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Abstract 
 
In recent years knowledge has become an important resource to enhance the business 

and many activities are required to manage these knowledge resources well and help 

companies to remain competitive within industrial environments. The data available 

in most industrial setups is complex in nature and multiple different data formats may 

be generated to track the progress of different projects either related to developing 

new products or providing better services to the customers. Knowledge Discovery 

from different databases requires considerable efforts and energies and data mining 

techniques serve the purpose through handling structured data formats. If however the 

data is semi-structured or unstructured the combined efforts of data and text mining 

technologies may be needed to bring fruitful results. This thesis focuses on issues 

related to discovery of knowledge from semi-structured or unstructured data formats 

through the applications of textual data mining techniques to automate the 

classification of textual information into two different categories or classes which can 

then be used to help manage the knowledge available in multiple data formats.     

 

Applications of different data mining techniques to discover valuable information and 

knowledge from manufacturing or construction industries have been explored as part 

of a literature review. The application of text mining techniques to handle semi-

structured or unstructured data has been discussed in detail. A novel integration of 

different data and text mining tools has been proposed in the form of a framework in 

which knowledge discovery and its refinement processes are performed through the 

application of Clustering and  Apriori Association Rule of Mining algorithms. Finally 

the hypothesis of acquiring better classification accuracies has been detailed through 

the application of the methodology on case study data available in the form of Post 

Project Reviews (PPRs) reports. The process of discovering useful knowledge, its 

interpretation and utilisation has been automated to classify the textual data into two 

classes. 

Keywords: 

Knowledge Discovery, Knowledge Management, Data Mining, Text Mining, 

Clustering, MKTPKS Termset Mining, Decision Trees, K-nearest Neighbouring (K-

NN), Naïve Bayes, Support Vector Machines (SVMs), Post Project Reviews (PPRs)  
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Glossary of Terms  
 
AI     Artificial Intelligence 

ANN    Artificial Neural Networks 

APN    Automated Perceptions Network  

AR-rules   Attribute Relationship Rules 

BN    Bayesian Network 

CAD                                        Computer Aided Design 

CAM     Computer Aided Manufacturing 

CMM     Coordinate Measuring Machine 

CNC     Computer Numerical Controlled 

CRISP-DM   Cross-Industry Standard Process for Data Mining  

DM     Data Mining 

Document  Set of textual data or information available in the form 

of  case study data 

DTE     Decision Tree Expert 

EBC    Environment-Based Constraints 

EDA     Exploratory Data Analysis 

EDM    Evidential Data Mining 

ELT     Extraction-Transformation-Load 

FTS                                         Frequent Termset Sequences 

GBOM    Generic Bill of Material 

HG-Trees   Hierarchical Generalization Trees 

HTML    Hypertext Markup Language  

IMS    Intelligent Manufacturing Systems 

IR     Information Retrieval 

IT    Information Technology 

KDD    Knowledge Discovery from Databases 

KDT    Knowledge Discovery from Textual Data 

KM     Knowledge Management 

K-NN     K-Nearest Neighbouring 

KREFS    Knowledge Refinement System, 

LS-SVM    Least Square Support Vector Machines 

MKS     Mining Kernel System 
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MKTPKS    Multiple Key Term Phrasal Knowledge Sequences 

ML     Machine Learning 

NLP    Natural Language Processing 

NNs    Neural Networks 

OLAP    Online Analytical Processing 

PDD    Product Design and Development 

PDM     Product Data Management  

PLM     Product Lifecycle Management 

PPRs     Post Project Reviews 

SGML    Standardized Markup Langauge 

SVMs     Support Vector Machines 

TDM     Textual Data Mining 

TM     Text Mining 

VSM    Vector Space Model 

XML    Extensible Markup Language 
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Chapter 1 Introduction 
1.1 Research Context and Introduction 
In recent years Knowledge Management (KM) has become an important contributor 

to the success of enterprises. Increasing product complexity, globalization, virtual 

organizations and customer oriented demand require a more thorough and systematic 

management of knowledge both within individual enterprises and between several 

cooperating enterprises. Information Technology (IT) supported KM solutions are 

often built around an organizational memory that integrates informal, semi-formal and 

formal knowledge to facilitate the access, sharing and reuse of knowledge by 

members of the organization(s) to solve their individual or collective tasks. In such a 

context, knowledge has to be modelled, appropriately structured and interlinked to 

support flexible integration and its personalized presentation to the customer. 

 

In this era of information technology a vast amount of data is collected, stored and 

reused to improve the product or service quality and for customer needs identification 

within industrial setups. Manual handling of such a large amount of data is expensive 

in terms of time and money spent, and it is particularly costly and difficult to fully 

exploit information that is available in different or mixed data formats (i.e. structured, 

semi-structured or unstructured).  

 

Machine Learning (ML) and advanced Artificial Intelligence (AI) tools are gaining 

more importance in this data rich and information poor world of knowledge. Different 

data analysis tools are available to provide both online and off the shelf solutions to 

the problems associated with handling large amounts of data and information which is 

available in different data formats. These tools are used to discover useful information 

through exploiting relationships between different attributes of data and help to 

discover patterns which can ultimately be transformed into a source of knowledge. 

The most recent use of these tools can be categorized as forms of Data Mining 

technologies. The technological efforts available under this heading have potential to 

uncover useful patterns in data and discover valuable knowledge in any industrial 

setups (as seen in Chapter 3) but use of these technological efforts is still in its 

infancy. To handle multiple different formats (i.e. semi-structured or un-structured 
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data) existing tools may need to be combined with other technological efforts i.e. Text 

Mining (TM) which might be quite useful in discovering valuable information and 

converting it into a form of knowledge to help in providing knowledge based 

solutions.  

 

(Nonaka and Takeuchi 1995) proposed that knowledge creation was achieved by the 

interaction of tacit and explicit knowledge which further helped to generate 

organizational knowledge. (Ler 1999) pointed out that knowledge management 

involves collecting information and transferring it to the demanders. These activities 

include knowledge obtaining (or creation), knowledge refinement, knowledge storing 

and knowledge sharing. Therefore knowledge management has become a major 

manufacturing tool and pre-requisite for success in production environments and 

competitive advantages can be obtained by taking into consideration and carefully 

selecting and applying appropriate knowledge management techniques.  

 

This research will therefore consider the path defined by (Ler 1999) to manage 

knowledge but will approach this by using Data and Text Mining techniques. The 

aim of this research will be to examine how knowledge may be more accurately 

identified and classified automatically from textual reports, so that more reliable 

knowledge will available to be automatically identified, refined and transferred to 

the demanders as required by (Ler 1999). 

 

Different Data Mining tools including Clustering, Association Rules, Decision Trees, 

K-NN, Naïve Bayes, Support Vector Machines (SVMs) and Text Mining tools in 

particular based on Information Retrieval (IR) techniques for data structuring have 

been considered and well investigated for handling textual databases. Both individual 

and hybrid approaches have been used to harness Knowledge Discovery and 

Management Solutions for which a conceptual background is provided by the 

theoretical development of the methodology detailed in Chapter 4. Different 

knowledge discovery functions (i.e. Clustering and Frequent Termset Mining 

Methods) are discussed in Chapter 5 while an architecture has been detailed in 

Chapter 6 based on the hybridized efforts of both Data and Text Mining technologies.  
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The proposed methodology in Chapter 6 has been applied and tested on the semi-

structured textual data available in the form of Post Project Reviews (PPRs) reports 

from real construction industry environments. The results, in the form of discovered 

knowledge, have been compared with the results of domain experts (detailed in 

Chapter  7) in the form of multiple key term phrases identified by the system. The 

limitations in terms of classifying textual data through unsupervised Clustering and  

Apriori Association Rule of Mining techniques have been addressed and consequently 

knowledge of how to apply these tools and methods have been advanced by this 

research. This advancement is done through use of Supervised methods of classifying 

textual data into two categories or classes (as discussed and implemented in Chapter 8 

& Chapter 9).  
 

1.2 Thesis Structure 
The overall thesis has been divided into four sections, detailed in the following 

paragraphs and shown in figure 1.1. 

 

  1.2.1 Background, Context and Scope of the Research 
This section consists of three chapters. Chapter 1 discusses the introductory material 

containing research context and main aim of the research. Chapter 2 discusses the 

research problem, scope and issues. The aim and objectives of the research and 

research approach adopted are also detailed in this chapter. In Chapter 3 the literature 

is reviewed to form the basis of knowledge discovery process from multiple data 

formats through applications of different data mining techniques. The knowledge and 

information needs for intelligent decision making are also discussed in this chapter. It 

also provides support to identify the gap in terms of applications of different data 

mining techniques to exploit knowledge resources in new industrial and business 

setups. 

  

  1.2.2 Concept Realization and Methodological Development 
This section is composed of three Chapters where Chapter 4 is focused on defining 

conceptual relationships among different parts of knowledge discovery and 

management technologies i.e. Data Mining, Text Mining and Business Intelligence to 
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develop a framework which is detailed in Chapter 6. Chapter 5 discusses knowledge 

discovery functions and their implementation issues to help in discovery of useful 

information in terms of finding term based relationships by forming Multiple Key 

Term Phrasal Knowledge Sequences (MKTPKS). 

  1.2.3 Implementation and Analysis 
This section further consists of three chapters. Chapter 7 discusses the implementation 

of different functions required within the methodology for finding the knowledge 

relationships among different terms in the textual data available in the form of Post 

Project Reviews (PPRs). Chapter 8 discusses the text classification methods and their 

implementation on the PPRs data to classify it into two different categories of Good 

or Bad information documents. The accuracy of different classifiers is tested on the 

experimental data and better classification accuracies are reported by adopting the 

proposed methodology. Chapter 9 discusses the semantic analysis methods based on 

Information Retrieval (IR) techniques to classify the PPRs data into two different  

classes. The main hypothesis investigated in this research is that  better classification 

accuracies will be achieved using the proposed methodology.   

  1.2.4 Conclusions and Future Work 
This section contains chapter 10 which discusses the results obtained and their 

reliability and mentions some of the research limitations which could not be explored 

during this research. The further improvements to the proposed system are also 

discussed and future dimensions for improving the product or service quality based on 

the proposed methodology are also articulated at the end.   
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Figure 1.1: Overview of thesis structure 
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Chapter 2 Research Scope 
2.1 Introduction 
This chapter provides the research background and explains the research problem 

scope and issues. It also details the aims and objectives of the research and briefly 

explains the adopted research approach.  

2.2 Research Issues 
The research reported in this thesis examines ways of discovering useful knowledge 

through the classification of textual data into one of two categories of document i.e. 

good or bad information classes. The system proposed is based on Hybrid 

Applications of Data and Text Mining Techniques to provide knowledge discovery 

and management solutions for industrial or business environments. The term 

“document” used in this research work refers to the set of information available in the 

form of textual data under different headings (i.e. time, cost, planning) in Post Project 

Reviews (PPRs).  

 

  2.2.1 Research Background & Motivations 
Knowledge discovery and knowledge management solutions can provide great 

benefits and better services in many industrial contexts and these will be discussed 

further in Chapter 3. Business Intelligence Systems may be used to help to uncover 

useful information and convert it into a form of knowledge by utilising Data and Text 

Mining techniques. There is a wide range of these techniques available which can be 

used independently or in combinations with other tools, to discover valid, novel, 

potentially useful and ultimately understandable knowledge. These techniques will be 

discussed further in Chapter 3 and Chapter 4. 

 

In current industrial business setups a large amount of information is transferred 

through the use of internet technologies. Most of this data is available in the form of 

online documents, customer feedback etc. which is used to update information about a 

product or service to help to improve quality and competitive performance. These 

data types include: 
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• Structured data files, information stored in database management systems or 

specific applications, such as data warehousing, enterprise resource planning, 

cost estimating, scheduling, payroll, finance and accounting packages; 

• Semi-structured data files such as Hypertext Markup Language (HTML), 

Extensible Markup Language (XML), or Standardized Markup Langauge 

(SGML) files; 

• Unstructured text data files, such as product catalogues, quality reports, 

internal documents, memos, Failure Mode and Effect analysis (FMEA) 

documents, contracts, specifications, catalogues, change orders , requests for 

information, field reports and meeting minutes; 

• Unstructured graphic files stored in a binary format such as 2D and 3D 

drawings; and finally  

• Unstructured multimedia files such as pictures, audio and video files. 

 

These textual sources of information are read and understood by people but manual 

handling is very slow, tedious and prone to errors. Therefore automatic text 

classification or text categorization methods can be used to overcome these 

difficulties. The handling of these sources of information can provide benefits in 

various ways to engineers (Kasravi 2004) i.e. 

• Improving the engineering processes through having access to the information 

and downstream analysis, 

• Patent analysis, handling product warranty claims and quality issues of the 

product,  

• Failure mode and effect analysis (FMEA) and finally 

• gaining the competitive assessments by reviewing the product announcements 

information available in the form of web pages which are almost impossible to 

handle manually 

 

In addition to the above some other specific advantages related to the manufacturing 

industry can be obtained by; 

• Improving manufacturing product design (Dong and Agogino 1997) , 

• Analyzing customer service database for machine fault diagnosis (Fong and 

Hui 2001)  
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• In automotive industry mapping auto problems to some diagnostic categories 

such as engine, transmission, electrical, brakes etc. (Huang and Murphey 

2006)  

• Integrating supply chain into total process, capturing and re-using best 

practices and specifying key characteristics at early stages of product 

development. These are identified as needs for next generation product 

development (Rezyat 2000)  

 

In the construction industry automated text classification methods can provide 

benefits in organizing and finding the desired information from project documents 

according to the project components (Cladas and Soibelman 2003). This information 

can further be used to extract new and interesting information like accessing facility 

condition assessments provided at different campuses (Ng et al. 2006). There are 

other areas of research which also benefit from data analysis techniques like DNA 

sequence analysis, pattern discovery, image recognition and speech recognition.  

 

The above discussion shows the benefits that can be achieved through textual data 

analysis methods. Therefore analyzing this information provides new sources of 

information and knowledge to the knowledge workers and an enterprise can thereby 

gain some competitive advantages. 

 

  2.2.2 Gap Analysis and Research Scope    
Data mining techniques have been used to discover knowledge from manufacturing or 

construction data to support decision makers to improve product design, integrate 

shop floor activities and manage the customer knowledge. However the literature 

reviewed in Chapter 3 and in (Harding et al. 2006) showed that these techniques are 

mainly used to exploit information hidden in the numerical or more structured forms 

of data whilst there are fewer reported applications in handling the semi-structured or 

unstructured data types. Key points which have motivated this research and 

determined the scope of the studies are as follow:- 
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1. Data Mining techniques are mainly used to discover knowledge from 

structured databases. Hence there may be opportunities to apply knowledge 

discovery techniques on semi-structured or unstructured databases. 

2. The applications of Data Mining techniques for knowledge discovery 

processes are mostly by using individual tools which help to identify 

relationships among different attributes defined in the data but are limited in 

their ability to discover useful knowledge in an understandable pattern. 

3. The hybrid applications of data mining techniques appear to have potential to 

handle data and information, but currently there are less reported applications 

of these approaches. 

4. Discovering knowledge from semi-structured or unstructured databases 

requires some additional efforts but they have potential to help to uncover 

useful patterns of information and knowledge in textual data formats. Data 

mining techniques can be used on their own to find potentially useful 

knowledge but handling semi-structured or unstructured data requires 

additional efforts, possibly by applying Information Retrieval (IR) and Natural 

Language Processing (NLP) techniques. 

5. The combined efforts of Data and Text Mining technologies could be used to 

manage multiple data and information resources and enhance knowledge 

management activities. The combined efforts of data and text mining 

techniques can be fruitful as shown in Chapter 3 and Chapter 4.  

6. The rapid growth of information in electronic and digital formats in globally 

distributed industrial environments could capture useful information about 

customers needs. The identification of these needs and classification of 

information available in the form of free formatted textual data into two 

different  classes (i.e. good or bad information) might help in retaining the 

customers to the industry. But little attention has been paid to this area of 

information and knowledge research. 

7. Domain experts play an effective role in the process of discovering useful 

knowledge through applications of data mining techniques where the data 

mining expert and domain expert sometimes work interactively. However if 

the knowledge discovery process can be automated fully this would help to 

reduce the effort required by the knowledge workers in terms of time and 

money spent.  
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Therefore the scope of this research takes into account the above points related to 

Data and Text Mining techniques to manage the data and information sources for 

knowledge discovery and knowledge management purposes.  

 

    2.2.2.1 Data Mining 

Data mining techniques have influenced various sectors of life ranging from finances 

to life sciences but these techniques have only been used for exploiting manufacturing 

data for discovery of useful knowledge in the last decade or two. Handling these data 

and information sources usually requires additional knowledge to be provided by 

domain experts. An overview of a range of data mining techniques is given in Chapter 

3 and an introduction to new techniques or hybridized methods which gave useful 

results has been undertaken within this research. The reported tools such as clustering 

and association rules analysis have been tested in manufacturing related data analysis, 

so the implementation of these tools has been tested along with their scope for 

discovering useful knowledge by exploiting term based relationships and the 

refinement of this process has also been considered. Finally, some supervised 

classification techniques are used to classify data into two  classes in terms of good or 

bad information documents .     

 

    2.2.2.2 Text Mining 

Text mining techniques are examined in Chapter 4 and it is clear that to discover 

knowledge from semi-structured or unstructured text data requires some additional 

efforts which have been used from the area of Information Retrieval (IR).These 

methods are mainly based on term frequency, term frequency inverse document 

frequency, and binary representation methods. These methods provide solutions to 

structure data and make it ready for the application of different data mining 

techniques and also help to overcome the difficulty of losing key information in the 

textual databases. Classifying textual data into two classes is highly dependant on the 

choice of  these structuring techniques where different data mining algorithms use 

various functions to measure the degree of closeness of one document from another 

i.e. to classify as either good or bad  information documents in the current research 

context. 
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2.3 Aims and Objectives of Research 
The main aim of this research was defined in Section 1.1 and it will be achieved by 

satisfying the following objectives:- 

1. Understanding different applications of DM/ TM techniques which have been 

well reported in the literature, and testing them on the exemplary data relevant 

to the current research context. 

2. Establish which current applications provide potentially useful knowledge in 

this context to establish a datum for comparison with new or hybridized 

applications of different data mining techniques. 

3. Identify new or less commonly used DM / TM techniques in handling the real 

industrial data and test their reliability in managing the information and 

knowledge resources. 

4. Determine a framework and methodology to analyse textual data and transfer 

identified knowledge to demanders as required. Thus further shifting the 

paradigm from knowledge discovery to knowledge management. 

   

2.4 Research Overview 
The proposed framework should be able to accommodate semi-structured or 

unstructured text data. The architecture proposed is entirely based on knowledge 

management methods defined by (Ler 1999) , but will utilize the combined efforts of 

data and text mining techniques. The efforts made under the cover of these 

technological efforts of data and text mining should play an effective role in 

integrating the KM activities by identifying valid, novel, potentially useful and 

ultimately understandable patterns in the data. The purpose of these combined efforts 

will therefore be to provide valuable understanding of the new ways of automatically 

identifying knowledge in textual reports. The research is based on the hypothesis that 

knowledge management methods and in particular knowledge generation methods 

have strong impact on the effective use and exploitation of valuable knowledge assets 

in many industrial contexts. The second hypothesis is that knowledge generation can 

be done effectively through the combined use of Data and Text Mining Techniques. 

The generated knowledge may require refinement and this will be achieved by the use 

of better predictive and classification techniques. These techniques will utilise either 
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single data mining techniques or a hybridization of several techniques available under 

the heading of textual data mining technologies. 

   

  2.4.1 Research Approach  
The research approach used in the thesis is divided into two stages i.e. the conceptual 

development stage and the experimental stage to verify the research hypothesis. 

Conceptual development of the methodology is based on the knowledge discovery 

and management methods detailed in Section 4.3 which provide strength to handle 

textual databases. The detailed process of discovering knowledge from semi-

structured or unstructured databases is followed by using the path defined within this 

section. Thus the following activities have been carried out to develop the theoretical 

grounds for developing methodologies: 

• Identification of different Data and Text Mining techniques used in industrial 

environments. 

• Examination of different tools for discovering useful knowledge from semi-

structured or unstructured databases, defined in the Data Mining and Text 

Mining technologies. 

• Revisiting of Data structuring methods used for discovering useful 

information available in the form of textual data. 

 

The second phase consists of developing an architecture and testing different 

functions defined in the integrated framework to improve the knowledge discovery, 

its refinement and then utilizing the knowledge for categorizing of textual data into 

two different categories (i.e. as good or bad information documents within this 

research context). The data used was from Post Project Reviews (PPRs) taken from 

the construction industry.  

2.5 Summary of the Chapter and Conclusion 
In this chapter the research background and its scope has been discussed in detail 

where the focus was on two major area of knowledge discovery and management i.e. 

Data Mining and Text Mining technologies. The aim and objective of research are 

detailed as an outcome of the research gap found through detailed survey of the 

literature relevant to the data mining techniques applications in manufacturing and 

construction domains. 
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Chapter 3 Literature Review 
3.1 Introduction 
The purpose of this chapter is to provide a context for this research by giving an 

overview of the importance of knowledge in modern business environments, and a 

discussion on the types of knowledge and knowledge management needs for 

manufacturing companies. As the focus of this research is on Textual Data Mining 

(TDM) solutions to these challenges, a review has been carried out of the literature 

about the different DM techniques and their applications in Manufacturing or 

Construction Environments. It will serve the purpose of identifying the capabilities of 

these techniques to handle large amounts of information available in different 

databases and to discover valuable knowledge to support the activities carried out in 

manufacturing or construction industrial environments. This chapter will further 

explore the possible applications of data mining to analyse structured or semi-

structured databases to manage the knowledge resources to improve the product or 

service quality within industrial environments. 

  

Section 3.2 discusses the importance of business intelligence solutions in 

manufacturing. One of the roles of data mining techniques is to provide support in 

finding the optimal solutions to the existing problems. This is done through 

discovering useful knowledge in terms of rules which can be stored in knowledge 

bases. Knowledge can then be further updated through various applications of 

intelligent data analysis tools. Therefore knowledge and information needs for 

intelligent manufacturing systems and methods to handle these knowledge resources 

are discussed in sections 3.3 and 3.4. The role of data mining techniques for providing 

intelligent solutions is explored in section 3.5. The role of Information retrieval (IR) 

for handling textual data and data mining to support these activities are considered in 

sections 3.6. Finally section 3.7 reports textual data mining solutions in manufacturing 

business improvement environments.  

 

3.2 Business Intelligence in Manufacturing 
To survive in competitive business environments, lower cost, higher quality and rapid 

response are the important issues mentioned by most enterprises. The improvement of 
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manufacturing processes and controlling the product variables highly influence 

product quality. The manufacturing system needs to be robust to perform operational 

activities and should be designed to improve the product or operational process in 

such a manner that the company can attain the desired target with minimum variations 

(Peace 1993). 

 

Business Intelligence (BI) can , therefore, bridge the gap between different parts of 

information and knowledge stored in databases and also can be viewed as an 

important tool for e-business (Grigori et al. 2001). Since the focus of BI and 

Enterprise Resource Planning (ERP) are to control the operation and execute activities 

in an organisation their main purpose is to deal with enterprise analysis and discovery 

of knowledge for decision making to help enterprise managers (Powell 2000; Reimer 

et al. 2000; Brezocnik et al. 2003). In any competitive business environment 

companies have to rely heavily on both design and process automation technologies 

and use professional manufacturing knowledge to enhance their intelligence solutions. 

But if these technologies and professional competencies are used together to advance 

product design and production capabilities then product development time can be 

shortened and the quality and competitive capabilities can be enhanced (Tong and 

Hsieh 2000; Hsieh and Tong 2001; Hsieh et al. 2005). 

 

Business Intelligence can be interpreted as a term for decision support and is 

sometimes referred to as Enterprise Business Intelligence (EBI). Business Intelligence 

tools can be categorised into three different categories on the basis of producing 

answers to questions “what”, “where” and “why” i.e. what is required, where it is 

needed and why it is needed. The answers to the first two of these questions can be 

provided by utilising Data Warehouse and On-line Analytical Processing (OLAP) 

tools which apply different queries to the databases. But the third question i.e. “why” 

all this is happening and how this could be addressed is more difficult to answer. This 

leads to the use of different tools to answer “why” this is happening on the basis of 

existing data, and these tools include forecasting, Classification, Statistical Analysis, 

Data Mining and Text Mining techniques. These tools can be used to provide 

feedback information to support important decision making in any business 

environment. With the inception of knowledge centred product and service quality 
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improvement solutions, most enterprises have to pay particular attention to the issue 

of knowledge management to fully exploit their valuable knowledge resources.  

 

3.3 Knowledge and Information Needs for Next Generation Intelligent 
Manufacturing Systems 
Throughout modern history, the global concept of Manufacturing Systems has been 

closely  related with the principles and findings of science, philosophy, and arts. The 

manufacturing concepts can be seen as reflecting those principles, criteria, and values 

which are generally accepted by society and considered as the most important. For 

example, scientific facts mainly exposed the concepts of exchangeability, 

determinism, rationality, exactness, and causality in the  ,  , and the first half of the  

century. That period of history can be considered as an era when the society was 

predominated by the concept of production. The inception of information technology 

and its advancement in the second half of the  century assured the formal conditions 

necessary for the expansion of various organizational forms. The second half of the 

 

 

century can thus be regarded as an era when organizational aspects were prevailing 

(Brezocnik et al. 2003). 

Today the service life of products is reducing, the number of product versions is 

increasing and the time for product conception to their manufacture is reducing. The 

novelties are being introduced in many areas at a greater speed and changes in one 

area have a strong interdisciplinary character and often affect other areas which seem 

to be independent at first glance. Although there is a great advancement in the field of 

science and technology, the global purpose of human activities and subsequently the 

requirement for manufacturing concepts needs to be well defined in future. This is 

essential because human creativity and the manufacture of goods are obviously the 

basic needs of human beings. The central question is not only the rational 

manufacture of goods but defining the global meaning and purpose of goods will also 

be important.  

 

The deterministic approaches are being used in particular for synchronization of 

material, energy, and information flows in present manufacturing systems and 

methods based on exact mathematical findings and the rules of logic are used in 



 25 

practice for modelling, optimization, and functioning of systems. Since production is 

a very dynamic process where many unexpected events often occur and cause new 

requirements, conventional methods are insufficient for exact description of a system. 

Mathematical models are often derived by making simplifying assumptions and 

consequently may not be in accordance with the functioning of the real system. To 

develop new products or meet the needs of service oriented industrial environments, 

the systems based on Mathematical modelling are not suitable and flexible enough to 

respond efficiently to the requirements. In recent years the paradigm has shifted in 

other areas of science and technology where Intelligent Manufacturing Systems (IMS) 

have been introduced which are capable of learning and responding efficiently. 

Machine learning as an area of Artificial Intelligence (AI) has gained much 

importance in the last one and half decades as successful intelligent systems have 

been conceived by the methods of Machine Learning (ML) (Gen and Cheng 1997; 

Mitchell 1997; Brezocnik et al. 2002).  

 

In this era of information technology, the information technology has great impact on 

every aspect of society and also influences the traditional manufacturing systems. Due 

to increased competition in the global market, companies have to respond to the needs 

of their customers by making the best use of their core technological competencies. 

Manufacturing companies are driven by a knowledge based economy where the 

acquisition, management and utilization of knowledge give them a leading edge. Use 

of both internal and external sources of information is of great importance while 

manufacturing a product. At the stage of a new product design eight different types of 

information needs have been defined in (Zahay et al. 2003). This information extends 

across both internal and external sources and includes the following points; 

 

• Strategic 

• Financial 

• Project management 

• Customer 

• Customer needs 

• Technical  

• Competitor  
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• Regulatory 

 

There are many knowledge management problems related to the integration and reuse 

of different knowledge sources as they are often generated and stored in different 

ways. Strategic information is taken in by the governing board or from the corporate 

business unit. Financial information is usually imported from the finance department. 

Project Management information is generated and controlled to a very large extent by 

the design teams. Customer information and customer needs have been defined 

separately in (Zahay et al. 2003). The customer information may be stored as a 

database about the potential customers while customer needs are separately identified 

as the needs, desires and preferences of customers. Technical information is available 

in various forms and sources such as Product Data Management (PDM) and Product 

Lifecycle Management (PLM) systems and external patent databases, to be used by 

design teams for product innovation, creation and trouble shooting. Finally the 

information collected from competitors and government regulatory agencies are also 

crucial since new products must be compatible with the newly issued government 

regulations and should either be superior to what competitors can offer or be distinct 

in some way in the market. For the purpose of utilisation of these information sources 

they are further categorised into two main categories i.e. internal and external sources 

(Liu et al. 2006).  

 

From a technical perspective the internal information is divided into two major parts 

in which the internal portion refers to the technical experience and knowledge 

generated through a firm’s endeavours in Product Design and Development (PDD). 

This experience and knowledge should be owned and  stored within the company and 

be accessible company-wide. The external source refers to the synthesis of broad 

information and knowledge out of the company, such as patent information managed 

by the government agency, breakthroughs and nascent technologies incubated at the 

public research institutes, customer information and needs investigated by marketing 

firms, competitors’ latest product developments and government’s recent law 

enforcements relevant to the company’s products. These sets of information and 

knowledge exist both as numeric data and textual documents and potentially these 

sources can hold useful but hidden or implicit knowledge about the organisation 
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operation or products and therefore they need to be used to discover patterns in terms 

of rules. 

 

In a typical industrial supply chain, the information passes through   many  companies 

before reaching the final user of the product. Processing of this information manually 

requires a lot of efforts and causes errors (Toyryla 1999), and therefore printed 

information has commonly been replaced by digital data transfer as 70% of 

companies convey product information to their clientele, digitally. Many companies 

in the supply chain may not need the information for their own activities but they still 

have to be able both to receive and transmit the information to all their partners. To 

operate effectively, all companies have to be able to communicate with each other. If 

one of the companies in the supply chain is unable to receive and transmit the 

information then the information flow is interrupted. The product information that is 

sent and stored at various downstream companies is difficult to keep up-to-date. The 

producer of new information may not know what parties to inform about updates and 

thus companies with outdated information risk making decisions based on wrong 

information (Karkkainen et al. 2003), and transmission of product information may 

cause overflow of information at the downstream level of a supply chain (Beulens et 

al. 1999). It is therefore an established fact and has been widely accepted that the 

future of manufacturing organisations is information theoretic and knowledge driven.  

This information can be exploited to improve  manufacturing operations and   build  

global manufacturing environments (Rahman et al. 1999).  

 

  3.3.1 Intelligent Systems and Learning Capabilities in 
Manufacturing 
Manufacturing systems are complex with many variables involved and there are 

complex hierarchical problems associated with these systems. Due to the large range 

of problems associated with each of these systems the synchronization of different 

material, energy and information flows becomes difficult. The learning capabilities of 

current intelligent systems can be divided into three groups where their learning is 

based on conventional knowledge bases, learning through interaction with the 

environment in which they exist and also from other environments as well. 
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• Learning through Knowledge Bases 

A large number of applications of the intelligent systems are based on the knowledge 

bases which have capabilities to maintain information and knowledge in the form of 

rules (i.e. if-then rules, decision trees etc). If information about different scenarios is 

stored in these systems, it can provide a basis for taking any suitable action in many 

unexpected circumstances. These systems perform their functions based on the 

environmental properties and transform them into relevant actions in accordance with 

the instructions in the knowledge base. However if new situations occur which have 

not been previously defined in the system then these systems fail to respond 

intelligently (Brezocnik et al. 2003). 

 

An example of an inference of rule in the knowledge base is given in (Kusiak 1990). 

Consider a semantic network space partially representing the concept of machine 

shown in figure 3.1 where application of inference rule helps to prove or disprove the 

conclusions or goals. Using the inference rule method of Modus Ponendo Ponens or 

modus ponens rule (i.e. A=> B, A ├ B stated as If A is TRUE Then B is TRUE, A is 

TRUE Therefore B is TRUE) it is possible to infer the new fact “L-001 has a motor” 

from the fact  “L-001 is a machine” and the rule “If X is a machine, THEN X has a 

motor.” 
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Figure 3.1: Simple Semantic network partially representing the concept of a 

machine[adapted from (Kusiak 1990)] 

 

 

• Learning with Interactions with Environment 

The systems which learn through interactions with their environment are able to 

induce new knowledge on the basis of learning examples (Brezocnik et al. 2003). 

These environments may be static or dynamic. Their main characteristic is to show 

intelligent behaviour while working in a narrow space of the static business 

environment, with a large number of optimization parameters which are unpredictable 

and therefore cause difficulties in learning to these intelligent systems. These systems 

are meant to solve problems where the interpolation barriers cause an explosion of 

combinatorial factors. It therefore brings the need that the learning capabilities, in 

terms of knowledge upgradation, should be done within these systems to work in any 

static or dynamic manufacturing environment. The examples of such systems are 

software systems, assembly systems, manufacturing systems and information systems. 

For example dynamic scheduling in a flexible manufacturing environment a scheme 

was proposed in (Lee et al. 1997) which uses the decision tree C4.5 at first stage to 

select the best rule to control the input flow of jobs to the system. Then a genetic 

algorithm was used at second level to select the most appropriate dispatching rules for 

each of the system’s machines.  
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• Learning through Interactions with the Internal Environment and External 

Environments 

These systems not only learn through interactions with the environment in which they 

exist but also learn through interactions with other environments and can develop 

methods and techniques to deal with or handle the hardest problems (Brezocnik et al. 

2003). This type of intelligent system works in any environment and interacts with 

other environments working like living organisms. These systems are therefore 

expected to behave like human beings and overcome the hardest problems of dialectic 

barriers. Such systems exist only in human beings where the complex hierarchical 

structures exist. For example living cells are associated with more complex structures 

of tissues which are then associated with organs and these organs are related with 

individuals which ultimately forms communities of most different shapes. The 

example of such an intelligent system for self organising assembly of parts into final 

products is presented in (Brezocnik 2001). The simulation of a self organising 

assembly of shaft is introduced in this research which imitates a general principle of 

evolution of organisms from basic to higher level of hierarchical units. Under the 

influence of a production environment and genetic contents of basic components, the 

basic parts of a shaft grow into a final shaft.    

 

3.4 Knowledge and Information Management Methods 
Knowledge is a valuable resource in a company’s business and is sometimes said to 

pass through the different phases of the ‘data-information-knowledge’ sequence. This 

can be defined as “a framework of different experiences, values, contextual 

information and experts insight that provides a framework for evaluating and 

incorporating new experiences and information” (Davenport and Prusak 1998). 

Knowledge can be divided mainly into two parts i.e. explicit and tacit knowledge 

(Polanyi 1967; Nonaka and Takeuchi 1995) where the explicit knowledge can be 

codified and stored in computer based systems while the tacit knowledge is hidden in 

a person’s mind and is difficult to codify, hard to formalise and communicate. In an 

organisational point of view the knowledge can be defined as a set of routines, 

processes, products, rules and culture that enable actions to be taken in any industrial 

environment (Beckman 1999). Nowadays, the focus of researchers is to consider the 
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emergent nature of knowledge processes (Markus et al. 2002). Three major schools of 

thought are at work in the Knowledge Management (KM) communities i.e. 

technocratic, commercial and behavioural (Earl 2001). Technocratic schools believe 

that it is possible to capture specialist knowledge and codify it so that the knowledge 

base can help to make it transferable and reusable. This school of thought can see the 

advantages that can be gained from the fast growing capabilities of information 

technology. The greatest flaw of this approach is that it implies that knowledge is 

static and hence discards the possibilities of embedding the knowledge gained through 

practice. Commercial schools of thought believe that KM is an economical 

perspective i.e. knowledge as an asset. The focus of the behavioural schools of 

thought is on the socialising aspects of knowledge and enhancing its productivity 

through exchanges within a social network of motivated people. Information 

Technology (IT) can play an effective role in the knowledge management capabilities 

of an organisation through the use of groupware and knowledge representation tools 

(Earl 2001). 

   

  3.4.1 Knowledge Based Systems 
Knowledge based systems are defined to have four components i.e. a knowledge base, 

an inference engine, a knowledge engineering tool, and a specific user interface 

(Dhaliwal and Benbasat 1996). These are also supposed to include all those 

organizational information technology applications that may prove helpful for 

managing the knowledge assets of an organization such as Expert Systems, rule-based 

systems, groupware, and database management systems (Laudon and Laudon 2002).  

 

  3.4.2 Agent Based Systems  
In agent based approaches, the challenging task of making information available 

about all the aspects of the product without having risk of overflow at the downstream 

level is controlled by using software agents. The use of these agents makes it possible 

to answer the challenges involved in information management systems. Agent 

technology was a big paradigm shift in computer programming during the 1980s, in 

which the old procedural programming paradigm changed and shifted into an object 

oriented paradigm. The main reason lying behind this shift was because it is easier to 
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manage data and functionality of a program by dividing it into objects. By having a 

reference of an object one can access information about the object through methods 

declared in the object’s public interface while hiding the object’s implementation. 

Object oriented programming has therefore become a dominant paradigm in software 

engineering. A number of characteristics available under the cover of object oriented 

programming can be used to create agent based product information management 

systems. In distributed intelligent manufacturing systems agents are used to represent 

the manufacturing resources such as workers, cells, machines, tools, products, parts 

and operations which are used to facilitate the manufacturing resource planning, 

scheduling and execution control (Shen and Norrie 1999).  

 

  3.4.3 CAD/CAM and (PDM) Systems 
The product information that is created and required throughout the product lifecycle 

can be captured through the use of Computer Aided Design and Manufacturing 

(CAD/CAM) and Product Data Management (PDM) systems (Ameri and Dutta 

2005). CAD systems emerged in the early 1980s and enabled designers to create 

geometric models of the product more easily than on paper. These digital models can 

easily be manipulated and reused. The Initial Graphic Exchange Specification (IGES) 

was designed as a  neutral format to exchange CAD data and used as a standard for 

geometric information transfer by many CAD/ CAM systems. It does not however 

fulfil the complete requirements of representing product data (Bloor and Owen 1991). 

But due to limitations of these systems the inception of product data management 

systems appeared in 1980s (Dutta and Wolowicz 2005). A PDM system provides a 

framework that enables manufacturers to manage and control engineering 

information, specifically, data surrounding new product designs and engineering 

processes (Gascoigne 1995). PDM systems provide quick and secure access to data 

created during product design. The early PDM systems manage information about 

geometric models, bill of materials and finite element analysis and can provide any 

required engineering knowledge. However these systems have limitations as they do 

not support information and knowledge related to sales, marketing and supply chain 

and other external entities that play an important role like customers and suppliers. 

With the advent of the Internet, Web-based PDM Systems have became more 

accessible to suppliers and other parties outside of the enterprise. But still these 
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systems are confined to engineering information without considering other aspects of 

the product’s lifecycle (Ameri and Dutta 2005). 

 

  3.4.4 Product Lifecycle Management (PLM) Systems 
PLM systems are generally defined as “a strategic business approach for the effective 

management and use of corporate intellectual capital” (Amann 2002). Product 

Lifecycle Management (PLM) appeared late in the 1990s with the aim of moving 

beyond mere engineering aspects of an enterprise. The aim of these systems was to 

manage information beyond the engineering domain in an enterprise by managing 

information throughout the stages of a product lifecycle such as design, 

manufacturing, marketing, sales and after-sales service (Ameri and Dutta 2004). Thus 

PLM systems can provide a number of benefits in terms of delivering more innovative 

products and services, shorter time-to-market and comprehensive and collaborative 

relationships among customers, suppliers, and business partners (Amann 2002; Ameri 

and Dutta 2004; Dutta and Wolowicz 2005). Several vendors are in the market like 

SAP, IBM, Dassault Systems and UGS which offer PLM solutions but still no 

comprehensive PLM system exists today as the application of these systems is still 

five years behind the state of the art solutions (Abramovici and Siege 2002) available.  

 

In an extended enterprise the components of the product are fabricated by external 

suppliers with close relationships to the company designing the product. However, 

this means that the manufacturing knowledge no longer lives within the walls of the 

company therefore when a new product is conceptualized the manufacturing 

knowledge cannot be used easily to address issues such as manufacturability and cost 

during design (Rezyat 2000). There is a need to integrate the supply chain, its 

subsidiaries and affiliated partners with the lifecycle of a particular family of products 

while PLM systems are still limited to product design (Abramovici and Siege 2002).  

 

  3.4.5 Web-based Systems 
Internet and extranet have facilitated the proliferation of information all over the 

world enabling some or all enterprise activities to be moved into virtual spaces. The 

success of an enterprise environment is based on successful or effective exchange of 

information. The heterogeneity of information resources poses some challenges to the 
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enterprise and proper knowledge is needed to handle appropriate information 

processes. There are two types of data or information which an enterprise needs to 

manage i.e. business data which includes accounting and personnel data etc. and 

product data e.g. CAD and CAM data. An integrated web based system using Java 

solution and CORBA-ORG broking technologies for design and manufacturing has 

been proposed in (Cheng et al. 2001 ). 

 

The previous sections give details of methods and techniques that are prevalent in 

manufacturing industrial environments for using and managing valuable knowledge. 

The focus of this research is to look into methods that can be used as a source of 

generating or discovering knowledge from different databases or other file sources 

and transmitting it through the use of an IT infrastructure. This type of managing 

knowledge is related to the technocratic school of thought.  

 

3.5 Need for Data Mining Techniques and Intelligent Decision Making in 
Manufacturing 
One of the concepts for identifying useful knowledge from the codified information is 

Data Mining which can be defined as “the process of discovering interesting 

knowledge from large amounts of data stored either in databases, data warehouses or 

other information repositories.” (Han and Kamber 2001). The word interestingness is 

important to interpret in this definition as it refers to the fact that rules or patterns or 

relationships existed in databases, but not in a form that was easily understandable to 

human beings. The extraction of rules and making these rules interpretable is always a 

focus of the data mining process which goes through different stages in an interactive 

sequence of data cleaning, data integration, data selection, data transformation and 

knowledge representation (Han and Kamber 2001). 

 

Current applications of data mining in Manufacturing generally explore large volume 

databases to discover valuable information and transform this into a valuable source 

of knowledge or patterns. Data Mining has been applied in various domains and has 

been used to explore knowledge sources ranging from finance to life sciences. Data 

Mining has been less commonly applied in manufacturing than in other domains and 

the reason for this may be because of the required effort in terms of time and expertise 
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from both Data Miner experts and Domain Experts (Shahbaz et al. 2006). Further 

reasons are explored in (Wang 2007) as follow: 

• Researchers are lacking knowledge of how to apply data mining techniques in 

manufacturing 

• The complex manufacturing processes are not understandable for theoretical 

based researchers in the field of Data Mining Application  

• Manufacturing data are less accessible due to propriety and sensitivity issues 

to the data mining researchers 

• The difficulty of evaluating the benefits of results during applications of Data 

Mining techniques in Manufacturing  

  

Therefore, the value of using these techniques has not been fully ascertained in 

manufacturing environments but applications which have been made so far have 

provided better “Knowledge Management” solutions in various aspects of 

manufacturing. A detailed survey of applications of data mining techniques in 

manufacturing has been done in (Harding et al. 2006) . Therefore the term data 

mining tool which is used to extract useful knowledge from data can be taken as a tool 

of Business Intelligence. The applications of combined efforts of  Data Mining, 

Business Intelligence and Knowledge Management (KM) can change the current 

competitive status of companies. It can help an enterprise to collect data or 

information, extract patterns from it and transform it into useful knowledge and 

deliver the best manufacturing information and knowledge to the remain competitive 

in a business environment (Wang 2007). The concurrent applications of data mining 

techniques could give useful results when compared to the applications of these 

techniques independently due to the increased complexities of the manufacturing 

systems (Wang 2005). That is the systematic application of hybridized applications of 

data mining approaches can give better results rather the application of a single 

technique.     

 

  3.5.1 Rules Extraction and Updating domain Knowledge 
Understanding Domain knowledge is the first step in the data mining process and is 

used to guide the whole knowledge discovery process. It helps to evaluate the 

interestingness of the resulting patterns. Knowledge of user beliefs is used to assess 
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the pattern’s interestingness based on its unexpectedness (i.e. if the pattern was not 

anticipated by the domain expert or obvious from the source database). The measure 

of interestingness is very important in the knowledge (rules) extraction. Since a data 

mining system has the potential to generate thousands or even millions of patterns, or 

rules the natural question is whether all these patterns are interesting. The answer of 

this question is typically not.  

 

Only a small fraction of patterns generated would be of interest to any given user. An 

interesting pattern represents knowledge. Both user-driven(or “subjective”) and data-

driven (or “objective”) approaches are used to measure the degree of interestingness 

(Freitas 2006). A user-driven approach is based on using the domain knowledge, 

beliefs or preferences of the user, while the data-driven approach is based on 

statistical properties of the patterns. The Data driven approach is more generic, 

independent of the application domain. This makes it easier to use this approach, 

avoiding difficult issues associated with manual acquisition of the user’s background 

knowledge and its transformation into a computational form suitable for a data mining 

algorithm. On the other hand, the user-driven approach tends to be more effective at 

discovering truly novel or surprising knowledge for the user, since it explicitly takes 

into account the user’s background knowledge. Thus the study of rules in the process 

of data mining is very important for the discovery of knowledge which is really 

understandable, valid on new or test data with some degree of certainty, potentially 

useful and novel in the end as well. Some of instances of rules generation, its 

interestingness which help in updating domain knowledge have been reported as 

follows: 

 

(Annand et al. 1995) discussed the use of domain knowledge within Data Mining and 

they defined three classes of domain knowledge: Hierarchical Generalization Trees 

(HG-Trees), Attribute Relationship Rules (AR-rules) and Environment-Based 

Constraints (EBC) and also discussed that one of these types of domain knowledge is 

incorporated into the discovery process within the EDM (Evidential Data Mining). 

(Djoko et al. 1997) presented a method for guiding the discovery process with domain 

specific knowledge. They used the SUBDUE discovery system to evaluate the 

benefits of using domain knowledge to guide the discovery process. (Pohle 2003) 

proposed that formalized domain knowledge be employed for accessing the 
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interestingness of mining results and also recommended that a next-generation data 

mining environment should actively support a user to both incorporate his domain 

knowledge into the mining process and update this domain knowledge with the 

mining results. 

 

(Park  et al. 2001) presented and evaluated a knowledge refinement system, KREFS, 

which refined knowledge by intelligently self-guiding the generation of new training 

examples. This system used induced decision tree to extract patterns from data which 

are further utilized to refine the knowledge. (Yoon et al. 1999) introduced a method to 

utilize three types of domain knowledge i.e. interfield , category and correlation in 

reducing the cost of finding a potentially interesting and relevant portion of the data 

while improving the quality of discovered knowledge. They proposed that relevant 

domain knowledge should be selected by defining clusters of attributes which avoid 

un-necessary searches on a large body of irrelevant domain knowledge. 

(Padmanabhan and Tuzhilin 1998) proposed a new method of discovering unexpected 

patterns that takes into consideration prior background knowledge of decision makers. 

(Nguyen and Skowron 2004) presented a method to incorporate domain knowledge 

into the design and development of a classification system by using a rough 

approximation framework. They demonstrated that an approximate reasoning scheme 

can be used in the process of knowledge transfer from a human expert’s ontology, 

often expressed in natural language, into computable pattern features. (Bykowski  and 

Rigotti 2001) presented the idea to extract a condensed representation of the frequent 

patterns, called disjunction-free sets, instead of extracting the whole frequent pattern 

collection. 

 

(Liu et al. 2000) developed a new approach to find interesting rules (in particular 

unexpected rules) from a set of discovered association rules. (Chia et al. 2006) 

developed a novel technique for neural logic networks (or neulonets) learning by 

composing net rules using genetic programming. (Lin and Tseng 2006) proposed an 

automatic support specification for efficiently mining high-confidence and positive-

lift associations without consulting the users. 

 

(Last and Kandel 2004) presented a novel, perception-based method, called 

Automated Perceptions Network (APN), for automated construction of compact and 
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interpretable models from highly noisy data sets. (McErlean et al. 1999) introduced a 

new evidential approach for the updating of causal networks which is to be added to 

an existing general data mining system prototype-the mining Kernel System (MKS). 

They presented a data mining tool which addresses both the discovery and update of 

causal networks hidden in database systems and contributes towards the discovery of 

knowledge which links rules (knowledge) and which is normally considered domain 

knowledge. (Zhou et al. 2001) presented an intelligent data mining system named 

decision tree expert (DTE). The rule induction method in DTE is based on the C4.5 

algorithm. Concise and accurate conceptual design rules were generated from drop 

test data after the incorporation of domain knowledge from human experts. (Cooper 

and Giuffrida 2000) developed and illustrated a new knowledge discovery algorithm 

tailored to the action requirements of management science applications. Information 

is extracted from continuous variables by using traditional market-response model and 

data mining techniques are used to extract information from the many-valued nominal 

variables, such as the manufacturer or merchandise category. 

 

  3.5.2 Decision Trees Analysis 
 Decision trees play an important role in making decisions based on distribution of 

information in terms of binary classification trees. These are used to present the 

decision rules in terms of a binary tree where each node is subdivided into sub nodes. 

In computer integrated manufacturing (CIM), (Kwak and Yih 2004) presented a 

decision tree based methodology for testing and rework purposes and the rules 

generated showed the effect in decision making process. The earliest version of 

Decision Trees is ID3 which was used for solving a variety of problems in different 

application fields. A generalised ID3 was proposed by (Irani 1993) as a part of an 

expert system for diagnosis and process modelling for semi-conductor manufacturing. 

A decision tree based model was also used for the accurate assessment of probabilistic 

failure of avionics by using the historical data relating to environment and operation 

condition (Skormin 2002). A decision tree based analysis was made for mining the 

job scheduling in order to support date assignment in a dynamic job shop environment 

in (Sha and Liu 2005) and rules are presented in terms of IF-THEN rules. (Zhou et al. 

2001) applied C4.5 algorithm for drop test analysis of electronic goods where the 

focus was to predict the integrity of solder points for large components on the printed 
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wiring boards   and also could be used to other parts. (Kusiak 2006) proposed a 

decision tree based algorithm for learning and prediction of incoming  faults of watery 

chemistry. 

 

  3.5.3 Clustering Techniques 
Clustering is a data mining technique which is used to analyse data and classify it into 

different classes. (Chien 2007) developed a framework on the basis of k-means 

clustering to increase the yield of semi-conductor manufacturing. (Liao et al. 1999) 

used fuzzy based clustering techniques to detect the welding flaws and also presented 

the comparative study between fuzzy k-nearest neighbour and fuzzy C clustering. 

(Liao 2006) used a genetic clustering algorithm for exploratory mining of feature 

vectors and time series data. The approach used showed good results which are 

comparable to the k means clustering algorithm. Various clustering algorithms are 

used in manufacturing environments where the main focus is to use k-means, fuzzy k-

means, fuzzy C means and artificial neural networks approaches to enhance the 

quality of product or services oriented jobs. Artificial neural networks have also been 

used to solve multiple problems in manufacturing. These techniques have long been 

used to learn from historical databases and perform both supervised and unsupervised 

learning from databases. 

 

  3.5.4 Association Rule Analysis 
In (Shahbaz et al. 2006) association rule mining was applied on product (Fan Blade) 

data to extract information about process limitations and knowledge about 

relationships among product dimensions. The information and knowledge extracted 

could then be used as a feedback for design and quality improvement. Association 

rule mining was also used for the subassembly based analysis of prior orders received 

from the customers (Agard and Kusiak 2004a). The extracted knowledge can be used 

for the selection of subassemblies in order to timely deliver the product from the 

suppliers to the contractors. (Cunha 2006) used association rule analysis for detecting 

the faults in an assembly line to improve the quality of assembly operations. The semi 

conductor manufacturing industry has been highly influenced by the use of these 

techniques where (Chen et al. 2005) extracted association rules to detect the defects in 

semiconductor manufacturing and finally used these rules and their relationships to 
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identify the defective machines. (Chen 2005) used association rule mining techniques 

to mine the information about customer demands from the order databases which 

contain information in terms of frequently ordered product item sets. (Jiao and Zhang 

2005) applied association rule of mining to extract rules among customer needs, 

marketing folks and designers to develop a decision support system about product 

portfolio. (Shao et al. 2006) proposed an architecture to discover associations between 

clusters of product specifications and configurations alternatives. 

 

  3.5.5 Support Vector Machines (SVMs) 
(Samanta et al. 2003) compared the performance of bearing fault detection, by 

selecting both with and without automatic selection of features and classifying 

parameters, using two different classifiers, namely, artificial neural networks (ANNs) 

and support vector machines (SVMs). Genetic Algorithm (GA) is used to select the 

optimised input features and classifier parameters (e.g. mean, root mean square (rms), 

variance, skewness, higher order normalised moments) to distinguish between the 

normal and defective bearings. (Vong et al. 2006) used least squares support vector 

machines and Bayesian inference for prediction of automotive engine power and 

torque. Least square support vector machines (LS-SVM) is used to determine the 

approximated power and torque of an engine. (Cho et al. 2005) proposed an 

intelligent tool breakage detection system which used Support Vector Regression 

(SVR) analysis to detect the process abnormalities and suggest the corrective actions 

to be taken during the manufacturing process especially the milling process. The 

results are compared with a multiple variable regression approach. (Kwon et al. 2006) 

presented a comparative study on Coordinate Measuring Machine (CMM) and probe 

readings to investigate closed-loop measurement error in Computer Numerical 

Controlled (CNC) milling relating to two different inspection techniques. Adaptive 

support vector regression analysis was used to measure closed-loop inspection 

accuracy where different material types and parameter settings(e.g. cutting force, 

spindle vibration and tool wear) to simulate the results. (Ramesh et al. 2003) 

presented a hybrid Support Vector Machines (SVM) and a Bayesian Network (BN) 

model to predict machine tool thermal error which depends considerably upon the 

structure of error model. The experimental data is first classified using a BN model 
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with a rule-based system. Once the classification has been achieved, the error is 

predicted using a SVM model. 

 

  3.5.6 Hybridized Approaches for Analysis  
The combinations of different data mining approaches are also gaining popularity for 

solving manufacturing problems. A couple of instances have also been reported in the 

literature for the analysis of the data. A hybrid kernel based clustering approach and 

outlier detection methods were used for customer segmentation and outlier detection 

in (Wang 2008). The methods were tested on two real domain data sets i.e. iris and 

automobile maintenance data sets. A hybrid system was proposed for statistical 

process control based on decision tree and neural network approaches in (Guh 2005). 

These approaches were used to solve the problem of false recognition and increase the 

control chart pattern classification in different situations and produced promising 

results. 

 

3.6 Information Retrieval (IR) for Textual Data Handling 
Information retrieval(IR), in a broad sense, includes representation, storage, 

organization, and access to information. In practice, many aspects of work produce 

documents, i.e. items that carry information. Thus, it is common to use information 

retrieval as synonymous with document retrieval, with an understanding that the 

notion of a document is used very flexibly. Most information retrieval research has 

been focused on identifying documents or portions of documents that may satisfy the 

user’s information need. For example, in response to the user’s query ‘electric cars’ it 

is reasonable to assume that any document that provides information about ‘electric 

cars’ satisfies the user’s information need. However, in other situations, it may be 

necessary to interpret the query based on a wider context. For example, in order to 

process a query for recent news about faster electric cars the system would need to 

disambiguate under-specified query terms ‘recent’ and  ‘faster’ that have a meaning 

relative to the user’s experience and perception of the world. 

 

IR covers various types of information access: search, browsing, pro-active 

information gathering and filtering. In the case  of browsing, the user’s information 

need may be less well defined and highly affected by the user’s interaction with 
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documents through viewing, skimming, and reading. In search, the need is sufficiently 

defined so that the user can express it verbally, in a form of a query. It is expected that 

the query terms carry sufficient semantic characterization of the need to enable search 

over the data set. However, the user needs to refine or reformulate the query. This can 

be accomplished by using a general purpose thesaurus or by extracting relevant 

vocabulary directly from the content of the database being searched. The 

advancement in information technology and computation techniques has greatly 

influenced the field of IR. The general approach of IR is to create a suitable 

representation for the query and the document, then to apply a retrieval technique that 

derives from the model adopted for representing the documents (Srinivasan et al. 

2001). To implement the query, the search engine plays a crucial role in IR. A search 

engine operates by indexing the content of documents and allowing users to search 

the indexes. When a user poses a query to the system, the query is indexed by its 

terms and the weights are associated with the query term  (Singhal et al. 1996). After 

that, a numerical similarity is computed between the user query and all the documents 

in the collection (Salton 1989). Such a similarity supposedly measures the potential 

usefulness of a document for the user query (Singhal et al. 1996). The documents in 

the document collection are ranked by their decreasing similarity to the query and are 

presented to the user in this order. Using the term-based (e.g. keyword) approach to 

represent documents is a mainstream method in document retrieval. IR technology has 

matured to the point where there are now reasonably sophisticated operational and 

research systems to support IR (Srinivasan et al. 2001). However, despite the recent 

advances of IR or search technologies, studies show that the performance of search 

engines is not quite up to the expectations of the end users (Gordon and Pathak 1999). 

 

There are various reasons contributing to the dissatisfaction of the end users, among 

them are imprecise query formulation, poor document representations and an 

unfamiliarity with system usage. It has been found that there are retrieved documents 

whose contexts are not consistent to the query (Kang and Choi 1997). Users often 

have to waste time sifting through ‘hit lists’ that are full of irrelevant results (Weiguo 

et al. 2004), thus reducing their satisfaction of search result. Therefore, increasing the 

effectiveness of retrieval algorithms remains an important goal (Srinivasan et al. 

2001). To achieve this goal both new retrieval models and extensions of existing 

models, in particular the Vector Space Model (VSM), have been used, mainly with a 
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two fold aim (1) to make the query language more expressive and natural; and (2) to 

incorporate a relevance feedback mechanism to control the production of relevant 

retrieval results (Salton 1989). (Bordogna and Pasi 1995) suggested that providing the 

IR system with a powerful query language or a sophisticated retrieval mechanism is 

not sufficient to achieve effective results if the representation strongly simplifies their 

information content. So there is a need to develop some new models to refine and 

improve the retrieval task of the documents. 

 

  3.6.1 Data Mining to Support IR Based Solutions 
Data mining involves the exploration and analysis of large quantities of data to 

discover meaningful patterns and rules using automatic and semiautomatic methods. 

However, applications to handle textual data or documents are less reported in 

literature. Some instances of these are as reported below : 

 

(Lin et al. 2005) presented a study on the integration of information retrieval and data 

mining techniques to discover project team coordination patterns from project 

documents written in Chinese. (Lin and Hsueh 2002) proposed knowledge map 

creation and maintenance approaches by utilizing information retrieval and data 

mining techniques to facilitate knowledge management in virtual communities of 

practice. 

 

(Tan 2005) proposed the neighbour-weighted K-nearest neighbour algorithm, i.e. 

NWKNN to deal with uneven text sets. (Tan 2006) proposed a new refinement 

strategy, which is called DragPushing, for the k-Nearest Neighbours (KNN) 

Classifier, which is widely used in the text categorization community but suffers some 

model misfits due to its presumption that training data are widely distributed among 

all categories. (Huang et al. 2006) proposed a rough-set-based approach to enrich 

document representation where the classification rules are generated and the premise 

terms are provided by the rough-set approach. (Saravanan et al. 2003) proposed a 

text-mining framework in which classification and summarization systems are treated 

as constituents of a knowledge discovery process for text corpora. (Spertus 1997) 

discussed the varieties of link information: not only the hyperlinks on the web but also 

how the web differs from conventional hypertext, and how the links can be exploited 
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to build useful applications. (Ngu and Wu 1997) proposed an alternative way in 

assisting all the web servers and further proposed that each server should do its own 

housekeeping. (Ngu and Wu 1997) showed that a large annotated general-English 

corpus is not sufficient for building a part-of-speech tagged model adequate for 

tagging documents from the medical domain.  

 

3.7 Textual Data Mining Solutions in Manufacturing 
The literature reviewed during the research shows that data mining can serve the 

purpose of managing the knowledge and information from the product design to 

through product life cycle activities. It is an interdisciplinary field that combines 

Artificial Intelligence (AI), Computer Science, Machine Learning, Database 

Management, Data Visualization, Mathematics Algorithms, and Statistics. Data 

Mining is defined as a technology for discovering knowledge from databases (KDD). 

It provides different methodologies for decision making, problem solving, analysis, 

planning etc. Exploratory Data Analysis (EDA) provides a general framework for data 

mining based on evidence theory. This provides a method for representing knowledge 

and allows prior knowledge from the user or knowledge discovered by another 

discovery process to be incorporated into the knowledge discovery process (Apte et 

al. 1994) . Knowledge discovery from textual data (KDT) or textual data mining and 

Text Mining (TM) can be defined as the special fields of knowledge discovery from 

databases (KDD). Text mining techniques combined with the data mining tools can be 

used effectively to discover hidden patterns in the textual databases. The next section 

focuses on the application of these efforts to handle the information and knowledge 

sources. 

 

  3.7.1 Manufacturing Product/ Service Quality Improvement 
In this section applications of Text/data mining techniques have been reported which 

further help to identify the needs of discovering valuable knowledge from textual 

databases. 

 

The design stage in product development plays a key role in the product lifecycle. A 

great deal of time is consumed in the product design stage as many different 

technological efforts have to be used. The role of data /text mining is quite effective to 
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support variant design activities as a generic bill of material (GBOM) approach was 

proposed in (Romanowski and Nagi 2004). (Romanowski and Nagi 2005)  then found 

structural similarity of BOMs using tree matching techniques. This approach helped 

to advance the definition and design of product families using text mining techniques 

and association rule mining (Agard and Kusiak 2004a) .The focus of this research was 

to identify the relationships between functional requirements and design solutions.  

 

Data Mining techniques have also been used to find generic routings for large 

amounts of production information and process data available in a firm’s legacy 

systems (Jiao et al. 2007). The generic routing identification goes through three 

consecutive stages, including routing similarity measures, routing clustering and 

routing unification. Text mining and tree matching techniques were used to handle 

information hidden within textual and structural types of data underlying generic 

routings.   

 

To identify a ‘shared understanding’  in design by analysing the design 

documentation, a formal methodology was described in (Hill et al. 2001). The 

premise of the paper was the topical similarity and voice similarity are identifiers of 

the shared frame of reference of the design. The voice of the designer operating in a 

team was defined more as the ability of a designer to borrow the shared vision of a 

design team. Using the computational linguistic tool of latent semantic analysis, 

engineering courseware of documents ( .needs.org) written by various authors were 

analysed to reveal highly correlated group of topics. This study also showed that there 

were characteristics within documents that allow the author of a document to be 

identified. 

 

(Yang et al. 1998) discuss how to make textual information more useful throughout 

the design process. Their main goal was to develop methods for search and retrieval 

that allow designers and engineers to access past information and encourage design 

information reuse. They used informal information found in electronic notebooks 

since it is captured as it is generated, thereby capturing the design process. They 

investigated schemes for improving access to such informal design information using 

hierarchical thesauri overlaid on generic information retrieval (IR) tools. They made 

http://www.needs.org/�
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use of the Singular Value Decomposition (SVD) technique to aid in the automated 

thesauri generation. 

 

A method based on typical IR techniques for retrieval of design information is 

described in (Wood et al. 1998). They created a hierarchical thesaurus of life cycle 

design issues, design process terms and component and system functional 

decompositions, so as to provide context based information retrieval. Within the 

corpus of case studies they investigated, it was found that the use of a design issue 

thesaurus can improve query performance compared to relevance feedback systems, 

though not significantly. 

 

Data mining techniques to generate relationships among design concepts were used in 

(Dong and Agogino 1997). In the first stage the syntactic relationships within the 

design documents are analysed to determine content carrying phrases which serve as 

the representation of the documents. In the second stage, these phrases are clustered to 

discover inter-term dependencies which are then used in the building of a Bayesian 

belief network which describes a conceptual hierarchy specific to the domain of the 

design. 

 

A data mining technique to mine unstructured, textual data from the customer service 

database for online machine fault diagnosis, was developed in (Fong and Hui 2001). 

The data mining techniques integrated neural networks (NNs) and rule based 

reasoning (RBR) with case based reasoning (CBR). In particular , NNs were used 

within the CBR framework for indexing and retrieval of the most appropriate service 

records based on a user’s fault description. 

 

An unsupervised information system OPINE was introduced in (Popescu and Etzioni 

2005) to mine reviews in order to build a model of important product features, their 

evaluation by reviewers and their relative quality across product. They decomposed 

the problem of review mining into the four main subtasks of identifying product 

features, opinions regarding product features, determining the polarity of opinions and 

ranking those opinions on the basis of their strengths. 
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Textual data mining techniques i.e. clustering and classification based upon decision 

tree and neural networks were used to analyse pump station maintenance logs stored 

in the form of free text in spread sheet (Edwards et al. 2008).  

 

In the product development process textual data mining techniques were used for 

automatic classification of textual data to facilitate the fast feedback in the product 

development process (Menon et al. 2003). Different document representation 

techniques were tested in this case study. 

 

A methodology was proposed based on text mining techniques of morphological 

analysis to develop a technological road map through identification of key words and 

their relationships for new product development and technological advancement in 

(Yoon et al. 2008). The proposed methodology is based upon the three major steps of 

data collection, product and technological analysis and mapping the analysed set of 

information from product and technological related key words to develop a road map 

for the new technology. 

 

Text mining based solutions have been proposed in (Huang and Murphey 2006) to 

diagnose engineering problems through textual data classification. The automotive 

industry problems are often descriptive in nature and it becomes difficult to map the 

problems to their diagnostic categories such as engine, transmission, electrical, brake 

etc. In this paper the text mining methods, in particular  text classification, has been 

used to mine the automotive problems and map these information to their correct 

diagnostic categories. 

 

(Kasravi 2004) discussed various application domains in the engineering sector i.e. 

predictive warranty analysis, quality improvements, patent analysis, competitive 

assessments, FMEA, and product searches where text mining methods can help to 

untap the vast amount of information available in textual data. This specifically 

improves processes through tracking of information from top to downstream levels 

and through complex data analysis. 
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  3.7.2 Business Process Improvement through Customer 
Knowledge Management 
The business process quality improvement issue has been handled in (Grigori et al. 

2001) through analysing, predicting and preventing the occurrences of exceptions 

with application of data mining techniques. A complete tool suite was presented in 

(Grigori et al. 2004) through applications of data warehouse and data mining 

technologies to support IT users to manage the business process execution quality.  

 

In today’s business environments, business analysts have to predict their customer 

behaviours in various ways including using their past histories and communicating 

effectively with them through face to face interaction, using calls to the customers 

through service centre calling, recording their comments of the web sites and 

recording their views on e-mail systems. The nature of information available is in the 

form of data that is unstructured and any useful knowledge within it is implicit in 

nature. The attributes and their corresponding fields in a database are mostly 

structured and data mining techniques are generally only able to handle the structured 

form of data. If the unstructured data is not taken into consideration this may cause 

some valuable information to be lost and only remain available in the form of 

unstructured data bases (Grigori et al. 2004). The data warehouse and data mining 

techniques were used to analyse the customer behaviour to build customer profiles 

and provide methods to help companies to retain their customers. This was adapted by 

developing marketing strategies through discovery of hidden knowledge within the 

databases of a company (Chang et al. 2009). The decision tree C4.5 and content 

analysis were used to segment customers into different categories by identifying their 

needs.  

Text Mining techniques were applied to categorise the customers feedback made on 

phone calls surveys in (Grievel 2005). Documents were assigned predefined classes 

and divided into dynamical categories respectively.  

 

3.8 Summary of the Chapter and Conclusions 
The literature reviewed in this chapter shows that intelligent decision making is of 

great importance in many contexts within manufacturing, construction and business 

generally. Business intelligence tools, which can be interpreted as decision support 

tools, are of increasing importance to companies for their success within competitive 



 49 

global markets. However, these tools are dependent on the relevancy, accuracy and 

overall quality of the knowledge on which they are based and which they use. 

 

Potential knowledge sources are very varied, and include data warehouses, various 

databases, files and web sources and can contain numerical and/ or textual data in 

structured and / or unstructured forms. The reviewed literature shows that data mining 

has been used successfully in many design, operational and manufacturing contexts. 

However, to date, most of these applications have used numerical and / or structured 

knowledge sources. There is great potential still for data mining to be used further to 

better manage the needs of next generation business and in particular to exploit the 

implicit or tacit knowledge which is likely to be available in unstructured textual 

knowledge sources. However, this will require greater research and adoption of 

textual data mining (TDM) handling techniques or Text Mining methods. The 

literature reviewed also showed that there are not many instances reported in 

exploiting textual sources of information in manufacturing or construction industrial 

environments. 
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Chapter 4 Textual Data Mining (TDM ) for 
Knowledge Management (KM): A Conceptual 
Development of Methodology 
4.1 Introduction 
In the previous chapter the literature was reviewed about various applications of data 

mining and textual data mining techniques to enhance business intelligence solutions. 

This chapter focuses on Text Mining and its application technologies to generate 

valuable knowledge to improve the business integrated solutions. The nature of 

technologies used for this purpose will be discussed in detail to solve the issues of 

handling semi-structured or unstructured data formats. The power of Text Mining 

combined with other technological efforts has been explored during this research 

work . The focus of applications examined in particular is Information Retrieval (IR) 

and Natural Language Processing (NLP).  

 

4.2 Text Mining Needs 
The continuous growth of digital based information in various sectors has led to the 

identification of various issues associated with the handling of multiple sets of 

information. In all areas of life the quantity of information continues to grow that it 

becomes a cumbersome job to handle the information manually (Sholom et al. 2005). 

A large part of information within any corporate business environment is available in 

the form of unstructured data i.e. documents and Web pages, business information in 

data repositories on Intranets and the Internet. 80% of companies estimated 

information are in the form of textual information such as emails, memos, customer 

correspondence, and reports (Tan 1999; Spinakis 2001; El Wakil 2002; Karanikas and 

Theodoulidis 2002). The analysis and careful handling of these sources of information 

could give competitive advantages to a company and help it to be successful in the era 

of the knowledge-based economy (El Wakil 2002).  Therefore use of automatic 

methods, algorithms, and tools for dealing with such a large amounts of textual data 

have become necessary (Lagus 2000). In order to solve these issues a relatively new 

field of Text Mining (TM) for management of multiple data formats has evolved to 

address the potential issues of mining large numbers of textual databases 

automatically (Spinakis and Peristera 2003; Fan et al. 2006). Text Mining can be 

defined as a sub field of data mining if data mining techniques are used to discover 
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patterns or information from textual data. It also inherently requires techniques from 

other fields of Information Retrieval, data mining and Computational linguistics 

(Bolasco et al. 2002) as shown in figure 4.1. Text Mining techniques are also aimed at 

finding the Business Intelligence solution to help companies to remain competitive in 

the market (Bolasco et al. 2005). 

 

 
Figure 4.1: Text Mining as an Interdisciplinary Field  

 

The objectives of data mining techniques can be characterised by the different 

functions that they perform through the process of discovering knowledge from 

databases e.g. clustering, association, classification etc. Thus text mining processes 

can be defined in different aspects of information and knowledge management. In 

terms of handling information text mining can be defined as “the process of extracting 

useful information from textual databases through the application of computer based 

methods and techniques” (Fan et al. 2006).  

 

In terms of discovering knowledge from textual databases text mining can also be 

defined as, “the non trivial process of identifying valid, novel, potentially useful and 

ultimately understandable patterns in unstructured data ” (Karanikas and Theodoulidis 

2002). Thus it can be defined as an extension of the field of Data Mining to explore 
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the possible solutions of discovering knowledge and its management in any business 

oriented environments. 

 

Text Mining performs nine different tasks for handling rich sources of information 

and making it suitable for discovering useful knowledge from them. These tasks range 

from extracting useful information to its visualization and are categorised as 

information extraction, text-based navigation, search and retrieval, clustering, 

categorization, summarization, trends analysis, associations, and visualizations (Fan et 

al. 2006; Singh et al. 2007; Gupta and Lehal 2009). These tasks are briefly described 

as follows: 

 

Information extraction deals with finding useful information from a text. It identifies 

information in terms of key phrases and their relationship within text. The various 

information objects are defined in the textual data to characterise the information 

about person, place, organization etc. It also deals with finding information through 

counting the number of times a term occurred in the text and their corresponding term 

sequences and knowledge is presented in terms of relationships between terms and 

their sequences.   

 

Text-base navigation systems are concerned with finding the related terms discussed 

in some specific context in the text and finding the relationships between them.  

 

Searching and retrieval strategies are meant to answer the questions of specific needs 

of their users and help to bring the relevant information to the desk. This technique 

helps the user to ask a question from the computer and be provided with the related 

answer. In a company or industrial setup, the employees are enabled to search internal 

databases to find the answers of their common questions. 

 

Clustering, Categorisation and Summarisation tasks are most widely used for 

drawing key information and knowledge from the text.  The process of Clustering or 

grouping the documents is done to find information hidden in the text by  finding the  

similarities between the  documents. This method groups similar documents on the 

basis of strong similarities within each cluster and dissimilarities to the documents 



 53 

outside the cluster. This technique is useful to organise thousands of documents in an 

industrial or organisational information management systems.  

 

Categorization is the process of identifying the similarities in the documents based on 

content mining technologies and putting these documents into pre-defined sets of 

categories or classes or topics for analysis. The process of categorization of 

documents relies on methods of taking the whole document as a set of words or “bag 

of words” where the information is extracted on the basis of words counts, the 

relationships are identified by looking terms in broader and narrowing aspects of these 

terms, and their synonyms. 

 

Summarization process helps to reduce the content of documents and makes it 

readable to others whilst still retaining the sense of the topic discussed in it. In 

practice humans read through the text and understand the meaning of this and mention 

or highlight the main topic or point discussed in the text. Computers lack  this 

capability of understanding the text therefore certain methods or techniques (e.g. 

sentence extraction) are used to find the useful information by using statistical 

weighting methods. These methods are used to find the key information in terms of 

phrases to define main theme of the text.   

 

Trend Analysis and Association Analysis are used to find trends or predict future 

patterns based on time dependant data and associate these patterns to the other 

extracted patterns. Visualization is defined as representing the extracted features with 

respect to the key terms and helps identifying main topics or concepts by the degree 

of their importance on the representation. It is further used to easily discover the 

location of the documents in graphical representation. 

 

4.3 Data and Text Mining For Discovering Knowledge 
Data mining tasks can be characterised as different from other technologies due to its 

handling of multiple data formats or databases such as relational databases, data 

warehouses, transactional databases, etc. Among these databases, text databases are 

“databases that contain word descriptions for objects” (Han and Kamber 2001), such 

as papers, reports, messages, notes, Web pages, or others. Text databases may be 



 54 

unstructured, semi- structured or structured (Han and Kamber 2001). They therefore, 

support the concept of defining text mining as Textual Data Mining or Knowledge 

Discovery from Textual Databases. Though text mining processes rely heavily on 

applications of data mining techniques for knowledge discovery from textual 

databases, there are inherently more challenges due to the properties of handling very 

complex databases which are unstructured or fuzzy in nature (Tan 1999) when 

compared to numerical data formats.  

   

  4.3.1 Cross- Industry Standard Process for Data Mining (CRISP-
DM) 
A standard data mining process modelling approach was developed in 1996 by the 

group of analysts which was termed as the Cross-Industry Standard Process for Data 

Mining (CRISP-DM) (Chapman et al. 2000). The group who developed this approach 

included DaimlerChrysler, SPSS and NCR. The intent behind defining this standard 

was to make the process of data mining as industry-neutral, tool-neutral, and 

application-neutral. According to this standard process there are six different stages of 

Data Mining defined as follows; 

 

    4.3.1.1 Understanding and Defining the Business Problem 

In this stage of the CRISP-DM process the initial understanding of the problem or the 

research need is defined. That is the process of data mining needs to be started by 

clearly defining the business/ project needs and objectives in terms of the whole 

business or research unit. When translating the goals and formulating the data mining 

problem definition one should design a plan to achieve these goals and objectives. 

Thus this is a very essential step in the process of data mining which needs to be 

performed carefully. 

 

    4.3.1.2 Understanding Data or Information 

At this stage of analysis some raw data or information is collected and some 

exploratory data analysis techniques are used to get an initial insight of the data. 

Dealing with data quality issues and selection of some interesting subsets of 

information may serve the purpose of discovering useful patterns. 
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    4.3.1.3 Preparing Data for Analysis 

At this stage of handling data or information the data is made ready for analysis and 

use in the subsequent stage of application of data mining techniques. This is a quite 

labour intensive task which includes selection of variables which will be effective in 

the analysis, transformation of different variables (if needed) and removal of un-

necessary information from the data which are less effective in the knowledge 

discovery process.  

  

    4.3.1.4 Modelling  

At this stage of analysis an appropriate data mining tool or technique is selected 

which is used to optimise the results. Different data mining techniques may be used 

for finding the solution of the problem. An iterative procedure will be adopted based 

on the initial data preparation phase to meet the specific needs of applying the 

appropriate data mining algorithms. 

 

    4.3.1.5 Model Evaluation 

This is a decision making stage where the quality and effectiveness of the models 

used at the modelling stage is tested before deploying the model in a real industrial or 

business problem.  

 

    4.3.1.6 Model Deployment  

Creating a model by following the different stages of CRISP-DM, the last stage is to 

deploy the designed model on the industrial context and generate a report.   

 

Data Mining and Text mining are similar in many ways as they are both used for 

discovering knowledge from multiple databases but they differ in a number of points 

as below (Spinakis and Chatzimakri 2005):- 

 

1. Data formats which are handled by the text mining techniques are usually 

more difficult to decipher than data handled by data mining technologies.  

 

2. Text Mining techniques consider the syntactic and semantic relationships of 

textual data in depth and decode the relationships among them whilst the focus 
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of data mining tends to be on distance measures for measuring the similarities 

of terms or context defined in textual data. 

  4.3.2 Text Mining Process 
The text mining process mainly consists of three different stages i.e. text preparation, 

text processing and text analysis(Natarajan 2005). 

 

    4.3.2.1 Text preparation 

At this stage of data handling the initial process of selecting the suitable variables, 

cleansing and pre-processing of textual data is done. This process of handling text 

should be done under the guidance of human experts who can help to identify which 

terms or phrases are more suitable in the analysis of the data. Some pre-processing 

techniques are applied at this stage of analysis e.g. stop words removal, stemming etc.  

 

    4.3.2.2 Text processing 

Once pre-processing is done then the next stage is to store the multiple sets of 

information in a homogenous format on which some data mining or natural language 

techniques can be used. These techniques help to process the information by finding 

the relationships among terms in the textual data and help to explore relationships 

existing in terms of people, companies, organizations, etc. Added to this some 

conceptual relationships between entities can be explored to find information related 

to particular aspects of interest. These relationships among entities help to extract 

meaningful features through the applications of techniques such as decision trees, 

neural networks, case-based learning, association rules or genetic algorithms. 

 

    4.3.2.3 Text analysis 

The most important requirement of textual data handling is that the knowledge 

discovered must be understandable and useful for meeting the business needs. The 

discovered knowledge is often presented using visualisation tools to help the analysis 

in identifying the corresponding relationships existing in terms to their links with 

other terms of the same category or different set of terms.  

 

The figure 4.2 shows the interactive and iterative procedures which are adopted 

during the process of discovering knowledge from textual databases. The information 
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available in the form of textual information sources is used as an input to the text 

preparation and text processing procedures. Both the text preparation and the text 

processing stages should work interactively to form the basis of finding useful and 

understandable patterns in data which are then visualised in the text analysis stage. 

Finally the results are published in the form of graphs or tables.  

 
 

Figure: 4.2 Text Mining process as Interactive and Iterative Procedures 

 

  4.3.3 Text Mining and Core Technologies for Information 
Processing 
This section describes the efficiencies of text mining techniques compared with other 

information handling technologies. Text mining shares techniques from other areas of 

information processing and knowledge handling techniques i.e. information retrieval, 
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used to solve the problems of extracting business intelligence solutions from the text 

(Baeza-Yates and Ribeiro-Neto 1999). 

 

    4.3.3.1 Information Retrieval 

Information retrieval methods are taken as a first step in handling the source of 

information which may be available in textual data formats. 

 

Information Retrieval is defined as the methods used for representation, storage and 

accessing of information items (Joachims 1998) where the information handled is 

mostly in the form of textual documents, newspapers, research papers and books 

which are retrieved from databases according to the user request or queries. 

Information Retrieval Systems (IRS) are meant to find information which matches 

their customers or users needs. A Text Mining process differs from information 

retrieval in the sense it identifies the “knowledge” as a consequence of applications of 

data mining techniques which is new, potentially useful and ultimately 

understandable. Thus the focus of text mining is more generic in comparison to the 

IRS since the information is not already known as it is in the case of IRS (Hearst 

1999). 

 

 In a typical IRS the query is constructed by the user which is analysed and compared 

to the documents available within databases and the required information is brought to 

satisfy the user’s needs. These systems were first adopted in libraries to satisfy their 

user’s needs (originally using card catalogues, but now using digital resource and 

information management systems). World Wide Web pages have attracted the 

attention of users by providing capabilities for accessing information and knowledge 

across hundreds or thousands of web pages. Measures of performance are common in 

IRS and these include measures of precision, recall and F-measures, which is most 

difficult to decipher and relates to how close two documents are to each other 

(Joachims 1998). Information retrieval methods share techniques from a couple of 

other areas which have helped to develop models and techniques to present large 

collections of text. A big research problem is how to present and identify the 

documents about particular topics and subtopics. Potentially, the greatest benefit of 

text mining techniques lies in generating multiple clusters.  
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    4.3.3.2 Computational Linguistics 

Text mining techniques share methods from natural language processing to deal with 

textual information hidden in natural language text based databases. The ability to 

handle information of this type and make it understandable to the computer lies at the 

core of text mining technological efforts. Computational efforts are being made to 

make the computer understand the human natural language but efficient methods are 

not yet achievable for processing these types of information and extracting useful 

knowledge patterns. Therefore text mining techniques can offer benefits for 

processing human natural language information with speed and accuracy (Gao et al. 

2005).   

 

The area of processing information hidden within textual databases falls under 

Natural Language Processing techniques which have started to fill the gap between 

natural language and the computer’s ability to process information. These methods 

and techniques generate patterns and teach computers to analyse, understand and 

generate information which can further be processed by applying further data mining 

algorithms. These algorithms can help to discover useful patterns for part of speech 

tagging, word sense disambiguation or creation of bilingual dictionaries.  

 

Information Retrieval (IR) can select relevant documents of interest for a user 

enabling him to use his time more productively on these particularly in cases where he 

could not read through all the available documents and therefore would miss some 

useful information. Natural language processing therefore targets appropriate 

information by digging deep into the structures of textual data. 

 

    4.3.3.3 Pattern Recognition 

Pattern Recognition is the process of searching for predefined sequences in text. In a 

text mining scenario it is taken as a process of matching the patterns using words as 

well as morphological and syntactic properties. Two different methods for pattern 

recognition are terms or word matching and relevancy signatures. Word and term 

matching methods are easier to implement but need manual efforts as well whereas 

relevancy signatures are based upon methods of morphological and syntactic 

information processing techniques. 

 



 60 

4.4 Text Mining Role for Advancement of KM and BI Solutions  
Business Intelligence Systems are used as a term for integrated sets of tools, 

technologies and programme products which are used to collect, integrate, analyse 

data and making it suitable for particular business decision making (Reinschmidt and 

Francoise 2000). These systems are used to optimise the business process and 

resources, increase profit and improve the decision making processes. The key 

components of knowledge management and Business Intelligence are articulated in 

figure 4.3. 

 
Figure 4.3: Text Mining for Knowledge Management and Business Intelligence  
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• Potential Information Technologies are taken as data analysis and its 

presentation techniques mainly rely on Online Analytical Processing (OLAP) 

and Data Mining techniques and finally. 

• Business Intelligence applications support effective decision making on 

production, sales, competition, monitoring, finance etc. (Kalakota and 

Robinson 1999). 

 

Different areas of applications in which business intelligences solutions are useful 

range from trading companies, banking and finance, telecommunication and 

manufacturing. Some of the key roles played by Business Intelligence Solutions in 

Manufacturing are as follow (Reinschmidt and Francoise 2000):- 

 

• Sales. Analysing customer transactional databases 

• Forecasting. To forecast customer demands and define inventory requirements 

• Ordering and replenishment. Order optimum quantities of items 

• Purchasing. Provide help to the distribution centres to  manage requirements 

for increased volumes. 

• Distribution and logistics. Utilising the advance shipment information in order 

to schedule and consolidate inbound and outbound freight. 

• Transportation management. Developing optimal plans for load consolidation 

and routing schedules. 

• Inventory planning. Identifying the needs at inventory level and ensure a given 

grade of services. 

 

The reported applications of data mining techniques in Chapter 3, which provide 

business intelligence solutions in manufacturing, are sufficient to show the power of 

these techniques to solve problems related to product or service quality improvement. 

Since the powerful characteristic of knowledge management is to provide a 

systematic approach to manage organisational knowledge in a beneficial manner 

(Davenport and Prusak 1997), information technological efforts should be effectively 

used to transform tacit knowledge into an explicit knowledge (Marwick 2001). 

However data mining techniques are less efficient at handling traditional databases 

where the information sources are more unstructured. Solutions can also be provided 
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by other techniques such as data warehouse, multidimensional models and ad hoc 

reports but these techniques are unable to cover the full scope of business intelligence 

solutions (Berry and Linoff 2004). Text Mining methods can give additional 

advantages by better management of the knowledge resources and knowledge 

management activities (Hafeez et al. 2002). 

 

The important factor or component of Knowledge Management methods is 

knowledge discovery which is purposefully used to derive useful information in terms 

of knowledge from available data. For example the knowledge in terms of useful 

information may be about (Spinakis 2001):- 

 

• finding what new markets are there for the existing products  

• what information is available on internet or intranet  

• keeping track of what the industrial competitors are doing at 

• the customers needs and what they think about a particular product and 

services 

• new developments made in the market or market trends in industrial 

environments 

 

Text mining as a term of discovering useful information in terms of knowledge can 

help to process the information and improve the productivity of knowledge workers 

and consequently add value to the corporate information by facilitating the process of 

decision making at less cost than other text processing techniques (Spinakis 2001). To 

gain more competitive advantages in newly developing industrial business 

environments there are pressing needs to utilise multiple information sources and 

consider knowledge discovery techniques. So more attention should be paid towards 

text mining techniques in business intelligence solutions (Nasukawa and Nagano 

2001; Gao et al. 2005). The knowledge discovery and management process to gain 

competitive business advantages is shown in figure 4.4. 
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Figure 4.4: Textual Data Mining for Downstream Knowledge Discovery and 

Management Solutions  

 

  4.4.1 Applications of Text Mining in Real Domains 
Various applications of text mining in real domains show the power of these 

technologies to advance the business intelligence solutions in competitive business 

environments. 

 

• E-mail Monitoring and Management Systems 

The increased uptake of electronic communication systems (e.g. e-mail) in a business 

environments has increased the volume of information to billions of text documents 

Data 
Processing 
& Analysis 

Raw Text Data 

Data 
Consolidation 

Pattern Discovery : 
Business Needs (Time, 
cost, planning) 

Knowledge Base 

Knowledge 
Discovery 

Business Solutions: 
(Risk Analysis, Cost 
Effectiveness etc.) 
 

Data Mining Techniques 

Text Mining 
Methods 



 64 

(Spinakis 2001; Weiss et al. 2005). Many companies make sincere efforts to provide 

their employees with a good working environment but fail to deal with unnecessary 

information like viruses, chain letters and non-business letters. Capturing such traffic 

from the systems will protect both the employer and employees. In addition to this 

some special rules are applied to the contents of the emails within certain industries. 

For example many financial companies are bound by law to communicate with their 

customers by abiding to the securities law and regulations. To prevent improper or 

illegal communications many manual review procedures have been put in place, yet 

text mining systems may provide better solutions than these procedures.  

 

• Document Management Systems 

Large volumes of textual data exists in terms of archived documents in company 

databases. These documents can be in the form of research reports, sales information 

and product documentation or could also be external sources of information such as 

the competitors backgrounds and news releases. Many companies might take greater 

advantage from these sources of information by indexing, cataloguing and extracting 

useful information. Text Mining technology can potentially offer better solutions in 

these cases by tracking and finding the key relationships among persons names, 

location and their specific domains (Spinakis 2001). For example if “Mr Smith 

became CEO of XYZ corp.” and "XYZ Corp is opening a new branch office in Some 

City, USA" then relationships between these two texts might be found to provide 

knowledge of what key players are doing . So text mining techniques offer potential 

benefits in these type of analysis or solutions.    

 

• Market Research and Automated Help Desk 

Text Mining techniques can help to find the occurrence of words, phrases, or themes 

that are useful for finding market needs and trends in the market research areas. They 

can also provide solutions to automatically analyse customer email systems and route 

or categorise them (Spinakis 2001; Gupta and Lehal 2009). For example mails from a 

customer regarding some complaints are sent to customer service department for 

handling. Similarly a technical department has to produce the answers to the queries 

from their customers about some specific product. Analysis of complaints and suitable 

responses to questions sometimes can be handled automatically. Text mining can be 
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used to provide solutions to them by categorising questions and providing answers to 

them automatically. 

 

• Business Intelligence Solutions 

Due to the ever increasing volume of information and technological advancements 

there is a need to interact with these resources and related information in a timely and 

efficient manner. Text mining techniques may help company business intelligence 

officials or analysts to perform their duties efficiently by collecting relevant 

information about markets and competitors (Spinakis 2001; Gupta and Lehal 2009). 

 

  4.4.2 Manufacturing Knowledge Management 
It is said that the amount of information doubles every twenty months and therefore 

the size of databases increases faster than before (Loh et al. 2002). With this massive 

increase in the size of databases statistical methods can be used to produce nuggets of 

knowledge and improve quality issues and suggest design improvements (Loh et al. 

2002). In manufacturing or construction industrial environments a large amount of 

information is about product failures or in maintenance reports. However, the 

knowledge in these is difficult to identify, capture and manage (Loh et al. 2002; 

Harding et al. 2006). Data mining techniques are well established to handle numerical 

databases whereas most corporate knowledge is available in the form of textual 

documents (Tan 1999; Spinakis 2001; El Wakil 2002; Karanikas and Theodoulidis 

2002). Handling textual documents or text in databases and analysing it to deal with 

product or service quality improvement issues could give potentially useful results . 

Since it is expected that 80% of corporate information is available in the form of 

textual databases better methods for handling this information in general and in 

manufacturing in particular could provide significant advantages (Menon et al. 2004; 

Harding et al. 2006).  

 

In a complex manufacturing environment such as the Xerox copy centre which has 

more than 2000 product parts, its development process involves generating 12000 

engineering problems which are solved by taking 1,000,000 decision making steps 

(Hauser 2002). Thus increase in product yield and dealing with quality issues is a very 
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challenging task, but text mining can offer solutions to these problems (Gardner and 

Bieker 2000).  

 

Applications of text mining techniques in manufacturing industry have shown their 

potential to change business performance (Braha 2002). For example, text mining 

technology was used in the Ford Company for early detection of warranty defects 

which helped to reduce the expenses of the industry and improved customer 

satisfaction (Duverge et al. 2005). They used text mining efforts to extract useful 

information by searching through data files, such as vehicle mileage, part codes, and 

labour operation codes, which ultimately helped to save tens of millions of dollars 

(Duverge et al. 2005). 

 

In the National Highway Traffic Safety Agency in the United States, customer 

complaints are collected and gathered to investigate the underlying product problems 

regarding safety related vehicle defects and crashes. Companies may be directed to 

give customers services free of charge and even, if needed, the agency is empowered 

to ask the manufacturer to conduct a recall, if warranted by the problem. The data or 

information related to automobile information was collected in the form of descriptive 

text information on damages and accidents. Manufacturers are therefore potentially 

required to explore the factors lying behind these problems and automate the problem 

solving methods by applying data and text mining techniques (Drewes 2005). To 

handle these multiple tasks several qualitative and quantitative tools have been 

devised (Spinakis and Peristera 2003). These tools are based on the synergetic efforts 

of different areas described in section 4.3.  

 

4.5 Summary of the Chapter and Conclusion 
This chapter discusses the needs of text mining in the context of Knowledge and 

Information seeking communities. This provides a background review to begin and to 

address the key question in the thesis i.e. “How to shift the paradigm of knowledge 

discovery to Knowledge Management to support Business Intelligence Solutions in 

manufacturing and construction environments?”. The basic tools for knowledge 

discovery and knowledge management include many different data and text mining 

tools to handle multiple data formats within company data which are estimated to 
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represent 80% of corporate information. This chapter is however intended to describe 

a conceptual relationship among different parts of knowledge discovery and 

management technologies i.e. Data Mining, Text Mining and Business Intelligence 

and thereby to form a basis for developing an integrated knowledge discovery and 

text classification framework to analyse the semi-structured or unstructured 

databases proposed in Chapter 6. It provides background knowledge of enterprise 

knowledge discovery solutions which are capable of handling textual data or 

information to discover useful knowledge relationships.  
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Chapter 5 Knowledge Discovery Functions and 
Implementation Issues 
5.1 Introduction 
In this chapter the algorithms used in the proposed framework are discussed. There 

are three levels of knowledge considered in the Knowledge Generation and 

Classification Module these are  Level Knowledge Processing and Storing Unit,  

Level Knowledge Refinement Unit and 

 

 Level Knowledge Utilisation and Text 

Classification Unit. The algorithms used in the first level knowledge processing and 

storing unit and second level of knowledge refinement unit are discussed in detail in 

this chapter. The potential advantages and weakness of these algorithms are also 

discussed in terms of experiments performed for discovering useful knowledge from 

free formatted textual databases. Some information structuring methods are also 

discussed which play a very important role in handling textual databases for 

discovering useful knowledge.  

5.2 Expected Benefits Associated with Term Based Analysis 
The benefits associated with term based analysis for discovering useful knowledge are 

defined as follows; 

• The analysis of textual databases using a term based analysis method is useful 

in finding sensible relationships by exploiting the co-occurrence of terms in 

the text. 

• Clustering algorithm applications at the document level i.e. clustering 

documents, may find those documents within a cluster which share no 

common terms or concepts but analysing textual data on the basis of term 

based relationships helps to overcome this difficulty. 

• Clustering algorithm implementations at the terms level help to generate 

disjoint clusters of terms which share some meaning defined in the text. So 

key information which is defined in the textual data is transformed into a 

useful source of knowledge.  

   
There are various algorithms proposed in the literature for finding the solutions to 

different problems associated with industrial or other knowledge domains. The 

following sections focus on defining two well known algorithms which will play a 
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key role in de-codifying the information and will therefore form a sound basis for 

defining a new hybridised approach in the Chapter 6 to handle the information and 

discover useful knowledge.   

 

5.3 Clustering and  Apriori Association Rule of Mining  Techniques 

  5.3.1 K-means Clustering Algorithm 
 

The K-means clustering algorithm (MacQueen 1967) is a well accepted algorithm for 

uncovering the information hidden in the data and this algorithm is therefore 

considered to play a key role in the field of knowledge engineering. The  algorithm is 

very straight forward and effective in terms of converting the information space of 

words (or terms in the current research scenario) defined in text documents into a 

space of K clusters. It works on the principle of taking input in the form of document 

(or term) vectors and assigning these vectors to clusters by finding the similarities 

between different terms represented in a multi dimensional vector space model. The 

simple form of k means clustering takes input and assigns clusters by choosing their 

respective centroid and measuring the distance between each centroid to the term 

vector. The process of choosing a centroid and assigning terms to respective clusters 

is repeated until the cluster membership no longer changes. 

 

The formal structure and flow of the algorithm is given in the following steps which 

are defined in (Larose 2005); 

 

Step1: Selecting the number of clusters  

The functionality of the k-means clustering algorithm can be defined as (k, T) where 

k is the number of desired clusters i.e. k=2,3,4 or more. Consider the set of documents 

as },...,,{ 21 ndddD =   and T = },...,,{ 21 mttt  is taken as the set of terms defined within 

these documents.  

 

Step2: Initialising the Cluster Centroids 

Initialise k centroids ),...,( 1 kmm . Then each cluster jC is associated with a centroid 

jm , },...,1{ kjε  
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Step3: Classifying Terms to Nearest Cluster Centroids  

Repeat 

            for each input vector lt  , where },...,1{ mlε , 

               do 

                    Assign lt  to the cluster jC with nearest centroid jm  

 

Step4: Updating Clusters Centroids 

            for each cluster jC  , where },...,1{ kjε  

               do 

              Update the centroid to be the centroid of all samples currently in jC  , 

              so that   ∑=
jl Ct j

l
j C

t
m

ε

 

 

Step5: Terminating Condition 

Compute the error function Sum of Squared Error (SSE) where 

 

 

Until SSE does not change significantly or cluster membership no longer changes. 

 

The flow of information in the above algorithm is shown in the figure 5.1 below:  
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Figure 5.1: Flow of Information in Clustering Algorithm  
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one centroid are put together in a cluster with centroid as m1, m2 or m3. The process 

is repeated until disjoint clusters of terms are formed i.e. each cluster consists of 

member terms which are different from other cluster’s member terms. Three different 

clusters with centroids m1, m2, and m3 are shown in figure 5.2 below.  

 

   

Figure 5.2: Clustering on terms based vector model   
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(Han and Kamber 2001) which is used to demonstrate customer buying behaviours 

based on super market’s transactional databases. From a statistical analysis 

perspective, if the analysis of the transactional databases show that a man often buys 

some diapers and beer after work then a beer refrigerator and diaper aisle should be 

put close together to facilitate their customer’s shopping. 

 

The problem of finding frequent termsets starts with a database of transactions T : 

},...,,{: 21 ntttT =  

With each transaction it  being a termset )( Iti ⊆  and the support of a termset )( Il ε   

in T  is defined as the number of transactions that contain l  as a subset and it is 

denoted as follows: 

suppT( l )= }:{ jj tlTt ⊆ε  

 

Any termset l  is frequent if its support is greater than a given minimum support i.e. 

(|suppT( l )| ≥min supp). Any termset with k elements that is frequent is called a 

frequent k-itemset or termset (Bodon 2003). The problem is thus to find all frequent 

termsets in a given database of transactions T . One of the most important 

contributions for solving this problem in an efficient way is the Apriori  Algorithm, 

which was proposed by (Agrawal et al. 1993). Apriori has quickly become the “gold 

standard” that all other frequent itemset or termset algorithms are measured against 

and today the notion “Apriori” covers a whole family of algorithms based on the same 

basic ideas (Bodon 2003). 

 

However, the original Apriori Algorithm  as defined in (Agrawal et al. 1993; Han and 

Kamber 2001) will suffice for the purpose of the current research work presented in 

this thesis. 

 

    5.3.2.2 Apriori Algorithm 

In terms of explaining the Apriori Algorithm the notations used are illustrated below; 

 

• Lk is the set of frequent k-termsets (i.e. those with at least the required minimum 

support), each member is represented by the termset and the support count. 
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• Ck is the set of candidate k-termsets (i.e. potentially  MKTPKS termsets), each 

member is also represented by the termset and the support count. 

 

It is also assumed in the following paragraphs that all termsets are represented as 

ordered sets. 

The Apriori Algorithm is actually rather simple. Apriori exploits the basic fact that all 

subsets of a frequent termset are also frequent. The whole algorithm can be divided 

into the following steps; 

 

Step1: Initial Data Scanning for  MKTPKS 1-termset 

The initial pass first scans through the data to find the minimum support of each item 

or term. These are then used to find the MKTPKS 1-termsets by counting terms and 

finding the ones that are frequent (having min support or higher support levels). The 

term support is defined as the percentage of data containing both the terms T1 and T2 

together in a transactional database. 

 

The tasks in this step are summarised as follow: 

 

• Scanning the whole data to find the support S of each item or term 

• Comparing the S against minimum support 

• Finding the MKTPKS 1-termset 

 

Step2: Candidate Termset Generation & Prunning  

This is the step where Lk−1 is joined with itself to generate the candidates termsets 

Ck. It is the stage at which each frequent (k−1) -termset Lk-1 is used to generate 

possible candidates for the frequent k-termset Lk. The name of Apriori is derived 

from the property of building the candidate termset by pairing termsets which have 

their first k-1 terms in common and that no superset of an infrequent termset will be 

frequent (Larose 2005). The information derived from step 1 is used to determine the 

candidates that need to be examined in this step. Then candidate termsets are pruned 

using the Apriori property i.e. no superset of an infrequent termset will be frequent 

alternatively any subset of the frequent termset is frequent. That is all (k − 1) subsets 
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of the candidates in Ck are checked as being frequent, otherwise the candidate is 

removed from Ck.  

The tasks in this step are summarised as follow: 

 
• Lk-1 is joined with Lk i.e. (Lk-1►◄Lk) to generate candidate k-itemsets or 

termsets 
• The infrequent termsets are pruned using the Apriori property 

 

Step 3:  MKTPKS Termset Scanning and Refinement 

This step determines the support of the candidates in the transactional databases 
denoted as T= },...,,,{ 321 ntttt  . All candidates with less than the required minimum 
support are removed and not saved in the frequent termset Lk.  
 

• Scanning further the frequent termsets and finding the support of each termset 
• Pruning the infrequent termsets using the Apriori property 

 

Step 4:  MKTPKS Termset Formation 

This step checks whether the candidate frequent termset has been formed satisfying 

the minimum support value otherwise the process is repeated. This is the most data 

intensive part of the algorithm since it is necessary to iterate through all transactions 

in the database. Then finally the MKTPKS  termsets Lk are generated.  

 

The detailed flow of information in forming the MKTPKS termset is shown in the 

Figure 5.3 below; 
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Figure 5.3: Flow Diagram for Apriori Algorithm for  MKTPKS Formation 

 

In the coming paragraphs the formation of frequent 3-termset generation process is 

illustrated with the help of a representative dataset taken from the textual data. The 

terms are represented in the form of representative terms i.e. T1, T3, T4, T5, T7, T9, 

T11 in which each has a minimum level of support 2. Table 5.1 shows the 
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representative candidate 1-termsets formed through scanning the whole database. The 

Table 5.2 shows the  MKTPKS 1-termset formed from the candidate 1-termset. Table 

5.3 shows the candidate 2-termset formation and pruning (i.e. the candidate 2- 

termsets with minimum support less than the required minimum level of 2 are 

eliminated) which is used to generate the corresponding  MKTPKS 2-termsets shown 

in the Table 5.4. The final candidate 3-termset and corresponding  MKTPKS 3-

termset generation is shown in Table 5.5-5.6. Thus overall process from Step 1 to 

Step 4 is shown with the help of Tables 5.1- 5.6. 

  

Table 5.1: Representative Candidate 1-termset possible combinations 
Candidate 1-termset {T1} {T3} {T4} {T5} {T7} {T9} {T11} 

Count 2 3 2 3 3 2 3 

 

Table 5.2: Representative  MKTPKS 1-termset 
 MKTPKS  

1-termset L1 
{T1} {T3} {T4} {T5} {T7} {T9} {T11} 

Count 2 3 2 3 3 2 3 

 

Table 5.3: Representative Candidate 2-termset and pruning 
Candidate  

2-termset 

C2 

{T1, 

T3} 

{T1, 

T4} 

{T1, 

T5} 

{T1, 

T9} 

{T3, 

T4} 

{T3, 

T5} 

{T5, 

T7} 

{T5, 

T9} 

{T5, 

T11} 

{T7, 

T9} 

Count 1 0 2 3 2 1 2 3 1 1 

 

Table 5.4: Representative  MKTPKS 2-termset 
 MKTPKS  

2-termset L2 
{T1, T5} {T1, T9} {T3, T4} {T5, T7} {T5, T9} 

Count 2 3 2 2 2 
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Table 5.5 : Representative candidate 3-termset 
Candidate 3-termset (C3) {T1, T5, T9} {T5, T7, T9} 
Count 2 2 

 

Table 5.6 : Representative  MKTPKS 3-termset 
 MKTPKS 3-termset (L3) {T1, T5, T9} {T5, T7, T9} 
Count 2 2 

 

 

5.4 Potential Strengths and Limitations of Clustering and Apriori 
Association Rule of  Mining  Techniques   

  5.4.1 Clustering  
 

    5.4.1.1 Strengths 

The following strengths can be associated with using the above clustering functions in 

the process of discovering useful knowledge ( in terms of finding key term phrasal 

knowledge sequences using case study data). The observations made are as follows; 

 

• Firstly the number of clusters, k for which the cluster centroids are selected 

affects the length of processing time required. The steps (i.e. step1 to step 5 

defined in the section 5.3.1) are performed for the number of clusters which 

were initially selected as k. The computer time and memory space used are 

therefore of order O(k), where k is the number of desired clusters.  

• Secondly the clustering task process is repeated till the cluster does not change 

it membership i.e. terms within each cluster remain the same. So the process is 

repeated for some threshold value (η) in terms of SSE. 

• Thirdly the distances of each term from the centroids are computed which 

gives an order of computation as O(kn), where n is the total number of terms 

in the document vector space and k is the number of desired clusters. 

 

So the overall algorithm requires memory and space requirements in terms of 

assigning terms to their clusters as O(ηkn). This shows that K-Means clustering 
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algorithm therefore has , linear memory requirements, in order to store the documents, 

determine cluster membership of the terms and determine the cluster centroids. 

 

The main advantage of K-Means for assigning terms to their respective clusters is that 

its very simple in terms of time and memory used for running the algorithm and it 

produces good results which was confirmed in the case of its implementation on the 

case study data set.  

 

    5.4.1.2 Limitations/  Weaknesses 

There are some of disadvantages or weakness which can be identified in terms of the 

application of the k-means clustering algorithm in spite of its popularity. The issues 

that exist also limit the advantages of using the k-means clustering algorithm.  

 

• First of all, in terms of selecting the number of clusters, it is not at clear how 

many clusters would be sufficient to de-codify information into different 

clusters i.e. determining the optimal number of clusters is the most apparent 

issue in any information and knowledge handling space. Choosing a low 

number of clusters might cause the information to be gathered in a single 

cluster while using too many clusters could disperse the key information 

carrying terms into different clusters (and this has been experienced in 

handling the case study data). In terms of implementation it was very difficult 

to find the exact number of clusters that best de-codify information in 

discovering first level of knowledge. So in this research the number of clusters 

retained was six as will be discussed in Chapter 7.  

 

• Secondly, the direct consequence of implementation of k-means algorithm is 

to partition the data into clusters with useful information. The nature of its 

implementation is to partition the information which adds to the problem of 

how to generate the correct number of clusters and uncertainty over the 

problem of cluster-number increased. In any industrial or manufacturing 

domain the information needs to be clustered so that it could be transformed 

into a sensible key information or knowledge to but the partitioning nature of 

this algorithm also limits the potential advantages. The problem was faced 
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during its implementation on the case study  data and it was addressed by 

paying special consideration to clustering those terms which form some 

meaningful structures as defined in the case study data.  

• Thirdly the key information captured within each cluster also relied on the 

selection of the centroids, the initial cluster centres. The choice of these cluster 

centroids also generates problems of uncertainty. So there is no way to know 

whether two centres are placed in well-separated clusters, or if they end up in 

the same cluster. This results in generating poor quality clusters and either 

some clusters carrying good information are split or some clusters are joined 

together and contain poor quality information as observed in the process of 

implementation of this algorithm on the case study data.  

 

  5.4.2  Apriori Association Rule of Mining 
     

    5.4.2.1 Strengths  

The application of  Apriori Association Rule of mining can give the following 

potential benefits while mining the textual databases.  

• The extraction of different relationships among terms defined within textual 

data are easy to understand 

• It provides clear understanding of relationships among terms in order to 

characterise the knowledge discovered through application of frequent termset 

mining techniques. 

• The information given as input is taken as a whole to discover the knowledge 

and there would therefore be less chance of losing key information in terms of 

processing knowledge from the textual data. 

• The knowledge discovery process is simple as the minimum support measure 

is needed to find the refined knowledge in terms of MKTPKS .  

 

    5.4.2.2 Limitations  

The applications of Apriori Association Rule of  Mining methods have some 

limitations as follows; 

• The determination of MKTPKS is a sequential process where first   MKTPKS 

1-termset  are found and  are then used to generate the  MKTPKS 2-termset 
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and so on. This causes the size of each termset to grow and  large number of 

MKTPKS  are generated  so a change in the minimum support level is 

necessary. 

• The  MKTPKS are determined on the basis of frequency of occurrence of 

terms in the text documents so a difficulty arises in finding the right number of 

terms used for forming the  MKTPKS by choosing the minimum support 

value. 

 

5.5 Structural Data Representation Methods  
The representation of textual data into suitable formats plays an important role in 

handling information for data analysis and classification. Different studies have 

shown that the following representation techniques are useful for performing the 

clustering and textual data classification tasks (Leopold and Kindermann 2002). Three 

different data representation techniques have been considered during this study given 

as follows;  

 

1. Binary representation 

2. Term frequency  

3. Term frequency inverse document frequency length normalised (tf-idf) 

representation 

 

• Binary Representation 

Let ija  be the weight of term i  in document  j, ijf  be the frequency of term i in 

document  j, idf  be the number of documents in which term i occurs, N be the number 

of documents and M be the number of distinct terms in the document collection. 

 

The binary representation is one of the simplest but effective forms of representation. 

A word present in the document would be given a feature value of 1 whilst a zero is 

used if the word is absent. The formula below shows the weight for each word under 

the binary representation scheme. 



 >

=
otherwise

fif
a ik

ik 0
01

       (5.1) 
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• Term Frequency Representation 

In this type of representation each text document is represented in the matrix form 

where the frequency of each term occurring in the document is represented. It is a 

similar representation to the binary representation except that the actual occurrence of 

terms are recorded in the matrix form. 

 

• Term Frequency Inverse Document Frequency Representation 

The previous schemes do not take into account of the frequency of occurrence of the 

word throughout all the documents in the collection (Salton and Buckley 1988). A 

well known approach for computing word weights is the  TF*IDF weighting, which 

assigns the weight to word i, in proportion to the number of occurrences of the word 

in the document, and in inverse proportion to the number of documents in the 

collection for which the word occurs at least once. This weighting scheme does not 

depend on the distribution of terms in documents but only on the number of different 

documents in which a term occurs. The formula for the data representation using term 

frequency inverse document frequency method is given below; 









=

i
ikik df

Nfa log*        (5.2) 

5.6 Summary of the Chapter and Conclusion 
 

The main purpose of this chapter is to provide details of the two techniques and 

algorithms which will be included in the proposed architecture and which were used 

in the initial case study experimentation. This chapter therefore provides a technical 

and computational background for the discussion of the proposed methodology which 

is given in the next chapter 6. 
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Chapter 6 Proposed Methodology and Architecture 
6.1 Introduction 
In this chapter the two major functions of knowledge discovery defined in the Chapter 

5 are incorporated to define a new architecture and methodology for discovering 

useful knowledge in terms of Multiple Key Term Phrasal Knowledge Sequences 

(MKTPKS) . The discovery of key information in terms of MKTPKS  is used to 

categorise the documents into predefined categories or classes. The first level of 

knowledge is discovered in terms of single key term phrases using the k-means 

clustering algorithm and are then used to generate  MKTPKS through the application 

of the well known method of Association Rule Mining. A hybrid application of these 

methods is used to form a relational database of knowledge based on  MKTPKS as 

this can be used to analyse and better manage the textual data. The ultimate benefit of 

the proposed methodology is to automate the process of categorising the textual data 

or documents into two different  classes (e.g. good and bad information) based on key 

knowledge in terms of  MKTPKS .  

 

6.2 Proposed Architecture or Framework 
In this section a framework is outlined to analyse textual databases. This framework 

consists of two main parts (as shown in Figure 6.1); 

1) A data handling section called “Text Mining Module” and 

2) A knowledge Discovery and Text Classification Section for the discovery of 

Multiple Key Term Phrasal Knowledge Sequences (MKTPKS). This is called 

the “Knowledge Generation and Classification Module”. 

 

The Text Mining Module works on free formatted text documents. In the experiments 

carried out during this research a collection of textual data has been used relating to 

time, cost and planning information from the Post Project Reviews. Information pre-

processing and structuring techniques are then applied on these free formatted text 

documents with the help of the Information Pre-processing Unit and Information 

Structuring Unit.  
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When the information has been structured with the help of the Text Mining Module, it 

is then passed to the Knowledge Generation and Classification Module for further 

processing and to discover the Multiple Key Term Phrasal Knowledge Sequences 

(MKTPKS). This is a new “Term” used in this thesis for the sequence of words or 

terms which define some key information or refer to some issue in the textual 

documents. Multiple Key Term Phrasal Knowledge Sequences (MKTPKS)   has 

been identified through application of 

 

 Level Knowledge Refinement Unit using the 

Association Rule of Mining Algorithm. In the current research context every 

document is composed of different words or terms  to define some concept or issue in 

the document, and mining through these documents generates the MKTPKS . The 

discovery of  MKTPKS enables key issues to be summarised within each particular 

document. The  MKTPKS based matrix model is then used to  classify documents 

into two different categories. The figure 6.1 illustrates the proposed framework 

showing the flow of information, its processing modules and how the processed 

information is transformed into a set of  MKTPKS carrying useful knowledge to 

further classify the textual data into two different classes. 
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Fig 6.1: Multiple Key term Phrasal Knowledge Sequences based Text Classification 

System 
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The framework applies the combined efforts of Data Mining and Text Mining 

techniques which are referred to as Textual Data Mining (TDM), to analyse free 

formatted textual data and discover useful knowledge in terms of multiple key term 

phrasal knowledge sequences . 

 

6.3 Text Mining Module 
This module performs two different tasks using the Information Pre-processing unit 

and Information Structuring Unit. These units are used to remove un-necessary 

information from the textual data available in the form of free formatted text 

documents and structure it for the application of different data mining algorithms for 

subsequent analysis of the text. Therefore the first step towards performing the 

analysis is to process the information and this is done through the information pre-

processing unit.  

 

  6.3.1 Information Pre-processing Unit 
The process of handling textual data or information in any industrial setup starts by 

initially considering the opinion of domain experts who might help the data mining 

expert to define the business needs. Both data mining and domain experts work 

interactively to identify the input variables which help to start the process of analysing 

the textual data. Since, the information available in the form of data in manufacturing 

or construction industry is crucial in decision making, decisions made at this early 

stage of analysis highly affect the success of Knowledge Discovery (KD) process. 

The task of selecting input variables, therefore needs to be performed carefully by the 

data mining and domain experts. The input information must then be codified in a 

format suitable for the TDM tasks.  

 

The next step is to remove the un-necessary words which are less effective in textual 

data analysis. These words include some verbs (e.g. is, am, are etc.), pronouns, 

conjunctions, disjunctions e.g. a, an, the, of , and, I, etc. which are termed as stop 

words and need to be removed from the list. The assumption behind removal of these 

words is that text can be assumed and interpreted more easily this way. Removal of 

these less informative words increases the efficiency and accuracy of results in 

processing the text and is a common technique in text analysis (van Rijsbergen 1979). 
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Word stemming is also important and this is the process of shortening derived words 

to their actual stem, base or root form. For example in English the words like design, 

designing, and designed are stemmed to their root word design. So in this study a 

simple suffix stripping technique was used to reduce the loss of meaning or context 

with the help of terms defined in the textual data. This method is therefore used to 

capture more explicit relationships among terms defined in the text. Thus within this 

unit three different steps were taken to improve the overall process of text analysis i.e. 

• Selection of decision variables or attributes 

• Stop words removal 

• Stemming   

 

  6.3.2 Information Structuring Unit 
After the initial pre-processing stage, the next essential part of the proposed 

framework is to structure the information. Therefore, the pre-processed information is 

then considered so that it can be structured for further analysis. To perform this task 

some structuring techniques available in the literature have been applied. The whole 

words representation methods commonly known as bag of words (BoW) approaches 

have been used. The reason for choosing these techniques is that the whole 

information space is taken into account so that there is no information loss. These 

methods are independent of the structures of text and are represented in the vector 

form where each term is taken as a word vector. These methods are commonly 

reported in literature and have been adopted in many studies due to their simplicity 

and effectiveness (Salton 1989).   

 

6.4 Knowledge Generation and Classification Module 
This module works with the help of three main parts i.e. 

1. 

2. 

 Level Knowledge Processing and Storing Unit 

3. 

 Level Knowledge Refinement Unit  

A short description of each of these main parts and their sub-parts is given in the 

following paragraphs. 

 Level Knowledge Utilisation and Text Classification Unit 
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  6.4.1 1st Level Knowledge Processing and Storing Unit 
     

    6.4.1.1 Term Based Information Selection 

At this stage of analysis the input information is available in different structural 

representations obtained through the application of the Information Structuring Unit. 

These structures are available in a word or term frequency (TF) matrix consisting of 

the vectors describing the information in a document. Each word or term can 

additionally be weighted in the document collection using Inverse document 

frequency (IDF) and term frequency inverse document frequency (TF*IDF) matrices. 

It is therefore necessary to select a suitable representation for performing further 

analysis on the text data. To avoid losing some key information, a simple term based 

representation model has been considered where the terms and their corresponding 

frequencies are counted. The information matrix so formed is taken as an input for the 

application of clustering techniques. 

 

    6.4.1.2 Clustering Techniques Application 

Clustering is defined as a process of grouping data or information into groups of 

similar types of information using some physical or quantitative measures (see section 

5.3). These quantitative measures are based upon a distance function, which is 

measured from some centre point i.e. termed as the centroid of the cluster. The 

Euclidean distance measure is commonly used as a natural distance function but this 

may be replaced with other similarity measures to find the similarities between 

documents. Within the current research context the information is already available as 

an input matrix based on term frequencies so the similarities are found between terms. 

Thus clustering techniques are then implemented on these information matrix and 

output is generated in the form of correlated terms based on their natural relationships 

existing within each document.  

 

The process of clustering helps to capture information in the form of different clusters 

formed on the basis of their natural relationships found among terms defined in each 

document. The information captured within each cluster is carefully observed during 

the clustering techniques application stage to reduce the risk of loosing key 

information. This stage will determine the number of clusters to be made and used in 

further knowledge processing task.  
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    6.4.1.3 Documents Indexing 

After performing the clustering task the information in terms of single key term 

phrases is obtained and this is used to index the documents. The documents 

corresponding to these single key term phrases are marked with their identification 

codes. The task of indexing the documents at this stage helps to store information in a 

useful format for classifying documents based on the information possessed within a 

cluster.  

 

    6.4.1.4 Relational Database Formation 

The first level knowledge captured in the previous stages must be stored in the form 

of relational tables (in a database) for further use in discovering useful relationships 

among terms by generating multiple key term phrasal knowledge sequences. The 

tables are based on cluster labels, indexed documents identification (IDs) and their 

respective key single term phrases. The documents are considered as transactions and 

the terms captured as a result of clustering are considered as items (a commonly used 

term in market basket analysis). This helps to form an input space of information 

which is used in the next stage of 2nd Level Knowledge Refinement Unit working 

with the help of  Apriori Association Rule of Mining . 

 

  6.4.2 2nd Level  Knowledge Refinement Unit  
In this part of the analysis the input matrix is in the form of relational tables where 

information are represented in the form of transactional databases. The Apriori  

Association Rule of Mining  (Agrawal et al. 1993) methods are applied on the 

information matrix formed where documents are the transactions and terms are taken 

as items. These methods are used to form multiple key term phrasal knowledge 

sequences  based on the single term phrases previously identified by the clustering 

techniques. The key to implementing these techniques is the process of finding co-

occurring terms by searching through all information or document space. The most 

useful knowledge carrying terms can be found by varying the level of support (the 

term used for finding the co-occurrence of terms with some defined percentage) see 

section 5.3.2. This unit is focused on finding the  MKTPKS rather than on 

determining association rules since it is likely that a large number of association rules 
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will occur. Finding the  MKTPKS will ultimately help to overcome the difficulty of 

populating the knowledge base with too many association rules as this affects the 

process of discovering useful knowledge from these knowledge bases. 

 

  6.4.3 3rd Level Knowledge Utilisation and Text Classification Unit  
Data is mainly stored as semi-structured rather than fully structured or unstructured 

forms. To classify textual data into some predefined categories or classes it needs to 

be partitioned manually into different classes to test the accuracies of the classifiers. 

This task is performed through manual inspection of data with the help of domain 

experts. A categorical attribute is set as a class variable or target variable. The given 

data was therefore first divided into two different  classes of good or bad information 

documents  (in the current research case study) using the information available in the 

form of interpreted single or multiple term phrasal knowledge sequences identified by 

the knowledge workers of the TrackStore project 

(http://www.lboro.ac.uk/departments/cv/projects/trackstore/index.htm).  

 

During the research into the specification and implementation of this unit different 

classifiers were used to study their effect on classification of data into their respective 

categories. In the current research focus has been placed on application of Decision 

Trees (C4.5), K- Nearest Neighbouring (K-NN), Naïve Bayes and Support Vector 

Machines (SVMs) algorithms discussed in detail in Section 8.4. The reason behind the 

application of these different classifiers is their variability of information selection 

criteria for classification of documents. In the case of Decision tree (C4.5 or J48) the 

information is selected using entropy measure, K-NN uses simple distance measure 

termed as Euclidean Distance Measure is defined in equation  8.4 (page No. 112), 

probabilistic information selection is considered in Naïve Bayes Algorithm while the 

SVMs applies kernel based methods for selection of information. The purpose of the 

Knowledge Utilisation and Text Classification Unit in the framework is to validate the 

hypothesis that the proposed MKTPKS  based classification method improves the 

classification accuracies of the classifier when compared to simple term based matrix 

models for classification of textual data.  
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Thus in this part of the proposed methodology emphasis is placed on the classification 

of documents into their predefined categories or classes where different classification 

techniques are tested. The study of applications of these classifiers ranges from simple 

distance measures to probabilistic based distance measure to find the co-occurrences 

of terms within textual databases. The differences in the range of classifier 

applications considered will help to study the effects of classifying textual databases 

into two different classes possessing some good or bad  information documents. An 

introduction to these classifiers with their applications to analyse the textual data is 

given in Chapter8.  

 

    6.4.3.1 Categorised Set of Documents: Good or Bad Information Documents 

The overall output of the framework is to categorise free formatted textual documents 

into two different categories or classes in general and into good or bad information 

documents in the current research context. The text classification methods Decision 

Trees (J48 or C4.5), K-Nearest Neighbouring (K-NN), Naïve Bayes and Support 

Vector Machines (SVMs) methods used in this research were defined in the Weka 3.4 

software, and this has been used to classify the documents into their predefined 

categories. The methods were tested on predefined categories of documents in order 

to test the accuracy of the classifiers. The results were  then compared with the 

proposed  MKTPKS based method of classifying documents to validate the 

hypothesis of acquiring better accuracies in terms of classification of documents using 

the proposed architecture or framework.  

 

6.5 Summary of the Chapter and Conclusion 
In this chapter a new architecture is proposed for discovering useful knowledge and 

then utilising it for the classification of textual data. The complete implementation of 

the methodology is divided into two parts and discussed in detail in the following 

Chapter 7 and Chapter 8. 
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Chapter 7 Knowledge Mining in Post Project 
Reviews (PPRs): Case Study Part 1  
7.1 Introduction 
In this chapter the implementation of the proposed framework for discovering useful 

knowledge in terms of multiple key term phrasal knowledge sequences (MKTPKS)  is 

discussed in the scenario of Post Project Reviews (PPRs). The benefit of discovering 

FTS is that they can be used to identify some key issues discussed in the PPRs and for 

classifying these as good or bad information documents defined in the free formatted 

textual data. The results obtained in the form of  MKTPKS are compared with the 

domain experts key term phrases to determine the effectiveness of the knowledge 

processing units of the proposed system.  

 

7.2 Benefits Associated with Framework  
The expected benefits of implementation of this framework are as follows; 

• Pre-processing the information and then clustering will reduce the efforts 

required to decipher the results of text analysis. 

• A new document or set of information can be handled easily by assigning it to 

the corresponding cluster.  

• Application of Association Rule Mining will form the multiple key term 

phrasal knowledge sequences which are used to map the discovered 

knowledge to their appropriate category of textual documents.  

 

7.3 Implementation of Different Functionalities of Methodology 
The framework proposed in Section 6.2 has been implemented and is now 

demonstrated using a case study example of PPRs taken from the construction 

industry. Initially the decision variables are selected to start the process of analysing 

the textual data in the PPRs and there are single or multiple term sequences that were 

located with the help of domain experts. The decision variables consist of key words 

or phrases which are considered to represent the important areas of knowledge which 

might be covered during PPRs e.g. cost, time, planning and financial Issues etc.  
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Whilst it is believed that the framework and methodology reported in this thesis is 

applicable to many (or possible all) industrial uses of semi-structured data files, the 

experimentation and testing of the framework and methodology was mainly carried 

out using PPRs which were collected and analysed as part of the TrackStore Project 

(http://www.lboro.ac.uk/departments/cv/projects/trackstore/index.htm) as these 

contained appropriate raw data and domain expert analysis had been obtained during 

the TrackStore Project. 

  

PPRs are routinely carried out at the end of construction projects. The business 

processes of the construction industry require efficient use of resources in terms of 

time, cost and planning and must achieve good customer satisfaction levels. 

Identifying information related to these issues and tracing the causes and effects of 

problems in previous projects can reduce the repetition of these issues and improve 

the chances of success in current and future projects (Choudhary et al. 2008).  

 

  7.3.1 PPRs for Business Intelligence and Information Description 
The previous knowledge and experience of a project manager can affect the success 

of a project and satisfaction of the customer. However if a project manager’s 

decisions are also based on the past practices or lessons learnt from reports produced 

by previous projects even better results may be achieved. PPRs are a useful form of 

information available in a construction industry environment, and have huge potential 

as sources of knowledge for workers on subsequent or similar projects. PPRs can also 

be considered as a necessary tool for knowledge management and a valuable source 

of shared knowledge across the boundaries of an enterprise (Tan 2006). These 

reviews help in learning collective lessons (Carrillo 2005) and the lessons learnt might 

then be used to prevent similar mistakes being made in the future (Pitman 1991). Thus 

discovery of useful information or valuable knowledge from these reviews will 

provide solutions to improve future business processes of an industry. PPRs are a  

collection of information coded with key phrases that are represented by either single 

or multiple terms therefore, these types of information need to be handled with special 

care to structure them. There are various Text Mining methods that can be used to 

decode this information. The combined use of data and text mining methods will 
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provide opportunities for useful lessons to be learnt from these reports, which can be 

beneficially used in the future. 

 

The example data used in this research was available in the form of PPRs which were 

already divided into sixteen different headings as given below; 

• General outcomes 

• Estimating 

• Planning  

• Method of work 

• Material procurement 

• Subcontract procurement 

• Mistakes or errors 

• Innovations 

• Quality assurance 

• Waste/ Environmental Issues 

• Health and Safety 

• Interaction with Design Teams 

• Interaction with Client 

• H&S / O&M Manuals 

• Snagging/ Defects 

• General 

 

These headings were further divided into sub-headings e.g. cost, time, prelims, 

subcontractors etc. The topic discussed in these reviews ranged from general 

outcomes in terms of cost and time, to general levels of satisfaction acquired during 

the whole project. The knowledge these reviews contain therefore covers different 

stages of interaction with design teams, clients, errors and mistakes and health & 

safety status etc. observed during the project. The topics or issues discussed in these 

reviews were identified with the help of domain experts. The defined key words or 

phrases or sentences refer to some particular topics discussed in the PPRs. Some 

examples of the topics and useful knowledge phrases identified in the sample PPRs 

are shown in the Table 7.1; 
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Table 7.1: Key topics or knowledge areas identified by domain experts in PPRs 

Main/ Sub-headings Key Phrases/ Knowledge Areas 

Time “work completed on time”, “no issues with the programme”, 

“causing additional delay”, “time consuming” etc. 

Safety “No accidents”,  “reportable accidents”, “problems with 

programme and safety” etc. 

Financial Issues “financial account is slightly less”,  “business unit target”, 

“good margin”, “considerably less than the estimated figure” 

etc. 

Quality “scope of works”, “carried out necessary remedial work”, 

“any specific problem, leaking, faults, errors, mistakes” etc. 

Communication “a good relationship”, “would not communicate”, “knowledge 

gained from the earlier work was not passed on” etc. 

   

The purpose of this Case Study is to determine whether the proposed framework can 

do as well, or better than manual inspection, in identifying the key knowledge areas 

within a PPRs. If these key knowledge terms can be identified automatically or semi-

automatically then knowledge captured within these terms can be passed more 

quickly and easily to other projects, so that workers may avoid the practices that may 

lead to bad results or can benefit by using good information based practices identified 

in previous projects. The identification of these key phrases can be done manually, 

but it is a very time consuming job. Also it becomes impractical to search manually 

through very large databases of potentially useful PPRs as the number of reports 

increases over time. This research aims to overcome this difficulty by fully 

automating or semi-automating the process of extracting information and converting it 

into a useful source of knowledge. 

 

This study will focus on issues associated with “time” in the PPRs e.g. identification 

of key information that a project has been completed on time, or before time or late 

and the words (or terms) associated with time that could help to trace the reasons for 

delay and this is likely to provide useful knowledge for future projects. 
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A phrase like “causing an additional delay” is a time related example of a knowledge 

phrase defined in the text of the PPRs. It gives information about some issue that is 

delaying the project’s handing over to the client. Identification of such key phrases 

will help to uncover the hidden information in the text and their corresponding causes.  

 

  7.3.2 Implementation of Text Mining Module on PPRs 
The application of the Text Mining Module as shown in figure 6.1 and described in 

Chapter 6 ensures that the data is made available in the form of free formatted text 

documents. This task is done by removing the headings or sub-headings from the 

PPRs data and storing them in a text file with different document IDs. This file is then 

passed to the information pre-processing unit where different activities are performed 

e.g. setting the aim or objectives of data analysis by selecting decision attributes or 

variables, removing redundant information in the form of stop words e.g. a, an , the, 

and also performing the process of simple stemming where the words are conflated to 

their original stem by removing the suffix ‘ing’, ‘ed’ and ‘ly’.  

 

The next step towards analysis of the data by the text mining module is to structure 

the information into different representations using the information structuring unit. 

The text is represented using the bag of words (see section 6.3.2) approach in which 

documents are represented in the form of a term frequency (TF) matrix. This task was 

performed by writing java code to count the words and their corresponding 

frequencies. The output is then saved in a comma separated (csv) file to be used for 

further clustering techniques applications.  

 

  7.3.3 Implementation of 1st Level Knowledge Processing and 
Storing Unit on PPRs 
In the current PPR example the analysis of data is made using the term frequency 

matrix which contains terms and their respective frequency counts within each 

document. Since the intention is to find the similarities between terms the 

representation is done showing terms along rows and documents along columns. The 

similarities are determined by calculating the Euclidean Distance using formula given 

in equation 7.1; 
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Where  X= nxxx ,...,, 21  and  Y= nyyy ,...,, 21  represent the n attribute values (i.e.  

terms with their corresponding frequencies) within each document whose dimension 

is equal to the number of documents taken at a time for textual data analysis e.g. 

11 Tx =  (1,0,0,0,…,1) and 22 Tx =  (0,1,0,…,0). A two dimensional view of the 

distance calculated between two terms is shown in the figure 7.1; 

 

 

 
Figure 7.1: Two dimensional view of distance measure between terms 

 

After selecting a suitable matrix representation for the term based information 

selection the data is ready for the application of some clustering techniques. 

  

Weka 3.4 software was used to support the activities defined within the 1st level 

knowledge processing and storing unit before the application of 2nd Level Knowledge 

Refinement Unit which is used to form the MKTPKS. Weka 3.4 software is based 

upon a java environment which is open source and allows the user to customise or add 

new features to it. It offers different functionalities ranging from pre-processing to 

data classification and analysis. For further details and handling data or information 

see the reference (Witten and Frank 2000). There are variants of clustering algorithms 

available in the Weka 3.4 software but in the present work the k-means clustering 
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algorithm has been used due to its linearity (i.e. it has linear memory requirements for 

storing documents, cluster membership of the documents plus the cluster centroids). 

Clustering is also an essential part of the proposed methodology because it helps to 

divide the information space into multiple sub-spaces, each carrying useful 

information based upon single key term phrases. Thus Weka 3.4 can be used in both 

the information pre-processing unit of the Text Mining Module and in capturing first 

level of knowledge by identifying the relationships among key terms. In this work as 

a part of the 1st Level Knowledge Processing and Storing Unit, Weka 3.4 is used for 

the application of k-means clustering algorithm application. The algorithm was 

applied on the comma separated value (csv) data file which was obtained as a result 

from the Information Structuring Unit of the Text Mining Module. A large number of 

experiments were made to find the suitable number of clusters to capture information 

in terms of single key term phrases. These experiments showed that using a large 

number of clusters increases the risk of loosing key information. The number of 

clusters therefore for the current task was taken to be six. The selection of the number 

of clusters varies with the data size and in this research work for ten (10) different 

documents (or sets of information) with the processed number of terms ranging from 

(100-300) after applications of the different units defined in the text mining modules 

six clusters were found to be appropriate (which were selected as a result of extensive 

experimentation). 

 

 The set of information (or documents) taken from the sub-headings of ‘time’ , ‘cost’ 

and ‘planning’ were used to provide the sequence of terms to identify the good or bad 

information  documents. So the process of generating clusters should be carefully 

handled and observed to overcome the difficulty of loosing useful information in 

terms of capturing single key term phrases within each cluster. The experiments were 

done by selecting the number of clusters to be between 2-10 and the K-means 

Clustering algorithm application proved to be most useful in retaining the useful  

information structures defined in the text.  Thus K-means was used as an effective 

tool for capturing useful single term phrases within each cluster (i.e. CL1, CL2,…, 

CL6) and the number of clusters was retained as six to overcome the difficulty of 

losing useful information defined with the help of single term phrases within each 

cluster. Secondly since the data under consideration was also very sparse with low 

frequencies of occurrence it was difficult to capture useful information with the help 
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of single term phrases. Thus special care was taken while handling the type of data 

available in the PPRs, as in cases where data is sparse in nature and the intention is to 

discover useful knowledge sequences the selection of the number of clusters to be 

used needs to be handled carefully to overcome the difficulty of loosing useful 

information. The application of the K-means clustering algorithm helped to identify 

single term phrases within each cluster are shown for three clusters in the Table 7.2.  

 

Table 7.2: Single Key Term Phrases Identified by Clustering Technique 

Clusters 

ID’s 

Number of 

Instances 

clustered 

Single Key Term Phrases Identified 

CL1 11 “agreed”, “complete”, “customer”, “job”, “period”, 

“suggest”, “time”, “twentyone”, “week”, “within”, “work” 

CL2 07 “actual”, “contract”, “eight”, “extension”, “fortyeight”, 

“forty”, “including” 

CL3 10 “behind”, “just”, “handed”, “one”, “programme”, “over”, 

“ran”, “take”, “two”, “under” 

CL4 05 “certificate”, “defect”, “each”, “end”, “locate” 

CL5 18 “allowed”, “build”, “fifty”, “few”, “instructions”, “good”, 

“issued”, “KPI”, “A”, “prior”, “project”, “noted”, “simply”, 

“start”, “variations”, “year”, “very”, “give” 

CL6 74 “additional”, “all”, “alternative”, “arrange”, “because”, 

“before”, “books”, “both”, “B”, “cable”, “cause”, “claim”, 

“concession”, “cost”, “crossing”, “damage”, “deliver”, 

“demand”, “diversion”, “C”, “due”, “event”, “existing”, 

“extra”, “fiftytwo”, “finish”, “five”, “fortyfive”, “forynine”, 

“fortyseven”, “four”, “framework”, “D”, “get”, “granted”, 

“E”, “head”, “inclement”, “large”, “late”, “liquidated”, 

“made”, “manager”, “months”, “morturay”, “most”, “need”, 

“obtain”, “office”, “own”, “paid”, “paper”, “F”, “plan”, 

“poor”, “possible”, “practical”, “problem”, “re-roofing”, 

“responsibility”, “seven”, “significant”, “site”, “small”, 

“still”, “G”, “thirteen”, “three”, “twelve”, “twentysix”, 
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“understood”, “unlikely”, “weather” 

 

The letters (i.e. A-G) are used to represent some company names or information to be 

kept hidden. 

     

The application of clustering is an essential part of the proposed framework and 

results shown in Table 7.2 give useful information. The information contained within 

each cluster is based on single key term phrases which refer to some key issue 

discussed in the PPRs. A difficulty arises however, when these results are presented to 

the user, because only a few meaningful structures can be presented.  For example the 

information captured in CL1 comes from multiple documents and the human observer 

may try to interpret a cluster description like that of a single key term phrase “time” 

which may refer to the issue of “delivered on time” or “completed on time” or 

“extension of time” where these key multiple key terms phrases refer to three different 

issues discussed in PPRs documents. So it is difficult to map these key single term 

phrase based information or knowledge to identify  some good or bad  information 

documents. Similarly the key term phrase “job” may be used to define the concept of 

“job finished late”, “job took just under one year” or “job should be done within 

twenty one weeks”.  So defining these structures within each clustered single term 

phrases is not an easy task. Similarly the terms defining the concepts in the documents 

and identified in the clusters CL2 and CL3 are not their own giving specific 

information from within a single document, and this can be confusing particularly 

when the data size is very large. Thus a difficulty arises in defining the concept on the 

basis of these single key term phrases and in identifying the exact document matching 

to these information. So if this model is used on its own, only as far as this stage the 

terms captured within each cluster may be of some importance in capturing first level 

of knowledge but interpretation of this would depend upon the concept being defined 

by the user. So some further technique is needed to help to restrict the information 

domain (i.e. good or bad information) identified by these single key term phrases.  

 

In  case of clustering each cluster  containing with single term base information  can 

be referred to different concepts at the same time so further information pruning 

techniques are required  for which 2nd Level Knowledge Refinement Unit with the 

applications of Apriori Association Rule of  Mining will perform this task. Before 
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passing information to the next stage of analysis, the   identified key information is 

used to index the documents and store  it in the form of a relational tables using a 

Relational Database Formation function. Then this key information is passed to other 

stages of the analysis  to generate Multiple Key Term Phrasal Knowledge Sequences  

MKTPKS. These  multiple key term phrasal knowledge sequences (MKTPKS)  will 

ultimately serve the purpose of representing key information captured within each 

cluster. The  Apriori Association Rule of Mining  is used to search through each 

document and prune the key information. The process of refining the key information 

is discussed in the next section.  

 

  7.3.4 2nd Level Knowledge Refinement Unit  
The term frequent itemset or termset mining comes from supermarket transactional 

databases where each frequent itemset is regarded as products which are most likely 

to be purchased together in one transaction. For example if a person buys “milk” then 

he might be interested in also buying “egg”. Thus finding frequent itemsets in a 

transactional database serves the purpose of finding the items which appear most 

often together. So in this research context this algorithm is applied to find the terms 

which occur together in documents. 

 

The simple Apriori Algorithm is explained in Section 5.3.2. The  MKTPKS, 

corresponding to each  cluster  as shown in Table 7.2, formed through application of 

Apriori Association Rule of Mining  technique on the case study data are shown in the 

Table 7.3. 

 

Table 7.3 : Identification of Key Term Phrasal Knowledge Sequences  

Clusters ID’s Multiple Key term phrasal Knowledge Sequences (MKTPKS) 

CL1 {agree complete customer time week within work} 

CL2 {contract eight extension forty fortyeight including} 

CL3 {handed one over programme take} 

CL4 {certificate defect each end locate} 

CL5 {A project start} 

CL6 {all finish C few} 
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Knowledge discovered with the help of MKTPKS shown in Table 7.3 are used to map 

key knowledge discovered to the  good or bad information documents about project. 

Since these multiple key term phrases are considered as a single unit of knowledge it 

is easy to find the document which is related to good or bad information documents 

within this research context. For example the  MKTPKS discovered in cluster CL1 

refer to a unique  good information document about a project that a customer 

suggested that job should be done in some weeks time and it was completed on time.  

The frequent terms uniquely represent this set of information in cluster CL1 “{agree, 

complete, customer, time, week, within, work}” and these enable the relevant 

document to be found. Similarly the MKTPKS  representing cluster CL2 uniquely 

represent the key information available  as good   information document where terms 

sequences showing that both the  client and the company were agreed on the time 

required to finish some job. The preliminary results obtained from the experiments 

carried out at this stage of the framework are highly useful to identify the documents 

carrying key information using multiple key term phrasal knowledge sequences .  

 

The discovery of MKTPKS  is useful in two different ways for analysing textual data 

available in the form of PPRs; 

• Firstly forming the sequences of terms with useful knowledge to compare with 

those identified by the domain experts in the PPRs. 

• Secondly to map these knowledge sequences to identify the good or bad 

information  documents and thereby classify the documents into two classes.    

The results obtained in terms of  MKTPKS are compared with those of domain 

experts and this evaluation will be given in the Section 7.3.5. However a secondary 

benefit can also be obtained beyond identification of these key term phrases and this 

is if these results are used to map information to some unique document which is then 

marked as good or bad information documents. In cases when the data size is small 

this benefit was also obtained. But there is a natural question of how to handle large 

databases since as the data size grows large then mapping key term knowledge 

sequences to unique documents and categorising these documents into two different 

classes would be an increasingly challenging task. Thus an unsupervised learning 

method of clustering would suffer problems. This challenge further motivated an 
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examination of supervised learning techniques of classifying the documents into two 

different  classes of good or bad information documents about project. The details of 

these classification methods and implementation are discussed in Chapter8.   

 

The discovery of  MKTPKS is based on using varying levels of support (i.e. 10 -

20%), defined as, for any two terms A and B it is the percentage of transactions in the 

database that contain both terms. Different levels of forming multiple key term 

phrasal knowledge sequences are done through the process of forming a lattice of 

concepts as shown in figure 7.2 below; 

 
  

Fig 7.2: Levels of forming multiple key term phrasal knowledge sequences 

 

The figure 7.2 shows that at the first level (or Level 1)   MKTPKS 1-termsets are 

identified by searching through whole document space and then at second level (or 

level 2), the data is scanned again to form frequent 2-termsets from the discovered  

MKTPKS 1-termsets. This process continues until  MKTPKS of fourth level (or level 

4) are not obtained and the process stops. Consequently  MKTPKS are formed as a 

lattice of concepts by searching through the whole data or information space. 

 

{T1, T2, T3, T4, T5, T6, T7, T8, T9, T10,T11} 

{T1  T3, T1  T5, T7  T11, T2  T10, T9  T10,…,T9  T11} 

{T1 T3 T7,   T1 T5 T7,   T2  T7  T9, …,  T7  T9  T11} 

{T1   T3   T7   T9,    …       ,     T2   T7   T9   T11} 

Level 1 

Level 2 

Level 3 

Level 4 
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  7.3.5 Evaluation of the Proposed Systems 
Evaluation of such methods for generating the summaries of the textual data and 

extraction of useful key term sequences of knowledge can generally be discussed in 

two ways (Jing et al. 1998). The first method is task based and called an extrinsic 

method while the second is an intrinsic method which is based on user judgements. In 

terms of evaluating the proposed system an intrinsic method of evaluation has been 

adopted because the objective of this work is to try to identify automatic text analysis 

methods which are as good or better at generating knowledge sequences than the 

results identified by the domain experts. The F-measure was used to measure the 

performance of the system for discovering knowledge in terms of multiple key term 

phrasal knowledge sequences. It is defined as the Harmonic Mean of Precision and 

Recall ratios. A recall measure is defined as the proportion of all the relevant multiple 

key term phrases that have been identified from the collection of multiple key term 

phrases whereas the Precision is the ratio of relevant multiple key term phrases to the 

multiple key term phrases identified. In Mathematical notations these terms are 

defined as; 

 

Recall (R) = 
FPTP

TP
+

         (7.2) 

 

Precision (P) = 
FNTP

TP
+

        (7.3) 

 

F-measure = 
PR

PR
+
××2         (7.4) 

 

Where TP (True Positive), TN (True Negative), FP (False Positive), and FN (False 

Negative) are defined as correctly identified, correctly rejected, incorrectly rejected 

and incorrectly identified  MKTPKS respectively . 

 

For example in the multiple key term phrasal knowledge sequences {the work was 

completed on time} identified by the domain expert, the stop words ‘the’ , ‘was’ and 

‘on’ were removed during the pre-processing stage of handling textual data. So the 

whole sequence was taken as {work complete time} referring to key information 
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defined in the text. The multiple key term phrasal knowledge sequence identified by 

the proposed system is {agree complete customer time week within work}, which 

contains the key term phrases identified by the domain expert so the Precision and 

Recall values are calculated as defined above.  

 

The results obtained with these efforts are recall and  precision values as shown in the 

Table 7.4.  

 

Table 7.4: Performance measure of the system  

Measure Accuracy of the Method 

Recall 50% 

Precision 29% 

F-Measure 37% 

 

Although the results obtained had low accuracy, they still indicate that the approach 

can be useful in finding the key good or bad information within the textual data. The 

use of clustering at first stage and then application of Apriori Association Rule of 

Mining at the second stage therefore proved to be useful in identification of useful 

information about project.  

 

7.4 Results and Discussion 
The  MKTPKS identified in Table 7.3 refer to the key issue that both customer and 

contractors were agreed to finish some job within a time of twentyone weeks and it 

was done within a time. So this marks the identification of good  information 

document on the basis of multiple key terms phrasal knowledge sequences with the 

application of 2nd Level Knowledge Refinement unit. Thus a document carrying key 

information can be retrieved on the basis of these multiple key term phrasal 

knowledge sequences. Secondly since the process of forming  MKTPKS goes through 

the stages of finding information within each document set by generating  MKTPKS 

1-termset and then  MTPKS 2-termset and so on, also helps to form a lattice of 

concepts by exploiting the property of monotonicity i.e. lattice structure of all 1-

subsets of  MKTPKS 2-sets are also frequent, all 2-subsets of  MKTPKS 3-sets are 

also frequent etc shown in figure 7.2. Thirdly the system helped to identify the key 
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term phrasal knowledge sequences which had been marked as useful by the domain 

experts and it further helped even to mark key issues which were initially identified 

by the domain experts. However couple of merits and demerits of the proposed 

framework on the basis of experiments performed at 1st Level Knowledge Processing 

and Storing Unit and 2nd Level of Knowledge Refinement Unit are enumerated as 

follows; 

1. Information available in the form of textual data is processed and useful 

knowledge in terms of single term phrases has been identified through 

applications of Clustering Technique which helped to identify the topics or 

issues discussed in the case study data. 

2. The knowledge discovered at first level is further processed to refine it without 

involving user or human to interpret the key single term phrase based 

knowledge and map the discovered knowledge to unique   to mark the good or 

bad information documents discussed in the case study data. 

3. The refinement of knowledge through application of  Apriori Association Rule 

of  Mining technique at one end helped to refine the knowledge and identify 

key information sequence of knowledge but some loss of information has also 

been witnessed as in case of Cluster CL6. The reason behind this is the sparse 

nature of data under consideration available in the form of case study. 

However using minimum support value helped to overcome this difficulty and 

useful sequences of knowledge were discovered. 

4. The strong benefit associated with the experimental work and knowledge 

discovered was that it greatly helped to reduce the human efforts to interpret 

knowledge available in the form of single key term phrases obtained through 

applications of Clustering technique. 

 

7.5 Novelty in the Research Work 
This research contributes to the hybridised application of textual data mining 

techniques to find the multiple key term phrasal knowledge sequences. The example 

presented in this chapter showed how the proposed framework helps to identify 

potentially useful multiple key term phrases to mark some key issues discussed in the 

PPRs and their causes so that this knowledge can be used to help in the decision 

making process for future projects. The originality of work is based on the original 
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integration of textual data mining techniques for generating first level of knowledge 

in terms of single key term phrases through the application of clustering rather 

than on the application of these algorithms individually. Additionally these single 

key term phrases are then processed by the applications of 2nd Level Knowledge 

Refinement unit ( Apriori Association Rule of Mining Applications) for generating 

multiple key term phrasal knowledge sequences (MKTPKS). This integration serves 

the purpose of achieving benefits in three main dimensions. Firstly it helps to identify 

the key issues discussed in the PPRs by finding multiple key term phrasal knowledge 

sequences in the real dataset collected from an industrial setup. Secondly it divides the 

whole information space into a subspace where clustering techniques are applied to 

group and discriminate larger text into different subsets of information e.g. either 

good or bad information documents in this research context. Thirdly restricting a large 

document space into subspaces is meant to isolate the one cluster from another on the 

basis of key terms uniquely identified within each cluster for further analysis of text 

documents. 

 

7.6 Summary of the Chapter and Conclusion 
In this chapter the detailed application of the proposed methodology in terms of pre-

processing the free formatted textual data and discovering the useful knowledge in 

terms of multiple key term phrasal knowledge sequences has been discussed in detail. 

The applications of different functions described in the methodology helped to 

discover useful knowledge and provide a basis of this knowledge for future activities 

of classifying textual databases. Discovery of the  MKTPKS forms the basis of 

classifying textual data into two different categories whose implementation is further 

discussed in the following Chapter8 and Chapter 9. 
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Chapter8  Text Classification Methods 
Implementation and Performance Measure: Case 
Study Part II 
8.1 Introduction 
In the previous chapter the main parts of the knowledge discovery process from 

textual data have been described. The important part of textual data handling, which is 

the pre-processing of data i.e. to make it suitable for analysis, has also been discussed 

in detail. This chapter examines ways of making the identified knowledge easier to 

use by providing methods and techniques that can be used for classifying the textual 

data into different classes. The major work in terms of information classification 

considered here is to divide the information into two main classes which identify good 

or bad information documents that have been recorded within the PPRs. Different 

data mining techniques for performing the classification task are considered in this 

chapter and the main focus is on the applications of Decision Trees (C4.5), K- nearest 

neighbouring (K-NN) and Naïve Bayes Algorithms. The performance of these 

classifiers are tested on data sets collected from construction industrial environments 

available in the form of Post Project Reviews (PPRs). The accuracies of the classifiers 

are compared using a simple term based representation and a frequent term based 

representation method where the dimension of the feature space is reduced. In this 

chapter the proposed model is implemented as defined in Section 6.4. 

 

8.2 Text Classification 

 

  8.2.1 Background Knowledge  
Text classification methods were first proposed in 1950 where the word frequency 

was used to classify documents automatically. In 1960 the first paper was published 

on automatic text classification and until early 90’s it was a major sub-field of 

information systems. In past the text data was available in the form of paper tape 

which was read with the help of expensive computers with limited memory which 

limited the use of this technology. Currently in the age of information technology the 

amount of information or text data available in digital form which gave real impetus 

to the applications of text mining technology. The availability of enormous amount of 
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data in digital format has renewed the interest in the area of automated text 

classification and data mining techniques applications. Applications of machine 

learning techniques have reduced the amount of manual effort required and have 

improved the accuracy of the results. There are many text miner software products on 

the market which can be used to perform different tasks of handling textual databases 

and classifying the text to discover useful information (Tan 1999). Considerable 

research work has been done in defining new algorithms for handling textual based 

information and performing the task of text classification such as K-nearest 

neighbouring (KNN) algorithm, Bayesian classifier based algorithms, Neural 

Networks, Support Vector Machines (SVMs), Decision Trees Algorithms etc.(Yong 

et al. 2009).        

 

  8.2.2 Problem Description and Objective of Research 
Text analysis and classification systems help to identify the key issues discussed in 

textual databases and play an effective role in future decision making processes. The 

information specific to some product or service quality issues is normally available in 

the form of numerical or textual data formats including perhaps colour coding, 

abbreviations and special text features. Common requirements for manufacturing 

organisations include better project management, reducing product lead time to the 

market and improving customer satisfaction levels or service quality. Decisions must 

be cost effective and efficient to meet the current and future requirements, and it is 

important therefore to identify t good or bad  information documents which may exist 

in company reports and other documents.  

 

This research therefore addresses the challenges of identifying such knowledge 

automatically as shown in Chapter 7 and continued in this Chapter, which addresses 

the problem of automatically classifying the identified knowledge (in its related 

documents) as good or bad information documents. Data is commonly classified into 

two different categories, and this is termed as binary classification problem. Some 

manual efforts are employed to perform this task, by creating a training set to use with 

different data mining algorithms or classifiers.  

 



 110 

The hypothesis made for this experimental  work is  that , “The generation and use 

of multiple key term phrasal knowledge sequences in classifying the documents will 

provide better classification accuracy than single term based classification 

methods.” 

 

Therefore the objectives of this Chapter are to show: 

1. Application of textual data mining techniques for capturing first level of 

knowledge in terms of single key term phrases (as previously described in 

Chapter 6/ 7).  

2. Generation of multiple key term phrasal knowledge sequences termed as 

MKTPKS  to represent key knowledge discovered through clustering 

applications (as previously described in Chapter 6/7). 

3. Studying the effects of single term based representations and multiple key 

term phrasal knowledge sequences in classification of textual documents. This 

will validate the hypothesis that multiple key term phrasal knowledge 

sequences based classification gives better accuracy than the single term based 

method.  

 

8.3 Textual Data Mining for Information processing and Knowledge 
Discovery   
The first step towards handling textual databases or classifying their text into classes 

starts by going through the whole text based information available in free formatted 

text documents (i.e. the PPRs reports in this case). The information is first read 

through by domain experts who manually identify the good  or bad information 

documents. The results from this manual process will eventually tested and compared 

with the results of the automatic classifiers (to validate the experiments). The textual 

data is then structured (e.g. using stop word removal and stemming) into a format 

suitable for the application of different data mining algorithms as detailed in section 

6.3.1.  

 

8.4 Text Classification Methods  
In this Chapter different classifiers are compared , in particular Decision Trees (C4.5), 

K-NN , Naïve Bayes and Support Vector Machines (SVMs) algorithms. The reason 
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for examining these different types of classifiers is that they use different selection 

criteria on the  information variables as these range from simple distance measures to 

probabilistic based distance measures to find the similarities between documents and 

classify them into their categories. The purpose of these experiments is to validate the 

hypothesis that the proposed method based on multiple key term phrasal knowledge 

sequences provides better accuracy than the simple term based data classification 

method. Decision Trees, Naïve Bayes, K-NN and SVMs algorithms are tested and 

their accuracies are measured in terms of classifying data into two different categories 

or classes. A brief introduction to these classifiers is given in the following 

paragraphs. 

 

  8.4.1 Decision Trees (C4.5) Algorithm  
Decision trees analysis algorithms are most useful for classification problems and the 

process of building a decision tree starts with the selection of a decision node and 

splitting it into its sub nodes or leafs. A decision tree algorithm C 4.5 is an extension 

of Quinlan’s algorithm ID3 which generates decision trees (Quinlan 1992) by splitting 

each decision node to select an optimal split and continues its search until no further 

split is possible. It uses the concept of information gain or entropy reduction to select 

the optimal split. Different steps of the algorithm for forming a decision tree are 

defined below; 

 

Step1: 

Suppose a variable X for which k possible values have probabilities p1, p2, p3, …,pk. 

Then entropy of X is defined as; 

 

H(X) = - ( )∑
j

jj pp 2log       (8.1) 

 

Step2: 

The means information requirement can then be calculated as the weighted sum of the 

entropies for the individual subsets, as follows: 

∑
=

=
k

i
iSiS THPTH

1
)()(        (8.2) 
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Where iP  represents the proportion of records in subset i .  

 

Step3: 

Information gain is defined as, the increase in information produced by partitioning 

the training data T according to this candidate split S, given by;  

 

Information gain IG(S) = )()( THTH S−      (8.3) 

The selection of optimal split at each decision node is based on the greatest 

information gain, IG(S).  

 

Some of the advantages and disadvantages associated with the applications of 

decision tree algorithm are enumerated as follows; 

 

Advantages 

• The rules generated by the application of a decision trees algorithm are easily 

interpretable and understandable as they are presented in the form of if-then 

rules. 

• The series of these algorithms (i.e. ID3, C4.5) can handle large databases and 

the formation of the decision tree’s root and branch nodes are independent of 

the size of the database. 

• The decision node is formed by considering each attribute defined in the 

database and the corresponding tree is formed on the basis of this information 

selection criteria where the time taken is proportional to the height of the tree. 

 

Disadvantages 

• Firstly the branches formed using a decision tree algorithm can be so large that 

it becomes difficult to interpret the rules.  

• Secondly it is not easy to handle continuous data using a decision tree as the 

data needs to be divided into categorical attributes. 
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  8.4.2 K-NN Algorithm     
K nearest neighbouring (KNN) algorithm is a technique that can be used to classify 

data using distance measures. The K nearest neighbouring algorithm works by 

learning through the training samples where the entire training set includes not only 

the data in the set but also the desired classification for each item. In effect the 

training data becomes the model. The K- nearest neighbouring algorithm works on the 

principle of finding the minimum distance from the new or incoming instance to the 

training samples (Han and Kamber 2001). On the basis of finding the minimum 

distance only the K closest entries in the training set are considered and the new item 

is placed into the class which contains K closest items. The distance between the new 

or incoming item to the existing one is calculated by using some distance measure. 

The most common distance function is the Euclidean distance given in equation 8.4. 

 

∑
=

−=
m

i
ii yxYXD

1

2)(),(                         (8.4) 

Where ),...,,( 21 mxxxX =  and ),...,,( 21 myyyY =   . In case of classifying documents 

into their respective categories if term based representation is used then corresponding 

attributes are given as 11 Dx =   (1,2,0,0,…,1) and 22 Dx =  (0,1,1,0,…,0) where the 

numeric values shows the frequency of occurrence of each term in documents.  

 

A two dimensional view of classifying a new document is shown in the figure 8.1 

where the distance between the entries or terms of one document to the other is 

calculated using the distance measure given in equation 8.4. For K=2, the new 

document Dμ is placed in the class for which the distance is minimum as compared to 

the other class of document. Since the distance between Dμ and D3 is less than the D1 

so the new document Dμ will be placed in the class for which D3 lies. 
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  Figure: 8.1 Two dimensional view of document classification using K-NN 

 

So the overall algorithm has two main steps of finding the nearest neighbouring class 

for a document with unknown class variable. 

 

Step1: 

Selecting or deciding the number of nearest neighbours i.e. the value of K 

 

Step 2:  

Measuring the distance between the new or incoming instance to the training sample. 

 

The main dis-advantage associated with implementation of the algorithm is to find the 

best number of values of nearest neighbours to use i.e. to find the appropriate value of 

K to make the best decision for classifying the documents. Changing the value of K 

will affect the classification accuracy of the classifier. In the case of application of 

this algorithm on the case study data the better classification accuracies were found 

for selecting K =10, but this would be different for other data. The best value of ‘K’ to 

use varies with the size of data under consideration and is highly dependant on the 

quality of the data.    

  

X 

Y 

Dμ 

D1(t1,t2) 

D3(t4,t5) 
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  8.4.3 Naive Bayes Algorithm  
A Naïve Bayes algorithm is simple and a well known classifier which is used in 

solving practical domain problems. The Naïve Bayes classifiers are used to find the 

joint probabilities of words and classes with a given set of records (Witten and Frank 

2000). This approach is based on the Naïve Bayes Theorem. In the context of text 

classification the different steps of the Algorithm are defined as follows; 

 

Step1: 

For a binary classification problem (i.e. two class variables of A and B) the 

probability of a class c , is given by )(cp , known as the prior probabilities. 

 

Step2  

Using the prior probabilistic information the probabilities of a new incoming instance 

or document jd  i.e. )/( cdp j  are calculated. 

 

Step3: 

Sum of the probabilities or likelihood of new document i.e. )( jdp   are then 

calculated. 

 

Step4: 

Finally the actual probabilities or posterior of the new document i.e. )/( jdcp  for a 

given document jd  is calculated by using the Bayes Theorem shown below; 

 

)(
)()/(

)/(
j

j
j dp

cpcdp
dcP =       (8.5) 

 

As P(c) is constant for all classes, only )()/( jj dpdcP , where j=1,2,3,…, m, need to 

be maximized. If the class prior probabilities are not known, then it is commonly 

assumed that the classes are equally likely, that is: 

)(...)()( 21 mdPdPdP ===         (8.6) 
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The prior probabilities of the class may be estimated by  

TTdP jj /)( =         (8.7) 

where jT is the number of training samples of class c and T is the total number of 

training samples. 

 

It is assumed that classes are independent of each other which is called the Naïve 

assumption of class conditional independence and it is made while evaluating the 

classifier. Naïve Bayes classifier performs well on data where the problem is to 

categorise the incoming object into its appropriate class and classification task is 

carried out on the basis  of prior information and likelihood of the incoming 

information to form a posterior probability model of classification. 

 

Some of the advantages and disadvantages associated with the application of the 

Naïve Bayes algorithm are given as follows; 

 

Advantages 

• The algorithms are easy to use and scan through the whole database once to 

classify it into the respective categories. 

• The probabilities calculated at each attribute provide a means to overcome the 

difficulty of handling missing values in the data as the probabilities calculated 

are omitted during analysis. 

 

Disadvantages 

• The algorithm does not handle continuous data as the data is divided into their 

ranges to solve the problem. Dividing continuous data into different ranges is 

difficult and will ultimately affect the results. 

 

  8.4.4 Support Vector Machines (SVMs) 
The Support Vector Machine was first developed in Russia in the 1960s by (Vapnik 

and Lerner 1963; Vapnik and Chernonenkis 1964). This is a non linear classification 

algorithm which uses kernel methods to map data from an input space or parametric 

space into a higher dimensional feature space. The non linear boundaries in 
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parametric space may become linear in the feature space. A Support Vector Machine 

can be used as a tool for text classification and the design of SVM classifiers is now 

discussed in the following sections. 

 

    8.4.4.1 Benefits Associated with SVMs Applications 

There are many existing data mining techniques i.e. Decision Trees, K-means 

clustering, Association Rules of Analysis, Neural Nets etc, but each of these has its 

merits and demerits in terms of their application. It is therefore useful to also consider 

the application of some other new techniques or combinations of these techniques. 

SVMs show promising results according to reports of their application, they have 

been compared to neural networks and Nonlinear Regression. Their benefits include 

(Cho et al. 2005);  

• Good Generalization Performance: Given a training set Support Vector 

Machines are able to learn rules to often correctly classify a new object. 

• Computational Efficiency: SVMs are efficient in terms of speed and 

complexity involved in real world data. 

•  Robust in High Dimension: It is difficult for learning algorithms to deal with 

high dimensional data because of the over-fitting problem, SVMs are more 

robust to over-fitting than other algorithms. 

 
Therefore SVMs methods have potential to give good results. These methods 

potentially could be very useful in manufacturing or construction industry where data 

is more complex and diverse than in other applications areas such as finance, 

customer call centre, retails etc.  
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    8.4.4.2 Constructing SVM 

Support Vector Machines (SVMs) were developed for two types of classification 

problems one is binary classification and the other is multi class classification. Since 

the focus of study in the current research is to consider the binary classification 

problem this section only discusses the binary classification problem. 

 

Consider a binary classification problem where ω1 and ω2 are two classes of a 

training data set given as X= },...,,{ 21 nxxx  having class labels iy  = {-1,+1}.That is 

the data set is labelled by the rule that if 1wxiε  then iy  =+1 otherwise iy  =-1 for 

2wxiε .The basic idea of SVM estimation is to project input observation vectors non 

linearly into high dimensional feature space and then compute a non linear function in 

that space. The hyperplane which is separated by two classes is described by; 

 

).sgn()( bxwxf +〉〈=        (8.8) 

where w  is the coefficient vector and b is the bias of the hyper plane and sgn[.] stands 

for the bipolar sign function. The objective of the SVM algorithm is to choose the 

optimal separating hyperplane that maximizes the margin between two classes 

(Vapnik 1995). The figure 8.2 below shows the classification of documents into two 

different classes based on SVMs ; 
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Figure 8.2: SVMs based binary Classification of Documents    

 

The hyperplane that has the maximum distance to the closest point is called the 

optimal separating hyper plane. The distance from the hyperplane to the closest point 

is 1/ ω and 2/ ω is called the margin between the hyperplanes. This margin provides 

the measure of the generalization ability of the hyperplanes to separate the data into 

corresponding classes. The larger the margin the better the generalization abilities are 

expected to be (Christiniani and Shawe-Taylor 2000). The optimization problem that 

yields the hyperplane which can be written as ; 

minimize 2
, 2

1 wbw        (8.9) 

Subject to  

1).( ≥+〉〈 bxwy ii  ;   for i=1,2,…,N      (8.10) 
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    8.4.4.3 Kernel Induced Feature Space 

In the context of machine learning the kernel trick was first introduced by (Aizermann 

et al. 1964). Kernel trick involves changing the representation of the data, i.e. 

))(),...,(()(),...,( 11 xxxxxx Nn φφφ =→=      (8.11)  

where (.)φ is a non-linear operator mapping from input space X to feature space F i.e. 

FX →:φ . 

  

Figure 8.3: Mapping from Input Space to Feature Space 

 

The mapping can greatly simplify the learning task (Scholkopf and Smola 2001). The 

above Figure 8.3 shows the mapping of data from an input space to a higher 

dimensional feature space by a non-linear operator (.)φ , in order to classify the data 

by a linear boundary. However, a problem associated with high dimensional feature 

spaces is that as the number of features grow, the generalization performance can 

degrade and the solution can become computationally expensive. This phenomenon is 

known as the curse of dimensionality (Christiniani and Shawe-Taylor 2000). 

Although, dimensionality reduction can be performed by removing the features 

corresponding to low variance in the data, there is no guarantee that these features are 

Input Space Feature Space 

(.)φ  
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not essential for learning. Support vector machines are inherently equipped with a 

linear combination of the dot product between the data points that turn out to be 

support vectors and hence can defy the curse of dimensionality by using the dot 

product kernel functions. 

 

The dot product kernel function is defined as; 

〉′〈=′ )(),(),( xxxxk φφ        (8.12) 

The  kernel matrix or Gram Matrix (Gunn 1997; Christiniani and Shawe-Taylor 2000) 

in the form of an inner product space between documents is shown in Table 8.1 given 

below; 

 

Table 8.1: Gram Matrix for building Support Vector Machine Classifier 

Gram Matrix (K) = 

K(D1, D1) K(D1,D2) K(D1,D3) … K(D1,Dm) 

K(D2,D1) K(D2, D2) K(D2, D3) … K(D2, Dm) 

K(D3, D1) K(D3, D2) K(D3, D3) … K(D3, Dm) 

… … … … … 

K(Dm, D1) K(Dm, D2) K(Dm, D3) … K(Dm, Dm) 

 

The matrix should satisfy the condition given in equation (8.13) known as Mercer 

Condition; 

∫ ∈∀≥′′′
2

)(;0)()(),( 2
X

xLfxdxdxfxfxxk     (8.13) 
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According to Mercer theorem (Mercer 1909), the kernel ),( xxk ′  is any continuous 

and symmetric function that satisfies the condition of positive semi-definiteness given 

by (8.13).Such a function defines a dot product in the feature space given by . 

∑
=

+〉〈−=
N

i
iii bxxxf

1

* .)()( αα       (8.14) 

Linear SVM can be readily extended to non-linear SVM by using (8.12) and (8.14) 

can be written as; 

∑
=

+〉〈−=
N

i
iii bxxxf

1

* )().()()( φφαα  

=∑
=

+−
N

i
iii bxxk

1

* ),()( αα       (8.15) 

 

The equation (8.15) shows a basic formulation  of the problem  for finding the support 

vectors through optimising the function )(xf  where the input information space is 

transformed into higher dimensional feature space by introducing kernel function. So 

there is no need to feature map its properties explicitly. However, the knowledge 

associated with this feature map and its properties can provide some additional insight 

about the support vector kernels and might be helpful in answering the question why 

this mapping usually provides good results (Vapnik 1998).  

   

  8.4.5 Illustrative Example for Information Handling 
Several different techniques are considered in this chapter, as each uses a different 

measure (i.e. Euclidean Distance, entropy measure, kernel functions and probabilistic 

methods) to classify textual data into two different classes. The different criteria of 

information selection and how they are used to classify documents are demonstrated 

with the help of an illustrative example. The Table 8.2 shows part of the experimental 

set of information (i.e. six documents) which will be classified as either positive or 

negative and for each document the corresponding terms frequencies are given with a 
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class attribute shown as A or B representing positive and negative (good or bad) 

information. The data set shown in Table 8.2 only gives details of five terms (T1,…, 

T5) whereas these documents actually contains approximately hundreds of terms.  

 

Table 8.2: Table showing the documents and corresponding term frequencies 

DocsId T1 T2 T3 T4 T5 Class 

D1 1 0 2 3 1 A 

D2 0 1 1 0 2 B 

D3 1 0 0 1 1 B 

D4 0 0 1 2 1 A 

D5 1 1 0 0 0 A 

D6 2 0 0 1 0 A 

 

The information handling in case of Decision Trees (C 4.5) algorithm, K-NN, Naïve 

Bayes Rule and Kernel Based matrix representation in SVMs in higher dimensional 

spaces are detailed as follows;     

 

    8.4.5.1 Decision Tree (C4.5)    

The selection of information is based on entropy is given by the following criteria 

given in equation 8.1; 

 

Step1: 

H(T1) = - ∑
j

jj pp )(log2   

        = 91804.0)
6
2(log)

6
2()

6
4(log)

6
4( 22 =−−  

The information gain for choosing the term T1 as splitting node is calculated in 

Weka(3.4) as frequency of occurrence of terms shown in the Table 8.2, where the 

frequency ≤ 0 or frequency > 0. The information gain is calculated at each term T1, 

T2, T3 and so on and finally the algorithm will split tree on the term with maximum 

information gain.  

 

In this example the information gain for term T1 defined by equation 8.3 is calculated 

as given below; 
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Step2: 

For frequency ≤ 0 

Entropy value is given as; 

1)
2
1(log

2
1)

2
1(log

2
1

22 =−−  

For frequency > 0 

The entropy value is given by; 

81145.0)
4
1(log

4
1)

4
3(log

4
3

22 =−−  

The entropies are combined for both frequency ≤ 0 and frequency > 0 as; 

HS (T1) =  87430.0)81145.0(
6
4)1(

6
2

=+  

 

Step3: 

InfGain(T1) = H(T1) – Hs(T1) = 0.044 

The formation of decision tree resulting in classification of documents into two 

classes (i.e. A and B) is shown in figure (8.6) and figure (8.7) and is discussed in 

detail in the same section. 

 

    8.4.5.2 K-Nearest Neighbouring Algorithm 

Considering the same exemplary data given in above Table  8.2 the selection of 

nearest neighbour is done by following two step procedure i.e. selecting K and 

measuring the similarities among documents by calculating Euclidean distance 

measure given in equation 8.4. If the value of K is taken as K = 2 then classification 

of new document D7 is done based on training examples.  

 

For example if K = 2 then documents D3 and D5 are considered as training examples 

based on which the decision is made for the new document D7(1,0,0,1,0) with 

unknown class variable.  

 

The distances are given as under; 

Dist (D3,D7) = 22222 )10()11()00()00()11( −+−+−+−+−  = 1.0 
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Dist (D5,D7) = 22222 )00()01()00()10()11( −+−+−+−+−  = 1.41 

 

So the new document D7 will be classified as Class B as the distance measure from 

document D3 is smaller than from the document D5 as shown in the figure 8.4 below; 

 

 
Figure 8.4: Classification of new document based on K-NN criteria 

 

    8.4.5.3 Naïve Bayes Algorithm 

The information selection and classification of new document D7 by following the 

steps defined in the Naïve Bayes algorithms using the Table 8.2 are detailed as 

follows; 

  

Step1: 

If the term T1 is taken as the term for selecting information to classify the new 

document, then frequency ranges are described as [0,1], ]1,2], ]2,3] where both open 

interval (i.e. ]  ] ) and closed interval (i.e. [ ] ) are used to define these ranges. The 

prior probabilities are calculated with class variables as A and B. 

P(A) = (4/6)= 0.667 

P(B) = (2/6)= 0.333 

 

 

 

Information Space of training 
Example or Documents 

New Document 
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Step2: 

 

Table 8.3: Probability calculated for two class variables A and B 

Attribute Value Count 

A 

Count 

B 

Probabilities 

for  variable A 

Probabilities 

for  variable B 

Documents Frequency 4 2 4/6 = 0.667 2/6 = 0.333 

 [0,1] 3 2 3/4= 0.75 2/2= 1 

 ]1,2] 1 0 1/4=  0.25 0/2= 0 

 ]2,3] 0 0 0/4= 0 0/2= 0 

 

The table above is used to find the probabilities of new document D7 taking T1 as a 

term of selecting information. The corresponding probabilities are given as under; 

P(D7/ A) = 0.667x 0.75 = 0.50025 

P(D7/B) = 1x 0.333 = 0.333 

 

Step3: 

Likelihood of Document D7 of being in Class A = 0.667x 0.50025 = 0.334 

Likelihood of Document D7 of being in Class B = 0.333 x 0.333= 0.111 

Sum of Likelihood for Document D7 = P(D7) = 0.334 + 0.111= 0.445  

 

Step4: 

Then posterior or actual probabilities for new Document D7 are calculated using 

equation 8.5 ; 

 

P(A/D7)= 0.334/0.445 = 0.751 

P(B/D7) = 0.111/0.445 = 0.249 

 

So the new document will be termed as belonging to class A i.e. good  information  

documents as the posterior value is higher than the class B value.   
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    8.4.5.4 Support Vector Machines (SVMs) 

The SVM methods use different types of kernel tricks for information selection. In the 

current research linear kernel methods have been tested for which information is 

structured by finding the inner product of each data point. Then a matrix 

representation is formed, called a Kernel Matrix which is then used to find the support 

vectors by  performing SVM optimization task. The data given in above Table 8.2 is 

used here to form the corresponding Kernel Matrix which is the core of SVM 

classifiers optimisation procedure to find the support vectors and classifying the 

textual data into two different categories or classes. The linear Kernel matrix is used 

to find the inner product based distance representation. For example for document D1 

in Table 8.2 the inner product value is calculated as; 

<D1.D1> = <1,0,2,3,1> . <1,0,2,3,1> 

= (1.1) + (0.0) + (2.2) + (3.3) + (1.1) 

 =1 + 4 +9 +1 = 15 

The detailed representation of the matrix formed in given in the Table 8.4; 

 

Table 8.4 : Gram Matrix based on Linear Kernel i.e. K(D, D’)= <D, D’> 

K(D1,D1)=15  K(D1,D2)=4 K(D1,D3)=5 K(D1,D4)=9 K(D1,D5)=1 K(D1,D6)=5 

K(D2,D1)=4 K(D2,D2)=6 K(D2,D3)=2 K(D2,D4)=3 K(D2,D5)=1 K(D2,D6)=0 

K(D3,D1)=5 K(D3,D2)=2 K(D3,D3)=3 K(D3,D4)=3 K(D3,D5)=1 K(D3,D6)=3 

K(D4,D1)=9 K(D4,D2)=3 K(D4,D3)=3 K(D4,D4)=6 K(D4,D5)=0 K(D4,D6)=2 

K(D5,D1)=1 K(D5,D2)=1 K(D5,D3)=1 K(D5,D4)=0 K(D5,D5)=2 K(D5,D6)=2 

K(D6,D1)=5 K(D6,D2)=0 K(D6,D3)=3 K(D6,D4)=2 K(D6,D5)=2 K(D6,D6)=5 

   

8.5 PPR Data for Classification 

  8.5.1 PPRs as Defining Good and Bad  Information Documents 
A sample data set consisting of post project reviews from the TrackStore Project 

( ://www.lboro.ac.uk/departments/cv/projects/trackstore/index.htm) was used in these 

experiments. The data is in the form of free formatted text that has been composed of 

about 10-15 pages further divided into some main and sub headings of time, cost, 

planning, etc. The parts of the data set which were considered in the current analysis 

http://www.lboro.ac.uk/departments/cv/projects/trackstore/index.htm�
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were taken from the sub headings of ‘Time’ and ‘Cost’. All the information available 

in these free formatted textual data or documents were then divided into two different  

classes of good or  bad information documents. This task was performed by reading 

through every document with the help of domain experts. The meanings of all the text 

under the ‘Time’ and ‘Cost’ subheadings were well understood and then any identified 

knowledge was assigned to one of two different categories. The purpose of this 

exercise was to create a training set of data to test the proposed methodology for 

automatically classifying text into two different categories. The class attribute were 

assigned to each category of information as ‘A’ and ‘B’ for good and bad information  

documents after careful reading through the text. 

 

An example of good information documents identified with the help of domain 

experts or knowledge worker is given as under; 

 

“The project took 51 weeks and was handed over on programme-giving good KPI for 

time. It was noted that the customer issued very few instrtuctions…” 

 

Similarly an example of bad information document is given as under; 

 

“The project was programmed to take 49 weeks, but finished four weeks late. Most of 

extra work was caused by the work starting late because…” 

 

  8.5.2  MKTPKS Based Matrix Model For PPRs Classification  
This section discusses the method of preparing PPRs data for performing the 

automatic text classification task to classify it into two different categories using 

Decision trees (J48 or C4.5), K-NN, Naïve Bayes and SVMs. The data must first be 

transformed into a suitable format to test the algorithms. A candidate feature space is 

obtained through application of hybridised efforts of 1st Level Knowledge Processing 

and storing Unit and 2nd Level Knowledge Refinement Unit applications (as discussed 

in Chapters 5/6) . Single key term phrases are identified using a clustering technique 

and then the clustered instances are further processed to generate multiple key terms 

phrasal knowledge sequences . Consequently a feature space is prepared and used to 

represent the existence or non existence of key phrases in the documents. To adapt 
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classification procedures for this research work, each vector representation of 

documents is done through  MKTPKS. The relationship between the list of key 

phrases and their representative classes is shown in the figure 8.5 using binary 

representation method is shown below; 

 

List of key term phrases 

F1 F2 F3 F4 F5 … … Fn 

 

Doc.ID 1 0 1 0 1 … … 1 Ci 

 

Figure. 8.5 Candidate termset representation for MKTPKS 

 

Where Ci represents the class of labels given to the training data and taken as C1, C2, 

C3,…, Cn and F1,F2,…, Fn represent the corresponding frequent termset sequence 

(FTS). A matrix of representative key term phrases and their class labels is therefore 

formed and the (Decision tree C4.5, K-NN etc.) as data mining algorithm are used to 

classify data into their predefined categories. Thus matrix representation formed for 

the textual data is given in the Table 8.5. 

 

Table 8.5: Matrix Representation of the textual data using MKTPKS    

Docs IDs F1 F2 F3 … Fn Class 

D1 1 1 0 0 1 A 

D2 0 1 0 1 0 B 

D3 0 0 1 1 1 A 

D4 1 1 0 0 1 A 

… … … … … … … 

Dm 0 1 0 0 1 B 

 

Thus the whole information space is then transformed into a matrix representation 

with  MKTPKS in column and documents in the rows where binary representation 

method is used to generate this information space. This new matrix model is then used 

to perform the classification task with class variables A and B representing good and 

bad information  documents in the current research context. The representative terms 
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of F1, F2, …, Fn are used for frequent 3-termset sequences and Weka (3.4) was used 

to test the classification accuracies of classifiers defined under ‘classify’ (drop down 

option available in Weka (3.4) software).  

 

8.6 Applications of Methodology on PPRs for Text Classification and 
Results  

   

  8.6.1 Text Mining Module Application  
This section discusses the application of the Text Mining Module for data pre-

processing and structuring. In this part of the analysis the data is structured through 

the application of the different units detailed in the section 6.3. This step makes the 

data ready for applications of different data mining algorithms e.g. k-means clustering 

algorithm at first stage in the current research scenario. So the data is prepared by first 

consolidating it in a text file and then converting it into a suitable representation. Java 

code was written to count the terms and their corresponding frequencies for 

representation in the term frequency matrix (TF). Stop words are removed from the 

text and simple stemming was performed as detailed in the section 6.3.1. The 

resulting data was then saved into the comma separated (csv) file.  

 

  8.6.2 Knowledge Generation and Classification Module  
The 1st Level Knowledge processing and Storing unit and then the 2nd Level 

Knowledge Refinement Unit are applied on the structured data obtained from the 

previous section. This is done by processing the csv file in Weka (3.4). There are 

different clustering techniques that can be used for the discovery of first level 

knowledge in the form of discovered single key term phrases. Weka (3.4) software is 

based on a java environment which is open source and allows users to customise or 

add new features to it. It offers different functionalities ranging from pre-processing 

to data classification and analysis. For further details and handling data or information 

see reference (Witten and Frank 2000). 

 

The clustering algorithm splits the input space into a number of subspaces. A large 

number of experiments with other clustering techniques (i.e. Expected Maximization) 
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were made to find the number of clusters to reduce the effect of information loss. Two 

main factors highly affected the process of choosing the right number of clusters i.e. 

the data size under consideration and the need to retain useful information within each 

cluster. To handle very sparse data and reduce the effect of loosing key information 

captured within each cluster a number of experiments were made for selecting the 

most appropriate number of clusters in Weka (3.4) and between 2-10 clusters were 

considered. The simple matrix model used in these experiments at first stage of 

analysis was of dimensions (20x315) formed after applications of different units 

defined in the Text Mining Module. The number of experiments showed that the 

number of clusters should neither be too small nor too large as this could cause a great 

loss of information. Ultimately six clusters were selected for the current research 

work to split the whole information space into a number of subspaces. Three 

examples of clusters, their ID’s and corresponding single term phrases identified 

through applications of the K-means clustering algorithm are shown in the Table 8.6 

given below; 

 

Table 8.6: Single key term phrase identification by K-means Clustering   

Cluster 

ID’s 

Single Key term Phrases Identified  

CL1 “business”, “carried”, “fitting”, “interiors”, “X”, “less”, “lift”, “number”, 

“out”, “overroofing”, “pit”, “price”, “project”, “same”, “shop”, “slightly”, 

“small”, “two”, “under”, “unit” 

CL2 “cause”, “complete”, “delay”, “due”, “extension”, “fortyfive”, “granted”, 

“mortuary”, “planned”, “problems”, “programme”, “re-roofing”, 

“significant”, “still”, “13-week”, “time”, “twentysix”, “weeks” 

CL3 “any”, “approximately”, “extra”, “few”, “figure”, “financial”, “give”, 

“good”, “KPI”, “noted”, “pounds”, “request”, “rigidly”, “scheme”, ”six”, 

“stuck”, “within” 

 

The letter X is used for company name. 

 

The key information identified by this stage simply exists as different clusters which 

refer to multiple different sets of information contained in different documents 
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represented by different document IDs. Up to this point every piece of knowledge 

identified is treated in an equivalent way and no attempts have been made to interpret 

it as being good or bad information  documents. Also, the business context is not clear 

from the single term phrases like “business” in the cluster and therefore the context 

cannot be used in the decision making process. For example, two different key term 

phrases like “business” and “unit” captured in the CL1 can refer to quite different 

concepts in the documents like “business unit to supply the contribution”, “business 

unit needed some work” and also the concept of “business unit target”. So it becomes 

difficult to map these single key term phrases to find key issues in the form of good or 

bad  information documents. In order to overcome this difficulty of interpreting the 

key issue there is need to further refine the process of extracting useful information 

codified within these documents. This is done by applying 2nd Level of Knowledg 

Refinement  unit.  

 

The knowledge obtained through applications of the clustering algorithms needs to be 

stored in the form of relational database tables containing all fields from the cluster 

label, key term identified and their corresponding documents identification codes 

(IDs). This task is then performed by generating multiple key term phrasal 

knowledge sequences  which at one end reduce the number of dimensions in the 

feature space and at other end are used to test the improvement made in the 

classification accuracy of the classifiers. Association Rule mining is used at this 

stage for preliminary analysis for generating multiple key term phrasal knowledge 

sequences . The input is given in the form of relational tables where documents are 

taken in the form of transactions and terms as items. The representative MKTPKS  are 

shown in the Table 8.7 given below; 

 

Table 8.7: Representative Frequent 3-termset sequences formed using Association 

Rule of Mining 

Cluster’s 

ID 

 MKTPKS 3-termsets  

CL1 [T1 T13 T17, T1 T13 T20, T1 T17 T20, , …, T13 T18 T19] 

CL2 [T1 T5 T6, T1 T5 T8, T1 T11 T16, T4 T8 T14,…,T12 T14 T16] 

CL3 [T2 T8 T10, T4 T7 T8, T4 T7 T9, T5 T10 T15,…, T8 T9 T10] 
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The  MKTPKS formed through application of Apriori Association Rule of Mining are 

shown in Table 8.7 in the form of T1, T2, T3 etc. which refer to the single key term 

phrases given in the Table 8.6. The co-occurrences among these terms are given in the 

form of T1 T2 T3 as a single entity referring to a set of multiple key terms occurring 

in the documents. These occurrence of terms together form a sequence of knowledge 

which is later used for the classification task following the criteria defined in the 

Section 6.4.3.  

 

  8.6.3 Classification Results and Accuracies of Models    
This section illustrates the methods used for classifying the textual data into two 

different categories or classes. The data is first transformed into a model based on  

MKTPKS where the representative terms like (T1 T5 T6) , (T2 T8 T10) and (T4 T7 

T8) etc. are taken as single units of information and where the binary representation 

detailed in Section 8.5.2 is used for performing the classification task. The new matrix 

model based on FTS was formed with dimensions (20 x 223). This matrix model was 

based on  MKTPKS which were then loaded into Weka (3.4) in the form of a csv file 

and four different classifiers were tested to classify the data into their respective 

categories and the accuracies achieved by each are discussed in this section. The 

target variable set for this purpose was the class variable to determine the number of 

good  or bad  information documents. The objective was to train the system and 

determine the correct and incorrect classification rates. The results obtained through 

application of different classifiers on the FTS based matrix model are used to compare 

the classification accuracies against the simple term based representation model.  A 

glimpse of the classifying textual data of PPRs using Decision Trees (J48 or C4.5) 

defined above using simple term based representation is shown in the figure 8.6. The 

tree diagram shows that each node (circular / elliptic) is divided into interpretable sub-

nodes or leaves with the classified Good (A) and Bad (B) information  documents. 

The terms t130, t262, and t66 are used as representative terms in the simple term 

based matrix model used for classification of the documents. 
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Figure 8.6: Snapshot of decision tree based classification 

 

Each node (elliptic / circular) has been divided into its sub-nodes on the basis of 

maximum information gain. Each leaf node (rectangular) represents the finally 

classified information into  Good or  Bad information documents about project within 

PPRs. The corresponding A(5.0) shows that five documents are classified as good 

information documents at the deciding node (circular) of representative term t130. 

Similarly B(5.0) shows the number of documents classified as bad information is five 

whereas B(5.0 / 1.0) shows that four out of five documents were classified as bad 

information documents with an error of one as good information documents at the 

branch (circular) node of t66.  

 

In terms of classification of data based on proposed  MKTPKS system the Decision 

Tree results using Weka (3.4) based classifier is shown in the figure 8.7 below; 
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Figure 8.7:  MKTPKS based Classification using C4.5 

 

The information space is classified into two classes of good and bad information 

documents by selecting the information nodes and sub-nodes. The branch leaf 

represent the number of documents classified as good and bad information documents 

. The node (elliptic) with representative  MKTPKS F200 splits the information with 

the frequency of occurrence either less than or equal to zero and greater than zero. 

The classification rule is illustrated as IF the frequency of occurrence is greater than 

Zero then the information given at this point is classified into Good Information 

documents which is represented as A(3.0) while for other case i.e. less than or equal 

to Zero the branch node (circular)  is used to perform further classification 

procedures. Thus the process of forming the decision tree continues until the 

document space of information is fully classified into two different categories. The 

information node (elliptic) at representative MKTPKS F218 shows the binary 

classification leaves (rectangular) in the form of A(3.0/1.0) which means that two 

documents are classified as good information documents with the error of 

classification being one document as a bad information space document. Similarly the 

leaf node B(10.0/2.0) shows that the eight documents are classified as Bad 
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information documents with an error of two falling into the category of good 

information documents.  

 

In a business context to provide better services to the customers the knowledge 

workers or decision makers have to consider their opinions to retain the customer to 

the industry. In the current research scenario the data under consideration defines the 

key phrase like “customer issued very few instructions/ variations” help the industrial 

workers to run the project smoothly and get it finished within time. This gave a good 

Key Performance Indicator (KPI) as time as the project was finished within stipulated 

time and thus company could easily retain its customer. In such a context if the 

decision maker or knowledge worker within an industry could identify and classify 

textual data on the basis of good or bad information documents then better decision 

could be made for future projects. This would ultimately help to enhance business by 

identifying ways of retaining their customers from experiences captured in earlier 

reports. To help the knowledge workers and to gain competitive advantages for 

improving the quality of the services the objective of this research was to accurately 

classify the textual data with a lower misclassification rate. To achieve this goal and 

better manage the knowledge resources different matrix models were considered to 

structure the textual data (i.e. term frequency and MKTPKS  based methods) within 

this research context. The incorrect classification results obtained through application 

of different classifiers are calculated using the confusion matrix shown in the Table 

8.8. 

 

Table: 8.8 Confusion matrix for performance measure of classifier  

Class variables Predicted: a b 

Actual: a TP FN 

            b FP TN 
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The terms are defined as; 

TP(True Positive): the number of documents correctly classified to that class 

TN(True Negative): the number of documents correctly rejected from that class  

FP(False Positive): the number of documents incorrectly rejected from that class 

FN(False Negative): the number of documents incorrectly classified to that class 

 

The classification accuracies are calculated by classifying  information as good or bad 

information documents. For example the following information (i.e. document in this 

research context) “The customer suggested that the job should be done within 

twenty one (21) weeks and we agreed to that period. The work was completed on 

time.”  was originally marked as good information document by human experts but 

the system being tested here identified this as bad information and classified it into the 

category of B. 

 

The calculated classification rates are given in the following Table 8.9. 

 

Table 8.9: Incorrect classification rates using simple term based Matrix model 

Method Input output Incorrect 

classification Rate 

C4.5(J48) Simple term based 

Matrix 

Class Variable 0.50 

KNN(k=10) Simple term based 

Matrix 

Class Variable 0.60 

Naïve Bayes Simple term based 

Matrix 

Class Variable 0.55 

SVM(Linear 

Kernel) 

Simple term based 

Matrix 

Class Variable 0.55 

 

The misclassification rates are calculated against each classifier to predict the correct 

category of the data. The lower the rate of misclassification the more accuracy is 

guaranteed in decision making process. The Table 8.10 below shows the rate of  
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incorrectly classifying the data when the  MKTPKS based representation method is 

used for classifying textual data of PPRs into their respective categories. 

 

Table 8.10: Incorrect classification rates using proposed MKTPKS  based Matrix 

Model 

Method Input output Incorrect 

classification Rate 

C4.5(J48)  MKTPKS Class Variable 0.55 

KNN(k=10)  MKTPKS Class Variable 0.40 

Naïve Bayes  MKTPKS Class Variable 0.45 

SVMs 

(Linear Kernel) 

 MKTPKS Class Variable 0.45 

 

 

The classification results obtained through applications of Decision Trees (C4.5), 

Naïve Bayes and K-NN algorithms are shown in Table 8.9 and Table 8.10. In terms of 

applications of decision trees (C4.5) the better classification results are obtained by 

using simple term frequency matrix where misclassification or incorrect classification 

rate is 5% lower than that of  MKTPKS based method. While the accuracy of other 

classifiers i.e. K-NN (k=10) and Naïve Bayes are all better than the simple term based 

representation method (term frequency matrix). The results shown above in Table 

8.10 have been obtained through wide range of experiments performed for getting the 

better accuracies of the classifiers. Different parametric setting were tested using the 

Weka (3.4) software where different values of K in terms of using K-NN classifier are 

tested. The optimal settings were found for K=10 for which better classification 

accuracies were obtained. Similarly in case of applications of Decision Trees (C4.5) 

algorithm different seed values were used for which the accuracies of the classifier 

did not change. Therefore optimal values of the classifier were obtained by keeping 

the parametric settings unchanged in the Weka (3.4) software. In case of 

implementation of SVMs technique different kernel functions i.e. Linear Kernel and 

Radial Basis Kernel functions (i.e. )
2

exp(),( 2

2'
'

σ

xx
xxk

−
−= (Gunn 1997))are used to 

gain the better classification accuracies. In case of Radial Basis kernel function poor 



 139 

precision and recall measures values were found which gave less classification 

accuracies in terms of F-measure. So ultimately Linear Kernel Function based 

classification methods were selected and found to be useful in classifying the textual 

data into two different categories. The classification accuracies were higher than that 

of Radial Basis function method. In case of Naïve Bayes classifier the optimal setting 

were found for the defined parametric values given in the Weka (3.4) software and 

simple Naïve Bayes techniques gave better classification model.  

 

The results showed that the accuracy measure of the classifiers improved in case of 

Naïve Bayes, K-NN and SVMs except Decision Trees (C4.5) methods using  

MKTPKS based matrix model. 

 

  8.6.4 Evaluation Measure and Comparison  
The final evaluation of the proposed system is made by comparing the results on the 

basis of F-measure which is defined as the harmonic mean of Precision and Recall. 

The precision is defined as the rate of correctly classified documents to the result of 

classifier and recall is defined as a measure of the rate of correctly classified 

documents to the documents to be classified correctly. The reason behind selection of 

F-measure is that both precision and recall ratios are considered in it (Miao et al. 

2009). Mathematical representation of the formula for F-measure is based on the 

notation given in Table 8.8 given as follows; 

Recall (R) = 
FPTP

TP
+

       (8.16) 

Precision (P) = 
FNTP

TP
+

       (8.17) 

F- measure = 
PR

PR
+
××2       (8.18) 

The performance of the system is evaluated using 10-fold cross validation method 

which is more commonly used and gives more stable results (Mclachlan et al. 2004 ). 

The setting of the parameters available in the Weka (3.4) for each algorithm is 

changed and the optimal settings are selected. Some experiments were made to 

choose the optimal parameters to gain the better classification accuracies with the 

application of each classifier. Different parametric values are chosen for each 

classifier to find the best classification accuracy measure. In the case of  Naïve Bayes 
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classifier the basic settings available in the Weka (3.4) software were unchanged as 

these gave better classification accuracies. In terms of application of K-NN classifier 

different settings are tested by varying the values of K for which the best possible 

accuracies are obtained while setting the value of K=10. Also in case of application of 

Support Vector Machines (SVMs) the better classification accuracies were obtained 

using Linear Kernel method. The results obtained are shown in the Table 8.11. 

 

Table 8.11: Comparison of Performance of different classifiers  

Classification 

Model 

 Term Based Classification 

Method 

(F-measure) 

Proposed  MKTPKS based 

Classification Method  

(F-measure) 

Decision Trees 

(J48 or C4.5) 

0.495  0.449 

K-NN (k=10) 0.341 0.52 

Naïve Bayes 0.374 0.561 

SVMs  

(Linear Kernel) 

0.374 0.475 

 

The above Table 8.11 shows the performance of different classifiers based on simple 

term frequency matrix model and  MKTPKS based classification model. The 

performance of the classifiers (i.e. K-NN, Naïve Bayes and SVMs (Linear Kernel) in 

terms of proposed method are better than the simple term based classification model. 
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Figure 8.8: Comparison of Classification accuracies using F-measure 

 

The figure 8.8 shows that the performance of the Decision Tree (C4.5) classifier using 

proposed method is slightly lower than the simple term based matrix model. However 

the performance values measured using F-measure for all other classifiers (i.e. K-NN, 

Naïve Bayes and SVMs) improved with the use of proposed methodology when 

compared with simple term based classification method. Thus overall accuracy of the 

classifiers are improved if the proposed method is used to classify the textual data into 

two different categories of Good and Bad information documents.   

 

8.7 Novelty of the Work and Discussion 
To the author’s best knowledge the work presented in this chapter is the first of its 

kind, where classification methods have been applied on textual data to divide it into 

two different categories or classes based on proposed  MKTPKS based method of 

classification. 

 

The research work presented in this chapter is focused on classification of textual data 

into two different categories to define good and bad information documents. A novel 

integration of textual data mining techniques is made to improve the classification 

accuracy of the classifier. In terms of classifying documents into their respective 

categories using decision tree (J48 or C4.5 algorithm) the accuracy of the classifier is 

reduced using the proposed methodology while in other classifiers’ application there 
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is a significant improvement in the classification accuracies measured using F-

measure. The reason behind loosing the accuracy of C 4.5 classifier may lie in the fact 

that information selection criteria in C 4.5 highly dependant on the terms and their 

corresponding frequencies.  

 

The following points are therefore concluded from the research work presented in this 

part of application of proposed methodology; 

 

• Single term based representation methods are useful sources of carrying 

information but these methods affect the classification accuracies of the 

textual data. 

• Hybrid application of textual data mining techniques gives better results 

whereas in the current research scenario the information pruning and 

knowledge refinement is possible through use of Apriori Association Rule of   

Mining technique. 

• Generating multiple key term phrasal sequences of knowledge and using these 

for performing the classification improved the accuracies of the classifiers. 

•  

 

8.8 Summary of the Chapter and Conclusion 
This chapter discusses the implementation of different classifiers for textual data 

classification. A novel hybrid textual data mining approach is used for discovering 

useful knowledge from free formatted textual data and then using this knowledge in 

the form of  MKTPKS to classify it into two different  classes. The classification 

results are discussed which further serves the purpose of exploring other statistical or 

machine learning techniques to reduce the misclassification rate of the classifiers.  
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Chapter 9 Semantic Analysis Methods for Text 
Classification  
9.1 Introduction 
In this chapter a semantic text analysis method called the Latent Semantic Analysis 

(LSA) is tested. This is a well known method in the area of information retrieval (IR). 

The method is used to cluster information on the basis of different ranking measures 

and the results will be compared and tested against the classification techniques used 

in Chapter 7 to classify the data into two different classes of  good or bad information 

documents. The study made in this chapter is different from the normal trend of 

applications of LSA methods which are for feature selection and better information 

retrieval tasks. The purpose of this chapter is therefore to use the LSA based semantic 

model to classify the documents and then to compare the results with the  MKTPKS 

based classification model proposed and implemented in previous chapters.  

 

9.2 LSA Models for Text Classification and Effectiveness  
Latent Semantic Analysis (LSA) methods are used to consider the semantic 

relationships among terms defined with textual documents and retrieve useful 

information from the textual data. These methods were first proposed in (Deerwester 

et al. 1990)  and are used to automate the process of retrieving useful information 

from documents. The information contained in the documents is represented in the 

form of a matrix called a term by document matrix (i.e. t x d) where the ‘t’ is used to 

represent terms and ‘d’ stands for the documents. The whole information space is then 

divided into a semantic space based on Singular Value Decomposition (SVD) where 

SVD is used to decompose the terms by documents (t x d) matrix into linearly 

independent spaces or sub dimensional vector spaces. LSA methods were originally 

used for performing the task of information retrieval based on semantic relationships 

existing among different terms or words used in the textual databases. 

 

The general representation form of decomposing information into subspaces is given 

in the form (Berry et al. 1995; Grossman 1998): 

∑= VUA           (9.1) 

Where U and V are orthogonal matrices with the property of  
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IVVUU TT ==         (9.2) 

with values as left and right singular vectors of A and ∑ is the diagonal matrix with 

entries as d1,d2,d3,…,dn where di > 0 for 1≤ i ≤ r and dj = 0 for j ≥ r+1 which are 

called the singular values of A.  

 

In terms of approximating the matrix A different values of k are taken where the 

largest values are kept along with the corresponding columns in the matrices U and V.  

Different approximations taken for different values of k are given as Uk, Vk  and 

represented using the formula; 

 

∑=≈
k

T
kkk VUAA        (9.3) 

The matrix kA so formed through multiplication of k approximated values of U , V 

and ∑ is uniquely closest to A. The geometrical representation of forming two 

dimensional SVD matrix is shown in the figure 9.1. 

                 

 

∑kA2=

 

For k=2 ; 2U   Diagonal Matrix   TV2           

Figure 9.1: Geometrical Representation of SVD Matrix Model for k=2 

 

 

The figure 9.1 shows that to form an approximated matrix using SVD method for k=2 

first two columns are selected in case of U, while the first two diagonal entries are 
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used from the diagonal matrix (∑ ) an d  two  rows are fro m th e matrix fo rmed  by 

taking the transpose of V2.    

 

Different approximations have been used to classify the textual data where different 

values of k have been tested i.e. k = 2,3,4. The target attribute for classification is set 

as good or bad information documents  i.e. A as good and B for bad information  

documents. 

 

  9.2.1 Defining Knowledgeable Relationships through Matrix 
Models   
The structured representation of information in the form of a matrix carrying the 

simple term based information is shown in Table 9.1. The matrix is formed using a 

simple term based structured representation of a textual data set and was used to 

define the semantic relationships among terms. Representing the key information in 

matrix form helps to capture the relationships among terms and identify their 

corresponding documents in the textual data available from PPRs.  

 

Table 9.1: Simple Term Based Matrix Model  

Terms D1 D2 D3 D4 D5 D6 D7 

About 0 0 0 0 0 1 1 

Above 0 0 0 0 0 2 0 

Account 0 3 1 1 1 0 2 

Accurate 0 0 0 0 0 1 0 

Achieve 0 0 0 0 0 1 0 

Actual 0 0 0 0 1 1 0 

Additional 0 0 0 0 1 0 1 

Adjusted 0 0 2 0 0 1 0 

Administer 0 0 0 0 0 1 0 

Against 0 0 0 0 0 1 0 

 

The Table 9.1 above shows the relationships among terms and their frequency of 

occurrence in the corresponding documents. This shows that the terms ‘accurate’ and 

‘achieve’ occurred in the same document giving some meaning to the text like 
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’accurate targets for future work’ and ‘achieve the maximum gain’. The relationship 

among these terms could be explained  that if targets were measured accurately then 

the company could gain maximum profit. These types of relationships include some 

human bias and this needs to be reduced where possible. Different techniques are used 

in the literature to capture semantic relationship, but in the current research context 

the focus is made to find these relationships by reconstructing the simple term based 

matrix model using the latent semantic analysis based matrix model. Later this model 

was used to classify the textual data into two different  classes of good or bad 

information documents. The corresponding reconstructed example matrix from Table 

9.1 using the Latent Semantic Analysis model is shown in Table 9.2. 

  

Table 9.2: LSA based Matrix model based on simple term based data structuring   

Terms D1 D2 D3 D4 D5 D6 D7 

About 0.0618 0.224 0.1696 0.13399 0.18384 0.89579 0.35267 

Above 0.0542 -0.12 0.105 0.131 0.1299 1.9243 -0.133 

Account 0.2285 1.763 0.7561 0.4538 0.7715 -0.057 2.6085 

Accurate 0.0271 -0.06 0.0524 0.066 0.065 0.9622 -0.066 

Achieve 0.0271 -0.06 0.0524 0.066 0.065 0.9622 -0.066 

Actual 0.043 0.041 0.1024 0.0986 0.1169 1.0418 0.085 

Additional 0.053 0.382 0.172 0.1066 0.1764 0.0850 0.5674 

Adjusted 0.0271 -0.06 0.0524 0.0657 0.065 0.9622 -0.066 

Administer 0.0271 -0.06 0.0524 0.0657 0.065 0.9622 -0.066 

Against 0.0271 -0.06 0.0524 0.0657 0.065 0.9622 -0.066 

 

 

The Table 9.2 shows the new representation of matrix model where the frequencies of 

the matrix model given in Table  9.1changed gives an indication of terms probabilities 

of occurring together in the documents D1-D7. The representative matrix given in 

Table 9.2 showed the term frequency of ‘account’ given as ‘0’ in D1 as shown in 

Table 9.1 is replaced with ‘0.2285’. Similarly the frequencies of other terms such as 

accurate, adjusted and administer are also changed which are used to measure he 

closeness of one document to other. The proximity of closeness of one document ‘ id ’ 
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to other document ‘ jd ’ can be measured by using Cosine similarity measure 

(Grossman 1998) given in equation 9.4. 

ji

j
t
i

ji dd
dd

dd =),cos(        (9.4) 

 

Thus a new approximated matrix of transformed values is used to cluster the 

information first by selecting different values of k (i.e.2,3,4) and then used for 

performing the classification task. The process of using the approximated matrix for 

text classification is detailed in the next section.  

   

  9.2.2 Classification Methods, Accuracies and Comparative 
Analysis  
The input data has been transformed into information as shown in the Table 9.3 and 

each document now carries a class variable i.e. A and B to indicate whether it is a 

good or bad information documents. Three different approximated matrices for 

different values of k were formed by multiplying the k approximated values of U, ∑ 

and transpose of V using Equation 9.3 as shown in Figure 9.1. The formal 

representation of matrix model formed for performing the classification task into good 

(A) and bad (B) information documents is shown in the Table 9.3. The new 

approximated matrices are then loaded into Weka (3.4) in the form of a comma 

separated value (csv) file. The classification functions available under the heading 

classify were used to classify data into two different categories of good or bad  

information documents. The details of these functions and their information selection 

criteria have already been given in Section 8.4.  
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Table 9.3: LSA Based Matrix Model for Text Classification  

Docs Id T1 T2 T3 T4 … Tn Class 

D1 0.0618 0.0542 0.2285 0.0271 … 0.0271 A 

D2 0.224 -0.12 0.105 0.131 … -0.06 B 

D3 0.1696 0.105 0.7561 0.0524  0.0524 A 

… … … … … … … … 

Dm 0.35267 -0.133 2.6085 -0.066 … -0.066 A 

 

The effectiveness of the method is measured using the percentage of correctly 

classified textual data while the final comparison is made using the average values of 

F-measure. The lower the misclassification rate of the classifier the better the 

accuracy would be of classifying data and identifying knowledge that may improve 

the business intelligence solutions. For different values of k the classification 

accuracies were found and given in the form of tables obtained for k = 2,3,4 as shown 

in the Tables 9.4, 9.5 and 9.6 respectively. 

 

Table 9.4: Classification Accuracies of LSA Model for k =2   

Classifier Correct 

classification rate 

Incorrect 

classification rate 

 F-measure 

Decision Trees 

(C4.5 or J48) 

0.30 0.70 0.271 

KNN (k=10) 0.50  0.50 0.479 

Naïve Bayes 0.50 0.50 0.405 

SVM  

(Linear Kernel) 

0.55 0.45 0.355 
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Table 9.5: Classification Accuracies of LSA Model for k=3 

Classifier Correct 

classification rate 

Incorrect 

classification rate 

 F-measure 

Decision Trees 

(C4.5 or J48) 

0.50 0.50 0.479 

KNN (k=10) 0.50  0.50 0.479 

Naïve Bayes 0.45 0.55 0.3105 

SVM  

(Linear Kernel) 

0.55 0.45 0.436 

 

Table 9.6: Classification Accuracies of LSA Model for k=4  

Classifiers Correct 

classification rate 

Incorrect 

classification rate 

 F-measure 

Decision Trees 

(C4.5 or J48) 

0.35 0.65 0.2595 

Naïve Bayes 0.50 0.50 0.405 

KNN (K=10) 0.45 0.55 0.3105 

SVM  

(Linear Kernel) 

0.35 0.65 0.2595 

  

The accuracy of the proposed method of classifying textual data using the simple term 

based and  MKTPKS based models are shown in the figure 9.2-9.4 shown below; 
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Figure 9.2: Comparing LSA (k =2) with  MKTPKS Classification Models  
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The figure 9.2 shows that the proposed  MKTPKS based classification model gave 

comparable values over the simple term based LSA model in the case of all the 

classifiers. 
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Figure 9.3: Comparing LSA (k =3) with  MKTPKS Classification models 

 

The figure 9.3 shows that the classification accuracies using  MKTPKS based model 

are higher than the term based LSA model except the case of C4.5 where the proposed 

method is less efficient where the difference in the accuracies is (0.479-0.449= 0.03). 
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Figure 9.4: Comparing LSA (k=4)  with  MKTPKS Classification Models 
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The figure 9.4 shows that the proposed FTS based classification model performs well 

when compared with term based LSA model. The accuracy the  MKTPKS method is 

greater for all classifiers when compared to the LSA results. 

 

Thus overall this study shows that the accuracies of the classifiers improves using 

proposed  MKTPKS model for classification of textual data into two different  

classes.  

 

9.3 Summary of the Chapter and Conclusion 
In this chapter LSA model was used to classify the data into two different classes and 

the results are presented. The model was used to compare the accuracies against the 

proposed  MKTPKS based model to further verify the hypothesis that better 

classification is achieved through the proposed method of classifying textual data into 

two different categories. Thus the work reported in this chapter should benefit 

knowledge workers or decision makers to better classify textual data into their 

corresponding categories and identify the issues discussed in the data and help to 

improve the overall business of the industry.     
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Chapter 10 Conclusions and Future Work 
10.1 Conclusion 
The last three Chapters ( i.e. Chapter 7,8,9) have highlighted different methodologies 

that have been developed and adopted to meet the objectives of the research 

introduced in Chapter 1. Based on the past literature reported in the areas of textual 

data mining applications in manufacturing or construction industry, the conceptual 

development of theory to achieve the objective of the research was mainly focused on 

application of clustering and then  applications  of  Apriori Association Rule of 

Mining  which has been widely used in various areas of applications. Hence 

substantial time and efforts have been made in this research in developing and 

applying these techniques for better selection of number of clusters and then using 

MKTPKS based matrix model  to better classify textual data.  

 

In the first stage Clustering was used to discover the first level of knowledge in terms 

of finding natural term based relationships defined in the textual data. The discovered 

knowledge in terms of single key term phrases was difficult to interpret and to use in 

identifying good or bad information documents  available in the form of PPRs. 

Therefore the 2nd level knowledge refinement process is done with the application of 

Apriori Association Rule of Mining techniques to find more useful multiple key term 

knowledge sequences (MKTPKS)  using varying level of support values. The one 

reason for generating the MKTPKS was to find those sequences of terms which refer 

to the terms which co-occur in the documents to identify good or bad information 

documents. The results obtained in the form of sequence of terms are useful to map 

information to the particular document space of information and then these sequences 

(i.e. MKTPKS) are compared with those identified by the domain experts. F-measure 

was used to measure the accuracy where the results were (37%) accurate where the 

value of recall measure was better than the precision measure.  

 

The second part of the implementation of the methodology was to implement the 

different classification techniques on the discovered MKTPKS  based matrix model. 

The purpose of this implementation was to study the affect on classification 

accuracies of different classifiers to help the knowledge workers or decision makers to 

better classify the data into their predefined  classes. Since natural relationships in 
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terms of finding MKTPKS  were captured by applying clustering and Apriori  

Association Rule of Mining techniques, the discovered knowledge must be used 

properly. This discovered knowledge was used for the classification task of textual 

data on the basis of its representation in terms of MKTPKS. There is a significant 

improvement in the classification accuracies obtained and these results are shown in 

the chapter 8.  

 

A novel aspect of this research is the discovery of knowledge in terms of single or 

multiple key term phrases which were used to discover the relationships among terms 

defined in the textual data of PPRs. The discovery of these natural relationships could 

be used to improve business intelligence solutions as this research provides a means 

of reducing misclassification errors. The lower the error the better the classification 

accuracies would be and the previous knowledge thus stored in the form of textual 

databases would effectively be used for finding the solutions to new unclassified 

problems. The kind of work presented in terms of application of methodologies in 

chapter 7 and chapter 8 is a novel integration of several techniques and gave good 

results so the knowledge discovered might be used on other textual databases which 

are available in the free formatted text.  

 

Another big advantage of the proposed methodology and its implementation is that it 

provides help in finding term based relationships among terms and this would be a big 

advantage to industry in terms of storing information in terms of different clusters 

where natural relationships among terms is stored. New information could then easily 

be compared with previously stored information in terms of clusters and its analysis 

would be easier as it could be put it into different information subspaces. The analysis 

of a large corpus of information available in textual data formats was made easy by 

first putting the whole information into multiple subspaces and efforts in analysing 

would be reduced.  

 

The research proposed in this thesis also concludes with the important fact that the 

selection of the most appropriate data mining techniques in terms of classifying 

textual data also depends upon the information selection criteria which vary from 

simple distance measure to probabilistic methods. So the choice of classifier also 
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depends on the form of data available and its quality which helps the classifier to 

govern the rules for classification.  

 

The main contribution of this research are enumerated as under; 

• Developing of a generic method of discovering useful knowledge in terms of 

single key term phrases specific to some key issues discussed in the textual 

databases. 

• Using the single term phrases sequence, multiple key term phrases are 

generated within each cluster to produce more valuable knowledge sequences 

and then mapping information to some specific set of documents as  good or 

bad information documents.  

• A novel integration of methods for generating multiple key term phrasal 

knowledge sequences are used to reduce the classification error when 

compared to simple single term representation methods. 

• An introduction of novel integration to perform the text classification task 

where the path is followed from unsupervised learning to supervised learning 

for identifying key knowledge areas from textual databases and classifying 

documents. This technique is a hybridization of different methods and 

techniques which ultimately supports the generation of useful classification 

results for textual data. 

• The proposal of novel integration of textual data mining techniques to capture 

key information or knowledge and disseminate it in terms of classification of 

textual data within any industrial setups. 

 

10.2 Future Work   

  10.2.1 Next Generation Knowledge Based Product or Service 
Quality Improvement System 
Structured methods of data analysis which identify and store knowledge in terms of 

useful patterns in the databases are required so that the knowledge can be reused for 

future business activities which are important in many product or service 

improvement contexts. These techniques enable the lessons learnt through different 

stages of product or project management to be made accessible to future team 
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members so that better collaboration can be achieved among different team members 

in distributed manufacturing industrial environments.  

 

The work conducted during this research has been focused on finding the term based 

relationships and exploiting these to form the multiple key term phrasal knowledge 

sequences. These multiple key term phrasal knowledge sequences are used to classify 

the textual data into two different  classes of good or bad information documents. 

Once the knowledge is available in the form of  MKTPKS it can be used either to 

retrieve project related documents defined with some key issues or classifying these 

documents into two different categories. However there is much wider potential for 

the application and development of these techniques in any business intelligence 

context where information has been recorded in semi-structured text based documents 

which can range from Emails, operator notes, customer feedback and reports. Using 

the methodology proposed here, knowledge can be extracted from the original sources 

and stored in the form of a knowledge base that can further provide solutions to 

perform different activities in product or service quality improvement scenarios as 

shown in the figure 10.1. The figure shows that how the activities of storing 

information about some product or service histories or project reports in terms of post 

project reviews or other documents and sequence of activities defined within data 

mining technology work together to solve the issues and further improve the process 

of customer service support and retain the customer to the industry. However 

following points can be considered to improve the proposed methodology which are 

part of the future work:-  

 

• A comparative study of simple term based and multiple key term phrasal 

knowledge or  MKTPKS based representations has been made but further 

analysis is still required in terms of application to different databases (i.e. 

product/ process information, customer reviews and sentiment analysis 

databases) as future work to test the methodology. 

• The current research has focused on simple term based data structuring 

methods whereas the sentence based and n-gram based representation methods 

could be used to improve the proposed methodology as part of future research 

work.  
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• Syntactic and Semantic structures of textual data have not been considered 

during the current research work, but these could also help to improve the 

methodological development of the proposed framework, again, as a part of 

future research work. 

 
 Figure 10.1: Knowledge Based Product or Service Quality Improvement System 
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10.3 Summary of the Chapter and Conclusion 
In this chapter the conclusions of the research work and future improvements of the 
proposed system are suggested which could be used to accommodate other areas of 
information and knowledge seeking communities in an industrial environments.  
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