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ABSTRACT  
 
Product modularity is often seen as a means by which a product system can be 

decomposed into smaller, more manageable chunks in order to better manage 

design, manufacturing and after-sales complexity. The most common approach is to 

decompose the product down to component level and then group the components to 

form modules. The rationale for module grouping can vary, from the more technical 

physical and functional component interactions, to any number of strategic 

objectives such as variety, maintenance and recycling. The problem lies with the 

complexity of product modularity under these multiple (often conflicting) 

objectives. 

 

The research in this thesis presents a holistic multi-objective computer aided 

modularity optimisation (CAMO) framework. The framework consists of four main 

steps: 1) product decomposition; 2) interaction analysis; 3) formation of modular 

architectures and; 4) scenario analysis. In summary of these steps: the product is 

first decomposed into a number a basic components by analysis of both the physical 

and functional product domains. The various dependencies and strategic similarities 

that occur between the product’s components are then analysed and entered into a 

number of interaction matrixes. A specially developed multi-objective grouping 

genetic algorithm (MOGGA) then searches the matrices and provides a whole set of 

alternative (yet optimal) modular product configurations. The solution set is then 

evaluated and explored (scenario analysis) using the principles of Analytic 

Hierarchy Process.  

 

A software prototype has been created for the CAMO framework using Visual 

Basic to create a multi-objective genetic algorithm (GA) based optimiser within an 

excel environment. A case study has been followed to demonstrate the various steps 

of the framework and make comparisons with previous works. Unlike previous 

works, that have used simplistic optimisation algorithms and have in general only 

considered a limited number of modularisation objectives, the developed 

framework provides a true multi-objective approach to the product modularisation 

problem.    
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Abbreviations 
 

 

DfX  : Design for x 

DM  :  Decision maker 

DSM  : Design structure matrix 

EOL  : End of life 

GA  : Genetic algorithm 

MFD  :  Modular function deployment 

MOGA : Multi-objective genetic algorithm 

MOGGA : Multi-objective grouping genetic algorithm 

QFD  : Quality function deployment 
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CHAPTER 1 

1. Introduction 
 

1.1. Research Context 

 

To design and manufacture successful and profitable products in an increasingly 

competitive, globalised society, driven by a consumer-based economy presents 

many manufacturing companies with huge challenges. In most industries product 

development times are becoming shorter as companies are forced to offer an 

increasing number of new product offerings to the market in order to remain 

competitive. In the automotive industry for example product development times for 

new products have shrunk from 60 months in 1988 to 35 months in 1999, and this 

trend is set to continue well into the foreseeable future (Nepal et al., 2006).  In 

addition product development now takes place on a global level with many 

companies outsourcing the design and manufacture of product parts to various 

suppliers around the world. Tighter environmental legislation is also having effects 

on the way products are developed - in some industries the producer now has 

ensure their products are able to meet strict recycling and reuse targets. In order for 

companies to remain profitable under these demanding conditions a number of 

strategic design and manufacture strategies are often sought - the careful 

consideration of the product architecture is often seen as a one such key strategy. 

 

Broadly speaking product architecture can be defined as either integral (closed) or 

modular (open) and is often defined in terms of two characteristics of product 

design: the similarity between the physical and functional architecture of the design 

and the incidental interactions between physical components (Ulrich and Tung, 

1991). An integral architecture has one-to-many or many-to-one relationships 

between functional and physical elements and complex interactions between 

components. In contrast a modular architecture has a one-to-one mapping of 

function to form and well defined interfaces between modules. These 
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characteristics help give a modular product architecture a number of advantages 

such as: increased product variety at lower costs, ease of outsourcing, reduced order 

lead-times, decoupling of design and assembly tasks, ease of product upgrade and 

change and ease of service and recycling.   

 

However, the very fact that modularity attempts to address so many strategic 

objectives has given rise to many different definitions over the years and a large 

range of measures, methods and frameworks have been created in an attempt to 

guide the development of modular product architectures. Generally speaking 

however, product modularity is primarily seen as a product structuring concept, in 

which the product system is decomposed into smaller more manageable chunks 

(modules) in order to better manage design and manufacturing complexity. The 

most common way this is done is by the decomposition of the product down to 

component level and then grouping of the components to form modules. As well as   

Ulrich and Tung’s (1991) two objectives of function binding and physical 

component interactions, the rationale for module grouping also includes any 

number of strategic objectives, such as: variance and commonality, maintenance 

and reliability, outsourceability, reusability and recyclability. 

 

As can be expected, creating a suitable modular product architecture under these 

many strategic considerations is a complex task, as there are often a huge number 

of potential ways to partition a product’s architecture into modules.  And despite 

the range of developed techniques there are still problems to be solved. In 

summary, the basic principles of product modularity have been well studied, yet 

there have been few frameworks created to guide the product modularisation 

process under multiple (potentially conflicting) strategic objectives. These methods 

generally use simple clustering algorithms or (aggregate objective-based) grouping 

algorithms. Due to the simplistic nature of these models they do not provide a true 

multi-objective optimisation and hence cannot guarantee that truly optimal modular 

product architectures can be found.   
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To better address the complex nature of product modularisation a more holistic 

multi-objective modularity framework will be developed in this thesis. It is 

intended that the framework will be useful to industry, enabling product developers 

to produce a well thought-out modular product architecture that is aligned with the 

strategic needs of the product throughout the whole product lifecycle.  In fact, it is 

argued that for all but the most basic of products, the proposed modularisation 

framework would be beneficial. Although it must be stated that products with a 

relatively high level of complexity (such as modern mechatronic based consumer 

products), would benefit the most from modularisation via a multi-objective 

optimisation framework. Such products typically have complex functionally, a 

mixture of technologies and will often have many different modularisation 

objectives, which will subsequently lead to a large number of alternative modular 

configurations that can be generated and explored using the proposed framework. 

 

1.2. Research Aims and Objectives 

 

The overall aim of the research is to develop a multi-objective optimisation 

framework for product modularisation.  This has resulted in the following research 

objectives: 

 

 to critically review the literature on product modularity. A thorough literature 

study is required to gain a deep understanding of what defines a modular 

product and what are the main advantages and disadvantages of modular 

product architecture, both from academic and industrial perspectives.  The focus 

of the review is to critically assess previous product modularisation methods 

and to indentify a number of key principles that can be developed/integrated 

into a product modularisation framework. 

 

 to technically review GA-based optimisation algorithms. Genetic algorithms are 

considered a promising type of optimisation algorithm for the product 

modularisation problem. A technical review of the fundamental operational 

principles of genetic algorithm based optimisation is required together with an 
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examination of the current state-of-the-art in genetic algorithm based multi-

objective optimisation.  

 

 to analyse the main drivers of product modularisation. The main drivers of 

product modularisation must be identified in order to establish a logical set of 

modularisation objectives. For each objective a suitable analysis and evaluation 

method must then be developed.   

 

 to develop a representation method and metrics. For modularisation to occur 

there must be a method of product representation that effectively captures the 

complex physical and functional interactions and other strategic interactions 

that occur between the product components. Based upon this representation, 

metrics must then be developed to measure the ‘goodness’ of candidate modular 

solutions. 

 

 to produce a software prototype for multi-objective product modularisation. 

This requires the following sub-tasks: a) coding of the optimisation algorithm 

using the appropriate software language; b) the production of a suitable 

software interface for data input and storage of product modularisation 

attributes c) a method to visualise the candidate modular architectures and a 

means to compare and contrast alternative solutions. 

 

 to demonstrate the approach on a case study example. A case study is required 

in order to test and validate the method and to comparisons and contrasts to 

previous works within the field.  
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1.3. Thesis Structure 

 

The overall structure of the thesis can be seen in figure 1.1. The thesis is comprised 

of four main sections.  

 

 
Figure 1.1. Thesis structure 

 

In the first section of the thesis the research aims and objectives are established and 

the relevant literature is analysed.  

 

 Chapter 1 presents the research context, the aims and objectives and the 

structure of the thesis. 
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 Chapter 2 provides a review of modularity, looking first at the advantages of  

modularity and the various definitions and viewpoints, then moving on to 

provide a critical review of the existing modularisation methods.  

 Chapter 3 examines the fundamental operation principles of GAs and looks 

at GA based multi-objective optimisation.  

 

Section 2 of the thesis contains the chapters relating to the theoretical research and 

development of the modularisation model.  

 

 Chapter 4 provides a general overview of the product modularisation 

framework in which key aspects of the framework are discussed.   

 Chapter 5 outlines the development of the multi-objective genetic algorithm, 

customised specifically for the multi-objective product modularisation 

problem.  

 Chapter 6  Discusses the software implementation of the framework and 

outlines the evaluation guidelines for the recommended modularisation 

objectives. 

 

In section 3 are the chapters relating to testing and validation of the developed 

modularisation model.  

 

 Chapter 7 tests the various performance aspects of the algorithm and makes 

comparisons with a traditional aggregated (weighted objective) GA. 

 Chapter 8 demonstrates the application of the modularisation framework 

using a case study taken from the literature. Comparisons are also drawn 

between other case study results and frameworks from previous works.  

 

In the last section of the thesis, that is chapter 9, the research conclusions are drawn 

and recommendations for future work are presented. 
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CHAPTER 2 

2. Review of Modularity 
 

2.1. Introduction 

 

Modularity has been given many definitions over the years and a broad range of 

measures, methods and techniques have been created in attempts to guide the 

development of modular product architectures. The literature surrounding 

modularity is diverse and large, with researchers approaching modularity from 

various viewpoints. The question then asked is are there any major fallacies or 

weaknesses in the previous approaches? Or indeed can any of these different ideas 

be integrated into a more holistic framework to optimise product modularity? To 

answer these questions a thorough literature review has been conducted, examining 

the major English-language modularity literature from the past three decades.  

 

This chapter provides a detailed review of product modularity. The first part of the 

review examines the fundamental modularity benefits and viewpoints in a bid to 

unravel what actually constitutes a modular product. The focus of the review then 

moves on to consider the various modularisation methods that have been produced 

to guide the development of modular products.   

 

2.2. Modularity Benefits 

 

A huge number of benefits can be achieved from modularity- which have been 

exemplified by numerous researchers and can be seen throughout the whole of the 

product lifecycle. The starting point for this chapter is therefore to discuss the key 

modularity benefits in relation to each of the four main stages of the product 

lifecycle; namely, design, production, use and end of life. 

 

From a design or product development point of view, modular design allows for the 

dividing of the overall product design into smaller sub-tasks so that design teams 
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can carry out the sub-tasks in parallel speeding up product development. (Gu and 

Sosale, 1999). This is primarily achieved through the reduction of interactions 

between modules (or chunks) and has been found to positively affect product 

development time (Loch et al, 2003; Griffin 2002; Yassine et al, 2003; Carrascosa 

et al, 1998;  Sosa et al, 2003). 

 

The reuse of existing design and production processes with minimal changes is also 

possible through the use of modular design (Gu and Sosale, 1999; Ericsson and 

Erixon, 1999). In addition, modularity enables efficient responses to design changes 

that may occur during the product’s life cycle. (Martin and Ishii, 2000; Tate et al, 

1998;  Kusiak, 2002).  

 

In production, a module is predominately seen as a kind of strategically formed 

sub-assembly, where modules can be assembled in the most convenient locations 

and then put together to reduce the total assembly time and costs (Fixson, 2003). 

For example, when the Golf II was developed the focus of modularisation was on 

ease of assembly (Wilhelm, 1997). This was also observed at Mazda by Kinutani 

(1997). In fact, in some industries, such as the automotive industry, manufacturers 

arrange the manufacture and assembly of automobile components at different sites 

and bring them together for final assembly (Sako and Murray, 2000; Warburton and 

Sako, 1999; Takeishi and Fujimoto, 2001). 

 

Modularity at the production phase can be seen to offer other advantages. 

According to Ishii (1998), the benefits include ‘streamlined suppliers, reduced 

inventory, fewer works in progress, faster process time..etc…’  For, example, if 

modules can be reused across product families or multiple product generations 

(commonality), scale effects can reduce the cost per unit by distributing the fixed 

cost across larger volumes. 

 

For the product use phase modularity can be seen to offer two main advantages. 

Firstly, from the customer perspective ‘modularity in use’, as defined by Baldwin 

and Clark (1997), allows customers to mix and match a variety of product offerings 
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to suit their needs. Secondly, modularity facilitates ease of maintenance, service 

and repair (Gershenson and Prasad, 1997b; Gu and Sosale, 1999; Ishii, 1998;  

Newcomb et al, 1996). 

 

Lastly, at the end of the product’s life, modularity can be used as a means by which 

to facilitate the ease of recycling, remanufacture and reuse. For example high 

material homogeneity within modules can dramatically reduce the number of 

disassembly operations necessary to separate the product into its various material 

streams for retirement (Zhang and Gershenson, 2003; Gu and Solace, 1999; Ishii, 

1998; Newcomb et al, 1996). 

 

It must be noted however that there are potential costs of modularity, these include: 

(1) The lack of globalised product performance due to decreased function sharing. 

(2) The product may have excessive capability due to over standardisation (over 

designing modules for the most rigorous application). (3) There is potential for 

static product architectures and excessive product similarity. (4) Reverse 

engineering is simpler which may lead to increased competition. (Ulrich, 1995). 

 

2.3. Modularity Viewpoints 

 

Examination of the modularity literature has revealed that there are four primary 

viewpoints of product modularity and these are function, coupling, variety and life-

cycle.  

 

Function 
 

From a product development perspective, perhaps the most common view of 

product modularity, product modularity relates to product function (Erens and 

Verhulst, 1997; Stone, 1997; Baldwin and Clark, 1997; Huang and Kusiak, 1999; 

Sanchez, 2002; Suh, 2001; Pahl and Beitz, 1984; and Jiao and Tseng, 2000; Ulrich 

and Tung, 1991). For example, as part of Suh’s axiomatic design method, the first 
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axiom states that ‘in good design the independence of functional requirements is 

maintained’. Indeed, a functional perspective is often adopted during the design 

process as it presents a natural means of converting customer needs into product 

requirements (Pahl and Beitz, 1984).  

 

The functional perspective implies that a complex product can be decomposed into 

clearly defined functions and that each function can be mapped to physical 

components. From this perspective product architecture is defined by the way in 

which functional elements correspond to physical components. The product 

architecture is said to be modular when it exhibits a one to one mapping between 

functional and physical elements (Ulrich and Tung, 1991). This leads to the notion 

that each module should carry out a discrete function, becoming functionally 

independent. Functionally independent modules can be seen to offer a number of 

advantages to product development, that include ease of product upgrade, improved 

product configurability and function sharing among product families (functional 

modules can be mixed and matched to address a range of customer needs), and 

improved product reuse - should a function change then only part of the product 

needs to be redesigned. Conversely, an integral architecture can be defined when 

each function is implemented by multiple physical components or when each 

physical component implements numerous functions. Ulrich (1995) uses an 

example of a trailer to illustrate the principles (see figures 2.1 and 2.2). 
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Figure 2.1 Modular Architecture (Ulrich, 1995) 

 

 
Figure 2.2. Integral Architecture (Ulrich, 1995) 

 

One of the main advantages of ensuring that physical elements are aligned to 

functions (i.e. each module performs a discrete function) is that each module is 

more closely aligned to a specific customer need (Pahl and Beitz, 1984), which, in 

turn, enables a greater variety of products to be produced at a minimal level of 

complexity and cost. Because in a modular product functions are less integrated 

(spread among components), different customer needs can be addressed by 

different modules, allowing a mix and match of modules to enable product variety 

at low costs (Ulrich, 1995; Pahl and Beitz, 1984). In other words, firms can 

rearrange and/or add new modules to achieve the desired functions without 

changing the whole product. 

 
Achieving functionally discrete modules is desirable. However, product functions 

can be analysed in numerous ways and at various levels of abstraction and hence 
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we are told that functional decomposition is very subjective (Baldwin and Clark, 

2000). Consider the hair dryer example (Fixson, 2003). “Its main function is to dry 

hair. If to dry hair were selected as a function, the result would be the allocation of 

this function to all components, for all components of the hair dryer would not exist 

in the first place if they were not contributing to the product functionality. On the 

other hand, if the function is chosen on a very low, detailed level: “Hold part A in 

position X relative to part B with force F”, then exactly one and only one 

component delivers these functions. In contrast if one begins to define functions 

like “to generate air flow, heat airflow, control heat, control air flow, supply 

energy”..., then it becomes meaningful to investigate how functions are mapped to 

components”.  

 
 

Coupling 
 

The coupling view of modularity is perhaps one of the most prevailing among 

scholars.  From this perspective, modularity is viewed as the number/complexity  of 

interactions (couplings) between components; the fewer the interactions between 

modules the more modular the product becomes (Ulrich and Eppinger, 1995). 

Figure 2.3 illustrates the principle, where product A can be seen to be more 

modular than product B.  Lowering the degree of coupling between modules can be 

seen to positively affect various aspects throughout the product life cycle. During 

the design phase development time can be reduced (Loch et al, 2003;  Griffin 2002; 

Yassine et al, 2003;  Carrascosa et al, 1998; Sosa et al, 2003). During production 

modules can be assembled with relative independence, enabling the benefits of 

flexible assembly lines and module outsourcing (Sako and Murray, 2000; Hsuan, 

1999). Loosely coupled modules also enable simpler removal of modules for 

service operations, easier replacement of failed modules and simpler disassembly 

operations for module recycling and remanufacturing (Newcomb et al, 1996; Gu 

and Sosale, 1999; Gershenson et al., 1999; Marks et al, 1993). 
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Numerous measures of component couplings have been developed and vary 

significantly, both in qualitative and quantitative terms. Martin and Ishii (2000) 

developed a metric called the coupling index, that is used to measure if the 

components are sensitive to changes in another component’s design specifications. 

They use a 1-9 scale to assess the sensitivity of a component to each design 

specification flow between components (sub-assemblies). 

  
Figure 2.3. Component interactions for modular and integral architectures 

 

In Pimmler and Eppinger’s (1994) DSM based approach couplings are evaluated in 

terms of functional and physical interactions (physical interaction, flows of 

material, energy, information), with each being quantified on a four point scale (+2  

to -2). Holtta and Otto (2005) also use a functional flow method to define coupling, 

but extend the principle to also quantify the level of component redesign effort 

needed should one or more of the functional flow intensities change.  The works of 

Gu and Sosale (1999) and more recently Lai and Gershenson (2008) present a 

measure of coupling that concentrates on the physical interactions. The aim here is 

to ensure that efficient assembly is possible and that each module is easily 

detachable. The measures are based upon the geometric mating complexity and the 

joining methods used between components. 

 

Some modularity definitions also include the notion of standardised interfaces 

(Sanchez , 2002; Mikkola and Gassman, 2003). Module interfaces can be seen as 

the physical manifestations that arise from the component couplings. When 

interfaces are standardised or ‘fixed’ it becomes possible to exploit the notion of 

inter-changeability between modules to offer the customer an increased range of 

end products, at minimum cost to the company. 

 

Integral 

 

Modular 

Product A Product B 
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Variance 
 

One of the key aspects of a modular design approach it that it gives the 

manufacturer the ability to offer an increased number of product variants to the 

market place without accruing huge costs. By breaking down a product into a 

number of discrete modules, a huge range of product variants can be offered to the 

market at low cost through a module ‘mix and match’ approach.  For example, 

Kusiak (2002) uses the term modularity to describe the use of common units 

(modules) to create product variants. Kusiak defines modularity as the 

identification of independent, standardised or interchangeable units to satisfy a 

variety of functions. From this perspective, a product becomes increasingly 

modular when a larger number of modules can be readily reconfigured or shared 

with other products (Mikkola and Gassman, 2003). The personal computer (PC) is 

a good example. By using a well defined modular product architecture, with 

standardised interfaces, all manner of PC configurations can be achieved by using a 

mixture of different modules.   

 

This modularity viewpoint has been discussed by many other researchers including: 

Sanchez, (1999, 2002);  Baldwin and Clark, (1997, 2000);  Jiao and Tseng, (2000); 

Mikkola (2001); Mikkola and Gassman, (2003);  O’Grady, (1999); Pine, (1993);  

Pahl and Beitz, (1984);  Fujita, (2002); Fujita and Yoshida, (2001); Salvador et al, 

(2002); Robertson and Ulrich, (1998); Chakravarti and Balkrishan, (2001); Dahmus 

et al, (2001); Duray et al, (2000); Ulrich and Tung, (1995); Jose and Tollenaere, 

(2005). 

 

Developing modular product platforms is often the way modular product family 

development is implemented. With this approach a family of products are created 

based upon common (shared) product architecture (Simpson et al. 2001; Muffato, 

1999; Muffato and Roveda, 2000; Nayak et al, 2000; Farrel and Simpson, 2003; 

Gonzalez-Zugasti et al, 1999, 2001; Meyer and Lehnerd, 1997). Central to the 

modular product platform approach is the identification of common platform 

modules, that is modules that can be made common across the product family 

(Simpson et al, 2001). Common platform modules offer the advantages of greater 
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economies of scale, reduced product inventories and improved product reuse 

leading to a faster time to market (Nobelius and Sundgren; 2002). Integrating a 

number of components into a common platform module can also offer increased 

product performance though reduced part count and a reduced number of interfaces.  

Another key point with the platform approach is that production lead times can also 

be reduced by postponing the product differentiation point i.e. common platforms 

can be assembled first then variant modules can be added later in the production 

cycle (Salvador et al, 2002; Feitzinger and Lee, 1997). This is commonly referred 

to as a late point product differentiation strategy.  

 

Generally speaking the product should contain an optimal balance of both variant 

and platform modules (Krishnan and Gupta, 2001). Many common modules may 

lead to lower costs but this may also mean that the product family does not 

successfully address the different market needs and that each individual product 

loses its identify. In other words, the product range becomes internally cannibalised 

(Kim and Chajed, 2000; Silveria et al, 2001). On the other hand, if the level of 

variety is too high then problems will also occur – primarily the design and 

production costs are likely to increase to unacceptable levels.  Too much variance 

can also be overwhelming for the customer and may not actually lead to greater 

sales. Deciding upon the right level of variety to offer the customer is thus a 

complex issue. Market research tools and approaches such as Voice of the 

Customer (VOC), conjoint analysis (Moore et al, 1999; Tatikonda, 1999) and data 

mining (Agard and Kusiak, 2004) can be used. A detailed discussion of these 

principles is however out of the scope of this research.  

 

It has also been discussed by numerous scholars that for a modular approach to 

product variety management to be fully successful the module interfaces should be 

standardised and carefully managed after modules have been indentified, allowing 

the product family mix to be carefully controlled.  This can in part be achieved by 

looking at the ‘coupling’ viewpoint to ensure functional and physical interactions 

between modules are kept as simple as possible. A certain amount of overdesign or 

bandwidth may also need to be incorporated into certain modules to allow a range 
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of different specification modules to be used together. For example the mother 

board of a PC needs a certain design bandwidth to support a range of CPU speeds, 

RAM capacities and graphics card speeds. 

 

Life-cycle 
 

The modularity definitions proposed so far are related primarily to the functional 

and physical characteristics of modules. However, other researchers have chosen to 

include other product lifecycle based aspects in their definitions of modular 

products. The lifecycle viewpoint of modularity is primary concerned with the 

after-sales aspects of modularity i.e. the service, replacement, recycling, reuse and 

remanufacturing of modules. For these after-sales lifecycle factors some researchers 

have even gone so far as to use these aspects as the main drivers of product 

modularisation.  The Newcomb et al (1996) modularisation method for example 

was primarily focused on product modularisation to facilitate ease of recycling. 

Newcomb et al (1996) uses a three point scale to evaluate the material similarity 

between component pairs in an interaction matrix.  

 

Gershenson et al. (1999) however view modularity from a whole lifecycle 

viewpoint. They define lifecycle modularity as ‘modules and interactions that arise 

from the various processes the components undergo during their life-cycle 

including development, testing, manufacturing, assembly, packaging, shipping, 

service and retirement’.  Their methods have been used in pursuit of service 

(Gershenson and Prasad, 1997b), manufacturing (Gershenson and Prasad, 1997a), 

retirement (Zhang and Gershenson, 2003) and assembly (Lai and Gershenson, 

2008). Similarly, the bodies of work by Gu and Solace (1999), Ishii  (1998), Nepal 

(2005) and Nepal et al (2006 and 2007) also see modularity as a means of 

improving various product life cycle goals. 
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2.4. Product Modularisation Methods 

 

There has been a large number of modularity methods developed over the years. 

Rather than reviewing each and every method in a linear fashion, the various works 

have been examined for similarities. In this thesis three different categories of 

modularity methods have been indentified, namely: configuration methods, domain 

mapping approaches and step-wise redesign methods. 

 

The configuration approaches are by far the most prevalent in the literature. With 

these methods the product is decomposed into a number of smaller elements 

(components) which are then grouped to form larger product elements (modules). 

The rationale for modular configuration varies, depending upon the modularity 

viewpoint taken.  

 

The configuration based methods are predominately matrix based, with most 

employing some form of grouping or clustering algorithm to form modules. Matrix 

representations are considered a somewhat natural way of representing component 

interactions, as they are highly visual and can readily be manipulated with 

algorithms.  The component interactions are generally functionally and physically 

based, but also based upon the similarity of components in regards to any number 

of strategic modular drivers.  For the majority of the configuration based methods it 

is assumed that the basic product elements are known. The objective of these 

methods is to configure the product elements into optimal modules according to the 

objectives being sought.  The methods presume that each component has a clear 

function at the indentified level of decomposition. The possibility that a 

component’s function can be carried out by a different component does not exist. 

For example, for a vacuum cleaner, the disposable bag has the function of collect 

dust, which could be carried out by a different functional component, such as a 

plastic bucket collector.   

 

The domain mapping approaches deal with product modularisation at a higher level 

of abstraction and are most useful for new product development.  These methods 



Chapter 2 

Page | 18 

are predominantly based upon the functional viewpoint of modularity- whereby the 

modular product is developed though mapping between the functional and physical 

domains. For example, Pahl and Bietz (1984) suggest the use of a functional 

mapping approach as a means to decompose the conceptual product family into a 

number of modules.  In this way a number of products can be built up 

simultaneously by considering commonalty and function sharing between product 

family members.  

 

For some of the modularity methods the primary focus is on the analysis and 

redesign of existing modular structures. These methods have been labelled step-

wise redesign methods. With these methods it is often presumed that the product 

elements have already been grouped to form modules.  Hence the methods merely 

act as an analysis and redesign tool, seeking to guide the designer towards an 

improved modular structure by adjusting the existing module attributes. For 

example Martin and Ishii’s (2000) design for variety (DFV) method is a widely 

quoted method used to improve the robustness of existing modular product 

architectures to accommodate future product versions.   

 

2.5. Configuration Based Methods 

 

As mentioned the configuration based methods are by far the most prevalent in the 

literature and thus this is where the focus of this review will lie. With all the 

configuration methods the principle is to group lower level components into higher 

level modules. As will be seen the objectives for the grouping, as well as the means 

of performing grouping, vary greatly.  

 

Design Structure Matrix (DSM) Based Clustering Methods 
 

The Design Structure Matrix (DSM) is a powerful tool for representing product 

architectures. This representation allows for the analysis and development of 

modular products by clustering of the DSM (Yassine et. al., 2003). The DSM was 
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first proposed by Steward (1981) for design activity planning. It consists of a 

square matrix headed by a list of the product’s components (can also be activities, 

processes or functions) that are represented in the same order in both the row and 

column of the matrix. The matrix represents the interactions between the 

components. These interactions can be represented as a simple binary number or a 

weighted amount that represents the degree of dependency. Figure 2.4 shows an 

example DSM. Interactions between the components can be physical, functional or 

even strategic based. Strategic interactions are the interactions that arise from the 

component similarities in regards to any number of lifecycle/ strategic factors e.g. 

recycling, maintenance and variety.   

 

 
Figure 2.4. Un-clustered DSM (Yassine, 2003) 

 

 
Figure 2.5. Clustered DSM (Yassine, 2003) 

 

Once the DSM has been populated with component interactions, the aim is to 

cluster the matrix such that groups of highly interactive components can be 

identified.  These highly interactive clusters of components then become candidate 

modules.  The identified modules can therefore be seen to conform to the second 

part of the Ulrich and Eppinger’s (1995) modularity definition: chunks (modules) 

should contain few if any interactions between chunks (modules).  
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The seminal work of Pimmler and Eppinger (1994) applies the DSM for evaluating 

product architecture, primarily for product development purposes.  The goal of their 

method is to reduce interactions that occur between clusters (chunks as they put it).  

The idea is that coordination complexity of the development effort can be reduced 

if interactions predominately occur within chunks rather than between chunks.  

These interactions are quantified in terms of:  

 

• Spatial. The need for adjacency or orientation between elements. 

• Energy. The need for energy transfer between two elements. 

• Information. The need for information or signal transfer between two 

elements. 

• Material. The need for material exchange between two elements. 

 

Each of these interaction types is given a +2 to -2 score. For an example of spatial 

interactions see table 2.1. 

 

Table 2.1 Physical component interaction scoring-  Pimmler and Eppinger (1994) 

 
 

Although the method draws parallels with the aims of modular design, Pimmler and 

Eppinger (1994) do not actually refer to the method as a modular design method. In 

Pimmler and Eppinger’s (1994) work chunks are allowed to overlap each other as 

can been seen in figure 2.6. For module forming however components should 

exclusively become part of the same module as seen in figure 2.5. 

Required: (+2)  
 

Physical adjacency is necessary for 
functionality. 

Desired: (+1) Physical adjacency is beneficial, but 
not absolutely necessary for functionality 

Indifferent: (0) Physical adjacency does not affect 
functionality. 

Undesired: (-1)  
 

Physical adjacency causes negative 
effects but does not prevent 
functionality. 

Detrimental: (-2). Physical adjacency must be prevented 
to achieve functionality 
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Figure 2.6. Clustering DSM: car climate control system  

(Pimmler and Eppinger, 1994) 

 

In Pimmler and Eppinger’s (1994) work clustering is done manually. If DSM 

clustering is done manually, the process can be inefficient and extremely time 

consuming. A number of algorithms such as hill-climbing and simulated annealing 

have been developed and tested by Whitfield et al (2002) for the optimisation of the 

order of components within the DSM. Of these methods, Whitfield et al (2002) 

state that ‘the difficulty in optimising the DSM lies in the number of combinations 

of possible component orders. For example, a matrix containing 30 components has 

6.652*1032 possible combinations. An exhaustive search for this type of problem is 

clearly inappropriate’. Genetic algorithms (GAs) is one method that is particularly 

suited to such combinatorial optimisation problems. Various researchers have 

therefore adopted Genetic algorithms for the clustering of the DSM.  

 

Yassine et. al. (2003), have developed a DSM clustering method, used for modular 

product design, based on a genetic algorithm (GA), which they claim is capable of 

solving DSM clustering problems with overlapping and bus modules and a three 

dimensional structure.  They have demonstrated the use of their method to cluster a 
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real-world problem - a 10MW gas turbine - and claim that it produces superior 

clustering compared to traditional/ manual algorithms. Although the technique has 

shown promise there are limitations. Firstly, the method is binary based, so it 

presents no means of distinguishing between the strengths of the dependencies 

between components. Furthermore, the method does not distinguish between 

different types of dependencies (physical, material, energy, information).  

 

Whitfield et al (2002), have also developed a GA-based clustering algorithm. The 

technique uses a weighted method of assessing the strength of dependencies 

between components. They apply a Module Strength Indicator (MSI) which results 

in an alternative representation of the DSM- Module Structure Matrix (MSM) (as 

seen in figure 2.7). The focus of the method is towards identifying modules that 

have a maximum number of internal dependencies between components and a 

minimum number of external dependencies between components. The resulting 

‘Module Structure Matrix’ (MSM) uses different coloured cells to depict the 

relative modularity of all available modules within the matrix (Whitfield et al, 

2002). 

 
Figure 2.7. MSI-DSM of car climate control system  (Whitfield et al, 2002) 
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Table 2.2. Module Catalogue for Climate System (Whitfield et al, 2002) 

 
 

This approach is useful for the identification of a modular hierarchy within the 

product structure as can be seen in table 2.2. But, it still fails to include different 

types of dependencies such as: functional, physical or lifecycle/strategic, 

concentrating only on physical dependencies.  

 

Kamrani and Gonzalez (2003) have developed a similarity matrix for indentifying 

the optimal modular structure of two similar products. The method is effectively a 

DSM clustering method that also uses a GA-based clustering algorithm. However 

unlike previous methods, where modules are easily identifiable, module groupings 

are hard to visualise.   

 

Kusiak (2002) has developed a modularity method that also looks at the functional 

interactions between components as a driving force for forming modules. Again a 

DSM is used to represent component interactions (the interaction matrix). However, 

Kusiak also includes a second matrix, the suitability matrix (see table 2.3 and figure 

2.8), to assess whether the components should be placed into the same module as 

each other. Component suitability is measured in terms of a four-point scale, a, e, o, 

u, (‘a’ representing strongly desired and ‘u’ strongly undesired).  The suitability 

matrix is used to determine modules that are suitable for sharing across the product 
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family. i.e if two components are needed in the same product they are deemed 

suitable for inclusion in the same module.   The suitability idea could of course be 

extended to other factors such as suitability for recycling, maintenance or service.   

 

In Kusiak’s method module formation consists of three main steps, which can be 

applied in an iterative fashion. The first step employs Kusiak and Chow’s (1987) 

triangularisation algorithm to perform clustering of the interaction matrix and 

establish a ‘rough’ modular structure. Next the suitability matrix is analysed for 

‘goodness’ of module clusters.  Based upon the analysis a number of operations can 

then be applied to improve modularity. These operations are: the reconfiguration of 

incompatible components, either to other modules or to form new modules; the 

elimination of components; and the duplication of components if they are needed in 

more than one module.   

 

However, with their method there is no guarantee that one would continue to move 

a design towards a more modular product during the module improvement stage. A 

measure of modularity could be added to ensure that each move is an improvement. 

Kusiak also discusses that module cost should be a determining factor for choosing 

a suitable modular structure but does not actually provide such a module cost 

metric.  

 

Table 2.3. Summary of the application of the modularity matrix (Kusiak, 2002) 
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 Figure 2.8. Interaction matrix and suitability matrix (Kusiak, 2002) 

 

Modular Function Deployment (MFD) Method 
 

Ericsson and Erixon (1999) have developed a Quality Functional Deployment 

(QFD) based method known as Modular Function Deployment (MFD) to support 

the generation and evaluation of modules. This consists of the following steps:  

 

1. Clarify customer requirements (QFD).  

2. Select technical solutions.   

3. Generate modular concepts (Module-Indication-Matrix).  

4. Evaluate concepts, (interface matrix, evaluation chart).  

5. Improve each module. 

 

The Ericsson and Erixon (1999) method focuses on the strategic aspects of 

modularity. The central notion to the method is to use a QFD-style approach to map 

the influence of various strategic modular drivers (see figure 2.9.) on each 

‘technical solution’ of the product (scored on a 1-9 scale). The matrix produced is 

known as the Module-Indication-Matrix (MIM). The MIM technical solutions, 

which are influenced by the same modular drivers, are then considered as potential 

candidates for grouping into modules.  Figure 2.10. shows an example MIM for a 

vacuum cleaner. 
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Figure 2.9. The Modular Drivers - Ericsson and Erixon (1999) 

 

There is no measure of modularity used in the MFD method. The method works on 

the assumption that the product will become more modular as the designer forms 

modules that have similar modular driver influences. One weakness of the method 

is that it is left to the designer to manually group technical solutions into modules. 

There are no heuristics or clustering algorithms developed to support this task. 

Another weakness is that it does not consider the functional interactions between 

technical solutions during the module grouping phase. This may lead to sub-

optimal or infeasible module groupings.   
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Figure 2.10.  Completed MIM for a vacuum cleaner - Ericsson and Erixon (1999)   

 

Ericsson and Erixon (1999) do however provide an additional step that examines 

the module interactions after modules have been formed. In the matrix shown in 

figure 2.11 (A) represents an attachment interface and (T) a transfer interface. The 

matrix serves as a pointer for the interfaces which should be given consideration 

and eventually improved. The evaluation is carried out from an assembly point of 

view. Two ideal assembly types are mentioned: “hamburger assembly” which is an 

ideal assembly type for DFA reasons, and “base part assembly” which is an ideal 

assembly type when it comes to maintenance and replacement of parts. 

  

 

Figure 2.11. Interface evaluation matrix - Ericsson and Erixon (1999) 
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Derivatives of the MFD Method  
 

Blackenfelt (2001) has attempted to address some of the weakness of MFD by the 

use of two interaction matrices (DSMs); one for functional interactions and one for 

the strategic aspects. The functional-based matrix is similar to that of Pimmler and 

Eppinger (1994) representing component interactions in terms of spatial, energy, 

material and information. The strategic matrix represents the similarity of 

modularity influences between components.  For this purpose Blackenfelt (2001) 

uses a reduced set of modular drivers taken from the MFD method. He argues that 

there are overlaps and contradictions between the original drivers in the MFD and 

hence justifies his reduced set as being more appropriate.  The drivers he uses are: 

‘variant versus common’, ‘reuse versus develop’, ‘make versus buy’ and ‘carry-

over versus change’ To quantify the component interactions in respect to these 

modular drivers the affects on component pairs are quantified on a +3 to -3 scale. If 

there is a positive correlation between modular drivers, for example if both 

components should be common, then a +3 is entered into the corresponding 

position in the matrix.  Likewise, if two components have conflicting modular 

drivers, one component should be common, whilst the other should be variant then 

a -3  is entered. This can be seen in figure 2.12. Blackenfelt also provides simple 

evaluation guides for each of his four modular driver pairs (example in figure 2.13.) 

 

 
   Figure 2.12 Strategic DSM (Blackenfelt, 2001) 
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Figure 2.13. Modular driver scoring for strategic DSM (Blackenfelt, 2001) 

 

Once the matrix has been populated the idea is to use a clustering algorithm to form 

modules that maximise the positives within modules whilst at the same time 

minimising the negatives within modules.   To guide the clustering Blackenfelt also 

proposes two measures. However, although Blackenfelt (2001) developed some 

module grouping guidelines he did not develop a suitable optimisation algorithm, 

so like Ericsson and Erixon’s (1999) method of grouping it must be done manually, 

making it difficult to find optimal module groupings.  This could of course be 

overcome by developing a suitable grouping algorithm. 

 

Kreng and Lee (2004) and Kreng and Tseng (2004) have developed an extended 

QFD-based modular configuration approach. For their method a modular driver 

matrix (like the MIM) is used to represent the impact of modular drivers on each 

component. Additionally, a QFD method is followed to assess the importance of 

modular drivers based upon the identified customer and company needs – as 

depicted in figure 2.14. Like Pimmler and Eppinger’s (1994) DSM approach a 

functional matrix is also used to represent functional and physical interactions 

between components. In an additional improvement upon previous methods they 

have developed a genetic algorithm based non-linear programming model to 

perform module grouping.  Groupings are formed based upon the maximisation of a 

weighted sum of two metrics. One metric measures the functional interactions 

within modules and one measures the modular driver similarities within modules. 

However, both metrics only measure module interactions within modules and 
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ignore the influences of external module (between module) interactions, which may 

lead to sub-optimal modules. Another weakness of their approach is that the 

identified modules may well end up containing components with conflicting 

strategic modular driver influences, as the method does not include negative 

modular driver influences, only positive ones. Also, unlike Blackenfelt’s (2001) 

method they have not considered the potential conflicts and similarities of the 

actual modularity drivers themselves. The method also fails to give any detailed 

guidance on how to score the modular driver influences on components.  

 
Figure 2.14. QFD modular design method: clustered modular driver matrix (Kreng 

and Lee, 2004) 

 

Lifecycle Based Approaches 
 

Gershenson et al (1999) have developed a method of module design from a life-

cycle perspective. The approach focuses on module independence and similarity 

across the product life-cycle and includes a step-wise configuration and redesign 

methodology to guide designers towards greater modularity of products. The goal 
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of their modular design method is to group all components that undergo the same 

life-cycle processes into the same module as well as decoupling the modules from 

module dependences that arise from the various life-cycle processes.  

 

Their method begins by firstly examining a number of manufacturing process 

graphs and component assembly trees, from which two modularity matrices are 

constructed, one to record similarities between processes and one to record 

dependencies between components.  Modularity is evaluated based on a relative 

modularity measure they have developed, which is the ratio of intra-module 

similarities to all similarities, both intra- and inter-module, added to the ratio of 

intra-module dependencies to all dependencies, both intra- and inter-module. The 

similarities considered are component–process similarities while the dependencies 

are both component–component and component–process dependencies 

(Gershenson et al., 1999).  To improve relative modularity, components or modules 

can be eliminated, rearranged or redesigned in order to increase the modularity 

measure. The redesign step focuses on either reducing the intra-module similarities 

and dependencies or increasing inter-module similarities and dependencies. 

 

One shortcoming of the method is the work necessary to apply it. The matrices 

need deep product knowledge and tedious re-design work is needed to move 

towards better modularity. Gershenson et al (1999) state that the method could be 

improved by semi-automating the evaluation and reconfiguration process, which 

has been part of the later works of Zhang and Gershenson (2003) who also include 

a module clustering step employing Kusiak and Chow’s (1987) clustering 

algorithm.  

 

More recently, Lai and Gershenson (2008) have attempted to address some of the 

shortcomings of their group’s previous efforts by integrating a number of previous 

ideas into their method. The improved method makes use of two matrixes, one for 

component dependences and one for component lifecycle similarities. After these 

matrices are populated they are normalised and averaged to form one matrix. The 

single matrix is then clustered by again employing Kusiak and Chow’s (1987) 
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clustering algorithm. Once initial clusters have been formed a reconfiguration stage 

takes place to further improve module clusters in respect to their previously defined 

modularity metric. These newly improved module clusters are then checked for 

feasibility using a simplified assembly precedence graph.  Lastly a redesign step is 

applied to further improved modularity by changing component attributes. 

Although the method is aimed at modular design for assembly, the method could 

easily be extended to other lifecycle phases, which is actually what Gershenson’s 

group intend to do next. The method appears to improve upon Gershenson’s 

previous work but the method is still lacking a certain level of automation during 

the module clustering stage. It would be expected that a mathematical programming 

based module grouping method, such as the GA-based integer programming 

approach used by Kreng and Lee (2004) would perform better module grouping. It 

would also eliminate the need for the post-cluster reconfiguration stage. 

 

Gu and Solace (1999) also pursue a life-cycle based approach to modularity. They 

aim to produce various different product modularisations for the various life-cycle 

characteristics of a product including for example assembly, reusability and 

recyclability. Their design method has three phases: 

 

1) Problem definition: this includes identification of type and characteristics of 

design problems, decomposing the problem into sub-problems, and determining the 

objectives of modularisation.  For conceptual design this will include the 

decomposition of the product based upon a functional structure of the product. For 

product redesign the physical structure will already be known, so decomposition is 

the identification of the components or sub-systems. They define this 

‘decomposition’ step as a prerequisite for modularising a product. They further 

discuss that defining the objective of modularity will depend upon the type of 

product. For some products the aim will be ease of assembly, for others it may be 

ease of maintenance.  

 

2) Interaction analysis: To evaluate the interactions for the objective, values are 

assigned to each objective. For each objective an interaction matrix is created to 
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record the interactions between components which are scaled to lie between 0 and 

10. A single matrix is then produced that represents a total interaction score (for all 

objectives) between components.  Like Pimmler and Eppinger (1994) they consider 

functional interactions among components in terms of exchanges of materials, 

energy, and signals, or spatial interactions and extend their work to include 

geometric relationships. The geometric relationships include attachment, 

positioning, motion and containment. The lifecycle based component interactions 

they consider include recycling and reuse and maintenance and service.  

 

3) Module formulation: a simulated annealing based mathematical programming 

algorithm is then implemented to cluster the components into modules such that the 

component to component interactions within each module are maximised. Different 

solutions can be obtained by changing the preference weights for the various 

modularity objectives.  

 

One of the problems with the method is that it only considers interactions within 

modules and does not consider interactions between modules, hence modules may 

not be optimal. Furthermore because the method combines the various matrices to 

produce a single matrix (which is optimised) it ignores the fact that there may in 

fact be modular driver (modularisation objective) conflicts within modules 

(negative interactions) and hence the produced modules may not even be feasible or 

desirable.  

 

Newcomb et al (1996) present a method that aims to improve modularity in terms 

of three main lifecycle factors, function, service and end of life needs.  In their 

work they attempt to create a modular structure that has a high level of 

correspondence between the modules from the various life-cycle viewpoints.  This 

is based upon the hypothesis that the product will have more than one modular 

structure and there may in fact be a different set of modules for each life-cycle 

phase.  Their method is carried out in two main stages. Firstly, like others, the 

initial step consists of the clustering of an interactions matrix to identify possible 

modules. For this Kusiak and Chow’s (1987) clustering algorithm is employed. 
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Once the module clusters have been chosen two modularity metrics are used to 

access module ‘goodness’.  The first metric evaluates the level of module coupling 

and the second metric measures the correspondence of the modular structure with 

regard to service and recyclability.  Based upon these measures a limiting factors 

heuristic is used to indentify how the modules could be improved. For example, the 

limiting factors for a module maybe its poor recyclability between a pair of 

components, and hence changes to the component’s materials would be suggested 

to improve recyclability of the module. Using this limiting factors approach the 

process of redesign and improvement for modules continues in an iterative manner 

until a stopping point is reached or no further improvements can be made. One 

problem with this approach is that after each iterative redesign is performed the 

original limiting factors may no longer be limiting factors, so the limiting factors 

will need constant updating. It could also be said that the limiting factors will be 

highly dependant upon the chosen module groupings, which is unfortunately done 

by manually choosing ‘optimal modules’ from the clustered interaction matrix.  

 

Nepal’s Fuzzy Logic Method 
 

Nepal (2005) presents a structured process based on fuzzy logic and goal 

programming models for developing modular products. The aim is to form optimal 

module configurations based upon cost (Nepal, 2005), quality (Nepal et al., 2006) 

and reliability and maintainability (Nepal et al, 2007). Like previous methods the 

product is decomposed into lower level components and then they are grouped to 

form modules. Modules are formed based upon the maximisation of similarities 

between components. Again, like other methods, component similarities are 

represented in a DSM-type matrix. The interesting facet of their work is the 

inclusion of fuzzy logic into the component - component similarity assessment.  For 

each objective (cost, quality, and reliability and maintainability) a set of three 

performance metrics is used to evaluate each component pair (module candidates as 

they refer to it).  Using fuzzy logic an overall ‘performance index’ is quantified for 

each component pair according to how the three metrics are scored. For example, 

for the module quality objective there are three metrics: ‘perceived quality’; 
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‘robustness’ and ‘compliance to axiomatic design principles’. Each of these metrics 

has an associated evaluation chart. In table 2.4 an example evaluation chart for 

‘perceived quality’ can be seen.  

 

Table 2.4. Evaluation chart for ‘perceived quality’ (Nepal et al, 2006) 

 
 

Once the component pairs have been evaluated for each metric the fuzzy logic is 

applied. The fuzzy logic works in the following way: first the user makes 

judgements for each of the various combinations of metric evaluation scores and a 

number of rules are generated, for example: 

 

Rule# 1: If (Perceived Quality is Very Low) AND (Robustness is Very Low) AND 

(Axiomatic Compliance is Very Low) THEN (Quality Performance Index is Very 

Low) 

 

Rule# 42: If (Perceived Quality is Low) AND (Robustness is High) AND 

(Axiomatic Compliance is Very Low) THEN (Quality Performance Index is 

Moderate) 

 

These fuzzy outputs (the THEN statements) are then converted using 

defuzzification mathematics into ‘crisp’ numeric values. These values then form the 

component interaction values for each component pair in the matrix.  To form 

modules a Chebychev (min-max) goal programming model is applied to search the 

matrix for the optimal groupings that maximise the overall product quality index 

(and/or reliability and maintainability) and lower the cost performance index. With 
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goal programming ‘aspiration levels’ are used to represent the desired achievement 

of the goals (cost, quality and reliability and maintainability in this case) by 

adjusting the ‘aspiration levels’ and trade-off analysis can be performed to find 

alternative modular structures. The results of the trade-off between cost and quality 

can be seen in figure 2.15. 

 

 
Figure 2.15. The trade-off between cost and quality ((Nepal et al, 2006) 

 

The very fact that trade-off analysis can be performed in a logical manner gives 

Nepal’s work an advantage over previous works. However the method, like others, 

requires a lot of work to evaluate the various metrics and would need considerable 

time and knowledge to set up the various fuzzy relationships (rules) between the 

metrics. In fact by integrating the various modularity metrics in such a way a 

certain amount of granularity maybe lost during the trade-off process.  The method 

also fails to consider other key modularity drivers such as variety, design change, 

recyclability and reuse and outsourcing. However, it can be presumed that metrics 

could be developed for inclusion into the framework.  
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Stone’s  Functional Heuristic Method 
 

One of the few modular design methods that does not use a matrix representation of 

the product is the functional modelling based approach of Stone (1997).  The main 

aim of the method is to create an optimal modular structure by identifying low level 

sub-functions which are grouped into modules. The Stone (1997) approach uses a 

function structure diagram based upon the previous works of Pahl and Beitz (1984). 

The principle of this is the tracing of functional flows (material, energy and signal) 

through the product.  For every customer need, a flow is identified and a black box 

model of a product’s overall function and input/output flows is drawn up (see figure 

2.16). Each flow identified in the black box model is then traced through the 

product, as it would flow during use, through a sequence of sub-functions that 

change the flow. A completed functional model can be seen in figure 2.17. 

 

 
Figure 2.16. Black box model for an electric screwdriver (Stone et al, 2000) 

 

Once the functional model has been completed modules can be identified by 

grouping sub-functions that have strong functional interactions with one another. 

For this purpose Stone (1997) has developed three heuristics: 1) dominant flows: a 

set of sub-functions for a flow that passes through from system entry/flow initiation 

to system exit/flow conversion; 2) branching flows: a set of sub-functions for 

making a parallel function chain associated with a branched flow; and 3) 

conversion-transmission flows: a set of sub-functions responsible for the transition 

between flows. 
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Figure 2.17. The functional model for an electric screwdriver  (Stone et al, 2000) 

 

By using the heuristics method it is up to the designer to choose which heuristics to 

use to identify modules and because it is not an algorithm and is rule based it tends 

to produce a high level of ambiguity during module formation. Furthermore, the 

method can be difficult to follow, especially when the product is complex.  The 

production of the functional diagrams is quite complex and is a method that most 

designers will be unfamiliar with.  Another primary weakness of the approach is 

that it only considers functionality and neglects strategic factors during module 

formation. Although there have been extensions to the method which do consider 

factors such as assembly of the modules (Dahmus et al, 2000) and commonality 

across product range (Gonzalez-Zugasti and Otto, 2000), these extended works still 

form the modules from a functionality perspective first and only after these 

modules have been identified do they attempt to improve the modules’ 

characteristics according to strategic/lifecycle  aims. 
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2.6. Decomposition based Modular Design Methods 

 

The next sub-sections will look at the methods that have been developed primarily 

for the modular design of new products, where there may be radical new product 

structures or where the designer is interested in designing a whole range of products 

that share functions.   

 

Ulrich and Tung’s Decomposition Approach 
 

The seminal works of Ulrich and Tung recommend the use of a function to physical 

alignment to create modular structures. Although they do not provide much 

guidance for how this is actually achieved, they do define the various types of 

modular product architectures that can be created. 

 

These different types of modularity are based upon how the product is configured 

for product variety. They define four different types: Component swapping 

modularity: in which product variance is obtained by swapping one of more 

components on a common product platform. Fabricate to fit modularity: product 

variants are obtained by changing a design variable of a module. By scaling a 

module up or down the module can be altered before it is combined with other 

modules.  Bus modularity: uses a standard structure (or base) on to which any 

number of different components can be attached to create variety; Sectional 

modularity: any number of product configurations can be obtained by combining 

components in an arbitrary way providing they are connected via their interfaces.  

 

The later work of Urich (1995) defines the three types of modularity which are 

similar to his previous work. However, they are now defined by the nature of 

interfaces between components. These three types can be seen in figure 2.18. In slot 

modularity the interfaces between components are different so they cannot be 

combined in an arbitrary way. For example the car radio has a unique interface so 

cannot be combined with other components in the car’s dashboard as they have 

different interfaces. For bus modularity there is a common component (bus) that 
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other components connect to via a standard interface type. A type of bus modularity 

can been in personal computers where the motherboard is the bus and the expansion 

cards are connected via standardised interfaces to create variety. In sectional 

modularity there is no base component that all components are attached to, the 

product can be built by connecting any number of components via their identical 

interfaces as for example in sofa or kitchen units.   

 

 
 

 
Figure 2.18.  The four types of product architecture according to Ulrich (1995) 
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Pahl and Beitz’s Decomposition Method 
 

According to Pahl and Bietz (1984), function should be aligned to form. They 

discuss the process of modular design as primarily a means to create product 

variety with various different types of functional modules. They prescribe that the 

modular product should be built based upon four types of modules: basic modules: 

these modules implement functions that are common across the product family; 

auxiliary modules: are modules that are used in conjunction with the basic modules 

to create product variety;  adaptive modules: are modules which are adaptable to 

changing customer needs/ system constraints; Special modules: are modules that 

implement specific customer needs which may not appear in all product variants. 

 

Axiomatic Design 
 

Although not actually claiming to be a modular design method, Suh’s (1995) 

axiomatic design method does present a means of creating a well-defined product 

architecture. It provides a structured method of aligning the various domains of the 

product design. The primary goal of axiomatic design is to create designs which are 

better aligned to the customer needs and to decouple the complex relationships 

between the various domains. Thus axiomatic design is sometimes referred to as a 

domain theory based design methodology. This is somewhat similar to the ideas 

presented earlier in which function is aligned to form in order to reduce re-design 

complexities etc.   

 

 
Figure 2.19. The four domains of axiomatic design (Suh, 1995) 
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As can be seen in figure 2.19 the axiomatic design process zigzags between four 

domains: Customer, Functional, Physical and Process. The process begins by 

converting customer’s needs (CNs) into Functional Requirements (FRs) which are 

then embodied into Design Parameters (DPs). DPs then determine (and are affected 

by) the manufacturing or Process Variables (PVs). 

 

There are two axioms used in axiomatic design: Axiom 1: to maintain the 

independence of the functional requirements. Axiom 2: to minimise the information 

content of the design. Axiom 1 requires that the Functional Requirements (FRs) be 

independent of one another in order to create decoupled and simple designs. Axiom 

2 is often used as a quantitative measure of a design solutions, that can be used to 

select the best designs which satisfy axiom one (Suh, 2001).  Generally, the design 

that uses the least information is superior. 

 

2.7. Step-wise Redesign Methods  

 

A number of modularity methods exist that are primarily aimed at the analysis and 

redesign of existing products.  Generally the methods assume that the functionally 

of the product is clearly known and the physical solutions are defined.  

 

Modularity Evaluation Charts  
 

Ishii (1998) presents a modularity method with the primary aim of enhancing life-

cycle modularity of products. For this purpose he has developed a number of 

evaluation charts for analysis of the product’s sub-assemblies and their associated 

modularity. The charts are aimed at helping designers in analysis of existing 

product modularity and assist in the grouping of subassemblies by identifying 1) 

core platforms, 2) flexible modules and 3) mating interfaces.   

 

Ishii presents four primary categories of evaluation charts: Design flexibility, 

manufacturing complexity, serviceability and recycling. The modularity evaluation 
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for manufacturing plots part commonality against lead time. Service modularity 

gauges service complexity versus frequency. A recyclability chart plots sort 

complexity against material recovery.  An example chart can be seen in figure 2.20 

which presents an example for the serviceability of an inkjet printer. 

 

 
Figure 2.20. Module evaluation chart for serviceability (Ishii, 1998) 

 

 

The method is useful for analysis and redesign of existing products, but does 

however assume that the product has already been defined at the sub-assembly level 

and information exists on assembly and disassembly sequences.  

 

Environmental Modularity Analysis 
 

Qian (2003) proposes a quantitative environmental analysis methodology for 

modular design. The approach considers all stages of the product life cycle and a 

number of environmental focused objectives are used as criteria for the modularity 

analysis. The method presumes that the functional structure of the product is 

defined and that the modules are in fact the product’s sub-assemblies. A graph 

(matrix) based approach is used to represent various interaction relationships 

between the product’s components. For the analysis, the weight of each 

environmental criterion is calculated using a fuzzy Analytical Hierarchical Process 

and relationships between components are measured according to each criterion.  In 

their research the environmental modularity analysis consists of two parts: 
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• Similarity Analysis. The similarity/compatibility of the components within the 

same modules are analysed, and components incompatible with others are 

identified. Based on analysis results, suggestions are provided to improve the 

similarity/compatibility of modules. 

• Independence Analysis. Dependencies of components between the components 

in other modules are analysed, and components with strong dependencies are 

identified. Based on the analysis results, suggestions are then made to improve 

the independence of modules. 

 

Design for Variety 
 

Martin and Ishii (2000) proposed the Design for Variety (DFV) method which is a 

quality function deployment (QFD) based approach for improving the robustness of 

a product to meet future design changes. They claim that by understanding the 

drivers for change the components or modules that are influenced by change can be 

identified. This enables a greater understanding of future redesign efforts and 

allows a common product structure to be levered for future product generations. 

Unlike the majority of previously reviewed methods the focus of DFV is not to 

create an optimal product architecture by the grouping of components into modules. 

The focus of DVF is to create a more decoupled product architecture (reduce the 

coupling between components and modules) and to ensure that the modules are 

more robust in regards to future design changes (changing customer needs). This is 

primarily achieved though the redesigning of component/ module attributes. 

 

At the core of the DFV method are two simple metrics. These metrics are used to 

guide the design team towards developing a more decoupled product architecture 

that requires less design effort for follow-on products. The first metric is the 

generational variety index (GVI), which is a measure for the amount of redesign 

effort required for future designs of the product. The second measure is the 

coupling index (CI), that measures the degree of coupling among the product 

components.   
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Once the GVI and CIs are calculated the DFV method moves on to look at ways of 

reducing the indices and improving the product’s robustness to future design 

changes. This is done primarily through redesign of the components by either 

making the components more modular (only part of the component needs to be 

redesigned) or standardising (overdesigning) the component so that it can 

accommodate future design changes.  

 

2.8. Discussion 

 

Product modularity has been seen to be a complex issue with many definitions and 

exemplified advantages. To date there is still no definitive definition of what 

actually constitutes a modular product. However, within the engineering 

community the understanding of modularity seems to converge towards the seminal 

works of Ulrich and Tung (1991), who state that modules should carry out discrete 

functions and that each module should be decoupled from other modules.  However 

we are told by some that we should take caution when following these works. 

Decomposing a product into discrete functional modules is not always possible or 

even necessary.  And as has been seen during the review, function is only one of 

many other decomposition logics possible.  

 

The majority of the reviewed methods choose to decompose the product into lower 

level elements and then group these elements into modules based upon 1) technical 

and/or 2) strategic based reasons. 

 

The technical reasons are firmly based on Ulrich and Tung’s principle of decoupled 

interfaces. That is to reduce the number of component dependencies between 

modules in a bid to create modules that are as independent as possible from one 

another. These dependencies are generally based upon the physical and functional 

(flow) interactions that occur between the components.  

 

Strategic reasons are based upon similar lifecycle characteristics/ modular drivers, 

such as similar maintenance needs or similar materials for recycling.  That is to 
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ensure that all components within the same module have similar strategic 

modularity needs. 

 

Furthermore all the methods reviewed follow one of two principles for module 

grouping: module independence and module coherence. Module independence 

pursues loose coupling between modules (external interactions); and module 

coherence aims for a high similarity (internal interactions) of components within 

modules. This was also concluded by Gershenson et al. (2004) in their review of 

modularisation methods. 

 

As regards to how the module optimisation (grouping) is actually preformed, one of 

three approaches is followed: manually (as in MFD), through the use of a clustering 

algorithm (DSM based methods) or through the use of a mathematical 

programming method (Gu and Sosale, 1999 and Nepal, 2005).  

 

With the clustering algorithms, the component interaction matrix (DSM) is 

reordered so that component interactions are as close together as possible. Once the 

matrix is clustered the DM must then identify suitable modules, which can be a 

difficult task as module boundaries are often ambiguous. To aid this task a number 

of modularity measures have been proposed for assessing the modularity of 

potential component clusters. However another problem that also exists (as with 

most clustering algorithms) is the poor handing of constraints during cluster 

formation. Hence, the chosen module clusters have no guarantee of feasibility. 

 

The mathematical programming methods all employ a search algorithm (such as a 

GA) to directly find optimal module groupings within the component interaction 

matrix (DSM). This is achieved by adjusting the component-to-module 

memberships until the given modularity measure is maximised. These methods can 

be considered superior to clustering algorithms for a number of reasons. Firstly, the 

DM does not have to manually partition a clustered matrix into suitable modules, as 

the algorithm finds optimal groupings directly. Secondly, they can handle multiple 

modularity objectives and explore ‘trade-off’ solutions. For example, by adjusting 
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the preference weights of the various objectives and rerunning the algorithm it 

becomes possible to explore alternative modular structures and examine ‘what-if’ 

scenarios. 

 

However, there are problems with the existing mathematical programming 

methods. Firstly, all of the methods use some form of aggregated scalar objective 

function. That is all of the objectives are weighted (DM preferences) and added 

together to form a single optimisation objective function.  This is not the ideal 

approach to multi-objective optimisation - as will be discussed in detail later in the 

thesis. One of the main problems is that the preference weights can be subjective, if 

certain objectives are under or over stated then the grouping result may favour a 

certain objective resulting in a sub-optimal modular configuration. A second 

problem is that performing a trade-off analysis between competing objectives can 

be tedious and laborious. Different solutions can be obtained by changing the 

weights, but the algorithm must be re-run each time to produce solutions. Also the 

DM will have no prior knowledge of the maximum attainment values of each 

objective (which is needed to normalise each of the objectives), so setting 

preference weights becomes even more problematic. 

   

In addition to the problems with the grouping algorithms, the configuration 

methods do not appropriately deal with the complexities of product family design.  

They do not consider the fact that within a product family there may be certain 

functions that can be shared or performed by different sets of components. This 

somewhat limits the configuration approaches to modularisation of single products 

or parametric product families. That is a family of products that have exactly the 

same functional components, whereby variety is achieved by changing the 

parameters of certain components. An example would be a family of electric drills, 

that have different motor torques or different battery capacities.  To better address 

the product family configuration, a better method needs to be found, by, for 

example, combining the concepts of axiomatic design (cross-domain mapping) with 

DSM based (inter-domain) matrix configuration.  That is analysing the product 

family at the functional level and then mapping to the physical component level. In  
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this way a greater level of abstraction is possible, to enable better product family 

configuration.  

 

There is another general issue with many of the developed modularisation methods 

(that consider multi-objectives) in that they require a considerable amount of 

product knowledge for them to be applied successfully. Often the evaluation 

guidelines that they include are vague and ambiguous. Secondly, they often require 

a lot of input effort to enter all of the component dependencies and similarities into 

the matrices. Consider a product with only 16 components and with only three 

modularity objectives (physical interactions, material compatibility and 

maintenance similarity) being analysed.  The user will be required to quantify and 

enter some 384 interactions into the various matrices. What would be useful is a 

way to automate (semi-automate) this process, maybe based upon previous product 

versions or some kind of knowledge based system. 

 

Lastly there is the issue of product redesign to improve modularity. Redesign 

methods are generally used to improve the modularity of an existing modular 

product architecture i.e. once modules have already been formed. Redesign 

suggestions include: elimination and integration of components or modules (much 

like DFA), reconfiguring components to other modules and changing the attributes 

of the components (such as material properties). Redesign methods are also used to 

complement the configuration and optimisation approaches. These methods provide 

redesign suggestions during the configuration process in a step-wise manner, to 

gradually move towards better modularity. The problem with performing redesign 

in this way is that by changing the attributes of certain components in order to 

improve modularity in regards to one objective, one may end up worsening the 

modularity in regards to another objective. The same applies to reconfiguring 

components to different modules or combining components/ modules.  Following 

these approaches the DM may therefore end up in a ‘never-ending’ loop of redesign 

and reconfiguration. Indeed, there may in fact be certain components that it is not 

possible to redesign to improve modularity. For example, if the objective of product 

variety is being considered then certain components may have to be variants and 
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hence their attributes cannot be changed, and these components may have to be 

isolated into separate modules away from the common product platform. The best 

approach to product modularisation may therefore be to perform optimisation 

followed by redesign. That is to perform component grouping to form the ‘best’ 

modular architecture possible, after which a redesign step can be applied to further 

improve modularity.   

 

2.9. Conclusions  

 

It can be concluded that modularity is commonly seen as a means of controlling 

product complexity by decomposing the product system into smaller more 

manageable chunks. However, the logic of decomposition can be seen to vary 

considerably. Some researchers choose to base the decomposition on physical 

interactions between components, whilst others choose to base the decomposition 

on product function or any number of lifecycle drivers.  

 

Two areas of consensus have arisen from the review:  firstly, a module should have 

an element of independence (interactions between modules) and secondly a module 

should have an element of coherence (similarity of components within modules).  

 

It has also been seen that numerous modularisation methods and frameworks have 

been created, often pursuing very similar goals. The vast majority of these methods 

are matrix based, using a design structure matrix approach to represent the complex 

functional, physical, and strategic based interactions that occur between 

components. Matrix representations are a suitably visual way of representing 

product modularity and, more importantly, can be readily manipulated with 

optimisation algorithms to identify modules.  However no modularisation method 

has yet been created that cleanly and clearly spans the whole product lifecycle and 

provides a true multi objective optimisation. Some questions that need to be 

answered are: 
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• Is there a suitable way in which product function can be mapped to physical 

components such that optimal modules can be formed based upon the 

alignment of function to form? 

 

• Can the ideas of technical modularity and strategic modularity be used to 

form a more integrated modular design framework that spans the whole 

product lifecycle? Furthermore, are there some modularisation objectives 

that are best evaluated in terms of module independence?  Similarly are 

there objectives that are best measured in terms of module coherence?    
 

• What are the most relevant modularisation objectives at various product 

lifecycle phases? And how can they be evaluated? Indeed are there any 

modularisation objectives that can be seen as conflicting or pursuing the 

same goals? Can the objectives be reconciled into a comprehensive set of 

objectives that span the whole product lifecycle?  
 

• Is there a better algorithm that can be used/ developed to perform product 

modularisation for multiple objectives?  

 

• Can the evaluation burden for quantifying component interactions be 

reduced in some way? 

 

The research undertaken in the next chapters will address these questions to 

produce a more holistic modularisation method.  
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CHAPTER 3: 

3. Review of Genetic Algorithms and Multi-Objective 
Optimisation 

 

3.1. Introduction  

 

Developing an algorithm for product modularisation is not a trivial task as there are 

often multiple, potentially conflicting modularisation objectives that must be 

simultaneously considered when grouping components to form modules. A 

promising method of handling such problems is to use a multi-objective genetic 

algorithm (MOGA) to generate, in one single run, a whole set of optimal solutions. 

 

The purpose of this review chapter is thus to identify suitable multi-objective (GA 

based) approaches that could be used as a basis for the development of a suitable 

product modularisation model. This chapter begins with a technical review of GAs 

and then moves on to look at multi-objective optimisation and how GAs have been 

adapted and modified to tackle such multi-objective optimisation problems. 

 

3.2. Overview of Genetic Algorithms 

 

The product modularisation problem (component grouping) can be defined as a 

non-linear combinatory optimisation problem which could be solved in a number of 

ways, for example by using a traditional search method such as simulated annealing 

or goal programming.  So the question is why use a GA based approach instead of a 

classical approach? The short answer is that it appears GAs work rather well.  

 

GAs have proved themselves as a technique that consistently achieves good results 

(when compared to other techniques) having been applied to a vast range of 

optimisation problems such as engineering design parameter optimisation, fluid 

flow and structural optimisation and production planning and scheduling. Because 

GAs have, through extensive trials, been shown to be both reusable and robust 
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(Goldberg, 1989) it seems appropriate to use a suitably adapted GA for the product 

modularisation problem. 

 

However, what is a GA and how does it work? A GA can be defined as a stochastic 

search technique based on the mechanisms of natural selection and natural 

evolution. There are many variations to the standard GA but they are all united by a 

common thread in that they all mimic the way biological evolution works. 

 

Genetic algorithms became popular through the work of John Holland (1975). He 

designed a genetic algorithm which he described as an ‘artificial system’ based 

upon a ‘natural system’.  Since then an enormous amount of work has been done on 

the development of GAs, which can perhaps be accredited to their robustness and 

their ability to solve all manner of problems. 

 

The mathematical terminology used to describe GAs comes directly from their 

biologically inspired roots.  In a GA each possible solution to the optimisation 

problem is coded using a data structure known as a ‘chromosome’. A chromosome 

is made up of a string of genes, each gene representing a specific input variable. 

Collectively the genes are used to evaluate the ‘fitness’ of an individual solution.  

An encoded chromosome is referred to as an ‘individual’ and a set of individuals in 

each ‘generation’ is known as a ‘population’. Individuals from the population are 

selectively chosen for reproduction based upon their fitness (fitter individuals more 

likely to be selected). The selected chromosomes are then reproduced using the 

genetic operators of ‘crossover’ and ‘mutation’ to produce ‘offspring’ for the next 

generation.  In this way the ‘offspring’ will inherent the good genetic traits from 

their parents, and, over a number of successive generations, the average fitness of 

the whole population improves and the GA can be expected to breed an optimal 

solution to the problem. 

 

The standard GA can be summarised by the following steps: 
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Start 

1. Create an initial population of chromosomes.  

2. Evaluate the fitness of each of the chromosomes to select the best parents 

for reproduction. 

3. Reproduction of parents 

-Crossover chromosomes to produce new offspring 

-Mutate the genes of the offspring chromosomes.  

4. Evaluate fitness of each offspring chromosome.  

5. Repeat steps 2 through 5 until some termination condition has been met 

End 
 

The population based approach gives the GA advantages over traditional search 

algorithms. GAs can find solutions to linear and nonlinear problems by maintaining 

a whole population of solutions which is used to simultaneously explore multiple 

regions of the solution space, exploiting promising areas through the genetic 

operations of cross-over and mutation.  Traditional search algorithms on the other 

hand only search the solution space in one dimension, meaning that only one search 

direction is being explored at once. This means that if the search hits a local 

optimum or constraints are violated then the search may have to be abandoned and 

started again (Michalewicz et al, 1996). 

 

The very fact that the GAs maintain a population of solutions also makes them 

particularly well suited to multi-objective optimisation problems. In multi-objective 

optimisation it is often impossible to simultaneously optimise all objectives, so 

inevitability trade-offs between objectives will need to be made. By using a 

suitability modified GA it becomes possible to maintain a population of diverse 

solutions that covers the approximated trade-off region in the objective space. In 

other words a population of solutions with each solution having different 

achievements of the various objectives. This approach will present the DM with a 

whole set of optimal ‘trade-off solutions’ that can be further examined to gain a 

deeper understanding of the problem. This will be looked at in more detail later in 

this chapter. 
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3.3. The Core Characteristics of Genetic Algorithms 

 

The fundamental characteristics that affect the GA’s performance are: chromosome 

representation (encoding), initialisation of the population, selection strategy, 

genetic operators, constraint handling and fitness function. In the following sub-

sections, these characteristics will be reviewed.  

 

Representation: Encoding 
 

The first step in creating a successful GA is to create a suitable representation of the 

problem. For any given problem possible solutions may be represented as a set of 

parameters. These parameters must be mapped from the design space to the 

solution space. In other words the parameters of the optimisation problem must be 

given a suitable representation within the coding of the GA. This is known as 

encoding of the problem. Within the GA, the encoded design parameters are known 

as genes and are joined together to form a chromosome.  The way in which a 

chromosome is encoded will vary and is generally problem specific. In some cases 

the encoding may be fairly simple, whilst in other cases, such as 3D object 

optimisation, the encoding may be complex.  

The design of the encoding scheme is often seen as an important part of the GA 

implementation strategy as it provides the crucial link between the real world and 

the GA solution space. It must therefore be as simple as possible. A common 

approach is to code the design parameters into a string of binary numbers. 

 

Population Size and Initialisation 
 

The size of the population is important because it influences whether the GA can 

find good solutions as well as the time it takes to reach them. If the population is 

too small there might not be an adequate supply of genes and it will be difficult to 
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identify good solutions. If the population is too big the GA will waste 

computational resources processing unnecessary individuals.  

 

Initialisation of the population is also another important part of the evolutionary 

strategy.  If the GA starts the search with a poor initial population then the time 

taken to converge on an optimal solution may be adversely effected. Hence, in 

some cases, if sufficient domain knowledge is known about the problem, initial 

populations can be created using a suitable heuristic, or the search can be started 

from promising areas by ‘seeding’ the initial population.  On the other hand a 

randomly generated initial population can introduce a greater level of potential 

diversity and the GA is more free to create novel and unconventional solutions.  

 

Selection  

Choosing parents for reproduction of new chromosomes (offspring) from the 

population is called selection. Selection can be based on many different criteria but 

it is usually based on the fitness values of the chromosomes. The idea behind this is 

to select the best chromosomes for parents in the hope that combining them will 

produce better offspring chromosomes. But selecting only the best chromosomes 

has one major disadvantage as all chromosomes in the population will start to look 

the same very quickly. This narrows exploration space, pushes the search into 

regions of local optima and prevents the genetic algorithm finding possibly better 

solutions that reside in unexplored areas of the search space. To preserve diversity 

of chromosomes within the population, selection operations usually introduce a 

factor of randomness in the selection process. Although there are many types of 

selection operators used in GAs, the two most commonly used are roulette wheel 

selection and tournament based selection. 

Roulette Wheel Selection 
 
For this technique the slots on the wheel are created based upon the fitness of the 

individuals in the population. The size of each slot is directly proportional to the 

corresponding individual’s fitness. (i.e. like a pie chart of all the fitness values). 
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Following this principle, each solution will ultimately have a numerical range 

associated with it. Selection then begins with a randomly generated number (i.e. the 

wheel is spun) and the solution whose range the value lies within is selected. Hence 

higher ranking individuals have a greater likelihood of being selected. However, the 

roulette wheel method of ‘proportionally allocated’ fitness can lead to premature 

convergence of the solution space. Proportionally allocated fitness can also give 

rise to population stagnation problems towards the end of the search as individuals 

that are far better than their neighbours may not be given a large enough slice of the 

wheel. 

Tournament Selection 

In tournament selection, as the name suggests, a "tournament" is set up by 

randomly selecting a number of individuals from the population and selecting the 

winner. The winner is always the solution with the highest fitness. The chances of 

weaker (less fit) individuals being chosen can easily be controlled by changing the 

tournament size. i.e. there are less likely to be stronger individuals present in the 

tournament.  

Elitism 

The basic GA will simply create a new population by crossover and mutation. The 

new population then replacing the old population at each generation. With this 

approach there is however a chance of losing the best chromosome. To overcome 

this problem an elitist operator can be used, which works by modifying the 

population replacement procedure. At the beginning of the selection process the 

best individual or a number of best individuals from the old population are first 

copied to the new population and selection then proceeds as normal. Elitism can 

drastically improve the performance of a GA because it prevents the loss of the best 

found solutions. 
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Genetic Operators 
 

The basic notion of a GA is that it will breed an optimal solution through the 

mimicry of the biological reproductive process. This is achieved though the genetic 

operators of crossover (mating) and mutation. Crossover and mutation form the 

basic mechanisms of exploration in the search space of the GA.  In fact the GA 

would have little chance of performing better than the other meta-heuristics 

(simulated annealing, tabu search etc.) if it were not for the crossover operator. 

Crossover 

Crossover is always used in conjunction with a suitable selection operator (roulette 

wheel, tournament, etc.) to find suitable parents. Firstly, two fit individuals 

(parents) are selected from the population using the chosen selection operator. Once 

two parents have been selected their chromosomes are recombined by using the 

mechanisms of crossover. Crossover is not applied to all parents selected for mating 

which gives each individual a chance of passing on its genes without the disruption 

of crossover.  

An example crossover operation can be seen in figure 3.1. Firstly the two parents 

are selected and their chromosome strings are split at some randomly chosen 

position to produce two head segments and two tail segments.  The segments are 

then swapped over to produce two new full length chromosomes.  

 

 

 
Figure 3.1 Crossover mechanism of GA (Beasley et al, 1993) 
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Mutation 
 

Mutation provides a small amount of randomness into the search space and helps 

ensure all gene combinations are considered. This is also a key component of the 

GA’s diversity preservation strategy. Without mutation there is a chance that some 

of the mated solutions (offspring) would end up being very similar, if not identical, 

to their progeny particularly towards the end of the search when solutions begin to 

look similar. Mutation is generally randomly applied (i.e. not to all chromosomes) 

to a chromosome, straight after crossover on the newly generated child. Mutation 

usually involves only small changes to a small number of a chromosome's genes 

and the degree of mutation can be adjusted via a mutation rate parameter. (See 

Figure 3.2)  

 

 
Figure 3.2. Mutation mechanism of GA (Beasley et al, 1993) 

 

Genetic Operators for Grouping Problems 
 

Product modularisation can be described as a grouping problem, as we are trying to 

group a predefined number of components into a number of modules in a manner 

that will maximise modularity according to a given objective function. However 

traditional GAs are poorly equipped to deal with grouping problems.  This is 

mainly due to the traditional GA’s inability to preserve the integrity of groups 

during mating and pass on useful genes to the next generation (Falkenauer 1998). 

To overcome these problems Falkenauer (1998) proposed a modified GA especially 

for grouping problems - the grouping genetic algorithm (GGA). The GGA uses a 

different encoding scheme and genetic operators, the important point being that 

these genetic operators will work with the group part of the chromosomes, the 
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standard item part of the chromosomes merely serving to identify which items 

actually form which group. 

  

Constraint handling 
 

Many real world engineering optimisation problems will more than likely involve 

any number of constraints. This will often severely limit the number of feasible 

solutions possible for the problem and so the set of feasible solutions can end up 

being extremely small compared to the total solution space. For highly constrained 

solution spaces the population initialisation and genetic operators must be carefully 

designed as any random generation of a solution will be a hopeless task, inevitably 

leading to many infeasible solutions. To handle constrained problems the GA has 

first to check whether the candidate solution is feasible. If not feasible then 

solutions need to be dealt with in an appropriate manner so that they do not pass on 

their ‘disruptive genes’ to future generations. It is argued that for the modular 

design problem there will be a number of constraints: the number of modules must 

not exceed a maximum number, the number of components in each module must 

not exceed a certain level, certain components most never be placed with other 

components for geometric or functional reasons and there may also be assembly 

precedence requirements.  There are a number of ways in which the problem of 

constraints can be overcome. The possible options include: 

 

1) Discarding infeasible solutions (the ‘death penalty’). Using this approach 

the GA may take substantially longer to evolve solutions, since infeasible 

ones are often discarded. The GA may end up getting trapped in an endless 

loop of creating and discarding infeasible solutions. 

2) Reducing the fitness of infeasible solutions by using a penalty function. 

This is probably one of the most widely used methods due to its simple 

application and effectiveness. The idea is to allocate to infeasible solutions a 

penalty that reduces the solution’s overall fitness and reduces the likelihood 

of selection. If the infeasible solutions are mated then there is a chance that 
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the bad parts of the parent solutions may be swapped out to provide feasible 

child solutions. 

3) Crafting genetic operators to always produce feasible solutions. Heuristics 

can be developed so that infeasible solutions are never allowed to be 

generated in the first place. 

4) Transforming infeasible solutions to feasible solutions i.e. to ‘repair’ 

infeasible solutions. By adjusting one or two of the individual’s genes an 

infeasible solution can often be converted into a feasible one.   

 

Fitness Function 
 

In order to find better solutions a fitness function is needed for evaluating and 

selecting good chromosomes. The fitness function gives domain specific 

information about the value of each chromosome. For this reason, it is usually a 

good idea to define it in the form of a mathematical formulation, either a 

maximisation or a minimisation of some parameters and constraints. 

  

For a complex optimisation problem, such as the modularisation problem, the 

fitness function may be a combination of several objectives, such as component 

coupling, variety, outsourcing, recycling, etc. This is defined as a multi-objective 

design problem and specialised GAs have been developed for this process. MOGAs 

often use a very different method of fitness assignment to their single objective 

cousins.  Instead of maximising a single mathematical fitness function they often 

use comparative based methods of fitness assignment, where each solution in the 

population is compared to each other in order to decide how superior a particular 

solution is in terms of its dominance (improvement) over other solutions and how 

diverse (different)  the solution is compared to its neighbours. These principles will 

be looked at in more detail in the next sub-section.  
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3.4. Overview of Multi-Objective Optimisation  

 

Solving a single objective optimisation problem is generally quite straightforward 

and is usually a case of either minimising or maximising the objective function in 

order to find an optimal solution.  However, when solving most real world 

problems there is often a need to optimise more than just one objective. For 

example, the product modularisation problem is in fact comprised of many different 

objectives. For such multi-objective problems it is often impossible to find a 

solution that maximises all objectives at the same time, as some of the objectives 

will be in conflict and hence competing against each other. The maximisation of 

one objective may have a detrimental effect on some of the other objectives. These 

competing objectives will almost certainly give rise to a potentially vast set of 

suitable compromise solutions. That is a set of solutions with each solution having 

different combinations of objective achievements. Any one of these compromise 

solutions could be chosen as a suitable solution to the problem.   

 

However, finding such compromise solutions using exact methods can be a difficult 

task especially when the search space is large and complex. A suitable method is to 

use an efficient search algorithm (such as a GA) to generate a number of solutions 

that are considered ‘optimal compromises’ and then let the DM examine the trade-

offs between them. The DM will then choose the most suitable solution using this 

trade-off information.   

 

The set of optimal solutions that are found to examine the trade-offs between 

objectives is commonly referred to as the Pareto-optimal set. The concept of Pareto 

optimum was formulated by Vilfredo Pareto in 1896 and established the 

foundations of all subsequent research in multiple objective optimisation.  

 

A solution is Pareto optimal when we cannot improve any objective further without 

at the same time worsening another. When all such solutions are found then we 

have what is called the 'Pareto-optimal set' or 'Pareto front' (of objective vectors). In 

such a case all the other inferior solutions are said to be ‘dominated’ by the Pareto-
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optimal (non-dominated) solutions and we can discard them. For example, in figure 

3.3 the solution ‘c’ dominates the solutions ‘g, j, k’. Solution ‘c’ however does not 

dominate solution ‘b’ but is an alternative trade off between objectives. The set of 

these ‘cannot do better’ trade-off solutions is often referred to as the non-dominated 

set.  The non-dominated set hence contains all the Pareto-optimal solutions found 

during the search, each solution of the set having different combinations of the 

objectives or ‘niches’ within the solution space.  

 
Figure 3.3. The Pareto-optimal front and dominance relationships 

 

There are two main approaches that can be followed to establish the Pareto-optimal 

set (non-dominated set). The first approach is to aggregate the objectives to form a 

single objective function. By varying the preferences approximate solutions that lie 

on the Pareto-front can be found. The second approach is to generate a whole set of 

non-dominated solutions in one single optimisation run using a suitable modified 

GA (Multi-objective GA).  
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3.5. Aggregate Objective Based Multi-Objective Optimisation 

 

The most simple approach to multi-objective optimisation is to aggregate all the 

various objectives to form a single scalar fitness function, which can then be 

handled by a suitable single objective optimisation technique, such as a standard 

GA, simulated annealing etc. This approach to multi-objective optimisation is 

commonly referred to as the aggregate approach.  Different preference co-efficients 

can be used for the scalar function to find different solutions on the Pareto-front. 

This aggregate approach is the approach all previous modularity researchers have 

followed to obtain ‘optimal’ product modularisations. Two common methods to the 

aggregate approach are the weighted sum and goal attainment.   

 

Weighted Sum 
 

The most common aggregate approach is to use weighting coefficients to estimate 

the relative importance of each objective and combine them to form a scalar 

objective function. An ‘optimal’ solution can then be obtained based upon the 

maximisation or minimisation of the scalar objective function. 

 

Goal Attainment 
 

The fundamental concept of goal obtainment is to set target goals for each objective 

and to then minimise the deviations from the target goals. There are two common 

approaches to goal obtainment: weighted and Chebyshev (min-max) goal 

obtainment. Weighted or pre-emptive goal obtainment attempts to minimise all 

unwanted deviations from goals. Deviations from goals are multiplied by weights, 

reflecting their relative importance.  Chebyshev or min-max goal obtainment seeks 

to minimise the maximum unwanted deviation, rather than the sum of deviations. 

This emphasises justice and balance rather than ruthless optimisation and is 

favoured by DMs interested in obtaining a balance between the competing 

objectives.  
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Problems with Aggregate Approach  
 

Generally, these aggregate approaches are very simple and easy to implement. By 

varying the target goals or goal weights it is possible to generate a set of non-

dominated solutions. A problem that arises however is how to normalise, prioritise 

and weight the contributions of the various objectives, especially if the problem is 

poorly defined and the DM does not have any clear priorities with regard to the 

various objectives. Indeed, it is sometimes difficult if not impossible to find a 

suitable approximation of the Pareto-front using an aggregate approach, especially 

when the Pareto-front is non-convex or discontinuous. Furthermore, the aggregate 

methods will only ever provide one single optimisation solution at a time. To 

explore trade-offs the algorithm may need to be rerun many times to obtain a 

suitable set of Pareto-optimal solutions. This can be tedious and time consuming. 

 

3.6. Multi-Objective Genetic Algorithms (MOGAs) 

 

GAs are population based, which makes them particularly well suited to solve 

multi-objective optimisation problems. The ability of GAs to simultaneously 

explore different regions of a solution space makes it possible to find a diverse set 

of solutions for a difficult to solve problem. A generic single objective GA can be 

readily modified to find a whole set of Pareto-optimal solutions in a single run.  

 

Overview of Common MOGAs 
 

A vast array of MOGA approaches have been developed over the years, and a 

detailed review of all of these algorithms is considered outside the scope of this 

thesis. The following sub-sections provide a condensed review, looking at some of 

the most popular and widely used MOGAs.  

 

 



Chapter 3 

Page | 65 

Vector Evaluated Genetic Algorithm (VEGA) 

 

The earliest MOGAs used the concept of fitness sharing to find approximate sets of 

solutions in the Pareto-front. VEGA developed by Schaffer (1985) was the first GA 

used to approximate the Pareto-optimal set by finding a set of non-dominated 

solutions. In VEGA the approach is to perform proportional (roulette) wheel 

selection using each objective to select a number of sub-populations. That is to 

divide the population into k sub-groups based upon the performance of each 

individual to one of the k objectives. These populations are then shuffled together 

to form a new population. Crossover and mutation then proceeds on the new 

population in the same way as for a single objective GA. This is very simple and 

efficient, but solutions generated tend to be locally non-dominated and not 

necessarily globally non-dominated. The method also tends to produce solutions 

that excel only along one objective and the population therefore contains few 

compromise solutions. Schaffer suggested applying fitness penalties to locally 

dominated points and redistributing the deducted finesses to non-dominated ones. 

This caused a premature convergence because in populations with few non-

dominated points these points were given large fitness values. 

 

Weighted sum Based Genetic Algorithm (WBGA) 

 

Hajela and Lin (1992) proposed the WBGA for multi-objective optimisation. Their 

goal was to be able to simultaneously generate, in a single run of the GA, a set of 

Pareto-optimal solutions corresponding to different weight vectors. The different 

weight vectors are embedded within the chromosomes of each solution in the 

population. The method also uses a vector evaluated approach based on ‘VEGA’ to 

perform selection. Consequently, the method evolves solutions and weight 

combinations simultaneously to help maintain diversity. 
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The Multiple Objective Genetic Algorithm (MOGA) 

 

Fonseca and Fleming (1995) use a Pareto-based ranking procedure for their 

MOGA. The Pareto-ranking approach explicitly utilises the concept of Pareto 

dominance in evaluating fitness or assigning selection probability to solutions. 

Instead of ranking the population based upon a conventional objective function the 

population is ranked according to a dominance rule with each solution being 

assigned a fitness value based upon its dominance rank in the population. In 

Fonseca and Fleming’s MOGA the rank of an individual is proportional to the 

number of solutions found in the population that it is dominated by. The fitness 

assignment is determined by interpolating the fitness value of the best individual 

(non-dominated) and the worst one (most dominated). The MOGA algorithm also 

uses a niche-formation method to distribute non-dominated members of the 

population over the Pareto-optimal region. 

 

Non-Dominated Sorting Genetic Algorithms (NSGA and NSGA II) 
 

Srinivas and Deb (1994) proposed a Pareto-ranking approach entitled the non-

dominated sorting genetic algorithm (NSGA). NSGA uses a sorting procedure to 

sort the population into different Pareto-fronts based upon level of non-dominance. 

After sorting, tournament selection is used to choose individuals for mating.  From 

the tournament, the two individuals with the lowest front numbers (highest fitness) 

are selected and genetic operators are then applied to create a new population. 

Using this procedure a quick convergence of the population toward non-dominated 

regions is achieved. 

 

In a further extension to the NSGA, the NSGA II was developed by Deb et al 

(2002). Several new concepts were introduced to make the algorithm more 

effective. Firstly, the sorting mechanism was modified to increase its speed. 

Secondly, the concept of elitism was used in order to preserve the ‘best’ solutions 

from previous generations. And lastly a crowding distance was introduced in order 

to help maintain diversity within the population and encourage a uniform 



Chapter 3 

Page | 67 

distribution of solutions over the Pareto-front. The NSGA solutions that reside in 

the same Pareto-front are assigned the same fitness regardless of whether or not 

certain solutions are located within sparsely populated regions. The crowding 

distance assigns a higher fitness to individuals located within sparsely populated 

regions of the same Pareto-front to better promote diverse solutions. Using these 

improvements the new NSGA II is significantly better than its predecessor and to 

this date it remains one of the most widely used MOGAs, both within the research 

community and within industry. 

 

Strength Pareto Evolutionary Algorithm (SPEA and SPEA2) 
 

Ziztler  and Thiele (1999) introduced an evolutionary approach to multi-criteria 

optimisation called the Strength Pareto Evolutionary Algorithm (SPEA). The 

method combines several features of previous multiple objective GAs in a unique 

manner that ensures that the population moves towards the Pareto-front and that 

population diversity is preserved.  The fitness assignment scheme of SPEA is based 

upon each individual being assigned a fitness calculated by the number of non-

dominated points (in the external population) that dominate it. Like other MOGAs, 

the method uses an elitist strategy to store non-dominated solutions in an external 

and continuously updated population. The external population update procedure 

proceeds as follows. First, all non-dominated population members (from the current 

population) are copied to the external archive population and any dominated 

individuals or duplicates are removed from the archive. If the size of the external 

archive exceeds a predefined limit the method performs a clustering procedure to 

reduce the number of individuals without destroying the distribution characteristics 

of the Pareto-front. 

 

An improved version of the SPEA, the SPEA2 was developed by Ziztler et al 

(2001). SPEA2 has three main differences in respect to its predecessor: i) it 

incorporates an improved fitness assignment scheme, which for each individual 

takes into account how many individuals it dominates and how many it is 

dominated by; ii) it uses a nearest neighbour density estimation technique that 
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allows a more precise guidance of the search process and helps to maintain 

diversity in the population and iii) an improved external archive update method 

guarantees the preservation of boundary (extremal) solutions. 

 

The Pareto Archived Evolution Strategy (PAES) 
 

The Pareto Archived Evolution Strategy (PAES) was created by Knowles and 

Corne (2000). They argue that PAES may be the simplest algorithm capable of 

generating diverse solutions in the Pareto optimal set. What makes PAES unique is 

that it maintains only one population of solutions (the non-dominated solution 

archive) and does not use a mating operator, using only mutation to form new 

solutions. PAES comprises of three parts: the candidate solution generator, the 

candidate solution acceptance function and the non-dominated solutions archive. 

The candidate solution generator is akin to a local search procedure and uses a 

single current solution that is randomly mutated at each iteration to produce a single 

new candidate solution. Like other algorithms the candidate solution acceptance 

function utilises the Pareto-dominance concept and a solution diversity rank. If the 

new solution dominates the current solution (its parent) then it is accepted into the 

archived population. If however the new solution is non-dominated it is compared 

to the other solutions stored in the archived population and accepted into the 

archive only if it resides in a less crowded region.  

 

3.7. Commonly Used MOGA Strategies  

 

From the overview of MOGAs it has become apparent that the majority of the ‘state 

of the art’ MOGAs use the concepts of Pareto-dominance based ranking, some 

form of diversity preservation strategy and an elitist achieving strategy for storing 

the best found non-dominated solutions. In the next sub-sections these concepts 

will be examined in more detail. 
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Pareto Dominance Based ranking 
 

The concept of Pareto-dominance based ranking is to assign a fitness to each 

member of the population based upon its level of dominance (or non-dominance) 

compared to all other solutions in the population. For example, if a solution x has 

no improvement over solution y in any of the objectives then it is said to be 

dominated by solution y.  Obviously solution x may be dominated by more than 

one solution, the same goes for other solutions that may be dominated. For this 

reason it is appropriate to assign dominated solutions different dominance ranking 

(fitness), as inevitably some solutions will be dominated to a larger extent than 

others. An appropriate dominance measure must therefore distinguish between the 

levels of dominance present in the current population.  This is important because 

the algorithm can then gradually replace largely dominated members of the 

population with less dominated (better) solutions when they are found, ensuring 

that the population creeps towards the Pareto-front in an efficient manner.  

 

According to Zitzler et al (2003) there are three common ways of ranking 

dominated solutions: 

a) Dominance depth - at which Pareto-front is an individual located. 

b) Dominance rank -  by how many individuals is an individual dominated. 

c) Dominance count -  how many individuals does an individual dominate.  

 

The dominance depth method as used by NSGA-II employs the Pareto dominance 

ranking approach proposed by Goldberg (1989) to sort the population into different 

non-dominated fronts, as seen in figure 3.4. The first front can be seen as the 

current (best) Pareto-front and receives the lowest (best) rank of 1. Subsequent 

fronts receive a proportionally higher (worse) rank relative to the level they are 

dominated. As many of the population members will inevitably have the same rank, 

a further crowding distance based diversity rank is used to distinguish between 

solutions of the same dominance rank. 
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Figure 3.4   Dominance depth based Pareto-dominance ranking (NSGA-II) 

 

Fonseca and Fleming (1995) use the dominance rank assignment method which is 

based upon the number of solutions a particular solution is dominated by. With this 

principle the level of dominance is calculated by counting the total number of 

solutions that a particular solution is dominated by.  If a solution is only dominated 

by a small number of other solutions it will receive a better fitness than a solution 

that is dominated by a large number of solutions. In this way the ranking method 

penalises solutions located in densely populated regions of the solution space and 

provides a crude form of diversity preservation. For example, in figure 3.5 solution 

‘f’ is dominated by solutions ‘a, b and c’. Therefore, it is assigned a rank of 4 

although it is in the same front with solutions ‘g, h and i’ according to the previous 

ranking method.  
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Figure  3.5  Dominance rank based Pareto-dominance ranking (MOGA) 

 

In SPEA2 a combined dominance count and dominance ranking method is used. 

Dominance is calculated based upon the sum of the number of solutions a particular 

solution ‘x’ is dominated by and the number of solutions that the solution ‘x’ 

dominates.  Firstly, all solutions are assigned a rank based upon the number of 

solutions that they dominate e.g. in figure 3.6 solution ‘g’ dominates two solutions 

so receives a rank of 2. All non-dominated solutions will receive an arbitrary rank 

of zero. Next, if a solution is dominated by another solution then the solution’s 

dominating rank is added to the solution own rank. e.g in figure 3.6 solution ‘k’ is 

dominated by solution ‘g’ which has a dominance rank of  3 so the total dominance 

based rank for solution ‘k’ is  8. 
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Figure  3.6  Dominance rank and count based Pareto-dominance ranking (SPEA2) 

 

Diversity  Ranking 
 

As the MOGA search progresses, most, if not all of the solutions in the population 

are likely to become locally non-dominated, thus the MOGA needs a means of 

assessing the fitness of these non-dominated solutions during selection and 

population updating.  This should be done in a manner that ensures that the 

algorithm is moving the population towards the Pareto-front as well as promoting 

the diversity of solutions along the Pareto-front, when all the solutions become non-

dominated. A diverse population will ensure that the DM is presented with a wide 

range of different solutions so that compromises between objectives can be 

explored.   

 

Most of the commonly used algorithms such as NSGA-II, PAES, SPEA-2, use an 

external ‘elite’ population or archive to store the ‘best’ non-dominated solutions 

found so far during the search. The archive is constantly updated with better 

solutions at each generation. When all of the solutions in the archive become non-

dominated the better solutions are chosen as the solutions that lie in less crowded/ 

densely populated regions of the search space. To do this all of the algorithms 
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include a method that directly measures the level of crowding or density among 

solutions of the population. At present there are two main diversity measures, cell 

density based measures and Euclidean distance based crowding measures.  

 

The NSGA-II uses a Euclidean distance based measure named the crowding 

distance. The crowding distance measure is a nearest neighbour density estimator 

used to ensure that solutions in less crowded regions of the solution space are 

favoured and maintained in the population. To obtain the crowding distance the 

distance between the two nearest points on either side of a particular solution is 

calculated for each objective. This is achieved by sorting the solutions into 

descending order according to the first objective and then for each solution 

calculating the distance between the neighbouring points on either side the 

objective space. Solutions that represent the extremes for each objective are given a 

crowding value of infinity to help ensure that they remain in the population. This 

process is repeated for all other objectives until all neighbouring objective distances 

have been calculated. The total crowding distance is then the sum of all of these 

distances. One of the main strengths of the approach is that no user-defined 

parameter is required. In figure 3.7 the crowding distance can be seen for solution 

‘c’.  

 

 
Figure 3.7.  Crowding distance based diversity ranking 
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In a similar way to the NSGA-II the SPEA2 uses a crowding distance type 

approach for diversity ranking.  The distances between K nearest neighbours (K-

NN) for each solution are calculated and the solutions residing in the most crowded 

regions are given a proportionally lower fitness than solutions in less crowded 

regions. This can be seen in figure 3.8. 

 

 
Figure 3.8.  K-nearest neighbours (K-NN) based diversity ranking 

 

For the cell density based measure, for example PAES, the solution space is divided 

into a number of cells or hypercubes, with diversity being measured in terms of 

how many solutions reside in the same hypercube. Solutions with many 

neighbouring solutions in the same hypercube will have a lower diversity ranking 

than solutions with fewer solutions within the same hypercube. For example, in 

figure 3.9 solution ‘d’ will have a worse diversity ranking than solution ‘f’ as it has 

more neighbouring solutions in the same hypercube.   
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Figure 3.9.  Cell density based diversity ranking 

 

Population Archiving Strategies  
 

Another important consideration when designing a MOGA is the way in which 

non-dominated solutions are archived. This must be done in a manner in which 

good non-dominated solutions are not lost or replaced with poorer solutions.  

 

A common approach employed by algorithms such as the NSGA-II and SPEA2 is 

to use two populations, one as an archive population to store the best solutions 

found so far and another population that contains the current (temporary) 

population of newly generated offspring solutions. At each generation the two 

populations are combined and the best half of this combined population then forms 

the new archive population. Which solutions are considered ‘the best’ is based upon 

the dominance rank and the crowding distance.  However there are known 

problems with this approach as the algorithm may in fact remove good Pareto-

optimal solutions from the archive during population updating. Consider the 

problem encountered by the NSGA-II. Figure 3.10 shows the original archived 

population of solutions. Figure 3.11 then shows the combined current population 

and archived population, as shown, the solutions in the middle will be removed as 
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they are the solutions in the most crowded neighbourhood. The new elite archive is 

then seen in figure 3.12, from this it is clear that the new archive is in fact worse 

than the previously archive in terms of population diversity.  

 

 
Figure 3.10.  Population archiving strategy of NSGA-II- the original archive 

population 

 

 
Figure 3.11.   Population archiving strategy of NSGA-II- the combined population 
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Figure 3.12.  Population archiving strategy of NSGA-II- the new archive 

population 

 

This problem has been addressed by Kukkonen and Deb (2006) who improved the 

NSGA-II by providing a ‘pruning strategy’ to iteratively reduce the combined 

population by selectively removing (pruning) the worst (most crowded) solutions 

until the current population reaches the desired elite population size. At each 

iteration the worst solution is removed from a crowded neighbourhood, and after 

removal the crowding distance measure is recalculated for all solutions in that 

neighbourhood. This pruning strategy ensures that the ‘goodness’ in terms of 

solution spread is improved (or at least not worsened) when the two populations are 

merged at each generation.  

 

The pruning strategy can be compared to the population update method used in 

SPEA-2. In SPEA-2 the archive population is steadily updated by adding one new 

solution at a time. At each iteration the distances between K neighbours for each 

solution are calculated and the solution residing in the most crowded region is 

removed. In this way SPEA-2 is able to maintain a more diverse spread of solutions 

than the original NGSA-II. However greater computational load is needed for 

SPEA-2 than some other algorithms such as NGSA-II. 
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3.8. Hybrid Multi-objective Genetic Algorithms 

 

In recent years, the development of hybrid GAs has been one of most significant 

trends in evolutionary computation. One such approach is to combine GA based 

genetic operators with a local search heuristic, aiming at improving the overall 

search efficiency of the evolutionary algorithm. This class of algorithms is often 

referred to as Multi-Objective Genetic Local Search (MOGLS) algorithms and in 

recent years they have proved to be a very effective class of methods for 

combinatory optimisation problems (Ishibuchi and Murata, 1996) 

 

The local search element of these algorithms can in fact be seen as a special kind of 

mutation operator, where small changes are made to the individual’s genes a 

number of times in an iterative manner to slowly move towards a better solution. 

This entails the solution fitness being recalculated at each iteration of the search.  

 

Jaszkiewicz (1998) presented the random directions multiple objective genetic local 

search algorithm (RD-MOGLS). The method is based on the idea of simultaneous 

optimisation of a range of aggregated scalar functions. At each iteration of the 

search a weighted scalar function (weighted Tchebycheff function) is drawn at 

random. Then a sample of the best solutions (in regards to the weighted scalar) is 

selected from the population. The sample is treated as a temporary genetic 

population. A number of randomly selected pairs of solutions from the temporary 

population are then mated to form new offspring. Local search is then applied to 

improve the fitness of the new offspring solution. The search direction is also 

specified by the random weight vector. 

 

Ishibuchi and Murata (1996) also proposed a multiple objective genetic local search 

algorithm (MOGLS). The MOGLS is a GA-based hybrid algorithm for finding a set 

of Pareto optimal solutions. Like Jaszkiewicz (1998) their method also uses a 

randomly generated weight vector (weighted sum of multiple objectives) at each 

iteration of the search. The weight vector is used as a fitness function with which to 
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select a pair of parent’s solutions and is also employed in the local search 

procedure.  They used an external reference population to store the non-dominated 

solutions, which is updated at each iteration of the search.  

 

Ishibuchi et al (2003) extended their work to further improve the efficiency of their 

MOGLS. The algorithm was improved by using a tournament selection to choose 

only the most promising individuals as starting solutions for the application of local 

search. They also pointed out that the use of the same random weight vector for the 

local search direction and the genetic search direction (mating and selection) may 

not be appropriate, so to improve the algorithms efficiency they proposed assigning 

a weight vector based upon parents’ objective achievements for the local search 

direction. 

 
More recently, Ishibuchi et al (2008b) have also hybridised the NGSA-II with a 

local search operator and have reported significant improvements over the 

unmodified NGA-II when applied to many objective combinatory optimisation 

problems. 
 

3.9. Choosing a Suitable Solution from the Pareto-set  

 

Once the set of Pareto-optimal solutions has been generation using the MOGGA 

the DM still has to pick a final solution. This is not an arbitrary task especially 

when there are potentially a couple of hundred solutions to choose from. The 

chosen solution will therefore depend upon the DM’s preference in regards to the 

considered importance of each objective and the inevitable compromises that will 

need to be made between these potentially conflicting objectives.  The problem 

then falls into the field of multi-criteria decision making, which can be seen as a 

sister field to that of multi-criteria optimisation. There are numerous multi-criteria 

decision making approaches in the literature that could be followed to help the DM 

choose a suitable solution from a set of alternatives. One of the most popular and 

simple approaches is the Analytical Hierarchical Process (AHP). 
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The AHP was first developed by Saaty (1980) and provides a comprehensive 

framework for structuring a decision problem and evaluating alternative solutions. 

AHP is based upon the organisation of the decision problem into a logical hierarchy 

of sub-objectives. At each level of the hierarchy, the DM must evaluate the various 

objectives by quantitatively or qualitatively comparing them to one another. The 

AHP then converts these evaluations to numerical weights or priorities for each 

sub-objective of the hierarchy, allowing diverse and often incommensurable 

elements to be compared to one another in a rational and consistent way. Once the 

weighted hierarchy has been constructed the AHP calculates the overall priorities 

for each of the decision alternatives. The overall priorities for each of the decision 

alternatives are of course based upon each of the alternative’s ability to solve the 

various sub-objectives along with the corresponding sub-objectives weights from 

the hierarchy. In figure 3.13 an example AHP can be seen for choosing the best city 

to live. 

 

 

 
Figure 3.13  Example AHP for choosing best city to live 

(Saaty,2004) 

 

Using the principles of the AHP it is possible to explore the Pareto-optimal solution 

set in a comprehensive yet simplistic way. By arranging the different optimisation 

objectives into a hierarchy and by then setting priorities at each level it is possible 
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to perform ranking of the various alternative solutions present in the Pareto-optimal 

set. The solution set can be explored by changing the objective priorities at the 

various levels of the hierarchy and presenting the corresponding best solutions to 

the DM for consideration. Solutions that correspond to different AHP preferences 

can then be compared until the most suitable solution is found.  

 

3.10. Discussion  

 

The most common and effective approach to multi-objective optimisation is to 

produce a (Pareto-optimal) set of solutions. These solution sets can then be used to 

examine the potential trade-offs that will exist between different solutions and 

allow the choice of a suitable compromise solution. One of the most effective 

means of producing a Pareto-optimal set is to use a suitably developed GA. 

 

Perhaps the most simple way of handling the multi-objective problem is to use an 

aggregated objective based GA. In this way all the objectives are weighted and then 

aggregated to form a single vector that is maximised or minimised by the GA. 

However, only one solution is produced at a time, thus producing a whole set of 

(Pareto-optimal) solutions with this method can be tedious and time-consuming. 

Furthermore, it is sometimes difficult to find a suitable approximation of the 

Pareto-front using an aggregate approach, when, for example, the Pareto-front is 

non-convex or discontinuous. 

 

The review has highlighted that, since the introduction of GAs three decades ago, 

much work has been done within the field of evolutionary computing to adapt these 

traditional single solution GAs to deal with complex multi-objective problems.  The 

preferred method of generating a Pareto-optimal solution set is now to use a 

MOGA  that will generate the whole set in one single optimisation run, without the 

need of user defined weights or goals. To accomplish this the state-of-the-art 

MOGAs employ, for the solution fitness assignment, the concept of Pareto-

dominance and include some form of diversity preservation method to prevent 

solutions clumping around certain points on the Pareto-front.   
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It should be noted however that there are known problems with the current Pareto-

dominance based algorithms when dealing with ‘many’ (more that 4) objective 

problems. When the number of objectives rises there is an increased chance of all 

solutions quickly becoming locally non-dominated during the search. This severely 

weakens the Pareto dominance-based ranking approach and deteriorates the 

convergence of the solution sets toward the (true) Pareto-optimal front. See figure 

3.14.  

 
Figure 3.14  Proportion of non-dominated solutions with respect to the number of 

objectives (Kukkonen and Lampinen, 2007) 
 

For many-objective problems the diversity ranking method thus becomes the 

primary means of differentiating the non-dominated solutions and measuring 

solution fitness. However these methods (crowding distance, cell density) are good 

at maintaining diversity yet can be poor at moving solutions towards the true 

Pareto-front.  Alternative approaches to fitness assignment for non-dominated 

solutions can be followed, with various studies having been done by researchers 

such as Kukkonen and Lampinen (2007) and Hughes (2005).  For example, for an 

‘average rank’ ranking, the fitness is given by comparing all solutions against each 

other and noting their rank for each objective. Fitness is then given as the solution’s 

average rank for all objectives. Another approach for elevating the convergence 

problems of many objective optimisation is to include some form of prior 
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preference information (if known) for the various objectives as seen in the work of 

Deb and Saxena (2006).  A further method is to provide some form of global or 

local search vector during mating and mutation such as seen in Ishibuchi et al 

(2003) and Jaszkiewicz (1998). In this way solutions are pushed towards 

unexplored and potentially more optimal areas of the search space.  

 

Another issue that grouping problems face is that the standard genetic operators are 

poorly designed to deal with the complexities of the grouping problem. It has been 

seen however that this part of the problem can be tackled by using a modified set of 

genetic operators such as those described by Falkenauer (1998).  In addition it has 

been seen that by hybridising a MOGA with a local search heuristic better results 

are also possible for combinatory optimisation. 

 

Finally, in terms of exploring and choosing solutions from the Pareto-set, the 

review has highlighted that the Analytical Hierarchical Process could present a 

suitable method. By constructing a modularisation objective hierarchy, it should be 

possible to change objective priorities at the various levels to explore the solution 

set and ultimately choose a suitable solution to the modularisation problem at hand.  

 

3.11. Conclusion  

 

This review has provided a general overview of the basic principles of evolutionary 

computing and given a snapshot of the main techniques that have been created to 

solve complex multi-objective optimisation problems. The field of evolutionary 

algorithms is extremely active and is continually changing with new research that is 

constantly pushing on the frontiers of knowledge. This review has in fact 

highlighted that there are no ‘off-the-shelf’ MOGAs available that are capable of 

efficiently dealing with complex grouping problems such as product 

modularisation.  

It can be concluded however that the most effective approach to multi-objective 

optimisation is to produce a (Pareto-optimal) set of solutions that represents the 

approximate area of optimal solution space for the problem. These solution sets can 
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then be used to examine the potential trade-offs (between objectives) that will exist 

between different solutions and hence give the DM greater insight into the 

optimisation problem. The most effective means of producing a Pareto-optimal set 

is to use a suitably modified MOGA. However, for the development of a suitable 

MOGA for product modularisation there are a number of issues that must be 

addressed.  Issues that need to be addressed for the algorithm development are: 

 

 What are the most suitable GA encoding, selection, cross-over and mutation 

mechanisms for the product modularisation problem? The review has 

highlighted the Grouping GA (GGA) developed by Falkenauer (1998) as a 

possible candidate. However, how can this GGA be adapted for the 

modularisation problem? 

 

 What is the most suitable means of creating a set of Pareto-optimal 

solutions for the modularisation problem? Can the principles of using a 

Pareto-dominance based approach be developed to produce a whole set of 

alternative solutions (in one run) for the modularisation problem. 

 

 Can a local search heuristic be implemented to improve the performance of 

the MOGA? Local search has been seen to improve the performance of 

MOGAs when dealing with combinatory optimisation problems. Can a 

suitable local search heuristic be developed for multi-objective product 

modularisation?  
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CHAPTER 4 

4. Development of Modularity Optimisation Framework 

 

4.1. Introduction 

 

This chapter will present the various aspects that have been considered in the 

development of a multi-objective optimisation framework. The chapter will aim to 

build upon previous research and addresses the research gaps identified in the 

review chapters to provide an improved multi-objective approach to modular 

product architecture optimisation. 

 

4.2. Rationale for Framework.  

 

There have been many product modularisation frameworks developed over the past 

decade. The vast majority of these methods pursue a ‘bottom-up’ approach in 

which low-level product elements (components) are grouped to form larger product 

elements (modules). These methods have been labelled configuration based 

approaches. The proposed framework presented in this chapter is also a 

configuration approach that aims to address a number of shortcomings in current 

works - as was discussed in detail at the end of chapter 2.   

 

In summary, it is argued that current modularisation methods are highly ambiguous 

and do not adequately deal with the complex multi-objective nature of product 

architecture decisions. Current optimisation frameworks for product modularisation 

are simplistic (aggregated objective) approaches and thus cannot guarantee that 

optimal modular architectures can be found. Furthermore, in a decision making 

process (i.e product architecture) alternative solutions should be considered before 

arriving at a final decision. This implies that a good set of alternative solutions can 

in fact be found, in order to make comparisons.  However finding a set of optimal 

solutions (for comparison) with current methods is problematic and time-
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consuming.  In addition most of the modularisation methods offer little in terms of 

how to represent and evaluate modularity according to the various different 

modularity viewpoints discussed in chapter 2.  

 

To address these issues the development of an improved multiple-objective 

modularisation framework will be presented in this chapter.  The framework draws 

together a number of principles from the literature (as depicted in figure 4.1) to 

provide an integrated method of multi-objective product modularisation. 

 

 
Figure 4.1. The multiple facets of modularity integrated into the developed 

framework 
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4.3. Overview of the Framework  

 

The developed framework presents a matrix based approach to represent the 

various dependencies and strategic similarities that occur between a product’s 

components. A multi-objective grouping genetic algorithm (MOGGA) is used to 

search the various matrices and produce a whole set of optimal modular product 

configurations which are then explored by the decision maker (DM) to find the best 

compromise solution.   

 

As depicted in figure 4.2 the framework has four steps: 1) product decomposition 2) 

interaction analysis 3) formation of modular architectures and 4) scenario analysis. 

The aim of this chapter is to introduce the key principles that have been used for the 

development of the framework. The actual steps will be discussed further in 

chapters 7 and 8 where the software prototype will be presented and the application 

of the steps will be shown on example products. 

 

Step 2:
Interaction analysis 

Step 3:
Formation of modular 

architectures

Step 4:
Scenario analysis.

Grouping of interaction matrices 
with multi-objective GA

Goal: Maximise module 
independence and module 
coherence

Complex Product Modularised product

Step 1: 
Product decomposition 

Strategic component 
interactions: variety, 
outsourcing, maintenance 
and reliability and 
recycling and reuse

Basic components list
Functional analysis 
Assembly/ disassembly 
analysis

Technical component 
interactions: geometric 
and function flows

Set-up constraints and 
objective preferences

Set of alternative 
solutions 

Benchmarking and Visualisation 
of alternative solutions with 
radar plots

Analysis of modular architectures 
and corresponding interaction 
matrixes

Select level of modularity

Interaction matrices 
 

Figure 4.2. Overview of developed framework steps 



Chapter 4 

Page | 88 

4.4. Scope of the Framework 

 

It is argued that product architecture decisions are best made early in the 

development process before costs are locked in and constraints are imposed. 

Therefore if possible product modularisation (with the framework) should be 

applied straight after the conceptual design stages once all of the technical concepts 

have been chosen yet before the detailed design phase has begun. At this stage in 

the product development cycle there should still be enough design freedom to make 

changes to the product structure if necessary. 

 

The developed framework is however not meant to provide a radical new method of 

product development. It is intended that the framework can be integrated into 

existing product development approaches, either as part of a ‘top-down’ product 

development approach for new product designs, or as part of a ‘bottom-up’ product 

redesign and improvement approach. For example, the framework can be integrated 

and used in conjunction with DFX principles - such as design for assembly/ 

disassembly (Boothroyd et al, 1994), design for variety (Martin and Ishii, 2000) and 

design for the environment. Such approaches can be used after application of the 

framework to further improve the ‘optimal’ modular architecture though redesign 

of component attributes.  

 

It must also be stated that the proposed framework will not be suitable for all 

products. Some types of products may gain little advantage from modularity. It is 

argued however that if the product is reasonably complex1, then it is highly likely 

there will be some value in looking at optimisation of the product architecture. It 

has also been discussed by numerous researchers (Marshall, 1998; Pimmler and 

Eppinger, 1994) that for complex products there will be more than one level of 

modularity achievable. Thus before attempting to create a modular product 

architecture one must think carefully about the required level that one wishes to 

modularise the product at. For a highly complex product like a car, made of 

                                            
1 A complex product is defined here as a product that contains a mixture of technologies and/ or a 
large number of components.  
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thousands of parts, modularisation at the lowest (component) level may not be 

practical, both from a complexity and computational point of view.  For these 

complex products one may wish to take advantage of the existing product hierarchy 

i.e. the sub-assembly level and modularise the product at this level.  Alternatively 

one may wish to modularise each product sub-system separately. For example in 

the car industry the product structure is clearly decomposed into sub-systems, e.g. 

drive train, HVAC (heating ventilation and air conditioning), braking system etc. 

Each of these sub-systems could then be modularised.  

 

In this research it is presumed that there is a need for product modularity. If the 

need for modularity is unclear then it is suggested that the reader refers to other 

works such as that of Marshall (1998), who’s ‘holonic product design workbook’ 

provides a detailed means to assess the need for product modularity.  

 

4.5. Representation of Modularity  

 

In the framework interaction matrices (DSMs) are used for representing product 

modularity. These matrix representations are considered a somewhat natural way of 

representing the complex interactions that must be analysed across the various 

modularity viewpoints in order to form optimal modular structures - they are highly 

visual and can be readily manipulated with optimisation algorithms.  

 

Essentially with this approach, like other ‘configuration’ based methods, we are 

still proposing that the product is decomposed into lower level product elements 

(components) which are then grouped into larger product sub-systems (modules)- 

However, in the framework the product is being represented in both the physical 

(component level) and functional domains. A cross-domain functional mapping 

approach allows the various modularity objectives to be analysed at two different 

levels of abstraction. For example the product variety mix can be analysed at the 

functional domain to identify common ‘platform’ based functions. These common 

platforms may not be obvious at lower levels of abstraction, such as the component 

level.  
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4.6. Modularity Metrics 

 

Two modularity metrics have been developed for this research; these are the 

module independence ratio and the module coherence ratio, and these will be used 

as the criteria for module grouping during optimisation with the developed 

algorithm. These metrics are based upon two key modularity principles discussed in 

the literature. The objective of modularisation from the module independence 

perspective is to achieve loosely coupled, independent modules. This can be 

achieved by ensuring that component dependencies are kept within modules rather 

than between modules. Module coherence is concerned with ensuring that 

components within modules are similar in terms of the modularisation objective 

they are addressing.  In the proposed framework the module independence metric is 

used as a goal to improve the more technical aspects of modularity (function 

binding and coupling) whereas the module coherence metric is associated with the 

strategically aspects of modularity (variety, maintenance, recycling etc.).  

 

Ideally, an optimal modular architecture will have loosely coupled, functionally 

independent modules that are highly coherent in terms of their response to the 

various strategic modularisation objectives. However, in reality, the two modularity 

concepts are contradictory. Improving the independence of modules will often 

mean that the coherence of modules deteriorates and vice versa. To improve the 

module independence, fewer, larger modules are usually sought. Whereas, in order 

to achieve high module coherence a larger number of smaller modules will often be 

necessary. Hence an important part of the work in this thesis is to provide a 

framework that is able to generate and evaluate a number of alternative modular 

architectures based upon the trade-offs between module independence and module 

coherence. 
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Module Independence Ratio 
 

This metric measures the ratio of the component dependencies within modules 

divided by the total dependencies between all components. A higher ratio means 

more interactions are kept within modules rather than across modules, and the 

modules are more independent.  This can be seen in figure 4.3. 

 

The module independence (MI) metric: 

 

∑
=

=
M

m

n

n
CI

CIMI
1 max

                                                                                (1) 

 
Where: 
 
M =  module number 

nCI   =  the number of couplings within module m 

n
CImax =  the maximum strength of all component couplings  
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Figure 4.3. Coupling interaction matrix showing module independence  

 

Module Coherence Ratio  
 
 
The module coherence ratio measures the total number of component interactions 

within modules divided by the maximum potential number of component 

interactions within the modules. This principle can be seen in figure 4.4.   

 
The module coherence (MC) metric: 

∑
=

=
M

m

n

n
SI
SIMC

1 max

                                                                                (2) 

Where: 
 
M =  module number 

nSI   =  total strategic component interactions within module m 

n
SImax =  total possible strategic component interactions within module  
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Figure 4.4. Variance interaction matrix showing module coherence  

 

 

4.7.  Reconciling Modularisation Objectives 

 
The advantages of product modularity can be seen across all phases of the product 

lifecycle, as outlined in the literature survey. The problem is how can the various 

objectives be included in a multi-objective optimisation framework. Indeed, is it 

really necessary to include all of the modularisation objectives? Are there any 

similar objectives addressing the same fundamental issues? Similarly, are there any 

conflicting objectives? Thus can any of the objectives be eliminated or combined?  

These are important issues as they can dramatically reduce both the complexity of 

the problem and the level of information content needed. These issues are not new 

and have in fact been outlined (or at least hinted at) by numerous other researchers, 

including Gershenson et al (2004), Fixson (2005), Blackenfelt (2001) and Stake 

(2000).  
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Cover 1 1 0.5 0 0 0 0 1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Handle 1 1 0.5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lid 0.5 0.5 1 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Trisister button 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

sw itch button 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

brake button 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

chassis 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

bumper 1 1 0.5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

baglock 0.5 0 0.5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

virbration damper 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

rear w heels 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

fornt w heel 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

motor noise absorbant 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

fan noise absorbant 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

electric motor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

thysister 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

sw itch 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

fan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

cord reel brake 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

cord reel 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

cord w ith plug 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

bag 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

filter 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Variance Interaction Matrix

Within module component interactions 

Module
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Blackenfelt (2001) for example, pointed out that there are overlaps and conflicts 

between some of the modularisation objectives (or modular drivers as they are often 

referred to). Some objectives are polar opposites (like two sides of a coin), some 

complement each other (or are similar, pursuing the same goals) and some are 

alternatives to reach the same modularisation goal. For example, variety can be 

seen as the opposite to commonality, recycling is an alternative to remanufacturing 

or disposal. Blackenfelt (2001) ends up condensing the 12 strategic modular drivers 

presented by Ericsson and Erixon (1999) down to four sets of drivers focused 

towards product variety issues: ‘variant versus common’, ‘reuse versus develop’, 

‘make versus buy’ and ‘carry over versus change’. This is a step in the right 

direction, enabling a more focused evaluation of product modularity.  

 

In this research, the first step towards addressing some of the previously discussed 

problems has, like Blackenfelt (2001), been to form a condensed set of key 

modularisation objectives.  This has been achieved by establishing a list of all the 

primary modularisation objectives from the literature - as outlined in table 4.1.  
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Table 4.1. The various modularity objectives 

 
 

By looking at the modularisation objectives that are either complementary to each 

other, opposite to each other, or which provide alternatives to one another, a 

somewhat condensed set of objectives has been developed. This can be seen in 

Figure 4.5, which provides an objective reconciliation matrix. Six objectives in 

total have been identified.  An overview of the aims of each chosen objective is 

given in Table 4.2. The actual evaluation of the six modularisation objectives will 

be given in detail in chapter 7 where the software implementation of the framework 

will be discussed.  

Modularity Objective Grouping components into modules 
because…. Source

Physical Coupling they have strong physical interactions
Plimmer & Eppinger(1994) ;Gu & 
Sosale (1999); Newcomb (1996)

Functional flows they have functional flows between them Plimmer & Eppinger(1994) ;Gu & 
Sosale (1999);

Function binding they contribute to the same sub-function
Stone (1999); Ulrich and Tung 
(1994); Suh (1995)

Planned product changes they are planned to be redesigned in the near 
future

Ericsson & Erixon (1999)

Carry over they will stay the same in the near future Ericsson & Erixon (1999)

Upgrading they will be upgraded when new components are 
developed

Ericsson & Erixon (1999);Gu & 
Sosale (1999); Ulrich & Eppinger 
(1995)

Technological evolution they have a high level of technical evolution Ericsson & Erixon (1999)

Variety they will vary across the product range
Ulrich & Eppinger (1995); 
Ericsson & Erixon, (1999); Gu & 
Sosale, (1999)

Styling they are subject to trends and fashion needs Ericsson & Erixon (1999)

Commonality they will become common across the product 
range

Ulrich & Eppinger (1995); 
Ericsson & Erixon (1999); Gu & 
Sosale (1999)

Out-sourcing (buy) they should be bought from a supplier Ericsson & Erixon (1999)

In-sourcing (make) they should be developed/ and or made in house Ericsson & Erixon (1999)

Separate testing
they should be tested together before final 
assembly Ericsson & Erixon (1999)

Maintenance and service they have similar maintenance and service 
needs

Gu & Sosale (1999); Ulrich & 
Eppinger(1995)

Wear-out life they have similar reliability
Gu & Sosale (1999); Ulrich & 
Eppinger (1995)

Reuse they can be reused or remanufactured Newcomb (1996);Gu & Sosale 
(1999)

Recycling they can be recycled together
Newcomb (1996);Gu & Sosale 
(1999)
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Figure 4.5. Set of reconciled strategic modularity objectives 

 

Table 4.2.  Overview of the modularity objectives 

Objective Description 
Loose 
Coupling 

To group together components that have strong physical and 
functional relationships to ensure that modules are as independent as 
possible. This will enable modules to be designed, manufactured, 
assembled and disassembled as concurrently as possible.  

Function 
Binding 

To achieve modules that perform discrete functions. That is to group 
components that are influenced by the same product sub-functions 
into the same module.  This will help ensure that modules can be 
reused over future product generations, shared among different 
products and allow easier product reconfiguration. 

Variance  To group components that respond to the same variance modes into 
the same modules. Non-variant components can then form common 
platform modules that can be shared across the product family.  

Outsourcing To group components that can be outsourced to various suppliers.  

Maintenance 
and reliability 

To group components that have similar maintenance and 
replacement needs into the same module.  

Reuse and 
Recycling  

To gather into the same module components that share the same end 
of life requirements - to enable module reuse and to make the 
recycling operations easier and more cost effective to perform.  
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Physical Coupling 1
Functional interactions C 1
Function binding 1 Function Binding
planned product changes 1
carry  over O 1 V ar iance
upgrading A O 1 (Variety vs . Common platform)
styling C O C 1
technological evolution C O A A 1
variety C O C A C 1
com monality O A O O O O 1
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recycling A 1

A=Address ing the sam e underlying object ive
O=  Opposite to
C  = Complem etary to 

Maintenance and Reliability

Reuse and Recyc ling 

Loose Coupling
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4.8. Grouping to form Modules 

 

For the modularisation framework a grouping algorithm is applied to find optimal 

modular architectures (solutions) through manipulation of the data in the various 

matrices. Each solution is found by varying the membership of components to 

modules, in each of the interaction matrixes, such that the developed modularity 

metrics are maximised for the different objectives. Of course it will often be 

impossible to simultaneously maximise every objective, so different trade-off 

solutions are produced. As discussed in chapter 3, an appropriate method is to 

produce a set of (Pareto-optimal) solutions allowing the decision maker (DM) to 

explore various alternative modular configurations and look at ‘what if’ scenarios 

before choosing the most suitable solution. In this way the DM is able to make a 

more informed decision on the most suitable modular structure for the product. 

 

In the developed framework the modularisation objective achievements for the 

(Pareto-optimal) solutions are represented by radar plots as shown in the figure 4.6. 

These type of plots of are highly visual and give the user a suitable means for 

making comparisons between different solutions during the scenario analysis phase 

of the framework.    
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Figure 4.6. Example of an optimal modular solution using the proposed matrix 

grouping approach 

 

 

4.9. Modularisation Objective Hierarchy 

 

Another important issue that needs to be addressed for a multi-objective 

optimisation is how does one quantify the importance of the different 

modularisation objectives? The developed MOGGA actually creates a whole set of 

alternative (optimal) modular solutions without needing weights or priories to be 

set up beforehand. However there still needs to be a way of exploring the different 

solutions (scenario analysis) and ultimately choosing the most appropriate modular 

product architecture according to the DM preferences. To address this problem a 
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‘modularisation objective hierarchy’ has been developed (shown in figure 4.7) as a 

means of solution set ranking.  

 

 
Figure 4.7. Modularisation objective hierarchy 

 

The principle of this hierarchical ranking process is based upon the AHP approach 

used in multi-criteria decision making. In AHP pair-wise comparisons of the each 

criterion are made at each level of the hierarchy, ultimately generating a weight 

vector for each objective. The weight vectors are then used to provide ranking of 

the solutions generated by the algorithm. For example, starting at the top of the 

hierarchy the user may decide that the technical modularity objectives are more 

important than the strategic, this means that greater weights will then be given for 

‘function binding’ and ‘loose coupling’ objectives. The generated solutions will 

thus be ranked according to these preference weights and the highest ranking 

solutions presented to the user for further analysis. By changing the preferences at 

each level of the hierarchy the solution set can thus be explored in a simple manner. 

This process will become more apparent during the course of the thesis when the 

software implementation is described and a case study example will be given 
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4.10. Conclusion  

 
This chapter has presented the key aspects of the proposed modularisation 

framework. These aspects include: how modularity will be represented, modularity 

metrics, what modularity objectives will be used and how they can be ranked and 

prioritised, and how module grouping will take place using a multi-objective 

optimisation algorithm. The design and development of this algorithm will be 

presented in the next chapter. 
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CHAPTER 5 

5. Multi-objective Grouping Genetic Algorithm for Product 
Modularisation 

 

5.1. Introduction  

 

The design and implementation of a suitable MOGA is a complex problem that can 

be tackled in many ways. The vast majority of ‘state of the art’ MOGAs use the 

concept of Pareto-dominance based ranking coupled with some form of diversity 

preservation strategy.  However, many of the previously developed algorithms 

would not be suitable for the multi-objective product modularisation problem. This 

is because most of the developed MOGAs are not designed for combinatory 

optimisation problems (grouping problems).  

 

This chapter therefore presents the design and development of a MOGA for product 

modularisation. The chapter begins with an overview of the developed algorithm 

and the remainder of the chapter then provides a detailed description of the various 

components that make up the algorithm. 

 

5.2. Overview of Developed Multi-objective Grouping Genetic Algorithm  

 

There are a number of core concepts that have been integrated to provide the 

overall functionality of the proposed multi-objective grouping genetic algorithm 

(MOGGA) for product modularisation. Falkenauer’s group-based encoding and 

cross-over schemes are employed along with problem specific gene reallocation 

and repair heuristics. These are used as the means by which individual solutions are 

constructed, mated and repaired.  Random vector based selection and search is 

carried out to ensure that new regions of the search space are explored in order to 

find new Pareto-optimal solutions. In addition dominance and diversity ranking are 

used for determining which individuals in the population are chosen for survival at 

each generation.  By combining these concepts the algorithm is capable of evolving 
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a diverse set of Pareto-optimal solutions (alternative modular product 

architectures). The algorithm consists of four main steps: 

 

Step 1)  Initialisation: create an initial population of individuals using the 

initialisation procedure. Repair any infeasible solutions using the repair 

heuristic. 

 

Start Main loop:  

Repeat until the maximum number of generations (Gmax) is reached.  

 

Step 2)  Selection 

a) Randomly generate a set of weights to form a weighted scalar fitness 

function (RWfitness) 

b) Perform tournament selection to select two parent individuals from the 

current population. Tournament winners are the individuals that achieve 

the highest fitness according to the randomly generated RWfitness. 

 

Step 3)  Recombination  

a) Perform mating on the selected parents using the GGA crossover 

operator and the local search based reallocation heuristic. Use the 

RWfitness generated during selection to provide the creep direction during 

local search. 

b) Use the repair heuristic to repair an infeasible solution. 

c) Make the first offspring solution a temporary member of the current 

population and perform ranking. Repeat for the second offspring. 

 

Step 4)  Ranking 

a) Evaluate the fitness of each solution in the population based upon the 

dominance and diversity fitness, DDfitness  

b) Replace the weakest solution with the offspring solution, if and only if 

the offspring solution has a higher fitness. If the offspring solution has 

the lowest fitness then remove it from the current population.  
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End main Loop 

 

5.3. Encoding Scheme and Genetic Operators  

 

Product modularisation can be defined as a grouping problem as the aim is to group 

a set of components (objects) into smaller sub-sets (modules). Grouping problems 

have been well studied in the literature and solved with appropriate algorithms. 

Examples of these grouping problems include: the machine part grouping problem, 

assembly line balancing, graph colouring and the bin packing problem.   

 

The goal of any grouping problem is to partition a set of objects into smaller sub-

sets, with each object belonging to exactly one group. For most grouping problems 

there are often a number of problem specific constraints that the groupings must 

adhere to.  Under these constraints the objective of the problem is then to create 

groups that minimise a given cost function. For the product modularisation problem 

the overall goal (cost function) is to maximise module independence (to reduce 

coupling between modules) and maximise module coherence (maximise component 

modular driver similarities within modules). Module groupings must adhere to 

several constraints.  Firstly the number of modules must not exceed a user defined 

maximum or drop below the allowed minimum. Secondly, the number of 

components in each module must not exceed the maximum defined number. Lastly, 

components should not be placed in the same module if there is a particular 

physical restriction or functional infeasibility.    

 

It is possible to solve grouping problems with classical GAs. However as pointed 

out by Falkenauer (1998) grouping problems present numerous problems for 

classical GAs. Firstly, the encoding used in a standard GA is highly redundant, 

which means that solutions with identical groupings are often treated as completely 

different individuals, reducing the efficiency of the algorithm. Secondly, and more 

importantly, the standard genetic operators will recklessly break up good groupings 

as they work with the object part of the chromosome and not the group part. To 
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address these problems Falkenauer (1998) created the Grouping Genetic Algorithm 

(GGA) which uses a group based encoding scheme and suitably modified genetic 

operators.  

 

Grouping Genetic Algorithm: Encoding 
 

As the cost function of a grouping problem is to optimise the memberships of 

groups and not the properties of individual objects it follows that a GA adapted for 

a grouping problem should work with the group parts of the chromosome and not 

the individual objects. 

 

In a standard GA each solution is encoded into a chromosome which is made up of 

a number of genes. For the grouping problem each gene would represent an item 

belonging to a group. For example, the chromosome ABBCCDD contains seven 

genes that represent a solution that places the second and third items into the same 

group, the fourth and fifth items in the same group, the sixth and seventh items in 

the same group and the first item in a group of its own.  Exactly the same solution 

could be represented with the chromosome BCCDDAA. From this it is clear to see 

that there will be inefficiencies due to redundancy of the chromosome 

representation.  

 

Falkenauer’s approach is to shift the encoding of the genes to represent groups of 

items rather than individual items. In this way each group of items is encoded into a 

number of genes as seen in figure 5.1. This is significant as it allows the GA cross-

over and mutation operators to work with the groups of items rather than individual 

items. In this way the integrity of the groups is better preserved 
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Figure 5.1 Group based encoding taken from Falkenauer (1998) 

 

Grouping Genetic Algorithm: Cross-over  
 

Cross-over is the primary means of exploring the search space to find the most 

promising solutions to the given problem. The main idea of cross-over is to 

recombine the genes of two parent solutions to produce offspring solutions that will 

inherit their ‘good qualities’ to provide further ‘optimal’ solutions. There are many 

cross-over operators that have been created but all work with the basic principle of 

recombining genes to create offspring.    

 

To better understand the significance of the GGA encoding during cross-over let us 

consider the two parent solutions in figure 5.2 that have been chosen for 

recombination. The solutions are encoded using a standard GA encoding scheme 

(each gene representing one item) and are then recombined using a standard single 

point cross-over operation to produce two offspring solutions.  

 

 
Figure 5.2. Problems with standard GA cross-over operation for grouping problem 

First Parent A B A C B C A C

Second Parent B A C B C D A D

First Offspring A B A C C D A D

Second Offspring B A C B B C A C
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It is clear to see that after recombination the offspring solutions that have been 

created are completely different to their parents and the offspring have not inherited 

any of the ‘good’ groups that were present in their parents. In fact the offsprings’ 

new groupings may be completely infeasible due to the violation of constraints.  

Due to this inability to preserve the integrity of groups during cross-over the GA 

has lost the advantage of being able to breed good offspring solutions by combining 

the favourable qualities of two parents. Hence the GA will perform little better than 

that of a random search based algorithm.  

 

To overcome the failures of the standard GA cross-over when applied to grouping 

problems, Falkenauer uses a five-step cross-over operator that is based upon the 

group based encoding scheme, which is the basic cross-over scheme employed in 

the algorithm. The steps are detailed below and in figure 5.3. 

  

Step 1) Select at random two crossing sites, delimiting the crossing section, in 

each of the two parents. 

Step 2) Inject the contents of the crossing section of the first parent at the first 

crossing site of the second parent. Recall that this means injecting some 

of the groups from the first into the second. 

Step 3) Eliminate all objects now occurring twice from the groups they were 

members of in the second parent, so that the ‘old’ membership of these 

objects gives way to the membership specified by the ‘new’ injected 

groups. Consequently, some of the ‘old’ groups coming from the second 

parent are altered: they do not contain all the objects anymore, since 

some of those objects had to be eliminated. 

Step 4) Replace any missing objects in the new group’s (offspring), according to 

the hard constraints of the problem and the cost function to optimise. At 

this stage, local problem dependent heuristics can be applied. 

Step 5) Apply the points 2 through 4 to the two parents with their roles reversed 

in order to generate the second child. 
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Figure 5.3 Grouping genetic algorithm cross-over operation  

(Falkenauer, 1998) 

 

Reallocation Heuristic: Local Search  
 

As part of the GGA cross-over a user defined reallocation step is needed (step 4) to 

reallocate missing objects (components) to groups (modules). The missing objects 

are the objects which were deleted during crossover as they appeared twice in the 

offspring’s new groups.   

 

As there is no generic replacement heuristic that can be used for all problems it is 

essential that the replacement heuristic is properly designed for the specific 

grouping problem at hand. One naive approach might be to randomly reallocate the 

missing components to modules. However this approach may end up destroying the 

integrity or ‘goodness’ of current modules and module groupings may end up being 

infeasible due to the violation of constraints. What is preferable is an intelligent 

reallocation heuristic. This will ensure that that a new offspring solution creeps 

towards a Pareto-optimal point and not away from one. 

 

The significance of the reallocation step was studied by Brown and Sumichrast 

(2003) who conclude that the reallocation step can heavily affect the overall 

performance of the GGA. Their study found that if an intelligent reallocation 
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heuristic is used rather than random reallocation then the performance of the GA 

can be greatly improved. The GA will find better solutions and will take less time 

to converge to fitter solutions.  

 

This ‘intelligent’ reallocation step can in fact be seen as a local search method as 

we are implementing small local changes (improvements) to module (group) 

memberships during component reallocation. Coupling local search with GAs has 

been seen as an efficient and effective means of improving the performance of the 

GA when solving combinatory optimisation problems, (Jaszkiewicz, 1998, 2002; 

Ishibuchi et al, 2003). For example, Ishibuchi et al (2008b) more recently 

hybridized a local search method with the NGSA II multi-objective algorithm and 

tested the algorithm on a number of combinatory optimisation problems. Ishibuchi 

et al reported improved convergence towards the Pareto-front as well as improved 

diversity of the obtained solutions of the non-dominated set. 

 

For these discussed reasons an intelligent means of reallocation (reallocation 

heuristic) has been designed for the cross-over operation. The heuristic is 

specifically designed for the modularisation problem and proceeds as follows.   

 

Step 1) Randomly select a missing componentn and temporarily allocate to the 

first modulen=1 and evaluate the fitness of the module groupings 

according to the random weighted scalar fitness function RWfitness 

Step 2) Temporarily allocate the selected missing componentn to the next 

modulen+1 and again evaluate using random weighted scalar fitness 

function RWfitness. 

Step 3) Repeat step 2 until modulen+i reaches modulemax 

Step 4) Allocate the selected componentn to the modulen which showed the best 

fitness. 

Step 5) Repeat steps 1 to 4  until each missing component is allocated to a 

module. 
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The five steps of the reallocation heuristic ensure that missing components are 

gradually reallocated to modules in a manner that ensures the best improvement of 

fitness according to the given randomly weighted scalar fitness function. This 

random vector weighting will be discussed later in this chapter.  

 

Mutation  
 

The mutation operator of the GGA also works with the group part of the 

chromosome to introduce small changes to the individual. This helps to ensure that 

the diversity of the population is maintained and that the population does not 

stagnate or converge too early. There are numerous ways in which this can be done 

for the GGA, such as described by Falkenauer (1998). However experiments 

conducted by Brown and Sumichrast (2003) have highlighted that for the GGA the 

mutation operator does not significantly improve the performance of the algorithm. 

This is primarily because the GGA cross-over procedure can introduce significant 

and random changes during cross-over i.e. steps 2-4 remove any duplicate objects 

belonging to groups and reallocates them using problem specific heuristics. This 

means that the offspring solutions can potentially be quite different from either of 

their parents, therefore ensuring new genetic material is introduced, preventing 

premature convergence and maintaining diversity. Furthermore the MOGGA also 

uses a diversity preservation strategy (will be discussed in detail later in the 

chapter) to maintain an archive of diverse solutions, ensuring that diverse genetic 

material remains in the population.  For the modular design problem a number of 

tests have been done (in chapter 7) from which it has been concluded that mutation 

does not improve performance of the proposed MOGGA – it performs just as well 

without it.  Thus the mutation operator is not used in the MOGGA. 
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5.4. Handling of Constraints: the Repair Heuristics  

 

As the module grouping problem contains numerous constraints there needs to be 

an efficient method to deal with the issue. There are in fact numerous strategies that 

could be applied as was briefly discussed in chapter 3.  

 

A two step approach has been adopted. This first step is to encourage the formation 

of feasible modules during mating and initialisation. This is done by applying a 

penalty to the fitness values of solutions that violate the constraints. In this way 

these ‘infeasible’ individuals would be less likely to be created in the first place.  

 

However, there are situations when infeasible solutions will still be created. Hence 

an additional repair heuristic has been created that is used to return infeasible 

individuals to feasible ones after initialisation and mating. This is used instead of 

killing the infeasible solutions. The logic follows that the infeasible solutions may 

actually be quite good if it were not for their constraint violations. An infeasible 

solution may, for example, have mostly good module groupings with only one 

module containing constraint violations. This solution could be ‘repaired’ to 

produce a potentially good and feasible solution. In this way the diversity of the 

population is maintained and potentially good solutions are allowed to stay in the 

population and continue to reproduce.  

 

If after initialisation or mating any of the constraints are violated then the module/s 

in which the violation has accurred is flagged and the repair heuristic is triggered. 

The repair heuristic will attempt to reallocate the offending component/s from the 

‘infeasible module’ to other modules or place the offending component/s into new 

modules so that no constraints are violated.  

 

Step 1) From the module in which there is a constraint violation select the first 

componentn and temporarily reallocate it into a different modulen  

Step 2) Evaluate fitness and if there are no longer any constraint violations then 

end the repair procedure.  
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Step 3) Temporarily reallocate the selected componentn into the next modulen + 

1 and repeat step 2. 

Step 4) Repeat step 3 by placing the selected component into different modules 

until modulemax is reached.  

Step 5) Select the next component from the ‘violated module’ relocate it into a 

different module and repeat steps 2 to 4. 

Step 6)  Repeat the steps 1 to 5 for all modules in which there is a constraint 

violation.  

 
 

5.5. Random Weighted Vector Based Search 

 

Diversity measures are effective in ensuring that a diverse spread of solutions are 

maintained, but will not necessarily promote the search towards the true Pareto-

front. This is particularly problematic when there are a large number of objectives 

(many objective problems) because all solutions are likely to become locally non-

dominated. In these situations the measures will ensure that the solutions are remote 

from each other (less crowded) yet this does not necessarily mean that they will 

have good proximity to the true Pareto-front. This weakness tends to lead to a 

stagnation of the population and thus the random vector based search will be used. 

 

In order to perform local search during reallocation (and to generate an initial 

population) one needs a search vector (temporary measure of fitness) for the 

module groupings to creep towards. That is, during the allocation of components to 

groups, each component should be placed into the group that creates the best 

improvement in fitness according to the weighted objective search vector.  

 

If a static weighting system were to be used then the solutions in the population 

may end up losing diversity as they will constantly be creeping in the same 

direction. As has been discussed the overriding principle of a multi-objective GA 

approach is to create a set of solutions that as well as being ‘fit’, is also as diverse 

as possible. Thus a random objective weighting approach is used.  
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At each generation the algorithm generates a set of random objective weights to 

form a random weighted scalar fitness function RWfitness which is used to provide a 

search vector for local search based reallocation during the mating. The RWfitness is 

also used to select suitable parents. These ideas are based upon the works of 

Ishibuchi et al, (2003) and (Jaszkiewicz, 2002). 

 

To find two suitable parents for mating the algorithm uses a tournament based 

selection procedure to choose two ‘winning’ parents that achieve the highest 

RWfitness. As discussed by Ishibuchi et al (2003), choosing two parents that are close 

to one another in the objective space will help to ensure that the produced offspring 

will be more appropriate for the current search vector. If dissimilar parents are 

chosen then the produced ‘raw’ offspring (before reallocation based local search) 

has a high chance of being very different and potentially far away from the current 

search vector (see figure 5.4). When the quality of the raw offspring is poor with 

regard to the current search vector then local search based reallocation is less likely 

to yield improvement in the direction of the vector.  

 

However, by always mating similar parents there is a possibility of the population 

stagnating. To avoid this an appropriate tournament size should be used so there is 

still a probability that dissimilar parents can be mated in order to produce 

potentially quite different offspring.  This is important because the algorithm does 

not use a mutation operator. 
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Figure 5.4. The importance of selecting appropriate parents for mating - Ishibuchi 

et al (2003), 

 

5.6. Population Fitness Ranking Procedure  

 

The MOGGA generates a whole set of alternative (optimal) modular architectures 

in one single run. This is done by maintaining a whole population of Pareto-optimal 

solutions by ranking solutions at each iteration (generation) of the search, thus 

ensuring that inferior solutions are replaced when better offspring solutions are 

found. With the MOGGA the fitness ranking of population members is done using 

the Pareto dominance based ranking method combined with a diversity based 

ranking scheme.   

 

The dominance ranking procedure used in this research is the dominance count 

approach of Fonseca and Fleming (1995). The dominance count approach has been 

chosen as it is simple to implement and can provide a suitable means to ensure that 

solutions will converge towards the Pareto-front. To reiterate the concepts, Fonseca 

and Fleming use a dominance rank assignment which is based upon the number of 

solutions a particular solution is dominated by. 
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The diversity ranking procedure is considered important for many objective 

problems and will have a significant impact on the quality of modular design 

solutions produced by the MOGGA. Thus in this thesis a number of diversity 

ranking procedures have been explored and the K-nearest neighbour approach of 

SPEA2 has been adopted (this will be explained in chapter 7). 

 

The MOGGA calculates the solution dominance and diversity in the following way. 

Firstly, each solution in the population is compared with one another and the 

Euclidian distance between each solution is calculated i.e. for each pair of solutions 

the differences in each objective achievement are found then added together, each 

objective distance being normalised using the maximum and minimum objective 

achievements in the current population. 

 

 
Figure 5.5. Combined population ranking of two-objective problem 

 

The dominance count is then calculated based upon these pair-wise objective 

comparisons. For example, if solution x is better than solution y in all objectives 

(contains only positive objective distances for each objective) then solution y is 

dominated by solution x. For the diversity rank the three closest solutions (smallest 
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Euclidian distances) are flagged This can be seen in figure 5.5 where the closest 

three solutions to ‘c’ are ‘b’, ‘g’ and ‘d’. A proportionally lower diversity rank is 

then given to solutions that have closer neighbours.  

 

Once all the dominance counts and diversity ranks have been calculated the fitness 

rank is then given by the normalised dominance based fitness plus the normalised 

diversity based fitness. All non-dominated solutions obtain a +10 to their final 

scores to ensure that they are not replaced by dominated solutions.  After 

normalisation, the higher the fitness value, the higher ranking the solution is.  

 

5.7. Preference Based Fitness Ranking 

 
Finding a suitable Pareto-set can be computationally demanding and the sheer 

number of possible non-dominated solutions can be extremely high.  Thus, 

presenting the DM with this huge number of solutions can sometimes be 

overwhelming. In some cases the DM may already have rough preferences on the 

importance of the various objectives. This information can be used to generate a 

more focused set of solutions. A number of researchers have advocated this 

approach (Deb and Saxena, 2006; Ishibuchi et al 2006).  

 

In the MOGGA preference information can be included before the search. The 

preferences-based fitness assignment will be based upon the current preference 

values set in the objective hierarchy.  

 

The fitness of the population members during ranking will still be dominance based 

as using the procedure outlined previously, i.e. non-dominated solutions, will 

always be favoured.  However, when using the preference weighting feature of the 

algorithm, the non-dominated solutions will now be ranked using a combination of 

diversity-based fitness and the preference-based fitness. The ratio can be changed to 

place more or less emphasis on weighted preference and be used to create a more 

refined Pareto-set. These effects will be explored in chapter 7.  
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5.8. Dealing with Duplicate Solutions  

 

Another problem that has not been mentioned yet is how to deal with duplicate 

solutions. That is solutions within the population which have exactly the same 

achievement for all of the objectives. The crowding distance ranking of the NSGA-

II does not deal with duplicate solutions in an appropriate manner. Duplicate 

solutions will receive a zero crowding distance because they have zero Euclidian 

distance in each objective direction to the nearest neighbours. A zero crowding 

distance may lead to the total replacement of all duplicate solutions. This can be a 

problem as by replacing all duplicates a number of good solutions may be lost. It 

would be more desirable to keep one of the duplicates (the original) and remove the 

rest.  In the algorithm developed all duplicate solutions actually receive a zero 

fitness during ranking. This is not a problem due to the incremental (one-solution-

in, one-solution-out) population update procedure. For example if two duplicate 

solutions exist then they will both receive a zero fitness during ranking, however 

just one of them will be replaced during population updating. The remaining 

solution will no longer be a duplicate and will receive the appropriate fitness during 

the next iteration of the search when all solutions are ranked again.  

 

5.9. Population Update Procedure  

 

As already discussed the majority of previous MOGAs such as the NSGA-II and 

SPEA2 use a dual population approach. One population is used for storing elite 

solutions and one population is used for the current offspring solutions. At each 

generation the populations are combined and then ranked to remove the worst 50%. 

In this algorithm only one population is used and this is constantly updated after 

each mating operation.  

 

At each generation the parent solutions are selected from the population and mated 

using the previously described procedure. Each produced offspring is then 

temporarily added to the population so that the population number becomes popmax 
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+ 1. The offspring is always added to the popmax +1 position - which is a temporary 

population slot only used during ranking. For example, if the population size is 50 

then the new population size during ranking will be 51, with the 51st population 

member being the new offspring solution. After the new offspring is added to the 

population the ranking procedure is invoked to assess whether or not the offspring 

is fitter than any other member of the population. If the offspring is fitter then it 

will replace the weaker member and become a new member of the population. The 

overall fitness of solutions during ranking is based upon the combination of the 

Pareto-optimal based dominance and diversity fitness as described in the previous 

sub-section. 

 

5.10. Generation of Initial Population: the Initialisation Heuristic  

 

Much like the previously outlined heuristics, generating a good set of initial 

population members (solutions) should also be done in an intelligent manner to 

ensure that each solution is feasible and will have a good starting fitness. This is 

important as it can drastically improve the convergence speed of the algorithm. 

Hence an intelligent initialisation heuristic has been created for the generation of 

the initial population and proceeds as follows: 

 

Start  -  Repeat for each initial solution until the population reaches populationmax. 

 

Step 1)  Randomly generate a weighted scalar fitness function.  

Step 2)  Randomly generate the number of modules for solutionn (between 

modulemin and modulemax). 

Step 3)  Create a ‘seed’ point for each module by randomly allocating a 

component to each ‘empty’ module. 

Step 4)  Randomly select a remaining componentn and temporarily allocate 

to the first modulen=1 and evaluate the fitness of the module 

groupings according to the randomly generated scalar fitness. 

Step 5)  Temporarily allocate the selected componentn to the next modulen+1 

and again evaluate the fitness using the scalar fitness function. 
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Step 6)  Repeat step 5 until modulen+i reaches the randomly chosen module 

number. 

Step 7)  Allocate the selected componentn to the modulen=i which showed the 

best fitness. 

Step 8)  Repeat steps 1 to 4  until every component is allocated to a module. 

Step 9)  Repair infeasible solutions using the repair heuristic. 

 

End  

 

A larger population will yield a higher level of granularity in regards to the trade-

off region covered, but will present the DM with an increased number of solutions 

to choose from and can dramatically decrease the speed of the algorithm, and thus 

the population size should be chosen wisely. In this thesis the population size has 

been kept between 50 and 100, which has been found to produce adequate results. 

Increasing population size in excess of 100 has not been found to offer any 

significant performance advantages. 

 

5.11. Conclusions  

 

This chapter has presented the development of a novel MOGGA for the modular 

design grouping problem.  During the course of the chapter is has been seen that for 

the development of the MOGGA a number of associated problems and limitations 

have had to be overcome.  

 

The first problem is that the standard GA encoding schemes and genetic operators 

are not suitable for grouping problems. To overcome this problem the group-based 

encoding and cross-over schemes proposed by Falkenauer (1998) have been 

employed and some problem-specific local search heuristics have been developed.  

 

The next issue that has been explored is how to design the algorithm to evolve a 

whole set of solutions rather than just one solution at a time. This has been done in 

a number of ways. Firstly, to enable the algorithm to explore different regions of 
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the search space and evolve new solutions, a random vector based selection and 

mating method has been employed. Secondly, to ensure that the population 

converges towards the Pareto-front and covers a diverse number of points along the 

front novel dominance and diversity ranking procedures have been developed. 

These procedures improve upon those employed by previous ‘state-of the art’ 

algorithms to produce a MOGA that is better designed to deal with complex many-

objective grouping problems - this will be verified in the chapter 7. 
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CHAPTER 6 

6. Software Implementation of Framework 
 

6.1. Introduction 

 
This chapter discusses the software implementation of the computer aided 

modularity optimisation framework (CAMO). Firstly an overview of the software 

implementation is given and then the various steps are discussed in terms of how 

they have been implemented with the prototype software. An important aspect of 

this chapter is the guidance on how each of the six modularisation objectives 

(indentified in chapter 4) are evaluated using the developed software.  
 

6.2. Overview of Software 

 

A prototype software has been created in an excel environment using VB coded 

macros to create a genetic algorithm (GA) based optimiser and a VB programmed 

user interface. The software prototype and the corresponding coding can be 

examined in appendix 1.  In this appendix a number of excel files are included – the 

annotated VBA code can be seen in these files.   

 

As highlighted in figure 6.1 the software has three main modules in which the 

various steps of the framework are undertaken. To reiterate these steps are: 1) 

product decomposition 2) interaction analysis 3) formation of modular architectures 

4) scenario analysis. Throughout this chapter a vacuum cleaner based case study 

from the work of Ericsson and Erixon (1998) will be used to illustrate the various 

steps of the framework.  

 

In the input module of the software the product is decomposed at the physical and 

functional levels and component interactions are entered into a number of matrices 

using VBA based evaluation forms to define the interaction strengths for each 
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modularisation objective. Once all the data has been input the optimisation module 

produces a set of Pareto-optimal solutions using the VB programmed MOGGA. 

The analysis module is then used to explore the solution set and choose the most 

suitable modular architecture. Again a number of VBA macros have been produced 

for this stage. 

 

 
Figure 6.1. Main user menu screen of CAMO software 

 

6.3. Step 1: Product Decomposition  

 

Essentially, within the framework basic product components are grouped into larger 

product sub-systems (modules). This of course means that the basic product 

components must first be found by using some form of product decomposition 

logic. Pimmler and Eppinger (1994) suggest that the basic product components 

should be identified at one level of resolution lower that what one wants to achieve 

modules at. This is also what is advocated in the CAMO framework. 
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However, at the same time as indentifying basic physical components the product 

functions are also indentified at this step of the framework.  The granularity of the 

functional mapping should be closely related to the customer requirement for the 

product. In particular the level should match the required variety mix needed in the 

product family.  

 

There are several formal methods that have been created to provide a functional 

decomposition of the product - as discussed in the literature review. Examples are 

the top down approach of axiomatic design (Suh, 2001), in which the overall 

product function is broken down into sub-functions in a hierarchical manner, and 

the bottom-up approach of Stone et al (1997) in which the functional flows of the 

product are followed to generate a number of sub-functions. What is important is 

that functions should be described in ‘verb-action’ format given that they perform a 

specific product operation. They should also be solution neutral. For example, 

following the vacuum cleaner example, the function ‘provide suction power’ is a 

solution neutral statement and it is possible that a number of design concepts can be 

used to fulfil it. A cyclonic based suction engine could fulfil the function or a 

simpler motor and fan arrangement could also provide the function. 

 

It is suggested that the level of functional analysis should be related to the level of 

granularity that most closely matches the required (or expected) customer needs for 

product variety. In fact there are different types of functions (common, variant and 

optimal) that should be identified in order to provide the required product variety 

mix - which will be discussed later in this chapter. 

 

To explain how the functions are mapped within the software, consider the vacuum 

cleaner case study by Ericsson and Erixon (1999). In this work the system has been 

broken down into 24 components which can be considered functional elements in 

themselves. However the point here is to group the components into higher level 

modules more closely related to customer variety needs. So a higher level of the 

functional hierarchy must be looked at. In this example this is achieved using a top 
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down functional decomposition approach.  At the top level the overall function of 

the vacuum cleaner is to ‘remove dirt’. This has been broken down into a number of 

sub-functions and mapped to the associated physical components in the 

decomposition matrix (as in figure 6.2). When mapping the functions to 

components the user must enter ‘1’ into the corresponding position and during the 

mapping phase it is important that all components in the matrix correspond to a 

function. 

 

 
Figure 6.2. Decomposition matrix for the vacuum cleaner example. 

 

Once the functions have been mapped within the decomposition matrix, the user 

must press the ‘new interaction Matrices’ button. The software then automatically 

generates a function interaction matrix as seen in figure 6.3. The software calculates 

the interactions between components by evaluating if the components are 

contributing to the same function. If they are, then a ‘1’ is placed in the 

corresponding position of the interaction matrix. For example, the electric motor 

and the fan both contribute to the function produce suction so they have a ‘1’ in the 

corresponding position of the interaction matrix. 
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Figure 6.3. Function interaction matrix for vacuum cleaner example 

 

As well as setting up the function interaction matrix the software also sets up 

‘blank’ matrices for each modularisation objective that has been selected for 

analysis. A copy of the function map is also placed at the bottom of each interaction 

matrix as the function map can be used to assist the user in evaluation of the various 

objectives - this will become apparent in the next sub-section.  If at any point the 

user wishes to change the physical and functional map (i.e add, delete or merge 

physical components), then the ‘update current interaction matrices’ button should 

be used – the software will then automatically update all of the interaction matrices.    
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6.4. Step 2:  Interaction Analysis 

 

Once the basic physical components and product functions have been identified, the 

dependencies and similarities between components are analysed for each 

modularity objective and entered into a number of interaction matrices.  To assist 

the interaction analysis evaluation forms have been developed (using VBA for 

excel) for each modularisation objective.  

 

Furthermore, in the CAMO software prototype interaction analysis is made less 

information intensive using a number of macros to semi-automate the process. 

Rather than the user having to evaluate each and every interaction between 

components, the software is able to make certain evaluations automatically, 

presenting the user with only the interactions which need further human judgement.  

 

There are two types of component interactions that must be entered into the 

matrices: technical interactions and strategic interactions. The technical interactions 

are based upon the modularisation objective of: ‘loose coupling’. The strategic 

interactions are based upon the objectives ‘variance’, ‘outsourcing’, ‘maintenance 

and reliability’ and ‘recycling and reuse’. The evaluation of each of these 

modularisation objectives will be discussed in the next sub-sections.  

 

 

Loose Coupling  
 

The approach advocated in this research is to use one of two component coupling 

evaluations to produce the interaction matrix for the loose coupling objective. This 

will depend upon the information at hand. If the product is in the conceptual stages 

where the joining methods have not yet been chosen or the mating complexity 

between components is unknown it is suggested that a simpler measure (basic 

coupling interaction in figure 6.4) is used to quantify component coupling.  For this 

evaluation the user must enter the level of interaction due to three types of 

functional flows as well as the estimated level of interaction due to physical 
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coupling. For the functional flow the transfer of force is seen to provide the 

strongest coupling, closely followed by the transfer of materials or energy, with the 

transfer of information likely to cause far weaker coupling. If there is more than 

one type of functional flow between the components then the strongest flow should 

be entered.   

 

 
Figure 6.4. Interaction evaluation form for loose coupling objective 
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If sufficient knowledge is known about the possible joining methods and the level 

of mating complexity, then the advanced coupling evaluation can be used, which 

can be seen in figure 6.4. This advanced coupling evaluation is based upon four sub 

factors. Using the evaluation form the user must evaluate the joining method and 

the mating face complexity2, the functional flows and the interface reversibility 

between components. The combined interaction value is then entered into the 

corresponding position of the module coupling matrix. For example, if two 

components are joined with a multi-screw (two or more screws) and the mating 

faces are complex (will be difficult to align with each other), interface reversibility 

is difficult and if there is a flow of material between them then the maximum 

interaction score of 1 would be entered for the component pair. 

 

An example interaction matrix using basic coupling evaluation can be seen in figure 

6.5.  For example, for the handle and the cover of the vacuum cleaner there is a 

transfer of energy and it is estimated that there will be a strong physical coupling 

between the components and so the maximum interaction score of 1 is given.  

                                            
2 The evaluation factors (and guidelines) in respect to the mating faces and joining methods are 
based upon the work of Lai and Gershenson (2008). 
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Figure 6.5. Loose coupling interaction matrix for vacuum cleaner example 

 

During the coupling interaction analysis there may be components that the DM 

wishes to prevent grouping into the same module. For example, there may be a 

geometric infeasibility of joining two components as they must be kept in different 

physical locations of the product. Alternatively, the DM may wish to prevent 

certain component groupings in order to limit the search space and provide a more 

focused or desirable set of module groupings.  To constrain components the DM 

must use the ‘there is a constraint between these components’ option in the 

evaluation form. Caution should be taken however as these constraints are hard – 

the algorithm is designed to prevent infeasible module groupings during the 

evolutionary search process. 
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chassis 1 0.5 0.3 0.5 0.5 0.2 0.2 0.3 0.3 0.3 0.3

bumper 0.5 0.5 1

baglock 0.3 1

virbration damper 0.3 1 0.7

rear w heels 0.5 1

fornt w heel 0.5 1

motor noise absorbant 0.2 1 0.2 0.5

fan noise absorbant 0.2 0.2 1

electric motor 0.3 0.7 0.5 1

thysister 0.3 1

sw itch 0.3 1

fan 0.3 1

cord reel brake 0.3 1

cord reel 0.3 1

cord w ith plug 1

bag 0.3 1

f ilter 0.3 1

Coupling Interaction Matrix
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Variance  
 

Using the developed software the evaluation of the variance objective, and 

subsequent production of the corresponding interaction matrix is done by looking at 

all the possible product variance modes and mapping them to the corresponding 

components.  This is done in a similar manner to the product function mapping.  An 

example variance evaluation can be seen for the vacuum cleaner in figure 6.6. 

 

 
Figure 6.6. Variance interaction matrix for vacuum cleaner example 
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Cover 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Handle 1 1 0.5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lid 1 0.5 1 0 0 0 0 0.5 0.5 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0

Trisister button 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

sw itch button 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

brake button 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

chassis 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

bumper 1 1 0.5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

baglock 0 0 0.5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

virbration damper 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

rear w heels 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

fornt w heel 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

motor noise absorbant 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

fan noise absorbant 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

electric motor 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

thysister 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

sw itch 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

fan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

cord reel brake 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

cord reel 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

cord w ith plug 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

bag 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 0

filter 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Type Variance Mode V V V C C V C V V C C C C C V C C V V V V V V

FA suction pow er (produce suction) 1 1

FA dirt dollection capacity (collect dirt) 1 1 1

FS Manage electrical connection 1 1 1 1

T Fashion shape 1 1 1 1

CA Filter type 1

Variance Interaction Matrix
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Like the function mapping, variance mode mapping is done in a binary manner; a 

‘1’ is entered if the component corresponds to the variance mode. However, unlike 

the functional mapping, the software does not automatically produce an interaction 

matrix. After mapping variance modes to components the DM must then use the 

module evaluation form in figure 6.7 to establish the interaction matrix.  During 

this process the DM must think carefully about whether or not certain variant 

modes may or may not be integrated into the same module.  This will very much 

depend upon the required level of module mix-and-match needed to create the 

required product family range. Moreover, components that are not affected by any 

variance modes can be grouped and integrated to form common platform modules, 

which can be shared across the product family.    

 

 
Figure 6.7. Interaction evaluation form for variance objective 
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During interaction analysis between each component pair, the variance modes 

affecting each component are displayed in the evaluation form as can be seen in 

figure 6.7. This will help the user determine whether or not the components should 

be combined based upon their response to the variance modes. 

 

For example in figure 6.6, for the vacuum cleaner, the interaction between the 

‘motor’ and the ‘fan’ is given as ‘1’ as they both correspond to the same variance 

mode (i.e. both components provide the suction power variance mode).  Another 

example of a high interaction is between the ‘front wheels’ and the ‘chassis’ - they 

can be integrated into a common module.  The DM may also wish to prevent the 

combinations of certain variance modes so they can not be clustered into the same 

module by using the constraint exists between these components option in the 

evaluation form.  

 

If the user wishes semi-automated interaction analysis of product variance can also 

be done (once all variance modes have been mapped). If this option is used the 

software will automatically allocate interaction scores. Components that respond to 

exactly the same variance modes will be allocated a high interaction score and 

components that are distinctly different (i.e. one component is definitely common 

and one is definitely a variant) will receive a low interaction score. However it is 

argued that the evaluations between two components that are likely to be variant yet 

respond to different variance modes will require expert judgement and so for these 

interactions the software will prompt the user for the interaction score. 

 

As discussed by Martin and Ishii (2000) product variety can take two forms: 

generational variety (future variety based on future customer needs) and spatial 

variety (current variety based on current customer needs). Hence one must think 

carefully about the two types when identifying possible product variance modes.  In 

addition it is argued that product variety can be identified across various product 

domains - the functional, physical and technological. These principles are important 

when generating the variance mode map and will thus be given some further 

discussion next.  
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Functional Domain Variance  
 

One of the main advantages of carrying out a functional decomposition of the 

product/ product family is that it allows the product variety mix to be analysed at a 

higher level of abstraction. For example, after functional decomposition of all 

products in the product family the product functions can be analysed to identity 

common ‘platform’ based functions. These common platforms may not be 

detectable at lower levels of abstraction, such as at the physical component level.  

 

According to Pahl and Beitz (1984) there are three different types of functions that 

can be used to provide the product variety mix. These are variant functions, 

optional functions and common functions.  In this thesis these principles are used 

and expanded upon. 

 

The first type of functions that need to be considered are variant functions. Further 

to Pahl and Beitz’s work, a classification of variant functions has been made into: 

variant solution functions and variant performance attribute functions. Variant 

solution functions are functions that have a number of different technical solutions 

that can be used to provide the function. In figure 6.6 the manage electrical 

connection function is an example of a variant solution function i.e. there is one 

electrical winding mechanism and one mechanical winding mechanism used to 

provide the function. Variant performance attribute functions are functions that 

have the same technical solutions across the product family. However for these 

functions different performance attributes are needed to address different customer 

requirements.  In fact Variant performance attribute functions are somewhat similar 

to the engineering metrics described by Martin and Ishii (2000) in their design for 

variety approach. The provide suction power function in figure 6.6 is an example of 

an identified variant performance attribute function. Ultimately different 

specification motors and fans will be needed to address the different performance 

requirements of the function.   

 



Chapter 6 

Page | 133 

Optional functions are also described by Pahl and Beitz. These are functions that 

are not needed in every product. That is functions of the product range that are not 

needed by every customer. For example, the function indicate dirt collection level 

refers to a sensor and LED, used to alert the user to when the vacuum has low 

suction due to the dirt collection bag being full. This is an optional extra for the 

standard vacuum cleaner model. As these functions are optional they are best 

isolated into separate modules. However if they are required in most products then 

it may be possible to integrate the function with common product platform 

functions.   

 

Lastly, in the design of product families there will of course be common functions. 

For the vacuum cleaner, common functions include ‘provide enclosure’, ‘manage 

movement’ and ‘protect from knocks’. It is possible to integrate these common 

functions to form a core ‘common product platforms’.  

 

Technological Domain Variance  
 

Products often become obsolete due to fast changing technologies or fashion needs. 

These factors should be considered when producing the product variance mode 

plan. If there are any fast moving technologies present in the product, or the product 

is subjected to high fashion needs, then the corresponding components should be 

isolated into a variance module, away from common platform modules. For the 

vacuum cleaner for example, the cover, bumper and handle, will correspond to the 

‘fashionable shape’ variance mode thus separation from other components should 

be considered.  

 

Physical Domain Variance  

 

During variance mode identification the variance needs of the product may already 

be defined at the physical component level.  An example of a physical domain level 

product variance mode would be the different size attributes of the dust bag or 

different colour requirements of certain parts.  
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Outsourcing 
 

The evaluation of the ‘outsourcing’ objective is based upon the outsourcing or in-

sourcing potential of components if placed into the same candidate module. This 

should be done by looking at the capabilities of the suppliers that are currently 

being used, by considering potential new suppliers expertise and the capability of 

the firm’s own resources  For some products there may by high intellectual 

property (IP) content, so certain components may need to be grouped into the same 

module and designed/made in house. The evaluation of the objective must start 

with the user listing all potential suppliers (including the firm’s own capability) and 

mapping each of them to components (as seen in figure 6.8).   

 

 
Figure 6.8. Outsourcing interaction matrix for vacuum cleaner example 
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Cover 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

Handle 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

Lid 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

Trisister button 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

sw itch button 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

brake button 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

chassis 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

bumper 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

baglock 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

virbration damper 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

rear w heels 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

fornt w heel 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

motor noise absorbant 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

fan noise absorbant 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

electric motor 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

thysister 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

sw itch 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

fan 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

cord reel brake 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

cord reel 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0

cord w ith plug 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

bag 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

f ilter 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Supplier
In house 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Supplier B 1 1 1 1 1

Supplier C 1

Supplier D 1 1

Outsourcing  Interaction Matrix
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Figure 6.9.  Interaction evaluation form for outsourcing objective  

 

The evaluation form should then be used (as shown in figure 6.9) to populate the 

interaction matrix. To add the user during evaluation the corresponding supplier 

information for each component is given in the form. 

 

In addition semi-automated evaluation can be done. If this option is selected the 

software will allocate the highest interaction score to two components that have at 

least one common supplier. If the components have distinctly different 

outsourcability (e.g. one should be outsourced whilst the other should be in-

sourced) then the software will automatically allocate the lowest interaction score.   
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Maintenance and Reliability 
 

Evaluation of the maintenance and reliability modularity objective is done in a 

similar way to the variance objective.  But instead of mapping variance modes the 

user must map all maintenance and failure modes. The goal of modularity then 

becomes to group components affected by the same maintenance and reliability 

modes. In is argued that two types of maintenance and failure modes can be 

identified: a) planned and b) potential.   

 

Planned maintenance and failure modes are the known maintenance or 

replacement/upgrade operations that take place at least once during the product’s 

lifecycle. For the vacuum cleaner these include: the replacement of dust bags and 

filters. 

 

Potential failure modes are those that have been identified by means of failure 

modes and effects analysis (FMEA) or design failure modes and effects analysis 

(DFMEA3). If a FMEA or DFMEA has not been done, the functional analysis may 

provide an alternative method for potential failure mode analysis. In this way the 

function map can be used to identify possible product failure modes. For example 

for the vacuum cleaner the function ‘provide suction power’ may be the primary 

cause for a potential ‘no suction’ failure mode. A number of example maintenance 

and failure modes and their mapping to components is shown in figure 6.10 for the 

vacuum cleaner.   

 

 

                                            
3 DFMEA is a more simplified method that can be used at the early conceptual design stage (Kapur, 
1988). 
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Figure 6.10. Maintenance and reliability interaction matrix for vacuum cleaner 

example 

 

Once all maintenance and failure modes have been mapped to components the 

evaluation form (as shown in figure 6.11) must be used to populate the interaction 

matrix. The maintenance and failure modes affecting each of the two components is 

presented to the user during evaluation to make the process more straightforward.   
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Cover 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Handle 0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Lid 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.5

Trisister button 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

sw itch button 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

brake button 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

chassis 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

bumper 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

baglock 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0.5

virbration damper 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

rear w heels 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

fornt w heel 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

motor noise absorbant 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

fan noise absorbant 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

electric motor 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

thysister 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

sw itch 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

fan 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

cord reel brake 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

cord reel 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

cord w ith plug 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

bag 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0.5

filter 0 0 0.5 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0.5 1

Type Failure Mode
M Replace Bag 1 1 1

M Replace f ilters 1 1

F No suction 1 1 1 1 1 1

F Not w inding cord 1 1 1 1

F Filter blocked 1

Maintenance and reliability Interaction Matrix
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Figure 6.11. Interaction evaluation form for ‘maintenance and reliability’ objective 

 

Semi-automated evaluation can also be done if required. If this option is selected 

the software will allocate the highest interaction score if the two components have 

exactly the same response to maintenance and failure modes. If the components 

have distinctly different responses (e.g. one component is likely to need 

replacement whilst other will not) then the software will automatically allocate the 

lowest interaction score.  If two components respond to a maintenance or failure 

mode, but respond to different ones then the user will be promoted to evaluate these 

interactions as expert judgment is deemed necessary. 

 

There is another important consideration for the maintenance and reliability 

objective that has to do with the number of modules. If one produces a modular 

structure that contains a large number of small modules then the costs of replacing 
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worn-out/ failed modules would obviously be lower than in the case of a module 

architecture with a small number of large modules. However with a larger number 

of modules the disassembly costs may be higher. So if maintenance and reliability 

are considered important for the product then the user may end up having to trade-

off the two factors (coupling versus reliability and maintenance) when choosing a 

suitable modular architecture. 

 

 

Recycling and Reuse 
 

It can be argued that to better improve the end-of-life management of products both 

recycling and reuse should be used when developing a modular product structure. 

Hence for this research a combined ‘recycling and reuse’ modularisation objective 

has been developed.  The evaluation form can be seen in figure 6.12. 

 

Before evaluation begins however, one must think hard about the overall end-of-life 

scenario for the product and what is the overall benefit that modularisation of the 

product can provide.  Questions that should be asked are what type of recycling and 

reuse will the product undergo? Does the product contain valuable material making 

manual disassembly to module level worthwhile? Must certain components be 

removed prior to recycling to conform to environmental legislation? Or are there 

certain high value components/modules that can be removed and reused?   
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Figure 6.12. Interaction evaluation form for recycling and reuse objective 

 

To start the evaluation the user should create an end-of-life component map by 

entering whether the components are: a) reusable; b) recyclable; or c) contains 

hazardous/hard to recycle materials). This mapping is done in a binary manner like 

the previous objectives (example shown in figure 6.13). Note this approach allows 

for the possibility that a component can be both reusable and recyclable.  

 

Once the end-of-life map has been created the interaction evaluation form should 

then be used to populate the interaction matrix. During the interaction analysis of 

component pairs the software will highlight the preferred end-of-life option for 

each component pair to make the evaluation easier. 
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Figure 6.13. Recycling and reuse interaction matrix for vacuum cleaner example 

 
Like the previous objectives a semi-automated evaluation can also be done if 

required. However semi-automated evaluation is somewhat more limited for this 

objective. It is argued that expect judgment is needed to evaluate whether or not 

two components can be recycled or reused together in the same module – which  

may depend upon a number of factors such material homogeneity and suitability for 

reuse. Therefore the software will only automatically evaluate interactions between 

components that have distinctly different end-of-life needs. For example, one 

component  needs disposal whilst the other can be recycled.   
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Cover 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0

Handle 0 1 1 0 0 1 0.5 0.5 0.5 0.5 0.5 1 0 0 0 0 0 0 1 1 1 1 1

Lid 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1

Trisister button 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

sw itch button 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

brake button 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1

chassis 0 0.5 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1

bumper 0 0.5 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1

baglock 0 0.5 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1

virbration damper 0 0.5 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0

rear w heels 1 0.5 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1

fornt w heel 1 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1

motor noise absorbant 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0

fan noise absorbant 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0

electric motor 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

thysister 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

sw itch 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

fan 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

cord reel brake 1 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0

cord reel 1 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 0

cord w ith plug 1 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 0

bag 1 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 0

filter 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1

EOL Option
Reuse 1 1 1 1 1 1 1 1
Recycle 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Dispose 1 1 1

Recyclingand reuse Interaction Matrix
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6.5. Step 3: Formation of Modular Architectures 

 

In this step of the framework the specially designed multi-objective grouping 

genetic algorithm (MOGGA) is applied to find a whole set of optimal (alternative) 

modular architectures through manipulation of the interaction data in the various 

matrices. In a single optimisation run the MOGGA is able to produce a whole set of 

Pareto-optimal solutions that represent a good coverage of the trade-off surface i.e. 

a range of solutions, each with different combinations of objective achievements.  

The user can set up a number of parameters before running the algorithm as can be 

seen in figure 6.14. An important point that must be noted is the preference rate 

setting. If set above zero then the generated Pareto-optimal set will be directed 

towards the preferences set in the ‘modularisation objective hierarchy’ as was 

discussed in previous chapters. This may or may not be desirable for the user. 

 

 

 

 
Figure 6.14. The constraints and parameter settings for the MOGGA 
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6.6. Step 4: Analysis of modular Architectures 

 

To support the solution exploration stage a product modularisation objective 

hierarchy has been developed (as seen in figure 6.15). As was discussed in chapter 

5 the hierarchy is based upon the principles of the analytical hierarchical process 

(AHP).  

 
Figure 6.15. The modularisation objective hierarchy 

 

 

By changing the preferences at the various levels of the hierarchy corresponding 

solutions can be visualised in real time. These corresponding ‘best’ solutions are 

visualised using radar plots. By exploring the solutions in this manner the decision 

maker is then able to make a more informed decision on the most suitable modular 

structure for the product.   
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For example, figure 6.16 shows the four best solutions corresponding to the current 

preferences in the hierarchy. In this example, the DM has given a greater preference 

to strategic modularity and in particular the design and production phase. 

 

 
Figure 6.16. Corresponding radar plots of ‘best’ solutions for design and 

production phase preferences 

 

During any stage of this exploration process the DM can choose to make one of the 

solutions the ‘benchmark’ solution which can then be compared to other solutions 

to explore the trade-offs. The benchmark solution is displayed as the red solution in 

the radar plots. 

 

Several macros have also been written to provide a visualisation of the modular 

structure in matrix format, such that analysis and redesign/ improvement can be 

made easier. In figure 6.17 an optimal modular structure for the vacuum cleaner is 

shown. Combinations of the module independence and module coherence based 

objectives can be displayed at the same time.   
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Figure 6.17. Analysis of the chosen modular solution for the vacuum cleaner. 

 

In figure 6.17 the loose coupling (module independence) and maintenance and 

reliability objectives (module coherence) are shown. Module independence 

(between module) interactions can be seen as the various shades of blue (the 

stronger the interaction the darker).  The module coherence (within module) 

interactions are seen as the tones between orange and green, with the orange 

colours denoting problem interactions (that should be improved) and green colour 

showing less problematic interactions.  In addition to the main interaction matrix 

the rows underneath the matrix (the maintenance and failure modes here), may also 

highlight modules that may need further consideration/ redesign i.e the modules 
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that may need to be removed for maintenance and replacement. These modules 

should be placed first in the disassembly sequence for ease of removal, and/or the 

coupling between these modules should be reduced if possible. For example, 

modules 6 and 7 should be made easy for disassembly and re-assembly as they are 

likely to need maintenance/ replacement during the product’s life. 

 

6.7.   Conclusions 

 

This chapter has presented the software implementation of the developed CAMO 

framework. The major novelty of the framework is that it presents a true multi-

objective approach to product modularisation. This is achieved by the coding of a 

state-of-the art MOGGA and through the production of evaluation guidance and 

software evaluation forms for each of the six indentified modularisation objectives. 

This ultimately provides a more holistic modularity optimisation framework.   
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CHAPTER 7 

7. Algorithm Testing 
 

7.1. Introduction 

 

In this chapter the MOGGA’s performance will be tested to verify that it is capable 

of finding optimal solution sets for the modularisation problem. Firstly, a number 

of diversity ranking schemes will be tested. Secondly, the chapter will look at 

performance compared to an aggregated objective approach. Thirdly, the influence 

of the mutation operator will be looked at. Lastly, the effects of including user 

defined objective preferences will be evaluated. 

 

For the various tests the optimisation of a vacuum cleaner example will be used. It 

must be stated that the purpose of this chapter is to highlight the effectiveness of the 

algorithm in dealing with a multi-objective combinatory optimisation problem and 

not to assess the actual modularisations of the vacuum cleaner.   

 

7.2. Metrics for Measuring the Performance of the MOGGA 

 

To test the performance of diversity ranking schemes and the influence of the 

mutation operator, the solution sets which they generate can be compared and 

contrasted using some of the commonly used multi-objective algorithm 

performance metrics. There are generally two properties that are measured: 

 

a) the level of convergence towards the Pareto-front.  

b) the level of diversity or spread along the Pareto-front.  

 

There are numerous performance measures that can be used. Knowles et al (2006) 

performed a comparison of which measures are the most suitable. They recommend 

the use of the hypervolume measure, the R-metric and the Epsilon indication. 

However that later two of these metrics require a reference set of established 
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Pareto-optimal points and in the case of the test problem these points are unknown. 

Thus only the hypervolume measure will be used in the analysis of the algorithm. 

 

The Hypervolume Measure 
 

Perhaps the single most popular and useful means of assessing the quality of 

solution sets is to calculate the hypervolumes of the solution space that each set 

covers. The hypervolume is the area of the solution space that is covered by points 

of the Pareto-optimal set, as illustrated in figure 7.1. The solution set with the 

largest hypervolume coverage indicates the best performing algorithm. The 

hypervolume measure has in fact become an almost standard performance indicator 

within the field of MOGAs. This is due to the fact that the hypervolume provides 

an effective means of measuring both the level of convergence and diversity 

(spread) of solutions. 

 
Figure 7.1. The hypervolume measure for example two-objective problem 

 

For calculation of the hypervolume, the coding has been taken from the Pisa GA 

optimisation suite from Zilter’s research group web site (Pisa source code, 2010). 

With this code the lower the measure the better the performance of the algorithm 

i.e. the greater the hypervolume (solution space) the solution set covers. 
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7.3. Comparison of Different Diversity Ranking Methods 

 

The algorithm has been uniquely designed for the multi-objective product 

modularisation problem and therefore it is difficult to make a direct comparison to 

well known MOGAs such as NSGA-II or SPEA2. These algorithms will of course 

perform poorly for the product modularisation problem as they are not designed for 

combinatory optimisation problems i.e. they do not have suitable genetic operators 

and encoding schemes (they are not group based). Hence for practical reasons the 

raw NGSA-II or SPEA2 will not be directly compared to the algorithm developed 

in this research.  However comparisons will be made with the diversity ranking 

procedures of these algorithms. To ensure a good coverage of the search space the 

diversity ranking procedure is a vital component of a MOGA. Especially for a 

‘many objective’ problem, as most solutions in the Pareto-set will become locally 

non-dominated as the number of objectives increases (Corne and Knowles, 2007; 

Ishibuchi et al, 2008a).  

 

To compare the various diversity measures the developed MOGGA has been 

modified to use different diversity ranking schemes. In total four different diversity 

ranking procedures have been coded and are given in appendix 1. The first is the 

‘original crowding distance’ diversity ranking of the NSGA-II. The second is the 

‘modified crowding distance’ ranking. The third is the ‘k nearest neighbour’ 

approach of the SPEA2 and lastly the ‘Average Ranking’ method outlined by 

(Corne and Knowles, 2007).  

 

With the crowding distance measure extreme solutions are assigned a higher fitness 

(infinity value) so they remain in the population during ranking. However, this 

means that some solutions that are not globally optimal may end up remaining in 

the population, even when better solutions (better in the majority of objectives) are 

found. Thus, a modified version of the crowding distance, that assigns a suitably 

lower fitness value (not infinity) to extreme solutions, has also be coded.  
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As can be seen in table 7.1 the results of the hypervolume test indicate there is no 

significant difference in the different diversity methods, apart from the average rank 

approach which shows a slightly poorer performance.  These results differ from the 

results reported by (Corne and Knowles, 2007), who reported that the average rank 

produced better results. This is because the diversity measure in their work was the 

primary mechanism for pushing the search space towards more optimal points 

along the Pareto-front. 

 

However, with the MOGGA the diversity measure merely serves to ensure that 

only better solutions are kept during the population update procedure. The push 

towards more new optimal points is done with the local search and the random 

vector search implemented in the MOGGA meaning that new areas of the search 

space are constantly being explored. In fact, these results are in agreement with the 

recent works of  Ishibuchi et al (2008b) who integrated a local search heuristic with 

the NSGA-II and reported an improvement of the performance of the algorithm 

when dealing with many objective problems.    

 

Table 7.1.  Hypervolume results for optimisation runs with different diversity 

measures at population size of 50 and generation size of 5000 

 
 

For the developed MOGGA it can be concluded that the K-nearest neighbour 

method of SPEA2 is the best approach as it is slightly simpler to code and fits 

better with the existing coding used for the calculation of the dominance counts.  

 

 

Run 
number

Crowding distance 
(original NSGA-II)

Crowding distance 
(modifiedl)

K-nearest 
neighbour (SPEA-2)

Average 
rank

1 -0.71 -0.71 -0.71 -0.67
2 -0.70 -0.71 -0.70 -0.67
3 -0.71 -0.71 -0.71 -0.67
4 -0.72 -0.70 -0.71 -0.69
5 -0.70 -0.70 -0.70 -0.68
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7.4. Influence of Mutation Operator  

 

The mutation operator is used to introduce an element of randomness to the search 

process. There are numerous ways in which the mutation operator could be 

designed as outlined by Falkenauer (1998). To ensure it is consistent with the local 

search reallocation heuristic that has been advocated in this research, the mutation 

operator works in the following way and is applied straight after mating.  It works 

by eliminating a small percentage of module groupings and then re-allocating the 

missing components to new/existing modules.  

 

Step 6) Randomly select a number of modules. The number of modules selected 

must not exceed one quarter of modulemax.. 

Step 7) Delete all components occurring in the randomly selected groups. 

Step 8) Randomly select a missing componentn and temporarily allocate to first 

modulen=1 and evaluate the fitness of the module groupings according to 

the random weighted scalar fitness function RWfitness used during 

mating. 

Step 9) Temporarily allocate the selected missing componentn to the next 

modulen+1 and again evaluate using random weighted scalar fitness 

function RWfitness. 

Step 10) Repeat step 2 until modulen+i reaches modulemax. 

Step 11) Allocate the selected componentn to the modulen which showed the best 

fitness. 

Step 12) Repeat steps 1 to 4  until each missing component is allocated to a 

module. 

 

As can be seen by the results in table 7.2 the mutation operator does not make any 

difference to the performance of the MOGGA according to the hypervolume 

metric. Thus it can be concluded that the mutation operator is not necessary for the 

MOGGA. In fact, it is quite logical that this is the case.  For single objective 

algorithms the operator is of course important to introduce a level of randomness to 

the search and prevent it converging on an optimum too soon.  However with the 
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multi-objective approach there are several mechanisms in place to ensure that 

diversity is maintained and the whole point of the multi-objective approach is to 

maintain a whole set of different solutions. Thus there is plenty of different genetic 

material to choose from during the mating operation and thus new solutions will 

continue to be produced without the need for a mutation operator.  

 

Table 7.2. Hypervolume results for optimisation runs with mutation and no 

mutation at population size of 50 and generation size of 5000 

 

 
 

7.5. Comparisons to Aggregated Objective Approach  

 

In this section the MOGGA will be compared to an aggregated objective 

optimisation (objectives are weighted and aggregated to form a single optimisation 

goal) method using dominance rank and hypervolume measures. Because the 

search space is large with the ‘many’ objective modularisation problem there is a 

risk that some of the solutions produced by the MOGGA may not be quite as 

optimal as the single solutions produced with a traditional aggregated objective 

algorithm. This is because the aggregated objective algorithm is focussing on only 

one search region at a time as opposed to exploring multiple search regions 

simultaneously. To provide the user with optimal product architectures it is 

important that the MOGGA is able to find the same or at least similar Pareto-

optimal points as an aggregated objective approach is able to find.  

 

What is of uppermost importance is that the reference solutions produced by the 

aggregated objective algorithm do not dominate (better) the solutions produced by 

Run number Mutation operator No mutation operator
1 -0.71 -0.71
2 -0.70 -0.70
3 -0.71 -0.71
4 -0.71 -0.72
5 -0.71 -0.71
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the MOGGA as this will indicate the MOGGA being a weaker optimisation 

algorithm.  

 

To make this test, a number of modularity optimisations have been performed using 

an aggregated objective algorithm to produce a set of reference solutions by 

applying different weight combinations for the objectives and re-running the 

algorithm (population size of 50 and generation size of 5000). The reference set 

will then been compared to the solution set produced by the MOGGA. If the 

comparison solution is worse than a reference solution in all objectives then it is 

said to be dominated. Likewise if any of the MOGGA generated solutions are 

clearly dominating solutions in the reference set then the MOGGA can be seen to 

be outperforming the aggregated algorithm. 

 

The aggregated objective algorithm used in the test has the same group based 

encoding scheme and generic operators as described in the previous chapter and 

uses the mutation operator described in the previous section. The fundamental 

difference between this algorithm and the MOGGA is that only one single solution 

is produced in each run, rather than a Pareto-set.  

 

Figure 7.2 shows the first 10 (out of 50) reference solutions that have been 

generated using the aggregated objective algorithm and the first 10 of the solutions 

produced by the MOGGA. A macro has been written to do the dominance 

comparisons between the two sets. The total number of MOGGA generated 

solutions that are dominated by the reference set is shown along with the total 

number of reference solutions that are dominated by MOGGA solutions. In the case 

of figure 7.2 no solution in the reference set clearly dominates any of the solutions 

produced by the MOGGA. Neither do any of the MOGGA solutions dominate the 

reference solutions. 
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Figure 7.2. Comparison of aggregated algorithm generated reference set versus a 

Pareto-optimal set produced by MOGGA  

 

A further 10 dominance comparisons have been  carried out with different 

MOGGA sets (results seen in table 7.3) and in only one test (out of 10) did any of 

the reference set solutions dominate the solutions produced by the MOGGA. This 

shows that the aggregated objective does not outright outperform the MOGGA. 

 

 

 

 

20 Reference Solutions 1 2 3 4 5 6 7 8 9 10

Coupling 0.88 0.90 0.77 0.82 0.80 0.78 0.81 0.82 0.79 0.82

Functions 0.90 0.75 1.00 0.82 0.85 0.82 0.80 0.92 0.92 0.85

Variety 0.68 0.55 0.62 0.82 0.92 0.97 0.60 0.62 0.67 0.60

Outsourcing 0.77 0.80 0.78 0.86 0.93 0.91 0.98 0.93 0.93 0.85

Maintenance and Reliability 0.66 0.61 0.76 0.84 0.84 0.90 0.74 0.88 0.92 0.77

Reuse and recycling 0.77 0.80 0.95 0.93 0.80 0.86 0.84 0.96 0.90 0.99

Solution Dominated by: _ _ _ _ _ _ _ _ _ _

Total number of solutions 
reference set dominated by:

0          

Closest Euclidean distance 0.4863 1.38 0.45 0.33 0.49 0.4 1.25 0.39 0.45 0.74

Closest  comparison Solution 16 16 3 14 11 11 2 10 2 18

 Comparison set 1 2 3 4 5 6 7 8 9 10
Coupling 0.77 0.81 0.77 0.73 0.68 0.71 0.79 0.86 0.76 0.84

Functions 0.90 0.92 1.00 0.72 0.77 0.75 0.95 0.82 0.95 0.92
Variety 0.79 0.63 0.58 0.85 0.87 0.98 0.74 0.82 0.76 0.60

Outsourcing 0.80 0.89 0.80 1.00 0.98 0.97 0.75 0.85 0.64 0.90
Maintenance and Reliability 0.81 0.87 0.72 0.92 0.85 0.94 0.74 0.75 0.72 0.83

Reuse and recycling 0.96 0.88 0.88 1.00 0.78 0.98 0.82 0.75 0.79 0.95

Solution Dominated by: _ _ _ _ _ _ _ _ _ _

Total number of solutions 
comparison  set dominated by:
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Table 7.3. Comparison of aggregated algorithm generated reference set versus a 

Pareto-optimal set produced by MOGGA  

 
 

However, it may still be argued that the reference set generated by the aggregated 

objective algorithm may still provide a better Pareto front (optimal solution space) 

coverage. Thus the hypervolumes of each of the previously generated MOGGA 

solution sets has also been calculated and compared to the reference set (see table 

7.4). These results show that in fact the solutions produced by the MOGGA are 

comparable to the reference set generated by the aggregated objective.   

 

Table 7.4. Hypervolume results for MOGGA sets (population size of 50 and 

generation size of 5000) and Reference set. 

 

 

MOGGA set 
number

Number of solutions 
Reference set dominates

Number of solutions 
MOGGA set dominates

1 1 0
2 0 1
3 0 0
4 0 0
5 0 0
6 0 1
7 0 0
8 0 0
9 0 0
10 0 0

Algorithm Hypervolume
Reference set -0.72

MOGGA set 1 -0.71

MOGGA set 2 -0.73

MOGGA set 3 -0.70

MOGGA set 4 -0.71

MOGGA set 5 -0.70

MOGGA set 6 -0.72

MOGGA set 7 -0.69

MOGGA set 8 -0.71

MOGGA set 9 -0.70

MOGGA set 10 -0.72
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These two tests provide verification of the effectiveness of the MOGGA at finding 

a good set of Pareto-optimal solutions.  Furthermore, it has also confirmed that the 

production of the reference set (i.e. coverage of optimal solution space) with the 

aggregated objective algorithm was time consuming and tedious. In contrast the 

MOGGA algorithm is simply left to run once and will produce a suitable set of 

Pareto-optimal solutions that can be further explored by the user to conduct a 

‘what-if’ scenario analysis.  

 

7.6. Effects of Preference Weighting 

 

Lastly this chapter will also look at the preference weighting effects on the 

production of Pareto-optimal sets. The point here is for the DM to be able to specify 

some loose preferences before the search, in order to narrow down the search area 

and present the DM with a more focussed Pareto-optimal set. The DM may wish to 

use this approach only after an initial exploration of the solution set (without any 

preferences set). Then once better informed about the compromises that will be 

needed, the preferences can be set to produce a more refined set for scenario 

analysis.  

 

The point of this section is thus to explore the ability of the algorithm to produce 

Pareto-optimal solution sets that match rough user preferences.  This has been done 

by making visual comparisons via box plots. Box plots have been advocated by 

numerous researchers (Zitzler and Thiele, 1999, Deb, 2001) as a suitable means to 

visualise the objective ranges of solutions in order to make rough comparisons 

between the Pareto-optimal sets produced by MOGAs.    

 

The results of a number of tests, where different preferences have been used can be 

seen in figures 7.3 - 7.6. In these figures the preference weights (taken from the 

objective hierarchy) are shown in the bottom right corner of each box plot graph. 

As can be seen the range of objective values and mean values of the solution set 

shift to reflect the objective preferences given in each case.  For example, in figure 
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7.3 the preferences have been placed on the technical modularity so it can be seen 

that the box plot ranges are higher for the loose coupling and functional binding 

objectives, although at the expense of lower range values of the other strategic 

modularity objectives.  

 

Figure 7.3. Box plots showing a preference placed on technical modularity 
 
 

 
 

Figure 7.4. Box plots showing equal preference placed on technical and strategic 
modularity 
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Figure 7.5. Box plots showing a preference placed on strategic modularity 

 

 

 
Figure  7.6.  Box plots showing a preference placed on functional binding and 

variance objectives 
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What is clear from these box plot visualisation tests is that the preference weighted 

scheme is clearly working and in each case a more focussed set of Pareto-optimal 

solutions are being generated that reflect the user based preferences given.  

7.7. Conclusion  

 

In order to be confident that the modular architecture solutions generated by the 

algorithm are as optimal as possible the performance of the MOGGA has been 

tested in this chapter. 

 

As the diversity measure is considered important for ‘many’ objective problems a 

number of different measures have been tested and the results confirm that there is 

no significant difference between them. The K-nearest neighbour approach of 

SPEA2 will be adopted as it fits best with the code of the developed MOGGA. 

 

The influence of the mutation operator has also been tested and the results show 

that there is no difference in performance of the MOGGA when using the mutation 

procedure highlighted in this chapter. It is thus concluded that the mutation operator 

will not be used in the MOGGA, as it will add extra time to the optimisation run, 

with no benefit gained.  

 

The MOGGA has also been tested against a traditional aggregated (weighted) 

objective algorithm to verify that the MOGGA is able to find Pareto-optimal 

solutions that are as good (or similar) to the single solutions generated by the 

algorithm. Results confirm that the MOGGA is indeed capable of finding solutions 

that are very close to the reference solutions produced by the aggregated algorithm 

and most importantly the tests confirm that the reference solutions are not 

dominating (better in all objectives) the solutions generated by the MOGGA.   

 

Lastly it has been seen that the preference based ranking can be successfully 

integrated into the MOGGA, which can be used to produce a more focused set of 

Pareto-optimal solutions should the user wish. This may be particularly useful to 
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narrow the search space when performing modularisation of a large complex 

product.  
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CHAPTER 8 

8. Case Study 
 

8.1. Introduction 

 

The chapter will present a case study of an automotive climate control system. The 

various steps of the CAMO framework will be applied to the climate control system 

to demonstrate the application of the approach and to show that alternative modular 

architectures can be found by looking at modularity from a more holistic lifecycle 

viewpoint.  

 

8.2. Overview of Car Climate Control System 

 

The car climate control system is a fairly complex system that is comprised of 

various technologies that must be split across numerous geometric locations within 

the car. This makes the climate control system an ideal case example to assess the 

potential of the developed modularity framework. The case study is in fact based 

upon the works of Pimmler and Eppinger (1994) who look at the clustering of 

highly interactive components to improve product development.  

 

The data used for evaluation of the six modularisation objectives comes from a 

number of sources. The information on the functional and physical interactions 

between components has been taken from Pimmler and Eppinger’s case study and 

used as a basis for the coupling objective. The product variety information has been 

taken, in part, from a case study performed by Hata et al (2001). Outsourcing 

information has been gathered by online research. Recycling and reuse objective 

scores have been based upon vehicle teardown information provided by Jaguar. 

Lastly the functional decomposition and the maintenance and reliability 

information has been generated by the author using best judgement.  
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8.3. Framework Steps Applied to Automotive Climate Control System 

 

Step 1:Decomposition Analysis 
 

The physical decomposition of the automotive climate control system follows 

Pimmler and Eppinger’s work, who decompose the system into 16 main functional 

components. This breakdown considers the main functional components only. 

These components can be thought of as the chosen technical solutions that have 

arisen from the conceptual design phase.  The different components are listed in 

figure 8.1, the front end of the systems can be seen in figure 8.2 and an example of 

the overall system within a car can be seen figure 8.3. 

 

 
Figure 8.1.  Main components of the automotive climate control system 

 

 
Figure 8.2. Diagram of automotive climate control system (Pimmler and Eppinger, 

1994) 

1 Air Controls 9 Compressor
2 Refrigeration Controls 10 Accumulator
3 Sensors 11 Evaporator Core
4 Heater Hoses 12 Heater Core
5 Command Distribution 13 Blower Motor
6 Radiator 14 Blower Controller
7 Engine fan 15 Evaporator Case
8 Condenser 16 Actuators
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Figure 8.3. Diagram of car climate control system (taken from Behr, 2010) 

 

The overall function of the system is to control the interior temperature of the car 

and consists of a combined air-conditioning (AC) and heater system. The AC side 

consists of a compressor, accumulator, condenser and evaporator core and uses the 

basic principles of the refrigeration cycle: i.e. the compressor pressurises a 

refrigerant gas, causing the gas to heat up. The compressed gas is then passed to the 

condenser and cooled by heat exchange with the exterior air, and the gas condenses 

to a liquid. The liquid is then pumped to the evaporator core, where the pressure 

drops and the fluid evaporates. The evaporation of the gas absorbs heat from the 

surrounding air, and the surrounding air cools off. The gas is then returned to the 

compressor. 

 

To provide heat, there are two main components: a heater core and heater hoses. 

Heater hoses simply take heated liquid from the engine and pass it to the heater 

core which heats up the surrounding air adding heat to the system.  

 

As seen in figure 8.2 the evaporator core, heater core and blower motor are housed 

in the evaporator case which is positioned in the front end of the engine bay.  Air is 

drawn from the car using the blower motor and passed into the evaporator case. 
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Actuator controlled flaps then direct air across the evaporator core and heater core, 

adding or removing heat from the system. The heated/ cooled air is then blown 

back into the car.  

 

Temperature is controlled by the refrigeration controls, air controls and sensors. 

These components, via the command distribution, send control signals to the 

compressor, actuators and blower controller. This, in turn, will increase/ decrease 

refrigeration by changing the compressor speed, will change the amount of air 

directed across the evaporator and heater core by adjusting the actuator position and 

will increase/ decrease air flow via the blower motor speed.   

 

As well as definition and identification of the physical components, in this step of 

the framework the main product functions are also found. The overall function of 

the automotive climate control system is to ‘control temperature of car interior’ 

which has been broken down into further sub-functions and mapped to physical 

components as seen in figure 8.4. Following the ideas presented in chapter 5, the 

idea is to identify functions at a higher level than that of the physical components.  

 

 
Figure 8.4. Main product decomposition matrix for the automotive climate control 

system showing functions mapped to components  
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Decomposition Matrix
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The resulting functional interaction matrix can be seen in figure 8.5. If two 

components contribute to the same function a value of 1 is deduced by the software 

and input into the corresponding position in the matrix. For example the heater hose 

and the heater core are both highly affected by the function ‘provide heat’ so 

receive a ‘1’ interaction score. 

 

 
Figure 8.5. Functional interaction matrix for the automotive climate control system 
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Refrigeration Controls 1 1 1
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Heater Hoses 1 1

Command Distribution 1 1 2 2 1

Radiator 1 1

Engine fan 1 1

Condenser 1 1 1 1

Compressor 1 1 1 1

Accumulator 1 1 1 1

Evaporator Core 1 1 1 1

Heater Core 1 1

Blow er Motor 1

Blow er Controller 1 1 1 1

Evaporator Case 2 1
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Functions
Cool engine 1 1

Produce heat 1 1
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produce airf low 1

control airf low 1 1 1 1

control temp 1 1 1

mix cold/hot air 1 1

provide enclosure 1

Function Interaction Matrix
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Step 2: Interaction Analysis  
 

The second step of the case study is to populate the interaction matrix by evaluating 

all the relevant modularity objectives.   

 

Loose Coupling 
 

Because it is assumed that the design will be in the conceptual stages the basic 

coupling interactions are used.  The coupling relationships between the components 

of the automotive climate control system can be seen in figure 8.6 and are based 

upon the physical and functional interactions of Pimmler and Eppinger’s work.  

 

 
Figure 8.6.  Coupling interaction matrix for the automotive climate control system 

 

For example, according to Pimmler and Eppinger, there is a strong physical 

relationship between the blower motor and the evaporator case as well as a 
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Refrigeration Controls 1 0.3 0.1 0.3

Sensors 0.4 1 0.3

Heater Hoses 1 0.3

Command Distribution 0.4 0.3 0.3 1 0.3 0.3 0.3 0.3 0.3

Radiator 1 0.7 0.7

Engine fan 0.3 0.7 1 0.7

Condenser 0.7 0.7 1 0.3 0.5

Compressor 0.1 0.1 0.3 0.3 1 0.4 0.3

Accumulator 0.3 0.4 1 0.4

Evaporator Core 0.5 0.3 0.4 1 0.2 0.5

Heater Core 0.3 1 0.5

Blow er Motor 0.3 0.2 1 0.7 0.4

Blow er Controller 0.1 0.3 0.7 1 0.2

Evaporator Case 0.5 0.5 0.4 0.2 1 0.2

Actuators 0.1 0.3 0.2 1

Coupling Interaction Matrix
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functional interaction – material flow (air flow) between the components, and so 

based on the interaction form the interaction score of 0.7 is entered into the 

corresponding position in the matrix.  

 

There are a number of geometric constraints that have been defined as can be seen 

in figure 8.7. These hard constraints are defined because the various components of 

the automotive climate control system have to be split across different geometric 

locations. In this interaction matrix if a ‘1’ exists between components then a 

constraint exists between them and they will not be grouped into the same module. 

 

 
Figure 8.7.  Constraint interaction matrix for the automotive climate control system 
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Refrigeration Controls 1 1 1 1

Sensors 1 1 1 1

Heater Hoses

Command Distribution 1 1 1 1
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Engine fan 1 1 1 1 1 1 1 1 1 1 1

Condenser 1 1 1 1 1 1 1 1 1 1 1

Compressor 1 1 1 1 1 1 1 1 1 1 1 1 1

Accumulator

Evaporator Core 1 1 1 1

Heater Core 1 1 1 1

Blow er Motor 1 1 1 1

Blow er Controller 1 1 1 1

Evaporator Case 1 1 1 1

Actuators 1 1 1 1
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Variance  
 

A typical producer of automotive climate control systems will have contracts with 

various car manufacturers and so will have to produce many different variants for 

different car models - inevitably there will be a large number of different 

component variants needed. However, there will be certain components that can be 

standardised and used across multiple car models. The common components should 

be grouped and integrated into common product platforms and variant components 

kept as more flexible variant modules to make the design, manufacture and 

assembly process more efficient.   

 

Firstly the variant modes must be analysed. The various variance modes and their 

mapping to the components can be seen in figure 8.8. Some of the variety modes 

have been taken from the case study done by Hata et al (2001) – a case study on 

part of an automotive climate control system front end unit produced by Denso.  

According to Hata a number of components can be defined as variants. These 

variants are needed to enable the product to ‘fit’ numerous car models, and are the 

heater hoses and connectors (command distribution) and the evaporator case. 

According to Hata et al (2001) the heater core and evaporator core are most likely 

to become common components probably due to the relative high cost of 

manufacture.  Hata’s work also discusses the need for manual and automatic 

versions of the product. That is, there will be two different product platforms for the 

climate control system. To provide the different functionality required for each 

product platform there will be different functional components (technical solutions) 

needed. However, there will be certain functions (and associated physical 

components) that will be common to both of the product platforms and should be 

kept separate from the variants so they can be shared. To identify these common 

functions it is of course necessary to then define the variant functions that will 

provide the different models’ functional requirements. These variant functions have 

been identified as: ‘control airflow’, ‘control temp’ and ‘mix hot/cold air’, which 

can be seen in the interaction matrix in figure 8.8. 
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In the real world application of the CAMO framework a modularisation of both the 

manual and automated version of the product will be needed.  In this case study it is 

assumed that the product is the automated version.  

 

 

 
Figure 8.8. Variance interaction matrix for the automotive climate control system 
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Refrigeration Controls 1 1 1 0 0.5 0 0 0 0 0 0 0 0 1 0 1

Sensors 1 1 1 0 0.5 0 0 0 0 0 0 0 0 1 0 1

Heater Hoses 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Command Distribution 0.5 0.5 0.5 0 1 0 0 0 0 0 0 0 0 0.5 0 0.5

Radiator 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0

Engine fan 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0

Condenser 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0

Compressor 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0

Accumulator 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0

Evaporator Core 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0
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Blow er Motor 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0

Blow er Controller 1 1 1 0 0.5 0 0 0 0 0 0 0 0 1 0.5 1

Evaporator Case 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 1 0.5

Actuators 1 1 1 0 0.5 0 0 0 0 0 0 0 0 1 0.5 1

Type Variance mode V V V V V C C C C C C C C V V V

Component Hose length 1

Component Command distribution Length 1

Component Evaporator case size 1

Function control airf low  (manual/ auto models) 1 1 1 1

Function control temp  (manual/ auto models) 1 1 1

Function mix cold/hot air  (manual/ auto models) 1 1

Variance Interaction Matrix
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Outsourcing  
 

For the outsourcing objective the evaluations have been deduced based upon 

research into current automotive climate control system design and production. It 

has been found that current practice in the automobile industry is to outsource the 

complete automotive climate control system to a tier 1 supplier, who will design 

and manufacture it according to the car manufacturer’s specifications. Tier one 

suppliers that provide automotive climate control system systems include Denso, 

Visetion and Behr. These suppliers then outsource the design and production of 

certain automotive climate control system components to their own partner 

suppliers. Although the information on which components are outsourced to which 

supplier is not available, some sensible assumptions have been made in order to 

score each component for the outsourcing objective.  For example the design and 

production of the electronic control system, (the air and refrigeration controls, the 

command distribution and the sensors and blower controller) is highly likely to be 

outsourced to a company that specialises in control systems. Hence during the 

design of a new automotive climate control system all control based components 

should be in the same module, which will then be designed and produced by the 

control system company.  This can be verified by looking at Behr’s automotive 

climate control product development partnerships. Behr use Behr-Hella 

Thermocontrol (BHTC) to provide their control systems. The mapped outsourcing 

needs can be seen in figure 8.9. 
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Figure 8.9. Outsourcing interaction matrix for the automotive climate control 

system 

 
 

Maintenance and Reliability 
 

For this objective the author’s best judgements have been made. The potential 

maintenance and failure modes were listed (can be seen at the bottom of the main 

interaction matrix in figure 8.10). After this information was entered, a full 

evaluation (with the interaction evaluation form) was then carried out based upon 

the response of each component to these modes.  
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Heater Hoses 0 0 0 1 0 1 1 1 0 1 1 1 1 0 1 1

Command Distribution 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0
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Blow er Controller 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0
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Supplier
supplier 1 1 1 1 1 1
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supplier 2 1

Outsourcing  Interaction Matrix
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Figure 8.10. Maintenance and reliability interaction matrix for the automotive 

climate system 

 

 

Recycling and Reuse 
 

End of life vehicles are recycled using automated recycling processes. Hence, at the 

end of the automotive climate control system’s life, the unit is likely to be put into a 

shredder and put through a number of separation processes to reclaim useful 

materials. However these processes are not perfect and reclaimed materials are 

often left contaminated, reducing their usefulness as reusable engineering materials. 

For example copper will contaminate the recovered metals, reducing the ability to 
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Air Controls 1 0.5 0.5 0.5 1 0 0 0 0 0 0 0 0.5 0.5 0.5 0.5

Refrigeration Controls 0.5 1 1 0 1 0 0 0 0.5 0.5 0 0 0 0 0 0

Sensors 0.5 1 1 0 1 0 0 0 0 0 0 0 0 0.5 0 0

Heater Hoses 0.5 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

Command Distribution 1 1 1 0 1 0 0 0 0 0 0 0 0 0.5 0 0.5

Radiator 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Engine fan 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Condenser 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

Compressor 0 0.5 0 0 0 0 0 1 1 1 1 0 0 0 0 0

Accumulator 0 0.5 0 0 0 0 0 1 1 1 1 0 0 0 0 0

Evaporator Core 0 0 0 0 0 0 0 1 1 1 1 0.5 0 0 0.5 0

Heater Core 0 0 0 1 0 0 0 0 0 0 0.5 1 0 0 0.5 0

Blow er Motor 0.5 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Blow er Controller 0.5 0 0.5 0 0.5 0 0 0 0 0 0 0 1 1 1 1

Evaporator Case 0.5 0 0 0 0 0 0 0 0 0 0.5 0.5 1 1 1 1

Actuators 0.5 0 0 0 0.5 0 0 0 0 0 0 0 1 1 1 1

Failure Mode
Not cooling engine properply 1 1

not enough supply of heat 1 1 1 1 1

not enough supply of cold 1 1 1 1 1 1 1

not enough airf low 1 1 1 1 1 1 1

Maintenance and reliability Interaction Matrix
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use the reclaimed metal for engineering applications. Modularity can help 

overcome these problems by grouping potential problem materials into modules 

that can be removed before shredding and separation. Hence the recycling objective 

for the automotive climate control system is to separate into modules, components 

that contain problem materials from components that do not.  

 

To analyse which components are likely to contain problem materials and those that 

do not, the likely material types are needed for each of the automotive climate 

control system components. A car disassembly teardown provided by an 

automobile manufacturer has been used to gather the material type information for 

the main functional components of the car climate control system.   

 

High value components of an automobile are often removed for spares by car 

dismantlers before the car is shredded. According to the Jaguar teardown, 

components that have high reuse potential are the blower motor and its controller 

and the compressor. Figure 8.11 shows how the recycling and reuse objective is 

mapped to components. The score system for the recycling and reuse objective is 

outlined in chapter 6.  
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Figure 8.11. Recycling and reuse interaction matrix for the automotive climate 

system 

 

Step 3: Formation of Modular Architectures 
 

The goal of the GA optimisation is to create a set of non-dominated Pareto-optimal 

solutions according to the information entered into the six interaction matrices, so 

that the DM can explore trade-offs. For the automotive climate control system a set 

of 50 non-dominated, unique solutions was generated in approximately 2 minutes 

on a 2.5 GHz dual core processor.  The configuration settings of the GA can be 

seen in figure 8.12. 
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Refrigeration Controls 1 1 1 1 1 0 0 0 0 0 0 0 0 0.5 0 0.5

Sensors 1 1 1 1 1 0 0 0 0 0 0 0 0 0.5 0 0.5

Heater Hoses 1 1 1 1 1 0 0 0 0 0 0 0 0 0.5 0 0

Command Distribution 1 1 1 1 1 0 0 0 0 0 0 0 0 0.5 0 0.5

Radiator 0 0 0 0 0 1 0.5 1 0 1 1 1 0 0 1 0.5

Engine fan 0 0 0 0 0 0.5 1 0.5 0 0.5 0.5 0.5 0 0 0.5 0.5

Condenser 0 0 0 0 0 1 0.5 1 0 0.5 1 1 0 0 1 0.5

Compressor 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Accumulator 0 0 0 0 0 1 0.5 0.5 0 1 0.5 0.5 0 0 0.5 0.5

Evaporator Core 0 0 0 0 0 1 0.5 1 0 0.5 1 1 0 0 1 0.5

Heater Core 0 0 0 0 0 1 0.5 1 0 0.5 1 1 0 0 1 0.5

Blow er Motor 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

Blow er Controller 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 1 1 0 0.5

Evaporator Case 0 0 0 0 0 1 0.5 1 0 0.5 1 1 0 0 1 0.5

Actuators 0.5 0.5 0.5 0 0.5 0.5 0.5 0.5 0 0.5 0.5 0.5 0 0.5 0.5 1

EOL Option
Reuse 1 1 1

recycle (shedder) 1 1 1 1 1 1 1 1

dispose (remove) 1 1 1 1 1 1 1 1

Recyclingand reuse Interaction Matrix
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Figure 8.12. MOGGA settings for the automotive climate control system example 

 

Step 4: Analysis of Solution Set 
 

In this section the results of the GA optimisation will be explored to consider how a 

trade-off analysis can be performed using the solution set.  From the non-dominated 

set, trade-off analysis has been carried out by searching the set for the closest 

matching solutions according to the DM preferences.  The advantage of the method 

is that trade-off analysis can be carried out in real time by adjusting the considered 

importance of the various modularity objectives using the ‘objective hierarchy’ as 

shown in figure 8.13. 

 
 

Figure 8.13 Modularity objective hierarchy with preference placed on technical 

modularity 
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Scenario analysis 1: Focus on module independence 
 

Presume that the DM considers ‘technical modularity; is of high importance and 

hence moves the ‘slider’ bar as seen in figure 8.13. The corresponding ‘best’ 

solutions can be visualised using radar plots as seen in figure 8.14. Presume that 

upon analysis, these solutions are not suitable.  They show that to achieve such high 

module independence (loose coupling and functional binding) the compromises that 

have to be made for the other strategically based modularity objectives are too high. 

 

 
Figure 8.14. Optimal solutions for the automotive climate control system with the 

focus on technical modularity 
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Scenario analysis 2: Focus on module coherence 
 

Now presume that the DM considers ‘strategic modularity’ to have more 

importance and moves the ‘slider’ bar accordingly. The corresponding ‘preferred’ 

solutions are shown in figure 8.15.  These solutions now show much improvement 

for the strategic based objectives.  The DM is much happier with these solutions 

and thus decides to explore each solution further by clicking on the analysis button 

to examine the module structure - an example can be seen in figure 8.16. The DM 

then decides that solution 1 is a promising solution and sets this as the benchmark 

solution. However, before deciding upon this solution the DM decides to carry on 

exploring the set by examining more scenarios. 

 

 
Figure 8.15. Optimal solutions for the automotive climate control system with the 

focus on strategic modularity  
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Figure 8.16.  Analysis matrix for the automotive climate control system - showing 

loose coupling between modules (independence) and variance interactions within 

modules (coherence). 
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Scenario analysis 3: Focus on design and manufacturing stage 
 

In this scenario it is assumed that the DM has considered technical modularity and 

strategic modularity of equal importance and then moves down the hierarchy and 

decides that ‘design and production’ is more important than ‘after sales’. The best 

solutions according to these preferences can be seen in figure 8.17. The benchmark 

solution can now be seen and is compared to these four ‘best’ solutions.  However, 

none of these solutions is considered better than the benchmark. 

 

 
Figure 8.17. Optimal solutions for the automotive climate control system with the 

focus on design and manufacturing stage 
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Scenario analysis 4: Focus on after sales phase 
 

In this scenario, the DM wishes to explore the best solutions when ‘after sales’ 

objectives are considered more important than the ‘design and production’. The 

new best solutions can be seen in figure 8.18. However the benchmark is still 

preferred as the small improvements in other objectives that the new solutions offer 

mean that too great a compromise must be made for the other objectives. 

 

 
Figure 8.18. Optimal solutions for the automotive climate control system with the 

focus on after sales phase 
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Chosen Solution for the Automotive Climate Control System 
 

The chosen solution is seen in figures 8.19 and 8.20. Although this is a hypothetical 

decision, it is a solution that offers good performance in most of the modularisation 

objectives. The relatively poor performance of the ‘loose coupling’ can be ‘tackled’ 

by the careful design of the interfaces between modules.   

 

 
Figure 8.19. Chosen solution for the automotive climate control system 

 

 

 
Figure 8.20. Chosen modular architecture for the automotive climate control 

system 
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8.4. Comparison to Other Methods  

 

In this part of the case study the chosen modular architecture will be compared to 

existing climate control systems and case study results obtained by previous 

researchers. 

Comparison of results to Existing Automotive climate control systems 
 

The chosen modular product architecture has been compared with the existing 

modular structure in currently manufactured climate control systems. The 

information regarding this current modular structure comes from Nepal (2005), 

who performed the same case study with a number of tier one automotive suppliers. 

Nepal discusses that the current climate control system was not systematically 

modularised in the past, and hence very few modules existed. This modular 

structure can be seen in figure 8.21. 

 

 
Figure 8.21. Existing modules for automotive climate control system 

  
 

When comparing this existing product structure to the new one proposed in the 

previous section (figure 8.20) it can be seen that there are fewer modules in the 

existing product. This structure may well be optimal for assembly time, and reduces 

the interface complexity needed between modules. However, a number of issues 

may arise from this configuration. When this existing configuration is evaluated 

using the CAMO framework, it can clearly be seen (in figure 8.22) that, although 
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the module independence (coupling and function) is high, the modularisation 

objective achievements for the various strategic considerations are considerably 

lower than the chosen modular configuration.  

 

 
Figure 8.22. Evaluation result of existing automotive climate control system with 

CAMO 

 

For example, the large front end module (module 1) will have poor performance in 

terms of maintainability because not all the components have common maintenance 

requirements. The cost of implementing and managing product variety is also going 

to be higher because, depending upon the vehicle type and size, there may be 

different requirements for the type of controls, cases and connectors  i.e. to make 

the whole module a variant, the costs will be considerably higher than splitting the 

modules further into common and variant modules. These costs are of course 

difficult to quantify as, like other frameworks, the framework does not contain any 

detailed means of module cost analysis. Yet, it can be implied the CAMO 

framework does provide a clear insight into how costs may be affected by looking 

closely at how the chosen configurations respond to the different modularisation 

objectives. 
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Comparison to Pimmler and Eppinger Framework and Results 
 

The results obtained from this study have been compared with those of Pimmler 

and Eppinger (1994). In their approach four modules were suggested for the climate 

control system (see figure 8.23). In their study module formation is based upon the 

formation of design/ development teams and they only used one modularisation 

objective – the functional and physical interactions between components.  

 

 
Figure 8.23. Recommended modules for automotive climate control system 

 (Pimmler and Eppinger, 1994) 
 

 

However, for an optimal modular product architecture, other modularisation 

objectives must also be considered. As mentioned previously, having too few 

modules may affect the strategic coherence of the modules. This will in turn 

adversely affect the performance of the product architecture in terms of other 

factors such as the variance needs of the product, outsourcability of modules, 

maintenance needs and the reusability and recyclability of modules. 
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In addition, Pimmler and Eppinger (1994) state that the matrix should be clustered 

to form modules, but do not describe such an algorithm. Even when the matrix is 

clustered the choice of module boundaries is still ambiguous.   

 

Comparison to Stone’s Framework and Results 
 

The results from the CAMO framework are also compared with the “module 

heuristics” developed by Stone (1997). In Stone’s method there are three heuristics 

used to identify the modules based on functional flow patterns: “dominant flow”, 

“branching flow”, and “conversion-transmission flow”. According to these 

heuristics, Stone suggests 10 modules for the climate control system, as can be seen 

in figure 8.24. 

 

As with the Pimmler and Eppinger technique, it emphasises module formation 

based only upon design team formation, and hence the product architecture is based 

on the functional interactions.  

 

Stone’s method is a graphical method that includes flow information to identify 

modules. The method provides a strong basis for modularising the product from a 

functional perspective, yet the construction of a functional diagram showing all the 

flows is quite complex and tedious. Furthermore, as it relies on only the functional 

perspective, it does not pursue a physical decomposition of the product to identify 

the primary physical components - even though the product can be readily 

decomposed. This makes the method even more confusing for the designer 

unfamiliar with this way of product decomposition. In contrast, the decomposition 

analysis in the CAMO framework is relatively straightforward and more consistent 

with what designers will be familiar with. 
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Figure 8.24. Recommended modules for automotive climate control system (Stone, 

1997) 

 

Comparison to Nepal’s Framework and Results 
 

Nepal (2005) uses a matrix based approach that provides fuzzy logic based 

interaction evaluation to integrate four sets of modularisation sub-objectives into 

four modularity performance goals that are then handled by a goal programming 

based optimisation model. The four performance goals used for the climate control 

system are: cost, maintenance and reliability maintenance, quality and 

manufacturability.  
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This model allows the DM to define preferences, such as higher quality, lower cost 

product etc. These preferences can be changed by varying the aspiration levels in 

the goal-programming model. In this way a rudimentary ‘what-if’ scenario analysis 

can be carried out by changing the goals aspiration levels and rerunning the 

optimisation model.  

 

In Nepal’s case he undertook a number of scenario analyses and arrived at the 

modular structure seen in figure 8.25. Performing scenario analysis is what has 

been advocated in the CAMO framework and in this case the chosen module 

structure is not too dissimilar to the proposed chosen structure of the CAMO 

framework. However, Nepal’s framework does not address the issue of recycling 

and reuse, outsourcing or product variance. If the designer considers these 

objectives of high importance then the modular structure may look somewhat 

different. 

 
Figure 8.25. Recommended modules for automotive climate control system (Nepal, 

2005) 

 

Although the approach of the CAMO framework may appear to share some 

similarities to the approach advocated by Nepal, there are a number of key 

differences. 
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Firstly, in Nepal’s approach only interactions within modules are considered and 

the interactions between modules are not considered during module formation. That 

is the framework is only concerned with module coherence and module 

independence is ignored. Module independence is an important aspect of 

modularity. In particular, module interfaces should be a simple as possible in order 

to pursue the plug-in plug-out characteristics of modularity, to improve product 

maintainability, recyclability, outsourcabilty and variance management.  Thus, one 

has to question the so called optimality of modules formed using Nepal’s 

framework. Not considering module independence also has ramifications for the 

post modularisation stage, for the analysis and design of interfaces between 

modules. 

 

In the CAMO framework the various modularity drivers have been reconciled into 

a clear hierarchy that considers both module independence and module coherence, 

providing the DM with a method to analysis and choose modular solutions that are 

a suitable balance between these two characteristics. 

 

Nepal’s approach also uses a goal attainment method to solve the multi-objective 

problem and uses an ‘off-the-shelf’ solver to perform the optimisation. These 

solvers are poorly equipped to deal with the complexities of grouping problems.  

There are also some problems with using a goal based aggregated objective 

approach to multi-criteria optimisation. The setting up of appropriate goals can be 

time consuming and tedious. First one must normalise each objective by running 

the algorithm separately for each objective. Then to find the most appropriate goal 

settings the algorithm will often need to be rerun many times.  Furthermore, there is 

actually no guarantee that true Pareto-optimal solutions can actually be found if the 

objective space is non-linear or convex.  

 

With the CAMO framework however the DM is not presented with the problems of 

setting up preferences. Furthermore, the algorithm generates a whole set of Pareto-

optimal solutions in one run, so the DM is then free to explore alternative solutions 

in real time without having to rerun the algorithm multiple times. 
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8.5. Conclusion  

 

The case study example of the automotive climate control system has demonstrated 

the five steps that have been advocated in the CAMO framework and the potential 

of this true multi-objective approach has been highlighted. It has been seen that 

trade-off analysis can be carried out by searching the set of non-dominated 

solutions and comparing the results of different preference settings. 

 

Furthermore, the results obtained from the framework have been compared to 

previous methods. It has been seen that most of the previous works have only 

pursued a single objective during modularisation and do not provide suitable 

grouping algorithms for module formation. The framework on the other hand, is 

able to generate a whole set of alternative solutions, as well as providing a suitable 

means to compare these alternatives. Ultimately the chosen solution will involve 

compromises between objectives and it will be down to the designer to choose the 

most suitable product architecture from the alternatives presented.  
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CHAPTER  9 

9. Conclusions and Further Work 
 

9.1. Summary of Thesis 

 

Modular product architecture is often seen as a key strategy to help address a 

number of challenges, such as reduced product development times, increased 

variety to the market, globalised product development and improved recycling and 

reuse. As can be expected, over the years a broad range of measures, methods and 

techniques have been created in attempts to guide the development of modular 

product architectures. A thorough literature review has in fact revealed that 

modularity is a diverse and large research area, with researchers approaching 

modularity from various viewpoints.  

 

Modularity is however often defined as a means of controlling product complexity 

by decomposing the product system into smaller more manageable chunks. The 

vast majority of developed methods advocate the decomposition of the product into 

a number of smaller elements (components) which are then grouped to form larger 

product elements (modules). It has been found that the objectives for module 

grouping vary considerably, but can be defined as either technically based 

objectives such as the physical and functional interactions between components or 

strategically based objectives such as the same product maintenance needs of 

components. 

 

It has also been found that the vast majority of the actual methods and frameworks 

that have been created are matrix based, using interaction matrices to represent the 

complex functional, physical and strategic based interactions that occur between 

components. Matrix representations are primarily used as they can be readily 

manipulated with optimisation algorithms to identify modules.  

 

There are of course problems with the existing modularity methods. In summary, 

the process of product modularisation is highly ambiguous. Even for a relatively 
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simple product there are a vast number of different ways the product can be 

modularised, according to the different objectives of modularisation. With each 

different solution there will of course be compromises that have to be made 

between the different objectives. Ideally these compromises should be explored 

before arriving at a final decision. This implies that a good set of alternative 

solutions can in fact be found in order to make the comparisons. However, current 

algorithms for product modularisation are simplistic (aggregated objective) 

approaches. Finding a set of optimal solutions (for comparison) with these 

algorithms is problematic and time-consuming.  

 

The multi-objective modularity optimisation is further complicated by the very fact 

there are so many modularisation goals defined, ranging from up front design 

objectives such as product variance, to end of life objectives such as ease of 

recycling.  
 

The overall aim of this thesis has thus been to develop a computerised multi-

objective optimisation framework for product modularisation. In the framework 

numerous modular design principles have been reconciled and integrated and a 

state-of-the-art multi-objective optimisation algorithm has been developed to 

perform the modularisation. 

 

The computer aided modularity optimisation CAMO framework has four main 

steps: 1) product decomposition 2) interaction analysis 3) formation of modular 

architectures 4) scenario analysis. 

 

The important aspect of the framework is that it presents a novel multi-objective 

approach to product modularisation, in which a whole set of alternative modular 

product architectures are generated in one single run of the algorithm without the 

need to set up preference weights for the various objectives. The solution set can 

then be further analysed using the analytical hierarchical process (AHP) inspired 

modularity objective hierarchy to choose the best compromise solution.  
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The multi-objective algorithm has also been tested and compared against a 

conventional aggregated objective algorithm and is able to produce solutions of 

equal quality. This is significant because an aggregated objective algorithm is 

conducting a more focused search (only searching for one optimal solution at a 

time) and therefore it is possible the solutions will be better than solutions produced 

by the developed multi-objective grouping genetic algorithm (MOGGA). This is 

not the case however as the design of the MOGGA has ensured that the search 

space is explored in an appropriate manner, such that optimal solutions (as good as 

the aggregated objective solutions) are being found. 

 

A case study has been carried out for an automotive car climate control system. 

This has been used to demonstrate the various steps of the framework. It has been 

shown that the method can be successfully followed to perform a true multi-

objective product modularisation. The results have also been compared to existing 

methods and it has been seen that the CAMO framework, unlike previous methods 

(that only generate one solution), is able to quickly generate a whole range of 

optimal product modularisations that can be further explored by the user it order to 

arrive at a suitable compromise solution.  

 

9.2. Research Contributions 

 
 

 Critical review of product modularity literature. A thorough literature study has 

been carried out to understand what defines a modular product and to identify 

what are the main advantages and disadvantages of modular product 

architectures. The main contribution of the review has however been the 

categorisation of different modularity viewpoints (coupling, function, variety 

and lifecycle) and a critical analysis of current modularity methods (these are; 

configuration methods; domain mapping approaches and step-wise redesign 

methods). 

 



Chapter 9 

Page | 193 

 Technical review of GA-based optimisation algorithms. One of the most 

obvious weaknesses of current modularity methods was found to be the lack of 

suitable optimisation algorithms. Genetic algorithms (GA) have been found to 

be the most suitable type of optimisation algorithm able to handle the multi-

objective nature of product modularisation. Thus a detailed technical review of 

multi-objective GA based optimisation has also been carried out. The 

conclusion that can be drawn from this review is that although there have been 

many advances in the field, no ‘off-the-shelf’ algorithms are deemed suitable 

for the multi-objective modularity problem. This is mainly due to the lack of 

adaptation to grouping problems and the poor performance of the algorithms 

when solving ‘many’ (more than four) objective problems. 

 

 Reconciliation of main drivers of product modularisation.  One of the important 

facets of the framework has been the reconciliation of modularity objectives 

present in the literature and their subsequent arrangement into an objective 

hierarchy based upon both the technical and strategic considerations of product 

modularisation. In total six modularisation objectives have been identified 

(loose coupling, function binding, variety, outsourcing, maintenance and 

reliability, and recycling and reuse).  

 

 Development of modularity representation method and metrics. The developed 

framework presents a multi-matrix based approach to represent the various 

dependencies and strategic similarities that occur between a product’s 

components. In the framework the product is being represented in both the 

physical (component level) and functional domains. A cross-domain functional 

mapping approach allows the various modularity objectives to be analysed at 

two different levels of abstraction. 

 

Two modularity metrics have been developed for this research; these are the 

module independence ratio and the module coherence ratio, and these will be 

used as the criteria for module grouping during optimisation. These metrics are 

based upon two key modularity principles discussed in the literature. The 
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objective of modularisation from the module independence perspective is to 

achieve loosely coupled, independent modules. This can be achieved by 

ensuring that component dependencies are kept within modules rather than 

between modules. Module coherence is concerned with ensuring that 

components within modules are similar in terms of the modularisation objective 

they are addressing.  In the proposed framework the module independence 

metric is used to as goal to improve the more technical aspects of modularity 

(function binding and coupling) whereas the module coherence metric is 

associated with the strategically aspects of modularity (variety, maintenance, 

recycling etc.).  

 

 Novel new multi-objective algorithm. Because no suitable multi-objective 

genetic algorithm (MOGA) could be found to successfully handle the multi-

objective product modularity problem, the author has developed a novel new 

algorithm (entitled MOGGA) for multi-objective optimisation of product 

modularity.  The algorithm has been coded in VBA and integrated within a 

prototype software.  The MOGGA incorporates a number of novel features such 

as the group based genetic operators, local search, random vector based search 

and Pareto-dominance based ranking. In has been shown in chapter 7 that the 

algorithm is able to produce a whole set of Pareto-optimal solutions, easier, 

faster and of equal quality than the individual solutions produced using a 

traditional aggregated objective single solution approach.  

 

It is also argued that there are other similar multi-objective grouping problems 

that the algorithm could be used to solve. Hence the algorithm itself presents a 

significant contribution to knowledge.  

 

 Software prototype for multi-objective product modularisation.  A prototype 

software has been created in an excel environment using VB coded macros to 

create a genetic algorithm (GA) based optimiser and a VB programmed user 

interface. The software has three main modules in which the various steps of the 

framework are undertaken. In the input module of the software the product is 
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decomposed at the physical and functional levels and component interactions 

are entered into a number of matrices using VBA based evaluation forms to 

define the interaction strengths for each modularisation objective. Once all the 

data has been input the optimisation module produces a set of Pareto-optimal 

solutions using the VB programmed MOGGA. The analysis module is then 

used to explore the solution set and choose the most suitable modular 

architecture. Again a number of VBA macros have been produced for this stage. 

 

 

9.3. Future Work 

 
Cost Based Evaluation of Modular Architecture Alternatives 
 

At the moment the means of comparing and contrasting the alternative modular 

architectures is purely on the comparison of what their achievements are in each of 

the technical and strategic modularisation objectives. However, to add another 

dimension to the analysis, it would be interesting to develop a method of assessing 

the cost implications of the different modular structures. Cost factors that could be 

evaluated are assembly and disassembly costs, module replacement costs, the costs 

of implementing variety and cost saving from common platforms and estimated 

gains of recycling and reuse revenues though simplified product structures. 

 

Application to Complex Products 
 

So far the CAMO framework, and the majority of other frameworks for that matter, 

have been limited to the modularisation of relatively simple products. Thus future 

work could be done to apply the framework to complex products with a larger 

number of components.  

 

 
 
Further Application of Domain Theory for Product Family Modularisation   
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During the development of the framework the ideas of cross domain mapping have 

been used. This is where the functional domain is mapped to the physical domain in 

a similar manner to axiomatic design. These principles have been used for the 

‘function binding’ objective, in which components can be grouped into the same 

module if they are contributing to the same functions.  

 

However, products are generally designed as part of a product family, where certain 

functions may be shared between products or where multiple physical solutions 

may exist for the same functions. This presents a problem for the matrix 

representation of the product, as they are only designed for single product 

representation. In fact previous matrix based modularity methods (CAMO 

included) presume that a generic physical component structure is present for all 

products in the family. To better deal with the complexity of multi-product design 

the modularisation framework needs to be developed further.  A good place to start 

would be to produce a better method of domain mapping that deals with multiple 

products (product families) coupled with a suitable multi-product matrix 

representation. This could be done by developing a suitable representation method 

that clearly shows the mapping between customer needs, product functions and the 

physical components, for not just one product but multiple products.  

 
Linking to a Modular Solution Repository  
 

Linking the CAMO framework to a repository would allow chosen modular 

configurations to be stored. The DM would then be able to query/ search the 

repository to find existing design solutions (modules) that can be reused for new 

product developments or evolutionary product redesign. Furthermore modules that 

already exist could be used to introduce constraints to module formation during 

application of the CAMO to modularisation/ re-modularisation of products. A 

possible means of implementing such a system would be to produce a database 

system to store solutions, possibly within the MS Access environment. This would 

be relatively straightforward and could link to the current Excel based CAMO tool. 
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Semi- Automation of Objective Evaluations 
 

The most time consuming aspect of the CAMO framework (and other frameworks 

for that matter) is the interaction evaluation step (step 2). When evaluating all six 

objectives this can take a considerable amount of time.  If a complex product was to 

be evaluated for modularisation, then the process may well become unwieldy and 

impractical.  In the CAMO framework steps have been taken to semi-automate the 

interaction evaluation of certain strategic modularity objectives, thus reducing the 

evaluation burden.  

 

There are however ways in which further work could reduce the information 

needed for product modularisation. For the technical modularity evaluations, the 

CAMO framework could be linked to a knowledge based CAD system to 

automatically extract the relevant component interaction data straight from the 

geometric component mating data present in the CAD assembly model.  

 

9.4. Concluding Remarks 

 

 Many modularity definitions and methods exist in the literature, which although 

it enriches our understanding of the subject, also constitutes a major obstacle in 

understanding what product modularity actually is and how optimal modular 

product architectures are formed.  Indeed as there are so many modularity 

objectives defined the process of modularisation can be seen as highly 

ambiguous.  The developed framework has attempted to solve this problem by 

presenting a more holistic product modularisation method.   

 

 There is a definite lack of algorithms able to solve complex multi-objective 

grouping problems. Hence the algorithm developed for this research presents a 

significant contribution to knowledge within the field of multi-objective 

optimisation.  
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 When attempting to modularise a product architecture according to multi-

objectives there is often a potentially vast number of possible solutions.  It is 

often impossible to find one solution that is optimal for all objectives. This 

inevitably means that compromises need to be made between different 

solutions. The framework presents an effective means to create a whole set of 

alternative solutions and compare and contrast these solutions to enable the 

decision maker to arrive at a more informed decision on the most appropriate 

modular architecture for their product.  
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