
Loughborough University
Institutional Repository

Parameter self-tuning in
internet congestion control

This item was submitted to Loughborough University's Institutional Repository
by the/an author.

Additional Information:

• A Doctoral Thesis. Submitted in partial ful�llment of the requirements
for the award of Doctor of Philosophy of Loughborough University.

Metadata Record: https://dspace.lboro.ac.uk/2134/6361

Publisher: c© Wu Chen

Please cite the published version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenGrey Repository

https://core.ac.uk/display/40036757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dspace.lboro.ac.uk/2134/6361

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Parameter Self-Tuning in Internet

Congestion Control

by

Wu Chen

Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of

Doctor of Philosophy

of

Loughborough University

March 2010

© by Wu Chen 2010

- i -

ACKNOWLEDGEMENTS

First I want to express my gratitude to my supervisor, Professor Shuang-Hua Yang,

for his kindly guidance and support. He has given me a priceless insight to the state-

of-the-art technologies in the networking area. This has given me the opportunity to

make great achievements. I also appreciate his valuable comments on my papers and

thesis, and his inspiration throughout my study.

My gratitude also extends to Dr Chris Hinde for serving as my Director of Re-

search. I have benefited a lot from his excellent instruction. I have been very fortunate

to have had him as my Director of Research.

I appreciate Dr Iain Phillips, Dr Lin Guan, Dr Roger knott, Mr Andre Schappo and

Professor David Parish for their support and kindly help during my study. Apprecia-

tion is also due to Dr Richard Buxton for offering guidance in statistics.

My PhD study is supported financially in part by Faculty of Science at Loughbor-

ough University.

I would like to thank fellow graduate student, in particular the members of our re-

search group for inspiration both during our research group meetings and one-on-one

conversations.

Last but not least, I would most like to thank my parents, my sister, brother and

other family members for their unconditional support and love. Without their encour-

agement and support I could not go further in my study.

- ii -

List of Publications

[1] W. Chen, “Statistical Tuning of RED in Dynamic Network Scenarios,” to be sub-

mitted.

[2] W. Chen, “Statistical Tuning of PI Controller in Dynamic Network Scenarios,” to

be submitted.

[3] W. Chen and S. H. Yang, “The Mechanism for Adapting RED Parameters to TCP

Traffic,” Computer Communications, vol. 32, No. 13-14, pp. 1525-1530, August

2009.

[4] W. Chen and S. H. Yang, “An Algorithm for Adapting RED Parameters to TCP

Traffic”, in Proceedings of 2008 IEEE International Conference on Communica-

tions, Beijing, China, pp. 5576-5580, May 2008.

[5] W. Chen, Y. Li, and S. H. Yang, “An Average Queue Weight Parameterization in a

Network Supporting TCP Flows with RED”, in Proceedings of 2007 IEEE Inter-

national Conference on Networking, Sensing and Control, London, UK, pp. 590-

595, April 2007.

- iii -

Abstract

Active Queue Management (AQM) aims to achieve high link utilization, low queu-

ing delay and low loss rate in routers. However, it is difficult to adapt AQM

parameters to constantly provide desirable transient and steady-state performance un-

der highly dynamic network scenarios. They need to be a trade-off made between

queuing delay and utilization. The queue size would become unstable when round-trip

time or link capacity increases, or would be unnecessarily large when round-trip time

or link capacity decreases. Effective ways of adapting AQM parameters to obtain

good performance have remained a critical unsolved problem during the last fifteen

years.

This thesis firstly investigates existing AQM algorithms and their performance.

Based on a previously developed dynamic model of TCP behaviour and a linear feed-

back model of TCP/RED, Auto-Parameterization RED (AP-RED) is proposed which

unveils the mechanism of adapting RED parameters according to measurable network

conditions. Another algorithm of Statistical Tuning RED (ST-RED) is developed for

systematically tuning four key RED parameters to control the local stability in re-

sponse to the detected change in the variance of the queue size. Under variable

network scenarios like round-trip time, link capacity and traffic load, no manual pa-

rameter configuration is needed. The proposed ST-RED can adjust corresponding

parameters rapidly to maintain stable performance and keep queuing delay as low as

possible. Thus the sensitivity of RED’s performance to different network scenarios is

removed. This Statistical Tuning algorithm can be applied to a PI controller for AQM

and a Statistical Tuning PI (ST-PI) controller is also developed. The implementation

of ST-RED and ST-PI is relatively straightforward. Simulation results demonstrate the

feasibility of ST-RED and ST-PI and their capabilities to provide desirable transient

and steady-state performance under extensively varying network conditions.

- iv -

Table of Contents

Table of Contents ...iv

Table of Figures..viii

Table of Tables ..x

List of Abbreviations..xi

List of Symbols ..xiii

CHAPTER 1 Introduction ..1

1.1 Internet Congestion Control ..1

1.2 Motivation ...3

1.3 Contributions of This Thesis ...5

CHAPTER 2 RED Literature Review..7

2.1 Background ...7

2.1.1 Which links are congested..7

2.1.2 TCP congestion control ..8

2.1.3 Traditional queue management... 11

2.2 The RED Algorithm ..13

2.3 Setting RED Parameters..15

2.3.1 Minimum threshold and maximum threshold ..15

2.3.2 Maximum drop/mark probability ...16

2.3.3 Sampling interval..16

2.3.4 Average queue weight...16

- v -

2.3.5 Byte and packet mode...17

2.3.6 Mean packet size ..19

2.4 Evaluation of TCP/RED..20

2.4.1 Advantages of RED ..20

2.4.2 Weakness of RED...21

2.4.3 Performance of RED with specific traffic ..22

2.4.4 The effect of TCP/RED oscillations ...23

2.4.5 Reasons for TCP/RED oscillations...24

2.5 RED Implementations ...24

CHAPTER 3 Other AQM Mechanisms Review ..25

3.1 Introduction ...25

3.2 Adaptive RED ...25

3.2.1 Objectives ...25

3.2.2 Algorithm..26

3.2.3 Initialization of RED parameters ..27

3.2.4 Discussions ...28

3.3 Auto-Tuning RED ...28

3.3.1 Objectives ...28

3.3.2 Choice of fixed RED parameters..28

3.3.3 The reason for adapting maxp ...29

3.3.4 Algorithm..30

3.3.5 Discussions ...31

3.4 PI Controller ..32

3.4.1 Objectives ...32

3.4.2 Transfer function and digital implementation ..32

3.4.3 Discussions ...33

3.5 Random Exponential Marking ..34

3.5.1 Objectives ...34

3.5.2 Congestion measure..34

- vi -

3.5.3 Sum prices ..35

3.5.4 Discussions ...36

3.6 BLUE...37

3.6.1 Objectives ...37

3.6.2 Algorithm..37

3.6.3 Discussions ...39

3.7 Adaptive Virtual Queue...39

3.7.1 Objectives ...39

3.7.2 Algorithm..39

3.7.3 Discussions ...41

3.8 Conclusions ...42

CHAPTER 4 The Mechanism of Adapting RED Parameters to TCP Traffic43

4.1 Introduction ...43

4.2 Model...44

4.3 AP-RED Algorithm and Stability Analysis ...46

4.3.1 The algorithm ...46

4.3.2 Determining the equilibrium point ...48

4.3.3 Stability analysis...48

4.4 Network Traffic Measurement ..51

4.5 Simulations..53

4.5.1 Experiment 1...54

4.5.2 Experiment 2...56

4.5.3 Experiment 3...58

4.6 Conclusions ...60

CHAPTER 5 Statistical Tuning RED in Dynamic Network Scenarios................61

5.1 Introduction ...61

5.2 Background and Related work ..63

5.3 Algorithm ..65

5.3.1 Calculating the variance and detection function of q71

- vii -

5.3.2 Stability analysis...73

5.4 Initial Parameter Setting..74

5.4.1 Choice of parameters interval, 1φ and 2φ ..74

5.4.2 Choice of parameters γ, lh and sh ...76

5.5 Simulations..77

5.5.1 Varying round-trip time ..78

5.5.2 Varying bottleneck link capacity ..81

5.5.3 Varying the number of FTP flows...84

5.5.4 Varying short HTTP sessions..86

5.5.5 Varying the density of the UDP traffic ...88

5.6 Conclusions ...90

CHAPTER 6 Statistical Tuning PI Controller in Dynamic network Scenarios ...92

6.1 Introduction ...92

6.2 Methodology ...93

6.3 Algorithm ..96

6.3.1 Calculating the variance and detection function of q98

6.3.2 Parameter setting ..98

6.4 Simulations..99

6.4.1 Varying round-trip time ..101

6.4.2 General distribution of round-trip time ..104

6.4.3 Varying bottleneck link capacity ..106

6.4.4 Varying traffic load ...109

6.4.5 Varying the density of the UDP traffic ... 112

6.5 Conclusions ... 115

CHAPTER 7 Conclusions .. 117

References ...120

- viii -

Table of Figures

Figure 2.1 AIMD congestion control ...10

Figure 2.2 RED Drop function with “gentle_” mode ..14

Figure 3.1 The ARED algorithm..26

Figure 3.2 Auto-Tuning RED algorithm...31

Figure 3.3 BLUE algorithm ...38

Figure 3.4 AVQ algorithm..41

Figure 4.1 Feedback control model of TCP/RED system..45

Figure 4.2 Network topology for simulations..54

Figure 4.3 Comparison of ARED and AP-RED under network scenarios: N= 50, C=

2500 packets/second and d = 120ms. ...55

Figure 4.4 Comparison of ARED and AP-RED under network scenarios: N = 30, C =

1250 packets/second and d = 100ms. ...57

Figure 4.5 Comparison of ARED and AP-RED under network scenarios: N= 100, C=

3000 packets/second and d = 250ms. ...59

Figure 5.1 General ST-RED Algorithm ...67

Figure 5.2 Evolution of the variance and detection function.......................................68

Figure 5.3 Detailed ST-RED algorithm ...71

Figure 5.4 Queue size (packets) variations versus time (seconds) under varying

round-trip propagation delay [100ms-900ms]..79

- ix -

Figure 5.5 Queue size (packets) variations versus time (seconds) under varying

bottleneck link capacity [10Mbps-50Mbps]...82

Figure 5.6 Queue size (packets) variations versus time (seconds) under varying

number of FTP flows [30-200] ...85

Figure 5.7 Queue size (packets) variations versus time (seconds) under varying HTTP

sessions ...87

Figure 5.8 Queue size (packets) variations versus time (seconds) under varying UDP

traffic density [0.1-0.9] ...89

Figure 6.1 Detailed ST-PI algorithm..98

Figure 6.2 Network topology for simulations..100

Figure 6.3 Queue size (packets) variations versus time (seconds) under varying

round-trip time..103

Figure 6.4 Queue size (packets) variations versus time (seconds) under general

distribution of round-trip time ..105

Figure 6.5 Queue size (packets) variations versus time (seconds) under varying

bottleneck link capacity ..107

Figure 6.6 Queue size (packets) variations versus time (seconds) under varying traffic

load ... 111

Figure 6.7 Queue size (packets) variations versus time (seconds) under varying UDP

traffic density ..114

- x -

 Table of Tables

Table 5-1 Summary Statistics for all Designs under Varying Round-trip Propagation

Delay...80

Table 5-2 Summary Statistics for all Designs under Varying Bottleneck Link

Capacity ..83

Table 5-3 Summary Statistics for all Designs under Varying Number of FTP Flows 86

Table 5-4 Summary Statistics for all Designs under Varying HTTP sessions88

Table 5-5 Summary Statistics for all Designs under Varying UDP Traffic Density ...90

Table 6-1 Summary Statistics for all Designs under Varying Round-trip Time103

Table 6-2 Summary Statistics for all Designs under General Distribution of Round-

trip Time ...106

Table 6-3 Summary Statistics for all Designs under Varying Bottleneck Link

Capacity ..108

Table 6-4 Statistics for all Designs under Varying Traffic Load................................112

Table 6-5 Summary Statistics for all Designs under Varying UDP Traffic Density .115

- xi -

List of Abbreviations

ACK Acknowledgment

AIMD Additive Increase Multiplicative Decrease

AQM Active Queue Management

AP-RED Auto-Parameterization Random Early Detection

ARED Adaptive Random Early Detection

AVQ Adaptive Virtual Queue

CE Congestion Experienced

DSL Digital Subscriber Lines

ECN Explicit Congestion Notification

E-RED Exponential-Random Early Detection

EWMA Exponential Weighted Moving Average

FTP File Transfer Protocol

GMA Geometric Moving Average

HTTP HyperText Transfer Protocol

IP Internet Protocol

ISP Internet Service Provider

- xii -

LRED Loss Ratio-based Random Early Detection

MIMD Multiplicative Increase Multiplicative Decrease

MSS Maximum Segment Size

PI Proportional Integral

QoS Quality of Service

RED Random Early Detection

REM Random Exponential Marking

ST-PI Statistical Tuning Proportional Intergral

ST-RED Statistical Tuning Random Early Detection

SYN Synchronization

TCP Transmission Control Protocol

UDP User Datagram Protocol

WRED Weighted Random Early Detection

- xiii -

List of Symbols

B Buffer size

C Link capacity

redC RED control strategy

CongWin Congestion window size

Count The number of unmarked packets entering the queue

 since the last packet was marked

dref Target average queuing delay

freeze_time The minimum time interval between two successive

 updates of the marking probability

2g Detection function

lh Coefficient of the upper threshold

sh Coefficient of the lower threshold

interval Time for adjustment of maxp

k Adjustment factor

pK Proportional gain

PIK PI gain

minth Minimum threshold

maxth Maximum threshold

- xiv -

N Number of TCP flows

maxp

 Maximum drop/mark probability

queueP Queue dynamics

price

 Price reflecting not only current congestion but also

 the change in congestion

tcpP Linearized TCP dynamics

q Instantaneous queue size

q~ Estimated average queue size

refq

 Target queue size

R Round-trip time

R Average round-trip time

RcvWindow Receive window

RcvBuffer Receive buffer size

threshold The queue size above which the marking probability

 should be updated

Ts Sampling interval

W Window size

wq Average queue weight

x
 Aggregate input rate

z PI zero

α Increment

β Decrease factor

γ Coefficient of the detection range

1δ Increment used in BLUE

2δ Decrement used in BLUE

ε Acceleration factor

ζ Fraction of the theoretical settling time

- xv -

σ Standard deviation

ϕ Smoothing parameter

φ Forgetting factor

τ Desired link utilization

gω

 Loop’s unity gain crossover frequency

- 1 -

CHAPTER 1

Introduction

1.1 Internet Congestion Control

Nowadays more and more people are surfing the Internet as part of their daily lives.

They read news on the Web, search information via the Internet, watch video-on-

demand whenever they have free time, play online games, and talk with their friends

through p2p telephony services. Simultaneously, numerous small networks are linked

together and as a result the heterogeneous and huge Internet comes into being. Al-

though circuit-switched networks and packet-switched networks are prevalent in

today’s telecommunication networks, traditional circuit-switched telephone networks

are now also evolving into packet-switched networks. This is because packet-

switched networks can provide various communication services as well as reducing

the cost of running and maintaining these services.

At the core of the Internet are routers that connect a variety of end systems together

via communication links. Thanks to statistical multiplexing in packet-switched net-

works, i.e. on-demand sharing of resources, end users can share scarce resources such

as communication links. Thus high resource utilization can be achieved. However,

with only best-effort services provided by the Internet Protocol (IP), it is difficult for

various end users to control themselves their sending rate and to prevent over use of

the limited resources. Congestion occurs on a communication link when the aggregate

- 2 -

input rate on that link exceeds its capacity. Congestion can potentially lead to severe

service degradation. Possible results of congestion include large queuing delay, high

packet loss rate, frequent packet retransmission and even congestion collapse when

network links are fully utilized but little throughput is useful for the receivers [23][36].

Congestion collapse in the Internet was first observed in the mid 1980s.

To avoid this we need network components (hosts, routers, etc) to work coopera-

tively. The basic idea behind the Transmission Control Protocol’s (TCP’s) congestion

control mechanism is to adjust the sending rate of a TCP sender according to the con-

gestion level in the network. The congestion level may be measured by packet loss or

Explicit Congestion Notification (ECN) [24][25]. ECN allows routers to allocate the

Congestion Experienced (CE) codepoint in the header of IP packets as an indication

of congestion to the sender [24]. The initial TCP’s congestion control mechanism was

developed by Jacobson in 1988. After that a number of modifications such as ne-

wReno and Vegas were proposed. These end-to-end congestion control mechanisms

have been a critical factor in preventing today’s Internet from congestion collapse.

Although the robustness of today’s Internet is mainly due to TCP’s congestion

avoidance mechanisms, it is not fully understood if these end-to-end congestion con-

trol mechanisms can provide a sufficient service. Since routers have a unified view of

traffic passing through them, routers may participate in controlling their own re-

sources and then complement the endpoint congestion avoidance mechanisms. It may

be advantageous for a router to drop (or mark the header of) packets before its buffer

overflows so that the sender can respond to the upcoming congestion. Thus more se-

vere congestion can be avoided. This proactive mechanism is known as Active Queue

Management (AQM). The benefits of AQM include high link utilization, low queuing

delay, and low loss rate [8]. Therefore, the deployment of AQM may improve Quality

of Service (QoS) of a network. Random Early Detection (RED) was the first AQM

mechanism widely deployed in routers [8][21].

- 3 -

1.2 Motivation

A buffer is used to absorb bursty packets during congestion. The traditional scheme

for queue management, known as drop-tail, discards incoming packets when the

buffer is full. Although it has served the Internet for many years, it results in several

significant problems such as high queuing delay, high loss rate, lock-out and global

synchronization of flows throttling back, followed by a sustained period of lowered

link utilization, reducing overall throughput [8].

By proactively dropping or marking packets before a buffer overflows, Active

Queue Management (AQM) aims to stabilize the average queue size at a small value

and thus provide both high link utilization and low queuing delay. Additional advan-

tages of AQM include the avoidance of global synchronization and lock-out

phenomena [8][41]. In recent years, many AQM algorithms such as Adaptive RED

(ARED) [22], Proportional Integral (PI) controller [32][33], Random Exponential

Marking (REM) [5], BLUE [19], Exponential-RED (E-RED) [43] and Loss Ratio-

based RED (LRED) [57], have been developed to improve the robustness of AQM

under varying network conditions. Among them, ARED, PI controller and REM are

the most prominent AQM algorithms in the literature [41]. Nowadays RED and RED-

like AQMs have been widely deployed in routers [16][69].

It seems promising that the wide deployment of AQM instead of drop-tail would

minimize the uncertainty in the Internet [8], but the fact is not so simple. Network

conditions in the Internet vary significantly over time. For example, round-trip time

may range from the order of milliseconds to over tens of seconds [1]. Available

bandwidth for long-lived TCP flows at a particular link may reduce in the face of un-

responsive UDP traffic, or decrease when it is divided into several time-varying

virtual links to provide different scheduling mechanisms [60]. The stability analysis

and experiments in [31][44] demonstrate that a specific parameter setting of RED or

PI controller is applicable only under a narrow range of network conditions. The in-

stantaneous queue size would become unstable when round-trip time or link capacity

- 4 -

increases [10][44][60] [63][64]. When bandwidth-delay product decreases the instan-

taneous queue size would be unnecessarily large [59][63]-[66]. In this situation, the

analysis and experiments in [31][33][60] also indicate that the RED or PI controller

may become too conservative to provide faster transient response. This is because a

higher crossover frequency could be provided to improve responsiveness if RED or PI

parameters could be adjusted.

So it is necessary to constantly tune RED or PI parameters to maintain good per-

formance under dynamic network conditions. The authors in [18][22][52][54][61]

provided guidelines for adjusting only one of the key RED parameters, i.e., maximum

drop probability. The algorithm proposed in [59] explores methods to optimize the

RED thresholds by providing tradeoffs with loss rate, but this iteration algorithm

needs a long time to achieve the optimal values and thus becomes infeasible in highly

dynamic networks. The authors in [60][63]-[66] try to tune several or even all key

RED parameters, but these methods depend on the measurement of network parame-

ters. This would increase the overhead of CPU processing in routers or would need

additional software and hardware, and thus make the system more complex. In addi-

tion, the rough estimation of these network parameters [29][45][60] would increase

uncertainty in tuning RED parameters. As to PI controller, the parameter tuning algo-

rithms provided in [11][34][60] can’t adjust queuing delay and also depend on the

measurement of network parameters. It is still difficult to adapt parameters of RED,

PI controller or other AQMs to obtain good performance under dynamic congestion

scenarios [13][12][48][57].

As a result, AQMs performs no better than drop-tail when round-trip time varies

significantly [4][41], and the queuing delay remains high [16] because conservative

AQM parameters have to be used. This is perhaps why drop-tail still has to be investi-

gated and widely used [4][16][40] despite its significant disadvantages. Compare to

most propagation delay and transmission delay at access network less than 20ms,

most queuing delay is higher than 600ms [16]. This is not what the designers of AQM

want because they require that the queuing delay is only a fraction of round-trip time

- 5 -

[22]. Since round-trip time mainly comprises propagation delay, transmission delay

and queuing delay, desirable queuing delay should be only the fraction of propagation

delay and transmission delay. If every congested link runs AQM with conservative

parameters or runs drop-tail with a large buffer size, the Internet suffers from huge

round-trip time. As a result, router buffers are still the single largest contributor to un-

certainty in the Internet [4].

Considering the significance of congestion control in today’s Internet, how to adapt

AQM parameters to provide optimal performance under constantly varying network

conditions is crucial to the quality of the Internet.

1.3 Contributions of This Thesis

This thesis makes two main contributions. Firstly, the proposed Auto-

Parameterization RED (AP-RED) in Chapter 4 unveils the mechanism of adapting

RED parameters according to measurable network conditions. Secondly, a Statistical

Tuning algorithm is developed to adapt parameters of AQMs according to the charac-

teristics of queue size. Chapter 5 describes the details of the Statistical Tuning RED

(ST-RED) and Chapter 6 describes the details of the Statistical Tuning PI (ST-PI).

Both ST-RED and ST-PI can maintain desirable performance in a dynamic network.

Simulations demonstrate that they can provide better performance than existing AQM

approaches.

Chapter 2 surveys existing RED algorithm. It investigates how to set RED parame-

ters and shows how sensitive RED parameters are to varying network conditions. The

performance of TCP/RED system has been evaluated and then the effect and reasons

for oscillations are analyzed.

Chapter 3 surveys other AQM algorithms. In particular, performances of ARED

and Auto-Tuning RED, which can stabilize the average queue size of RED at a refer-

ence value, are analyzed. Algorithms and performances of the PI controller, REM,

BLUE and Adaptive Virtual Queue (AVQ) are also discussed.

- 6 -

Based on a previously developed dynamic model of TCP behaviour and linear

feedback model of TCP/RED, Chapter 4 proposes the mechanism for RED parameter

tuning in response to changing network conditions like traffic load, link capacity and

round-trip time. This mechanism reveals insights into how four key RED parameters

are determined by varying network conditions, and how they can be tuned independ-

ently without consideration of the interactions among these RED parameters.

Chapter 5 develops a Statistical Tuning RED (ST-RED) for systematically tuning

the four key RED parameters in response to the detected change in the variance of the

queue size to control local stability. Under dynamic congestion scenarios, no manual

parameter configuration is needed, and ST-RED can adjust RED parameters rapidly to

achieve desirable transient and steady-state performance. Thus the sensitivity of

RED’s performance to different network variables is removed. Simulation results

demonstrate that ST-RED provides better performance than existing AQMs when

ECN is not enabled.

Chapter 6 applies this Statistical Tuning algorithm to PI controller and also devel-

ops a Statistical Tuning PI (ST-PI) controller. The simulation results demonstrate the

feasibility of ST-PI and its capabilities of providing desirable transient and steady-

state performance under extensively varying round-trip time, bottleneck link capacity,

traffic load, Datagram Protocol (UDP) traffic and HTTP sessions. With ECN, ST-PI

achieves better performance than existing AQMs.

Finally, Chapter 7 concludes with a summary of research contributions and future

works.

- 7 -

CHAPTER 2

RED Literature Review

Because TCP traffic is inherently bursty router buffers are designed to absorb tran-

sient bursts without having to drop packets during congestion. However, this results in

queuing delay and delay-variance. When buffers overflow packet loss occurs, and

when they underflow overall throughput is degraded. Buffers are the main reason be-

hind the uncertainty of end-to-end delay in the Internet [4]. The traditional queue

management, drop-tail, has many disadvantages as described in Section 2.1. Because

of this RED was proposed by Floyd and Jacobson in 1993 to solve these problems

[21]. The RED algorithm is introduced in Section 2.2. However, setting RED parame-

ters is difficult. The choice of RED parameters is discussed in Section 2.3. Then, the

performance of RED is investigated and evaluated in Section 2.4. Finally, the de-

ployment of RED is presented in Section 2.5.

2.1 Background

2.1.1 Which links are congested

A link becomes congested when the capacity of the link is saturated by offered load.

Congested links may prevent Internet users from making use of the plentiful band-

width available in other parts of the Internet and may result in significant queuing

delay.

- 8 -

In the public Internet, access networks are connected to the rest of the Internet

through a tiered hierarchy of Internet Service Providers (ISPs) [38]. Access networks

are the first physical links that connect an end system to its edge router, which is the

first router on a path from the end system to a remote destination. Tier-1 ISPs are

known as Internet backbone networks. Their link capacity is often 622 Mbps or higher.

A tier-2 ISP typically has regional or national coverage. In order to reach the global

Internet, it connects to a few of tier-1 ISPs. Below the tier-2 ISPs are the lower-tier

ISPs, such as tier-3 or tier-4 ISPs, which connect to the larger Internet via one or more

tier-2 ISPs. When two ISPs are directly connected to each other, they are said to peer

with each other [38].

Most access networks such as Digital Subscriber Lines (DSL) and cable access

networks are the bottleneck in the last mile of today’s Internet. Tier-2 ISPs or lower-

tier ISPs also deploy some congested links which are inside an ISP or are peering

links [2][9]. Peering links connect one ISP to other ISPs. Congestion usually occurs

during certain limited time periods (e.g., during the morning hours) [42].

On the other hand, most links in tier 1 are not congested so that tier-1 ISPs can

provide the best performance. There is a general trend for ISPs to oversubscribe link

capacity in order to avoid congestion.

2.1.2 TCP congestion control

TCP controls its sending rate by limiting the number of transmitted but not yet ac-

knowledged packets to a maximum allowable number, referred to as window size W.

During a particular round-trip time R, TCP’s sending rate is roughly RW / [38].

TCP provides a flow control service to match its sending rate against the reading

rate of the receiving application; otherwise the receiver’s buffer may overflow. TCP

realizes this by having the sender maintaining a variable called the receive window,

which is the amount of spare room in the receiver’s buffer. The sender’s window size

is limited to the receive window. The receive window is calculated as follows [38].

- 9 -

 RcvWindow = RcvBuffer – [LastByteRcvd – LastByteRead] (2.1)

where RcvWindow denotes the receive window, RcvBuffer denotes the receive buffer

size the receiver allocates to the connection. LastByteRead denotes the number of the

last byte in the data stream read from the buffer by the application process in the re-

ceiver. LastByteRcvd denotes the number of the last byte in the data stream that has

arrived from the network and has been placed in the receive buffer.

In addition, TCP provides an end-to-end congestion control service to restrict the

sending rate in order to avoid network congestion. One cost of congestion is a large

queuing delay, when the packet-arrival rate approaches or exceeds the outgoing link

capacity. Retransmission may occur in the face of large delays. This wastes the band-

width by sending unneeded copies of packets. Congestion also results in packet loss

when the buffer overflows. In this case, the sender needs to retransmit the lost packets.

At the same time, the transmission capacity that was used at each of the upstream

links to forward that packet to the point at which it was dropped, ends up having been

wasted [38].

Network congestion can be indicated by timeout event, three duplicate ACKs, in-

creasing round-trip time [38] or a set CE codepoint [24][25] in the IP header. The

rationale behind congestion control is for the TCP sender to reduce its sending rate in

the face of detected congestion. The sender controls its sending rate by setting its

congestion window size, denoted by CongWin.

When a TCP connection begins, the value of CongWin is typically set to 1 Maxi-

mum Segment size (MSS), resulting in an initial sending rate of roughly MSS/R. Then

the TCP sender increases its rate exponentially by increasing the value of CongWin by

1 MSS for each acknowledged segment. In this initial phase, which is called Slow

Start, CongWin doubles every R. After CongWin reaches a threshold, CongWin grows

linearly by increasing CongWin by 1 MSS every R. This linear increase phase of

TCP’s congestion control protocol is known as congestion avoidance. If a timeout

event is detected, TCP cuts CongWin to 1 MSS and start Slow Start again. If a triple

- 10 -

duplicate acknowledgment (ACK) is received, TCP Reno halves the current value of

CongWin and starts congestion avoidance, while TCP Tahoe responds the same as the

presence of a timeout event and enters into Slow Start. The threshold is initially set to

a large value (65 Kbytes in practice) so that it has no initial effect. After the conges-

tion is detected, the value of threshold is set to one half of the current value of

CongWin [3][38].

In general a TCP sender additively increases its rate when it perceives that the end-

to-end path is congestion-free, and multiplicatively decreases its rate when it detects

that the path is congested. For this reason, TCP congestion control is often referred to

as an Additive Increase Multiplicative Decrease (AIMD) algorithm [38]. This AIMD

algorithm gives a saw-tooth pattern in a long-lived TCP connection as follows:

Figure 2.1 AIMD congestion control

Assume that R and W are constant over the duration of the connection. If W de-

notes the value of CongWin when a loss event occurs, the TCP transmission rate

ranges from W / (2 · R) to W/R [47][50]. Thus, each cycle must be W/2 round-trip time,

or R * W/2 seconds.

In general, a TCP sender controls its sending rate according to the receive window

and congestion window as follows.

Time

C
o
n
g
W
in

- 11 -

 LastByteSent – LastByteAcked ≤ min {RcvWindow, CongWin} (2.2)

where LastByteSent – LastByteAcked is the amount of unacknowledged data that the

sender has sent into the connection.

If the receive window becomes zero, the TCP specification requires the sender to

continue to send segments of one data byte.

Assuming that two connections have the same MSS and R, TCP congestion control

converges to provide an equal share of a bottleneck link’s bandwidth among these two

competing TCP connections. On the other hand, when multiple connections share a

common bottleneck, those sessions with a smaller R are able to obtain the available

bandwidth at that link more quickly (that is, open their congestion windows faster)

and thus will enjoy higher throughput than those connections with large R. When an

application uses multiple parallel connections, it can also grab a larger fraction of the

bandwidth in a congested link [39].

It may be unfair for TCP users when they share links with UDP applications. This

is because UDP applications do not cooperate with the other connections nor adjust

their sending rates appropriately. However, a TCP sender has to reduce its sending

rate in the case of increasing congestion (loss). It is possible for UDP flows to crowd

out TCP traffic [38].

2.1.3 Traditional queue management

TCP adjusts its sending rate in response to a loss event. A queue management scheme

complements TCP by determining a packet-drop policy. The traditional queue man-

agement policy is known as drop-tail. It accepts packets until a queue becomes full,

and then drops subsequent incoming packets until a packet in the full queue has been

transmitted.

Although drop-tail has served the Internet for years, it has several significant prob-

lems [8]. One phenomenon is lock-out, when drop-tail allows a single or a few

- 12 -

connections to monopolize the queue, preventing other connections from getting room

in the queue. Another problem is the full queue. Since drop-tail notifies congestion

only when the queue has become full, the queue has to maintain a full (or almost full)

status for long periods of time. When incoming bursty packets from different connec-

tions arrive at the full queue, they have to be dropped. This may result in a high loss

rate and lead to a global synchronization [8].

Sizing buffers in routers is important for the Internet. Because data traffic is inher-

ently bursty, buffers need to be large enough to absorb this burstiness. However, large

buffers may lead to unacceptable queuing delay, while small buffers may lead to ex-

cessive packet loss and degrade throughput. The “optimal” buffer size for a router is a

function of the relative trade-off between low queuing delay and high link utilization.

In practice buffer size should reflect the size of bursts that need to be absorbed. The

key to sizing the buffer is to make sure that, while the sender pauses, the router buffer

doesn’t become empty and force the bottleneck link to go idle. For many years the

rule of thumb for sizing the buffer was that the buffer size (B) should be the product

of the average round-trip time (R) and the link capacity (C) [56]. However, recent

theoretical and experimental efforts suggest that this rule of thumb is true only for a

relatively small number of TCP flows. For a large number of TCP flows (N) typically

passing through backbone router links, the buffer size needed is NCRB /⋅= for

long-lived and short-lived TCP flows [4]. Because short-lived TCP flows require very

small buffers, the buffer size usually depends upon the number of long-lived flows.

However, although the link can be fully utilized, a study has shown that this small

buffer size comes at the cost of a high loss rate [15]. Short-lived flows and long-lived

flows in this thesis are defined as flows that are in slow-start and in congestion avoid-

ance respectively. This means that flows may transit from short to long during their

existence.

- 13 -

2.2 The RED Algorithm

The main objectives of RED are to provide both low average queuing delay and

high throughput. Additional objectives include the avoidance of a lock-out phenome-

non, of a global synchronization, of a bias against bursty traffic, and the reduction of

loss rate [21].

• Estimation of average queue size

RED uses a low-pass filter with an Exponential Weighted Moving Average

(EWMA) to calculate the average queue size. For every incoming packet, RED com-

putes the average queue size as follows:

qwqwq qq +−= ~)1(~ (2.3)

where q is the instantaneous queue size, q~ is the estimated average queue size, and

wq is the average queue weight which determines the time constant of the low-pass

filter and determines the degree of burstiness allowed in a queue.

RED provides an option to measure q in byte mode or in packet mode.

• Packet mark (drop) decision

In gentle_ mode [20], the initial drop probability can be calculated according to the

average queue size as follows:

 0 thq min~0 <≤

 max
minmax

min~
p

q

thth

th

−

−
 thth q max~min ≤≤

 ip = maxmax)1(
max

max~
pp

q

th

th +−⋅
−

 thth q max2~max << (2.4)

 1 thq max2~ ≥

- 14 -

 Figure 2.2 RED Drop function with “gentle_” mode

where minth is the minimum threshold that specifies the average queue size below

which no packet will be dropped, maxth is the maximum threshold, and maxp is the

maximum drop probability achieved when the average queue size reaches maxth. In

the original RED, ip directly jumps to 1 when the average queue size is greater than

maxth. The gentle_ modification of RED is suggested to remove the instability related

to the discontinuity of the drop function.

The final marking probability for each arriving packet is)1/(ii pcountpp ∗−= ,

where count is the number of unmarked packets entering the queue since the last

packet was marked. So the intermarking time, the number of packets between two

consecutive marked packets, is a uniform random variable.

The final marking probability can be calculated in byte mode or in packet mode. In

byte mode, the probability of marking a packet is proportional to its packet size in

bytes. The final marking probability in byte mode is calculated as follows.

sizepacket average

sizepacket arriving
ii pp ← (2.5)

)1/(ii pcountpp ⋅−← (2.6)

minth maxth 2maxth B q~

pmax

1

pi

- 15 -

2.3 Setting RED Parameters

RED’s effectiveness is highly dependent upon its operating parameters. In fact, in

cases where these parameters do not match network conditions, the performance of

the RED gateway can be worse than that of a traditional drop-tail gateway

[13][12][48].

Although RED can certainly outperform traditional drop-tail queues, the correct

parameters of RED are needed to perform well under different congestion scenarios.

2.3.1 Minimum threshold and maximum threshold

An optimal value of minth should be high enough to accommodate bursty traffic.

For typical traffic with large bandwidth-delay product passing through a link, a mini-

mum threshold of one packet would result in unacceptably low link utilization. On the

other hand, the maximum value of maxth is limited by the maximum average delay

that is allowed in a router. In the meantime the space between maxth and minth should

be large enough to avoid global synchronization. If maxth -minth is too small to ac-

commodate the typical increase in the average queue size during a round-trip time, the

computed average queue size can regularly oscillate up to maxth; this behaviour is

similar to the oscillations of the queue up to the buffer size with drop-tail routers. A

rule-of-thumb is to set maxth to be three times minth [26].

So the optimal setting for minth depends partly on the link capacity, round-trip time,

and maxth. Similarly, the optimal setting for maxth also depends partly on the link ca-

pacity, round-trip time, and minth. The optimal values of minth and maxth should

provide a desired trade-off between low average delay and high link utilization in a

router. One rule-of-thumb for the trade-off is that the resulting average queuing delay

at a router is a fraction of the end-to-end round-trip time [22].

- 16 -

2.3.2 Maximum drop/mark probability

The mark/drop probability reaches its maximum value maxp when the average queue

size reaches the maximum threshold. maxp directly impacts upon the aggressiveness

of the RED mechanism. When maxp is configured to be too conservative, the RED

queue can degrade into a simple drop-tail queue because it does not notify a sufficient

number of sources of the congestion. On the other hand, an aggressive configuration

may result in underutilization when many sources cut their sending rates in response

to the observed congestion. maxp determines the position of the average queue size

among minth and maxth. The correct value of maxp depends on network conditions

such as traffic loads, link capacity and round-trip time [26].

One recommended value for maxp is 0.1. If a router is operating with steady-state

packet drop rates of 20-30% there is something wrong in the engineering of the net-

work [26].

2.3.3 Sampling interval

A RED router updates its average queue size on each packet’s arrival, and hence the

sampling interval Ts is equal to 1/C for a stable queue. C is the arriving rate in pack-

ets/second, determined by the average packet size in the network for a constant link

capacity (bytes/sec).

2.3.4 Average queue weight

A RED router uses a low-pass filter to calculate the estimated average queue size, and

the time constant of the low-pass filter depends on the average queue weight wq. wq

determines the degree of burstiness allowed in the router. If wq is set too large, the av-

eraging procedure will not filter out transient congestion at the router. If wq is set too

small, then the estimated average queue size will respond too slowly to reflect

- 17 -

changes in the instantaneous queue size. In this case, the router is unable to detect ini-

tial stages of congestion [22].

A guideline for setting wq is that the estimated average queue size can reflect the

congestion lasting longer than a typical round-trip time and then the router can give

feedback to the sources. For congestions that last less than a typical round-trip time,

the desirable behaviour of the queue is to absorb the congestion without dropping

packets. Therefore, the time constant should be at the order of round-trip times, rather

than fractions of round-trip times. As the time constant of the filter

is
)1(log

1

qe wC −⋅
− , wq can be set to)/1exp(1 nRCwq −−= . Thus the time constant

of the estimator is n times round-trip time [22][52]. n = 10 is recommended [52].

2.3.5 Byte and packet mode

The instantaneous queue size can be measured in byte mode or in packet mode. For a

queue with capacity in units of bytes, RED should measure the queue in byte mode so

as to give an accurate indication of the congestion level. It is meaningless for the RED

router to measure the queue in packets because this measurement does not reflect the

actual usage of the queue. It is possible for a nearly empty queue to accommodate a

large number of small packets or for a full queue to accommodate a few large packets.

For a similar reason, RED should measure the queue in packet mode for a queue with

capacity in units of packets. A router where the transmission delay for a packet is

largely a function of the packet size in bytes usually uses a queue with capacity in

units of bytes. For a router where the transmission delay is a constant for any packet it

usually uses a queue with capacity in units of packets [27][28].

In addition, RED needs to choose between byte mode and packet mode in relation

to its marking policy. When marking in byte mode, RED marks large packets with

large probabilities. On the other hand, RED marks any packet with the same probabil-

ity when operating in packet mode. The choice of the mark mode depends on what the

- 18 -

scarce resource is in the network and the end-to-end congestion control mechanisms.

For an end-to-end congestion control protocol such as TCP, an indication of conges-

tion comes from one or more dropped packets from the most recent window of data.

In this case, if the scarce resource is link capacity in bytes per second, byte marking

mode would be a better choice. The reason is as follows: two arriving traffic with the

same rate in bytes per second but different packet sizes would have the same marking

probability. However, when RED operates in packet marking mode, the flow with

smaller packets will have more packets to transmit and then more packets will be

marked. Then the flow with larger packets will gain more bandwidth and there is a

strong bias against small packets. In addition, because in byte-marking mode the

marking probability for a particular flow is proportional to its bandwidth share in the

bottleneck link, this prevents various bandwidth flows from gaining a disproportion-

ate share of the link during congestion and thus provides fairness. On the other hand,

RED should drop packets in packet mode if the scarce resource is CPU processing in

packets per second.

For a packet to be transmitted in a network, it is possible for it to enter queues with

capacity in bytes and to pass through bottleneck links with capacity in bytes per sec-

ond. So most RED routers measure the queue size in bytes and then marking a packet

in bytes.

For the most common network conditions where the queue has its capacity in bytes

and the scarce resource is the link capacity, a comparison using two main metrics

among different measurements and marking modes were carried out in [14][17].

Based on numerous experiments using different packet sizes, traffic types, and traffic

loads, results demonstrate that the choice of marking mode is extremely important for

fairness. Although packet marking mode provides somewhat better link utilization

than byte marking mode, byte marking mode provides much more fairness under

various scenarios [14][17]. The fairness in [17] is defined as:

- 19 -

 1),...,,(

1

2

2

1

21
≤

⋅

=

∑

∑

=

=

n

i

i

n

i

i

n

xn

x

xxxf (2.7)

where ix is the total number of bytes transmitted by host i and n is the total number of

hosts. A fairness index of 1 indicates that each host transmits the exact same number

of bytes. As for measurement, sometimes the packet mode have better link utilization

than byte mode, and sometimes byte mode have better link utilization than packet

mode. Their performance depends on the actual packet size and the mean packet size.

On the other hand, the queuing delay fluctuate less or has less jitter in byte mode than

in packet mode for a normal link capacity in units of bytes. In summary, byte mode

measurement and byte mode marking is the best choice in the most common routers.

2.3.6 Mean packet size

When operating in byte mode, a RED router needs to set mean packet size to repre-

sent the typical packet size on the link so that incoming packets can be normalized by

it. Thus, RED can measure the queue size in a unit of packet numbers instead of a unit

of bytes. However, because there are many packets with varying packet sizes passing

through a link and the distribution of packet sizes is highly dynamic, it is inaccurate to

use a static mean packet size to reflect actual average packet size over time on the link.

It is observed in [17] that RED in both byte measuring and byte marking mode

may achieve desirable fairness and relatively stable queuing delay with suboptimal

mean packet size. In this case the high utilization could be maintained when the actual

mean packet size fluctuates within ±250 bytes of mean packet size. Because the ma-

jority of the distribution of average packet sizes falls within a range of 500 bytes, a

trial-and-error mean packet size on a link could provide good performance in most

cases.

- 20 -

2.4 Evaluation of TCP/RED

2.4.1 Advantages of RED

Rather than wait for full buffers to drop packets, RED allows routers to control when

and how to drop packets before buffers overflow. In contrast to drop-tail, RED

mechanisms have the following advantages for responsive flows [8].

• Reducing queuing delay

RED can reduce the queuing delays by keeping the average queue size small.

• Providing high link utilization

By controlling the average queue size within a given range, the RED router avoids

overflow of the buffer or an empty buffer. Because there are always packets to trans-

mit RED maximizes the link capacity.

• Reducing loss rate

A drop-tail queue will drop bursty packets when the buffer space is insufficient. It

is more difficult for TCP to recover from a burst of packets than from a single packet

drop and unnecessary dropped packets lead to the potential waste of bandwidth on the

way to the drop point. RED keeps the average queue size small and thus has more

room to absorb naturally-occurring bursts without dropping extra packets simultane-

ously. This is significantly borne out by empirical data.

• Avoiding full queue

RED addresses the full queue problem by dropping packets before the queue over-

flows.

• Avoiding lock-out behaviour

RED solves the lock-out problem by constantly providing enough buffers for arriv-

ing packets.

- 21 -

• Avoiding global synchronization

By marking packets randomly before the occurrence of a full queue, RED routers

avoid marking too many packets too close together. This avoids dropping packets

from many connections at the same time and thus avoids global synchronization.

• Avoiding a bias against bursty traffic

There is always room left in the queue to absorb bursty traffic. In addition, since

RED marks an arriving packet randomly, this reduces the probability that successive

packets from the same bursty traffic are marked. So the probability of marking a

packet from a particular connection is roughly proportional to that connection’s

bandwidth share through the router. All these avoid a bias against bursty traffic.

2.4.2 Weakness of RED

• Sluggish response to a change in instantaneous queue size

RED uses a low-pass filter to average the instantaneous queue size. A large time

constant of the low-pass filter has to be used to stabilize the queue so that the system

becomes sluggish to reflect the change in the instantaneous queue size [33].

• Stability affected by users

The sampling frequency of RED is determined by the link capacity and packet size

so that users can use very small or very large packets to influence the stability of

TCP/RED systems [46].

• Global synchronization under highly dynamic network conditions

When there are significant changes in network conditions which make the

TCP/RED system unstable, the corresponding marking probability of RED changes

significantly over a short time. In this case, RED fails to mark packets evenly over

times and therefore global synchronization occurs among sources [19].

• Parameter sensitivity to network scenario

- 22 -

Analysis in section 2.3 has demonstrated that RED parameters are quite sensitive

to network scenarios. In particular, the minimum threshold minth, maximum threshold

maxth, and maximum drop probability maxp are sensitive to round-trip time, link ca-

pacity and traffic loads. When network scenario changes, TCP/RED may move into

an unstable state and perform worse than drop-tail.

2.4.3 Performance of RED with specific traffic

Considering heterogeneous network traffic, the following performances of RED are

compared to drop-tail.

• Web traffic

The Internet is dominated by web traffic characteristic of short-lived HTTP flows.

Most Web objects have a small size of 10-20KB and the average Web document is

only around 30KB [62]. For these short-lived connections an end-to-end response

time is more important than the network-centric measurement [13][12].

At a congested link with traffic loads between 90% and 100% of the link capacity,

RED can be carefully tuned to provide better end-to-end response time than drop-tail.

However, there exists a complex trade-off between the RED parameters that improve

response time for short-lived connections and those that improve response time for

longer connections. In addition, RED parameters that provide the best link utilization

produce poorer response times [13][12]. It is very difficult to choose the correct RED

parameters with which RED can outperform drop-tail.

• Mix of short-lived and long-lived TCP connections

When competing with long-lived TCP connections, short-lived TCP connections

under RED can obtain higher goodput than those under drop-tail [62]. On the other

hand, long-lived TCP connections under RED tend to have lower goodput than those

under drop-tail. Goodput is the ratio of the total number of packets (excluding re-

transmissions) received by the receivers per unit time to link capacity.

- 23 -

This is desirable for internet users who are sensitive to the delay of interactive ap-

plications, as short-lived TCP connections typically belong to interactive applications

like the web.

• Short-lived and long-lived TCP connections with different round-trip times

For short-lived connections, the goodput ratio is inversely proportional to the

round-trip time ratio no matter under RED or under drop-tail. This is mainly because

short-lived connections are dominated by the slow start procedure. Unless the loss

rates for these connections are very different, they tend to require similar number of

round-trip times [62].

On the other hand, RED tends to provide fair goodput among long-lived TCP con-

nections with different round-trip times, while drop-tail tends to provide higher

goodput for those connections with shorter round-trip time [62].

• Mix of TCP and UDP traffic

In general, RED without ECN for TCP flows can increase the loss rate for smooth

UDP traffic, and reduce the loss rate for bursty UDP traffic. This is because RED can

alleviate bias against bursty traffic by distributing losses uniformly among all connec-

tions. On the other hand, RED with ECN always significantly increases the loss rate

for all kinds of UDP traffic. This is because TCP becomes more aggressive with the

use of ECN [62].

2.4.4 The effect of TCP/RED oscillations

Because of TCP’s AIMD and the feedback nature of the TCP/RED system, oscilla-

tions in the queue size are very common. Some oscillations are “benign” when they

do not significantly affect throughput and delay. Some oscillations are “malignant” in

that they lead to periods of high packet marking rates and periods of no packets being

marked. This may degrade throughput or increase delay jitter [22]. In addition, when

the marking probability of RED varies dramatically over very short periods of time, it

- 24 -

becomes impossible for RED to mark packets randomly and evenly over time. In this

case RED fails to avoid global synchronization [19].

2.4.5 Reasons for TCP/RED oscillations

Queue size reflects the mismatch between the aggregate input rate and the link capac-

ity. As a result, the actual queue size in a router depends on the average window at the

senders. Although there are obvious oscillations of an individual window due to

TCP’s AIMD, the individual window’s effect on the queue can be smoothed out by

the aggregate windows sending packets through the link. As the round-trip time or the

link capacity increases, the individual window sizes will vary within a larger range

and eventually result in oscillations of the queue. For the same reason a smaller traffic

load has a larger average window and may make the queue instable. On the other

hand, noise-like mice traffic and heterogeneous delays have little impact on the oscil-

lation of the queue [44].

2.5 RED Implementations

RED is not a default configuration on routers. It can be enabled when there are con-

gested links on a router to reduce queuing delay without degradation of link

utilization. Since typical tier-1 ISPs don’t run congested links, it is unnecessary for

most of them to turn on RED on their routers. RED is suggested to run for a router

with oversubscribed links. Cisco suggests that WRED (weighted Random Early De-

tection) should be used in core routers rather than in edge routers. “Edge routers

assign IP Precedences to packets as they enter the network. WRED uses these prece-

dences to determine how to treat different types of traffic.[69]” In addition, access

networks like DSL show considerable deployment of RED-style policies [16].

- 25 -

CHAPTER 3

Other AQM Mechanisms Review

3.1 Introduction

As described in Chapter 2, RED may result in bad performance when it is improperly

configured. Parameterization of RED is very difficult because RED parameters are

tightly coupled to each other and coupled with network scenarios. In order to solve

the problem, other AQM algorithms have been proposed in recent years [5][19][22]

[33][37][49][52][53][57]. They try to provide robust parameters under varying net-

work conditions or to achieve better performance such as lower queuing delay than

the original RED. Among these AQMs, ARED [22], Auto-Tuning RED [52], PI con-

troller [32][33], REM [5], BLUE [19] and AVQ [37] are reviewed in this Chapter.

3.2 Adaptive RED

3.2.1 Objectives

The correct parameters of RED depend on network scenarios like traffic loads, and

the performance of RED is quite sensitive to its parameters and to the network scenar-

ios. In order to stabilize the queue in a specified target range and provide high

throughput, a RED router needs to update RED parameters in response to changed

network scenarios. Adaptive RED (ARED) aims to adapt RED parameters maxp to

- 26 -

varying traffic conditions so that the average queue size is maintained at a reference

value [22].

3.2.2 Algorithm

The guidelines for ARED are to adapt maxp to keep the average queue size half way

between minth and maxth [22]. The algorithm is given as follows.

Every interval:

 if (>q~ target and 5.0max ≤p)

 α+← maxmax pp ;

 if (<q~ target and 01.0max ≥p)

 β*maxmax pp ← ;

Fixed parameters:

interval=&time for adjustment of maxp ; 0.5 seconds

target=&target for q~ ;)]min(max*6.0min),min(max*4.0[min thththththth −+−+

α=&increment; min (0.01, maxp /4)

β=&decrease factor; 0.9

Figure 3.1 The ARED algorithm

The AIMD scheme to adapt maxp is used instead of multiplicative increase multi-

plicative decrease (MIMD) in [18] and other controls. Experiments demonstrate that

AIMD is more robust than other schemes.

- 27 -

A long interval is used so that the dynamics of ARED is dominated by the small

time scales of the original RED rather than by frequent adjustment of maxp . This slow

and infrequent adaptation of maxp is vital for the robustness of ARED [22].

To ensure the performance of ARED is acceptable during transition periods, maxp

is restricted within the range [0.01, 0.5]. Considering the uncertainty of the average

queue size after a sharp change in network conditions, this restriction prevents ARED

from over-tuning maxp during transient period. The upper bound is set to 0.5 because

it is an engineering problem to have steady-state drop probability greater than 25%

[22]. In this case, the problem needs to be solved from an engineering aspect such as

reducing the number of users passing through the congested link. On the other hand,

when steady-state drop probability is less than 0.005, RED with the lower bound of

maxp set to 0.01 can still run robustly and the actual delay is lower than the target de-

lay [22].

The setting of α to 0.1 ensures that a one step increase of maxp does not move the

average queue size from above the target range to below it, and the setting of β to 0.9

ensures that a one step reduction of maxp does not move the average queue size from

below the target range to above it [22].

3.2.3 Initialization of RED parameters

In automatic mode maxth is set to three times minth, and the average queue size is

maintained around 2* minth. As a result, minth is determined by the desired average

queue size that reflects the trade-off between throughput and queuing delay. One rule-

of-thumb for a plausible trade-off is that the resulting average queuing delay at a

router is a fraction of the end-to-end round-trip time. Given a target average queuing

delay of dref seconds and minth no less than 5 packets, in automatic mode minth is set to

Max [5,
2

Cd
ref
] packets, where C is the link capacity in packets/second [22].

- 28 -

In automatic mode, wq is set to keep the time constant of the estimator for the aver-

age queue size on the order of round-trip times. Setting)/1exp(1 Cwq −−= gives a

time constant ten times the default round-trip time of 100ms [22].

3.2.4 Discussions

ARED can adapt RED parameter maxp automatically in response to varying traffic

conditions and could keep the average queue size within the target zone. This pro-

vides a simple mechanism to remove parameter sensitivity from unknown network

scenarios. On the other hand, it is observed that ARED in byte-mode significantly

outperforms that in packet-model [41]. However, ARED uses default network pa-

rameters such as a default round-trip time to determine some default ARED

parameters such as wq and interval. In fact these network parameters vary signifi-

cantly over time. So ARED cannot absolutely remove all sensitivity of RED

parameters from network scenarios. Its performance may degrade under some widely

changed network conditions such as round-trip time.

3.3 Auto-Tuning RED

3.3.1 Objectives

The main objective of Auto-tuning RED [52] is to keep the average queue size at a

reference value despite varying network conditions. This mechanism also gives guide-

lines for designing other RED parameters.

3.3.2 Choice of fixed RED parameters

The difference between maxth and minth can be expressed as a fraction v of the band-

width-delay product as follows.

 CRvthth ⋅⋅=−minmax

- 29 -

And the time constant of the RED estimator can be expressed as a multiple n of the

round-trip time R by setting

)/1exp(1 nRCwq −−= .

Based on control theory analysis, a large v is needed for a small n to get a phase

margin of at least 45 deg and to stabilize the queue. However, a large v means large

queuing delay and large delay jitter. On the other hand, if n is too large, the system

response may become slow. Analysis indicates that 10=n is a good choice to obtain

both an acceptable v and acceptable responsiveness of the system [52].

When choosing 10=n , the minimum satisfactory value of v is 0.21, that is,

 RCthth ⋅⋅≥− 21.0minmax

Follow a common guideline thth min3max ⋅= . thmin is set to

 CRth ⋅⋅≥ 13.0min

3.3.3 The reason for adapting maxp

Consider N TCP connections with the same round-trip time share a link. Each connec-

tion receives fair share of C/N from the available bandwidth C in the long run. Thus

the window size of each connection is R
N

C
W = .

According to the well-known equation
p

W
1

3

8
⋅= , p can be set to

2

3

8

=

RC

N
p (3.1)

At the target queue size
2

maxmin thth
refq

+
= , p is

- 30 -

 2/maxpp = (3.2)

According to (3.1) and (3.2), maxp is obtained as

2

max
3

16

=

RC

N
p

This demonstrates that maxp is a function of network scenario parameters N, R and

C [52]. So maxp need to be adapted in response to varying network scenarios to stabi-

lize the average queue size within the target range.

3.3.4 Algorithm

From equation (3.2), the correct maxp can be derived corresponding to the steady-

state value of current drop probability [52] as follows.

 maxmax)
minmax

min~
(2 p

q
p

thth

th ⋅
−

−
⋅←

 Thus correct maxp can be obtained by increasing current maxp by the amount:

 maxmaxmax)
minmax

min~
(2 pp

q
p

thth

th −⋅
−

−
⋅←∆ (3.3)

or by a simplified increment:

 maxmax)
minmax

~

(2 p
qq

p
thth

ref
⋅

−

−
⋅←∆ (3.4)

Equation (3.4) implies that correct maxp can be achieved in a single iteration ac-

cording to a steady-state value of current maxp .

As the theoretical settling time of 40R is too long, a small update interval is used

by taking a fraction ζ of the theoretical settling time [52]. Then an acceleration fac-

tor ε is used to speed up convergence. Therefore, the equation (3.4) is revised to:

- 31 -

 maxmaxmax ppp ∆⋅⋅+← ζε (3.5)

Here maxp is restricted arbitrarily within the range [0.01, 0.5] to prevent maxp from

becoming too large or too small during transient period. Then the auto-tuning algo-

rithm [52] is described in Figure 3.2.

Every interval:

 if (refqq >~ and 5.0max <p)

 increase maxp :

),5.0(
maxmaxmax

ppMinp ∆⋅⋅+← ζε ;

 if (refqq <~ and 01.0max >p)

 decrease maxp :

),01.0(
maxmaxmax
ppMaxp ∆⋅⋅+← ζε ;

Fixed parameters:

interval =& time for adjustment of maxp ; 4R

=&ε acceleration factor; 1.5

=&ζ fraction of the theoretical settling time; 0.1

Figure 3.2 Auto-Tuning RED algorithm

3.3.5 Discussions

Auto-Tuning RED can achieve correct maxp from current maxp and current average

queue size by a few steps of adjustment. In addition, experiments demonstrate that

Auto-Tuning RED without limitation range [0.01, 0.5] of maxp still works well. As a

fixed maxth and minth are used, the queue may become unstable in the case when R or

- 32 -

C is large, or may become unnecessary large in the case when R or C is small. More

parameter optimization is needed for this algorithm.

3.4 PI Controller

3.4.1 Objectives

RED is sensitive to its parameters as well as network conditions such as traffic load,

link capacity and round-trip time. This motivates the PI controller [32][33] to present

a scheme more robust to varying network scenarios.

3.4.2 Transfer function and digital implementation

A PI controller can improve the response time by removing the low-pass filter of RED

that results in sluggish response of the system. In addition, the integral part can elimi-

nate the steady-state error and make the queue converge to its reference value. A PI

controller has the transfer function [32][33] as

s

zs
KsC PIPI

1/
)(

+
= (3.6)

Then the open-loop transfer function of TCP/PI system is

)
1

)(
2

(

)1(
2)(

2

2

R
s

CR

N
ss

e
z

s

N

CK

sL

sRPI

++

+

=

−

.

The design of a PI controller involves choosing the location of the zero z and the PI

gain PIK .

Zero z can be chosen to coincide with the corner frequency of the TCP window dy-

namic as

CR

N
z

2

2
=

- 33 -

and the loop’s unity gain crossover frequency can be chosen as

R

g

λ
ω =

where)85.0,0(∈λ yields positive phase margin. When λ decreases margins in-

crease.

In order that the open-loop transfer function satisfies the crossover condi-

tion 1)(=gjL ω , PIK is set to

N

C

R
j

zK
g

gPI

2

1

2

+
=

ω
ω

The s domain transfer function (3.6) needs to be converted into a z-domain transfer

function for a digital implementation. A PI transfer function of the form (3.6) yields a

z-domain transfer function between pδ and qδ of the form [32]

1

*

)(

)(

−

−
=

z

bza

zq

zp

δ

where refqqq −=δ with the target queue size refq , and pp =δ assuming target

drop probability 0=refp .

Then the PI controller can calculate the packet drop probability at every sampling

interval as follows.

))((*))1((*)()1(refref qtqbqtqatptp −−−++=+ (3.7)

3.4.3 Discussions

A PI controller calculates the packet drop probability directly and thus provides faster

responses than RED. It also removes steady-state errors and demonstrates fair robust-

- 34 -

ness in a wide range of changed network conditions such as traffic load, link capacity

and round-trip time. It can use a fixed sampling frequency lower than that of RED by

2-3 orders of magnitude. Thus the controller can reduce computations over RED sig-

nificantly.

On the other hand, removing the threshold of RED may results in a higher loss rate.

This is why the PI controller performs better with ECN than without ECN. It seems

that the tuning problem of its coefficients a, b, and sampling interval corresponding to

changed scenarios is not as severe as that of RED. However, the choice of its parame-

ters is still the result of a trade-off between fast response and stability of the system

under extensively varying network conditions.

3.5 Random Exponential Marking

3.5.1 Objectives

RED measures congestion by average queue size. So its performance measure like

delay is coupled with the congestion measure. Since the average queue size reflects

the change in traffic load, it is difficult for RED to maintain performance within the

target zone regardless of the number of users. By using congestion measure independ-

ent of the performance measure, REM [5] aims to achieve high throughput, low loss

rate and low queuing delay under varying traffic loads.

3.5.2 Congestion measure

Congestion measure indicates excess demand for bandwidth. The key of REM is to

use price as congestion measure to determine the marking probability. Based on rate

mismatch (i.e., difference between input rate and link capacity) and queue mismatch

(i.e., difference between queue size and target), price reflects not only current conges-

tion but also the change in congestion. At a queue l, the price)(tpricel is updated in

every period t [5] as follows.

- 35 -

[]+
−+−+=+))()())((()()1(, tCtxqtqtpricetprice lllrefllll αγ (3.8)

where)(txl is the aggregate input rate at queue l,)(tCl is the available bandwidth

at queue l, and [] { }0,max zz =
+

. The constant lα is a small positive number. It can be

set individually at each queue to trade off utilization and queuing delay during tran-

sient period. The constant γ is a small positive number. It controls the responsiveness

of REM to changes in network scenarios.

If the target queue size lrefq , is nonzero and there are packets in the buffer,

)()(tctx ll − is the rate at which the queue size grows. In this case, it can be substituted

by)()1(tqtq ll −+ . Thus the price is updated based only on the current and previous

queue sizes [5] as follows.

[]+
−−−++=+))()1()1(()()1(,lrefllllll qtqtqtpricetprice ααγ (3.9)

3.5.3 Sum prices

REM uses the following exponential marking policy to calculate the marking prob-

ability)(tp
l
 [5].

)(

1)(
tprice

l
ltp

−−= φ (3.10)

where 1>φ is a constant.

If an incoming packet is not marked at an upstream queue, its marking probability

is exponential increasing in the current price. Assume that the link prices are small

and hence the link marking probabilities are small. The end-to-end marking probabil-

ity is calculated by the sum of link prices along the path [5] as follows.

))((log1))(1(1
)(

1

∑∏ ≈∑−=−−
−

= l

le

tprice
L

l

l tpricetp l l φφ (3.11)

- 36 -

Thus the end-to-end marking probability is an exponential function of the sum of

individual congestion along the path. It can be observed by a source from marked

packets and then the source can adapt its sending rate in response to the congestion.

In addition, other marking policies instead of exponential marking policy can be

used to provide a modularized feature for REM.

3.5.4 Discussions

REM uses a price based on queue mismatch and rate mismatch as its congestion

measure so that it is equivalent to the function of a PI controller. The measure of rate

mismatch is like a proportional scheme, and the measure of queue mismatch is like an

integral scheme that can remove static-state errors independent of network scenarios.

Therefore, REM can stabilize the queue at a target queue size in a wide range of vary-

ing network scenarios.

REM provides an exponential marking policy that can make use of the sum of

prices along a path to calculate the end-to-end marking probability. However, this

makes its parameters tightly coupled each other. On the other hand, although the au-

thors in [5] thought that it could provide negligible queuing delay, small target queue

size would cause high loss rate. This is because the oscillations of the queue size

would become severe as round-trip time or link capacity increase.

REM is designed for the ECN environment. It does not work well if networks are

dominated by dropping packets. There are four parameters refq,,, γαφ that need to be

set in REM. The robustness of these parameters under various network conditions is a

research topic in the future.

- 37 -

3.6 BLUE

3.6.1 Objectives

It is important to avoid high loss rate and keep low queuing delay in the Internet. RED

needs constant tuning of its parameters to achieve acceptable performance under vary-

ing network conditions. This work has proven to be difficult [13][12][48][57]. BLUE

aims to reduce packet loss rate and buffer size requirement in a simpler way [19].

3.6.2 Algorithm

The key idea behind BLUE is to perform queue management directly based on packet

loss and link utilization rather than on the instantaneous or average queue size.

BLUE directly uses packet loss and link utilization as congestion measure to set

marking probability. In principle, BLUE decreases its marking probability in response

to an empty queue or a link idle event, and increases its marking probability if the

buffer overflows or if the queue size exceeds a certain threshold. Thus BLUE can ef-

fectively “learn” the correct marking probability. The use of the threshold provides

room to accommodate transient bursts. The algorithm of BLUE [19] is described as

follows.

- 38 -

__

Upon packet loss (or thresholdq >) event:

 if (timefreezeupdatelasttimenow _)__(>−)

),1min(1δ+= pp

 timenowupdatelast __ =

Upon link idle event:

 if (timefreezeupdatelasttimenow _)__(>−)

),0max(2δ−= pp

 timenowupdatelast __ =

__

Figure 3.3 BLUE algorithm

where 1δ and 2δ are increment and decrement respectively, freeze_time is the

minimum time interval between two successive updates of the marking probability p,

and threshold specifies the queue size above which the marking probability should be

updated.

The use of freeze_time allows the changes in the marking probability to take effect

before the value is updated again. It should be set based on the effective round-trip

times of connections sharing the link in order to allow any changes in the marking

probability to reflect back on to the end sources before additional changes are made,

and should be randomized to avoid global synchronization.

δ1 needs to be set much greater than δ2. This is because link idle occurs when con-

gestion management is either too conservative or too aggressive, but packet loss

occurs only when congestion management is too conservative. By weighting heavily

against packet loss, BLUE can quickly respond to a significant increase in traffic load.

- 39 -

On the other hand, δ1 and δ2 should be set in conjunction with freeze_time to allow p

to range from 0 to 1 in an order of minutes for links where extremely large changes in

load occur only in an order of minutes.

3.6.3 Discussions

BLUE can use a small buffer size to keep lower loss rate than RED. However, BLUE

has a relatively sluggish response because there are many steps needed in correction

of p to get its correct value and to stabilize the queue. In addition, BLUE has diffi-

culty in stabilizing the queue under various round-trip times and link capacity. And

research on parameter settings such as threshold is also needed.

3.7 Adaptive Virtual Queue

3.7.1 Objectives

Congestion results from the mismatch between input rate and outgoing rate at a link.

This motivates AVQ [37] to control the input rate to be lower than outgoing rate by

maintaining a desired link utilization. AVQ aims to achieve high link utilization with

low delay and low loss rate at congested links.

3.7.2 Algorithm

A router maintains a virtual queue with capacity lower than the actual link capacity C.

The buffer size of the virtual queue is equal to the real buffer size. Upon each packet

arrival, the packet is enqueued in the real buffer and a copy of the packet is enqueued

in the virtual buffer if there is sufficient room in the virtual buffer. If the fictitious

packet overflows the virtual queue, the fictitious packet is dropped in the virtual

queue and the real packet is marked or dropped in the real buffer, depending upon the

congestion notification mechanism used by the router.

- 40 -

At each packet arrival event, the virtual queue capacity C
~
 is updated according to

the following differential equation [37]:

)(
~

xCC −= τϕ
&

 (3.12)

where x is the aggregate input rate at the link, 1≤τ is the desired link utilization

and 0>ϕ is the smoothing parameter. The rationale behind this rate adaptive equa-

tion is that marking needs to become more aggressive when the actual link utilization

exceeds the desired utilization and needs to become less aggressive when the actual

link utilization is below the desired utilization. The detailed AVQ algorithm [37] is

described as follows.

- 41 -

At each packet arrival epoch do

)0),(
~

max(stCVQVQ −−← /*Update Virtual Queue Size */

 If BbVQ >+

 Mark of drop packet in the real queue

 else

 bVQVQ +← /*Update Virtual Queue Size*/

 endif

)0,*)),(**
~

max(min(
~

bCstCCC ϕτϕ −−+= /*Update Virtual Capacity */

 ts ← /*Update last packet arrival time*/

B: buffer size;

b: packet size in bytes;

VQ: virtual queue size in bytes.

s: arrival time of previous packet;

t: current time;

Figure 3.4 AVQ algorithm

3.7.3 Discussions

An AVQ algorithm is a rate-based mechanism different from RED which detects con-

gestion based on the queue size. Simulations demonstrate that it could provide low

queuing delay, low loss rate and high link utilization in the presence of long-lived

flows and of short-lived flows.

- 42 -

However, there are two parameters that have to be chosen to implement AVQ: the

desired utilization and the smoothing factor. The desired utilization allows an ISP to

provide a trade-off between high levels of utilization and small queue lengths, and the

smoothing factor determines how fast to adapt the marking probability at the link to

the changing network conditions. Both parameters determine the stability of the AVQ

queue. How to tune these two parameters in changing network scenarios is a topic for

future research.

On the other hand, it is a drop-tail queue in essence. Hence it is liable to have the

same problems that drop-tail induces. For example, it cannot avoid global synchroni-

zation when many packets are discarded in the virtual queue and then are marked in

the real queue. It need further research to demonstrate whether or not the AVQ could

avoid bias against bursty traffic and other fairness problems.

3.8 Conclusions

ARED, Auto-Tuning RED, PI, REM, BLUE and AVQ can provide better performance

than RED. One reason is that their parameters are more robust than RED under vary-

ing network conditions, especially under varying traffic load. However, as the

bandwidth-delay product increases, neither of them can keep the system stable, nor

provide good transient performance. So the following chapters aim to design parame-

ter tuning algorithms for the prominent AQMs in order to keep stable queue and

desired transient performance under highly dynamic networks.

- 43 -

CHAPTER 4

The Mechanism of Adapting RED Parameters to TCP Traffic

4.1 Introduction

A critical unsolved problem of RED described in Chapter 2 is that its average queue

size varies with traffic load as well as round-trip time and link capacity, and parame-

terizing RED to obtain good performance under variable congestion scenarios is very

difficult. Such difficulties discourage network administrators from activating RED in

their routers [48]. Certainly, there are many parameter tuning techniques for RED

proposed in the literature [22][31][52][54][61][63]-[66], but they were either devel-

oped on the basis of empirical investigations and analysis, or are only applicable

under certain assumptions. In particular, the authors in [22][52][54][61] provided

guidelines for adjusting only one of the RED parameters for the changing network

conditions. So these guidelines are applicable only under a narrow range of round-trip

times and link capacities. Even so, the Web performance of other AQMs is not as

good as ARED when dropped packets are used as indications of congestion [41], and

their transient response would become much slower when network scenarios change

dynamically [57].

The authors in [31] proposed a method to set initial RED parameters from a Control

Theoretic perspective. However, they did not illustrate how to adapt these RED pa-

rameters to changing network scenarios. RED parameters are still coupled to each

- 44 -

other. By improving their Control Theoretic analysis of TCP/RED systems, this chap-

ter developed an Auto-Parameterization RED (AP-RED) [12] to provide a simple,

scalable and systematic algorithm for tuning these RED parameters as a function of

network traffic conditions of link capacity, round-trip time, and the number of TCP

flows. Theoretic analysis and nonlinear simulations using a ns-2 simulator [67] have

demonstrated that it is robust, adaptive to TCP dynamics, and produces desirable tran-

sient performance.

The rest of this Chapter is organized as follows. Section 4.2 illustrates a pre-

developed nonlinear dynamic model of TCP and a linear feedback model of

TCP/RED system. Section 4.3 describes AP-RED and presents stability analysis. Sec-

tion 4.4 introduces the calculation method for network parameters. Simulation results

to validate the algorithm are presented in Section 4.5. Conclusions are made in Sec-

tion 4.6.

4.2 Model

In [46], a nonlinear dynamic model of TCP behaviour was developed using fluid-

flow and stochastic differential equation analysis. By ignoring timeout mechanism,

a simplified version is used in [31] to describe the model by the following differ-

ential equations:

))((
))((2

))(()(

)(

1
)(tRtp

tRtR

tRtWtW

tR
tW −

−

−
−=&

 CtN
tR

tW
tq −=)(

)(

)(
)(& (4.1)

where x& denotes the time-derivative of x and

 =&W expected TCP window size (packets);

 =&q expected queue size (packets);

 =&R round-trip time (seconds);

 =&C link capacity (packets/second);

- 45 -

 =&N number of TCP flows;

 =&p probability of packet mark/drop;

According to these equations, [31] further describes the behaviour of 0WWW −=&δ ,

0qqq −=&δ , and 0ppp −=&δ in a linear feedback control model of TCP/RED by lin-

earizing variables (W, q, p) at its equilibrium point),,(000 pqW . The linear control

model is depicted in Figure 4.1.

Figure 4.1 Feedback control model of TCP/RED system

In the above model)(sPtcp denotes the linearized TCP dynamics,)(sPqueue denotes

the queue dynamics, sRe − denotes the delay term and)(sC red denotes RED control

strategy. They were given by the following equations:

CR

N
s

N

RC

sPtcp

2

2

2

2
2)(

+

=

R
s

R

N

sPqueue 1
)(

+

= (4.2)

1/

)(
+

=
Ks

L
sC red

red

where

thth

red

p
L

minmax

max

−
= ;

- 46 -

s

qe

T

w
K

)1(log −
−= ;

.

max =p maximum drop probability;

.

max =th maximum threshold;

.

min =th minimum threshold;

.

=qw average queue weight;

.

=sT sampling interval.

4.3 AP-RED Algorithm and Stability Analysis

4.3.1 The algorithm

The objective of AP-RED is to stabilize the instantaneous queue size by maintaining

the average queue size within the limits of thmax and thmin , and to provide high link

utilization in widely varying network scenarios. The rationale behind setting thmax

and thmin as a fraction of bandwidth-delay product is to follow the theoretic analysis

and rule-of-thumb in accommodating bursty traffic [22][26][52]. The rational behind

setting maxp is to achieve a desirable equilibrium point based on theoretic analysis.

The rationale behind setting qw is to maintain the stability of the system from a Con-

trol Theoretic perspective.

Thus, consider the initial RED parameters
0q

w , 0maxp , 0max th , and 0min th that sta-

bilize the queue under the initial network scenario of TCP load 0N , round-trip time 0R

and link capacity 0C . When the network scenario varies we present the following al-

gorithm for adjusting RED parameters.

- 47 -

 0maxmax thcrth kk= (4.3)

 0minmin thcrth kk= (4.4)

 0max

2

max)(p
kk

k
p

cr

n= (4.5)

 02)(
q

cr

n w
kk

k
 2/RCN ≤

 wq = (4.6)

 0

1
q

cr

w
kk

 2/RCN >

where

 0/ RRkr = ;

 0/CCkc = ;

 0/ NNkn =

and constraint maxp within the range [0.01,0.5]

i.e. if 5.0max>p 5.0max=p

 if 01.0max<p 01.0max=p

Compared with the automatic setting of average queue weight qw based on link

capacity in [22], our tuning algorithm of qw is based not only on link capacity, but

also on round-trip time and traffic load. As qw is adapted to congestion scenarios, a

larger qw can improve transient response while a smaller qw provides a sufficient

stability margin [31]. When thmax and thmin are reduced according to the changing

network parameters, the queuing delay is decreased correspondingly. In contrast, the

average queue size can still be stabilized within a given target range by using a larger

thmax and thmin when round-trip time increases or link capacity increases.

- 48 -

4.3.2 Determining the equilibrium point

The purpose of adjusting maxp is to keep the queue at a desirable equilibrium point. At

a new equilibrium point where 0=W& and 0=q& , from (4.1) we have

 22 =pW and
N

RC
W =

Then we obtain

 2

max)(2
minmax

min

RC

N
p

q
p

thth

th =
−

−
= (4.7)

Hence at the equilibrium point the drop probability is determined by network pa-

rameters rather than other RED parameters.

Similarly, at the initial equilibrium point q0 we obtain

 2

00

0

0max

00

00

0)(2
minmax

min

CR

N
p

q
p

thth

th =
−

−
= (4.8)

Since we tune maxp in terms of (4.5), from (4.7) and (4.8) we have

 0qkkq cr=

Thus the equilibrium point q moves in proportion to the thmax and thmin . It still

stays between thmax and thmin when network condition changes.

4.3.3 Stability analysis

• Stability proposition

In this section we derive a simplified version of stability proposition based on the

analysis given in [31].

Stability Proposition: Let Lred and qw satisfy:

- 49 -

5

3

)(

8.0

RC

N
, 2/RCN ≤

≤qredwL (4.9)

4

2

)(

4.0

RC

N
, 2/RCN >

where

 1<<qw

Then, the linear feedback control system shown in Figure 4.1 is stable.

Proof:

Consider the frequency response of the compensated loop transfer function

 Rj

queuetcpred ejPjPjCjL ωωωωω −=)()()()(

)1
1

)(1
2

)(1(

)2(

)(

2

2

3

+++

=

−

R

j

CR

N

j

K

j

e
N

RC
L Rj

red

ωωω

ω

 Rj

red

e

K

j

N

RC
L

ω

ω
−

+

≈

1

)2(

)(
2

3

],0[gωω ∈∀ (4.10)

where

=
RCR

N
g

1
,

2
min1.0

2
ω (4.11)

Thus we obtain

 ()

()
()

()
()

1
2

1

2
2

3

2

2

2

3

≤<

+

≈

K

N

RC
L

K

N

RC
L

jL
g

red

g

red

g ωω
ω (4.12)

if

- 50 -

KN

RCL gred
ω

≤
2

3

)2(

)(
 (4.13)

We again use (4.10) to obtain

()

()
() 0

0
0

2

3

180
180
1.090

1

2
−>−−≥−

+

∠≈∠
π

ω
ω

ω R

K

j

N

RC
L

jL g

g

red

g

This and (4.12) indicate that the closed-loop system is asymptotically stable ac-

cording to the Nyquist stability criterion [30].

Given 1<<qw , we have

 qqe ww −≈−)1(log (4.14)

For a stable congested queue we have

C

Ts

1
= (4.15)

Thus, from (4.2), (4.14) and (4.15) we have

 CwK q= (4.16)

Consequently, given any 2/RCN ≤ , from (4.13) we obtain

Cw

CR

N

N

RCL

q

red
2

2

3

2.0

)2(

)(
≤

i.e.,

5

3

)(

8.0

RC

N
wL qred ≤

Similarly, given any 2/RCN > , we obtain

4

2

)(

4.0

RC

N
wL qred ≤

This completes the proof.

• Stability analysis

- 51 -

For initial RED parameters 0qw , 0maxp , 0max th , 0min th that satisfy (4.9), given

2/000 CRN > , we have

5

00

3

0

4

00

2

0
0

00

0max

)(

8.0

)(

4.0

minmax CR

N

CR

N
w

p
q

thth

<<
−

and given 2/000 CRN ≤ , we still have

5

00

3

0
0

00

0max

)(

8.0

minmax CR

N
w

p
q

thth

<
−

Given 2/RCN ≤ , from (4.3)-(4.6) we have

 0

00

0max

5

3

max

minmax)(minmax
q

ththcr

n
q

thth

qred w
p

kk

k
w

p
wL

−
=

−
=

5

3

5

00

3

0

5

3

)(

8.0

)(

8.0

)(RC

N

CR

N

kk

k

cr

n =<

Similarly, Given 2/RCN > we have

4

2

)(

4.0

RC

N
wL qred <

So the stability proposition in (4.9) can always be satisfied when we tune RED pa-

rameters according to equations (4.3)-(4.6). This provides a useful guideline for

tuning RED parameters whilst maintaining the stability.

The derivation of our stability proposition is similar to that proposed in [31]. So we

have an intuitive sense that our algorithm can provide a similar performance to that in

[31]. However, the RED parameters in [31] are tightly coupled to each other and a

complex calculation is needed to obtain suitable RED parameters for every changed

network scenario. In contrast RED parameter tuning becomes much easier with the

algorithm as shown in (4.3)-(4.6).

4.4 Network Traffic Measurement

The online statistic characteristics of heterogeneous network scenarios used in AP-

RED include round-trip time R, number of TCP flows N and link capacity C. Based

- 52 -

on packet-level traces and flow-level statistics we know they are measurable and do

not change dramatically over a relatively short time. For example, the characteristics

of R, N, C and average package size etc have been observed in OC3MON [55] and the

IPMON system [29]. It is feasible for us to use the methods described in the literature

to obtain the network parameters.

In [29] the number of flows is calculated per minute. Those packets with the same

5-tuple information (source address, source port, destination address, destination port,

and protocol) are classified as the same flow. The start time of a flow is the first time

when a packet with new 5-tuple information is observed, and the flow ends when no

packets with the same 5-tuple information are seen for a time interval 60s. On the oth-

er hand we can use a shorter time interval to calculate the traffic loads. Although there

is some difference for the calculated value of traffic loads with different time intervals,

in terms of [35] the variation of proportionality factor kn is small with different time

intervals.

In [29][45] round-trip time is measured as the time elapsed between a synchroniza-

tion (SYN) packet and the first ACK packet that completes the three-way handshake.

This is a rough estimate because we only compute the round-trip times for flows of

which we observe the SYN/ACK pair. Fortunately, the deviation of the estimate is

minimized because we use a proportionality factor kr. In addition, RED also has its

own robustness under changed scenarios [44].

Moreover the link capacity C in bytes is a known value, so it is unnecessary to cal-

culate it in most cases when AP-RED runs in byte mode.

The measurement methods can be deployed in routers. For example, Cisco Net-

Flow is configured on most Cisco routers to provide a highly condensed and detailed

view of all real time network traffic [68]. Because the statistical characteristics of

network parameters are not changing dramatically we do not need to predict the net-

work scenario parameters R, N and C in advance and could measure these parameters

less frequently. In practice we need to set a suitable interval time to obtain these net-

- 53 -

work parameters on a trial-and-error basis. Because it is easy to obtain these network

parameters in edge routers, the feasibility of our RED tuning algorithm is ensured,

especially in edge routers.

4.5 Simulations

Although AP-RED is based on the analysis of a linearized model, the algorithm is ve-

rified by using a ns-2 simulator to capture the stochastic, nonlinear nature of the

network dynamic. As the prominent algorithm for RED parameter tuning [40], ARED

is compared with AP-RED in the simulations. These simulations use a simple dumb-

bell topology with a single bottleneck link as shown in Figure 4.2. The bottleneck link

is shared by persistent FTP flows, short HTTP sessions and reverse-path traffic. Each

HTTP sessions repeatedly make short file transfers. Between two consecutive trans-

fers, there is a ‘think time’ that starts after the last byte of the first file has been

acknowledged. The transfer size is exponentially distributed with a mean of twelve 1

KB-packets. The think time is exponentially distributed with a mean of 500ms. The

presence of these short-lived flows introduces noise into the queue. The number of

HTTP flows in our simulations is set to twice that of FTP flows. The reverse-path traf-

fic consists of 20 persistent FTP flows. The presence of reverse-path traffic introduces

ACK compression and the loss of ACK packets, and thus increases the burstiness of

the forward-path traffic. In all simulations the average packet size is set to 500 bytes,

and the buffer size is set to 500 packets which are large enough for the following net-

work scenarios. AP-RED is verified by extensive simulations using different R, C and

N, but only limited simulations can be presented in this section.

- 54 -

Figure 4.2 Network topology for simulations

4.5.1 Experiment 1

In the first experiment we have 500 =N FTP flows with round-trip propagation delay

1200 =d ms. The bottleneck link capacity is set to 10 Mbps, that is, 25000 =C pack-

ets/second. The corresponding parameters of AP-RED are 05.00max =p , 50min 0 =th

packets, 150max 0 =th packets and 4

0 10−=qw , which satisfy the stability proposition

(4.9). We choose thmin , thmax and qw for ARED the same as the corresponding pa-

rameters for AP-RED above, and keep these ARED parameters unchanged in the

following experiments. Figure 4.3(a) plots the instantaneous queue size of ARED.

Observe a stable queue with small fluctuations around the equilibrium point of 100

packets. Figure 4.3(b) shows that the instantaneous queue size of AP-RED is also sta-

ble. Since both ARED and AP-RED are essentially RED, we observe quite similar

performance of their queues in Figure 4.3.

- 55 -

0

100

200

300

400

500

0 20 40 60 80 100

Time (Seconds)

Q
u
e
u
e
 S
iz
e
 (
P
a
c
k
e
ts
)

(a) ARED

0

100

200

300

400

500

0 20 40 60 80 100

Time (Seconds)

Q
u
e
u
e
 S
iz
e
 (
P
a
c
k
e
ts
)

(b) AP-RED

Figure 4.3 Comparison of ARED and AP-RED under network scenarios: N=

50, C= 2500 packets/second and d = 120ms.

- 56 -

4.5.2 Experiment 2

In the second experiment the round-trip propagation delay decreases to d = 100 ms

and the link capacity decreases to C=1250 packets/second. The number of FTP flows

decreases to N = 30. The plot in Figure 4.4(a) shows that the oscillations of the instan-

taneous queue size of ARED become smaller than that in Figure 4.3(a). This is

because RED becomes more stable when round-trip time or link capacity decreases

[44]. When we use 0/ dd to approximate kr in AP-RED algorithm, Cth /min and

Cth /max are in proportion to d according to equations (4.3) - (4.4). So are the queu-

ing delay and the round-trip time. With the same network scenario, AP-RED

parameters are changed to 1.0max =p , 20min =th packets, 60max =th packets and

4105.3 −∗=qw , which are derived from the tuning algorithm (4.3)-(4.6). We can see

that thmin and thmax decrease when R and C decrease. Figure 4.4(b) shows that the

instantaneous queue size of AP-RED reduces to around 40 packets, compared to 100

packets in Figure 4.4(a), whilst the queue can be stabilized at the new equilibrium

point between the updated thmin and thmax . Consequently, a lower queuing delay is

obtained. At the same time, the large average queue weight used in AP-RED should

improve the transient response. As we observe, the queue settles to around its equilib-

rium point after 5 seconds, compared to 20 seconds in ARED.

- 57 -

0

100

200

300

400

500

0 20 40 60 80 100

Time (Seconds)

Q
u
e
u
e
 S
iz
e
 (
P
a
c
k
e
ts
)

(a) ARED

0

100

200

300

400

500

0 20 40 60 80 100

Time (Seconds)

Q
u
e
u
e
 S
iz
e
 (
P
a
c
k
e
ts
)

(b) AP-RED

Figure 4.4 Comparison of ARED and AP-RED under network scenarios: N =

30, C = 1250 packets/second and d = 100ms.

- 58 -

4.5.3 Experiment 3

In the third experiment the round-trip propagation delay increases to d=250 ms and

the link capacity increases to C=3000 packets/second. The number of FTP flows in-

creases to N=100. The increase in the round-trip propagation delay and the link

capacity should reduce the stability of the system or even make the system unstable

[44]. The plot in Figure 4.5(a) displays deterministic oscillations of ARED, which

lead to large delay jitter and low link utilization. With the same network scenario, AP-

RED parameters are adjusted to 032.0max =p , 125min =th packets, 375max =th

packets and 5102.3 −∗=qw . These parameters are derived from the tuning algorithm

(4.3)-(4.6) and still satisfy the stability proposition (4.9). We can see that thmin and

thmax increase when R and C increase. Figure 4.5(b) displays that the instantaneous

queue size of AP-RED can be stabilized around a new equilibrium point between the

updated thmin and thmax . Although the instantaneous queue size becomes large, it

remains greater than zero and smaller than the total buffer size as desired. Thus high

link utilization is maintained.

- 59 -

0

100

200

300

400

500

0 20 40 60 80 100

Time (Seconds)

Q
u
e
u
e
 S
iz
e
 (
P
a
c
k
e
ts
)

(a) ARED

0

100

200

300

400

500

0 20 40 60 80 100

Time (Seconds)

Q
u
e
u
e
 S
iz
e
 (
P
a
c
k
e
ts
)

(b) AP-RED

Figure 4.5 Comparison of ARED and AP-RED under network scenarios: N=

100, C= 3000 packets/second and d = 250ms.

- 60 -

4.6 Conclusions

In this Chapter we developed AP-RED to provide a scalable and systematic mecha-

nism for RED parameter tuning. The advantages of AP-RED are that it provides a

simple mechanism, from a theoretic standpoint, for constantly tuning four key RED

parameters instead of tuning only one of them, like maxp , under varying network con-

ditions, such as traffic load, round-trip time and link capacity. It is unnecessary to

consider the interaction among these RED parameters when they are changed in re-

sponse to changed network conditions. Stability analysis and nonlinear simulations

showed that AP-RED could stabilize the instantaneous queue size and maintain high

link utilization in dynamic network scenarios. Multi-service situations involving net-

works with multiple bottlenecks and connections have not been considered in this

study. More research is required in order to extend AP-RED to the multi-service and

to a more realistic topology. The measure of network parameters may consume lots of

CPU resources and memory resources in routers and make system complex. For this

reason, Chapter 5 explores the feasibility of optimizing RED parameters under chang-

ing network scenarios without measurement of the network parameters R, C and N.

- 61 -

CHAPTER 5

Statistical Tuning RED in Dynamic Network Scenarios

5.1 Introduction

There are many RED parameter-tuning techniques proposed in the literature. A quan-

titative model for RED parameter-setting under various traffic load and round-trip

times was developed in [63]-[66], but RED parameters are still tightly coupled with

each other and need to be selected very carefully. A control-theoretic analysis has

been developed in [31] to provide guidelines for tuning RED parameters under a spe-

cific network scenario, but it is difficult to adapt RED parameters to changing

network scenarios. Adaptive RED (ARED) [22] and Auto-Tuning RED [52] provide a

simple guideline for adjusting one of the key RED parameters in response to traffic

load. However, the instantaneous queue size would become unstable when round-trip

time or link capacity increases [10][44][59][63]-[66]. When bandwidth-delay product

decreases the instantaneous queue size would be unnecessarily large [59][63]-[66].

The algorithm proposed in [59] explores to optimize the RED thresholds by providing

tradeoffs with loss rate, but this iterative algorithm needs a long time to achieve the

optimal values and thus becomes infeasible in highly dynamic networks. The authors

in [60][63]-[66] try to tune several or even all key RED parameters, but these methods

depend on the measurement of network parameters. This would increase overhead of

CPU processing in routers or need additional software and hardware, and thus make

- 62 -

the system complex. In addition, the rough estimation of these network parameters

[29][45][60] would increase uncertainty in tuning RED parameters.

Perhaps daunted by the difficulty of constantly tuning RED parameters to maintain

good performance under dynamic networks, other AQM or AQM-based approaches

have been provided. However, it is still difficult to design optimal parameters to

achieve both very good steady-state performance and fast transient response in differ-

ent network scenarios [57]. It has been demonstrated that ARED still provides the best

performance when dropped packets are used as indications of congestion.

We think it is more important to solve the parameter tuning issue of existing

prominent AQMs than to propose a new AQM algorithm. By investigating the stabil-

ity analysis and the mechanism for parameter tuning described in Chapter 4, this

chapter proposes that the change in the amplitude of queue oscillations mainly results

from the change in round-trip time or link capacity. Thus we can measure the variance

of the instantaneous queue size rather than measure network parameters to determine

the adjustment factor of AP-RED in Chapter 4. Then a new method is designed to cal-

culate the steady-state variance of the instantaneous queue size and to detect the

change in steady-state variance. In this way, we propose Statistical Tuning RED (ST-

RED) that can statistically adapt RED parameters in response to the detected change

in the variance. Extensive simulations by using a ns-2 simulator demonstrate that it is

robust and adaptive to TCP dynamics, and produces desirable transient performance.

The rest of this chapter is organized as follows. Section 5.2 investigates the back-

ground knowledge of TCP/RED system as well as an abruption detection technology.

Section 5.3 describes the details of the ST-RED algorithm. Section 5.4 discusses the

configuration of its initial parameters. We use ns-2 simulations to verify the algorithm

in Section 5.5. Conclusions are presented in Section 5.6.

- 63 -

5.2 Background and Related work

The original RED algorithm [21] uses a low-pass filter with average queue weight

qw (1<<qw) to calculate the average queue size q~ at every packet arrival. When q~

is less than a minimum threshold thmin , no packets are marked or dropped. When q~

is between thmin and a maximum threshold thmax , arriving packets are marked or

dropped with probability p, which varies linearly between 0 and a maximum

mark/drop probability maxp . When q~ is greater than thmax , all arriving packets are

marked or dropped.

The stability proposition of TCP/RED system in Chapter 4 is given as follows:

Stability Proposition: Let Lred and qw satisfy:

5

3

)(

8.0

RC

N
, 2/RCN ≤

≤qredwL (4.9)

4

2

)(

4.0

RC

N
, 2/RCN >

where

thth

red

p
L

minmax

max

−
= and 1<<qw .

Then, the linear feedback control system shown in Figure 4.1 is stable. See proof in

Chapter 4.

Obviously, four key RED parameters minth, maxth, maxp and qw , impact the stabil-

ity of the system. In addition, the specific impact of these four parameters on the

performance of the system is described in Chapter 2. The optimal values of minth and

maxth provide trade-offs between low queuing delay and high link utilization. maxp

- 64 -

directly impacts upon the aggressiveness of RED and determines the position of the

average queue size among minth and maxth. wq determines the degree of burstiness al-

lowed in a router and determine the responsiveness of the system.

In Chapter 4, the mechanism for RED parameter tuning was developed using con-

trol-theoretical analysis. When initial round-trip time 0R and initial link capacity 0C

vary to a new value of R and C, AP-RED can adjust thmax and thmin to new values

according to the adjustment factor k as follows:

 thth k maxmax ←

 thth k minmin ← (5.1)

 where crkkk = ;

0R

R
kr = ;

0C

C
kc =

If 2/RCN > , AP-RED tune qw as follows:

 qq w
k

w
1

← (5.2)

When 2/RCN ≤ , the rule of thumb in [22][52] demonstrates that formula (5.2) can

still be used to tune wq.

In order to keep the average queue size within a target range

)],min(max*6.0min),min(max*4.0[min thththththth −+−+ ARED uses an AIMD

policy to adjust maxp at every interval. Thus the instantaneous queue size can be stabi-

lized around a reference value
2

maxmin thth

refq
+

= . In [22], the update interval is

chosen as 5R. In this way, the dynamics of ARED is still dominated by RED over a

small time scale (on the arrival of every packet), and the adjustment of maxp is in-

voked over a large time scale. Detailed ARED algorithm see Figure 3.1.

In this chapter we use a Geometric Moving Average (GMA) decision function in [6]

to detect significant changes in variance of instantaneous queue size. A decision func-

- 65 -

tion kg
~ is defined in a recursive form to detect abrupt changes in the variance of vari-

able ky as follows:

 2

1)(~)1(~ µφφ −+−← − kkk ygg (5.3)

where φ is a forgetting factor and µ is the mean value of ky .

The alarm time at is defined by the following decision rule:

 }~:min{ hgkt ka ≥= (5.4)

where h is a pre-defined threshold.

5.3 Algorithm

Because of the feedback nature of TCP’s AIMD control strategy, oscillations in the

queue size are very common [22]. Since the order of the bandwidth-delay product RC

is much higher than that of the traffic load N in the stability proposition (4.9), round-

trip time and link capacity make significantly more contribution than traffic load in

the determination of the stability of TCP/RED system. On the other hand, analysis

and experiments in [44] illustrate that the impact of other network conditions like

“mice” traffic or reverse-path traffic on the queue oscillations is slight.

Consequently, we can infer that a significant change in the amplitude of the oscilla-

tions of the queue size mainly results from a significant change in the bandwidth-

delay product. The main cause for larger oscillations of the queue size is the increase

in the round-trip time or link capacity, while the main cause for smaller oscillations of

the queue size is the decrease in the round-trip time or link capacity. As the variance is

statistically related to the amplitude of the oscillations, this motivates ST- RED to use

the variance of q, rather than R and C, to determine k used in equations (5.1) and (5.2).

Thus the difficulty of measuring network variables can be avoided.

- 66 -

The overall guidelines for ST-RED are to stabilize the instantaneous queue size

within a target range by maintaining steady-state variance of q greater than a lower

threshold and less than an upper threshold. It is described as follows:

1) On every packet arrival, ST-RED uses a GMA function to calculate variance σ.

At the same time, ST-RED calculates a GMA detection function with a lower thresh-

old refs qh ⋅ and an upper threshold refl qh ⋅ . The upper threshold is used to detect

significantly large variance of q while the lower threshold is used to detect signifi-

cantly small variance of q. The upper threshold is set to a steady-state value of the

decision function. The variance function has the same input samples as the detection

function so that the steady-state values of these two functions are similar. By setting

the forgetting factor of the variance function greater than that of the detection function,

the variance can increase faster than the detection function so that the variance al-

ready reaches its steady-state value (no less than the upper threshold) when the

detection function hits the upper threshold. On the other hand, the variance can de-

crease faster than the detection function so that it reaches a value between the lower

threshold and its steady-state value (no greater than the lower threshold) when the de-

tection function hits the lower threshold. When large variance or small variance is

detected RED parameters are adjusted according to (5.1)-(5.2) with k set to

)/(refl qh ⋅σ or)/(refs qh ⋅σ correspondingly.

2) The variance is calculated when q is within l_range, a largest possible steady-

state oscillation range of q. Calculations of the variance σ stop when q is out of this

range, where q is treated as a transient-state. This is because the variance may become

unnecessarily large during a transient period and thus may have not reached its

steady-state value before the detection function reaches its upper threshold.

3) The detection function is calculated only when q is within d_range, a desirable

steady-state oscillation range of q. This range is also used to prevent calculation of the

transient-state value of q as much as possible. Otherwise these transient-state values

- 67 -

may result in the detection function operating incorrectly. Obviously d_range should

be less than l_range.

4) At every interval, ST-RED uses the same AIMD policy of ARED to adjust maxp .

The general algorithm for ST-RED is depicted in Figure 5.1.

Every packet arrival:

if rangelq _<

 calculate the variance of q

 if rangedq _<

 calculate the variance detection function of q

 if a significant change in the variance is detected

 adjust thmax , thmin and qw according to the variance

Every interval:

 Use AIMD policy to adjust maxp

Figure 5.1 General ST-RED Algorithm

Figure 5.2 illustrates an evolution of the queue size and the variance. At the begin-

ning the queue size is within its target zone. So the detection function oscillates

between the upper threshold and the lower threshold. We can see that the performance

of the variance function is similar to that of the detection function. From 1t to 4t the

queue size enters into a transient state. We see that the detection function stops calcu-

lation when the queue size exceeds d_range from 1t to 4t and the variance function

stops calculation from 2t to 3t when the queue size is out of l_range. After the transient

state ends at 4t , the oscillations of the queue size are benign. We see that the variance

and the detection function oscillate within the thresholds. When large oscillations of

the queue size occur after 5t , both the detection function and the variance increase.

- 68 -

a) Evolution of the queue size

b) Evolution of the variance function and detection function

Figure 5.2 Evolution of the variance and detection function

The variance increases faster than the detection function so that it reaches its steady

state before the detection function hits the upper threshold. When the large variance is

detected by the detection function at 6t , the upper threshold is moved to the current

value of the variance by adjusting RED parameters thmax and thmin . This results in

an updated lower threshold. d_range and l_range are also updated corresponding to

- 69 -

the adjustment in thmax and thmin . qw is adjusted to a smaller value according to

(5.2). Then the detection function is reset to a new initial value. From stability propo-

sition (4.9) this adjustment makes the queue more stable. We see queue oscillations

reduce after adjustment at 6t . Thus the detection function is adjusted to values less

than the upper threshold and greater than the lower threshold as desired.

The detailed ST-RED algorithm is depicted in Figure 5.3 and explanation of the al-

gorithm is followed. Unlike ARED, we do not restrict
max

p to [0.01, 0.5]. Without the

limitation, the transient period of ST-RED is still satisfied.

- 70 -

Initialization:

02 ←σ 2/))()((222

reflrefs qhqhg ⋅+⋅←

every packet arrival:

 if refqq ⋅<< 20

 Calculate the variance:

 2

1

2

1

2)()1(refqq qqww −⋅+⋅−← φσφσ

 if refref qqq)1()1(γγ +<<−

 Calculate the detection function:

 2

2

2

2

2)()1(refqq qqwgwg −⋅+⋅−← φφ

 if (refl qhg ⋅> and refl qh ⋅>σ) or

 (refs qhg ⋅< and refs qh ⋅<σ)

 Adjust parameters:

 if refl qhg ⋅>

)/(refl qhk ⋅← σ

 else

)/(refs qhk ⋅← σ

 endif

 thth k maxmax ⋅← thth k minmin ⋅←

 kww qq /← intervalkinterval ⋅←

 2/))()((222

reflrefs qhqhg ⋅+⋅←

 endif

 endif

 endif

- 71 -

Every interval:

 if (q~ > target)

 α+← maxmax pp

 elseif (q~ < target)

 β*maxmax pp ←

 endif

variables:

2σ :variance function of q 2g : variance detection function of q

k: adjustment factor

Fixed parameters:

refq :)min(max*5.0 thth + ; target:

)]min(max*6.0min),min(max*4.0[min thththththth −+−+ ;

α: min (0.01, maxp /4) ; β: 0.9;

1φ : 1 ; 2φ : 125.0 φ ; γ : 0.7;

lh : 3/γ ; sh : fixed in terms of initial RED parameters.

Figure 5.3 Detailed ST-RED algorithm

5.3.1 Calculating the variance and detection function of q

The following GMA function 2σ can be used to calculate the variance:

- 72 -

 2

1

2

1

2)()1(refqq qqww −⋅+⋅−← φσφσ (5.5)

where 1φ is the forgetting factor for variance.

As the oscillations are symmetrically bounded around refq and the smallest possible

steady-state value of q is 0, the largest possible steady-state value of q is refq⋅2 . So

the variance is calculated within l_range:

 refqq ⋅<< 20 (5.6)

According to (5.3), the following GMA detection function 2g is used to detect sig-

nificant changes in the variance of q:

 2

2

2

2

2)()1(refqq qqwgwg −⋅+⋅−← φφ (5.7)

where 2φ is the forgetting factor for detection.

The detection function is calculated only when q is within d_range:

 refref qqq)1()1(γγ +<<− (5.8)

where γ is the coefficient of the detection range.

Since the amplitude of the queue oscillations needs to be maintained smaller than

refq to provide high link utilization, we can choose the upper threshold as a fraction of

refq . So we have the following decision rule according to (5.4) for large variance de-

tection:

 refl qhg ⋅> (5.9)

where refl qh ⋅ is the upper threshold and lh is the coefficient of the upper threshold.

Similarly, the decision rule for small variance detection is

 refs qhg ⋅< (5.10)

where refs qh ⋅ is the lower threshold and sh is the coefficient of the lower threshold.

Although the initial value of the decision function 2

0g is chosen as 0 in [6], it would

be a value greater than 2)(refs qh ⋅ and less than 2)(refl qh ⋅ after a while if there are

- 73 -

not significant changes. For simple reason, we set the initial value to half way be-

tween 2)(refs qh ⋅ and 2)(refl qh ⋅ . So we have

2

)()(22

2

0

reflrefs qhqh
g

⋅+⋅
= .

5.3.2 Stability analysis

Consider that a large variance is detected and 2σ reaches its steady state. We have

 σ≤g (5.11)

Then we adjust the upper threshold refl qh ⋅ to σ by adjusting the RED parameters

according to (5.1) and (5.2), where k is set to

refl qh

k
⋅

←
σ

 (5.12)

From (5.9) and (5.11) we have 1>k .

Therefore after adjustment we have

 refl qhg ⋅≤ (5.13)

From the stability proposition (4.9) we know that the system becomes more stable

for larger thmax and thmin and a smaller qw . This indicates a smaller g and thus se-

cures (5.13).

Similarly, when a small variance is detected we have

refs qh

k
⋅

←
σ

 (5.14)

and after adjustment we have

 refs qhg ⋅≥ (5.15)

The above analysis indicates that the queue size can be stabilized in a target range.

Remark: Because previous amplitude of queue oscillations are limited by refq , pre-

vious variance would increase greatly with the increase in previous refq . In this case,

when RED parameters are adapted according to the adjustment factor (5.12) in re-

- 74 -

sponse to a large variance detected, further adjustment of RED parameters is needed

until formula (5.13) is secured. On the other hand, when RED parameters are adapted

according to the adjustment factor (5.14) in response to a small variance detected,

variance σ may not reach its steady-state value. In this case, further adjustment of

RED parameters is needed until σ reaches its steady-state value and formula (5.15) is

secured.

We also take measures to prevent incorrect calculation of the adjustment factor k in

exceptional cases. When large variance is detected, we need refl qh ⋅>σ to guarantee

1>k . When small variance is detected, we need refs qh ⋅<σ to guarantee 1<k .

5.4 Initial Parameter Setting

5.4.1 Choice of parameters interval, 1φ and 2φ

Consider the change in link capacity is not significant for a specific link. We know

that interval is determined by R. When RED parameters are adjusted according to (5.1)

interval needs to be updated by:

 intervalkinterval ⋅←

The simulations and analysis in [22][52] indicate that qw can be set to
RC10

1
 . So

from (4.16) we have
R

K
1

<< .

Then the delay term in the open-loop transfer function of TCP/RED (4.10) can be

ignored. We have

1

)2(

)(

)(
2

3

+

≈

K

j

N

RC
L

jL

red

ω
ω

Thus, we obtain the time constant of the closed-loop system in Figure 4.1

- 75 -

1
)2(

)(

/1

2

3

+

≈

N

RC
L

K
T

red

CwK q

11
=≤ (5.16)

The time constant of the estimator of the average queue size is referred to

)1(log

1

qe w−

−
packet arrivals in [22]. As the interval for packet arrival is

C

1
 for a stable

queue, we can also define its time constant as
Cwq ⋅

1
 when 1<<qw . Similarly, the

time constant of the variance function is
Cwq ⋅⋅1

1

φ
 and the time constant of the de-

tection function is
Cwq ⋅⋅2

1

φ
. The time constant of the variance function should be

greater than that of the system in order that steady-state values of the variance come

from the steady-state values of the queue size. So from (5.5) and (5.16) we have 11 ≤φ .

Our default setting of 11 =φ obeys these constraints. From (5.5) and (5.7) we have

21 φφ > to guarantee that the variance function increases or decreases faster than the

detection function before a large variance or a small variance is detected, and that the

variance has reached its steady state when the detection function settles to a final

value of the upper threshold. On the other hand, 2φ cannot be too small; otherwise,

the detection function is too sluggish to detect significant changes quickly. Our de-

fault setting of 21 4φφ = satisfies this constraint. This also indicates that although any

smaller value of 11 <φ can be chosen, a smaller value of 2φ has to be selected corre-

spondingly. In this case it would take longer to detect the change in the variance of the

queue size. So a significant change can be more quickly detected and the variance

function can reach its steady-state value more quickly with the default setting of

11 =φ .

- 76 -

5.4.2 Choice of parameters γ, lh and sh

Assume that the random variable q is a uniform variable. Its amplitude is 3

times its standard deviation. We choose lh as 3/γ in order to set the upper thresh-

old in (5.9) to the standard deviation corresponding to the largest amplitude of refq⋅γ

in d_range (5.8). Thus the upper threshold is a steady-state value that the detection

function can reach.

A smaller refq in (5.9) can be used for a larger γ to keep the same g less than the

upper threshold 3/γ⋅refq , but the instantaneous queue size may begin to reach zero

and downgrade link utilization for a smaller refq . On the other hand, a larger

refq needs to be used to a smaller γ to satisfy (5.9). So the value of γ reflects the

trade-off between high link utilization and low queuing delay. Based on extensive ex-

periments, a default value of 7.0=γ can be used to maintain high link utilization.

Furthermore, if sh in (5.10) is too small it is difficult for the detection function to

detect a small variance of q. In this case, low queuing delay as desired can’t be pro-

vided in response to the small variance. If sh is too large, the space between the upper

threshold and the lower threshold is not large enough. In this case, when thmax and

thmin increase in response to a large variance detected, the detection function tends to

detect a small change, and vice versa. Thus refq may oscillate between different values.

sh needs to be tuned mainly in terms of initial RED parameters. This is because

the initial RED parameters determine the oscillations of q and will influence the sub-

sequent oscillations corresponding to adapted RED parameters. In choosing sh , we

need to make sure that desirable low queuing delay can be provided in response to

small variances of the queue size, and that the oscillations of refq between different

- 77 -

values should be avoided under stable network conditions. Once a suitable sh is cho-

sen, it remains unchanged under different network conditions.

5.5 Simulations

In this section, the performance of ST-RED is compared with prominent AQM

mechanisms, which are ARED and PI controller, via ns-2 simulations. Extensive

simulations have been conducted, but only limited results can be reported in this sec-

tion. These simulations use a simple dumbbell topology with a single bottleneck link

as shown in Figure 4.2. The bottleneck link is shared by persistent FTP flows, short

HTTP sessions, reverse-path traffic and UDP traffic. The presence of these short-lived

flows introduces noise into the queue. The reverse-path traffic consists of persistent

FTP flows. The presence of reverse-path traffic introduces ACK compression and the

loss of ACK packets, and thus increases the burstiness of the forward-path traffic.

There are 20 reverse-path flows in each simulation. In all simulations the byte mode is

used and ECN is not supported. The initial parameters of ST-RED are designed for a

scenario of 100 FTP flows passing through a 10Mbps bottleneck link. The round-trip

propagation delays are uniformly 100ms. The packet size is 500 bytes. The corre-

sponding parameters for ST-RED are 20min =th , 60max =th , 510*5 −=qw and

3/03.0=sh . For ARED, we set qw the same as that of ST-RED and vary

(thmin , thmax) to test different queue performance. In all simulations the initial inter-

val for ST-RED and interval for ARED are set to 0.5s. For PI controller, we use

default values of a_=0.00001822 and b_=0.00001816 in [67]. Its sampling frequency

is set to 170HZ. Different values of
refq are used to test different queue performance.

The performances of each scheme under changing network variables of round-trip

time, link capacity, and traffic load are investigated. System performances under vary-

ing UDP traffic density and varying short-lived TCP flows are also studied. The buffer

- 78 -

size in all simulations is set to 500 packets which are sufficiently large for the follow-

ing simulations.

5.5.1 Varying round-trip time

This experiment aims to investigate the performance of each scheme when the round-

trip time varies. The round-trip time is varied by changing the propagation delay at

the bottleneck link. At time 0 there are 100 FTP flows passing through a 10Mbps bot-

tleneck link. The initial round-trip propagation delay d is 100ms. At the 200
th
 second,

400
th
 second, 600

th
 second and 800

th
 second, d increases to 300ms, 500ms, 700ms and

900ms respectively. At the 1000
th
 second, 1200

th
 second, 1400

th
 second and 1600

th

second, d returns to 700ms, 500ms, 300ms and 100ms, respectively. Figure 5.4 plots

the instantaneous queue size for each scheme.

For ARED (20, 60) with 20min =th and 60max =th , the queue oscillations are

benign from 0 second to 400 seconds. This demonstrates some robustness of ARED

parameters under changing round-trip times. Between 400 seconds and 1400 seconds,

the queue oscillations become severe, corresponding to d varying between 500ms and

900ms. For ARED (60, 180) deterministic oscillations can also be observed between

400 seconds and 1400 seconds. This is because that the interval of 0.5s is too small

for ARED when the round-trip time becomes large.

For PI-40 with 40=refq , the figure shows its queue takes about 100 seconds to

settle down. When d is less than 500 ms, the queue needs a long time to settle down in

response to every change in d. So does PI-120. This is because the PI parameters

which can stabilize the queue with large delay become too conservative when the de-

lay is small. On the other hand, PI-120 can finally stabilize the queue with all d but

PI-40 cannot do this when d is greater than 500 ms.

- 79 -

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 5.4 Queue size (packets) variations versus time (seconds)

 under varying round-trip propagation delay [100ms-900ms]

P
I-
1
2
0

A
R
E
D
 (
2
0
,6
0
)

A
R
E
D
 (
6
0
,
1
8
0
)

S
T
-R
E
D

P
I-
4
0

- 80 -

For ST-RED, the queue size increases to about 120 packets as d increases from

100ms to 900ms, and the queue size decreases as d decreases. It eventually returns to

near 60 packets when d returns to its initial value 100ms. We can see a stable queue

almost all the time.

Link utilization or throughput, average queue size, and average queue deviation are

used as performance metrics. The average queue deviation is obtained by first calcu-

lating different values of queue deviation for every 200 seconds such as 1-200

seconds and 201-400 seconds, and then averaging these values. This is because refq

for ST-RED may change significantly during the whole process, while it is relatively

stable during a period of 200 seconds between two changes of network parameters.

Table 5-1 Summary Statistics for all Designs under

Varying Round-trip Propagation Delay

 Link

Utilization

Loss rate Average

queue size

Average queue

deviation

ARED (20,60) 98.81% 3.83% 39.2 30.9

ARED (30,90) 98.75% 3.58% 59.4 41.9

ARED (40,120) 98,78% 3.38% 78.6 51.2

ARED (50,150) 98.94% 3.14% 98.9 58.5

ARED (60,180) 98.92% 2.99% 116.1 70.5

PI-40 97.77% 4.13% 42.5 37.8

PI-60 98.94% 3.80% 62.5 41.4

PI-80 99.37% 3.56% 82.2 44.2

PI-100 99.53% 3.33% 102.1 44.4

PI-120 99.71% 3.13% 121.6 44.3

ST-RED 99.67% 3.47% 83.9 40.9

- 81 -

In Table 5-1, we see that ST-RED provides very high utilization of 99.67%. Al-

though ARED (50, 150), ARED (60, 180), PI-100 and PI-120 have lower loss rate

than ST-RED, their average queue sizes are higher than ST-RED of 83.9 packets. On

the other hand, the loss rate 3.47% of ST-RED is less than those of schemes with

smaller average queue size, except ARED (40, 120). Although ARED (40, 120) has a

slightly lower loss rate of 3.38% and a smaller average queue size of 78.6 packets, its

link utilization of 98.78% and average queue deviation of 51.2 packets are much

higher than those of ST-RED. As a result, ST-RED provides the best performances in

this scenario.

5.5.2 Varying bottleneck link capacity

The objectives of the second experiment are to investigate the performance of each

scheme under different bottleneck link capacities. The initial link capacity is 10Mbps.

Then it increases to 20Mbps, 30Mbps, 40Mbps and 50Mbps at the 200
th
 second, 400

th

second, 600
th
 second and 800

th
 second, respectively. From the 1000

th
 second, it begins

to decrease. It decreases to 40Mbps, 30Mbps, 20Mbps and 10Mbps at the 1000
th
 sec-

ond, 1200
th
 second, 1400

th
 second and 1600

th
 second respectively. We set the number

of FTP flows to 100 and the round-trip propagation delay to 100ms. The results for

each scheme are given in Figure 5.5.

The plot of ARED (20, 60) shows a stable queue from 0 second to 200 seconds,

and acceptable queue oscillations from 200 seconds to 400 seconds, This is because of

the robustness of RED parameters. The figure shows malignant oscillations between

400 seconds and 1400 seconds when link capacity is between 30Mbps and 50Mbps.

As the link capacity decreases to values no greater than 20Mbps after 1400 seconds,

the queue size becomes stable again. For ARED (60, 180), although the queue oscilla-

tions become large as the link capacity increases, it is acceptable throughout the

simulation. So it could provide high link utilization all the time.

- 82 -

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 5.5 Queue size (packets) variations versus time (seconds)

under varying bottleneck link capacity [10Mbps-50Mbps]

A
R
E
D
 (
2
0
,
6
0
)

A
R
E
D
 (
6
0
,
1
8
0
)

P
I-
4
0

P
I-
1
2
0

S
T
-R
E
D

- 83 -

For PI-40, we see the queue hardly settle down for the first 400 seconds. This is

because the PI parameters which can stabilize the queue under high link capacity be-

come too conservative when the capacity is small. So does PI-120. On the other hand,

the oscillations of PI-120 are more benign than PI-40.

As the link capacity increases, ST-RED can detect large oscillations and increases

average queue size correspondingly. The figure shows that its average queue size in-

creases from 40 packets to the highest about 120 packets. As the link capacity

decreases, ST-RED can detect small oscillations and decreases the average queue size

correspondingly. Observe that the average queue size returns to about 50 packets

when link capacity returns to 10Mbps. During the process ST-RED maintains a stable

queue, as well as provide lower queuing delay than ARED (60, 180) and PI-120 most

of the times.

Table 5-2 Summary Statistics for all Designs under

Varying Bottleneck Link Capacity

 Throughput

(×10
9
bytes)

Loss rate Average

queue size

Average queue

deviation

ARED (20,60) 6.47 2.40% 39.2 24.1

ARED (30,90) 6.48 2.26% 59.4 29.2

ARED (40,120) 6.49 2.14% 77.8 32.6

ARED (50,150) 6.49 2.02% 99.6 31.6

ARED (60,180) 6.50 1.92% 118.5 34.1

PI-40 6.36 2.60% 42.9 36.8

PI-60 6.43 2.42% 61.7 40

PI-80 6.46 2.29% 82.1 42.4

PI-100 6.48 2.16% 101.6 42.8

PI-120 6.49 2.05% 121.6 43.5

ST-RED 6.50 2.21% 77.1 27

- 84 -

Since link capacity is not a constant in this experiment, throughput is used as a

metric instead of link utilization. In Table 5-2, ST-RED provides the highest through-

put of 6.5×10
9
bytes among all schemes and its average queue deviation of 27 packets

is near the smallest value 24.1 of ARED (20, 60). Compared with schemes with

smaller average queue size, ST-RED has lower loss rate and higher throughput. ST-

RED still provides one of the best performances in this scenario with varying link ca-

pacity.

5.5.3 Varying the number of FTP flows

In this experiment the performance of each scheme is checked under different num-

bers of FTP flows. We start 30 FTP flows at 0, and then increase it to 50, 100, 150 and

200 at the 200
th
 second, 400

th
 second, 600

th
 second and 800

th
 second. Then the num-

ber of FTP flows decreases to 150, 100, 50 and 30 at 1000
th
 second, 1200

th
 second,

1400
th
 second and 1600

th
 second, respectively. The round-trip propagation delay is set

unchanged at 100ms, and the bottleneck link capacity is 10Mbps. Figure 5.6 depicts

the instantaneous queue size of each scheme.

As the parameters of PI controllers are conservative with small d and low link ca-

pacity, the figure shows that their responsiveness is sluggish and the amplitude of

oscillations is relatively large, although the queue can finally be stabilized. For ARED

(20, 60) and ARED (60, 180), a stable queue can be seen all the time because the

number of FTP flows has little influence on the queue oscillations and each ARED

scheme is good at controlling the queue size at a given equilibrium point. Since no

large or small change can be detected, the queue sizes of ST-RED keep stable at the

equilibrium point of 40 packets all the time. Figure 5.6 and Table 5-3 show that ST-

RED has the same performance as ARED (20, 60) with very high link utilization of

99.91%, the smallest average queue size of 40 packets, and the smallest average

queue deviation of 14.9. In general, ST-RED shows one of the best performances

when traffic load changes.

- 85 -

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 5.6 Queue size (packets) variations versus time (seconds)

under varying number of FTP flows [30-200]

P
I-
4
0

P
I-
1
2
0

S
T
-R
E
D

A
R
E
D
 (
6
0
,
1
8
0
)

A
R
E
D
 (
2
0
,
6
0
)

- 86 -

Table 5-3 Summary Statistics for all Designs under

Varying Number of FTP Flows

 Link

Utilization

Loss rate Average

queue size

Average queue

deviation

ARED (20,60) 99.91% 6.93% 40.0 14.9

ARED (60,180) 99.95% 5.45% 122.3 21.7

PI-40 97.09% 7.54% 39.4 32.3

PI-120 99.74% 5.89% 119.2 39.7

ST-RED 99.91% 6.93% 40 14.9

5.5.4 Varying short HTTP sessions

The fourth experiment is run in order to evaluate the performance of all schemes un-

der changing numbers of HTTP flows. Each HTTP session repeatedly makes short file

transfers. Between two consecutive transfers, there is a ‘think time’ that starts after the

last byte of the first file has been acknowledged. The transfer size is exponentially

distributed with a mean of twelve 1 KB-packets. The think time is exponentially dis-

tributed with a mean of 500ms. 1 HTTP sessions are started at 0, and then 1 HTTP

sessions are added every 100 seconds until there are 10 HTTP sessions during 900-

1000 seconds. In addition, 100 persistent FTP flows exist during the process. The

round-trip propagation delay is set unchanged at 100ms, and the bottleneck link ca-

pacity is 10Mbps. The instantaneous queue size of each scheme is shown in Figure

5.7.

The figure shows the sluggish response of PI controllers with conservative parame-

ters in the presence of varying HTTP sessions. Although queue size keeps stable, the

queue deviation is large. For ARED (20, 60) and ARED (60, 180), the queue size can

keep stable with small deviation because short HTTP sessions hardly impact on the

oscillations of the queue size. Since no large or small change can be detected,

- 87 -

0

100

200

300

400

500

0 200 400 600 800 1000

0

100

200

300

400

500

0 200 400 600 800 1000

0

100

200

300

400

500

0 200 400 600 800 1000

0

100

200

300

400

500

0 200 400 600 800 1000

0

100

200

300

400

500

0 200 400 600 800 1000

Figure 5.7 Queue size (packets) variations versus time (seconds)

 under varying HTTP sessions

A
R
E
D
 (
2
0
,
6
0
)

A
R
E
D
 (
6
0
,
1
8
0
)

P
I-
4
0

P
I-
1
2
0

S
T
-R
E
D

- 88 -

Figure 5.7 and Table 5-4 show that ST-RED has the same performance as ARED

(20, 60) with very high link utilization of 99.92%, the smallest average queue size of

39.1packets, and the smallest average queue deviation of 16.9. In general, ST-RED

shows one of the best performances once again when HTTP sessions vary.

Table 5-4 Summary Statistics for all Designs under Varying HTTP sessions

 Link

Utilization

Loss rate Average

queue size

Average queue

deviation

ARED (20,60) 99.92% 8.31% 39.1 16.9

ARED (60,180) 99.95% 6.66% 119.7 23.6

PI-40 99.65% 8.96% 48.6 35.8

PI-120 99.94% 7.31% 126.3 36.7

ST-RED 99.92% 8.31% 39.1 16.9

5.5.5 Varying the density of the UDP traffic

In the final experiment the performance of each scheme is investigated with the exis-

tence of unresponsive UDP flows. Each UDP flow is an ON/OFF flow. The duration

of the ON and OFF states are exponentially distributed with a mean of 1 second. Dur-

ing ON time, each UDP flow transmit with a rate of 10×ρ /100 Mbps, where ρ is the

density of the UDP traffic. The number of UDP flows introduced in this experiment is

100. The initial ρ is set to 0.1 at 0, and then is increased to 0.3, 0.5, 0.7 and 0.9 at the

200
th
 second, 400

th
 second, 600

th
 second and 800

th
 second. Then ρ decreases to 0.7,

0.5, 0.3 and 0.1 at 1000
th
 second, 1200

th
 second, 1400

th
 second and 1600

th
 second, re-

spectively. There are 100 persistent FTP flows. The round-trip propagation delay is set

unchanged at 100ms, and the bottleneck link capacity is 10Mbps. Figure 5.8 depicts

the instantaneous queue size of each scheme.

- 89 -

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 5.8 Queue size (packets) variations versus time (seconds)

under varying UDP traffic density [0.1-0.9]

A
R
E
D
 (
2
0
,
6
0
)

A
R
E
D
 (
6
0
,
1
8
0
)

P
I-
4
0

P
I-
1
2
0

S
T
-R
E
D

- 90 -

As the rate of the UDP flows increase, a bit more severe queue oscillations are ob-

served in ARED (20, 60) and in ARED (60, 180). On the other hand, the oscillations

introduced by UDP flows is not as significant as that introduced by link capacity and

round-trip propagation delay, as shown in Figure 5.4 and Figure 5.5. As for PI-40 and

PI-120, these UDP flows result in more severe oscillations and the PI controllers take

a long time for the queue to settle down. On the other hand, ST-RED respond to the

large oscillations and its parameters are changed correspondingly. Table 5-5 shows

that ST-RED provides very high link utilization of 99.94% and its average queue size

of 49.1 packets is small. Its average queue deviation of 18.9 is near the smallest value

of 17.8. Compared to ARED (20, 60) and PI-40 which has lower average queue size,

ST-RED provide higher link utilization and lower loss rate. The average queue size of

ST-RED is much lower that of ARED (60, 180) and PI-120. So ST-RED performs

very well under varying UDP flows.

Table 5-5 Summary Statistics for all Designs under

 Varying UDP Traffic Density

 Link

Utilization

Loss rate Average

queue size

Average queue

deviation

ARED (20,60) 99.92% 10.28% 40.0 17.8

ARED (60,180) 99.96% 8.12% 119.6 23.1

PI-40 99.57% 10.83% 43.5 30.9

PI-120 99.96% 8.64% 122.0 32.2

ST-RED 99.94% 10.05% 49.1 18.9

5.6 Conclusions

This Chapter has analyzed the reason for queue oscillations and thus the change in

network scenarios such as round-trip time and link capacity can be inferred from the

change in the variance of queue oscillations. Based on this analysis, a ST-RED is de-

- 91 -

veloped for systematically tuning maxp in response to the value of the average queue

size to control the equilibrium point of the queue size, and tuning other RED parame-

ters in response to the variance of the queue size to control the stability of TCP/RED

systems. Thus, four key RED parameters are adapted to constantly achieve desirable

performance under a wide range of uncertainties in network conditions. The algorithm

is simple and easy to implement. Simulation results demonstrate that ST-RED can

constantly provide high link utilization and keep queuing delay as low as possible in

extensively changing network scenarios. The queue deviation of ST-RED is also very

small. Compared with ARED and PI controller, ST-RED can provide best perform-

ance in almost all varying network scenarios. As RED works well only in conjunction

with packet loss, the best performance AQM with ECN need to be studied. So the al-

gorithm for the parameter tuning of PI controller is proposed in Chapter 6.

- 92 -

CHAPTER 6

Statistical Tuning PI Controller in Dynamic network Scenarios

6.1 Introduction

Internet routers use buffers to accommodate packets during congestion. However, buf-

fers cause queuing delay, delay-jitter and other problems. Router buffers are the single

biggest contributor to uncertainty in the Internet [4]. Obviously, buffer management

plays an important role in the Internet.

By proactively dropping packets before the buffer overflows, Active Queue Man-

agement (AQM) aims to stabilize the queue size within a given target and thus to

provide both high link utilization and low queuing delay. Chapters 4 and 5 have pro-

posed algorithms to address the parameter tuning problem of RED. Although ARED

is ranked as the best scheme without ECN [40], RED or ARED are not the perfect so-

lution in some situations. Its weakness has been discussed in Chapter 2. Chapter 3 has

shown many other AQM algorithms proposed in recent years. Among these AQMs, PI

and REM perform best when ECN is supported [40]. In addition, PI performs better

than REM when ECN is not supported.

As to the PI controller, the parameter tuning algorithms provided in [11][34][60]

cannot adjust queuing delay and also depend on the measurement of network parame-

ters. This would make the system complex and increase uncertainty. It is still difficult

- 93 -

to design optimal parameters for existing AQMs such as PI and REM to achieve both

desirable steady-state performance and desirable transient response in different net-

work scenarios [10][57].

By investigating the stability analysis in [44], this Chapter develops the mechanism

of adapting PI parameters. Then the statistical methodology in Chapter 5 is used to

determine the adjustment factor in PI controller a statistical-tuning PI (ST-PI) control-

ler is developed. Theoretical analysis and extensive simulations using the ns-2

simulator demonstrate that ST-PI can constantly stabilize the queue, keep queuing de-

lay as low as possible, has small deviation under widely varying round-trip time,

bottleneck link capacity, traffic load, UDP traffic and short HTTP sessions.

The rest of the Chapter is organized as follows. The methodology of ST-PI is intro-

duced in Section 6.2. Section 6.3 describes the details of the ST-PI algorithm. We use

ns-2 simulations to verify ST-PI in Section 6.4. Finally, conclusions are presented in

Section 6.5.

6.2 Methodology

A PI controller calculates packet drop/mark probability p at every sampling inter-

val sT . According to (3.6), we have the following transfer function of a PI Controller:

s

zsK
sC

p)(
)(

+
= (6.1)

where pK is the proportional gain and z is the PIs zero.

When)(sCred in Figure 4.1 is replaced by)(sC , the figure presents the feedback

control model of TCP/PI system. According to (4.2) and (6.1), we have the open-loop

transfer function of TCP/PI system as

)
1

)(
2

(

)(
2)(

2

2

R
s

CR

N
ss

ezs
N

C
K

sL

sR

p

++

+

=

−

 (6.2)

- 94 -

The stability proposition of TCP/PI system in [32][33][60] can be presented as fol-

lows.

Stability Proposition: let pK and z satisfy:

22

2 12
CR

N
K P += λλ

CR

N
z

2

2
= (6.3)

As chosen)85.0,0(∈λ [33], then the linear TCP/PI system in Figure 4.1 is stable.

See proof in [33].

Thus the loop’s unity gain crossover frequency is

R

g

λ
ω = (6.4)

At gω the loop phase is

 °−>−−°−=∠ 180arctan
180

90)(λλ
π

ω gjL (6.5)

From (6.3) we see that a larger pK is provided by a largerλ . So a larger gw can be

obtained according to (6.4). This means a faster system response. On the other hand,

we see that a smaller pK can provide more phase margin according to (6.3)-(6.5).

Like AP-RED, the rationale behind setting refq as a fraction of bandwidth-delay

product is to accommodate bursty traffic. The rationale behind setting pK is to keep

system stable while providing fast response.

Consider initial parameters 0pK and 0z that satisfy stability proposition (6.3) and

stabilize the queue size around a reference value of 0refq under the initial network

scenario of 0N , 0R and 0C . Assume 0NN ≡ . When network scenario varies to any

0RR ≤ and any 0CC ≤ , the PI parameters can be tuned as follows:

- 95 -

 0refref kqq =

 02

1
pp K

k
K = (6.6)

where crkkk = ;
0R

R
kr = ;

0C

C
kc = .

Proof:

From (6.2)-(6.5), we have the loop gain and phase at the unity gain crossover
0g

ω

under 0N , 0R and 0C as

 1
1

2
)(

0

00

0

2

0

0

0 =

+

=

R
j

N

C
K

jL

gg

p

g

ωω

ω (6.7)

 °−>−−°−=∠ 180arctan
180

90)(000 RRjL gogog ωω
π

ω (6.8)

Given 0RR ≤ and 0CC ≤ , from (6.6) we have

 1≤rk and 1≤ck (6.9)

At
r

g

k

0ω
ω = , from (6.2) we have the loop gain

0

2

0

2

00

0

0

0

00

0

2

0

2

22

0

21

2
)(

CRkk

N

k
j

z
k

j

Rkk
j

k

N

Ck

kk

K

jL

crr

g

r

g

rr

g

r

g

c

cr

p

+

+

⋅

+

=
ω

ω

ωω
ω

0

2

0

0

0

00

0

00

0

2

0

0

21

2

CRkk

N
j

zkj

R
j

N

C
K

cr

g

rg

gg

p

+

+
⋅

+

=

ω

ω

ωω

Then from (6.7) and (6.9) we have

 1)(≤ωjL (6.10)

- 96 -

From (6.2) we have the loop phase at ω

)
180

arctan(
180

90)(0000 RRjL gg ω
π

ω
π

ω −−°−=∠

0

0

2

0
0

0

0

2
arctan)

1
arctan(

N

CRkk

zk

cr
g

r

g
ω

ω
−⋅+

From (6.3) we have

0

2

0

0

0

2

CR

N
z =

Then from this and (6.8)-(6.9) we have °−>∠>∠ 180)()(0gjLjL ωω

This and (6.10) indicate that the closed-loop system is stable according to the Ny-

quist stability criterion.

Remark: Equations (6.6) can be used to tune PI parameters in response to

any 0RR ≤ and 0CC ≤ . When round-trip time and link capacity decrease, a large pK

can provide fast response and a small refq can provide low queuing delay. On the oth-

er hand, a large refq as well as a small pK can keep the system stable and provide

high link utilization when R or C increases within the range 0RR ≤ and 0CC ≤ . In

the face of 0RR > or 0CC > , when pK is adjusted to a smaller value according to

equations (6.5) more phase margin is provided. So there is more possibility for the

system to keep stable when parameters are adapted in this situation.

6.3 Algorithm

Analysis in [44] indicates that the high gain of TCP
N

RC
K

TCP
2

)(
2

= is mainly responsible

for the stability of TCP/AQM systems. Since the order of the bandwidth-delay prod-

uct RC is much higher than that of the traffic load N in
TCP

K , round-trip time and link

capacity make a significantly greater contribution than traffic load in the determina-

tion of the stability of TCP/AQM system. So like the TCP/RED system, the TCP/PI

system becomes unstable when the bandwidth-delay product increase, while the im-

- 97 -

pact of traffic load, mice traffic or other factors on queue oscillations is slight. We can

design ST-PI algorithm similar to that of ST-RED. The detailed ST-PI algorithm is

shown in Figure 6.1.

Initialization:

02 ←σ

2/))()((222

reflrefs qhqhg ⋅+⋅←

Every sampling interval:

 if refqq ⋅<< 20

 Calculate the variance:

 2

1

2

1

2)()1(refss qqTT −⋅+⋅−← φσφσ

 if refref qqq)1()1(γγ +<<−

 Calculate the detection function:

 2

2

2

2

2)()1(refss qqTgTg −⋅+⋅−← φφ

 if (refl qhg ⋅> and refl qh ⋅>σ) or

 (refs qhg ⋅< and refs qh ⋅<σ)

 Adjust parameters:

 if refl qhg ⋅>

)/(refl qhk ⋅← σ

 else

)/(refs qhk ⋅← σ

 endif

 refref qkq ⋅← 2/ kKK pp ←

 2/))()((222

reflrefs qhqhg ⋅+⋅←

- 98 -

 endif

 endif

endif

variables:

2σ :variance function of q 2g : variance detection function of q

k: adjustment factor

Fixed parameters:

1φ : system time constant; 2φ : 125.0 φ⋅ ; γ : 0.7;

lh : 3/γ ; sh : fixed in terms of initial PI parameters

Figure 6.1 Detailed ST-PI algorithm

6.3.1 Calculating the variance and detection function of q

Similar to ST-RED, the following GMA function is used to calculate the variance

at every sampling interval:

 2

1

2

1

2)()1(refss qqTT −⋅+⋅−← φσφσ (6.11)

The following GMA detection function is used to detect significant changes in the

variance of q:

 2

2

2

2

2)()1(refss qqTgTg −⋅+⋅−← φφ (6.12)

6.3.2 Parameter setting

From (6.11) and (6.12) we know that the time constant of the variance function

is
1

1

φ
and the time constant of the variance detection function is

2

1

φ
. Similar to ST-RED,

we choose the time constant of the variance detection function to be four times the

time constant of the variance function. So we have 12 25.0 φφ ⋅= . In addition,
1

1

φ

- 99 -

should not be less than the time constant of the TCP/PI system to guarantee that

steady-state values of the variance come from the steady-state values of the queue size.

Our default choice of setting 1φ to the system time constant satisfies this constraint. In

practice, the system time constant can be obtained by observation of the system set-

tling time, or the settling time of the instantaneous queue size. For instance, the

settling time for the system to settle within 2% of its final value would be four times

its time constant [30]. Like ST-RED, sh needs to be fixed mainly in terms of the ini-

tial PI parameters.

6.4 Simulations

Extensive ns-2 simulations have been conducted to verify the performance of ST-RED

and ST-PI against ARED and PI controller with varying round-trip times, general dis-

tribution of round-trip times, link capacities, number of long-lived TCP flows, number

of reverse-path traffic, number of HTTP sessions and density of UDP traffic, with the

support of ECN or without ECN. The simple dumbbell topology used in these simula-

tions is shown in Figure 6.2. In this section, some of the results are presented to

demonstrate the effectiveness of ST-RED and ST-PI controller under widely changing

network conditions when ECN is supported.

There are 300 FTP flows and 50 HTTP sessions in each simulation except those

simulations with varying traffic load. Each HTTP session repeatedly makes short file

transfers. Between two consecutive transfers, there is a ‘think time’ that starts after the

last byte of the first file has been acknowledged. The transfer size is exponentially

distributed with a mean of twelve 1 KB-packets. The think time is exponentially dis-

tributed with a mean of 500ms. The reverse-path traffic in each simulation consists of

50 persistent FTP flows. The bottleneck link capacity is 15 Mbps except in the simu-

lations with varying bottleneck link capacity. The propagation delay d is set to values

uniformly distributed in (1, 20) ms to mimic realistic propagation delays at access

links except those simulations with varying round-trip time and general distribution of

- 100 -

round-trip time. This is because most propagation delays at the access link are less

than 20 ms [16]. Although network scenarios change significantly, ARED and PI con-

troller can just choose a set of conservative parameters for a specific scenario. This

provides a trade-off between high link utilization and low queuing delay for dynamic

network conditions. We design the parameters of ARED and the PI controller for a

scenario with 300 FTP flows passing through a 15Mbps bottleneck link with round-

trip time 400 ms. The corresponding parameters for ARED are 75min =th ,

225max =th , 510*5 −=qw and interval =2s. Thus refq of ARED is 150 packets. The

parameters for PI are a_= 510288.7 −∗ , b_= 510264.7 −∗ that satisfy (6.6) with

150=refq packets and sampling frequency
sT

1
is set to 170HZ. ST-RED uses the

same parameters as ARED with 3/04.0=sh . ST-PI uses the same parameters as PI

controller with sh set to 3/45.0 and 1φ set to 1/7. We check the performance of

each scheme by changing network variables round-trip time, bottleneck link capacity,

traffic load and UDP traffic density. Their performance under general distribution of

round-trip time is also investigated. The packet size is 500 bytes. The buffer size is set

to 1000 packets which is sufficiently large for the following simulations.

Figure 6.2 Network topology for simulations

- 101 -

6.4.1 Varying round-trip time

This experiment aims to investigate the performance of each scheme when the round-

trip time varies. We vary the round-trip time by changing propagation delay d. The

initial propagation delays d at the source links are uniformly distributed in (90, 150)

ms. At the 100
th
 second, d increases to values uniformly distributed in (630, 900) ms.

At the 500
th
 second, d decreases to values uniformly distributed in (1, 20) ms. We

change the seed of the uniform variable d in ns-2 for random values seven times. Thus

the experiments have been done with different random number setting of d for seven

times. Figure 6.3 plots the instantaneous queue size for each scheme in one of the

seven times. The steady-state performance of each scheme are measured during 400-

500 seconds for d = (630, 900) ms and during 800-900 seconds for d = (1, 20) ms.

The statistical metric range in seven times is shown in Table 6-1.

For ARED and PI controller the queue oscillations are benign from 0 to 100 sec-

onds because the effective R is near initial design scenario with R = 400 ms. Between

100 seconds and 500 seconds the queue oscillations become severe, corresponding to

R much greater than 400 ms. After 500 seconds the queue oscillations reduce signifi-

cantly as d decreases to small values.

When deterministic oscillations appear after 100 seconds ST-RED and ST-PI can

detect significant changes in round-trip time and adjust their parameters correspond-

ingly. After adjustment of parameters, the stability proposition of RED is still satisfied

and large phase margin is provided for ST-PI controller. Observe that their queue sizes

increase and oscillations become less severe. During 400-500 seconds we mainly con-

sider link utilization because the stability of the system is the most important factor

under large round-trip times. See in Table 6-1 that ST-RED and ST-PI provide higher

link utilization than ARED and PI controller in all seven times of experiments, giving

a confidence value of better than 99% that ST-RED and ST-PI provide higher link

utilization than ARED and PI controller. When d decrease to (1, 20) ms after 500 sec-

onds, ST-RED and ST-PI detect small oscillations and reduce their queue sizes

- 102 -

S
T
-P
I

S
T
-R
E
D

P
I

A
R
E
D

- 103 -

Figure 6.3 Queue size (packets) variations versus time (seconds)

under varying round-trip time

Table 6-1 Summary Statistics for all Designs under

Varying Round-trip Time

 Time Link

Utilization

Loss rate Average

queue size

Standard queue

deviation

400-500s 92.59%-

94.07%

1.03%-

1.96%

142.9-

159.4

158-204.2

ARED

800-900s 100% 12.74%-

13.1%

152.4-

156.6

20.3-21.9

400-500s 95.9%-

97.6%

0.58%-

0.87%

144.9-

151.5

123-154.7

PI

800-900s 100% 0.98%-

1.59%

144.6-

150.9

19.7-29.2

400-500s 98.36%-

99.85%

0.66%-

0.91%

348.1-

544.3

176.5-

283.6

ST-

RED

800-900s 99.93%-

100%

13.71%-

14.29%

67.9-

90.7

22.6-31.2

400-500s 99.29%-

99.98%

0.54%-

0.82%

296.6-

360

125.3-

174.4

ST-PI

800-900s 100% 0.84%-

1.11%

78.2-

87.3

20.8-25.8

correspondingly. This time we mainly consider average queue size because each

scheme can provide very high link utilization. We see in Table 6-1 that the queue sizes

- 104 -

of ST-RED and ST-PI eventually stabilize to values much less than those of ARED

and PI controller in all seven times of experiments. So this gives a confidence value of

greater than 99% that ST-RED and ST-PI provide smaller queue size than ARED and

PI controller.

6.4.2 General distribution of round-trip time

In the second experiment we investigate the performance of each scheme under a

wide range of round-trip times. This general distribution of round-trip time is obtained

by setting the propagation delay d uniformly distributed in (10, 5000) ms. We change

the seed of the uniform variable d for random values seven times. Thus the experi-

ments have been done with different random number setting of d for seven times.

Figure 6.4 plots the queue size of each scheme in one of the seven times. The per-

formance ranges in seven times of experiments during 500-600 seconds are shown in

Table 6-2.

The queue oscillations of ARED and PI controller are malignant because their con-

servative parameters are not suitable for this general distribution. On the other hand,

ST-RED and ST-PI automatically increase their refq and adjusts other parameters in

response to this general distribution. Figure 6.4 displays that ST-RED and ST-PI can

stabilize the queue size at the new reference value. In this experiment we mainly con-

sider link utilization because the stability of the system is the most important factor in

this network scenario. We see in Table 6-2 that ST-PI and ST-RED provide higher link

utilization than PI controller and ARED in all seven times of experiments. This gives

a confidence value of better than 99% that ST-RED and ST-PI provide higher link

utilization than ARED and PI controller.

- 105 -

Figure 6.4 Queue size (packets) variations versus time (seconds)

under general distribution of round-trip time

S
T
-P
I

S
T
-R
E
D

P
I

A
R
E
D

- 106 -

Table 6-2 Summary Statistics for all Designs under

General Distribution of Round-trip Time

 Link

Utilization

Loss rate Average

queue size

Standard queue

deviation

ARED 95.6%-

97.68%

0.07%-

0.4%

131-

164.6

122.4-

160.4

PI 87.65%-

94.32%

0.08%-

0.15%

42.9-

70.7

56.6-

87.8

ST-RED 98.62%-

99.83%

0.04%-

0.15%

233.6-

362.3

154-

203.8

ST-PI 98.8%-

99.9%

0.07%-

0.56%

205.5-

487.5

149.9-

286.5

6.4.3 Varying bottleneck link capacity

The objectives of the third experiment are to investigate the performance of each

scheme under different bottleneck link capacities. The initial link capacity is 15Mbps.

It decreases to 5 Mbps at the 200
th
 second and return back to 15 Mbps at the 400

th

second. We change the seed of the uniform variable d for random values seven times.

Thus the experiments have been done with different random number setting of d for

seven times. Figure 6.5 reports the instantaneous queue size of each scheme in one of

the seven times. The steady-state performances under changing link capacities are

measured during 100-200 seconds, 300-400 seconds and 500-600 seconds. The statis-

tical metric range in seven times of experiments is shown in Table 6-3.

ARED stabilizes the queue size around its reference value of 150 packets and can

quickly return back to steady state after the link capacity changes. Although PI con-

troller can also keep the queue size stable around its reference value of 150 packets, it

responds slowly to the change in link capacity. This is because its parameters are too

conservative when round-trip time is small.

- 107 -

Figure 6.5 Queue size (packets) variations versus time (seconds)

under varying bottleneck link capacity

A
R
E
D

P
I

S
T
-R
E
D

S
T
-P
I

- 108 -

Table 6-3 Summary Statistics for all Designs under

Varying Bottleneck Link Capacity

 Time Link

Utilization

Loss rate Average

queue size

Standard queue

deviation

100-200s 100% 19.29%-

19.57%

158.2-

160.6

17.5-18.7

300-400s 100% 23.8%-

24.25%

174.3-

175.4

15.1-18.6

ARED

500-600s 100% 19.01%-

19.28%

158.2-

160.9

16.6-18.6

100-200s 100% 0.91%-

1.06%

145.3-

150.7

18.8-23.6

300-400s 100% 1.91%-

2.06%

147.0-

149.1

14.6-16.9

PI

500-600s 100% 0.9%-

1.04%

147.3-

153.1

18.7-25.1

100-200s 99.92%-

99.99%

20.58%-

21.05%

54.1-

65.5

16-26.1

300-400s 99.98%-

100%

27.84%-

28.13%

39.4-

44.7

11.2-15.2

ST-RED

500-600s 99.90%-

99.98%

20.96%-

21.23%

34.5-

43.1

14.8-17.8

100-200s 99.99%-

100%

0.78%-

0.86%

48.7-

74.7

15.9-20

300-400s 99.99%-

100%

1.74%-

1.85%

50.4-

56.9

13.9-16.7

ST-PI

500-600s 99.98%-

100%

0.82%-

0.89%

46.2-

55.5

15-17.4

- 109 -

 According to the detected small variance corresponding to small d, ST-RED and

ST-PI reduces the queue size to less than half of its initial reference value of 150

packets. When link capacity decreases to 5 Mbps after 200 seconds, queue oscillations

become smaller and thus queue size can be further reduced to about one third of that

of ARED and PI. Although the queue oscillations of ST-PI and ST-RED become a lit-

tle large after link capacity returns back to 15 Mbps after 400 seconds, the variance of

the queue size is not too large. Thus their queue sizes are still kept around one third of

that of ARED and PI. In this network scenario we mainly consider the metric of aver-

age queue size because each scheme can provide very high link utilization of greater

than 99.9%. In all seven times of experiments the average queue sizes of ST-PI and

ST-RED are significantly less than ARED and PI controller, giving a confidence value

of greater than 99% that ST-RED and ST-PI provide smaller queue size than ARED

and PI controller. The loss rate of ST-PI is also much less than that of ST-RED and

ARED in all seven experiments, providing a confidence value of greater than 99%

that ST-PI has lower loss rate than ST-RED and ARED. Although the loss rate of ST-

RED is a little higher than ARED, its average queue size is much smaller than ARED.

Thus the overall performance of ST-RED is much better than ARED.

6.4.4 Varying traffic load

In this experiment the performance of each scheme is checked under different num-

bers of FTP flows and different numbers of HTTP sessions. We start 100 FTP flows

and 20 HTTP sessions at 0, and increase them to1000 FTP flows and 200 HTTP ses-

sions respectively at 300
th
 seconds. The experiments have been done with different

random number setting of d for seven times. Figure 6.6 depicts the queue size of each

scheme in one of the seven times. The steady-state performance for the first traffic

scenario and second traffic scenario are measured during 200-300 seconds and 500-

600 seconds respectively. The statistical metric range in seven times of experiments is

shown in Table 6-4.

- 110 -

ARED can stabilize the queue size around 150 packets for the first 300 seconds

while slightly increase the queue size in the face of heavy traffic load after 300

seconds. PI controller has small oscillations for the first 300 seconds while the

oscillations become obvious when traffic load increases after 300 seconds. This is

because the parameters of PI controller are conservative with small d = (1-20) ms.

With small round-trip times, the queue sizes of ST-RED and ST-PI reduce to about

one third those of ARED and PI controller and keep stable under changing traffic load.

See in Table 6-4 that they keep a high link utilization of near 100%. After traffic load

changes at 300 seconds, we see that the transient responses of ST-PI and ST-RED are

much faster than that of PI controller and slightly better than that of ARED. In this

scenario we mainly consider the average queue size because every scheme can

provide high link utilization. We also consider the standard queue deviation to study

their transient performance under varying traffic load. In all seven times of

experiments, the average queue sizes of ST-PI and ST-RED are much less than ARED

and PI, giving a confidence value of better than 99% that the average queue size of

ST-RED and ST-PI is smaller than ARED and PI controller. The standard queue

deviation of ST-PI is also smaller than PI controller in seven times of experiments,

giving a confidence value of greater than 99% that ST-PI has a smaller standard queue

deviation than PI controller. On the other hand, the loss rate of ST-PI is much less

than ST-RED.

- 111 -

Figure 6.6 Queue size (packets) variations versus time (seconds)

under varying traffic load

S
T
-P
I

S
T
-R
E
D

A
R
E
D

P
I

- 112 -

Table 6-4 Statistics for all Designs under Varying Traffic Load

 Time Link

Utilization

Loss rate Average

queue size

Standard queue

deviation

200-300s 100% 9.63%-

10.95%

147.5-

153.2

15.6-21.3

ARED

500-600s 100% 26.94%-

28.91%

184.5-

191.9

21.2-24.8

200-300s 100% 2%-

2.66%

145.6-

152.4

17.6-22.5

PI

500-600s 100% 1.17%-

1.28%

145.1-

153.3

27.8-33.4

200-300s 99.99%-

100%

11.36%-

12.32%

44.9-

53.5

13.5-16.1

ST-RED

500-600s 99.98%-

100%

28.48%-

30.54%

47.2-

78.9

17.2-29.2

200-300s 100% 1.25%-

1.7%

53.8-

56.7

12.1-16.8

ST-PI

500-600s 99.95%-

100%

1.67%-

2.09%

50.2-

55.1

18.2-24.1

6.4.5 Varying the density of the UDP traffic

In the final experiment the performance of each scheme is investigated with the exis-

tence of unresponsive UDP flows. Each UDP flow is an ON/OFF flow. The duration

of the ON and OFF states are exponentially distributed with a mean of 1 second. Dur-

ing ON time, each UDP flow transmits with a rate of 15×ρ /100 Mbps, where ρ is

the density of the UDP traffic. The number of UDP flows introduced in this experi-

ment is 100. The initial ρ is set to 0.1 at 0, and is increased to 0.9 at 300th second.

- 113 -

The seed of the uniform variable d has been changed for random values seven times,

so the experiments have been done with different random setting of d for seven times.

Figure 6.7 shows the instantaneous queue size for each scheme in one of the seven

times. The steady-state performance of each scheme under different UDP density is

measured during 200-300 seconds and 500-600 seconds. The statistical metric range

in seven times of experiments is reported in Table 6-5.

The steady-state queue oscillations during 0-300 seconds for ARED and PI control-

ler are small. The oscillations become larger when ρ increases to 0.9, but the queue

size for either ARED and PI controller is still stable around their reference values of

150 packets.

The queue sizes of ST-RED and ST-PI decrease to around one third those of ARED

and PI controller in the face of small round-trip times. Although queue oscillations of

either ST-RED or ST-PI increase after the density of UDP traffic increases to 0.9, the

oscillations are not too large. See that the queue sizes of ST-RED and ST-PI are still

much smaller than ARED and PI controller in all seven times of experiments. This

gives a confidence value of better than 99% that ST-RED and ST-PI have a smaller

average queue size than ARED and PI controller. From Table 6-5 we can see that link

utilization for all the four schemes are very high. The average queue deviation of ST-

RED is less than ARED and the average queue deviation of ST-PI is less than PI

controller in the face of high UDP traffic density in all seven times of experiments,

giving a confidence value of greater than 99%. This is because the parameters of ST-

RED and ST-PI are adjusted to values suitable for the changed scenarios while ARED

and PI controller have to use conservative parameters. Compared to ST-RED, ST-PI

still has much lower loss rate.

- 114 -

Figure 6.7 Queue size (packets) variations versus time (seconds)

under varying UDP traffic density

S
T
-P
I

S
T
-R
E
D

A
R
E
D

P
I

- 115 -

Table 6-5 Summary Statistics for all Designs under

Varying UDP Traffic Density

 Time Link

Utilization

Loss rate Average

queue size

Standard queue

deviation

200-300s 100% 19.52%-

19.88%

156.5-

159

17.9-19.8

ARED

500-600s 100% 21.77%-

22.06%

166.6-

172.5

31.2-38.1

200-300s 100% 2.55%-

2.71%

148-

153

20.3-25.6

PI

500-600s 100% 15.29%-

15.73%

143.7-

153.3

25.6-32.3

200-300s 99.88%-

100%

21.17%-

21.34%

44.5-

58.6

15.1-19.8

ST-RED

500-600s 99.96%-

100%

22.26%-

23.3%

58.7-

83.5

24.7-30.1

200-300s 99.99%-

100%

2.62%-

2.74%

55.1-

73.4

17.5-20.9

ST-PI

500-600s 99.97%-

100%

16.19%-

16.5%

53.7-

76.1

21.8-23.5

6.5 Conclusions

Based on this analysis that the change in the amplitude of queue oscillations mainly

results from the change in round-trip time and link capacity, this chapter has devel-

oped a ST-PI algorithm to adapt the parameters of PI controllers to constantly achieve

desirable performance under a wide range of uncertainties in network conditions. It is

simple and easy to implement. This statistical Tuning algorithm may be used in other

AQM schemes. Simulation results demonstrate that ST-PI can constantly provide high

- 116 -

link utilization, fast response, as well as keeping low queuing delay in extensively

changing network scenarios such as round-trip time, traffic load, UDP traffic and

short HTTP sessions. The transient response and queue deviation of ST-PI in some

scenarios like varying traffic load are much better than PI controller. With ECN, ST-PI

performs better than existing AQM algorithms. On the other hand, although the as-

sumption that the queue length is a uniform variable, and the default and fixed

parameters of ST-RED and ST-PI work well in simulations, they need to be widely

verified in practice. In future work we plan to explore the performance of ST-PI and

ST-RED under complex network scenarios, including multi-service situations, multi-

ple bottleneck links and realistic networks.

- 117 -

CHAPTER 7

Conclusions

Since RED was proposed in 1993, RED has been widely deployed in commercial

routers. However, it is difficult to adapt RED parameters to constantly provide desir-

able performance in the presence of highly dynamic network traffic. This discourages

network administrators to turn RED on. Perhaps motivated by the difficulty, other

AQMs have been provided in recent years. Some of them have really improved the

performance of original RED and present more stable parameters than RED. But none

of them can constantly provide both desirable transient performance and steady-state

performance. In particular, they still suffer from low link utilization, high queuing de-

lay or large queue deviation under varying network conditions especially varying

round-trip times.

This thesis has focused on solving this key issue related to Internet congestion con-

trol. The algorithms proposed in this thesis have demonstrated their abilities of

removing parameter sensitivity of some prominent AQMs and of constantly providing

desirable performance under changing network scenarios. More specifically, this the-

sis has:

• Reviewed RED in respect of its algorithm, its parameters, its performance and the

implementation. How network conditions determine RED parameters has been

- 118 -

analyzed and how RED parameters impact on network performance has been re-

viewed. The advantages and disadvantages of RED have been summarized. The

stability of RED under different Internet applications has also been investigated.

Thus a thorough understanding of RED under Internet traffic has been given.

• Reviewed other AQMs including ARED, Auto-Tuning RED, PI controller, REM,

BLUE and AVQ. The characteristics and advantages of these AQMs have been

presented. The reasons why these AQMs do not work well in certain situations has

been analyzed. Analysis demonstrates that with fixed parameters the performance

of these AQMs cannot constantly provide desirable performance.

• Developed a stability proposition for TCP/RED system. It shows why round-trip

time and link capacity make much more contribution than traffic load in the de-

termination of the stability of TCP/RED system. According to the stability

proposition, AP-RED is proposed to adapting RED parameters to TCP traffic

based on measurement of key network variables. AP-RED demonstrates a simple

rule about how to tune RED parameters independently without consideration of

the interactions among these RED parameters.

• Proposed ST-RED for constantly tuning RED parameters in response to the char-

acteristics of the queue size. ST-RED can adjust RED parameters rapidly to

achieve desirable transient and steady-state performance under widely changing

network conditions. The algorithm is very simple for implementation. Without

ECN, simulations have demonstrated that ST-RED outperforms existing AQMs.

• Proposed ST-PI for removing the sensitivity of PI parameters from different net-

work scenarios. ST-PI can adjust corresponding parameters rapidly to maintain

stable performance and keep queuing delay as low as possible in response to the

change in network conditions such as round-trip time, link capacity, traffic load,

UDP traffic and the number of HTTP sessions. The algorithm is very simple for

- 119 -

implementation. When ECN is enabled, ST-PI can illustrate better performance

than existing AQMs.

As the Internet continues to develop, the bandwidth increases and all kinds of new

technologies and new services emerge and prosper. Correspondingly new challenges

occur. Parameter tuning is an important issue which needs to be addressed in all kinds

of academic or industry areas. In future work, some key aspects of this thesis can be

extended. They include:

• Some assumptions such as the queue length is a uniform variable, and the default

and fixed parameters of ST-RED and ST-PI need to be widely verified in practice.

Evaluating the performances of AP-RED, ST-RED and ST-PI under multi-service

situations with a more realistic topology. Their performances under realistic net-

work conditions also need to be checked.

• Designing algorithms to solve the challenge to Internet congestion control in the

presence of high bandwidth-delay product networks. As bandwidth in current

networks has increased significantly, existing AQMs with adaptive parameter tun-

ing need to be evaluated.

• Exploring the possibility to apply Statistical Tuning algorithm to solve parameter-

tuning problems related to congestion control in wireless networks and FAST TCP

[58].

• Exploring the possibility to apply Statistical Tuning algorithms to solve parame-

ter-tuning issues in other applications like parameter tuning of PID controller.

- 120 -

References

[1] J. Aikat, J. Kaur, and F. D. Smith, “Variability in TCP Round-trip Times,” in Pro-

ceedings of Internet Measurement Conference, Florida, USA, pp. 279-284, October

2003.

[2] A. Akella, S. Seshan, and A. Shaikh, “An Empirical Evaluation of Wide-Area

Internet Bottlenecks,” in Proceedings of Internet Measurement Conference, Flor-

ida, USA, pp. 101-114, October 2003.

[3] M. Allman, V. paxson, and W. Stevens, “TCP Congestion Control,” RFC 2581,

April 1999.

[4] G. Appenzeller, I. Keslassy, and N. Mckeown, “Sizing Router Buffers,” in Pro-

ceedings of IEEE ACM/SIGCOMM, Oregon, USA, pp. 281-292, August 2004.

[5] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, “REM: Active Queue Manage-

ment,” IEEE Network, vol. 15, No. 3, pp. 48-53, May 2001.

[6] M. Basseville and I. V. Nikiforov, “Detection of Abrupt Changes: Theory and Ap-

plication,” Prentice-Hall, 1998.

[7] T. Bonald, M. May, and J. Bolot, “Analytic Evaluation of RED Performance,” in

Proceedings of IEEE INFOCOM, Tel Aviv, Israel, pp. 1415-1424, March 2000.

[8] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V.

Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J.

Wroclawski, and L. Zhang, “Recommendations on Queue Management and Con-

gestion Avoidance in the Internet,” RFC 2309, April 1998.

- 121 -

[9] R. Cáceres, N. Duffield, A. Feldmann, J. D. Friedmann, A. Greenberg, R. Greer, T.

Johnson, C. R. Kalmanek, B. Krishnamurthy, D. Lavelle, P. P. Mishra, J. Rexford,

K. K. Ramakrishnan, F. D. True, and J. E. van der Merwe, “Measurement and

Analysis of IP Network Usage and Behavior,” IEEE Communications Magazine,

vol 38, No. 5, pp. 144-151, May 2000.

[10] X.L. Chang and J.K. Muppala, “A Stable Queue-based Adaptive Controller for

Improving AQM Performance,” Computer Networks, vol. 50, No. 13, pp. 2204-

2224, September 2006.

[11] Q. Chen and O. W. W. Yang, “A ST-PI-PP Controller for AQM Router,” in Pro-

ceedings of IEEE ICC, Paris, France, pp. 2277-2281, June 2004.

[12] W. Chen and S. H. Yang, “The Mechanism for Adapting RED Parameters to TCP

Traffic,” Computer Communications, vol. 32, No. 13-14, pp. 1525-1530, August

2009.

[13] M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith, “Tuning RED for Web Traf-

fic,” IEEE/ACM Transaction on Networking, vol. 9, No. 3, pp. 249-264, June

2001.

[14] S. D. Cnodder, O. Elloumi, and K. Pauwels, “Effect of different packet sizes on

RED performance,” In Proceedings of the fifth IEEE symposium on computers

and communications (ISCC), France, July 2000

[15] A. Dhamdhere, H. Jiang and C. Dovrolis, “Buffer Sizing for Congestion Internet

Links,” in Proceedings of IEEE INFOCOM, Miami, USA, pp. 1072-1083, March

2005.

[16] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu, “Characterizing Res-

idential Broadband Networks,” in Proceedings of Internet Measurement

Conference, San Diego, USA, pp. 43-56, October 2007.

[17] W. M. Eddy and M. Allman, “A Comparison of RED’s Byte and Packet Modes,”

Computer Networks, vol. 42, No. 2, pp. 261-280, June 2003.

- 122 -

[18] W. C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “A Self-Configuring RED

Gateway,” in Proceedings of IEEE INFOCOM, New York, USA, pp. 1320- 1328,

Mar 1999.

[19] W. C. Feng, Kang G. Shin, Dilip D. Kandlur, and Debanjan Saha “BLUE Active

Queue Management Algorithms,” IEEE/ACM Transactions on Networking, vol.

10, No. 4, pp. 513-528, August 2002.

[20] S. Floyd “Recommendation on Using the “gentle_” Variant of RED,” [Online].

Available: http://www.icir.org/floyd/red/gentle.html

[21] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion

Avoidance,” IEEE/ACM Transactions on Networking, vol. 1, No. 4, pp. 397–413,

August 1993.

[22] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An Algorithm for In-

creasing the Robustness of RED’s Active Queue Management,” [Online].

Available: http://www.icir.org/floyd/red.html

[23] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion Control in

the Internet,” IEEE/ACM Transactions on Networking, vol. 7, No. 4, pp. 458-472,

August 1999.

[24] S. Floyd, “A Report on Recent Developments in TCP Congestion Control,” IEEE

Communications Magazine, vol. 39, No. 4, pp. 84-90, April 2001.

[25] S. Floyd, “TCP and Explicit Congestion Notification,” ACM/SIGCOMM Com-

puter Communications Review, vol. 24, pp. 10-23, Oct. 1994.

[26] S. Floyd, “RED: Discussions of Setting Parameters,” Nov. 1997, [Online]. Avail-

able: http://www.aciri.org/floyd/REDparameters.txt

[27] S. Floyd, “RED: Discussions of Byte and Packet Modes,” March 1997, [Online].

Available: http://www-nrg.ee.lbl.gov/floyd/REDaveraging.txt

[28] S. Floyd, “Re: RED gateways in byte mode vs. packet mode,” October 2000,

[Online]. Available: http://www-nrg.ee.lbl.gov/floyd/REDaveraging.txt

- 123 -

[29] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely,

and C. Diot, “Packet-Level Traffic Measurements from the Sprint IP Backbone,”

IEEE Network, vol. 17, No. 6, pp. 6-16, November-December 2003.

[30] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, “Feedback Control of Dy-

namic Systems,” pp. 26-31, Prentice Hall, 2002.

[31] C. Hollot, V. Misra, D. Towlsey, and W. Gong, “A Control Theoretic Analysis of

RED,” in Proceedings of IEEE INFOCOM, Anchorage, USA, pp. 1510-1519,

April 2001.

[32] C. Hollot, V. Misra, D. Towlsey, and W. Gong, “On Designing Improved Control-

lers for AQM Routers Supporting TCP Flows,” in Proceedings of IEEE

INFOCOM, Anchorage, USA, pp. 1726-1734, April 2001.

[33] C. Hollot, V. Misra, D. Towlsey, and W. Gong, “Analysis and design of controllers

for AQM routers supporting TCP Flows,” IEEE Transactions on Automatic Con-

trol, vol. 47, No. 6, pp 945-959, June 2002.

[34] Y. Hong and O. W. W. Yang, “Using interval phase margin assignment to self-tune

a PI AQM controller for TCP traffic,” Telecommunication Systems, vol. 36, No. 4,

pp. 161-171, December 2007.

[35] G. Iannaccone, C. Diot, I. Graham, and N. Mckeown, “Monitoring Very High

Speed Links,” in Proceedings of Internet Measurement Conference, San Francisco,

USA, pp. 267-271, November 2001.

[36] V. Jacobson, “Congestion Avoidance and Control”, in Proceedings of IEEE

ACM/SIGCOMM, pp. 314-329, August 1988.

[37] S. S. Kunniyur and R. Srikant, “An Adaptive Virtual Queue (AVQ) Algorithm for

Active Queue Management,” IEEE/ACM Transactions on Networking, vol. 12,

No. 2, pp. 286-299, April 2004.

[38] J. F. Kurose and K. W. Ross, “Computer Networking: a top-down approach,”

Pearson Education, 2007

- 124 -

[39] T. V. Lakshman and U. Madhow, “The Performance of TCP/IP for Networks with

high bandwidth-delay products and random loss,” IEEE/ACM Transactions on

Networking, vol. 5, No. 3, pp. 336-350, June 1997.

[40] A. Lakshmikantha, R. Srikant, and C. Beck, “Impact of File Arrivals and Depar-

tures on Buffer Sizing in Core Routers,” in Proceedings of IEEE INFOCOM,

Phoenix, USA, pp. 529-537, April 2008.

[41] L. Le, J. Aikat, K. Jeffay, and F. D. Smith, “The Effects of Active Queue Man-

agement and Explicit Congestion Notification on Web Performance,” IEEE/ACM

Transactions on Networking, vol. 15, No. 6, pp. 1217-1230, December 2007.

[42] S. Leinen, “Use of RED in practice?” [Online]. Available:

http://mailman.postel.org/pipermail/end2end-interest/2006-March/005851.html

[43] S. Liu, T. Basar and R. Srikant, “Exponential-RED: A Stabilizing AQM Scheme

for Low- and High-Speed TCP Protocols,” IEEE/ACM Transactions on Network-

ing, vol.13, No. 5, pp. 1068-1081, October 2005.

[44] S. H. Low, F. Paganini, J. Wang, and J. C. Doyle, “Linear Stability of TCP/RED

and a Scalable Control,” Computer Networks, vol. 43, No. 5, pp. 633-647, De-

cember 2003.

[45] H. S. Martin, A. McGregor, and J. G. Cleary, “Analysis of Internet Delay Times,”

in Proceedings of Passive and Active Measurement Workshop, Auckland, New-

Zealand, April 2000.

[46] Vishal Misra, Wei-Bo Gong, and Don Towsley, “Fluid-based Analysis of a Net-

work of AQM Routers Supporting TCP Flows with an Application to RED,” in

Proceedings of IEEE ACM/SIGCOMM, Stockholm, Sweden, pp. 151-160, 28

August-1 September 2000.

[47] M. Mathis, J. Semke, and J. Mahdavi, “The Macroscopic Behavior of the TCP

Congestion Avoidance Algorithm,” Computer Communication Review, vol. 27,

No. 3, pp. 67-82, July 1997.

- 125 -

[48] M. May, J. Bolot, C. Diot and B. Lyles, “Reasons not to deploy RED,” in Proceed-

ings of 7th International Workshop on Quality of Service, London, UK, 31 May-4

June 1999.

[49] T. J. Ott, T. V. Lakshman and L. Wong, “SRED: Stabilized RED,” in Proceedings

of IEEE INFOCOM, New York, USA, pp. 1346-1355, March 1999.

[50] V. Paxson, “End-to-End Internet Packet Dynamics,” IEEE/ACM Transactions on

Networking, vol. 7, No. 3, pp. 277-292, June 1999.

[51] S. Shenker and L.X. Zhang, “Some Observations on the Dynamics of a Conges-

tion Control Algorithm,” Computer Communication Review, vol. 20, No. 5, pp.

30-39, October 1990.

[52] H. Sirisena, A. Haider, and K. Pawlikowski. “Auto-Tuning RED for Accurate

Queue Control,” in Proceedings of IEEE GLOBECOM, Taipei, Taiwan, pp. 2010-

2015, November 2002.

[53] J. Sun, K. Ko, G. Chen, S. Chan, and M. Zukerman, “PD-RED: To Improve the

Performance of RED,” IEEE Communications Letters, vol. 7, No. 8, pp. 406-408,

August 2003.

[54] L. Tan, W. Zhang, G. Peng, and G. Chen, “Stability of TCP/RED Systems in AQM

Routers,” IEEE Transactions on Automatic Control, vol. 51, No. 8, pp 1393-1398,

August 2006.

[55] K. Thompson, G. Miller, and R. Wilder, "Wide Area Internet Traffic Patterns and

Characteristics," IEEE Network, vol. 11, No. 6, pp. 10-23, November-December

1997.

[56] C. Villamizar and C. Song, “High Performance TCP in ANSNET,” Computer

Communications Review, vol. 24, No. 5, pp 45-60, October 1994.

[57] C. Wang, B. Li, Y. T. Hou, K. Sohraby, and Y. Lin, “LRED: A Robust Active

Queue Management Scheme Based on Packet Loss Ratio,” IEEE Transactions on

Parallel and Distributed Systems, vol. 18, No. 1, pp. 29-42, January 2007.

- 126 -

[58] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation, Architecture,

Algorithms, Performance,” IEEE/ACM Transactions on Networking, vol. 14, No.

6, pp. 1246-1259, December 2006.

[59] H. Y. Zadeh, A. Habibi, H. Jafarkhani, and C. Bauer, “Optimal Statistical Tuning

of the RED parameters,” in Proceedings of IEEE ICC, Beijing, China, pp. 27-32,

May 2008.

[60] H.G. Zhang, C.V. Hollot, D. Towsley, and V. Misra, “A Self-Tuning Structure for

Adaptation in TCP/AQM Networks,” in Proceedings of IEEE GLOBECOM, San

Francisco, USA, pp. 3641-3646, December 2003.

[61] W. Zhang, L. Tan, and G. Peng, “Dynamic queue level control of TCP/RED sys-

tems in AQM routers,” Computers and Electrical Engineering, vol. 35, NO. 1, pp.

59-70, January 2009.

[62] Y. Zhang and L. Qiu, “Understanding the End-to-End Performance Impact of

RED in a Heterogeneous Environment,” Cornell CS Technical Report 2000-1802,

July 2000.

[63] T. Ziegler, S. Fdida, and C. Brandauer, “Stability Criteria for RED with Bulk-data

TCP Traffic,” Technical Report, Aug. 1999, [Online]. Available: www-

rp.lip6.fr/site_npa/site_rp/_publications/125-red_latest.ps.gz.

[64] T. Ziegler, S. Fdida, and C. Brandauer, “Stability Criteria for RED with TCP Traf-

fic,” Technical Report, May 2000, [Online]. Available: http://www-

rp.lip6.fr/~sf/WebSF/PapersWeb/red.net2000.pdf

[65] T. Ziegler, S. Fdida, C. Brandauer, and B. Hechenleitner, “Stability of RED with

Two-way TCP Traffic,” October 2000, [Online]. Available: www-

rp.lip6.fr/~sf/WebSF/PapersWeb/icccn.ps.

[66] T. Ziegler, C. Brandauer, and S. Fdida, “A quantitative Model for the Parameter

setting of RED with TCP Traffic,” In Proc. of the Ninth International Workshop

on Quality of Service (IWQoS), June 2001.

[67] “The Network Simulator - ns-2,” [Online] Available: www.isi.edu/nsnam/ns/

- 127 -

[68] Cisco System Inc., “NetFlow white papers,” [Online]. Available:

http://www.cisco.com/en/US/products/ps6601/prod_white_papers_list.html

[69] Cisco System Inc., “Distributed Weighted Random Early Detection,” [Online]

Available: http://www.cisco.com/en/US/docs/ios/11_1/feature/guide/WRED.html

