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Abstract

This thesis concerns the determination of the magnetic properties of DyPtIn

and HoPtIn. For this a series of neutron scattering experiments on both pow-

der and single crystal samples were undertaken. The powdered sample data

analysis determined the temperature dependence of the magnetic phases of

DyPtIn. This was found to be a two-stepped transition, described by two

propagation vectors. The first phase propagation vector, kkk1 = [0, 0, 0], was

determined to order below Tc = 28.1 ± 0.3 K. The second phase propagation

vector, kkk2 = [1
2
, 0, 1

2
] orders below Tab = 18±2 K. Using symmetry analysis the

magnetic moments were found to be restricted to the c-axis for the first phase.

The second phase allowed a component within the ab-plane, antiferromagnetic

in nature. The maximal ordered moment, for DyPtIn, extrapolated to T=0 K

was found to be µav
total = 7.90± 0.09µB/Dy, which is reduced compared to the

theoretic moment of µtheory = 10µB/Dy.

The single crystal analysis showed the magnetic moment of HoPtIn to be

aligned to the c-axis at low temperatures. In this compound the full moment

is measured, µTotal = 10.4± 0.4µB/Ho.

Using a new method of data reduction, the form factor for Ho3+ was ex-

tracted. The method for this was developed to solve the problems of the

non-centrosymmertic structure for the REPtIn compounds. To analyse this

data, a program has been developed and tested to fit the full multipole expan-

sion of the form factor to the measured form factor, or to the flipping ratio

data. This programme can determine the crystalline electric field parameters

from flipping ratio data taken on any of the REPtIn compounds.
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A.1 DyPtIn T=2 K, λ = 1.87Å . . . . . . . . . . . . . . . . . . . . . 113

B CCSL *.cry Files 117

B.1 D9 T=74 K .cry file . . . . . . . . . . . . . . . . . . . . . . . . . 117



CONTENTS 5

B.2 D9 T=2 K .cry file . . . . . . . . . . . . . . . . . . . . . . . . . 119

C Form Factor Analysis Code 122

C.1 Coding Information and Notation . . . . . . . . . . . . . . . . . 122

C.2 Maple Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

D Flipping Ratio Data 142



Chapter 1

Introduction

1.1 Research Aims

The aim at the start of this research was to explain the crystallographic and

magnetic properties of some of the REPtIn compounds. It is hoped that this

experimental study will answer some of the outstanding question that remain

for this series. These questions are fully discussed in the next section, where the

motivation for studying these compounds is presented along with the relevant

background physics. For instance, an explanation for the reduction in the

ordered magnetic moment remains outstanding. Across the REPtIn series the

ordered magnetic moment is substantially less than that expected for the free

rare earth ion [1], [2] [3] [4]. This is surprising, as the moment is localised on

the 4f shell, and should be unaffected by metallic bonding [5].

Another unanswered question relates to the nature of the mechanism caus-

ing the strong magnetic anisotropy seen in single crystal magnetisation data

[6]. This anisotropy exists beyond energy scales far exceeding the energy scale

set by the magnetic ordering temperature. Several authors suggest [2], [7], that

the crystalline electric field (CEF) splitting of the 4f degeneracy gives rise to

this anisotropy. However, this explanation is inadequate for the REPtIn series,

as strong anisotropy is observed also in the GdPtIn compound. GdPtIn is in

a L = 0 configuration, so the 4f electron distribution is spherically symmetric.

This means there is no preferred direction and there should be no anisotropy
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in this compound. Despite this, some authors do attribute these effects to the

CEF splitting, but no one has attempted to evaluate the magnitude of the B

coefficients. This is due to the site symmetry of the RE ion requiring the full

CEF hamiltonian, which gives an under-determined problem when analysing

inelastic neutron data.

These physical problems and unanswered questions make the REPtIn series

an excellent opportunity for PhD research. This study has benefited from the

previous research conducted at Loughborough University, where much of the

physics of the REPtIn has been discovered.

To achieve these research aims the determination of the magnetic ground

state of some of these compounds is required. This involves neutron diffraction

experiments and analysis of both powder and single crystal samples with the

intention of determining the crystalline electric field splitting of the RE3+ ion.

The determination of the magnetisation density of the select compounds is also

essential, if progress beyond that reported in the literature is to be made. This

analysis also requires complementary measurements, such as SQUID magneti-

sation data and X-ray diffraction measurements.

1.2 Thesis Structure

The structure of this thesis reflects the order in which the research aims were

addressed. Listed below is a brief description of the content of each chapter

within this thesis. It should be noted that the abbreviation ‘RE’ or ‘RE3+’ is

used frequently throughout, where the reference is being made to a rare earth

atom or triply-ionised rare earth ion respectively.

• Chapter 2 provides an introduction to the REPtIn series explaining the

interesting physics observed and the relevant theory. This is followed by

a literature review of several noteworthy members of the REPtIn series,

and a discussion of the theories reported to explain the magnetic ordering

of the series.

• Chapter 3 is a self-contained chapter, which explains the theory of neu-

tron scattering. The essential theory of nuclear and magnetic neutron
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scattering is discussed with an emphasis on some aspects, which will be

used for data reduction and analysis. This chapter is frequently referred

to, as it provides the background for the form factor analysis in chapter

6.

• Chapter 4 is the first results chapter. It reports on powder diffraction

experiments and analysis of the compounds DyPtIn and HoPtIn. The

temperature dependance of the magnetic ordering of DyPtIn is reported,

along with the determination of the magnetic structure. HoPtIn is mea-

sured and compared to the work of Baran et al. [1]. The motivation for

this approach is discussed in chapter 2. Further discussion emphasises

the need for single crystal measurements to determine the magnetisation

density within the unit cell.

• Chapter 5 reports on two single crystal experiments performed at the

Institut Laue-Langevin using the instruments D9 and D3. This chapter

presents the magnetisation density of HoPtIn using maximum entropy

reconstruction, and discusses the added complexity of analysing data of

non-centrosymmetric structures.

• Chapter 6 provides an account of coding a programme, which extracts

the Ho3+ form factor from flipping ratio data. This chapter implements

the theory described in chapter 3, and uses the experimental findings of

chapter 5 to determine the Ho3+ form factor.

• Chapter 7 concludes the research conducted for this thesis, and discusses

the final results obtained. Suggestions are put forward for further work.



Chapter 2

Background and Motivation for

Study

2.1 Introduction

The REPtIn series has been studied by several research groups including Mo-

rosan, Bud’ko and Canfield [6], Watson, Neumann and Ziebeck [3] and Baran,

Gondek, Hernández-Velasco, Kaczorowski and Szytula [1]. The following sec-

tions aim to introduce the physics of the REPtIn series, reported by these

authors. From these experimental results it is clear that there is physics that

remains unexplained. This will be discussed and succinctly outlined as a set

of unanswered questions. By the end of this chapter the reader should under-

stand the requirement for further work on the REPtIn series and the way in

which these problems will be addressed.

The first two sections of this chapter provide background information on the

physics relevant to the theme compounds, DyPtIn and HoPtIn. This includes

the crystallography and magnetic properties of the REPtIn compounds and

observed effects such as ‘canting’ and ‘frustration’.

The third section introduces the ideas behind crystalline electric field split-

ting, and why is it relevant to the magnetic order of the REPtIn series.

The final section in this chapter is a full literature review of the theme

compounds. This includes a further subsection, where general trends of the
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REPtIn series are discussed in section 2.3.3.

2.2 Crystallography of the REPtIn Series

The equiatomic REPtIn series crystallises in the hexagonal ZrNiAl-type struc-

ture with the exception of EuPtIn [8], which forms in the orthorhombic TiNiSi-

type structure. As EuPtIn is the exception, any reference to the ‘REPtIn series’

does not include this compound. The hexagonal space group was originally

determined by Ferro et al. [9] [10] to be P62m. This space group is non-

centrosymmetric. The REPtIn structure consists of alternating planes along

the crystallographic c-axis. The z = 0 plane contains two platinum ions and

all the indium ions. This layer is effectively non-magnetic. As the RE ions

are located within the z = 1
2
, and there are no magnetic atoms elsewhere, this

series can be classified as a low-dimensional system [11] [12]. However, most

of these compounds order magnetically at relatively high temperatures, such

as GdPtIn where TC=67.5 K [2].

The z = 1
2

plane contains all the RE ions arranged in equilateral trian-

gles. There are three formula units per primitive unit cell with the positions

tabulated in 2.1 below.

Species Site Site Symmetry Positions

RE 3g m2m (xRE, 0, 1
2
), (0, xRE, 1

2
), (xRE, xRE, 1

2
)

Indium 3f m2m (xIn, 0, 0), (0, xIn, 0), (xIn, xIn, 0)
Platinum 2c 6 (2

3
, 1

3
, 0), (1

3
, 2

3
, 0)

Platinum 1b 62m (0, 0, 1
2
)

Table 2.1: The occupied sites for the REPtIn series. Typical values for the free
position parameters are xIn ∼ 0.3Å and xRE ∼ 0.6Å.

Each RE site is a part of three equilateral triangles within the ab-plane.

The triangle centred at (0,0,1
2
) has a Pt ion in its centre located on the 2c-

site. This arrangement is shown in part (c) of figure 2.1, where the atomic

basis is also shown. The triangular geometry is such that a Dzyaloshinskii-

Moriya [13] [14] type interaction is allowed, which could polarise the Pt ion.

An interaction of this type would result in a small magnetic moment located
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on the Pt site. This mechanism has been suggested by Stephens et al. [4] to

explain the anisotropy seen in the REPtIn series.

Figure 2.1: The unit cell and atomic basis in the z = 1
2

(A) and z = 0 (B)

planes. (C): Four unit cells in the z = 1
2

plane, highlighting the equilateral

triangle around the platinum site.

Typical values for the cell dimensions at low temperature are aaa ∼ 7.57 Å

and ccc ∼ 3.84 Å. As the a-axis is nearly twice that of the c-axis, there is less

distance between RE sites described by the translation TTT = (0, 0,±1) than a

RE neighbour within the ab-plane. As such, magnetic correlations along the

c-axis are not negligible, and any model that restricts magnetic interactions

to the ab-plane should be implemented with caution.

The nearest neighbours to the RE site located at (xRE, 0, 1
2
) are the four Pt
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sites located at (2
3
,1
3
,0)(1

3
,2
3
,0), (2

3
,1
3
,1) and (1

3
,2
3
,1). Each of these Pt sites links

an equilateral triangle centred at (2
3
,1
3
,1
2
) to the equivalent RE triangle in the

z = 1
2

plane in the above and below unit cells. As such, the RE and Pt atoms

form a ‘pyramid’ structure along the c-direction. A diagram of this structure

is shown below in 2.2. As the Pt ion is easily polarised, this pyramid structure

could give rise to magnetic correlation between the alternating planes, despite

there being a shielding layer of In and Pt ions in between.

Figure 2.2: The pyramid arrangement of RE and platinum sites. The atomic
positions are given in green. In the figure ‘x’ is a free position parameter,
typically x ∼ 0.6 Å. This diagram shows two equivalent planes, that of z = 0
and z = 1.

The complexity of the RE-Pt structure is further described with the aid of

table 2.2 below. This table lists the distances to the neighbouring ions of the

RE site located at (RE,0,1
2
), where xRE = 0.5941 Å. From this table it can be

seen that the five nearest neighbours to the RE site are all Platinum.

The P62m structure is closely linked to the kagome lattice [9]. It is obtained

from the ideal kagome structure by a small rotation of the RE triangular unit

within a cell. This distortion is shown in diagram 2.3 below, where the RE
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Species Equivalents a [Å] b [Å] c [Å] Distance [Å]

Pt 4 2
3

1
3

0 2.99418
Pt 1 1 0 1

2
3.07258

In 2 0.25994 0 0 3.17509
In 4 1 0.25994 0 3.30898
RE 2 0.5941 0 -1

2
3.83807

RE 4 0 -0.4059 -1
2

3.98091

Table 2.2: The distance to the neighbouring sites of the RE ion located at
the (xRE,0,1

2
), where xRE = 0.5941. The columns a,b,c give the location of

neighbour site. The ‘Equivalents’ are all the same distance and same species.

triangles are highlighted in red. The link with the kagome lattice is emphasised,

as this lattice has been extensively studied [11] [12] in relation to magnetic

frustration, described in section 2.3.3.

Figure 2.3: The P62m lattice is generated from the kagome lattice by a rotation
of the equilateral triangle, highlighted in red.

The nature of the P62m structure gives the REPtIn series immediate po-

tential for a lot of interesting physics. The geometry of equilateral triangles

means that any in-plane antiferromagnetic magnetism would be frustrated.

The nature of the Pt network around the RE ions means that they could be

polarised by a Dzyaloshinskii-Moriya type interaction giving rise to a local

magnetic moment away from the RE site. In addition to this the series is iso-

structural making the REPtIn compounds an excellent series for investigate

the properties of 4f electron magnetism.
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2.3 Magnetic Properties of the Rare Earth El-

ements

Generally, the order in which electronic shells fill does not solely depend on

increasing the principle quantum number n. This is clearly seen in the RE

elements, which fill the 4f shell across atomic numbers 57 → 71 having pref-

erentially filled the 5s, 5p and 6s shells. These shells are ’closed’, as no more

electrons can have the same eigenenergy and still obey the exclusion principle.

A closed shell has a total angular momentum of zero. The 14 electrons being

added across the Rare Earth series fill the inner 4f shell in the most energet-

ically favorable way. This means that any measured magnetic moment of a

rare earth element is due to the inner 4f electron shell being partially filled.

It is also possible that the conduction band electrons will be polarised. This

usually gives rise to a much smaller magnetic moment.

In the REPtIn series the rare earth atom is generally trivalent (RE3+).

As the metallic bonding is with the outer electrons, the magnitude of the

4f magnetic moment is relatively unaffected. It is therefore informative to

compare the measured moment in a REPtIn compound with that of the free

RE ion. This can be calculated using Hund’s rules discussed in section 2.3.1.

It is also informative to compare the maximal ordered moment Mz of the

free ion, to that observed in high magnetic fields below the magnetic ordering

temperature.

2.3.1 Hund’s Rules for the 4f Shell

The magnetic moment of the RE3+ ion in the REPtIn series is given by the

total angular momentum, J. From the discussion above it is clear that it is

only the 4f electrons that will contribute to J as all the other shells are closed.

As such, we need only calculate J for the unfilled 4f electron shell. This is done

using Hund’s rules [15], which assume Russell Saunders coupling and that the

different coupling energies scale as:

spin− spin coupling > orbit− orbit coupling > spin− orbit coupling
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where the spin-orbit (L-S) coupling is the weakest interaction. With this energy

scheme, Hund’s rules are:

• The spin of each Si should combine to give the maximum value of S

possible in accordance with the Pauli exclusion principle.

• While obeying the first rule, give the maximum |L|

• If the shell is less than half full then |J | = |L−S|, or else |J | = |J +S| if
the shell is more than half full. If the shell is exactly half full then L = 0

and J=S.

Hund’s rules give the relationship between magnetic moment and elec-

tron number. The effective paramagnetic moment is then given by µeff =

gJ

√
J(J + 1) where gJ is known as the Landé g-factor given as:

gJ = 1 +
J(J + 1) + S(S + 1) + L(L + 1)

2J(J + 1)
(2.3.1)

The effective moment for the RE3+ series is plotted in figure 2.4.

Figure 2.4: The effective magnetic moment, µeff = gJ

√
J(J + 1), of the

RE3+ series given by Hund’s rules. Experimentally this moment is compared

to the effective paramagnetic moment measured.
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It should be noted that E.Balcar and S.Lovesey [16] argue that jj coupling

is a better model for RE elements, although the literature is unclear for which

atomic number (Z) one should use either L-S or jj coupling. In jj coupling the

spin-orbit interaction is stronger, such that the spin and angular momentum

quantum numbers are first added to form individual jn values.

jn =
∑

n electrons

sn + ln

J =
∑

n electrons

jjjn

However, it is possible to transform from the LS to jj coupled scheme using a

unitary transformation.

2.3.2 The RKKY Interaction

The RKKY interaction [17] (named after its developers, Ruderman, Kittel,

Kasuya and Yosida) describes long range spin correlations, where a standard

overlap integral is not sufficient. It uses indirect exchange via the conduc-

tion electrons to produce a correlation of electronic spin between 4f electrons.

Due to the localised nature of the 4f electrons direct exchange is weak making

the RKKY indirect exchange dominant. This interaction is described using

a Heisenberg-type hamiltonian, in which the kinetic energy of the conduction

electrons is included. The coupling strength of the RKKY interaction oscil-

lates with distance decaying to zero according to a power law. In real alloys

this decay is also modulated by some function of the mean free path of the

conduction electron. The general form of the exchange strength coefficient is

given below in figure 2.5. From this it can be seen that the nature of magnetic

order depends on the atomic distance between the Rare Earth atoms. In the

REPtIn structure it is possible to get ferromagnetic interactions with nearest

neighbours and antiferromagnetic interactions with next nearest neighbours.
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Figure 2.5: The radial dependence of the RKKY exchange coefficient [18].

2.3.3 Magnetic Frustration

Magnetic frustration [19] arises when there is no unique ground state. This is

often seen when magnetic atoms occupy the corners of an equilateral triangle.

The geometry of this situation means that the interaction energy, J, can not

be simultaneously minimised for all antiferromagnetically coupled magnetic

moments (see figure 2.6). This is seen in the REPtIn series as the RE3+ ions

occupy the 3g site.

Figure 2.6: A simple diagram showing geometric frustration. The magnetic

moments (red) order along the easy-axis. Moment (1) orders antiferromagnet-

ically with (2) minimising the interaction energy J . This causes ’frustration’

as moment (3) can not simultaneously minimise its energy with (1) and (2).



2.3 Magnetic Properties of the Rare Earth Elements 18

2.3.4 Canting

A non-collinear structure has its magnetic moment oriented away from a unique

axis of magnetic alignment. A non-collinear structure is reported in many of

the REPtIn alloys. For example, Baran et al. [1] implement a canted magnetic

structure when modelling neutron powder diffraction data for HoPtIn and

DyPtIn. Their work is discussed in detail in section 2.5. This model introduces

a small antiferromagnetic component in the hexagonal plane creating a fan-like

structure. Canting in the REPtIn alloys is still observed in high applied fields,

where it would be reasonable to assume that the applied magnetic field would

be strong enough to overcome any anisotropy aligning the moments along the

field.

2.3.5 de Gennes Scaling

As previously described, it is the 4f wavefunctions, which give rise to the highly

localised magnetic moment of a RE ion. Because of this, there is no overlap

of the 4f wavefunction with a neighboring RE site. This means the onset of

magnetic order can not be due to direct exchange, but is due to an indirect

ordering mechanism, such as the RKKY interaction. This allows the magnetic

moment of a RE site to be correlated with its neighbours using the spin of

the conduction electrons. An interaction mediated in this way will depend on

the wavevector of the conduction electron and the magnitude of the coupling

between the conduction electron spin, and the magnetic moment of the RE site.

It can be shown, using a mean field approximation, that theoretical ordering

temperature of RE compounds should be proportional to the de Gennes scaling

factor. The de Gennes factor is given as [5]:

G = (gJ − 1)2J(J + 1) (2.3.2)

where J is the total angular momentum and gJ is the Landé g factor. This

model assumes that the magnetic susceptibility of the conduction electron gas

remains constant across the rare earth series. This assumption is valid for the

REPtIn series.
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Although this is an idealised model, experimental results are often in good

agreement. The REPtIn series exhibits de Gennes scaling as seen in figure 2.7.

The de Gennes scaling parameter does not indicate the nature of the magnetic

order, but simply the transition temperature. This implies that the conduction

band structure does not change across the series, and that any magnetic order

mediated in this way would be similar in nature. This is curious, as the type of

the magnetic order changes from antiferromagnetic for the Eu, Tb, Tm and Yb

compounds to ferromagnetic for the Nd, Sm, Gd, Dy, Ho and Er compounds.

This information on magnetic ordering temperature is tabulated in table 2.3

in the overview section at the end of this chapter.

Figure 2.7: Plot of the de Gennes scaling factor, G = (gJ − 1)2J(J + 1),

against the magnetic ordering temperature for some REPtIn alloys. The Rare

Earth element label indicate the corresponding transition temperature. These

values are reproduced in table 2.3 together with the reference from which the

experimental value has been taken.

2.4 Crystalline Electric Field Splitting

The crystalline electric field (CEF) is the electric potential generated by the

array of ions that make up the crystal lattice. This is a non-homogeneous,
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non-isotropic electric field with the same site symmetry as the RE lattice site.

A free ion (i.e. where there is no perturbing potential or field applied) has

full rotational symmetry and all electrons in the same sub-shell have the same

energy [20]. When this ion is placed into a solid, the spherical symmetry

will be reduced to the point-group symmetry of that site. This partially lifts

the (2J+1) degeneracy. The strength of the energy spitting depends on the

symmetry and strength of the crystal field.

The energy of the crystal field splitting has to be compared to the energy

scales of the electron-electron interaction and that of the Russel-Saunders (L−
S) coupling. For the 4f ions the energy scale of the crystal field is much less

than that of spin orbit coupling. This allows us to treat the crystal field

splitting as a perturbation of the L − S coupling restricting any CEF model

to the |J| manifold.

As the CEF is anisotropic, the energy splitting will give rise to an energet-

ically preferred orientation for the magnetic moments. This will be observed

experimentally, as the magnetic moment is restricted to an energetically pref-

erential direction or plane. As such, this is either an easy-axis or an easy-plane

magnet.

A CEF model for a given RE ion starts by considering the classical electric

potential, which is added to the system Hamiltonian. This generally has the

form

VCEF (rrr) =

∫
eρ(RRR)

|rrr −RRR|dRRR (2.4.1)

where ρ(RRR) is the charge density of the surrounding electrons and ions. For

the 4f electrons this can be expanded in terms of spherical harmonics up to

l = 6, or using Racha algebra and Wigner coefficients. However, the mathe-

matical procedure usually adopted is to use the so called ”operator equivalent

technique”. Stevens [21] showed that 2.4.1 can be cast into a form that uses

simple operators of the angular momentum components Jx, Jy, Jz provided we

remain within a given J manifold. The operators act on a given state |J,mj >

in the same way as the potential operator 2.4.1 does on x, y, z under the sym-

metry operations of the point group of the Wyckoff site. This means that the
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matrix elements of VCEF are proportional to those using the Stevens operators.

The contribution of the CEF to the RE Hamiltonian then becomes

HCEF =
∑

i

∑

lm

Bm
l Om

l (JJJ i) (2.4.2)

where Om
l are the Stevens operators [21]. For f-electrons these run to a maxi-

mum of l = 6. The Stevens operators are listed in figure 2.8 below.

Figure 2.8: The Stevens operators used to evaluate CEF splitting within a J
manifold. Note: X = J(J + 1) and J± = Jx ± iJy [5].

The Bm
l coefficients are usually determined from experiments, such as spe-

cific heat or inelastic neutron spectroscopy. They can also be calculated from

polarised neutron data such as magnetisation density measurements.
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2.5 REPtIn- A Literature Review

In this section the previous research on the theme compounds, HoPtIn and

DyPtIn, will be reviewed. A brief outline of the REPtIn series as a whole is

given. This is best illustrated with two further examples, GdPtIn, due to it

having a half-full 4f shell, and with TbPtIn, a strong antiferromagnet with

possible frustration effects.

2.5.1 Magnetic Properties of DyPtIn

Two research groups, namely Watson et al. [3] and Baran et al. [1] have

magnetically characterised powder samples of DyPtIn using a SQUID mag-

netometer. In the paramagnetic regime the inverse susceptibility follows a

simple Curie-Weiss law, with a paramagnetic Curie temperature of TDy
para = 32

K (Baran et al.). Both groups found DyPtIn to have a TDy
c ∼ 38 K. Baran et al.

reports an effective paramagnetic moment of µeff = 10.7µB/Dy, whereas Wat-

son et al. calculates much less, µeff = 9.16µB/Dy. These should be compared

to the effective free moment given by Hunds rules of µHund
eff = 10.62µB/Dy.

Watson et al. extrapolated the spontaneous ferromagnetic moment at T

= 0 K of µsat = 4.34µB/Dy, whereas Baran et al. measured µsat = 6.8µB/Dy

at 1.7K, with both measurements being taken in a field of 5T. This should be

compared to the maximal ordered moment of µcalc
sat = 10µB/Dy. The reduction

in the observed moment is speculatively attributed to CEF effects by Baran

et al..

Further to these powder studies Morosan et al. [2] have performed extensive

single crystal work. They also measured µeff = 10.7µB/Dy for the effective

paramagnetic moment, in agreement with Baran’s powder work.

Morosan et al. determine TDy
c = 26.5 K using specific heat data. They

attribute the large difference in Tc compared to Watson as the effects of mea-

surement of a polycrystalline sample.

The direction dependent single crystal magnetisation investigation was car-

ried out by Morosan et al. [2]. It shows strong anisotropy, which is charac-

teristic of the REPtIn series. A 5.5 T field applied in the ab-plane at T=2K
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gives a saturated magnetic moment of µa−b = 4.98µB/Dy. When the field is

applied along the c-axis, a moment of µc = 6.88µB/Dy is measured, which is

in excellent agreement with measurements on powder samples. This indicates

that the ferromagnetic ordering is an easy axis (c-axis) alignment. However,

no explanation is offered as to why the moment is reduced compared to the

free atom value. A plot of the magnetisation data taken by Morosan et al. [2]

is reproduced in figure 2.9.

Figure 2.9: Anisotropic, field dependent magnetisation hysteresis loops for
DyPtIn at T=2K. From [2].

Baran et al. [1] have performed neutron diffraction measurements at two

temperatures, T=50 K and T=1.5 K with good quality samples. The low

temperature data shows new magnetic peaks at low angles, which were fit-

ted using two different magnetic phases. The first phase is ferromagnetic

with the moment orientated along the c-axis and with a magnetic moment

of magnitude µneutron
c = 6.6µB/Dy. The second phase is located within the

the ab-plane and is anti-ferromagnetic in nature with a propagation vector of

kkk = [1
2
, 0, 1

2
]. The magnitude of the moment within the a-b plane is refined to

be µneutron
a−b = 4.9µB/Dy. They achieve a very good fit to the data, reporting a

χ2 = 2.82. This model allows the moments to cant away from the c-axis, which

is refined to be θ = 37 deg. The total moment is the vector sum of the ab-plane
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and c-axis components, and is given as µneutron
total = 8.2µB/Dy. As the observed

moment is much lower than the expected maximal moment, this could indi-

cate that the wrong model has been implemented. A model that allows the

moment to be free to cant away from its easy-axis should be checked against

symmetry requirements for the magnetic point group. The authors do not

comment whether this symmetry analysis was performed. This is examined in

chapter 4, where the results from neutron scattering from powdered samples is

reported. The antiferromagnet structure is reproduced in figure 2.10. Baran et

al. attribute this effect to CEF splitting, but they do not attempt to evaluate

any of the Bm
l coefficients.

Figure 2.10: Antiferromagnetic component of the model used to fit 1.6 K neu-
tron data taken by Baran et al. for DyPtIn [1].

Both Morosan et al. [2] and Baran et al. [1] comment that there are points

of inflection in the temperature dependent magnetisation data. Baran et al.

report that the zero-field cooled curve has two maxima at 17.9 K and 7.3 K.

Baran et al. speculate that this indicates a two-step magnetic transition, the

first being ferromagnetic and the second being the antiferromagnetic compo-

nent seen in the neutron diffraction, which onsets below T=17.9 K. Further

work would be required to ascertain the exact temperature dependence of the

magnetic transitions.
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2.5.2 Magnetic Properties of HoPtIn

HoPtIn was also investigated by Morosan et al. [2] and Baran et al. [1]. Mo-

rosan used single crystals grown in indium flux to measure the anisotropic mag-

netic properties up to 5.5T. As seen for the DyPtIn compound, the paramag-

netic phase is Curie-Weiss like with an effective moment of µeff = 10.5µB/Ho.

This effective moment is close to that given by Hunds rules, µHund
eff = 10.6µB/Ho.

Below Tc = 23.5 K (Morosan et al.) HoPtIn is a strong ferromagnet show-

ing similar anisotropy compared to DyPtIn. The maximum ordered moment

measured at T=2 K and 5.5T along the c-axis is µc = 7.81µB/Ho having sat-

urated at a relatively low field of ∼ 1T. The magnetisation in the basal plane

does not appear to saturate in a field of 5.5 T, reaching a maximum value of

µab = 4.3µB/Ho at T=2 K. Neither of these values are close to the theoretical

maximally ordered moment of µcalc
sat = 10µB/Ho. Strong anisotropy is present

up to fields of 5.5 T with µc > µab.

Baran et al. [1] report on neutron diffraction measurements at two tem-

peratures, 1.5K and 40K. The 40 K data is modelled excellently with a single

phase and no apparent impurities. As with the DyPtIn data, the diffrac-

tion pattern is refined with a canted structure, which uses an antiferromag-

netic in-plane phase. This is again modelled using a propagation vector of

kkk = [1
2
, 0, 1

2
]. The magnitude of the moment within the a-b plane is re-

fined to be µneutron
a−b = 3.5µB/Ho with the moment along the c-axis being

µneutron
c = 7.4µB/Ho at T=1.5 K. The magnitude of the magnetic moment

at 2K is µneutron
total = 8.2µB/Ho, substantially less than that predicted. The

angle between the c-axis and the magnetic moment is refined to be θ = 35◦.

Whilst Baran’s model seems to give a good fit with a low χ2 = 8.59, it

should be noted that there is clearly a non-indexed magnetic peak at 2θ ∼
40 deg, as seen in figure 2.11. The authors do not comment on this.
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Figure 2.11: Neutron diffraction pattern of HoPtIn at T=1.5 K. Note the non-

indexed magnetic peak at ∼ 40 deg, marked with a red circle in the figure. From

[1].

The onset of magnetic order again seems to be multi-staged, as in DyPyIn.

Baran plots the temperature dependence of two peaks at 2θ = 21.7 deg and

2θ = 34.6 deg. This can be seen in the small insert within figure 2.11. Baran

concludes that the 2θ = 21.7 deg peak is composed of both the ferromagnetic

and antiferromagnetic contributions, whilst the 2θ = 34.6 deg is purely anti-

ferromagnetic. This indicates that the antiferromagnetic phase is only present

below T=8 K, below which the magnetic moments cant away from the c-axis.

The 2θ = 21.7 deg appears at T=27 K indicating the Curie temperature.

Stephens et al. [4] used the phonon blank technique to separate the mag-

netic contribution to the specific heat. This data clearly shows the onset of

magnetic order at Tc ∼ 33 K, which is in disagreement with that reported

by Morosan et al. [2] and Baran et al. [1]. The magnetic contribution to

the specific heat is shown in figure 2.12. The sharp peak at T=7 K indicates

the onset of a second magnetic phase, which supports the findings of Baran

et al. [1]. The current research on HoPtIn has not yet yielded a satisfactory

answer to the question of reduced ordered moment, and the highly anisotropic
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Figure 2.12: The magnetic contribution to the specific heat for HoPtIn showing
two peaks at Tc = 33 K and T=7 K [4].

nature of the magnetic system. To explain these characteristics an appropriate

theoretical model still needs to be developed.

2.5.3 Characteristics of the REPtIn Series

The REPtIn series as a whole exhibits some general characteristics and in-

triguing physics. Those that order magnetically seem to have a reduced or-

dered moment, despite measuring most of the free moment in the paramagnetic

regime. To illustrate this general trend figure 2.13 has been produced. Figure

2.13 shows the size of the magnetic moment measured as a percentage of that

expected for the ordered moment. This value can then be compared to the size

of the effective moment measured in the paramagnetic regime, also displayed

as a percentage of that expected from Hund’s rules. As the reported values

for these measurement vary, care has been taken to cite the source from which

the values were taken. These values are recorded in table 2.3, which requires

a KEY (table 2.4) to explain the notation used.
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Figure 2.13: Chart showing the percentage of the ordered magnetic moment
(orange) and the percentage of the effective moment experimentally mea-
sured (blue). The values used for this plot come from table 2.3, the cita-
tions for the %µeff data are: Nd[22]N , Sm[23]M , Gd[2]M , Tb[3]M , Dy[2]M ,
Ho[1]M , Er[24]M , Tm[25]N , Yb[26]M . The citations for the %µMAX data are:
Nd[22]MS, Gd[2]MS, Tb[6]MS

Avg, Dy[1]MS, Ho[1]MS, Er[24]MS, Tm[2]MS, Yb
[26]MS

.

On examination of figure 2.13 the reduction in ordered moment is imme-

diately clear. For the eight compounds displayed nearly 100% of the effective

moment is observed from magnetic susceptibility results (blue). However, once

the REPtIn compound orders magnetically, this moment is greatly reduced.

The reduction in moment ranges from ∼ 20% (HoPtIn) to ∼ 60% (YbPtIn).

This effect is as yet unexplained in the literature.

One hypothesis [4] is that the RE moments induce a moment on the Pt site.

The Pt site is located at the centre of the equilateral triangle made up of RE

ions. This triangle does not have a point of inversion. This could feasibly give

rise to a Dzyaloshinskii-Moriya interaction for which the induced moment is

correlated to that of the RE site. This type of induced moment can be detected

using spin polarised neutrons and a high quality single crystal to construct a

magnetisation density map.



2.5 REPtIn- A Literature Review 29

Another general feature of the REPtIn series is the strong magnetic anisotropy.

The moments are not readily saturated even in high fields, if at all. The

anisotropy observed is often attributed to the CEF, but no group has at-

tempted to determine the crystal field coefficients. This explanation is prob-

lematic, as strong anisotropy is also observed in the compound GdPtIn. GdPtIn

has a half-filled 4f shell (L = 0), which is spherically symmetric. A spherically

symmetric shell does not have a preferred orientation, so there should be no

anisotropy and the shell remains degenerate [5]. This is clearly not the case on

inspection of figure 2.14 which shows single crystal magnetisation data, mea-

sured by Morosan et al. [2]. The strong anisotropy is present up to applied

field strengths of 4 Tesla. This indicates that there are magnetic correlations

with an energy scale exceeding that usually attributed to CEF splitting. For

example, a saturated moment of 6.8µB within a field of 4 Tesla has a poten-

tial energy of ∼ 1.57 meV, which corresponds to a temperature of 17K. The

ordering temperature for GdPtIn is Tc = 74K, which is over four times their

anisotropy values. Morosan et al. [2] discuss a model whereby the easy-axis

is [1 2 l] direction, although comment that this has limited applicability to

GdPtIn.

Figure 2.14: Anisotropic, field dependent magnetisation hysteresis loops for a
single crystal sample of GdPtIn at T=2K [2].
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2.5.4 Summary of Background and Motivation

In this chapter the interesting physics observed in the REPtIn series has been

introduced. Despite this series being the subject of focus for several research

groups, for many years no adequate explanation for the results reported has

been put forward. In fact the problem seems to deepen with every new mea-

surement. At the time of starting this PhD research there were seven clear

question for the RePtIn series that require further experimental study. These

are:

1. What mechanisms give rise to magnetic order in the REPtIn compounds?

The fact that they follow de Gennes scaling implies a conduction band

mediated correlation, but the magnetic order randomly switches between

antiferromagnetic and ferromagnetic.

2. What mechanism causes the reduction in ordered moment seen across

the series?

3. What mechanism relieves the magnetic frustration in the antiferromag-

netic compounds?

4. What is the extent of the CEF splitting for the RE3+ ion?

5. What mechanism causes the strong magnetic anisotropy measured?

6. Is the magnetism localised on the RE3+ site or could the complex RE-Pt

structure induce magnetisation elsewhere?

7. In the compounds that show a multi-stepped magnetic order, what is

the temperature dependence of this ordering mechanism? Also, are the

order parameters for these steps independent or coupled?

These questions were the focus of the work undertaken for this PhD. It was

decided to first tackle questions 6 and 7. As the antiferromagnetic compounds

are likely to be the most complex, it is logical to start this process with some

ferromagnetic compounds. Specifically, these problems were investigated by
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solving the magnetic structure for DyPtIn and HoPtIn using both powder and

single crystal neutron scattering, which is the research presented in this thesis.

For DyPtIn and HoPtIn the magnetic ordering seems to be a two-step pro-

cess where two order parameters are involved. To model this transition new

experimental results were required for these compounds as they go through

their magnetic ordering temperatures. This is best achieved using neutron

diffraction measurements of powder samples at several temperatures. Neu-

tron diffraction data can be analysed to extract important parameters, such as

unit cell dimensions, unit cell volume and atomic positions. From these mea-

surements it is possible to determine the magnetic structure using symmetry

analysis. It would also be possible to check the propagation vector proposed

by Baran et al. and check their magnetic model. The hot neutron diffractome-

ter D20 [27] at the ILL1 was selected for this initial study. The results and

conclusions are reported in chapter 4. Before these results are presented, it is

important to introduce the physics behind neutron scattering from crystalline

solids, and to explain how the neutron interacts with a magnetic moment. This

is discussed in the next chapter, which is self-contained but will be referred to

throughout this remainder of this thesis.

2.5.5 Tabulation of Results for the REPtIn Series.

The final section of this chapter presents table 2.3, in which the experimental

findings of many authors have been amalgamated. This is designed to illustrate

the variety in ordering temperatures reported for the REPtIn series. This table

contains the source of the reported result as a citation next to the value quoted.

Further to this, the method with which the measurement has been taken, can

be seen with the aid of the KEY, which is given in table 2.4.

1Institut Laue-Langevin, Grenoble, France
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Column Title Description

3 ‘θpara’ The paramagnetic ordering temperature, extrapolated
from inverse susceptibility data.

4 ‘TC or TN ’ The Curie or Néel ordering temperature.
5 ‘µeff ’ The effective moment in paramagnetic region, calculated

from the inverse susceptibility.
6 ‘µMAX ’ The maximal ordered moment. Note some authors

extrapolate this value to T=0 K, while others report this
value at T=2 K.

7 ‘µTheory
eff ’ The theoretical free moment, given by Hunds rules.

8 ‘µTheory
MAX ’ The maximal ordered moment, given by gJJ .

Subscript Superscript Measurement detail.
MS Magnetic susceptibility.
Cp Specific heat.
N Neutron data.

MS Magnetisation.
c Single crystal measurement taken along the c-axis.
ab Single crystal measurement taken in the ab plane.

[h,k,l] Single crystal measurement taken in the [h,k,l] direction.
Avg An average value has been taken by the cited author.

Table 2.4: KEY for table 2.3



Chapter 3

Theory of Neutron Scattering

3.1 Introduction

As neutron scattering experiments form the bulk of this thesis, a background

section is now included discussing scattering theory strictly relevant to the

measurements taken. This is particularly important for the form factor anal-

ysis performed in section 5, for which the ‘multipole expansion’ introduced in

section 3.4.3 is used.

Neutron scattering experiments utilise the intrinsic properties of the neu-

tron to probe matter. A neutron has zero net charge, so it is not scattered by

the atomic electrostatic potential. Scattering occurs via strong nuclear forces,

which have a range of ∼ 10−15 m. The neutron’s mean free path is relatively

long for most solids, so scattering is ’weak’ allowing the bulk properties of a

sample to be measured. As the interaction is weak, most theory to describe

scattering is based on perturbation theory, usually restricted to a first order

approximation.

The neutron is a fermion with a spin-1
2

resulting in a magnetic moment.

This gives rise to magnetic scattering from partially filled electronic orbitals.

Expressions for the nuclear and magnetic neutron scattering will be discussed

in the following sections.
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3.2 Scattering Cross-Sections

A scattering experiment is set up as shown in figure 3.1 with the incident

neutrons having wavevector ki and those having been scattered from the target

having a wavevector kf .

Figure 3.1: The coordinate system for a neutron scattering experiment. The
neutron beam is incident on the target with the wavevector kikiki parallel to the
z axis.

A detector at a given set of angles (Θ, φ) and a distance r away from the

sample will count the scattered neutrons. This quantity is dependent on the

incident flux, Φ, the area of the detector and the energy of the incident and

scattering neutrons. To quantify the absolute scattering power of a sample we
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define the differential scattering cross section to be:

dσ

dΩ
=

number of neutrons scattered per second into the solid angle dΩ

Φ dΩ
(3.2.1)

which is clearly independent of incident flux or detector area as we have divided

through by these quantities. A similar cross section is defined when the energy

is also analysed, for example in inelastic or time-of-flight experiments:

d2σ

dΩdE ′ =

number of neutrons scattered per second into the
solid angle dΩ with energy in the range E′ 7→ E′+dE′

Φ dΩdE ′ (3.2.2)

A single scattering event induces a transition in the system from a state labelled

λ to one labelled λ′. The initial and final states of the scattering body may

be identical, in which case λ = λ′. The scattering event is described by an

interaction potential V . As such, the ’number of neutrons scattered per second

into the solid angle dΩ’ is the sum of all scattering processes that result in a

final wavevector, kf , in the direction of dΩ per second. This is:

(
dσ

dΩ

)

λ→λ′
=

1

Φ dΩ

∑

kfkfkf in dΩ

Wkikiki,λ→kfkfkf ,λ′ (3.2.3)

The sum of these processes is equal to the probability of the system going to

a given state, multiplied by the density of states. This is described within

perturbation theory and it is then known as Fermi’s golden rule:

∑

kfkfkf in dΩ

Wkikiki,λ→kfkfkf ,λ′ =
2π

~
pkfkfkf

|< kikiki, λ | V | kfkfkf , λ
′ >|2 (3.2.4)

the density of states, pkfkfkf
, is derived via box-normalisation as the neutron is in

an unbound state. By substitution of 3.2.4 into 3.2.3 the partial differential

cross section becomes:

(
dσ

dΩ

)

λ→λ′
=

k′

k

( m

2π~2

)2

|< kikiki, λ | V | kfkfkf , λ
′ >|2 (3.2.5)

where m is the neutron mass. The next step is to formulate an expression for
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the potential V . This is dependent on the type of scattering being considered.

In the next section two types of scattering, nuclear and magnetic, are discussed,

which lead to very different matrix elements.

3.3 Elastic Nuclear Scattering

The first approximation is to treat V as a point-like potential, from which the

neutron is isotropically scattered. This is s-wave (spherical) scattering giving

the scattered neutron a wavefunction with the general form:

ψs = − b

r
eikr (3.3.1)

b is called the scattering length and is an experimentally determined quantity.

It is a characteristic physical property of the scattering nucleus fully parame-

terising the scattering. It does not depend on angle and can be either real or

complex. A complex component to b represents the absorption of neutrons to

form a compound nucleus. Continuing this approximation, the potential V is

assumed to be very short range allowing a three dimensional delta function to

be used at the nuclear position. This is known as the Fermi pseudopotential

and it is derived to be:

V (r) =
2π~2

m

∑
i

biδ(rrr −RiRiRi) (3.3.2)
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For elastic scattering, the initial and final states of the system are equivalent

in energy, and |kikiki| = |kfkfkf |. As such, 3.2.5 becomes:

dσ

dΩ
=

( m

2π~2

)2

|< kikiki | V | kfkfkf >|2

=
( m

2π~2

)2

∣∣∣∣∣< kikiki | 2π~2

m

∑
i

biδ(rrr −RiRiRi) | kfkfkf >

∣∣∣∣∣

2

=

∣∣∣∣∣< e−ikf ·rkf ·rkf ·r |
∑

i

biδ(rrr −RiRiRi) | eiki·rki·rki·r >

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

i

bi

∫

all r

e−ikf ·rkf ·rkf ·r | δ(rrr −RiRiRi) | eiki·rki·rki·rdr

∣∣∣∣∣

2

=

∣∣∣∣∣
∑

i

bie
iκ·Riκ·Riκ·Ri

∣∣∣∣∣

2

here κκκ is the scattering vector defined by κκκ = kf − kikf − kikf − ki , RiRiRi is the position

of the ith nucleus. Clearly the intensity at the detector is dependent on the

scalar product κκκ · RiRiRi. This can be manipulated into a form consistent with

definitions in crystallography. As RiRiRi is the position of the ith nucleus, the

function
∑

i bi eiκ·Riκ·Riκ·Ri has the periodicity of the crystal lattice. It can be split

into RiRiRi = RlRlRl + rarara where l labels a lattice point, and a labels the fractional

coordinate of the atom in the unit cell. This is:

dσ

dΩ
=

∣∣∣∣∣∣∣

∑
atoms in
unit cell

bae
iκ·raκ·raκ·ra ×

∑

lattice

eiκ·Rlκ·Rlκ·Rl

∣∣∣∣∣∣∣

2

(3.3.3)

The second summation over lattice points gives the geometric scattering con-

ditions. From [30] this can be re-written as

∣∣∣∣∣
∑

lattice

eiκ·Rlκ·Rlκ·Rl

∣∣∣∣∣

2

= N
(2π)3

V

∑
Ghkl

δ(κκκ−Ghkl) (3.3.4)

where V is the unit cell volume. Clearly constructive interference will only

occur when κκκ equals a reciprocal lattice vector, Ghkl This is equivalent to



3.4 Magnetic Scattering 39

Bragg’s law. This does not, however, give any information on the intensity

of the Bragg reflection. This is described by the first summation in equation

3.3.3 and is known as the structure factor.

The structure factor determines the intensity of a specific (hkl) reflection.

It is usually defined as F (κκκ) and contains all the information on the relative

atomic positions of different species within the unit cell. If one writes the

location of the atoms within the unit cell in terms of their position from the

origin, then the structure factor becomes:

F (κκκ) =
∑

atoms in
unit cell

bae
iκ·raκ·raκ·ra

=
∑

atoms in
unit cell

bae
i2π(hx+ky+lz)

In a real scattering experiment it is important to modify this expression

to include other physical processes. The temperature induced motion of the

scattering center is described by the Debye-Waller factor, which models the

thermal vibration of the nucleus. This has the form e−2W (κκκ). Corrections

for absorption (T) and extinction (E) are also required, especially in single

crystal diffraction. These corrections can be inserted into the expression for

the differential cross section as:

dσ

dΩ
= N

(2π)3

V

∑
Ghkl

δ(κκκ−Ghkl) |F (GGGhkl)|2 E T e−2W (κκκ) (3.3.5)

For a more complete derivation of these quantities see Lovesey [30], Squires

[31], or books on fundamental crystallography, for example C. Giacovazzo et

al. [32].

3.4 Magnetic Scattering

Atoms with partially filled electronic shells have a permanent magnetic mo-

ment, as described in the magnetism section 2.3.1. A neutron is a spin-1
2

par-
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ticle with its angular momentum described by the Pauli spin matrices. The

incident neutron does not generate a magnetic field as its net charge is zero.

Therefore the potential energy of the scattering event is that of the electron

cloud ↔ neutron moment interaction.

The electronic distribution is described by the radial wavefunctions, which

are generally found using self consistent numerical calculations, such as the

Hartree Fock [33] method. The electronic wavefunctions for the atom is de-

scribed by the form factor, which is discussed in the next section.

3.4.1 Spin in Matrix form

Any multi-electron wavefunction of an atom can be expressed as a sum of

products of normalised, orthogonal eigenfunctions and complex coefficients,

Ψ = Σcnψn. The spin of a neutron is described as spin up or spin down with

reference to a chosen axis of quantisation. Mathematically this is formulated in

a two dimensional spin-space in which α and β are the basis vectors. These two

dimensional vectors are orthonormal as αT α = βT β = 1 and βT α = αT β = 0

where:

α =

(
0
1

)
, β =

(
1
0

)
, (3.4.1)

The spin operators describe the act of measuring the system, and are called

the Pauli matrices. The three Pauli matrices plus the identity matrix are

all linearly independent, so any spin wavefunction could be represented by a

summation of the Pauli matrices. The Pauli matrices are:

σ̂̂σ̂σI =

(
1 0
0 1

)
, σ̂̂σ̂σx =

(
0 1
1 0

)
, σ̂̂σ̂σy =

(
0 −i
i 0

)
, σ̂̂σ̂σz =

(
1 0
0 −1

)
(3.4.2)

Using these, the magnetic moments of a neutron and an electron are given by

the following magnetic moment operators:

µ̂n = −γµN σ̂̂σ̂σ µ̂e = −2γµBŝ̂ŝs (3.4.3)



3.4 Magnetic Scattering 41

where µN and µB have their normal definitions. Further to this we can define

the raising or lowering matrices. These are shown below and are important

when considering spin-flip transitions.

σ+ =

(
0 1
0 0

)
σ− =

(
0 0
1 0

)
(3.4.4)

3.4.2 Magnetic Interaction Energy

As with nuclear scattering the state of the scattering body + neutron goes

from |λ,ki > to |λ′,kf >. However, the polarisation of the scattered neutron

may also change so the matrix element in 3.2.5 is modified to be:

< λ′, σf , kfkfkf |VM |kikiki, σi, λ > (3.4.5)

The derivation of the magnetic interaction potential, VM , requires some in-

volved algebra for which Lovesey ([30], [34]) is followed. The potential VM is

the scalar product of the magnetic moment of the neutron with the magnetic

field, H, given by VM = −µ̂n · H = −γµN σ̂̂σ̂σ · H. The evaluation of H can

be split into two contributions. One from the electron spin and one from its

orbital movement:

HS = curl

(
µe ×R

|R|3
)

HL =
−e

c

(
ve ×R

|R|3
)

(3.4.6)

where R is the vector distance from the electron to the point at which the

interaction is evaluated. The electron velocity, ve, is derived from the Idl

current element in the Biot-Savart law. Furthermore, these equations can be

expressed in terms of the electron momentum operator, p̂e:

VM = −γµN σ̂̂σ̂σ · (HS + HL)

= γµN

(
2µBσ̂̂σ̂σ · curl

(
ŝ× R̂

|R|3
)
− e

2mec

(
p̂e · σ̂̂

σ̂σ ×R

|R|3 +
σ̂̂σ̂σ ×R

|R|3 · p̂e

))
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This can be further manipulated into the form, for which the magnetic inter-

action operator Q̂⊥ is defined, and the unit of magnetic scattering length, r0,

becomes apparent. Using this the partial differential cross section becomes:

(
d2σ

dΩdE ′

)
=

r2
0︷ ︸︸ ︷( m

2π~2

)2

(2γ µNµB4π)2 k
′

k

∑

σσ′λλ′
pσpλ

× < σλ|(σ̂σσ · Q̂⊥)+|σ′λ′ >< σ′λ′|(σ̂σσ · Q̂⊥)|σλ >

× δ(Eλ − Eλ′ + ~ω) (3.4.7)

with

Q̂⊥ =
∑

i

eκκκ.rrri

(
κ̂κκ× (sssi × κ̂κκ)− i

~κ
(pppi × κ̂κκ)

)
(3.4.8)

where κ̂κκ is the unit scattering vector and the sum over ′i′ is for the unpaired

electrons of the scattering body. Q̂⊥ is related to the magnetisation of the

scattering system. It clearly only gives a contribution from magnetic compo-

nents, which are perpendicular to the scattering vector κκκ. By transforming

the sum over ri to an integral over r and after some further manipulation, the

operator Q̂⊥ is related to the real space magnetisation density M(rrr) by:

Q̂⊥ =
1

2µB

∫
dr eκκκ.rrr (κ̂κκ× (M(rrr)× κ̂κκ)) (3.4.9)

The task now is to evaluate the Q̂⊥ operator for each initial and final state

and perform the weighted sum over all possible states. Q̂⊥ is called the mag-

netic interaction operator, as it describes the scattering due to the fourier trans-

form of the real-space magnetisation density. For RE atoms the calculation of

Q̂⊥ requires the evaluation of matrix elements of the type < θJM |Q̂⊥|θ′J ′M ′ >

where θ stands for ’any other relevant parameters to fully describe the quantum

state’.

To further develop Q̂⊥ the radial part of the atomic electron distribution

of the partially filled shell is needed. This has the general form:

< jK(κκκ) >=

∫ ∞

0

|Ψ(rrr)|2jK(κκκ) (3.4.10)
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where Ψ(rrr) is the electronic wavefunctions for the scattering shell found

using self consistent calculations, like the Hartree-Fock method. jK(κκκ) are

spherical bessel functions of order K. The electron distribution can be param-

eterized with an analytical approximation using seven coefficients, generally

denoted A,a,B,b,C,c,D. The coefficients are tabulated in reference [35]. The

analytical approximation has the form:

< jK(sss) >= (Ae−a·s2

+ Be−b·s2

+ Ce−c·s2

+ D)s2 (3.4.11)

where s = sin(θ)
λ

. There is no need to multiply by s2 for K 6= 0.

The order (K) to which the expansion is evaluated depends on the experi-

mental setup and the nature of the results required. This is generally done in

one of two ways: either the dipole approximation, or the multipole expansion

are used. These methods are discussed in the next sections.

The four radial integrals for Ho3+ are plotted below in figure 3.2, along

with the dipole approximation, discussed in section 3.4.4

Figure 3.2: The four radial integrals for Ho3+ with the dipole approximation
(DA) plotted in red.
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3.4.3 Multipole Expansion

The multipole expansion can be calculated using different methods, but was

shown by Lovesey and Rimmer [34] that it can be simplified by using the meth-

ods of Racha algebra, Clebsch Gordan coefficients and spherical harmonics.

The total angular momentum of a particle is composed of its orbital angular

momentum, L, and its intrinsic spin, S. Any particle (or system) will have

a total angular momentum, J , with a projection onto one 3-component axis

given as M . The (2J + 1) M values are the eigenvalues of the rotational

group operators. If two systems, each with their own J (and M values) are

coupled, the eigenstates of the coupled system can be found using Clebsch-

Gordan coefficients.

Let the first system (1) have a total angular momentum j1 and m1 val-

ues ranging from −j1,−j1 + 1, .., 0, .., j1. A second independent system is la-

belled with subscript ’2’. Then the product states need to be found, |j1,m1 >

|j2,m2 >, and the eigenvalues of the new product state be constructed. The

final product state is labelled |J,M, j1, j2 >, and it is related to the product

state by a Clebsch-Gordan coefficient, which is calculated for every unique

combination of m1,m2. This is expressed as:

|J,M, j1, j2 >=
∑

m1m2

(j1 m1, j2,m2|JM)︸ ︷︷ ︸
Clebsch−Gordan

|j1,m1 > |j2,m2 > (3.4.12)

and gives the eigenstates in |J,M, j1, j2 > as a linear combination of the prod-

ucts of the subsystem states. To simplify notation the explicit j1, j2 depen-

dance of the product state is omitted, and is shown as |JMJ >. The multipole

expansion developed uses the Clebsch-Gordan coefficients and the methods of

irreducible tensor algebra to describe the scattering event between momen-

tum states of the scattering body, |JMJ >, and that of the neutron system.

As such, the multipole expansion gives the full form of the electronic scatter-

ing distribution, over the whole range of κκκ. This can be used to model the

anisotropic magnetisation density which requires calculation of the probability

coefficients for the angular momentum states. The coefficients are expressed



3.4 Magnetic Scattering 45

as:

|λ >=
∑

i

∑
M

aM |JM >i (3.4.13)

where the explicit notation MJ is now simplified to M , and the sum over ’i’ is

for different RE sites. The determination of the aM coefficients is performed by

comparison to experiment. The determination of the aMs show which quan-

tum states contribute to the magnetic moment. The standard normalisation

condition applies, whereby
∑

M |aM |2 = 1. The multipole expansion is derived

in chapter 11 of Lovesey [30], for which the matrix elements appearing in 3.4.7

become:

< θJM |Q̂⊥,q|θ′J ′M ′ >

= < θJM |
∑

i

eκκκ.rrri

(
κ̂κκ× (sssi × κ̂κκ)− i

~κ
(pppi × κ̂κκ)

)

q

|θ′J ′M ′ >

= (4π)
1
2

∑

K′′Q′′
Y K′′

Q′′ (κ̂)
∑

K′Q′
[A(K ′′K ′) + B(K ′′K ′)]

× (K ′Q′JM ′|JM)(K ′′Q′′K ′Q′|1q) (3.4.14)

where lower case q indexes the 3-component coordinate within a spherical

harmonic basis. These are defined as q = −1, 0, 1 where q = 0 is the z-direction.

The final two terms in rounded brackets are Clebsch Gorden coefficients given

by

(j1m1j2m2|j3m3) = (−1)j2−j1−m3
√

2j3 + 1

(
j1 j2 j3

m1 m2 −m3

)
(3.4.15)

where the entity in round brackets is a 3j symbol. These are derived in Condon
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and Odabaşi [36] (p149) as:

(
j1 j2 j3

m1 m2 m3

)

= (−1)j1−j2−m3

[
(j1 + j2 − j3)!(j2 + j3 − j1)!(j3 + j1 − j2)!

(j1 + j2 + j3 + 1)!

] 1
2

×
∑

κ

(−1)κ

√
(j1 + m1)!(j1 −m1)!(j2 + m2)!

κ!(j1 + j2 − j3 − κ)!(j1 −m1 − κ)!(j2 + m2 − κ)!

×
√

(j2 −m2)!(j3 + m3)!(j3 −m3)!

(j3 − j2 + m1 + κ)!(j3 − j1 −m2 + κ)!
(3.4.16)

This derivation allows the magnetic scattering due to the 2J+1 electronic en-

ergy levels to be calculated giving details of the CEF splitting and the nature

of the magnetic anisotropy.

3.4.4 The Dipole Approximation

Within the dipole approximation, it is assumed that the scattering from the

electron system is spherically symmetric, as the expansion only includes the

first two radial integrals, < j0 >, < j2 >.

The operator Q̂, related to Q̂⊥ by Q̂⊥ = κ̂κκ× (Q̂× κ̂κκ), is shown below using

the dipole approximation. The scattering originates from a Bravais lattice,

with the magnetic atoms occupying lattice points described by RRRld = lll + ddd.

Q̂D =
1

2
gJf(κκκ)eiκκκ·RRRldĴJJ (3.4.17)

where gJ is the Landé g-factor given in section 2.3.1. The operator ĴJJ is the total

angular momentum for the scattering state, which combined with the other

constant factors, 1
2
gJ , gives the total magnetic moment in Bohr magnetons.

f(κκκ) is the magnetic form factor, which describes the κκκ dependence of the

magnetic scattering. In the dipole approximation this is approximated to

spherical symmetry. f(κκκ) is given as

f(κκκ) =< j0 >
gS

g
+ (< j0 > + < j2 >)

gL

g
(3.4.18)
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It can be clearly seen in figure 3.2 that for κκκ = 0 equation 3.4.17 is proportional

to the total magnetic moment per ion. Setting κκκ = 0 is often a good test of

consistency for any code modelling magnetic scattering.

It should be noted that according to the International Tables for Crystal-

lography, Volume C, Section 6.1.2.4 [35] the dipole approximation is only valid

for transition metals compounds.

3.5 Summary and Outlook

This chapter aimed to introduce the relevant theory for the analysis of data

from neutron scattering experiments. The equations developed above are used

to model both powder and single crystal diffraction measurements taken at the

ILL. The modelling and refinement of the magnetic structure for HoPtIn and

DyPtIn powder data is reported and discussed in chapter 4. Chapters 5 and 6

use the equations for the multipole expansion of the form factor and those for

magnetic scattering to determine the form factor of Ho3+ from a HoPtIn single

crystal experiment. This concludes the main background and theory sections

of this thesis.



Chapter 4

HoPtIn and DyPtIn Powder

Diffraction Results

4.1 Introduction

The compounds HoPtIn and DyPtIn were chosen as typical members of the

REPtIn series, which are suitable for neutron powder diffraction for three

reasons:

1. The two magnetic transitions are well separated in temperature allowing

these phases to be refined individually.

2. Dy and Ho have relatively low absorption cross-sections when compared

with the rest of the magnetically ordering REPtIn compounds.

3. HoPtIn and DyPtIn are well suited to the argon-arc melting technique

for sample preparation.

As such, powder samples of HoPtIn and DyPtIn were made at Lough-

borough University and measured at the ILL. For this analysis the high-flux

neutron spectrometer D20 [27] was used. The results and conclusions from

this experiment are reported in this chapter.
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4.2 D20 Experimental Details

Both samples were prepared in the argon-arc furnace at Loughborough Uni-

versity using high purity materials. Care was taken to reduce impurities and

possible contamination. The ingots were made molten three times to achieve

homogenous samples, which were then powdered and passed through a 200

micron mesh to achieve a fine powder. The powder was used in a small sam-

ple canister on D20 with a diameter of 5mm. This canister size was selected

so as to reduce absorption, but still give a strong signal. All data sets were

processed for refinement by ILL software LAMP [37] (Large Array Manipu-

lation Program), where dead detectors were removed and and normalisation

corrections applied.

The HoPtIn sample was measured at λ = 2.4Å for an exact comparison

to the data taken by Baran et al. Diffraction patterns were taken at two

temperatures, T=100 K and T=2 K.

The DyPtIn sample was measured at λ = 2.4Å and at λ = 1.87Å. The

λ = 2.4Å scans were for a short measurement time, as the temperature was

ramped from T=2 K to T= 80K. This resulted in 120 diffraction patterns.

The λ = 1.87Å measurements were taken between T=50 K and T=2 K at

temperatures concentrating around the magnetic transitions. The temperature

for these measurements was allowed to become stable at the set-point. A total

of 20 diffraction patterns were taken at this wavelength.

4.3 DyPtIn Powder Results

4.3.1 Temperature Dependence of the Diffraction Pat-

terns

The temperature dependence of the magnetic phase transitions can be seen in

figure 4.1, for which the λ = 2.4Å data is used. As the temperature decreases

the nuclear peaks at 2θ = 21.4◦, 37.4◦, 43.3◦, 53.7◦ and 58.4◦ start to gain

intensity below T∼30 K. This indicates that the first phase has a propagation

vector of kkk = [0, 0, 0]. Below T∼20 K new magnetic peaks are visible, for
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which the propagation vector must be determined.

Figure 4.1: 3D plot of the temperature dependence of the low angle peaks for
DyPtIn taken on D20. The two-step magnetic ordering can be seen as an initial
gain in intensity on the nuclear peaks, followed by new purely magnetic peaks
appearing as the temperature decreases.

The nature of the magnetic order for the nuclear and two magnetic phases

was determined using the Rietveld refinement software FullProf [38]. For this

the λ = 1.87Å data was used, as the temperature was allowed to stabilise at

the set point making the measurement more accurate. This data will be used

to determine the exact ordering temperatures rather than that used to produce

figure 4.1.

4.3.2 DyPtIn Nuclear Phase

The nuclear phase of DyPtIn was confirmed to be the space group P62m with

the Dy atom occupying the 3g site, the Indium occupying the 3f site and

Platinum the 2c and 1b sites.
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Figure 4.2: The refinement of DyPtIn at T=50 K using FullProf. χ2 = 5.8

Care had to be taken to implement the correct absorption correction in

FullProf, for which the variable ‘muR’ is used. This was calculated using:

muR = Rcan ρunit
λD20

λAbs

∑

atoms/unit

σAbs
i (4.3.1)

where Rcan is the radius of the cylindrical sample canister and ρunit is the

number density of one REPtIn unit. This is calculated from the mass density

used and must be measured to properly account for ’voids’ in the powder.

muR was calculated to be muR = 4.9 for the Dy sample, which is highly

absorbing. Because of this the absorption correction by N.N Lobanov and L.

Alte da Veiga was implemented by putting muR = −4.9 in the .pcr file1.

4.3.3 DyPtIn Ferromagnetic Phase

Below T=33 K the nuclear peaks start to gain intensity indicating the onset of

magnetic order. The nature of the magnetic order was investigated using the

irreducible representations (IR) of the propagation vector kkk = [0, 0, 0]. There

are five IR consistent with the space group. Of these five only two restrict

1‘.pcr’ is the extension for the input file for FullProf refinements
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the moments to the c-axis, one of which is complex. To determine the correct

model, all five IR were implemented and refined to give the best possible fit.

Of these, only Γ3 was a good fit to the data, which restricts the moments to

the c-axis. Γ3 is a real representation. This is consistent with the single crystal

magnetisation study performed by Morosan et al. [2], which shows an easy-axis

alignment. This model gave an excellent fit for the data sets taken at T= 33,

30, 28, 28, 27, 24, and 22 K. Figure 4.3 below shows a typical refinement for

this phase, for T=24K, where the refined moment is µFerro
24K = 4.8± 0.3µB/Dy.

Below T=21 K new magnetic peaks appear, which can not be modelled with

this simple ferromagnetic phase.

Figure 4.3: The refinement of DyPtIn at T=24 K using FullProf. χ2 = 6.3.

4.3.4 The Second Magnetic Phase of DyPtIn

At low temperatures and for low 2θ values new magnetic peaks appear. These

are most noticeable at 2θ = 19.6◦ and 25.8◦. These peaks were indexed and

used with the software ‘k
¯
search’ available as part of the FullProf suite. The

output from this programme gave three ‘likely’ candidates for the propagation

vector. These were kkk1 = [1
2
, 0, 1

2
], kkk2 = [1

2
, 1

2
, 1

2
] and kkk3 = [1

8
, 0, 1

2
]. In addition

to this several other possibilities were checked for viability. These were:
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kkk4 = [1
2
, 0, 0] kkk9 = [0, 0, 1

3
] kkk14 = [1

3
, 0, 1

2
]

kkk5 = [0, 0, 1
2
] kkk10 = [1

3
, 1

3
, 0] kkk15 = [0, 1

3
, 1

2
]

kkk6 = [1
2
, 0, 1

2
] kkk11 = [1

3
, 0, 1

3
] kkk16 = [1

2
, 0, 1

3
]

kkk7 = [1
2
, 1

2
, 0] kkk12 = [1

3
, 1

3
, 1

3
] kkk17 = [0, 0, 0]

kkk8 = [1
3
, 0, 0] kkk13 = [1

3
, 1

2
, 0] kkk18 = [1

2
, 1

2
, 1

3
]

kkk19 = [1
3
, 1

2
, 1

2
]

From these kkk1 = [1
2
, 0, 1

2
] was identified as the most appropriate propagation

vector. This result is in agreement with the analysis reported by Baran et al.

[1]. This propagation vector was then used in BasIreps [39], which calculates

the IR of the propagation vector and provides an output suitable for use in

the .pcr file. The kkk = [1
2
, 0, 1

2
] propagation vector separates the magnetic sites

into two orbits. Orbit 1 links two atoms by symmetry, whilst orbit 2 leaves

the third independent. Orbit 1 contains the atoms on the sites (xRE, 0, 1
2
),

and (xRE, xRE, 1
2
), while orbit 2 only contains the site (0, xRE, 1

2
). There are

four IR for orbit 1, and three IR for the orbit 2, all of them real. These are

tabulated below in table 4.1.

Orbit 1 Site 1 Site 2
a b c a b c

Γ1 1 - - -1 -1 -
- 1 - - 1 -

Γ2 - - 1 - - -1
Γ3 1 - - - 1 1

1 - - - -1 -
Γ4 - - 1 - - 1

Orbit 2 Site 3
a b c

Γ1 2 1 -
Γ2 - - 1
Γ3 - -1 -

Table 4.1: The IR of propagation vector kkk = [1
2
, 0, 1

2
] for the space group P62m

where the magnetic atom occupies the 3g site. This has m2m point symmetry.

It was possible to construct twelve different magnetic structures from the

different IR. This included arrangements where the moments are restricted

to the c-axis or to within the ab-plane. The magnetic structure found by

Baran et al. discussed in section 2.5 uses a canted moment structure. Their

diagram shows the components of the magnetic moment structure in the ab-

plane. The figure has been reproduced as figure 2.10 in section 2.5.1. Their

moment structure corresponds to a representation of the form:
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a b c
Site 1 -1 - -
Site 2 0 -1 -
Site 3 1 1 -

This representation does not appear in table 4.1, and it is inconsistent with

the symmetry of the space group. As such it was necessary to identify the

correct orientation of the magnetic moments. All permutations of the IR were

implemented and refined to try to ascertain the combination that is realised

physically. Of all the possibilities, the model implementing Γ3 for orbit 1,

and Γ1 for orbit 2 gave the best fit. This combination of IR constructs an

antiferromagnetic, in-plane phase. Using the ‘Γ3Γ1’ model the remaining low

temperature diffraction patterns were refined, all with a χ2 < 7. The T=2 K

diffraction pattern and the ‘Γ3Γ1’ model is shown below in figure 4.4.

Figure 4.4: The refinement of DyPtIn at T=2 K using FullProf. The χ2 = 6.7.
The model uses three phases: nuclear, ferromagnetic and the IR Γ3Γ1 for the
propagation vector kkk = [1

2
, 0, 1

2
].
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4.3.5 Magnetic Structure

The magnetic structure of DyPtIn is a superposition of two phases. The first

phase is a ferromagnetic structure with the moments aligned along the c-axis.

The second phase in an in-plane arrangement, with the orientations of the

moments given by Γ3 and Γ1 of the IR for orbit 1 and 2 respectively. Figure

4.5 below shows the magnetic structure for the ferromagnetic phase, which at

T=2 K has a magnetic moment of µc = 7.3± 0.3µB/Dy.

The second phase, in the ab-plane, allows the moments on orbit 1 to be

different to that on orbit 2. For T= 2K the magnetic moment for orbit 1 (O1)

is µO1
ab = 2.64µB/Dy and that for orbit 2 (O2) is µO2

ab = 2.34µB/Dy. This

means that the total moment given by
√

(µab)2 + (µc)2 is µO1
Total = 7.68µB/Dy

and µO2
Total = 7.78µB/Dy. The magnetic structure in the ab-plane is shown

in figure 4.6, where four unit cells are shown. The temperature dependence

of the magnitude of the moment and other physical quantities extracted from

these fits are presented in the next section.

Figure 4.5: The magnetic structure of DyPtIn at T=2 K along the c-axis. The
magnetic atoms are in the z = 1

2
plane.
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Figure 4.6: The magnetic structure of DyPtIn at T=2 K using the IR model

‘Γ3, Γ1’ for the propagation vector kkk1 = [1
2
, 0, 1

2
] as described in the text. This

propagation vector is a doubling along the c and a axis. The diagram shows

four unit cells in the ab-plane.

4.3.6 Temperature Dependent Results

The refinement of the 20 λ = 1.87Å diffraction patterns allows the exact

determination of key physical parameters. The temperature dependence of

the unit cell dimensions, volume and atomic positions is shown in the next

series of plots. In these plots the fractional change is shown normalised to

unity as T→ 0 K. The temperature dependence of the magnetic phases is also

plotted and discussed.

4.3.6.1 Temperature Dependence of the Lattice Parameters

The temperature dependence of the primitive cell constants a and c, and the

unit cell volume are plotted in figure 4.7. Both a and c have points of inflection

around T∼21 K and T∼32 K, which coincides with the onset of the magnetic

order. As temperature increases a gets bigger, whilst c gets smaller. The

fractional change in volume does not seem to vary at the same temperatures

as a and c, and is arguably constant within the error bars.
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Figure 4.7: The temperature dependence of the unit cell parameters. Note that
the fractional change is plotted, normalised to unity as T→ 0. Red = a, Blue
= c and Green = primitive unit cell volume

Figure 4.8: The temperature dependence of the atomic positions of Dysprosium

(Blue) and Indium (Red). Note that the fractional change is plotted, normalised

to unity as T→ 0.
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The refinable atomic positions described in section 2.2 are shown in figure

4.8. The xDy position slightly decreases with increasing temperature, although

it is constant within the error bars of the individual measurement. There

do not appear to be any points of inflection around the temperatures of the

magnetic transitions. The position of the indium site generally increases with

temperature. The larger error bars make it hard to conclusively comment on

any general trend, other than that the data seems to be smoother above the

Curie temperature.

4.3.6.2 Temperature Dependence of the Magnetic Phases

The temperature dependence of the magnetic phase is split into two parts, the

initial c-axis ferromagnetic phase followed by the second antiferromagnetic in-

plane phase. The temperature dependence of the magnetic moment confined

to the c-axis is plotted below in figure 4.9. This plot shows that as temperature

decreases the ordered moment starts to increase below T∼ 35 K until T∼ 20.5

K. Exact values for the magnetic ordering temperature are determined in the

next section 4.3.6.3. Below T∼ 20.5 K the moment increases at a lesser rate

compared to the initial phase. If this was one continuous transition the moment

would be proportional to the square of the intensity. However, as there are

two magnetic ordering parameters involved, a fit of this type was not used.

Instead a linear fit restricted to the low temperature data points was used as an

approximation. Using this, the maximal ferromagnetic moment is extrapolated

to be µc = 7.47± 0.08µB/Dy at T=0 K.
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Figure 4.9: The temperature dependence of the ferromagnetic moment, aligned
along the c-axis. The green line is a linear approximation used to calculated
the ordered moment.

Figure 4.10: The temperature dependence of the antiferromagnetic moment, in

the ab-plane.
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The second magnetic phase allows the magnetic moments in orbit 1 to

be of a different size to that in orbit 2. Figure 4.10 shows the temperature

dependence of the magnitude of the moments, where the blue data points are

for Orbit 1, the red for Orbit 2. The moments have not refined to the exactly

the value, and there does not seem to be any trend, such as one moment being

consistently greater than the other. However, as these moments agree within

their error bars it is likely that they are similar in size, or possibly identical.

The larger error bars indicate that the refinement is sensitive to similar local-

minima in this parameter space. This means that slightly different values give

equally good fits. The average of the two moments, extrapolated to T=0, is

µav
ab = 2.6± 0.1µB/Dy.

The final figure is for the total moment, which has been calculated using

µtotal =
√

(µab)2 + (µc)2. This again shows the ferromagnetic phase, and then

the total moment for the two orbits, which is shown using different colours.

The total average moment is calculated to be µav
total =

√
7.472 + 2.62 = 7.90±

0.09µB/Dy at T=0 K, which is much less than the theoretical ordered moment

for Dy3+, µtheory = 10µB/Dy.

Figure 4.11: The temperature dependence of the total magnetic moment. The

red line is used to find the total moment at T=0 K. It was fitted to the averaged

data set for orbit 1 and orbit 2 (not explicitly shown.)
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4.3.6.3 Determination of Magnetic Ordering Temperatures

The determination of the magnetic ordering temperatures was performed using

the integrated intensity of seven low angle peaks. For this analysis linear

regression was performed within three regions, corresponding to the nuclear

phase and the two magnetic phases. This was roughly within the temperature

ranges: 0 K < T < 20 K, 20 K < T < 30 K and 30 K < T . The first

magnetic transition, around T∼30 K is denoted Tc, for the Curie temperature.

The second magnetic transition is denoted Tab, as below this temperature the

in-plane component is present. The next graphs, labelled figures 4.12 and 4.13,

show the temperature dependence of the integrated intensity of the seven low

angle peaks. The identity of these peaks is summarised in table 4.2 along with

the values of Tab and Tc as extrapolated from the plots. The final column in

this table shows the average of the values obtained. This average is used as the

final value for the ordering temperatures. These are found to be Tab = 18± 2

K and Tc = 28.1± 0.3 K.

(h,k,l)= (1,0,0) (0,-1,0)* (1,-1,-1)* (0,0,1) (1,0,1) (1,1,1) (2,0,1)
2θ 16.46 20.15 26.18 28.77 33.38 40.88 44.41 Mean ±
Tab - - - 18.26 17.54 17.31 17.35 17.62 0.22
Tc 29.54 22.96 22.84 29.90 30.98 30.06 30.67 28.14 1.36

Table 4.2: The 2θ position of the seven peaks investigated, along with the
Miller index. Note, those indicies identified with (*) are generated with the
propagation vector kkk = [1

2
, 0, 1

2
]. Tab and Tc are the ordering temperatures,

measured in [K], defined in the main text. The last column shows the average
value for the ordering temperatures.
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Figure 4.12: Plots of the temperature dependence of the integrated intensity
for the (1,0,0), (0,-1,0), (1,-1,-1) and (0,0,1) peaks. The linear fits and line
intercepts are shown. These were used to calculate the transition temperatures.
Note, AU= arbitrary units.
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Figure 4.13: Plots of the temperature dependence of the integrated intensity for
the (1,0,1), (1,1,1) and (2,0,1) peaks. The linear fits and line intercepts are
shown. These were used to calculate the transition temperatures.Note, AU=
arbitrary units.
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4.3.7 Summary of DyPtIn Results

The full data set from these refinements are presented in table 4.3 and 4.4 be-

low. In these tables the absolute values are used. The pcr file for the T=2 K

data used for the FullProf refinement is included in appendix A for reference.

The previous sections discussed the magnetic structure of DyPtIn, and ascer-

tained the temperature dependence of the crystallographic parameters. These

results are further commented on in the conclusions of this chapter, following

the analysis of HoPtIn.
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[Å

]
±∆

c
[Å
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4.4 HoPtIn Powder Results

4.4.1 HoPtIn Nuclear Phase

The HoPtIn sample was measured at T=80 K at λ = 2.4Å. The high temper-

ature measurement was refined with the P62m space group and in the same

manner as the DyPtIn sample discussed previously. The refinement of this

phase left several low intensity peaks un-indexed. These are attributed to im-

purities within the sample. The un-indexed peaks were fitted using a pure

Platinum phase and a HoInPt4 phase. The pure Pt phase crystallises in the

Pm−3m space group with Pt atoms on the 1a, 3c, and 1d sites. The HoInPt4

phase forms in the P63/mmc space group, with the Pt on the 4f site, Ho on

the 2c site and In on the 2a site. That these impurity phases could be present

is not unexpected, due to the nature of the sample fabrication. For example,

the molten ingot may not have formed a completely homogenous melt leaving

a Platinum-rich region, where these impurities formed. As this sample con-

tained impurity phases, it was decided to only take one further measurement

at T= 2K. The refinement of the nuclear phase is shown below in figure 4.14.

Figure 4.14: The refinement of HoPtIn nuclear phase at T=80 K. This refine-

ment required two additional phases, that of Pt and HoInPt4. The impurity

phases are indicated to the left of the green index-marks. χ2 = 1462.
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4.4.2 HoPtIn Magnetic Phase

The magnetic phase of HoPtIn was identified to be the same as the one seen

in DyPtIn. The model used implements a ferromagnetic moment aligned to

the c-axis, and an antiferromagnetic ab-plane structure. The ferromagnetic

component, which is described using the propagation vector kkk1 = [0, 0, 0],

refined to µc = 3.80 ± 0.05µB/Ho. The moments described by Γ3 and Γ1 for

orbit 1, and orbit 2 were µO1
ab = 1.03± 0.05µB/Ho and µO2

ab = 1.8± 0.2µB/Ho

respectively. This gives a total average moment of µAv
Total = 4.04± 0.08µB/Ho,

which is much less than predicted, µMax
Theory = 10µB/Ho. A reduced moment has

also been reported in this compound by Baran et al. [1] of µBaran
Total = 8.2µB/Ho.

The reduction reported here is over 4µB/Ho less than reported by Baran et

al. and may indicated that the model is not correctly implemented. However,

a better fit with this data set could not be found, which indicates that the

impurities in this sample are affecting this refinement. The refinement of the

antiferromagnetic phase, within the ab-plane, attributes a smaller moment to

the magnetic sites on Orbit 1 than that on Orbit 2. The magnetic structure

in the ab-plane is shown in figure 4.16 below, in which the smaller moment is

visible.

4.5 Conclusions and Discussion of Powder Data

The research presented in this chapter has identified the magnetic order in

two compounds, HoPtIn and DyPtIn. This was achieved by analysing neutron

diffraction data from powdered samples.

The DyPtIn analysis showed the development of the magnetic order, and

the onset of two distinct magnetic phases. The temperature dependance of the

lattice parameters has been analysed and plotted, as have the atomic positions.

Symmetry analysis allowed the exact orientation of the magnetic moments to

be identified, using the irreducible representations of the propagation vectors

kkk1 = [0, 0, 0], and kkk2 = [1
2
, 0, 1

2
]. This showed that the ground state has a

magnetic structure with a large component along the c-axis, and an additional

smaller component in the ab-plane. These components were found to be µc =
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Figure 4.15: The refinement of HoPtIn magnetic phase at T=2 K. This re-
finement required four phases. The first is the nuclear phase of HoPtIn. The
second and third are the magnetic phases of HoPtIn, split according to their
propagation vector. The third is the impurity phase HoInPt4 identified previ-
ously. The phases are indicated to the left of the green index-marks. χ2 = 7143

7.47±0.08µB/Dy and µav
ab = 2.6±0.1µB/Dy, respectively, at T=0 K. The total

average moment is calculated to be µav
total = 7.90±0.09µB/Dy at T=0 K. This is

much less than the theoretical ordered moment for Dy3+, µtheory = 10µB/Dy.

This reduced moment is also reported by other authors, as discussed in

the literature review in section 2.5.1. Baran et al. [1] determine a similar

structure from their neutron diffraction experiments, although the magnetic

structure they determine is not consistent with the IR of the propagation

vector. However, they report magnetic moments of µBaran
c = 6.6µB/Dy and

µBaran
a−b = 4.9µB/Dy giving a total of µBaran

total = 8.2µB/Dy.

The temperatures of the magnetic transitions for DyPtIn have been deter-

mined by analysing the integrated intensity of seven magnetic peaks. These

are found to be Tc = 28.1± 0.3 K and Tab = 18± 2 K. Morosan et al. deter-

mined TMorosan
c = 26.5 K using specific heat data. This is similar to the value

that is found when using neutrons.

Both Morosan and Baran comment that there are points of inflection in



4.5 Conclusions and Discussion of Powder Data 70

Figure 4.16: The magnetic structure of HoPtIn in the ab-plane. The moments
visibly smaller are those linked by Orbit 1 of the IR used. This diagram shows
4 unit cells.

the temperature dependent magnetisation data at around T=17.9 K and T=

7.3 K. Baran speculates that the antiferromagnetic component onsets below

TBaran
ab =17.9 K. This is in excellent agreement with that found in this study.

The point of inflection at T=7.3 K is not evident in this neutron data.

The HoPtIn analysis at T=2K found the c-axis component of the mag-

netic moment to be µc = 3.80 ± 0.05µB/Ho and that in the ab-plane to be

µav
ab = 1.40 ± 0.06µB/Ho. This gives a total average moment of µAv

Total =

4.04± 0.08µB/Ho which is much less than the maximum theoretical moment,

µMax
Theory = 10µB/Ho. This is a greater reduction in observed moment than

previously reported, and indicates a problem with impurities in the HoPtIn

sample. Baran reports a total moment of µBaran
total = 8.2µB/Ho at T=2K using

neutron diffraction.

The total ordered magnetic moments of DyPtIn and HoPtIn have been

found to be reduced when compared to the theoretical maximum given by

Hunds rules. This is a property observed in many members of the REPtIn

series, for which there has been no adequate physical explanation. Clearly

further work is needed to determine the magnetic interactions that cause this

reduced moment. This will require the determination of magnetisation density

within the unit cell, and the calculation of the the crystal field splitting. For
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the latter type of analysis, spin-polarised neutrons are used, which requires a

high quality single crystal of adequate size. This experiment is discussed in

the next chapter.



Chapter 5

HoPtIn Single Crystal Results

Two main theories to explain the effects observed in the REPtIn series are de-

scribed in section 2.5.3. The first, an induced moment on the platinum 1b site,

requires a spin-density measurement of the unit cell to establish it. The sec-

ond, a canted moment due to an antiferromagnetic in-plane component would

be seen in single crystal diffraction. This data would also confirm the nature

of the magnetic structure, as there is disagreement between that proposed by

Baran et al. and that determined in the previous chapter. To this end a set

of single crystal experiments were performed at the Institut Laue-Langevin

(ILL).

Ideally a single crystal of DyPtIn would be best, as it would compliment the

in-depth analysis performed on the powder sample, reported in the previous

chapter. However, the quality of the single crystal samples meant that HoPtIn

had to be chosen instead. This system is similar to DyPtIn, and seems to

magnetically order in the same way. Also, Dy3+ and Ho3+ have the same

theoretical ordered moment, 10µB, making this a suitable substitution. The

experimental details of these investigations are detailed in this chapter, along

with results and conclusions.
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5.1 HoPtIn Crystal Growth

When HoPtIn is cooled from the melt, small crystallites are visible on the sur-

face of the ingot. This suggests that a single crystal could be ’pulled’ from the

melt. This was implemented using the tri-arc furnace. In this method a ro-

tating metal rod was pulled from molten material in the correct stoichiometry.

The rod was pulled at a rate of mm/hour allowing a small, narrow crystal to

grow. This method is highly time intensive and was met with limited success.

A second option for crystal growth, reported in the literature [6], is the

’flux technique’. In this method molten Ho, Pt and indium are allowed to

cool slowly in an excess of indium. As the solution cools, HoPtIn crystallites

form in the indium suspension. The excess indium is then etched away. This

technique demands specialist equipment and expertise, for which a collabora-

tion was initiated between Loughborough University and Emilia Morosan at

Rice University, USA. Morosan was able to supply several high quality single

crystals, which were used for the D3 [40] and D9 [41] experiments.

5.2 HoPtIn Orient Express

The quality of the tri-arc and the indium flux crystals was checked using Orient

Express [42] at the ILL. The tri-arc crystals were of much poorer quality than

those grown in indium flux. Therefore the tri-arc samples were not used in

these experiments. A flux grown crystal of dimensions 0.6mm × 8mm was

selected. A neutron Laue photograph of this crystal is shown in figure 5.1

below.

5.3 The Hot Neutron Diffractometer D9

D9 [41] uses non-polarised neutrons for the characterisation of single crystal

samples. The incident beam is monochromatic and highly focused with a wave-

length λ = 0.8386Å. An area detector analyses the intensity of the Bragg peak

profile for a given (hkl) reflection, which allows the temperature dependence

of the peak-profiles to be accurately measured.
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Figure 5.1: Laue photograph of the single crystal used for D3 and D9 experi-
ments at the ILL.

5.3.1 D9 Experimental Details

The crystal used was a small uniform hexagonal rod, which was mounted

by hand with the c-axis orientated vertically, as seen in figure 5.2. The UB

(orientation) matrix was constructed from several strong reflections confirming

the space group P62m. 872 reflections were measured at at T=74 K. The

system was then cooled to T=2 K as at this temperature an antiferromagnetic

propagation vector has been reported [1] in powder work.

The propagation vectors kkk = [1
2
, 0, 1

2
], kkk = [0, 1

2
, 1

2
], kkk = [0, 0, 3

2
], kkk =

[−1
2

, 1
2
, 3

2
], kkk = [3

2
, 1

2
, 1

2
], kkk = [3

2
, 1

2
, 1

2
] were investigated around the peaks (0

0 1), (0 1 1) and (2 0 0). No extra observable peaks were found with these

parameters. This is unexpected and not consistent with the analysis performed

on the powder samples, reported in the previous chapter.

The temperature dependence of the integrated intensity of the ferromag-

netic peak (2 1 0) was also investigated to determine the magnetic ordering
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temperature. This is reported in subsection 5.3.2.3.

The final day on D9 was spent measuring 774 reflections at T=2 K.The

data was processed using the ILL software ’racer’, which was fine-tuned to give

appropriate integrated intensities for the peak shapes measured.

Figure 5.2: HoPtIn single crystal mounted on D9

5.3.2 D9 HoPtIn Results and Analysis

For both the T=2 K and T=74 K data the Cambridge Crystallographic Sub-

routine Library (CCSL) [43] was used for data reduction and refinement of the

nuclear structure and magnetic phase. The final crystallographic input files

(.cry) are included in appendix B.

5.3.2.1 D9 HoPtIn T=74 K

Of the 872 reflections measured at 74K 18 were rejected due to poor intensity

owing to slight orientation errors. The data was run through the CCSL se-

quence of programs ‘arrnge′ → ‘absmsf ′ → ‘sflsq′. This process grouped

the crystallographically equivalent reflections and fitted the data using a least-

squares method. The best fit gave a χ2 = 14.1 and a R2 = 2.9 when refined

using the modulus of the structure factor. A lower χ2 was possible by imple-
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menting anisotropic temperature factors, rather than the isotropic ones used

in the final fit. These fits were rejected as the anisotropic temperature factors

quickly became non-physical. The final refined parameters for the T=74 K

data are recorded below in table 5.1. Hox and Inx are the refinable atomic

Variable Refined Value Error (±) Units

SCALE 8.466 0.061 -
HoITF 0.025 0.053 -
InITF 0.391 0.098 -
Pt1ITF 0.288 0.051 -
Pt2ITF 0.877 0.079 -

Hox 0.5928 0.00031 [Å]
Inx 0.25982 0.00067 [Å]

MOSC 5.5 2.7 [rad−1]

Table 5.1: The refined values from the CCSL program ‘SFLSQ’. This is for
the T=74 K data.

positions, ITF is the isotropic temperature factor and MOSC is the mosaic

spread for the extinction correction. The domain radius was set to 50[nm].

5.3.2.2 D9 HoPtIn T=2 K

The 774 reflections measured were grouped into 99 sets of equivalent reflec-

tions. These were fitted using the CCSL software ‘maglsq’ which refines both

the magnetic and structural phases. The model implemented used the dipole

approximation 3.4.4 for the form factor of Holmium, and the direction of the

moment was refined. The direction of the moment is defined by two angles,

‘THET ’ and ‘PHI’, as used in a spherical coordinate system. However, CCSL

restricts PHI to 30◦ due to symmetry requirements. The magnitude of the

moment is refined as two free parameters ‘HoMu’ and ‘HoDMu’ due to the

way the dipole approximation is implemented in CCSL. ‘HoMu’ is related to

the spin, S and ’HoDMu’ to the orbital angular momentum L. These can

be summed as MJ = ML + MS to work out the total moment. The refined

parameters are tabulated below, in table 5.2. The best fit with this model gave

a χ2 = 6.31 and a R2 = 2.704
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Variable Refined Value Error ± Units

SCAL 8.18 0.045 -
Ho ITF -0.081 0.055 -
In ITF 0.41 0.11 -
Pt1 ITF 0.146 0.053 -
Pt2 ITF 0.692 0.074 -
THET -1.8 1.5 ◦

Ho MU 7.893 0.067 µB

HoD MU 2.5 0.43 µB

MOSC 2.57 0.82 [rad−1]

Table 5.2: The refined values from the CCSL program ‘MAGLSQ’. This is for
the T=2 K data.

The refined value of THET = −1.8 is unexpectedly small as a canted

magnetic structure, with THET = 25◦ has been reported for a powder inves-

tigation (see section 2.5.2). Several checks were implemented to make sure the

solution was not a false minimum. A second model was implemented where

the moments were confined to the c-axis. The refined values only differed from

the ones above in the third decimal place, with the goodness of fit statistics

being χ2 = 6.27 and a R2 = 2.82. The total moment measured for the best

fit was µHo = 10.4 ± 0.4µB. This agrees with that expected within the error

bar, as the maximal moment is µmax
Ho = 10.0µB. This could indicate that an

incorrect model has been implemented. Symmetry analysis of the irreducible

representations using BasIreps 1 of the kkk = [0, 0, 0] propagation vector shows

that an antiferromagnetic phase is allowed, whilst being restricted to the c-

axis. This magnetic representation is described by a complex phase factor,

which was implemented with CCSL. The program refined the moments of the

second antiferromagnetic phase to zero, and offered no better fit to the one

already obtained.

1Author: Juan Rodŕıguez-Carvajal ( LLB 2004)
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5.3.2.3 D9 HoPtIn Temperature Dependence

The integrated intensity data for the (2 1 0) peak shows the temperature

dependence of the magnetic phase and is plotted in figure 5.3. The onset of

magnetic order is at Tc = 20.4 K. Morosan et al. find Tc = 23.5 K from specific

heat analysis of a single crystal sample, grown in the same way as the one used

here. This is further discussed in the discussion section of this chapter.

Figure 5.3: The temperature dependence of the integrated intensity of the (2 1
0) peak measured on D9. The lines of best fit are shown in red, used to indicate
the ordering temperature, T=20.4 K.

5.4 The Spin Polarised Hot Neutron Diffrac-

tometer D3

D3 uses a continuous beam of polarised neutrons to determine a quantity

known as the flipping ratio, R [44]. This requires the neutrons to have two

polarities, up and down.
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Figure 5.4: D3 high field experimental setup showing spin polarising filters and
guide field. Courtesy of the ILL.

5.4.1 D3 Experimental Details

The sample was successfully mounted on D3 and oriented with a new UB

matrix. The reflections with large structure factors were selected and arranged

to minimise angular movement of the detector between measurements. The

field was ramped to 9 Tesla, and the system set to T=74 K. 226 reflections

were measured, although the measuring time was increased for those with a

lower structure factor to ensure good statistics.

While cooling to 2K in the 9 Tesla field the sample snapped. Inspection of

the crystal revealed that the rod had snapped into two pieces of about 1/3 and

2/3 of the original. The larger piece (5[mm]×0.6[mm]) was remounted. At 2K

a field of 2 Tesla was applied which, according to magnetisation measurements

is sufficient to fully saturate the sample in the c-direction. At T=2 K 267

reflections were measured with good statistics. As the crystal had already

been torn from its mount due to the high magnetic field, it was decided to

only measure in-plane reflections on this experiment. This would not hinder
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the intended magnetisation density analysis as none of the atoms have the

same (x,y) position, so there would be no ambiguity when viewing the a-b

plane.

5.4.2 D3 Results

The 74K and 2K data sets were each grouped into equivalent reflections and a

few select points removed where the sample or detector was slightly misaligned.

For a magnetisation density map reconstruction CCSL could not be used

as it can not yet analyse non-centrosymmetric structures in a standard man-

ner. A non-centrosymmetric structure does not have the inversion symmetry

operator (−x,−y,−z). This means the phase of the structure factor, ϕ is not

restricted to ϕ = 0, π. Rather, ϕ is a non unique complex number. Because

of this the magnetisation density can not be found using the usual fitting and

Fourier transform. To complete this analysis maximum entropy [45] [46] cal-

culations are required. For this a collaboration was initiated with Dr Janusz

Waliszewski at the University of Bialystok, Poland. Using a non-uniform prior

he constructed the magnetisation density for the unit cell.

Figure 5.5 shows a contour plot of the magnetisation density in the z=1
2

plane. The contour map shows that the magnetisation is highly localised on

the RE sites. Full 3d rendering shows some minute oscillations away from the

RE site, but not of the magnitude expected if there were an induced moment

on the Pt site. This indicates that the Pt-RE interactions are negligible. The

magnetisation density of the (001) plane shows no magnetism within the error

bars of the measurement. This means that the Pt-In layer is non magnetic,

and there is no induced magnetism away from the z=1
2

plane. From the mag-

netisation density map it is clear that an appreciable moment on the Pt site,

which is at position (0,0,z) on the diagram, is not present.

The next part of the analysis is to examine the form factor of HoPtIn. For

this SQUID magnetisation data is required for normalisation. The magnetic

characterisation of the single crystal used in the D9 and D3 experiments is

detailed in the next section.
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Figure 5.5: Maximum entropy reconstruction of the magnetisation density
within the unit cell in the ab plane at z = 1

2
. Red=maximum density, blue

the lowest.

5.4.3 HoPtIn SQUID Data

A 2.06 mg section of single crystal was mounted so that the applied field was

parallel to the c-axis. It was inserted into a MPMS 5.5 Tesla SQUID mag-

netometer. Sixteen isotherms were taken for full magnetic characterisation.

Isotherms were specifically taken at T=74 K and T=2 K to extract the mo-

ment to which the form factor should be normalised. For this, linear regression

was performed on the high field region of the Arrott plots. The normalisation

value was then found by solving the equation of the line for the field values used

on the D3 experiment. The linear regression has the form M2 − aM
B
− b = 0

where a and b are the gradient and M -intercept respectively. The fitted vales

of a and b can be read from figures 5.7 (blue diamonds) and 5.6 (green circles)

for the T=2 K and T=74 K isotherm respectively. Using this method, the

T=74 K, B=9 T data should be normalised to M = 4.40µB/Ho, and the T=2

K, B= 2T data to M = 8.85µB/Ho. The complete Arrott plots are shown in

figures 5.7 and 5.6, including the linear regression fits.

The ordered magnetic moment as a function of temperature is show in figure
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5.9. This data is extrapolated from the high-field part of the Arrott plots for

B = 0. The maximal ordered moment at T=2 K is µc = 8.6µB/Ho again

showing a reduced ordered moment. This value is in reasonable agreement

with that measured by Morosan et al. of µc = 7.81µB/Ho [2], which was

also a single crystal measurement. The small discrepancy could be due to

slight misalignment of the small sample in the SQUID magnetometer. This

value is also in approximate agreement with that found by Baran et al. [1]

using neutron powder diffraction. Baran reports µneutron
c = 7.4± 0.2µB/Ho at

T=1.5 K, for the component aligned to the c-axis. All of these measurement

are inconsistent with that found form the D9 analysis using CCSL. At T=2 K

the ordered was refined to be µD9
c = 10.39µB/Ho. Why this single crystal data

should show the full Ho3+ moment, but powder and SQUID magnetisation does

not is intriguing. Clearly further single crystal work is required, to ascertain

if this was a bad measurement, or that there is a physical explanation for this

result.

The magnetisation data can be extrapolated to M = 0 to yield a Curie

temperature of Tc = 31.1 K. This is also shown in figure 5.9. A discussion on

the wide range of reported Curie temperatures is included in the next section.

The inverse susceptibility plotted in figure 5.8 shows a linear Curie-Weiss

law with a paramagnetic Curie temperature of Θ = 28.3 K. The value for the

paramagnetic Curie temperature also widely varies in the literature, however

this result is in approximate agreement with Baran et al. measurement of

Θ = 25 K. [1].
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Figure 5.6: Low temperature Arrott plots and fits for a single crystal of HoPtIn,
oriented with B||c.

Figure 5.7: Arrott plots above Tc and fits for a single crystal of HoPtIn, oriented
with B||c.
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Figure 5.8: The inverse magnetic susceptibility for a single crystal of HoPtIn,
oriented with B||c. Θ = 28.3 is marked with an arrow. The susceptibility
values were obtained from the Arrott plot fits as shown above.

Figure 5.9: The high field magnetisation for a single crystal of HoPtIn, oriented
with B||c. The data was extrapolated from the Arrott plot fits as shown above.
The labels next to the data points show the moment per Ho3+ in µB.
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5.4.4 Summary and Conclusions

The results presented in this chapter show that several of the reported theories

explaining the magnetic effects observed in the REPtIn series may not be

correct.

The magnetisation density map shows a highly localised moment on the

Ho3+ site and no appreciable magnetisation density elsewhere within the unit

cell. This indicates that there is no large induced moment on the Pt site, as

suggested by Stephens et al.[4].

The 2K D9 analysis does not show a canted, reduced magnetic moment, as

reported by Baran et al. [1], and determined in the previous chapter. In fact,

this single crystal analysis shows a Ho3+ moment of µHo = 10.4±0.4µB, aligned

parallel to the c-axis, which is the opposite to the findings of the powder data

analysis. Why there should be a large difference between single crystal data

and powder data is unclear.

It is also evident that the ordering temperature of HoPtIn is very sensitive

to the quality of the sample and the onset criteria used. The temperature

dependence of the (2,1,0) peak gives a Tc = 20.4K whilst the SQUID magneti-

sation data gives Tc = 31K. The values for Tc reported in the literature vary

widely. Some values are shown in table 2.3 below for reference. This could

indicate that the ground state and excited states of the Ho3+ ion are only

separated by a small energy gap, and external factors can strongly influence

the onset of magnetic order.

It is also unclear as to the nature of the second magnetic ordering, seen

in powder neutron work by Baran et al. [1] and clearly seen in specific heat

work done by Stephens et al. [4]. This was previously thought to be the

onset of an in-plane antiferromagnetic phase with a propagation vector kkk =

[1
2
, 0, 1

2
]. However this is not supported by single crystal work, where this vector

was not found. The powder diffraction investigation of HoPtIn and DyPtIn

presented in the previous chapter made a thorough investigation of all possible

commensurate propagation vectors. This research also found kkk = [1
2
, 0, 1

2
]

was the the best candidate, and that the other propagation vectors were not

suitable. Why the kkk = [1
2
, 0, 1

2
] propagation vector should provide a suitable
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Author Experiment Sample Reference Tc [K]

Baran et al. Neutron Powder [1] 27
Stephens et al. Magnetic Specific Heat Powder [4] 33
Morosan et al. Specific Heat SC [2] 23

D.E.Pooley SQUID HHH||c SC I. I.(2,1,0) 20.4

Table 5.3: The range in reported magnetic ordering temperature for HoPtIn.
More detailed information is available in the literature review section. ‘I.
I.(2,1,0)’ is the ordering temperature determined using the integrated inten-
sity of the (2,1,0) peak, as discussed in section 5.3.2.3.

model for powder diffraction data, but is not seen single crystal measurements

is not clear.

The results reported in the chapter have raised some interesting questions.

To help explain these observations, data on the the magnetic ground state of

HoPtIn is desirable. It is possible to calculate the CEF splitting of the 4f

degeneracy from the flipping ratio data taken on D3. This type of analysis

is made more difficult as the structure is non-centrosymmetric. To determine

the anisotropic form factor, and characterise the CEF scheme, the development

of code for data analysis is required. This involves coding the full multipole

expansion of the form factor, as described in section 3.4.3. The code for this

calculation was written and fully tested, and is described in chapter 6.



Chapter 6

Form Factor Analysis for

HoPtIn

6.1 Motivation for Form Factor Analysis

The magnetisation density analysis of HoPtIn showed highly localised Ho3+

moments. As there are no adequate explanations for the ’reduced moment’

observed in the REPtIn series, and an induced moment on the Pt site now

seems to be unlikely, the effects of the crystal field parameters must be investi-

gated. For some compounds, for example where the point symmetry is cubic,

this analysis is well documented and straightforward. However, the m2m point

symmetry of the Ho3+ site means that the full crystal field hamiltonian must

be used, as described in section 2.4.

The standard way to calculate the extent of crystalline electric field (CEF)

splitting is to perform an inelastic neutron scattering experiment. If measure-

ments are made at several temperatures, at the appropriate neutron energy, it

should be possible to extract the energy level scheme [47]. This can then be

used to fit the CEF B-coefficients, determining the CEF splitting. This type

of measurement was performed by Kristin Neumann (private communication)

at several temperatures on HET at ISIS. The neutron spectrum for T=38, 55

and 90 K is plotted below in figure 6.1, in which HoPtIn is in the paramagnetic

phase.
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Figure 6.1: The inelastic spectrum of HoPtIn at incident energy = 30 meV.

T=38, 55 and 90 K. [K. Neumann, private communication]

This spectrum does not contain many peaks, and the information one can

gather is minimal. There is possibly a broadening around the elastic peak and

two further peak at 5.5 meV and 10 meV. As the CEF hamiltonian requires

6 coefficients, and the Ho3+ is in a J = 8 state, there are 136 independent

coefficients in the model for the CEF splitting. Any attempt to fit this model to

such featureless data is impossible. The low temperature data, where HoPtIn

has ordered ferromagnetically, shows more structure than the high temperature

data. This is plotted below in figure 6.2. In this plot there are three peaks

located at 8 meV, 11 meV and 15 meV. However, the peaks at 8 meV and

11 meV are the same peak, split by the internal magnetic field. The addition

of the internal magnetic field further complicates the analysis, and it was not

possible to gain any definite information about the CEF slitting from this data.
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Figure 6.2: The inelastic spectrum of HoPtIn at incident energy = 30 meV.

T=7 K. [K. Neumann, private communication]

As such, polarised neutron measurements on a single crystal sample are the

only way to determine the CEF splitting accurately [48] [49] [50] [51]. However,

as this structure is non-centrosymmetric the magnetic and nuclear structure

factors are complex, thus further complicating this analysis. It should be

noted that once the CEF slitting has been determined from polarised neutron

analysis, the energy splitting should exactly fit this inelastic data.

The key difference between the analysis done so far and the determina-

tion of the CEF splitting is that the multipole expansion discussed in section

3.4.3 must be implemented. This chapter is concerned with the coding of a

refinement programme using the multipole expansion to determine the aM co-

efficients. This includes the extraction of the isotropic form factor for Ho3+

from the flipping ratio data.
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C2v E C2 σv σv′

Γ1 1 1 1 1
Γ2 1 -1 1 -1
Γ3 1 1 -1 -1
Γ4 1 -1 -1 1

Table 6.1: The character table for C2v point symmetry.

6.2 Analysis of Ho3+ in C2v Symmetry

The wavefunction for the multipole expansion of the 4f shell is expressed in

terms of spherical harmonics, Ylm shown below:

Ψ4f =
6∑

l=0

+l∑

m=−l

almYlm(θ, φ) (6.2.1)

The spherical harmonics that contribute to the electronic hamiltonian pre-

serve the symmetry of the point group of the Wyckoff site. This symmetry

can be analysed to greatly simplify the combination of allowed electronic eigen-

functions.

The Ho3+ ion is located on a Wyckoff site with C2v (m2m) symmetry. This

symmetry has 4 possible irreducible representations given in the character table

6.1 below.

The character of the symmetry operation can be used in conjunction with

the spherical harmonics to determine which combinations of the alm are non

zero. Any state |J,mJ > (or combinations of states) with alm = 0 by sym-

metry will not appear in the final electronic hamiltonian. For HoPtIn, for

which J = 8, the free atom has a 17-fold degeneracy, the following results are

obtained.
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Γ1 is generated by 5 eigenstates

(1) =
1√
2
(|8, 8 > +|8,−8 >)

(2) =
1√
2
(|8, 6 > +|8,−6 >)

(3) =
1√
2
(|8, 4 > +|8,−4 >)

(4) =
1√
2
(|8, 2 > +|8,−2 >)

(5) = |8, 0 >

Γ2 is generated by 4 eigenstates

(1) =
1√
2
(|8, 8 > −|8,−8 >)

(2) =
1√
2
(|8, 6 > −|8,−6 >)

(3) =
1√
2
(|8, 4 > −|8,−4 >)

(4) =
1√
2
(|8, 2 > −|8,−2 >)

Γ3 is generated by 4 eigenstates

(1) =
1√
2
(|8, 7 > +|8,−7 >)

(2) =
1√
2
(|8, 5 > +|8,−5 >)

(3) =
1√
2
(|8, 3 > +|8,−3 >)

(4) =
1√
2
(|8, 1 > +|8,−1 >)
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Γ4 is generated by 4 eigenstates

(1) =
1√
2
(|8, 7 > −|8,−7 >)

(2) =
1√
2
(|8, 5 > −|8,−5 >)

(3) =
1√
2
(|8, 3 > −|8,−3 >)

(4) =
1√
2
(|8, 1 > −|8,−1 >)

The mixing of these basis functions with a given Γi remains to be de-

termined experimentally. However, the crystal field can only ad-mix states

within a given Γi, but not between them, as this would be incompatible with

the symmetry of the point group.

The determination of the magnitude of the alm coefficients is facilitated by

using the model described in the next section.

6.3 Implementation and Coding of Flipping

Ratio Analysis

The analysis of the multipole expansion of Ho3+ requires coding of the ex-

pressions introduced in section 3.4.3. This includes spherical harmonics, 3j

symbols, structure factors and refinement procedures to determine the aM co-

efficients. The code was written in Maple 12, 1 as this platform offers robust

mathematical capabilities. It should be noted that this language can be com-

putationally demanding and slow code-execution times were an issue. Based

on our current working assumptions the equations for elastic, coherent, non-

spin-flip scattering from a saturated ferromagnet will be implemented within

the J-manifold. The equations used are taken from section 11.6, in the book

of Lovesey [30].

1 c©Maplesoft, a division of Waterloo Maple Inc. 2010
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The flipping ratio data, R, measured on D3 was of the form:

R(κκκ) =
I+

I−
=

( |FN + FM |
|FN − FM |

)2

(6.3.1)

where FN(κκκ) and FM(κκκ) are the nuclear and magnetic structure factors, re-

spectively, and were introduced in chapter 3. Any common factor to these

expressions, such as temperature or extinction corrections, cancel out.

For HoPtIn the nuclear and magnetic structures are non-centrosymmetric.

This yields complex structure factors. The additional need to identify the

phase factor of the structure factors F(N,M) = |F(N,M)|eiϕ(N,M) , complicates

this analysis considerably. The flipping ratio model can be coded, but not

in a straightforward way due to the complex structure factors. For this the

parameters determined from the D9 analysis have been used. It is then possible

to fit the aM coefficients to the data set weighted by the experimental error

bars. As the flipping ratio data does not have any obvious structure when

plotted, it was desirable to extract the Ho3+ form factor from the flipping

ratio data. Such a process, if possible at all, would eliminate the problem

provided by the non-centrosymmetric structure. The method developed to

achieve this is discussed in the next section along with the results. It may

also be possible to fit the aM coefficients to the extracted form factor, rather

than the flipping ratio. Whether or not this yields a unique result depends

on the structure of the form factor data and the number of aM coefficients

required. Performing the fitting of the aM coefficients in this way offers visual

identification of possible bad data points. It also allows the identification or

any angular dependence of the form factor that is not due to the Ho3+, such

as scattering from elsewhere in the unit cell.

6.3.1 MAPLE Implementation

The Maple implementation of the flipping ratio analysis resulted in over 35

pages of code, all of which is included in appendix C.2 along with notes on the

notation used. As points of interest, the coding of the 3j symbols, the matrix

elements and the extraction of the form factor are discussed next.
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Extraction of the Ho3+ form factor from R. The magnetic structure fac-

tor FM can be cast into the form FM = |mmm|f(κκκ)FM . Here mmm is the magnetic

moment, as obtained for example from SQUID data, f(κκκ) is the atomic form

factor and FM is the structure factor describing the position of the magnetic

Ho3+ ions. FN and FM can be complex, so care must be taken when evaluating

the modulus. To simplify notation |mmm|f(κκκ) is relabel ‘X’, as mmm is a scaling

factor for which normalisation is performed. The flipping ratio becomes:

R(κκκ) =
I+

I−
=

∣∣∣∣
FN + |mmm|f(κκκ)FM

FN − |mmm|f(κκκ)FM

∣∣∣∣
2

=

∣∣∣∣
FN + XFM

FN −XFM

∣∣∣∣
2

(6.3.2)

This equation was solved for X for each reflection using the MAPLE built-in

‘solve’ function. As equation 6.3.2 contains a ‘modulus-squared’, the solution

for X may not be unique. As such, each calculation was individually inspected

for the correct root. The criteria for determining a ‘correct’ root was that the

root should lay on a smooth curve. This is only valid for reflections of the

type (h,k,0), as these reflections are not sensitive to the magnetic anisotropy.

This ‘smooth curve’ should be similar in shape as that seen for the dipole

approximation, which was plotted in figure 3.2, section 3.4.2. As R is a ratio,

any common factors to FN(κκκ) and FM(κκκ), such as a scale factor or temperature

corrections will be cancelled out. As such, the flipping ratio contains the

intrinsic value of the magnetic moment from which the neutron scatters. Using

this method to extract X from the flipping ratio means that X contains the size

of the magnetic moment. This means that as κκκ → 0, the plot of X should tend

to the magnitude of the magnetic moment for the Ho3+ ion. The magnitude

of the magnetic moment for T=74 K and B=9 T has already been determined

from the high field Arrott plot data in section 5.4.3. This was calculated to be

µNorm
c = 4.40µB/Ho. This provides a second criterion for selecting the correct

root, that of 0µB < X < 4.5µB.

Figure 6.3 shows four examples of the calculation for determining X. These

examples illustrate the advantages and disadvantages of using this method.

The four sub-figures in figure 6.3 are labelled (1) through (4) and are discussed
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individually.

Sub-figure (1) shows the calculation for the (6,-3,0) reflection. This is the

‘ideal’ case, in which there is only one root within physical bounds,

0µB < X < 4.5µB. The root was found to be X(6,−3,0) = 2.07µB/Ho. This

plot also shows how the error bar was determined for X. The error on X was

calculated analytically by performing a linear regression to Rcalculated around

the solution for X. This was then extrapolated over the range of the error bars

for the measured values of R to give ±δX. In the plot the linear regression is

shown in brown. The ± bounds for Rmeasured are shown as two green lines.

Sub-figure (2) shows the (5,-2,0) reflection. For this reflection no simple

roots are found. This was the case for 12 reflections, which were removed from

the data set. However, it should be noted that in every instance when a root

was not found, Rcalculated was within the error bar of Rmeasured. This implies

that the reduction of the flipping ratio to the magnetic Ho3+ form factor can

not readily be performed using the present method without the introduction

of further assumptions. The reflections that did not produce a root were inves-

tigated for any systematic pattern, such as a simple κκκ dependence, or on the

size of the Rmeasured values. No such dependence was found. It would appear

that the occurrence of the reflections that do not have a root are effectively

random.

Sub-figure (3) shows the (7,-3,0) reflection. In this plot it is clear to see

that there are two possible roots. Both of these are valid under the criteria

0µB < X < 4.5µB. To determine the correct root here the full data set has

to be plotted. It is only when an overview of the whole data set is given that

this type of outlier can be identified. In this case, to achieve a smooth form

factor the root at X(7,−3,0) = 3.49µB/Ho was used. This plot also shows the

linear regression for error bar determination, which in this case has a negative

gradient.

Sub-figure (4) shows the (9,-1,0) reflection. This reflection was outside of

the criteria 0µB < X < 4.5µB. However, a root was found within the error

bar of the measurement. The value of this root is X(9,−1,0) = −0.16µB/Ho.

This value was included in the data set used. The justification for this is that

any fit performed used the weighting least squares method. As the weights are
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w = 1
δX2 this measurement should be properly accounted for.

The results of this procedure are reported in the next section, where the

extracted form factor is plotted and analysed.

Figure 6.3: Four example plots showing the determination of the solution for

X by inspection. In these plots the double green lines indicate the upper and

lower bounds of the error-bars, δR and δX. Sub-figures 1, 2, 3 and 4 are for

reflections (6,-3,0), (5,-2,0), (7,-3,0) and (9,-1,0), respectively. These plots

are discussed in detail in the main text.
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Coding the 3j symbols. The 3j symbols are defined in section 3.4.3, and

are required to evaluate the matrix elements for magnetic scattering. The

algebraic form of the 3j symbols means that certain precautions must be im-

plemented when programming a function which evaluates them. They are

defined as:

(
j1 j2 j3

m1 m2 m3

)

= (−1)j1−j2−m3

[
(j1 + j2 − j3)!(j2 + j3 − j1)!(j3 + j1 − j2)!

(j1 + j2 + j3 + 1)!

] 1
2

×
∑

κ

(−1)κ

√
(j1 + m1)!(j1 −m1)!(j2 + m2)!

κ!(j1 + j2 − j3 − κ)!(j1 −m1 − κ)!(j2 + m2 − κ)!

×
√

(j2 −m2)!(j3 + m3)!(j3 −m3)!

(j3 − j2 + m1 + κ)!(j3 − j1 −m2 + κ)!
(6.3.3)

The 3j symbols have to be coded in such a way as to never attempt to evaluate

a negative factorial. The first terms containing factorials in equation 6.3.3 are:

(j1 + j2 − j3)!︸ ︷︷ ︸
(1)

(j2 + j3 − j1)!︸ ︷︷ ︸
(2)

(j3 + j1 − j2)!︸ ︷︷ ︸
(3)

which, in order to avoid a negative factorial, require the conditions:

(1) j1 + j2 ≥ j3

(2) j2 + j3 ≥ j1

(3) j3 + j1 ≥ j2

These inequalities are known as the ’triangle condition’ as j1,2,3 are restricted

to certain values. The triangle condition is written as a delta function,

∆(j1, j2, j3) =

{
1

0

for a triangle of integral perimeter

otherwise

}
(6.3.4)
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6.3.4 was implemented in the Maple code as a series of IF statements. On

examination of the second Clebsch Gorden coefficient in equation 3.4.14, it

can be seen that gives j1 = K ′′, j2 = K ′, j3 = 1. Condition (3) is violated for

the (K ′′, K ′) pairs (0, 3)(0, 5)(0, 7)(2, 5)(2, 7) and Condition (2) for the pairs

(4, 1)(4, 7)(6, 1)(6, 3)(8, 1)(8, 3)(8, 5). As such, a set of IF statements within

the loop over K’ is advantageous to reduce computation demands. These are

constructed so the code is only executed, if the triangle conditions are met.

if (K’’+K’ >=1) and (K’+1 >=K’’) and (1+K’’ >=K’) then

{execute code}

end if;

Further to these triangular conditions, the criteria for addition of the m

quantum numbers must be implemented. m3 is the sum of the two angular

momenta being coupled, so m3 = m1+m2. This condition can be implemented

for the second Clebsch Gorden coefficient as q = 0, meaning Q′′+Q′ must equal

zero. This is clearly only true when Q′′ = −Q′ or Q′ = −Q′′. This can be

implemented in the loop over Q′ as

if (Q’+Q’’=0) then

{execute code}

end if;

Testing the scattering in the forward direction. The multipole expan-

sion describes the scattering between two given |J,mJ > states expressed as

matrix elements of the type < J,mJ |Q̂⊥|J ′,m′
J >. As discussed in section

3.4.4 the scattering in the forward direction is proportional to the moment of

this state. For elastic scattering |J,mJ >= |J ′,m′
J > so the matrix elements

should be proportional to the mJ value for that state. For Holmium, J = 8

giving 17 possible mJ values. These were plotted as a function of scattering

vector and are shown below in figure 6.4. It is clear to see that the scattering

contribution, as κκκ → 0, is proportional to the magnetic moment of the given

state. The maximal ordered moment from matrix element < 8, 8|Q̂⊥|8, 8 > is

10µB as expected.
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Figure 6.4: The sin(θ)/λ of the multipole matrix elements. The magnitude of
the scattering is proportional to the moment of the scattering state.

6.3.2 Flipping Ratio Analysis Results

The 74K data for the D3 experiment is reported below. As previously discussed

this data was taken for scattering within the basal plane, so all Miller indices

were of the form (h, k, 0). This means that of the possible 60 spherical harmonic

functions, Y K′′
Q′′ , used in the full multipole expansion only those will be included

that do not have a cos(θ) multiplier. This is due to the geometry of basal plane

scattering where θ = 90◦. The consequence of this is that the Ho3+ form factor

is isotropic, and as such a smooth, continuous function is expected. The D3

data presented below is used as a test for the code written.

6.3.2.1 Flipping Ratio Model

Fitting the flipping ratio data requires the refinement of the 16 aM coefficients.

This proved problematic for the least-squares refinement, as there were many

local minima all with similar χ2 values. Because of this, it was not possible

to pick one unique aM -scheme over another, and thereby one irreducible rep-
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resentation. Plotted below in figure 6.5 is one of the best fits obtained for the

flipping ratio at T=74 K. It is clear to see that the lower R-value points are

fitted well. Nearly all measured points (red) below R=5 are well fitted within

the error bar. This is not true for those reflections with higher R value where

several points are poorly fitted. There does not seem to be any systematic

reason for this, such as a simple κκκ dependance. Because of these difficulties

a new approach had to be adopted. The aim of this approach was to extract

the Ho3+ form factor from the flipping ratio data. For this the method intro-

duced and described in section 6.3.1 was used, in which a solution for ‘X’ is

determined.

Figure 6.5: Plot of the measured (red circles) and calculated (green diamonds)
flipping ratio values, R, at 74K. The green diamonds were calculated using
‘Γ1 +Γ2’ from table 6.2 below. The experimental error bars are shown as black
lines.
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mJ -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 χ2

Γ1 +Γ2 - 0.33 - 0.65 - 0.22 - 0.65 - - - - - - - - - 30.8
Γ3 +Γ4 - - 0.24 - 0.81 - 0.54 - - - - - - - - - - 41.2

Table 6.2: The normalised values for the am coefficients used to produce figures
6.6 and 6.7. These are constructed to be consistent with the possible wavefunc-
tions found in section 6.2 by considering the IR of the point group.

6.3.2.2 Multipole Form Factor Analysis

The form factor is assumed to be that of the Ho3+ site only. The solution

for X was found by inspection of each data point, as discussed previously. It

should be noted that some data points had no solution within physical values,

and some had no solution at all. However, this method of solving for ‘X’ is

advantageous as it allows the form factor to be extracted despite the problems

caused by the non-centrosymmetric structure. That not all reflections could

be included may indicate that the model is not fully appropriate, but that it is

a good first approximation. Further to this, once the form factor is calculated

from this reduced data set, the fitted model can be used to calculate the flipping

ratio for the full data set. In the following form factor analysis 15 data points

out of 50 were not included.

The contribution of each |J,mJ > state to the scattered intensity is de-

scribed by one aM coefficient only. The optimal coefficients obtained by fitting

to the form factor data are shown below. As an example a second aM -scheme

constructed to be consistent with a different irreducible representation is tab-

ulated. The difference between the goodness of fit between Γ1 +Γ2 and Γ3 +Γ4

(derived in section 6.2) is small. The two different form factors produced with

these sets of aM coefficients are plotted in 6.6 and 6.7. The form factor has

been normalised to the magnetisation value taken from the 74 K isotherm at

high fields, which was plotted in section 5.4.3 in figure 5.7.
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Figure 6.6: Plot of the Ho3+ form factor extrapolated from the measured flipping
ratio data. The model (red diamond) was calculated using ‘Γ1 + Γ2’ from the
table. The measured form factor (blue) shows the experimental error bars as
black lines.

Figure 6.7: This model (red diamond) was calculated using ‘Γ3 + Γ4’ from the
table and is shown to demonstrate the difficulty in determining the correct set
of aM coefficients.
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6.3.2.3 Approximation for Form Factor Analysis

The analysis of the Ho3+ form factor using the full multipole expansion did not

provide a unique solution. This is because the least-squares fit of the aM co-

efficients is an under-determined problem. To further the form factor analysis

a second model was developed that has fewer independent parameters. This

model is reported in a book chapter by O. Moze [47]. This simplified model

groups together all the coefficients appearing in form of the radial functions,

< jn >, seen in the multipole expansion to just three. This new model has the

form:

X = |µµµc|(f(κκκ) = |µµµc| < j0(sss) > +f2 < j2(sss) > +f4 < j4(sss) > +f6 < j6(sss) >)

(6.3.5)

where s = sin(θ)
λ

and f2, f4, f6 are the model parameters. µµµc is the moment

used for normalisation calculated earlier to be µNorm
c = 4.40µB/Ho. Another

advantage of this model is that it is automatically normalised to the correct

value as < j2(sss) >,< j4(sss) > and < j6(sss) > all equal zero at sin(θ)
λ

= 0.

This model does not give any information on the CEF parameters, or the

magnetic anisotropy. However, it does provides the weight, with which the

individual radial functions contribute to the magnetic Ho3+ form factor. Using

the ‘NonlinearFit’ routine within MAPLE the three coefficients were refined

to be:

f2 = -9.136 ±0.183

f3 = 72.078 ±3.162

f4 = -142.3778 ±10.865

The fit produced with this model is displayed below in figure 6.8. For this

fit, χ2 = 2.9. Overall the fit seems to be a good approximation to the data

set. The points with the small error bars are fitted well, and the general trend

is well described. It can bee seen that the experimental data is very close to

the normalisation value as sin(θ)
λ

→ 0.

Using this model for the form factor, the flipping ratio can be calculated

and compared to the experimental data. A plot of this is shown below for
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Figure 6.8: This model (red diamonds and red line) was calculated using the
coefficients f2, f4, f6 and the simple model described above. The experimental
data is shown in blue. The green circle indicates the normalisation value,
µNorm

c = 4.40µB/Ho.

the T=74 K data in figure 6.9. The data points with a R value less than

R=5 are well fitted within the error bar. This is not true for those reflections

with higher R values, where there are several points in disagreement. This

disagreement is surprising, as the form factor should produce a good model.

To try to determine the reason behind the badly modelled data points, the

κκκ dependence was investigated. This investigation did not reveal any angular

dependence for the badly fitted data points. The data used to produce figure

6.9 is tabulated in appendix D. This table also includes the difference between

the measured and observed flipping ratio data, the modulus of the nuclear and

magnetic structure factors and the calculated form factor for completeness.
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Figure 6.9: The flipping ratio calculated using the model form factor. The red
dots are the measured values with error bars.

6.3.3 Summary and Conclusions

The code for analysing anisotropic form factors has been written and tested.

This involves the calculation of the multipole expansion of the form factor, and

the use of least-squares fitting routines. The fitting of the flipping ratio data

did not yield a conclusive and unique crystal field configuration. To continue

the analysis a new method for the calculation of the form factor from the

flipping ratio measurements was developed. This analysis allowed the sin(θ)
λ

dependence of the Ho3+ form factor to be plotted.

Further attempts to fit the full multipole expansion to the Ho3+ form factor

were non-conclusive. Because of this, the model was further simplified to be a

function of three independent coefficients. This provided a good model fitting

the experimental data well. The best fit had a χ2 = 2.9. This model showed

that the form factor calculated from the flipping ratio agrees well with the

magnetic moment calculated from the high field Arrott plots. The Ho3+ model

form factor was then used to re-examine the flipping ratio data. This was found

to model the data points with a low flipping ratio well. Those with a higher

value (larger than 5) were poorly fitted. The reason for this is unknown and
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further analysis is required.

It should be noted that a complete data set at T=2 K was taken. the

analysis of this data is further complicated by the internal field of the mag-

netic order. This analysis can only be completed satisfactorily once the CEF

splitting has been fully characterised.



Chapter 7

Conclusions

At the start of this PhD research there were several physical questions for the

REPtIn series, for which no adequate answer had been found. These were listed

succinctly in the opening chapter of this thesis in section 2.5.4. The analysis of

neutron scattering data from samples of HoPtIn and DyPtIn allowed several

conclusions to be drawn, which are discussed next.

7.1 DyPtIn

The temperature dependence of the lattice parameters was determined, along

with the atomic positions. This showed that the cell expands along a whilst

contracting along c. This results in a constant cell volume within the error

bars. This indicates that effects such as magnetostriction are present, but

probably not significant. The temperature dependant data clearly showed a

two-step magnetic transition for DyPtIn. The nature of this magnetic order

was determined using symmetry analysis using two independent propagation

vectors. There were found to be kkk1 = [0, 0, 0], and kkk2 = [1
2
, 0, 1

2
]. The first

magnetic phase was determined to order at Tc = 28.1± 0.3 K, where the mo-

ments are restricted to the c-axis. The second magnetic phase orders below

Tab = 18 ± 2 K, with the moments confined to the ab-plane. The nature of

the magnetic order in this compound is different to that reported by Baran et

al. [1]. Their magnetic structure is inconsistent with the irreducible represen-
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tations of the C2v of the point group.

The analysis further confirmed the general trend of a reduced magnetic

moment seen in many of the REPtIn alloys. The ordered magnetic moment

was found to be µav
total = 7.90 ± 0.09µB/Dy at T=0 K, which is much less

than the theoretical ordered moment for Dy3+, µtheory = 10µB/Dy. Analysis

of the magnitude of the magnetic moment in the c-direction clearly indicates

the two-step magnetic ordering.

7.2 HoPtIn

Powder sample neutron diffraction analysis showed that HoPtIn orders with

the same magnetic structure as DyPtIn at T=2 K. The diffraction pattern

refinement shows the magnetic moment to be reduced. The value deter-

mine was µAv
Total = 4.04 ± 0.08µB/Ho, which is much less than predicted,

µMax
Theory = 10µB/Ho. A reduced magnetic moment has also been reported

by Baran et al. [1] of µBaran
Total = 8.2µB/Ho. The reduction found in this work

is substantially more than that reported by Baran et al. This was attributed

to the impurity phases identified in the HoPtIn powder sample, and requires

further investigation with better quality samples.

Single crystal data analysis showed the magnetic moment of HoPtIn to

be µHo = 10.4 ± 0.4µB and orientated parallel to the c-axis at T=2K. This

is inconsistent with the analysis of powder-data reported here and by Baran

et al. [1]. The reason for this is unclear, and further work on single crystal

sample is desirable to ascertain the validity of this result.

The single crystal investigation also failed to find the propagation vector

determined both in this work and by Baran et al. [1]. A search for the

propagation vector kkk2 = [1
2
, 0, 1

2
] did not yield any positive results. That the

single crystal analysis should be inconsistent with the powder data analysis is

intriguing, and a physical explanation is yet to be determined.

Using the flipping ratio data collected a magnetisation density map was

constructed using Maximum Entropy calculations. This shows that there the

magnetism is highly localised to the Ho3+ site, and nowhere else in the cell.

This is surprising as the the Ho-Pt structure of face-sharing equilateral tri-
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angles and pyramids could have induced a magnetic moment on the Pt site.

However, this type of induced moment was not observed in the analysis.

As the magnetisation of HoPtIn is highly localised to the Ho3+ site it was

possible to extract the Ho3+ form factor from the flipping ratio data. The

initial attempts to fit the full multipole expansion to the flipping ratio data

were unsuccessful. This was because there were too many free parameters in

the multipole model, which required 17 coefficients to be determined. As the

flipping ratio data has no clear structure when plotted, it is desirable to extract

the form factor from this data. For this, a new method of data reduction was

developed, whereby the problem inherent to non-centrosymmetric structures

is overcome. This analysis required inspection of each reflection, to determine

the correct solution for the problem:

R(κκκ)measured =

∣∣∣∣
FN + XFM

FN −XFM

∣∣∣∣
2

for X. In this equation X=µµµcf(κκκ) and as such inherently contains the mag-

nitude of the magnetic moment perpendicular to the scattering vector. The

plots of the Ho3+ form factor against sin(θ)/λ showed that at low angles the

value of X is within the the error bar of the value determined from high field

Arrott plots. This value was determined to be µArrott
c = 4.40µB/Ho. That

the scattering in the forward direction is equal to the moment extracted from

the high field magnetic isotherms is an excellent result. It confirms that this

method of data analysis is valid, and it allows the extraction of the form factor

from data taken for a non-centrosymmetric crystal. It further supports the

magnetisation density analysis, that most of the magnetic moment is localised

on the Ho3+ site.

Attempts to fit the multipole expansion to the extracted form factor were

also problematic. It was again found that the problem was under-determined,

and that no unique solution could be found. To further the data analysis, a

simplified form factor model was developed. In this model the coefficients of

the radial functions seen in the multipole expansion were grouped together,

so that each term had only one coefficient for each < jn(κκκ) >. This model

provided an excellent fit to the form factor, as can be seen in figure 6.8. The
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model form factor was then used to re-model the flipping ratio data. The fit

between experimental data and model data points is in good agreement for

the data points with lower R-values. However, the points with R > 5 seem to

be poorly fitted. A high R-value means that FN ' FM , and that R is very

sensitive to slight changes in the structure factors.

7.3 Implications for the PtREIn series

The research presented here has made a contribution to the understanding of

the REPtIn series. The powder data analysis has determined the nature of

the two-step magnetic ordering in DyPtIn. This indicated that the ‘reduced

moment’ seen in this compound is related to the second magnetic phase, that

is characterised by the propagation vector kkk2 = [1
2
, 0, 1

2
].

The magnetic density analysis has shown that the magnetisation is localised

on the Ho3+ site. This research did not validate the claim by Stephens et al.

[4] where an induced moment on the platinum 1b site is required.

The model developed for form factor extraction from the flipping ratio can

be used for other members of the REPtIn series. This is of importance as stan-

dard data reduction software, such as CCSL, does not offer this functionality,

due to the crystal structure being non-centrosymmetric. The data analysis

code written as part of this thesis can be used with any of the REPtIn com-

pounds, with only minor modifications. Other compounds, such as TmPtIn

would have fewer coefficients in the multiple model, as J=6. This would re-

duce the fitting problem, possibly allowing a unique solution for the crystal

field parameters to be determined.

7.4 Further Work

The intension of the author was to complete the anisotropic form factor deter-

mination by returning to D3. However, this was not possible given the time

constraints.

As such, this analysis requires completion, whereby the anisotropic form
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factor is uniquely determined. From this the CEF parameters can be obtained,

and used to model the inelastic neutron scattering data.

It would also be of interest to perform a similar single crystal experiment

to that completed here on several other REPtIn compounds. From this, it

should be possible to explain why the magnetic ordering switches from anti-

ferromagnetic to ferromagnetic across the REPtIn series.
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Appendix A

DyPtIn *.pcr File for FullProf

The control file (.pcr) for FullProf is presented below. This file was used to
fit DyPtIn at λ = 1.87Å and T=2 K. There are three phases, the nuclear and
the two magnetic phases. The ‘C’ coefficients of the basis vectors describe the
magnitude of the magnetic moment. They are not necessarily in units of µB,
as not all the basis vectors are unit vectors.

A.1 DyPtIn T=2 K, λ = 1.87Å

COMM DyPtIn 2008 T=2K
! Current global Chi2 (Bragg contrib.) = 6.866
! Files => DAT-file: dyptin_2k, PCR-file: dyptin_2k
!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut

1 5 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 1
!
!Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 NLI Prf Ins Rpa Sym Hkl Fou Sho Ana

0 0 1 0 1 0 4 0 0 -3 10 1 1 0 0 1 0
!
! lambda1 Lambda2 Ratio Bkpos Wdt Cthm muR AsyLim Rpolarz ->Patt# 1
1.870000 1.870000 1.0000 73.000 4.0000 0.0000 -4.9000 48.00 0.0000

!
!NCY Eps R_at R_an R_pr R_gl Thmin Step Thmax PSD Sent0
20 0.01 0.50 0.50 0.50 0.50 0.8413 0.100131 153.5413 0.000 0.000

!
! Excluded regions (LowT HighT) for Pattern# 1

0.00 12.00
67.75 68.20

100.00 180.50
!
!

23 !Number of refined parameters
!
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! Zero Code SyCos Code SySin Code Lambda Code MORE ->Patt# 1
0.32857 0.0 0.00000 0.0 0.00000 0.0 0.000000 0.00 0

! Background coefficients/codes for Pattern# 1
6281.7 -406.07 4522.0 8766.6 -10048. -13370.

41.000 51.000 61.000 71.000 21.000 31.000
!-------------------------------------------------------------------------------
! Data for PHASE number: 1 ==> Current R_Bragg for Pattern# 1: 0.00
!-------------------------------------------------------------------------------
DyPtIn_neuc
!
!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth ATZ Nvk Npr More

4 0 0 0.0 0.0 1.0 0 0 0 0 0 1417.150 0 5 0
!
P -6 2 m <--Space group symbol
!Atom Typ X Y Z Biso Occ In Fin N_t Spc /Codes
Pt PT 0.00000 0.00000 0.50000 1.65369 0.08333 0 0 0 0

0.00 0.00 0.00 151.00 0.00
Pt PT 0.33333 0.66667 0.00000 1.40977 0.16666 0 0 0 0

0.00 0.00 0.00 161.00 0.00
Dy DY 0.59410 0.00000 0.50000 1.15361 0.25000 0 0 0 0

131.00 0.00 0.00 171.00 0.00
In IN 0.25994 0.00000 0.00000 2.01386 0.25000 0 0 0 0

141.00 0.00 0.00 181.00 0.00
!-------> Profile Parameters for Pattern # 1
! Scale Shape1 Bov Str1 Str2 Str3 Strain-Model

180.05 0.13782 0.00000 0.00000 0.00000 0.00000 0
11.00000 0.000 0.000 0.000 0.000 0.000

! U V W X Y GauSiz LorSiz Size-Model
2.090157 -0.566446 2.249087 0.000000 0.000000 -1.790086 0.000000 0

81.000 111.000 121.000 0.000 0.000 201.000 0.000
! a b c alpha beta gamma #Cell Info

7.569796 7.569796 3.838067 90.000000 90.000000 120.000000
91.00000 91.00000 101.00000 0.00000 0.00000 91.00000

! Pref1 Pref2 Asy1 Asy2 Asy3 Asy4
0.02496 0.00000 0.18544 0.03006 0.00000 0.00000

0.00 0.00 0.00 0.00 0.00 0.00
!-------------------------------------------------------------------------------
! Data for PHASE number: 2 ==> Current R_Bragg for Pattern# 1: 0.00
!-------------------------------------------------------------------------------
DyPtIn MAG BasIreps G3 k=000 FERRO REAL
!
!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth ATZ Nvk Npr More

1 0 0 0.0 0.0 1.0 1 -1 -2 0 0 0.000 1 1 0
!
P -1 <--Space group symbol for hkl generation
! Nsym Cen Laue Ireps N_Bas

3 1 1 -1 1
! Real(0)-Imaginary(1) indicator for Ci

0
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!
SYMM x,y,z
BASR 0 0 1
BASI 0 0 0
SYMM -y,x-y,z
BASR 0 0 1
BASI 0 0 0
SYMM -x+y,-x,z
BASR 0 0 1
BASI 0 0 0
!
!Atom Typ Mag Vek X Y Z Biso Occ C1 C2 C3
! C4 C5 C6 C7 C8 C9 MagPh
MDY MDY3 1 0 0.59410 0.00000 0.50000 1.15361 1.00000 7.320 0.000 0.000

131.00 0.00 0.00 171.00 0.00 231.00 0.00 0.00
0.000 0.000 0.000 0.000 0.000 0.000 0.00000
0.00 0.00 0.00 0.00 0.00 0.00 0.00

!-------> Profile Parameters for Pattern # 1
! Scale Shape1 Bov Str1 Str2 Str3 Strain-Model

180.05 0.13782 0.00000 0.00000 0.00000 0.00000 0
11.00000 0.000 0.000 0.000 0.000 0.000

! U V W X Y GauSiz LorSiz Size-Model
2.090157 -0.566446 2.249087 0.000000 0.000000 -1.790086 0.000000 0

81.000 111.000 121.000 0.000 0.000 201.000 0.000
! a b c alpha beta gamma #Cell Info

7.569796 7.569796 3.838067 90.000000 90.000000 120.000000
91.00000 91.00000 101.00000 0.00000 0.00000 91.00000

! Pref1 Pref2 Asy1 Asy2 Asy3 Asy4
0.02496 0.00000 0.18544 0.03006 0.00000 0.00000

0.00 0.00 0.00 0.00 0.00 0.00
! Propagation vectors:

0.0000000 0.0000000 0.0000000 Propagation Vector 1
0.000000 0.000000 0.000000

!-------------------------------------------------------------------------------
! Data for PHASE number: 3 ==> Current R_Bragg for Pattern# 1: 0.00
!-------------------------------------------------------------------------------
DyPtIn MAG BasIreps G3G1 k=505 ANTI
!
!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth ATZ Nvk Npr More

2 0 0 0.0 0.0 1.0 1 -1 -2 0 0 0.000 1 1 0
!
P -1 <--Space group symbol for hkl generation
! Nsym Cen Laue Ireps N_Bas

2 1 1 -2 2
! Real(0)-Imaginary(1) indicator for Ci

0 0
!
SYMM x,y,z
BASR 1 0 0 0 1 0
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BASI 0 0 0 0 0 0
BASR 2 1 0 0 0 0
BASI 0 0 0 0 0 0
SYMM -x,-x+y,-z
BASR 1 1 0 0 -1 0
BASI 0 0 0 0 0 0
BASR 0 0 0 0 0 0
BASI 0 0 0 0 0 0
!
!Atom Typ Mag Vek X Y Z Biso Occ C1 C2 C3
! C4 C5 C6 C7 C8 C9 MagPh
MDY2 MDY3 1 0 0.59410 0.00000 0.50000 1.15361 4.00000 -1.510 -2.695 0.000

131.00 0.00 0.00 171.00 0.00 211.00 191.00 0.00
0.000 0.000 0.000 0.000 0.000 0.000 0.00000
0.00 0.00 0.00 0.00 0.00 0.00 0.00

MDY3 MDY3 2 0 0.00000 0.59410 0.50000 1.15361 2.00000 1.527 0.000 0.000
0.00 131.00 0.00 171.00 0.00 221.00 0.00 0.00

0.000 0.000 0.000 0.000 0.000 0.000 0.00000
0.00 0.00 0.00 0.00 0.00 0.00 0.00

!-------> Profile Parameters for Pattern # 1
! Scale Shape1 Bov Str1 Str2 Str3 Strain-Model

180.05 0.13782 0.00000 0.00000 0.00000 0.00000 0
11.00000 0.000 0.000 0.000 0.000 0.000

! U V W X Y GauSiz LorSiz Size-Model
2.090157 -0.566446 2.249087 0.000000 0.000000 -1.790086 0.000000 0

81.000 111.000 121.000 0.000 0.000 201.000 0.000
! a b c alpha beta gamma #Cell Info

7.569796 7.569796 3.838067 90.000000 90.000000 120.000000
91.00000 91.00000 101.00000 0.00000 0.00000 91.00000

! Pref1 Pref2 Asy1 Asy2 Asy3 Asy4
0.02496 0.00000 0.18544 0.03006 0.00000 0.00000

0.00 0.00 0.00 0.00 0.00 0.00
! Propagation vectors:

0.5000000 0.0000000 0.5000000 Propagation Vector 1
0.000000 0.000000 0.000000

! 2Th1/TOF1 2Th2/TOF2 Pattern # 1
12.000 100.000 1
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CCSL *.cry Files

B.1 D9 T=74 K .cry file

N HoPtIn

Y DEP

Z------------------------------------------------------

Y UB matrix and cell from DEP checked from logs dec 2008

Y UB matrix has to be UMBL cards as directly from D9

Z------------------------------------------------------

Z Lattice constants

Z------------------------------------------------------

C 7.5945 7.5945 3.8216 90.0000 90.0000 120.00

Z------------------------------------------------------

Z Instrument Parameters and UB matrix

Z------------------------------------------------------

D WVLN 0.8386

D GEOM 6

D L/R -1

D UMBL -0.09895 -0.15051 -0.00705

D UMBL 0.11671 -0.02736 -0.00035

D UMBL -0.00250 -0.00409 0.26157

Z------------------------------------------------------

Z space group

Z ---------------------------------------------------------------

Z Hexagonal P-62m. SG generated by symm.op no 2 & 7

S -y, x-y, -z

S x-y, -y, -z

Z ---------------------------------------------------------------
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Z atomic positions (4th number is ITF, last number is SITE occupation)

Z ---------------------------------------------------------------

A Ho 0.59280 0.00000 0.50000 0.02452

A In 0.25982 0.00000 0.00000 0.39131

A Pt1 0.33333 0.66667 0.00000 0.28766

A Pt2 0.00000 0.00000 0.50000 0.87676

Z ---------------------------------------------------------------

Z nuclear scattering factors

Z ---------------------------------------------------------------

F Ho 1 0.80100

F In 1 0.40650

F In -1 0 -0.00539

F Pt 1 0.96000

Z ---------------------------------------------------------------

Z crystal shape for absorption and extinction

Z ---------------------------------------------------------------

G FACE 1.0 0.0 0.0 0.6

G FACE -1.0 0.0 0.0 0.6

G FACE 0.0 1.0 0.0 0.6

G FACE 0.0 -1.0 0.0 0.6

G FACE 1.0 -1.0 0.0 0.6

G FACE -1.0 1.0 0.0 0.6

G FACE 0.0 0.0 1.0 6.0

G FACE 0.0 0.0 -1.0 6.0

G MODE 1

G PNTS 10 10 10

G MU 0.002

Z ---------------------------------------------------------------

Z extinction (DOMR in nm, MOSC in 1/rad) and absorption (in mm-1)

Z ---------------------------------------------------------------

E 1 50.0000 5.5497

Z --------------------LSQ fitting---------------------------------

I REJ 1

I DTYP 3

I OUTP 100

I NCYC 30 PRIN 3

I CONV 0.00001

L MODE 3

L REFI 1

L WGHT 2
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L SCAL 8.46606

L VARY ALL ITF

L FIX DOMR

L VARY MOSC

L FIX ALL BIJ

B.2 D9 T=2 K .cry file

N HoPtIn

Y DEP working LBORO

Z------------------------------------------------------

Y UB matrix and cell from DEP checked from logs dec 2008

Y UB matrix has to be UMBL cards as directly from D9

Z------------------------------------------------------

Z Lattice constants

Z------------------------------------------------------

C 7.5945 7.5945 3.8216 90.0000 90.0000 120.00

Z------------------------------------------------------

Z Instrument Parameters and UB matrix

Z------------------------------------------------------

D WVLN 0.8386

D GEOM 6

D L/R -1

D UMBL -0.09895 -0.15051 -0.00705

D UMBL 0.11671 -0.02736 -0.00035

D UMBL -0.00250 -0.00409 0.26157

Z---------------------------------------------------------

Z space group---------------------------------------------

Z ---------------------------------------------------------------

Z Hexagonal P-62m. SG generated by symm.op no 2 & 7

S -y, x-y, -z

S x-y, -y, -z

Z ---------------------------------------------------------------

Z atomic positions (4th number is ITF, last number is SITE occupation)

Z ---------------------------------------------------------------

A Ho 0.59303 0.00000 0.50000 -0.08146

A HoD 0.59303 0.00000 0.50000 -0.08146

A In 0.26077 0.00000 0.00000 0.41242

A Pt1 0.33333 0.66667 0.00000 0.14643
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A Pt2 0.00000 0.00000 0.50000 0.69158

Z ---------------------------------------------------------------

Z nuclear scattering factors

Z ---------------------------------------------------------------

F Ho 1 0.80100

F HoD 1 0.00000

F In 1 0.40650

F In -1 0 -0.00539

F Pt 1 0.96000

F Hoj0 2 0.0566 18.3176 0.3365 7.6880 0.6317 2.9427 -0.0248

F Hoj2 4 0.2188 18.5157 1.0240 6.7070 0.9251 2.1614 0.0268

Z ---------------------------------------------------------------

Z Q card for Magnetic info. HoM is form factor for Ho

Z ---------------------------------------------------------------

Q Hoj0 FORM Ho

Q Hoj2 FORM HoD

Q STYP ANTI

Q PROP 0.0000 0.0000 0.0000

Q Ho MU 7.8931

Q HoD MU 2.5045

Z Atom label, THET, PHI, angle of MU to CCSL axis--

Q Ho SDIR -1.8139 -30.0000

Q HoD SDIR -1.8139 -30.0000

Z--- Magnetic Symmetry Descibed on MSYM and NSYM Cards-------

Q MSYM 3 1 12 -1

Q NSYM 4 1 0 0 0 1 0 0 0 1

Z ---------------------------------------------------------------

Z crystal shape for absorption and extinction

Z ---------------------------------------------------------------

G FACE 1.0 0.0 0.0 0.6

G FACE -1.0 0.0 0.0 0.6

G FACE 0.0 1.0 0.0 0.6

G FACE 0.0 -1.0 0.0 0.6

G FACE 1.0 -1.0 0.0 0.6

G FACE -1.0 1.0 0.0 0.6

G FACE 0.0 0.0 1.0 6.0

G FACE 0.0 0.0 -1.0 6.0

G MODE 1

G PNTS 10 10 10

G MU 0.002
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Z ---------------------------------------------------------------

Z extinction (DOMR in nm, MOSC in 1/rad) and absorption (in mm-1)

Z ---------------------------------------------------------------

E 1 50.0000 2.5691

Z --------------------LSQ fitting Setup--------------------

I DTYP 3

ZI OUTP 100

I NCYC 10 PRIN 3

I CONV 0.0001

L MODE 3

L REFI 2

L WGHT 2

Z --------------------LSQ fitting refine--------------------

L SCAL 8.18001

L VARY ALL ITF

L FIX DOMR

L VARY MOSC

L VARY Ho MU

L VARY HoD MU

L VARY Ho THET

L VARY Ho THET

L RELA 1 1 Ho ITF 1 HoD ITF

L RELA 1 1 Ho THET 1 HoD THET

X SYMB Ho 0.701 0.598 0.996 0.199 1.000 0.135 0.170

X SYMB In 0.669 0.199 0.598 0.398

X SYMB Pt1 0.581 0.996 0.398 0.598
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Form Factor Analysis Code

The Maple code written to least-squares-fit the anisotropic form factor is in-
cluded below.

C.1 Coding Information and Notation

The flipping ratio, R, is defined as:

R(κκκ) =
I+

I−
=

( |FN + FM |
|FN − FM |

)2

(C.1.1)

where FN(κκκ) and FM(κκκ) have been coded as:

FN(κκκ) =
∑

atoms

bae
iκ·raκ·raκ·ra

=
∑
Ho

bHoe
iκ·rHoκ·rHoκ·rHo +

∑
Pt

bPte
iκ·rPtκ·rPtκ·rPt +

∑
In

bIne
iκ·rInκ·rInκ·rIn

= bHo

(
e2πi(h·xHo1

+k·yHo1
) + e2πi(h·xHo2

+k·yHo2
) + e2πi(h·xHo3

+k·yHo3
)
)

+ bPt

(
e2πi(h·xPt1

+k·yPt1
) + e2πi(h·xPt2

+k·yPt2
) + e2πi(h·xPt3

+k·yPt3
)
)

+ bIn

(
e2πi(h·xIn1

+k·yIn1
) + e2πi(h·xIn2

+k·yIn2
) + e2πi(h·xIn3

+k·yIn3
)
)

(C.1.2)

FM(κκκ), the magnetic structure factor is coded as:
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FM(κκκ) =
∑

Magnetic atoms

f(κκκ)eiκ·raκ·raκ·ra

=
∑
Ho

f(κκκ)eiκ·rHoκ·rHoκ·rHo

= f(κκκ)
(
e2πi(h·xHo1

+k·yHo1
) + e2πi(h·xHo2

+k·yHo2
) + e2πi(h·xHo3

+k·yHo3
)
)

where f(κκκ) is the Ho3+ form factor. This requires calculating the transition
matrix between all states of the Ho3+ ion, λ, described by 2J +1 total angular
momentum levels, MJ . As J = 8, there are 17 MJ values, MJ = −8, ..., 0, ...+8.

|λ >=
∑
M

aM |JM > (C.1.3)

which gives:

f(κκκ) =
∑
M

∑

M ′
< JM |a∗MQ̂⊥aM |J ′M ′ > (C.1.4)

=
∑
M

∑

M ′
a∗MaM < JM |Q̂⊥|J ′M ′ > (C.1.5)

where

< JM |Q̂⊥|J ′M ′ > = (4π)
1
2

∑

K′′Q′′
Y K′′

Q′′ (κ̂)
∑

K′Q′
[A(K ′′K ′) + B(K ′′K ′)]

× (K ′Q′JM ′|JM)(K ′′Q′′K ′Q′|1q)

or in the MAPLE notation used, a prime symbol was written as the letter p,
and remembering that J = 8 and q = 0;

F̂ (κ̄) =
∑
Kpp

∑
Qpp

Y Kpp
Qpp (κ̂)

∑
Kp

∑
Qp

∑
M

∑
Mp

aMa∗Mp [A(Kpp Kp) + B(Kpp Kp)]

× < Kp Qp 8 Mp | J 8 > < Kpp Qpp Kp Qp | 1 0 > (C.1.6)

where the two final terms in pointed brackets are Clebsch Gorden coeffi-
cients given by



C.2 Maple Code 124

< Kp Qp 8 Mp | 8 M > = (−1)Kp−8−M
√

(2× 8) + 1

(
Kp 8 8
Q Mp M

)

< Kpp Qpp Kp Qp | 1 0 > = (−1)Kpp−Kp
√

1

(
Kpp Kp 1
Qpp Qp 0

)

(C.1.7)

C.2 Maple Code

The maple code written to extract the Ho3+ form factor from the flipping ratio
data is now included. This also includes the programming of the multipole
expansion to be used for fitting to the form factor or flipping ratio.
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Appendix D

Flipping Ratio Data

The complete set of data for the T=74 K D3 experiment is tabulated below.
This data used to produce figure 6.9. RD3 is the flipping ratio as measured on
D3, with the experimental error ±∆. Rcalc is the calculated flipping ratio using
the approximation to the form factor discussed in section 6.3.2.3. ‘X’ is the
solution used to calculate the Ho3+ form factor from RD3. X = |m|∗f(κκκ). |FN |
and |FM | are the calculated nuclear and magnetic structure factors respectively.
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