 1 TO 288 'TimeIndex

 OpsDataLine = ""
 FOR j = 1 TO gNumberOfGates 'GateIndex
 OpsDataLine = OpsDataLine + GanttArray(i, j) + ";"
 'delete position in array for use on ne xt day
 GanttArray(i, j) = ""
 NEXT j 'GateIndex

 PRINT #2, OpsDataLine

 NEXT i 'TimeIndex

 CLOSE #2

 END IF

 SelectedDate = NextDay(SelectedDate)

 NEXT OutputDay

 ConsoleMessageBox "If dates have been found , you may import the data into a pre-formatted EXCE L sheet\n\nor
use the Animate Data Function.",%DEFAULT,"INFO",%DE FAULT,0

APPENDIX A 216

 cls
 PRINT "Cleaning up..."

 ELSE

 ConsoleMessageBox "Nothing has been exported. ",%DEFAULT,"INFO",%DEFAULT,0

 END IF 'LEN(SelectedDate) = 8

 CALL LogEntry(FUNCNAME$, "END")

 GENERATEGANTTDATA_RESUME:
 IF lErrorOccurred = %TRUE THEN
 ConsoleMessageBox "Terminating Procedure.", %OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 cls
 EXIT SUB
 END IF

 EXIT SUB

 ErrorTrap:

 lErrorOccurred = %TRUE
 ConsoleMessageBox "ERROR OCCURRED: " + STR$(ERR) + " " +
ERROR$,%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0

 RESUME GENERATEGANTTDATA_RESUME

END SUB 'GenerateGanttData()

‘-- ---------------------------------------

FUNCTION GetGateColumn (BYVAL Gate AS STRING, BYREF GateArray() AS STRING) AS INTEGER

 DIM i AS LONG

 GetGateColumn = 0

 IF Gate <> "" THEN
 FOR i = 1 TO UBOUND(GateArray, 1)

 IF TRIM$(GateArray(i,2)) = TRIM$(Gate) THEN
 GetGateColumn = VAL(GateArray(i,1))
 EXIT FUNCTION
 END IF

 NEXT i
 END IF

END FUNCTION 'GetGateColumn()

‘-- ---------------------------------------

FUNCTION GetCategoryABC(BYVAL FieldValue AS STRING, BYVAL ValueDirection AS STRING) AS STRING

 REPLACE "," WITH "." IN ValueDirection 'just in ca se...

 IF ValueDirection = "H" THEN ' higher is better

 SELECT CASE VAL(FieldValue)
 CASE < gHeatCat_B_From ' ap prox. 1st Quartile
 GetCategoryABC = "c"
 CASE gHeatCat_B_From TO gHeatCat_B_To ' a pprox. 2nd and >3rd Quartile
 GetCategoryABC = "b"
 CASE > gHeatCat_B_To ' ap prox. top 20% (80% coverage)
 GetCategoryABC = "a"
 CASE ELSE
 GetCategoryABC = "x"
 END SELECT

 ELSE ' lower is better

 SELECT CASE VAL(FieldValue)
 CASE < gHeatCat_B_From ' ap prox. 1st Quartile
 GetCategoryABC = "a"
 CASE gHeatCat_B_From TO gHeatCat_B_To ' a pprox. 2nd and >3rd Quartile
 GetCategoryABC = "b"
 CASE > gHeatCat_B_To ' ap prox. top 20% (80% coverage)
 GetCategoryABC = "c"
 CASE ELSE
 GetCategoryABC = "x"
 END SELECT

 END IF

END FUNCTION 'GetCategoryABC()

APPENDIX A 217

‘-- ---------------------------------------

SUB GenerateWeekDayPAXFile()

 CALL LogEntry(FUNCNAME$, "START")

 'generates a file to be imported by EXCEL for furt her stats
 'content are actual pax figures per flight grouped by weekday across the according season (both seaso ns)
 'form: DAY1;DAY2;DAY3;DAY4;DAY5;DAY6;DAY7;DAY1;DA Y2;DAY3;DAY4;DAY5;DAY6;DAY7
 ' 223;333;123;120;333;87;97;...
 ' 301;97;101;224;322;54;124
 ' ...

 '-------- DECLARATIONS --------------------------- ------------

 DIM aSeason(1 TO 2) AS STRING
 LOCAL i AS LONG
 LOCAL j AS LONG
 DIM aElementCounter(1 TO %MaxDeparturesPerDay * (INT(183/7)+1)) AS LONG '183
days = approx. one season

 'each of
the 7 days has %MaxDeparturesPerDay
 LOCAL DayOfWeekInSeason AS INTEGER
 LOCAL OpsDataLine AS STRING
 LOCAL curFLIRTRec AS LONG
 LOCAL lFLIRTpax AS INTEGER

 DIM aPAX(1 TO 14, 1 TO %MaxDeparturesPerDay * (IN T(183/7)+1)) AS STRING 'target array (flight event
; day 1..7 = summer / day 8..14 = winter)

 '-------- ROUTINE ----------------------------- ---------------

 aSeason(1) = FILE_SUMMER
 aSeason(2) = FILE_WINTER

 'read FLIRT data into array in case no pax figu re is found
 OPEN FILE_FLIRT FOR INPUT AS #1

 FILESCAN #1, RECORDS TO i
 DIM aFLIRT(1 TO i) AS STRING
 CLOSE #1

 OPEN FILE_FLIRT FOR INPUT AS #1
 i = 1
 WHILE NOT EOF(1)
 LINE INPUT #1, aFLIRT(i)
 INCR i
 WEND 'EOF(1)
 CLOSE #1

 'initialize the array
 FOR i = 1 TO 14
 FOR j = 1 TO %MaxDeparturesPerDay * (INT(183/7)+1)
 aPax(i,j) = "---"
 NEXT j
 NEXT i

 OPEN PATH_APPLICATION+$FILE_DEBUG FOR APPEND AS #3
 PRINT #3, "NEW ENTRY: " + DATE$ + " / " + TIME$

 OPEN FILE_PAX001 FOR OUTPUT AS #2

 'for each of the seasons read the actual pax data

 FOR i = 1 TO UBOUND(aSeason)

 ARRAY ASSIGN aElementCounter() = 1,1,1,1,1,1,1,1, 1,1,1,1,1,1

 OPEN aSeason(i) FOR INPUT AS #1

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'Field2 = weekday / Field6 = ATD / Field19 = act ual pax / Field18 = booked pax

 'only for flights with an ATD
 IF PARSE$(OpsDataLine, ";", %FIELD_ATD) <> "" TH EN

 DayOfWeekInSeason = VAL(PARSE$(OpsDataLine, "; ", %FIELD_DayOfWeek)) + 7*(i-
1)

 IF VAL(PARSE$(OpsDataLine, ";", %FIELD_PAX_Actu al)) <> 0 THEN

APPENDIX A 218

 aPax(DayOfWeekInSeason, aElementCounter(DayOf WeekInSeason)) =
PARSE$(OpsDataLine, ";", %FIELD_PAX_Actual)

 ELSE 'if there is no valid actual pax figure ta ke the booked pax figure (if
there is one)
 IF VAL (PARSE$(OpsDataLine, ";", %FIELD_PAX_Bo oked)) <> 0 THEN
 aPax(DayOfWeekInSeason,
aElementCounter(DayOfWeekInSeason)) = PARSE$(OpsDa taLine, ";", %FIELD_PAX_Booked)
 ELSE
 'if no booked pax either try on plan values
 IF VAL (PARSE$(OpsDataLine, ";", %FIELD_PAX_S eason)) <> 0
THEN
 aPax(DayOfWeekInSeason,
aElementCounter(DayOfWeekInSeason)) = PARSE$(OpsDa taLine, ";", %FIELD_PAX_Season)
 ELSE
 'look in FLIRT data
 lFLIRTpax = 0
 FOR curFLIRTRec = 1 TO UBOUND(aFLIRT)
 IF PARSE$(aFLIRT(curFLIRTRec), ";", 2)
= PARSE$(OpsDataLine, ";", %FIELD_FlightNumber) THE N
 aPax(DayOfWeekInSeason,
aElementCounter(DayOfWeekInSeason)) = PARSE$(aFLIR T(curFLIRTRec), ";", %FIELD_FlightNumber)
 lFLIRTpax = 1
 END IF
 NEXT curFLIRTRec

 IF lFLIRTpax = 0 THEN
 aPax(DayOfWeekInSeason,
aElementCounter(DayOfWeekInSeason)) = "xxx"
 PRINT #3, OpsDataLine
 END IF

 END IF
 END IF

 END IF

 INCR aElementCounter(DayOfWeekInSeason)

 END IF

 WEND 'EOF(1)

 CLOSE #1

 NEXT i

 FOR i = 1 TO %MaxDeparturesPerDay * (INT(183/7)+1)

 OpsDataLine = ""
 FOR j = 1 TO 14
 OpsDataLine = OpsDataLine + aPax(j,i) + ";"
 NEXT j

 'delete the last delimiter
 OpsDataLine = LEFT$(OpsDataLine, LEN(OpsDataLine) -1)

 PRINT #2, OpsDataLine

 NEXT i

 CLOSE #2
 CLOSE #3

 ConsoleMessageBox "PAX file generated. For any pro blems look into file: \n" + PATH_APPLICATION+$FILE_ DEBUG,
%DEFAULT,"INFO",%DEFAULT,0

 CALL LogEntry(FUNCNAME$, "END")

END SUB 'GenerateWeekDayPAXFile()

‘-- ---------------------------------------

SUB GenerateWeekDayFIELDFile()

 CALL LogEntry(FUNCNAME$, "START")

 'generates a file to be imported by EXCEL for furt her stats
 'content are actual field/attribute figures per fl ight grouped by weekday across the according season (both
seasons)
 'form: DAY1;DAY2;DAY3;DAY4;DAY5;DAY6;DAY7;DAY1;DA Y2;DAY3;DAY4;DAY5;DAY6;DAY7
 ' 223;333;123;120;333;87;97;...
 ' 301;97;101;224;322;54;124
 ' ...

 '-------- DECLARATIONS --------------------------- ------------

 DIM aSeason(1 TO 2) AS STRING
 LOCAL i AS LONG
 LOCAL j AS LONG

 LOCAL ExportField AS INTEGER

APPENDIX A 219

 DIM aElementCounter(1 TO %MaxDeparturesPerDay * (INT(183/7)+1)) AS LONG '183
days = approx. one season

 'each of
the 7 days has %MaxDeparturesPerDay
 LOCAL DayOfWeekInSeason AS INTEGER
 LOCAL OpsDataLine AS STRING

 LOCAL DateTimeStamp AS STRING
 LOCAL lFilter AS LONG

 DIM aExportField(1 TO 14, 1 TO %MaxDeparturesPerD ay * (INT(183/7)+1)) AS STRING 'target array
(flight event ; day 1..7 = summer / day 8..14 = win ter)

 LOCAL LineCounter AS LONG
 LOCAL DismissedLines AS LONG
 LOCAL PaxCount AS LONG

 '-------- ROUTINE ----------------------------- ---------------

 lFilter = %YESBUTTON

 aSeason(1) = FILE_SUMMER
 aSeason(2) = FILE_WINTER

 LineCounter = 0
 DismissedLines = 0
 PaxCount = 0

 'initialize the array
 FOR i = 1 TO 14
 FOR j = 1 TO %MaxDeparturesPerDay * (INT(183/7)+1)
 aExportField(i,j) = "---"
 NEXT j
 NEXT i

 'select the field to export
 ExportField = SelectField()

 IF ExportField >1 AND ExportField <37 THEN

 cls
 PRINT "selected Field = " + TRIM$(STR$(Expo rtField))

 'for comparison purpose of retail revenue A CTUAL revenue can
 'only compared to e.g. SEASONAL PLANNING re venue when just
 'those records are exported that have both ACTUAL and SEASON revenue filled

 IF ExportField = %FIELD_RetailRevenueActual THEN
 lFilter = ConsoleMessageBox("Do you wan t to export all records (YES) or just those\n\n" + _
 "that also have SEASONAL revenue filled (NO) ? ", _
 %YESNO+%HAN DBOX+%DEFBUTTON1, "INFO", %IDI_QUESTION, %FALSE)
 END IF

 IF ExportField = %FIELD_DelayMinutes THEN
 PRINT "Any entry of '9999' will be set to '0'."
 END IF

 IF lFilter = %YESBUTTON THEN
 PRINT "All records will be exported."
 ELSE
 PRINT "Only records with both ACTUAL an d SEASONAL revenue will be exported."
 END IF

 OPEN PATH_APPLICATION+$FILE_DEBUG FOR APPEN D AS #3
 PRINT #3, "NEW ENTRY: " + DATE$ + " / " + T IME$

 DateTimeStamp = TIME$
 REPLACE ANY ":" WITH "-" IN DateTimeStamp
 DateTimeStamp = DATE$ + "_" + DateTimeStamp
 OPEN PATH_DATA + $FILE_OUTPUT + "_Field_" + TRIM$(STR$(ExportField)) + "_" + DateTimeStamp + " .txt" FOR OUTPUT
AS #2

 'for each of the seasons read the actual pax d ata

 PRINT "Reading field values to be exported..."

 FOR i = 1 TO UBOUND(aSeason)

 ARRAY ASSIGN aElementCounter() = 1,1,1,1,1,1, 1,1,1,1,1,1,1,1

 OPEN aSeason(i) FOR INPUT AS #1

 WHILE NOT EOF(1)

 INCR LineCounter
 LINE INPUT #1, OpsDataLine

 'only for flights with an ATD
 IF PARSE$(OpsDataLine, ";", %FIELD_ATD) <> " " THEN
 IF lFilter = %YESBUTTON THEN

 DayOfWeekInSeason = VAL(PARSE$(OpsData Line, ";", %FIELD_DayOfWeek)) + 7*(i-
1)

APPENDIX A 220

 IF ExportField = %FIELD_DelayMinutes AN D PARSE$(OpsDataLine, ";", ExportField)
= "9999" THEN
 'set value to zero
 aExportField(DayOfWeekInSeason, aE lementCounter(DayOfWeekInSeason)) =
"0"
 ELSE
 aExportField(DayOfWeekInSeason, aE lementCounter(DayOfWeekInSeason)) =
PARSE$(OpsDataLine, ";", ExportField)
 END IF

 PaxCount = PaxCount + VAL(PARSE$(OpsDat aLine, ";", %FIELD_PAX_Actual))
 INCR aElementCounter(DayOfWeekInSeason)

 ELSE 'apply filter for field 34 : %FIELD_RetailRevenueActual depending on field 35:
%FIELD_RetailRevenueSeason
 '--> export only if there is both ACTUAL and SEASONAL revenue

 IF VAL(PARSE$(OpsDataLine, ";", %FIELD_RetailRevenueSeason)) <> 0 THEN
 DayOfWeekInSeason = VAL (PARSE$(OpsDataLine, ";", %FIELD_DayOfWeek)) + 7* (i-1)
 aExportField(DayOfWeekInSeason, aE lementCounter(DayOfWeekInSeason)
) = PARSE$(OpsDataLine, ";", ExportField)
 PaxCount = PaxCount + VAL(PARSE$(Op sDataLine, ";",
%FIELD_PAX_Actual))
 INCR aElementCounter(DayOfWeekInSea son)
 ELSE
 INCR DismissedLines
 END IF

 END IF
 END IF

 WEND 'EOF(1)

 CLOSE #1

 NEXT i

 PRINT "Writing output file..."

 FOR i = 1 TO %MaxDeparturesPerDay * (INT(183/7)+1)

 OpsDataLine = ""
 FOR j = 1 TO 14
 OpsDataLine = OpsDataLine + aExportField(j,i) + ";"
 NEXT j

 'delete the last delimiter
 OpsDataLine = LEFT$(OpsDataLine, LEN(OpsDataL ine)-1)

 PRINT #2, OpsDataLine

 NEXT i

 PRINT #3, "Total Recs with ATD: " + STR$(LineC ounter) + _
 " / Dismissed Lines (in case of AC TUAL REVENUE FILTER): " + STR$(DismissedLines) + _
 " / PaxCount: " + STR$(PaxCount)

 CLOSE #2
 CLOSE #3

 ConsoleMessageBox "Outfile file generated.\nBu t remember ONLY flights with an ATD have been
considered.\n\n" + _
 "For any problems look int o file: \n" + PATH_APPLICATION+$FILE_DEBUG,
%DEFAULT,"INFO",%DEFAULT,0

 ELSE
 ConsoleMessageBox "No field chosen. Nothing exported.", %DEFAULT,"INFO",%DEFAULT,0
 END IF

 cls

 CALL LogEntry(FUNCNAME$, "END: Field = " + TRIM$(S TR$(ExportField)))

END SUB 'GenerateWeekDayFIELDFile()

‘-- ---------------------------------------

FUNCTION SelectField() AS INTEGER

 DIM sFieldItems (2 TO 36) AS STRING 'Number o f fields in data file
 LOCAL sResult AS STRING

 SelectField = 0

 'field 1 is record ID which does not make sense to export

 sFieldItems(2) = "Day Of Week"
 sFieldItems(3) = "Flight Number"
 sFieldItems(4) = "STD"
 sFieldItems(5) = "ETD"
 sFieldItems(6) = "ATD"

APPENDIX A 221

 sFieldItems(7) = "Delay Minutes"
 sFieldItems(8) = "Aircraft Type"
 sFieldItems(9) = "Wing Span Code"
 sFieldItems(10) = "CKI Hall"
 sFieldItems(11) = "Terminal Building"
 sFieldItems(12) = "Gate (actual)"
 sFieldItems(13) = "Stand (actual)"
 sFieldItems(14) = "Gate (season)"
 sFieldItems(15) = "Stand (season)"
 sFieldItems(16) = "Gate (Opti)"
 sFieldItems(17) = "Stand (Opti)"
 sFieldItems(18) = "[PAX (booked)]"
 sFieldItems(19) = "[PAX (actual)] "
 sFieldItems(20) = "[PAX (season)]"
 sFieldItems(21) = "SLF (actual)"
 sFieldItems(22) = "Gate Size (actual)"
 sFieldItems(23) = "Gate Size (season)"
 sFieldItems(24) = "Gate Size (opti)"
 sFieldItems(25) = "Standard Ground Time"
 sFieldItems(26) = "Flight PAX DF Factor"
 sFieldItems(27) = "Destination Country"
 sFieldItems(28) = "Retail Area (actual)"
 sFieldItems(29) = "Retail Area Factor (actual)"
 sFieldItems(30) = "Retail Area (season)"
 sFieldItems(31) = "Retail Area Factor (season)"
 sFieldItems(32) = "Retail Area (opti)"
 sFieldItems(33) = "Retail Area Factor (opti)"
 sFieldItems(34) = "Retail Revenue (actual)"
 sFieldItems(35) = "Retail Revenue (season)"
 sFieldItems(36) = "Retail Revenue (opti)"

 sResult = ConsoleListBox(200100, _
 LocOfCol(22), _
 LocOfRow(5),_
 "Please select a field to export .. .", _
 "Field Export", _
 sFieldItems(), _
 19, _
 %RETURN_INDEX, _
 0)

 SelectField = VAL(sResult)+1

' ConsoleMessageBox _
' "You selected\n\n"+_
' sResult+"\n\n"+_
' "which is: " + sFieldItems(VAL(sRe sult)+1), _
' %OKONLY,"",%DEFAULT,0
'

END FUNCTION 'SelectField()

‘-- ---------------------------------------

SUB DeleteRecords(BYVAL FileName AS STRING, BYVAL F ieldNumber AS INTEGER, BYVAL MatchingValue AS STRIN G)

 CALL LogEntry(FUNCNAME$, "START: " + FileName + " Field: " + STR$(FieldNumber) + "Value: "+ MatchingV alue)

 'generic procedure
 'used to filter out (delete) records that are not of relevance to further research
 'MatchingValue is the value upon which a record i s deleted/not taken over into new file

 LOCAL OpsDataLine AS STRING
 LOCAL NumberOfDeletedRecords AS LONG
 LOCAL NewFileName AS STRING

 NumberOfDeletedRecords = 0

 NewFileName = LEFT$(FileName, LEN(FileName)-4) + " .new"

 OPEN FileName FOR INPUT AS #1
 OPEN NewFileName FOR OUTPUT AS #2

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'if no match then write in new file, else omit re cord
 IF PARSE$(OpsDataLine, ";", FieldNumber) <> Matc hingValue THEN
 PRINT #2, OpsDataLine
 ELSE
 INCR NumberOfDeletedRecords
 END IF

 WEND 'EOF(1)

 ConsoleMessageBox "Number of deleted records: " + STR$(NumberOfDeletedRecords), %DEFAULT,"INFO",%D EFAULT,0

 CLOSE #1
 CLOSE #2

APPENDIX A 222

 CALL ShiftFileIntoHistory(LEFT$(FileName, LEN(File Name)-4))

 CALL LogEntry(FUNCNAME$, "END: " + FileName + " Fi eld: " + STR$(FieldNumber) + "Value: "+ MatchingVal ue)

END SUB 'DeleteRecords()

‘-- ---------------------------------------

SUB DeleteRecordsTWO(BYVAL FileName AS STRING)

 CALL LogEntry(FUNCNAME$, "START: " + FileName)

 'delete records with no ATD AND NO ACTUAL PAX

 LOCAL OpsDataLine AS STRING
 LOCAL NumberOfDeletedRecords AS LONG
 LOCAL NewFileName AS STRING

 NumberOfDeletedRecords = 0

 'used to filter out (delete) records that are not of relevance to further research

 NewFileName = LEFT$(FileName, LEN(FileName)-4) + " .new"

 OPEN FileName FOR INPUT AS #1
 OPEN NewFileName FOR OUTPUT AS #2
 OPEN LEFT$(NewFileName, LEN(NewFileName)-4) + ".DE L" FOR OUTPUT AS #3

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'if no ATD and no ActualPax
 IF PARSE$(OpsDataLine, ";", %FIELD_ATD) = "" AND VAL(PARSE$(OpsDataLine, ";", %FIELD_PAX_Actual))
= 0 THEN
 PRINT #3, OpsDataLine
 INCR NumberOfDeletedRecords
 ELSE
 'either there is an ATD or there is a figure for ActualPax, so write into target file
 PRINT #2, OpsDataLine
 END IF

 WEND 'EOF(1)

 ConsoleMessageBox "Number of deleted records: " + STR$(NumberOfDeletedRecords), %DEFAULT,"INFO",%DEFA ULT,0

 CLOSE #1
 CLOSE #2
 CLOSE #3

 CALL ShiftFileIntoHistory(LEFT$(FileName, LEN(File Name)-4))

 CALL LogEntry(FUNCNAME$, "END: " + FileName)

END SUB 'DeleteRecordsTWO()

‘-- ---------------------------------------

SUB FillAssumedATD(BYVAL FileName AS STRING)

 CALL LogEntry(FUNCNAME$, "START: " + FileName)

 'for those flights that have no ATD but actual pax figures, take (if existent) STD or better ETD as i ts ATD
 'flight with no pax are deleted

 DIM OpsDataLine AS STRING
 DIM NumberOfUpdatedRecords AS LONG
 DIM NewFileName AS STRING

 DIM Field_STD AS INTEGER
 DIM Field_ATD AS INTEGER
 DIM Field_ETD AS INTEGER

 DIM NoPaxCounter AS LONG

 NumberOfUpdatedRecords = 0
 NoPaxCounter = 0

 'used to filter out (delete) records that are not of relevance to further research

 NewFileName = LEFT$(FileName, LEN(FileName)-4) + " .new"

 OPEN FileName FOR INPUT AS #1
 OPEN NewFileName FOR OUTPUT AS #2
 OPEN LEFT$(NewFileName, LEN(NewFileName)-4) + ".AT DUPD" FOR OUTPUT AS #3

 WHILE NOT EOF(1)

APPENDIX A 223

 LINE INPUT #1, OpsDataLine

 'if no ATD but Acutal Pax
 IF PARSE$(OpsDataLine, ";", %FIELD_ATD) = "" AND VAL(PARSE$(OpsDataLine, ";", %FIELD_PAX_Actual))
<> 0 THEN

 'check for ETD
 IF PARSE$(OpsDataLine, ";", %FIELD_ETD) <> "" TH EN

 'update ATD with ETD info
 OpsDataLine = StringUpdate(OpsDataLine, %FIELD_ ATD, PARSE$(OpsDataLine, ";",
%FIELD_ETD))
 PRINT #3, "ETD | " + OpsDataLine
 PRINT #2, OpsDataLine
 INCR NumberOfUpdatedRecords

 ELSE

 'no ETD, so check for STD
 IF PARSE$(OpsDataLine, ";", %FIELD_STD) <> "" T HEN
 'update ATD with STD info
 OpsDataLine = StringUpdate(OpsDataLine, %FIELD _ATD,
PARSE$(OpsDataLine, ";", %FIELD_STD))
 PRINT #3, "STD | " + OpsDataLine
 PRINT #2, OpsDataLine
 INCR NumberOfUpdatedRecords

 END IF

 END IF

 ELSE

 'either there is an ATD or there is a figure for ActualPax, so write into target file
 'so there might be flights with no actual pax, b ut an ATD
 'write back recs with valid pax figure only (pax >0), i.e. delete recs with no actual pax

 IF VAL(PARSE$(OpsDataLine, ";", %FIELD_PAX_Actua l)) = 0 THEN
 INCR NoPaxCounter
 PRINT #3, "0PAX| " + OpsDataLine
 ELSE
 PRINT #2, OpsDataLine
 END IF

 END IF

 WEND 'EOF(1)

 ConsoleMessageBox "Updated records: " + STR$(Numbe rOfUpdatedRecords) + "\nDeleted Recs with no PAX: " +
STR$(NoPaxCounter), %DEFAULT,"INFO",%DEFAULT,0

 CLOSE #1
 CLOSE #2
 CLOSE #3

 CALL ShiftFileIntoHistory(LEFT$(FileName, LEN(File Name)-4))

 CALL LogEntry(FUNCNAME$, "END: " + FileName)

END SUB 'FillAssumedATD()

‘-- ---------------------------------------

SUB GenerateTable_AvgOnFieldUnique(BYVAL FileName A S STRING, BYVAL MatchFieldNumber AS INTEGER, BYVAL
ComputeFieldNumber AS INTEGER)

 CALL LogEntry(FUNCNAME$, "START")

 'generates a table (file) with unique flight numbe rs and average pax actual on that flight number
 'MatchFieldNumber: determines field that forms t he unique list (e.g. flight no, a/c type, gate,
...)
 'ComputeFieldNumber: determines field which value s will be taken to calculate the average

 '-------- DECLARATIONS --------------------------- ------------

 DIM OpsDataLine AS STRING
 DIM IsInArray AS INTEGER
 DIM ArrayPointer AS LONG
 DIM TotalLines AS LONG
 LOCAL NewFileName AS STRING

 DIM i AS LONG

 '-------- ROUTINE -------------------------------- ------------

 OPEN FileName FOR INPUT AS #1

APPENDIX A 224

 NewFileName = LEFT$(FileName, LEN(FileName)-4) + "_UNIQUE_FIELD_" + TRIM$(STR$(MatchFieldNumber)) +
"_AVG_FIELD_" + TRIM$(STR$(ComputeFieldNumber)) + " .txt"
 OPEN NewFileName FOR OUTPUT AS #2

 FILESCAN #1, RECORDS TO TotalLines
 DIM UniqueEntry(1 TO TotalLines+1, 1 TO 3) AS STRI NG

 FOR i = 1 TO TotalLines+1
 UniqueEntry(i,1) = "---"
 UniqueEntry(i,2) = "0"
 UniqueEntry(i,3) = "0"
 NEXT i

 ArrayPointer = 0

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 IsInArray = 0

 'if not yet in array

 FOR i = 1 TO ArrayPointer 'test each elem ent in array

 IF UniqueEntry(i,1) = PARSE$(OpsDataLin e, ";", MatchFieldNumber) THEN
 'is already in array
 'insert into array if there is a va lid numerical value not zero

 IF PARSE$(OpsDataLine, ";", ComputeFieldNumber) <> "" AND
VAL(PARSE$(OpsDataLine, ";", ComputeFieldNumber)) < > 0 THEN

 UniqueEntry(i,2) = STR$(VAL(Uniqu eEntry(i,2)) + VAL(PARSE$(OpsDataLine, ";",
ComputeFieldNumber))) 'Add field value to current s um
 UniqueEntry(i,3) = STR$(VAL(Uniqu eEntry(i,3)) + 1)
 'increase
occurance by 1
 i = ArrayPointer

 'to exit the loop
 IsInArray = 1

 END IF
 END IF

 NEXT i

 IF IsInArray = 0 THEN ' if not yet in array

 'insert into array if there is a valid numerical value not zero
 IF PARSE$(OpsDataLine, ";", ComputeFieldNumber) <> "" AND VAL(PARSE$(OpsDataLine, ";",
ComputeFieldNumber)) <> 0 THEN

 INCR ArrayPointer
 UniqueEntry(ArrayPointer,1)= PARSE $(OpsDataLine, ";", MatchFieldNumber)
 ' Content of MatchField
 UniqueEntry(ArrayPointer,2)= STR$(VAL(PARSE$(OpsDataLine, ";", ComputeFieldNumber)))
 ' Content of ComputeField
 UniqueEntry(ArrayPointer,3)= "1"
 ' First occurrence

 END IF

 END IF ' if not yet in array

 WEND 'EOF(1)

 FOR i = 1 TO ArrayPointer-1
 IF VAL(UniqueEntry(i,3)) <> 0 AND VAL(UniqueEntry (i,2)) <> 0 THEN
 PRINT #2, UniqueEntry(i,1) + ";" + TRIM$(STR$(R OUND((VAL(UniqueEntry(i,2)) /
VAL(UniqueEntry(i,3))), 0)))
 ELSE

 ConsoleMessageBox "ZERO VALUES: " + Uniqu eEntry(i,2) + " / " + UniqueEntry(i,3), %DEFAULT,"I NFO",%DEFAULT,0

 END IF
 NEXT i

 CLOSE #1
 CLOSE #2

 CALL LogEntry(FUNCNAME$, "END")

END SUB 'GenerateTable_AvgOnFieldUnique()

‘-- ---------------------------------------

SUB FillActualPax(BYVAL FileName AS STRING)

 CALL LogEntry(FUNCNAME$, "START")

APPENDIX A 225

 'tries to find a pax figure in the help tables a nd updates the file with it

 '-------- DECLARATIONS -------------------------- -------------

 LOCAL NewFileName AS STRING
 LOCAL TotalLines AS LONG

 LOCAL i AS LONG
 LOCAL LineCounter AS LONG
 LOCAL curFLIRTRec AS LONG
 LOCAL OpsDataLine AS STRING
 LOCAL lUpdate AS INTEGER
 LOCAL lFLIRTpax AS INTEGER

 '-------- ROUTINE -------------------------------- ------------

 'read flight numbers with avg actual pax into an array

 NewFileName = LEFT$(FileName, LEN(FileName)-4) + "_UNIQUE_FIELD_3_AVG_FIELD_19.txt"

 'read FLIRT data into array in case no pax figu re is found
 OPEN FILE_FLIRT FOR INPUT AS #1

 FILESCAN #1, RECORDS TO i
 DIM aFLIRT(1 TO i) AS STRING
 CLOSE #1

 OPEN FILE_FLIRT FOR INPUT AS #1
 i = 1
 WHILE NOT EOF(1)
 LINE INPUT #1, aFLIRT(i)
 INCR i
 WEND 'EOF(1)
 CLOSE #1

 OPEN NewFileName FOR INPUT AS #1
 FILESCAN #1, RECORDS TO TotalLines
 CLOSE #1

 OPEN NewFileName FOR INPUT AS #1

 DIM FlightNumber(1 TO TotalLines) AS STRING

 LineCounter = 1
 WHILE NOT EOF(1)
 LINE INPUT #1, FlightNumber(LineCounter)
 INCR LineCounter
 WEND 'EOF(1)
 CLOSE #1

 'read flight records and check for missing actual pax value
 'if values missing then get from array

 OPEN FileName FOR INPUT AS #1
 OPEN LEFT$(FileName, LEN(FileName)-4) + ".new" FO R OUTPUT AS #2
 OPEN LEFT$(FileName, LEN(FileName)-4) + ".ERR" FO R OUTPUT AS #3

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine
 IF VAL(PARSE$(OpsDataLine, ";", %FIELD_PAX_Actual)) = 0 THEN
 'get from array
 lUpdate = 0
 FOR i = 1 TO UBOUND(FlightNumber)
 IF PARSE$(OpsDataLine, ";", %FIELD_FlightNumber) = PARSE$(FlightNumber(i),
";", 1) THEN
 lUpdate = 1
 'update that record
 OpsDataLine = StringUpdate(OpsDataLine, %FIELD _PAX_Actual,
PARSE$(FlightNumber(i), ";", 2))
 END IF
 NEXT i

 'if no match in array has been found then print into error file
 IF lUpDate = 0 THEN

 'look in FLIRT data (for a last chance)
 lFLIRTpax = 0
 FOR curFLIRTRec = 1 TO UBOUND(aFLIRT)
 IF PARSE$(aFLIRT(curFLIRTRec), ";", 2) = PARSE $(OpsDataLine, ";", 3)
THEN
 OpsDataLine = StringUpdate(OpsDataLine, %FIEL D_PAX_Actual,
PARSE$(aFLIRT(curFLIRTRec), ";", 3))
 lFLIRTpax = 1
 END IF
 NEXT curFLIRTRec

 IF lFLIRTpax = 0 THEN
 PRINT #3, OpsDataLine
 END IF

APPENDIX A 226

 END IF

 END IF

 'write that record
 PRINT #2, OpsDataLine

 WEND 'EOF(1)

 CLOSE #1
 CLOSE #2
 CLOSE #3

 CALL ShiftFileIntoHistory(LEFT$(FileName, LEN(File Name)-4))

 ConsoleMessageBox "For the following records no PAX have been found: ", %DEFAULT,"INFO",%DEFAULT,0

 SHELL "notepad.exe " + LEFT$(FileName, LEN(FileNam e)-4) + ".ERR"

 CALL LogEntry(FUNCNAME$, "END")

END SUB 'FillActualPax()

‘-- ---------------------------------------

SUB Conversion()

 CALL LogEntry(FUNCNAME$, "START")

 'filters relevant records with relevant fields fro m FLIRT file

 LOCAL OpsDataLine AS STRING

 OPEN FILE_FLIRTORG FOR INPUT AS #1
 OPEN FILE_FLIRT FOR OUTPUT AS #2

 WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 'only passenger flights (no cargo) and only re levant fields
 IF PARSE$(OpsDataLine, ";", 2) = "S" AND (PARS E$(OpsDataLine, ";", 10) = "PP" OR PARSE$(OpsDataLi ne,
";", 10) = "SP" OR PARSE$(OpsDataLine, ";", 10) = " PC") THEN
 OpsDataLine = PARSE$(OpsDataLine, ";", 3) + ";" + PARSE$(OpsDataLine, ";", 5) +
SPACE$(3-LEN(PARSE$(OpsDataLine, ";", 5))) + FORMAT $(VAL(PARSE$(OpsDataLine, ";", 6)), "00000") + ";" +
PARSE$(OpsDataLine, ";", 14)
 PRINT #2, OpsDataLine
 END IF
 WEND

 CLOSE #1
 CLOSE #2

 CALL LogEntry(FUNCNAME$, "END")

END SUB 'Conversion()

‘-- ---------------------------------------

SUB ShiftFileIntoHistory(BYVAL FileName AS STRING)

 CALL LogEntry(FUNCNAME$, "START: " + FileName)

 ' FileName is the filename (incl. path) WITHOUT ex tension

 'if within a routine, a data file has been updated , is has gotten the extension ".new" (in that routi ne)
 'the original file has the extension ".txt"
 'this procedure copies the .txt-file into a histor y directory with a date/time-stamp at the end of it s file
name
 'the .new-file becomes the .txt-file

 LOCAL FileNameCore AS STRING
 LOCAL DateTimeStamp AS STRING

 DateTimeStamp = TIME$
 REPLACE ANY ":" WITH "-" IN DateTimeStamp
 DateTimeStamp = DATE$ + "_" + DateTimeStamp

 FileNameCore = RIGHT$(FileName, LEN(FileName)-LEN(PATH_DATA))

 FILECOPY FileName + ".txt", PATH_HISTORY + FileNam eCore + "_" + DateTimeStamp + ".txt"
 SLEEP 1000
 KILL FileName + ".txt"
 NAME FileName + ".new" AS FileName + ".txt"

 CALL LogEntry(FUNCNAME$, "END: " + FileName)

END SUB 'ShiftFileIntoHistory()

‘-- ---------------------------------------

APPENDIX A 227

SUB SuggestRetailAreaFactor(BYVAL FileName AS STRIN G)

 'suggests a retail area factor that can be ente red / edited into the according data file
 'based on: avg. values for FlightPAXDFfactor

 CALL LogEntry(FUNCNAME$, "START")

 LOCAL OpsDataLine AS STRING
 LOCAL LineCounter AS LONG
 LOCAL TotalLines AS LONG
 LOCAL NumberOfRetailAreas AS INTEGER
 LOCAL TempFactor AS STRING
 LOCAL i AS LONG
 LOCAL lResult AS LONG
 LOCAL MinValue AS DOUBLE
 LOCAL NO_RA_Counter AS LONG

 '-- ---------------------

 'get a suggestion

 'count number of different defined retail areas

 OPEN FILE_RETAIL_AREA_DEF FOR INPUT AS #1
 LineCounter = 0
 WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 IF LEFT$(OpsDataLine,2) <> "//" AND LEN(TRI M$(OpsDataLine)) > 0 THEN 'no comment line in data file
 INCR LineCounter
 END IF
 WEND 'EOF(1)
 CLOSE #1
 NumberOfRetailAreas = LineCounter

 'now DIM the array and fill with Retail Areas N ames

 DIM aRetailArea (1 TO NumberOfRetailAreas, 1 TO 4) AS STRING

 OPEN FILE_RETAIL_AREA_DEF FOR INPUT AS #1
 LineCounter = 1
 WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 IF LEFT$(OpsDataLine,2) <> "//" THEN 'no co mment line in data file
 aRetailArea(LineCounter, 1) = TRIM$(PAR SE$(OpsDataLine, ";", 1))
 aRetailArea(LineCounter, 2) = "0"
 aRetailArea(LineCounter, 3) = "0"
 INCR LineCounter
 END IF
 WEND 'EOF(1)
 CLOSE #1

 'work on datafile now
 OPEN FileName FOR INPUT AS #1
 FILESCAN #1, RECORDS TO TotalLines 'used for pr ogress calculation

 ProgressBoxShow %NOCANCEL, 1,%CONSOLE_CENTER, % CONSOLE_CENTER, "Processing "+TRIM$(USING$("###,### ,###",
TotalLines))+ " Records.", "Reading file...", %FALS E

 NO_RA_Counter = 0
 LineCounter = 1

 DO WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 IF TRIM$(PARSE$(OpsDataLine, ";", %FIELD_Re tailAreaActual)) = "RX" OR _
 TRIM$(PARSE$(OpsDataLine, ";", %FIELD_Re tailAreaActual)) = "" OR _
 TRIM$(PARSE$(OpsDataLine, ";", %FIELD_Re tailAreaActual)) = "RY" THEN

 INCR NO_RA_Counter

 ELSE

 FOR i = 1 TO NumberOfRetailAreas
 IF TRIM$(PARSE$(OpsDataLine, ";", %F IELD_RetailAreaActual)) = TRIM$(aRetailArea(i,1)) T HEN
 TempFactor = PARSE$(OpsDataLine, ";", %FIELD_FlightPAXDFfactor)
 REPLACE "," WITH "." IN TempFact or 'just in case a comma instead of decimal point is used (
"121,6" --> "121.6")

 aRetailArea(i,2) = TRIM$(STR$(VAL(aRetailArea(i,2)) + VAL(TempFactor))) 'sum up factors
 aRetailArea(i,3) = TRIM$(STR$(VA L(aRetailArea(i,3))+1)) 'increase counter
 aRetailArea(i,4) = TRIM$(STR$(ROUND(VAL(aRetailArea(i,2)) / VAL(aRetailArea(i,3)) ,5))) 'calc
avg values instantly
 i = NumberOfRetailAreas

 END IF
 NEXT i

 END IF

 INCR LineCounter
 ProgressBoxUpdate INT(LineCounter/TotalLine s*100)
 WEND 'EOF(1)

 CLOSE #1

APPENDIX A 228

 ProgressBoxHide

 ConsoleMessageBox "Number of retail areas not defined (RX or RY) = " +
TRIM$(STR$(NO_RA_Counter)),%DEFAULT,"INFO",%DEFAULT ,0

 'for transformation into factors

 'determine smallest value as a baseline
 MinValue = 999999.9
 FOR i = 1 TO NumberOfRetailAreas
 IF VAL(aRetailArea(i,4)) < MinValue THEN
 MinValue = VAL(aRetailArea(i,4))
 END IF
 NEXT i

 'higher values will be a factor to the baseline value then

 FOR i = 1 TO NumberOfRetailAreas
 aRetailArea(i,4) = TRIM$(STR$(ROUND(VAL(aR etailArea(i,4)) / MinValue, 5)))
 NEXT i

 'write suggested values into the retail area fa ctor file as appended comment lines
 OPEN FILE_RetailAreaFactors FOR APPEND AS #2
 PRINT #2, " "
 PRINT #2, "//"
 PRINT #2, "// Suggested Retail Area Factors bas ed on:"
 PRINT #2, "// File: " + FileName
 PRINT #2, "// Entry: " + DATE$ + " / " + TIME$
 PRINT #2, "// "

 FOR i = 1 TO UBOUND(aRetailArea(1))

 TempFactor = TRIM$(USING$("##.#####", VAL(a RetailArea(i,4))))

 'REPLACE "." WITH "," IN TempFactor 'just in case a comma instead of decimal point is used ("1.6" --> "1,6")

 PRINT #2, "// " + aRetailArea(i,1) + ";" + TempFactor + " [Flights: " + aRetailArea(i,3) + "]"

 NEXT i
 PRINT #2, "// "

 CLOSE #2

 lResult = ConsoleMessageBox("Suggested factors written. Do you want to edit file?", %YESNO+%HANDBO X+%DEFBUTTON1,
"INFO", %IDI_QUESTION, %FALSE)

 IF lResult = %YESBUTTON THEN

 CALL LogEntry(FUNCNAME$, "START: EDIT/WATCH FACTORS")
 SHELL "notepad.exe " + FILE_RetailAreaFacto rs
 ConsoleMessageBox "If you have changed an y Retail Area Factors, \n" + _
 "remember to update the m in data file and\n" + _
 "to re-calc flight reve nue.",%DEFAULT,"INFO",%DEFAULT,0
 CALL LogEntry(FUNCNAME$, "END: EDIT/WATCH FACTORS ")

 ELSE
 ConsoleMessageBox "For later edit use same function but only for edit then.",%DEFAULT,"INFO",% DEFAULT,0
 END IF

 CALL LogEntry(FUNCNAME$, "END")

 cls

END SUB 'SuggestRetailAreaFactor()

‘-- ---------------------------------------

SUB OpenBackGroundWindow()

 LOCAL hBmp AS LONG
 LOCAL h, w, hGW AS LONG
 LOCAL lResult AS LONG

 CALL LogEntry(FUNCNAME$, "START")

 'ConsoleWindow %MINIMIZE

 'w = 960
 'h = 720
 w = 806
 h = 317

 'GRAPHIC WINDOW "aeroCUBE: RESULTS", 30, 30, w, h TO hGW
 'GRAPHIC WINDOW "aeroCUBE: RESULTS", 30, 30, w, h TO hGW

 'GRAPHIC ATTACH hGW, 0&, REDRAW
 'GRAPHIC COLOR RGB(0,0,0), RGB(255,255,255)
 'GRAPHIC CLEAR

 'GRAPHIC BITMAP LOAD PATH_APPLICATION+"aeroCUBE _back01.bmp", w, h TO hBmp

APPENDIX A 229

 CURSOR OFF
 BrushColor %BLACK
 ConsoleGfx 0,0,0,0

 BrushColor %BLACK
 GfxCls

 GfxFontName "Arial"
 GfxFontSize 20
 DrawFrom 0,0
 DrawTextRow "TEST TEST TEST", %TEXT_CENTER OR % TEXT_SHADOW

 GfxWindow %GFX_SHOW

 'DisplayJpeg PATH_APPLICATION+"TerminalLayout.jpg"

 'DisplayImage PATH_APPLICATION+"TerminalLayout.jpg "
 lResult = StretchImage(PATH_APPLICATION+"Terminal Layout.jpg", 806, 317)

 'GRAPHIC COPY hBmp, 0 TO (1, 1)
 'GRAPHIC REDRAW

 PRINT
 PRINT "PRESS 'Q' TO QUIT GRAPHICS WINDOW."

 DO
 IF UCASE$(WAITKEY$) = "Q" THEN
 EXIT DO
 END IF

 WEND
 cls

 'GRAPHIC BITMAP END
 'GRAPHIC WINDOW END

 'ConsoleWindow %RESTORE

 CALL LogEntry(FUNCNAME$, "END")

END SUB 'OpenBackGroundWindow()

‘-- ---------------------------------------

SUB ConvertCommaToDecimalPoint(BYVAL FileName AS ST RING)

 'convert fields with comma character for decima l point to decimal point character
 ' 123,4 --> 123.4

 CALL LogEntry(FUNCNAME$, "START")
 '-- ------------
 LOCAL OpsDataLine AS STRING
 LOCAL TempField AS STRING
 LOCAL NumberOfRecords AS LONG
 LOCAL LineCounter AS LONG
 LOCAL ElementCounter AS INTEGER

 '-- ------------
 OPEN FileName FOR INPUT AS #1
 FILESCAN #1, RECORDS TO NumberOfRecords 'used f or progress calculation
 OPEN LEFT$(FileName, LEN(FileName)-4) + ".new" FO R OUTPUT AS #2

 ProgressBoxShow %NOCANCEL, 1,%CONSOLE_CENTER, % CONSOLE_CENTER, "Processing "+TRIM$(USING$("###,### ,###",
NumberOfRecords))+ " Records.", "Converting decimal : comma->point...", %FALSE

 LineCounter = 1
 DO WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 TempField = PARSE$(OpsDataLine, ";", %FIELD _FlightPAXDFfactor)
 REPLACE ANY "," WITH "." IN TempField
 OpsDataLine = StringUpdate(OpsDataLine, %FI ELD_FlightPAXDFfactor, TempField)

 TempField = PARSE$(OpsDataLine, ";", %FIELD _RetailAreaFactorActual)
 REPLACE ANY "," WITH "." IN TempField
 OpsDataLine = StringUpdate(OpsDataLine, %FI ELD_RetailAreaFactorActual, TempField)

 TempField = PARSE$(OpsDataLine, ";", %FIELD _RetailAreaFactorSeason)
 REPLACE ANY "," WITH "." IN TempField
 OpsDataLine = StringUpdate(OpsDataLine, %FI ELD_RetailAreaFactorSeason, TempField)

 TempField = PARSE$(OpsDataLine, ";", %FIELD _RetailAreaFactorOpti)
 REPLACE ANY "," WITH "." IN TempField

APPENDIX A 230

 OpsDataLine = StringUpdate(OpsDataLine, %FI ELD_RetailAreaFactorOpti, TempField)

 TempField = PARSE$(OpsDataLine, ";", %FIELD _RetailRevenueActual)
 REPLACE ANY "," WITH "." IN TempField
 OpsDataLine = StringUpdate(OpsDataLine, %FI ELD_RetailRevenueActual, TempField)

 TempField = PARSE$(OpsDataLine, ";", %FIELD _RetailRevenueSeason)
 REPLACE ANY "," WITH "." IN TempField
 OpsDataLine = StringUpdate(OpsDataLine, %FI ELD_RetailRevenueSeason, TempField)

 TempField = PARSE$(OpsDataLine, ";", %FIELD _RetailRevenueOpti)
 REPLACE ANY "," WITH "." IN TempField
 OpsDataLine = StringUpdate(OpsDataLine, %FI ELD_RetailRevenueOpti, TempField)

 PRINT #2, OpsDataLine
 ProgressBoxUpdate INT(LineCounter/NumberOfR ecords*100)
 INCR LineCounter

 WEND 'EOF(1)

 ProgressBoxHide

 CLOSE #1
 CLOSE #2

 CALL ShiftFileIntoHistory(LEFT$(FileName, LEN(F ileName)-4))
 CALL LogEntry(FUNCNAME$, "END")

END SUB 'ConvertCommaToDecimalPoint()

‘-- ---------------------------------------

SUB ReportGatesChanged()

 'creates a file that contains for each day of t he selected period
 'the number of different entries (%FIELD_Gate_A ctual vs. %FIELD_Gate_Season)

 '--> date;
 'total number of flights on that day;
 'as before but with gate info available for bot h actual and seasonal;
 'number of flights with gate change;
 'gate change that resulted in diff. retail area
 '--> 27.05.2006;1522;1244;190;23

 CALL LogEntry(FUNCNAME$, "START")

 '-- ------------
 LOCAL OpsDataLine AS STRING
 LOCAL TempField AS STRING
 LOCAL NumberOfRecords AS LONG
 LOCAL LineCounter AS LONG
 LOCAL DateTimeStamp AS STRING
 LOCAL SelectedStartDate AS STRING
 LOCAL SelectedEndDate AS STRING
 LOCAL CurrentDate AS STRING
 LOCAL ElementCounter AS INTEGER
 LOCAL i AS INTEGER
 LOCAL lDateMatch AS LONG

 DIM aSeason(1 TO 2) AS STRING
 LOCAL nSeason AS INTEGER

 '-- ------------

 aSeason(1) = FILE_SUMMER
 aSeason(2) = FILE_WINTER

 SelectedStartDate = "2006-03-26"
 SelectedStartDate = REMOVE$(ConsoleInputBox$(1, %CENTER, %CENTER, _
 "Start date (YYYY-MM-DD)", _
 "Gate c hanges", SelectedStartDate, 0, %FALSE), ANY "-")

 IF LEN(SelectedStartDate) = 8 AND NOT ConsoleInpu tBoxCancel THEN
 SelectedEndDate = "2007-03-24"
 SelectedEndDate = REMOVE$(ConsoleInputBox$(1, %CENTER, %CENTER, _
 "End da te (YYYY-MM-DD)", _
 "Gate c hanges", SelectedEndDate, 0, %FALSE), ANY "-")

 IF LEN(SelectedEndDate) = 8 AND NOT Console InputBoxCancel THEN

 'generate an array with an entry for each day

 ElementCounter = 1
 CurrentDate = SelectedStartDate
 DO WHILE CurrentDate <> SelectedEndDate A ND ElementCounter < 1000
 CurrentDate = NextDay(CurrentDate)
 INCR ElementCounter
 WEND 'array

APPENDIX A 231

 IF ElementCounter < 1000 THEN

 DIM aDateGate (1 TO ElementCounter, 1 TO 5) AS STRING

 'initialize array

 CurrentDate = SelectedStartDate
 aDateGate(1, 1) = CurrentDate
 aDateGate(1, 2) = "0"
 aDateGate(1, 3) = "0"
 aDateGate(1, 4) = "0"
 aDateGate(1, 5) = "0"

 FOR i = 2 TO ElementCounter
 aDateGate(i, 1) = NextDay(Current Date)
 aDateGate(i, 2) = "0"
 aDateGate(i, 3) = "0"
 aDateGate(i, 4) = "0"
 aDateGate(i, 5) = "0"
 CurrentDate = NextDay(CurrentDate)
 NEXT i

 DateTimeStamp = TIME$
 REPLACE ANY ":" WITH "-" IN DateTim eStamp
 DateTimeStamp = DATE$ + "_" + DateT imeStamp
 OPEN PATH_DATA + $FILE_OUTPUT + "_G ATECHANGE_" + DateTimeStamp + ".txt" FOR OUTPUT AS #2

 '--- as records are not sorted by e .g. ATD, try in each season ---

 FOR nSeason = 1 TO 2

 OPEN aSeason(nSeason) FOR INPUT A S #1
 FILESCAN #1, RECORDS TO NumberO fRecords 'used for progress calculation

 ProgressBoxShow %NOCANCEL, 1,%C ONSOLE_CENTER, %CONSOLE_CENTER, "Processing
"+TRIM$(USING$("###,###,###", NumberOfRecords))+ _
 " Records.", " Detecting gate changes...", %FALSE

 LineCounter = 1
 DO WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'ARRAY SCAN aDateGate(1,1) FOR ElementCounter+1, =LEFT$(PARSE$(OpsDataLine, "; ",
%FIELD_ATD),8), TO lDateMatch

 lDateMatch = 0
 FOR i = 1 TO ElementCounter
 IF aDateGate(i,1) = LEF T$(PARSE$(OpsDataLine, ";", %FIELD_ATD),8) THEN
 lDateMatch = i
 i = ElementCounter
 END IF
 NEXT i

 IF lDateMatch <> 0 THEN 'th e date has been located in array

 'increase count for: fl ights total
 aDateGate(lDateMatch, 2) = TRIM$(STR$(VAL(aDateGate(lDateMatch, 2)) + 1))

 IF PARSE$(OpsDataLine, ";", %FIELD_Gate_Actual) <> "" AND PARSE$(OpsDataLi ne, ";",
%FIELD_Gate_Season) <> "" THEN

 'THEREOF: increase count for: flights which have both ACTUAL and SEASO NAL gate info
 aDateGate(lDateMatc h, 3) = TRIM$(STR$(VAL(aDateGate(lDateMatch, 3)) + 1))

 IF PARSE$(OpsDataLi ne, ";", %FIELD_Gate_Actual) <> PARSE$(OpsDataLine , ";",
%FIELD_Gate_Season) THEN
 'THEREOF: incre ase count for: flights with different gates
 aDateGate(lDate Match, 4) = TRIM$(STR$(VAL(aDateGate(lDateMatch, 4)) + 1))

 IF PARSE$(O psDataLine, ";", %FIELD_RetailAreaActual) <> PARSE$ (OpsDataLine,
";", %FIELD_RetailAreaSeason) _
 AND PARS E$(OpsDataLine, ";", %FIELD_RetailAreaSeason) <> "R X" _
 AND PARS E$(OpsDataLine, ";", %FIELD_RetailAreaSeason) <> "R Y" THEN
 'TH EREOF: increase count for: flights with different r etail areas
 aDa teGate(lDateMatch, 5) = TRIM$(STR$(VAL(aDateGate(lD ateMatch, 5)) +
1))
 'PR INT #2, OpsdataLine
 END IF

 END IF

 END IF

 END IF

 ProgressBoxUpdate INT(LineC ounter/NumberOfRecords*100)
 INCR LineCounter

 WEND 'EOF(1)

 ProgressBoxHide

APPENDIX A 232

 CLOSE #1

 NEXT nSeason

 FOR i = 1 TO ElementCounter
 PRINT #2, aDateGate(i, 1) + ";" + aDateGate(i, 2) + ";" + aDateGate(i, 3) + "; " + aDateGate(i,
4) + ";" + aDateGate(i, 5)
 NEXT i

 CLOSE #2

 ConsoleMessageBox "Number of Days = " + STR$(ElementCounter)+ _
 "\n\nFor change d gates info see file:\n\n" + _
 $FILE_OUTPUT + "_GATECHANGE_" + DateTimeStamp + ".txt",%DEFAULT,"I NFO",%DEFAULT,0

 ELSE 'ElementCounter is NOT <1000

 ConsoleMessageBox "Number of Days > " + STR$(ElementCounter-1)+ _
 "\n\nIt seems t o be a mistake on input of dates." + _
 "\nNothing repo rted.",%DEFAULT,"INFO",%DEFAULT,0
 END IF

 ELSE
 ConsoleMessageBox "No end date chosen. Nothing reported. ",%DEFAULT,"INFO",%DEFAULT,0
 END IF

 ELSE

 ConsoleMessageBox "No start date chosen. No thing reported. ",%DEFAULT,"INFO",%DEFAULT,0

 END IF 'SelectedStartDate

 CALL LogEntry(FUNCNAME$, "END")

END SUB 'ReportGatesChanged()

‘-- ---------------------------------------

SUB ReportStatsPerDay()

 'creates a file that contains for each day of t he selected period
 'the sum of the field chosen

 '--> date;
 'total number of flights on that day;
 'sum of field
 'avg of field
 '--> 27.05.2006;1522;3456.33;0.53

 CALL LogEntry(FUNCNAME$, "START")

 '-- ------------
 LOCAL OpsDataLine AS STRING
 LOCAL TempField AS STRING
 LOCAL NumberOfRecords AS LONG
 LOCAL LineCounter AS LONG
 LOCAL DateTimeStamp AS STRING
 LOCAL SelectedStartDate AS STRING
 LOCAL SelectedEndDate AS STRING
 LOCAL CurrentDate AS STRING
 LOCAL ElementCounter AS INTEGER
 LOCAL i AS INTEGER
 LOCAL lDateMatch AS LONG
 LOCAL ExportField AS INTEGER
 LOCAL InfoField AS INTEGER

 DIM aSeason(1 TO 2) AS STRING
 LOCAL nSeason AS INTEGER

 '-- ------------

 aSeason(1) = FILE_SUMMER
 aSeason(2) = FILE_WINTER

 InfoField = %FIELD_DestCountry

 SelectedStartDate = "2006-03-26"
 SelectedStartDate = REMOVE$(ConsoleInputBox$(1, %CENTER, %CENTER, _
 "ATD: S tart date (YYYY-MM-DD)", _
 "Daily Stats", SelectedStartDate, 0, %FALSE), ANY "-")

 IF LEN(SelectedStartDate) = 8 AND NOT ConsoleInp utBoxCancel THEN
 SelectedEndDate = "2007-03-24"
 SelectedEndDate = REMOVE$(ConsoleInputBox$(1, %CENTER, %CENTER, _
 "ATD: E nd date (YYYY-MM-DD)", _
 "Daily Stats", SelectedEndDate, 0, %FALSE), ANY "-")

 IF LEN(SelectedEndDate) = 8 AND NOT Console InputBoxCancel THEN

 'generate an array with an entry for each day

APPENDIX A 233

 ElementCounter = 1
 CurrentDate = SelectedStartDate
 DO WHILE CurrentDate <> SelectedEndDate A ND ElementCounter < 1000
 CurrentDate = NextDay(CurrentDate)
 INCR ElementCounter
 WEND 'array

 IF ElementCounter < 1000 THEN

 DIM aDateGate (1 TO ElementCounter, 1 TO 5) AS STRING

 'initialize array

 CurrentDate = SelectedStartDate
 aDateGate(1, 1) = CurrentDate
 aDateGate(1, 2) = "0"
 aDateGate(1, 3) = "0"
 aDateGate(1, 4) = "0"
 aDateGate(1, 5) = "---" ' additio nal info (e.g. any field can be added here)

 FOR i = 2 TO ElementCounter
 aDateGate(i, 1) = NextDay(Current Date)
 aDateGate(i, 2) = "0"
 aDateGate(i, 3) = "0"
 aDateGate(i, 4) = "0"
 aDateGate(i, 5) = "---"
 CurrentDate = NextDay(CurrentDate)
 NEXT i

 ExportField = SelectField()

 IF ExportField >1 AND ExportField < 37 THEN

 cls
 PRINT "selected Field = " + TRI M$(STR$(ExportField))

 DateTimeStamp = TIME$
 REPLACE ANY ":" WITH "-" IN Dat eTimeStamp
 DateTimeStamp = DATE$ + "_" + D ateTimeStamp
 OPEN PATH_DATA + $FILE_OUTPUT + "_SUMAVG_DAY_Field_" + TRIM$(STR$(ExportField)) + "_" +
DateTimeStamp + ".txt" FOR OUTPUT AS #2

 '--- as records are not sorted by e.g. ATD, try in each season ---

 FOR nSeason = 1 TO 2

 OPEN aSeason(nSeason) FOR INP UT AS #1
 FILESCAN #1, RECORDS TO Num berOfRecords 'used for progress calculation

 IF LEN(aSeason(nSeason)) >4 0 THEN
 PRINT "Basis: ATD in FI LE: ..." + RIGHT$(aSeason(nSeason),40)
 ELSE
 PRINT "Basis: ATD in FI LE: " + aSeason(nSeason)
 END IF

 ProgressBoxShow %NOCANCEL, 1,%CONSOLE_CENTER, %CONSOLE_CENTER, "Processing
"+TRIM$(USING$("###,###,###", NumberOfRecords))+ _
 " Records. ", "Detecting days ...", %FALSE

 LineCounter = 1
 DO WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataL ine

 lDateMatch = 0
 FOR i = 1 TO ElementCou nter
 IF aDateGate(i,1) = LEFT$(PARSE$(OpsDataLine, ";", %FIELD_ATD),8) THEN
 lDateMatch = i
 i = ElementCoun ter
 END IF
 NEXT i

 IF lDateMatch <> 0 THEN 'the date has been located in array

 'increase count for : flights total
 aDateGate(lDateMatc h, 2) = TRIM$(STR$(VAL(aDateGate(lDateMatch, 2)) + 1))

 'sum up field for t hat day
 'in case ExportFiel d is 'DELAY' treat a '9999' as '0'
 IF ExportField = %F IELD_DelayMinutes AND PARSE$(OpsDataLine, ";", Expo rtField) =
"9999" THEN
 ' do not add an ything
 ELSE
 aDateGate(lDate Match, 3) = TRIM$(STR$(VAL(aDateGate(lDateMatch, 3)) + VAL(
PARSE$(OpsDataLine, ";", ExportField))))

 END IF

 'calc avg for field for that day
 aDateGate(lDateMatc h, 4) = TRIM$(STR$(VAL(aDateGate(lDateMatch, 3)) /
VAL(aDateGate(lDateMatch, 2))))

APPENDIX A 234

 'InfoField
 aDateGate(lDateMatc h, 5) = PARSE$(OpsDataLine, ";", InfoField)

 END IF

 ProgressBoxUpdate INT(L ineCounter/NumberOfRecords*100)
 INCR LineCounter

 WEND 'EOF(1)

 ProgressBoxHide

 CLOSE #1

 NEXT nSeason

 FOR i = 1 TO ElementCounter
 PRINT #2, aDateGate(i, 1) + ";" + aDateGate(i, 2) + ";" + aDateGate(i, 3) + ";" +
aDateGate(i, 4) + ";" + aDateGate(i, 5)
 NEXT i

 CLOSE #2

 ConsoleMessageBox "Number of Da ys = " + STR$(ElementCounter)+ _
 "\n\nFor da ily stats see file:\n\n" + _
 $FILE_OUTPU T + "_SUMAVG_DAY_Field_" + TRIM$(STR$(ExportField)) + "_" +
DateTimeStamp + ".txt",%DEFAULT,"INFO",%DEFAULT,0

 ELSE

 ConsoleMessageBox "No field cho sen. Nothing reported.", %DEFAULT,"INFO",%DEFAULT,0

 END IF

 ELSE 'ElementCounter is NOT <1000

 ConsoleMessageBox "Number of Days > " + STR$(ElementCounter-1)+ _
 "\n\nIt seems t o be a mistake on input of dates." + _
 "\nNothing repo rted.",%DEFAULT,"INFO",%DEFAULT,0
 END IF

 ELSE
 ConsoleMessageBox "No end date chosen. Nothing reported. ",%DEFAULT,"INFO",%DEFAULT,0
 END IF

 ELSE

 ConsoleMessageBox "No start date chosen. No thing reported. ",%DEFAULT,"INFO",%DEFAULT,0

 END IF 'SelectedStartDate

 cls

 CALL LogEntry(FUNCNAME$, "END")

END SUB 'ReportStatsPerDay()

‘-- ---------------------------------------

SUB GenerateJPGFiles()

 CALL LogEntry(FUNCNAME$, "START")

 '-- ------------
 LOCAL OpsDataLine AS STRING
 LOCAL TimeInterval AS LONG
 LOCAL Gates AS INTEGER
 DIM GanttFiles(1 TO 7) AS STRING
 DIM FileWeekDay(1 TO 7) AS INTEGER
 LOCAL i AS INTEGER
 LOCAL j AS INTEGER
 LOCAL lResult AS LONG
 LOCAL SelectedDate AS STRING
 LOCAL StartDate AS STRING
 LOCAL SleepFactor AS INTEGER
 LOCAL FieldIndicator AS STRING
 LOCAL CatBIndicator AS STRING

 LOCAL TimeIndex AS STRING
 LOCAL LineCounter AS LONG
 LOCAL TotalLines AS LONG
 LOCAL lChangeDay AS INTEGER

 DIM FieldValue AS STRING
 DIM FieldCounter AS LONG

 DIM TimeIndex (1 TO 288) AS STRING
 LOCAL MyMouseOverX AS LONG
 LOCAL MyMouseOverY AS LONG
 LOCAL UserEvent AS STRING

 '-- ------------

APPENDIX A 235

 OnTimer 1, CODEPTR(MyGfxRefresh)

 SelectedDate = "2006-03-26"

 SelectedDate = REMOVE$(ConsoleInputBox$(1, %CEN TER, %CENTER, _
 "Enter start date of week (Format: YYYY-MM-DD)", _
 "Select Week for Export", SelectedDate, 0, %FALSE), ANY " -")

 IF LEN(SelectedDate) = 8 AND NOT ConsoleInputBo xCancel THEN
 'if a date has been entered

 '-------- read time index for display purpo se ----------------

 OPEN FILE_TIMEINDEX FOR INPUT AS #1

 LineCounter = 1
 WHILE NOT EOF(1)
 LINE INPUT #1, TimeIndex(LineCounter)
 INCR LineCounter
 WEND 'EOF(1)

 CLOSE #1

 'ConsoleMessageBox "TimeIndex has been read ." & STR$(LineCounter),%DEFAULT,"INFO",%DEFAULT,0

 '-------- read gate index for display purpo se ----------------

 OPEN FILE_GATE_INFRA FOR INPUT AS #1

 FILESCAN #1, RECORDS TO TotalLines
 DIM GateArray(1 TO TotalLines+1, 1 TO 7) AS ST RING

 LineCounter = 1
 WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 IF LEFT$(OpsDataLine, 2) <> "//" THEN 'b ypass comment lines

 'parse the OpsDataLine and fill the field variables

 FieldValue = ""
 FieldCounter = 1

 FOR i = 1 TO LEN(OpsDataLine)
 IF MID$(OpsDataLine, i,1) <> ";" THEN
 'still in same field
 FieldValue = FieldValue + MID$(Op sDataLine, i, 1)
 ELSE
 'field changes, so fill content i nto Gate Array
 GateArray(LineCounter, FieldCount er) = FieldValue
 INCR FieldCounter
 FieldValue = ""
 END IF
 NEXT i

 INCR LineCounter
 END IF
 WEND 'EOF(1)

 CLOSE #1

 'ConsoleMessageBox "GateIndex has been read ." & STR$(LineCounter) + " " + STR$(UBOUND(GateArra y(1))
),%DEFAULT,"INFO",%DEFAULT,0

 '-- --------------------------------

 GanttFiles(1) = FILE_GANTTVIEW + "_" + Sele ctedDate + ".TXT"
 StartDate = SelectedDate
 FileWeekDay(1) = DayWeek(SelectedDate)

 FOR i = 2 TO 7
 SelectedDate = NextDay(SelectedDate)
 GanttFiles(i) = FILE_GANTTVIEW + "_" + SelectedDate + ".TXT"
 FileWeekDay(i) = DayWeek(SelectedDate)
 NEXT i

 CURSOR OFF

 InitGraphicsTools 7, %GFX_TOOLSET_CONSOLE

 FOR i = 1 TO 7

 PRINT "Preparing Chart of Day " + TRIM$ (STR$(i)) + " ..."

 UseGfxWindow i
 ConsoleGfx 17,0,80,24
 BrushColor %BLACK
 GfxCls

APPENDIX A 236

 GfxFont "Arial", 23, 23, 5, %WHITE, 0, 90
 DrawFrom 90, 280
 DrawTextRow "GATES (A1..E26)", 0

 GfxFont "Arial", 25, 25, 5, %WHITE, 0, 0
 DrawFrom 520, 465
 DrawTextRow "DAYTIME (0-24h)", 0

 BrushColor %WHITE
 DrawLine 80, 0, 80, 500

 OPEN GanttFiles(i) FOR INPUT AS #1

 TimeInterval = 1
 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 IF LEFT$(OpsDataLine, 2) <> "//" TH EN

 FOR Gates = 1 TO PARSECOUNT(Ops DataLine, ANY ";")
 SELECT CASE PARSE$(OpsDataL ine, ";", Gates)

 CASE "a"
 'color green
 BrushColor %GREEN

 CASE "b"
 'color yellow
 BrushColor %YELLOW

 CASE "c"
 'color red
 BrushColor %RED

 END SELECT

 IF PARSE$(OpsDataLine, ";", Gates) <> "" THEN
 DrawFrom TimeInterval*3 +120, Gates*3+21
 DrawArea 3, 2
 END IF

 NEXT Gates
 INCR TimeInterval

 ELSE
 IF TRIM$(PARSE$(OpsDataLine, ": ", 1)) = "// Field" THEN
 FieldIndicator = TRIM$(PARS E$(OpsDataLine, ":", 2))
 END IF

 IF TRIM$(PARSE$(OpsDataLine, ": ", 1)) = "// Category B" THEN
 CatBIndicator = TRIM$(PARSE $(OpsDataLine, ":", 2))
 END IF

 END IF '// remark lines

 WEND 'EOF(1)
 CLOSE #1

 NEXT i

 cls

 SleepFactor = 150

 COLOR 0, 7
 locate 1,1
 PRINT "START ";
 COLOR 7,0
 PRINT " ";StartDate

 COLOR 0, 7
 locate 6,1
 PRINT "FIELD "
 COLOR 7,0
 PRINT LEFT$(FieldIndicator, 14)
 PRINT MID$(FieldIndicator, 15, LEN(FieldInd icator)-14)

 COLOR 0, 10
 locate 9,1
 PRINT "CAT A ";
 COLOR 7,0
 IF FieldIndicator = "Delay Minutes" THEN
 PRINT " < B"
 ELSE
 PRINT " > B"
 END IF

 COLOR 0, 14
 locate 10,1
 PRINT "CAT B ";
 COLOR 7,0
 PRINT " " + CatBIndicator

 COLOR 0, 12

APPENDIX A 237

 locate 11,1
 PRINT "CAT C ";
 COLOR 7,0
 IF FieldIndicator = "Delay Minutes" THEN
 PRINT " > B"
 ELSE
 PRINT " < B"
 END IF

 COLOR 0, 7
 locate 3,1
 PRINT "R RUN "

 locate 4,1
 COLOR 7,0
 PRINT "+/-";
 COLOR 7,0
 PRINT " ";TRIM$(STR$(SleepFactor));" "

 COLOR 0, 7
 locate 23,1
 PRINT "Q QUIT "

 lChangeDay = %FALSE
 i = 1 'day to show

 GfxWindow %GFX_HIDE
 UseGfxWindow i
 GfxWindow %GFX_SHOW

 COLOR 0,7
 locate 2,1
 PRINT "D DAY ";
 COLOR 7,0
 PRINT " ";TRIM$(STR$(i))
 locate 2,11
 PRINT "WD ";TRIM$(STR$(FileWeekDay(i)));" "

 DO

 UserEvent = inkey$

 IF lChangeDay = %TRUE THEN

 FOR j = 1 TO 5
 FOR i = 1 TO 7

 GfxWindow %GFX_HIDE
 UseGfxWindow i
 GfxWindow %GFX_SHOW

 COLOR 0,7
 locate 2,1
 PRINT "D DAY ";
 COLOR 7,0
 PRINT " ";TRIM$(STR$(i))
 locate 2,11
 PRINT "WD ";TRIM$(STR$(File WeekDay(i)));" "

 SLEEP SleepFactor

 NEXT i
 NEXT j

 lChangeDay = %FALSE

 END IF

 IF LEN(UserEvent) = 4 AND ASC(UserEvent , 3) = 4 THEN

 'Select next day to view
 IF MouseY = 2 THEN
 IF MouseX >0 AND MouseX <8 THEN
 UserEvent = "D"
 END IF
 END IF

 'Toggle of auto-rotation between da ys
 IF MouseY = 3 THEN
 IF MouseX >0 AND MouseX <8 THEN
 UserEvent = "R"
 END IF
 END IF

 'QUIT
 IF MouseY = 23 THEN
 IF MouseX >0 AND MouseX <8 THEN
 UserEvent = "Q"
 END IF
 END IF

 END IF

 locate 14,1

APPENDIX A 238

 COLOR 0,7
 PRINT "TIME ";
 COLOR 7,0

 CALL ValidMouseLocation (MyMouseOverX, MyMouseOverY)

 IF INT((MyMouseOverX-120)/3) > 0 AND INT((MyMouseOverX-120)/3) <= 288 THEN
 PRINT " ";MID$(TimeIndex(INT((MyMo useOverX-120)/3)),4,2) ;":"; RIGHT$(TimeIndex(IN T((MyMouseOverX-
120)/3)),2); " "
 ELSE
 PRINT SPC(6)
 END IF

 locate 15,1
 COLOR 0,7
 PRINT "GATE ";
 COLOR 7,0

 CALL ValidMouseLocation (MyMouseOverX, MyMouseOverY)

 IF INT((MyMouseOverY-21)/3) > 0 AND INT ((MyMouseOverY-21)/3) < 153 THEN
 PRINT " "; GateArray(INT((MyMouseO verY-21)/3), 2); " "
 ELSE
 PRINT SPC(6)
 END IF

 IF UCASE$(UserEvent) = "Q" THEN
 EXIT DO
 END IF

 IF UCASE$(UserEvent) = "D" THEN

 IF i >0 AND i < 7 THEN
 INCR i
 ELSE
 i = 1
 END IF

 GfxWindow %GFX_HIDE
 UseGfxWindow i
 GfxWindow %GFX_SHOW

 COLOR 0,7
 locate 2,1
 PRINT "D DAY ";
 COLOR 7,0
 PRINT " ";TRIM$(STR$(i))
 locate 2,11
 PRINT "WD ";TRIM$(STR$(FileWeekDay(i)));" "

 END IF

 IF UCASE$(UserEvent) = "R" THEN
 IF lChangeDay = %TRUE THEN
 lChangeDay = %FALSE
 ELSE
 lChangeDay = %TRUE
 END IF
 END IF

 IF UserEvent = "+" AND SleepFactor < 30 00 THEN
 SleepFactor = SleepFactor + 50
 locate 4,1
 COLOR 7,0
 PRINT "+/-";
 COLOR 7,0
 PRINT " ";TRIM$(STR$(SleepFactor)) ;" "
 END IF

 IF UserEvent = "-" AND SleepFactor >= 5 0 THEN
 SleepFactor = SleepFactor - 50
 locate 4,1
 COLOR 7,0
 PRINT "+/-";
 COLOR 7,0
 PRINT " ";TRIM$(STR$(SleepFactor)) ;" "
 END IF

 WEND

 FOR i = 1 TO 7

 UseGfxWindow i
 BrushColor %BLACK
 GfxCls

 NEXT i

 cls
 ELSE
 ConsoleMessageBox "No valid date entered.", %DEFAULT,"INFO",%DEFAULT,0
 END IF

APPENDIX A 239

 OnTimer 0, CODEPTR(MyGfxRefresh)

 CALL LogEntry(FUNCNAME$, "END")

END SUB 'GenerateJPGFiles()

‘-- ---------------------------------------

SUB MyGfxRefresh()

 GfxRefresh 0

END SUB 'MyGfxRefresh()

‘-- ---------------------------------------

SUB ValidMouseLocation (BYREF MyMouseOverX AS LONG, BYREF MyMouseOverY AS LONG)

 IF MouseOverX <> %GFX_NONE AND MouseOverX <> %G FX_BORDER_LEFT AND MouseOverX <> %GFX_BORDER_RIGHT AND _
 MouseOverX <> %GFX_BORDER_TOP AND MouseOverX <> %GFX_BORDER_BOTTOM THEN
 MyMouseOverX = MouseOverX
 ELSE
 MyMouseOverX = 1
 END IF

 IF MouseOverY <> %GFX_NONE AND MouseOverY <> %G FX_BORDER_LEFT AND MouseOverY <> %GFX_BORDER_RIGHT AND _
 MouseOverY <> %GFX_BORDER_TOP AND MouseOverY <> %GFX_BORDER_BOTTOM THEN
 MyMouseOverY = MouseOverY
 ELSE
 MyMouseOverY = 1
 END IF

END SUB 'ValidMouseLocation ()

‘-- ---------------------------------------

FUNCTION DayWeek (BYVAL InDate AS STRING) AS INTEGE R

 ' returns a number for the day of week
 ' implemented using Zeller's congruence formula
 ' Monday = 1 .. Sunday = 7

 LOCAL q AS SINGLE 'day of the month
 LOCAL m AS SINGLE 'month
 LOCAL K AS SINGLE 'year of the century
 LOCAL J AS SINGLE 'century
 LOCAL h AS SINGLE 'day of the week

 q = VAL(MID$(InDate, 7, 2))
 m = VAL(MID$(InDate, 5, 2))
 K = VAL(MID$(InDate, 3, 2))
 J = VAL(MID$(InDate, 1, 2))

 h = (q + INT(((m+1)*26) / 10) + K + INT(K/4) + INT(J/4) + 5*J) MOD 7

 'for ISO day week representation
 DayWeek = ((INT(h)+5) MOD 7) + 1

END FUNCTION 'DayWeek()

‘-- ---------------------------------------

FUNCTION GetAlliance(BYVAL Airline2ltrCode AS STRIN G) AS STRING

 LOCAL i AS INTEGER

 GetAlliance = "---"

 FOR i = 1 TO UBOUND(gAirlineAlliances())
 IF PARSE$(gAirlineAlliances(i), ";", 2) = A irline2ltrCode THEN
 GetAlliance = PARSE$(gAirlineAlliances(i), ";", 1)
 EXIT FUNCTION
 END IF
 NEXT i

END FUNCTION 'IsInAlliance

‘-- ---------------------------------------

SUB InitAlliances()

 LOCAL i AS INTEGER
 LOCAL LineCounter AS INTEGER
 LOCAL AllianceLine AS STRING

APPENDIX A 240

 FOR i = 1 TO UBOUND(gAirlineAlliances())
 gAirlineAlliances(i)= "---;--;---"
 NEXT i

 OPEN FILE_AIRLINEALLIANCES FOR INPUT AS #1
 LineCounter = 0
 WHILE NOT EOF(1)
 LINE INPUT #1, AllianceLine
 IF LEFT$(AllianceLine, 2) <> "//" AND LEN(T RIM$(AllianceLine)) > 0 THEN
 INCR LineCounter
 gAirlineAlliances(LineCounter) = All ianceLine
 END IF
 WEND 'EOF(1)
 CLOSE #1

END SUB 'InitAlliances()

‘-- ---------------------------------------

FUNCTION GetTerminalFromGate(BYREF Gate AS STRING) AS STRING

 SELECT CASE LEFT$(Gate, 1)

 CASE "A", "B", "C"
 GetTerminalFromGate = "1"

 CASE "D", "E"
 GetTerminalFromGate = "2"

 CASE ""
 GetTerminalFromGate = ""

 CASE ELSE

 ConsoleMessageBox "Invalid Gate-Info! C annot determine corresponding Terminal!" + _
 "\nGATE: " + Gate, %OKONL Y+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 GetTerminalFromGate = "X"

 END SELECT

END FUNCTION 'GetTerminalFromGate()

‘-- ---------------------------------------

FUNCTION GetCKIHallFromGate(BYREF Gate AS STRING) A S STRING

 SELECT CASE LEFT$(Gate, 1)

 CASE "A", "B", "C", "D", "E"
 GetCKIHallFromGate = LEFT$(Gate, 1)

 CASE ""
 GetCKIHallFromGate = ""

 ConsoleMessageBox "Invalid Gate-Info! C annot determine corresponding CKI hall!" + _
 "\nGATE is: EMPTY-String! ", %OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0

 CASE ELSE

 ConsoleMessageBox "Invalid Gate-Info! C annot determine corresponding CKI hall!" + _
 "\nGATE: " + Gate, %OKONL Y+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 GetCKIHallFromGate = "X"

 END SELECT

END FUNCTION 'GetCKIHallFromGate()

‘-- ---------------------------------------

FUNCTION GetWingSpanCode(BYVAL AircraftType AS STRI NG) AS STRING

 LOCAL i AS INTEGER

 GetWingSpanCode = "0"

 FOR i = 1 TO gNumberOfAircraftTypes

 IF TRIM$(PARSE$(gDKGA_WSC(i), ";", 1)) = TR IM$(AircraftType) THEN
 GetWingSpanCode = TRIM$(PARSE$(gDKGA_WS C(i), ";", 2))
 EXIT FUNCTION
 END IF

 NEXT i

 ConsoleMessageBox "No WingSpanCode determined, because of no aircraft type found: " + AircraftType , _
 %OKONLY+%EXCLAMATIONBOX,"WAR NING",%IDI_EXCLAMATION,0

END FUNCTION 'GetWingSpanCode()

APPENDIX A 241

‘-- ---------------------------------------

FUNCTION IsRemoteStand(BYVAL Stand AS STRING) AS IN TEGER

 SELECT CASE LEFT$(TRIM$(Stand),1)

 CASE "A", "B", "C", "D", "E"
 IsRemoteStand = %FALSE

 CASE ""
 ConsoleMessageBox "Empty Stand-Info! Ca nnot determine whether CONTACT/REMOTE!",
%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 IsRemoteStand = %TRUE

 CASE ELSE
 IsRemoteStand = %TRUE

 END SELECT

END FUNCTION 'IsRemoteStand()

‘-- ---------------------------------------

SUB Show_DEBUG_COUNTERS()

 ConsoleMessageBox "DEBUG_COUNTER_1 = " + TRIM$ (STR$(DEBUG_COUNTER_1)) + "\n" + _
 "DEBUG_COUNTER_2 = " + TRIM $(STR$(DEBUG_COUNTER_2)) + "\n" + _
 "DEBUG_COUNTER_3 = " + TRIM $(STR$(DEBUG_COUNTER_3)) + "\n" + _
 "DEBUG_COUNTER_4 = " + TRIM $(STR$(DEBUG_COUNTER_4)) + "\n" + _
 "DEBUG_COUNTER_5 = " + TRIM $(STR$(DEBUG_COUNTER_5)), _
 %OKONLY+%EXCLAMATIONBOX,"DE BUG COUNTER",%IDI_EXCLAMATION,0

END SUB

‘-- ---------------------------------------

SUB Reset_DEBUG_COUNTERS()

 DEBUG_COUNTER_1 = 0
 DEBUG_COUNTER_2 = 0
 DEBUG_COUNTER_3 = 0
 DEBUG_COUNTER_4 = 0
 DEBUG_COUNTER_5 = 0

END SUB

‘-- ---------------------------------------

SUB Dump_Into_DEBUG_File(BYREF aToBeDumped() AS STR ING)

 'assumes that FILE_DEBUG is open at #99

 LOCAL i AS LONG

 FOR i = 1 TO UBOUND(aToBeDumped())
 PRINT #99, aToBeDumped(i)
 NEXT i

END SUB 'Dump_Into_DEBUG_File()

‘-- ---------------------------------------

APPENDIX A 242

SUB OPTI_Run()

 LOCAL SelectedStartDate AS STRING
 LOCAL SelectedEndDate AS STRING
 LOCAL CurrentDay AS STRING
 LOCAL DateTimeStamp AS STRING

 CALL Reset_DEBUG_COUNTERS()

 gSimRunRevenue = 0.00
 gSimRunOppCost_A = 0.00
 gSimRunOppCost_B = 0.00

 ConsoleMessageBox "In case you run an optimiz ation for SCENARIO analysis,\n" + _
 "make sure that PRIOR to th is run the following has been set accordingly:\n\n" + _
 "In reference data:\n DF-Re tail Factor\n Retail Area Factor\n Revenue Per Pax\ n\n" + _
 "In Data Cleaning:\n Update Retail Area Factor ACTUAL ops\n Update Retail Area Factor SEASONAL
planning" + _
 "\n Calc Flight Revenue ACT UAL ops\n Calc Flight Revenue SEASONAL planning\n\n " + _
 "IN CASE YOU STILL NEED TO CHANGE VALUES, JUST ABORT THE FOLLOWING DATE SELECTION." , _
 %DEFAULT,"INFO",%DEFAULT,0

 SelectedStartDate = "2006-03-26"
 SelectedStartDate = REMOVE$(ConsoleInputBox$(1, LocOfCol(22), LocOfRow(5), _
 "Start date (YYYY-MM-DD)", _
 "OPTI R un", SelectedStartDate, 0, %FALSE), ANY "-")

 IF LEN(SelectedStartDate) = 8 AND NOT ConsoleInpu tBoxCancel THEN
 SelectedEndDate = "2007-03-24"
 SelectedEndDate = REMOVE$(ConsoleInputBox$(1, LocOfCol(22), LocOfRow(5), _
 "End da te (YYYY-MM-DD)", _
 "OPTI R un", SelectedEndDate, 0, %FALSE), ANY "-")

 IF LEN(SelectedEndDate) = 8 AND NOT Console InputBoxCancel THEN

 CurrentDay = SelectedStartDate

 CALL LogEntry(FUNCNAME$, "START: Edit O pti-Parameters")
 SHELL "notepad.exe " + FILE_OPTIPARAMET ERS
 CALL LogEntry(FUNCNAME$, "END: Edit Op ti-Parameters")

 'open revenue-file
 DateTimeStamp = TIME$
 REPLACE ANY ":" WITH "-" IN DateTimeSta mp
 DateTimeStamp = DATE$ + "_" + DateTimeS tamp
 OPEN PATH_DATA + $FILE_REVENUES + "_" + DateTimeStamp + ".txt" FOR OUTPUT AS #3

 OPEN PATH_APPLICATION+$FILE_DEBUG FOR A PPEND AS #99

 DO

 CLS
 PRINT "CurrentDay = "; CurrentDay

 IF OPTI_FindSolution(CurrentDay) = %TRUE THEN
 'ConsoleMessageBox "Day success fully allocated: " + CurrentDay , %DEFAULT,"INFO",% DEFAULT,0

 'write day's schedule/plan into file
 CALL OPTI_DumpDailyPlanIntoFile (CurrentDay)

 CALL OPTI_DumpDailyAllocIntoFil e(CurrentDay)

 'update retail revenue stats
 PRINT #3, CurrentDay + ";" + TR IM$(STR$(ROUND(gMaxFinalRevenue,2)))

 gSimRunRevenue = gSimRunRevenue + gMaxFinalRevenue
 gSimRunOppCost_A = gSimRunOppCo st_A + gOppCostPerDay_A
 gSimRunOppCost_B = gSimRunOppCo st_B + gOppCostPerDay_B

 ELSE
 ConsoleMessageBox "Day could NO T be allocated!", %DEFAULT,"INFO",%DEFAULT,0
 END IF

 IF CurrentDay <> SelectedEndDate T HEN
 CurrentDay = NextDay(CurrentDay)
 ELSE
 EXIT DO
 END IF

 'ConsoleMessageBox "CurrentDay // S electedEndDate: " + CurrentDay + " // " + SelectedE ndDate,
%DEFAULT,"INFO",%DEFAULT,0

 LOOP

 'close revenue-file
 CLOSE #3

 ELSE
 ConsoleMessageBox "No end date chosen. Nothing done. ",%DEFAULT,"INFO",%DEFAULT,0

APPENDIX A 243

 END IF

 ELSE

 ConsoleMessageBox "No start date chosen. No thing done. ",%DEFAULT,"INFO",%DEFAULT,0

 END IF 'SelectedStartDate

 CLOSE #99

 ConsoleMessageBox "End of optimization run.", % DEFAULT,"INFO",%DEFAULT,0
 ConsoleMessageBox "Number of 'not-first-trials' = " + STR$(DEBUG_COUNTER_1) + _
 "\nNumber of shifts into next time interval = " + STR$(gNoFitCounter),
%DEFAULT,"INFO",%DEFAULT,0

 ConsoleMessageBox "TotalRevenue for this run = " + USING$("###,###,###.##", gSimRunRevenue)+ _
 "\nOppCost A for this run = " + USING$("###,###,###.##", gSimRunOppCost_A) + _
 "\nOppCost B for this run = " + USING$("###,###,###.##", gSimRunOppCost_B) + _
 "\nAs Percentage A = " + USING $("###.##", ROUND((gSimRunOppCost_A/gSimRunRevenue* 100),2)) + _
 "\nAs Percentage B = " + USING $("###.##", ROUND((gSimRunOppCost_B/gSimRunRevenue* 100),2)), _
 %OKONLY+%EXCLAMATIONBOX,"SIM-R UN STATS",%IDI_EXCLAMATION,0

END SUB 'OPTI_Run()

‘-- ---------------------------------------

FUNCTION OPTI_FindSolution(BYVAL DKGA_Date AS STRIN G) AS INTEGER

 LOCAL lResult AS INTEGER
 LOCAL i AS LONG
 LOCAL j AS INTEGER
 LOCAL TempCounter AS INTEGER

 LOCAL TimeIntervalsPerDay AS INTEGER : TimeInte rvalsPerDay = 288
 LOCAL SpecificTimeInterval AS INTEGER ' k (of A lgorithm)
 LOCAL MaxNumberOfFlightsInInterval AS INTEGER : MaxNumberOfFlightsInInterval = %MaxDeparturesPerDa y

 LOCAL OPTI_GatesAvailable AS STRING

 LOCAL OPTI_FlightsNotAllocatedInLastTimeInterva l AS STRING
 LOCAL OPTI_FlightsToBeAllocatedInTimeInterval A S STRING
 LOCAL OPTI_Total_FlightsToBeAllocatedInTimeInte rval AS STRING

 LOCAL OPTI_NumberOf_FlightsNotAllocatedInLastTi meInterval AS LONG
 LOCAL OPTI_NumberOf_FlightsToBeAllocatedInTimeI nterval AS LONG
 LOCAL OPTI_NumberOf_Total_FlightsToBeAllocatedI nTimeInterval AS LONG

 DIM OPTI_GateSet_PerFlight(1 TO 10, 1 TO 5) AS STRING 'dummy DIM. A REDIM is done below (1 = FlightIndex _
 '2 = GateIndex _
 '3 = Retail Area
Index _
 '4 = RA-Revenue _
 '5 = Gate-Revenue

 DIM OPTI_CombiResult_RA(1 TO gSolutionStackSize , 1 TO 2) AS STRING '(%SolutionStackSize Combi -Solutions are
tested for picking gates according to retail areas) (1 = Retail Area Combination 2 = Revenue)

 LOCAL TempSum AS DOUBLE

 LOCAL lInsertTrial AS INTEGER
 LOCAL nTrial AS INTEGER
 LOCAL SolutionFlightIndex AS INTEGER
 LOCAL AssignedGate AS INTEGER
 LOCAL TempAllocatedGates AS STRING
 LOCAL TempOptiSingleRevenue AS STRING

 LOCAL lFound_TempOptiSingleRevenue AS INTEGER

 LOCAL InsertAttempt AS INTEGER

 '-- --- --------------

 OPTI_FindSolution = %FALSE
 glSecondTryWithoutAllianceCompliance = %FALSE
 gNoFitCounter = 0

 'Initialize all relevant data: flight plan, gat es infra, wing span codes, retail areas and related
 CALL OPTI_Initialize(DKGA_Date)

 'try to allocate all flights on that day

' OPEN PATH_APPLICATION+$FILE_DEBUG FOR OUTPUT A S #99

 LOCATE 3,1: PRINT "Generate day's gate allocati on..."

 PRINT "Start: "; TIME$

 gMaxFinalRevenue = 0.00
 gOppCostPerDay_A = 0.00
 gOppCostPerDay_B = 0.00

APPENDIX A 244

 'Dump_Into_DEBUG_File(gAllFlightsOnThatDay())

 FOR SpecificTimeInterval = 1 TO TimeIntervalsPe rDay

 RESET OPTI_CombiResult_RA()
 gSolutionCounter = 0

 LOCATE 6,1 : PRINT "SpecificTimeInterval: " ; SpecificTimeInterval

 'set to null again
 OPTI_FlightsToBeAllocatedInTimeInterval = " "
 OPTI_NumberOf_FlightsToBeAllocatedInTimeInt erval = 0
 OPTI_Total_FlightsToBeAllocatedInTimeInterv al = ""
 OPTI_NumberOf_Total_FlightsToBeAllocatedInT imeInterval = 0

 'determine flights that need allocation in that time interval
 OPTI_FlightsToBeAllocatedInTimeInterval =
OPTI_Determine_FlightsToBeAllocatedInTimeInterval(S pecificTimeInterval)

 'determine number of flights that need allo cation in that time interval
 IF LEN(TRIM$(OPTI_FlightsToBeAllocatedInTim eInterval)) > 0 THEN
 OPTI_NumberOf_FlightsToBeAllocatedInTim eInterval = PARSECOUNT(OPTI_FlightsToBeAllocatedInT imeInterval,
";")
 ELSE
 OPTI_NumberOf_FlightsToBeAllocatedInTim eInterval = 0
 END IF

 'second try without alliance rule
 IF glSecondTryWithoutAllianceCompliance = % TRUE THEN
 OPTI_FlightsNotAllocatedInLastTimeInter val = ""
 OPTI_NumberOf_FlightsNotAllocatedInLast TimeInterval = 0
 END IF

 'cope also for the flights that could not b e allocated in previous time interval (k-1)
 IF OPTI_NumberOf_FlightsNotAllocatedInLastT imeInterval > 0 THEN

 OPTI_Total_FlightsToBeAllocatedInTimeIn terval = OPTI_FlightsNotAllocatedInLastTimeInterval + ";" +
OPTI_FlightsToBeAllocatedInTimeInterval

 IF LEFT$(OPTI_Total_FlightsToBeAllocate dInTimeInterval, 1) = ";" THEN
 OPTI_Total_FlightsToBeAllocatedInTi meInterval = RIGHT$(OPTI_Total_FlightsToBeAllocated InTimeInterval,
LEN(OPTI_Total_FlightsToBeAllocatedInTimeInterval)- 1)
 END IF

 'in case of empty OPTI_FlightsToBeAlloc atedInTimeInterval there would be a semicolon at en d --> remove it
 IF RIGHT$(OPTI_Total_FlightsToBeAllocat edInTimeInterval, 1) = ";" THEN
 OPTI_Total_FlightsToBeAllocatedInTi meInterval = LEFT$(OPTI_Total_FlightsToBeAllocatedI nTimeInterval,
LEN(OPTI_Total_FlightsToBeAllocatedInTimeInterval)- 1)
 END IF

 ELSE
 OPTI_Total_FlightsToBeAllocatedInTimeIn terval = OPTI_FlightsToBeAllocatedInTimeInterval
 END IF

 'reset the values from previous interval (k -1)
 OPTI_FlightsNotAllocatedInLastTimeInterval = ""
 OPTI_NumberOf_FlightsNotAllocatedInLastTime Interval = 0

 'determine no. of total flights to be alloc ated in this time interval

 IF LEN(TRIM$(OPTI_Total_FlightsToBeAllocate dInTimeInterval)) > 0 THEN
 OPTI_NumberOf_Total_FlightsToBeAllocate dInTimeInterval =
PARSECOUNT(OPTI_Total_FlightsToBeAllocatedInTimeInt erval, ";")
 ELSE
 OPTI_NumberOf_Total_FlightsToBeAllocate dInTimeInterval = 0
 END IF

 'only continue if there are flights to be a llocated in the SpecificTimeInterval

 IF OPTI_NumberOf_Total_FlightsToBeAllocated InTimeInterval > 0 THEN

 'determine all available gates in this time interval (i.e. not occupied from previous assi gnments)
 OPTI_GatesAvailable = OPTI_Determine_Av ailableGatesInInterval(SpecificTimeInterval)

 'for each flight in this interval: dete rmine SET OF GATES that can be assigned to that fli ght

 '--- REDIM +++ REDIM +++ REDIM +++ REDI M +++ REDIM +++ REDIM +++ REDIM ---
 REDIM OPTI_GateSet_PerFlight(1 TO OPTI_ NumberOf_Total_FlightsToBeAllocatedInTimeInterval, 1 TO 5) AS
STRING
 '--- REDIM +++ REDIM +++ REDIM +++ REDI M +++ REDIM +++ REDIM +++ REDIM ---

 FOR i = 1 TO OPTI_NumberOf_Total_Flight sToBeAllocatedInTimeInterval

 OPTI_GateSet_PerFlight(i, 1) = PARS E$(OPTI_Total_FlightsToBeAllocatedInTimeInterval,"; ",i)
'e.g. FlightIndex: "303"

APPENDIX A 245

 IF VAL(OPTI_GateSet_PerFlight(i, 1)) <> 0 THEN

 OPTI_GateSet_PerFlight(i, 2) = OPTI_Determine_EligibleGatesForFlight(
VAL(OPTI_GateSet_PerFlight(i, 1)), OPTI_GatesAvaila ble) 'e.g. GateIndex: "1;22;34;45;47"

 ELSE

 ConsoleMessageBox "THIS SHOUL D NOT OCCUR!!!\n\n" + _
 "FlightInde x = 0 !\n" + _
 "\nOPTI_Gat eSet_PerFlight(i, 1) :>>" +
OPTI_GateSet_PerFlight(i, 1) + "<<" + _
 "\nOPTI_Tot al_FlightsToBeAllocatedInTimeInterval :>>" +
OPTI_Total_FlightsToBeAllocatedInTimeInterval + "<< " + _
 "\nIndex i: " + STR$(i), _
 %OKONLY+%EX CLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0

 END IF

 'only if there are eligible gates . ..
 IF LEN(TRIM$(REMOVE$(OPTI_GateSet_P erFlight(i, 2), ";"))) > 0 THEN

 OPTI_GateSet_PerFlight(i, 3) =
OPTI_Determine_EligibleRetailAreasForFlight(OPTI_Ga teSet_PerFlight(i, 2)) 'e.g.
RetailAreaIndex: "1;3;4"
 OPTI_GateSet_PerFlight(i, 4) =
OPTI_Determine_RevenueForFlightInSpecificRetailArea (OPTI_GateSet_PerFlight(i, 1), OPTI_GateSet_PerFlig ht(i,3)) 'e.g.
Revenue: "234.12;22.90;1235.00"
 OPTI_GateSet_PerFlight(i, 5) =
OPTI_Determine_RevenueForFlightAtSpecificGates(OPTI _GateSet_PerFlight(i, 1), OPTI_GateSet_PerFlight(i, 2)) 'e.g.
Revenue: "234.12;234.12;234.12;22.90;22.90"

 ELSE ' store for J2

 INCR gNoFitCounter

 OPTI_GateSet_PerFlight(i, 3) = "XXX"
 OPTI_GateSet_PerFlight(i, 4) = "XXX"
 OPTI_GateSet_PerFlight(i, 5) = "XXX"

 OPTI_FlightsNotAllocatedInLastT imeInterval = OPTI_FlightsNotAllocatedInLastTimeInt erval + ";" +
OPTI_GateSet_PerFlight(i, 1)
 INCR OPTI_NumberOf_FlightsNotAl locatedInLastTimeInterval

 'remove semi-colon in case on f irst sign position
 IF LEFT$(OPTI_FlightsNotAllocat edInLastTimeInterval,1) = ";" THEN
 OPTI_FlightsNotAllocatedInL astTimeInterval =
RIGHT$(OPTI_FlightsNotAllocatedInLastTimeInterval, LEN(OPTI_FlightsNotAllocatedInLastTimeInterval)-1)
 END IF

 END IF

 NEXT i

 'rewrite the array WITHOUT those flight s for which no eligible gate could be determined

 TempCounter = 0
 FOR i = 1 TO OPTI_NumberOf_Total_Flight sToBeAllocatedInTimeInterval
 IF OPTI_GateSet_PerFlight(i, 3) <> "XXX" THEN

 INCR TempCounter

 OPTI_GateSet_PerFlight(TempCoun ter, 1) = OPTI_GateSet_PerFlight(i, 1)
 OPTI_GateSet_PerFlight(TempCoun ter, 2) = OPTI_GateSet_PerFlight(i, 2)
 OPTI_GateSet_PerFlight(TempCoun ter, 3) = OPTI_GateSet_PerFlight(i, 3)
 OPTI_GateSet_PerFlight(TempCoun ter, 4) = OPTI_GateSet_PerFlight(i, 4)
 OPTI_GateSet_PerFlight(TempCoun ter, 5) = OPTI_GateSet_PerFlight(i, 5)

 END IF

 NEXT i

 ' clean the remainder of the old array content
 FOR i = TempCounter + 1 TO OPTI_NumberO f_Total_FlightsToBeAllocatedInTimeInterval

 OPTI_GateSet_PerFlight(i, 1) = ""
 OPTI_GateSet_PerFlight(i, 2) = ""
 OPTI_GateSet_PerFlight(i, 3) = ""
 OPTI_GateSet_PerFlight(i, 4) = ""
 OPTI_GateSet_PerFlight(i, 5) = ""

 NEXT i

 'set new no. of total flights
 OPTI_NumberOf_Total_FlightsToBeAllocate dInTimeInterval = TempCounter

 'J1
 'Opti run for flights that have not bee n allocated in previous time interval
 'Opti run for flights with priority in current time interval

 '--- COMBINATION STARTS HERE ... ------ --- -------

 LOCATE 7,1

APPENDIX A 246

 PRINT "OPTI_NumberOf_Total_FlightsToBeA llocatedInTimeInterval: ";
OPTI_NumberOf_Total_FlightsToBeAllocatedInTimeInter val

 LOCATE 8,1
 PRINT "Flights in interval: ";
 LOCATE 8,36
 FOR i = 1 TO OPTI_NumberOf_Total_Flight sToBeAllocatedInTimeInterval
 PRINT OPTI_GateSet_PerFlight(i, 1) + " ";
 NEXT i

 LOCATE 9,1
 PRINT "Number of EligibleGatesForFlight : ";
 LOCATE 9,36
 FOR i = 1 TO OPTI_NumberOf_Total_Flight sToBeAllocatedInTimeInterval
 PRINT USING$("###",PARSECOUNT(OPTI_ GateSet_PerFlight(i, 2), ";")) +" ";
 NEXT i

 gBestRACombi = ""

 IF OPTI_NumberOf_Total_FlightsToBeAlloc atedInTimeInterval > 0 THEN

 gMaxTempRevenue = 0.00
 gMaxTheoRevenueRACombi = ""
 gMaxTheoreticalRevenue = OPTI_Deter mine_MaxTheoRevenue(OPTI_GateSet_PerFlight(),
OPTI_NumberOf_Total_FlightsToBeAllocatedInTimeInter val)

 'TRY THEO BEST COMBI FIRST -- IN CA SE NOT POSSIBLE, DO COMBINATIONS
 FOR InsertAttempt = 1 TO 2

 '========== C O M B I (RECURSIVE CALL INITIATED HERE)============================== ======

 IF InsertAttempt = 2 THEN

' IF DEBUG_PRINT = %TRUE THEN
' ConsoleMessageBox "Specifi cTimeInterval : " + STR$(SpecificTimeInterval) + _
' "\nStart ing COMBI...", %OKONLY+%EXCLAMATIONBOX,"WARNING",%I DI_EXCLAMATION,0
' END IF

 '--- start timer for defined t ermination of Combi here ---
 gTimer_CombiStart = INT(TIMER)
 gTimer_CombiStop = gTimer_Comb iStart + %MaxCombiTime
 '----------------------------- ----------------------------

'<===
 CALL OPTI_CombiTwoElements(OPT I_CombiResult_RA(), OPTI_GateSet_PerFlight(),
OPTI_NumberOf_Total_FlightsToBeAllocatedInTimeInter val, 1, "", "") '<===

'<===

' IF DEBUG_PRINT = %TRUE THEN
' ConsoleMessageBox "After c ombi done..." + _
' "\nnTria l = " + STR$(nTrial) + _
' "\nInser tAttempt = " + STR$(InsertAttempt) + _
' "\nSpeci ficTimeInterval: " + STR$(SpecificTimeInterval) + _
' "\ngBest RACombi: " + gBestRACombi + _
' "\ngSolu tionStackSize: " + STR$(gSolutionStackSize), _
' %OKONLY+ %EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
' END IF

 END IF

 '--- TRY TO ASSIGN OPTIMUM GATE F OR ALL FLIGHTS ---

 FOR nTrial = 1 TO gSolutionStack Size

 IF InsertAttempt = 1 THEN
 gBestRACombi = gMaxTheoR evenueRACombi 'has been determined in functi on:
OPTI_Determine_MaxTheoRevenue
 gMaxTempRevenue = gMaxTh eoreticalRevenue 'has been determined in functi on:
OPTI_Determine_MaxTheoRevenue
 nTrial = 0
 ELSE

' IF DEBUG_PRINT = %TRUE THEN
' PRINT
' FOR i = 1 TO gSoluti onStackSize
' PRINT i; " OPTI_C ombiResult_RA(i, 1)= "; OPTI_CombiResult_RA(i, 1); " revenue = ";
OPTI_CombiResult_RA(i, 2)
' NEXT i
' ConsoleMessageBox "g BestRACombi wurde befüllt:" + _
' "\ nnTrial= " + STR$(nTrial) + _
' "\ nOPTI_CombiResult_RA(nTrial, 1)= " + OPTI_CombiResu lt_RA(nTrial,
1), _
' %O KONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
'
' END IF

 gBestRACombi = OPTI_Comb iResult_RA(nTrial, 1)

 END IF

APPENDIX A 247

 CALL OPTI_GateTimeMatrix_Tra nsaction_Start()

 IF TRIM$(REMOVE$(gBestRAComb i,";")) <> "" THEN 'only, if there's a value in gB estRACombi

 TempAllocatedGates = ""
 lInsertTrial = %TRUE

 FOR i = 1 TO OPTI_Number Of_Total_FlightsToBeAllocatedInTimeInterval

 '...................CandidateRetailAreaIndex..............FlightI ndex
................... TimeFrom
 AssignedGate = OPTI_ GateChosen(VAL(PARSE$(gBestRACombi, ";", i)), i,
SpecificTimeInterval, OPTI_GateSet_PerFlight())

 IF AssignedGate = 0 THEN

 'so no gate has been found for that flight ('i')
 'this means that not the whole sequence could be allocated
 'an thus this nT rial has no valid solution

 lInsertTrial = % FALSE

 EXIT FOR 'so that a next best solution can be tested for free ga tes
 ELSE
 TempAllocatedGat es = TempAllocatedGates + ";" + TRIM$(STR$(Assigned Gate))
 END IF

 NEXT i 'try for next fli ght...

 'at this point all fligh ts have been tested for insert into the matrix

 'remove semi-colon in ca se on first sign position
 IF LEFT$(TempAllocatedGa tes, 1) = ";" THEN
 TempAllocatedGates = RIGHT$(TempAllocatedGates, LEN(TempAllocatedGates) -1)
 END IF

 IF lInsertTrial = %TRUE THEN

 IF InsertAttempt > 1 THEN
 INCR DEBUG_COUNTER _1

 gOppCostPerDay_A = gOppCostPerDay_A + (gMaxTheoreticalRevenue-
VAL(OPTI_CombiResult_RA(nTrial, 2)))
 gOppCostPerDay_B = gOppCostPerDay_B + (VAL(OPTI_CombiResult_RA(1, 2)) -
VAL(OPTI_CombiResult_RA(nTrial, 2)))

 END IF

 'sum up daily total revenue
 gMaxFinalRevenue = g MaxFinalRevenue + gMaxTempRevenue

 'and now flush/reset the transaction stack, because not necessary anymo re
 CALL OPTI_GateTimeMa trix_Transaction_Commit()

 'for next time inter val block those retail areas that have too many PAX
 CALL OPTI_Avoid_Reta ilArea_PAX_OverLoad(SpecificTimeInterval)

 InsertAttempt = 3 'i .e. exit also InsertAttempt-LOOP

 EXIT FOR '(nTri al-LOOP) this means no more next-best solution need s to be looked
at

 ELSE '---> lInsertTria l = %FALSE

 IF gGateTimeMatrix_T ransaction_Stack_Counter > 0 THEN
 CALL OPTI_GateTi meMatrix_Transaction_Rollback()
 END IF

 END IF 'lInsertTrial = % TRUE

 ELSE 'gBestRACombi <> ""

 'in case a combination h as been done and no
 'more values are in solu tion stack: exit rest of trials
 EXIT FOR

 END IF 'gBestRACombi <> ""

 IF InsertAttempt = 1 THEN
 EXIT FOR
 END IF

 NEXT nTrial

 NEXT InsertAttempt

APPENDIX A 248

 'if after all trials still no solut ion, an alternative methods
 'needs to be applied or flights shi fted into next interval

 IF lInsertTrial = %FALSE THEN

 IF glSecondTryWithoutAllianceC ompliance = %FALSE THEN

 PRINT #99, DKGA_Date + ";" + TRIM$(STR$(SpecificTimeInterval))

 glSecondTryWithoutAllianceC ompliance = %TRUE
 SpecificTimeInterval = Spec ificTimeInterval - 1 't ry it again with
different mode

 ELSE

 ConsoleMessageBox "Even no success without alliance rule!\nin TimeInterval: " +
STR$(SpecificTimeInterval), _
 %OKONLY+% EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 glSecondTryWithoutAllianceC ompliance = %FALSE

 'store for next interval's J1
 'BUT ONLY A SELECTED FLIGHT ! NOT ALL!!!
 '...
 '...
 '...
 FOR i = 1 TO OPTI_NumberOf_ Total_FlightsToBeAllocatedInTimeInterval
 OPTI_FlightsNotAlloca tedInLastTimeInterval = OPTI_FlightsNotAllocatedInL astTimeInterval
+ ";" + OPTI_GateSet_PerFlight(i, 1)
 INCR OPTI_NumberOf_Fl ightsNotAllocatedInLastTimeInterval
 NEXT i

 'remove semi-colon in case on first sign position
 IF LEFT$(OPTI_FlightsNotAll ocatedInLastTimeInterval,1) = ";" THEN
 OPTI_FlightsNotAlloca tedInLastTimeInterval =
RIGHT$(OPTI_FlightsNotAllocatedInLastTimeInterval, LEN(OPTI_FlightsNotAllocatedInLastTimeInterval)-1)
 END IF

 OPTI_FindSolution = %TRUE ' means here that there was shift to next time interv al

 ConsoleMessageBox "TotalRev enue for this day = " + USING$("###,###,###.##", gM axFinalRevenue)+
_
 "\nOppCos t A for this day = " + USING$("###,###,###.##", gOp pCostPerDay_A) +
_
 "\nOppCos t B for this day = " + USING$("###,###,###.##", gOp pCostPerDay_B) +
_
 "\nAs Per centage A = " + USING$("###.##",
ROUND((gOppCostPerDay_A/gMaxFinalRevenue*100),2)) + _
 "\nAs Per centage B = " + USING$("###.##",
ROUND((gOppCostPerDay_B/gMaxFinalRevenue*100),2)), _
 %OKONLY+% EXCLAMATIONBOX,"DAILY STATS",%IDI_EXCLAMATION,0

 EXIT FUNCTION 'EXIT WHILE T ESTING @@@

 END IF

 ELSE 'all flights have been allocat ed

 'update gAllFlightsOnThatDay() with:
 ' - %FIELD_Gate_Opti
 ' - %FIELD_RetailAreaOpti
 ' - %FIELD_RetailAreaFactorOpti
 ' - %FIELD_RetailRevenueOpti

 'glSecondTryWithoutAllianceComp liance = %FALSE

 FOR i = 1 TO OPTI_NumberOf_Tota l_FlightsToBeAllocatedInTimeInterval

 '%FIELD_Gate_Opti
 gAllFlightsOnThatDay(VAL(OP TI_GateSet_PerFlight(i, 1))) = StringUpdate(
gAllFlightsOnThatDay(VAL(OPTI_GateSet_PerFlight(i, 1))), _
 %FIELD _Gate_Opti, _

OPTI_Geno2Pheno_Gate(PARSE$(TempAllocatedGates, ";" , i)) _
)

 '%FIELD_RetailAreaOpti
 gAllFlightsOnThatDay(VAL(OP TI_GateSet_PerFlight(i, 1))) = StringUpdate(
gAllFlightsOnThatDay(VAL(OPTI_GateSet_PerFlight(i, 1))), _
 %FIELD _RetailAreaOpti,
_
 PARSE$ (gaRetailArea(
GetRetailAreaIndexFromGateIndex(VAL(PARSE$(TempAllo catedGates, ";", i)))), ";",1) _
)

 '%FIELD_RetailAreaFactorOpt i
 gAllFlightsOnThatDay(VAL(OP TI_GateSet_PerFlight(i, 1))) = StringUpdate(
gAllFlightsOnThatDay(VAL(OPTI_GateSet_PerFlight(i, 1))), _

APPENDIX A 249

%FIELD_RetailAreaFactorOpti, _

GetRetailFactor(PARSE$(gaRetailArea(GetRetailAre aIndexFromGateIndex(VAL(PARSE$(TempAllocatedGates, ";", i)))),
";",1), gaRF()) _
)

 '%FIELD_RetailRevenueOpti
 TempOptiSingleRevenue = ""
 lFound_TempOptiSingleRevenu e = %FALSE

 FOR j = 1 TO PARSECOUNT(OPT I_GateSet_PerFlight(i, 2), ";")

 IF TRIM$(PARSE$(OPTI_Ga teSet_PerFlight(i, 2), ";", j)) = TRIM$(PARSE$(Temp AllocatedGates,
";", i)) THEN
 TempOptiSingleReven ue = PARSE$(OPTI_GateSet_PerFlight(i, 5), ";", j)
 lFound_TempOptiSing leRevenue = %TRUE
 EXIT FOR
 END IF

 NEXT j

 IF TRIM$(TempOptiSingleReve nue) = "" THEN

 IF lFound_TempOptiSingl eRevenue = %TRUE THEN

 ConsoleMessageBox " All flights allocated in SpecificTimeInterval: " +
STR$(SpecificTimeInterval) + _
 "\nNumber Of Flights: " +
STR$(OPTI_NumberOf_Total_FlightsToBeAllocatedInTime Interval) + _
 "\nTempOp tiSingleRevenue -->" + TempOptiSingleRevenue + "<-- -" + _
 "\ngAllFl ightsOnThatDay(): " +
gAllFlightsOnThatDay(VAL(OPTI_GateSet_PerFlight(i, 1))) , _
 %OKONLY +%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0

 ELSE

 ConsoleMessageBox " lFound_TempOptiSingleRevenue = %FALSE !!!" + _
 "\n\nSpecificTimeInterval: " + STR$(SpecificTimeIn terval) + _
 "\nNumber Of Flights: " +
STR$(OPTI_NumberOf_Total_FlightsToBeAllocatedInTime Interval) + _
 "\nPARSE$(TempAllocatedGates, ';', i) " +
PARSE$(TempAllocatedGates, ";", i) + _
 "\nTempOptiSingleRevenue -->" + TempOptiSingleReve nue + "<---" + _
 "\ngAllFlightsOnThatDay(): " +
gAllFlightsOnThatDay(VAL(OPTI_GateSet_PerFlight(i, 1))) , _
 %OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0

 END IF

 END IF

 gAllFlightsOnThatDay(VAL(OP TI_GateSet_PerFlight(i, 1))) = StringUpdate(
gAllFlightsOnThatDay(VAL(OPTI_GateSet_PerFlight(i, 1))), _

%FIELD_RetailRevenueOpti, _
 TempOp tiSingleRevenue
_
)

 NEXT i

 END IF

 END IF 'OPTI_NumberOf_Total_FlightsToBe AllocatedInTimeInterval >= 1

 '-------------------------------------- --- ---------------
 '--- COMBINATION ENDS HERE ... -------- --- ---------------
 '-------------------------------------- --- ---------------

 ELSE

' PRINT #99, " NO ALLOCATIONS DUE IN THI S TIME INTERVAL"

 END IF

 NEXT SpecificTimeInterval

 LOCATE 3, 35 : PRINT "finished."
 LOCATE 4, 20 : PRINT "Stop: "; TIME$

' ConsoleMessageBox "TotalRe venue for this day = " + USING$("###,###,###.##",
gMaxFinalRevenue)+ _
' "\nOppCo st A for this day = " + USING$("###,###,###.##", gO ppCostPerDay_A)
+ _
' "\nOppCo st B for this day = " + USING$("###,###,###.##", gO ppCostPerDay_B)
+ _
' "\nAs Pe rcentage A = " + USING$("###.##",
ROUND((gOppCostPerDay_A/gMaxFinalRevenue*100),2)) + _
' "\nAs Pe rcentage B = " + USING$("###.##",
ROUND((gOppCostPerDay_B/gMaxFinalRevenue*100),2)), _

APPENDIX A 250

' %OKONLY+ %EXCLAMATIONBOX,"DAILY STATS",%IDI_EXCLAMATION,0

 OPTI_FindSolution = %TRUE

 'CALL OPTI_GateTimeMatrix_DEBUG()

END FUNCTION 'OPTI_FindSolution()

‘-- ---------------------------------------

SUB OPTI_CombiTwoElements(BYREF OPTI_CombiResult_ RA() AS STRING, _
 BYREF OPTI_GateSet_PerF light() AS STRING, _
 BYVAL MaxNumberOfFlight s AS INTEGER, _
 BYVAL CurrentFlight AS INTEGER, _
 BYVAL SolutionString AS STRING, _
 BYVAL SolutionRAs AS ST RING)

 LOCAL i AS INTEGER
 LOCAL j AS INTEGER
 LOCAL TempString AS STRING
 LOCAL TempSum AS DOUBLE
 LOCAL TempRAs AS STRING

 TempString = SolutionString
 TempRAs = SolutionRAs

'-- ------------
' ACTIVATE IF: Combi produces too many Solutions
'-- ------------
' IF gSolutionCounter > %MaxSolutionsToBeTested THEN
' CurrentFlight = MaxNumberOfFlights + 1
' END IF
'-- ------------

'-- ------------
' ACTIVATE IF: Combi takes too much time (terminate by timer)
'-- ------------
 IF INT(TIMER) > gTimer_CombiStop THEN
 CurrentFlight = MaxNumberOfFlights + 1
 END IF
'-- ------------

 IF CurrentFlight <= MaxNumberOfFlights AND _
 TRIM$(OPTI_GateSet_PerFlight(CurrentFlight , 1)) <> "" THEN

 IF TRIM$(REMOVE$(OPTI_GateSet_PerFlight(Cur rentFlight, 3), ";")) <> "" THEN

 FOR i = 1 TO PARSECOUNT(OPTI_GateSet_Pe rFlight(CurrentFlight, 4), ";")

 TempString = TempString + PARSE$(O PTI_GateSet_PerFlight(CurrentFlight, 4), ";", i) + ";" 'to
store revenues
 TempRAs = TempRAs + PARSE$(O PTI_GateSet_PerFlight(CurrentFlight, 3), ";", i) + ";" 'to
store Retail Areas

 '+++ recursive call of procedure ++ +
 CALL OPTI_CombiTwoElements(OPTI_Com biResult_RA(), OPTI_GateSet_PerFlight(), MaxNumberO fFlights,
CurrentFlight+1, TempString, TempRAs)

 TempString = SolutionString
 TempRAs = SolutionRAs

 NEXT i

 END IF

 ELSE ' a next solution has been built

 'remove semicolons at end of solutions s trings

 IF RIGHT$(TempString, 1) = ";" THEN
 TempString = LEFT$(TempString, LEN(T empString)-1) 'remove the last semicolon
 END IF

 IF RIGHT$(TempRAs, 1) = ";" THEN
 TempRAs = LEFT$(TempRAs, LEN(TempRAs)-1) 'remove the last semicolon
 END IF

 'now determine revenue of solution

 TempSum = 0
 FOR i = 1 TO PARSECOUNT(TempString, ";")
 TempSum = TempSum + VAL(PARSE$(TempS tring, ";", i))
 NEXT i

 'if revenue of solution is better than l ast best revenue
 'OR
 'Solution Stack not yet completely fille d: store the result

 IF (TempSum >= gMaxTempRevenue) OR (gSol utionCounter < gSolutionStackSize) THEN

APPENDIX A 251

 'insert only if number of free g ates in retail area
 'is not less than occurances of that retail area

 IF OPTI_IsValidRACombi(TempRAs, OPTI_GateSet_PerFlight()) = %TRUE THEN

 'store flight/RA combi to pi ck a gate in that RA later on

 gBestRACombi = TempRAs

 'store max revenue of that c ombi
 gMaxTempRevenue = TempSum

 'store best (gSolutionStackS ize) solutions for later gate picking

 INCR gSolutionCounter
 'LOCATE 9,1 : PRINT SPC(30)
 'LOCATE 9,1 : PRINT "gSoluti onCounter = " ; gSolutionCounter

 FOR i = 1 TO gSolutionStackS ize
 IF TempSum >= VAL(OPTI_C ombiResult_RA(i,2)) THEN

 'shift and insert in to 2-DIM array
 FOR j = gSolutionSta ckSize TO i+1 STEP -1
 OPTI_CombiResult _RA(j,1) = OPTI_CombiResult_RA(j-1,1)
 OPTI_CombiResult _RA(j,2) = OPTI_CombiResult_RA(j-1,2)
 NEXT j

 OPTI_CombiResult_RA(i,1) = TempRAs
 OPTI_CombiResult_RA(i,2) = TRIM$(STR$(TempSum))

 EXIT FOR

 END IF
 NEXT i

 ELSE

 TempSum = 0
 TempRAs = ""

 END IF 'OPTI_IsValidRACombi(Temp RAs, OPTI_GateSet_PerFlight()) = %TRUE

 END IF 'TempSum >= gMaxTempRevenue

 END IF 'CurrentFlight <= MaxNumberOfFlights AND TRIM$(OPTI_GateSet_PerFlight(CurrentFlight, 1)) <> ""

END SUB 'OPTI_CombiTwoElements()

‘-- ---------------------------------------

SUB OPTI_Initialize(BYVAL DKGA_Date AS STRING)

 'initializes (global) Opti varibles

 LOCAL CurrentPos AS LONG
 LOCAL OpsDataLine AS STRING
 LOCAL LineCounter AS LONG

 LOCAL TempSGT AS INTEGER
 LOCAL Index_1 AS INTEGER
 LOCAL Index_2 AS INTEGER

 LOCAL GateIndex AS INTEGER
 LOCAL TimeIndex AS INTEGER

 DIM DKGA_SelectedFlightRecsOrg(1 TO %MaxDepartu resPerDay) AS STRING

 '-- -------------------------

 'add field STAG= STD-SGT 'STAG = Scheduled Time at Gate

 '-- -------
 '--- PREPARE OPTI VARIABLES (FROM FILES) ---
 '-- -------

 '--- Initialize Optimization Parameters ------- --------
 CALL OPTI_InitializeOptiParamFromFile()

 '--- Read Gate Infra for later use ------------ --------

 OPEN FILE_GATE_INFRA FOR INPUT AS #1
 LineCounter = 1

 WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 IF LEFT$(OpsDataLine, 2) <> "//" AND LEN(TR IM$(OpsDataLine)) > 0 THEN
 gDKGA_GatesInfra(LineCounter) = OpsData Line
 INCR LineCounter

APPENDIX A 252

 END IF
 WEND 'eof(1)
 CLOSE #1
 gNumberOfGates = LineCounter - 1

 '--- Read WingSpanCodes for later use --------- -----------

 OPEN FILE_WSC FOR INPUT AS #1
 LineCounter = 1

 WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 IF LEFT$(OpsDataLine, 2) <> "//" AND LEN(TR IM$(OpsDataLine)) > 0 THEN
 gDKGA_WSC(LineCounter) = OpsDataLine
 INCR LineCounter
 END IF
 WEND 'eof(1)
 CLOSE #1

 '--- Read RetailAreaDef for later use --------- ----------

 'first count number of defined retail areas and then define array and read them

 OPEN FILE_RETAIL_AREA_DEF FOR INPUT AS #1

 LineCounter = 1
 WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 IF LEFT$(OpsDataLine,2) <> "//" AND LEN(TRI M$(OpsDataLine)) > 0 THEN 'no comment line in data file
 INCR LineCounter
 END IF
 WEND 'eof(1)
 CLOSE #1

 '--- REDIM +++ REDIM +++ REDIM +++ REDIM +++ RE DIM +++ REDIM +++ REDIM ---
 REDIM gaRetailArea(1 TO LineCounter) AS STRING
 REDIM gRetailAreaNumberOfFreeGates(1 TO LineCou nter) AS INTEGER
 '--- REDIM +++ REDIM +++ REDIM +++ REDIM +++ RE DIM +++ REDIM +++ REDIM ---

 'now read areas
 OPEN FILE_RETAIL_AREA_DEF FOR INPUT AS #1
 LineCounter = 1
 WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 IF LEFT$(OpsDataLine,2) <> "//" AND LEN(TRI M$(OpsDataLine)) > 0 THEN 'no comment line in data file
 gaRetailArea(LineCounter) = OpsDataLine
 INCR LineCounter
 END IF
 WEND 'eof(1)
 CLOSE #1

 '--- Read all Retail Factor data into array for later use ---------------------

 OPEN FILE_RetailAreaFactors FOR INPUT AS #1
 FILESCAN #1, RECORDS TO LineCounter
 '--- REDIM +++ REDIM +++ REDIM +++ REDIM +++ RE DIM +++ REDIM +++ REDIM ---
 REDIM gaRF(LineCounter,2) AS STRING
 '--- REDIM +++ REDIM +++ REDIM +++ REDIM +++ RE DIM +++ REDIM +++ REDIM ---

 LineCounter = 1
 WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 IF LEFT$(OpsDataLine,2) <> "//" AND LEN(TRI M$(OpsDataLine)) > 0 THEN 'no comment line in data file
 gaRF(LineCounter,1) = LEFT$(OpsDataLine , 2)
 gaRF(LineCounter,2) = RIGHT$(OpsDataLin e, (LEN(OpsDataLine) - INSTR(OpsDataLine, ANY ";"))) 'get RF
factor
 INCR LineCounter
 END IF
 WEND 'EOF(1)
 CLOSE #1

 '--- DF-Retail-Factor data for later use ------ ----------

 OPEN FILE_DF_RETAIL_FACTOR FOR INPUT AS #1 'File with DF->RetailFactor value

 WHILE NOT EOF(1)
 LINE INPUT #1, OpsDataLine
 'the first non-comment-line in file is to b e the RevPerPax value
 IF LEFT$(OpsDataLine,2) <> "//" AND LEN(TRI M$(OpsDataLine)) > 0 THEN 'no comment line in data file
 REPLACE "," WITH "." IN OpsDataLine 'ju st in case a comma instead of decimal point is used ("3,40" -->
"3.40")
 gDF_RetailFactor = VAL(OpsDataLine)
 END IF
 WEND 'EOF(1)
 CLOSE #1

 'START: read avg. PAX-DF-Revenue for later use --- ----------------
--

 OPEN FILE_RevPerPax FOR INPUT AS #1 'File with Average (DF) Revenue Per PAX

 WHILE NOT EOF(1)

APPENDIX A 253

 LINE INPUT #1, OpsDataLine

 'the first non-comment-line in file is to b e the RevPerPax value
 IF LEFT$(OpsDataLine,2) <> "//" THEN 'no co mment line in data file

 REPLACE "," WITH "." IN OpsDataLine 'ju st in case a comma instead of decimal point is used ("5,80" -->
"5.80")

 gRevPerPax = VAL(OpsDataLine)

 END IF

 WEND 'EOF(1)

 CLOSE #1

 'END: read avg. PAX-DF-Revenue for later use -- --- ----------------

 '--- Read the flight plan data ---------------- ----------

 'this procedure is supposed to read a flight pl an -- in this case here a past day's actual traffic is taken

 PRINT "Reading day's records from file(s)...";

 LineCounter = 1
 CLOSE #1
 OPEN FILE_SUMMER FOR INPUT AS #1

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'store only in array if STD-Date matches th e selected date
 '!!! DIFFERENCE TO SUB REPORTSSTATSPERDAY (which is based on ATD not STD) !!!

 IF LEFT$(PARSE$(OpsDataLine, ";", %FIELD_ST D),8) = DKGA_Date THEN

 'Attach new field to flight record (pos ition 37): TimeIndex
 OpsDataLine = OpsDataLine + TRIM$(STR$(GetTimeIndexFromTime(MID$(PARSE$(OpsDataLine, ";", %FIELD_STD),9,4)
)))

 'Attach new field to flight record (pos ition 38): STAG (Scheduled Time At Gate: STD - SGT)

 'if there's no Standard Ground Time OR a very short one, take the default one that has bee n read during
initialization
 IF VAL(PARSE$(OpsDataLine, ";", %FIELD_ StdGroundTime)) < gDKGA_MinutesAtGateMINIMUM THEN
 TempSGT = gDKGA_MinutesAtGateMINIMU M
 ELSE
 TempSGT = VAL(PARSE$(OpsDataLine, " ;", %FIELD_StdGroundTime))
 END IF

 'now calculate the the STAG (= STD - SG T.Minutes) i.e.: %FIELD_STAG
 Index_1 = VAL(PARSE$(OpsDataLine, ";", %FIELD_TimeIndex))
 Index_2 = GetTimeIndexFromTime(GetTimeF romMinutes(TempSGT))

 IF Index_1 - Index_2 <=0 THEN
 OpsDataLine = OpsDataLine + ";0000"
 ELSE
 OpsDataLine = OpsDataLine + ";" + G etTimeFromTimeIndex(Index_1 - Index_2 + 1)
 END IF

 'store the result
 DKGA_SelectedFlightRecsOrg(LineCounter) = OpsDataLine

 INCR LineCounter

 END IF

 WEND 'EOF(1)

 CLOSE #1

 'if no record found in summer season, try winte r season... --------------------------------------- ----------------

 IF LineCounter = 1 THEN

 PRINT "finished."
 PRINT "==>No record found in summer season. -- Trying winter season...";

 OPEN FILE_WINTER FOR INPUT AS #1

 WHILE NOT EOF(1)

 LINE INPUT #1, OpsDataLine

 'store only in array if STD-Date matche s the selected date
 '!!! DIFFERENCE TO SUB REPORTSSTATSPERD AY (which is based on ATD not STD) !!!

APPENDIX A 254

 IF LEFT$(PARSE$(OpsDataLine, ";", %FIEL D_STD),8) = DKGA_Date THEN

 'Attach new field to flight record (position 37): TimeIndex
 OpsDataLine = OpsDataLine + TRIM$(S TR$(GetTimeIndexFromTime(MID$(PARSE$(OpsDataLine, " ;",
%FIELD_STD),9,4))))

 'Attach new field to flight record (position 38): STAG (Scheduled Time At Gate: STD - SGT)

 'if there's no Standard Ground Time , take the default one that has been read during In itialization
 IF VAL(PARSE$(OpsDataLine, ";", %FI ELD_StdGroundTime)) = 0 THEN
 TempSGT = gDKGA_MinutesAtGateMI NIMUM
 ELSE
 TempSGT = VAL(PARSE$(OpsDataLin e, ";", %FIELD_StdGroundTime))
 END IF

 'now calculate the the STAG (= STD - SGT.Minutes)
 Index_1 = VAL(PARSE$(OpsDataLine, " ;", %FIELD_TimeIndex))
 Index_2 = GetTimeIndexFromTime(GetT imeFromMinutes(TempSGT))

 IF Index_1 - Index_2 <=0 THEN
 OpsDataLine = OpsDataLine + ";0 000"
 ELSE
 OpsDataLine = OpsDataLine + ";" + GetTimeFromTimeIndex(Index_1 - Index_2 + 1)
 END IF

 'store the result
 DKGA_SelectedFlightRecsOrg(LineCoun ter)= OpsDataLine

 INCR LineCounter

 END IF

 WEND 'EOF(1)

 CLOSE #1

 PRINT "finished."

 ELSE

 PRINT "finished."

 END IF

 'at this point records have been read --------- --- ----------------

 gDKGA_NumberOfRecords = LineCounter-1

 '--- REDIM +++ REDIM +++ REDIM +++ REDIM +++ RE DIM +++ REDIM +++ REDIM ---
 REDIM gAllFlightsOnThatDay(1 TO gDKGA_NumberOfR ecords) AS STRING
 '--- REDIM +++ REDIM +++ REDIM +++ REDIM +++ RE DIM +++ REDIM +++ REDIM ---

 DIM DKGA_TempHelpArray(1 TO gDKGA_NumberOfRecor ds) AS INTEGER

 FOR CurrentPos = 1 TO gDKGA_NumberOfRecords

 'copy only filled records
 IF PARSE$(DKGA_SelectedFlightRecsOrg(Curren tPos),";", %FIELD_FlightNumber) <> "" THEN
 gAllFlightsOnThatDay(CurrentPos) = DKGA _SelectedFlightRecsOrg(CurrentPos)
 DKGA_TempHelpArray(CurrentPos) = VAL(PA RSE$(gAllFlightsOnThatDay(CurrentPos),";", %FIELD_T imeIndex))
 END IF

 NEXT CurrentPos

 'Sort the array (TimeIndex;ascending) gAllFligh tsOnThatDay() using DKGA_TempHelpArray() as a help array
 ARRAY SORT DKGA_TempHelpArray(), TAGARRAY gAllF lightsOnThatDay()

 'Fill the GateTime-Matrix with 'empty-default-v alues'

 FOR TimeIndex = 1 TO 288 '5-min-intervals (00:00 - 23:5 5)
 FOR GateIndex = 1 TO gNumberOfGates 'gNumberOfGates is set during program
initialization
 gGateTime_Matrix(TimeIndex, GateIndex) = %NoFlightValue 'later the cell will be replac ed by index to
flights
 NEXT GateIndex
 NEXT TimeIndex

END SUB 'OPTI_Initialize()

‘-- ---------------------------------------

SUB OPTI_InitializeOptiParamFromFile()

 LOCAL FileHandle AS INTEGER
 LOCAL ParameterLine AS STRING
 LOCAL FoundVariables AS INTEGER : FoundVariable s = 0
 LOCAL ExpectedVariables AS INTEGER : ExpectedVa riables = 3

APPENDIX A 255

 FileHandle = FREEFILE

 OPEN FILE_OPTIPARAMETERS FOR INPUT AS #FileHand le

 WHILE NOT EOF(FileHandle)
 LINE INPUT #FileHandle, ParameterLine
 IF LEFT$(ParameterLine, 2) <> "//" AND LEN(TRIM $(ParameterLine)) > 0 THEN

 SELECT CASE UCASE$(PARSE$(ParameterLine , ";", 1))

 CASE "MINUTESATGATEMINIMUM"
 gDKGA_MinutesAtGateMINIMUM = VA L(PARSE$(ParameterLine, ";", 2))
 INCR FoundVariables

 CASE "MINUTESATGATEMAXIMUM"
 gDKGA_MinutesAtGateMAXIMUM = VA L(PARSE$(ParameterLine, ";", 2))
 INCR FoundVariables

 CASE "BUFFERTIMEATGATE"
 gBufferIntervals = INT(VAL(PARS E$(ParameterLine, ";", 2)) / 5)
 INCR FoundVariables

 CASE ELSE
 ConsoleMessageBox "An unknown v ariable has been found in FILE_OPTIPARAMETERS:\n" + _
 ParameterLin e, %OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0

 END SELECT

 END IF
 WEND 'EOF(FileHandle)

 IF FoundVariables <> ExpectedVariables THEN
 ConsoleMessageBox "Number of expected varia bles in FILE_OPTIPARAMETERS: " + STR$(ExpectedVaria bles), _
 %OKONLY+%EXCLAMATIONBOX," WARNING",%IDI_EXCLAMATION,0
 END IF

 CLOSE #FileHandle

END SUB 'OPTI_InitializeOptiParamFromFile()

‘-- ---------------------------------------

SUB OPTI_GateTimeMatrix_FillWithFlightPlanOfSingleD ay()

 LOCAL GateIndex AS INTEGER
 LOCAL TimeIndex AS INTEGER

 LOCAL CurrentFlightRec AS INTEGER

 'Fills the matrix with 'empty-default-values'

 FOR TimeIndex = 1 TO 288 '5-min-intervals (00:00 - 23:5 5)
 FOR GateIndex = 1 TO gNumberOfGates 'gNumberOfGates is set during program
initialization
 gGateTime_Matrix(TimeIndex, GateIndex) = %NoFlightValue 'later the cell will be replac ed by index to
flights
 NEXT GateIndex
 NEXT TimeIndex

 'Now fill with flight plan data

 FOR CurrentFlightRec = 1 TO UBOUND(gAllFlightsO nThatDay())

 IF OPTI_GateTimeMatrix_InsertFlight(Current FlightRec, _

GetGateIndexFromGate(PARSE$(gAllFlightsOnThatDay(Cu rrentFlightRec),";",%FIELD_Gate_Actual)), _

GetTimeIndexFromTime(PARSE$(gAllFlightsOnThatDay(Cu rrentFlightRec),";",%FIELD_STAG)), _
 VAL(PAR SE$(gAllFlightsOnThatDay(CurrentFlightRec),";",%FIE LD_TimeIndex)),
_
 %FALSE) = %FALSE THEN

 ConsoleMessageBox "Flight could not be inserted!",
%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 EXIT FOR
 END IF

 NEXT CurrentFlightRec

END SUB 'OPTI_GateTimeMatrix_FillWithFlightPlanOfSi ngleDay()

‘-- ---------------------------------------

FUNCTION OPTI_GateTimeMatrix_InsertFlight(BYVAL F lightIndex AS INTEGER, _
 BYVAL G ate AS INTEGER, _
 BYVAL T imeFrom AS INTEGER, _
 BYVAL T imeTo AS INTEGER, _

APPENDIX A 256

 BYVAL O PTI_TrialMode AS INTEGER) AS INTEGER

 'OPTI_TrialMode: FALSE => A flight will be inse rted / TRUE => it will be TESTED for insert ONLY

 LOCAL TimeIndex AS INTEGER
 LOCAL LastTimeIndex AS INTEGER

 OPTI_GateTimeMatrix_InsertFlight = %FALSE

 'check whether it fits
 LastTimeIndex = TimeTo + gBufferIntervals

 'it is assumed that this is last flight on that day starting
 'on that gate, so that no more buffer is needed
 IF LastTimeIndex > 288 THEN
 LastTimeIndex = 288
 END IF

 FOR TimeIndex = TimeFrom TO LastTimeIndex
 IF gGateTime_Matrix(TimeIndex, Gate) <> %No FlightValue THEN
 'gate is either occupied or blocked wit h a time gate buffer or blocked with (pax load) blo ck value
 EXIT FUNCTION
 END IF
 NEXT TimeIndex

 'check for dependency on other gate usage
 'the following pairs cannot be used:
 'B9;B41 / B19;B20 / E10;E23 / E11;E24 / E12;E25 / E13;E26

 IF OPTI_DependendGateIsFree(Gate, TimeFrom) = % FALSE THEN
 OPTI_GateTimeMatrix_InsertFlight = %FALSE
 EXIT FUNCTION
 END IF

 'gate fits, so insert now the FlightIndex, if n ot in trial mode

 IF OPTI_TrialMode = %FALSE THEN

 FOR TimeIndex = TimeFrom TO TimeTo
 gGateTime_Matrix(TimeIndex, Gate) = Fli ghtIndex
 NEXT TimeIndex

 FOR TimeIndex = TimeTo + 1 TO TimeTo + gBuf ferIntervals
 gGateTime_Matrix(TimeIndex, Gate) = %Bu fferValue
 NEXT TimeIndex

 END IF

 OPTI_GateTimeMatrix_InsertFlight = %TRUE

END FUNCTION 'OPTI_GateTimeMatrix_InsertFlight()

‘-- ---------------------------------------

FUNCTION OPTI_GateTimeMatrix_RemoveFlight(BYVAL Fli ghtIndex AS INTEGER, BYVAL Gate AS INTEGER, BYVAL T imeFrom AS
INTEGER, BYVAL TimeTo AS INTEGER) AS INTEGER

 LOCAL TimeIndex AS INTEGER

 OPTI_GateTimeMatrix_RemoveFlight = %FALSE

 'check whether it exists in entire period
 FOR TimeIndex = TimeFrom TO TimeTo
 IF gGateTime_Matrix(TimeIndex, Gate) <> Fli ghtIndex THEN
 'gate is occupied by other flight or al ready emtpy
 ConsoleMessageBox "Gate occupied by OTH ER flight or EMPTY!" + _
 "\n\nGate: " + STR$ (Gate) + "\nTimeIndex: " + STR$(TimeIndex) + _
 "\nTimeFrom: " + ST R$(TimeFrom) + "\nTimeTo: " + STR$(TimeTo) + _
 "\nFlight: " + STR$ (FlightIndex) + _
 "\n\nFlightIndex: g GateTime_Matrix(TimeIndex, Gate)" +
STR$(gGateTime_Matrix(TimeIndex, Gate)), _
 %OKONLY+%EXCLAMATIO NBOX,"WARNING",%IDI_EXCLAMATION,0
 EXIT FUNCTION
 END IF
 NEXT TimeIndex

 'check whether the calling function perhaps han ded over wrong parameter values, or the flight sche dule has been
corrupted
 IF gGateTime_Matrix(TimeTo+1, Gate) = FlightInd ex THEN
 ConsoleMessageBox "Detected that ga te is longer occupied by flight than requested to r emove!" + _
 "\n\nGate: " + STR$ (Gate) + "\nTime: " + STR$(TimeTo+1) + "\nFlight: " +
STR$(FlightIndex), _
 %OKONLY+%EXCLAMATIO NBOX,"WARNING",%IDI_EXCLAMATION,0
 EXIT FUNCTION
 END IF

 'gate is entirly occupied by FlightIndex, so se t now to empty

APPENDIX A 257

 FOR TimeIndex = TimeFrom TO TimeTo + gBufferInt ervals
 gGateTime_Matrix(TimeIndex, Gate) = %NoFlig htValue
 NEXT TimeIndex

 OPTI_GateTimeMatrix_RemoveFlight = %TRUE

END FUNCTION 'OPTI_GateTimeMatrix_RemoveFlight()

‘-- ---------------------------------------

SUB OPTI_GateTimeMatrix_Show(BYVAL Gate AS INTEGER, BYVAL TimeFrom AS INTEGER, BYVAL TimeTo AS INTEGER)

 LOCAL TimeIndex AS INTEGER
 LOCAL LastShownFlightIndex AS INTEGER

 IF TimeTo < TimeFrom THEN
 ConsoleMessageBox "This Message should not occur!\n\nTimeTo < TimeFrom.",
%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 EXIT SUB
 END IF

 LastShownFlightIndex = gGateTime_Matrix(TimeFro m, Gate)
 PRINT
 PRINT "|";
 PRINT USING$("####", LastShownFlightIndex);

 FOR TimeIndex = TimeFrom+1 TO TimeTo

 IF gGateTime_Matrix(TimeIndex, Gate) <> Las tShownFlightIndex THEN
 PRINT "|";
 LastShownFlightIndex = gGateTime_Matrix (TimeIndex, Gate)
 END IF
 PRINT USING$("####", gGateTime_Matrix(TimeI ndex, Gate));

 NEXT TimeIndex

END SUB 'OPTI_GateTimeMatrix_Show()

‘-- ---------------------------------------

SUB OPTI_GateTimeMatrix_DEBUG()

 LOCAL i AS INTEGER
 LOCAL TempGateName AS STRING

 'DEBUG: write array into file to check ok
 PRINT "Writing GateTimeMatrix into debug file.. .";
 OPEN PATH_APPLICATION+$FILE_DEBUG FOR OUTPUT AS #99

 'headline with gates
 PRINT #99, "---: ";
 FOR i = 1 TO gNumberOfGates
 TempGateName = OPTI_Geno2Pheno_Gate(STR$(i))
 PRINT #99, SPACE$(4-LEN(TempGateName)) + Te mpGateName + "|";
 NEXT i

 PRINT #99, "-"

 FOR DEBUG_COUNTER_1 = 1 TO 288
 PRINT #99, USING$("###",DEBUG_COUNTER_1) + ": ";
 FOR DEBUG_COUNTER_2 = 1 TO gNumberOfGates
 PRINT #99, USING$("####",gGateTime_Matr ix(DEBUG_COUNTER_1, DEBUG_COUNTER_2))+"|";
 NEXT DEBUG_COUNTER_2
 PRINT #99, " "
 NEXT DEBUG_COUNTER_1
 CLOSE #99
 PRINT "finished."

END SUB 'OPTI_GateTimeMatrix_DEBUG()

‘-- ---------------------------------------

FUNCTION OPTI_Pheno2Geno_Gate(BYVAL PhenoGate AS ST RING) AS STRING

 'this function accepts Gates as input and deliv ers an integer number (STRING) as output

 LOCAL GatesInfraFieldNo_Index AS INTEGER : Gate sInfraFieldNo_Index = 1
 LOCAL GatesInfraFieldNo_GateName AS INTEGER : G atesInfraFieldNo_GateName = 2
 LOCAL i AS LONG

 IF TRIM$(PhenoGate) <> "" THEN

 FOR i = 1 TO UBOUND(gDKGA_GatesInfra())

 IF TRIM$(PARSE$(gDKGA_GatesInfra(i), "; ", GatesInfraFieldNo_GateName)) = TRIM$(PhenoGate) THEN
 OPTI_Pheno2Geno_Gate = PARSE$(gDKGA _GatesInfra(i), ";", GatesInfraFieldNo_Index)
 EXIT FUNCTION
 END IF

APPENDIX A 258

 NEXT i

 ELSE 'no gate info / gate is not filled

 OPTI_Pheno2Geno_Gate = "1"
 ConsoleMessageBox "This Message should not occur!\n\nA gate (NAME) is not filled ==> set to '1 '." + _
 "\n\nVALUE:" + PhenoGate + ".", %OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0

 EXIT FUNCTION

 END IF

 ConsoleMessageBox "This Message should not occu r!\n\nA gate (NAME) could not be found during OPTI run." + _
 "\n\nVALUE:" + PhenoGate + ".", %OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0

END FUNCTION 'OPTI_Pheno2Geno_Gate()

‘-- ---------------------------------------

FUNCTION OPTI_Geno2Pheno_Gate(BYVAL GenoGate AS STR ING) AS STRING

 'this function accepts Integer Values (STRING) as input and delivers the appropriate gate as outpu t
 'it is used to convert the integer (generated b y Evolver) of a day's flight plan to real gate name s
 'to be used for fitness determination

 LOCAL GatesInfraFieldNo_Index AS INTEGER : Gate sInfraFieldNo_Index = 1
 LOCAL GatesInfraFieldNo_GateName AS INTEGER : G atesInfraFieldNo_GateName = 2
 LOCAL i AS LONG

 IF TRIM$(GenoGate) <> "" THEN

 FOR i = 1 TO UBOUND(gDKGA_GatesInfra())

 IF TRIM$(PARSE$(gDKGA_GatesInfra(i), "; ", GatesInfraFieldNo_Index)) = TRIM$(GenoGate) THEN
 OPTI_Geno2Pheno_Gate = PARSE$(gDKGA _GatesInfra(i), ";", GatesInfraFieldNo_GateName)
 EXIT FUNCTION
 END IF

 NEXT i

 ELSE

 'no gate info / gate is not filled
 OPTI_Geno2Pheno_Gate = "A1"

 ConsoleMessageBox "This Message should not occur!\n\nA gate (Geno2Pheno) could not be found == > set to 'A1'."
+ _
 "\n\nVALUE:" + GenoGate + " .", %OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0

 EXIT FUNCTION

 END IF

 ConsoleMessageBox "This Message should not occu r!\n\nA gate (INTEGER) could not be found during OP TI run." + _
 "\n\nVALUE:" + GenoGate + " .", %OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0

END FUNCTION 'OPTI_Geno2Pheno_Gate()

‘-- ---------------------------------------

FUNCTION GetTimeFromMinutes(BYVAL MinuteValue AS IN TEGER) AS STRING

 LOCAL TempTime AS STRING
 LOCAL TempHour AS INTEGER
 LOCAL TempMinutes AS INTEGER

 TempHour = INT(MinuteValue/60)
 TempMinutes = MinuteValue - (TempHour*60)

 SELECT CASE TempHour
 CASE 0
 TempTime = "00"
 CASE 1 TO 9
 TempTime = "0" + TRIM$(STR$(TempHour))
 CASE ELSE
 TempTime = TRIM$(STR$(TempHour))
 END SELECT

 SELECT CASE TempMinutes
 CASE 0
 TempTime = TempTime + "00"
 CASE 1 TO 9
 TempTime = TempTime + "0" + TRIM$(STR$(TempMinutes))
 CASE ELSE
 TempTime = TempTime + TRIM$(STR$(TempMi nutes))
 END SELECT

 GetTimeFromMinutes = TempTime

END FUNCTION 'GetTimeFromMinutes(BYVAL MinuteValue AS INTEGER) AS STRING

APPENDIX A 259

‘-- ---------------------------------------

FUNCTION GetTimeIndexFromTime(BYVAL DateTime AS STR ING) AS INTEGER

 'DateTime in Format: HHMM
 LOCAL TimeIndex AS INTEGER

 'Calculation of TimeIndex: (hours*12) + INT(min utes/5) + 1

 TimeIndex = VAL(LEFT$(DateTime, 2)) * 12 'hour s
 TimeIndex = TimeIndex + INT(VAL(RIGHT$(DateTime , 2)) / 5)
 TimeIndex = TimeIndex + 1

 GetTimeIndexFromTime = TimeIndex

END FUNCTION 'GetTimeIndexFromTime()

‘-- ---------------------------------------

FUNCTION GetTimeFromTimeIndex(BYVAL TimeIndex AS IN TEGER) AS STRING

 LOCAL TempHours AS INTEGER
 LOCAL TempMinutes AS INTEGER
 LOCAL TempTime AS STRING

 TempHours = INT((TimeIndex-1)/12)
 TempMinutes = ((TimeIndex-1) - (TempHours * 12)) * 5

 SELECT CASE TempHours
 CASE 0
 TempTime = "00"
 CASE 1 TO 9
 TempTime = "0" + TRIM$(STR$(TempHours))
 CASE ELSE
 TempTime = TRIM$(STR$(TempHours))
 END SELECT

 SELECT CASE TempMinutes
 CASE 0
 TempTime = TempTime + "00"
 CASE 1 TO 9
 TempTime = TempTime + "0" + TRIM$(STR$(TempMinutes))
 CASE ELSE
 TempTime = TempTime + TRIM$(STR$(TempMi nutes))
 END SELECT

 GetTimeFromTimeIndex = TempTime

END FUNCTION 'GetTimeFromTimeIndex()

‘-- ---------------------------------------

FUNCTION GetGateIndexFromGate(BYVAL Gate AS STRING) AS INTEGER

 LOCAL i AS INTEGER

 IF Gate <> "" AND Gate <> "N" THEN ' "N" i s the init/default value from Data Cleansing

 FOR i = 1 TO UBOUND(gDKGA_GatesInfra())
 IF TRIM$(PARSE$(gDKGA_GatesInfra(i), "; ", 2)) = Gate THEN
 GetGateIndexFromGate = VAL(TRIM$(PA RSE$(gDKGA_GatesInfra(i), ";", 1)))
 EXIT FUNCTION
 END IF
 NEXT i

 ELSE

 ConsoleMessageBox "This should not occur (G etGateIndexFromGate): Gate EMPTY!",
%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 EXIT FUNCTION

 END IF

 ConsoleMessageBox "This should not occur (GetGa teIndexFromGate): Gate not found " + Gate ,
%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0

END FUNCTION 'GetGateIndexFromGate()

‘-- ---------------------------------------

FUNCTION GetRetailAreaIndexFromRetailArea(BYVAL Ret ailArea AS STRING) AS INTEGER

 LOCAL i AS INTEGER

 IF RetailArea <> "" THEN

APPENDIX A 260

 FOR i = 1 TO UBOUND(gaRetailArea())
 IF TRIM$(PARSE$(gaRetailArea(i), ";", 1)) = RetailArea THEN
 GetRetailAreaIndexFromRetailArea = i
 EXIT FUNCTION
 END IF
 NEXT i

 ELSE

 ConsoleMessageBox "This should not occur (G etRetailAreaIndexFromRetailArea): GetRetailArea EMP TY!",
%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 EXIT FUNCTION

 END IF

 ConsoleMessageBox "This should not occur (GetRe tailAreaIndexFromRetailArea): Retailarea not found " + RetailArea ,
%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 GetRetailAreaIndexFromRetailArea = 0

END FUNCTION 'GetRetailAreaIndexFromRetailArea()

‘-- ---------------------------------------

FUNCTION GetRetailAreaIndexFromGateIndex(BYVAL Gate Index AS INTEGER) AS INTEGER

 LOCAL i AS INTEGER
 LOCAL j AS INTEGER

 LOCAL GateName AS STRING

 GetRetailAreaIndexFromGateIndex = 0

 GateName = PARSE$(gDKGA_GatesInfra(GateIndex), ";",2)

 IF GateIndex <> 0 THEN

 FOR i = 1 TO UBOUND(gaRetailArea())-1

 FOR j = 2 TO PARSECOUNT(gaRetailArea(i),";") ' "2" because of structure of RetailAreaDe f:
"R2;B1;B2;B3;B4;B5;B6;B7;B8;B9"

 IF PARSE$(gaRetailArea(i), ";", j) = GateName THEN
 GetRetailAreaIndexFromGateIndex = i
 EXIT FUNCTION
 END IF
 NEXT j

 NEXT i

 ELSE

 ConsoleMessageBox "This should not occur (G etRetailAreaIndexFromGateIndex): GateIndex = 0!",
%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 EXIT FUNCTION

 END IF

END FUNCTION 'GetRetailAreaIndexFromGateIndex()

‘-- ---------------------------------------

FUNCTION OPTI_Determine_AvailableGatesInInterval(BY VAL SpecificTimeInterval AS INTEGER) AS STRING

 LOCAL GateIndex AS INTEGER
 LOCAL TempString AS STRING : TempString = ""

 RESET gRetailAreaNumberOfFreeGates()

 FOR GateIndex = 1 TO gNumberOfGates
 IF gGateTime_Matrix(SpecificTimeInterval, G ateIndex) = %NoFlightValue THEN
 'gate is not occupied, but...
 'may not be available, because a depend end gate is already occupied

 IF OPTI_DependendGateIsFree(GateIndex, SpecificTimeInterval) = %TRUE THEN

 TempString = TempString + TRIM$(STR $(GateIndex)) + ";"

 'update the number of free gates pe r retail area (for later use)
 INCR gRetailAreaNumberOfFreeGates(G etRetailAreaIndexFromGateIndex(GateIndex))

 END IF

 END IF
 NEXT GateIndex

 IF RIGHT$(TempString,1) = ";" THEN
 TempString = LEFT$(TempString, LEN(TempStri ng)-1) ' remove the last semicolon
 END IF

 OPTI_Determine_AvailableGatesInInterval = TempS tring

APPENDIX A 261

END FUNCTION 'OPTI_Determine_AvailableGatesInInterv al()

‘-- ---------------------------------------

FUNCTION OPTI_Determine_FlightsToBeAllocatedInTimeI nterval(BYVAL SpecificTimeInterval AS INTEGER) AS S TRING

 LOCAL i AS INTEGER
 LOCAL TempString AS STRING : TempString = ""

 FOR i = 1 TO UBOUND(gAllFlightsOnThatDay())
 IF GetTimeIndexFromTime(PARSE$(gAllFlightsO nThatDay(i), ";", %FIELD_STAG)) = SpecificTimeInter val THEN
 TempString = TempString + TRIM$(STR$(i)) + ";"
 END IF
 NEXT i

 TempString = LEFT$(TempString, LEN(TempString)- 1) ' remove the last semicolon

 OPTI_Determine_FlightsToBeAllocatedInTimeInterv al = TempString

END FUNCTION 'OPTI_Determine_FlightsToBeAllocatedIn TimeInterval()

‘-- ---------------------------------------

FUNCTION OPTI_Determine_EligibleGatesForFlight(BYVA L FlightIndex AS INTEGER, BYVAL OPTI_GatesAvailable AS STRING) AS
STRING

 'returns String of GateIndices, e.g. "1;22;34;4 5;22"

 LOCAL TrialGateIndex AS INTEGER
 LOCAL TempString AS STRING : TempString = ""

 IF FlightIndex <> 0 THEN

 FOR TrialGateIndex = 1 TO PARSECOUNT(OPTI_G atesAvailable, ";")
 IF OPTI_IsValidGate(FlightIndex, PARSE$ (OPTI_GatesAvailable, ";", TrialGateIndex)) = %TRUE THEN

 TempString = TempString + PARSE$(OP TI_GatesAvailable, ";", TrialGateIndex) + ";"
 END IF
 NEXT TrialGateIndex

 IF RIGHT$(TempString,1) = ";" THEN
 TempString = LEFT$(TempString, LEN(Temp String)-1) ' remove the last semicolon
 END IF

 OPTI_Determine_EligibleGatesForFlight = Tem pString

 ELSE
 ConsoleMessageBox "FlightIndex = 0 !!!", %OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 END IF

END FUNCTION 'OPTI_Determine_EligibleGatesForFlight ()

‘-- ---------------------------------------

FUNCTION OPTI_IsValidGate(BYVAL FlightIndex AS IN TEGER, _
 BYVAL TrialGateIndex AS STRING) AS INTEGER

 LOCAL TempStandOpti AS STRING
 LOCAL lGateFound AS INTEGER
 LOCAL j AS INTEGER
 LOCAL FieldGateMaxWSC AS INTEGER : FieldGateMax WSC = 7

 '-- ----------

 OPTI_IsValidGate = %TRUE

 TempStandOpti = PARSE$(gDKGA_GatesInfra(VAL(Tri alGateIndex)), ";", 2)

 '-- -----
 '--- check 1: aircraft size vs. STAND size ---
 '-- -----

 'The higher the WSC the smaller the A/C must be (the larger the A/C the smaller the WSC: e.g. B744 = WSC 2)

 'normalize gate names (e.g. 'D11A' --> 'D11')
 IF RIGHT$(TRIM$(TempStandOpti),1) = "A" THEN
 TempStandOpti = TRIM$(TempStandOpti)
 TempStandOpti = TRIM$(LEFT$(TempStandOpti, LEN(TempStandOpti)-1))
 END IF

 'check only if there is a value for Stand_Opti. in case not: incr a counter

APPENDIX A 262

 IF TRIM$(TempStandOpti) <> "" THEN

 'check for size only in case of a contact g ate NOT in case of a remote stand
 IF IsRemoteStand(TempStandOpti)= %FALSE THE N 'means it is a contact gate

 lGateFound = %FALSE
 FOR j = 1 TO gNumberOfGates

 'look for matching CONTACT gate (ST AND = GATE)

 IF TempStandOpti = TRIM$(PARSE$(gDK GA_GatesInfra(j), ";", 2)) THEN

 'check for A/C WSC of flight:
 'if GateInfra.WSC > FlightRec.G ate.WSC

 IF TRIM$(PARSE$(gAllFlightsOnTh atDay(FlightIndex), ";", %FIELD_ACType)) = "" THEN
 ConsoleMessageBox "This s hould not occur: EMPTY A/C!" + _
 "\nFlig ht : " + PARSE$(gAllFlightsOnThatDay(FlightInd ex), ";",
%FIELD_FlightNumber) +_
 "\nFlig htIndex : " + STR$(FlightIndex), _
 %OKONLY +%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 OPTI_IsValidGate = %FALSE
 EXIT FUNCTION
 ELSE
 IF VAL(TRIM$(PARSE$(gDKGA_G atesInfra(j), ";", FieldGateMaxWSC))) >
VAL(GetWingSpanCode(PARSE$(gAllFlightsOnThatDay(Fli ghtIndex), ";", %FIELD_ACType))) THEN
 'gate is too small i.e. A/C is too large
 OPTI_IsValidGate = %FAL SE
 EXIT FUNCTION
 END IF
 END IF

 j = gNumberOfGates 'EXIT FOR
 lGateFound = %TRUE

 END IF 'so try next gate/stand

 NEXT j

 IF lGateFound = %FALSE THEN
 ConsoleMessageBox "This should not occur: Stand not found " + TempStandOpti ,
%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 END IF

 END IF 'IsRemoteGate = %FALSE

 ELSE
 'an empty value for stand results in an inv alid solution
 ConsoleMessageBox "This should not occur: E MPTY GATE! No Gate handed over to function 'IsValid Gate()'",
%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 OPTI_IsValidGate = %FALSE
 END IF

 'at this position OPTI_IsValidGate = %TRUE (fun ction would have been EXITed before, if not), so co ntinue checks...

 '-- -----
 '--- check 2: airline alliances ---
 '-- -----

 IF glSecondTryWithoutAllianceCompliance = %FALS E THEN

 SELECT CASE UCASE$(GetAlliance(LEFT$(PARSE$(gAllFlightsOnThatDay(FlightIndex), ";", %FIELD_Flig htNumber),2)))

 CASE "STARALLIANCE"

 'look for a 'Star Alliance' CKI hall
 IF TALLY(GetCKIHallFromGate(Temp StandOpti), ANY "ABC") = 0 THEN 'no appropriate CKI hall found
 OPTI_IsValidGate = %FALSE
 EXIT FUNCTION
 END IF

 CASE "SKYTEAM"

 'look for a 'SkyTeam' CKI hall
 IF TALLY(GetCKIHallFromGate(Temp StandOpti), ANY "DE") = 0 THEN 'no appropriate CKI hall found
 OPTI_IsValidGate = %FALSE
 EXIT FUNCTION
 END IF

 CASE "ONEWORLD"

 'look for a 'oneworld' CKI hall
 IF TALLY(GetCKIHallFromGate(Temp StandOpti), ANY "DE") = 0 THEN 'no appropriate CKI hall found
 OPTI_IsValidGate = %FALSE
 EXIT FUNCTION
 END IF

 CASE ELSE 'flight does not belong to an alliance, so it does not matter which CKI hall (FOR ACADEMIC
SIMPLIFICATION)

 OPTI_IsValidGate = %TRUE

 END SELECT

APPENDIX A 263

 END IF 'glSecondTryWithoutAllianceCompliance = %FALSE

END FUNCTION 'OPTI_IsValidGate()

‘-- ---------------------------------------

FUNCTION OPTI_Determine_EligibleRetailAreasForFligh t(BYVAL SetOfGateIndices AS STRING) AS STRING

 LOCAL i AS INTEGER
 LOCAL j AS INTEGER

 LOCAL TempGate AS STRING
 LOCAL TempRetailArea AS STRING
 LOCAL TempSetOfRetailAreaIndices AS STRING

 LOCAL NoOfGatesInSet AS INTEGER

 IF TALLY(SetOfGateIndices,";") = 0 AND LEN(SetO fGateIndices) > 0 THEN
 NoOfGatesInSet = 1
 SetOfGateIndices = SetOfGateIndices + ";"
 ELSE
 NoOfGatesInSet = PARSECOUNT(SetOfGateIndice s, ";")
 END IF

 'for every gate...

' PRINT #99, " "
' PRINT #99, "SetOfGateIndices: "; SetOfGateIndi ces
' PRINT #99, "TempGate: ";
 FOR i = 1 TO NoOfGatesInSet

 TempGate = PARSE$(gDKGA_GatesInfra(VAL(PARS E$(SetOfGateIndices, ";", i))),";",2)

' PRINT #99, TempGate + "-";

 '...determine RetailArea from a Gate given
 FOR j = 1 TO UBOUND(gDKGA_GatesInfra())
 IF TALLY(gaRetailArea(j), TempGate) > 0 THEN
 TempRetailArea =
TRIM$(STR$(GetRetailAreaIndexFromRetailArea(LEFT$(g aRetailArea(j),2))))
 EXIT FOR
 END IF
 NEXT j

 IF TempRetailArea = "" THEN
 ConsoleMessageBox "This should not occu r: EMPTY RETAIL AREA has been returned!",
%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 END IF

 'if that retail area is not yet in list of eligible retail areas for that flight, add it
 IF TALLY(TempSetOfRetailAreaIndices, TempRe tailArea) = 0 THEN
 TempSetOfRetailAreaIndices = TempSetOfR etailAreaIndices + TempRetailArea + ";"
 END IF

 NEXT i
' PRINT #99, " "

 IF RIGHT$(TempSetOfRetailAreaIndices, 1) = ";" THEN
 TempSetOfRetailAreaIndices = LEFT$(TempSetO fRetailAreaIndices, LEN(TempSetOfRetailAreaIndices) -1) ' remove the
last semicolon
 END IF

 OPTI_Determine_EligibleRetailAreasForFlight = T empSetOfRetailAreaIndices

END FUNCTION 'OPTI_Determine_EligibleRetailAreasFor Flight()

‘-- ---------------------------------------

FUNCTION OPTI_Determine_RevenueForFlightInSpecificR etailArea(BYVAL FlightIndex AS STRING, BYVAL SetOfR etailAreaIndices
AS STRING) AS STRING

 LOCAL i AS INTEGER
 LOCAL TempRevenue AS DOUBLE
 LOCAL TempSetOfRevenues AS STRING
 LOCAL TempRetailArea AS STRING
 LOCAL TempRetailAreaFactor AS STRING
 LOCAL FlightPaxDFfactor AS STRING

 LOCAL NoOfRetailAreasInSet AS INTEGER

 IF TALLY(SetOfRetailAreaIndices,";") = 0 AND LE N(SetOfRetailAreaIndices) > 0 THEN
 NoOfRetailAreasInSet = 1
 SetOfRetailAreaIndices = SetOfRetailAreaInd ices + ";"
 ELSE
 NoOfRetailAreasInSet = PARSECOUNT(SetOfReta ilAreaIndices, ";")
 END IF

 FlightPaxDFfactor = PARSE$(gAllFlightsOnThatDa y(VAL(FlightIndex)), ";", %FIELD_FlightPAXDFfactor)
 REPLACE "," WITH "." IN FlightPaxDFfactor 'co nvert FlightPaxDFfactor into a decimal value format

APPENDIX A 264

 'ju st in case a comma instead of decimal point is used ("121,6" -->
"121.6")

 FOR i = 1 TO NoOfRetailAreasInSet

 TempRetailArea = PARSE$(gaRetailArea(VAL(P ARSE$(SetOfRetailAreaIndices, ";", i))), ";", 1)
 TempRetailAreaFactor = GetRetailFactor(Temp RetailArea, gaRF())

 'formula:
 ' retail revenue per flight = R evenuePerPAX * NumberOfPax * (FlightPaxDF factor/100)
* DF->RetailFactor * RetailAreaFactor
 ' = g RevPerPax * %FIELD_PAX_Actual * (%FIELD_Flig htPAXDFfactor /
100) * FILE_DF_RETAIL_FACTOR * %FIELD_RetailAreaFac torActual
 ' = 6,5 * 233 * (121 ,6/100)
* 3,4 * 2,7
 ' = . ..

 IF VAL(TempRetailAreaFactor) <> 0 THEN

 TempRevenue = ROUND (_
 gRevPerPax * _
 VAL(PARSE$(gAll FlightsOnThatDay(VAL(FlightIndex)), ";", %FIELD_PAX _Actual)) *
VAL(FlightPaxDFfactor) / 100 * _
 gDF_RetailFacto r * _
 VAL(TempRetailA reaFactor) ,2)

 IF TempRevenue = 0 THEN
 ConsoleMessageBox "TempRevenue is Z ERO !!!\n" + _
 "\nFlightIndex: " + FlightIndex + _
 "\nPAX actual: " + PARSE$(gAllFlightsOnThatDay(VAL(FlightIndex)), "; ",
%FIELD_PAX_Actual) + _
 "\nFlightPaxDFfac tor: " + FlightPaxDFfactor + _
 "\ngRevPerPax: " + STR$(gRevPerPax) + _
 "\ngDF_RetailFact or: " + STR$(gDF_RetailFactor) + _
 "\nTempRetailArea Factor: " + TempRetailAreaFactor, _
 %OKONLY+%EXCLAMAT IONBOX,"WARNING",%IDI_EXCLAMATION,0
 END IF

 ELSE

 ConsoleMessageBox "This Message should not occur!\n\nRetail Revenue for a flight could not be
calculated!." + _
 "\n\nFlight: " + PARS E$(gAllFlightsOnThatDay(VAL(FlightIndex)), ";",
%FIELD_FlightNumber) + ".", %OKONLY+%EXCLAMATIONBOX ,"WARNING",%IDI_EXCLAMATION,0

 TempRevenue = 0

 END IF

 TempSetOfRevenues = TempSetOfRevenues + TRI M$(STR$(TempRevenue)) + ";"

 NEXT i

 IF RIGHT$(TempSetOfRevenues, 1) = ";" THEN
 TempSetOfRevenues = LEFT$(TempSetOfRevenues , LEN(TempSetOfRevenues)-1) ' remove the last semic olon
 END IF

 OPTI_Determine_RevenueForFlightInSpecificRetail Area = TempSetOfRevenues

END FUNCTION 'OPTI_Determine_RevenueForFlightInSpec ificRetailArea()

‘-- ---------------------------------------

FUNCTION OPTI_Determine_RevenueForFlightAtSpecificG ates(BYVAL FlightIndex AS STRING, BYVAL SetOfGateIn dices AS STRING)
AS STRING

 LOCAL i AS INTEGER
 LOCAL TempGateRevenues AS STRING : TempGateReve nues = ""

 FOR i = 1 TO PARSECOUNT(SetOfGateIndices, ";")

 TempGateRevenues = TempGateRevenues + _
 OPTI_Determine_Reve nueForFlightInSpecificRetailArea(_
 FlightIndex, _
 TRIM$(STR$(GetRetai lAreaIndexFromGateIndex(VAL(PARSE$(SetOfGateIndices , ";", i))))
)) + ";"

 IF GetRetailAreaIndexFromGateIndex(VAL(PARS E$(SetOfGateIndices, ";", i)))= 0 THEN
 ConsoleMessageBox "GetRetailAreaI ndexFromGateIndex = 0 !!!" + _
 "\nSetOfGateInd ices: " + SetOfGateIndices,
%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 END IF

 NEXT i

 IF RIGHT$(TempGateRevenues, 1) = ";" THEN
 TempGateRevenues = LEFT$(TempGateRevenues, LEN(TempGateRevenues)-1) ' remove the last semicolo n
 END IF

APPENDIX A 265

 OPTI_Determine_RevenueForFlightAtSpecificGates = TempGateRevenues

END FUNCTION 'OPTI_Determine_RevenueForFlightAtSpec ificGates

‘-- ---------------------------------------

SUB OPTI_Show_ProgressWindow()

 LOCAL hBmp AS LONG

 LOCAL h, w, hGW AS LONG

 h = 371
 w = 755

 GRAPHIC WINDOW "Allocating Gates...", LocOfCol(22), LocOfRow(5), w, h TO hGW
 gVarNumber_3_TimerFunc = hGW

 GRAPHIC ATTACH hGW, 0&, REDRAW
 GRAPHIC COLOR RGB(0,0,0), RGB(255,255,255)
 GRAPHIC CLEAR

 GRAPHIC BITMAP LOAD PATH_APPLICATION+"OptiRun_P rogress.bmp", w, h TO hBmp
 GRAPHIC COPY hBmp, 0 TO (1, 1)
 GRAPHIC REDRAW

END SUB 'OPTI_Show_ProgressWindow()

‘-- ---------------------------------------

SUB OPTI_NoShow_ProgressWindow()

 GRAPHIC BITMAP END
 GRAPHIC WINDOW END

END SUB 'OPTI_NoShow_ProgressWindow()

‘-- ---------------------------------------

FUNCTION OPTI_GateChosen(BYVAL CandidateRetailAreaI ndex AS INTEGER, BYVAL CurrentFlight AS INTEGER, BY VAL TimeFrom AS
INTEGER, BYREF OPTI_GateSet_PerFlight() AS STRING) AS INTEGER

 'tries to assign a single flight to a gate with in all possible retail areas

 LOCAL i AS INTEGER
 LOCAL j AS INTEGER
 LOCAL TimeTo AS INTEGER
 LOCAL GroundTime AS INTEGER
 LOCAL FlightIndex AS INTEGER
 LOCAL TestGateIndex AS INTEGER

 OPTI_GateChosen = 0
 FlightIndex = VAL(OPTI_GateSet_PerFlight(Curren tFlight, 1))

 IF FlightIndex = 363 THEN
 DEBUG_PRINT = %TRUE
 END IF

 'assure that there is a minimum ground time (at gate) in case the
 'flight plan has a value less than a feasible m inimum value

 IF VAL(PARSE$(gAllFlightsOnThatDay(FlightIndex) , ";", %FIELD_StdGroundTime)) < gDKGA_MinutesAtGate MINIMUM THEN
 GroundTime = INT(gDKGA_MinutesAtGateMINIMUM / 5)
 ELSE
 GroundTime = INT(VAL(PARSE$(gAllFlightsOnTh atDay(FlightIndex), ";", %FIELD_StdGroundTime)) / 5)
 END IF

 'then check whether ground time exeeds max valu e from opti parameter file
 'and in case it does, take the maximum allowed value

 TimeTo = TimeFrom + MIN(GroundTime , INT(gDKGA _MinutesAtGateMAXIMUM/5)) - 1

 'for each gate in Retail Area try an insert of flight into Matrix
 ' startindex=2 because of structure in RetailAr eaDef-File: e.g. "R4;C1;C2;C4;C5;C6;C7;C8;C9;C11;C1 3;C21;C22"

 'search within eligble gates in that retail are a only !!!
 FOR j = 1 TO PARSECOUNT(OPTI_GateSet_PerFlight(CurrentFlight, 2), ";")

 'try next gate in retail area
 FOR i = 2 TO PARSECOUNT(gaRetailArea(Candid ateRetailAreaIndex), ";")

 TestGateIndex = GetGateIndexFromGate(PA RSE$(gaRetailArea(CandidateRetailAreaIndex), ";", i))

APPENDIX A 266

 'if within eligible gates...
 IF TestGateIndex = VAL(PARSE$(OPTI_Gate Set_PerFlight(CurrentFlight, 2), ";", j)) THEN

 'try an insert...

 IF OPTI_GateTimeMatrix_InsertFlight (FlightIndex, TestGateIndex, TimeFrom, TimeTo, %FAL SE) = %TRUE THEN

 OPTI_GateChosen = TestGateIndex

 'Transaction handling
 INCR gGateTimeMatrix_Transactio n_Stack_Counter
 gGateTimeMatrix_Transaction_Sta ck(gGateTimeMatrix_Transaction_Stack_Counter, 1) = FlightIndex
 gGateTimeMatrix_Transaction_Sta ck(gGateTimeMatrix_Transaction_Stack_Counter, 2) = TestGateIndex
 gGateTimeMatrix_Transaction_Sta ck(gGateTimeMatrix_Transaction_Stack_Counter, 3) = TimeFrom
 gGateTimeMatrix_Transaction_Sta ck(gGateTimeMatrix_Transaction_Stack_Counter, 4) = TimeTo

 EXIT FUNCTION

 ELSE

 '--- trying next eligible gate (---> NEXT j) ---
 EXIT FOR '(i.e. exit i)

 END IF 'InsertFlight

 END IF 'TestGateIndex = VAL(PARSE$(OPTI _GateSet_PerFlight(CurrentFlight, 2), ";", j))

 NEXT i

 NEXT j

END FUNCTION 'OPTI_GateChosen()

‘-- ---------------------------------------

SUB OPTI_GateTimeMatrix_Transaction_Start()

 gGateTimeMatrix_Transaction_Stack_Counter = 0
 RESET gGateTimeMatrix_Transaction_Stack()

END SUB 'OPTI_GateTimeMatrix_Transaction_Start()

‘-- ---------------------------------------

SUB OPTI_GateTimeMatrix_Transaction_Commit()

 'this commit is implemented for INSERTIONS ONLY !

 'actually almost nothing needs to be done in th is routine,
 'because flights are inserted for real and no m ore explicit commit is necessary

 'it is different with commit of deletions and w ill be programmed when it becomes necessary

 gGateTimeMatrix_Transaction_Stack_Counter = 0
 RESET gGateTimeMatrix_Transaction_Stack()

END SUB 'OPTI_GateTimeMatrix_Transaction_Commit()

‘-- ---------------------------------------

SUB OPTI_GateTimeMatrix_Transaction_Rollback()

 'this rollback is implemented for INSERTIONS ON LY!
 'a rollback will clean up space in matrix (--> free the gates)

 LOCAL i AS INTEGER
 LOCAL DebugString AS STRING

 IF gGateTimeMatrix_Transaction_Stack_Counter = 0 THEN

 ConsoleMessageBox "ROLLBACK not possible because no transactions recorded.\n" + _
 "gGateTimeMatrix_Transa ction_Stack_Counter = 0 !!!", _
 %OKONLY+%EXCLAMATIONBO X,"WARNING",%IDI_EXCLAMATION,0
 ELSE

 'in case the first insert trial was not pos sible, the gGateTimeMatrix_Transaction_Stack_Counte r is 1
 'thus it needs to be 2, in order to rollbac k that trial

 FOR i = 1 TO gGateTimeMatrix_Transaction_St ack_Counter

 IF OPTI_GateTimeMatrix_RemoveFlight(gGa teTimeMatrix_Transaction_Stack(i, 1), _
 gGa teTimeMatrix_Transaction_Stack(i, 2), _
 gGa teTimeMatrix_Transaction_Stack(i, 3), _
 gGa teTimeMatrix_Transaction_Stack(i, 4)) = %FALSE THEN

APPENDIX A 267

 ConsoleMessageBox "There is a inc onsistency problem in ROLLBACK.\nCheck programming code!\n" + _
 "\nFlightIndex " + STR$(gGateTimeMatrix_Transaction_Stack(i, 1)) + _
 "\nGateIndex " + STR$(gGateTimeMatrix_Transaction_Stack(i, 2)) + _
 "\nTimeFromInde x " + STR$(gGateTimeMatrix_Transaction_Stack(i, 3)) + _
 "\nTimeToIndex " + STR$(gGateTimeMatrix_Transaction_Stack(i, 4)) , _
 %OKONLY+%EXCLAM ATIONBOX,"WARNING",%IDI_EXCLAMATION,0
 EXIT SUB

 END IF

 NEXT i

 END IF

END SUB 'OPTI_GateTimeMatrix_Transaction_Rollback()

‘-- ---------------------------------------

FUNCTION OPTI_DependendGateIsFree(BYVAL Gate AS INT EGER, BYVAL TimeFrom AS INTEGER) AS INTEGER

 LOCAL i AS INTEGER
 LOCAL j AS INTEGER
 LOCAL TestGate_1 AS STRING
 LOCAL TestGate_2 AS STRING
 LOCAL NumberOfDependencies AS INTEGER

 NumberOfDependencies = 36

 DIM DependendGatePair(1 TO NumberOfDependencies) AS STRING

 ' --- no parallel at all ---
 DependendGatePair(1) = "B9;B41"
 DependendGatePair(2) = "B19;B20"
 DependendGatePair(3) = "E10;E23"
 DependendGatePair(4) = "E11;E24"
 DependendGatePair(5) = "E12;E25"
 DependendGatePair(6) = "E13;E26"

 ' --- 20-30 min. buffer ---
 DependendGatePair(7) = "A4;A5" 'A4;A5;30;XX
 DependendGatePair(8) = "B1;B3" 'B1;B3;20;XX
 DependendGatePair(9) = "B1;B4" 'B1;B4;20;XX
 DependendGatePair(10) = "B2;B5" 'B2;B5;20;XX
 DependendGatePair(11) = "B3;B4" 'B3;B4;20;XX
 DependendGatePair(12) = "B6;B7" 'B6;B7;20;XX
 DependendGatePair(13) = "B8;B9" 'B8;B9;20;XX
 DependendGatePair(14) = "D40;D50" 'D40;D50;30; XX
 DependendGatePair(15) = "D41;D51" 'D41;D51;30; XX
 DependendGatePair(16) = "D42;D52" 'D42;D52;30; XX
 DependendGatePair(17) = "D43;D53" 'D43;D53;30; XX
 DependendGatePair(18) = "D44;D54" 'D44;D54;30; XX

 ' --- only in case of both bus gates ---
 DependendGatePair(19) = "A11;A51"
 DependendGatePair(20) = "A12;A52"
 DependendGatePair(21) = "A13;A53"
 DependendGatePair(22) = "A14;A54"
 DependendGatePair(23) = "A15;A55"
 DependendGatePair(24) = "A16;A56"
 DependendGatePair(25) = "A17;A57"
 DependendGatePair(26) = "A18;A58"
 DependendGatePair(27) = "A19;A59"
 DependendGatePair(28) = "A20;A60"
 DependendGatePair(29) = "A21;A61"
 DependendGatePair(30) = "A22;A62"
 DependendGatePair(31) = "A23;A63"
 DependendGatePair(32) = "A25;A65"
 DependendGatePair(33) = "E10;E11"
 DependendGatePair(34) = "E21;E22"
 DependendGatePair(35) = "E23;E24"
 DependendGatePair(36) = "E25;E26"

 ' --- only in case of both bus gates ---
 'A11;A51;30;BB
 'A12;A52;30;BB
 'A13;A53;30;BB
 'A14;A54;30;BB
 'A15;A55;30;BB
 'A16;A56;30;BB
 'A17;A57;30;BB
 'A18;A58;30;BB
 'A19;A59;30;BB
 'A20;A60;30;BB
 'A21;A61;30;BB
 'A22;A62;30;BB
 'A23;A63;30;BB
 'A25;A65;30;BB
 'A51;A11;30;BB
 'A52;A12;30;BB
 'A53;A13;30;BB

APPENDIX A 268

 'A54;A14;30;BB
 'A55;A15;30;BB
 'A56;A16;30;BB
 'A57;A17;30;BB
 'A58;A18;30;BB
 'A59;A19;30;BB
 'A60;A20;30;BB
 'A61;A21;30;BB
 'A62;A22;30;BB
 'A63;A23;30;BB
 'A65;A25;30;BB
 'E10;E11;20;BB
 'E11;E10;20;BB
 'E21;E22;20;BB
 'E22;E21;20;BB
 'E23;E24;20;BB
 'E24;E23;20;BB
 'E25;E26;20;BB
 'E26;E25;20;BB

 OPTI_DependendGateIsFree = %TRUE

 FOR i = 1 TO NumberOfDependencies

 IF OPTI_Geno2Pheno_Gate(TRIM$(STR$(Gate))) = PARSE$(DependendGatePair(i),";",1) OR _
 OPTI_Geno2Pheno_Gate(TRIM$(STR$(Gate))) = PARSE$(DependendGatePair(i),";",2) THEN

 FOR j = 1 TO NumberOfDependencies

 TestGate_1 = PARSE$(DependendGatePa ir(j),";",1)
 TestGate_2 = PARSE$(DependendGatePa ir(j),";",2)

 IF OPTI_Geno2Pheno_Gate(TRIM$(S TR$(Gate))) = TestGate_1 THEN

 IF gGateTime_Matrix(TimeFro m, VAL(OPTI_Pheno2Geno_Gate(TestGate_2))) <> %NoF lightValue AND _
 gGateTime_Matrix(TimeFr om, VAL(OPTI_Pheno2Geno_Gate(TestGate_2))) <> %Buf ferValue AND _
 gGateTime_Matrix(TimeFr om, VAL(OPTI_Pheno2Geno_Gate(TestGate_2))) <> %Blo ckValue THEN
 'dependend gate is occu pied
 OPTI_DependendGateIsFre e = %FALSE
 EXIT FUNCTION
 END IF

 END IF

 IF OPTI_Geno2Pheno_Gate(TRIM$(S TR$(Gate))) = TestGate_2 THEN

 IF gGateTime_Matrix(TimeFro m, VAL(OPTI_Pheno2Geno_Gate(TestGate_1))) <> %NoF lightValue AND _
 gGateTime_Matrix(TimeFr om, VAL(OPTI_Pheno2Geno_Gate(TestGate_1))) <> %Buf ferValue AND _
 gGateTime_Matrix(TimeFr om, VAL(OPTI_Pheno2Geno_Gate(TestGate_1))) <> %Blo ckValue THEN
 'dependend gate is occu pied
 OPTI_DependendGateIsFre e = %FALSE
 EXIT FUNCTION
 END IF

 END IF

 NEXT j

 END IF

 NEXT i

END FUNCTION 'OPTI_DependendGateIsFree()

‘-- ---------------------------------------

FUNCTION OPTI_IsValidRACombi(BYVAL TempRAs AS STRIN G, BYREF OPTI_GateSet_PerFlight() AS STRING) AS INT EGER

 LOCAL i AS INTEGER

 OPTI_IsValidRACombi = %TRUE

 'test each possible retail area
 FOR i = 1 TO (UBOUND(gRetailAreaNumberOfFreeGat es())-1)

 'only if the tested retail area is in solut ion string
 IF TALLY(TempRAs, TRIM$(STR$(i))) > 0 THEN

 'count how many occurances and check wh ether too many
 IF TALLY(TempRAs, TRIM$(STR$(i))) > gR etailAreaNumberOfFreeGates(i) THEN
 OPTI_IsValidRACombi = %FALSE
 EXIT FUNCTION
 END IF

 END IF

 NEXT i

END FUNCTION 'OPTI_IsValidRACombi()

APPENDIX A 269

‘-- ---------------------------------------

SUB OPTI_DumpDailyPlanIntoFile(BYVAL CurrentDay AS STRING)

 LOCAL i AS LONG
 LOCAL DateTimeStamp AS STRING

 DateTimeStamp = TIME$
 REPLACE ANY ":" WITH "-" IN DateTimeStamp
 DateTimeStamp = DATE$ + "_" + DateTimeStamp
 OPEN PATH_SCENARIOS + $FILE_OPTIPLAN + "_" + Cu rrentDay + "_" + DateTimeStamp + ".txt" FOR OUTPUT AS #2

 FOR i = 1 TO UBOUND(gAllFlightsOnThatDay())
 PRINT #2, gAllFlightsOnThatDay(i) + ";" + U SING$("*0##",i)
 NEXT i

 CLOSE #2

END SUB 'OPTI_DumpDailyPlanIntoFile()

‘-- ---------------------------------------

SUB OPTI_DumpDailyAllocIntoFile(BYVAL CurrentDay AS STRING)

 LOCAL i AS LONG
 LOCAL j AS LONG
 LOCAL DateTimeStamp AS STRING
 LOCAL RevPerPax AS CUR
 LOCAL DF_RetailFactor AS STRING
 LOCAL OpsDataLine AS STRING
 LOCAL TempGateName AS STRING

 OPEN FILE_DF_RETAIL_FACTOR FOR INPUT AS #2 'File with DF->RetailFactor value

 'START: read DF->RetailFactor for later use --- --- ----------------
--

 WHILE NOT EOF(2)

 LINE INPUT #2, OpsDataLine

 'the first non-comment-line in file is to b e the DF_RetailFactor value
 IF LEFT$(OpsDataLine,2) <> "//" THEN 'no co mment line in data file

 REPLACE "," WITH "." IN OpsDataLine 'ju st in case a comma instead of decimal point is used ("3,40" -->
"3.40")

 DF_RetailFactor = OpsDataLine

 END IF

 WEND 'EOF(2)

 CLOSE #2

 'END: read DF->RetailFactor later use --------- --- ----------------
--

 DateTimeStamp = TIME$
 REPLACE ANY ":" WITH "-" IN DateTimeStamp
 DateTimeStamp = DATE$ + "_" + DateTimeStamp
 OPEN PATH_SCENARIOS + $FILE_OPTIALLOC + "_" + C urrentDay + "_" + DateTimeStamp + ".txt" FOR OUTPUT AS #2

 'write header with scenario parameters

 '// Minimum GroundTime FOR an A/C AT gate inste ad OF SGT
 '// use full 5 minute values (multiples OF 5) o nly
 '// sample value: 60
 'MinutesAtGateMINIMUM;90
 '
 '// Maximum GroundTime FOR an A/C AT gate inste ad OF SGT
 '// use full 5 minute values (multiples OF 5) o nly
 '// sample value: 120
 'MinutesAtGateMAXIMUM;180
 '
 '// Buffer time between aircraft USING the same gate
 '// use full 5 minute values (multiples OF 5) o nly
 'BufferTimeAtGate;20

 PRINT #2, "Description of Scenario:"
 PRINT #2, "------------------------"
 PRINT #2, " "
 PRINT #2, "MinutesAtGateMINIMUM = " + TRIM$(STR $(gDKGA_MinutesAtGateMINIMUM))
 PRINT #2, "MinutesAtGateMAXIMUM = " + TRIM$(STR $(gDKGA_MinutesAtGateMAXIMUM))
 PRINT #2, "BufferTimeAtGate = " + TRIM$(STR $(gBufferIntervals*5))
 PRINT #2, " "
 PRINT #2, "DF-Revenue per PAX = " + TRIM$(STR$(gRevPerPax))
 PRINT #2, "DF->Retail-Factor = " + DF_RetailFa ctor

APPENDIX A 270

 PRINT #2, " "
 PRINT #2, "Retail Area factors:"
 FOR i = 1 TO UBOUND(gaRF())
 IF gaRF(i,1) <> "" THEN
 PRINT #2, gaRF(i,1) + " = " + gaRF(i,2)
 END IF
 NEXT i
 PRINT #2, " "
 PRINT #2, "Gate Allocation:"
 PRINT #2, "----------------"
 PRINT #2, " "

 'headline with gates
 PRINT #2, "---: ";
 FOR i = 1 TO gNumberOfGates
 TempGateName = OPTI_Geno2Pheno_Gate(STR$(i))
 PRINT #2, SPACE$(4-LEN(TempGateName)) + Tem pGateName + "|";
 NEXT i

 PRINT #2, " "

 'allocation in each interval
 FOR i = 1 TO 288
 PRINT #2, USING$("###",i) + ": ";
 FOR j = 1 TO gNumberOfGates
 PRINT #2, USING$("####",gGateTime_Matri x(i, j))+"|";
 NEXT j
 PRINT #2, " "
 NEXT i

 CLOSE #2

END SUB 'OPTI_DumpDailyAllocIntoFile()

‘-- ---------------------------------------

SUB OPTI_Report()

 'select file to report on
 'test for correct format
 'for each record in file (grouped by retail are a, day of week)
 ' actual pax
 ' revenue actual
 ' revenue seasonal plan
 ' revenue opti
 ' count for invalid entries found

 'write result (header & detail)
 'header:
 ' date of report
 ' dates of data
 ' opti parameters
 'detail:
 ' ================
 ' PAX
 ' ================
 ' MON TUE WED THU FRI SAT SUN | WEEK
 ' R1 |
 ' R2 |
 ' R3 |
 ' R4 |
 ' R5 |
 ' R6 |
 ' R7 |
 ' --- -------------------------
 ' SUM mon tue wed thu fri sat sun total
 '
 ' ================
 ' REVENUE ACTUAL
 ' ================
 ' MON TUE WED THU FRI SAT SUN | WEEK
 ' R1 |
 ' R2 |
 ' R3 |
 ' R4 |
 ' R5 |
 ' R6 |
 ' R7 |
 ' --- -------------------------
 ' SUM mon tue wed thu fri sat sun total

 ' ================
 ' REVENUE PLAN
 ' ================
 ' MON TUE WED THU FRI SAT SUN | WEEK
 ' R1 |
 ' R2 |
 ' R3 |
 ' R4 |
 ' R5 |
 ' R6 |

APPENDIX A 271

 ' R7 |
 ' --- -------------------------
 ' SUM mon tue wed thu fri sat sun total

 ' ================
 ' REVENUE OPTI
 ' ================
 ' MON TUE WED THU FRI SAT SUN | WEEK
 ' R1 |
 ' R2 |
 ' R3 |
 ' R4 |
 ' R5 |
 ' R6 |
 ' R7 |
 ' --- -------------------------
 ' SUM mon tue wed thu fri sat sun total

 'AVG TOTAL REVENUE PER DEPARTING PAX
 '====================================
 'ACTUAL = nnn
 'PLAN = nnn
 'OPTI = nnn

 '--- DECLARATIONS ----------------------------- --

 LOCAL lFileOpened AS LONG
 LOCAL ReportFile AS STRING
 LOCAL nFlags AS LONG : nFlags = 0
 LOCAL lResult AS LONG : lResult = hConsoleWindo w
 LOCAL i AS INTEGER
 LOCAL j AS INTEGER
 DIM ReportDataLine(1 TO 10) AS STRING ' a REDI M will be done below
 LOCAL NumberOfRecords AS LONG
 LOCAL CurrentRecord AS LONG

 LOCAL AllRetailAreas AS STRING
 LOCAL lValueFound AS INTEGER

 DIM PAX_ACTUAL_RA(1 TO 9, 1 TO 8) AS LONG '1..7 = RAs / 8 = total / 9 = else // 1..7 = MON..SUN / 8 =
total of weekday
 DIM PAX_SEASON_RA(1 TO 9, 1 TO 8) AS LONG '1..7 = RAs / 8 = total / 9 = else // 1..7 = MON..SUN / 8 =
total of weekday
 DIM PAX_OPTI_RA(1 TO 9, 1 TO 8) AS LONG '1..7 = RAs / 8 = total / 9 = else // 1..7 = MON..SUN / 8 =
total of weekday

 DIM Revenue_ACTUAL_RA(1 TO 9, 1 TO 8) AS DOUBLE '1..7 = RAs / 8 = total / 9 = else // 1..7 = MON..SUN / 8 =
total of weekday
 DIM Revenue_SEASON_RA(1 TO 9, 1 TO 8) AS DOUBLE '1..7 = RAs / 8 = total / 9 = else // 1..7 = MON..SUN / 8 =
total of weekday
 DIM Revenue_OPTI_RA(1 TO 9, 1 TO 8) AS DOUBLE '1..7 = RAs / 8 = total / 9 = else // 1..7 = MON..SUN / 8 =
total of weekday

 DIM RA_Counter(1 TO 7) AS LONG

 LOCAL SumRevenue AS DOUBLE

 '--- ROUTINE ---------------------------------- --

 CALL LogEntry(FUNCNAME$, "START")

 '--- choose file to report on ---

 ReportFile = ""

 lFileOpened = OpenFileDialog(lResult, _ ' parent window
 "CHOOSE SOURCE FILE", _ ' caption
 ReportFile, _ ' filename
 PATH_APPLICATIO N, _ ' start directory
 "*.*", _ ' filename filter
 "*.txt", _ ' default extension
 nFlags) ' flags

 FOR i = 1 TO LEN(ReportFile)
 IF ASC(MID$(ReportFile, i, 1)) = 0 THEN
 ReportFile = LEFT$(ReportFile, i-1)
 END IF
 NEXT i

 'read data once into array for (multiple) later use

 OPEN ReportFile FOR INPUT AS #1
 FILESCAN #1, RECORDS TO NumberOfRecords
 REDIM ReportDataLine(1 TO NumberOfRecords) AS S TRING
 LINE INPUT #1, ReportDataLine() TO NumberOfReco rds
 CLOSE #1

 IF PARSECOUNT(ReportDataLine(1), ";") <> %Numbe rOfGLOBALsUsed THEN

 ConsoleMessageBox "This seems to be a fil e with incorrect format!\n\nReporting is discontinu ed.",
%OKONLY+%EXCLAMATIONBOX,"WARNING",%IDI_EXCLAMATION,0

 ELSE

APPENDIX A 272

 'for simplicity reasons the following code assumes the FRA-specific situation of 7 Retail Area s (R1..R7) !!!
 '@@@ change here to more generic code

 AllRetailAreas = "R1;R2;R3;R4;R5;R6;R7"

 ProgressBoxShow %NOCANCEL, 1,%CONSOLE_CENTE R, %CONSOLE_CENTER, "Processing "+TRIM$(USING$("### ,###,###",
NumberOfRecords))+ " Records.", "Processing file... ", %FALSE

 FOR CurrentRecord = 1 TO NumberOfRecords

 '--- sum-up according to retail areas a nd day of week ------------------------------------ ----------------

 lValueFound = %FALSE

 FOR i = 1 TO PARSECOUNT(AllRetailAreas, ";")

 IF PARSE$(AllRetailAreas, ";", i) = PARSE$(ReportDataLine(CurrentRecord), ";",
%FIELD_RetailAreaActual) THEN

 PAX_ACTUAL_RA(i,VAL(PARSE$(Repo rtDataLine(CurrentRecord), ";", %FIELD_DayOfWeek))) =
PAX_ACTUAL_RA(i,VAL(PARSE$(ReportDataLine(CurrentRe cord), ";", %FIELD_DayOfWeek))) + _

VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIE LD_PAX_Actual))

 PAX_ACTUAL_RA(8,VAL(PARSE$(Repo rtDataLine(CurrentRecord), ";", %FIELD_DayOfWeek))) =
PAX_ACTUAL_RA(8,VAL(PARSE$(ReportDataLine(CurrentRe cord), ";", %FIELD_DayOfWeek))) + _

VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIE LD_PAX_Actual))

 PAX_ACTUAL_RA(i,8) = PAX_ACTUAL _RA(i,8) + VAL(PARSE$(ReportDataLine(CurrentRecord) , ";",
%FIELD_PAX_Actual))
 PAX_ACTUAL_RA(8,8) = PAX_ACTUAL _RA(8,8) + VAL(PARSE$(ReportDataLine(CurrentRecord) , ";",
%FIELD_PAX_Actual))

 Revenue_ACTUAL_RA(i,VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIELD_DayOfWee k))) =
Revenue_ACTUAL_RA(i,VAL(PARSE$(ReportDataLine(Curre ntRecord), ";", %FIELD_DayOfWeek))) + _

VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIE LD_RetailRevenueActual))

 Revenue_ACTUAL_RA(8,VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIELD_DayOfWee k))) =
Revenue_ACTUAL_RA(8,VAL(PARSE$(ReportDataLine(Curre ntRecord), ";", %FIELD_DayOfWeek))) + _

VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIE LD_RetailRevenueActual))

 Revenue_ACTUAL_RA(i,8) = Revenu e_ACTUAL_RA(i,8) + VAL(PARSE$(ReportDataLine(Curren tRecord), ";",
%FIELD_RetailRevenueActual))
 Revenue_ACTUAL_RA(8,8) = Revenu e_ACTUAL_RA(8,8) + VAL(PARSE$(ReportDataLine(Curren tRecord), ";",
%FIELD_RetailRevenueActual))

 END IF

 IF PARSE$(AllRetailAreas, ";", i) = PARSE$(ReportDataLine(CurrentRecord), ";",
%FIELD_RetailAreaSeason) THEN

 'for comparison reason add PAX_ Actual and NOT PAX_Season !!!

 PAX_SEASON_RA(i,VAL(PARSE$(Repo rtDataLine(CurrentRecord), ";", %FIELD_DayOfWeek))) =
PAX_SEASON_RA(i,VAL(PARSE$(ReportDataLine(CurrentRe cord), ";", %FIELD_DayOfWeek))) + _

VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIE LD_PAX_Actual))

 PAX_SEASON_RA(8,VAL(PARSE$(Repo rtDataLine(CurrentRecord), ";", %FIELD_DayOfWeek))) =
PAX_SEASON_RA(8,VAL(PARSE$(ReportDataLine(CurrentRe cord), ";", %FIELD_DayOfWeek))) + _

VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIE LD_PAX_Actual))

 PAX_SEASON_RA(i,8) = PAX_SEASON _RA(i,8) + VAL(PARSE$(ReportDataLine(CurrentRecord) , ";",
%FIELD_PAX_Actual))

 PAX_SEASON_RA(8,8) = PAX_SEASON _RA(8,8) + VAL(PARSE$(ReportDataLine(CurrentRecord) , ";",
%FIELD_PAX_Actual))

 Revenue_SEASON_RA(i,VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIELD_DayOfWee k))) =
Revenue_SEASON_RA(i,VAL(PARSE$(ReportDataLine(Curre ntRecord), ";", %FIELD_DayOfWeek))) + _

VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIE LD_RetailRevenueSeason))

 Revenue_SEASON_RA(8,VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIELD_DayOfWee k))) =
Revenue_SEASON_RA(8,VAL(PARSE$(ReportDataLine(Curre ntRecord), ";", %FIELD_DayOfWeek))) + _

VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIE LD_RetailRevenueSeason))

 Revenue_SEASON_RA(i,8) = Revenu e_SEASON_RA(i,8) + VAL(PARSE$(ReportDataLine(Curren tRecord), ";",
%FIELD_RetailRevenueSeason))
 Revenue_SEASON_RA(8,8) = Revenu e_SEASON_RA(8,8) + VAL(PARSE$(ReportDataLine(Curren tRecord), ";",
%FIELD_RetailRevenueSeason))

 END IF

APPENDIX A 273

 IF PARSE$(AllRetailAreas, ";", i) = PARSE$(ReportDataLine(CurrentRecord), ";", %FIELD_ RetailAreaOpti)
THEN

 'for comparison reason add PAX_ Actual and NOT PAX_Opti !!!

 PAX_OPTI_RA(i,VAL(PARSE$(Report DataLine(CurrentRecord), ";", %FIELD_DayOfWeek))) =
PAX_OPTI_RA(i,VAL(PARSE$(ReportDataLine(CurrentReco rd), ";", %FIELD_DayOfWeek))) + _

VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIE LD_PAX_Actual))
 PAX_OPTI_RA(8,VAL(PARSE$(Report DataLine(CurrentRecord), ";", %FIELD_DayOfWeek))) =
PAX_OPTI_RA(8,VAL(PARSE$(ReportDataLine(CurrentReco rd), ";", %FIELD_DayOfWeek))) + _

VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIE LD_PAX_Actual))

 PAX_OPTI_RA(i,8) = PAX_OPTI_RA(i,8) + VAL(PARSE$(ReportDataLine(CurrentRecord), "; ",
%FIELD_PAX_Actual))
 PAX_OPTI_RA(8,8) = PAX_OPTI_RA(8,8) + VAL(PARSE$(ReportDataLine(CurrentRecord), "; ",
%FIELD_PAX_Actual))

 Revenue_OPTI_RA(i,VAL(PARSE$(Re portDataLine(CurrentRecord), ";", %FIELD_DayOfWeek))) =
Revenue_OPTI_RA(i,VAL(PARSE$(ReportDataLine(Current Record), ";", %FIELD_DayOfWeek))) + _

VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIE LD_RetailRevenueOpti))
 Revenue_OPTI_RA(8,VAL(PARSE$(Re portDataLine(CurrentRecord), ";", %FIELD_DayOfWeek))) =
Revenue_OPTI_RA(8,VAL(PARSE$(ReportDataLine(Current Record), ";", %FIELD_DayOfWeek))) + _

VAL(PARSE$(ReportDataLine(CurrentRecord), ";", %FIE LD_RetailRevenueOpti))

 Revenue_OPTI_RA(i,8) = Revenue_ OPTI_RA(i,8) + VAL(PARSE$(ReportDataLine(CurrentRec ord), ";",
%FIELD_RetailRevenueOpti))
 Revenue_OPTI_RA(8,8) = Revenue_ OPTI_RA(8,8) + VAL(PARSE$(ReportDataLine(CurrentRec ord), ";",
%FIELD_RetailRevenueOpti))

 INCR RA_Counter(i)

 END IF

 'lValueFound = %TRUE
 'EXIT FOR

 NEXT i

' IF lValueFound = %FALSE THEN
' PAX_ACTUAL_RA(9,8) = PAX_ACTUAL_RA (9,8) + VAL(PARSE$(ReportDataLine(CurrentRecord), " ;",
%FIELD_PAX_Actual))
' Revenue_ACTUAL_RA(9,8) = Revenue_A CTUAL_RA(9,8) + VAL(PARSE$(ReportDataLine(CurrentRe cord), ";",
%FIELD_RetailRevenueActual))
' Revenue_SEASON_RA(9,8) = Revenue_S EASON_RA(9,8) + VAL(PARSE$(ReportDataLine(CurrentRe cord), ";",
%FIELD_RetailRevenueSeason))
' Revenue_OPTI_RA(9,8) = Revenue_OPT I_RA(9,8) + VAL(PARSE$(ReportDataLine(CurrentRecord), ";",
%FIELD_RetailRevenueOpti))
' END IF

 ProgressBoxUpdate INT(CurrentRecord/Nu mberOfRecords*100)

 NEXT CurrentRecord

 '---
 '--- output ------------------------------
 '---

 ProgressBoxHide

 OPEN PATH_APPLICATION+$FILE_DEBUG FOR OUTPU T AS #99

 '--- header ------------------------------

 PRINT #99, "Report generated on " + DATE$ + " at " + TIME$
 PRINT #99, "Filename : " + ReportFile
 PRINT #99, STRING$(80,"-")
 PRINT #99, " "
 PRINT #99, " "

 '--- detail ------------------------------

 FOR i = 1 TO 9

 IF i=8 THEN
 PRINT #99, STRING$(80, "-")
 END IF

 PRINT #99, "PAX (ACTUAL) Retail Area : "; TRIM$(STR$(i)); " = "; USING$("###,###,###",
PAX_ACTUAL_RA(i,8));
 PRINT #99, " i.e. per day --> ";

 FOR j = 1 TO 7
 PRINT #99, USING$("###,###,###", PA X_ACTUAL_RA(i,j)); ";";

APPENDIX A 274

 NEXT j
 PRINT #99, " "

 NEXT i

 PRINT #99, " "
 PRINT #99, " "

 '-- --- ----------------

 FOR i = 1 TO 9

 IF i=8 THEN
 PRINT #99, STRING$(80, "-")
 END IF

 PRINT #99, "PAX (SEASON) Retail Area : "; TRIM$(STR$(i)); " = "; USING$("###,###,###",
PAX_SEASON_RA(i,8));
 PRINT #99, " i.e. per day --> ";

 FOR j = 1 TO 7
 PRINT #99, USING$("###,###,###", PA X_SEASON_RA(i,j)); ";";
 NEXT j
 PRINT #99, " "

 NEXT i

 PRINT #99, " "
 PRINT #99, " "

 '-- --- ----------------

 FOR i = 1 TO 9

 IF i=8 THEN
 PRINT #99, STRING$(80, "-")
 END IF

 PRINT #99, "PAX (OPTI) Retail Area : "; TRIM$(STR$(i)); " = "; USING$("###,###,###", PA X_OPTI_RA(i,8));
 PRINT #99, " i.e. per day --> ";

 FOR j = 1 TO 7
 PRINT #99, USING$("###,###,###", PA X_OPTI_RA(i,j)); ";";
 NEXT j
 PRINT #99, " "

 NEXT i

 PRINT #99, " "
 PRINT #99, " "

 '-- --- ----------------

 FOR i = 1 TO 9

 IF i=8 THEN
 PRINT #99, STRING$(80, "-")
 END IF

 PRINT #99, "Revenue (ACTUAL) Retail Are a: "; TRIM$(STR$(i)); " = "; USING$("###,###,###,## #.##",
Revenue_ACTUAL_RA(i,8));
 PRINT #99, " i.e. per day --> ";

 FOR j = 1 TO 7
 PRINT #99, USING$("###,###,###,###. ##", Revenue_ACTUAL_RA(i,j)); ";";
 NEXT j
 PRINT #99, " "

 NEXT i

 PRINT #99, " "
 PRINT #99, " "

 '-- --- ----------------

 FOR i = 1 TO 9

 IF i=8 THEN
 PRINT #99, STRING$(80, "-")
 END IF

 PRINT #99, "Revenue (SEASON) Retail Are a: "; TRIM$(STR$(i)); " = "; USING$("###,###,###,## #.##",
Revenue_SEASON_RA(i,8));
 PRINT #99, " i.e. per day --> ";

 FOR j = 1 TO 7
 PRINT #99, USING$("###,###,###,###. ##", Revenue_SEASON_RA(i,j)); ";";
 NEXT j
 PRINT #99, " "

APPENDIX A 275

 NEXT i

 PRINT #99, " "
 PRINT #99, " "

 '-- --- ----------------

 FOR i = 1 TO 9

 IF i=8 THEN
 PRINT #99, STRING$(80, "-")
 END IF

 PRINT #99, "Revenue (OPTI) Retail Are a: "; TRIM$(STR$(i)); " = "; USING$("###,###,###,## #.##",
Revenue_OPTI_RA(i,8));
 IF i >=1 AND i<8 THEN
 PRINT #99, "Flights="; USING$("#### ", RA_Counter(i));
 END IF
 PRINT #99, " i.e. per day --> ";

 FOR j = 1 TO 7
 PRINT #99, USING$("###,###,###,###. ##", Revenue_OPTI_RA(i,j)); ";";
 NEXT j
 PRINT #99, " "

 NEXT i

 '-- --- ----------------

 CLOSE #99

 SHELL "notepad.exe " + PATH_APPLICATION+$FI LE_DEBUG

 END IF

 CALL LogEntry(FUNCNAME$, "END")

END SUB 'OPTI_Report()

‘-- ---------------------------------------

SUB OPTI_Avoid_RetailArea_PAX_OverLoad(BYVAL TimeIn terval AS INTEGER)

 LOCAL AllRetailAreas AS STRING
 LOCAL RA_MaxPAX AS STRING
 LOCAL RA_CurrentPAX AS LONG
 LOCAL i AS INTEGER

 'for simplicity reasons the following code assu mes the FRA-specific situation of 7 Retail Areas (R 1..R7) !!!
 '@@@ change here to more generic code
 AllRetailAreas = "R1;R2;R3;R4;R5;R6;R7"
 'RA_MaxPAX = "10220;1675;5226;1141;5638;1380;40 41" 'implies 1.5 sqm per pax
 'RA_MaxPAX = "10220;1675;5226;1141;5638;1380;40 41" 'implies 1.5 sqm per pax
 RA_MaxPAX = "10998;2813;7251;2541;5639;1380;404 1" 'implies 1.5 sqm per pax after re-definition o f R2 and R3

 FOR i = 1 TO PARSECOUNT(AllRetailAreas, ";")

 RA_CurrentPAX = OPTI_Determine_RetailArea_P AX_Load(i, TimeInterval)
 IF RA_CurrentPAX > VAL(PARSE$(RA_MaxPAX, " ;",i)) THEN

' ConsoleMessageBox "PAX LOAD is TOO HIG H !!!\n\n" + _
' "Time Interval: " + STR$(TimeInterval) + "\n" + _
' "Retail Area Index : " + STR$(i) + "\n" + _
' "PAX (max) = " + PARSE$(RA_MaxPAX, ";",i) + "\n" + _
' "PAX (current) = " + STR$(RA_CurrentPAX) + "\n", _
' %OKONLY+%EXCLAMATI ONBOX,"WARNING",%IDI_EXCLAMATION,0

 IF TimeInterval < 288 THEN
 'block all gates in this retail are a for the next time interval
 CALL OPTI_BlockGatesInRetailAreaInT imeInterval(i, TimeInterval+1)
 END IF

 END IF

 NEXT i

END SUB 'OPTI_Avoid_RetailArea_PAX_OverLoad()

‘-- ---------------------------------------

APPENDIX A 276

FUNCTION OPTI_Determine_RetailArea_PAX_Load(BYVAL R A_Index AS INTEGER, BYVAL TimeInterval AS INTEGER) AS LONG

 LOCAL RelativeGateIndex AS INTEGER
 LOCAL GateIndex AS INTEGER
 LOCAL FlightIndex AS INTEGER
 LOCAL TempTotalPAX AS LONG

 TempTotalPAX = 0

 'for all gates in retail area
 FOR RelativeGateIndex = 2 TO PARSECOUNT(gaRetai lArea(RA_Index),";")

 GateIndex = VAL(OPTI_Pheno2Geno_Gate(PARSE$ (gaRetailArea(RA_Index),";", RelativeGateIndex)))

 FlightIndex = gGateTime_Matrix(TimeInterval , GateIndex)
 'if there is a flight, then sum up the PAX of that flight
 IF FlightIndex <> %NoFlightValue AND _
 FlightIndex <> %BufferValue AND _
 FlightIndex <> %BlockValue THEN

 TempTotalPAX = TempTotalPAX + VAL(P ARSE$(gAllFlightsOnThatDay(FlightIndex), ";", %FIEL D_PAX_Actual))

 END IF

 NEXT RelativeGateIndex

 OPTI_Determine_RetailArea_PAX_Load = TempTotalP AX

END FUNCTION 'OPTI_Determine_RetailArea_PAX_Load()

‘-- ---------------------------------------

SUB OPTI_BlockGatesInRetailAreaInTimeInterval(BYVAL RA_Index AS INTEGER, BYVAL TimeIndex AS INTEGER)

 LOCAL RelativeGateIndex AS INTEGER
 LOCAL GateIndex AS INTEGER

 'for all gates in retail area
 FOR RelativeGateIndex = 2 TO PARSECOUNT(gaRetai lArea(RA_Index),";")

 GateIndex = VAL(OPTI_Pheno2Geno_Gate(PARSE$ (gaRetailArea(RA_Index),";", RelativeGateIndex)))

 'if gate is not yet occupied, block it
 IF gGateTime_Matrix(TimeIndex, GateIndex) = %NoFlightValue THEN
 gGateTime_Matrix(TimeIndex, GateIndex) = %BlockValue
 END IF

 NEXT RelativeGateIndex

END SUB 'OPTI_BlockGatesInRetailAreaInTimeInterval()

‘-- ---------------------------------------

FUNCTION OPTI_Determine_MaxTheoRevenue(BYREF OPTI_G ateSet_PerFlight() AS STRING, BYVAL
OPTI_NumberOf_Total_FlightsToBeAllocatedInTimeInter val AS INTEGER) AS DOUBLE

 LOCAL i AS INTEGER
 LOCAL j AS INTEGER
 LOCAL k AS INTEGER
 LOCAL TrialVal AS SINGLE
 LOCAL TrialRA AS STRING

 LOCAL lRA_found AS INTEGER

 LOCAL NumberOfRAs AS INTEGER
 DIM RA_sorted(1 TO 7, 1 TO 2) AS STRING 'REDIM b elow

 LOCAL TempRevenue AS DOUBLE
 LOCAL TempRACombi AS STRING

 NumberOfRAs = 0

 'sort RA factors

 FOR i = 1 TO UBOUND(gaRF())
 IF gaRF(i,1) <> "" THEN
 INCR NumberOfRAs
 END IF
 NEXT i

 '+++ REDIM +++ REDIM +++ REDIM +++ REDIM +++ RED IM +++ REDIM +++
 REDIM RA_sorted(1 TO NumberOfRAs, 1 TO 2) AS STR ING
 '+++ REDIM +++ REDIM +++ REDIM +++ REDIM +++ RED IM +++ REDIM +++

 FOR i = 1 TO NumberOfRAs
 TrialVal = VAL(gaRF(i,2))
 TrialRA = gaRF(i,1)

APPENDIX A 277

 FOR j = 1 TO NumberOfRAs

 IF TrialVal >= VAL(RA_sorted(j,2)) THEN
 FOR k = NumberOfRAs TO j+1 STEP -1
 RA_sorted(k,2) = RA_sorted(k-1,2)
 RA_sorted(k,1) = RA_sorted(k-1,1)
 NEXT k
 RA_Sorted(j,2) = USING$("##.#", TrialVa l)
 RA_Sorted(j,1) = TrialRA
 EXIT FOR
 END IF

 NEXT j

 NEXT i

 TempRevenue = 0

 'for each flight
 FOR i = 1 TO OPTI_NumberOf_Total_FlightsToBeAllo catedInTimeInterval

 lRA_found = %FALSE

 'test RAs staring with the one with highest r evenue
 FOR j = 1 TO NumberOfRAs

 'for each candidate retail area
 FOR k = 1 TO PARSECOUNT(OPTI_GateSet_PerFl ight(i,3), ";")

 IF GetRetailAreaIndexFromRetailArea(RA_ sorted(j,1)) = VAL(PARSE$(OPTI_GateSet_PerFlight(i, 3), ";", k))
THEN

 'calc revenue for that flight
 TempRevenue = TempRevenue + VAL(PARS E$(OPTI_GateSet_PerFlight(i,4), ";", k))

 'store combi for later use...
 TempRACombi = TempRACombi + PARSE$(O PTI_GateSet_PerFlight(i,3), ";", k) + ";"

 lRA_found = %TRUE

 EXIT FOR

 END IF

 NEXT k

 IF lRA_found = %TRUE THEN
 EXIT FOR
 END IF

 NEXT j

 NEXT i

 IF RIGHT$(TempRACombi,1) = ";" THEN

 TempRACombi = LEFT$(TempRACombi, LEN(TempRACo mbi)-1) 'remove the last semicolon

 END IF

 gMaxTheoRevenueRACombi = TempRACombi

 OPTI_Determine_MaxTheoRevenue = TempRevenue

END FUNCTION 'OPTI_Determine_MaxTheoRevenue()

‘-- ---------------------------------------

APPENDIX A 278

8.2.2 Include File

‘-- --- ------------
'--- INCLUDES ---
‘-- --- ------------

'#INCLUDE "WINAPI.INC"

'#INCLUDE "PBFORMS.INC"
'#INCLUDE "ComDlg32.inc"

‘-- --- ------------
'--- 3RD PARTY (START) ---
‘-- --- ------------

 'THE CONTENTS OF THIS FILE WERE ORIGINALLY PART OF THE
 'WIN32API.INC AND COM32DLG.INC FILES THAT ARE A VAILABLE
 'FROM THE POWERBASIC WEB SITE (POWERBASIC.COM). HOWEVER
 'THIS CODE HAS HAS BEEN SIGNIFICANTLY MODIFIED TO WORK
 'BETTER WITH CONSOLE WINDOWS AND CONSOLE TOOLS.
 '
 'THIS MODIFIED SOURCE CODE IS PROVIDED AS PART OF CONSOLE
 'TOOLS. IT SHOULD NOT BE POSTED IN PUBLIC FORU MS OR
 'SHARED WITH NON-LICENSEES.

 'THIS SOURCE CODE HAS ALSO BEEN UPDATED TO WORK PROPERLY
 'WITH PB/CC VERSION 7.0, WHICH HANDLES ASCIIZ S TRINGS
 'DIFFERENTLY FROM PREVIOUS VERSIONS OF PB/CC.

 %WM_CHILDACTIVATE = &h22
 %OFN_EXPLORER = &h80000
 %OFN_ENABLEHOOK = &h20

 TYPE OPENFILENAME
 lStructSize AS LONG
 hWndOwner AS LONG
 hInstance AS LONG
 lpstrFilter AS ASCIIZ PTR
 lpstrCustomFilter AS ASCIIZ PTR
 nMaxCustFilter AS LONG
 nFilterIndex AS LONG
 lpstrFile AS ASCIIZ PTR
 nMaxFile AS LONG
 lpstrFileTitle AS ASCIIZ PTR
 nMaxFileTitle AS LONG
 lpstrInitialDir AS ASCIIZ PTR
 lpstrTitle AS ASCIIZ PTR
 Flags AS LONG
 nFileOffset AS INTEGER
 nFileExtension AS INTEGER
 lpstrDefExt AS ASCIIZ PTR
 lCustData AS LONG
 lpfnHook AS DWORD
 lpTemplateName AS ASCIIZ PTR
 END TYPE

 DECLARE FUNCTION GETOPENFILENAME LIB "COMDL G32.DLL" ALIAS "GetOpenFileNameA" (lpofn AS OPENFIL ENAME) AS LONG
 DECLARE FUNCTION SETFOREGROUNDWINDOW LIB "USER32.DLL" ALIAS "SetForegroundWindow" (BYVAL hWnd AS LONG) AS LONG

 DECLARE FUNCTION OfnHook(BYVAL hdlg AS LONG, BY VAL wMsg AS LONG, BYVAL wParam AS DWORD, BYVAL lPar am AS LONG) AS
LONG

 DECLARE FUNCTION OpenFileDialog(BYVAL hWnd AS L ONG, _ ' parent window
 BYVAL sCaption AS STRING, _ ' caption
 BYREF sFileNames AS STRING, _ ' filename
 BYVAL sInitialDir AS STRING , _ ' start directory
 BYVAL sFilter AS STRING, _ ' filename filter
 BYVAL sDefExtension AS STRI NG, _ ' default extension
 BYREF lFlags AS LONG) AS LO NG ' flags

‘-- --- ------------
'--- 3RD PARTY (END) ---
‘-- --- ------------

‘-- --- ------------
'--- DECLARATIONS OF SUBs AND FUNCTIONs ---
‘-- --- ------------

'-- ----------------------------------

DECLARE FUNCTION aeroCUBEInit() AS INTEGER
DECLARE FUNCTION TitleBarTime(lNotUsed&) AS LONG
DECLARE SUB SPLASHBOX(sText$)

APPENDIX A 279

DECLARE SUB Test(BYVAL MsgText AS STRING)
DECLARE SUB ShowWaitBox(BYVAL DurationSecs AS INTEG ER)
DECLARE SUB ShowDescription()
DECLARE SUB ShowAbout()
DECLARE SUB LogEntry(BYVAL SenderFunction AS STRING , BYVAL LogText AS STRING)

DECLARE SUB Reset_DEBUG_COUNTERS()
DECLARE SUB Show_DEBUG_COUNTERS()
DECLARE SUB Dump_Into_DEBUG_File(BYREF aToBeDumped() AS STRING)

DECLARE FUNCTION ErrorDescription(BYVAL lErrorCode AS LONG, BYVAL lLocation AS LONG) AS STRING

'-- ----------------------------------

DECLARE SUB LoadOpsData_Country(BYVAL FileName AS S TRING)
DECLARE SUB CalcDelayMinutes(BYVAL FileName AS STRI NG)
DECLARE FUNCTION DelayMin(BYVAL STD AS STRING, BYVA L ATD AS STRING) AS STRING
DECLARE SUB Flight_DF_Factor(BYVAL FileName AS STRI NG)
DECLARE FUNCTION GetDutyFreeFactor(BYVAL FlightNo A S STRING, BYREF aDFTable() AS STRING) AS STRING
DECLARE FUNCTION GetDFCountryFactor(BYVAL Country A S STRING, BYREF aDFcountry() AS STRING) AS STRING
DECLARE SUB FillRetailArea(BYVAL FileName AS STRING , BYVAL PurposeIndicator AS INTEGER)
DECLARE FUNCTION GetRetailArea(BYREF RetailAreaDef () AS STRING, _
 BYVAL FltNo AS STRI NG, _
 BYVAL FltDestCountr y AS STRING, _
 BYVAL Gate AS STRIN G, _
 BYVAL CKI_hall AS S TRING, _
 BYREF GatesFound AS LONG , _
 BYREF GatesNotFound AS LONG) AS STRING
DECLARE FUNCTION GetRetailAreaIndexFromRetailArea(B YVAL RetailArea AS STRING) AS INTEGER
DECLARE FUNCTION Is_EU_flight(BYVAL FltDestCountry AS STRING) AS INTEGER

DECLARE SUB FillRetailAreaFactor(BYVAL FileName AS STRING, BYVAL PurposeIndicator AS INTEGER)
DECLARE FUNCTION GetRetailFactor(BYVAL RetailArea A S STRING, BYREF aRFTable() AS STRING) AS STRING
DECLARE SUB SuggestRetailAreaFactor(BYVAL FileName AS STRING)

DECLARE SUB FillPlanningSeason()

DECLARE SUB FillErrorQueue(BYVAL FileName AS STRING)
DECLARE SUB UpDateOAGFile(hWndForm AS DWORD)

DECLARE SUB GenerateWingSpanCode()
DECLARE SUB GenerateAvgGroundTime()
DECLARE SUB FillGroundTime(BYVAL FileName AS STRING)
DECLARE SUB GenerateGatesUsed()
DECLARE SUB ReportStatsPerDay()

DECLARE SUB FillFlightRevenueSpecific(BYVAL FileNam e AS STRING, BYVAL PurposeIndicator AS INTEGER)

DECLARE SUB ReIndex(BYVAL FileName AS STRING)

DECLARE SUB ReadAllRecsIntoArray(BYVAL FileName AS STRING)
DECLARE SUB WriteRec(BYREF FlightArray() AS STRING, BYVAL LineCounter AS LONG)
DECLARE FUNCTION StringUpdate(BYVAL StringData AS S TRING, BYVAL FieldNumber AS INTEGER, BYVAL UpDateTe xt AS STRING) AS
STRING

DECLARE SUB GenerateGanttData()
DECLARE FUNCTION GetGateColumn (BYVAL Gate AS STRIN G, BYREF GateArray() AS STRING) AS INTEGER
DECLARE FUNCTION GetCategoryABC(BYVAL FieldValue AS STRING, BYVAL ValueDirection AS STRING) AS STRING

DECLARE SUB GenerateWeekDayPAXFile()
DECLARE SUB GenerateWeekDayFIELDFile()
DECLARE FUNCTION SelectField() AS INTEGER

DECLARE SUB DeleteRecords(BYVAL FileName AS STRING, BYVAL FieldNumber AS INTEGER, BYVAL MatchingValue AS STRING)
DECLARE SUB DeleteRecordsTWO(BYVAL FileName AS STRI NG)
DECLARE SUB FillAssumedATD(BYVAL FileName AS STRING)

DECLARE SUB GenerateTable_AvgOnFieldUnique(BYVAL Fi leName AS STRING, BYVAL MatchFieldNumber AS INTEGER , BYVAL
ComputeFieldNumber AS INTEGER)

DECLARE SUB FillActualPax(BYVAL FileName AS STRING)
DECLARE SUB ShiftFileIntoHistory(BYVAL FileName AS STRING)
DECLARE SUB Conversion()
DECLARE SUB ConvertCommaToDecimalPoint(BYVAL FileNa me AS STRING)

'-- ----------------------------------

DECLARE SUB OpenBackGroundWindow()
DECLARE SUB GenerateJPGFiles()

DECLARE SUB MyGfxRefresh()
DECLARE SUB ValidMouseLocation (BYREF MyMouseOverX AS LONG, BYREF MyMouseOverY AS LONG)

DECLARE FUNCTION NextDay(BYVAL yyyymmdd AS STRING) AS STRING
DECLARE FUNCTION DayWeek (BYVAL InDate AS STRING) A S INTEGER

'-- ----------------------------------

DECLARE SUB InitAlliances()
DECLARE FUNCTION GetAlliance(BYVAL Airline2ltrCode AS STRING) AS STRING
DECLARE FUNCTION GetTerminalFromGate(BYREF Gate AS STRING) AS STRING
DECLARE FUNCTION GetCKIHallFromGate(BYREF Gate AS S TRING) AS STRING
DECLARE FUNCTION GetWingSpanCode(BYVAL AircraftType AS STRING) AS STRING
DECLARE FUNCTION IsRemoteStand(BYVAL Stand AS STRIN G) AS INTEGER

APPENDIX A 280

DECLARE FUNCTION GetTimeFromMinutes(BYVAL MinuteVal ue AS INTEGER) AS STRING
DECLARE FUNCTION GetTimeIndexFromTime(BYVAL DateTim e AS STRING) AS INTEGER
DECLARE FUNCTION GetTimeFromTimeIndex(BYVAL TimeInd ex AS INTEGER) AS STRING
DECLARE FUNCTION GetGateIndexFromGate(BYVAL Gate AS STRING) AS INTEGER

DECLARE FUNCTION GetRetailAreaIndexFromGateIndex(BY VAL GateIndex AS INTEGER) AS INTEGER

DECLARE SUB OPTI_Run()
DECLARE FUNCTION OPTI_FindSolution(BYVAL DKGA_Date AS STRING) AS INTEGER
DECLARE SUB OPTI_Initialize(BYVAL DKGA_Date AS STRI NG)
DECLARE SUB OPTI_InitializeOptiParamFromFile()
DECLARE SUB OPTI_GateTimeMatrix_FillWithFlightPlanO fSingleDay()

DECLARE FUNCTION OPTI_GateTimeMatrix_InsertFlight(BYVAL FlightIndex AS INTEGER, _
 BYVAL Gate AS INTEGER, _
 BYVAL TimeFrom AS INTEGER, _
 BYVAL TimeTo AS INTEGER, _
 BYVAL OPTI_TrialMode AS INTEGER) AS INTEGER

DECLARE FUNCTION OPTI_GateTimeMatrix_RemoveFlight(B YVAL FlightIndex AS INTEGER, BYVAL Gate AS INTEGER, BYVAL TimeFrom
AS INTEGER, BYVAL TimeTo AS INTEGER) AS INTEGER
DECLARE SUB OPTI_GateTimeMatrix_Show(BYVAL Gate AS INTEGER, BYVAL TimeFrom AS INTEGER, BYVAL TimeTo AS INTEGER)

DECLARE FUNCTION OPTI_Determine_FlightsToBeAllocate dInTimeInterval(BYVAL SpecificTimeInterval AS INTEG ER) AS STRING

DECLARE FUNCTION OPTI_Determine_AvailableGatesInInt erval(BYVAL SpecificTimeInterval AS INTEGER) AS STR ING
DECLARE FUNCTION OPTI_Determine_EligibleGatesForFli ght(BYVAL FlightIndex AS INTEGER, BYVAL OPTI_GatesA vailable AS
STRING) AS STRING
DECLARE FUNCTION OPTI_IsValidGate(BYVAL FlightIndex AS INTEGER, BYVAL TrialGateIndex AS STRING) AS INT EGER
DECLARE FUNCTION OPTI_Determine_EligibleRetailAreas ForFlight(BYVAL SetOfGateIndices AS STRING) AS STRI NG
DECLARE FUNCTION OPTI_Determine_RevenueForFlightInS pecificRetailArea(BYVAL FlightIndex AS STRING, BYVA L
SetOfRetailAreaIndices AS STRING) AS STRING
DECLARE FUNCTION OPTI_Determine_RevenueForFlightAtS pecificGates(BYVAL FlightIndex AS STRING, BYVAL Set OfGateIndices AS
STRING) AS STRING

DECLARE FUNCTION OPTI_Determine_MaxTheoRevenue(BYRE F OPTI_GateSet_PerFlight() AS STRING, BYVAL
OPTI_NumberOf_Total_FlightsToBeAllocatedInTimeInter val AS INTEGER) AS DOUBLE

DECLARE SUB OPTI_CombiTwoElements(BYREF OPTI_Comb iResult() AS STRING, _
 BYREF OPTI_Gate Set_PerFlight() AS STRING, _
 BYVAL MaxNumber OfFlights AS INTEGER, _
 BYVAL CurrentFl ight AS INTEGER, _
 BYVAL SolutionS tring AS STRING, _
 BYVAL SolutionR As AS STRING)

DECLARE FUNCTION OPTI_GateChosen(BYVAL CandidateRet ailAreaIndex AS INTEGER, BYVAL CurrentFlight AS INT EGER, BYVAL
TimeFrom AS INTEGER, BYREF OPTI_GateSet_PerFlight() AS STRING) AS INTEGER

DECLARE FUNCTION OPTI_DependendGateIsFree(BYVAL Gat e AS INTEGER, BYVAL TimeFrom AS INTEGER) AS INTEGER
DECLARE FUNCTION OPTI_IsValidRACombi(BYVAL TempRAs AS STRING, BYREF OPTI_GateSet_PerFlight() AS STRING) AS INTEGER

DECLARE SUB OPTI_Avoid_RetailArea_PAX_OverLoad(BYVA L TimeInterval AS INTEGER)
DECLARE FUNCTION OPTI_Determine_RetailArea_PAX_Load (BYVAL RA_Index AS INTEGER, BYVAL TimeInterval AS I NTEGER) AS LONG
DECLARE SUB OPTI_BlockGatesInRetailAreaInTimeInterv al(BYVAL RA_Index AS INTEGER, BYVAL TimeIndex AS IN TEGER)

DECLARE SUB OPTI_GateTimeMatrix_Transaction_Start()
DECLARE SUB OPTI_GateTimeMatrix_Transaction_Commit()
DECLARE SUB OPTI_GateTimeMatrix_Transaction_Rollbac k()

DECLARE FUNCTION OPTI_Geno2Pheno_Gate(BYVAL GenoGat e AS STRING) AS STRING
DECLARE FUNCTION OPTI_Pheno2Geno_Gate(BYVAL PhenoGa te AS STRING) AS STRING

DECLARE SUB OPTI_GateTimeMatrix_DEBUG()
DECLARE SUB OPTI_DumpDailyPlanIntoFile(BYVAL Curren tDay AS STRING)
DECLARE SUB OPTI_DumpDailyAllocIntoFile(BYVAL Curre ntDay AS STRING)

DECLARE SUB OPTI_Show_ProgressWindow()
DECLARE SUB OPTI_NoShow_ProgressWindow()

'-- ----------------------------------

‘-- --- ------------
'--- CONSTANTS ---
‘-- --- ------------

'------FIELD NAMES -------------------------------- ----------------------------

%FIELD_RecID = 1 'no letter
 'ID/index of record
%FIELD_DayOfWeek = 2 'no letter 'day of
week (1-7) 1= monday 7 = sunday
%FIELD_FlightNumber = 3 'A 'flight
number ("LH 04411")
%FIELD_STD = 4 'B
 'standard time of departure ("200603260140")

APPENDIX A 281

%FIELD_ETD = 5 'C
 'estimated time of departure ("200603260140")
%FIELD_ATD = 6 'D
 'actual time of departure ("20060326015357")
%FIELD_DelayMinutes = 7 'E 'delay
minutes (calculated) btw. ATD and STD ("23", "9999" where over day change)
%FIELD_ACType = 8 'F 'type of
aircraft ("A321")
%FIELD_ACWingSpanCode = 9 'G 'wing spa n code of aircraft
type
%FIELD_CKIHall = 10 'H 'che ck-in hall
%FIELD_Terminal = 11 'I 'termi nal bldg
%FIELD_Gate_Actual = 12 'J 'gat e (as it has been used in the
sample population, real life)
%FIELD_Stand_Actual = 13 'K ' stand (as it has been used
in the sample population, real life)
%FIELD_Gate_Season = 14 'L 'gate (as it has been pre-planned in
seasonal flight planning)
%FIELD_Stand_Season = 15 'M 'stand (as it has been pre-planned in seasonal
flight planning)
%FIELD_Gate_Opti = 16 'N 'gate (as suggested by optimization
run)
%FIELD_Stand_Opti = 17 'O 'stand (as suggested by optimization
run)
%FIELD_PAX_Booked = 18 'P 'number of pax booked on that flight
%FIELD_PAX_Actual = 19 'Q 'number of pax as departed on board
that flight
%FIELD_PAX_Season = 20 'R 'number of pax used for seasonal
flight planning
%FIELD_SeatLF_Actual = 21 'S 'seat load factor (as
observed, real life)
%FIELD_GateSizeActual = 22 'T 'size of boarding gate in square meters (real
life)
%FIELD_GateSizeSeason = 23 'U 'size of boarding gate in square meters
(seasonal planning)
%FIELD_GateSizeOpti = 24 'V 'size of boarding gate in square meters
(optimization run)
%FIELD_StdGroundTime = 25 'W 'standard ground time for that flight
%FIELD_FlightPAXDFfactor = 26 'X 'relative duty free factor specific to a pax on that
flight
%FIELD_DestCountry = 27 'Y ' country of destination ("ES SPAIN")
%FIELD_RetailAreaActual = 28 'Z 'retail area which the gate belongs to
%FIELD_RetailAreaFactorActual = 29 'AA 'relative factor of retail area (determined by
observations)
%FIELD_RetailAreaSeason = 30 'AB 'retail area which the gate belongs to
(but now on basis of seasonal planning gate)
%FIELD_RetailAreaFactorSeason = 31 'AC 'relative factor of retail area (determined by
observations)
%FIELD_RetailAreaOpti = 32 'AD 'retail area which the gate belongs to
(but now on basis of opti run gate)
%FIELD_RetailAreaFactorOpti = 33 'AE 'relative factor of retail area (determined by
observations)
%FIELD_RetailRevenueActual = 34 'AF 'retail revenue for that flight (basis: actual
observations)
%FIELD_RetailRevenueSeason = 35 'AG 'retail revenue for that flight (basis: season al
planning)
%FIELD_RetailRevenueOpti = 36 'AH 'retail revenue for that flight (basis: opti run)
%FIELD_TimeIndex = 37 '-- 'STD-Index: generated during opti runs
%FIELD_STAG = 38 '-- 'Scheduled Time At Gate: generated during op ti runs
%FIELD_OptiFlightIndex = 39 '-- 'index number of a flight on a day: generate d during opti
runs

‘-- --- ------------
'--- ARRAY BOUNDARIES ---
‘-- --- ------------

%AmountOfAirports = 4300
%AmountOfFlights = 12000
%MaxDeparturesPerDay = 1000

‘-- --- ------------
'--- OWN ERROR CODES ---
‘-- --- ------------

%APP_FILE_NOT_FOUND = 160 'in ini-file
%FILE_DOES_NOT_EXIST = 161 'on disk
%WrongNumberOfGlobalVars = 170 'during initializat ion to check whether .ini-file content and program
code do match

‘-- --- ------------
'--- OTHER INTERN USE ---
‘-- --- ------------

%NumberOfGLOBALsUsed = 39 'number of global va riables that are read from ini-file

'test
%IDLABEL = 9999

%NoFlightValue = 8888 ' used in i nitialization of GateTimeMatrix
%BufferValue = 7777 ' used to i ndicate a buffer time at the gate
%BlockValue = 6666 ' used to i ndicate that a gate is not usable (used when PAX lo ad in RA becomes
to high)

%MaxSolutionsToBeTested = 50000 ' max numbe r of valid solutions that may enter the solution st ack (if
activated in CombiElements)

APPENDIX A 282

%SolutionStackSize = 5000 ' number of valid solutions that are stored for later insert t rial
%MaxCombiTime = 60 ' max numbe r of seconds after which a combination run is termi nated

‘-- --- ------------
'--- FILES ---
‘-- --- ------------

'--- SYSTEM FILES --------------------------------- ----

$FILE_ACTLOG = "ACTIVITYLOG.TXT"
$FILE_DEBUG = "DEBUGFILE.TXT"
$FILE_INI = "AEROCUBE.INI"
$FILE_PROJECTNOTES = "PROJECTNOTES.TXT"

'--- OTHER FILES ---------------------------------- ---

$FILE_OUTPUT = "OUTPUT"
$FILE_OPTIPLAN = "OPTIPLAN"
$FILE_REVENUES = "REVENUES"
$FILE_OPTIALLOC = "ALLOCATION"

Appendix B 283

9 APPENDIX B

9.1 Sample output of ABC data (raw)

// Field : Flight PAX DF Factor
// Category B: 75-150
//
;;;;;;;;;;b;;;;;;;;;c;;;;;;;;;;;c;;;;;a;;;;;;;;c;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;a;;;a;;;;;;;;;;;;;;;;;;; ;;;b;;;;;;;;;;;;
;;;
;;;;;;;;;;b;;;;;;;;;c;;;;;;;;;;;c;;;;;;;;;;;;;c;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;a;;;;;;;;;;;;;;;;;;;;;;;; ;b;;;;;;;;;;;;;;
;;;
;;;;;;;;;;b;;;;;;;;;c;;;;;;;;;;;c;;;;;;;;;;;;;c;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;a;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;
;;
;;;;;;;;;;b;;;;;;;;;c;;;;;;;;;;;c;;;;;;;;;;;;;c;;;; ;;;;c;;;;;;;;;;;;;;;;;;;;;;a;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;
;;;
;;;;;;;;;;b;;;;;;;;;c;;;;;;;;;;;;;;;;;;;;;;;;c;;;;; ;;;c;;;;;;;;;;;;;;;;;;;;;;a;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;
;;
;;;;;;;;;;b;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;c;;;;;; ;;c;;;;;;;;;;;;;;;;;;;;;;a;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;b;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;c;;;;;; ;;c;;;;;;;;;;;;;;;;;;;;;;a;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; c;;;;;;;;;;;;;;;;;;;;;;a;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; c;;;;;;;;;;;;;;;;;;;;;;a;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; ;;;;;;;;;;;;;;;;;;;;;;a;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; ;;;;;;;;;;;;;;;;;;;;;;a;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; ;;; ;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; ;;; ;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; ;;; ;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; ;;; ;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; ;;; ;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Appendix B 284

9.2 Sample output of ABC data (formatted)

Appendix B 285

9.3 Sample output of simulation run (gate allocation, header)

9.4 Sample output of simulation run (gate allocation, detail)

Horizontal: 153 Gates (A1, A2, … E26)

Vertical: 288 Intervals (1 … 288)

Appendix B 286

9.5 Sample output of simulation run (flight schedule)

Complete data sets for flights:

Same as above, but in more detail with information about: day of week; STD; ATD;

delay; aircraft type; wing span code; check-in hall; terminal building; gate

Continued with more information about: passenger numbers; standard ground time;

flight-specific retail factors; country of destination; retail area (actual); retail area factor

(actual)

Appendix B 287

Continued with retail information like the retail area, its corresponding retail area factor

and the sales generated (for actual, seasonal planning and improved allocation). Further

information includes the time a flight is supposed to be at the gate and an internal index.

Appendix B 288

9.6 Outline of report summary (sales, passengers per weekday and retail area)

Appendix B 289

9.7 Subset of full report (actual passenger distribution)

9.8 Subset of full report (improved revenue distribution)

Appendix B 290

9.9 Excerpt from summary report of simulation results

Report generated on 01-14-2009 at 23:19:38
Filename : C:\Dokumente und
Einstellungen\Dirk\Desktop\aeroCUBEcon\SCENARIOS\Al l_New2\SUMMARY\OPTIPLAN_S_L.TXT
--- -----------------------------

PAX (ACTUAL) Retail Area : 1 = 10,763,326 ...
PAX (ACTUAL) Retail Area : 2 = 2,240,802 ...
PAX (ACTUAL) Retail Area : 3 = 8,699,063 ...
PAX (ACTUAL) Retail Area : 4 = 1,700,401 ...
PAX (ACTUAL) Retail Area : 5 = 2,237,147 ...
PAX (ACTUAL) Retail Area : 6 = 287,480 ...
PAX (ACTUAL) Retail Area : 7 = 1,413,480 ...
...
...
...
PAX (OPTI) Retail Area : 1 = 1,876,576 ...
PAX (OPTI) Retail Area : 2 = 4,005,339 ...
PAX (OPTI) Retail Area : 3 = 12,397,163 ...
PAX (OPTI) Retail Area : 4 = 2,531,943 ...
PAX (OPTI) Retail Area : 5 = 5,613 ...
PAX (OPTI) Retail Area : 6 = 689,358 ...
PAX (OPTI) Retail Area : 7 = 5,835,707 ...

Report generated on 01-16-2009 at 08:17:56
Filename : C:\Dokumente und
Einstellungen\Dirk\Desktop\aeroCUBEcon\SCENARIOS\Al l_New2\SUMMARY\OPTIPLAN_S_M.TXT
--- -----------------------------

PAX (ACTUAL) Retail Area : 1 = 10,763,326 ...
PAX (ACTUAL) Retail Area : 2 = 2,240,802 ...
PAX (ACTUAL) Retail Area : 3 = 8,699,063 ...
PAX (ACTUAL) Retail Area : 4 = 1,700,401 ...
PAX (ACTUAL) Retail Area : 5 = 2,237,147 ...
PAX (ACTUAL) Retail Area : 6 = 287,480 ...
PAX (ACTUAL) Retail Area : 7 = 1,413,480 ...
...
...
...
PAX (OPTI) Retail Area : 1 = 5,086,008 ...
PAX (OPTI) Retail Area : 2 = 3,261,249 ...
PAX (OPTI) Retail Area : 3 = 12,470,471 ...
PAX (OPTI) Retail Area : 4 = 0 ...
PAX (OPTI) Retail Area : 5 = 5,591 ...
PAX (OPTI) Retail Area : 6 = 683,454 ...
PAX (OPTI) Retail Area : 7 = 5,834,926 ...

Appendix B 291

9.10 Simulation result: baseline scenario vs. actual traffic (passengers)

Appendix B 292

9.11 Simulation result: baseline scenario vs. actual traffic (sales)

