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Abstract 

 
Nonwoven materials are engineered fabrics, produced by bonding constituent fibres 

together by mechanical, thermal or chemical means. Such a technology has a great 

potential to produce material for specific purposes. It is therefore crucial to develop 

right products with requested properties. This requires a good understanding of the 

macro and micro behaviours of nonwoven products. In last 40 years, many efforts 

have been made by researchers to understand the performance of nonwoven materials. 

One of the main research challenges on the way to this understanding is to link the 

properties of fibres and the fabric’s random fibrous microstructure to the mechanisms 

of overall material’s deformation. The purpose of this research is to study 

experimentally and numerically the deformation mechanisms of a low-density 

thermally bonded nonwoven fabric (fibre: Polypropylene; density: 20 gsm).  

 

The study started with tensile experiments for the nonwoven material. Specimens with 

varying dimensions and shapes were tested to investigate the size-dependent 

deformation mechanisms of the material. Based on obtained results, representative 

dimensions for the material are determined and used in other experimental and 

numerical studies. Then standard tensile tests were performed coupled with image 

analysis. Analysis of the obtained results, allowed the tensile behaviour of the 

nonwoven material to be determined, the initial study of the effects of material’s 

nonuniform microstructure was also implemented.   

 

Based on the experimental results obtained from tensile tests, continuous finite-

element models were developed to simulate the material properties of the nonwoven 

material for its two principle directions: machine direction (MD) and cross direction 

(CD). Due to the continuous nature of the models, they were only used to establish the 

mechanical behaviour of the material by treating it as a two-component composite. 

The effects of bond points, which are a stiffer component within the material, were 

analysed.  

 



Abstract 
 

II 
 

Due to the limitations of the continuous FE models, experimental studies were 

performed focused on the material’s microstructure.  The latter was detected using an 

x-ray Micro CT system and an ARAMIS optical strain analysis system. According to 

the obtained images, the nonwoven fabric is a three-component material. The effects 

of material’s microstructure on stress/strain distributions in the deformed material 

were studied using advanced image analysis techniques. Based on the experimental 

results, a new stress calculation method was suggested to substitute the traditional 

approach, which is not suitable for the analysis of the low density nonwoven material. 

Then, the fibres’ orientation distribution and material properties of single fibres were 

measured due to their significant effects on overall mechanical properties. 

 

Finally, discontinuous finite-element models were developed accounting for on the 

material’s three-component structure. The models emphasised the effects of the 

nonuniform and discontinuous microstructure of the material. Mechanical properties 

of fibres, the density of fibrous network, the fibres’ orientation distribution and the 

arrangement of bond points were used as input parameters for the models, 

representing features of the material’s microstructure. With the use of the developed 

discontinuous models, the effects of material’s microstructure on deformation 

mechanisms of the low-density nonwoven material were analysed.  

 

Keywords: Nonwovens; Low Density; Anisotropic Behaviour; Nonuniformity; 

Random Microstructure; Deformation Mechanism; Finite Element Analysis 
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Chapter 1 Introduction 

 
 
 
Nonwoven materials are engineered fabrics, which are produced by bonding the 

constituent fibres together by mechanical, thermal or chemical means. Because of the 

low energy cost, high productivity and environmentally friendly processes, the market 

of the nonwoven products continue to grow rapidly, and they are widely used in 

various aspects of social life, from personal care products to automotive parts. 

According to the figures released by European Disposables and Nonwovens 

Association (EDANA), the global nonwoven productions reached 5.1 million tonnes 

in 2006, which is an increase of 23.1% from 2003. One of the main market segments 

of this industry is the low-density nonwoven materials, which are usually used in 

hygiene and medical applications, and account for 36 % in terms of volume. However, 

with the development of manufacturing technology for nonwoven, the consumer 

industry continues demanding better mechanical properties. On the another hand, as a 

kind of artificial material, nonwovens still have a great potential to be improved for 

more specific purposes. It is therefore crucial to understand the effect of material’s 

microstructure on the overall properties of nonwovens; it could help the industry to 

improve their mechanical properties by optimising respective manufacturing 

processes. Moreover, the manufacturing industry also tries to study the material using 

expensive, time-consuming trial-and-error methods. Hence, it is necessary to develop 

theoretical and computational tools for the nonwoven materials both to have 

opportunity to study them and to optimize the manufacturing processes. 

 

Besides requests by industry, the unique material properties make the nonwoven 

fabrics an interesting and challenging material to study. Actually, within the last 50 

years, many efforts have been made to study the material properties of fibrous 

structures by investigating various materials, e.g., paper, textiles, nonwovens and 

composites. According to those studies, nonwoven fabrics can be described as 

anisotropic, nonhomogeneous, discontinuous and highly non-linear materials 

(Petterson, D.R. and Backer, S. 1963, Hearle, J.W.S. and Stevenson, P.J. 1963, 

Russell 2007). 
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The anisotropic material properties of the nonwovens are linked to the character of 

random fibre orientations, especially along two principle directions of the material: 

machine direction (MD) and cross direction (CD). Significant differences in the 

material properties and the deformation mechanism are demonstrated by tensile tests 

for these two directions (Figure 1.1). All these characteristics of nonwoven fabrics 

make their mechanical behaviour, in particular their tensile behaviour, very 

complicated. It is affected by tension, shear, compression and damage coupling modes. 

Although it is well known that the mechanical properties of nonwovens are 

anisotropic, the deformation mechanisms of the nonwoven fabrics in different 

directions and the effects of material’s microstructure are still not understood 

sufficiently.  

 
Figure 1.1: Different tensile behaviours of thermally bonded nonwoven fabric in MD 

and CD 

Nonwoven materials are basically formed by randomly arranged fibres. Due to the 

manufacturing process, the microstructure of the material is discontinuous and 

nonuniform as shown in Figure 1.2. This unique microstructure causes nonuniform 

distributions of stresses and strains in the deformed material and affects its 

deformation mechanisms. Besides, when the nonwoven fabrics achieve large strain 

levels in extension, their cross-sectional area and volume change significantly due to 
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mechanisms of the nonwoven material even more complicated. Moreover, the non-

linear material behaviour of nonwoven material is another challenging problem. Due 

to the complex microstructure of the material, the non-linearity of nonwoven material 

could be caused by both the material non-linearity of fibres and the geometry non-

linearity of the discontinuous and nonuniform microstructure.   

                              
Figure 1.2: Discontinuous microstructure of low-density nonwoven material 

 
Since the microstructure of the nonwoven material affects its performance 

significantly, there is an obvious need to investigate the material’s microstructure, in 

order to develop a theory of deformation for nonwoven materials. 

 

The mechanical properties of nonwoven materials are determined by their 

microstructure, fibre properties and bonding features. From Backer and Pettersion’s 

pioneering work (Backer, S. and Petterson, D. R. 1960), researchers have used 

considerable efforts to develop a theory to describe the unique material. Basically, 

there are two most popular theories at present, and most of the researches are based on 

them. One is the orthotropic theory, which is used to predict directly the properties of 

a thermally bonded nonwoven at the macroscopic level (Kim 2004a). Some 

researchers also use a classic orthotropic theory to model spun-bonded nonwovens 

(Bais-Singh, S., Biggers, S.B.JR. and Goswami, B.C. 1998, Bais-Singh, S. and 

Goswami, B.C. 1998). The theory treats nonwoven materials as a layer system, using 
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the laminate composite theory and assumes a unique orientation for every layer of 

fibres. Another theoretical description of the material is based mainly on a “cell 

theory”: the nonwoven fabric is divided into cells and each cell has the features of 

fabrics’ microstructure (Kim, H.S. and Pourdeyhimi, B. 2000, Kim 2004b, Limem, S. 

and Warner, S.B. 2005, Mueller, D.H. and Kochmann, M. 2004, Liao, Adanur 1997). 

However, these methods only reveal part of the real deformation mechanisms of 

thermally bonded nonwoven material due to the use of periodic boundary conditions, 

which cannot describe the nonuniformity of the nonwoven fabrics adequately. 

Therefore, to explore the deformation mechanism of nonwoven materials, the research 

should be carried out at both micro-scale and macro-scale of the material and 

investigate the effect of real features of the material’s discontinuous and nonuniform 

microstructure. Moreover, due to complex microstructure of the material, which is 

hard to investigate experimentally, the material should be studied both experimentally 

and numerically.  

 

1.1 Motive and objectives of research  

 
In last decades, although a significant progress has been achieved in describing the 

mechanical behaviour of nonwovens, there are still some unresolved problems in this 

area. Both industry and academy are interested in better understanding of the effects 

of its discontinuous and nonuniform microstructure. An appropriate model could 

allow the industry to improve their products by optimising the microstructure of the 

material. Moreover, novel research methods and theory will benefit academic studies, 

focusing on new engineered materials with complicated microstructures. Therefore, 

the overall aim of this project is to investigate a low-density thermally bonded 

nonwoven fabric experimentally and numerically in order to develop a good 

theoretical description of the deformation mechanism of the material. To achieve the 

aim of the project, its major objectives are formulated in the following way:  

 

1. To investigate the tensile behaviour of the low-density thermally bonded 

nonwoven material at macro-scale. To establish the effects of dimensions and 

shape of specimens on the mechanical properties of the nonwoven material.  
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2. To investigate the features of microstructure of the low-density thermally 

bonded nonwoven material. To determine the effects of the material’s 

microstructure on its mechanical properties. 

 

3. To develop continuous FE models to describe the mechanical behaviour of the 

nonwoven material by introducing is macroscopic features.  

 

4. To develop discontinuous FE models by taking account for the features of the 

microstructure of the nonwoven material to simulate its mechanical properties.  

 

5. To summarise deformation mechanism of the low-density thermally bonded 

nonwoven material according to the results of experimental and numerical 

studies.    

 

1.2 Methodology of research  

 
The research proposes to explore the mechanical properties of the low-density 

thermally bonded nonwoven material by analysing the effects of the material’s 

discontinuous and nonuniform microstructure. The research consists of two main 

parts: experimental studies and computational modelling. A flowchart in Figure 1.3 

summarises the methodology. 

 

At macro-scale, the experiments will be carried out to investigate the tensile 

behaviour of the nonwoven material. Specimens with different dimensions will be 

used to explore the shape- and size-dependent tensile behaviour of the material. The 

deformation process in the experiments will be studied with a high-speed camera and 

thermal analysis system, which could provide information on a non-uniformed tensile 

behaviour of the material.  

 

Then, continuous FE models will be developed based on the macro-scale 

experimental studies. The models will treat the material as a two-phase (fibrous 

network and bonded areas) composite material and the classic theory for composites 

will be used to describe the material behaviour. The results will be used to assess the 
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capability of the theory to describe the low-density nonwoven material, which have 

been successfully used to simulate nonwoven material with a higher density.  And the 

simulation results will also be used to analyse the effect of bonded areas, which are 

stiffer than the fibrous network, on the overall material properties. 

 

Besides the researches at macro-scale, the features of the microstructure of the 

nonwoven material will be investigated. Optical and electron microscopy will be used 

to capture the material’s microstructure for both undeformed and deformed specimens. 

The obtained images will be analysed using the image analysis software and program. 

The orientation distribution function (ODF) of the nonwoven material will be 

determined. The effects of the discontinuous and nonuniform microstructure on 

deformation mechanisms of the material will be estimated.  

 

Based on the understanding of the effects of the material’s microstructure and the 

results of continuous models, discontinuous FE models will be developed to simulate 

the tensile behaviour of the nonwoven material by introducing the features of the 

discontinuous and nonuniform microstructure of the material into them. Due to the 

complex microstructure of the material, the geometric part will be generated 

according to orientation distribution of fibres using a special program. And the 

discontinuous FE models will be built up by editing the input files directly. Using 

those, effects of the fibres’ orientation distribution and arrangement of bond points 

will be explored. 

 

Finally, the characteristic deformation mechanism of the low-density thermally 

bonded nonwoven material will be summarised according to the results of 

experimental studies and numerical simulations.  
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Figure 1.3: Flow chart of overall methodology 

 

1.3 Outline of thesis 

 
The thesis contains eight chapters; the outline of the chapters is as follows:  
 

 Chapter 1 provides a general background of the study of nonwoven materials 

from the view point both of industry and academy. The motive, objectives and 

methodology of the research are presented. 

 

 Chapters 2 comprise the introduction of nonwoven materials and the review of 

previous studies related to this research. First, it focuses on the review of 

definition of nonwoven materials and the existing theories about their 

mechanical properties. Then, numerical models are demonstrated, which are 

used to describe the material behaviours of the nonwovens. The advantages 

and limitations of the existing models are discussed. 
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 Chapter 3 presents the experimental studies, focused on the mechanical 

properties of the low-density nonwoven material. Size-dependent mechanical 

properties of the nonwoven material are discussed. 

 

 Chapter 4 reports the development of continuous FE models, which account 

for the feature of the nonwoven material at macro-scale.  

 

 Chapter 5 presents the investigation of the microstructure of the low-density 

nonwoven material. Various image analysis methods are presented, and the 

effects of the material’s microstructure on the overall mechanical properties 

are estimated. 

 

 Chapter 6 deals with development of discontinuous FE models. The models 

are developed by introducing the features of the material’s microstructure. 

Based on the models, the effects of material properties of fibres, the 

orientation distribution of fibres and arrangement of bond points on the overall 

mechanical properties are discussed.  

 

 Chapter 7 summarises the major findings of the research. The deformation 

mechanisms of the low-density thermally bonded nonwoven material are 

analysed by taking account for the effects of material’s microstructure. The 

future works is suggested based on results of the present research. 
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Chapter 2  Nonwoven Material 

 
 

2.1 Introduction of nonwoven material 

 
Nonwoven fabrics are engineered fabrics, which are widely used in various aspects of 

human life. In last 50 years, the nonwoven industry developed really fast by 

implementing new technical innovations. Nonwoven fabrics start to become a broad 

concept. Therefore, the definition of nonwoven fabrics has long been a cause for 

argument and discussion. According to the definition of British Standard, “a 

nonwoven is a manufactured sheet, web or batt of directionally or randomly 

orientated fibres, bonded by friction and/or cohesion and/or adhesion, excluding paper 

and products which are woven, knitted, tufted, stitch-bonded incorporating binding 

yarns or filaments, or felted by wet-milling, whether or not additionally needled. And 

the fibres may be of natural or man-made origin. They may be staple or continuous 

filaments or be formed in situ” (British Standards, 1992)  

 

2.1.1 Manufacturing process 

The manufacturing process of nonwoven fabrics is a complex mechanical and 

chemical process. The basic raw materials for nonwovens are polymers, and their 

material properties change with respect to different process conditions such as 

webbing mechanisms, bonding techniques, manufacturing rates and temperatures. 

Therefore, various manufacturing processes affect the material properties of 

nonwoven fabrics in different ways.   

Although there are many techniques, which are used for manufacturing nonwoven 

fabrics, there are four principle steps in the nonwovens manufacturing technologies 

(Batra, S.K. and Davis, H. 1999).  

 
1 Preparation: this step involves preparing the raw material for the next stage of the 

production.  
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2 Web formations: this step refers to the process or methodology that converts staple 

fibres or filaments into a two-dimensional or three-dimensional web assembly (batt), 

which is the precursor for the final fabric. Its structure and compositions strongly 

influences the dimensions, structure and properties of the final fabric (Russell 2007). 

During this process, the arrangement of fibres, specifically the fibre orientation, is 

resolved. Therefore, the uniformity and anisotropy of eventual nonwoven fabric is 

determined solely during this process (Purdy 1983, Russell 2007). Other critical fabric 

parameters influenced at this stage are the unfinished product weight and 

manufactured width.  

 

The universal processes of web formation are the carding technology and the airlay 

technology. The carding technology produces parallel-laid webs, or, in conjunction 

with cross-lappers, cross-laid webs. And the airlay technology transports fibres by 

means of air and reputedly provides a more randomized fibre arrangement in the 

resulting web. 

 
3 Bonding: this step is the one to give final integrity to the web. There are three main 

methods to bond a fibre web: mechanical bonding, adhesive bonding and thermal 

bonding. The degree of bonding is a primary factor in determining fabric’s 

mechanical properties (particularly strength), porosity, flexibility, softness, and 

density (loft, thickness)(Russell 2007). And there are various techniques used by the 

industry, which are presented in Table 2.1.  

 

Mechanical Bonding Adhesive Bonding Thermal Bonding 

Felting 
Needlepunching 
Hydroentanglement  
Stith bonding 

Spray 
Saturation 
Print 
Collapsible foam 

Calendar 
Through-air 
Impingement 
IR radiation 
Ultrasonic 

 
Table 2.1: Bonding techniques (Batra 1998) 

 
4 Finishing: this step follows bonding. If the bonded web is not in its final form 

corresponding to the end product, it may require additional processing steps to give it 

the desired aesthetics or appearance, physical and mechanical properties and 
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additional functional properties. For example, the nonwoven can be made conductive, 

flame retardant, water repellent, antistatic, breathable, coated, printed on and so on. 

There are mechanical and chemical finishing methods for achieving different end 

products (Albrecht, Fuchs et al. 2003). 

 

The definition of nonwoven material is generalized, because there are many types of 

products and they share characteristics not only with textiles but also with paper and 

plastic products. Therefore, it is reasonable to classify the materials and give more 

specific definitions.  

 

2.1.2 Classification  

To classify the nonwoven materials, one of the convenient ways is according to their 

manufacturing principles. Hence, nonwoven materials can be classified as 

mechanically bonded nonwoven textiles, adhesively bonded nonwoven textiles, and 

thermally bonded nonwoven textiles.   

 

 The mechanically bonded nonwovens are pliable and porous planar products 

made from textile elements by reinforcing these with fibres belonging to the 

original system by extraneous bonding threads (Krčma 1962). 

 

 The adhesively or chemically bonded nonwovens are pliable and porous 

planar products made from textile elements by binding these with adhesives 

(Krčma 1962).  

 

 The thermally bonded nonwovens are manufactured by interlocking the fibres 

through the use of heat energy employing the thermoplastic properties of 

synthetic fibres such as polypropylene. The heat in the process softens the 

surface of the fibre. At the bond point, fibres in contact with each other will 

form strong bonds, which hold the fabric together.  

 
 
 
 



Chapter 2 Nonwoven Materials 
 

12 
 

2.1.3 Raw materials 

There are two main types of fibres -natural and man-made- that are used for the 

manufacturing of nonwoven materials. Both the extrinsic and intrinsic properties of 

the fibres based on their outward and inner structure affect the properties of 

nonwoven fabrics. Alongside thermal and chemical properties of the fibres, their 

geometry (the fibre length, fibre cross-section, volume and surface characteristics) 

and mechanical properties (tensile strength, the break length, elongation properties, 

elasticity and plasticity) are the fundamental factors in the research of mechanical 

properties of nonwoven fabrics ( Krčma,1962), which are determined by the 

macromolecular structure and dimensional parameters. 

 

Nowadays, nonwoven materials are mainly produced form man-made fibres, 

accounting for over 90% of total output. There are numerous fibres in applications 

such as polypropylene, polyethylene, PET, nylon, rayon, aramids, glass, acetate, 

biconponents, blends and copolymers, etc. Two most popular ones are polypropylene 

and polyesters. And polypropylene holds 63% of the world usage (Russell 2007). 

Moreover, short fibre (staple) and long continuous fibre behave differently.   

 

2.2 Properties of nonwoven fabrics 

 
The main factors of nonwoven fabrics, which affect the material properties and 

manufacturing process are (Russell 2007, Krčma 1962): 

1. Geometrical properties; 

2. Mechanical properties of fibres; 

3. Physico-chemical properties; 

4. Chemical properties; 

5. Physiological properties. 

Geometrical and mechanical properties of fibres are the essential factors for the 

mechanical properties of nonwovens.   

 

2.2.1 Geometrical properties  

To some extent, the structure of the nonwoven determines its mechanical properties. 

The core factors of nonwovens are:  
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a) Fibre length and crimp. 

b) Fabric dimensions and variation: dimensions (length, width, thickness, and weight 

per unit area), dimensional stability, density and thickness uniformity. 

c) Fibre alignment: fibre orientation distribution. 

d) Bond points: bonding type, shape, size, bonding area, bonding density, bond 

strength, bond point distribution, geometrical arrangement, the degree of freedom of 

fibre movement within the bond points, interface properties between a binder and 

fibre and surface properties of bond points. 

e) Porous structural parameters: fabric porosity, pore size, pore size distribution, pore 

shape. 

 

2.2.2 Mechanical properties  

The mechanical properties of the nonwovens are important factors with regard to the 

end-use properties of the final products. Many researchers have been done to study 

the following basic mechanical behaviours: 

 

a) Compression and compression recovery.  

b) Tension (The Young’s modulus, tenacity strength and elasticity, elastic recovery, 

work of rupture). 

c) Bending and shear rigidity. 

d) Tear resistance 

Also, the burst strength, crease resistance, abrasion, frictional properties (smoothness, 

roughness, friction coefficient), energy absorption of nonwoven are other important 

mechanical properties for the specific functionality.  

 

2.3 Application of nonwoven materials  

 
The nonwoven materials are engineered to provide specific functions to ensure fitness 

for purpose, and the properties of the nonwovens also could be combined to create the 

required functionality, with achieving a profitable balance between the expected 

product life and cost (Russell 2007). With development of manufacturing techniques 

for the nonwoven industry, the materials are widely used in various aspects of social 

life. Some end uses of nonwovens nowadays are given in Table 2.2.  
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Table 2.2: Application of nonwoven materials (edana 2008) 
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2.4 Thermally bonded nonwovens 

 
Thermal bonding is one of the most widely used bonding technologies in the 

nonwovens industry. The viability of this technology is rooted in the price advantage 

obtained by lower energy costs. It is used extensively in spunbond, meltblown, air-lay, 

and wet-lay manufacturing as well as with carded-web formation technologies 

(Mishakov, V. Slutsker, G. and Stalevich, A. 2006, Michielsen, S., Pourdeyhimi, B., 

and Desai, P. 2006). Generally, only fibres with thermoplastic characteristic or with 

blends containing them that are not intended to soften or low on heating can be used 

in thermally boning process (Russell 2007).  And the stronger fibres make stronger 

textile structures when all other factors are the same. But still there are plenty of types 

of fibres in practice: polypropylene (PP), polyesters (PES), nylons, polyethylene (PE), 

vinyon and sheath-core bicomponents involving PE/PP, PP/PES, copolymers of PES, 

etc (Batra 1998). For bicomponent fibres, the non-binder component (core) is referred 

to as the base fibre component, and the binder component (sheath) normally ranges 

from 5-50% on weight of fibre depending on the physical property requirements of 

the final product (Russell 2007). Compared to other bonding processes, the 

advantages of thermally bonded nonwovens are: 

 

1. High economic efficiency as compared to chemical bonding, because the 

thermally bonding process slightly use the binder agents and need less energy 

(Chand, Bhat et al. 2001).  

2. Generally, the manufacturing systems are cheaper than those for other 

processes.  

3. The process can be used for the thick web, and the bonding affect is 

designable.  

4. The material is recyclable, which is good for environment, since it is possible 

to use pure polymer fibres in the process.  

5. The fibre properties are controllable, so there are opportunities to produce 

nonwovens with different functions (flame-residence, high bulk and resilience 

nonwovens, heat-insulating nonwovens, etc.) 
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2.4.1 Manufacturing process of thermally bonded nonwovens  

As it is described in Section 2.1.1, four principle processes are necessary to 

manufacture nonwoven material. To produce thermally bonded nonwovens, the 

bonding processes are specified as following (Pourmohammadi 2007):   

 

1. Compressing and heating the web to partially melt in the crystalline region;  

2. Bonding the web to from the newly released chain segments across the fibre-

fibre interface; 

3. Cooling the bonded web to re-solidify it and to trap the chain segments that 

diffused across the fibre-fibre interface.  

 

There are several thermal bonding technologies, which are predominantly used in 

industry, and discussed below. 

 

Through-air thermal bonding makes bulkier and heavy-weight products by the overall 

bonding of a web containing low melting fibres. The hot air flows through holes in a 

plenum positioned just above the nonwoven. And negative pressure or suction, pulls 

the air through the open conveyor apron that supports the nonwoven as it passes 

through the oven. Binders are necessary to help the bonding such as crystalline binder 

fibres, bi-component binder fibres, and powders (Kamath, M.G., Dahiya, A. and 

Hegde, R.R. 2004, Batra, S.K. and Davis, H. 1999). For this technique, it is important 

and challenging to control the temperature and air flow. To avoid any undesirable 

change in web thickness, it is essential that the web is quickly heated to the melting 

temperature and the air flow is reduced. And actually, the high air speed cause thinner 

web and high fabric strength, due to forming more inter-fibre bond points (Russell 

2007). 

 

Another process -ultrasonic bonding- is based on conversion of electromagnetic 

energy into mechanical energy, which takes place when the molecules of the fibres 

held under a patterned roller are excited by high frequency energy, which produces 

internal heating and softening of fibres. In the process, a fibrous web is compacted 

between an embossed patterned roller and an ultrasonic tool (horn). The horn is 

vibrated at a high frequency in the range of 20-40 kHz and hammers the web (Russell 

2007). The contacts between ultrasonic horn and the web implement a limited 



Chapter 2 Nonwoven Materials 
 

17 
 

pressure on web surface within a brief time with a high frequency about 20,000 

cycles/s. Energy is therefore transferred to restricted areas in the web to induce 

thermal bonding as the mechanical energy applied to the fibres is converted into heat 

(Russell 2007).Then the web is bonded. Since this bonding method causes self-

bonding of fibres, one advantage of this technique is that no binder is necessary for 

manufacturing (Kamath, M.G., Dahiya, A. and Hegde, R.R. 2004).  

 

The third process is that infrared (IR) bonding relies on the radiation type of heat 

transfer. IR emitting heaters are used to radiate electro-magnetic energy in part of IR 

wave length rage (approximately 760-10000 μm), which then translates to heat in the 

receiving material. IR radiation cannot penetrate deep into the structure of the web, 

and it is not economical to be used in area bonding for thinner webs. Therefore, IR 

boding is used largely as method of “glazing” the surface of thick nonwovens, and 

“stabilizing” needlepunched geotextiles and roofing felts (Batra 1998).  

 

Hot calendar bonding is the most frequently used method for thermal bonding in the 

industry. Calendaring (shown in Figure 2.1) uses heat and high pressure applied 

through rollers to weld the fibre webs together at speed. For point bonding, one of 

these rolls has an engraved pattern on its surface that leads to fibre-to-fibre bonding 

locally at the points of the intersection of the engraved pattern with the smooth roll 

(Bhat, Malkan 2002). Both of the rollers are heated internally, and the temperatures 

determine the level of bonding besides the other factors such as nip pressure, 

throughput speed and web parameters (basis weight, fibre type, fibre mass linear 

density and blend level).                



Chapter 2 Nonwoven Materials 
 

18 
 

          
Figure 2.1: Typical thermal point bonding roller arrangement (Russell 2007) 

                                     

As well known, the manufacturing process determines the material properties of 

nonwoven. Before bonding can occur, a web must be formed. During this process, 

different fibre orientation distribution functions (ODF) are produced by different web 

formatting processes. The ODF indicates the material’s anisotropy, different 

deformation mechanisms, and the subsequent failure modes (Kim 2004b, Michielsen, 

S., Pourdeyhimi, B., and Desai, P. 2006, Pourdeyhimi, B. and Ramanathan, R 1996, 

Liao, Adanur 1999b). When the web passed through the hot calendar rolls, the web is 

compressed and heated. During this process, a minimal pressure is required at the nip, 

especially for thin nonwovens. The pressure brings fibre to fibre contact, which 

affects the heat transfer to and then through the web. Beyond the minimal pressure, 

the bonding pressure appears to have little or no effect on fabric performance 

(Michielsen, S., Pourdeyhimi, B., and Desai, P. 2006). The bonding temperature 

determines the structure of the single fibre and the bond points. Only the fibres 

located under the bond-points heat up significantly, and the bridging fibres are 

slightly changed in the morphology (Wang, Michielsen 2002, Kim, Pourdeyhimi et al. 

2002). In bonding areas, the heat is not only due to the heat conduction from the rolls 

to the fabric but also due to the thermal input, which is a deformation induced heating 

process (Warner 1989, Anderassen, Myhre et al. 1995). And within the bond points, 
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the fibres are not completely melted to a film-like structure, but flattened (Figure 2.2). 

That means the temperature must be adjusted to avoid complete fibre melting and film 

formation for obtaining fabrics with high strength and good softness (Russell 2007). 

As extensively studied, the effect of bonding temperature on fabric physical properties 

is important and complicated. For tensile behaviour, with the increase of bonding 

temperature up to a certain points, the tensile properties of the fabric increase due to 

the formation of a well-developed bonding structure. But further increase in bonding 

temperature causes reduction of the tensile properties, which is attributed by losing 

the fibre integrity and formation of film-like spots as well as the reduction in load 

transfer from fibres to the bond points (Haoming, Bhat 2003, Kwok, Crane et al. 

1988). This kind of over bonding also leads to a sudden rupture under tensile load at 

the bond points. The shear modulus and bending rigidity of calendar bonded fabric are 

also increased by increasing the bonding temperature (Kim, Pourdeyhimi et al. 2001). 

 

          
 

Figure 2.2: Flattened fibres bonded by hot calendar (Chidambaram, Davis et al. 2000) 

 

2.4.2 Characterisation of thermally boned nonwoven fabrics 

Because of the low cost of energy, environmentally friendly and good economic 

efficiency of thermal bonding, the technique is widely used nowadays. A better 

understanding of thermally bonded nonwovens is requested. The important nonwoven 

fabric properties include: mechanical properties, fluid handling properties, physical 
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properties, chemical properties and application specific performance (Russell 2007). 

One of the challenging works is to study the mechanical properties of the thermally 

bonded nonwoven, due to its unique and complicated structure.   

 

2.4.3 Geometrical properties 

As shown in Figure 2.3, the thermally bonded nonwoven fabric includes two 

components: a fibrous web and bond points. And the mechanical properties of the 

material depend on its structure and the interactions between its components. 

Normally, the nonwoven fabric is anisotropic; the material properties in its two 

principle directions are different. The machine direction (MD) is the longitudinal 

direction within the plane of the fabric that is in the direction, in which the fabric is 

being produced by the machine (Batra, Thompson et al. 2002).The cross direction 

(CD) is the direction perpendicular to the machine direction. In the industry, a 

direction ratio (MD/CD) of tensile strength is commonly used to describe the 

anisotropy of the material. 

 

             
Figure 2.3: A typical structure of thermally bonded nonwoven fabric 
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2.4.4 Fibres for thermally boned nonwovens 

Polymer fibre is the raw material of nonwovens. For thermally bonded nonwoven 

fabrics, the fibres form both fibrous network and bond points after manufacturing 

processes. The randomly arranged bridging fibres form fibrous network. And the 

bond points are formed by heated and compressed fibres. Therefore, it is essential to 

understand the properties of fibres. The most foundational geometry properties of 

fibre are its stiffness, dimensions and crimp. Generally, stiffer fibres make stiffer 

fabric. Moreover, for a given areal density, the fabric strength increase with a 

decrease in fibre diameter, and increases up to a limiting value as the fibre length 

increase (Shimalla, Whitwell 1976). For the fibres within the bond points, the 

birefringence (molecular orientation) of the fibres are reduced compared to the 

original bridging fibres, due to the bonding process (Chidambaram, Davis et al. 2000, 

Shimalla, Whitwell 1976, Dharmadhikary, Davis et al. 1999). The phenomena lead to 

a large decline in the fibre modulus in the bonded points, and affect mechanical 

properties of the overall nonwoven fabric.  

 

As shown in Figure 2.3, fibres within the nonwoven fabric are crimped. The degree of 

curvature of fibres affects the deformation mechanisms of the fabric (Petterson, D.R. 

and Backer, S. 1963, Backer, S. and Petterson, D. R. 1960, Hearle, J.W.S. and 

Ozsanlav, V. 1979). Therefore, some researches have been done to investigate the 

degree and distribution of fibre curl by introducing a curl factor (Petterson, D.R. and 

Backer, S. 1963, Adanur, S. and Liao, T. 1999, Rawal 2006). 

 

2.4.5 Orientation distribution function (ODF) 

Due to the manufacturing process, the fibres in a nonwoven fabric are rarely 

completely randomly orientated, rather, individual fibres are aligned in various 

directions mostly in-plane. In 1952, Cox’ introduced the conception of “distribution 

function” in his famous model for paper to describe the fibre orientation in fibrous 

assembly (Cox 1952). Then dealing with the ODF (orientation distribution function) 

became a common way to nearly all the researchers in that field because it is not only 

describes the structure of nonwovens but also determines,  to a great extent, the 

deformation mechanism and mechanical failure of the material (Michielsen, S., 

Pourdeyhimi, B., and Desai, P. 2006).   
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Although the fibre segment orientation in a nonwoven is potentially in any three-

dimensional direction (Figure 2.4), the measurement of fibre alignment in three 

dimensions is complex and expensive (Russell 2007, Gilmore, Davis et al. 1993). And 

due to the nature of nonwoven fabric, which is a kind of thin material, researchers 

usually simplify a three dimensional problem as a two dimensional structure. If a 

three dimensional structure is required, the structure may be a combination of two-

dimensional layers (Bais-Singh, S., Biggers, S.B.JR. and Goswami, B.C. 1998). In 

some model, the layers are connected by fibres orientated perpendicular to the layers 

(Mao, Russell 2003).  

 

 
 

Figure 2.4: Fibre orientation angle in nonwoven fabric in three dimensions (Russell 

2007, Mao, Russell 2003).  

 
In two dimensions, the ODF of the fabric is usually presented as the distribution of 

fibre orientation angle, which is defined as the relative directional position of 

individual fibres in the structure relative to the machine direction as shown in Figure 

2.5.                                                                 
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Figure 2.5: Fibre orientation and orientation angle (Russell 2007) 

 
To measure the orientation distribution of fibres, many efforts have been done. In 

1963, Hearle and Stevenson suggested a method to determine the orientation from the 

directional phenomena of dichroism and birefiringence (Hearle, J.W.S. and Stevenson, 

P.J. 1963). Later, with the development of imaging devices and computation tools, the 

ODF start to be measured directly from optical microscopic image (Xu, B. and Ting, 

Y. 1995). At present, photomicrographs of fabric taken with a scanning electron 

microscope are normally used to determine the orientation distribution of nonwovens. 

In 1979, Hearle and Ozsanlav expressed the ODF in term of powers of the cosine 

function (Hearle, J.W.S. and Ozsanlav, V. 1979, Rawal 2006). Xu and Ting presented 

their software, which could compute the ODF based on the image obtained by a CCD 

camera (Xu, B. and Ting, Y. 1995). Pourdeyhimi and Ramanathan (1996) computed 

ODF using engineering software and developed an image model to simulate the fibre 

arrangement of nonwovens (Pourdeyhimi, B. and Ramanathan, R 1996). Then 

Pourdeyhimi introduced the Fourier transform method in his paper in 1997, which is 

one of the most popular methods to obtain the ODF (Figure 2.6) nowadays 

(Pourdeyhimi, B., Dent, R. and Davis, H. 1997, Pourdeyhimi, Dent et al. 1999). In 

2002, Ghassemieh and Acar implement the Hough transform to estimated the ODF of 

nonwoven fabric and compared the method with FFT (fast Fourier transform) 

(Ghassemieh, Acar et al. 2002a, Ghassemieh, Acar et al. 2002b, Ghassemieh, E., 

Versteeg, H.K. and Acar, M. 2001). 
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Figure 2.6: Typical fibre orientation distribution function (Kim, H.S. and Pourdeyhimi, 

B. 2000) 

 
Fourier Transform:  

Fourier analysis is used as an indirect method to estimate the fibre orientation 

distribution by most researchers. The Fourier transform decomposes an image from its 

spatial domain of intensities into frequency domain with appropriate magnitude and 

phase values. Then the frequency can be depicted as an image where the gray scale 

intensities present the magnitudes of the various frequency components (Wood 1990). 

A higher rate of the change in gray scale intensity will be reflected in higher 

amplitudes (Ghassemieh, E., Versteeg, H.K. and Acar, M. 2001). In two dimensions, 

the corresponding direct Fourier transform is given as: 

  dxdyeyxfuF yxui )(2),(,   ,                                                                      (2.1)  

where ),( yxf is the image and ),( uF is its transform, u refers to the frequency along 

the x direction and  represents the frequency along the y direction (Pourdeyhimi, B., 

Dent, R. and Davis, H. 1997, Ghassemieh, Acar et al. 2002b).  

In the analysis of nonwoven materials, the Fourier transform is used to determine the 

rate at which the intensity transition occurs in a given direction in the image. Thus, if  

fibres are predominantly oriented in a given direction of the fabric, the spatial 

frequencies in that direction will be low and the spatial frequencies in the 
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perpendicular direction will be high (Pourdeyhimi, B., Dent, R. and Davis, H. 1997). 

Hence, the fibre orientation distribution can be computed according to this property of 

the Fourier transform. 

 

Hough transforms: 

The Hough transform (HT) is an effective method for object detection in an image 

directly. The classical HT is usually used for the detection of regular lines, especially 

for straight lines. The basic concept involved in locating lines by the HT is point-line 

duality (Davies 2005). And the main process is to transform a line in the Cartesian 

space to a point in a parametric space (Xu, Yu 1997). To represent a straight line the 

most common equation is the polar form, which is convenient to describe the lines 

parallel to y axis in Cartesian space (Ghassemieh, Acar et al. 2002b). It is given as: 

 sincos yx  ,                                                                                                  (2.2)                                                                                            

where is the normal distance from the origin, and   is the angle of the normal line 

with respect to the x  axis. This transformation produces a sinusoidal curve in the 

   parameter space for a point ),( yx , and converts a line into a point ),(   in the 

   space. In this way, a set of collinear points in the images space generates a 

family of sinusoidal curves in the    space, which cross each other at point

),( P . Therefore, point Pin    space is representing a straight line Lin the 

image.  

 

Simulation:  

To validate the method of measuring ODF, Xu and Yu generated images by straight 

lines with designed fibre orientations (Xu, Yu 1997). But before their publication, in 

1996 Pourdeyhimi and Ramanathan presented their image simulation using S-random 

and μ-random approaches, which could simulate both continuous and discontinuous 

nonwoven network according to ODF. Later the improved model was used in a 

mechanical model to simulate the deformation process of nonwovens (Pourdeyhimi, 

B. and Ramanathan, R 1996, Kim, H.S. and Pourdeyhimi, B. 2001b).  

 
Figure 2.7 shows the two scheme of simulation. μ-randomness is used to simulate a 

continuous-fibre assembly. The method defines a line by the perpendicular random 
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distance d from a fixed reference point O (centre point), α is the angular position, 

which is chosen according to ODF. I-randomness is used to simulate the staple fibre 

assembly. To define a line, a point P is chosen at random by its x and y coordinates to 

make sure it lies in a plane, which is larger than the image by length l. Then, an 

angular position α is selected depending on ODF, and a line is drawn with length l 

(Pourdeyhimi, B. and Ramanathan, R 1996, Kim, H.S. and Pourdeyhimi, B. 2001a, 

Suh, Chun et al. 2010). 

 

                 

(a) (b) 

Figure 2.7:  Procedures of image simulation: a) μ- randomness, continuous fibres; b) 

I-randomness, staple fibres 

 

2.4.6 Bond points 

The technique of thermal bonging involves the use of heat and often pressure to soften 

and then fuse or weld fibres together without inducting melting. The bond points have 

properties distinct from those of bridging fibres due to the bonding process, and affect 

the mechanical properties of the fabric significantly as one of its two basic 

components. It is known that increasing the bonding temperature up to a certain point 

increases the tensile properties of the fabric due to the formation of a well-developed 

bonding structure. A further increase in the bonding temperature reduces the 

birefringence (molecular orientation) of the fibres within the binding area, as well as 

the tensile properties of the fabric (Russell 2007, Michielsen, S., Pourdeyhimi, B., and 

Desai, P. 2006, Fedorova, Verenich et al. 2007). The properties of bridging fibres at 

locations farther than 30-40 microns from the bond edge are unchanged during the 

bonging process (Fedorova, Verenich et al. 2007). The parameters of a thermally 

bonded fabric are also influenced by the pattern and size of the engraved surface on 

α 
P 

l/2 

l/2 α 
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the embossed calendar roller. Figure 2.8 shows a typical engraved surface on the 

embossed calendar roller. But only limited research has been performed to understand 

the effect of bond area and bond size (Bhat, Jangala et al. 2004). According to the 

experiments, the tensile strength and tear strength increase with the increase in the 

bond area and size (Bhat, Jangala et al. 2004).  

 
Figure 2.8: Typical engraved roller with 22% bonding area and 60 bond points/ 2cm

(Mao, Russell et al. 2007b) 

 

2.5 Mechanical properties of nonwoven materials  

 
With the extension of applications of nonwoven products, the material is requested to 

possess better mechanical properties than before. Moreover, the complex 

microstructure of the nonwoven materials makes its mechanical properties really 

challenging and interesting to be explored. Therefore, researchers have made many 

efforts in last fifty years to find a proper way to describe the mechanical properties of 

nonwoven materials. As fundamental mechanical behaviours, compression and 

tension are widely studied. However, still no really successful work has been done to 

estimate the material’s deformation and failure mechanisms. 

 

2.5.1 Compression and tension 

Compression 

One of the pioneer works in the analysis of the compression of fibre assemblies is C. 

M. Van Wyk’s model. His theory simplified the fibre mass as a system of bending 
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units, which are the elements of fibres between adjacent contacts with other fibres 

(Van Wyk 1946). And the fibre bending is considered to be the only process of 

importance in fibre deformation. So the crimp, slippage, extension, friction and 

reorientation of fibres were neglected and the fibre elements were treated as random.  

 

The work provided the relation between pressure and the volume of fibre assembly in 

the following form: 

)
vv

(KEmp
o
333

3 11



,                                                                                               (2.3)                                                                                         

where K is a constant determined by the structure of the fibre mass, E is the Young’s 

modulus of the fibre, v0 is a constant corresponding to the fibre-mass volume at zero 

pressure, ρ is the density of the fibre, m is the mass of fibres, and v is the volume of 

the fibre mass under pressure p (Van Wyk 1946, Krucinska, I., Jalmuzna, I. and Zurek, 

W. 2004). 

 

Besides ignoring some structure parameters in its assumptions, the theory 

overestimates the observed stress by as much as 48-120 times without any parametric 

adjustment (Komori, T., Itoh, M. and Takaku, A. 1992).  

 

Later, some researchers tried to introduce more fibre characteristics into the Wyk’s 

model. Matsuo extended it, taking into account fibre curl, orientation, slippage and the 

hysteresis factor (Matsuo 1968). Dunlop analysed the effect of the slippage factor, 

acoustic emission, dynamic bulk modulus and stress-strain hysteresis in compression 

of fibre masses (Dunlop 1983). According to his work, the hysteresis is independent 

of the rate of compression (Beil, N.B. and Roberts, W.W. 2002b); he also introduced 

several models to describe the behaviour, although none of them were capable of 

accounting any viscoelastic or time-dependent behaviour. His work was more focused 

on the behaviour of fibres assemblies but not the fibres themselves (Dunlop 1983), 

and Lee and Lee (1985) introduced the anisotropic initial modulus and Poisson’s ratio 

in to the analysis (Komori, T., Itoh, M. and Takaku, A. 1992). Later, Canaby and Pan 

(1989) developed their analysis with incorporating the effect of friction and slippage 

at fibre contacts, and elucidated the hysteresis in the compression-recovery loop. Beil 
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and Roberts at first created a single fibre model with mechanical properties, and then 

the motions of several interacting fibres were computed based on interactions. They 

compared the results with those by Wyk, proving that slippage and friction have a 

strong effect on the resistance to compression of an assembly (Beil, N.B. and Roberts, 

W.W. 2002b, Beil, N.B. and Roberts, W.W. 2002a). Later, they improved their model 

with adding the effect of hysteresis, crimp, and orientation (Beil, N.B. and Roberts, 

W.W. 2002b).  

 

The energy method is used as an approach that differs from the above theories. On the 

basis of the minimum energy principle, Lee, Carnby and Tandon (1990), used a 

circularly curved beam in place of the straight beam in the Wyk’s theory. That means 

they can examine the effects caused by the structure parameters, such as fibre crimp, 

the distribution of lengths and curl, which are difficult to study using traditional ways.  

Komori and Itoh (1992) developed the model of Lee-Carnady-Tandon (1978) and 

considered the dependence of the mean free fibre length on direction (Komori, T., 

Itoh, M. and Takaku, A. 1992, Komori, T. and Makishima, K. 1978), and pointed out 

that the directional dispersion in the elemental beam length might play a role that 

cannot be ignored. To improve their theory, they also investigated the contact between 

fibres, which was assumed to be ideal overlapping in most of former works (Komori, 

T. and Itoh, M. 1994).    

 

Jacob, et al. (2003) presented a new plan in their annual report of the National Textile 

Centre, which model the compressive behaviour of  fibre assemblies using the lattice 

or spring network (Jacob, K.I., McDowell, D., Tech, G., Aneja, A.P. and Corporation, 

D. 2003). It was supposed to incorporate large deformation and nonlinear paramters 

of fibres. A similar study has been done by Krucinska et al.; they developed a 

rheological model by treating the nonwoven material as an elastic/viscoplastic 

material (Kim 2004a, Krucinska, I., Jalmuzna, I. and Zurek, W. 2004). 

 

The latest works trend to use finite element analysis as a tool to study the fibres 

assembly. Ostoja-Starzewski developed a lattice models in 2002 and Engelmayr and 

Sacks (2006) used a representative volume element (RVE) as the basic element in 

their analysis in 2006 (Ostoja-Starzewski 2002b, Engelmayr Jr, G.C. and Sacks, M.S. 

2006).  
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The researches on compression behaviour of a fibrous mass basically introduce 

information on the characteristics of microstructure of the materials and summarise 

the important factors, which are worth to be concerned in other researches. In those 

theories, several basic properties were brought forward, which significantly affect the 

mechanical properties of nonwoven materials: the fibre length, fibre diameter, 

crimping, friction, fibre slippage and hysteresis.  

 

Hyperesis and Friction 

The hyperesis and friction characteristics are important factors in both compression 

and tension behaviours of nonwoven materials. And they depend on the properties of 

fibres and their assembly. 

 

In his research, Wyk discussed the relationship between the hysteresis and the effect 

of friction, although he did not introduce that factor in his compression model. He 

claimed that friction may be one of the factors, which result in the hysteresis, but it 

should not be the only one. And the frictional effect may be constant or proportional 

to the inverse cube of the volume (Van Wyk 1946).  

 

Dunlop stated the relationship between the fibre-slippage and the hysteresis by 

observing compression – release cycling of fibre masses in a compression cell. The 

hysteresis indicates the dissipation of energy and may be mainly attributed to 

frictional losses (Dunlop 1983). 

 

In 2002, Beil and Roberts developed their compression theory based on a single-fibre 

model, which is different from the previous work dealing with the behaviour of fibres’ 

assemblies. And then they successfully developed a model for describing the 

compression behaviour including the information both on fibres and the structure of 

assembly. Especially, their model considered both static and kinetic friction between 

fibres, and described the changeable friction coefficient and viscoelastic behaviour of 

fibre assemblies (Bhat, Malkan 2002, Beil, N.B. and Roberts, W.W. 2002b, Beil, N.B. 

and Roberts, W.W. 2002a).  

 
Figure 2.9 shows that their model is composed of the following elements: parallel 

springs with stiffness 1C and 2C  determining elasticity, a Newtonian damper set up in 
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series with one of the springs, representing stress relaxation, since it is parallel to 

another spring, (it also represents delayed elasticity), and a frictional element with 

changeable characteristics depending on deformation under compression, representing 

plastic deformation.  

 
 

Figure 2.9: Modified rheological model (Krucinska, I., Jalmuzna, I. and Zurek, W. 

2004) 

 

The following equation corresponds to their model, which is for a practical use: 
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  , F is the compression force, C is the total stiffness of 

the model, u  is a constant according to the Hookean spring 2, and control the 

movement  of the piston, t0 is the time to reach the limit of proportionality. 

 
Tension 

One of the pioneering works in this area is a fibre web theory which was developed 

for paper but also accommodate the broad mechanical design requirements of 

nonwovens. And most of the current researches of nonwoven material are based on 

this theory, which is the well known Cox’s model. It provides an analytical derivation 

of the in-plane compliance of a mat of infinitely long fibres, laid in a plane according 
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to a Fourier series-type probability density function (Cox 1952, Ostoja-Starzewski, M. 

and Stahl, D.C. 2000): 

 

  ...ncosa...cosacosacosaf n   26421 321   ,                         (2.5)        

 

Here, θ is the angle a fibre makes with respect to the x-axis and it must be between 

zero and π. The x and y axes are referred to as the machine direction (MD) and cross 

direction (CD), respectively. And the model assumes that each fibre is straight and 

propagates throughout the whole material body, and it can be loaded only at its end. 

The flexural stiffness of a single fibre is considered to be negligible, so that the fibre 

can transmit loads only in tension and the loading applied at the edges or free surfaces 

of the material is assumed to match this condition (Cox 1952). Generally, the Cox’s 

model can predict the effective Young’s moduli but cannot describe the shear 

modulus, both for isotropic and orthotropic system. Besides, it did not consider local 

nonuniformities and nonlinear behaviours of the fibres or the fabric. 

 

The orthotropic theory and fibre-web theory of a nonwoven material was reported by 

Becker and Petterson (Petterson, D.R. and Backer, S. 1963, Backer, S. and Petterson, 

D. R. 1960). To determine the applicability of the orthotropic theory to a nonwoven 

material, they obtained the constants from the principle-direction tensile tests and 

simultaneous measurements of the materials Poisson’s ratio. Then they predicted the 

strain-stress relationships of the material for any direction by developing a 

relationship between the global coordinates and local coordinates of the material.  

 

In the model, a rectangular nonwoven fabric is treated as an orthotropic material with 

symmetry axes L and T. The length of the fabric lies parallel to the direction y which 

makes an angle θ to the L direction. And x-y is a Cartesian coordinate system in the 

plane of material. The material stress-stain relationships in the x-y coordinate system 

are (Petterson, D.R. and Backer, S. 1963): 

 
yy c  11 ,                                                                                                                 (2.6)                                                          

yx c  12 ,                                                                                                                 (2.7) 

yyx c  31  ,                                                                                                              (2.8) 
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where  
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LE  is the elastic modulus in L direction , TE  is the elastic modulus in T direction; 

LT  is the contraction ratio between contractive strain in the T direction and the 

positive strain in the tensioned L direction; LTG  is the shear modulus in the LT plane 

and LT  is the shear strain.  

 

There are two essential problems in this theory. One is the Poisson’s ratio TL , the 

calculated values of which have more than 10% difference with the measured values. 

And another one is the shear modulus xyG  in the global coordinates which is difficult 

to measure directly. In their research, they preferred experimental data to calculated, 

which involve a big error.  

 

To predict the elastic behaviour of uniform nonwoven structures, Becker and 

Petterson also established a fibre-web theory. It assumes that the bonding strength 

exceeds the rupture strength of the fibres, the fibres are straight and fibre properties 

are uniformly distributed in the fabric. The fabric is considered to be subjected to a 

longitudinal strain (Petterson, D.R. and Backer, S. 1963, Backer, S. and Petterson, D. 

R. 1960, Kim, H.S. and Pourdeyhimi, B. 2001a). 

 

The relationship between fabric strain y  and the strain   of a fibre lying at an 

angle β to the direction y is shown to be  
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where xy is the contraction ratio for the x-y plane (Backer, S. and Petterson, D. R. 

1960).  

 

Considering the orientation distribution of fibres in the nonwoven, the stress 

contributed by all fibres to the fabric in y-direction is  
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where y  is the fabric stress in the y-direction; fE is the fibre modulus;  f  is the 

distribution function of the fibres. 

 

Then if loading is uniaxial in the y-direction and no fibre buckling is considered, the 

stiffness of the fabric in y-direction is: 
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The initial fibre-web theory is definitely not mature and has several problems. The 

Poisson’s ratio is one of the factors, which cannot be described in this theory properly. 

And their implicit assumption, which uses one fabric web to represent the whole 

fabric, cannot describe the nonuniformity (mass, fibre diameter and orientation, local 

density) of nonwovens. 

 

Immediately, one improvement to the fibre-web theory is that Petterson described the 

tensile behaviour in two different situations, which are small-strain theory and large-

stain theory. In the small-strain theory, the second-order effects of the deformation are 

ignored as well as the lateral contraction of the specimen. In large-strain theory, all 

the factors neglected in the small-strain theory are included. But the Poisson’s ratio of 

the material is measured in the middle area of the specimen, which cannot represent 

other areas of the material.  

 

After the Becker and Petterson’s foundational work, many researches tried to improve 

the theories and to describe the relationship between the fabric structure and its 
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mechanical performance. Hearle and Stevenson introduced the effect of a fibre curl 

into the Pentterson’s model by identifying a curl factor c  (Shaffer 1964) 

k
gc  ,                                                                                                                      (2.15)                             

where g is the length of fibre segment and k  is the length of the chord of the fibre.  

 

In 1979, Hearle and Ozsanlav developed a model to represent the structure of bonded 

–fibre fabrics, which consists of curled fibre and binder segments (Hearle, J.W.S. and 

Ozsanlav, V. 1979). This was the first work, which introduced the effect of binder 

deformation. Crindstaff and Hansen (1986) developed a numerical model to obtain a 

stress-strain curve of point-bonded fabrics. But it does not include information on the 

web structure, such as the ODF and fabric strength mechanism (Grindstaff, T.H. and 

Hansen, S.M. 1986).  

 

To link the structural parameters of a nonwoven material and the deformation mode, 

Kim and Pourdeyhimi investigated (2000) the effect of ODF and bond points of point-

bonded nonwovens (Kim, H.S. and Pourdeyhimi, B. 2000). Their group reported 

about a particular device (Figure 2.10) for in situ monitoring of changes in the 

structure of the nonwoven fabric during its deformation. The system can acquire 

current images of the samples under the tensile tests. Therefore, the structure’s 

geometry and its deformation parameters, such as the orientation distribution function 

of fibres, bond-region strain, unit cell strain, shear deformation of the unit cell, etc. 

are measured under tension. From tests and observations, they found that different 

ODFs resulted in different fibre reorientation modes, and the bond shape and 

properties affected the failure modes of the fabric. Different structural details also led 

to different shear deformations along the preferred orientation of fibres. And as shown 

in Figure 2.11, the tensile strain in the machine direction produced a significant lateral 

compression of bond points. In the cross direction, the reposition of bond points and 

reorientation of fibres tend to occur towards the direction with relative ease. And 

different deformation mechanisms affect deformation of the bond point itself (Kim, 

H.S. and Pourdeyhimi, B. 2001b, Kim, H.S. and Pourdeyhimi, B. 2001c, Kim, H.S., 

Pourdeyhimi, B. and Abhiraman, A.S. 2001).  
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Figure 2.10: Set up used to characterise structural changes in nonwovens during load 

deformation experiments (Kim, H.S., Pourdeyhimi, B. and Abhiraman, A.S. 2001)    

 

         
(a)                                                           (b) 

 

Figure 2.11: Images captured at 50% fabric tensile strain, with fabrics tested in the 

cross direction (a) and machine direction (b) (Kim, H.S. and Pourdeyhimi, B. 2000). 

 
The image and mechanical performance theory was developed later. The model is the 

extension of the Mi-Batra model, which is one of web theories. (Kim, H.S. and 
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Pourdeyhimi, B. 2001b). The basic theory is shown in Figure 2.12. When the web is 

deformed, the extension of a fibre segment is described as 
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0 ))).((tan()()( yyxxyyll   ,                                     (2.16) 

 
where Δl is the elongation of the fibre, Δx and Δy are the elongation in MD and CD 

respectively, and Δγ is the shear strain in the web cell. 

 
Figure 2.12: Incremental deformation of web (Kim, H.S. and Pourdeyhimi, B. 2001a). 

 

Kim (2004) reported the development of the orthotropic theory for predicting the in-

plane strain-stress relations for a nonwoven fabric using the orthotropic theory (Kim 

2004a). A different approach to that in the Backer and Petterson’s model was used. It 

allows the attainment of more meaningful compliance constants for nonwovens 

without the need for the ambiguous measurement of the Poisson’s ratio. The 

polynomial regression analysis based on the transformation rule is used to predict the 

mechanical properties. The shear modulus is measured with the Kawabata Evaluation 

System (KES). The orthotropic strain-stress relationship is 
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The tensile modulus at an arbitrary direction is given for planar orthotropic structures, 

which is computed by regression analysis method:  
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where  

111 SC   ,                                                                                                                  (2.19) 

4412112 22 SSSC  ,                                                                                         (2.20) 

441222113 2 SSSSC   .                                                                                     (2.21) 

                                      

The “layer theory” is one of the important improvements to the orthotropic theory for 

the nonwoven materials. In 1995 Bais-Singh and Goswami presented their theory, 

which assumes that the nonwoven web is made up of a number of layers of fibres. In 

each layer, fibres are straight lines aligned in the same direction, as shown in Figure 

2.13. So the fibre orientation distribution can be represented by the layer system 

(Bais-Singh, S. and Goswami, B.C. 1995).  In this theory, the fibres cannot transmit 

load when in compression. And the extensional stiffness of layers, which are 

perpendicular to the fibre direction and the shear stiffness parallel to the fibre 

direction, are almost negligible. In 1998, they improved the model by introducing the 

effect of fibre buckling and material nonlinearity (Bais-Singh, S., Biggers, S.B.JR. 

and Goswami, B.C. 1998). By using finite element analysis, the model can predict the 

variation of Poisson’s ratio with longitudinal strains, which cannot be achieved by 

most of the present models. 

 
Figure 2.13: Layered structure of a typical unit cell 
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In 1997, Liao and Adanur published their FE model, which combined the ideas of 

“cell units” and “layer theory” (Liao, Adanur 1997). The model assumes that the 

nonwoven fabric is composed of a finite number of discrete cells, which are finite 

elements in the model. Each element has a different structure and property. And 

within each element, the fabric is made up of a number of fibre layers, within each 

layer the fibres are arranged according to the measured ODF, and the layers are 

connected by fibres orientated perpendicular to the layer plane (Figure 2.14) (Liao, 

Adanur 1999b). 

                        
 

Figure 2.14: Example of a simplified three-dimensional nonwoven structure (Russell 

2007, Liao, Adanur 1997) 

 

2.5.2 Deformation mechanism and failure mechanism of nonwoven material 

Deformation and failure  

Although many studies have been done to investigate the mechanical properties of 

nonwoven materials, only few of them investigate a deformation mechanism of these 

materials. In 2000, Kim and Pourdeyhimi published the work on characterization of 

structural changes in a nonwoven fabric during a load-deformation experiment using a 

specially designed device (results are shown in Figure 2.10) (Kim, H.S. and 

Pourdeyhimi, B. 2000). They described the reorientation of fibres in specimens during 

the deformation. When CD samples were tested, the dominant orientation angle was 

between the machine direction and the loading direction. Large deformation, which is 

influenced by the structure reorientation and bond strain, occurs in the direction of 
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extension (Kim, H.S. and Pourdeyhimi, B. 2001c, Kim, H.S., Pourdeyhimi, B. and 

Abhiraman, A.S. 2001, Kim, H.S., Pourdeyhimi, B. and Abhiraman, A.S. 2001). 

However, when the MD samples are tested, because the loading direction is the one 

coinciding with the material’s preferred orientation, the effect of deformation is 

primarily due to the increase in the preferably oriented fibres. The effect of bond 

points also indicates that their different properties result in different mechanisms of 

failure and affect the mechanical properties of the whole fabric. 

 

One of other important characteristics of the deformation mechanism of nonwovens is 

the shear strain generated along the preferred direction of the fabric under uniaxial 

extension. The preferred direction is determined by the structure of the fibrous 

network, e.g. the fibre orientation distribution function and the shape and arrangement 

of bond points. But in the Kim’s later study, the tensile behaviour of thermally bonded 

nonwoven materials is more complicated. It is governed by a different load transfer 

mechanism, which is affected by tension, shearing and compression modes of 

constituent fibres, and results from the tensile load and simultaneous lateral 

contraction (Kim 2004b).  

 

If the oriented nonwoven samples, which have the maximum of the orientation 

distribution function in one direction, are subjected to shear deformation at positive 

and negative angles, tension will be dominant for positive and compression for 

negative angle to the preferred direction of constituent fibres (Kim 2004a). 

 

In Figure 2.15, the preferred orientation of the nonwoven material is the machine 

direction (0º), and under the tensile strain, shear strain is generated alongside with the 

tensile strain according to the preferred orientation of fibres and the angles of the 

samples. Therefore, at negative angles, an in-plane compressive force would be 

generated along the lateral side of the sample. And the compression force results in 

fibre bending, bulking or the fabric bulking. For a positive angle, a tensile force 

would be generated along the lateral side of sample. But for the whole sample, it is 

easy and safe to assume, that in a nonwoven material’s specimen with the 

symmetrical orientation distribution with regard to the test direction, both positive and 

negative shear strains will be generated at the same rate, and the overall shear strain 

generated in the fabric specimen will be zero (Bais-Singh, S., Biggers, S.B.JR. and 
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Goswami, B.C. 1998). In the asymmetric case, the mechanism will be more 

complicated according to the bonding type and the ODF.   

 

 
 

Figure 2.15: Schematic diagram of shear deformation for negative and positive angle 

directions (Kim 2004a). 

 

The results of failure of nonwovens shows different load transfer mechanisms due to 

shear stress along the initially preferred direction in the fibre ODF, in the cases where 

the two directions are either parallel or normal to each other (Figure 2.16) (Kim 

2004b). In more detail, the failure is generally initiated at the bonded/nonbonded 

interfaces at higher bonding temperatures (Kim, H.S., Pourdeyhimi, B. and 

Abhiraman, A.S. 2001). Basically, this failure analysis stays at macro-scale. There are 

also failure analyses based on the material features at micro-scale. There are two main 

possible mechanisms for the failure of nonwoven fabrics in tensile deformation: (1) 

fracture at the bond perimeter, (2) degeneration of the bonds, followed by fibre 

fracture (Michielsen, S., Pourdeyhimi, B., and Desai, P. 2006, Anderassen, Myhre et 

al. 1995). When the bond points are well bonded or over-bonded, the fabric usually 

fractures at the bond periphery, because the fibres in these areas experience a complex 

thermal and mechanical process during bonding, and their strength decreases due to 

the reduction of their birefringence (Fedorova, Verenich et al. 2007). When the bond 

point is not properly bonded, which could be due to lower pressure or low 

temperature, the fabric tends to fracture by disintegration of bond points (Michielsen, 

S., Pourdeyhimi, B., and Desai, P. 2006). 
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Figure 2.16: Rupture images of nonwovens for various directions of applied 

macroscopic tensile load (Kim 2004b) 

 
Initial nonlinear deformation 

As well known, material nonlinearity stems from two main sources: material 

nonlinearity and geometric nonlinearity. For nonwoven material, besides the 

nonlinearity caused by the nonlinear material properties of fibres and bond points, the 

discontinuous microstructure and characteristics of fibres also lead the overall fabric 

to perform nonlinearly. In a tensile test, the nonwoven material behaves nonlinearly 

before its linear performance; this is called initial nonlinearity. This phenomenon is 

unique compared to typical solid materials. Generally, many factors affect the 

nonlinear behaviour of nonwoven materials, especially the properties of fibres and the 

structural parameters of the fibrous network.  

 

One of the important factors is the fibre curl. Figure 2.17 shows a fibre layer 

consisting of fibres with different levels of curl. In this case, when the fibre layer is 

extended, only some of the fibres with a low curl level sustain the strain and are the 

main carrier of the load, while the fibres with a high curl level keep their curled state 

(Adanur, S. and Liao, T. 1999). As the figure reveals, the different curl levels 

determine the different tensile performance. At the initial stage of the deformation this 

feature leads to a nonlinear behaviour of the material.   
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Figure 2.17: Schematics of extension fibres of with different curls: (a) first step, (b) 

second step, (c) general case (Adanur, S. and Liao, T. 1999). 

 

Among other factors, which cause the nonlinear behaviour, is the bi-linear strain-

stress relationship of fibres at the initial stage of the extension (Bais-Singh, S., 

Biggers, S.B.JR. and Goswami, B.C. 1998, Bais-Singh, S. and Goswami, B.C. 1998). 

As shown in Figure 2.18, at this stage the initial linear behaviour happens when the 

fibre strain 1  is below a tensile yield strain y , and when the strain is beyond that 

level, the tensile behaviour transmits to another linear behaviour. Besides the buckling 

behaviour was also includes in the model by determining a critical negative strain c .  

 

 
 
 

Figure 2.18: Assumed strain-stress relationship of fibre layer in FEA model (Bais-

Singh, S., Biggers, S.B.JR. and Goswami, B.C. 1998). 
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Recently, in 2005, Limen and Warner also described fibre buckling as the result of 

tensile tests of their PP filaments. But in their model, they only introduced the bi-

linear behaviour but not the fibre buckling (Limem, S. and Warner, S.B. 2005). In 

2006, researchers studied the nonwovens as a viscoelastic material (Mishakov, V. 

Slutsker, G. and Stalevich, A. 2006); Rawal used a series of an ideal elastic spring and 

an ideal viscous dashpot to represent fibre segment and bond points of thermally 

bonded nonwoven material in his model (Rawal 2006).  

 

2.6 Numerical simulation of thermally bonded nonwoven materials 

 
Various researchers have done many efforts to describe the mechanical properties of 

nonwoven materials. However, most of the works have been done using experimental 

methods. Due to the complicated microstructure of the nonwoven material, 

researchers start to realise the limitation of the experiments and try to use numerical 

methods to investigate the material. This section focuses on the numerical methods, 

which have potential to describe the mechanical properties of nonwoven materials. 

Moreover, the advantage and limitation of existing models are discussed.  

 

2.6.1 Classic theory for composite material 

As well known, the thermally bonded nonwoven material is composed of two 

components: thermally bonded points and a fibrous network.  The two-phase structure 

is similar as composites materials. As the stiffer component of the nonwoven material, 

bond points are important to the overall material performance. They determine 

different deformation and failure mechanisms of the nonwoven material. Therefore, 

their effect cannot be ignored nor can they be simply treated as a rigid body. To 

include the material properties of bond points into a numerical model, the classic 

theory for composite material could be used for reference. A composite is a material 

made from two or more physically different constituents, each of which largely 

retains its original structure and identity (Oxford English Dictionary). Composite 

materials are widely used nowadays, and their theory is well developed. Mechanical 

properties of composites vary with their structure; the composites can be homogenous, 

heterogeneous, layered, orthotropic and anisotropic. Actually, for a thermally-bonded 

nonwoven material, to some extent, it is possible to find some common features with 
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composites with regard to the structure and mechanical properties.  For example, the 

orthotropic theory was the one widely used in the researches of both nonwoven and 

composite materials. Figure 2.19 shows a geometric model for a fibre-reinforced 

composite material, which can be confusing due to a structure similar to thermally 

bonded nonwoven materials.   

 
Figure 2.19: Idealization of geometry for combined series and parallel model of 

composite (Daniel, I.M. and Ishai, O. 2006). 

 

To describe the combination model as shown in Figure 2.13 Shaffer developed his 

model in 1964, which became one of the classic approaches (Shaffer 1964).  

)V(EVEE mpsmpm  122 ,                                                                                    (2.22)                                                                                
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and     

mpV  is an overall volume ratio of parallel matrix columns, 

fsV , msV  are fibre and matrix volume ratios of series portion, respectively. 

 

Another solution was developed by Halpin-Tsai in 1967 (Daniel, I.M. and Ishai, O. 

2006). The modulus is  
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The parameter ξ is obtained from an experimental value of 2E as a curve-fitting 

parameter. Usually, it is assumed that ξ=1 for hexagonal arrays and ξ=2 for square 

arrays.  

 

Another evidence, which proves that composite materials could share some features 

with nonwoven materials, is the Cox’s model. It is not only used by researchers of 

nonwovens but also treated as a classic theory by composite researchers. Figure 2.20 

shows a RVE geometry before and after deformation. Using the Cox’s theory, 

researchers analysed the shear and axial fibre stresses in the element (Cox 1952, 

Daniel, I.M. and Ishai, O. 2006). And the average stress of the composite RVE is  
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 fV  is the volume ratio of fibres, 

 mV  is the volume ratio of matrix, 

f1  is the average fibre stress, 

m is the average matrix stress, 

fE1 is the modulus of fibre in x direction, 

mE  is the modulus of matrix, 

mG  is the shear modulus of matrix, 
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0r     is the radius, which is related to the fibre radius and the fibre volume ratio : 

        
fV

rr 0  ,                                                                                                   (2.29) 

r      is the radius of a fibre, 

l      is the length of a fibre. 

 

 
Before deformation 

 
After deformation 

 

Figure 2.20:  Representative column element before and after deformation (Daniel, 

I.M. and Ishai, O. 2006) 

 

Besides this similarity with regard to structure, composite materials also could 

provide a mature sight into basic parameters of nonwovens like the fibre length 

distribution, measurement of the Poisson’s ratio and shear modulus and so on 
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(Petterson, D.R. and Backer, S. 1963, Hine, P.J., Lusti, H.R. and Gusev, A.A. 2002, 

Böhm 2004).  

 

2.6.2 Lattice model 

A lattice (or spring network) model is a physical model that is defined on a lattice, as 

opposed to the continuum of space (Ostoja-Starzewski 2002a). The method is 

originally used to represent nonhomogeneous media. A mechanical lattice model 

typically consists of sites, which are connected to nearest neighbours by either springs, 

trusses or beams (Rinaldi, Krajcinovic et al. 2008). Due to the nature of lattice models, 

which are suitable to describe heterogeneous random structures and anisotropic 

material properties, a few researchers start to use the method to represent fibrous 

networks.  One of such works is that by Britton and Sampson (1983) who developed a 

model to simulate the nonwoven material, which is built by spring-like fibre segments 

(Figure 2.21) (Britton, Sampson 1983). Later, they started to describe plastic 

deformation by introducing bond breaking (Britton, Sampson 1984a, Britton, 

Sampson 1984b). 

 

                    
Figure 2.21: Computational model of nonwoven material (Britton, Sampson 1984a): 

(a): undeformed model; (b): deformed model with 10 % strain 
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2.6.3 Finite element analysis 

To predict the mechanical behaviour of nonwoven materials, researchers have tried 

various approaches of numerical analysis. Recently, there has been a trend to describe 

the material using finite element analysis, which brings satisfactory solutions to other 

heterogeneous materials such as composite materials. 

 

The finite element method is an analytical tool that subdivides an object into very 

small but finite-size elements. The method is endowed with three basic features. First, 

a domain of the system is represented as a collection of geometrically simple 

subdomains, called finite element. Second, over each finite element, the unknown 

variables are approximated by a linear combination of algebraic polynomials and 

undetermined parameters, and algebraic rations among the parameters are obtained by 

satisfying the governing equations, often in a weighted-integral sense, over each 

element. The undetermined parameters represent the values of the unknown variables 

at a finite number of preselected points, called nodes, in the element. Third, the 

algebraic relations from all elements are assembled using continuity and equilibrium 

considerations (Reddy 2004). With the fast development during last fifty years, the 

method is widely used for solving engineering problems such as: stress and vibration, 

heat transfer, fluid and electromagnetic. A typical analysis using the finite element 

technique requires the following information: 

 

1. Nodal point spatial locations (geometry); 

2. Elements connecting the nodal points; 

3. Mass properties; 

4. Boundary conditions or restraints; 

5. Loading or forcing function details; 

6. Analysis options. 
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Figure 2.22: Commonly used finite elements (ABAQUS 2001) 

 

Based on the concept above the analysis procedures of FEA are similar to each other. 

As an example, consider that a loaded structure requires analysis. The first step of any 

finite element analysis is to divide the actual geometry of the structure using finite 

elements. A variety of element shapes may be used (Figure 2.22), and different 

element shapes may be employed in the same solution region (Huebner, Dewhirst et 

al. 2001). The elements are joined together at nodes. The grids combined with nodes 

and finite elements are the meshes. The mesh contains the information about the 

material properties of a structure, which can characterize the structure when it is 

loaded. The number and type of elements depends on the anticipated stress 

distribution, so the node density could be different in different areas. When the 

problem has been divided into the discrete elements, the governing equations for each 

element are calculated and then assembled to give system equations that describe the 

behaviour of the body as a whole (Huebner, Dewhirst et al. 2001, Champion 1992, 

Desai, Kundu 2000). 

 

Use of FEA in Nonwoven Materials   

With development of the finite element method and an increasing capability of 

computers, there are still a few works on nonwovens using this method. As it was 

presented in Section 2.5.1, Bais-Singh and his colleagues employed in their 

simulation the “layers theory” using FEA code in 1995, which let them, incorporate 

nonuniform deformation (Bais-Singh, S., Biggers, S.B.JR. and Goswami, B.C. 1998, 

Bais-Singh, S. and Goswami, B.C. 1995). Later, they used the model to predict the 
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biaxial tensile deformation behaviour of the nonwoven material (Bais-Singh, S. and 

Goswami, B.C. 1998). The work successfully introduced the fibres’ orientation 

distribution into the model, and described the nonuniform deformation, which was 

under compressive strain due to the boundary conditions of a tensile test and 

material’s low stiffness. But in their theory some parameters, such as shear stiffness 

and the Poisson’s ratio of the lamina, are hard to measure. And the model only has the 

capability to describe the nonuniform deformation caused by boundary conditions. It 

ignores the nonunifrom deformation resulted from the nonuniform microstructure of 

the material. Therefore, it is hard to get a good understanding of the nonuniform 

deformation mechanism of the nonwovens. 

 

In 1997, Adanur and Liao reported their FEA model, which assumed that the fibres 

that make up the fabric were bound together at nodal points of the mesh of finite 

elements, and within each finite element the fabric is made up of a number of fibre 

layers (Liao, Adanur 1997). Later they introduced the effect of fibre curl to describe 

the nonlinear behaviour at the initial deformation stage (Adanur, S. and Liao, T. 1999). 

Based on their model, failure analysis also had been done with introduction of a fibre 

failure criterion (Liao, Adanur 1999a). The advantages of this model are that it is 

possible to define different material properties at different elements, and it is not 

necessary to know the fabric’s Poisson’s ratio values before calculation. Although the 

model is announced to successfully match the experiment, it still cannot reflect 

essential features of the nonunifrom deformation of nonwoven materials such as 

nonuniform density and reorientation of fibres. 

 

In the previous numerical models, the works focused on the nonwovens, which have 

fibres bonded by the binders between fibres. Therefore, their models cannot be used 

to simulate the thermally bonded nonwovens, which have visible bond points through 

the fabrics. In 2004, Mueller and Kochmann suggested their model to simulate 

thermally bonded nonwovens (Mueller, D.H. and Kochmann, M. 2004). Solid 

elements are used to represent bond points and the connections between the bonded 

area are modelled using link elements (Figure 2.23).  
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Figure 2.23: FE model of a thermally bonded nonwoven with square bond points 

(Mueller, D.H. and Kochmann, M. 2004) 

 

To introduce ODF of fibres, which brings geometric nonlinearity into the model, each 

base cell consists of 22 fibre bundles with different orientations. The bond points are 

composed of two regions: well bonded zone and boundary zone. The boundary zone 

describes partly bonded and deformed fibres (Figure 2.24). The model is the first 

discontinuous FE model to simulate thermally bonded nonwoven fabrics and for the 

first time brings a method to describe the deformation mechanism of nonwovens in 

terms of the microstructure of the material. And because of its discontinuous structure, 

the model could cover the nonlinear behaviour caused by both the fibres’ material 

properties and their geometric assembly. However, the model is still based on unit 

cells that mean the model structure is periodic. Therefore, it cannot properly represent 

ODF, various fibre lengths and material density. Hence, it cannot explain the 

deformation mechanism of thermally bonded nonwovens properly.           
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Figure 2.24: Base cell with bond points, boundary area and connecting fibres (Mueller, 

D.H. and Kochmann, M. 2004) 

 

Another discontinuous model was published in 2005 by Limem and Warner (Limem, 

S. and Warner, S.B. 2005). To model adhesive point-bonded spunbond fabrics, they 

developed a truss-based model (Figure 2.25). 

 
 

Figure 2.25: Geometry model of spunbond nonwoven fabric (Limem, S. and Warner, 

S.B. 2005) 



Chapter 2 Nonwoven Materials 
 

54 
 

The basic structure of the model is composed by eight groups: one group of bond 

point and seven straight fibre groups corresponding to seven fibre orientation angles 

covering the angular range from 0° to 180° (Figure 2.26). The bond points are 

assumed as isotropic and elastic, and failure is caused by rupture of fibres. Similar to 

the Mueller’s model the structure of the model is still periodic, and it is impossible to 

represent properly the microstructure of nonwovens, which is highly nonuniformed. 

Although the results of the model are announced to have a good agreement with 

experimental results, it still cannot help understanding the deformation mechanism of 

nonwovens. 

                           
Figure 2.26: Bond point meshing and fibre group distribution (Limem, S. and Warner, 

S.B. 2005) 

 
Beside the discontinuous models, some work have been done to model random 

heterogeneous materials using a representative volume element (RVE) in continuous 

FE models, such as composites and paper, which share a lot of common features with 

nonwoven materials (Ostoja-Starzewski, M. and Stahl, D.C. 2000, Shan, Gokhale 

2002, Gusev 1997, Bronkhorst 2003, Ramasubramanian, M. K. and Wang, Y. 2007). 

A heterogeneous material is one that is composed of domains of different phases, or 
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the same material in different states (Torquato 2002). Hence, nonwoven materials 

could be classified as heterogeneous material, because the material is usually 

composed by fibres and bonded areas, or unbonded fibres and bonded fibres. The 

RVE element is widely used to model random heterogeneous materials. An RVE for a 

volume surrounding a point in a material is a statistically homogeneous representative 

of the material in the neighbourhood of the point. The concept is only defined in two 

situations: (1) a unit cell in a periodic microstructure, and (2) statistically 

representative volume containing a very large (mathematically infinite) set of 

microscale elements (Ostoja-Starzewski, 2002). For the heterogeneous material, RVE 

is the bridge which links macro and micro levels of materials description 

(Silberschemidt, 2005); it is used to represent the various microstructures by elements 

with various properties. Only a few models could be found to simulate nonwoven 

materials using RVE. Jacob and his colleagues simulated a compressive behaviour of 

a nonwoven fabric using RVE (Jacob, K.I., McDowell, D., Tech, G., Aneja, A.P. and 

Corporation, D. 2003). And in 2006, Engelmayr and Sacks published their model to 

simulate the flexural behaviour of nonwoven tissues.  

 

The RVE concept is a powerful tool to study heterogeneous materials, and it is also 

possible to use it for modelling nonwoven materials. However, RVE cannot involve 

the some features of nonwoven materials, such as fibres’ orientation distribution of 

the overall material due to the periodic structure of RVEs.  
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Chapter 3 Tensile Behaviour of Low-Density Thermally 

Bonded Nonwoven Material 

 
 

3.1 Introduction 

 
As discussed in Chapters 1 and 2, due to the complicated microstructure of nonwoven 

materials, their tensile behaviour of varies with manufacturing conditions. Therefore, 

to study the tensile behaviour of a thermally bonded nonwoven material, this study is 

limited to a thermally bonded nonwoven fabric (polypropylene fibres; density 20 gsm;) 

produced with a manufacturing speed of 250 m/min and the bonding temperature 

146°C. It is a low-density nonwoven, which is generally used for medical and hygiene 

applications. Due to its low density, it provides a better opportunity for an optical 

analysis of the microstructure of thermally bonded nonwoven materials. It facilitates a 

study of the deformation mechanisms of such nonwovens by understanding the effect 

of its microstructures.  To analyse the low-density nonwoven material, tensile tests 

performed by various researchers. Different test methods are available for nonwoven 

materials (Mao, Russell et al. 2007a): 

 

 Standard test methods defined by standardizing authorities (e.g. BS EN ISO 

13934-1:1999; ASTM D 5035 – 95); 

 Test methods established by industrial associations (e.g. ITS 110.4; WSP 

110.4; ERT 20.2-89); 

 Non-standard test techniques designed for researcher purposes. 

 

The important factors of tensile tests for nonwoven materials are the specimen’s 

dimensions and loading speed. According to the literatures, different researchers 

follow different test standards in their research. For example, Kim and Pourdeyhimi 

used samples 25.4 mm (1 inch) wide and with a 101.6 (4 inches) gauge length in their 

researches and the tests involved a 100 %/min extension rate(Kim, H.S. and 

Pourdeyhimi, B. 2000, Kim, Pourdeyhimi et al. 2002, Kim, H.S. and Pourdeyhimi, B. 
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2001c). The shape factor (= gauge length/ width) of their specimens is 4.  But Gautier 

and his colleagues chose a larger specimen (width-150 mm; gauge length-300 mm; 

shape factor 2) in their study and the test speed is 50 mm/min (Gautier,K.B., 

Kocher,Ch.W. and Drean, J. 2007). Being a highly nonhomogeneous material, the 

deformation mechanism of nonwoven material is affected by specimens’ dimensions. 

A few of studies have been done to investigate the effects of the dimensions of 

nonwoven specimens, e.g. Bais-Singh (1996) analysed the effect of a gauge length 

and width of nonwoven specimens on the material’s tensile behaviour (Bais-Singh, 

Anandjiwala et al. 1996).  

 

This chapter focuses on the tensile behaviour of the low-density thermally nonwoven 

materials. Firstly, tensile tests are carried out for the specimens with varying 

dimensions and shape factors. The tensile’s moduli are calculated based on the 

obtained stress-strain curves. Secondly, according to the analysis of the effect of 

dimensions on mechanical properties of the nonwoven material, a type of specimen, 

which is cut with representative dimensions, is chosen for the later studies. Finally, 

the tensile behaviour of the nonwoven material is analysed employing the results of 

standard tensile tests and images of the material’s microstructure.  

 

3.2 Tensile tests of specimen with varying dimensions  

 

3.2.1 Specimens and analysis method  

As well known, due to the specific features of the manufacturing process, the 

thermally bonded nonwoven material is highly anisotropic. Usually such materials are 

tested in two principle directions: machine direction (MD) and cross direction (CD) 

(Russell 2007). And the machine direction/cross direction (MD/CD) ratio of the 

material is used to represent the material’s anisotropy (Wilson 2007). Therefore, strip-

shaped specimens were prepared along both MD and CD. To determine representative 

dimensions for specimens in this research, uniaxial tensile tests were performed on 

specimens with various lengths and widths. There were two types of strip specimens: 

(i) specimens with a constant width and a varying length and (ii) specimens with a 

constant length and a varying width. In Table 3.1, the respective dimensions and 

shape factors - the ratio of the length to the width- are presented. The respective 
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shapes of the tested specimens are shown in Table 3.2. 

 

Width (mm) 

Length (mm) 

12.5 25 (=2x12.5) 50 (=4x12.5) 100(=8x12.5) 

Shape factors 

5 2.5 5 10 20 

10 (=2x5) 1.25 2.5 5 10 

20 (=4x5) 0.625 1.25 2.5 5 

40 (=8x5) 0.3125 0.625 1.25 2.5 

 

Table 3.1: Dimensions and shape factors for tested specimen 

 

Shape 
factors 0.3125 0.625 1.25 2.5 5 10 20  

 
MD 
tests 

 
       

 

 

 
CD 
tests 

 
       

 

Table 3.2: Shapes of tested specimens for two directions 

 

The equipment for tensile tests was a high-precision Instron Micro Tester 5848 with a 

2 kN loading cell (Figure 3.1). Special clamps were manufactured to fix the strip 

specimens of nonwoven materials (Figure 3.2), which were designed to avoid the slips 

during the test and the damage of the specimen caused by the clamps. The clamp is 

formed by two pieces of metal sheets; the internal sides of the metal sheets are stuck 

with rubber sheets, which used to protect the specimens and generate more friction 

between specimen and clamp. When the nonwoven specimen is put between the metal 

sheets, two screws are used to connect the two metal sheets, which make the 

specimens clamped tightly.  
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Figure 3.1:  Instron Micro Tester 5848      

                           
 

Figure 3.2: Clamps and sample installation  
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All the specimens were tested using testing speed 25 mm/min. A typical force-

elongation plot of the tested nonwoven material (polypropylene fibres; density 20 gsm) 

is presented in Figure 3.3.  There are three stages of the deformation of the nonwoven 

material: elastic stage, plastic stage and breaking stage. In the elastic stage, the 

material shortly performs linearly, and then it behaves non-linearly. After the 

specimen achieves its maximum force, it starts to break, and the breaking stage shows 

a substantial drop in the force level, which means the material usually, breaks in 

stages. 

 

 
 

Figure 3.3: Typical force – elongation curve of the thermally bonded nonwoven 

material (direction: MD; gauge length: 25 mm; width: 20 mm; test speed: 25 mm/min) 

 

Figure 3.4 shows both the engineering strain-stress plot and true strain – stress plot of 

the nonwoven material. The calculation method is shown as following  

 

W
F

eng   ,                                                                                                                (3.1) 

1
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)1( engengtrue   ,                                                                                               (3.4) 

 

Where 

eng  is the engineering stress, expressed in N/mm, as is traditional for nonwoven 

material; 

F  is the force acting over the area Aof the cross section of the specimen, expressed 

in N; 

W  is the initial width of the, expressed in mm; 

l is the deformed length of the specimen, expressed in mm; 

0l  is the initial length of the specimen, expressed in mm; 

eng  is the engineering strain; 

true  is the true stress, expressed in N/mm; 

true  is the true strain; 

 

 
 

Figure 3.4: Comparison of true strain-stress curve and engineering stress-strain curve 

(Direction of the specimen: MD; gauge length: 25 mm; width: 20 mm; test speed: 25 

mm/min) 

 

In theory, the approach based on engineering strain/stress assumes that the cross area 
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(width, in case of nonwovens) of the specimen remain constant during the test. 

Therefore, it is usually used to describe the material exposed to relative small strain, 

which only has a small change in the cross area of the specimen. But when the 

material achieves large strains, a notion of true strain/stress is used due to a significant 

reduction of the cross section (width). However, according to the equations of both 

two methods, the strain-stress plots are similar in the initial stage. This is also obvious 

in graphs of our experimental results, as stage I, which is shown in Figure 3.4. 

Moreover, another difference between the true strain-stress curve and the engineering 

one is that the former shows almost a linear behaviour for the entire deformation 

process. It can not reveal the yield point, which indicates the elastic (linear) limit.  

 

Due to the short linear period of the deformation, which is hard to be defined by true 

strain/stress curve, the tensile modulus was calculated according to the obtained 

engineering strain-stress plot. The relationship is 





E  , where Eis the tensile 

modulus, expressed in N/mm. The difference in stress   is calculated within the 

elastic stage for two strains and  is their difference. Based on the data of our 

experiments, the material’s tensile moduli in both the machine direction and cross 

direction were determined and are presented in Tables 3.3 and 3.4.  

 

 
 

Length 
(mm) 

Width (mm) 
5 10 20 40 

Average 
Modulus 
(N/mm) 

Standard 
Deviation 

Average 
Modulus 
(N/mm) 

Standard 
Deviation 

Average 
Modulus 
(N/mm) 

Standard 
Deviation 

Average 
Modulus 
(N/mm) 

Standard 
Deviation 

12.5 0.99 0.13 1.42 0.15 0.45 0.06 1.22 0.18 
25 0.71 0.08 0.68 0.09 0.55 0.04 1.13 0.1 
50 0.88 0.06 0.97 0.07 0.75 0.03 0.94 0.09 
100 1.38 0.15 1.53 0.07 1.57 0.12 1.74 0.16 

 
Table 3.3: Summarised data for tensile modulus of nonwoven material (MD) 
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Length 
(mm) 

Width (mm) 
5 10 20 40 

Average 
Modulus 
(N/mm) 

Standard 
Deviation 

Average 
Modulus 
(N/mm) 

Standard 
Deviation 

Average 
Modulus 
(N/mm) 

Standard 
Deviation 

Average 
Modulus 
(N/mm) 

Standard 
Deviation 

12.5 0.034 0.0057 0.042 0.0065 0.031 0.0064 0.048 0.0028 

25 0.027 0.0097 0.030 0.0050 0.032 0.0084 0.043 0.0044 
50 0.029 0.0065 0.037 0.0056 0.025 0.0031 0.043 0.0043 
100 0.042 0.0050 0.080 0.0070 0.082 0.0058 0.0723 0.0035 

 
Table 3.4: Summarised data for tensile modulus of nonwoven material (CD) 

 

3.2.2 Effect of sample’s length  

To investigate the length effect, specimens of a nonwoven fabric with four different 

lengths – 12.5 mm, 25 mm, 50 mm and 100 mm – were tested. Specimens were cut 

along both MD and CD.  

 

The results obtained for the machine direction are presented in Figure 3.5. For the 

specimens with the width 5 mm and 10 mm the average moduli considerately 

decrease with an increase in the gage length from 12.5 mm to 25 mm. The differences 

are 39.1% and 52.1%, respectively. The shape factor increases from 1.25 to 2.5 and 

2.5 to 5, respectively. It shows that the material properties of the specimens with 

relative smaller width are not stable and cannot represent properly the mechanical 

properties of this kind of material. For specimens with the width is 20 mm and 40 mm, 

the change in the average moduli is smaller, when the gage length increases from 12.5 

mm to 25 mm the differences are 22.2% and 7.3%. The changes of the shape factor 

are from 0.625 to 1.25 and 0.3125 to 0.626, respectively. An explanation for this 

phenomenon could be as follows: in MD, when the shape factor of specimens is 

smaller than 1, which means the length of the specimen is smaller than its width,  the 

average moduli are closer to each other even while the length of the specimen changes. 

If we treat the modulus obtained for the specimen with the shape factor below 1, it 

can be considered as the initial modulus of the nonwoven material. We can deduce 

that the initial modulus of the nonwoven material is independent of the length change. 

And it could be assumed that the specimens with the shape factor smaller than 1 

cannot represent the material properties of the nonwoven material. When the 



Chapter 3 Tensile Behaviour of Low-Density Thermally Bonded Nonwoven Material 
 

64 
 

specimen’s length increases from 25 mm to 100 mm, the average modulus increases. 

There is only one exception - the specimen with the width of 40 mm with the length 

increasing from 25 mm to 50 mm the average modulus decreases (the shape factor 

increases from 0.625 to 1.25), which still indicates that the modulus is an initial one. 

The highest magnitudes of the average modulus are always obtained for the 

specimen’s length specimen 100 mm, which means that specimens at the large-length 

scale generally have a more stable and better material is performance. For the 

specimens with the smallest length (12.5 mm), the obtained modulus is relatively high 

and not consistent. It shows, that when the shape factor of the specimen is smaller 

than 1, the effect of the specimen’s width is evident. In this case, the obtained 

modulus is the initial one of the specimen and it cannot represent the material 

behaviour of the nonwoven fabric. For the specimens with 25 mm and 50 mm length, 

when the specimen’s shape factor is larger than 1, the moduli are consistent, as shown 

by the circle in Figure 3.5.  
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Figure 3.5: Effect of gage length on tensile modulus (MD) 

 
For the cross direction (Figure 3.6), when the specimen’s length increases from 12.5 

mm to 25 mm, the average moduli of specimens with relatively smaller widths (5 mm, 

10 mm) decrease by 19.5% and 30.0%. The shape factors increase from 2.5 to 5 and 
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1.25 to 2.5, respectively. The moduli of the specimens with widths 20 mm and 40 mm 

change by 3.9 % and 11.1%, respectively. The shape factors increase in this case from 

0.625 to 1.25 and 0.3125 to 0.625. This phenomena once more confirm the conclusion 

that the effect the gage length is smaller when the specimen’s shape factor is smaller 

than 1. But when the shape factor is bigger than 1, the modulus changes at a larger 

scale and the effect of the length becomes more important. When the specimen’s 

length increases to 100 mm, the average modulus increases significantly, e.g. when 

the specimen’s width is 20 mm, the modulus increase by 222.7 %, which is the largest 

increase. Similar to the results obtained for MD, the specimens with a large length 

(e.g. 100 mm) have higher moduli. The only exception is the specimen with the 

smallest width (5 mm), which cannot represent the material behaviour due to its 

excessive large shape factor (20). For the specimens, which have the shape factor 

bigger than 1, the moduli obtained from the specimens with 25 mm length are 

consistent, as shown by the circle in Figure 3.6.      
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Figure 3.6: Effect of gage length on tensile modulus (CD) 

 

3.2.3 Effect of width  

To investigate the width effect, specimens of a nonwoven fabric with four different 

widths – 5 mm, 10 mm, 20 mm and 40 mm – were tested. Specimens were cut along 
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MD and CD. 

 

In machine direction, for the specimen’s length of 50 mm and 100 mm, similar 

average moduli were obtained for the entire range of width (Figure 3.7). It means the 

specimens with a relatively large width have a more stable material performance than 

the specimens with smaller widths. The shape factors decrease from 10 to 2.5 and 

from 20 to 5. And in a combination with the results of the analysis of the length effect, 

it is possible to deduce that the specimens with large dimensions show stable material 

properties since the effects of features of the material’s microstructures are more fully 

represented in the tested volume. But when the length of the specimen is 12.5 mm and 

25 mm, big changes of average moduli were obtained. The average modulus of 

specimens with the 12.5 mm length at first declines (by 68.3%) and then increases (by 

171.8%) when the width increases from 10 mm to 40 mm. The shape factor decreases 

from 1.25 to 0.3125. For the specimens with the 25 mm length, the average modulus 

increases by 100.6 % with the width increasing form 20 mm to 40 mm. The shape 

factor changes from 1.25 to 0.625. The results indicate that the change of the width 

affects the material properties significantly, when the shape factor of the specimen 

decreases from the magnitude above 1 to the one below 1. This phenomenon is just 

opposite to the effect of length. Another insight of the analysis is that it confirms once 

more that the specimens with a relatively large width have similar moduli, except the 

specimens with the largest length (100 mm), which have much larger moduli. The 

phenomenon demonstrates that the large width brings a more stable material 

performance of the specimens. Similar results were also obtained for the specimens 

with a 20 mm width as shown by the circle in Figure 3.7. For the specimens with 

relatively smaller widths, 10 mm and 5 mm, higher moduli and larger scatter were 

obtained, which means that the specimens with smaller widths do not show stable 

material behaviour and may not reflect a real deformation mechanism of the material.  
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Figure 3.7: Effect of width on tensile modulus (MD) 

 
For the cross direction (Figure 3.8), the specimens with a 100 mm length have similar 

average moduli for the level of width 10 mm, 20 mm and 40 mm, the smallest average 

modulus was obtained when the width was 5 mm, which was 79.1% lower than the 

average modulus obtained for specimens with a 10 mm width. The shape factor is 20, 

which is highest in all the specimens. The phenomenon shows again that the 

specimens with large length have stable and better material performance, except the 

specimen with the smallest width (5 mm).  For specimens with length 12.5 mm, 25 

mm and 50 mm, the magnitudes of average moduli have very low magnitudes close to 

each other. Although there are variations as the width changes, the similar average 

moduli were obtained due to the poor mechanical performance.  
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Figure 3.8: Effect of width on tensile modulus (CD) 

 

According to the above analysis, it is apparent that the specimen’s dimensions affect 

the material properties significantly. Although the material performs with a high 

extent of variability due to its nonhomogeneous and discontinuous microstructure, the 

analysis still indicate some trends for  the effects of material’s dimensions on its 

mechanical properties.  

 

 For the specimens with a relatively small width the material performs unstably 

and the obtained results show a big scatter. Therefore, these specimens would 

not represent the material properties of the nonwoven material. But for the 

specimens with a relatively large width, the consistent results could be 

obtained.  

 

 For the specimens with larger lengths, generally, the material properties are 

improved and the material performs stably. But when the length of the 

specimen decreases to a certain level, the material start to behave unstably.  

 

 When the specimen’s shape factor is smaller than 1, which means the length of 
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the specimen is larger than its width, the length effect is not significant, but the 

effect of width plays a more important role. However, the moduli obtained 

from these specimens are initial moduli, which cannot describe the real 

material properties of the nonwoven material. 

 

In summary, the specimen’s dimensions affect the material behaviour distinctly. The 

specimens with smaller dimensions do not behave stably. For the specimens with 

large dimensions, although the experiment results are consistent, the effect of 

material’s microstructure is hard to study in the specimens making the analysis more 

complicated. Therefore, according to the above experiment results,  in the next stage 

of the research, specimens with dimensions as 25 mm gauge length and 20 mm width 

are prepared to be studied in both experimental and numerical analysis.  

 

3.3 Deformation mechanisms of low-density thermally bonded 

nonwoven material  

 
According to the literature and the analysis in previous section, it is evident that the 

deformation mechanisms of nonwoven material are affected by its microstructure. For 

the low-density thermally bonded nonwoven material, the effect of its microstructure 

is more significant. First, due to the manufacturing process, it is clear that the 

nonwoven material includes two components: a fibrous web and bonding points. 

Rectangles, forming a regular pattern in Figure 3.9 (a), are bonding points and other 

parts of nonwoven forms the fibrous web. Figure 3.9 (b) shows a bonding point, 

which is formed by partially melted and compressed fibres. As a result of this thermal 

process the areas of bonding points are much stiffer than the areas occupied by the 

fibrous web since the fibres in these points are glued together and their relative 

movements that are responsible for high stretching ability of the fibrous network are 

severely restricted. Besides, the two components microstructure, which could strongly 

affect the strain/stress distribution in the nonwoven material during its extension, the 

randomly discontinuous microstructure of the fabric may cause randomly 

nonhomogenous local strain/stress transformations in the material. Therefore, to 

understand the deformation mechanism of the low-density thermally bonded 
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nonwoven material, the results of tensile tests should be analysed by combining with 

the image analysis of its microstructure.  

 

          
                                                                  (a) 

 
                                                              (b) 

Figure 3.9: Two-component microstructure of low-density thermally bonded 

nonwoven material (SEM picture); (a): bonding lines and fibrous network, (b): details 

of bond points  
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Tensile tests were carried out. The specimens, which were used in the experiments, 

were cut with 60 mm length (gauge length: 25mm) and 20 mm width, and the test 

speed was 25 mm/min. True stresses and strains are used to describe the material’s 

deformation, which is a highly nonlinear behaviour with a large strain level. And the 

images of the specimens were captured by scanning electron microscopy (SEM) and 

the Thermoelasic Stress Analysis System.  

 

Table 3.5 shows the material’s tensile modulus, its maximum strength and the strain 

level at maximum strength obtained for strip specimens with the chosen gauge length 

and width in both the machine direction and cross direction (Figure 3.10).  

 

 Machine Direction (MD) Cross Direction (CD) 

Magnitude 
Standard 
Deviation 

Magnitude 
Standard 
Deviation 

Average Modulus 
(N/mm) 0.55 0.04 0.032 0.0084 

Maximum Strength 
(N/mm) 

0.90 0.11 0.133 0.032 

Strain at the Maximum 
Strength (%) 

105.29 5.31 124.54 4.37 

 

Table 3.5: Summarised data for tensile tests of nonwoven (25 mm x 20 mm) 

 
 

Figure 3.10: Shape of strip specimens with 60 mm length (gauge length 25 mm) and 

20 mm width 



Chapter 3 Tensile Behaviour of Low-Density Thermally Bonded Nonwoven Material 
 

72 
 

The different material performances between MD specimen and CD specimen are 

shown in Figure 3.11, the maximum strength and tensile modulus of the material in 

machine direction is much higher than these in cross direction, which means the 

nonwoven material is highly anisotropic.  

 

As shown in Figure 3.11, the MD specimen behaves almost bi-linearly; two trend 

lines are drawn to fit the stress-strain curve at its elastic and plastic stages, which 

describes the deformational behaviour of the nonwoven material. At the breaking 

stage, the stress drops in two stages, which presents the failure mechanism of the 

material.  

 

 
 

Figure 3.11: Comparison of typical stress-strain relationships of thermally bonded 

nonwoven material in machine direction and cross direction 

 
To investigate deformation mechanisms of the nonwoven material by understanding 

the material’s microstructure, Thermoelastic Stress Analysis System was used to 

record the procedure of the tensile test. The system was combined of an Instron 

Microtester for tensile tests, an infrared camera (CMT384SM) for detecting the 

change in the specimen’s temperature and a computer for signal processing. The 
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system provides the stress distribution of the specimen during the tensile test. 

Moreover the SEM images were captured from deformed specimens after tests to 

reveal the rearrangement of the microstructure of the specimens caused by the 

external extension.  

 

For the machine direction, at the initial stage of the tensile deformation (shown in 

Figure 3.12), a specimen presents a clear striped system, which is formed by strips of 

bonding points with intermediate strips of the fibre network. As shown in Figure 3.13, 

the width of bond points is larger than its height, and spaces between bond points are 

relatively narrow (about 1 mm) so when bond points form a straight line, the local 

material properties vary significantly between the specimen’s bonding lines and the 

surrounding network. At the initial stage of the deformation, the “striped system” 

performs stably and linearly, which is represented by trend line 1 in Figure 3.11. 

 

But in the nonwoven sheet, there are always areas with a lower density as compared 

to other areas, due to smaller numbers of fibres being assembled in such areas during 

the manufacturing process (Figure 3.14). The weaker areas are always the reason for 

the stress concentrations in tension and cause breaking.  

   

 

Figure 3.12: Initial stage of tensile behaviour (MD), (strain: 15 %) 
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Figure 3.13: Dimensions of bond points and spacing between them 

 

 
Figure 3.14: Nonuniform density of the nonwoven material; the area with lower 

density is marked with the rectangle  

 
Figure 3.15 shows deformation of the strip system at an advanced stage of the process 

of tension. The strips of bond points are distorted due to the different local level of 
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stress transferred from neighbouring areas. Although, within a single strip of bond 

points, the spaces between bond points are narrow, the fibrous areas within the spaces 

still have significantly lower stiffness comparing with the bond points. When the 

deformation of the whole specimen achieves the advanced stage, stresses can 

concentrate at the areas with low density. Due to the low density, the stiffness of these 

areas is even lower than that of other fibrous areas with more fibres. The concentrated 

stress transfers from one low-density area to another, generating shear stress in the 

specimen and causing distortion of the strips of bond points. The change of the 

deformation mechanism of the nonwoven material is responsible for the bi-linear 

character of the strain-stress relationship as Figure 3.11. When the shear stress is 

generated in the specimen, the slope of the strain-stress curve diminishes, resulting in 

the second portion of the linear behaviour, with the trend line 2. 

 

 

Figure 3.15: Advanced deformation stage of layered system (MD), (strain: 75%) 

 

When the specimen is approaching its maximum strength, the material starts to break 

(shown in Figure 3.16), beginning from the areas with lower density. With further 

tensile stretching, the creaks are driven by the shear stress and transfer through the 

specimen and link other weak areas into a macroscopic defect. With microscopic 

defects, the stress of the specimen can still stay at a relatively stable level. As shown 

in (Figure 3.11), there is a small platform around the maximum strength of the 

specimen. When the material finally achieves its maximum strength, the final rupture 
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of the specimen starts.  

 

 
Figure 3.16: Shear stress transition through weak areas of nonwoven material (MD), 

(strain: 125%) 

 
The failure mechanism of the nonwoven material is governed by both the internal 

shear stress and external tensile stress. The rupture could start at different locations, 

such as the lateral boundaries of the specimen or its central area (Figure 3.17). 

Besides, a nonuniformed strain distribution caused by the boundary conditions of the 

experiment, the location of the rupture is determined by the location of low-density 

areas and the character of transfer of the shear stress.  

 

Figure 3.17: Breaking point of nonwoven material (MD), (strain: 141%) 
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In cross direction the strain-stress curve of the specimens shows a highly nonlinear 

behaviour before its rupture. But it is still possible to simplify the nonlinear behaviour 

of the specimen to a triple-linear behaviour as shown in Figure 3.18. These three trend 

lines are used to present different stages of the deformation.   
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Figure 3.18: Typical stress-strain relationship of thermally bonded nonwoven material 

in cross direction 

 

According to the results of tensile tests and the image analysis, in the cross direction, 

the deformation mechanism of elastic extension is more complicated, and it can be 

divided into three main stages.  

 

At the initial stage of tension, the slope of the strain-stress curve is low, which is due 

to the pure fibre-net strips along the cross direction as shown in Figure 3.19. The 

fibre-net strip consists of curly fibres with friction between fibres. Therefore, the 

fibre-net strips have really low stiffness, and the stiffness is mainly contributed by the 

stretching of fibres. Moreover, due to the spacing arrangement of the bond points, the 

space between two neighbouring bond points along the cross direction is the 

narrowest space between any two bond points. Therefore, it is easy to deduce that the 

fibres connecting two neighbouring bond points along cross direction are easier to be 

stretches and start to carry the load earlier than other fibres. However, the number of 

the fibres connecting two neighbouring bond points along the cross direction 
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represents only a small part of the total number. It causes the initial stiffness 

(presented by trend line 1) of the specimen at this stage to be lower than the stiffness 

(presented by trend line 2 and 3) at more advanced stages of the material’s 

deformation (shown in Figure 3.18). Therefore, at the initial stage, the deformation 

mechanism of CD specimens is mainly governed by the straightening of curly fibres, 

release of entangled fibres and the initial deformation of fibres between two 

neighbouring bond points along the cross direction.   

 

                            
Figure 3.19: Fibrous net strips along cross direction  

 

With further extension, four neighbouring bond points form a diamond pattern (shown 

in Figure 3.20). The fibres, which are connecting two neighbouring bond points along 

the cross direction start to carry more load due to the larger external extension. 

Moreover, the diamond pattern becomes a basis for load bearing, and the stress also 

transfers along the boundaries of the diamonds. At the end of this stage, the fibres 

between two neighbouring bond points along the cross direction start to break. The 

diamond pattern begins to contract rapidly, and holes appear inside the diamond 

patterns in the areas with low density of fibres.  This deformation stage is presented 

by trend line 2 in Figure 3.18.  
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Figure 3.20: Diamond pattern during initial extension along cross direction (strain: 

30 %) 

 
At the following stage of the deformation process, the boundaries of diamond shapes 

are rearranged by longitudinal tensile stretching and lateral contraction. Their 

boundaries will align along the tensile direction and linked by the bonding points. In 

the image obtained with the infrared camera (Figure 3.21), the orange pattern shows 

that the boundaries of diamond patterns are reoriented to the direction along the 

loading direction (cross direction) and carry the load. This is shown schematically in 

Figure 3.22. At this stage, more fibres are arranged along the loading direction due to 

the reorientation caused by external extension. Therefore, the material becomes stiffer, 

which is presented by trend line 3 (Figure 3.18). 

 

                       
 

Figure 3.21: Second tensile stage of deformation in cross direction (strain: 80%) 



Chapter 3 Tensile Behaviour of Low-Density Thermally Bonded Nonwoven Material 
 

80 
 

                  
Figure 3.22: Transformation of diamond pattern at advanced stage of tensile test 

 

When the material starts to break, the initial breaking points are often found on a 

boundary of bonding points, which is the stress-concentration area at the third stage of 

the tensile behaviour of CD specimens. As shown in Figure 3.23, the rupture of the 

material usually develops in stages due to the material’s partial rupture, which is the 

reason for the drops in the stress on the strain-stress curve. At the breaking stage, the 

deformation mechanism of the material is dominated by the tension of bundles of 

fibres along the loading direction and shear stress transferring from one damage area 

to another one.  

                                            
Figure 3.23: The finial (breaking) tensile stage of the specimen in cross direction  



Chapter 3 Tensile Behaviour of Low-Density Thermally Bonded Nonwoven Material 
 

81 
 

3.4 Discussions and conclusions  

 
The tensile behaviour of the low density thermally bonded nonwoven material is 

defined to by different factors linked to properties of single fibres, properties of bond 

points and the microstructure of the material, especially the pattern and character of 

bonding points, fibres’ orientation distribution functions (ODF), their density, the 

presence of curved fibres and entangled fibrous structure.  According to the results of 

standard tensile tests, it is possible to analyse their effect on the overall material 

behaviour qualitatively.  

 

 The type of ODF is controlled by the manufacturing process. The orientation 

distribution determines the proportion of fibres along the loading direction and 

their angle with regard to the loading direction. The amount (proportion) of 

fibres, capable to carry external loading, affects the fabric properties 

significantly. The apparent different material properties for the machine and 

cross direction are mainly due to it. The effect of ODF influences the material 

performance during the entire extension behaviour.  

 

 The layout of bonding points and their properties are also determined during 

the manufacturing process. Since the set of bonding points is the stiffest 

component in the material and they connect the fibres in it they affect the 

overall material properties significantly and also contribute to the differences 

between the machine and cross direction. In machine direction, bond points 

forms the striped system, the stress transfers from a strip of bond points to a 

strip of fibrous network at the initial stage of the extension. And at the 

advanced stage of the extension, shear stress, which starts from low-density 

areas, transfer through strips due to the horizontal space (gap) between 

neighbouring bond points. In cross direction, four neighbouring bond points 

form a diamond pattern, with the short fibres between two neighbouring bond 

points starting to deform along the cross direction. When these fibres start to 

rupture, the diamond pattern contracts rapidly, and the long fibres along the 

boundaries of the diamond pattern start to carry the load. Moreover, the bond 
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points also constrain the overall lateral contraction since they are stiffer than 

the fibrous network. 

 

 The properties of a single fibre forming the studied nonwoven and fibre 

density dominate the overall fabric properties during the entire extension 

process except the initial stage, because the fibres are the basic load carriers in 

the material. Stiffer fibres and their higher density will result in better 

mechanical properties of the overall material. The existence of curled fibres 

and the entangled fibre structure causes the nonlinear character of the material 

properties at the initial stage of the extension. Its effect becomes weaker at the 

advanced stages of the extension process.  
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Chapter 4 Continuous Finite Element Model of Low-Density 

Thermally Bonded Nonwoven Material 

 
 

4.1 Introduction 

 
As reviewed in Chapter 2, considerable efforts have been done to study the thermally 

bonded nonwoven fabrics using numerical simulations. Basically, there are two types 

of models differing by their treatments of material’s structure: continuous model and 

discontinuous model. The continuous model treats the bonded nonwoven material as a 

kind of two-phase composite material. By ignoring voids within the material, the 

fibrous network of the material is treated as a continuous component in contrast to the 

bonding points. The method is based on the classic theory of composite materials. 

And there are some studies (Bais-Singh, S., Biggers, S.B.JR. and Goswami, B.C. 

1998, Bais-Singh, S. and Goswami, B.C. 1998, Liao, Adanur 1997, Demirci 2008, 

Adanur, Liao 1998), which announce to describe successfully the mechanical 

performance of nonwoven materials, especially for the nonwovens with relatively 

high densities. In this chapter, continuous models are developed for the low-density 

thermally bonded nonwoven material and tested for both its machine direction (MD) 

and the cross direction (CD) of the material. These models are developed to 

investigate their capabilities to describe the deformation mechanism of the material 

and the effect of bond points on the overall material performance.  

 

4.2 Material model for continuous finite element simulations 

When the nonwoven material is analysed at macro-scale, the material is assumed to be 

a two phases composite material. The two phases are thermally bond points and a 

fibrous network. According to the experimental results, the phase of bond points is 

apparently stiffer than the phase of the fibrous network. Therefore, the immediate 

hypothesis is that the material properties of the nonwoven could be described using 

the classic composite theory shown in Figure 4.1. The central dark area in Figure 4a, 
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which usually represents fibres or other reinforcing material in composites, can be 

used to describe the bond points of the nonwoven material. And the other area, which 

usually represents a matrix of the composite, can be treated as a fibrous network for 

the nonwovens.  Another assumption for the method is that both phases (bond point 

and fibrous net) of the nonwoven material are treated as continuous materials.  

 

   
(a) 

 
(b) 

Figure 4.1: Two-component structure of composite material: (a) theoretical model; (b) 

numerical simulation 

 

According to observations during the experiments, the studied nonwoven material 

performs as a striped system during its extension. Because the width of bonding 

points is larger than their height, and the spaces between the bonding points are 

relatively narrow (about 0.7 mm) so when the bonding points are arranged as a 

straight line, the local material properties vary significantly between specimen’s 
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bonding lines and a surrounding network. To describe the striped system and its effect 

on the material behaviours of the overall material, the overall elastic modulus of the 

fabric can be presented as follows: 

 

For the machine direction (MD), the striped structure and its representative element 

are shown in Figure 4.2. The relationship between the elastic modulus of the overall 

fabric and the elastic modulus of the two components (bond points and fibrous 

network) of the fabric is presented in the following form: 

fMBBMf

BMfM
FM EVEV

EE
E


 ,                                                                           (4.1)                                                        

)1( bBfMbbMBM vVEvEE  ,                                                                    (4.2) 

 

where FME  is the effective modulus in machine direction, fME  is the MD modulus of 

the fibrous network, BME  is the MD modulus of the bond layer, bME is the modulus of 

the bond points in machine direction, FV  is the volume ratio of the fibrous network in 

the fabric, BV  is volume ratio of bond strips in the fabric, bv  is the volume ratio of 

bond points in the bond layer.               

 

                                                                    

Figure 4.2: Mechanics of material idealization of thermally bonded nonwoven 

material loaded in machine direction (MD) 
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For cross direction, the striped structure and its representative element are shown in 

Figure 4.3. The equations describing the relationship between the elastic modulus of 

bond points, fibrous network and the overall material are presented as following: 

 

!BBfCFFC EVEVE  ,                                                                                               (4.3)                                              

)1( bBfCbCb

fCbC
BC VVEEV

EE
E


 ,                                                                                   (4.4)                

                                                                                                                  

where FCE is the longitudinal modulus of the whole fabric, fCE  is the longitudinal 

modulus of the fibrous network, BCE  is the longitudinal modulus of the bond strip, 

bCE  is the longitudinal modulus of the bond points. 

 

Figure 4.3: Mechanics of material idealization of thermally bonded nonwoven 

material loaded in cross direction (CD) 

 

As determined in Chapter 3, the dimensions 25 mm x 20 mm will be used in 

numerical simulations. According to the experiment results the magnitudes 5.5 MPa 

and 0.32 MPa were used in the model as elastic moduli of the nonwoven material in 

machine and cross directions, respectively. However, there are some essential 

parameters missing for these models. According to the literature, there still no 
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researches, investigating the material properties of bond points, such research is 

complicated, for the low-density nonwoven material as fibres inside the bond points 

are partially melted and connected to the surrounding fibrous network. The sample 

preparation is difficult since cutting the single bond point will lead to a “pulling out” 

behaviour to the fibres. In practice, it can damage the specimen due to its poor 

stiffness. Moreover, the dimensions of the bond point are 1.1 mm x 0.75 mm, being 

too small to be tested even with the Micro Tester system. Other parameters, which are 

hard to determine by experiments, are the Poisson’s ratio and shear moduli of bond 

points and the fibrous network. It is mainly due to the low compression and shear 

stiffness of the nonwovens. From the Petterson and Backer’s pioneering work (Backer, 

S. and Petterson, D. R. 1960), it is obvious that the Poisson’s ratio and shear moduli 

of the nonwoven are hard to obtain by both experimental and numerical methods. 

Therefore, researchers started to look for methods allowing them to avoid the use of 

these parameters as the input information into their models or just use provisional 

values for them (Kim 2004a, Bais-Singh, S., Biggers, S.B.JR. and Goswami, B.C. 

1998, Adanur, S. and Liao, T. 1999). Still, a well-received method has not been 

established. Hence, in this chapter, the continuous model is used only for a qualitative 

analysis of the effect of bonding points, and the input parameters of the model are 

determined as following: 

 

 Since it is hard to measure the material properties of bond points and fibrous, 

the material properties of these two components in both MD and CD are 

calculated using equations 4.1-4.4. And the elastic moduli of bond points are 

assumed as five times higher than the moduli of the fibrous network in both 

two principle directions.  

 

 According to the literature survey, there is currently no method, which can 

properly measure the shear moduli and Poisson’s ratios of the low-density 

fibrous network and bond points of the nonwoven material. Therefore, for the 

bond points, the shear moduli and Poisson’s ratios are assumed to be equal to 

those of the solid polypropylene (PP). For the fibrous network, due to its low 

compression stiffness, the Poisson’s ratio is assigned a reasonable low value, 
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and the shear moduli are calculated using 
)1(2 


EG by assuming the 

material as isotropic. 

 

4.3 Geometric model of thermally bonded nonwoven material and 

boundary conditions 

 
According to experimental results, the nonwoven material is a dimension-dependent 

and shape-dependent material. In this analysis the models for both machine direction 

and cross directions were developed using the same dimensions and a constant shape 

factor. As the analysis in Chapter 3, the dimensions of the specimens in the model 

were chosen 25 mm x 20 mm as their length and width, respectively, for models for 

(Figure 4.4) both  the machine and cross directions. The shape factor is 1.25. The 

geometry models are defined in x-y plane. The thickness of the bond points and 

fibrous net are 0.02 mm and 0.2 mm respectively, these magnitudes are according to 

the measurement of real nonwoven material using beam callipers.  

 

 
                                                                   (a) 
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                                                                  (b) 

Figure 4.4: Geometry of continuous model: (a) CD; (b) MD  

 
The dimensions of each bonding point are (width) 0.75 mm x (length) 1.1 mm. The 

spacing arrangement of bonding points is shown in Figure 4.5, and the respective 

magnitudes are given in Table 4.1. 

 

Bond shape 
Width 
(mm) 

Height 
(mm) 

Gap width 
in CD (mm) 

Gap length 
in MD (mm) 

CD overlap 
(mm) 

Rectangle 1.1 0.75 0.7 1.5 0.2 

 

Table 4.1: Geometry data for bonding points of nonwoven material 

 
 

Figure 4.5: Layout of bonding points in nonwoven material 
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The boundary conditions of the model are shown in Figure 4.6. One boundary of the 

geometry model, which is perpendicular to the loading direction was set as 

“ENCASTRE” (U1= U2 = U3 = UR1 = UR2 = UR3 = 0), constraining all the degrees 

of freedom of the boundary to simulate the fixed jaw of the testing machine. Another 

vertical boundary of the model was set as “XASYMM” (U2 = U3 = UR1 = 0) and 

“U1 = 40”. The boundaries, which are parallel to the loading direction were set as 

“ZSYMM” (U3=UR1=UR2=0). The setting is to simulate the loading conditions of 

the specimen in tensile tests.  

 

Figure 4.6: Boundary and loading conditions of continuous model 

 

Since bonding points in the model are not arranged symmetrically (Figure 4.5), the 

meshing based on rectangular element causes their distortion around bonding areas in 

the model. Hence, triangular elements are chosen for the model. The real fabric is a 

very thin material, and thickness of the bonding points is even smaller than that of the 

fibrous areas. Therefore, the ABAQUS quadratic triangle element STRI65 was used 

to simulate the fibrous web, and the quadratic quadrilateral element S8R5 was used to 

model the bonding points (ABAQUS 2001) (Figure 4.7). Thickness of those two types 

of elements is determined by the experimental results: 0.02 mm for bond points and 

0.2 mm for fibrous network. But these elements still have their limitations in 



Chapter 4 Continuous Finite Element Model of Low-density Thermally Bonded Nonwoven Material 
 

91 
 

representing this low-density nonwoven material; for instance, they are not 

appropriate to simulate the material’s behaviour at high strain levels.  

 

 
(a) 

 
(b) 

Figure 4.7: Undeformed continuous finite element models: (a) machine direction; (b) 

cross direction 
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4.4 Results of continuous models 

 
The results of finite element simulations for both MD and CD models are shown in 

terms of Von Mises stress in Figure 4.8 for the axial tension in the x direction. The 

ranges of scales for the models are different due to the significant different 

mechanical performances. Different stress distributions are the apparent results of 

simulations, which are due to the different arrangements of bonding points along two 

principle directions in the nonwoven. In machine direction, the model clearly 

presented a striped system, which was formed by lines of bonding points with 

intermediate stripes of fibrous web. According to the obtained results, the line of 

bonding points carries a higher stress level due to their higher stiffness. And the area 

of fibrous network was characterised by a uniform and relatively low stress. In cross 

direction, the stress distribution was more complicated; the stress in the area of 

fibrous web is not uniform as for the model in machine direction. Due to the pattern 

of bonding points, four neighbouring points formed a diamond pattern, which acted as 

a basic load-carrying unit in the material. During the deformation the stress transfers 

along the boundaries of the diamond patterns. The obtained results match the 

experimental observation well.  

 

Another result of the simulations is the different necking behaviours at high strain for 

two principle directions, which also match our experimental observations. For 

stretching in machine direction, necking of the specimen is much smaller than the one 

in cross direction due to restricted contraction of stripes in lateral direction, linked to a 

combination of small gap width and high stiffness of bond points. In the CD model, 

the overall lateral contraction is mainly defined by low stiffness of the fibrous 

network that occupies the gap length, as shown in Figure 4.5.  
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                                                                    (a) 

 

 
(b) 

 

Figure 4.8: Results of continuous finite element models: (a) machine direction; (b) 

cross direction (strain 160 %) 

 

As a result of the varying necking behaviour, different stress distributions in bond 

points and areas around them are demonstrated in Figure 4.9; for both models the 

figure focuses on the central areas of the models. For the model in machine direction 
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(Figure. 4.9a), the bond points are compressed due to the lateral contraction, and the 

areas between two bond points along the y direction experience relatively lower 

stresses compared with other areas of the fibrous network. Besides these areas, the 

fibrous network has a uniform stress distribution. Figure 4.9b shows the detailed 

stress distribution for the model in cross direction. It is apparent that the bond points 

are compressed to a higher level along the y direction and stretched to a larger 

deformation in the loading direction x, compared with the performance in MD model. 

A higher stress concentration is obtained in the areas between two neighbouring bond 

points along loading direction, especially inside the diamond patterns. And the 

stresses along the boundaries of the diamond patterns have lower magnitudes and are 

more uniformly distributed. Due to the higher stiffness of the bond points, the results 

could be used to improve the material properties of the nonwoven material in certain 

directions by adjusting the material properties and arrangement of bond points. 

 

    
                                                                    (a) 
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                                                             (b) 
 

Figure 4.9: Detailed stress distribution of the continuous models: (a) MD; (b) CD 

 

The results for stress-strain relations obtained in simulations with the continuous FE 

models, which describe the anisotropic material properties of the nonwoven material, 

are presented in Figure 4.10. The stresses are averaged over the smallest width of the 

specimens. The obtained anisotropic mechanical performances match our experiment 

results. 

 
Figure 4.10: Calculated stress-strain relationships for MD and CD (continuous FE 

model) 
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Figure 4.11a shows a comparison between the results of the simulation and 

experimental studies. For loading in machine direction it shows a slower stress 

increase at initial stages of stretching than in experiments, which results in different 

shapes of two stress/strain curves. However, the experimental and calculated curves 

have an intersection at approximate 112% strain. It means that the model predicts 

relatively higher level of load observed in experiments. The differences in 

deformations are due to the underestimation of the real stresses by the material 

models in the FE simulations. There are mainly two reasons, which cause the 

deflection: first, the material model, which is represented by Equation 4.1 and 4.2, is 

developed based on the well-known “rule of mixtures” (Clarke, Suresh et al. 1996). It 

tends to underestimate stresses compared with the real material. For the Equation 4.1, 

the model assumes that the bond strips and the strips of fibrous network adjacent to 

the bond strip have equal stress. The principle of the equal stress model is shown in 

Figure 4.12a, which represents a section of the model along cross direction including 

one strip of bond points and one strip of fibrous network. The stresses of strip of bond 

points B , strip of fibrous network f  and the overall material   is equal to each 

others: fB  . And for Equation 4.2, the assumption is of an equal strain, 

which means within a bond strip the bond points and the fibrous network 

neighbouring to the bond points experience the same level of strain during the 

extension process. As shown in Figure 4.12 b, the strain levels for bond points b , 

fibrous network f and the overall material   is same: fb  . In reality, the 

bond strips have much higher stress than the strips of fibrous network due to their 

higher stiffness, contradicting the assumption of equal stress. And within a bond strip 

the bond points only achieve a smaller strain level than their neighbouring fibrous 

network, which is also in contrast to the assumption of equal strain. Therefore, the 

model tends to underestimate the modulus (Clarke, Suresh et al. 1996). Second, the 

microstructure of nonwovens is much more complicated than that of composite 

materials, which the “rule of mixture” is supposed to represent. The nonuniform 

stress/strain distribution in nonwovens is not only caused by the different material 

properties of bond points and fibrous network, but also caused by the material’s 

discontinuous microstructure and its uneven density. Therefore, the highly 
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nonuniform stress/strain distributions of the material lead to a high level of distortion 

of elements, causing the difference between the calculated and measured results.   

 

Due to the similar reasons considered for the model in machine direction, the results 

of numerical simulations in cross direction show a difference from the experimental 

result. Up to strain 130% of the calculated stress is underestimated compared with the 

measured result. And when the strain level is higher than 130%, the results of 

simulation exhibit a somewhat higher magnitude than the experimental results since 

there is no criterion for local fibre breaking in the numerical model.  

    
                                                                   (a) 

 
(b) 

Figure 4.11: Comparison of experimental results and results of simulations: (a) MD; 

(b) CD 
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                                                           (a) 

                         
                                                                 (b) 

 

Figure 4.12: Theory models for continuous FE simulation: (a) equal stress model; (b) 

equal strain model 
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4.5 Discussions and conclusions 

 
Continuous FE models were developed to simulate the tensile behaviours of the low 

density thermally bonded nonwoven material for its both two principle directions: 

MD and CD. The models treat the material as a two-component material. The fibrous 

network and thermally bonded areas were introduced into the model according to their 

apparently different material properties. And the capability of the models was studied 

by comparing the results of simulations and experimental studies. The obtained results 

follow:  

 

The continuous models present different deformation mechanisms of the material in 

its machine and cross directions; it is caused by the material’s geometry features and 

different material properties of the material components. The implemented geometry 

features are the density, shape, size, thickness and spacing of bond points that 

continuous models can properly reflect. But the microstructure of the fibrous network 

cannot be introduced into such models. For the MD model, the deformation 

mechanism of the material is based on a strips system, with the higher stress carried 

by the strips formed by bond points, and the phenomena match the experimental 

observation. For the CD model, four neighbouring bond points forms a diamond 

pattern, as a basic load carrier; the area within the pattern present a zone of higher 

stress concentration than its boundaries. These phenomena were also observed in 

experiments. And the distinct necking effects for the material are described for its two 

principle directions. Moreover, the models also reproduce the anisotropic mechanical 

performance of the material.  

 

However, due to the continuous nature of the models, they could not adequately 

reflect the discontinuous and nonuniform microstructure of the nonwoven material. 

So the character of obtained stress/stain relationships cannot match the measured ones, 

although at relatively high strain levels, the calculated results have common points 

with measured results. A lower increment of stresses displayed at initial deformation 

stages in calculated results; the curves have a concave shape for both two principle 

directions, which is different from the convex curves obtained from experiments. 

There are three main reasons for these deflections. First, it is caused by the nature of 

the material models that tend to underestimate the stress. Second, the discontinuous 
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and nonuniform microstructure of the material result in a seriously nonuniform 

strain/stress distribution during the extension. Not accounting for this enlarges the 

difference caused by the inadequate material models. Finally, the model needs the 

precise knowledge of the input parameters for both bond points and the fibrous 

network, which are hard to be measured experimentally. And the provisional values 

used in present models can also cause the difference in results. Therefore, the 

approach of continuous FE model does not have the potential to describe the low 

density thermally bonded nonwoven material quantitatively due to its continuous 

nature, although there are some successful studies for high-density nonwovens, where 

the effect of microstructure is less pronounced. 

 

Although the continuous FE model could not be used to simulate the low-density 

thermally bonded nonwoven material quantitatively, it still could help to analyse the 

effects of bonding features (density, shape, size, and spacing) on the overall properties 

of the fabric and deformation mechanisms. And the results of simulations with the 

model proved that the effect of microstructure cannot be ignored for such low-density 

nonwoven materials. Therefore, the discontinuity and nonuniformity of the material 

should be carefully investigated and an advanced model should be developed with 

account for the effects of the material’s microstructure. 
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Chapter 5 Effect of Microstructure 

 
 

5.1 Introduction  

 
In previous chapter the continuous FE models were presented to describe the tensile 

behaviour of the low-density thermally point bonded nonwoven material. The models 

are successfully described the features of the two-component nonwoven material, 

consisting of bond points and the fibrous network. The effects of bond points, which 

are stiffer than another component of the material – the fibrous network - were 

analysed.  

 

Although the continuous models could simulate the studies material by introduction 

of some of its features, there are still some properties of the material that cannot be 

described by them. According to our experimental results, the mechanical properties 

of the nonwoven material are determined by both the material properties of single 

fibres and microstructure of the materials, which cannot be directly introduced into 

the continuous model. Obviously, the discontinuity and nonuniformity of the material, 

which are characteristic for the low-density of the nonwoven material, significantly 

affect its material properties and deformation mechanisms. Therefore, the approach of 

continuous FE models is not suitable to describe the material properties of low-

density nonwoven materials due to its continuous nature. In this chapter, the effects of 

microstructure of the low-density nonwoven material on the overall material 

properties of fabric will be investigated by using various image capture systems and 

numerical methods. First, the microstructure of the low-density thermally bonded 

nonwoven material will be investigated using a micro x-ray computed tomography 

(CT) system, which could provide a more detailed morphology of the material’s 

discontinuous and nonuniform microstructure. Then the effects of the material’s 

discontinuous and nonuniform microstructure on strain and stress distribution of the 

material are analysed using experimental and numerical methods, respectively. After 

the determination of the significantly effects of material’s microstructure on overall 

mechanical properties of the low-density nonwoven material, the fibres orientation 
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distribution function (ODF) and tensile behaviour of fibres are investigated, which are 

important effective factors of the mechanical performance of the material and are 

supposed to be used in further advanced finite element analysis.  

 

5.2 Microstructure of low-density thermally bonded nonwoven 

material 

 
In Chapter 3 the microstructure of the nonwoven material was demonstrated with a 

series of by scanning electron microscope (SEM) images. The images provide an 

immediate impression of the two-component structure of the nonwoven material. 

According to geometry information obtained from these SEM images, continuous FE 

models were developed as presented in Chapter 4. However, the two-component 

structure cannot describe the microstructure of the low-density nonwoven material 

properly. Due to the manufacturing process of the material and its low density, the 

microstructure of the material is assumed to be discontinuous and nonuniform. The 

microscopic images obtained from a micro x-ray CT system provide full three-

dimensional information that can be used to develop the assumptions for the 

discontinuous model.  The micro CT system is shown in Figure 5.1. 

 

 
 

Figure 5.1: Micro X-Ray Computed Tomography system 
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The micro CT system requires that the specimen is fixed in front of the x-ray source 

vertically and fixed at the bottom by the grip. However, due to the low bending 

stiffness of the nonwoven material, it is hard to fix the position of the specimen within 

the CT system. Therefore, the specimens were attached to a hard paper-board, which 

had a window as a measurement area to expose the nonwoven material for scanning. 

The prepared specimen is shown in Figure 5.2. 

    

 
 

Figure 5.2: Specimen prepared for micro CT scan 

 

Figure 5.3 shows the in-plan microstructure of the nonwoven material. Apparently, 

voids areas are randomly located throughout the material, which determines the 

highly nonuniform and discontinuous microstructure of the low density nonwoven 

material.  
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Figure 5.3: X-ray micro CT image of microsturcture of low-density thermally bonded 

nonwoven material 

 

The micro x-ray CT system also provides the geometry information in three 

dimensions by digital “slicing” in any arbitrary plane. This non-destructive approach 

provides information for a non-disturbed microstructure as compared to a physical 

cutting. Figure 5.4 shows the microstructure of the material for a through-thickness 

cross-section. Different thicknesses of the bonded area (bond point) and unbonded 

area (fibrous network) are measured using image processing software. According to 

the image, the bonded area has lower thickness than the unbonded area. This is linked 

to the manufacturing process: the bonded area is formed by melted and compressed 

fibres that later solidify. The measured average thickness of the area is 0.02 mm, and 

this magnitude could be used for future experimental and numerical studies. For the 

unbonded area, the measured average thickness is 0.18 mm. However, the magnitude 

cannot be used for mechanical calculations due to its unbonded nature. According to 

the original definition of true stress/strain, the volume of the specimen should be 

constant. But the unbonded area is formed by loosely assembled fibres, with spaces 
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between them. When the unbonded area is stretched, its loose structure is compressed, 

the volume of the material changes, contradicting to the original definition.  

     

 
 

Figure 5.4: Microstructure of through-thickness cross-section area of low-density 

thermally bonded nonwoven material 

 

5.3 Nonuniform strain distribution in low-density thermally point 

bonded nonwoven material  

 
Based on the images obtained with the micro x-ray CT system, the microstructure of 

the low-density nonwoven material can be defined as highly discontinuous and 

nonuniform. It is easy to conclude that such as microstructure could cause a 

nonuniform strain distribution in the material, even for uniform external loading 

conditions. To analyze the nonuniform deformation mechanism of the material, a new 

series of tensile tests was carried out coupled with image analysis. The testing area of 

the specimens was 25 mm × 20 mm; the testing speed was 25 mm/min. Three types of 

marks were prepared for those specimens: highlighted bond points, orthogonal (4 mm 

x 4 mm) mesh formed by axial and transverse straight lines and randomly highlighted 

points, which are shown as Figure 5.5. For the specimens with highlighted bond 

points and orthogonal mesh, the marks were drawn by pen with black ink. For the 

specimens with randomly highlighted points, the marks were painted by spraying 

black ink on the specimens. 
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                     (a)                                           (b)                                           (c) 

 

Figure 5.5: Specimens of nonwoven material used for image analysis: (a) specimen 

with highlighted bond points; (b) specimen with orthogonal mesh; (c) specimen with 

random points 

 

The specimens with highlighted bond points and the orthogonal mesh were tested in 

both machine direction (MD) and cross direction (CD). Pictures were captured with 

the digital camera when the strain of the specimen was 0%, 20%, 40%, 60% and 80%. 

INSTRON Micro-Tester 5848 was used for the tensile tests; the specimens were 

extended using one fixed end and one moving end. Therefore, during the experiment, 

the height of the camera was controlled to keep the focus point targeting at the central 

point of the specimen to perform measurements. The specimens with randomly 

highlighted points were analyzed with the ARAMIS system (Figure5.6), which is an 

optical 3D deformation analysis system for measuring deformation and strain during 

loading of complex materials and geometries. During the tensile test, two serious of 

pictures were captured by two high-speed digital cameras and the pictures were 

analysed by an image analysis program provided with the system. Then strain 

distribution of the tested specimen was calculated for increasing strain levels.   

 

 



Chapter 5 Effect of Microstructure 
 

107 
 

 
Figure 5.6: ARAMIS system and INSTRON tester 

 

Figure 5.7 shows a specimen with highlighted bond points tested in machine direction. 

For the undeformed specimen (Figure 5.7a), the bond points forms nearly straight 

lines in the horizontal direction; these lines are parallel to each other. During the 

deformation, the straight lines start to distort. With each increment of deformation, the 

level of distortion increases. Moreover, the resulting distortion is not symmetric for 

the loading direction and differs from line to line. Five specimens were tested under 

same conditions, and the obtained distortion varies from specimen to specimen.  The 

observed process vividly displays that the material deforms nonuniformly due to its 

discontinuous structure.  
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           (a)                       (b)                    (c)                     (d)                    (e) 

 

Figure 5.7: MD specimens with highlighted bond points: (a): non-deformed specimen; 

(b) specimen under 20% strain; (c) specimen under 40% strain; (d) specimen under 60% 

strain; (e) specimen under 80% strain. 

 

The MD specimen with an initially rectangular mesh is shown in Figure 5.8. During 

the deformation, the axial lines show the similar distortion as in the specimen with 

highlighted bond points, the lines distort and the character of the distortion varies 

from line to line. But these tests also demonstrate another feature of the material’s 

deformation mechanism.  As shown in Figure 5.8, the axial lines of the rectangular 

mesh show symmetric necking with increasing extension along the machine direction. 

It means that the material can still have a symmetric necking behaviour, even in a case 

of discontinuous microstructure.  
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              (a)                       (b)                    (c)                     (d)                    (e) 

 

Figure 5.8: MD specimens with rectangular mesh: (a) non-deformed specimen; (b) 

specimen under 20% strain; (c) specimen under 40% strain; (d): specimen under 60% 

strain; (e) specimen under 80% strain 

 

Figure 5.9 presents analysis of the results obtained for an MD specimen with the 

ARAMIS system, which gives strain distribution mapping for the deformed material. 

The pictures for strain level s of 0%, 20%, 40% and 60% were collected to compare 

with each other to demonstrate the change of the strain distribution. To calculate the 

instantaneous strain of the specimen, the ARAMIS analysis system masks the material 

as reference points. Figure 5.9b displays the masked specimen with 0% strain, with a 

blue colour corresponding to the uniform state. In the specimen exposed to strain of 

20 %, the material in the boundary area near grips has larger strains about 60%, which 

are shown in red in Figure 5.9c. It is due to the constrained boundary condition 

applied by the grips. And other areas of the specimen, away from the grips, are still 

practically under uniform strain. When the specimen achieves overall strain of 40% 

(Figure 5.9d), the strain in the central parts of the specimen is distributed 

nonuniformly and apparently is not affected by bond points, which are located in the 

material regularly. In the specimen at 60% strain, the strain nonuniformity achieves a 

higher level, with the areas with high levels of strain located in the material randomly. 
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The phenomena means that the nonuniform deformation mechanism of the material is 

not only caused by the boundary conditions of the specimen and the bond points, 

which are formed by a stiffer material and causing stress concentration, but also 

resulted from the random discontinuous fibrous network and its random density 

distribution. 

 

 
              (a)                       (b)                         (c)                      (d)                    (e) 

 

Figure 5.9: Results obtained with ARAMIS system for MD: (a) non-deformed 

specimen; (b) masked specimen under 0% strain; (c) specimen under 20% strain; (d) 

specimen under 40% strain; (e) specimen under 60% strain 

 

The next step of the study was to analyse deformation in cross direction. In the 

specimen with highlighted bond points, the lines formed by bond points are along the 

loading direction in this case. Figure 5.10a shows the undeformed specimen, with the 

bond points of the specimen not being fully symmetric. Therefore, when the specimen 

is at 20% strain (Figure 5.10b) the necking of the overall material is also not 

symmetric. But the lines formed by bond points are distorted symmetrically with 

regard to the cross direction. This means the symmetry of the material deformation 

does not depend on the overall shape of the material; it depends on the arrangement of 

bond points of the material.  
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              (a)                     (b)                     (c)                    d)                    (e) 

 

Figure 5.10: CD specimens with highlighted bond points: (a) non-deformed specimen; 

(b) specimen under 20% strain; (c) specimen under 40% strain; (d) specimen under 60% 

strain; (e): specimen under 80% strain 

 

In a CD specimen with an orthogonal mesh (Figure 5.11), the axial straight lines, 

parallel to the loading direction start to distort during the deformation of the material 

due to the necking effect. This necking is generally symmetric with regard to the 

middle line of bond points. The transverse lines of the rectangular mesh distort taking 

a waving shape, which is due to the staggered arrangement of lines of bond points 

along loading direction. When the overall strain increases to 40%, the area with a 

relatively lower density starts to fail (Figure 5.11c). With the increase in the 

deformation, the breaking area develops and will cause the final rupture. Actually, in 

most of the tensile tests, the rupture of the material usually starts from the areas with 

low density.  
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              (a)                    (b)                   (c)                    (d)                   (e) 

 

Figure 5.11: CD specimen with orthogonal mesh: (a) non-deformed specimen; (b) 

specimen under 20% strain; (c) specimen under 40% strain; (d) specimen under 60% 

strain; (e) specimen under 80% strain 

 

Figure 5.12 demonstrates results of tests performed with the ARAMIS system for a 

CD specimen. A highly nonuniform strain distribution was obtained for the specimen 

under 20% strain. It means that the specimen stretched in the cross direction, the 

strains are distributed more nonuniformly than in the specimen (see Figure 5.9) MD, 

and large local deformations happen in some areas even at the very early stages of 

extension. When the specimen is under the overall strain of 40%, some areas of the 

material start to achieve 60% strain (red area). And for the overall specimen’s 

deformation of 60%, some areas of the material still have low strain levels (green and 

yellow areas). Those phenomena demonstrate that the material has a random, 

nonuniform deformation mechanism. And the level of its nonuniformity in cross 

direction is higher than in machine direction, which matches the simulation results of 

the continuous FE models presented in the previous chapter. 
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               (a)                       (b)                         (c)                     (d)                    (e) 

 

Figure 5.12: Results obtained with ARAMIS system for CD: (a) non-deformed 

specimen; (b) masked specimen under 0% strain; (c) specimen under 20% strain; (d) 

specimen under 40% strain; (e) specimen under 60% strain 

 
According to the strain distribution studies, the reasons for the nonuniform strain 

distribution of the nonwoven material can be summarized in the following way: First, 

the nonuniform strain distribution of the material is caused by the boundary 

conditions of the material, which is the same as in any uniform material. Second, it is 

resulted from the arrangement of bond points. The stiffness of bond points is higher 

than that of the fibrous network, which usually causes stress concentration. Therefore, 

the arrangement and shape of bond points affect the deformation mechanism of the 

material. Finally, the nonuniform strain distribution is also caused by the 

discontinuous structure of the fibrous network. Such network has a nonuniform 

density distribution, which leads to a nonuniform strain distribution during the 

deformation. And the areas with apparently low density usually cause a local failure 

causing the final rupture of the overall material at higher strain levels.  

 

5.4 Effects of voids 

 
According to our previous experimental analysis (Section 5.2), the traditional stress 

calculation method is unsuitable for a low-density nonwoven material. Due to its 

discontinuous structure of loosely arranged fibres, the volume of the material will 
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reduce with the increase in the external load, and this is contradicts to the standard 

definition of the stress calculation methods. Therefore, a new method was developed 

to account for the discontinuous microstructure of the material. First, to avoid the 

effect of void areas in the material, the initial effective cross area was calculated using 

an image analysis program. The picture of the microstructure of the nonwoven 

material (Figure 5.13a) was captured by applying a background light to the specimen 

to obtain a clear contrast between the material and voids. The black areas are the 

fibrous network and white areas are voids and bond points. Out of these three 

components shown in the picture only, the fibrous network and the bond points can 

really carry load, and they are defined as an effective area. To calculate the proportion 

of the effective area to overall area accurately, the picture was converted into one in 

Figure 5.13b using the MATLAB programme. Two operations were used to achieve 

that:  first the bond points are converted into pure black area. Then, the overall picture 

is converted to black and white picture using the gray level threshold of 100. In the 

obtained picture (Figure 5.13b), the black area is the effective area and the white areas 

represent voids. Then the percentage of the black area as a part of the overall area was 

calculated. It is equal to 88.01% for Figure 5.13b. Six images were captured for 

different areas of a big fabric, and the results are shown in Table 5.1; the average level 

for the effective area is 81.68 %. 

 

 
                                                            (a) 
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                                                           (b)  
Figure 5.13: Microscopic images of nonwoven material: (a) original picture; (b) black 

and white picture converted with threshold 100   

 
Table 5.1: Results of density analysis of nonwoven material 

 
Then, the thickness of the fabric was assumed to be constant. And the effective area 

of the material is represented using an average effective width EffW   in our 

calculation. The relationship between EffW  and the fabric’s width FabricW  is  

Fabric

Eff

Fabric

Eff

W
W

A
A

P  ,                                                                                           (5.1) 

where P is the ratio of the effective area of the material EffA  to its overall area FabricA . 

Then the effective stress of the material could be calculated using the relationship: 

 

Sample 1 2 3 4 5 6 Average Standard 
Deviation 

Percentage (%) 88.01 83.62 78.20 82.61 86.24 71.40 81.68 6.05 
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eng
Eff

Eff K
W

F    and )1( EngEngTrue K    ,                               (5.2) 

 

where 

F  is the reaction force; 

K  is stress renormalization factor, 
P

K 1
 ; 

Eng  is the engineering stress; 

True   is the true stress; 

Eng  is the engineering strain. 

 

5.5 Orientation distribution of fibres 

         
Due to the discontinuous microstructure of the nonwoven material and its low density 

(20 gsm), its mechanical properties are determined not only by the mechanical 

properties of single fibres and bonding points but also by the arrangement of fibres 

and bonding points. Hence, the orientation distribution becomes one of the major 

research interests. At present, two methods are mainly used by the researchers to 

calculate the orientation distribution function (ODF), Fourier Transform (FT) and 

Hough Transform (HT).  

 

In this project, the low-density thermally bonded nonwoven material is studied with 

an optical microscopic system (Figure 5.14) provided by NCRC of North Carolina 

State University to obtain images for analysis. Six images were obtained for different 

positions of the nonwoven sheet for our calculation of ODF; the sample image is 

shown in Figure 5.15.   
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Figure 5.14: Schematic of image capture system (Jeddi, A.A., Kim, H.S. and 

Pourdeyhimi, B. 2001) 

 

 
 
 

Figure 5.15: Sample image of nonwoven material used for ODF analysis 
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Then the images were analysed using the Fourier Transform method. In two 

dimensions, the direct Fourier Transform is given as: 

 

 







 dxdyvyuxjyxfvuF f )](2exp[),(),(  ,                                                 (5.3) 

 
where f (x, y) is the image and F (u, v) is its transform, u refers to the frequency along 

the x direction, and v represents the frequency along the y-axis.  

 

The results of the analysis are given in Tables 5.2 – 5.3 and Figure 5.16. The fibre 

orientation distribution in the material is nearly symmetric with the highest frequency 

(7.04 %) obtained for 90°, which is the machine direction. That means that the 

material has more fibres along the machine direction than other directions due to the 

manufacturing process. The lowest frequency (4.08 %) was obtained for 0°, which is 

the cross direction of the material. Another feature reflected in the results is the 

frequency increase with the angle approaching 90° (MD). The results provide a direct 

evidence to explain the anisotropic material properties of the nonwoven material. And 

it is easy to determine the stiffest direction of the material – its machine direction- due 

to a higher portion of fibres along it (or close to it). 

 

Angle of fibre 
orientation  (degree)    0    10    20    30    40    50    60    70    80 

Average frequency 
(%)  4.08  4.58  4.72  4.70  5.20  5.30  5.78  6.30  6.81 

Standard deviation 0.35 0.29 0.26 0.20 0.19 0.29 0.26 0.22 0.35 

Angle of fibre 
orientation  (degree)    90   100   110   120   130   140   150   160   170 

Average Frequency 
(%)  7.04  6.94  6.58  6.16  5.84  5.34  4.88  4.80  4.08 

Standard deviation 0.25 0.38 0.34 0.35 0.28 0.22 0.18 0.18 0.24 

 

Table 5.2: Orientation distribution of the nonwoven material 
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       1 2 3 4 5 6 
Dominant 

Angle (degree)   96.61   101.85   102.56   95.60   97.60   95.98 

Standard 
Deviation 

   5.10    5.03    5.07    5.08    5.10    5.00 

 

Table 5.3: Dominant angle of thermally bonded nonwoven material  
 

 
Figure 5.16: Average ODF obtained from images with ten degree interval range (0° 

corresponds to CD) 

 

According to the measured average orientation distribution function for the fibrous 

network, the anisotropic ratio R of the randomly fibrous network is determined by the 

following equation [5.4]  

 

 

 










 17

0

17

0

i
ii

i
ii

cosf

sinf
R   ,                                                                                           (5.4)                                                      

where i  is the representative direction of fibres relative to cross direction of the 

material, and its magnitude is equal to 10 i (in degrees) with ibeing an integer 
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between 0 to 17. )( if  is the frequency of fibres along the direction i . Based on the 

measurements the magnitude of R is 1.16.  

 

5.6 Material properties of polypropylene fibre  

 
According to results of the previous research, properties of low-density nonwoven 

materials are determined by features of its microstructure. The microstructure of the 

nonwoven material is formed my fibres, which are randomly assembled. Therefore, 

the mechanical properties of the overall nonwoven material are determined by the 

properties of fibre at a large extent. Tensile tests have been performed to determine 

the properties of single fibres. And the obtained results will be used as input 

parameters for the future analysis of the mechanical properties of the nonwoven 

material.  

 

The specimens of the experiments are free polypropylene fibres obtained from the 

nonwoven fabric; the length of the specimens is 30 mm. The tests were performed 

using Instron MicroTester 5848 with a 5 N loading cell. Three different testing speeds 

were chosen for the tests - 12.5 mm/min, 25 mm/min and 50 mm/min-, which are the 

same to the testing speeds used in the tensile tests of fabric; six specimens were tested 

for each testing speed.  

 

To calculate the stress of the fibres, the diameter of fibres need to be measured. 

However it is hard to determine the diameter of fibres using traditional tools. In this 

research, the diameter of the PP fibres was measured using image analysis approach. 

Using SEM images of the nonwoven material, the diameter of fibres were determined 

according to the magnification of the overall image; the results are shown as Figure 

5.17. The average diameter of fibres obtained by those measurements is 0.02 mm. 
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Figure 5.17: Measurements of the diameter of polypropylene fibres  

 
A typical tensile behaviour of the PP fibres, which is obtained from tensile tests, is 

shown in Figure 5.18. This behaviour is highly nonlinear. To simplify it, the 

stress/strain curve could be divided into three stages according to the slope of the 

curve. They are defined as initial stage (I in Figure 5.18), second stage (II) and third 

stage (III).  

 
 
Figure 5.18: Typical stress-strain relationship of PP fibre  
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The studied fibres demonstrate strain-rate sensitivity; Figure 5.19 shows their 

mechanical behaviour for different testing speeds using 12.5 m/min, 25mm/min and 

50mm/min, which are same to the testing speeds used in the tensile test of fabric. For 

fibres, they correspond to strain rates of 0.00694 1/s, 0.0138 1/s and 0.0278 1/s, 

respectively. The specimens tested with different testing speeds show different 

mechanical behaviours. It is a very important factor for the overall material properties 

of the nonwoven material, and is one of the reasons for the rate-dependent properties 

of nonwoven fabric. 

 

 
 
Figure 5.19: Typical tensile behaviours of PP fibre at different test speeds 

 
Due to the highly nonlinear material behaviour of fibres, it is not easy to describe their 

material properties. Therefore, the initial, second and third stages of the material 

behaviours are approximated by linear behaviours with different levels of moduli, and 

the results are used to analyses the different mechanical behaviours of the specimens 

under different loading speeds. The moduli were calculated and the results are 

summarized as Figures 5.20, 5.21 and 5.22. The standard deviation is used to indicate 

the dispersion of the results.  

 

With the increase in the test speed from 12.5 mm/min to 25 mm/min, the initial 

average modulus decreases (Figure 5.20). Its magnitude for the fibres tested at 12.5 
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mm/min is 10.9% higher than the one for the fibres tested at 25 mm/min. And when 

the fibres are tested at 50 mm/min, the obtained average modulus has a similar 

magnitude to the one tested at 25 mm/min. With consideration of stress/strain 

relationships shown in Figure 5.19, for the initial stage, the fibres demonstrate a 

similar mechanical behaviour under different loading speeds. At this stage, the fibres 

achieve similar stress levels and have similar moduli.  

                

 
 
Figure 5.20: Effect of test speed on initial tensile modulus of PP fibres 

 
At the second stage of the deformation, the fibres show a higher nonlinear behaviour. 

A higher loading speed causes an accelerated higher stress growth at the beginning of 

this stage, and then the stress increases mildly with the strain increase during the rest 

period of the stage (Figure 5.19). The second-stage moduli were calculated for this 

period of the deformation stage, and the magnitudes are similar to each other. The 

highest magnitude was obtained for the fibre tested at 50 mm/min (Fig. 5.21). It is 

10.7% higher than the lowest magnitude, which was obtained for the fibre tested at 

12.5 mm/min. Considering the stress/strain relationship in Figure 5.19, it is obvious 

that the rate-dependent mechanical performances occur at the beginning of second 

stage of the deformation.    

350

400

450

500

550

600

650

700

12.5 25 50

Test Speeds (mm/min)

In
ita

l M
od

ul
us

 (M
Pa

)

High
Low
Mean



Chapter 5 Effect of Microstructure 
 

124 
 

 
 
Figure 5.21: Effect of test speed on tensile modulus of second stage for PP fibres 

 
The third-stage moduli were calculated, when the fibres achieved a higher strain level 

(higher than 55%). The highest modulus was obtained for the fibres tested at 25 

mm/min. It is 45% higher than the lowest modulus obtained for the specimens tested 

at 12.5 mm/min.  Similar magnitudes were obtained for moduli for the fibres tested at 

12.5 mm/min and 25 mm/min.  

 

 
 
Figure 5.22: Effect of test speed on tensile modulus of third stage for PP fibres 
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Based on the results of the experiments, it was determined that the tensile behaviour 

of PP fibres is highly nonlinear and rate-dependent. However, at the initial stage of 

the deformation the tensile behaviour of the fibres is practically not sensitive to the 

loading speed, and similar performances were obtained. When the deformation 

transits to the second stage, the mechanical performance of fibres shows its rate- 

dependent character. Specimens under higher loading speed achieve higher stresses 

and their moduli are higher. With the further increase in the strain, at the third stage of 

the deformation, the fibres continue to behave rate-dependent and the moduli show a 

large scatter for the specimens at different loading speeds.  

 

5.7 Conclusions 

 
In this chapter, the low density nonwoven fabric is investigated using various testing 

methods to explore its features at micro-scale, and the effects of the discontinuous and 

nonuniform microstructure are analysed. Tensile tests were implemented for 

polypropylene fibres to investigate their rate-dependent mechanical properties. 

According to the obtained results, the significance of material’s microstructure for the 

low-density nonwoven material can be summarised as follows:  

 

1. The microstructure of the low-density nonwoven material was investigated 

using optical microscopy with a background light source and the x-ray micro 

CT system. The results show a highly discontinuous and nonuniform 

microstructure of the nonwoven material. Therefore, the assumption of the 

previous chapter, that the material is composed with two components: fibrous 

network and bond points should be modified as there are three different main 

phases within the material: bond points, fibrous network and void areas. Due 

to the low density of the material, there are significant void areas randomly 

located within the fibrous network. And the void areas are supposed to affect 

the overall material properties significantly. One immediate effect is that the 

traditional stress calculation method is not suitable for this material. Therefore, 

it brings to a conclusion that the finite element model based on the continuous 

microstructure as suggested in the previous chapter cannot properly describe 

the material properties of the low-density nonwoven fabric.  
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2. Using image analysis methods, the nonuniform strain distribution of the      

specimens, which were loaded by tension, was determined. There are three 

main reasons, which cause the nonuniform strain distribution: First, the 

boundary conditions of tensile test results in a macroscopically nonuniform 

strain distribution. Second, the bond points of the fabric, which are much 

stiffer than the fibrous network, contribute to the nonuniform strain 

distribution in the specimens. Third, the material’s discontinuous and 

nonuniform microstructure causes the nonuniform strain distribution in the 

nonwoven material as a main factor.  The results emphasize again that the 

mechanical performance of the low-density nonwoven material is highly 

determined by the features of its discontinuous and nonuniform microstructure. 

And the further numerical modelling should account for this information.  

 

3. At microscale, the randomly assembled fibres are one of the most import 

features of the material’s microstructure, which determines the discontinuity 

and nonuniformity of the material and affects material properties significantly. 

Therefore, the orientation distribution function (ODF) of the fibrous network 

was measured using the image analysis system and the developed program. 

Although the fibres are arranged randomly during the manufacturing process, 

there are still preferred directions along which there are more fibres compared 

to other direction. More fibres aligned along one certain direction cause better 

mechanical properties in this direction. Therefore, the measured ODF provides 

important information to understand the anisotropic mechanical performance 

of the material. Moreover, the mechanical properties of the fibres were 

investigated using single-fibre tensile tests. According to the microstructure of 

the material, fibres are main load carrier of the material, and their nonlinear 

and rate-dependent material properties result in overall nonlinear and rate-

dependent material properties of the nonwoven. Therefore, the ODF and the 

material properties of fibres play an important role on the material properties 

of the nonwoven material and this information should be introduced into 

numerical models.  
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Chapter 6 Discontinuous Finite Element Model for Low 

Density Thermally Bonded Nonwoven Material 

 
 

6.1 Introduction  

 
In Chapter 4, continuous finite element models were developed to simulate the 

mechanical properties of the low-density thermally bonded nonwoven material. 

However, due to their continuous nature, the models cannot describe the material 

properties properly. The discontinuous and nonuniform microstructure of the material 

was studies in Chapter 5. The results of experiments and image analysis revealed that 

the microstructure of the material affects the mechanical properties of the nonwoven 

material significantly. Hence, the nonwoven material should be treated as a kind of 

three-phase material when accounting for the features of its microstructure. The three 

features are bond points, fibrous network and voids.  To develop advanced numerical 

models for the low-density nonwoven material, the features of the material’s 

microstructure should be introduced into them. In this chapter, the geometry structure 

of the low density nonwoven material is introduced numerically then advanced 

discontinuous FE models are developed and analysed with an account for the 

discontinuous microstructure of the material.  

 

6.2 Simulation of loose fibrous network  

 
As discussed in previous chapters, one of the drawbacks of the continuous finite 

element model in studying of low-density nonwovens is that the model cannot involve 

the discontinuous microstructure of the material in the analysis. Such discontinuity of 

the material is mainly determined by its discontinuous fibrous network, which is 

formed by randomly arranged fibres. Due to the low density of the material, void 

areas locate throughout the fibrous network, and affect the overall mechanical 

properties significantly. Therefore, to develop an advanced finite element model with 
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an account for the discontinuity of the material, the random and discontinuous fibrous 

network has to be generated numerically.  

 

Geometric information for the fibrous web is the fibre diameter, fibre orientation 

distribution and curvature feature of fibres. According to the experimental results, the 

fibre orientation distribution is one of the most important factors, which determines 

the material’s anisotropy and discontinuity. And the fibrous network forms the matrix 

in nonwoven that contains bond points. Therefore, it is assumed that the fibres are 

straight and arranged according to the orientation distributions. The orientation 

distribution of the studied fabric could be measured using the method presented at 

Chapter 5. To generate the random fibrous network, a program was developed using 

the Python programming language to describe the continuous random fibrous 

assembly according to the orientation distribution.   

 

                
 

Figure 6.1: Scheme for algorithm used to model random distribution of fibres 

 
In that algorithm, to generate one fibre, a point O (Figure 6.1) is located as the centre 

point of a sheet area first, then an angle α is defined according to the orientation 

distribution of the fibre. From the point O, a segment with a slope α to the horizontal 
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line and a random length d is generated using random functions. Finally, a line, 

perpendicular to this segment and intersecting it at the end point, opposite to O, is 

generated throughout the sheet area. By repeating this method, a fibrous network with 

continuous fibres was generated according to the experimentally measured orientation 

distribution of fibres.  

 

Figure 6.2 demonstrates some sample images of the geometric simulation with 

different fibre orientation distributions, fibre densities and diameters of fibres. Using 

the developed program, it is possible to generate a fibrous network with different 

orientation distributions. Figure 6.2a shows a network consisting of fibres at 0° and 

90°, while Figure 6.2b presents an image of a network with a random fibre’s 

orientation distribution. Also, the program could generate fibrous networks with 

different density of fibres. Figure 6.2c presents an image, which is generated with two 

times higher density than the network shown in Figure 6.2b. Moreover, the fibrous 

network can be also generated using fibres with different diameters. Figure 6.2d 

presents a network, which is constituted by fibres with a smaller diameter than other 

networks.  

 

                
                                                                 (a) 
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                                                                (b) 

 

                 
                                                                  (c)   
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                                                               (d) 

 

Figure 6.2: Geometry simulations of fibrous networks of nonwoven materials: (a) 

network with 0° and 90° fibres (diameter of fibres: 2 pixels); (b) network with 245 

fibres and random fibre distribution (diameter of fibres: 2 pixels); (c) network with 

490 fibres and random fibre distribution (diameter of fibres: 2 pixels); (d) network 

with 490 fibres and random fibre distribution (diameter of fibres: 1 pixels) 

 

6.3 Development of discontinuous finite-element models 

                         
After the development of the random fibrous network, it became possible to develop 

discontinuous finite-element (FE) models to simulate the effects of microstructure of 

the low-density thermally bonded nonwoven material, which is characterized by the 

three-phase (bonded areas, fibres and voids) microstructure of the material.   

 

6.3.1 Geometry and mesh of discontinuous finite-element models 

To introduce the fibrous network generated by the Python programme to the finite-

element software, the fibrous network was developed according to orientation 

distribution function measured for the real fabric. All the fibres were modelled 
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straight neglecting the effect of their curvature in order to reduce the computational 

cost and the risk of dissociation. Then the coordinates of the end points of the line 

were calculated and transformed into the format, which could be read by the 

ABAQUS software. After editing the ABAQUS input file, the geometry of the 

discontinuous model was generated with the finite-element analysis software (Figure 

6.3a). The dimensions of the fibrous web is 25 mm x 20 mm. Due to the large number 

of fibres, forming the real nonwoven material, it is not practical and efficient to 

introduce the exact number of fibres into the discontinuous model. The trusses of the 

geometry part of the FE model are representative fibres, which represent a certain 

number of fibres having close directions.  

 

 

                                                                                                
                                                                  (a) 
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                                                         (b) 

       
                                                                (c)                    
 
Figure 6.3: Fibrous network of discontinuous model (a) and geometry models of 

divided fibrous network: machine direction (b) and cross direction (c) 
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To introduce the geometric information of bonding points into FE simulations, the 

geometric model of the fibrous network should be divided into areas to leave the 

space for the bonding points since overlapping elements cause problems during 

meshing. The coordinates of the bonding points were used to divide the continuous 

fibres into parts within the geometry model of the fibrous network; the resulting 

geometry models for MD and CD are shown in Figures 6.3b and 6.3c, respectively. 

Then the geometry of bonding points was used as input into the ABAQUS software 

according to the measurement data obtained for the real material. And each bonding 

point was divided into two areas - the central area and the external area (0.05 mm 

wide) along the perimeter of the points – to leave the possibility of combining 

elements of the fibres and bonding points. Moreover, the thicknesses of both the 

fibrous web and the bond points of present models were chosen as constant at 0.02 

mm. 

 

The meshing process of the discontinuous model was carried out in two steps. First, 

the fibrous network was meshed using truss elements (T2D2) in order to avoid the 

ABAQUS software generating nodes automatically in the overlapping points of fibres 

to stop sliding of fibres. Then, the bonding points were meshed using shell elements 

of ABAQUS (Figure 6.4). The external areas of the bonding points were meshed first 

using shell element S3 with spacing between nodes 0.05 mm. At the next stage, 

additional nodes were defined along the boundaries of bonding points so that to 

coincide with the nodes of truss elements, connected to the boundaries. So there were 

common nodes shared by both the shell elements and the truss elements, which gave 

the possibility to transfer load and displacements from fibres to bonding points. The 

internal areas of bonding points then were meshed according to the location of the 

shared nodes with the external mesh using shell element S4R.  
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Figure 6.4: Meshed details for discontinuous model 

 

To the author’s knowledge, there are only two discontinuous finite element models in 

literature used to simulate nonwoven materials. Comparing the mesh details of our 

model with those in the Mueller’s model (Mueller, D.H. and Kochmann, M. 2004) it 

is easy to find out that the fibres in present models (Figure 6.5) were generated 

randomly and not periodically. Besides, finer meshes were generated in present model 

for the bonding points – as compared with 8 elements per point in (Mueller, D.H. and 

Kochmann, M. 2004) so that to connect more fibres to them. Therefore, present 

models have the capability to simulate the mechanical properties due to the 

nonuniformity of the material as well as to better represent the mechanical behaviour 

of bonding points.  
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                                                                 (a) 

 
                                                             (b)  

Figure 6.5: Discontinuous FE models: (a) machine direction; (b) cross direction 
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6.3.2 Material properties for discontinuous FE models 

Theoretically, it is possible to introduce a real number of fibres into the discontinuous 

model. However, to reduce the computation time, representative fibres were used in 

the discontinuous FE model. Therefore, to introduce real material properties of single 

fibres into the discontinuous model, it is essential to determine how many fibres of the 

modelled nonwoven correspond to one representative fibre in the model. Then the 

material properties of the representative fibres could be determined according to the 

relationship between the numbers of representative fibres and real ones. To generate 

the geometry part with proper numbers of representative fibres, the fibre density of 

the real nonwoven material have to be determined first. For the real nonwoven 

material, the average number of fibres n  within a certain area fabricA  is calculated as 

follows: 

 

fibrefibre

fabricfabric

ρal
Aρn



   ,                                                                                             (6.1) 

 

where fabricρ is the density of the nonwoven material, its specific unit is gram per 

square meters (gsm), fibrea  is the average cross-sectional area of fibres, fibreρ is the 

density of polypropylene fibres, l  is the average length of the fibres within the area 

fabricA .  

 

To determine the value of l , the Python programme, which was used to generate the 

random fibrous web for the discontinuous model, was modified and used to simulate 

results of the manufacturing process, when the staple fibres are assembled on the 

transfer belt to form a random fibrous web. In the simulation, the arrangement of 

fibres was according to the measured orientation distribution function of the real 

material. The programme defined a web with area 25 mm × 20 mm and includes 245 

trusses. The length of each truss within the web was calculated according to their 

coordinates, and the average magnitudes were determined for each realization. The 

results in Table 6.1 demonstrate that the average lengths did not deviate much from 

the global average of 20.42 mm and that magnitude was used in Eq. 6.1.  
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Sample 1 2 3 4 5 6 Average 

value 

Average length 

of fibres (mm) 
20.18 20.09 19.98 21.16 20.69 20.40 20.42 

 

Table 6.1: Average length of fibres for different statistical realizations of random 

fibrous web 

 

The ratio   of the number of the trusses n in the discontinuous model to the number 

of fibres in the real material n can be introduced in the following way: 

 

n
n ,                                                                                                                        (6.2) 

 

where n is measured for the same fabricA . Therefore, the input effective modulus of the 

lines within the discontinuous model is calculated for the elastic stage as 

 

fibreeffctive
1 EE


 .                                                                                                         (6.3)   

 

The loading conditions used in the discontinuous FE model were to simulate a tensile 

test with a constant test speed. But due to the microstructure of the nonwoven material, 

which is formed by fibres along different orientations, the loading conditions of the 

fibres differ according to their relative orientations and locations. Figure 6.6 presents 

the extension mechanism of a fibre within the nonwoven material, which has original 

length L and oriented at angle θ to the cross direction. When the fibre is stretched by 

the external loading force along the machine direction (MD), it demonstrates two 

types of behaviour: first, it is extended along its own axis. Second, it is reoriented 

towards the loading direction. Obviously, since the fibres of the nonwoven are 

assembled randomly with different original angles θ, even when the overall material 

is extended uniformly with a constant rate, different fibres are stretched with different 

extension rates along their own axes.  



Chapter 6 Discontinuous Finite Element Model for Low-Density Thermally Bonded Nonwoven Material 
 

139 
 

                         
                             

Figure 6.6: Extension mechanism of fibre within nonwoven fabric 

 

Therefore, the rate-dependent mechanical properties of the polypropylene fibres have 

to be considered before they are introduced into the discontinuous FE model. Figure 

6.7 shows the measured tensile behaviour of polypropylene fibres (length: 30 mm) 

under different testing rates: 50 mm/min, 25 mm/min and 12.5 mm/min. It is clear 

that the mechanical performance of fibres is highly nonlinear and rate-dependent. 

However, during the initial stage (I) of the deformation, fibres behave in a similar way 

and linearly under different testing rates. Moreover, due to the discontinuous 

microstructure of the material, which is basically formed by loosely arranged fibres, 

the material’s deformation is mainly caused by the rearrangement of fibrous structure 

rather than direct stretching. Therefore, the most fibres within the material always 

have significantly lower levels of strain than the one of the overall material.  Hence, 

the initial modulus of the fibre is used in the discontinuous model to simulate the 

initial tensile behaviour of the nonwoven material since fibre properties are 

independent of the extension rate at the initial stage and the fibres are mainly at a low 

strain level. For the bond points, approximate elastic material properties were 

employed, assuming them to be stiffer than the fibres. Their chosen modulus was five 

times higher than that of the fibres. The Poisson’s ratio of polypropylene 0.42 is used 

in the model for both fibres and bond points. 
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Figure 6.7:  Tensile behaviours of polypropylene fibres at different test rates   

 

6.3.3 Analysis of discontinuous models 

To describe the tensile behaviours of the nonwoven material in its two principle 

directions - MD and CD - and analyze the effects of the orientation distribution and 

arrangement of bond points, twelve models with various arrangements of bond points 

and orientation distributions were developed. Three different fibrous webs (Figure 6.8) 

were generated according to three different orientation distribution functions and 245 

fibres were used in all three different fibrous webs. To ensure that most of the fibres 

connect to the bond points and avoid unconnected areas, 20 of the 245 lines were 

generated with designed locations according to the different arrangements of bond 

points as shown in Figure 6.2a. For OD1 distribution, the highest frequency of fibres 

occurs for 90°, the ratio of anisotropy is 1.16, which is calculated based on the 

orientation distribution of fibres as presented in the previous chapter; a distribution 

with the largest number of fibres assembled along 0° (loading direction), is denoted 

OD2, which is an inverted OD1 and the ratio of anisotropy is 0.86. And it represents 

the original ODF of real fabric. OD3 is designed by assigning more fibres along 0° 

than in OD2, and its ratio of anisotropy is 1.43.  
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Figure 6.8: Orientation distributions used in discontinuous models. 

 

Four different arrangements of bond points – staggered MD, staggered CD, lined MD 

and lined CD - were suggested for modelling; they are shown as Figure 6.9. The 

dimensions of bond points for all four arrangements are the same, according to those 

of the real nonwoven material. For the staggered MD arrangement, the staggered 

strips of bond points, which are formed by lines of bond points, are perpendicular to 

the loading direction. It was used to simulate the arrangements of bond points for MD 

specimens of the real nonwoven. The staggered CD simulated the arrangement of 

bond points for CD specimens of the real material. The arrangement of lined MD and 

the arrangement lined CD have strips of bond points arranged without staggering. 
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                                                                (a) 

 

           
(b) 
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                                                                 (c) 

 
                                                                   (d)  

Figure 6.9: Arrangement of bond points used in discontinuous models: (a) staggered 

MD; (b) staggered CD; (c) lined MD; (d) lined CD. 
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Twelve discontinuous models were developed based on the three types of fibres 

orientation distributions and four arrangements of bond points: (i) OD1/Staggered 

MD; (ii) OD2/Staggered MD; (iii) OD3/Staggered MD; (iv) OD1/Staggered CD; (v) 

OD2/Staggered CD; (vi) OD3/Staggered CD; (vii) OD1/Lined MD; (viii) OD2/Lined 

MD; (ix) OD3/Lined MD; (x) OD1/Lined CD and (xi) OD2/Lined CD; (xii) 

OD3/Lined CD. The scheme of the geometry model for discontinuous FE models is 

demonstrated in Figure 6.10.  

 

        
 

Figure 6.10: Scheme of geometry models for discontinuous FE models 
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The model OD2/Staggered MD was developed to simulate the tensile behaviour of the 

real nonwoven material in machine direction. To describe the tensile behaviour in 

cross direction, the model OD1/Staggered CD was used. Other models are used to 

investigate the effects of the fibres’ orientation and arrangement of bond points by 

comparing with two models representing the studied real nonwoven. To simulate the 

tensile behaviours of the nonwoven fabric in two principle directions, the boundary 

conditions of the models were applied as following: one edge, perpendicular to the 

loading direction, was fixed as “ENCASTRE”. All the degrees of freedom of the 

nodes located at this boundary were constrained. This boundary condition 

corresponds to fixture of the specimen in a grip in the test. A uniform displacement 

(15 mm) in x  direction was applied to the opposite boundary of the models to 

simulate the static tensile deformation. 

 

The obtained results for discontinuous FE models are presented in Figures 6.11 and 

6.12. However, due to the complex structures of the models and relatively high 

deformation level in the simulations, the elements within the models were distorted 

and rotated to a large degree, especially for the shell elements connected with truss 

elements. It made the convergence of the developed models very difficult, and 

simulations terminated at different strain levels. As is obvious from Figures 6.11 and 

6.12, all the models accounting for the random and discontinuous microstructure of 

the nonwoven material demonstrate the nonuniform stress/strain distributions.  

 

The effect of arrangement of bond points on the deformation mechanism of the 

material is apparent. The models with the staggered MD and lined MD arrangements 

of bond points deform as a stripped system formed by lines of bond points with 

intermediate layers of a fibrous web. The fibres assembled at the corners of the 

models, which are the ends of the necking curvature, had a higher strain level and 

stress concentration due to the used type of boundary conditions. But most of the 

fibres participated in the load transfer, and the stress/strain distribution is relatively 

uniform for different fibres. For the models with the staggered CD arrangements of 

bond points the deformation behaviour was based on a generation of the diamond 

patterns, formed by four neighbouring bond points. Apart of the fibres, located at the 

corners of the specimens, fibres connecting two neighbouring bond points along the 

loading direction carry higher stresses even at relatively low overall strain levels, due 
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to their orientation and smaller initial length. It is therefore can be anticipated that 

these fibres tend to rupture at early stages of the deformation process in the real test. 

This makes the diamond patterns the basic load carrier, with the load transferred by 

the boundaries of diamond-shaped cells. The models with lined CD bond points 

tended to deform as a strip system. However, the bond points could not properly form 

the strips due to relatively large spaces between two neighbouring bond points along 

the ydirection.  

 

 
                                                                   (a) 

 
                                                                (b) 
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                                                                     (c) 

 
                                                                     (d) 

 
                                                                      (e) 
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                                                                     (k) 
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                                                                     (l) 
 

Figure 6.11:  Stress distribution in deformed discontinuous FE models of nonwoven 

material: (a) OD1/Staggered MD (Strain: 39.6%); (b) OD1/Staggered CD (Strain: 

60%); (c) OD1/Lined MD (Strain: 38.4%); (d) OD1/Lined CD (Strain: 60%); (e) 

OD2/Staggered MD (Strain: 49.8%); (f) OD2/Staggered CD (Strain: 60%); (g) 

OD2/Lined MD (Strain: 36.2%); (h) OD2/Lined CD (Strain: 60%); (i) OD3/Staggered 

MD (Strain: 30%); (j) OD3/ Staggered CD (Strain: 60%); (k) OD3/Lined MD (Strain: 

36%); (l) OD3/Lined CD (Strain: 60%). 

 

 
(a) 



Chapter 6 Discontinuous Finite Element Model for Low-Density Thermally Bonded Nonwoven Material 
 

151 
 

 
(b) 
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(k) 

 
(l) 
 
 

Figure 6.12:  Strain distribution in deformed discontinuous FE models of nonwoven 

material: (a) OD1/Staggered MD (Strain: 39%); (b) OD1/Staggered CD (Strain: 60%); 

(c) OD1/Lined MD (Strain: 36%); (d) OD1/Lined CD (Strain: 60%); (e) 

OD2/Staggered MD (Strain: 48%); (f) OD2/Staggered CD (Strain: 60%); (g) 

OD2/Lined MD (Strain: 30%); (h) OD2/Lined CD (Strain: 60%); (i) OD3/Staggered 

MD (Strain: 30%); (j) OD3/ Staggered CD (Strain: 60%); (k) OD3/Lined MD (Strain: 

36%); (l) OD3/Lined CD (Strain: 60%). 
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Since all the fibres in the nonwoven fabric are assumed to have same mechanical 

properties, the strain of fibres mainly determines their stress. And as shown in Figure 

6.11 and 6.12, the fibres in the deformed fabric are at different strain levels; this 

finding agrees with the results of experimental ARIMIS analysis presented in the 

previous chapter. Fibres in different locations and with different directions, some of 

the fibres are at lower strain levels than that of the overall material, while, some of 

them are at higher strain levels. The phenomenon is essential to understand the 

nonuniform mechanical performance of the material and provides important 

information for the analysis of its failure mechanism. Figures 6.13 and 6.14 

demonstrate quantitatively the strain distribution of fibres in the deformed FE models, 

when the overall models are under different strain levels. And Table 6.2 and 6.3 

reveal the magnitudes of average strains of the fibres for the analysed FE models. 

 

Figure 6.13 shows the nonuniform strain distributions for the models with staggered 

and lined MD bond points. It clearly demonstrates nonunifrom fibres’ strain 

distributions for all the models. For example, when the overall strain of the model - 

OD1/Staggered MD - is 10%, the maximum strain for the fibres in the model is 26.1% 

and the minimum strain of fibres is -10.2% (i.e. in compression). And with the 

increase in the overall strain, the distribution changes and its nonuniformity increase. 

When the overall strain of the model is 39.6%, the maximum strain for the fires is 

82.7% and the minimum strain is -27.2%. Although the fibres in the model have 

different levels of strain, most of the fibres are still at similar strain levels. As shown 

in Figure 6.13a, when the model is at 10% strain, the peak frequency of the 

distribution locates within the range between 0% and 10% strain and the average 

magnitude is 5.2% (Table 6.2), which means most of the fibres are at this strain level. 

However, there are still some fibres are at higher strain level up to 30 % and 23.1 % 

of them are compressed and have negative strain. The standard deviation of average 

strain of fibres is 6 %. It is because that the fibres locate at the corners of the model 

tend to have extreme strain levels due to the effect of lateral contraction. The fibres, 

which are aligned perpendicular to the loading direction, are normally compressed 

and have negative strain during the overall deformation due to the lateral contraction. 

When the overall strain of model increases to 20%, the peak of the distribution 

apparently decreases by 38.5% and moves to strain range between 10% and 20%. The 

average strain of fibres is 10.3 %, nearly half of the overall one.  But, there are still a 



Chapter 6 Discontinuous Finite Element Model for Low-Density Thermally Bonded Nonwoven Material 
 

156 
 

large number (23.2%) of fibres are under the strain level between 0% and 10%, and 

22.2 % of fibres are compressed. The standard deviation of the average strain 

increases to 11.1%, which means the nonuniformity of the fibres’ strain distribution, 

becomes much higher. When the overall strain of the model achieves 30%, the peak 

of the strain distribution is within the range between 20% and 30%. The peak 

frequency of the distribution decrease by 16.5 % and the average strain of the fibres is 

15.3%, which is smaller than the overall strain of the model. It is because the 

elongation of the model is not only due to the elongation of fibres but also caused by 

the re-construction of the microstructure of the model, which is resulted from the 

reorientation of the fibres. The standard deviation of the strain of fibres achieves to 

15.8%, meaning that the nonuniformity of the strain distribution increase to a higher 

level. Finally, when the overall model deforms to 39.6% strain, the peak frequency of 

the distribution is between 30% and 40 % and decreased by 6.8 %. The average strain 

of fibres is 20% and the standard deviation is 19.7%. The compressed fibres are 20.2% 

of the total number. The phenomena means for the model with random fibrous 

structure, the strain of most of fibres increases with the increase of overall model 

(Figure 6.15a). As well, the nonuniformity of the strain distribution also increases, 

when the strain of overall material achieves a higher strain level. As shown in Figure 

6.15b, the standard deviation, which indicates the nonuniformity of the strain 

distribution, increases with the increase of overall strain. However, the average strain 

of fibres is smaller than the overall strain of specimen, when the overall strain 

achieves a higher strain level (Figure 6.15a). Moreover, although the proportion of 

compressed fibres slightly decreases with the increase in the overall strain, it basically 

stays at a similar lever. It means the number of compressed fibres is generally 

determined by the original microstructure of the material and it does not change 

significantly with the increasing overall strain of fabric, when the overall strain is not 

extremely high. 

 

As shown in Figure 6.13a and 6.13b, for the models with fibres’ orientation 

distributions OD2 and OD3, similar phenomena are obtained to the model with 

orientation distribution OD1. With the increase in the overall strain, the strain of 

fibres and the nonuniformity of the fibres’ strain distribution increase. And the 

proportion of compressed fibres does not change apparently with the increase of 

overall strain. However, as shown in the Table 6.2a, at the same overall strain levels, 
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the average strains of fibres increase, when the orientation distribution of the model 

change from OD1 to OD2. And for the model with orientation distribution OD3, the 

average strains of fibres increase to a higher level, when the overall strains of models 

are at same strain level. As shown in Figure 6.8, from OD1 to OD3, the frequency of 

fibres along or close to loading direction increases. It means that fibres in these 

models can achieve higher strains, when the models have fibrous network with more 

fibres along or close to the loading direction. And, as shown in Table 6.2a, the 

standard deviations of strains of the models keep at a similar level. That means the 

nonunifromity of the models is not affected apparently by the changing of orientation 

distributions. Moreover, the average proportions of compressed fibres for the model 

with OD2 and OD3 orientation distribution are 14.8% and 14.4% respectively, which 

are lower than the magnitude for the model with OD1 orientation distribution. The 

finding is easy to explain as: when the number of fibres within the fabric is a constant, 

more fibres along or close to the loading direction means that a smaller numbers of 

the fibres are affected by lateral contraction and be compressed during the 

deformation. 

 

For the models with the lined MD arrangement of bond points, the obtained results 

reveal similar phenomena to the results for the models with the staggered MD 

arrangement. However, due to the different arrangements of bond points, there are 

inflections for the strain distribution curves at fibres’ strain range between 10% and 

20%, when the overall strain achieve a relatively higher level (> 30 %). For instance, 

for the model OD1/Staggered MD, when the overall strain is 30%, 15.9% fibres are 

within the strain range between 0 % and 10%, 17.8% fibres are within the strain range 

from 10 % to 20 % and the peak frequency is 24.8%.  But for the model OD1/Lined 

MD, the magnitudes are 18.3%, 15.2% and 23%, respectively. It means that the lined 

MD arrangement results in a fibres’ strain distribution with a higher percentage of 

fibres are under a lower strain level, while a higher percentage of fibres are under an 

extremely high strain level. Actually, when the overall strain is 30%, only 1.8% fibres 

in model OD1/Staggered MD are with strain higher than 40 %, but there are 3.7 % 

fibres in model OD1/ Lined MD, which have a higher risk to rupture.  Moreover, the 

differences in the standard deviation of the strain of fibres also prove the phenomena 

(see Table 6.2 and Figure 6.15b). For the same overall strain levels, the models with 
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the lined MD arrangement of bond points have higher deviations compared to the 

models with the staggered MD arrangement.  

 
(a) 

 
(b) 
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(e) 

 
(f) 

 

Figure 6.13: Distribution of strain of fibres for models: (a) OD1/Staggered MD; (b) 

OD2/Staggered MD; (c) OD3/Staggered MD; (d) OD1/Lined MD; (e) OD2/Lined 

MD; (f) OD3/Lined MD 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Fr

eq
ue

nc
y

Strain of Fibres

Strain of 
Fabric 10 %

Strain of 
Fabric 20 %

Strain of 
Fabric 30 %

Strain of 
Fabric 36.2 %

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fr
eq

ue
nc

y

Strain of Fibres

Strian of 
Fabric 10 %

Strain of 
Fabric 20 %

Strain of 
Fabric 30 %

Strain of 
Fabric 38 %



Chapter 6 Discontinuous Finite Element Model for Low-Density Thermally Bonded Nonwoven Material 
 

161 
 

Strain 
of 

Fabric 
(%) 

 OD1/Staggered MD Strain 
of 

Fabric 
(%) 

 OD2/Staggered MD Strain 
of 

Fabric 
(%) 

 OD3/Staggered MD 
Average 
Strain of 
Fibres 

(%) 

Standard 
Deviation 

(%) 

Average 
Strain of 
Fibres 

(%) 

Standard 
Deviation 

(%) 

Average 
Strain of 
Fibres 

(%) 

Standard 
Deviation 

(%) 

10  5.2  6.0 10  6.6  5.8 10  7.5  6.2 

20      10.3 11.1 20  13.0  10.8 20  14.6  11.5 

30  15.3  15.8 30  19.0  15.2 30  20.3  15.4 

39.6  20.0  19.7 40  24.8  19.0 _ _ _ 

_ _ _ 49.8  30.3  22.3 _ _ _ 

 

(a) 

 

Strain 
of 

Fabric 
(%) 

 OD1/Lined MD Strain 
of 

Fabric 
(%) 

 OD2/Lined MD Strain 
of 

Fabric 
(%) 

 OD3/Lined MD 
Average 
Strain of 
Fibres 

(%) 

Standard 
Deviation 

(%) 

Average 
Strain of 
Fibres 

(%) 

Standard 
Deviation 

(%) 

Average 
Strain of 
Fibres 

(%) 

Standard 
Deviation 

(%) 

10  5.4  6.4 10  7.4  7.4 10  7.5  6.6 

20      11.9  13.3 20  12.8  12.1 20  16.2  13.4 

30  15.4  16.6 30  18.2  16.4 30  21.0  17.0 

38  19.0  19.9 36  21.6  19.0 38  25.1  19.8 

 

(b) 

 

Table 6.2: Summarised results of average strain of fibres for models with staggered 

(a), and lined (b) MD arrangements of bond points  

 

For the models with staggered and lined CD arrangements of bond points, the fibres’ 

strain distributions are shown in Figure 6.14. The results show the models with CD – 

staggered CD and lined CD- arrangements of bond points have obvious different 

fibres’ strain distribution from the models with MD – staggered MD and lined MD - 

arrangement of bond points. When the strain level of fibres increases with the increase 

in the overall strain of the model, the peak frequency of the fibres’ strain tends to be at 

a lower level. For instance, when the overall strain of the model - OD1/Staggered CD 

- is 30%, there are 19.7% fibres are at the strain range from 0% to 10%, 16% of fibres 
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are at the strain range from 10% to 20% and 17.9% fibres are with 20% to 30% strain. 

But for the model OD1/Staggered MD, the magnitudes are 15.9%, 17.8% and 24.8%, 

which have a higher frequency for the higher strain level. However, for the model 

with the CD arrangements of bond points, the frequency of fibres at extremely high 

strain is higher than the one in the model with MD arrangements. For example, for 

model OD1/Staggered CD, when the overall strain is 30%, there are 8% fibres at 

strain range from 40% to 50% and 6.3% fibres are at 50% to 60%. The magnitudes for 

the model with the staggered MD are 1.8% and 0.28%. Therefore, the average strains 

of fibres for the models with CD arrangements of bond points are generally higher 

than the ones for the models with MD arrangements of bond points, which are shown 

as Figure 6.15a. Although they are still lower than the overall strain of fabric, the 

fibres in the models with CD arrangements tend to have strain close to the overall 

strain. Because the diamond patterns are basic load carrier for the models with CD 

arrangements of bond points, and the boundaries of the diamond patterns will 

reoriented along the loading direction during the extension, which caused a higher 

fraction of fibres have strains closed to the overall strain. Besides, the nonuniformity 

level of models with CD arrangements is much higher than the one for the models 

with MD arrangements. As revealed by the analysis, the standard deviations of strain 

of fibres for the models with CD arrangements of bond points is generally higher than 

the ones for the models with MD arrangements of bond points (Figure 6.15b). The 

phenomena means the fibres in the models with CD arrangements have a higher risk 

to achieve extremely higher strain levels than the ones in the models with MD 

arrangements. The above phenomena occur in all the models with staggered or lined 

CD arrangements of bond points, although the models with staggered CD 

arrangement of bond points have slightly smaller average strains of fibres than the 

models with lined CD arrangement. Moreover, the effect of the fibres’ orientation 

distribution on the distribution of strain for the models with CD arrangements of bond 

points is similar to that for the models with MD arrangements. When more fibres are 

assigned along or close to the loading direction, the peak frequency tend to move 

towards to higher strain level and the average strain is also higher, which means the 

more fibres effectively carry higher load and contribute the increase of the overall 

strain.  
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(c) 
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(e) 

 
(f) 

 

Figure 6.14: Distribution of strain of fibres for models:  Distribution of strain of fibres 

for models:  (a) OD1/Staggered CD; (b) OD2/ Staggered CD; (c) OD3/ Staggered CD ; 

(d) OD1/Lined CD; (e) OD2/ Lined CD; (f) OD3/ Lined CD 
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Strain 
of 

Fabric 
(%) 

 OD1/Staggered CD Strain 
of 

Fabric 
(%) 

 OD2/Staggered CD Strain 
of 

Fabric 
(%) 

 OD3/Staggered CD 
Average 
Strain of 
Fibres 

(%) 

Standard 
Deviation 

(%) 

Average 
Strain of 
Fibres 

(%) 

Standard 
Deviation 

(%) 

Average 
Strain of 
Fibres 

(%) 

Standard 
Deviation 

(%) 

10  7.0  8.5 10  8.7  9.0 10  9.7  9.4 

20     13.4  15.7 20  16.5  16.4 20  18.3  17.0 

30  19.4  21.8 30  23.6  23.1 30  26  23.3 

40  24.9  28.0 40  30  29.2 40 33.1 28.7 

50  29.9 33.2 50  36  34.0 50  39.6  33.4 

60  34.5  37.7 60  41.5  38.3 60  45.5  37.8 

 
(a) 

 

Strain 
of 

Fabric 
(%) 

 OD1/Lined CD Strain 
of 

Fabric 
(%) 

 OD2/ Lined CD Strain 
of 

Fabric 
(%) 

 OD3/ Lined CD 
Average 
Strain of 
Fibres 

(%) 

Standard 
Deviation 

(%) 

Average 
Strain of 
Fibres 

(%) 

Standard 
Deviation 

(%) 

Average 
Strain of 
Fibres 

(%) 

Standard 
Deviation 

(%) 

10  6.3  8.3 10  7.8  8.8 10  9.4  9.3 

20     12.1  15.2 20  15.0  16.0 20  17.8  16.9 

30  17.5  21.1 30  21.5  22.2 30  25.2  23.3 

40  22.6  26.2 40  27.4  27.5 40  31.9  28.8 

50  27.3  30.8 50  32.9  32.2 50  38.0  33.6 

60  31.7  34.9 60  37.9  36.6 60  43.4  38.0 

 
(b) 

 
Table 6.3: Summarised results of average strain of fibres for models with staggered (a) 

and lined (b) CD arrangements of bond points 
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(a) 

 
(b) 

 

Figure 6.15: Summarised average strains (a) and their standard deviations of fibres of 

discontinuous models   
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Effects of ODF and arrangement of bond points 

To analyze the effects of the arrangement of bond points and ODF on the overall 

mechanical performance of the fabric, models with the same orientation distribution 

and four different arrangements of bond points were compared with each other. Four 

models -OD1/Staggered MD, OD1/Staggered CD, OD1/Lined MD and OD1/Lined 

CD, which have the same fibre orientation distribution OD1-, demonstrated a similar 

material performance (Figure 6.16a). And similar phenomena were obtained for eight 

other models as shown in Figures 6.16b and 6.16c. The models with the same fibres’ 

orientation distribution demonstrated a similar material behaviour, even when they 

had different arrangements of bond points. Although the differences were small, there 

was still a noticeable trend: the models with Staggered/Lined CD arrangements of 

bond points had a higher response force than the ones with Staggered/Lined MD 

arrangements, when the models have the same ODF. Let’s note that all the different 

arrangements of bond points had the same proportions of bonded areas determined by 

the spacing between the bond points. It results in similar numbers of fibres connected 

to bond points and carrying the load. Therefore, the arrangement of bond points did 

not affect the mechanical response of the nonwoven material significantly during their 

initial stage. But this effect would become more significant when the fibres within the 

material achieve their plastic/breaking stage. As demonstrated in simulation results, 

the different arrangements of bond points resulted in different deformation 

mechanisms in the nonwoven material. And the different deformation mechanisms 

lead to different stress/strain distributions in the material.  In the local areas of the 

material, the fibres, which are basic load carriers, have different mechanical 

behaviours depending on their length and orientation. Therefore, when the overall 

material achieves a higher strain level, the different levels of the overall mechanical 

response are obtained. 
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                                                                     (c)  

 

Figure 6.16: Results of FEA simulations for discontinuous models with various 

orientation distribution: (a) OD1; (b) OD2; (c) OD3 
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                                                                   (c)  

 

 
                                                                    (d) 

 

Figure 6.17: Results of FEA simulations for discontinuous models with same 

arrangement of bond points: (a) staggered MD arrangement; (b) staggered CD 

arrangement; (c) lined MD arrangement; (d) lined CD arrangement  
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6.4 Discussion and conclusions 

 
In this chapter, numerical models for the discontinuous random fibrous network were 

developed according to the orientation distribution function of the low-density 

thermally bonded nonwoven material. Based on the geometry models, a finite element 

approach was developed to simulate mechanical properties of the nonwoven material 

by direct introduction of its discontinuous structure (density, discontinuity, 

nonuniformity, orientation distribution of fibres, properties of fibres). The material’s 

effective modulus was calculated according to the measured material properties of 

polypropylene fibres, forming the nonwoven, and implemented into the discontinuous 

finite element model. Using the finite-element approach, twelve discontinuous models 

were developed to investigate the effects of the material’s geometry features – the 

arrangement of bond points and random discontinuous fibrous network - on the 

overall performance of the material, and the obtained results were analysed with 

regard to the studied features. The detailed results follow: 

 

1. The discontinuous structure of the low-density nonwoven material was 

generated numerically and used to develop the discontinuous FE models. The 

geometric nature of the discontinuous models provided advantages in the 

finite-element analysis compared to the continuous FE models presented in 

Chapter 5. Firstly, the discontinuous structure of the FE models has the 

capability to describe the nonuniformity of the low-density nonwoven material. 

And it also accounts for the effect of volume reduction, which occurs in real 

experiments but cannot be described in continuous FE models. Secondly, to 

determine the material properties for the finite-element analysis, the 

discontinuous models only require the material properties of fibres and bond 

points, which are easier to measure using physical experiments. Finally, it is 

possible to use the discontinuous FE models to simulate the anisotropic 

mechanical performance of the nonwoven material by changing the orientation 

distribution of fibres.  

 

2. Twelve discontinuous FEA models with different orientation distributions and 

arrangements of bond points were analysed. The results revealed that the 

material’s discontinuous structure did affect its mechanical properties. The 
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random fibrous structure resulted in the highly nonlinear material’s behaviour 

even when the fibres had linear properties. It means that the nonlinearity of the 

nonwoven material was not only caused by the nonlinear material properties 

of fibres, but also was resulted from the discontinuous microstructure of the 

material. Besides, the material’s random fibrous microstructure is also one of 

the reasons for the large strain in the material, is determined both by the 

elongation of the fibres and the reconstruction of the material’s microstructure.  

And the effect of the type of fibres’ orientation distribution was due to the 

changing proportion of fibres along, or close to, the loading direction, which 

determines the anisotropic material properties of the material and its 

nonuniformity. A larger fraction of such fibres leads to a higher mechanical 

overall response of the specimen in this direction. The result is important for 

design of a nonwoven material with a preferred loading direction. Moreover, 

the different arrangements of bond points led to different stress/strain 

relationships of the material, caused by different mechanisms of deformation 

of the fibrous network. The MD – lined and staggered -arrangement of bond 

points results in a more uniform strain distribution than the CD –lined and 

staggered- arrangement of bond point. That means that for the real specimens 

with CD arrangement of bond points, the fibres in the material have more risk 

to under a much higher strain level, which may lead to a local failure.
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Chapter 7 Conclusions and Future Work 

 

7.1 Conclusions and discussions  

 
This thesis is focused on the deformation mechanisms of a low-density thermally 

bonded nonwoven material (polypropylene fibres; density 20 gsm) with account for 

the effects of material’s microstructure. To analyse the mechanical properties of the 

material, various studies were carried out both experimentally and numerically. The 

experimental work was performed at both macro-scale and micro-scale. At macro-

scale, the tensile tests were implemented under varying loading conditions and 

specimens of different shape and dimensions were tested, coupled with image analysis. 

At the micro-scale, features of the material’s microstructure were determined and 

their effects on overall mechanical properties of the nonwoven material were 

established. Due to the complex microstructure of the nonwoven material, it is 

difficult to study its mechanical properties only by experimental methods. Therefore, 

two types of FE models were developed to describe the tensile behaviour of the 

material. The first type - continuous FE models - was used to validate capability of the 

classic theory to describe the low-density nonwoven material. And the effects of 

stiffer bond points on nonuniform stress distributions in the deformed material were 

analysed using such models. The second type - discontinuous models - was developed 

to provide information on the effect of the material’s discontinuous and nonuniform 

microstructure on the mechanical properties of overall material, which is the first FE 

model of nonwovens involving the random fibrous network of the material. The 

effects of orientation distribution of fibres and the arrangement of bond points are 

summarised based on the results of simulations with finite-element models. The 

specific novelty and main findings include: 

 
 Due to the various test standards available for nonwoven materials, tensile 

tests were carried out using specimens with varying dimensions and shape 

factors to analyse the effects of dimensions on mechanical properties of the 

nonwoven material in its machine and cross directions. And representative 

dimensions of the specimen were determined for the low-density thermally 
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bonded nonwoven material. The obtained results demonstrate that the 

specimen’s dimensions do affect the mechanical properties of the nonwoven 

material significantly.  

 
1) For the specimens with a relatively small width the material performs 

unstably and the obtained results show a large scatter.  

 
2) For the specimens with larger lengths, generally, the material properties 

are improved and the material performs stably. But when the length of the 

specimen decreases to a certain level, the material start to behave unstably.  

 
3)  For the specimens with a shape factor smaller than 1, the length effect is 

not significant, but the effect of width plays a more important role. 

However, the moduli obtained for those specimens are initial moduli, 

which cannot fully describe the real material properties of the nonwoven 

material. Therefore, according to the analysis of the size-dependent 

mechanical properties of the nonwoven material, representative 

dimensions of specimen, which were used in the thesis, were determined 

as 25 mm for the gauge length and 20 mm for the width.  

 
 Standard tensile tests were perfomed to investigate the deformation 

mechanisms of the nonwoven material in both machine and cross directions. 

Additionally, Thermoelastic Stress Analysis (TSA) system was used to record 

the process. The results show that the material properties of the material are 

highly anisotropic, which is caused by both the fibres’ orientation distribution 

and arrangement of bond points. Especially, the material has apparently 

different material properties in its two principle directions: MD and CD. The 

material can achieve really high strain levels, more than 100%. Besides, 

according to the results obtained with the TAS system, the deformation 

mechanism of the material is affected by the arrangement of bond points and 

the nonuniform microstructure of the material. For the machine direction, the 

specimen presents clearly a “striped system”, which is formed by strips of 

bonding points with intermediate strips of the fibre network. At the initial 

stage of the deformation, the striped system behaves stably and linearly. When 

the specimen achieves an advanced strain level, the strips of bond starts to 
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distort; it is caused by the nonuniform structure of the material. The stress 

concentrates at the areas with a low local density, and transfers from one low-

density area to another, generating shear stress in the specimen. Finally, a 

micro-failure occurs staring from a low-density area, and the creak propagates 

though the specimen forming a macroscopic defect. For the cross direction, 

due to the arrangement of bond points, the initial stage of deformation is 

governed by stretching curly fibres in fibre-net strips along the loading 

direction and the initial deformation of fibres between two neighbouring bond 

points. With further extension, four neighbouring bond points form a diamond 

pattern. And the fibres connecting two neighbouring bond points along the 

cross direction mainly carry the load until they start to break, which forms 

holes inside the formed diamond patterns. At this stage, the diamond pattern 

begins to contract rapidly with the increase of strain. The boundaries of 

diamond shapes are rearranged to align along the loading direction by 

longitudinal tensile stretching and lateral contraction. Finally, an initial 

breaking point is usually found on a boundary of a bonding point, which 

develops in rupture. 

 
 Continuous FE models were developed to simulate the tensile behaviours of 

the nonwoven material by treating the fabric as a two-component material. 

The models can generally reflect the different deformation mechanisms in 

both machine and cross directions, caused by the different arrangement of 

bond points. However, due to the differences between the results of simulation 

and experiments, the models prove that the nonuniform microstructure of 

material plays a very important role in the mechanical performance of the 

material, which cannot be ignored in both experimental and numerical analysis.  

 
 To investigate the effects of the material’s nonuniform microstructure, various 

image analysis methods were used to study the nonwoven. From the images 

obtained with CT scanning, the nonwoven was determined as a three-

component material, which is composed by bond points, the fibrous network 

and void areas. The nonuniform microstructure was determined to be the main 

effective factor, which causes nonuniform strain distributions in the material. 

Moreover, due to the findings, the traditional stress calculation method cannot 



Chapter 7 Conclusions and Future Work 
 

178 
 

be used to analyses this nonwoven material. The void areas are compressed 

during the extension and cause a reduction of the overall volume of the 

material; this contradicts to the theory of the traditional stress calculation 

method.  To avoid the effects of the void areas on the stress calculation 

method, a novel method was suggested. After determining the principle effects 

of the microstructure of the material, the fibres’ orientation distribution and 

material properties of fibres were measured, which are fundamental features 

for developing discontinuous finite element models.   

 
 According to the experimental results and analysis of the continuous models, 

discontinuous finite-element models were developed to simulate the 

mechanical properties of the nonwoven material. The models emphasised the 

effects of nonuniform and discontinuous microstructure of the material by 

treating the material as a three-component none, consisting of bond points, 

fibrous network and void areas. To generate the discontinuous structure for the 

discontinuous models, a program was developed using the Python 

programming language to describe the random fibrous assembly with 

capability of introducing different fibre orientation distributions, fibre 

densities and diameters of fibres. Based on the simulation of the random 

fibrous network, the discontinuous FE models were developed to analyse 

effects of the material’s microstructure on the overall material properties of 

the nonwoven material. To introduce the real material properties of single fires, 

a calculation method was suggested for the relationship between the numbers 

of representative fibres and real ones. In total, three different fibres’ 

orientation distributions and four different arrangements of bond points were 

introduced into the discontinuous FE models to investigate the effects of the 

microstructure on the overall mechanical properties and deformation 

mechanisms. The obtained results demonstrate:  

 
1) The random fibrous structure resulted in the highly nonlinear material’s 

behaviour even when the fibres had linear properties. That means that the 

nonlinearity of the nonwoven material was not only caused by the 

nonlinear material properties of fibres, but also resulted from its 

discontinuous microstructure. Moreover, the random microstructure also 
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leads to a large deformation of the overall material. Therefore, it 

determines that the elongation of the material is linked to both the 

elongation of fibres and the reconstruction of the microstructure of the 

material.   

 
2) The different arrangements of bond points lead to different deformation 

mechanisms. At macro-scale, the MD arrangements of bond points usually 

bring on a “strip system”, with the stress transfer from a strip of bond 

points to a strip of the fibrous network. But for the specimens with CD 

bond points, “diamond pattern” plays an important role in the deformation. 

The fibres within the diamond patterns, which are along or close to the 

loading direction, tend to have higher stresses and have a higher risk of 

failure. However, the fibres along the boundaries of diamond patterns have 

a similar stress level and they become the basic load carrier after the 

breaking of the fibres inside the diamond patterns. At micro-scale, the 

strain/stress distributions of the fibres are apparently different due to the 

different arrangements of bond points. The MD arrangements of bond 

points cause more uniform strain distributions than the CD arrangements. 

Therefore, the fibres within the specimens with CD bond points have a 

higher risk to experience extremely high strains, which normally results in 

local failure and leads to final rupture.  

 
3) The fibres’ orientation distribution is one of the most important effective 

factors for the anisotropic material properties of the nonwoven material. 

More fibres aligned along or close to the loading direction cause a higher 

overall mechanical performance of the specimen in this direction.  

 

7.1.1 Summary of deformation mechanism of low-density thermally bonded 

nonwoven material  

According to the presented results of experimental and numerical works, the effective 

factors of deformation mechanisms of the low-density thermally bonded nonwoven 

material are determined as follows:  
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The mechanical behaviours of the nonwoven material are determined by both its 

microstructual features and the loading conditions. During the manufacturing process, 

the bonding information, the global orientation distribution function of fibres, the 

global fibre density, the principle directions and the properties of fibres are 

determined (Figure 7.1). However, due to the size- and shape- dependent mechanical 

properties of the nonwoven material, when it is cut from a big sheet into smaller 

specimens with different shapes for specific applications, the features of local 

microstructure of the specimens may be different from the ones of the global material 

(except for the bonding information and properties of fibres, which are the same). 

Moreover, the mechanical performance of the nonwoven material is also dependent of 

the loading conditions, which is due to the rate-dependent mechanical properties of 

the fibres. Therefore, it is possible to summarise that the deformation mechanisms of 

the low-density nonwoven specimen are rather complex and determined by its fibre 

density, material properties of fibres, orientation distribution of fibres, information of 

bond points as well as the principle direction of the overall material and loading 

conditions.  

 

In detail the effects of the material’s microstructure on mechanical properties of the 

low-density nonwoven materials are summarised as following:  

 
 The nonwoven material is made by bonding fibres. The material properties of 

fibres affect the deformation mechanism of nonwoven material significantly. 

Fibres with better mechanical properties result in higher mechanical properties 

of nonwoven specimens. And it is reasonable to deduce that more fibres 

within the nonwoven material lead to its better mechanical performance, 

which means that a higher fibre density results in a stronger nonwoven 

material. However, the fibres in the nonwoven material are arranged randomly, 

having orientations with regard to the principle directions. The random 

structure causes geometrical nonlinearity for the material, and the orientation 

distribution of fibres becomes important to the mechanical performance of the 

material in certain loading directions. More fibres, aligned along or close to 

the loading direction, result in a better overall mechanical performance of the 

material. Moreover, since the density of fibres also determines the 

discontinuity of the microstructure of the material, a discontinuous 
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microstructure results in a different mechanical properties of the material if 

compared with a continuous material.   

 
 Bond points of thermally bonded nonwoven material are another basic 

component of the material; they are formed by partially melted and 

compressed fibres and connect the fibres of the materials. The bond points are 

much stiffer than the fibrous network. In a thermally bonded nonwoven 

material without bond points, the fibres would only be hold together by 

friction between fibres. Therefore, the ratio of bonded areas to the material’s 

overall area affects the mechanical properties of the nonwoven material. 

Higher percentage of bond points results in higher stiffness of the material due 

to the higher stiffness of bond points. And more bond points mean that most of 

fibres are connected to the bond points, contributing to the overall stiffness. 

Moreover, as presented in Chapter 6, the different arrangements of bond 

points cause different deformation mechanism. At micro-scale, the phenomena 

demonstrate as different strain distribution of fibres. 

 

 
 

Figure 7.1: Summary of deformation mechanisms of low-density thermally bonded 

nonwoven material 
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7.2 Future work 

 
Based on the works in this thesis, the research on mechanical properties of low-

density thermally bonded nonwoven material can be further enhanced and extended 

by the following:   

 

1. Further to the single-fibre tests presented in Chapter 5, single fibres of 

polypropylene taken from the fabrics should be studied using tensile tester 

with a high-precision loading cell at various loading. Two types of fibres will 

be used in the experiments: unbonded fibres and bonded fibres. A rate-

dependent tensile modulus and nonlinear behaviour of fibres will be 

determined for both types of fibres. Besides, the failure criterion of both 

unbounded and bonded fibres should be determined. 

 

2. Pull-out tests will be performed to pull a fibre out of the fibrous network and 

bond points, to determine the friction and strength of bonds between fibres. 

The results could be introduced into the develped discontinuous models 

presented in Chapter 6. 

 

3. At micro-scale, FEA models could be developed to define the characteristics 

of the constituent fibres within the nonwoven webs. Both the bonded and 

unbounded fibres should be simulated. The FEA models should use rate-

dependent material models to describe the tensile behaviours of the fibres. 

Then the models could be introduced into the developed discontinuous FE 

models as a sub-model to account for the effect of rate-dependant material 

properties of fibres.  

 

4. The FEA model at meso-scale can be developed to calculate the effective 

properties of the bond area of thermally bonded nonwoven, which are hard to 

measure experimentally. The bond points will be investigated with a FE 

model based on the arrangement and mechanical properties of bonded fibres. 

The FE model for bonded fibres will be embedded into these models to 

describe the bonded fibres within the bond points. The geometry features of 

the FEA model can be obtained from the results of Micro-CT and SEM 
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studies for the bond points. The tensile behaviour of the bond area will be 

simulated for the thermally bonded nonwovens. The effective properties of 

the bond points will be calculated according to the stress/strain curves 

obtained with the FEA model.  Then the calculated effective properties of the 

bond points could be introduced into present discontinuous FE models.  
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