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Abstract

Understanding the motion of fluids is crucial for the development and analysis of new de-

signs and processes in science and engineering. Unstructured meshes are used in this context

since they allow the analysis of the behaviour of complicated geometries and configurations

that characterise the designs of engineering structures today. The existing numerical methods

developed for unstructured meshes suffer from poor computational efficiency, and their ap-

plicability is not universal for any type of unstructured meshes. High-resolution high-order

accurate numerical methods are required for obtaining a reasonable guarantee of physically

meaningful results and to be able to accurately resolve complicated flow phenomena that

occur in a number of processes, such as resolving turbulent flows, for direct numerical simu-

lation of Navier-Stokes equations, acoustics etc.

The aim of this research project is to establish and implement universal, high-resolution, very

high-order, non-oscillatory finite-volume methods for 3D unstructured meshes. A new class

of linear and WENO schemes of very high-order of accuracy (5th) has been developed. The

key element of this approach is a high-order reconstruction process that can be applied to any

type of meshes. The linear schemes which are suited for problems with smooth solutions,

employ a single reconstruction polynomial obtained from a close spatial proximity. In the

WENO schemes the reconstruction polynomials, arising from different topological regions,

are non-linearly combined to provide high-order of accuracy and shock capturing features.

The performance of the developed schemes in terms of accuracy, non-oscillatory behaviour

and flexibility to handle any type of 3D unstructured meshes has been assessed in a series of

test problems. The linear and WENO schemes presented achieve very high-order of accuracy

(5th). This is the first class of WENO schemes in the finite volume context that possess high-

order of accuracy and robust non-oscillatory behaviour for any type of unstructured meshes.

The schemes have been employed in a newly developed 3D unstructured solver (UCNS3D).

UCNS3D utilises unstructured grids consisted of tetrahedrals, pyramids, prisms and hexahe-

dral elements and has been parallelised using the MPI framework. The high parallel efficiency

achieved enables the large scale computations required for the analysis of new designs and

processes in science and engineering.
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Chapter 1

Introduction

Understanding the motion of fluids is crucial for the development and analysis of new designs

and processes in science and engineering. Computational fluid dynamics (CFD) is the branch

of fluid dynamics concerned with the numerical solution of flow problems. Due to the leap

in computing processing power in the last years CFD is employed for a staggering amount

of applications. The numerical solution of the Navier-Stokes equations -that model the fluid

flow- is performed by algebraic approximations that give numerical solution at discrete points

in the flow field. The collection of those discrete points is the grid. Depending on the pattern

that the grids follow there are distinguished in two types; structured and unstructured.

The grid is the Achilles heel of accurate and efficient numerical simulation of flow prob-

lems. There is a sensitive balance amongst accuracy of solution, efficiency of simulation

and accuracy of geometrical representation. Numerical methods have been introduced in the

structured grid context, which has resulted in robust schemes. A shift of the CFD commu-

nity towards unstructured grids is noticed over the last years for large scale computations

[55, 54] of complicated structures. The motivation for this transition lies in their efficiency

for representing complicated geometrical structures. The existing unstructured grid numer-

ical methods suffer from low accuracy compared to structured grids and their requirements

in terms of computing power and resources are higher. The majority of the existing finite

volume unstructured grid methods can not simultaneously achieve higher than 2nd-order of

accuracy, demonstrate non-oscillatory properties and have the capability to handle any type

of unstructured mesh.

The development of very high-order FV schemes for unstructured meshes is associated with

numerous challenges. The design of the reconstruction process that can achieve high-order

approximations in arbitrary shaped domains will drive the spatial accuracy of the scheme.

The generation of spurious oscillations leading to unphysical results [25] poses an additional

challenge in the design of the numerical scheme. The generic nature of the methods in the

sense that should be able to handle any type of unstructured is another challenging task. The

efficiency of 3D unstructured solvers is an issue that still needs to be addressed. Several

12



CHAPTER 1. INTRODUCTION 13

approaches has been developed to circumvent the aforementioned limitations and can be cat-

egorised to the discontinuous Galerkin finite element framework, the spectral finite-volume,

spectral finite-difference framework and the finite volume framework. The basic character-

istic of the majority of the approaches in the DG framework [12, 14, 13, 11, 15, 28, 37, 76] is

the combination of the finite element methods for local data representation and the Riemann

problem solution at the discontinuous intercell states. The advantages of the DG approaches

are their compactness and locality which is translated to very high-order of accuracy, and

their ability to handle any type of unstructured meshes. These schemes suffer from the gen-

eration os spurious oscillations in the vicinity of discontinuities unless an appropriate limiter

is employed. Although some recent approaches such as the HERMITE-WENO schemes

[48, 59, 61] try to overcome this problem, these schemes are still unable to combine higher

than 3rd-order of accuracy and non-oscillatory properties in an efficient and robust manner.

In the spectral finite-volume framework [73, 65, 45] each spectral volume is further sub-

divided into control volumes. The data are cell-averaged over the control volumes to re-

construct high-order approximation in the spectral volume. The fluxes at the spectral vol-

ume boundaries are calculated by employing Riemann solvers across them. Spurious os-

cillation are reduced by TVD limiters around discontinuities. This class of methods along

with the spectral-difference ones have been applied in a series of complicated problems

[29, 66, 74, 65]. The main advantages of this framework are their compactness and local-

ity, and their superior efficiency especially for the spectral-difference methods. However the

issues that remain unresolved are the subdivision of arbitrary shaped spectral volumes into

control volumes and the employment of more sophisticated limiters in order to attain very

high-order of accuracy and non-oscillatory behaviour.

The finite volume framework is principally the framework of choice for commercial and

industrial applications since a large variety of robust schemes exist that have been introduced

in the structured grid context and have been tested for a various applications. However the

finite volume framework is still very immature compared to the finite element framework

in terms of high-order schemes for unstructured meshes. The first class of high-resolution

methods developed for unstructured grids included the ENO type of schemes [1, 57] and

later the WENO [23, 32] type of schemes. In the WENO type of schemes the high-order

of accuracy was achieved by non-linearly combining a series of high-order reconstruction

polynomials arising from a series of reconstruction stencils. However most of the approaches

are limited to 3D applications of tetrahedral meshes [26, 56, 32] only and up to 3rd-order

of accuracy with a few notable exceptions [49, 22]. These limitations motivates the research

regarding the stencil selection influence, the combination of reconstruction polynomials and

the applicability to generic unstructured meshes.

The parallel efficiency of 3D unstructured solvers has been addressed in a series of ap-

proaches [9, 50] , and have been applied to a series of large-scale computations of compli-

cated flow problems [55, 54, 53, 51, 2] but no in the context of very-high order finite volume

schemes.
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1.1 Aim and Objectives

The aim of this research project is to establish and implement universal, high-resolution,

very high-order, non-oscillatory finite-volume methods for 3D unstructured meshes. The

main objectives are:

• Research and develop very-high-order methods such as WENO and TVD schemes in

the unstructured grid context

• Develop a new 3D unstructured flow solver employing the developed schemes (UCNS3D)

• Verify the accuracy of the developed methods towards a series of well established test

cases

• Verify the non-oscillatory properties of the schemes through a series of test cases that

contain strong discontinuities

• Assess the performance of the schemes in terms of robustness and reliability for re-

solving complicated flow patterns around complicated geometries and configurations

• Study the grid-dependency of the schemes

• Identify the parameters that dictate the performance of the methods for test cases con-

taining smooth solutions and test cases containing discontinuous solutions

• Carry out a parallel implementation of UCNS3D suited for large-scale computations

• Assess the parallel efficiency and scalability of the parallel UCNS3D solver
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1.2 Thesis Contributions

The work conducted in this thesis has made significant contributions to the field of high-order

methods for unstructured grids. In particular

• A very high-order (5th-order) set of linear and WENO schemes has been developed.

The key aspect of the developed schemes is a high-order reconstruction process that is

applicable to any type of unstructured meshes.

• The performance of the schemes in terms of accuracy and non-oscillatory properties

has been assessed in a series of smooth and discontinuous test cases. The results

demonstrate that the schemes reach their designed accuracy and do not produce any

spurious oscillations even for strong discontinuous test problems.

• The schemes are employed in a a newly developed 3D unstructured flow solver. A

parallel implementation of the solver has been carried out and results demonstrate high

parallel efficiency and scalability.

• This is the first class of successfull WENO schemes that achieve higher than 2nd-order

of accuracy on any type of unstructured grids in the finite volume context. The devel-

oped schemes can be extended to any desired order of accuracy.

• Results from this thesis are used for the preparation of two journal articles concerning

the 3D WENO schemes for hybrid meshes, and the parallelisation of high-order hybrid

unstructured solver.

• Results from this thesis have been presented in a number of international conferences

including the 8th World Congress on Computational Mechanics, 30 June-4 July 2008,

Venice, Italy and the 3rd International Conference on High-Order Non-Oscillatory

Methods for Wave Propagation, Transport and Flow Problems, 30 March- 2 April 2009,

Trento, Italy.
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1.3 Thesis Overview

This thesis is organised as follows.

Chapter 2 presents a detailed description of the geometrical operations and the reconstruc-

tion process. The geometrical operations involve all the aspects for dealing with any type of

unstructured meshes. Those are the element decomposition for volume and surface integrals

computations, the stencil construction algorithms and the geometrical parameters that govern

them, and the utilisation of spherical coordinate system for computation of the normal vector

at the surfaces. The reconstruction process is the basic ingredient of the developed schemes

since it the one that provides the high-order of spatial accuracy. Three implementations of

the reconstruction process are presented the linear type, a TVD type and a WENO type. The

linear type utilises only one reconstruction stencil, the central one in order to achieve high-

order of spatial accuracy and is mostly suited for problems containing smooth solutions. The

TVD implementation is a 2nd-order accurate scheme which is characterised by its robustness

and computational efficiency and is mostly suited for problems dominated by discontinuities.

Finally the WENO implementation is described which combines reconstruction polynomials

from different reconstruction stencils in a non-linear manner. Both the linear and WENO

scheme in their present implementation can be extended to any desired order of accuracy.

Chapter 3 presents the extension of the developed schemes to the 3D compressible Eu-

ler equations. This involves the implementation of the reconstruction process for the Euler

equations, the numerical flux approximation, the time advancement techniques and the im-

plementation of the boundary conditions. The developed WENO scheme performs the recon-

struction in terms of characteristic variables rather than the conserved ones. The numerical

flux approximation is done by the HLLC approximate Riemann solver of [70]. The solution

is advanced in time by explicit Runge-Kutta schemes up to 4th-order. Finally the bound-

ary conditions implementation in the context of unstructured meshes is described since the

are some challenges for high-order finite volume schemes when certain types of boundary

conditions are encountered.

Chapter 4 presents the assessment of the developed schemes in terms of accuracy, non-

oscillatory properties and capability for handling any type of boundary conditions and un-

structured meshes. Firstly the schemes are applied to the 3D linear advection equation for

a smooth test problem and a discontinuous one. Next the 3D Euler equations are solved for

a series of test problems in order to assess specific aspects of the developed schemes. The

order of accuracy of the schemes are analysed by computing the smooth test problem of the

evolution of a vortex. The non-oscillatory properties, the influence of the central stencil lin-

ear weights, and the influence of the geometrical directionality condition of the directional

stencils used in WENO schemes are assessed in a shock tube test problem, a 3D spherical

explosion and a 3D spherical explosion. Finally the capability of the schemes to handle com-

plicated geometries using hybrid unstructured meshes is assessed in the test problem of a

blunted-cone-cylinder-flare geometry. It is noticed that both the linear and WENO schemes

achieve up to 5th-order of accuracy and WENO schemes robust shock capturing features.

The most efficient schemes in terms of computing resources and accuracy for practical appli-

cations are the 2nd-order TVD and the 3rd-order WENO scheme.
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Chapter 5 presents the parallel implementation of the developed 3D unstructured flow

solver (UCNS3D). The mesh decomposition strategy and the load balancing achieved for

various types of unstructured meshes are detailed. The most crucial factors that have been

taken into account when designing a series of parallel algorithms are described. Finally the

parallel performance of the the 3D unstructured flow solver is assessed in a fixed problem

computed in various processors at the Astral-HPC facility at Cranfield University. The par-

allel efficiency achieved is almost linear for higher-order schemes and it is also noticed that

higher-order schemes scale much better than lower-order.

Chapter 6 presents the conclusions drawn from this research project and possible future

research directions in the context of very high-order finite volume schemes for 3D unstruc-

tured meshes.



Chapter 2

General Framework of Developed

Schemes

Introduction

In this chapter we describe the general framework of the developed schemes tailored for

mixed-element unstructured meshes in three-space dimensions. The chapter is structured as

follows. We first present the geometrical operations performed in the context of unstruc-

tured hybrid meshes. Next we outline the linear reconstruction procedure for mixed-element

unstructured meshes in three-space dimensions for scalar which will then be used for the

construction of TVD and WENO schemes that are described in the following sections.

2.1 Geometrical Operations

Since the developed approach is flexible to handle mixed-element unstructured grids this

results in greater requirements in terms of geometrical related operations compared to struc-

tured grids. In the following subsections the strategy for performing a series geometrical

computations for different element shapes is described in great detail.

2.1.1 Element Shapes

The schemes are tailored for unstructured meshes that can consist of various element shapes.

Those are hexahedral, tetrahedral, pyramidal and prismatic elements as shown in Figure 2.1

on page 19. When constructing numerical schemes the distinctive geometrical characteristics

of each element must be taken into account. These include the number of nodes, the number

faces, the number of tetrahedral volumes that each element can be decomposed and the num-

ber of triangular faces that each element face can be decomposed to. We are only considering

strictly conforming combinations of these element shapes. Therefore the direct-side neigh-

bour of an element although it can be of different shape it must have the same face.This is

also one of the reasons that pyramids and prisms are used in order to facilitate the transition

18
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(a) Hexahedral (b) Tetrahedral

(c) Pyramidal (d) Prismatic

Figure 2.1: Element Shapes

between hexahedrals and tetrahedrals elements and ensure conformity. The basic geometrical

characteristics of each element shape are outlined in Table 2.1 on page 20.

2.1.2 Facecentres & Barycentres Computations

For a series of operations of the finite volume schemes developed the position of the centre

of each surface and the barycenter of each element is required. The facecentre coordinates of

each surface area is given by the following expression
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Geometrical Characteristic Hexahedral Tetrahedral Pyramidal Prismatic

Number of Faces 6 4 5 5

Number of Nodes 8 4 5 6

Number of Triangular Faces 0 4 4 2

Number of Quadrilateral Faces 6 0 1 3

Tetrahedral Decompositions 6 1 2 3

Triangular Decompositions 12 4 6 8

Table 2.1: Geometrical Characteristics of Elements

Xc =
1

ns

ns

∑
w=1

Xw (2.1)

Yc =
1

ns

ns
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Yw (2.2)

Zc =
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ns

ns

∑
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Where Xc, Yc, Zc is the position of the facecentre in x, y and z Cartesian coordinates re-

spectively, ns is the number of nodes that this surface area has which takes the value 3 for

triangular faces and 4 for quadrilateral faces. We always require that the facecentres and

barycentres lie within the volume and the face respectively. Therefore highly stretched ele-

ments that can result in the barycentre outside the volume are avoided in the mesh generation,

and the faces are always planar. Having the barycentre lying outside the volume would results

in wrong geometrical computations that would greatly impact the accuracy of the scheme.

The computation of the barycentre of each element depends on the shape of the element.

For example for tetrahedrals and hexahedrals no decomposition is required, but for pyrami-

dal, prismatic elements a decomposition is required. The reason is that by decomposing the

element into other shapes it is more convenient to compute the barycentre. The barycentre

position is given by

Xbc =
1

nd

nd

∑
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1

nv
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∑
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Xw (2.4)

Ybc =
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∑
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1
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∑
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Yw (2.5)

Zbc =
1

nd
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∑
d=1

1

nv

nv

∑
w=1

Zw (2.6)

Where Xbc, Ybc, Zbc, is the position of the barycentre in x, y and z Cartesian coordinates

respectively, nd is the number of decompositions that have been made, and nv is the number

of nodes that each decomposed element has.
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(a) Surface Normal Vectors (b) Spherical Coordinates

Figure 2.2: Surface Orientation

2.1.3 Surface Orientation Operations

The orientation of each surface with respect to the origin of the Cartesian axis is required in

order to establish the direction of the vectors normal to the surfaces. Since the normal vector

of each surface should point outwards the origin is taken to be barycentre of each control

volume. Consider the faces of a uniform hexahedral cell in Cartesian axis as shown in Figure

2.2 on page 21 , for each surface the equation of plane is solved by using the Cartesian

coordinates of three vertices of the surface. The equation of plane is solved as shown below

Ax+By+Cz+D = 0 (2.7)

A = y1(z2− z3)+ y2(z3− z1)+ y3(z1− z2) (2.8)

B = z1(x2− x3)+ z2(x3− x1)+ z3(x1− x2) (2.9)

C = x1(yz2− y3)+ x2(y3− y1)+ x3(y1− y2) (2.10)
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D = −x1(y2z3− y3z2)+ x2(y3z1− y1z3)+ x3(y1z2− y2z1) (2.11)

xn = xcrt − xbc, yn = ycrt − ybc ,zn = zcrt − zbc (2.12)

An = A/D, Bn = B/D, Cn = C/D (2.13)

Where xn, yn, zn with n = 1,2,3 are the coordinates of each vertex n with respect to the

position of the barycentre (xbc,ybc,zbc). A ,B, C and D and are the coefficients for the equation

of plane and An , Bn , Cn are the normalised coefficients for the equation of plane. Now by

using the spherical coordinate convention the radial r, the azimuthal angle θ and polar angle

ϕ are given by the following expressions

r =

√

(An)2 +(Bn)2 +(Cn)2
(2.14)

θ = tan−1

(

Bn

An

)

(2.15)

ϕ = cos−1

(

Cn

R

)

(2.16)

It must be noted that the appropriate modifications must be made in Equation 2.14 to 2.16,

depending on which quadrant the plane lies in. It is always ensured that the elements are such

that the barycentre is always inside the volume, in the case that it was not the computation

of the normal vector would fail leading to the normal facing inwards to the element rather

outwards which is undesirable.

Another limitation is that in the case of non co-planar face surface orientation computa-

tion will not be correct since not all vertices will lie in the same plane. Hence the usage of

three vertices for the computation of the normal vector (given that all three vertices lie in the

same plane) however this will not be correct since the face will not be unique. Therefore we

always ensure that the faces are planar in order to avoid this problem.

2.1.4 Element Decomposition Strategy

As mentioned earlier the computations involving the surface area and the volume of the el-

ement are done in an efficient, accurate and convenient way by decomposition. By decom-

position we mean that the element is decomposed into a number of elements. For instance

consider a hexahedral cell which can be decomposed into 5 or 6 tetrahedral cells. When

dealing with complicated arbitrary shaped domains this decomposition is essential for the

following reasons:

1. Unified framework for determining the Gaussian quadrature points, barycentres of an

element

2. Polynomial basis functions that are independent of the element
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(a) First Decomposition (b) Second Decomposition (c) Third Decomposition

(d) Fourth Decomposition (e) Fifth Decomposition (f) Sixth Decomposition

Figure 2.3: Hexahedral Decomposition

3. Transformation from physical to computational plane wrt one of the decomposed ele-

ments

Therefore a strategy is required on how the elements and surface areas can be decom-

posed. There are two techniques that are available, the first one being the decomposition of

each element into elements of lower order, and the decomposition into elements of higher

order. By order in this case we mean the node count of the element, therefore when decom-

posing a hexahedral cell described by 8 nodes, into an arbitrary number of tetrahedral cells

described by 4 nodes this is a lower order decomposition. On the other hand a tetrahedral cell

can be decomposed into 4 hexahedral cells which is a higher order decomposition. Generally

the lower order decomposition is preferred since it is the most efficient in terms of computing

resources. A typical example of lower order decompositions for the basic shapes of hexahe-

dral, prisms, and pyramids is shown in Figure 2.3 on page 23 to Figure 2.5 on page 24. The

decomposed tetrahedral elements are defined by colour lines in each case.
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(a) First Decomposition (b) Second Decomposition

Figure 2.4: Pyramid Decomposition

(a) First Decomposition (b) Second Decomposition (c) Third Decomposition

Figure 2.5: Prism Decomposition
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Figure 2.6: Triangle Mapping

The surface area and volume for any type of element are given by the following expres-

sions

Ss =
nd

∑
n f =1

ST (2.17)

Vks =
nd

∑
nv=1

VT (2.18)

Where s stands for the shape of the surface ranging from 1 to n depending on the element

shape, n f is the index of the decomposed triangular area, nd the number of decompositions.

ST is the area of the decomposed triangular surface, ks stands for the shape of the element

ranging from 1 to 5 depending on the element shape, nv is the index of the decomposed

tetrahedrals , and VT the volume of the decomposed tetrahedral element.

2.1.5 Gaussian Quadrature Points

The volume and surface integrals that appear in the finite volume schemes are approximated

by a Gaussian quadrature technique of appropriate order. The reason for that is since high-

order of spatial accuracy is required the approximation of these integrals should also be of

high-order of accuracy. The Gaussian quadrature rules used are defined on the unit triangle

for surface integrals and on unit tetrahedral for volume integrals. Therefore the Cartesian

coordinates of a triangle are mapped onto the coordinates of the unit triangle in order to es-

tablish the position of the Gaussian quadrature points, the same procedure is followed for the

tetrahedral as well. The Gaussian quadrature rules used can either be based on the Legendre

, Jacobi, Hermite, Chebyshev, Leguerre polynomials or any shifted formulation of them. For

the shifted Legendre polynomials in the interval [0,1] the mapping from physical Cartesian

coordinates x, y and z to the computational coordinates ξ , η and ζ is illustrated in Figure 2.6

on page 25 and Figure 2.7 on page 26.
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Figure 2.7: Tetrahedral Mapping

The Gaussian quadrature points are defined in the computational space with coordinates

ξ , η and ζ . The position of the quadrature points in the physical space with coordinates x, y

and z is given by the following equations.

qx = x1 +(x2 − x1)ξq +(x3 − x1)ηq +(x4 − x1)ζq (2.19)

qy = y1 +(y2 − y1)ξq +(y3 − y1)ηq +(y4 − y1)ζq (2.20)

qz = z1 +(z2 − z1)ξq +(z3 − z1)ηq +(z4 − z1)ζq (2.21)

Where qx, qy and qz are the coordinates of the quadrature points in physical space, ξq, ηq

and ζq are the coordinates of the Gaussian quadrature points in computational space as given

by the appropriate rule, and xn , yn and zn the coordinates in physical space of the nodes.

The origin of the axis in computational space is vertex 1 , therefore the coordinates of all the

vertices are normalised wrt the coordinates of vertex 1. Equations 2.19 to 2.21 provide the

mapping for tetrahedral elements. The number of quadrature points and weights for triangles

and tetrahedrals and the corresponding total number of surface and volume points for the

elements based on the decomposition for various orders of accuracy are outlined in Table

2.2 on page 27 and Table 2.3 on page 27. The weights and coordinates for the Gaussian

quadrature rules in the shifted Legendre interval of [0,1]can be found in [40].
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Order Tetrahedral Hexahedral Pyramidal Prismatic

2 12 36 18 24

3 16 48 24 32

4 24 72 36 48

5 28 84 42 56

6 48 144 72 96

7 52 156 78 104

8 64 192 96 128

Table 2.2: Element comparison in terms of surface Gaussian quadrature points

Order Tetrahedral Hexahedral Pyramidal Prismatic

2 5 30 10 15

3 10 60 20 30

4 11 66 22 33

5 15 90 30 45

6 24 144 48 72

7 31 186 64 93

8 45 270 90 135

Table 2.3: Element comparison in terms of volume Gaussian quadrature points

2.1.6 Stencil Selection Approach

Since we are dealing with high-order methods we need to know the variation of information

(data) in the close spatial proximity (neighbourhood) of each element in the mesh. There-

fore we would be able to obtain high quality approximations of how this information varies

within each element. Hence it is required to be able to construct a region (neighbourhood)

of elements surrounding each element in the mesh. This region is named the stencil and is

constructed by recursively adding the direct side neighbours of any considered element until

a number of elements has been reached. The basic steps of the stencil construction procedure

are outlined in Algorithm 1. Typical examples of central stencils in three-dimensions can be

seen in Figure 2.16 on page 36.

There is also another category of stencils named the directional stencils or WENO sten-

cils where there is an additional conditions that the elements must satisfy apart from the

repetition condition as seen in Algorithm 1. The additional condition that must be satisfied is

that the candidate element must lie within a specified geometrical sector. For analysing the

geometrical sector condition consider a quadrilateral cell i that we want to construct a direc-

tional stencil with respect to this cell. Most of the approaches employing the sectorial stencils

[22, 59, 61, 78, 75, 57] utilise sectors that either arise from the planes between the edge centre

the edge node and the barycentre of the elements, or from the edges that make a side and the

sectors outside from them as seen in Figure 2.8 on page 29. This technique results in 8 sectors

for the quadrilateral cell in two-dimensions. We have adopted another technique for defining
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Algorithm 1 Central Stencil Selection Algorithm

1. For cell i we want to construct a set of elements S (stencil) consisting of N(S)elements

2. With c = 1,2, ....N being the index of the numbering of the elements in the stencil

3. S1 = i, the considered cell i is always the first element in the stencil c = 1

4. Assume that the element in the stencil Sc has M number of direct-side neighbours

(a) Check which of the M elements do not belong in the set (Repetition Condition)

5. Assign as the next elements in the stencil only the ones that do not belong in the set

6. Repeat steps 4 to 8 until N number of elements have been assigned

the directional sectors which is at least two times and three times more efficient in terms of

resources required for storage of additional matrices for the other stencils, in two-dimensions

and three-dimensions respectively. We define the sectors by the plane of the two nodes that

define an edge and the barycentre of an element in two dimensions as seen in Figure 2.8 on

page 29. For three dimensions this technique extends in the same manner by having three

edges for each triangular face and four edges for each quadrilateral face as it is illustrated in

Figure 2.9 on page 29 respectively. A directional stencil is admissible when it has at least the

required number of elements satisfying the geometrical condition. For the triangular face the

edges C12, C13 and C23 and for the quadrilateral face the edges C12 , C23 , C34 , C41 make

the sector where C is the barycentre of the element that this face belongs to. Having defined

the sectors of each face the next step involves to set the condition that must be satisfied.

The geometrical condition that each candidate element for a directional stencil must sat-

isfy leads to the introduction of a new geometrical parameter Dc. Dc is the parameter defined

as the percentage of the vertices that must lie within the planes that define the sector. For

uniform unstructured and structured meshes Dc could be equal to 1 (100%) where for highly

stretched meshed this value must be relaxed. The effect of this parameter in terms of the

chosen elements for the stencil can be seen in Figure 2.10 on page 30 where the elements that

satisfy the condition set by Dc are depicted in red. The basic steps of the directional stencil

construction procedure are outlined in Algorithm 2.

Dc =
number o f nodes that lie within the sector

total number o f nodes o f the element
(2.22)

2.2 Reconstruction

Upwind finite volume methods evolve in time spatial cell averages of the solution. The use

of these averages in the calculation of the numerical flux leads to the first-order methods.
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(a) Barycentre and edgecentre con-

figuration

(b) Edge and reverse edge configu-

ration

(c) Barycentre and edge configura-

tion

Figure 2.8: Examples of directional sectors for stencils

(a) Planes of Triangular Face (b) Planes of Quadrilateral Face

Figure 2.9: Directional planes for directional stencils



CHAPTER 2. GENERAL FRAMEWORK OF DEVELOPED SCHEMES 30

(a) 1 (b) 0.66

Figure 2.10: Directional stencils for different values of Dc

Algorithm 2 Directional Stencil Selection Algorithm

1. For cell i we want to construct a set of elements S (stencil) consisting of N(S)elements

2. With c = 1,2, ....N being the index of the numbering of the elements in the stencil

3. S1 = i, the considered cell i is always the first element in the stencil c = 1

4. Assume that the element in the stencil Sc has M number of direct-side neighbours

(a) Check which of the M elements do not belong in the set (Repetition Condition)

(b) Check which of the elements that do not belong in the set satisfy the geometrical

condition (Dc condition)

5. Assign as the next elements in the stencil only the ones that do not belong in the set

6. Repeat steps 4 to 8 until N number of elements have been assigned
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(a) Hybrid Configuration (b) Prismatic Configuration

(c) Tetrahedral Configuration (d) Hybrid Configuration

Figure 2.11: Types of Unstructured Meshess

Modern higher-order accurate finite-volume methods usually need a non-oscillatory recon-

struction procedure to recover high-order accurate point-wise values of the solution from cell

averages. The quality of reconstruction, together with that of the numerical flux and time

advance method, defines the overall accuracy of the resulting finite-volume method.

In this section we describe a universal reconstruction procedure that is tailored for any

type of structured and unstructured meshes in three-space dimensions which will then be used

for the construction of the TVD and WENO schemes . Suppose that the spatial computational

domain is discretised by conforming elements Vi of the volume |Vi|, indexed by a unique

mono-index i. The center of the element has coordinates (xi,yi,zi). The mesh can consist

of hexahedral, tetrahedral, pyramidal, prismatic or any combination of them as shown in

Figure 2.11 on page 31 . More general polyhedral shapes can also be considered, but are
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omitted in the present work. In order to simplify the notation, we omit the global spatial

index i and introduce the local numbering of cells in order to simplify notation. We note that

it is sufficient to explain the idea of arbitrary high-order reconstruction for a scalar variable

u(x,y,z). The reconstruction problem can thus be reformulated as follows: for a target cell

V0 we would like to build a high-order polynomial p(x,y,z) that has the same cell average as

u on the target cell

u0 =
1

V0

ˆ

V0

u(x,y,z)dV (2.23)

The reconstruction procedure will use the cell averages of u(x,y,z) on the target cell V0

as well as averages ūm from the reconstruction stencil formed by neighboring cells Vm.

2.2.1 Linear (Central) Reconstruction

In general, the reconstruction can be carried out in the physical coordinates x = (x,y,z), taking

special measures against scaling effects. However, a more elegant and computationally accu-

rate approach is to use the so-called reference coordinate system (ξ ,η ,ζ ), as was suggested

in [22] for triangular (2D) and tetrahedral (3D) elements. Here we extend the transforma-

tion technique from [22] to deal with general mesh elements. The basic steps of our new

procedure are as follows:

1. Decompose the considered cell into a number of simpler elements, which can be either

tetrahedrals or hexahedrals.

2. Choose one of the resulting decomposed elements

3. Transform the chosen decomposed element from the physical space described by the

Cartesian coordinates x,y,z into a reference space described by ξ ,η ,ζ

4. Based on the Jacobian matrix of the transformation of the chosen decomposed ele-

ment, map the coordinates of the entire element into the reference space described by

coordinates ξ ,η ,ζ

5. Based on the same Jacobian all the elements in the stencil are transformed to the ref-

erence space and their volumes, and barycentres positions are recomputed in the new

reference space

In what follows we always decompose the general mesh element into tetrahedral elements.

Let vi j, j = 1,2, . . .Ji be the vertices of the considered (general) element, which can be either

tetrahedral, hexahedral, prismatic or pyramidal. Let also w1 = (x1,y1,z1), w2 = (x2,y2,z2),
w3 = (x3,y3,z3), w4 = (x4,y4,z4) be the four vertices of one of the tetrahedrals this element

is consisted of. Obviously, these vertices are between vi j ones. The transformation from the

Cartesian coordinates x, y, z into a reference space ξ , η , ζ is given by the following equations
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



x

y

z



 =





x1

y1

z1



+ J ·





ξ
η
ζ



 (2.24)

with the Jacobian matrix given by

J =





x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1



 (2.25)

Via the inverse mapping the element V0 can be transformed to the element V ′
0 in the reference

coordinate system

v′i j = J−1 ·
(

vi j −w1

)

, j = 1,2, . . .Ji (2.26)

Figure 2.12 on page 34 to Figure 2.15 on page 35 show the results of the transformation

for various element types. Note that for the uniform (Cartesian) hexahedral mesh the trans-

formed element V ′
0 is just a unit cube in the reference space ξ ,η ,ζ . For general non-uniform

meshes the transformed element will not be unit cube, however, four of its vertices will still

be from the unit square. This is different from the case of tetrahedral meshes in which each

cell is transformed in the unique reference triangle, see [22] for more details. Note that spatial

averages of u(x,y,z) does not change during transformation:

ū0 =
1

|V0|

ˆ

V0

u(x,y,z) dV ≡
1

|V ′
0|

ˆ

V ′
0

u(ξ ,η ,ζ ) dξ dηdζ

For performing the reconstruction on the target element E0, we form the so-called central

reconstruction stencil S which will consist of M + 1 elements, including the target element

E0:

S =
M
⋃

m=0

Vm
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(a) physical space (b) reference space

Figure 2.12: Hexahedral transformation

(a) physical space (b) reference space

Figure 2.13: Tetrahedral transformation
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(a) physical space (b) reference space

Figure 2.14: Tetrahedral transformation

(a) physical space (b) reference space

Figure 2.15: Prism transformation
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(a) Tetrahedral elements (b) Prismatic

(c) mixed-elements (d) mixed-elements

Figure 2.16: Central stencils of various element shapes
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where the local index m counts the elements in the stencil S . This central stencil is

build up by recursively adding the direct side neighbors of the element V0 and all of the

elements added to the stencil so far, until the desired number of stencil elements is reached.

Typical examples of central stencils can be seen in Figure 2.16 on page 36. We then apply

the inverse mapping 2.26 to all the elements Vm from the reconstruction stencil S and denote

the transformed elements and stencil as E ′
m and S ′, respectively:

S
′ =

M
⋃

m=0

V ′
m

One of the contributions of the present research is the development of very high-order

methods which can use mixed-element meshes consisting of hexahedrals, tetrahedrals, prisms

and pyramids. The transformation from cartesian coordinates to reference coordinates is

valid for tetrahedral elements (since a tetrahedral is always mapped into a unit tetrahedral in

reference space) that are not highly stretched and we always ensure in the mesh generation

that we do not have highly stretched elements. It should be stressed that there is no reduction

of the formal order of accuracy at the interface between cells of two different types. Our

stencil construction procedure allows to use stencils comprising of cells of different types.

The central stencil is build up by adding neighbors in the physical space x,y irrespective of

their shape.

The rth order reconstruction polynomial at the transformed cell V ′
0 is sought as an expan-

sion over local polynomial basis functions φk(ξ ,η ,ζ ):

p(ξ ,η ,ζ ) =
K

∑
k=0

akφk(ξ ,η ,ζ ) = ū0 +
K

∑
k=1

akφk(ξ ,η ,ζ ) (2.27)

where ak are degrees of freedom and the upper index in the summation of expansion K is

related to the order of the polynomial r by the expression K = 1
6
(r+1)(r+2)(r+3)−1. The

conservation condition 2.23 impose an important constraint on the basis functions: they must

have zero mean value over the cell V ′
0. On purely tetrahedral meshes hierarchical orthogonal

reconstruction basis functions defined on the reference element satisfy this requirement auto-

matically [22]. Since our general cells are not necessarily transformed onto a unit tetrahedron

or cube, we need to construct basis functions φk in such a way that condition 2.23 is satisfied

identically irrespective of values of degrees of freedom. We define the basis functions as

follows:

φk(ξ ,η ,ζ ) ≡ ψk(ξ ,η ,ζ )−
1

|V ′
0|

ˆ

V ′
0

ψk dξ dηdζ , k = 1,2, . . . (2.28)

where

{ψk} = ξ , η , ζ , ξ 2, η2, ζ 2, ξ ·η , ξ ·ζ , ζ ·η , ξ ·η ·ζ . . .

The resulting expression 2.28 for basis functions is suitable for cells of arbitrary shape.
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To find the unknown degrees of freedom ak we require that for each cell V ′
m from the sten-

cil the cell average of the reconstruction polynomial p(ξ ,η ,ζ ) be equal to the cell average

of the solution ūm:

ˆ

E ′
m

p(ξ ,η ,ζ )dξ dηdζ = |V ′
m|ū0 +

K

∑
k=1

ˆ

V ′
m

akφk dξ dηdζ = |V ′
m|um, m = 1, . . .M

Denoting the integrals of the basis function k over the cell m in the stencil the vector of

right-hand side by Amk and b, respectively

Amk =

ˆ

V ′
m

φk dξ dηdζ , bm = |V ′
m|(ūm − ū0)

we can rewrite the equations for degrees of freedom ak in the matrix form as

K

∑
k=1

Amkak = bm, m = 1,2, . . .M (2.29)

The three-dimensional integrals on the left-hand side of (2.29) are calculated using Gaus-

sian quadratures of appropriate orders [64].

In general, in order to compute the degrees of freedom ak we need at least K cells in the

stencil, different from the target cell E0. However, the use of the minimum possible number of

cells in the stencil M ≡K results in a scheme which may become unstable on general meshes.

It is therefore recommended to use more cells in the stencil then the minimal required number

[5, 22]. Although it is usually sufficient to use 50% more cells, for mixed-element meshes it

is safer to increase the stencil further. We typically select M = 2 ·K.

Since the resulting system 2.29 becomes over-determined, the least-square procedure is

invoked to solve it. The least-square reconstruction of 2.29 is obtained by seeking the mini-

mum of the following functional

F =
M

∑
m=1

ωm ·

(

K

∑
k=1

Amkak −bm

)2

where the weights ωm are squared reciprocals of the distance between cells E ′
0 and Em. The

advantage of the weighted least square reconstruction is that the influence of the data farther

from the considered E ′
0 is reduced [24, 17, 57], although a central least square reconstruction

is materialised with the weights ωm being equal to unity. Minimization of F gives a linear

system for finding ak:

K

∑
k=1

Ckak =
M

∑
m=1

Ampωmbm, Ck =

(

M

∑
m=1

ωmAmkAmp

)

, p = 1, . . .K (2.30)

Although the least square reconstruction has been adopted for various schemes for un-

structured grids [33, 18, 63, 17, 24, 77] there are certain issues that must be addressed. This
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procedure for solving the resulting least square is not suitable since for unstructured grids the

resulting system can be ill-conditioned , hence the procedure can be inaccurate. Therefore a

QR decomposition method is employed to solve this system of equations. One numerically

stable technique that is also suitable for ill-conditions systems is the Householder transfor-

mation in which a vector is reflected in some plane in such a way that all coordinates but

one disappear. We remark, that the coefficients of the resulted linear symmetric matrix A are

precomputed and stored for each element during the preprocessing stage of the calculation

increasing the computational efficiency of the method. Having solved numerically the linear

system 2.30, we can form the reconstruction polynomial 2.27 .

2.2.2 TVD Reconstruction

It is well known from Godunov’s theorem [25] that linear high-order scheme produce spu-

rious oscillations when applied to discontinuous solutions. To circumvent this non-linear

solution adaptive methods are designed. It appears that the first second-order non-oscillatory

Godunov-type scheme on unstructured meshes was proposed in [67] and uses an extension of

the minmod slope of Kolgan originally devised for structured meshes [39, 38]. More elabo-

rate version which uses higher-order polynomials was proposed in [5, 19]. We have employed

a TVD reconstruction process based on the central reconstruction as a more cost-efficient al-

ternative to the non-linear WENO reconstruction. Although this TVD implementation can

employ the central reconstruction process of any order of accuracy in practise it is 2nd-order

accurate in space.

The key ingredient of this technique is that we perform the linear-(central) reconstruction

as before but we restrict the reconstructed value to lie within a minimum and maximum limit.

Although the central stencil is used as previously for the reconstruction the minimum and

maximum values that restrict the reconstructed solution are obtained only from the direct

side neighbours (TVD stencil) of the considered element as shown in Figure 2.17 on page 40.

The basic steps of the TVD reconstruction are as follows:

1. Perform the linear reconstruction process as before by using the central stencil and we

obtain the values for the degrees of freedom ak

2. Obtain the minimum and maximum values uTV D
min , uTV D

max of the scalar u(x,y,z) from the

TVD stencil

3. Determine the reconstructed value up at the vertices of the considered element

4. Compute the slope limiter ψi of cell i with cell average ūi

ψi =















i f up − ūi > 0 ⇒ min
(

uTV D
max −up

ūi−up

)

i f up − ūi < 0 ⇒ min
(

uTV D
min −up

ūi−up

)

i f up − ūi = 0 ⇒ 1

(2.31)
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Figure 2.17: TVD Central Stencil

5. The reconstructed value up is then limited by the slope limiter ψi

up = ūi +ψi ·
K

∑
k=1

akφk (ξ ,η ,ζ ) (2.32)

2.2.3 WENO Reconstruction

Although TVD type of methods are quite robust and cost-efficient schemes they are not very

suitable for certain applications involving long-time evolution of smooth structures. Sig-

nificant improvement in accuracy may be obtained by considering the so-called essentially

non-oscillatory (ENO) and weighted ENO methods [30, 44]. These reconstructions use re-

construction polynomials from several different stencils. In particular, in WENO schemes the

actual reconstructed value is a convex combination of reconstructed values from stencils, with

nonlinear (solution-adaptive) WENO weights.These nonlinear weights are constructed from

the linear (constant) weights by taking into account smoothness of the solution in each of the

reconstruction stencils. The key difference of WENO approach from TVD-type reconstruc-

tions is that the resulting methods are uniformly high-order accurate while still maintaining

non-oscillatory behaviour at discontinuities.

Details on existing types of WENO reconstructions for tetrahedral meshes can be found

as well as references therein [22, 78]. The reconstruction proposed in the present work is

an extension of the approach from [22] to mixed-element meshes, consisting of elements

of arbitrary shapes. The WENO reconstruction stencils is a union of several reconstruction

stencils Sm, m = 0,1, . . . ,ms. These are one central stencil and several one-sided, or sectorial,
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stencils. The construction of the central stencil S0 was outlined in the previous sections. The

sectorial stencils are obtained by adding only those neighboring cells, centres of which lie

inside the given sector. Each sector in the present work is defined by the cell centre and a

face of the cell, which is different from [22] . Since the sectors constructed in such a way

cover all possible directions, we do not need to use the so-called reverse sectors suggested in

[36] . The number of sectorial stencils in our schemes is usually equal to the number of faces

of the cell. Note, that the number of stencils may be smaller near solid boundaries. Overall,

our reconstruction procedure thus uses a significantly smaller number of stencils compared to

the original construction, where ms = 6 is used for triangular elements. Figure 2.18 on page

42 and Figure 2.19 on page 43 illustrate the directional stencils for a mixed-element and an

tetrahedral unstructured mesh in the physical coordinate system.

The WENO reconstruction polynomial is now defined as a non-linear combination of

reconstruction polynomials pm(ξ ,η ,ζ ), obtained by using individual stencils Sm:

pweno =
ms

∑
m=0

ωm pm(ξ ,η ,ζ ) (2.33)

Substituting the form of the individual polynomial corresponding to the stencil Sm

pm(ξ ,η ,ζ ) =
K

∑
k=0

a
(m)
k φk(ξ ,η ,ζ )

and using the condition where ∑
m

ωm ≡ 1, we obtain

pweno =
ms

∑
m=0

ωm

(

K

∑
k=0

a
(m)
k φk(ξ ,η ,ζ )

)

= ū0 +
ms

∑
m=0

ωm

(

K

∑
k=1

a
(m)
k φk(ξ ,η ,ζ )

)

(2.34)

Further reordering yields

pweno = ū0 +
K

∑
k=1

(

ms

∑
m=0

ωma
(m)
k

)

φk(ξ ,η ,ζ ) ≡ ū0 +
K

∑
k=1

ãkφk(ξ ,η ,ζ ) (2.35)

Here ãk are the new values of degrees of freedom, modified according to the WENO

procedure. As is usual in WENO methods [34, 32] , the nonlinear weights ωm are defined as

ωm =
γm

ms

∑
m=0

γm

, γm =
dm

(ε + ISm)p

where dm are the so-called linear weights, ISm are smoothness indicators, ε is a small number

used to avoid division by zero and finally p is an integer parameter, controlling how fast the

non-linear weights decay for non-smooth stencils. We typically use ε = 10−6 and p = 4.

Note, that for some applications the choice of these two parameters may have a profound

effect on the numerical solution, see e.g [69] .
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(a) First Set (b) Second Set (c) Third Set

(d) Complete Set

Figure 2.18: WENO directional stencils for a mixed element mesh
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(a) First Set (b) Second Set

(c) Complete Set

Figure 2.19: WENO directional stencils for a tetrahedral element mesh
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Our selection of linear weights dm follows [22]. The central stencil is assigned a large

linear weight d0 = 102 . . .105 whereas the sectorial stencils are assigned smaller weights

dm = 1. This selection of the weights is motivated by the fact that for smooth solutions the

central stencil is usually the most accurate one. We also note that a similar concept was used

in in two spatial dimensions with equal weights assigned to all stencils [36].

The oscillation indicators ISm of each stencil is a measurement of how smooth the solution

is on this stencil. Due to the use of the reference coordinate system, scaling is already taken

out of the problem and ISm can be computed in a mesh-independent manner as

ISm = ∑
1<|β |<r

ˆ

V ′
0

(

Dβ pm(ξ ,η ,ζ )
)2

dξ dηdζ (2.36)

where β is a multi-index [40, 57], r is the order of the polynomial and D is the derivative

operator. The general form of D in three space dimensions can be found in [22]. It is easily

seen that the smoothness indicators are quadratic functions of degrees of freedom a
(m)
k and

thus the expression can be rewritten in terms of the so-called universal oscillation indicator

matrix [22] . If the mesh consists of tetrahedral elements only, then this matrix does not

depend on the element. For general elements it will, however, depend on the element. For

efficiency, it can be precomputed and stored at the beginning of the calculations for each

element Vi.



Chapter 3

Extension to the Compressible Euler

Equations

Introduction

In this chapter we describe the application of the developed schemes for the compressible

Euler equations in three-space dimensions. The chapter is structured as follows. We first

present the application of the reconstruction procedure to the Euler equations with respect to

characteristic variables. Next we outline the numerical flux approximation by approximate

Riemann solvers, the time advancement of the solution and finally the implementation of the

boundary conditions in the context of three-dimensional mixed-element unstructured meshes.

3.1 Euler Equations

In this section we consider the three-dimensional Euler equations in the following formula-

tion

∂

∂ t
U+

∂

∂x
F(U)+

∂

∂y
G(U)+

∂

∂ z
H(U) = 0 (3.1)

where U is the vector of the conserved variables, F, G, H are the flux vectors in x,y and z

Cartesian coordinates directions respectively given by

45
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U =













ρ
ρu

ρv

ρw

E













, F =













ρu

ρu2 + p

ρuv

ρuw

u(E + p)













G =













ρv

ρvu

ρv2 + p

ρvw

v(E + p)













, H =













ρw

ρwu

ρwv

ρw2 + p

w(E + p)



















































































here ρis density, u,v,w -velocity components in x,y and z directions respectively, p -

pressure, E = p/(γ −1)+(1/2)ρ(u2 + v2 +w2) - total energy per unit mass, γ is the ratio of

specific heats. We use γ = 1.4 throughout.

Integrating (3.1) in space over a mesh element Vi, and be exploiting the rotational invari-

ance property of the Euler equations [70] we obtain the following semi-discrete finite-volume

method :

d

dt
Ui +

1

|Vi|

˛

∂Vi

FndA = 0, Fn (U) = F(U)nx +G(U)ny +H(U)nz = T−1F(TU) (3.2)

where n = (nx,ny,nz) is outward unit normal vector, Ui(t) are the cell averages of the

solution at time t, Fn - projection of the flux tensor on the normal direction, T is the rotation

matrix and T−1 its inverse given by

T =













1 0 0 0 0

0 cosθsinϕ sinθsinϕ cosϕ 0

0 −sinθ cosθ 0 0

0 cosθcosϕ sinθcosϕ −sinϕ 0

0 0 0 0 1













(3.3)

T−1 =













1 0 0 0 0

0 cosθsinϕ −sinθ cosθcosϕ 0

0 sinθsinϕ cosθ sinθcosϕ 0

0 cosϕ 0 −sinϕ 0

0 0 0 0 1













(3.4)

where θ is the azimuthal angle and ϕ is the polar angle as defined in (2.15) and (2.16)

respectively.
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Assume that the element’s surface consists of L faces (here we omitted the spatial index i

for simplicity):

∂Vi =
L

∑
j

A j

Also denote by n j the outward unit vector for face A j. Then the integral over the element

boundary ∂Vi splits into the sum of integrals over each face resulting in the following expres-

sion:

d

dt
Ui = Ri, Ri = −

1

|Vi|

L

∑
j=1

ˆ

A j

Fn, jdA = −
1

|Vi|

L

∑
j=1

Ki j (3.5)

Here the numerical flux Ki j corresponding to the face j of the cell Vi is the surface integral

of the projection of the tensor of fluxes onto n j. In a numerical method the exact integral

expression for the numerical flux Ki j for the face j of a cell Vi is approximated by a suitable

Gaussian numerical quadrature:

Ki j =

ˆ

A j

Fn, jdA = ∑
β

Fn, j

(

U(xβ , t)
)

ωβ |A j| (3.6)

where the subscript β corresponds to different Gaussian integration points xβ and weights

ωβ over the face A j.

3.2 Reconstruction for systems

Calculation of a numerical flux (3.6) through the face A j of a cell Vi requires the knowledge

of point-wise values of the conserved vector U at the Gaussian points. However, the numer-

ical method advances in time the cell averages of the conserved vector. Therefore, we have

to obtain high-order approximation to the point-wise values of the conserved vector at each

Gaussian point of a face by using some high-order non-oscillatory reconstruction procedure.

Apart from the accuracy requirements, this procedure must also satisfy the conservation con-

dition, namely the cell average of the reconstruction polynomial over the cell Vi is equal to

Ui.

Here we employ the TVD and WENO reconstruction procedure on mixed-element meshes,

based on reconstruction procedure for a scalar function u, developed in the previously and

extended here in to vector variables, which are solutions of the compressible Euler equa-

tions. The reconstruction produces the high-order reconstruction polynomials Pi(ξ ,η ,ζ )
defined in the reference coordinate system. The simplest approach to the construction of a

reconstruction polynomial Pi is to apply the scalar reconstruction procedure, developed in

the previously, to each component of U. In other words, the conventional component-wise

WENO reconstruction polynomial is given by applying (2.34), (2.35) to each component of

the conserved vector U. For the TVD scheme we perform the reconstruction process in a

component-wise manner, hence we employ the TVD slope-limiter (2.31) for each conserved
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variable. However for higher than 2nd-order of accuracy the reconstruction procedure should

be carried out in characteristic variables rather than conservative variables. It can be shown

that the use of conservative variables (in a component-wise manner) in the reconstruction

results in considerable spurious oscillations even for simple shock-tube problems, see e.g.

[60]. Moreover, these spurious oscillations do not vanish as the mesh is refined. Therefore,

in the present thesis the WENO reconstruction is carried out in characteristic variables. Our

approach for extending the scalar reconstruction to the characteristic-based reconstruction is

very similar to that of [49], although different in some respects, and thus we only outline the

main steps.

Consider the cell Vi and the corresponding set of directional stencils in the local refer-

ence coordinate system {S′m}, m = 0,1, . . .ms. Calculate the vector degrees of freedom A
(m)
ik

for each stencil, applying the linear scalar reconstruction procedure in the component-wise

fashion. Then, the corresponding polynomials are given by

Pim(ξ ,η ,ζ ) =
K

∑
k=0

A
(m)
ik φik(ξ ,η ,ζ ) = Ūi +

K

∑
k=1

A
(m)
ik φik(ξ ,η ,ζ ), (3.7)

where φik are basis functions for cell Vi in the local reference coordinate system.

Define as the arithmetic average of the conserved vector Ui and the conserved vector ρ̂ ,

corresponding to the computational cell, adjacent to the face A j of the current cell Vi:

U′
n =

1

2
(Ui +Ui′).

Hence

ρs =
1

2
(ρ̂i + ρ̂i′) (3.8)

us =
1

2
(ûL + ûi′) (3.9)

vs =
1

2
(v̂L + v̂i′) (3.10)

ws =
1

2
(ŵL + ŵi′) (3.11)

Es =
1

2

(

ÊL + Êi′
)

(3.12)

1

2
Vs =

1

2

(

u2
s + v2

s +w2
s

)

(3.13)

Where ρ̂ , û, v̂, ê, Ê correspond to the rotated density, u-velocity, v-velocity, w-velocity, and

Energy. Let Rj, Lj be the matrices containing the right and left eigenvectors of the Jacobian
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matrix H j, corresponding to the normal projection of the flux tensor calculated at this average

state

where

H j =
∂Fn

∂U
=













0 1 0 0 0

(γ −1)Hs −u2
s −a2

s (3− γ)us −(γ −1)vs −(γ −1)ws (γ −1)
−usvs vs us 0 0

−usws ws 0 us 0
1
2
us

[

(γ −3)Hs −a2
]

Hs − (γ −1)u2
s −(γ −1)uv −(γ −1)usws γus













(3.14)

Hs = (Es + ps)/ρs =
1

2
V 2

s +
a2

s

(γ −1)
(3.15)

as =

√

γ ps

ρs
(3.16)

Rj =













1 1 0 0 1

us −as us 0 0 us +as

vs vs 1 0 vs

ws ws 0 1 ws

Hs −usas
1
2
V 2

s vs ws Hs +usas













(3.17)

Lj =
(γ −1)

2a2
s



















Hs + as

(γ−1) (us −as) −
(

us −
as

(γ−1)

)

−vs −ws 1

−2Hs + 4
(γ−1)a2

s 2us 2vs 2ws −2

−
2vsa

2
s

(γ−1) 0
2a2

s

(γ−1) 0 0

−
2wsa

2
s

(γ−1) 0 0
2a2

s

(γ−1) 0

H − as

(γ−1) (us −as) −us + as

(γ−1) −vs −ws 1



















(3.18)

where Fn is defined in (3.2) Hs is the enthalpy and as is the speed of sound. The crucial

step now is to compute the characteristic projections of the vector of the degrees of freedom

of each stencil Sm, including the cell averaged value UI as

B
(m)
ik j = L jA

(m)
ik , m = 0, . . . ,ms, k = 0, . . .K.

We now apply the scalar WENO reconstruction algorithm to each component of the projected

degrees of freedom. The resulting modified degrees of freedom B̃
(m)
ik j are projected back to

by multiplying them by Rj. The resulting WENO reconstruction polynomial for the face A j

is given by

Pi j(ξ ,η ,ζ ) = Ūi +
K

∑
k=1

Ãik jφik(ξ ,η ,ζ ), Ãik j = R jBik j. (3.19)



CHAPTER 3. EXTENSION TO THE COMPRESSIBLE EULER EQUATIONS 50

Note, that the degrees of freedom in (3.19) depend on the face index j. Finally, the

reconstructed values at Gaussian integration points are then given by

Pi(ξβ ,ηβ ,ζβ ) = Ūi +
K

∑
k=1

Aik jφik(ξβ ,ηβ ,ζβ ) (3.20)

where (ξβ , ηβ , ζβ ) are the coordinates of Gaussian points in the reference coordinate

system for the face A j of the cell Vi. We note that the values of the basis functions at Gaussian

integration points can be calculated and stored during the pre-processing step, increasing the

efficiency of the method.

An additional step in the reconstruction process was used in [49]. Namely, for each

cell Vi the least oscillatory of all Pi j is taken as the unique reconstruction polynomial Pi

and then used for all faces. In our calculations we omit this part of the characteristic-wise

reconstruction in order to reduce the computational cost.

It is well known that the WENO reconstruction as applied to nonlinear systems may

fail if the solution contains two discontinuities which are too close to each other. This is

because the reconstruction procedure will not be able to find a smooth stencil and spurious

oscillations will appear. As a result, the scheme may crash. To remedy this problem we adopt

(with appropriate modifications for the present study) a modification of the reconstruction

originally proposed in [30]for one-dimensional ENO schemes and later successfully extended

to the three-dimensional finite-volume WENO methods on structured meshes. Essentially, we

check if the reconstructed values of gas density and pressure differ too drastically from the

cell averaged values and if this is the case, we locally reduce the order of the reconstruction

polynomial. It can be shown that the use of the above procedure does not in any way degrade

the high order of accuracy of the schemes for smooth solutions; see [71] for details.

3.3 Numerical flux

After the reconstruction is carried out, for each computational cell the point-wise values of

the conserved vector U are represented by high-order reconstruction polynomials. Since these

polynomials are different, at each Gaussian point β in the expression for the numerical flux

(3.6) for the face A j of cell Vi we have two approximate values for the conserved vector U.

The first value U−
β

corresponds to the spatial limit to the cell boundary from inside the cell Vi

and is given by the reconstruction polynomial Pi. The second value U+
β

corresponds to the

spatial limit from outside the element and is obtained by using the reconstruction polynomial

of the neighboring element Vi′ . The values U±
β

are usually called left and right boundary

extrapolated values. In upwind Godunov-type methods the resulting discontinuity as illus-

trated in Figure 3.1 on page 51 is resolved by replacing the physical flux at each Gaussian

integration point by using a monotone function of left and right boundary extrapolated values

so that (3.6) can be rewritten as

Ki j ≈ ∑
β

Fn, j

(

U−
β ,U+

β

)

ωβ |A j| (3.21)
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(a) Piecewise Constant Discontinu-

ous States

(b) Piecewise Linear Discontinu-

ous States

(c) Arbitrary-Order Discontinuous

States

Figure 3.1: Discontinuous Intercell States

The function F̃n, j

(

U−
β
,U+

β

)

is called the Riemann solver, or a building block of a high-

order scheme.

Review of existing exact and approximate Riemann solvers for for various hyperbolic

systems can be found in [20, 70]. In this thesis we use the HLLC Riemann solver. A detailed

and up-to-date description can be found [70]. Using the concept of the rotational invariance

[70] , for each face A j and the local azimuthal angle θ and the polar angle ϕ we replace the

normal projection of the flux tensor Fn, j by

Fn, j = T−1F
(

T jU
)

(3.22)

where T j is the (constant) rotation matrix for face j. Then the expression (3.21) for Ki j is

rewritten as

Ki j = ∑
β

Fn, j

(

U−
β ,U+

β

)

ωβ |A j| = ∑
β

T−1F
(

ÛL, ÛR

)

ωβ |A j| (3.23)

where Û j is the rotated conserved variable and

ÛL = T jU
−
β , ÛR = T jU

+
β

It follows from (3.23) that the flux function for the Gaussian point β can be computed from

the augmented one-dimensional Riemann problem

∂

∂ t
Û+

∂

∂ s
F̂ = 0, F̂ = F(Û), Û(s,0) =

{

ÛL, s < 0,

ÛR, s > 0
(3.24)

Assuming a three-wave structure with wave speed estimates SL, S∗ and SR the HLLC flux

is given by

F̂HLLC =



































F̂L, i f 0 ≤ SL ,

F̂∗L = F̂L +SL(Û∗L − ÛL) , i f SL ≤ 0 ≤ S∗ ,

F̂∗R = F̂R +SR(Û∗R − ÛR) , i f S∗ ≤ 0 ≤ SR ,

F̂R, i f 0 ≥ SR ,

(3.25)
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where

Û∗K = ρK

(

SK −uK

SK −S∗

)

















1

S∗

vK

wK

EK

ρK
(S∗−uK)[S∗ + pK

ρK(SK−uK) ]

















for K = L and K = R. The wave speeds SL, S∗ and SR are estimated using the procedure for

pressure-velocity estimates of [70].

We remark that HLLC flux contains all waves in the Riemann problem solution, does not

use linearization of the equations and works well for low-density problems and sonic points

without any fixes. The HLLC flux has been recently used in a number of very high-order

methods, with good results, see e.g. [71, 68] .

3.4 Time Advancement

Having constructed the numerical fluxes Fn, jas expressed in the semi-discrete conservative

formulation (3.5) the next step involves the advancement of the solution in time. Depend-

ing on the spatial-order of accuracy of the scheme utilised we employ a time-advancement

scheme of the same order of accuracy (up to 3rd-order). Therefore the schemes used are the

explicit forward-euler, the explicit 2nd-order TVD Runge-Kutta and 3rd-order TVD Runge-

Kutta and the 4th-order Runge-Kutta. For higher than third-order schemes matching time

accuracy to space accuracy is limited due to the use Runge-Kutta schemes. To avoid spurious

oscillations the Runge-Kutta schemes must be TVD and this leads to accuracy barriers[68]

the accuracy of such methods cannot be higher than fifth. Moreover, fourth and fifth order

methods are quite complicated and have reduced stability range.

Un+1 = Un +∆t ·L(Un) (3.26)

U1 = Un + ∆t
2
·L(Un)

Un+1 = Un +∆t ·L
(

U1
)















(3.27)

U1 = Un +∆t ·L(Un)

U2 = 3
4
Un + 1

4
U1 + ∆t

4
·L

(

U1
)

Un+1 = 1
3
Un + 2

3
U2 + 2∆t

3
·L

(

U2
)































(3.28)
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U1 = Un + ∆t
2
·L(Un)

U2 = Un + ∆t
2
·L

(

U1
)

U3 = Un +∆t ·L
(

U2
)

Un+1 = 1
3

(

−Un +U1 +2U2 +U3
)

+ ∆t
6
·L

(

U3
)







































(3.29)

The time step ∆t is selected according to the formula

∆t = K min
i

hi

Si ·Vi
(3.30)

where Si is an estimate of the maximum propagation speed in cell Vi, K ≤ 1/3 is the CFL

number, hi is the characteristic length of the element Vi. The maximum propagation speed in

each cell is given by

Si = spx ·nx + spy ·ny + spz ·nz (3.31)

with

spx = |u+a| , ,spy = |v+a| , spx = |w+a|

where n = (nx,ny,nz) is the outward unit normal vector and a is the speed of sound and

the characteristics are running inwards to the domain. However for negative velocities the

local maximum of the eigenvalues has to be taken.

Similarly to other approaches [49, 74, 43, 45] the characteristic length hi of each el-

ement is taken to be the radius of the inscribed sphere of each element. We remark that

although the semi-discrete scheme ((3.5),(3.26)-(3.29)) advances in time cell averages of the

conserved quantities, the integrals of the flux functions over cell faces use point-wise values.

The description of the scheme is complete once a reconstruction procedure to calculate the

point-wise values from cell averages and a numerical flux (building block) of the scheme are

specified.

For higher than 3rd-order spatial accurate schemes however we employ the 3rd-order TVD

Runge-Kutta . For convergence studies and in cases where the temporal-order of accuracy is

of crucial importance we enforce a time-step size smaller than the one imposed by the CFL

condition. As documented by [42, 14, 62, 32] in order to match the spatial to the temporal

order of accuracy we use a time-step size given by

∆t = K · (∆x)
n
3 (3.32)

where n stands for the order of the scheme for n > 3.
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3.5 Implementation of Boundary Conditions

The implementation of boundary conditions in the context of three-dimensional unstructured

meshes is treated in a different manner from structured grids. Since the existence of valid

fictitious cells (widely used for structured grids [20, 3] ) can not be guaranteed a different

approach is exploited. The types of boundary conditions encountered for the compressible

Euler equations are the following:

1. Inflow

2. Transmissive

3. Solid (Wall)

4. Periodic

The central and directional stencil selection algorithms remain unchanged in the presence of

non-periodic boundary conditions and therefore the search algorithm is constrained within

the boundaries of the computational domain; this results in one-sided central stencils. The

total number of admissible directional stencils is reduced at the presence of boundaries. On

the other hand for periodic boundary conditions the stencils selection algorithm is as follows

1. For every cell with a periodic boundary face ∂Ω find the corresponding periodic ele-

ment inside the computational domain

2. Include the periodic element in the stencil selection algorithm

3. Recursively add the direct side neighbours (and the ones arising from the included

periodic element) satisfying the appropriate conditions until the required number of

elements in the stencil has been reached

4. Shift the coordinates of every element in the stencil that is periodic (as shown in the

schematic in Figure 3.2 on page 55 where different directional stencils are colour

coded)

For the computation of the numerical flux at the boundaries the inverse Riemann prob-

lem is solved by prescribing data outside the computational domain as [49, 22]. Consider

the rotated left (inside the considered cell) and right (outside the considered cell) intercell

conserved vector data states ÛL and ÛR with :

ÛL =













ρ
ρ ûL

ρ v̂L

ρŵL

E













, ÛR =













ρ
ρ ûR

ρ v̂R

ρŵR

E












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(a) Periodic Stencils Configuration (b) Shifted Periodic Stencils Configuration

Figure 3.2: Stencil Selection at the Presence of Periodic Boundaries

ÛR = ÛL f or transmissive boundary (3.33)

ÛR =













ρ
−ρ ûL

ρ v̂L

ρŵL

E













, f or no− slip(solid wall) boundary (3.34)

ÛR =













ρin f low

ρin f lowûin f low

ρin f lowv̂in f low

ρin f lowŵin f low

Ein f low













, f or in f low boundary (3.35)

Where the subscript in f low declares that these values are prescribed to be equal to the

ones specified at the boundary and corresponds to supersonic inflow boundary condition since

all characteristics run inwards to the domain and need to specified. For subsonic inflow how-

ever the far-field “inflow” boundary conditions the fixed and extrapolated Riemann invari-

ants corresponding to the incoming and outgoing waves traveling in characteristic directions

defined normal to the boundary must be used since there are also characteristics running

outwards of the domain. We remark that when periodic boundary conditions are used in

the context of unstructured meshes the surface meshes that are periodic must be exactly the

same. This will ensure that a for each element that has a periodic boundary surface a periodic

element exists.



Chapter 4

3D Applications

Introduction

In this section we present numerical results of our schemes up to 5th-order of accuracy as

applied to linear and non-linear hyperbolic conservation laws with both smooth and discon-

tinuous solutions in three space dimensions. In all our computations the multidimensional

Gaussian quadrature rule used for the approximation of surface and volume integrals has

twice the order of accuracy of the numerical scheme. For the Euler equations the HLLC

approximate Riemann solver is employed.

Below we denote the schemes of order r as WENO−r, e.g. the spatially 5th-order scheme

is denoted as WENO-5. The 3rd-order explicit TVD Runge-Kutta is employed for all the

numerical schemes except from the 1st-order Godunov scheme where 1st-order Forward Euler

is used. For all the numerical schemes up to 3rd-order of accuracy we run all convergence

tests with a fixed Courant number, which is chosen to be Cc f l = 0.3 since we are using an

unsplit finite volume with a stability condition that requires that CFL should be less than

1/3. However for higher-order numerical schemes the time-step size is reduced as defined in

(3.32) so that the spatial-order of accuracy dominates the computation.

The results illustrate that our schemes can compute discontinuous solutions without os-

cillations and at the same time maintain the designed very high order of accuracy in multiple

space dimensions.

4.1 3D Linear Advection Equation

4.1.1 Smooth Solution Test Case

We solve

∂u

∂ t
+

∂u

∂x
+

∂u

∂y
+

∂u

∂ z
= 0 (4.1)

with a smooth initial condition

56
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(a) N=10 (b) N=20 (c) N=40

Figure 4.1: Sequence of hybrid meshes (cutaway sections) used for convergence study of the

model equation (4.1) with initial conditions (4.2)

(a) N=10 (b) N=20 (c) N=40

Figure 4.2: Sequence of uniform hexahedral meshes (cutaway sections) used for convergence

study of the model equation (4.1) with initial conditions (4.2)

u0(x,y,z) = sin(2πx) · sin(2πy) · sin(2πz) (4.2)

The computational domain is a cube [0,1]3. Periodic boundary conditions are used. The

error is measured at time t = 1. The domain is meshed by five types of unstructured meshes.

Figure 4.1 on page 57 to Figure 4.5 on page 58 provide a cut view of the meshes used for

N = 10 , 20 , 40 where N specifies the number of cells over each edge of the cube. Then,

the interior is meshed with hexahedral, tetrahedral, prismatic and pyramidal elements or any

combination of them. The total number of cells is then denoted as Ntot .

Table 4.1 on page 59 to Table 4.5 on page 63 show convergence rates and errors for a

sequence of meshes for linear and non-linear schemes, used in calculations. We observe that

the schemes reach the designed order of accuracy. It must be noted that for this test case where

periodic boundary conditions the coarsest hexahedral and prismatic meshes N = 10 are not

sufficient (N/S) to employ LINEAR-5 and WENO-5 schemes since the stencils extend more

than half a period in length, leading to wrong results.
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(a) N=10 (b) N=20 (c) N=40

Figure 4.3: Sequence of unstructured hexahedral meshes (cutaway sections) used for conver-

gence study of the model equation (4.1) with initial conditions (4.2)

(a) N=10 (b) N=20 (c) N=40

Figure 4.4: Sequence of tetrahedral meshes (cutaway sections) used for convergence study of

the model equation (4.1) with initial conditions (4.2)

(a) N=10 (b) N=20 (c) N=40

Figure 4.5: Sequence of prismatic meshes (cutaway sections) used for convergence study of

the model equation (4.1) with initial conditions (4.2)
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Method N L1 error L1 order L∞ error L∞ order

1st-Order 20 1.30×10−1 1.026 2.10×10−1 1.013

40 6.54×10−2 0.991 9.89×10−2 1.086

80 3.33×10−2 0.986 5.20×10−2 0.927

Linear-2 20 4.45×10−2 1.724 7.61×10−2 1.843

40 9.89×10−3 2.169 2.33×10−2 1.705

80 2.61×10−3 1.921 5.89×10−3 1.983

Linear-3 20 1.20×10−2 2.762 5.73×10−2 2.477

40 1.61×10−3 2.897 8.32×10−3 2.783

80 1.98×10−4 3.041 1.11×10−3 2.906

Linear-4 20 8.4×10−3 3.287 2.6×10−2 3.491

40 5.3×10−4 3.986 2.1×10−3 3.653

80 3.21×10−5 4.045 1.45×10−4 3.856

Linear-5 20 1.2×10−3 N/S 2.12×10−3 N/S

40 4.2×10−5 4.836 7.4×10−5 4.840

80 1.53×10−6 4.778 2.41×10−6 4.948

TVD-2 20 7.7×10−2 1.425 4.0×10−1 0.997

40 1.7×10−2 2.179 1.9×10−1 1.074

80 4.34×10−3 1.969 9.45×10−2 1.007

WENO-2 20 5.74×10−2 1.931 8.59×10−2 1.872

40 1.52×10−2 1.916 2.18×10−2 1.978

80 4.01×10−3 1.922 5.31×10−3 2.037

WENO-3 20 1.4×10−2 2.535 5.1×10−2 2.622

40 2.1×10−3 2.722 7.3×10−3 2.796

80 2.65×10−4 2.986 1.03×10−3 2.825

WENO-4 20 2.4×10−3 3.816 9.3×10−3 3.599

40 2.1×10−4 3.610 5.9×10−4 3.978

80 1.42×10−5 3.886 3.56×10−5 4.050

WENO-5 20 9.56×10−4 N/S 4.30×10−3 N/S

40 3.52×10−5 4.763 1.56×10−4 4.784

80 1.21×10−6 4.862 4.89×10−6 4.995

Table 4.1: Convergence study for various schemes using a uniform hexahedral mesh as ap-

plied to the model equation (4.1) with initial conditions (4.2) at output time t = 1.0.
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Method N L1 error L1 order L∞ error L∞ order

1st-Order 20 2.20×10−1 0.937 3.59×10−1 1.123

40 1.21×10−1 0.874 2.09×10−1 0.784

80 6.54×10−2 0.875 1.06×10−1 0.979

Linear-2 20 4.67×10−2 1.839 8.69×10−2 1.732

40 1.23×10−2 1.924 2.41×10−2 1.851

80 3.54×10−3 1.796 6.98×10−3 1.787

Linear-3 20 1.39×10−2 2.857 4.66×10−2 2.962

40 1.59×10−3 3.127 5.55×10−3 3.059

80 1.89×10−4 3.072 7.67×10−4 2.865

Linear-4 20 6.77×10−3 3.943 1.89×10−2 3.842

40 4.21×10−4 4.007 1.87×10−3 3.344

80 2.98×10−5 3.820 1.22×10−4 3.938

Linear-5 20 8.56×10−4 N/S 2.09×10−3 N/S

40 3.34×10−5 4.679 6.89×10−5 4.920

80 1.08×10−6 4.950 1.95×10−6 5.145

TVD-2 20 8.2×10−2 1.821 4.6×10−1 0.912

40 2.4×10−2 1.772 2.2×10−1 1.064

80 6.52×10−3 1.880 1.03×10−1 1.094

WENO-2 20 6.16×10−2 1.907 9.02×10−2 1.693

40 2.25×10−2 1.453 2.66×10−2 1.761

80 5.67×10−3 1.988 6.79×10−3 1.969

WENO-3 20 9.43×10−3 2.579 3.67×10−2 2.622

40 1.55×10−3 2.604 5.88×10−3 2.641

80 1.96×10−4 2.983 8.23×10−4 2.836

WENO-4 20 8.56×10−4 3.977 7.33×10−3 3.874

40 6.97×10−5 3.618 4.12×10−4 4.153

80 4.52×10−6 3.946 2.77×10−5 3.894

WENO-5 20 7.73×10−4 N/S 3.47×10−3 N/S

40 2.69×10−5 4.844 1.27×10−4 4.772

80 1.03×10−6 4.706 4.23×10−6 4.908

Table 4.2: Convergence study for various schemes using a unstructured hexahedral mesh as

applied to the model equation (4.1) with initial conditions (4.2) at output time t = 1.0.



CHAPTER 4. 3D APPLICATIONS 61

Method N L1 error L1 order L∞ error L∞ order

1st-Order 20 3.90×10−1 0.679 4.80×10−1 0.754

40 1.97×10−1 0.985 2.31×10−1 1.055

80 1.05×10−1 0.907 1.22×10−1 0.921

Linear-2 20 3.77×10−2 1.887 7.48×10−2 1.905

40 8.54×10−3 2.142 2.28×10−2 1.714

80 2.29×10−3 1.898 5.96×10−3 1.935

Linear-3 20 9.85×10−2 2.844 3.983×10−2 2.958

40 9.73×10−4 3.339 6.47×10−3 2.620

80 1.29×10−4 2.915 7.26×10−4 3.155

Linear-4 20 4.51×10−3 3.911 1.27×10−2 3.632

40 3.62×10−4 3.639 9.24×10−4 3.780

80 2.47×10−5 3.873 6.56×10−5 3.816

Linear-5 20 7.54×10−4 N/S 1.53×10−3 N/S

40 2.57×10−5 4.874 5.39×10−5 4.828

80 9.38×10−7 4.776 1.79×10−6 4.912

TVD-2 20 9.3×10−2 1.966 4.78×10−1 0.798

40 2.54×10−2 1.872 2.64×10−1 0.856

80 7.51×10−3 1.757 1.31×10−1 1.010

WENO-2 20 5.21×10−2 1.741 7.27×10−2 1.933

40 1.48×10−2 1.815 1.79×10−2 2.022

80 4.29×10−3 1.786 5.02×10−3 1.831

WENO-3 20 6.93×10−3 2.671 2.49×10−2 2.542

40 9.27×10−4 2.902 4.73×10−3 2.396

80 1.41×10−4 2.716 6.77×10−4 2.804

WENO-4 20 5.87×10−4 3.994 6.97×10−3 3.309

40 4.68×10−5 3.648 6.42×10−4 3.440

80 3.05×10−6 3.939 3.91×10−5 4.035

WENO-5 20 6.99×10−4 N/S 1.96×10−3 N/S

40 2.36×10−5 4.888 8.55×10−5 4.518

80 9.71×10−7 4.603 2.69×10−6 4.990

Table 4.3: Convergence study for various schemes using a unstructured prismatic mesh as

applied to the model equation (4.1) with initial conditions (4.2) at output time t = 1.0.
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Method N L1 error L1 order L∞ error L∞ order

1st-Order 20 2.39×10−1 0.621 3.30×10−1 0.579

40 1.36×10−1 0.819 1.45×10−1 1.186

80 6.65×10−2 1.032 9.58×10−2 0.958

Linear-2 20 1.29×10−2 1.689 4.75×10−2 1.733

40 3.27×10−3 1.980 1.23×10−2 1.949

80 8.69×10−4 1.911 2.85×10−3 2.109

Linear-3 20 4.32×10−3 2.942 1.66×10−2 2.746

40 5.96×10−4 2.857 2.38×10−3 2.802

80 7.12×10−5 3.065 2.91×10−4 3.031

Linear-4 20 1.09×10−3 3.843 9.61×10−3 3.961

40 8.22×10−5 3.729 5.94×10−4 4.016

80 5.39×10−6 3.930 3.66×10−5 4.020

Linear-5 20 1.93×10−4 4.991 7.56×10−4 4.322

40 8.67×10−6 4.476 2.72×10−5 4.796

80 2.99×10−7 4.853 1.06×10−6 4.681

TVD-2 20 6.85×10−2 1.779 3.66×10−1 0.874

40 1.67×10−2 2.036 1.79×10−1 1.031

80 3.98×10−3 2.069 8.94×10−2 1.001

WENO-2 20 1.87×10−2 1.832 3.77×10−2 1.643

40 5.67×10−3 1.721 7.92×10−3 1.978

80 1.36×10−3 2.059 2.16×10−3 1.874

WENO-3 20 1.96×10−3 2.899 8.67×10−2 2.541

40 2.54×10−4 2.947 1.03×10−3 3.073

80 3.75×10−5 2.759 1.36×10−4 2.918

WENO-4 20 2.97×10−4 3.923 3.69×10−3 3.772

40 2.11×10−5 3.815 2.29×10−4 4.010

80 1.23×10−6 4.100 1.43×10−5 4.012

WENO-5 20 3.72×10−4 4.712 8.63×10−4 4.963

40 1.69×10−5 4.460 2.97×10−5 4.860

80 5.33×10−7 4.986 8.94×10−7 5.053

Table 4.4: Convergence study for various schemes using a unstructured tetrahedral mesh as

applied to the model equation (4.1) with initial conditions (4.2) at output time t = 1.0.
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Method N L1 error L1 order L∞ error L∞ order

1st-Order 20 3.54×10−1 0.759 4.98×10−1 0.598

40 1.69×10−2 1.066 2.53×10−1 0.977

80 8.23×10−2 1.038 1.33×10−1 0.927

Linear-2 20 6.87×10−3 1.892 1.44×10−2 1.963

40 1.66×10−3 2.049 2.97×10−3 2.277

80 4.21×10−4 1.979 6.98×10−4 2.089

Linear-3 20 7.96×10−4 2.892 5.78×10−3 2.642

40 9.23×10−5 3.108 6.99×10−4 3.047

80 1.17×10−5 2.979 8.32×10−5 3.070

Linear-4 20 7.82×10−4 3.968 2.11×10−3 3.667

40 4.91×10−5 3.990 1.33×10−4 3.982

80 3.23×10−6 3.928 8.57×10−6 3.961

Linear-5 20 4.85×10−5 4.692 2.61×10−4 4.518

40 1.44×10−6 5.073 8.67×10−6 4.911

80 4.57×10−8 4.977 2.55×10−7 5.087

TVD-2 20 5.34×10−2 1.563 4.11×10−1 0.732

40 1.31×10−2 2.130 2.22×10−1 0.888

80 3.28×10−3 2.038 1.09×10−1 1.026

WENO-2 20 1.02×10−2 1.875 6.33×10−2 1.821

40 2.33×10−3 2.130 1.56×10−2 2.020

80 5.67×10−4 2.038 4.07×10−3 1.938

WENO-3 20 9.29×10−3 2.638 6.75×10−3 2.778

40 1.17×10−4 2.990 7.63×10−4 3.145

80 1.41×10−5 3.050 9.41×10−5 3.019

WENO-4 20 8.57×10−4 3.529 4.29×10−3 3.617

40 4.96×10−5 4.110 2.76×10−4 3.958

80 2.94×10−6 4.073 1.75×10−5 3.979

WENO-5 20 5.62×10−5 4.887 3.43×10−4 4.925

40 2.35×10−6 4.578 1.08×10−5 4.784

80 7.56×10−8 4.959 3.62×10−7 4.898

Table 4.5: Convergence study for various schemes using a hybrid unstructured mesh as ap-

plied to the model equation (4.1) with initial conditions (4.2) at output time t = 1.0.
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A comparison between the five different types of meshes for the 3rd-order schemes with

a fixed CFL is shown in Figure 4.6 on page 65. It is clear at this stage that for the same mesh

resolution N, the hybrid and tetrahedral meshes are superior to structured and unstructured

hexahedral meshes in terms of L1 and L∞ error norms. This is justified by the fact that

the reconstruction stencils of hybrid and tetrahedral meshes for the same order of accuracy

are more compact since for the same mesh resolution more elements exist and therefore the

reconstruction process is more accurate. We must remark that hybrid and tetrahedral meshes

for the same resolution in terms of N are 4 to 14 times more expensive in terms of computing

resources than the hexahedral meshes which has a great impact on the total simulation time.

Another comparison between the five different types of meshes shown in Figure 4.7 on page

66 for the same scheme reveals that for the same number of total elements Ntot the hexahedral

meshes produces more accurate results than any other unstructured mesh.This is justified by

the fact that the time-step size of hexahedral elements is greater for a fixed CFL and by the

fact that hexahedral elements have more nodes and more faces than any of the other elements

used. In Table 4.6 on page 67 the statistics of each mesh used for this test problem are

illustrated. Figure 4.8 on page 68 to Figure 4.12 on page 72 illustrate slices of the isolines

of the solution for 2nd-order and 5th-order linear and WENO schemes for all the types of

meshes used for N = 20. It is clear that the 5th-order linear and WENO schemes provide

superior results compared to their 2nd-order counterparts.

Finally we must note that the 1st-order Godunov type of method produces worse results

for unstructured meshes than structured ones. This leads to the conclusion that unstructured

meshes have greater need for higher-order schemes than their structured counterparts; since

the complexity of the variation of spatial information must be treated with highly sophisti-

cated techniques that only the higher-order reconstruction schemes offer. The main purpose

of increasing the spatial resolution is to demonstrate the convergence rates of the high-order

schemes. It should be noted that although high-order schemes will provide more accurate

solution on coarser meshes compared to lower-order methods they require at least such a

mesh resolution that the stencils do not extend more than a period in length for these type of

problems.
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Mesh Type N Tetrahedrals Pyramids Prisms Hexahedrals Ntot

Uniform Hexahedral 20 0 0 0 8000 8000

40 0 0 0 64000 64000

80 0 0 0 512000 512000

Hexahedral 20 0 0 0 8000 8000

40 0 0 0 64000 64000

80 0 0 0 512000 512000

Tetrahedral 20 84669 0 0 0 84669

40 507337 0 0 0 507337

80 3830397 0 0 0 3830397

Prismatic 20 0 0 28000 0 28000

40 0 0 219200 0 219200

80 0 0 1760480 0 1760480

Hybrid 20 218016 40000 16000 8000 282016

40 1629213 160000 128000 64000 1981213

80 4844598 640000 1024000 512000 7020598

Table 4.6: Statistics for the meshes used for the computations of the model equation (4.1)

with initial conditions (4.2)
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(a) LINEAR-2 (b) LINEAR-5

(c) WENO-2 (d) WENO-5

Figure 4.8: Slice of isolines of solution for various schemes on uniform hexahedral mesh

at position z = 0.25 as applied to model equation (4.1) with initial conditions (4.2) at time

t = 1.0 .
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(a) LINEAR-2 (b) LINEAR-5

(c) WENO-2 (d) WENO-5

Figure 4.9: Slice of isolines of solution for various schemes on unstructured hexahedral mesh

at position z = 0.25 as applied to model equation (4.1) with initial conditions (4.2) at time

t = 1.0 .
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(a) LINEAR-2 (b) LINEAR-5

(c) WENO-2 (d) WENO-5

Figure 4.10: Slice of isolines of solution for various schemes on prismatic mesh at position

z = 0.25 as applied to model equation (4.1) with initial conditions (4.2) at time t = 1.0 .
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(a) LINEAR-2 (b) LINEAR-5

(c) WENO-2 (d) WENO-5

Figure 4.11: Slice of isolines of solution for various schemes on uniform tetrahedral mesh

at position z = 0.25 as applied to model equation (4.1) with initial conditions (4.2) at time

t = 1.0 .
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(a) LINEAR-2 (b) LINEAR-5

(c) WENO-2 (d) WENO-5

Figure 4.12: Slice of isolines of solution for various schemes on hybrid mesh at position

z = 0.25 as applied to model equation (4.1) with initial conditions (4.2) at time t = 1.0 .
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4.1.2 Discontinuous Solution Test Case

We solve the constant coefficient equation (4.1) with a discontinuous initial solution

u0(x,y,z) =

{

1, i f 0.25 ≤ x , z ≤ 0.75

0, otherwise
(4.3)

The computational domain is a cube [0,1]3. Periodic boundary conditions are used. The

domain is meshed by five types of unstructured meshes as for the smooth test case (4.2) and

the solution is computed at time t = 1. The computed solution from various schemes on

a uniform hexahedral mesh (N = 50) is illustrated in Figure 4.13 on page 74. We observe

that the non-linear schemes produce non-oscillatory solutions and the higher-order WENO

schemes produce a much sharper resolution of the discontinuity.

Figure 4.14 on page 75 show the effect of the central stencil linear weight d0 where

A = d0 = 105 and B = d0 = 103. It is noticed that with the central stencil linear weight A

some slight oscillations arise in the solution profile. It has been documented [21] that for

smooth solution profiles the central stencil weight should takes values in the top range ∼ 105

where for strong discontinuous problems should be takes values of the lower range ∼ 102.

The central stencil linear weight A, B has an influence on the contribution of the central-linear

reconstruction on the total reconstruction process. In smooth regions of the flow the central

linear reconstruction process would be the most accurate one where in discontinuous regions

of the flow the it would produce spurious oscillations.
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(a) LINEAR-3 (b) TVD-2

(c) WENO-2 (d) WENO-3

Figure 4.13: Computed solution for various schemes on a uniform hexahedral mesh N = 50

as applied to model equation (4.1) with initial conditions (4.3) at time t = 1.0 .
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(a) WENO-3 Central Stencil Linear Weight A (b) WENO-3 Central Stencil Linear Weight A

Figure 4.14: Solution profile for WENO-3 on hybrid mesh N = 80 as applied to model equa-

tion (4.1) with initial conditions (4.3) at time t = 1.0 .



CHAPTER 4. 3D APPLICATIONS 76

(a) 40x40x20 (b) 80x80x20 (c) 160x160x20

Figure 4.15: Sequence of hybrid meshes (cutaway sections) used for convergence study of

the model equation (4.4) with initial conditions (4.5)

4.2 3D Euler Equations

4.2.1 Vortex Evolution

We solve the three-dimensional Euler equations

∂

∂ t
U+

∂

∂x
F(U)+

∂

∂y
G(U)+

∂

∂ z
H(U) = 0 (4.4)

defined on [0,10]× [0,10]× [0,0.5]with periodic boundary conditions. The initial condition

corresponds to a smooth two-dimensional vortex placed at the centre of the x-y plane [5,5]
and is defined as the following isentropic perturbation of unit values of primitive variables

[4]:

u = ε
2π e

1−r2

2 (5−y), v = ε
2π e

1−r2

2 (x−5), w = 0,

T = (γ−1)ε2

8γπ2 e(1−r2), p
ργ = 1, r2 = (x−5)2 +(y−5)2

(4.5)

where the vortex strength is ε = 5. The exact solution is a vortex movement in the x−y plane

with a constant velocity at 45o to the Cartesian axis. We compute the numerical solution at

the output time t = 10 (one period) for which the vortex returns to the initial position. For

this test case the following meshes used are illustrated in Figure 4.15 on page 76 to Figure

4.18 on page 77. Periodic boundary conditions are applied. The statistics of the meshes used

can be found in Table 4.7 on page 78.
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(a) 40x40x20 (b) 80x80x20 (c) 160x160x20

Figure 4.16: Sequence of hexahedral meshes (cutaway sections) used for convergence study

of the model equation (4.4) with initial conditions (4.5)

(a) 40x40x20 (b) 80x80x20 (c) 160x160x20

Figure 4.17: Sequence of prismatic meshes (cutaway sections) used for convergence study of

the model equation (4.4) with initial conditions (4.5)

(a) 40x40x20 (b) 80x80x20 (c) 160x160x20

Figure 4.18: Sequence of tetrahedral meshes (cutaway sections) used for convergence study

of the model equation (4.4) with initial conditions (4.5)
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Figure 4.19: One dimensional profile cuts of density for various schemes using a uniform

hexahedral mesh for the model equation (4.4) with initial conditions (4.5) at t = 10.0

Mesh Type N Tetrahedrals Pyramids Prisms Hexahedrals Ntot

Hexahedral 40x40x20 0 0 0 8000 8000

80x80x20 0 0 0 64000 64000

160x160x20 0 0 0 512000 512000

Prismatic 40x40x20 110800 0 0 0 110800

80x80x20 440840 0 0 0 440840

160x160x20 1761280 0 0 0 1761280

Tetrahedral 40x40x20 0 0 51844 0 51844

80x80x20 0 0 350153 0 350153

160x160x20 0 0 2085769 0 2085769

Hybrid 40x40x20 97343 39217 0 8000 137360

80x80x20 351405 109755 0 64000 525160

160x160x20 1041529 486391 0 512000 2039920

Table 4.7: Statistics for the meshes used for the computations of the model equation (4.4)

with initial conditions (4.5)

Table 4.8 on page 79 to Table 4.11 on page 82 show errors and convergence rates in L1

and L∞ norm for cell averages of density. Both linear and WENO schemes are employed.

We observe that the schemes achieve higher than expected convergence rates. Figure 4.19 on

page 78 to Figure 4.22 on page 84 shows one dimensional profile cuts of density for different

schemes at y = 5, z = 0.25 .
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Method N L1 error L1 order L∞ error L∞ order

1st-Order 40x40x20 4.75×10−1 - 5.31×10−1 -

80x80x20 2.89×10−1 0.711 3.2×10−1 0.730

160x160x20 1.5×10−1 0.951 1.8×10−1 0.830

Linear-2 40x40x20 2.26×10−1 - 3.7×10−1 -

80x80x20 5.86×10−2 1.947 1.03×10−1 1.844

160x160x20 1.33×10−2 2.139 2.96×10−2 1.798

Linear-3 40x40x20 1.87×10−1 - 2.45×10−1 -

80x80x20 2.61×10−2 2.837 2.93×10−2 3.061

160x160x20 3.26×10−3 3.001 3.6×10−3 3.027

Linear-4 40x40x20 1.59×10−1 - 1.82×10−1 -

80x80x20 8.72×10−3 4.188 1.19×10−2 3.926

160x160x20 4.98×10−4 4.129 7.31×10−4 4.033

Linear-5 40x40x20 1.24×10−1 - 1.49×10−1 -

80x80x20 3.57×10−3 5.118 4.68×10−3 4.992

160x160x20 1.08×10−4 5.046 1.47×10−4 4.984

WENO-2 40x40x20 2.89×10−1 - 3.5×10−1 -

80x80x20 7.34×10−2 1.977 8.57×10−2 2.029

160x160x20 1.86×10−2 1.980 2.21×10−2 1.956

WENO-3 40x40x20 1.67×10−1 - 1.96×10−1 -

80x80x20 2.31×10−2 2.853 2.98×10−2 2.717

160x160x20 2.52×10−3 3.196 3.76×10−3 2.986

WENO-4 40x40x20 1.02×10−1 - 1.25×10−1 -

80x80x20 5.67×10−3 4.169 6.25×10−3 4.321

160x160x20 3.47×10−4 4.034 4.16×10−4 3.909

WENO-5 40x40x20 8.65×10−2 - 9.64×10−1 -

80x80x20 2.33×10−3 5.214 3.29×10−3 4.872

160x160x20 8.14×10−5 4.839 9.33×10−5 5.140

Table 4.8: Convergence study for various schemes using a uniform hexahedral mesh as ap-

plied to the model equation (4.4) with initial conditions (4.5) at output time t = 10.0.
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Method N L1 error L1 order L∞ error L∞ order

1st-Order 40x40x20 4.01×10−1 - 5.19×10−1 -

80x80x20 2.02×10−1 1.021 3.10×10−1 0.746

160x160x20 1.12×10−1 0.850 1.62×10−1 0.936

Linear-2 40x40x20 2.54×10−1 - 3.96×10−1 -

80x80x20 6.37×10−2 1.995 1.21×10−1 1.710

160x160x20 1.66×10−2 1.940 3.21×10−2 1.914

Linear-3 40x40x20 1.96×10−1 - 2.51×10−1 -

80x80x20 2.87×10−2 2.771 3.35×10−2 2.905

160x160x20 4.41×10−3 2.702 4.63×10−3 2.855

Linear-4 40x40x20 1.44×10−1 - 1.81×10−1 -

80x80x20 8.52×10−3 4.079 1.62×10−2 3.481

160x160x20 5.17×10−4 4.042 9.44×10−4 4.101

Linear-5 40x40x20 1.18×10−1 - 1.28×10−1 -

80x80x20 2.86×10−3 5.366 4.17×10−3 4.939

160x160x20 1.11×10−4 4.687 1.56×10−4 4.740

WENO-2 40x40x20 1.99×10−1 - 2.63×10−1 -

80x80x20 5.31×10−2 1.905 7.42×10−2 1.825

160x160x20 1.37×10−2 1.954 1.83×10−2 2.019

WENO-3 40x40x20 1.78×10−1 - 2.57×10−1 -

80x80x20 1.95×10−2 3.190 3.11×10−2 3.046

160x160x20 2.54×10−3 2.864 4.07×10−3 2.933

WENO-4 40x40x20 1.18×10−1 - 1.39×10−1 -

80x80x20 6.89×10−3 4.098 8.12×10−3 4.097

160x160x20 4.35×10−4 3.985 5.31×10−4 3.939

WENO-5 40x40x20 7.99×10−2 - 1.27×10−1 -

80x80x20 2.46×10−3 5.021 4.514×10−3 4.814

160x160x20 7.22×10−5 5.090 1.28×10−5 5.140

Table 4.9: Convergence study for various schemes using a prismatic mesh as applied to the

model equation (4.4) with initial conditions (4.5) at output time t = 10.0.
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Method N L1 error L1 order L∞ error L∞ order

1st-Order 40x40x20 4.56×10−1 - 5.47×10−1 -

80x80x20 2.38×10−1 0.940 3.70×10−1 0.562

160x160x20 1.19×10−1 0.994 1.76×10−1 1.071

Linear-2 40x40x20 2.73×10−1 - 4.2×10−1 -

80x80x20 7.17×10−2 1.932 1.42×10−1 1.581

160x160x20 1.86×10−2 1.946 3.69×10−2 1.943

Linear-3 40x40x20 2.18×10−1 - 2.84×10−1 -

80x80x20 3.01×10−2 2.857 3.42×10−2 3.051

160x160x20 5.20×10−3 2.533 5.49×10−3 2.641

Linear-4 40x40x20 1.56×10−1 - 2.12×10−1 -

80x80x20 9.24×10−3 4.081 1.91×10−2 3.476

160x160x20 5.30×10−4 4.123 1.04×10−3 4.198

Linear-5 40x40x20 1.41×10−1 - 1.53×10−1 -

80x80x20 2.92×10−3 5.605 4.71×10−3 5.024

160x160x20 1.19×10−4 4.604 1.59×10−4 4.890

WENO-2 40x40x20 2.09×10−1 - 3.03×10−1 -

80x80x20 6.32×10−2 1.724 8.88×10−2 1.782

160x160x20 1.45×10−2 2.118 1.99×10−2 2.145

WENO-3 40x40x20 1.31×10−1 - 2.93×10−1 -

80x80x20 2.13×10−2 3.299 3.26×10−2 3.168

160x160x20 2.80×10−3 2.927 4.49×10−3 2.860

WENO-4 40x40x20 1.31×10−1 - 1.63×10−1 -

80x80x20 7.37×10−3 4.157 8.64×10−3 4.240

160x160x20 4.42×10−4 4.059 5.87×10−4 3.887

WENO-5 40x40x20 8.63×10−2 - 1.44×10−1 -

80x80x20 2.71×10−3 4.989 4.80×10−3 4.096

160x160x20 7.7×10−5 5.141 1.49×10−4 5.014

Table 4.10: Convergence study for various schemes using a tetrahedral mesh as applied to

the model equation (4.4) with initial conditions (4.5) at output time t = 10.0.
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Method N L1 error L1 order L∞ error L∞ order

1st-Order 40x40x20 3.38×10−1 - 4.63×10−1 -

80x80x20 2.31×10−1 0.639 2.6×10−1 0.833

160x160x20 1.23×10−1 0.901 1.55×10−1 0.744

Linear-2 40x40x20 1.60×10−1 - 2.83×10−1 -

80x80x20 5.52×10−2 1.541 7.9×10−2 1.843

160x160x20 1.16×10−2 2.251 2.31×10−2 1.770

Linear-3 40x40x20 1.73×10−1 - 2.28×10−1 -

80x80x20 1.99×10−2 3.120 2.86×10−2 2.994

160x160x20 2.74×10−3 2.864 3.42×10−3 3.063

Linear-4 40x40x20 1.43×10−1 - 1.46×10−1 -

80x80x20 8.52×10−3 4.072 9.41×10−3 3.958

160x160x20 3.83×10−4 4.474 5.66×10−4 4.056

Linear-5 40x40x20 9.38×10−2 - 1.11×10−1 -

80x80x20 2.89×10−3 5.019 4.05×10−3 4.767

160x160x20 9.23×10−5 4.970 1.23×10−4 5.036

WENO-2 40x40x20 2.75×10−1 - 3.06×10−1 -

80x80x20 7.21×10−2 1.931 7.24×10−2 2.082

160x160x20 1.65×10−2 2.127 1.69×10−2 2.099

WENO-3 40x40x20 1.59×10−1 - 1.53×10−1 -

80x80x20 1.97×10−2 3.010 2.80×10−2 2.457

160x160x20 1.92×10−3 3.357 3.71×10−3 2.916

WENO-4 40x40x20 8.55×10−1 - 1.14×10−1 -

80x80x20 4.5×10−3 4.248 6.02×10−3 4.248

160x160x20 2.8×10−4 4.008 3.82×10−4 3.977

WENO-5 40x40x20 6.53×10−2 - 7.12×10−1 -

80x80x20 2.22×10−3 4.870 3.27×10−3 4.442

160x160x20 5.83×10−5 5.258 8.03×10−5 5.350

Table 4.11: Convergence study for various schemes using a hybrid mesh as applied to the

model equation (4.4) with initial condition (4.5) at output time t = 10.0.
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Figure 4.20: One dimensional profile cuts of density for various schemes using a prismatic

mesh for the model equation (4.4) with initial conditions (4.5) at t = 10.0
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Figure 4.21: One dimensional profile cuts of density for various schemes using a tetrahedral

mesh for the model equation (4.4) with initial conditions (4.5) at t = 10.0
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Figure 4.22: One dimensional profile cuts of density for various schemes using a hybrid mesh

for the model equation (4.4) with initial conditions (4.5) at t = 10.0

4.2.2 Shock tube

We consider the one-dimensional shock tube problem computed in a 3D manner which is a a

modification of the original Sod test problem proposed by [70]. The computational domain

has the shape of a rectangular tube with length L = 1, from x = 0 to x = 1, and width W = 0.5.

The interior is meshed by an unstructured hexahedral mesh as shown in Figure 4.23 on page

85 with N = 100 across x-direction . Transmissive boundary conditions are used along x-axis

and periodic boundary conditions along y, and z-axis . We solve the three-dimensional Euler

equations (4.4) with the initial condition

(ρ,u,v,w, p)(~x,0) =

{

(1,0,0,0,1) i f x ≤ 0.5
(0.125,0,0,0,0.1) i f x > 0.5

(4.6)

Figure 4.24 on page 85 shows a comparison of the density profile of WENO-3 across x-

direction. We observe the non-oscillatory properties of the developed scheme and the in-

fluence of the linear weight assigned to the central stencils. The solution profile is slightly

sharper with the larger linear weight but with some slight oscillations on the other hand the

smaller linear weight does not produce any oscillations but also does not have such a sharp

profile. In other words the nature of the problem to be solved drives the values for the linear

weights of the central stencil as also documented by [49, 57]. For the majority of the prob-

lems the most robust value for the central stencil linear weight should be 100 as it has been

mentioned in the literature to be the most robust [49, 22].
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Figure 4.23: Cutaway section of unstructured hexahedral mesh used for convergence study

of the model equation (4.4) with initial conditions (4.6)

Figure 4.24: Density profile across x-direction for WENO-3 with different values of linear

weights assigned to the central stencil applied to the model equation (4.4) with initial condi-

tions (4.6)
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(a) N=10 (b) N=20 (c) N=80

Figure 4.25: Sequence of tetrahedral meshes (cutaway sections) used for the study of the

non-oscillatory properties of the schemes applied to the model equation (4.4) with initial

conditions (4.7)

4.2.3 Explosion

We calculate the solution of the so-called spherical explosion test problem [70]. The initial

condition defined on [0 : 2]3 consists of two regions of constant but different values of gas

parameters separated by a sphere of radius 0.4 :

(ρ,u,v,w, p)(~x,0) =

{

(1,0,0,0,1) i f r ≤ 0.4
(0.125,0,0,0,0.1) i f r > 0.4

, r2 = x2 + y2 + z2. (4.7)

The Euler equations (4.4) are solved, transmissive boundary conditions are applied and

numerical solution is computed at the output time t = 0.25 on a sequence of refined tetrahe-

dral meshes with N = 10,20,80 cells along each edge of the cube as shown in Figure 4.25 on

page 86 .

We present distributions of gas density ρ and internal energy e = T/(γ −1) in Figure

4.26 on page 87 to Figure 4.30 on page 89. The solution contains a spherical shock wave and

a contact surface traveling away from the centre and a spherical rarefaction wave traveling

towards the origin (1,1,1). First of all it is noticed that TVD-2 is producing the correct flow

pattern, and that the WENO-3 scheme depends on the geometrical directionality condition

Dc (2.22). Ensuring that all the nodes of a candidate element for the directional stencils

lie within this sector results in more robust scheme and hence the possibility for having at

least one stencil within a smooth region (unless discontinuities are too close to each other in

terms of grid spacing) is greater. Although other approaches [1, 32, 62, 31, 75, 42] use the

barycentre to determine if an element lies within a sector, for arbitrary shaped elements this

is not sufficient since the barycentre could lie within a sector but at the same time a node

could not and this could dramatically impact the reliability of the scheme as it is illustrated

in Figure 4.26 on page 87 to Figure 4.29 on page 88. We observe that the WENO-3 scheme

with Dc = 1.0 produces a much sharper profile than the corresponding TVD-2 and at the same

time without any oscillations. It must be stressed that the geometrical parameter Dc since it is
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(b) WENO-3 with Dc=0.2
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Figure 4.26: Density profile at x = 1 for various schemes for tetrahedral mesh for N = 10 for

the model equation (4.4) with initial conditions (4.7) at time t = 0.25
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(b) WENO-3 with Dc=0.2
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Figure 4.27: Internal energy profile at x = 1 for various schemes for tetrahedral mesh for

N = 10 for the model equation (4.4) with initial conditions (4.7) at time t = 0.25

dependent on the mesh elements it should be a local adaptive parameter where every element

depending on the surrounding elements would adjust this value so that no one-sided stencils

along a straight line are constructed (high condition number for least square reconstruction)

and that most admissible stencils are constructed.
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(b) WENO-3 with Dc=0.2

R

0.1

0.2

0.3

Y

0

0.5

1

1.5

2

Z

0

0.5

1

1.5

2

(c) WENO-3 with Dc=1.0

Figure 4.28: Density profile at x = 1 for various schemes for tetrahedral mesh for N = 20 for

the model equation (4.4) with initial conditions (4.7) at time t = 0.25
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Figure 4.29: Internal energy profile at x = 1 for various schemes for tetrahedral mesh for

N = 20 for the model equation (4.4) with initial conditions (4.7) at time t = 0.25
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(a) TVD-2 (b) WENO-3 with Dc=1.0

Figure 4.30: Internal energy profile at x = 1 for various schemes for tetrahedral mesh for

N = 80 for the model equation (4.4) with initial conditions (4.7) at time t = 0.25
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Figure 4.31: Density profile at x = 1 for various schemes for tetrahedral mesh for N = 80 for

the model equation (4.4) with initial conditions (4.7) at time t = 0.25
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(a) Density

(b) Internal energy

Figure 4.32: Isosurfaces cutaway sections of tetrahedral mesh for N = 80 for the model

equation (4.4) with initial conditions (4.7) at time t = 0.25using a WENO-3 scheme.
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Figure 4.33: Tetrahedral mesh (cutaway sections) used for the study of the non-oscillatory

properties of the WENO-3 applied to the model equation (4.4) with initial conditions (4.8)

4.2.4 Implosion

We calculate the solution of the so-called spherical implosion test problem [70]. The initial

condition defined on [0 : 2]3 consists of two regions of constant but different values of gas

parameters separated by a sphere of radius 0.4 :

(ρ,u,v,w, p)(~x,0) =

{

(1,0,0,0,1) i f r > 0.4
(0.125,0,0,0,0.1) i f r ≤ 0.4

, r2 = x2 + y2 + z2. (4.8)

The Euler equations (4.4) are solved, transmissive boundary conditions are applied and nu-

merical solution is computed on a tetrahedral mesh of 3710329 cells as shown in Figure 4.33

on page 92 .

We present distributions of gas density ρ and internal energy e = T/(γ −1) in the Figure

4.34 on page 93 to Figure 4.37 on page 96 . The purpose for computing the spherical implo-

sion test problem is not to gain an insight in the processes involved during this complicated

phenomena that occurs in nuclear physics, type-II supernova, black holes etc but to illustrate

the robustness of the schemes for this challenging problem. The challenge in this problem is

that the discontinuities are not moving farther away but they move towards each other until

they collide and then an explosion process occurs. A WENO-3 scheme is employed with

directionality condition Dc = 1.0 and a linear weight assigned to the central stencil d0 = 102

since this is test with strong discontinuities. We remark that any spurious oscillation that

could occur would result in a blown-up solution and the robustness of the WENO-3 scheme

is demonstrated by the fact that no spurious oscillations are created.



CHAPTER 4. 3D APPLICATIONS 93

(a) t=0.024 (b) t=0.071

(c) t=0.093 (d) t=0.165

(e) T=0.213 (f) t=0.333

Figure 4.34: Density profile at z = 1 for WENO-3 for the model equation (4.4) with initial

conditions (4.8) at various instants
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(a) t=0.024 (b) t=0.071

(c) t=0.093 (d) t=0.165

(e) t=0.213 (f) t=0.333

Figure 4.35: Internal energy profile at z = 1 for WENO-3 for the model equation (4.4) with

initial conditions (4.8) at various instants



CHAPTER 4. 3D APPLICATIONS 95

(a) t=0.024 (b) t=0.071

(c) t=0.093 (d) t=0.165

(e) t=0.213 (f) t=0.333

Figure 4.36: Density isosurfaces cutaway section at various instants for the 3D implosion test

problem using a WENO-3 scheme
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(a) t=0.024 (b) t=0.071

(c) t=0.093 (d) t=0.165

(e) T=0.213 (f) t=0.333

Figure 4.37: Internal energy isosurfaces cutaway section at various instants for the 3D im-

plosion test problem using a WENO-3 scheme
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Figure 4.38: HB2 Geometry taken from [27]

4.2.5 Blunted-cone-cylinder-flare Test Case

Finally we apply the third-order WENO method to the flow over a realistic geometry. We con-

sider the so-called blunted-cone-cylinder-flare geometry, designated HB-2. This geometry

has been used extensively in aerodynamic test-facilities [27]. Vast amounts of data gathered

from experiments conducted under axissymetric three dimensional conditions are available

in the literature. This high-speed flow problem is used to test the robustness of the proposed

methods as applied to real-life applications.

The geometry of the problem is shown in Figure 4.38 on page 97. In our computational

setup the x-axis is directed along the body. The computational domain (including the wake

region) is meshed by two hybrid unstructured meshes of different resolution; Mesh 1 having

64431 cells and Mesh 2 having 690040 cells as shown in Figure 4.39 on page 98 . Although

most of the computational cells are hexahedral, near the nose and the base of the body the

mesh contains prisms and is thus of mixed-element type. We present the computational

results for the case with the free-stream Mach number equal to 5 at zero angle of attack based

on the compressible Euler equations.

We monitor the convergence of the total normal pressure force of the HB2 geometry. The

pressure force is defined by the following formula:

Fx = (p ·S) ·nx (4.9)
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(a) Mesh 1 (b) Mesh 2

Figure 4.39: Meshes used for the HB2 Geometry

Where p is the pressure, S is the surface area of the HB2 and nxis the x-axis normal vector.

The convergence of the normal pressure force of the WENO-3 scheme can be seen in Figure

4.40 on page 99 .

Figure 4.41 on page 100 and Figure 4.42 on page 101 show the pressure distribution along

the body, normalised by the post-shock stagnation pressure and ploted against longitudinal

position for Mesh 1 and Mesh 2 respectively. We notice that for both meshes WENO-3

scheme produces much sharper pressure profile as opposed to TVD-2 scheme although the

performance of the schemes is dramatically improved by the increase in the mesh resolution.

Figure 4.43 on page 102 shows the density distribution obtained from TVD-2 and WENO-

3 schemes where it is noticed that WENO-3 produces slightly sharper profile compared to

TVD-2 scheme. Finally the U velocity isosurfaces for WENO-3 scheme are shown in Figure

4.44 on page 103.
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Figure 4.40: Normal Pressure force convergence for the WENO-3 scheme
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Figure 4.41: Normalised Pressure Distribution for HB2 using Mesh 1



CHAPTER 4. 3D APPLICATIONS 101

Figure 4.42: Normalised Pressure Distribution for HB2 using Mesh 2
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(a) TVD-2

(b) WENO-3

Figure 4.43: Density profile at Y=0, for HB2 from various schemes
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Figure 4.44: U Velocity isosurfaces for HB2 geometry using WENO-3 scheme



Chapter 5

Parallel Implementation

5.1 Introduction

The requirements for large-scale three-dimensional high-quality CFD analysis for industrial

applications have increased due to the huge leap in computing processing power of the last

decade. Parallelisation of existing computational methods and software is a subject of active

research. However in the context of very high-order finite volume schemes tailored for any

type of unstructured meshes the research activity is still very limited. One of the reasons

for that is the arbitrary nature of the meshes used and the arbitrariness of the load balancing

between the processes which leads to poor parallel performance of unstructured solvers.

Most of the algorithms employed in various highly sophisticated unstructured solvers per-

form worse than a structured solver [16, 6, 79, 7, 8, 46]. One of the advantages of explicit

methods used here is that they can be easily parallelised based on domain decomposition. In

this chapter we present the parallelisation strategy. We have exploited the potential of parallel

algorithms for unstructured meshes and have designed a new family of algorithms that offer

similar parallelisation efficiency if not better than structured solvers [2, 41]. In this chap-

ter we first present the mesh decomposition employed and the corresponding load balancing

achieved. Next we outline the boundary exchange strategy which is required in the context

of any type of scheme, and then we describe the reconstruction exchange strategy which is

required only by high-order schemes which is the most expensive process in terms of comput-

ing power. Finally we present results from various schemes for a fixed test-problem obtained

from the ASTRAL-HPC at Cranfield University where the performance of the developed al-

gorithms is assessed. The Message Passing Interface API is used for the parallelisation of the

UCNS3D solver since it is suited for High Performance Computing Facilities with distributed

memory architecture.

5.2 Mesh decomposition

The mesh decomposition process is the preprocessor step which is one of the most essential

elements for an equal load balance between processes in terms of memory requirements and

104
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Figure 5.1: Mesh decomposition of complicated geometry

communications between processes. The software package used for partitioning uniform

unstructured meshes and even hybrid meshes is the METIS software package [35]. The

process chosen for decomposition is to convert the mesh into a nodal graph rather than using

a dual graph in order to derive a partitioning of the nodes. The reason for doing that is that

by using a nodal graph we are not limited by uniform unstructured meshes and therefore

hybrid unstructured meshes can also be decomposed. A typical example of a hybrid mesh

decomposition is illustrated in Figure 5.1 on page 105.

The load balancing achieved with this software package for the meshes used ranges be-

tween 1.00 and 1.07 for any type of unstructured mesh. The performance of the METIS

software package has produced highly-efficient unstructured solvers with very high-order

schemes [49]. ParMETIS could also have been used but since optimisation of the mesh

partitioning was not a priority it was not employed, however for future optimisation of the

mesh partitioning it is highly desirable to employ ParMETIS. Although the load balancing

between processes could reach the ideal value of 1.00, that does not imply that the actual

load balance between processes would be equal. The reason for that is that although each

process has roughly the same number of elements and vertices, it is other parameters that

define the balance between the processes such as the position of the physical boundaries of

the computational domain, the boundaries between the processes and the most important the

type of the scheme employed.
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Figure 5.2: Typical example of boundary interface between processes

5.3 Boundary exchange strategy

Having decomposed the mesh into a number of blocks every block is assigned to a specific

process. In this section we only describe the strategy for exchanging reconstructed values at

the intercell faces of the boundaries between processes in order to compute the numerical flux

through an approximate Riemann solver. To illustrate the basic ingredients of the algorithm

consider a two dimensional hybrid mesh decomposed for two processes 0 and 1 as illustrated

in Figure 5.2 on page 106.

Every process requires from the other one the reconstructed solution at the intercell

boundaries with another process. Since only conforming unstructured meshes are consid-

ered in this study the number of boundaries required between processes is the same. This

means that since CPU 0 requires the reconstructed solution at intercell faces of 5 elements

from CPU1 then CPU1 would also require the reconstructed solution from 5 elements of

CPU0. For first-order scheme only one value per variable is required at the intercell face.

On the other hand for higher-order schemes the reconstructed solution is required at every

Gaussian quadrature point.

The basic steps for exchanging the reconstructed solution at every intercell face are as

follows:

1. For every process determine which elements are needed from which process

2. Allocate the appropriate memory for receiving the solution at the boundaries from other
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processes

3. Allocate the appropriate memory for sending the required solution at the boundaries to

other processes

4. Set pointers to the memory allocated for sending boundary information pointing to the

boundary values in the current process required from the other processes

5. Set pointers at the boundary elements of the current process that require information

from other processes to point to the memory allocated for receiving this information

6. Perform a combined MPI_SENDRECV to send the boundary information required

from other processes and receive the required boundary information from the current

process by using the pointers assigned at step 4

7. Use the pointers assigned at step 5 to retrieve the values at the intercell boundaries that

have been received

The steps 1 to 5 are performed only before the computations and steps 6 and 7 are performed

every time that the information at the intercell boundaries between processes is required. The

reason for choosing a combined MPI_SENDRECV is that as mentioned earlier the number of

boundaries that need to be send and the number of boundaries required are the same therefore

by using only one call the sending and receive takes place at once and the MPI communication

subsystem makes sure that the possibility for deadlock occurrence is relatively small.

5.4 Reconstruction-related exchange strategy

As it has been described higher-order schemes require various stencils consisting of a number

of elements in order to perform a high-order interpolation of cell averages. The challenges

imposed by this requirement are, firstly how to recursively construct the stencils when some

elements belong to other processes and secondly how to exchange the information required

to solve the linear system (2.30). The strategy for facing the first challenge is described in

Algorithm 3.

Having constructed the stencils the coefficients of the resulted linear symmetric matrix

A in the linear system (2.30) are stored for each element during the preprocessing stage of

the calculation. Therefore the only information that needs to be exchanges during the stage

of calculation is the cell averages of the elements of the stencils that belong to other pro-

cesses. However there is an important issue when dealing with complicated domains and

very high-order schemes that must be taken into account. This issue is that the number of

elements required from each process for the reconstruction stencils is completely arbitrary

and by arbitrary we mean that different number of elements are required between processes

as illustrated in Figure 5.3 on page 109. In some extreme cases some processes require ele-

ments from other processes that do not require any elements back. This usually occurs when

WENO schemes are used that they have directionality conditions that must be satisfied and
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Algorithm 3 Parallel Stencil Construction Algorithm

1. For each cell i in the mesh we want to construct a set of elements S (stencil) consisting

of N(S)elements

2. With c = 1,2, ....N being the index of the numbering of the elements in the stencil

3. S1 = i, the considered cell i is always the first element in the stencil c = 1

4. Recursively start adding the direct side neighbours of each element

(a) In the case that an element belongs to another process send a requirement to

receive the direct side neighbours of this element from the other process together

with the coordinates of the elements

(b) Check if any element is required from other processes that belongs to the current

process and send the element and its direct side neighbours to them together with

their coordinates

5. Check which of the elements already exist in the stencil

6. Check if the candidate elements satisfy the directionality conditions( for directional

stencils only)

7. In the case that the candidate elements do not belong in the set S and satisfy the direc-

tionality condition store them in the next available memory location

8. Repeat steps 4 to 8 until N number of elements have been assigned to each stencil

9. Repeat steps 1 to 8 until the stencils for the last element have been constructed

10. Send to every process that the current process has constructed the stencils for all the

cells

11. Receive from other processes their status(if they have finished constructing the stencils)

(a) If any of the other processes has not finished

i. Check if any element is required from other processes that belongs to the

current process and send the element and its direct side neighbours to them

together with their coordinates

(b) If all of the other processes have finished then exit
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Figure 5.3: Typical example of stencil elements requirements between processes

in the presence of boundaries the stencils of some elements might extend to more than just

one block.

The basic steps for exchanging the cell averages for stencils elements between processes

are as follows:

1. For each cell in the domain find the stencil elements required from other processes

2. Having found the total number of stencil elements required from other processes, sort

the total number of elements required per process by making sure that common ones

are removed (stencil elements required from more than one cells in the current process

are only stored once)

3. Allocate appropriate memory for each process the current process requires stencil ele-

ments

4. Send to the processes that the current process requires stencil elements the number of

the elements required and which elements are required

5. Check if any process requires stencil elements from the current one

6. Allocate appropriate memory for each process that requires stencil elements from the

current one
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7. Set pointers to the memory allocated for sending stencil elements cell averages to other

processes to point to the cell averages of these elements in the current process

8. Set pointers to the linear systems of the current process that require stencil elements

cell averages from other processes to point to the memory allocated for receiving this

information

9. Perform a non-blocking MPI_ISEND to all processes that require the cell averages

from stencil elements within the current process

10. Perform a non-blocking MPI_IRECV from all processes that the current process re-

quires cell averages from their stencil elements

11. Use the pointers assigned at step 7 to retrieve the cell averages of the stencil elements

required for the solution of the linear system (2.30)

Steps 1 to 8 are performed only once before the computations and steps 9 to 11 are performed

every time that cell averages from stencil elements from other processes are required. In the

flow charts in Figure 5.4 on page 111 and Figure 5.5 on page 112 the differences between a

serial and the parallel process involving the algorithms described can be viewed.
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Figure 5.4: Serial Process Flow Chart
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Figure 5.5: Parallel Processes Flow Chart
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(a) 2 Decompositions (b) 4 Decompositions

(c) 8 Decompositions (d) 16 Decompositions

Figure 5.6: Mesh decompositions employed for the study of the parallel performance of the

developed schemes.

5.5 Parallel efficiency study

In order to assess the parallel performance of the developed algorithms, we run a three-

dimensional problem using the various schemes on an unstructured tetrahedral mesh with

84771 elements. The problem is the same as used for the explosion test problem presented in

Section 4.2.3 corresponding to the N = 20. This test problem is computed on 2,4,8,16,32, and

64 CPUs and the mesh decomposition used for this study are in shown in Figure 5.6 on page

113. In Figure 5.7 on page 114 the MPI speedup and parallel efficiency for various schemes

is illustrated.

The MPI speedup and parallel efficiency is measured in terms of the time required for

advancing the solution in the whole computational domain for one timestep without taking

into account the pre-computations processes such as the stencil construction since they are
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Figure 5.7: MPI speedup and Parallel efficiency measured on the ASTRAL-HPC Cranfield

University, using various schemes on an unstructured tetrahedral mesh in 3D.
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Figure 5.8: Individual processes contribution to the total time taken for the solution advance-

ment in the WENO-4 scheme

only done once. We notice that all the schemes achieve almost linear speedup. The 1st-order

scheme which is the cheapest in terms of computing resources seems to perform worse than

the more expensive WENO-2 and WENO-4 schemes in terms of parallel efficiency under 20

CPUs. On the other hand the WENO-2 and WENO-4 schemes seem to scale up quite well

even at few CPUs. In order to have a better insight of the cost of each of the processes we

investigated the percentage of the total time for the update of the solution that it is taken in

the reconstruction process, the boundary exchange(including stencil elements cell averages

exchange) process and the fluxes for the WENO-4 scheme. The finding are are illustrated

in Figure 5.8 on page 115.This behaviour can be justified by the fact that for the WENO-4

scheme the time taken for the reconstruction scales down similar to the way that the boundary

exchange scales up beyond 16 CPUs. Both of this processes are the most expensive in terms

of computing power. The superlinear acceleration observed can be justified by the fact that the

computations part is taking advantage of the cache memory, since there are less computation

data that each CPU is handling therefore the CPU does not address the main memory so

frequently as it happens when fewer CPUs are used. This is tranlated that the data can easier

fit into CPU cache memory which has lower access time therefore for this test problem we

notice that this superlinear acceleration is due to the more efficient usage of cache memory.
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5.6 Conclusions

We have materialised a parallel implementation of the UCNS3D code suited for large-scale

CFD simulations on any type of unstructured meshes. It has been documented [41, 6] that the

arbitrariness of the unstructured meshes limits the parallel efficiency of unstructured solver

we have found this to be true but only for lower-order schemes. For the very high-order

finite volume schemes developed the most expensive process in terms of memory and com-

puting power is the reconstruction process itself rather than the exchange of boundary and

cell averages of the stencil elements between processes.

There is always a trade-off between the operations that are computed every time and the

data that is stored in memory and can be retrieved that any developer should take into account.

We have decided to store in memory the most computing intensive parts such as the stencils,

the symmetric linear matrices and other geometrical information which for three-dimensional

domains it is expensive to compute every time.

Our parallel implementation takes advantage of the fact that the linear symmetric matrix

for the least-square reconstruction is stored and the only information required to be exchanged

every time is only the cell averages of stencil elements between processes rather than any

topological information. Therefore our parallel implementation is characterised by an almost

linear speedup and a parallel efficiency higher than 95% for the high-order schemes. We

expect that even higher-order schemes such as WENO-5, LINEAR-5 would be even more

efficient since the reconstruction process is becoming even more expensive.



Chapter 6

Conclusions & Future Work

This thesis has focused in the development of three-dimensional very high-order finite vol-

ume schemes that can be applied to any type of unstructured meshes. The main results can

be summarised as follows:

1. A new set of schemes of very high-order of accuracy which are universal in the sense

that they can be applied to any type of unstructured mesh has been presented. They can

be viewed as a very high-order generalisation of unsplit multidimensional schemes.

Three different categories of schemes have been developed a linear type, a TVD type

and a WENO type.

2. The crucial process for achieving high-order of accuracy is a reconstruction process that

can combine elements of different shapes by removing any scaling problems through a

mapping of the problem from physical domain to a computational domain.

3. The linear schemes make use only of the central stencil for the reconstruction process

and are mostly suited for problems with smooth solutions.

4. The TVD type makes use of the central stencil for reconstruction process but restricts

the reconstructed solution to lie within the minimum and maximum values present in

the direct side neighbours of each cell, and is a cost-efficient alternative of WENO

suited for problems that contain discontinuous solutions.

5. The WENO schemes make use of a series of stencils and the reconstruction polynomi-

als from every one of them are combined in a non-linear way by taking into account

the smoothness of information in each one of them. The implementation of the WENO

scheme for the Euler equations has the elegant feature that reconstruction is done with

respect to the characteristic variables rather than the conserved variables.

6. Convergence studies of the schemes for the model 3D linear advection equation and the

3D Euler equations have been performed. All the schemes presented up to 5th-order

achieve their theoretical order of accuracy for any type of unstructured meshes. This

shows that the schemes are universal and achieve their theoretical order of accuracy

independent of the mesh used.

117
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7. Assessment of the non-oscillatory properties of the TVD and WENO schemes has been

performed. Both TVD and WENO schemes do not produce any spurious oscillations

around discontinuities with the WENO schemes resolving the solution profile much

sharper than the TVD schemes.

8. For problems containing discontinuities we have found that the directionality criteria

when choosing admissible directional stencils and the linear weight assigned to the

central stencil have a great impact on the non-oscillatory performance of the WENO

schemes.

9. Qualitative and quantitative analysis of the capabilities of the developed schemes to

handle complicated shapes and configurations with mixed-element type of meshes has

also been performed. Both TVD and WENO schemes do not produce any spurious

oscillations for strong discontinuous problems involving complicated geometries, with

the WENO scheme being able to resolve more complicated flow structures.

10. A new 3D hybrid unstructured flow solver (UCNS3D) has been developed employing

the very high-order schemes constructed. The solver has been parallelised by using

highly sophisticated algorithms, mesh decomposition software tools and by using the

MPI API. The results demonstrate that the higher the order of the schemes the greater

the parallel efficiency.

Interesting future research directions worth considering in the context of very high-order

schemes on unstructured meshes are:

1. Development of a Hybrid WENO scheme by combining the schemes constructed here

and the WENO schemes of [78, 32] where lower order polynomials are combined

to achieve higher-order of accuracy. The manner at which those schemes could be

combined could be that the constructed WENO scheme could be used in discontinuous

regions of the flow and the the WENO schemes of [78, 32] in smooth regions of the

flows.

2. Employment of adaptive mesh refinement techniques which have been successfully

applied to a series of challenging and complicated problems [72, 58, 47, 52, 10] in

the context of very high-order schemes in the finite volume framework. Although one

of the main challenges is the utilisation of the stencil construction algorithm at various

stages that the mesh is refined, the overall computational efficiency would be improved.

Adaptive mesh refinement is a desirable technique so that the mesh is refined at critical

regions of the flow where mesh resolution is important such as close to discontinuities

so that the whole flow features would be resolved with a greater detail.

3. Inclusion of polyhedral unstructured elements currently offered by state-of-the-art mesh

generation software packages for the constructed high-order schemes. The efficiency of

this high node count elements in terms of geometry representation, and computational

resources is a desirable feature of any high-order scheme.
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4. Extension of the application of the schemes for other computationally challenging tasks

in science and engineering.
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