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Abstract 
A coherence function is a mea..'mre of the correlation of two signals and may 
be used a.." a measure for functional relationship between brain area..". In 
studying functional relationships, referenced EEG (REEG) coherence anal
ysis yields important new aspects of brain activities, which complement the 
data obtained by power spectral analysis. However, REEG-ba.."ed coherence 
tends to show a false high value due to volume conduction from un correlated 
sources (VCUS). Existing signal processing methods address this issue using 
a Fourier coherence function of scalp Laplacian. Although this method ha.." 
been proved useful to reveal correlation between EEG signals with minimum 
VCUS effects, it only provides frequency-domain analysis. Since EEG sig
nals are highly non-stationary, it is more appropriate to use time-frequency 
methods for coherence analysis of scalp Laplacian. Thus this research applies 
the wavelet transform on coherence analysis of scalp Laplacian. 

To verify our technique, already recorded EEG data of event related po
tentials were obtained from a study of two large groups of alcoholic and ab
stinent alcoholic subjects, performing visual picture-recognition ta.."ks. The 
proposed coherence method successfully detected time-frequency correlation 
between EEG signals with minimum VCUS effects. It showed significant spa
tial specificity and revealed detailed coherence patterns. Some new important 
results regarding time-frequency characteristics of VCUS effects on wavelet 
and short-time Fourier transform (STFT) coherence analysis of REEG sig
nals were deduced. The proposed coherence method wa.." also compared to 
a conventional wavelet coherence method of REEG signals in the study of 
coherence difference between coherences of alcoholic and abstinent alcoholic 
EEG signals. Results of this study provided substantial evidence that VCUS 
effects are not additive and therefore can not be ignored in comparison of 
different brain states between groups of subjects. 
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Chapter 1 

Introduction 

1.1 Motivation of the research 

Wavelet coherence analysis of referenced EEG (REEG) signals is one of im
portant signal processing tools that has many neurocognitive and clinical 
applications. For example, significant increase in the value of wavelet co
herence of REEG signals at the ictal phase of epilepsy ha..s been reported 
by various studies (Blanco, et al., 1997; Bahcivan et al., 2001; Hassanpour 
et al., 2004; Xiaoli Li et al., 2006). It ha..s been also used to study various 
neurocognitive processes, including attention, memory, learning, comprehen
sion, and decision making (Shaw, 1981; Lamer et al., 1994; Saiwaki et al., 
1997; Nunez et al., 1999). However, volume conduction from uncorrelated 
sources (VCUS) in the head is a serious problem during wavelet coherence 
analysis of REEG signals. It alters coherence estimates by introducing arti
ficial coherence between a corresponding pair of electrodes. Existing signal 
processing methods developed so far to address this issue are only useful for 
frequency-domain methods of EEG coherence analysis. Therefore, this study 
addresses this issue by introducing a signal processing technique ba..sed on a 
wavelet coherence method of scalp Laplacian (SL). This signal processing 
method reveals EEG correlation with minimum VCUS effects and a satisfac
tory time-frequency resolution. 

An important clinical application of the proposed coherence method arises 
in the study of coherence analysis of seizure EEG. EEG signals of such a 
disorder are highly time-varying and show important seizure signatures in 
both low and high frequency ranges (Blanco, et al., 1997; Zarjam and Mes-

1 



1.2. Thesis Introduction 2 

bah, 2003; Hassanpour et al., 2004). A wavelet coherence method of REEG 
signals has been found useful for such kind of signals, as it offers an optimal 
time-frequency resolution in all frequency ranges. However, VCUS effects 
present in the brain can be a major problem during its use. To the best 
of our knowledge, to date no solution has been proposed to overcome this 
problem. However, this problem can be solved using the proposed method 
ba..')ed on the wavelet coherence analsysis of SL, because it detects low and 
high frequency correlations with an optimal time-frequency resolution and 
minimum VCUS effects. 

1.2 Thesis Introduction 

Chapter 1 first presents a brief literature review and background theory re
quired for the understanding of our research problem by rising the following 
questions in mind: 

1. How the problem arises? 

2. What is the state-of-the-art and its criticisms? 

The subsequent sections of Chapter 1 present a research problem, proposed 
solution, significance and motivation of research and finally objectives of the 
research. Chapter 2 presents a review of coherence methods of REEG sig
nals from Fourier-ba..')ed signal processing methods to wavelet-ba..c;ed signal 
processing methods. Chapter 3 presents a review of various signal processing 
methods that are developed to minimize VCUS effects on coherence analysis 
of REEG signals. At the end, it introduces new signal processing meth
ods based on STFT and wavelet coherences of S1. Chapter 4 presents an 
overview of our research methodology. Chapter 5 presents a detailed discus
sion on signal processing and statistical techniques which are used to develop 
wavelet and STFT coherence methods of SL. Chapter 6 explains the ability of 
these developed methods in detecting EEG correlation with minimum VCUS 
effects in the time-frequency domain. In addition, it also deduces some im
portant results regarding time-frequency characteristics of VCUS effects on 
EEG correlation. At the end, this chapter presents a comparison of perfor
mances between the wavelet and STFT coherence methods of SL. Chapter 7 
examines consequences of avoiding VCUS effects on EEG coherence analysis 
by comparing the proposed method based on the wavelet coherence of SL to a 
conventional wavelet coherence method of REEG signals. In addition, it also 
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presents a discussion on alcoholic effects on EEG correlation in the context 
of VCUS effects. Overall, this chapter demonstrates the importance of our 
proposed method in EEG signal processing. Finally in Chapter 8, the thesis 
is concluded by giving summary of major findings with their clinical appli
cations, the limitations of the research performed, and the recommendations 
for future research. 

1.3 Introduction of research 

This section first presents a brief literature review and background theory 
required to understand a research problem. Then, overview of the research 
problem including its objectives, and its major contributions is discussed. 

1.3.1 Short literature review of background theory 

Electroencephalography is the study of the small, constantly changing elec
tric potentials from the brain and is abbreviated a..c;; EEG. Dr Hens Berger 
made the measurement of small potentials on the the scalp and published 
the first recording in 1929. He used two large sheets of tinfoil, which served 
a..c;; electrodes, one on the forehead and one on the back of the head. EEG is 
nowadays recorded by affixing many electrodes to the scalp, and measuring 
the voltage between pairs of these electrodes, which are then filtered, ampli
fied, and recorded. EEG recorded by affixing many electrodes to the scalp is 
called REEG or scalp EEG in EEG signal processing. These signals provide 
an important source of information for studying underlying brain processes. 
Current research in many fields investigates the potential use of REEG signals 
for psychiatric/physiological diagnosis as well as for evaluation of sensory ex
periences. A raw REEG signal provides information in the time-domain but 
its frequency-domain characteristics are also important. Therefore a given 
REEG signal is usually transformed into the frequency-domain using differ
ent methods, among them the most common method is called the Fourier 
transform. In the Fourier transform, a given signal x(t) is transformed into 
the frequency-domain by describing the signal x(t) a..c;; linear superposition 
of sines and cosines characterized by their frequency w using the following 
equation: 

X(w) = i: x(t)e-iwtdt, (1.1) 
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where X(w) is the Fourier transform of the signal .T(t) at the frequency w. 
and i stands for the imaginary number. One of important applications of 
the Fourier transform in signal processing is a coherence function, which 
reveals the degree of linear correlation between EEG signals in the frequency
domain. The coherence function between signals x(t) and y(t) is defined by 
the following relation (Nunez et al., 1997): 

C ( ) 
_ Pxy(w) 

xy w - -r========== 
. VPxx(w) . Pyy(w) ' 

(1.2) 

where Pxx(w) and Pyy(w) are the auto-spectra of the signals x(t) and y(t) re
spectively, and Pxy(w) is the cross-spectrum of these signals. Auto and cross 
spectra are usually estimated on the basis of averages drawn from individual 
spectra of segments of a corresponding signal. 

Coherence analysis of REEG signals ha.c; brought reliable results for a wide 
range of neurocognitive and clinical studies that corroborate the validity of 
this method. For example, it has been used to locate a epileptogenic focus 
from epilepsy patients (Mormann et al., 2000), to identify neuroanatomic 
pathways for a seizure propagation (Tsai et al., 1995; Sherman et al., 1997), 
and to detect a seizure activity (Brazier, 1972; Gotman, 1983; Bahcivan et 
al. (2001); Xiaoli Li et al. (2006)). 

Fourier-ba.c;ed coherence analysis provides only frequency-domain informa
tion of signals, therefore it is suitable when time-domain information of sig
nals is not required. However, a wide range of EEG signals encountered 
in biomedical applications fall into the category of non-stationary signals 
which contain important signatures both in time and frequency domains. 
Therefore, EEG coherence methods need to be studied in the time-frequency 
domain. Existing signal processing methods to study EEG coherence in the 
time-frequency domain are based on the STFT and wavelet transform. In 
the STFT, a given signal is divided into equal small segments such that the 
a.c;sumption of the stationarity holds for each segment (Chui, 1992; Cohen, 
1995). The time evolution is provided by moving through each segment using 
some fixed window function. However one critical limit arises, when window
ing a signal, due to the uncertainty principle. According to this principle, if 
a window width is very narrow, a frequency resolution will be poor, and if 
a window width is very wide, a time resolution will be poor (Cohen, 1995). 
Therefore we can conclude that for a signal having slow frequencies, a wide 
window width will be more appropriate and for a signal having fast frequen-
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cies, a narrow window width will be more appropriate. Then, owing to its 
fixed window width, the STFT is not suitable for analyzing a signal involving 
important signatures in both low and high frequency ranges. The wavelet 
transform has been introduced in order to overcome this problem. A window 
width in the wavelet transform is not fixed. I t is wide for slow frequencies 
and narrow for fast ones. Therefore the wavelet transform provides an opti
mal time-frequency resolution in all frequency ranges. The wavelet transform 
can be considered as an extension of the STFT incorporating the compro
mise between a time and frequency resolution. We can think of the STFT 
as filtering a signal by a filter function, which is shifted in time to provide 
information about time. Similarly, we can consider the wavelet transform as 
passing a signal through a filter function, which is not only shifted in time 
to provide information about time but also its width varies as frequency of 
the signal varies. 

1.3.2 Overview of the research problem 

Although wavelet coherence analysis of REEG signals has been found a useful 
time-frequency coherence method, VCUS effects are major problem during 
its use. VCUS effects biases its results by introducing artificial coherence 
in its true value (Srinvans et al., 1998; Nunez and Srinivasan, 2005). Few 
signal processing techniques have been developed to address a issue of VCUS 
effects on EEG coherence analysis. These techniques use SL to estimate a 
coherence function rather than REEG signals. The SL, which is radial scalp 
current density is less affected by VCUS effects, therefore a coherence func
tion estimated using the SL reveals EEG correlation with minimum VCUC 
effects. However, existing SL-based coherence methods are based on the 
Fourier transform and therefore do not resolve the issue of VCUS effects on 
wavelet coherence analysis. Therefore, this research addressing this issue ha'l 
proposed a wavelet coherence method of SL. This coherence method not only 
reveaL'l EEG correlation with an optimal time-frequency resolution, but also 

minimizes VCUS effects on it. 

The proposed coherence method is not a complete alternative to conven
tional coherence methods of REEG signals. This restriction arises due to 
sensitivity of the SL and REEG signals to different spatial properties (depth 
and orientation) of EEG sources. The SL emphasizes the contribution of su
perficial radial sources and at the same time deemphasizes the contribution of 
deeper EEG sources. This results in filtering out of coherences due to deeper 
sources. In contra'lt to the SL, REEG signals contain more contributions 
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generated by deeper sources, but at the same time they also contain volume
conducted activity generated by un correlated cortical sources. Therefore, 
each coherence method ha.." its advantages and disadvantages. However, use 
of the proposed coherence method with conventional coherence methods will 
provide more useful information than is obtained by considering either in 
isolation. 

1.3.3 Objectives of the research 

The main aim of this research is to develop signal processing techniques for 
the following objectives: 

• To detect correlation between EEG signals with minimum VCUS effects in 
the time-frequency domain. 

• To detect low and high frequency correlations between EEG signals with 
minimum VCUS effects and optimal time-frequency resolutions. 

• To find time-frequency characteristics of VCUS effects on EEG correla
tion. 

• To examine consequences of avoiding VCUS effects in the study of co
herence difference between coherences of different EEG activities 

1.3.4 Contributions of the proposed method 

• Since EEG signals are non-stationary, information regarding time evolu
tion of coherence estimation is also important for clinical applications of 
REEG-based coherence analysis. Existing signal processing methods offer 
various time-frequency methods of REEG-ba.."ed coherence analysis, which 
can efficiently detect time-varying coherences. However, presence of artificial 
coherence due to VCUS effects is still a serious issue during the use of these 
coherence methods. The proposed coherence method in this thesis ha.." an ad
vantage of detecting highly time-varying and short-duration coherences with 
minimum VCUS effects. Moreover it offers a satisfactory time-frequency res
olution in all frequency ranges. 

An important application of the proposed coherence method arises in the 
study of event related potentials (ERPs), which are highly non-stationary 
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EEG signals. During the recoding of such signals, subjects are asked to lis
ten or see some stimulus. A recorded signal is usually called ERPs and con
tains important signatures of different cognitive or mental activities. These 
signatures are called ERP components and their time of appearance after 
the stimulus is usually referred as their latency. Among REEG-ba..'ied coher
ence methods, A wavelet coherence method ha..'i been been found more useful 
during ERP analysis of various brain disorders and neurocognitive processes 
(Bianchi et al., 1998; Ta-Hsin Li and Klemm, 2000; Markazi et al., 2005; 
Klein et al., 2006). This is because, wavelets have ability to detect very 
short duration ERP components with an optimal time-frequency resolution. 
However, a major difficulty arises when VCUS effects significantly biases its 
results by introducing artificial coherence between a corresponding pair of 
electrodes. To the best of our knowledge, no solution to this problem ha..'i 
been reported so far in literature, whereas the coherence method proposed in 
this thesis overcomes this problem by introducing a method ba..'ied on wavelet 
coherence of SL. 

• Another application of the proposed method arises in coherence analysis 
of seizure EEG. These signals are highly time-varying and contain impor
tant seizure signatures in low and high frequency components. Conventional 
wavelet coherence analysis of REEG signals has been proved effective in de
tecting these seizure signatures (Bahcivan et al., 2001; Ha..'isanpour et al., 
2004). However, this coherence method can provide insignificant results due 
to the presence of significant VCUS effects at the corresponding pair of elec
trodes. In such a situation, the use of the proposed coherence method is 
appropriate, as it can simultaneously detect low and high frequency coher
ences with optimal time-frequency resolutions and minimum VCUS effects. 

• This study aims to deduce characteristics of VCUS effects on EEG correla
tion in the time-frequency domain. These characteristics can lead to better 
understanding of VCUS effects on EEG correlation than those discussed in 
EEG coherence literature which are based on only frequency-domain charac
teristics of VCUS effects (Nunez, 1995; Nunez et al., 1997; Srinivasan et al., 
1998; Nunez and Srinivasan, 2005). 

• This study also aims to compare a conventional wavelet coherence method 
of REEG signals with the proposed coherence method using the REEG data 
set of alcoholic and abstinent alcoholic subjects. Results will be proved useful 
in order to assess the importance of minimizing VCUS effects during EEG 
coherence analysis. 



Chapter 2 

Review of REEG-based 
coherence analysis: signal 
processing methods and clinical 
applications 

2.1 Introduction 

This chapter presents a review of existing REEG-ba..'Ied coherence methods, 
with their clinical applications and limitations in EEG signal processing. In 
addition, it discusses statistical methods used to a..'Isess performance of these 
coherence methods. 

2.2 Background theory of coherence analysis 
in EEG studies 

REEG-ba..'Ied cross-correlation analysis is a time-domain method of measur
ing the degree of correlation between EEG signals, usually from different 
recording sites. The cross-correlation function of time series x ( n) and y ( n) 
at discrete time n is given by the following relation (Lynn, 1992): 

1 n=N 

Rxy(d) = N L x(n)y(n + d), 
n=l 

(2.1 ) 

8 
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where N is the total number of samples present in each of these time series. 
and d is the time-shift of time series y (n) with respect to time series x ( n). 
When a cross-correlation function is first computed from time series which 
have had the mean removed, and is then normalized by the product of the 
square root of the variance of each signal, the normalized cross-correlation 
coefficient is produced. The maximum value of this coefficient is always one. 
Two signals with identical patterns have a cross-correlation coefficient of 1 at 
zero time-shift, even if they have different overall amplitudes. REEG-based 
cross-correlation analysis ha..'i been used to study the relationship of EEG 
activity between different cortical regions, and between cortical and subcor
tical regions of the brain. It has shown the high degree of bilateral symmetry 
and synchronization over homologous location on each side of the scalp (Bra
zier and Casby, 1952; Barlow, 1959a; Barlow and Freeman, 1959b). It ha..'i 
been used to mea..'iure the time-shift between signals (Daniel, 1966; Liske 
et al., 1966). In Parkinson's disease, REEG-ba..'ied cross-correlation analysis 
ha..'i been used to investigate the relationship between the cortex and deep 
structures as well as between the cortex and the limb tremor (Brazier and 
Barlow, 1956). A possible relationship between cortical rhythms and tremor 
activityl in essential tremor has also been explored by it (Barlow, 1967). One 
of major disadvantages of REEG-ba..'ied cross-correlation analysis is that, it 
is ba..'ied on only time-domain analysis of REEG signals. Both frequency and 
time-domain information of REEG signals have been proved very useful in 
EEG signal processing (Vincent et al., 1995; Demiralp et al., 1998; Akin, 
2002). 

Therefore, REEG-based cross-spectrum analysis was introduced in order to 
measure the degree of correlation between EEG signals in the frequency
domain (Gath et al., 1992; Ferri et al., 2000; Ning and Trinh, 2004). The 
cross-spectrum function of two discrete time series x( n), and y( n) whose 
Fourier transforms are X (m) and Y (m) respectively is given by the follow
ing relation: 

Pxy(m) = X(m)Y*(m), (2.2) 

where m is the frequency variable, and a..'iterisk stands for the complex con
jugate operation. When x(n) is equal to y(n), for all values of n, Eq. (2.2) 
is called the auto-spectrum of time series x(n) or y(n). 

1 Uncontrollable shaking (tremor) of the hands and head and sometimes other parts of 

the body 
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2.3 Fourier coherence analysis 

The Fourier-based cross-spectrum in Eq. (2.2) is a complex mea..~ure, it can 
be described by an amplitude and a pha..~e. In order to get a normalized and 
real magnitude value between 0 and 1, the cross-spectrum of time series x (n) 
and y( n) in Eq. (2.2) is normalized by dividing it with the square root of 
the product of the auto-spectra of these time series. Then, the square of the 
normalized cross-spectrum is taken. The normalized cross-spectrum is called 
the Fourier coherence and its square is called the Fourier squared coherency 
in EEG studies. 

C ( ) 
_ Pxy(m) 

xy m - , 
VPxx(m) . P'Vy(m) 

(2.3) 

C 2 ( ) = 1 Pxy(m) 12 
xym () , Pxx m . Pyy(m) 

(2.4) 

where Cxy(m) , and C;;y(m) represent the Fourier coherence and Fourier 
squared coherency functions respectively. If we have an appropriately pair of 
data recording we could estimate Pxy(m) , Pxx(m) and P'Vy(m) by the Fourier 
transform to obtain, 

Pxx(m) = a + ib, Pyy(m) = c + id, Pxy(m) = (a + ib)(c - id) 

If these equations are substituted into Eq. (2.4), we get value of squared 
coherency equal to unity for all values of m. This is perhaps no surprise 
when we consider that the cross-spectrum is merely a complex product of 
the two constituent spectra, and that the coherence function is normalized 
by placing a not dissimilar product in the denominator. Why then are co
herence functions of use to the analyst? The answer is that calculation of 
coherence by means of averaged estimates based on segments of the original 
signal indeed yields meaningful quantitative mea..~ures of similarity between 
them, and these measures take values between zero and unity. Thus auto
spectra and cross-spectrum for Fourier coherence analysis of REEG signals 
are usually estimated on the basis of averages drawn from the individual 
spectra of the segments. 

A coherence function mea..~ures the degree of correlation between signals in 
terms of their relative pha..~e and relative amplitude (Nunez et al., 1997). 
However, a pha..~e coherence function can be used to mea..~llre the degree of 
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correlation between signals in terms of their relative phase, independent of 
amplitude fluctuations. It is given by the following relation (Marple, 1987): 

(2.5) 

where Ux(m) and ~v(m) can be obtained by taking the ratio between real 
component to the imaginary component of time series x(n) and y(n) respec
tively. Another important kind of REEG-based coherence analysis is based 
on a partial coherence function. It is used to measure the coherence between 
time series x( n) and y( n), after removing the common influence of another 
time series w(n) (Gardner, 1992). To calculate a partial coherence func
tion, first we need to compute the partial cross-spectrum function, which is 
the cross-spectrum of signals x(n) and y(n) with the effects of signal w(n) 
removed and is given by (Gardner, 1992), 

(2.6) 

When x( n) = y( n) for all values of n, Eq. (2.6) is called the partial auto
spectrum of time series x ( n) or y ( n ). The partial coherence of time series 
x ( n) and y ( n) is given by the following relation (Gardner, 1992): 

Cxyw(m) = Pxy,w(m) . 
, J Pxx,w (m)P'VY,w (m) 

(2.7) 

2.3.1 Statistical procedures 

As mentioned earlier that robust coherence estimates require an averaging 
over the segments of original signals involved in coherence analysis. There
fore the first step when computing a coherence function using the Fourier 
transform is to divide given time series x(n) and y(n) into M segments of 
short and equal intervals. 

The disadvantage of Fourier coherence is that it requires fairly long observa
tion time about 30 seconds or more to achieve a good spectral resolution but 
this results in a poor time resolution. This limitation simply follows from 
the uncertainty principle, which states that if ~t and ~f are the standard 
deviations in time t and frequency f of signal x ( t) respectively then (Cohen, 

1995), 
1 

~t~f> -- 47r 
(2.8) 



2.3. Fourier coherence analysis 12 

Eq. (2.8) simply means that frequency and time resolutions are inversely 
proportional to each other. Another disadvantage is increase in bia..-; and 
variance of coherence estimates due to long segments. There is thus a com
promise required in the choice of segment length. It must be long enough 
to provide an adequate frequency resolution and short enough to allow suffi
cient segments in the average to control bia..-; and variance. In addition each 
segment must be extracted using a time-window to control slidelobes in the 
frequency-domain functions and thereby limit the bia..-; which arises due to 
the resulting leakage. Conflicting requirements of number of segments and 
segment length can be resolved to some extent by overlapping segments as 
this permits more averages to be taken while maintaining the same frequency 
resolution. However, this is effective up to a point because the improvement 
declines due to greater correlation between segments. Computational over
heads also increase with increased overlap. In general, there is no rule to 
control these statistical errors. However over the years, few techniques have 
been developed, which can be used to minimize these statistical errors to 
some extent. For example, Carter et al. (1973) derived following two ap
proximations assuming an ideal Hanning window applied to each segment 
and no overlap between segments. Signals involved in coherence estimate 
were a..-;sumed zero-mean stationary Gaussian processes. 

Bias ~ 

Variance ~ 

(1- 1 C;y (m) 12) 2 

M 

2 I C;y(m) 12 (1- 1 C;y(m) 12) 
M 

(2.9) 

(2.10) 

where M is the number of segments used in the estimation of squared co
herency C;y(m). Approximations in Eqs.(2.9) and (2.10) are valid when 
squared coherency is greater than zero. For zero value of the squared co
herency these approximations lead to a constant value of the variance, which 
is equal to inverse of lVl. Another important method to control statistical er
rors in coherence estimate is based on the confidential interval of a coherence 
function. It is defined as the "probability that the true coherence at a cer
tain time lies within a certain interval about the estimated coherence". The 
approximate relation for the 95 % confidence interval for Fourier coherence 
is given in terms of standard error e in coherence estimate C;y(m) (Bendat 
and Piersol, 2001): 

C;y(m) < h2 < C;y(m) 
co , 

1 + 2e - - 1- 2e 
(2.11) 



2.3. Fourier coherence analysis 13 

where 

(2.12) 

Nc is the number of samples in the interval over which the coherence function 
is estimated. Eq. (2.11) can be used to find number of the samples required 
for the satisfactory value of a coherence function. 

2.3.2 Recording strategies 

Apart from statistical constraints, the choice of reference electrode ha.') 
also great implications when coherence between REEG signals is estimated 
(French and Beaumont, 1984; Gavins, 1989). Electrical activity generated by 
reference electrodes can yield an increase a.') well as decrea.')e of REEG-based 
coherence as activity at reference electrodes contributes to both signals in
volved in REEG-based coherence analysis (Fein et al., 1988). 

The use of EEG recording systems based on the linked ear, average reference 
and bipolar techniques (see Appendix C for detail) substantially reduces the 
problem of reference electrode. However, performance of these techniques 
against each other depends upon the specific EEG application. With the 
small number of recording electrodes, the bipolar and linked ear techniques 
are best options than the average reference technique (Nunez and Sriniva.')an, 
2005). This is because, accuracy of the average reference technique depends 
upon the number of recording electrodes. As the number of electrodes in
crea.')es, the error in its accuracy is expected to decrea.')e. However EEG 
recording system of at least 64 electrodes based on this technique shows bet
ter performance than those which are based on the bipolar and linked ear 
techniques (French and Beaumont, 1984; Nunez, 1981). As far a.') choice 
between the linked ear and bipolar techniques is concerned, the linked ear 
technique has shown the better performance than the bipolar technique (Fein 
et al., 1988; Bendat and Piersol, 2001; Nunez and Sriniva.')an, 2005 ). The 
main reason is the poor conduction properties of tissues between the tempo
ral and the ear lobes, which are linked by a wire to serve a.') the reference in 
the linked ear technique. 
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2.3.3 Applications 

Fourier coherence analysis of REEG signals has become an important tool 
to study the functional relationship between EEG signals on the assumption 
that higher the correlation, the stronger the functional relationship between 
EEG signals (Nunez and Srinivasan, 2005). Its applications include studies of 
human pain (Andrew et al., 1998; Baltas et al., 2002), abnormal EEG during 
the epilepsy (Brazier, 1972; Gotman, 1983; Tsai et al., 1995; Sherman et al., 
1997; Mormann et al., 2000; Bahcivan et al., 2001; Xiaoli Li et al., 2006). 
EEG of spilt brain patients (Nunez, 1981), brain development and cognitive 
processes (Tucker et al., 1985; Marosi et al., 1992). 

Epilepsy 

One of most important clinical applications of Fourier coherence analysis of 
REEG signals is observed for the epilepsy. Epilepsy is a physical condition 
that occurs when there is a sudden, brief change in how the brain works. 
When brain cells are not working properly, a person's consciousness, move
ment, or actions may be altered for a short time. These physical changes 
are called epileptic seizures. Epilepsy is therefore sometimes called a seizure 
disorder. Fourier coherence analysis of REEG has been used to identify neu
roanatomic pathways for a seizure propagation. For example, it was used for 
clonic seizure using the assumption that anterior thalamus and cortex are 
coherent, if the seizure activity spreads from the subcortical to the cortical 
brain (Tsai et al., 1995; Sherman et al., 1997). Results showed that thalamus 
and cortical regions of the brain were highly coherent during clonic seizure. 
In other words Fourier coherence was found larger between the thalamus and 
cortical regions. Fourier coherence can be useful to locate a epileptogenic fo
cus from epilepsy patients. For example, Mormann et al. (2000), used it to 
analyze intracranial EEG activity of 17 epilepsy patients undergoing presur
gical diagnostics. Results showed increase in mean phase coherence function 
near the epileptogenic focus. 

Alzheimer's disease 

Alzheimer's disease (AD) is characterized by loss of function and the death 
of nerve cells in the several areas of the brain leading to loss of the cog
nitive function such as memory and language (Abasolo et al., 2006). The 
cause of the nerve cell death is unknown but the cells are recognized by the 
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appearance of unusual helical protein filaments in the nerve cells and by de
generation in cortical regions of the brain, especially frontal and temporal 
lobes. Fourier coherence analysis of REEG signals ha..'l greatly contributed to 
a better definition of modification of EEG in the early stages of this disease: 
these changes consist in a slowing of the peak of an alpha band and in an in
crea..'le of the power of a theta band (Coben et al., 1985; Leuchter et al., 1987; 
Jelic et al., 1997; Locatelli et al., 1998; Knott et al., 2000; Adler et al., 2003). 
For example, Adler et al. (2003) examined REEG signals of 31 AD patients 
and 17 healthy subjects using Fourier coherence function. The ages of all 
subjects were above 60 years. Their finding was the decrease of the left tem
poral alpha band of coherence and the decrea..'le of the interhemispheric theta 
band of coherence in AD patients with a sensitivity of 87% and specificity 
of 77 %. The decrease in coherence for the alpha band in AD patients can 
be related to the alternations in the cortico-cortical connections (Locatelli 
et al., 1998). In more advanced stages of AD patients, increase of Fourier 
coherence in a delta band with decrea..'le of the alpha band of coherence ha..'l 
also been reported (Coben et al., 1985). 

Human pain 

Fourier coherence analysis of REEG signals has been used to examine effects 
of human pain on the correlation of EEG signals. Andrew et al. (1998) exam
ined effects of human pain on cerebral EEG activity using Fourier coherence. 
The pain test was pain stimulation by a ice cube on the right hand of a 
subject. Higher coherence during pain was examined between frontal and 
parietal positions. Baltas et al. (2002) examined effects of pain on Fourier 
coherence of REEG signals. The pain test was the repeated heat stimuli in 
the form of laser pulses which were delivered to the right forearm of a sub
ject by laser cannon. The study showed significant value of coherence during 

pam. 

2.4 STFT coherence function 

The non-stationary nature of EEG signals makes it necessary to use signal 
processing methods which have ability to quantify their spectral components 
a..'l a function of time. Fourier coherence analysis lacks of such ability, because 
of the Fourier transform which is ba..'led on only frequency-domain analysis. 
For analyzing such signals, time-frequency methods of coherence analysis are 
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more appropriate, therefore STFT coherence analysis h&.') been introduced 
&.') an alternative to Fourier coherence analysis (Lachaux et al., 2002; Sun et 
al., 2003; Bruns, 2004; Markazi et al., 2005; Zhan et al., 2006). 

In STFT, to study properties of the continuous signal x(r) at time t, the 
signal is multiplied by a window function, w(r-t). The effect of the window 
function is to keep the signal less unaltered around the time t but to suppress 
the signal for times distant from time of interest. Since the product between 
the signal and the window function emphasizes the signal around the time t, 
the Fourier transform will reflect the distribution of frequency around that 
time, 

X(w, t) = i: x(r)w(r - t)e- iWT dr, (2.13) 

The STFT in Eq. (2.13) is defined for the continuous signal, for a discrete 
signal x(k), the discrete STFT is defined as (Semmlow, 2004): 

N 

X(m, n) = L .r(k)w(k - n)f;-i27rkm/N, (2.14) 
k=l 

where N is the total number of samples present in time series x (k), n is the 
discrete time variable and m is the discrete frequency variable, representing 
integers from 0 to N -1. The STFT cross-spectrum of time series x (k) and 
y(k) is given by the relation (Semmlow, 2004): 

Pxy(m, n) = X(m, n).Y*(m, n) (2.15) 

The cross-spectrum of two equal time series, i.e., x(k) = y(k) for all values 
of k, is usually called an auto-spectrum. The STFT coherence and STFT 
squared coherency functions of time series x (k) and y (k) are given by the 

following relations: 

() 
Pxy(m, n) 

Cxy m,n = V ' 
Pxx(m, n)Pyy(m, n) 

(2.16) 

(2.17) 

Even though STFT coherence provides useful information in the time
frequency domain, major disadvantage of the STFT is the window function 
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of the fixed width which results either in a poor frequency resolution or in 
a poor time resolution. This limitation simply follows from the uncertainty 
principle, according to which, frequency and time resolutions of a signal are 
inversely proportional to each other (for details see Section §2.3). 

2.5 Wavelet coherence analysis 

Like STFT, the wavelet transform also allows us to study the signal x ( t) in 
time and frequency domains. The major advantage of the wavelet transform 
is that it has a varying window width, being wide for slow frequencies and 
narrow for the fast ones, thus leading to an optimal time-frequency resolu
tion in all the frequency ranges. By contrast, in the STFT, once we choose 
a particular width for the window function, that window is the same for all 
frequencies. Many signals require a more flexible approach, where we can 
vary the window width to determine more accurately for either time or fre
quency. 

The continuous wavelet transform (CWT) of the signal x ( t) in terms of the 
basic function 'l/Ja,b(t) is given by the following relation (Cohen, 1995): 

wt(a, b) = .:a f: x (t)'l/J:,b (t)dt (2.18) 

provided that, 

• The wavelet must have finite energy: 

(2.19) 

• If \II(w) is the Fourier transform of 'I/J(t) then the following condition must 
hold: 

c = roo [ \II (w) [2 dw < 00 
9 Jo w 

(2.20) 

'l/Ja,b(t) can be obtained from a single prototype wavelet called the mother 
wavelet 'I/J ( t) by 

1 (t -b) 'l/Ja,b(t) = y'a'I/J -a- , (2.21) 

where a and b are the scale and translation parameters respectively. As 
scale a changes, the shape of the wavelet is compressed or stretched to cover 
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different frequency ranges and by varying translation parameter b, the mother 
wavelet is displaced in time. In this way, the wavelet transform provides a 
time-frequency description of the signal x( t). 

2.5.1 Estimation of wavelet coherence 

Using Eq. (2.18), the wavelet transform of discrete time series x(n) is given 
by, 

W:(a, b) = )a t, x(n)7jJ:,b(n), (2.22) 

It is possible to compute the wavelet transform in the time-domain using Eq 
(2.22). However it is much simpler to use the fact that wavelet transform is 
the convolution between time series x(n) and wavelets 'I/J~b(n), and to carry , 
out the wavelet transform in Fourier space using the fast Fourier transform 
(FFT). Unlike the convolution, the FFT method allows the computation of 
all n points simultaneously. In the Fourier domain, the wavelet transform is 
given by, 

1 N-l 

W:(a, b) = r;; L X (m)W:,b(m)ei27rnm/N, 
yam=o 

(2.23) 

where X(m) and w~,b(m) denote the Fourier transforms of x(n) and 'I/J~,b(n) 
respectively. Given two time series x(n) and y(n), with wavelet transforms 
W: (a, b) and WX (a, b), the wavelet cross-spectrum W:Y (a, b) and the wavelet 
auto-spectrum W:x (a, b) are given by, 

(2.24) 

W:X(a, b) = W:(a, b) . W~X(a, b), (2.25) 

The wavelet coherence is given by, 

(2.26) 
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2.5.2 Applications 

This section describes applications of wavelet coherence analysis of REEG 
signals in neuroscience. 

Epilepsy 

Bahcivan et al. (2001) using wavelet coherence examined REEG signals of 
three male epileptic rats. Results showed significant level of coherence at 
the ictal pha..'le of seizure. Pha..'le coherence analysis can be used to know 
the phase information in EEG signals. Xiaoli Li et al. (2006) used wavelet 
phase coherence of REEG to measure the phase information during the pre
ictal and the ictal stage of seizures in 12 rats. Results showed increa..'le in 
phase coherence from the pre-ictal stage to the ictal stage for high frequency 
components which indicates that frequency components tend to couple from 
the pre-ictal stage of seizure to the ictal stage in pha..'le. 

Cognitive processes 

Mental functions such as learning, memory, imagination, comprehension and 
decision making are usually called cognitive processes in psychology. Vari
ous studies have conformed the usefulness of wavelet coherence analysis of 
REEG signals in cognitive studies (Shaw, 1981; Lamer et al., 1994; Saiwaki 
et al., 1997; Nunez et al., 1999; Ta-Hsin Li and Klemm, 2000; Minfen et al., 
2002; Kelly et al., 2003; Meinicke et al., 2004; Srinivasan, 2004; Markazi et 
al., 2005; Klein et al., 2006). For example, in cognitive processes the hu
man brain recognizes various spatially distributed elements of stimulus into 
a meaningful way after detecting a silent relationship and binding these var
ious distributed elements into a meaningful way (Ta-Hsin Li and Klemm, 
2000). This process is also called cognitive binding. Ta-Hsin Li and Klemm 
(2000) proved the mechanism of cognitive binding as a result of neuronal 
synchronization using wavelet coherence. In their experiment, 17 subjects 
were selected and were shown 10 various ambiguous figures, this is because 
ambiguous figures are the best way to induce cognitive binding in the human 
brain (Ta-Hsin Li and Klemm, 2000). Results showed significant increase in 
the coherence when subjects tried to recognize alternate images, i.e, when 
the cognitive binding occurred. Therefore, process of cognitive binding wa..'l 
a..'lsumed due to the increa..'le in neuronal synchronization. In another study, 
Klein et al. (2006) using wavelet and Fourier coherences studied ability of 
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the brain to learn associations among different stimuli. These stimuli were 
shown to the subjects during the recording of ERPs which were later anal
ysed using wavelet and Fourier coherences. Subjects, involved in associative 
learning by receiving two cla..'lses of stimuli (visual and electrical) showed the 
larger value of wavelet coherence in a gamma band as compared to the sub
jects not involved in the a..'lsociative learning procedure. This supported the 
idea that changes in coherence observed in the learner group were due to 
the a..'lsociative learning. On the other hand the Fourier coherence revealed 
no significant changes in the gamma band for subjects involved in the as
sociative learning. Markazi et al. (2005) used wavelet coherence analysis of 
scalp ERPs in the study of change blindness and change detection. Change 
blindness is a phenomenon in visual perception in which very large changes 
occurring in full view are not noticed (Markazi et al., 2005). The scalp ERPs 
of the change detection and the change blindness were recorded by showing 
frames of different pictures to the 9 subjects whose ages ranged from 19 to 55 
years. Results showed the significant amount of change in wavelet coherence 
values between change blindness and change detection. 



Chapter 3 

Coherence of SL 

3.1 Introduction 

The issue of VCUS effects on REEG-based coherence analysis has been ad
dressed in this chapter after reviewing the background theory of the SL in
cluding its applications in neuroscience. It ends with the discussion of our 
proposed coherence method. 

3.2 Interpretation of the SL 

Existing signal processing methods to minimize the VCUS effects on coher
ence analysis of REEG signals are based on the SL. Before we discuss these 
methods, it would be useful to discuss some basics of the SL. 

3.2.1 Scalp current density 

According to the four concentric spherical shells model of the head, the hu
man head is divided into four parts: the brain, cerebral spinal fluid (CSF), 
skull and scalp as shown in Figure 3.1. 

21 
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Figure 3.1: Four concentric spherical shells model of the head is based upon 
the assumption that human head is composed of four concentric spherical 
shell'): the brain, CSF, skull and scalp. Nunez and Srinivasan, 2005 

Each region of the brain obeys the Ohm's law, which is the fundamental 
assumption of this model (Srinivasan et al., 1996, 1998). The CSF is a water 
like fluid that surrounds and baths the brain and the spinal cord. The brain's 
outer layer is called the cerebral cortex. It is assumed in this model that the 
scalp, skull and CSF are charge free regions, containing no generating current 
sources and there is a constant rate of flow or volume conduction for these 
three tissues of the brain. In other words, these tissues serve purely 3..') the 
volume conductor for brain current generators. The current generators are 
3..')sumed in this model 3..') equipotential dipoles. The current is generated in 
the brain and reaches to the scalp by flowing through CSF and skulP such 
that the most of the current in the skull is radial which spreads tangentially 
when enters into the scalp (Nunez and Srinivasan, 2005). This radial current 
flowing per unit volume is called the scalp current density (SCD) in EEG 
studies. 

Perrin et al. (1987) reported that potentials from deeper sources in the 
brain at a depth of half the radius of the head are not reflected in the SCD. 
The SCD is sensitive to superficial sources, with sensitivity falling off at ap
proximately r4, where r is the distance from the current source to the scalp 

1 AH Compared to the Hcalp, Hkull is very poor conductor of the brain and current 
falls off by two order of magnitude within the thickness of the skull because of its poor 
conductivity, therefore REEG iH blurred conHiderably as compared to the cortical potential 
(Nunez and Srinivasan, 2005). 
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surface (Oostendorp and Van Oosterom, 1996; Pernier et al., 1988). The im
plication is that superficial cortical sources will have greater impact on the 
SCD than deeper sources. Due to this important characteristic, the SCD has 
an ability to eliminate much of the VCUS effects from distant sources2 and , 
electrical activity generated by reference electrodes (Gavins et al., 1991). 

3.2.2 The SL: physical basis and applications 

The SL is the second order spatial derivative of the potential on the scalp 
surface. It turns out that if the skull conductivity is less than at least 20 
% of cortical conductivity, it provides good estimate of both SCD and cor
tical potentials (Nunez, 1981). The proof of this is included in Appendix 
B. It is a simple technique and shows most of important characteristics of 
the SCD. Therefore, it is frequently used in applications of the SCD in EEG 
signal studies. It provides various important applications in neuroscience. 
For example, Hjorth and Rodin (1988) reported that difference of superficial 
activity estimated by the SL and REEG signals can be used to differentiate 
superficial EEG generators from deep EEG generators. Based on this study, 
Yoshinaga et al. (1996) studying two cases of epilepsy, demonstrated that 
secondary bilateral synchrony is generated from a deep cerebral area of the 
brain. The secondary bilateral synchrony is an ictal bilaterally synchronous 
EEG signal at the location in the brain exactly contralateral to the discharge 
caused by lesion (Tukel and Jasper, 1952). 

The SL has been also used to minimize blurring effects of the scalp and 
skull on REEG signals. For example, Wallin and stalberg (1980); Nunez 
(1989) compared REEG and SL results obtained in the study of complex 
partial seizure. Scalp Laplacain-based plots provided better spatial resolu
tion of ictal activity than REEG-based plots. Wang and Begleiter (1999) 
compared SL-ba..'ied and REEG-ba..'ied plots obtained using EEG signals of 
alcoholics (more than 8 years) and long-term abstinent alcoholics (average 8 
years of abstinence). SL-based plots showed more distinct and clear differ
ence between the abstinent alcoholics and the alcoholic subjects than those 
plots obtained using REEG signals. 

2These sources are not close (less than 2cm) to the electrodes at which the SeD 1..., 

calculated. 
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3.2.3 Methods for estimating SL 

Methods to calculate the SL or the SCD are divided into two cla..'ises: Local 
methods (Hjorth, 1975; Wallin and Stalberg, 1980; Katznelson, 1981; Gevins 
et al., 1990; Le and Gevins, 1993; Wang and Begleiter, 1999) and global 
methods (Perrin et al., 1987, 1989; Nunez, 1989; Law et al., 1993). 

Figure 3.2: The brain region is divided into two parts: skull and scalp. ds is 
a thickness of a small cylinder with principal axis perpendicular to the scalp 
surface. Electrode 0 is placed at the scalp position right above the EEG 
source, and electrodes labeled 1 to 4 are equally placed from this electrode. 
Katznelson, 1981 

The so-called local methods use only potentials at nearest neighbor elec
trodes in which the SL is computed by finite difference scheme (Hjorth, 1975; 
Katznelson, 1981). A typical example of local methods is Hjorth's second or
der finite difference scheme (Hjorth, 1975), which is also called a nearest 
neighborhood method or Hjorth method in EEG studies. This method ap
proximates SL at electrode 0 as the sum of the potentials at the four nearest 
neighbors to electrode 0 minus four times the potential at electrode O. It ha..'i 
been a..'isumed that electrode 0 is placed at the scalp position right above the 
EEG source, located inside the brain a..'i shown in Figure 3.2. A small cylinder 
of scalp tissue of thickness ds with principle axis perpendicular to the scalp 
surface is a..'isumed. Four more electrodes labeled 1 to 4 from electrode 0 at 
equal distance d are assumed here. Using simple mathematical approaches, 
the SL at electrode 0 can be approximated as the sum of the potentials at 
the four nearest neighbors (electrodes 1 to 4) to electrode 0 minus four times 
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the potential at electrode 0, that is , 

(3.1 ) 

where xo(n), xl(n), x2(n), x3(n) , and x4(n) are time series of EEG signals 
at electrodes 0, 1, 2, 3, and 4 respectively. A proof of Eq. (3.1) is included 
in Appendix B. It is very difficult to meet conditions for the Hjorth method 
for all electrodes in EEG recording . For example in 10-20 electrode system, 
the Hjorth method is well fitted for some of electrodes such as Cz whose 
neighbors Fz, Gl, C4 and pz are nearly equidistant as shown in Figure 3.3. 
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Figure 3.3: Electrodes, CCl, C4 , Fz, and pz are nearly equidistant from elec
trode Cz 

The Hjorth method tends to be more accurate as the distance between adja
cent electrodes becomes smaller. This is because, the SL for large interelec
trode distances can be contaminated by more distant , independent features 
rather than reflecting only the immediate surrounding potential. The smaller 
interelectrode distance can be achieved by using the larger number of elec
trodes but the recording may be more difficult to handle. The Interelectrode 
distance of 3.2cm is required for the satisfactory estimation of the SL, which 
can be achieved by using the EEG recording systems based on the extended 
10/20 system of at least 64 electrodes (Nunez , 1981) . When the distances 
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from an electrode to all of its neighbors are not equal, the Hjorth method 
can be modified by multiplying each potential in the average by the recipro
cal of the distance. That is, each neighboring electrode potential is divided 
by the distance between that electrode and the center electrode, results are 
summed, and from this sum one subtracts the potential at the center elec
trode multiplied by the sum of the reciprocal distances (Babiloni et al., 1995; 
Lagerlund et aI, 1995). If three neighbors are available, an average of these 
may be used. Alternatively, additional electrodes may be placed on the head 
in a circle passing through the nasion (N z), inion (Iz), and the points just 
anterior to the tragus of the ears (T9 and TIO). These electrodes may be 
used in the calculation of SL at the fronto polar, lateral frontal, temporal, 
and occipital electrode positions. 

In the global methods, an imaginary surface is used to approximate SL using 
various interpolation techniques. The imaginary surface is generated using 
the projected positions and the mea..~llred potentials at the corresponding 
original electrodes. SL is then calculated by applying direct differentiation 
to a resulting interpolation function. The simplest interpolation technique is 
ba..~ed on a linear interpolation method. It is based on the a..~sumption that 
the rate of change between unknown values is constant and can be computed 
using a si?lple slope formula. However the main disadvantage of this method 
is its performance which tends to decline a..~ the degree of polynomials in
creases (Jaffrey, 2004). A spline interpolation technique has been introduced 
to overcome this problem (Law et al., 1993). The idea underlying this method 
is to approximate a given function by the set of low degree polynomials (Jaf
frey, 2004). Different spline interpolation techniques have been introduced 
over the years, including two-dimensional rectangular surface splines (Perrin 
et al., 1987; Nunez, 1989), three-dimensional rectangular splines ( Law et al., 
1993; Sriniva..~an et al., 1996), spherical surface spline (Perrin et al., 1989; 
Babiloni et al., 1995), and spherical harmonic expansion (Lagerlllnd et al., 
1995). 

The global methods provide a useful estimation of the SL even when neigh
boring electrodes are not available for a central electrode. The major dis
advantage of the global methods is artificially high coherence which results 
due to spline coefficients (Biggins et al., 1991, 1992; Biggins and Fein, 1993; 
Lagerlund et al., 1995). These methods also produce a large level of in
terpolation noise. However, this noise level can be reduced using averaging 
techniques (Nunez and Sriniva..~an, 2005). Few researchers have developed 
spline interpolation techniques ba..~ed on the scalp surface model constructed 
from lIIRI of a subject, which provides more distinct and sharp images than 
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a mathematically generated model (Le and Gevins, 1993; Gevins et al., 1994; 
Babiloni et al., 1996). 

3.3 Fourier coherence of SL 

As mentioned earlier that the SL is sensitive mostly to superficial sources 
and suppresses volume-conducted activity from distant generators. This im
plies that SL-ba')ed coherence can be a useful mea')ure to detect correlation 
between EEG signals with minimum VCUS effects. Based on this impor
tant characteristic of the SL, some important results regarding VCUS ef
fects on coherence of REEG signals were deduced by Nunez and Srinivasan 
(2005). According to these results, conventional REEG-ba')ed coherence due 
to VCUS effects does not depend on frequency and decreases as interelectrode 
distance decreases. Figure 3.4 shows results of this study in more detail. This 
figure shows coherences of SL and REEG signals between electrode labeled 
X and a ring of electrodes at progressively greater distances from X labeled 
1-3. The estimated coherence between electrode X and electrode n is labeled 
X:n. The REEG-based coherence shown in this figure has strong qualitative 
similarity to the coherence effects predicated by VCUS effects of uncorrelated 
sources activity (Nunez and Srinivasan, 2005). The level of this coherence 
that is independent of frequency systematically decrea')es a') interelectrode 
distance increa')es and is also lower in value than the corresponding coher
ence of SL. Therefore, there is strong evidence that most of the frequency 
independent coherence of REEG signals shown in Figure 3.4 is due to VCUS 
effects. On the other hand, the corresponding SL-based coherence shown in 
Figure 3.4 does not show any similarity to the coherence due to VCUS effects. 
The results shown in Figure 3.4 provide sufficient evidence that SL-based co
herence is a useful method to detect EEG correlation with minimum VCUS 
effects. Various other studies have reported the ability of SL-based coherence 
to detect EEG correlation with minimum VCUS effects (Nunez and Pilgreen, 
1991; Nelson and Nunez, 1993; Nunez and Westdorp, 1994; Srinvans et al., 
1998; Srinvans, 1999). 
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Figure 3.4: The graph between REEG-based coherence (left side of figure) 
and SL-based coherence for the subject at rest with eyes closed. Nunez ::tncl 
Srinivasan , 2005 

3.4 Proposed solution: wavelet coherence of 
SL 

SL-based coherence methods discussed in Section §3.3 are ba.c;ed on t he 
Fourier transform, therefore they do not provide t ime evolu tion of coher
ence spectra. To the best of our knowledge , time-frequency methods of 
SL-based coherence have not been developed to date. Most kind of EEG 
signals are non-stationary and contain important signatures in time and fre
quency domains. Time-frequency methods of SL-based coherence are more 
appropriate for such kind of EEG signals. Therefore, this resea rch proposes 
a time-frequency method of SL-based coherence . 
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The proposed coherence method is ba..c;;ed on wavelet coherence of 8L. It can 
detect EEG correlation with minimum VCU8 effects and a satisfactory time
frequency resolution. In addition, it minimizes electrical activity generated 
by reference electrodes during EEG coherence analysis. Detailed theoretical 
background of wavelet coherence and 8L methods have been already dis
cussed in Chapters 2 and 3 respectively and its mathematical formalization 
will be developed in Chapter 5. 



Chapter 4 

Research methods 

4.1 Introduction 

This chapter presents a discussion on research methodology used in our study. 
Four major stages of this research are discussed. First stage presents a discus
sion on methodology required to choose already recorded particular REEG 
data. Second and third stages involve discussion on data reformatting and 
feature extraction respectively. Finally, performance and quality of various 
extracted features are discussed. 

4.2 Research methodology 

The overall strategy of our method is shown in the following diagram. 

.Methodology for selecting 
alreaty recorGet data 

"'---------

1--. Feature extraction A 

! Data reformaHlng 
.. tor MAl LAB 

r 
I 

t-- Feal\.J f(' extraction B 
------~ 

Figure 4.1: An overview of research strategy 
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4.2.1 Methodology for selecting already recorded data 

This study uses the already recorded REEG data, which was donated 
by Dr Henri Begleiter at the Neurodynamics Laboratory of New York 
Health Center at Brooklyn. It was also publicly available at the web page 
http://kdd.ics.uci.edu/ /databases/eeg/eeg.html. The data consists of ERPs 
recorded from alcoholics and abstinent alcoholics subjects (average 10 years 
of abstinence). Alcoholics subjects had a history of alcoholism of at lea..;;t 10 
years. Further detail on this data is included in Appendix C. It wa..;; selected 
according to the following criteria: 

(1) ERPs 

This study uses ERPs, because these signals are highly time-varying and 
contain important signatures in both time and frequency domains. The use 
of ERPs for existing coherence methods of SL does not provide most of impor
tant information, contained in these signals. Contrary to this, the proposed 
coherence method in this research is developed for such highly time-varying 
signals, therefore the use of this data provides the opportunity to check its 
performance. 

(2) Interelectrode distance between recording electrodes 

Satisfactory estimates of the SL require the average interelectrode distance 
of at most 3.5 cm (Nunez et a1., 1997). Therefore, we used the REEG data 
based on the extended 10-20 recording system of 64 electrodes, because the 
average interelectrode distance for such recording system is 3.2cm (Gevins, 
1987c). However, SL estimates can be further improved by decrea..;;ing in
terelectrode distance more than 3.5 cm. Large interelectrode distance can 
be contaminated by more distant independent features rather than reflecting 
only the immediate surrounding potential (Nunez and Sriniva..;;an, 2005). 

(3) The number of repeated trials 

The number of repeated trials must be sufficient to cause ERPs to be clearly 
distinguishable from unrelated background EEG. This is because, ERPs com
pared to background EEG are very small in magnitude, therefore ERPs are 
enhanced when many trials are averaged together. The signal to noise ratio 
is thus improved in proportion to the square root of the number of trials 
averaged (Cooper, 1974). Therefore, the ERP data chosen for this research 
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consists of the large number of repeated trials, I.e, at lea..c;t 100 trials per 
subject. 

(4) Choice of subjects 

This study will also examine consequences of avoiding VCUS effects on co
herence analysis based on difference in coherence between coherences of al
coholic and abstinent alcoholic REEG activities. This is because, most of 
REEG-based coherence studies on alcoholic effects have avoided the issue of 
VCUC effects on REEG signals (Ellis and Oscar, 1989; Ciesielski et al., 1995; 
Moselhy et al., 2001; Winterer et al., 2003; De Bruin et al., 2004; Marsdlek 
et al., 2006). Results of this study will help to a..c;sess the importance of 
minimizing VCUS effects on conventional REEG-based coherence analysis. 
Therefore, REEG signals of alcoholics and long-term abstinent alcoholics will 
be used in this study. Further detail about the history of subjects is explained 
in Appendix C. 

(5) Artifact-free data 

Various kinds of artifacts are observed during the recording of REEG sig
nals. These artifacts contaminate the actual brain activity. Therefore the 
REEG data has been carefully selected keeping in mind all important pre
cautions required for artifact-free data. Further detail on the selected REEG 
data and its recording procedure is included in Appendix C. 

4.2.2 Data reformatting 

The huge amount of data will be used in this study which requires va..c;t 
amounts of computation time. The computational language MATLAB best 
suits for such data, because it is better at handling large data set and con
tains various signal processing tools compared to other languages. Therefore, 
the selected data, which is in the ASCII file format, will be converted into 
readable MATLAB files. Later these files will be used to extract various EEG 

features. 

4.2.3 Feature extraction 

Using the MATLAB, various codes will be developed to extract EEG features. 
These EEG features are STFT and wavelet coherencies of Hjorth method-
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ba..c;;ed SL (Hjorth, 1975) and Perrin method-based SL (Perrin et al., 1989). 
In addition, EEG features based on STFT and wavelet coherencies of REEG 
signals will also be computed. 

4.2.4 Performance of EEG features 

Performance of EEG features depends upon their accurate estimates, there
fore it is first discussed and then the methods used to assess the performance 
of that estimated features will be addressed. 

Estimates of a EEG-based coherence function can be biased due to VCUS 
effects, reference electrode effects, filtering of genuine EEG signals by SL, and 
statistical errors. First two issues will be resolved using SL-based coherence, 
because the SL eliminates most of VCUS and reference electrodes effects. 
Third issue arises when we use SL-based coherence, because the SL filters 
out EEG signals due to distant sources. This issue will be resolved using 
REEG-ba..c;;ed coherence, because REEG activity picks up signals from local 
and distant sources. As for statistical errors, this problem will be resolved 
using some statistical techniques. For example, noise and other un-correlated 
sources, present in coherence estimates, will be removed by averaging tech
niques. Statistical errors in coherence estimates also depend on the number 
of samples used in the coherence estimate. In this study, the number of sam
ples for robust coherence estimates will be determined by 95 % confidence 
intervals 1 

. 

As for as accuracy of SL estimates are concerned, they depend on the number 
of recording electrodes. As mentioned before that an EEG recording system 
ba..c;;ed on at lea..c;;t 64 electrodes, produces satisfactory estimates of the SL. 
Therefore this study has selected REEG data which wa..c;; recorded using the 
64-electrode system. Another important issue when estimating the SL, is its 
algorithm. Among various algorithms of the SL, the Hjorth method based 
on local methods (Hjorth, 1975) and the Perrin method ba..c;;ed on spherical 
interpolation methods (Perrin et al., 1989) are most successful (Pernier et al., 
1988; Perrin et al., 1989; Tandonnet et al., 2005). This study aims to com
pare performance of both these methods and a method will be used whose 
estimates show more consistency to the characteristics of the true SL. 

lConfidence interval is defined as the probability that the true coherence at a certain 
time lies within a certain interval about the estimated coherence 
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As far 3,..,) performance of estimated EEG features is concerned it will be 
evaluated by comparing their results to the existing literature on EEG co
herence methods. For example, according to existing coherence methods, 
REEG-based coherence due to VCUS effects does not change with frequency 
(Nunez and Srinivasan , 2005). 
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Using this important result, the wavelet squared coherency of SL, shown in 
Figure 4.2, can be proved less affected by VCUS. This is due to the fact that 
this coherency is highly dependent on its frequency. Contrary to this, the 
wavelet squared coherency of REEG shown in Figure 4.3 is highly affected 
by VCUS, because most of its part is independent of frequency. Therefore, 
performance of the SL-based coherency seems to be satisfactory as compared 
to the REEG-based coherency as shown in Figures 4.2, and 4.3. 



Chapter 5 

Tirne-frequency coherence 
analysis of SL: methodology 

5.1 Introduction 

Wavelet and STFT squared coherencies of SL are developed in this chapter. 
Finally, this chapter presents a discussion on statistical methods which are 
used to a..'lsess performances of these coherence methods. 

5.2 STFT and wavelet squared coherencies 
based on Hjorth method 

Let X and Y be two electrode positions whose nearest neighbored are given 
by: [Xl, X2, X3, X4] and [YI, Y2 , Y3 , Y4] respectively. Time series recorded 
at these nearest neighbored electrode positions are [xI(n), x2(n), x3(n), x4(n)] 
and [YI(n), Y2(n), Y3(n), Y4(n)] respectively. If x(n) and y(n) are time series 
recorded at electrode positions X and Y respectively then using Eq. (3.1) 
(Section §3.2 of Chapter 3), SLs of these time series are given by, 

(5.1) 

(5.2) 

36 
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Using Eqs. (2.16) and (2.26) (sections §2.4, and §2.5 respectively of Chapter 
2), the STFT and wavelet coherences of these SLs are given by the following 
relations, 

(5.3) 

(5.4) 

where Clxly(m, n) and l';::lY(a, b) are the STFT and wavelet coherences, and 
Pzxly (m, n), and W~xly ( a, b) are STFT and wavelet cross-spectra respectively. 
STFT and wavelet squared coherencies can be obtained by taking the square 
of their respective absolute values. 

5.2.1 Statistical considerations 

In Fourier coherence, cross and auto spectra are estimated using a peri
odogram method. In this method, two time series are divided into equal 
number of segments. Auto and cross spectra of each segment are then esti
mated. Averages of these spectra provide the required cross and auto spectra 
for the estimation of a coherence function. However, this method makes sense 
only if coherence analysis of stationary time series is required. Averaging the 
spectral estimates of non-stationary segments would provide a possibly mean
ingless average values (Cohen, 1995). Therefore, following different approach 
ha.." been used for the robust estimates of the STFT and wavelet squared 
coherencies. 

First, any two trails are randomly selected and transformed into SLs, and 
then STFTs and wavelet transforms of these transformed SLs are estimated. 
These transformed SLs are then used for the estimation of their corresponding 
STFT and wavelet based cross and auto-spectra. This procedure is repeated 
for each pair of repeated trials. In next step, averages of all estimated cross 
and auto-spectra for each transform are estimated and finally these aver
aged cross and auto-spectra are used in the square of the absolute values 
of Eqs. (5.3) and (5.4) in order to estimate the STFT and wavelet squared 
coherencies respectively. 
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The statistical significance of these time-frequency coherencies is examined 
by the confidence intervals. In Fourier coherence, confidential interval is 
set by assuming that two time series are stationary and Gausssian distribu
tion is used to approximate the probability density of data. However such 
an assumption can not be used for time-frequency methods of coherence. 
Therefore, statistical significance of these coherencies is assessed by using 
the method of Gish and Cochran (1988), which is not based on stationary 
assumption of EEG signals. It is given by the following relation, 

Pt = 1 - (1 - t)R-l, where 0 < t < 1 (5.5) 

Where t is the detection threshold, R is the number of repeated trials, and 
Pt is the desired level of confidence. For a 95 % confidence interval, 

1 - (1 - t)R-l = 0.95 (5.6) 

or 
t95% = 1 - 0.051jR

-
1 (5.7) 

Any estimate of these coherence less than the t95%, will not be considered 
as the significant value. In addition to SL-based estimates of squared co
herencies, the conventional STFT and wavelet squared coherencies of REEG 
signals are estimated following the procedure from Eqs. (5.3) to (5.7). 

5.2.2 Time-frequency resolution 

In order to find a suitable time-frequency resolution, three different time res
olutions of O.ls, 0.2s and 0.3s corresponding to frequency resolutions of 10 
Hz, 5Hz and 3.3Hz respectively were used for STFT. These time-frequency 
resolutions correspond to Hanning windows of lengths: 25, 51, and 75 re
spectively and can be calculated by the relation ~Fr = Fs/Nw and ~Tr = 
N w / Fs, where N w and Fs stand for window length and sampling frequency 

respecti vely. 

In order to achieve time-frequency representation of wavelet coherence, first 
wavelet scale a was transformed into frequency scale fa in Hertz. The scale 
level was incrementally changed from 1 (higher frequency) to 50 (lower fre
quency) in every single step. Finally the l\!Iorlet wavelet of center frequency 
0.8125 Hz was scaled in this study so that fa ranged from 1 Hz to 50 Hz. 
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5.3 STFT and wavelet squared coherencies 
based on Perrin method 

Perrin's method of spline spherical interpolation technique is used here to 
estimate SL (Perrin et al., 1989). This technique involves three important 
steps. 

• The projection of scalp electrode position on the sphere. 

• To determine the value of the potential at the sphere. 

• To determine the value of the SL. 

Let Vi be the potential value mea..'iured at the ith electrode. The projection 
of ith electrode position into spherical system is denoted by E i . The value 
at electrode position E of the spherical spline U which interpolates the ViS 
at the Eis is given by, 

T 

U(E) = Co + L Ci9(cos(E, Ei)), (5.8) 
i=l 

where r is the number of scalp electrodes used for recording scalp potentials 
or REEG. The coefficients CiS (elements of matrix C) can be determined 
from the following matrix equations: 

GC+TCo 

TtC 
v 
0, 

(5.9) 

(5.10) 

where superscript t stands for transpose operation, V is a column vector of 
r rows whose elements ViS are scalp potentials at any strategy at r electrode 
positions, G is a r by r square matrix of spline coefficients gijS, T is a column 
vector of r rows whose all elements are one, and C is a column vector of r 
rows whose elements are spline coefficients CiS. The coefficients gij S of the 
square matrix G are equal to g(COS(Ei,Ej))' which is the cosine of the angle 
between the electrode projections Ei and Ej. The value of the g(cos(Ei,Ej )) 
can be found from the function: 

(5.11) 

Ps(X) is the Legendre polynomial of degree S and order q. If (XE,YE,ZE) and 
(XF,YF,ZF) are the cartesian coordinates of electrode positions E and F, then 
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for the unit sphere of radius one, 

(5.12) 

Let lE be Perrin method-based SL at the electrode position E. According to 
Ohm's law, it is proportional to the gradient of the interpolated potential on 
the spherical surface at the electrode position E, 

r 

lE oc -\7U(E) oc -\7(Co + ~Cig(cos(E, E i ))), (5.13) 
i=l 

r 

lE oc -\7(~ Cig(cos(E, Ei)), (5.14) 
i=l 

Substituting the value of g(cos(E, Ei)) into Eq. (5.14), using Eq. (5.11) 

(5.15) 

U sing the property that 2-dimensional spherical Laplacian of the Legendre 
polynomials is the multiple of same Legendre polynomials (Perrin et al., 
1989) 

\7 Ps = -(2s + l)Ps 

Therefore, using Eq. (5.16), we can write Eq. (5.14) as, 

r 

lE = ~Cih(cos(E,Ei)) 
i=l 

Where h(cos(E, E i)) is given by, 

(5.16) 

(5.17) 

(5.18) 

Similarly Perrin method-based SL at electrode position F can be estimated 
following the same procedure. Using the procedure described in Sections 
§2.4, and §2.5 of Chapter 2, STFT and wavelet squared coherencies of these 
SLs are estimated respectively. 



Chapter 6 

Time-frequency coherence 
analysis of SL: Results and 
discussion 

6.1 Introduction 

Using the techniques developed in Chapter 5, and already recorded ERP data 
(Detail on this data is included in Appendix C), various important results 
regarding performance of the STFT and the wavelet coherence methods of 
SL have been derived in this study. Time-frequency characteristics of VCUS 
effects on EEG correlation have been also examined. This chapter presents 
a discussion on the results of this study. 

6.2 STFT coherence analysis of SL 

In order to obtain satisfactory estimates of the SL, performance of the Hjorth 
method based on local methods (Hjorth, 1975) and the Perrin method ba..'ied 
on spline spherical interpolation technique (Perrin et al., 1989) were com
pared in this study. The SL estimates based on the Hjorth method were 
found more consistent to the true SL than those obtained using the Perrin 
method. Therefore, results in this study were obtained using the SL ba..'ied 
on the Hjorth method. Following is the discussion on the results of this study. 

STFT coherence analysis of SL ha..'i been proved useful in studying EEG 

41 
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correlation with minimum VCUS effects in the t ime-frequency domain . This 
result is illustrated in Figures 6.1 and 6.2, where the STFT squared coheren
cies of SL and REEG signals , estimated using the same electrode s posit ions 
and the subject , are shown. The STFT squared coherency of 8L in Figure 6.2 
is showing changes across all frequencies, wherea.') the corresponding STFT 
squared coherency of REEG in Figure 6.1 is almost constant across all fre
quencies. In addition, the frequency independent part of the REEG-based 
squared coherency is larger in the value than the corresponding 8L-based 
squared coherency. The Coherence spectra shown in Figure 6.1 have strong 
qualitative similarity to coherence effects predicted by VCUS. 
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As mentioned earlier that coherence due to VCUS effects does not change 
with frequency, therefore it is almost certain that the frequency indepen
dent part of the conventional REEG-ba..sed squared coherency in Figure 6. 1 
is due to VCUS effects. On the other hand, there is strong evidence that 
the SL-based squared coherency in Figure 6.2 is very less affected by VCUS 
effects. Thus, STFT coherence analysis of SL provides EEG correlation with 
minimum VCUS effects. Moreover, it proved to be useful in detecting sig
nificant correlation by comparing various time-varying correlations at same 
frequency. Figure 6.2 illustrates this result , where the SL-based squared co
herency reveals EEG correlations at 0.3 , and 0.7 seconds at frequency of 20 
Hz . This coherence at 0.3 seconds is less than 0.2 , which is not significant as 
it is very low in value. However , it detects significant coherence of around 
0.4 value at 0.7 seconds. 

During this study, it was found that the coherence, which is independent 
of some frequency range, is also independent of corresponding time. This 
result is illustrated in Figure 6.1, where it is clearly shown that level of fre
quency independent coherence is constant at each instance of time. Since 
coherence, which is constant across some frequency range, is mainly due to 
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VCU8 effects, we can conclude that coherence due to VCUS effects is inde
pendent of both time and frequency. This important result wa..'i noticed for 
all the 30 subjects. 

As discussed earlier in Chapter 3 (Section §3.3) that coherence due to VCUS 
effects decreases as interelectrode distance increases. This characteristic of 
VCUC effects was also observed during STFT coherence analysis in this 
study. However, it wa..'i observed for those interelectrode distances which 
were increased along a fixed direction 1. This important result is discussed in 
more detail in the next section using wavelet coherence analysis. 

6.3 Wavelet coherence analysis of SL 

The results discussed in Section §6.2 were ba..'ied on STFT coherence analysis 
of SL, study of these results using a more advance technique like wavelet 
coherence can provide better understanding of VCUS effects on EEG corre
lation. Therefore, this section using the wavelet squared coherencies of SL 
and REEG signals discusses these results again. Performance of wavelet co
herence analysis of SL a..'i compared to STFT coherence analysis of SL ha..'i 
been also assessed here. 

One of important results found in the previous section that STFT coherence 
due to VCUS effects is independent of both time and frequency domains wa..'i 
also observed during wavelet coherence analysis. This result is illustrated 
in Figure 6.4, where wavelet squared coherency of REEG signals between 
electrodes CP3 and P04 is shown. Figure 6.4 clearly shows that the level 
of the frequency independent coherence around 30 Hz is also independent 
of the corresponding time. Applications of this results are important. For 
example, this result is useful in order to detect VCUS effects on REEG-based 
coherence when only its time-domain part is known. This is because, existing 
knowledge about VCUS effects on EEG coherence analysis is limited to only 
frequency-domain characteristics (Nunez and Srinivasan, 2005). 

According to the results of this study, wavelet coherence analysis of SL wa..'i 
found to be highly dependent on frequency. It indicates that the wavelet 
coherence of 8L efficiently reveals EEG correlation with minimum VCUS ef
fects in the time-frequency domain. Majority of results showed larger values 
of wavelet squared coherency of REEG as compared to the wavelet squared 

1 Direction is considered here along a straight line joining two adjacent electrodes 
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coherency. Increa..'le in REEG-ba..'led coherence values wa..'l probably due to 
VCU8 effects. However some results showed larger values of the wavelet 
squared coherency of 8L than those obtained using the wavelet squared co
herency of REEG signals. This is because, smaller correlated EEG sources 
usually make smaller contribution to corresponding coherence of REEG sig
nals and at same time these sources make larger contributions to coher
ence of 8L (Nunez, 1981). In other words, a..'l scale of correlated sources 
increa..'les, sensitivity of REEG-ba..'led coherence increa..'les wherea..'l sensitivity 
of 8L-ba..'led coherence decrea..'les at same time. Therefore higher coherence 
can be observed in either REEG or 8L depending on the size of coherent 
source activity. 

Dependance of coherence due to VCU8 effects on interelectrode distance 
was also examined in this study using the wavelet squared coherencies of SL 
and REEG signals. It was found that coherence due to VCUS effects does 
not always decrea..'le as interelectrode distance increases. However decrea..'le in 
coherence was always observed when interelectrode distance wa..'l along some 
fixed direction. 

It is important to mention here that existing studies on EEG coherence 
analysis also predict decrea..'le in coherence due to VCUS a..'l interelectrode 
distance increa..'les (Nunez, 1981; Srinvans et al., 1996; Nunez et al., 1997; 
Srinvans et al., 1998; Nunez and Sriniva..'lan, 2005). However, these stud
ies do not mention effects of the direction between corresponding electrodes. 
Most of results of these studies have been derived using EEG signals of elec
trodes attached to the scalp of a subject along some fixed direction. 

Figures 6.3 and 6.4 illustrate the result of our study for effects of interelec
trode distance on coherence due to VCU8 effects. These figures represent the 
estimated wavelet squared coherencies of REEG for same subject a681. Fig
ure 6.3 clearly shows that there is no level of the coherence at electrodes CP3 

and PI which is affected by VCUC. However, VCU8 effects on the coherence 
are observed when the interelectrode distance is increa..'led from CP3 to P04 , 
in the different direction than the direction between CP3 and Pl' Figure 
6.4 clearly shows presence of the coherence due VCU8 effects at electrodes 
CP3 and P04 between 10 to 20 Hz. This result is contrary to the fact that 
coherence due to VCU8 effects decreases as interelectrode increases. 
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Figure 6.5: Position of electrodes based on EEG recording system of 64 
electrodes. 

As compared to the STFT coherence of SL, the wavelet coherence of SL 
provided a better time and frequency resolution in low and high frequency 
ranges. Figures 6.6 and 6.7 illustrate this result in more detail, where wavelet 
and STFT squared coherencies of SLs between same electrode's positions 
and for same subject a364 are shown. Both figures show some significant 
values of squared coherencies at low and high frequencies. However, the 
wavelet-ba..'ied squared coherency provides more sharp and well separated 
values at these frequencies than those obtained by the corresponding STFT 
squared coherency. For example, Figure 6.6 clearly indicates the wavelet 
squared coherency of 0.4, and 0.55 values at 60 Hz for 0.3 and 0.8 seconds 
respectively. On the other hand, values of the STFT squared coherency 
at 60 Hz a..'i shown in Figure 6.7, appear to be ambiguous or almost same 
throughout the entire corresponding time axis. Similarly at lower frequencies, 
the wavelet-based squared coherency provides more information than the 
STFT squared coherency. 
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Chapter 7 

Applications 

7.1 Introduction 

Great majority of REEG coherence methods applied to examine alcoholic 
effects on the brain are based on coherence difference between coherences of 
alcoholic and non-alcoholic REEG activities (Ellis and Oscar, 1989; Ciesiel
ski et al., 1995; Moselhy et al., 2001; Winterer et al., 2003; De Bruin et al., 
2004; l\1arsdlek et al., 2006). This study will assess the importance of mini
mizing VCUS effects on such coherence method using the proposed wavelet 
coherence method of SL. 

7.2 Wavelet coherence analysis of alcoholic 
EEG 

The already recorded ERP data from the groups of long-term alcoholics and 
long-term abstinent alcoholics wa..~ used in this study. The abstinent alco
holics group consisted of 15 males with no history of alcoholism for the la..~t 
10 years. The alcoholics dependent group also consisted of 15 males who 
had a history of alcoholism of at lea..~t 10 years. Further detail on this data 
set is included in Appendix C. Following method of wavelet coherence anal
ysis wa..~ used in this study: First, wavelet squared coherency of SL using 
the procedure described in Section §5.2 of Chapter 5 wa..~ estimated. Next, 
the squared coherency ranging between 100-200ms wa..~ separated from the 
estimated squared coherency. Finally average of the separated squared co-

49 
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herency wac:; taken across its samples, which is later used in this study to 
examine alcoholic effects on the brain. 

Choice of the sample length around 100-200ms (which corresponds to ERP 
component ClIO) was made, because it indicated the difference between al
coholics and abstinent alcoholics subjects more efficiently than other sample 
lengths or ERP components. Figures 7.1 and 7.2 illustrate this in more de
tail , where averaged wavelet squared coherencies (AWSCs) of REEG signals 
for abstinent alcoholic subject c364 and alcoholic subject a364 are shown. 
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Figure 7.1: Abstinent alcoholic subject c364: AWSC of REEG between elec

trodes F3 and P3 
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These figures clearly show that squared coherency around 100-200ms sig
nificantly differentiates EEG activities of alcoholic and abstinent alcoholic 
subjects than coherencies around other ERP components. AWSC of REEG 
wa..'l estimated using the same procedure described above for A WSC of S1. 

7.3 Results and discussion 

The AWSC of REEG signals wa..'l found larger for alcoholic subjects as com
pared to abstinent alcoholic subjects. This larger coherence was mostly ob
served for parietal-parietal, parietal-frontal, and parietal-temporal electrode 
pairs. Results were also consistent with existing studies on REEG-based co
herence analysis for alcoholics (Moselhy et al., 2001; Winterer et al., 2003; 
Marsdlek et al., 2006). Results obtained using the AWSC of REEG signals 
were again examined for the parietal lobe of the brain using the AWSC of 
S1. Most of results obtained using the AWSC of SL were not consistent with 
those obtained before using the AWSC of REEG. 

Figures 7.3 to 7.6 illustrate one of these results in more detail, where AWSCs 
of REEG and SL for alcoholic subject a364 and abstinent alcoholic subject 
c364 are shown. These averaged coherences were estimated between electrode 
pz and the electrodes mentioned in Table 7.1. 

Table 7.1: Set of electrodes used for the estimation of A WSCs of REEG and 
SL 

" Alphabetical representation I Numerical representation I Location 

F3, F4, AF3,F2 7,9,8,5,6 Frontal Lobe 
CZ,Cl,C3,C4,FC2,FCl,FC4,FC3 16,52,17,18,12,13,39,40 Central lobe 
CPz,P Z,P1,P2,P3,P 4,CP3,CP 4 61,25,60,59,23,24,48,49 Parietal lobe 
C5,FC6,FC5,CP5,CP6,P5,P6 42,10,11,19,20,50,51 Temporal lobe 
POz 57 Occipital Lobe 

Figures 7.3 and 7.4 show that most of the AWCSs of alcoholic REEG activity 
are larger in the value than those obtained using the AWCSs of abstinent 
alcoholic REEG activity. However the AWSCs of SL for these same subjects 
a364 and c364 are not consistent with these results. This result is illustrated 

" 
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in Figures 7.5 and 7.6, where most of the AWSCs of SL for abstinent alcoholic 
subject c364 are larger in the value than t hose obtained llsing the AWSCs of 
SL for alcoholic subject a364. Results shown in Figures 7.3 to 7.6 provide the 
strong evidence t hat increase in REEG-based coherence was due to artificial 
coherence which resulted due to VCUS effects. 
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Figure 7.3 : Alcoholic subject a364: AWSC of REEG signals between elec
trodes pz and rest of electrodes, mentioned in Table 7.1. 
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The next part of this study is ba..')ed on statistical analysis of the results dis
cussed in this section for the parietal lobe of the brain. Statistical significance 
of these results was assessed using the t-test. It was first performed on the 
results obtained using the AWSC of REEG signals. More than 95 % signifi
cance level of difference was obtained as p value wa..') found between 0.02 and 
0.05. T-test was again performed on the results obtained using the AWSC 
of SL, which resulted in 50 % significance level of difference. There is the 
significant difference between this significance level and the significance level 
obtained before using the conventional wavelet coherence method of REEG 
signals, i.e., AWSC of REEG signals. These results lead to the conclusion 
that VCUS effects significantly biases results of conventional wavelet coher
ence analysis of REEG signals by introducing artificial coherence between a 
corresponding pair of electrodes. They also imply that VCUS effects are not 
additive and therefore can not be ignored in comparison of different EEG 
activities. The results discussed in this chapter are included in Appendix C. 



Chapter 8 

Conclusions and perspectives 

8.1 Introduction 

This thesis considered the use of signal processing methods ba..c;;ed on wavelet 
and STFT coherences of SL with the goal of detecting EEG correlation with 
minimum VCUS effects in the time-frequency domain. Using these methods, 
various important results were obtained. This chapter first presents a sum
mary and clinical applications of the results obtained throughout the thesis. 
Then, finally limitations of this research are discussed followed by discussion 
on future research related to this study. 

8.2 Summary of main findings 

• The proposed wavelet coherence method of SL successfully revealed correla
tion between EEG signals with minimum VCUS effects in the time-frequency 
domain. Coherence spectra obtained using it had strong qualitative similarity 
to true coherence of EEG signals. lVIost of this spectra were highly dependent 
on frequency, which provided strong evidence about the absence of VCUC 
effects on them . 

• Performance of the proposed wavelet coherence method wa..c;; compared with 
the STFT coherence method of SL. STFT coherence analysis of SL revealed 
EEG correlation with minimum VCUS effects, but due to a use of a fixed 
window function in the STFT, its time-frequency resolution wa..c;; not satis
factory as compared to the proposed wavelet coherence method. However, 
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STFT coherence analysis of SL can be proved useful when correlation be
tween slowly time-varying EEG signals (at least in the order of minutes or 
hours) is under consideration. This is because, the STFT is computationally 
very fast (Kiymik et al., 2005) and produces effectively equivalent results to 
wavelet-ba..')ed methods for slowly-varying EEG signals (Bruns, 2004; Zhan 
et al., 2006). 

• The proposed wavelet coherence method of SL proved to be a useful tech
nique for detecting EEG correlations of very short-duration ERP compo
nents with minimum VCUS effectsl. Later, these short-duration correlations 
proved to be a useful tool for examining alcoholic effects on EEG correlation. 
Existing coherence methods for detecting EEG correlation with minimum 
VCUS effects lack of ability to detect such short-duration correlations. This 
is because, these methods are based on the Fourier transform which results 
in lack of time-resolution required to detect such-duration ERP components. 

• It was found that VCUS effects on conventional wavelet coherence of REEG 
signals decreases as interelectrode distance increases in some fixed direction. 
However, this study provided various results which showed increase in VCUS 
effects on this coherence when interelectrode distance was increased in differ
ent directions. It is important to mention here that existing EEG coherence 
studies also predict this result but these studies assume decrease in VCUS 
effects irrespective of an interelectrode direction (Nunez, 1981; Srinivasan et 
al., 1998; Nunez and Sriniva..')an., 2005). 

• VCUS effects on the conventional wavelet coherence of REEG signals were 
found independent of time and frequency. This important result was ob
served for almost every subject used in this study. It will be proved useful 
to examine VCUS effects on conventional time-frequency coherence methods 
of REEG signals, because literature on EEG coherence analysis is ba..')ed on 
only frequency-domain methods. 

• Results in this study showed significant VCUS effects on statistics of EEG 
coherence methods based on difference in coherence between coherences of 
different EEG activities. Moreover these results provided substantial evi
dence that VCUS effects are not additive and therefore can not be ignored in 
examining difference between different brain states. Using t test and conven-

lSome of these important ERP components were: ClIO ranging between lOOms to 200 
ms, C175 ranging between 160ms to 190ms, C247 ranging between 220 to 260m.." and 
P300 around 300ms after the stimulus. 
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tional wavelet coherence analysis of REEG signals, statistical significance of 
difference between coherences of alcoholic and non-alcoholic REEG activities 
was found more than 95 %. This statistical significance was dropped to 50 %, 
when it was obtained by minimizing VCU8 effects on that coherences using 
our proposed wavelet coherence method of 8L. Therefore this result brings 
the importance1 of minimizing VCU8 effects on EEG coherence analysis. 

8.3 Clinical applications of results 

Results obtained in this study show the importance of our proposed method 
in clinical neuroscience. One of important applications of these results arises 
in the study of functional connectivity between various lobes of the brain, 
which is discussed below. 

Various neurological disorders can be efficiently diagnosed by examining in
crea..'ie in their functional connectivity using wavelet coherence analysis of 
REEG signals (Lin and Chen, 1996; Blanco et al., 1997; Czinege and Bloom, 
1997; Chille et al., 2003; Hassanpour et al., 2004; Kiymik et al., 2005; Markazi 
et al., 2005; Xiaoli Li et al., 2006). A major problem arises, when this co
herence is highly affected by VCU8, which results in biased estimates of that 
coherence. Literature on EEG coherence analysis does not provide a solution 
that can be used to minimize VCU8 effects on this coherence method. This 
study presents a solution to this problem by proposing the wavelet coher
ence method of 8L. Results obtained in this study have provided sufficient 
evidence that the proposed wavelet coherence method provides robust mea
sures of coherence with minimum VCU8 effects. In addition, it offers an 
optimal time-frequency resolution at low and high frequency ranges, which 
can be proved useful for those neurological disorders which have important 
signatures both at low and high frequencies. In brief, results of this study 
have provided a substantial amount of evidence that the wavelet coherence 
analysis of 8L can provide important clinical contributions. 

1 Most of EEG coherence studies avoid the issue of VCUS effects using the assumption 
that VCUS effects are additive (Andrew et al., 1996; Clarke et al., 2001; Moselhy et al., 
2001; Balta.''; et al., 2002; Winterer et al., 2003; Marsdlek et al., 2006). 
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8.4 Limitations 

Following are the limitations of this research . 

• Number of recording electrodes: 

Accuracy of estimating SL tends to increase as interelectrode distance de
creases. This is because, large interelectrode distance may contaminate es
timates of SL by various other features rather than reflecting radial scalp 
current density (true SL) at corresponding electrodes (Nunez et al., 1997). 
Interelectrode distance can be decreased by using the larger number of record
ing electrodes. The EEG recording system ba..c;;ed on the extended 10-20 sys
tem of 64 electrodes wa..c;; used in this study, because it provides satisfactory 
estimates of SL (Nunez et al., 1997). However, accuracy of SL estimates can 
be further improved by increasing the number of recording electrodes . 

• Neighboring electrodes: 

Hjorth method ba..c;;ed on local methods (Hjorth, 1975) wa..c;; used in the esti
mation of SL. This method provides satisfactory estimates of SL, but main 
disadvantage of this method is its lack of ability to estimate SL for every 
electrode position on the scalp. This method requires neighboring electrodes 
having equal distance from a central electrode. The electrode system used 
in this study does not fulfil this requirement for every electrode position, be
cause it has various electrode positions whose neighboring electrodes are not 
at equal distance. Therefore, this study ha..c;; selected those electrode positions 
whose neighboring electrodes are at equal distance. However, this disadvan
tage can be removed using more advanced techniques, for example, local 
methods, which use the actual distance from a central electrode (Lagerlund 
et al., 1995). These actual distance are usually estimated using the magnetic 
resonance imaging technique. 
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8.5 Recommendations for future research 

There are still topics related to this work, which would require further inves
tigation. Among them, I stress the following issues: 

• Identification of deep cortical sources: 

EEG coherence analysis can be used to detect an epileptic focus, located 
deep in the brain, but major problem arises due to superficial sources. These 
superficial sources biases results of coherence analysis by introducing effects 
of superficial epileptogenic foci on it (Gerch and Goddard, 1970; Brazier, 
1972; Gotman, 1983, 1987). 

The physical quantity formed by subtracting coherence of SL from coher
ence of REEG may be proved useful to minimize these effects. This simply 
follows from the SL whose sensitivity decrea.."es a.." distance of correspond
ing EEG sources from electrode positions increa.."es. It becomes negligible, 
when corresponding EEG sources are located very deep (more than half of 
the head radius (Oostendorp and Van Oosterom, 1996; Pernier et al., 1988). 
Thus it leads to the conclusion that the coherence of SL does not include 
effects of EEG sources located deep in the brain. Therefore, the difference 
in coherence between coherences of SL and REEG represents only effects of 
deep EEG sources and can be used to locate epileptic focus, located deep in 
the brain. Further research on this, especially in terms of intracranial EEG, 
may provide clinically significance results . 

• Classification system: 

As mentioned earlier that coherence analysis of SL can not be the complete 
alternative of coherence analysis of REEG. Each coherence method ha.." its 
advantages and disadvantages. If corresponding electrode pairs are not af
fected by VCUS, then REEG-based coherence is better choice than SL-ba.."ed 
coherence. It is because, SL-based coherence filters out genuine coherences 
due to deep EEG sources whereas REEG-based coherence pickups coherences 
from both local and deep sources (Nunez, 1981). On the other hand, when 
VCUS effects are high at corresponding pair of electrodes, most of REEG
based coherence is due to VCUS effects and therefore it does not reveal true 
coherence. Use of SL-based coherence especially when corresponding sources 
are local, is appropriate in such a situation. Therefore in order to detect true 
coherence at particular electrodes, choice of the suitable coherence method 
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between coherences of 8L and REEG is important. However, this procedure 
can be very difficult and time-consuming. Research can be done on this issue 
especially in terms of some classification system. For example, a classifica
tion system based on classifier such as artificial neural networks, Fuzzy logic, 
hidden Markov would provide the simplest way to detect robust coherences. 



Appendix A 

Introduction 

This appendix presents a detailed discussion on background theory of coher
ence analysis in EEG studies. 

Parametric methods of signal processing 

There are several ways to interpret the EEG signal, among them the first 
approach started from the visual inspection of EEG signals. However the vi
sual inspection of EEG have some disadvantages, for example different types 
of neurological diseases may show same abnormalities and in result different 
interpretation of same record can be made (Gevins, 1987a). These draw
backs have been overcome by various signal processing techniques. Signal 
processing techniques in EEG analysis can be divided into two classes: para
metric methods and non-parametric methods. Parametric methods describe 
a signal in terms of mathematical model characterized by a set of parameters 
(Lopes Da Silva and Mars, 1987). For example, parametric models represent 
samples of EEG signals by the following linear relation (Issakson et al., 1981) 

Where as and bs are the coefficients of the model which are fixed using the 
characteristics of EEG signal under consideration and p is the model order. 
EEG signal is recorded for a fixed interval of time to achieve the estimate 
of these coefficients (Issakson et al., 1981). The basic strategy is shown in 
figure A-I 
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Figure A-I: Block diagram of Model-ba."ed approach of spectral estimation. 
Semmlow, 2004 

The model is driven by white noise1. Output and input signals are compared 
with each other to achieve the nearest match between output of the model 
and the signal under consideration. The model is called an autoregressive 
model if polynomial of transfer function of model lie in the denominator of 
transfer function and only a constant in the denominator and the model is 
called the moving average model if the transfer function of the model ha." 
only numerator polynomial (Semmlow, 2004). A model that contain both 
autoregressive and the moving average characteristics is called an autore
gressive moving average model. The autoregressive model of EEG signals 
ha." been used in many branches of neuroscience. For example, studies of 
sleep (Isakssan, 1981; Jansen et al., 1981; Ning and Bronzino, 1987; Simon
sen et al., 1987; Amir and Gath, 1989), brain ischemia (Czinege and Bloom, 
1997; Hao et al., 1997), seizure (Remond, 1977; Rogowski et al., 1981; Vaz 
and Principe, 1987; Gersch, 1988; Gath et al., 1992; Frana."zczuk et al., 
1994; Panzica et al., 1998; Salant et al., 1998; Jouny et al., 2005; Suba."i at 
al., 2005), anesthesia (Bender et al., 1992; Sharma et al., 1992; Jensen et al., 
1996; Sharma and Roy, 1997; Muthuswamy and Roy, 1999), Alzheimer's dis
ea."e (Locatelli et al., 1998), newborn seizure (Roessgen and Boa."ha."h, 1995; 
Roessgen et al., 1998; Boa."hash and Keir, 1999; Celka and Colditz, 2002) and 
cognitive processes (Anderson and Sijercic, 1996; Bigan and Woolfson, 2000; 
Svoboda, 2006; Maiorescu et al., 2003; Curran et al., 2004). Various studies 
have proved superiority of model-based approaches over Fourier-based meth
ods. For example, Fourier-based methods require fairly long observation time 
about 30 seconds or more to achieve good spectral resolution. This may ea.,,-

1 White noise contains equal energy at all frequencies 
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ily come into conflict with non-stationary behavior of EEG. This advantage 
is largely overcome by using parametric models (Isaksson et al., 1981). For 
example, Roessgen and Boa.."hash (1995) compared EEGs of seizure and non
seizure of one newborn by modeling the model of Lopes da Silva et al. (1974) 
for seizure activity by adding another input signal of seizure characteristics 
to the model of Lopes da Silva. Their results demonstrated the superior
ity of model-ba.."ed approach over the Fourier-ba.."ed approach. Fourier-based 
auto-spectrum could not reveal important seizure characteristics such as the 
repetitive waveforms were not present and also the significant amount of 
spectral overlap between seizure and non-seizure activity wa.." present. On the 
other hand model-based parameters clearly demonstrated the seizure activ
ity of newborn seizure and showed the significant level of difference between 
seizure and non-seizure activity for the low frequency seizure activity. Grewal 
et al. (1998) using the Fourier-based and autoregressive techniques of signal 
processing mea.."ured the coherence function of EEG signals of rat during the 
vigilance states of quiet waking, slow wave sleep and rapid eye movement 
sleep. Coherence function in autoregressive model was calculated using the 
technique developed by the (Nuttall, 1976). During the quite waking sleep 
and slow wave sleep, coherence was low for both techniques but there was 
significant amount of coherence nearly 0.8 in the theta range. Compared 
to the Fourier-based method, coherence function measured by the autore
gressive technique, provided the smother value of coherence with a higher 
resolution and low variance. The major disadvantage of the parametric tech
niques is that these techniques are computationally more expensive than the 
non-parametric techniques (Gath et al., 1992; Pardey et al., 1996). For ex
ample, Gersch, (1987) suggested the time varying autoregressive model for 
the EEG signals but it wa.." useful only for modeling of only small number 
of EEG channels as'the number of parameters fitted to the model were pro
portional to the the square of the number of the EEG channels (Gath et al., 

1992). 

Non-parametric methods of signal processing 

Time-domain signal processing methods 

A very simple, but surprisingly effective method of analysis of EEG signals in 
non-parametric method is based upon the averaging technique in which num
ber of brief time series are averaged (Scott, 1976). Values of mean amplitude, 
variance, skewness are calculated for each electrode site. The calculated vari-
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abIes are then analyzed. Another existing method in the literature is known 
as the zero-crossing method or periodic analysis (Lim and Winters, 1980). 
In this method, individual waves are analyzed by counting the zero-crossing 
of the original wave, the time interval between a positive to negative volt
age transition to next positive to negative voltage is called the zero crossing 
(Henderson et al., 2006). The total number of counts within each period, over 
the analysis epoch, then displayed in a histogram format which shows the 
distribution of the counts for a specified frequency category, or as a percent
age of time occupied by the count in that category. This method is widely 
used to test the effect of the psychoactive drugs. However, this method has 
drawbacks, such as sensitivity to noise and other artifacts and also results are 
difficult to interpret in the spectral terms. Several attempts have been made 
to improve the technique, for example iterative technique has been llsed but 
main difficulties remains. 

Another method is autocorrelation analysis (Brazier and Casby, 1952). The 
application of autocorrelation analysis to brain potentials was first reported 
by Imahori and Suhara (1949 cited in Gevins, 1987b). The autocorrelation 
function measures the degree of similarity between an EEG signal and its 
replica at successive time delays and it also emphasizes the periodic com
ponent of an EEG segments and suppresses non-periodic components, by 
comparing the EEG time series with itself at sequential time delays (Gavins, 
1987b). The autocorrelation function of discrete stochastic time series x( n) 
is defined as (Lynn, 1992) 

1 n=N 

Rxx(d) = N L x(n)x(n + d), 
n=l 

(A-2) 

where N is the total number of samples present in time series x(n) and d 
shows time shift in time series x(n). Eq. (A-2) indicates that the autocorre
lation function is the average product of the sample x(n) with a time-shifted 
version of itself. EEG autocorrelation function function for epilepsy patients 
has been reported to be regular than those of normals (Yamamoto, 1960 cited 
in Gevins, 1987b) as shown in Figure A-2. 

Another important measure is a cross-correlation function. A cross
correlation function measures the similarity in waveform of two EEG seg
ments, usually from different recording sites. It is given by the following 

relation: 
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1 n=N 

Rxy(d) = N L x(n)y(n + d), 
n=l 

(A-3) 

where Rxy is the cross-correlation function of time series x( n) and y( n). 
Eqs. ~A-2) and (A-3) are based upon the stationarity assumption of the 
EEG sIgnals and. therefore correlation analysis is a function of the time delay 
only. Another disadvanta~e is that the autocorrelation of two different sig
nals of nearly e~ual amplItudes but having different rhythmic or frequency 
components basIcally represents the superposition of two separate rhythmic 
compon~nts and t~is. result in the loss of individual frequency components. 
Correl~tIOn analysl~ IS confined to only time-domain. Frequency-domain in
formatIOn of EEG SIgnals is also important (Vincent et al., 1995; Akin, 2002). 

O_5'----~-__:':.--_:'~. -~J-~-----.I 

Time in seconds 

Figure A-2: The autocorrelation of normal EEG (left figure) and seizure 
EEG. The moment centres are marked. Seizure EEG has periodic peaks and 
the normal EEG has irregular peaks. Liu et al., 1992 

Frequency-domain signal processing methods 

Signal in the time-domain is represented by means of its value on the time 
axis. It is possible to use another representation for the same signal: that 
is the frequency-domain representation. The Fourier transform is used to 
transform the time-domain signal into the frequency-domain. The Fourier 
transform was developed by (Jean Baptiste Fourier (1768-1830)) and reached 
innumerable applications in mathematics, physics and natural sciences. Fur
thermore, the Fourier transform is computationally very attractive since it 
can be calculated by using an extremely efficient algorithm called the Fast 
Fourier transform (Cooley and 'I\lkey, 1965). The Fourier transform describes 
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a s~gnal x ( t) as a linear superposition of sines and cosines characterized by 
theIr frequency w 

X(w) = i: x(t)e-iwtdt, (A-4) 

The inverse Fourier transform is given, 

x(t) = i: X(w)eiwtdw, (A-5) 

Eq .. (A-~) is the co~tinuous Fourier transform of the signal x(t). Let us 
consld~r m the followmg that the signal consists of N discrete values, sampled 
every time ~t, denoted by x(n) The discrete Fourier transform of this signal 
is defined as: 

N 

X(m) = L x(n)e-i27rmn/N, (A-6) 
n=1 

where m = 0, ... ,N - 1 and its inverse a..,,: 

1 N-1 

x(n) = N L X(m)ei27rmn/N. 
m=O 

(A-7) 

From the complex coefficients of Eq. (A-6), the periodogram can be obtained 
as: 

Pxx(m) =1 X(m) 12= X(m) . X*(m), (A-8) 

where a.."terisk stands for complex conjugate operation. Eq. (A-8) is called 
the auto-spectrum. Cross-spectrum can be similarly defined by making the 
product of Eq. (A-8) between time series x(n) and y(n) as follows: 

Pxy(m) = X(m)Y*(m), (A-9) 

where X(m) and Y(m) are the Fourier transforms of x(t) and y(t) respec
tively. The sample cross spectrum gives a measure of the linear correlation be
tween two signals for different frequencies. The estimate of the auto-spectra 
or cross-spectra from N data points of given stationary process do not provide 
the consistent estimate. For example, estimation of auto-spectrum from three 
different segments of 1024 point produces different results. Therefore differ
ent methods to estimate the auto-spectrum have been described, among them 
is the Blackman and Turkey method (Blackman and 'I\lrkey, 1959). This 
method is ba.."ed upon the Wiener-Khinchin theorum which states that auto
spectrum of stationary random process is defined to be the Fourier transform 
of its autocorrelation function. In this method, auto-spectrum is estimated 
by calculating the corresponding autocorrelation function. Another approach 
is based upon the Welsh periodogram method in which several calculation of 
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the periodogram are made from the data and then periodogram are averaged 
to obtain an improved estimate of auto-spectrum. 

Various studies have shown the relation of different frequency bands and 
the learning abilities of children. The decrea..')e in the alpha and beta bands 
of auto-spectrum with the increa..')e in the activity in the delta band of auto
spectrum in the children having the difficulties in learning, spelling, reading, 
writing and speech ha..') been reported (John et al., 1980; Harmony et al., 
1990; Byring et al., 1991; Ackermann et al., 1995). The later study by 
Schmid et al. (2002) performed on the group of 155 clinically healthy nor
mal children in the awake state of vigilance with the eyes closed having the 
IQ less than 90 and greater than 90 showed the decrea..')e of delta and theta 
bands of auto-spectrum with the increase in the activity in the alpha band 
especially for the parietooccipital region of the brain for verbal IQ. Auto
spectrum ha..') been used for the quantitative analysis of EEG during sleep 
studies (Gath, 1980; Hadjiyannakis et al., 1997; Ferri et al., 2000; Wichniak 
et al., 2003; Madan et al., 2004; Taikang and Nhon, 2004; Ferri et al., 2005). 
The Fourier-ba..')ed auto-spectrum has been used for the quantitative analysis 
of epileptic seizures (Gotman, 1982; Gotman et al., 1995; Gath, 1992; Asano 
et al., 2004). The technique developed by the Gotman (1982) for epileptic 
seizures is ba..')ed upon calculating various features from the auto-spectrum 
e.g. frequency and the width of the dominant spectral peak, ratio of the 
power in the dominant spectral peak to that in the same frequency band of 
the background spectrum, etc. These various spectral features are calculated 
for the EEG of the normal and the epileptic seizures and then compared with 
each other as shown in Figure A-3 
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Figure A -3: The auto-spectrum of seizure EEG (left figure) and the normal 

EEG. Gotman, 1982 
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The auto-spectrum has been used to study the effects of ischemic brain 
lllJury. Hypoxic-ischemic encephalopathy is damage to cells in the cen
tral nervous system (the brain and spinal cord) from inadequate oxygen. 
Hypoxic-ischemic encephalopathy may be cause of death in newborns. Signif
icantly reduced variance in the auto-spectrum of EEG of hypoxic-ischemic en
cephalopathy of newborns a..'i compared to the variance in the auto-spectrum 
of EEG of healthy newborns has been reported (Wong et al., article in press). 
Even though the auto-spectrum ha..'i been successfully used for the study of 
various cognitive processes and neurological disorders. However the change 
of auto-spectrum for different kinds of the EEG signals does not provide the 
information about the EEG activity in the frequency-domain for the func
tional relation between different cortical regions of the brain. Cross spectrum 
analysis given by the Eq. (A-9) provides the means to mea..'iure the functional 
relation between different cortical regions in the frequency-domain (Gath et 
al., 1992; Ferri et al., 2000; Ning and Trinh, 2004). The cross spectrum of 
time series x(n) and y(n) normalized by the square root of the product of 
auto-spectra of that time series is called coherence function in EEG studies. 
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Physical basis of the SL 

Two dimensional SL (SL) of scalp potential v at electrode position E whose 
cartesian coordinates are x and y is given by, 

(B-1) 

Ohm's law provides the physical basis of SL in terms of surface current 
density. According to the Ohm's law, scalp current density J, the electric 
field E and conductivity c are related by the following relation: 

--+ --+ 

l= cE (B-2) 

Using the divergence on both sides of Eq. (B-2) 

(B-3) 

For an isotropic linear volume, conductivity is constant, it can be removed 
out from the divergence operator. 

--+ --+ 

"V.l = c"V.E (B-4) 

Substituting E = -"V(v) into the Eq. (B-4), we get 

(B-5) 

Where "V2 is mathematical operator and is equal to 

(B-6) 
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Putting B-6 into the Eq. (B-5), we get 

___ 82 82 

V.J = -c 8x2 + 8y2 (v) = -CLE(V) (B-7) 

Therefore we can say that divergence of current density is proportional to 
minus the Laplacian of electric potential (Perrin et aI., 1987). The term 
divergence of current density actually refers to the change in the current 
density. At a location where there are no underlying current sources, the 
Laplacian would be zero, while it would be maximal directly over a source 
(Nunez and Srinivasan, 2005). That simply means thtat the Laplacian of the 
potential may be used to localize the underlying generators of the EEG. 

Relation between SL and cortical potential 

The SL can also be explained in terms of cortical potential. Cortical potential 
is measured at the surface surrounding the volume of the brain (Towie et 
aI., 1998). Srinivasan(1999) explains that "potential measured at smooth 
surface surrounding the volume of the brain, as in direct recordings from 
the human brain in surgical patients with surface grids, without accounting 
for the folds of the cortical surface"" (page 1). Based on Ohms Law and 
current conservation the following relationship can be derived (Katznelson, 
1981; Sriniva..'mn, 1999): 

Pskull ( ) VcsF = Vskull + --dskulldscalpLscalp B-8 
Pscalp 

Here d skull and d scalp stand for the thicknesses of the skull and scalp respec
tively; VCSF and Vskull stand for potential at the inner and outer surface of 
skull respectively; Pskull and Pscalp stand for the resistivities of skull and scalp 
respectively and surface Laplacain 

And also from (Srinivasan, 1999) 

VCSF f'.) V cortex 

Vskull « VCSF 

so that above equation becomes 

(B-9) 

(B-10) 

(B-11) 

L scalp ex: V cortex (B-12 ) 

Thus, the SL of the scalp potentials can be used to estimate the cortical 

surface potentials. 
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Hjorth Method 

The nearest neighbor method (Hjorth, 1975; Wallin and Stalberg, 1980) is 
the most popular method to derive Laplacian. This method approximates 
the Laplacian at electrode 0 as the sum of the potentials at the four nearest 
neighbors to electrode 0 minus four times the potential at electrode o. Nunez 
and Sriniva.')an, (2005) have explained the method of computing SL using 
Hjorth method, which is explained here. In Figure B-1, the brain region is 
divided into two parts: skull and scalp. 

Figure B-1: The brain regIOn IS divided into two parts: skull and scalp. 
Katznelson (1981 ) 

It ha.') been assumed that electrode 0 is placed at a scalp position right above 
the source s, located inside the brain. A small cylinder of scalp tissue of 
thickness ds with principle axis positioned at electrode 0 perpendicular to 
the scalp surface is a.')sumed. Four more electrodes named a.') 1 to 4 from a 
equal tangential distance d from electrode 0 are assumed here. The main 
goal is to compute SL or value of current density due to the source s. The 
cylinder is divided into four equal parts as shown in Figure B-l. The current 
L flowing from the cylinder walls of each section into the ~onlocal scalp can 
be obtained by the surface integral of its current density Js , that is 

(B-13) 



Appendix B 72 

-> -> 

Using Js = c Es Ohm's law1 and Eq. (B-13), 

(B-14) 

Where c and Es represent the conductivity constant and the value of elec
tric field for each section respectively. The electric fields for each section is 
calculated at the center of each distance say point p between electrode 0 and 
other electrodes named as 1, 2, 3 and 4. The electric field EOl at point p 
between electrode 0 and electrode 1 at the center along a distance d is equal 
to the difference of potentials at an electrodes 0 and electrode 1 divided by 
the sum of the distances between the point p and its distances from electrode 
o and 1, here the distance between point p and each electrode, for example, 
from point p to 1 is equal to the d /2. Therefore the value of EOl is given 

-> 

as EOI = d/g~~/2' The values of the electric field between an electrode 0 

and electrodes 2, 3 and 4 can be calculated in the similar way. One can 
represent the value of electric field Es for any of four regions of cylinder as 
(vo~Vj), where j runs from 1 to 4. Therefore replacing the integral sign with 
summation sign in the right hand side of Eq. B-14, we can write Eq. (B-14) 
as 

-> ~(vo-Vj)S 7rds 
I ~ c~ - ~ c[4vo -VI -V2 -V3 -V4]-

j=l d 4 4 
(B-15 ) 

Eq. (B-15) can be written in terms of scalp current density by dividing both 
sides with the surface area of the cylinder 7r(~)2 

(B-16) 

The Laplacian in Eq. (B-1) or in general form represents the continuous 
partial derivative but ba..'ied on the limited number of samples, it can be 
approximated by means of the finite differences(Korn and Korn., 1968) 

()2 82 ~ d2 

L E ( V) = 8x2 + 8y2 ( V) ~ dx2 + dy2 (v) (B-17) 

In our case all four electrodes are placed at equal distance from electrode 0, 

therefore we can write equation B-17 a..'i 

(B-18) 

1 According to this law current density j is directly proportional to its electric field it 
where the conductivity c remains constant 
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Electrodes 2, 0 and 4 are considered here along the direction of Y axis and 
electrodes 1, 0 and 3 are considered here along the direction of X axis as 
shown in Figure B-2. The second order differences of potentials along the X 
and Y direction are, 

2 

3--------.J,rr------_ 
X-Axis X-AIds 

Figure B-2: The electrodes 2, 0 and 4 are placed along the direction of Y 
axis and the electrodes 1, 0 and 3 are along the direction of X axis 

Therefore, 

(VI - vo) - (vo - V3) + (V2 - vo) - (vo - V4) 

-4vo + VI + V2 + V3 + V4 

Substituting Eq. (B-21) into Eq. (B-18), 

-4vo + VI + V2 + V3 + V4 
LE(V) ~ rP 

The quantity 

. LE(V)d
2 

VI + V2 + V3 + V4 
Jv = - 4 = Vo - 4 

(B-19) 

(B-20) 

(B-21) 

(B-22) 

(B-23) 
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ha..o;; been mostly used instead of L E ( v) in EEG studies, because it is more 
convenient to compare with potential v a..o;; it has the units of potential i.e. 
j..Lv. Substituting the value of Eq. (B-22) into the Eq. (B-16). we get 

(B-24) 

or 
Jcx:LE(V) (B-25) 

Therefore it is clear from the Eq. (B-25) that SL for the electrode 0 is directly 
proportional to the current density due to source s. 
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Experimental setup and data preparation 

EEG data is donated by the Dr Henri Begleiter at the Neurodynamics 
Laboratory at the State University of New York Health Center at' Brook
lyn and the ERP analysis on this data has been published in Zhang et 
al., 1995; Ingber, 1997) which is now publicly available at the web page 
http://kdd.ics.ucLedu/ /databases/eeg/eeg.html. The method of measuring 
the EEG data is explained below: 

Subjects were divided into two groups: alcoholics and abstinent alcoholics 
(average 10 years of abstinence). Alcoholics subjects had a history of alco
holism of at lea.."t 10 years with an average drinking rate of 45 units per week. 
One unit of pure alcohol was taken equal to 10 ml. ERPs of 15 subjects. se
lected from each group, were used in this study. The subjects had no history 
of chronic somatic or neurological disease. Male subjects with the age range 
of 16-25 were chosen. They had normal hearing and normal sight. Each sub
ject was exposed to either a single stimulus (SI) or to two stimuli (SI and S2). 
These stimulus were 19 pictures of objects chosen from the Snodgrass and 
Vanderwart., (1980) picture set. The duration for the first SI and the second 
S2 picture stimulus in each trial wa.." 300ms. The interval between each trial 
was fixed to 3.2s. Two picture stimuli appeared in succession with a 1.6 s 
fixed interstimulus interval. Two pictures were shown in three different ways: 

First one is called the matched condition, in the matching condition, the SI 
was repeated a.." S2. The Second one is called the non-matched condition 
when S 1 was followed by a picture that was completely different from S 1 in 
terms of its semantic category. Last one is called single trial, when only one 
picture wa.." shown to the subject. The presentation of these pictures were 
shown to the subject in the random order. The subjects were 1 meter away 
from the center of computer display and their task was to decide whet her 

75 
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the second response(S2) was the same as the first one. The subjects were 
instructed to respond their reaction by pressing the mouse key only if they 
felt confident about it. If a change occurs(non-matched condition) and they 
press a button to indicate change, then this is called hit triaL If a change 
occurs and subject press the button for no change, this is a miss trial. If no 
change occurs(matched condition) and they press no change, this is correctly 
detected no change trial whereas if they press change, this is a false alarm. 
This experiment yielded an ERP waveform consisting of three components 
which were most clearly discernible at the more posterior electrodes: compo
nent I (clIO) ranging between 100 and 125 ms, component 2 (c175) ranging 
between 160 and 190 ms, and component 3 (c247) ranging between 220 and 
260 ms. 

EEG data was recorded from 64 electrode system based on the extended 
10-20 system i.e 10-10 system. AF3 and AF4 are called in 10-10 system of 
64 electrodes as the AF1 and AF2 respectively (Oostenveld and Praamstra, 
2001). After the EEG signals have been detected by electrodes, these signals 
were amplified and filtered by l.00-100Hz band pass filters. The procedure of 
amplification and filtering of EEG signals is necessary because EEG signals 
are very small, contain unwanted noise, and can even be masked by other 
biosignals from different biological phenomena. An A /D converter was used 
to change the EEG signals from a continuous analog wave form to a digi
tal signal at the sampling rate of 256 Hz (3.9-msec epoch) for one second. 
Trials with excessive eye and body movements ( > 73.3 uV) were rejected 
on-line and also subjects were seated in a reclining chairs located in a sound 
attenuated RF shielded room. Two additional bipolar deviations were used 
to record the vertical and horizontal EOG, which were later used for the 
rejection of eyes artifacts using subtraction method. Following is the brief 
introduction of artifacts. 

EEG recording techniques 

Electrical activity of the brain can be recorded by the insertion of needle elec
trodes into the neural tissue of the brain and this technique is called depth 
recording. Normally EEG is recorded by affixing an array of electrodes to 
the scalp. The most widely used placement of electrodes is the so ~alled 10-~0 
system consisting in 20 electrodes (sometimes less or more) lilliformly dIS
tributed along the head,generally referenced to 2 electrodes in the earlobes. 



Appendix C 77 

Depending upon the choice of reference electrode, EEG recording techniques 
are divided into different classes. Some popular REEG recording techniques 
are bipolar recordings, common reference recordings and average reference 
recordings. In common reference recordings, the terminal of each amplifier 
is connected to the same electrode, and all other electrodes are measured 
relative to this single point. In average reference recordings, the outputs of 
all of the amplifiers are summed and averaged, and this averaged signal is 
used as the common reference for each amplifier. In bipolar recordings both 
signals do not have common lead and the electrodes are connected in series 
to an equal number of amplifiers. 

EEG artifacts 

One of main problems in the automated EEG analysis is the detection of 
different kinds of interference waveforms or artifacts added to the EEG signal 
during the recording sessions. These interference waveforms, the artifacts, 
are any recorded electrical potentials not originated in the brain. We can 
divide EEG artifacts into two main classes: (l)artifacts which are exterior to 
the subject (2) artifacts caused by the subject. 

Artifacts exterior to the subject 

The artifacts exterior to the subject can be divided into four main cla.sses: 

• The leads and the electrodes. 

• Electrical interference: this electrical interference IS external to the 

subject or the recording system. 

• EEG equipment 

• The subject. 

The most common electrode artifact is the electrode popping. 1forpho
logically this appears a,.'l single or multiple sharp waveforms due to abru?t 
impedance change. It is identified easily by its characteristic appe~r~ce (Ie, 
abrupt vertical transient that does not modify the background actIvIty) and 
its usual distribution, which is limited to a single electrode In gen~ral, shar~ 
transients that occur at a single electrode should be considered artIfacts untIl 
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proven otherwise. At other times, the impedance change is not so abrupt, 
and the artifact may mimic a low-voltage arrhythmic delta wave. Another 
artifact, which we call as alternating current (60-Hz) artifact arises when the 
impedance of one of active electrodes becomes significantly large between the 
electrodes and the ground of the amplifier. In this situation, the ground be
comes an active electrode that, depending on its location, produces the 60-Hz 
artifact. The artifact presents at exact frequency 60 Hz, as its name indicates. 
Adequate grounding on the patient can almost eliminate this type of artifact 
from power lines. The movements of the other persons around the patient 
can generate artifacts, usually of capacitive or electrostatic origin. A void 
this type of artifact as much as possible by restricting the movement of other 
subjects. Another important artifact is caused by the electro-smog. Electro
smog refers to the huge amount of electromagnetic fields (EMF) present 
literally everywhere on this planet.The interference from high-frequency ra
diation from radio, TV, hospital paging systems, and other electronic devices 
can also produce artifacts. Such type of artifacts can be avoided by making 
all EEG measurement in a shield room blocking electromagnetic radiation 
from outside. Summarizing the above discussion of artifacts, exterior to the 
subject, we can say that several technical artifacts such as the electrode-pop 
artifact, electro smog, etc may be effectively prevented with adequate care 
in the EEG laboratory. For example use of appropriate electrode/electrolyte 
combinations, fixation of the leads, shielding of the subject. 

Artifacts caused by the subject 

Artifacts caused by the subject are of two types: artifacts provoked by sub
jects movements and artifacts provoked by biological electric phenomena. In 
order to reduce artifacts caused by movements (gestures, respiration, etc.), 
it is important that the subject be relaxed and asked not to move during the 
experiment. Biological phenomena that cause EEG artifacts are: eye move
ments, muscle activity, cardiac beat, and sweat. In the following, I discuss 
the most important: eye movement and muscle artifacts. 

• Eye movement artifacts 

Eye movement artifacts (or ocular artifacts) result from the contamination 
of the EEG by the electrooculogram (EOG), a potential produced by mo:ve-
ment of the eye or eyelid. Several methods have been proposed for removmg 
ocular artifacts from the EEG, most of which make use of a separate EOG 
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record. One approach to reducing contamination from eye movement arti
facts is to regress out reference signals collected near the eyes. Regression 
methods have been proposed using both time domain and frequency-domain 
techniques. All regression methods, whether in time or frequency domains, 
depend on having one or more clean reference channels (e.g. one or more 
'EOG' channels) which cannot be further analyzed after regression. Inde
pendent Component Analysis ICA is a statistical signal processing technique 
whose goal is to express a set of random variables a..c; a linear combinations of 
statistically independent component variables ICA algorithm is used to re
move eye artifacts Another most common method is the rejection technique 

• Muscle artifacts 

:Muscle activity produces an electric potential called electromyogram (EMG), 
which is termed as muscle artifacts in EEG. The muscle artifact is very 
common and may be many times larger in magnitude than the EEG signal. 
This artifact is due to contraction of neck and scalp muscles. Further, in a 
tense subject, the muscle activity is often wide spread though maximal in 
temporal regions. The muscle artifact is found to affect the EEG spectrum 
above 14 Hz considerably i.e. the B-activity. In visual analysis, an attempt 
is often made to reduce the muscle artifact by decreasing the higher cutoff 
frequency of the recording amplifiers. 
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Figure C-l: Subject a68l: wavelet squared coherency of REEG between 
electrodes CP3 and PI 
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Figure C-2: Subject a68l: wavelet squared coherency of REEG between 
electrodes CP3 and P 4. 

Wavelet squared coherency of REEG due to VCUS effects between electrodes CP3 

and PI does not show VCUS effects at any frequency. However VCUS effects 

around 30 Hz are observed, when interelectrode distance is increased from CP3 to 

P4 in different direction than the direction between CP3 and Pl· 
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Effects of interelectrode d' t ' 'trec 'ton on wavelet coherence analysis 
of REEG signals 
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Figure C-3: Subject c38l: wavelet squared coherency of REEG between 
electrodes POz and FCz 
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Figure C-4: Subject c38l: wavelet squared coherency of REEG between 
electrodes POz and AF3 

Wavelet squared coherency of REEG due to VCUS between electrodes POz and 
FCz effects shows constant value of 0.7 between 25 and 35 Hz . This value of 
coherence is increased up to 0.8, when interelectrode distance is increased from 

POz to AF3 in different direction than the direction between POz and Fez. 
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Wavelet squared coherency of REEG due to VCUS effects de
creases as interelectrode increases along some fixed direction 

Figures from C-5 to C-6 show the effects of interelectrode distances on t he wavelet 

squared coherency due to VCUS effects. These figures clearly show t hat coherence 
due to VCUS effects decreases as the interelectrode distance increases along some 

fixed direction. 
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Figure C-5: For the interelectrode distance between POz and Pz, wavelet 
squared coherency of REEG due to VCUS effects is around 0.98. 
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Figure C-6: The distance of POz from pz is increa..sed up to the distance 
FPZ. At this distance , wavelet squared coherency of REEG due to VC S 

effects is almost disappeared. 
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AWSCs of REEG and SL between electrodes PZ and remaining 
29 electrodes for EEG activities of alcoholics and abstinent alco
holics subjects 
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Figure C-7: AWSCs of REEG between electrodes PZ and remaining 29 elec
trodes for abstinent alcoholic subject clOl 
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Figure C-8: AWSCs of SL between electrodes PZ and remaining 29 electrodes 

for abst inent alcoholic subject clOl 
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F igure C-9: AWSCs of REEG between electrodes PZ and remaining 29 elec
trodes for alcoholic subject a lOI 

0.1 
,,-~ 

.~-.... " 
/./ 

0.08 ./ ~ 0.8 
/' \ 

o.os t 

/ \ 0.7 
0.04 f \ .t . 'j J 0,6 0.02 ( 

0 

\ 
. 

.) 0.5 
.a.o2 

• 0.4 .a.04 \ / \ 
I 

~.os 
\ ' " \. • • / 0.3 

.a.08 

""~ 
,-

/ 

~/ 
~ 

~.1 0.2 
~.1 ~.o6 0 0.06 0.1 

F igure C-IO: AWSCs of SL between electrodes PZ and res t of 29 elect rodes 

for alcoholic subject a lOI 



Appendix C 5 

0.1 

• 
0.08 /~ 

0.00 

0.04 

0.02 

/' 
/ . 

I 

I 
/. . 

• • 

\ 
• 

• • 
o • • 

{J.02 \ 
{J.04 

\ . 
\ 

{J.lJ6 \ . 
• • 

-0.1 

{J. l -0 [)5 O()5 0.1 

Figure C-ll: AWSCs of REEG between electrodes F3 and remammg 29 
electrodes for control subject c102 
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Figure C-12: AWSCs of SL between electrodes F3 and remaining 29 elec

trodes for control subject c102 
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Figure C-13: AW8Cs of REEG between electrodes F3 and remallllllg 29 
electrodes for alcoholic subject a l02 
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Figure C-15: AWSCc of REEG of alcoholic subject(a402. ) 
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Figure C-16: AWSCc of REEG of abst inent alcoholic sUbject (c402) which 
is lower in value, in most of frequencies , than A WSCs of REEG of alcoholic 

subject (a402)(top figure), 



Appendix C 88 

Table 1: Averaged wavelet squared coherency of REEG is denoted by AWSCE, 
and averaged wavelet squared coherency of SL is denoted here by A WSCS. 

" AWSCS ' AWSCS Electrode Subject AWSCE AWSCE 
control alcoholic pair name control alcoholic 
0.958 0.249 PZ-P1 364 0.127 0.924 
0.885 0.109 PZ-P3 364 0.443 0.848 
0.947 0.064 PZ-P2 364 0.124 0.972 
0.312 0.512 FZ-F4 364 0.481 0.701 
0.442 0.761 FZ-AF3 364 0.621 0.991 
0.401 0.301 FZ-AF4 364 0.511 0.311 
0.311 0.615 AF4-AF3 364 0.261 0.001 
0.814 0.215 F4-AF3 364 0.711 0.883 
0.816 0.162 F4-AF4 364 0.123 0.436 
0.412 0.902 F4-F3 364 0.562 0.733 
0.065 0.511 C5-FC6 364 0.732 0.945 
0.819 0.425 C5-FC5 364 0.910 0.914 
0.332 0.156 C5-P5 364 0.102 0.615 
0.215 0.56 C5-P6 364 0.511 0.410 
0.528 0.516 P5-FC6 364 0.843 0.134 
0.912 0.651 P5-FC5 364 0.415 0.731 
0.304 0.442 P5-CP5 364 0.631 0.816 
0.431 0.631 P5-P6 364 0.497 0.714 
0.801 0.452 P6-FC6 364 0.446 0.441 
0.236 0.116 P6-FC5 364 0.788 0.942 

0.469 0.316 P6-CP5 364 0.841 0.831 

0.313 0.004 PZ-P1 370 0.965 0.913 

0.765 0.389 PZ-P3 370 0.878 0.800 

0.219 0.032 PZ-P2 370 0.916 0.600 

0.912 0.981 FZ-F4 370 0.881 0.812 

0.494 0.531 FZ-AF3 370 0.655 0.113 

0.712 0.889 FZ-AF4 370 0.625 0.386 

0.151 0.531 AF4-AF3 370 0.032 0.519 

0.403 0.665 F4-AF3 370 0.281 0.618 

0.813 0.806 F4-AF4 370 0.988 0.401 

0.115 0.491 F4-F3 370 0.526 0.762 

0.211 0.381 C5-FC6 370 0.193 0.436 

0.461 0.091 C5-FC5 370 0.557 0.718 

0.403 0.612 C5-P5 370 0.302 0.851 

0.719 0.771 C5-P6 370 0.114 0.618 

0.375 0.392 P5-FC6 370 0.491 0.772 

0.375 0.519 P5-FC5 370 0.761 0.619 
! ! , , 
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II AWSCS I AWSCS I Electrode Subject AWSCE AWSCE 
control alcoholic paIr name control alcoholic 
0.551 0.832 P5-CP5 370 0.806 0.885 
0.983 0.441 P5-P6 370 0.428 0.904 
0.336 0.826 P6-FC6 370 0.551 0.795 
0.714 0.774 P6-FC5 370 0.603 0.439 
0.382 0.602 P6-CP5 370 0.182 0.552 

0.6887 0.175 PZ-P1 379 0.685 0.849 
0.190 0.010 PZ-P2 379 0.719 0.839 
0.239 0.156 PZ-P3 379 0.480 0.613 
0.304 0.731 FZ-F4 379 0.681 0.953 
0.119 0.669 FZ-AF3 379 0.411 0.819 
0.516 0.431 FZ-AF4 379 0.631 0.641 
0.649 0.364 AF4-AF3 379 0.114 0.387 
0.181 0.194 F4-AF3 379 0.671 0.549 
0.365 0.228 F4-AF4 379 0.014 0.731 
0.508 0.653 F4-F3 379 0.705 0.816 
0.228 0.401 C5-FC6 379 0.441 0.495 
0.195 0.399 C5-FC5 379 0.301 0.811 
0.394 0.751 C5-P5 379 0.557 0.773 
0.041 0.917 C5-P6 379 0.961 0.452 
0.385 0.301 P5-FC6 379 0.837 0.776 
0.957 0.955 P5-FC5 379 0.295 0.714 
0.709 0.791 P5-CP5 379 0.559 0.938 

0.319 0.628 P5-P6 379 0.724 0.841 

0.663 0.841 P6-FC6 379 0.382 0.743 

0.487 0.728 P6-FC5 379 0.846 0.206 

0.157 0.463 P6-CP5 379 0.731 0.772 

0.102 0.164 PZ-P1 381 0.479 0.957 

0.1444 0.015 PZ-P2 381 0.315 0.864 

0.0032 0.036 PZ-P3 381 0.355 0.700 

0.396 0.473 FZ-F4 381 0.109 0.331 

0.913 0.744 FZ-AF3 381 0.913 0.713 

0.405 0.857 FZ-AF4 381 0.744 0.819 

0.538 0.544 AF4-AF3 381 0.331 0.992 

0.071 0.341 F4-AF3 381 0.439 0.714 

0.254 0.496 F4-AF4 381 0.651 0.415 

0.285 0.913 F4-F3 381 0.443 0.743 

0.802 0.694 C5-FC6 381 0.536 0.822 

0.483 0.457 C5-FC5 381 0.475 0.569 

0.031 0.473 C5-P5 381 0.713 0.984 

0.515 0.614 C5-P6 381 0.801 0.316 
I I I I 
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Ii AWSCS I A WSCS i Electrode Subject AWSCE AWSCE 
control alcoholic pair name control alcoholic 
0.655 0.317 P5-FC6 381 0.159 0.205 
0.753 0.283 P5-FC5 381 0.416 0.531 
0.451 0.432 P5-CP5 381 0.281 0.397 
0.157 0.492 P5-P6 381 0.761 0.997 
0.717 0.194 P6-FC6 381 0.637 0.969 
0.819 0.711 P6-FC5 381 0.445 0.418 
0.692 0.927 P6-CP5 381 0.737 0.741 
0.533 0.068 PZ-P1 382 0.879 0.943 

0.0199 0.0433 PZ-P2 382 0.806 0.948 
0.177 0.048 PZ-P3 382 0.492 0.781 
0.273 0.374 FZ-F4 382 0.912 0.813 
0.701 0.855 FZ-AF3 382 0.447 0.734 
0.203 0.847 FZ-AF4 382 0.431 0.921 
0.417 0.441 AF4-AF3 382 0.547 0.473 
0.170 0.596 F4-AF3 382 0.604 0.971 
0.411 0.436 F4-AF4 382 0.831 0.416 
0.273 0.319 F4-F3 382 0.312 0.775 
0.911 0.512 C5-FC6 382 0.513 0.931 
0.302 0.813 C5-FC5 382 0.811 0.611 
0.768 0.751 C5-P5 382 0.552 0.895 
0.851 0.416 C5-P6 382 0.769 0.263 
0.512 0.654 P5-FC6 382 0.813 0.394 
0.867 0.793 P5-FC5 382 0.935 0.362 
0.657 0.173 P5-CP5 382 0.771 0.778 
0.271 0.791 P5-P6 382 0.432 0.972 

0.453 0.831 P6-FC6 382 0.332 0.872 

0.371 0.233 P6-FC5 382 0.817 0.881 

0.907 0.153 P6-CP5 382 0.845 0.973 

0.303 0.714 PZ-P1 384 0.038 0.893 

0.635 0.031 PZ-P2 384 0.119 0.835 

0.042 0.022 PZ-P3 384 0.036 0.917 

0.007 0.006 P1-P3 384 0.465 0.568 

0.061 0.391 FZ-F4 384 0.414 0.937 

0.034 0.164 FZ-AF3 384 0.574 0.994 

0.344 0.573 FZ-AF4 384 0.533 0.871 

0.871 0.271 AF4-AF3 384 0.213 0.779 

0.433 0.694 F4-AF3 384 0.617 0.653 

0.215 0.541 F4-AF4 384 0.881 0.582 

0.817 0.983 F4-F3 384 0.643 0.683 

0.914 0.951 C5-FC6 384 0.795 0.483 
I I I . 
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II AWSCS I AWSCS I Electrode Subject AWSCE A\VSCE 
control alcoholic pair name control alcoholic 
0.411 0.613 C5-FC5 384 0.611 0.411 
0.172 0.783 C5-P5 384 0.321 0.331 
0.413 0.559 C5-P6 384 0.892 0.538 
0.664 0.783 P5-FC6 384 0.512 0.379 
0.988 0.997 P5-FC5 384 0.227 0.791 
0.819 0.534 P5-CP5 384 0.358 0.471 
0.339 0.473 P5-P6 384 0.663 0.982 
0.458 0.725 P6-FC6 384 0.291 0.773 
0.619 0.905 P6-FC5 384 0.496 0.533 
0.324 0.872 P6-CP5 384 0.442 0.729 
0.162 0.004 PZ-P1 387 0.902 0.936 
0.203 0.001 PZ-P2 387 0.913 0.916 
0.028 0.016 PZ-P3 387 0.620 0.849 
0.167 0.052 P1-P3 387 0.873 0.935 
0.342 0.331 FZ-F4 387 0.614 0.729 
0.541 0.521 FZ-AF3 387 0.749 0.843 
0.331 0.943 FZ-AF4 387 0.538 0.884 
0.514 0.719 AF4-AF3 387 0.505 0.652 
0.839 0.891 F4-AF3 387 0.411 0.932 
0.271 0.721 F4-AF4 387 0.338 0.308 
0.704 0.954 F4-F3 387 0.927 0.207 
0.991 0.608 C5-FC6 387 0.639 0.651 
0.103 0.783 C5-FC5 387 0.324 0.447 
0.247 0.559 C5-P5 387 0.391 0.937 

0.438 0.613 C5-P6 387 0.663 0.822 

0.915 0.818 P5-FC6 387 0.198 0.493 

0.764 0.431 P5-FC5 387 0.597 0.431 

0.813 0.233 P5-CP5 387 0.826 0.849 

0.215 0.348 P5-P6 387 0.176 0.344 

0.681 0.922 P6-FC6 387 0.438 0.094 

0.517 0.582 P6-FC5 387 0.510 0.577 

0.145 0.351 P6-CP5 387 0.243 0.862 

0.109 0.117 PZ-P1 392 0.971 0.900 

0.095 0.832 PZ-P2 392 0.910 0.389 

0.233 0.104 PZ-P3 392 0.922 0.834 

0.141 0.509 P1-P3 392 0.965 0.880 

0.549 0.042 FZ-F4 392 0.641 0.934 

0.951 0.741 FZ-AF3 392 0.763 0.775 

0.216 0.669 FZ-AF4 392 0.443 0.947 

0.375 0.581 AF4-AF3 392 0.856 0.862 
I I I I 
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Ii AWSCS I AWSCS I Electrode Subject AWSCE AWSCE 
control alcoholic paIr name control alcoholic 
0.711 0.599 F4-AF3 392 0.471 0.996 
0.907 0.738 F4-AF4 392 0.592 0.419 
0.431 0.253 F4-F3 392 0.477 0.206 
0.611 0.647 C5-FC6 392 0.629 0.338 
0.599 0.706 C5-FC5 392 0.305 0.561 
0.682 0.661 C5-P5 392 0.449 0.73~ 
0.779 0.974 C5-P6 392 0.762 0.801 
0.208 0.483 P5-FC6 392 0.814 0.883 
0.394 0.611 P5-FC5 392 0.541 0.757 
0.553 0.273 P5-CP5 392 0.331 0.529 
0.622 0.753 P5-P6 392 0.637 0.722 
0.884 0.864 P6-FC6 392 0.546 0.597 
0.501 0.739 P6-FC5 392 0.759 0.832 
0.528 0.619 P6-CP5 392 0.662 0.863 
0.154 0.481 PZ-P1 394 0.861 0.882 
0.095 0.116 PZ-P2 394 0.899 0.847 
0.001 0.047 PZ-P3 394 0.755 0.664 
o .077 0.068 P1-P3 394 0.967 0.890 
0.813 0.715 FZ-F4 394 0.904 0.875 
0.811 0.942 FZ-AF3 394 0.894 0.881 
0.705 0.406 FZ-AF4 394 0.769 0.973 
0.314 0.564 AF4-AF3 394 0.791 0.584 

0.012 0.773 F4-AF3 394 0.521 0.218 

0.631 0.672 F4-AF4 394 0.236 0.447 

0.441 0.547 F4-F3 394 0.94 0.396 

0.384 0.487 C5-FC6 394 0.279 0.661 

0.302 0.886 C5-FC5 394 0.483 0.374 

0.761 0.681 C5-P5 394 0.788 0.799 

0.415 0.239 C5-P6 394 0.561 0.764 

0.186 0.773 P5-FC6 394 0.367 0.493 

0.716 0.629 P5-FC5 394 0.716 0.778 

0.549 0.409 P5-CP5 394 0.655 0.718 

0.166 0.553 P5-P6 394 0.416 0.537 

0.187 0.681 P6-FC6 394 0.261 0.374 

0.531 0.422 P6-FC5 394 0.358 0.591 

0.237 0.537 P6-CP5 394 0.758 0.796 

0.023 0.016 PZ-P1 395 0.805 0.578 

0.280 0.172 PZ-P2 395 0.897 0.366 

0.053 0.072 PZ-P3 395 0.727 0.708 

0.485 0.412 P1-P3 395 0.841 0.497 
I I I I 
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Ii AWSCS I AWSCS i Electrode Subject AWSCE AWSCE 
control alcoholic pair name control alcoholic 
0.006 0.562 FZ-F4 395 0.418 0.887 
0.072 0.481 FZ-AF3 395 0.945 0.749 
0.413 0.915 FZ-AF4 395 0.768 0.973 
0.138 0.549 AF4-AF3 395 0.576 0.559 
0.861 0.771 F4-AF3 395 0.886 0.798 
0.425 0.561 F4-AF4 395 0.513 0.596 
0.143 0.056 F4-F3 395 0.331 0.371 
0.513 0.591 C5-FC6 395 0.502 0.758 
0.572 0.776 C5-FC5 395 0.592 0.841 
0.447 0.859 C5-P5 395 0.773 0.876 
0.718 0.641 C5-P6 395 0.562 0.795 
0.581 0.966 P5-FC6 395 0.784 0.379 
0.913 0.754 P5-FC5 395 0.091 0.441 
0.668 0.687 P5-CP5 395 0.446 0.638 
0.183 0.554 P5-P6 395 0.359 0.815 
0.458 0.372 P6-FC6 395 0.918 0.396 
0.254 0.663 P6-FC5 395 0.403 0.855 
0.762 0.349 P6-CP5 395 0.794 0.617 
0.523 0.620 PZ-P1 396 0.917 0.422 
0.192 0.933 PZ-P2 396 0.846 0.344 
0.002 0.240 PZ-P3 396 0.675 0.437 
0.132 0.847 P1-P3 396 0.855 0.734 
0.435 0.512 FZ-F4 396 0.638 0.523 
0.339 0.417 FZ-AF3 396 0.713 0.964 
0.614 0.332 FZ-AF4 396 0.527 0.839 
0.724 0.692 AF4-AF3 396 0.613 0.792 

0.549 0.714 F4-AF3 396 0.894 0.547 

0.275 0.481 F4-AF4 396 0.392 0.699 

0.316 0.532 F4-F3 396 0.241 0.747 

0.792 0.761 C5-FC6 396 0.407 0.809 

0.887 0.973 C5-FC5 396 0.751 0.751 

0.425 0.629 C5-P5 396 0.645 0.647 

0.406 0.938 C5-P6 396 0.591 0.792 

0.265 0.539 P5-FC6 396 0.743 0.658 

0.619 0.776 P5-FC5 396 0.629 0.415 

0.227 0.463 P5-CP5 396 0.948 0.529 

0.317 0.375 P5-P6 396 0.741 0.294 

0.764 0.844 P6-FC6 396 0.337 0.684 

0.194 0.386 P6-FC5 396 0.463 0.744 

0.418 0.522 P6-CP5 396 0.645 0.846 
I I I i 
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II AWSCS i AWSCS I Electrode Subject AWSCE A\VSCE 
control alcoholic pair name control alcoholic 
0.113 0.018 PZ-Pl 402 0.401 0.995 
0.025 0.017 PZ-P3 402 0.214 0.850 
0.134 0.779 PI-P3 402 0.750 0.870 
0.193 0.776 FZ-F4 402 0.482 0.639 
0.662 0.832 FZ-AF3 402 0.366 0.219 
0.863 0.403 FZ-AF4 402 0.752 0.783 
0.324 0.361 AF4-AF3 402 0.546 0.962 
0.225 0.219 F4-AF3 402 0.418 0.761 
0.346 0.203 F4-AF4 402 0.753 0.817 
0.158 0.577 F4-F3 402 0.462 0.659 
0.683 0.783 C5-FC6 402 0.614 0.669 
0.531 0.624 C5-FC5 402 0.791 0.891 
0.725 0.891 C5-P5 402 0.853 0.967 
0.716 0.881 C5-P6 402 0.653 0.827 
0.158 0.921 P5-FC6 402 0.397 0.603 
0.359 0.726 P5-FC5 402 0.586 0.799 
0.749 0.914 P5-CP5 402 0.795 0.975 
0.853 0.892 P5-P6 402 0.963 0.762 
0.488 0.736 P6-FC6 402 0.631 0.688 
0.365 0.451 P6-FC5 402 0.581 0.973 
0.638 0.638 P6-CP5 402 0.686 0.513 

MATLAB Codes 

The l\1ATLABl computing language ha..c; been used for our study because it is 
a computer language, which is especially designed for the high-performance 
numerical computation and visualization and a..c; compared to other compu
tational languages, it provides a large number of functions for math compu
tations, data analysis and processing, visualization and graphics and signal 
processing. Therefore it is comparatively easy to use and learn for our pro
posed method, which requires various mathematical and signal processing 
tools. Another rea..c;on of choosing the MATLAB is that the large number of 
software packages exist in MATLAB for computing and analyzing the signal 
processing tools which are also used in our study. 

We have developed some ea..c;y to use l\1ATLAB codes for the computation of 

IThe name MATLAB HtandH for matrix laboratory. 
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the wavelet-ba.<;ed, STFT -ba.<;ed and the Fourier-ba.<;ed coherencies of scalp 
current densities and the EEG signal. These 11ATLAB codes are ba.<;ically 
written as script file, once the script file runs, it automatically asks for the 
inputs required for the computation of outputs. The detail of the inputs have 
been explained in the following section. The inputs are denoted by bold and 
the italic letters. 

Assume, xp and yp a.<; two time series corresponding to two electrodes 
x and y respectively, which are placed on the head of subject. The number 
of epochs recorded in each electrode is denoted by noep. Each electrode 
records the same type of trials for several times, the number of these repeated 
trials for each subject is different and is denoted by dim. The time series 
of four nearest electrodes to x are represented by n1SL1, n2SL1, n3SL1 
and n4SL 1. Similarly, the time series of four nearest electrodes to yare 
represented by the n1SL2, n2SL2, n3SL2 and n4SL2. For the esti
mation of STFT-ba.<;ed and Fourier-ba.<;ed coherencies, the Hanning window 
wa.<; used whose length is denoted by the length-window. The number of 
overlapping epochs and FFT points used during the STFT and Furier trans
form are denoted by noverlap and nfft respectively. The more detailed 
description is given within the codes. The following are the MATLAB codes. 
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