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Abstract

This thesis is about digital control theory and presents an account of meth-

ods for enabling and analysing intentional non-uniform sampling in discrete

compensators.

Most conventional control algorithms cause numerical problems where data

is collected at sampling rates that are substantially higher than the dynamics of

the equivalent continuous-time operation that is being implemented. This is of

relevant interest in applications of digital control, in which high sample rates

are routinely dictated by the system stability requirements rather than the

signal processing needs. Considerable recent progress in reducing the sample

frequency requirements has been made through the use of non-uniform sam-

pling schemes, so called ‘alias-free’ signal processing. The approach prompts

the simplification of complex systems and consequently enhances the numerical

conditioning of the implementation algorithms that otherwise, would require

very high uniform sample rates. Such means of signal representation and anal-

ysis presents a variety of options and thus is being researched and practiced

in a number of areas in communications. However, the control communities

have not yet investigated the use of intentional non-uniform sampling, and

hence the ethos of this research project is to investigate the effectiveness of

such sampling regimes, in the context of exploiting the benefits.

Digital control systems exhibit bandwidth limitations enforced by their

closed-loop frequency requirements, the calculation delays in the control algo-

rithm and the interfacing conversion times. These limitations pave the way
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for additional phase lags within the control loop that demand very high sam-

ple rates. Since non-uniform sampling is propitious in reducing the sample

frequency requirements of digital processing, it proffers the prospects of being

utilised in achieving a higher control bandwidth without opting for very high

uniform sample rates.

The concept, to the author’s knowledge, has not formally been studied and

very few definite answers exist in control literature regarding the associated

analysis techniques. The key contributions adduced in this thesis include the

development and analysis of the control algorithm designed to accommodate

intentional non-uniform sample frequencies. In addition, the implementation

aspects are presented on an 8-bit microcontroller and an FPGA board. This

work begins by establishing a brief historical perspective on the use of non-

uniform sampling and its role for digital processing. The study is then ap-

plied to the problem of digital control design, and applications are further

discoursed. This is followed by consideration of its implementation aspects on

standard hardware.

Keywords: Digital control, non-uniform sampling, delta transform, real-

time signal processing, Fourier analysis, FPGA.
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Chapter 1

Introduction

A perspective on Digital Control

Digital control is a branch of control theory that makes use of digital computers

or microcontrollers to modify the behaviour of a target system. Application

examples range from electromechanical servo mechanisms to micro surgeries,

where real-time control plays a crucial role in the coordination of the dynam-

ics of these systems. The advantages of using digital approaches increases the

flexibility of control algorithms and the decision making capability of digital

controllers, which are placed in closed loops to meet specific system require-

ments. Additionally, controllers can be used with several different software

variations to provide a profound range of solutions, thus simplifying and re-

ducing the design time.

Chapter overview

This chapter sets the scene by discussing the purpose of this work, some basic

classifications, and abstractions of non-uniform sampling; its recently identi-

fied benefits and how it can be correlated to control theory. The important

issues are called attention to, and a compendium of where these issues are

discussed in this thesis is given.

1



1.1. PROBLEM DEFINITION 2

1.1 Problem definition

It is the purpose of this thesis to provide an account of some principal theories

and analysis methods for enabling intentional non-uniform sampling in digital

control.

Non-uniform sampling has shifted into an era of research where its the-

oretical analysis can be realized as a practical solution. Whilst traditional

engineering fields have always been aimed towards uniform sampling, irreg-

ular sampling is slowly becoming the focal point for research as an ultimate

cheap alternate for countering issues that otherwise cannot be solved when

using uniform sample rates. The fact is that there is no known study that ex-

plores the relevance or benefits of deliberate non-uniform sampling for digital

control applications and therefore the opportunity for research in this area is

unique.

Classical digital control is often implied to be regularly, synchronously, and

equally time spaced (Isermann 1989), and even though non-uniform sampling

has been an area of popular research, it has hardly been noticed by the control

communities. As a consequence, this thesis focuses on two comprehensive mo-

tifs in control theory, which are: the representation of non-uniform sampling

algorithms for sampled-data systems and their pertinence to digital controllers;

with particular interest to the application of studying the impact on the op-

erating control bandwidth of a closed-loop system with various non-uniform

sampling schemes.

In DSP applications, the methodology of non-uniform sampling has enabled

the processing of digital signals at much slower rates without restrictions from

the well-known Nyquist limit. Carefully designed sampling schemes can there-

fore be used to effectively mitigate the effects of aliasing and permit significant
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Figure 1.1: Discrete-time control system

reductions in the average sampling frequency, leading to more efficient proces-

sor utilisation. Summarising the control application potential for non-uniform

sampling, it could be used for the:

• reduction in the bit flow process (Artyukh, Medniks & Vedin 1997)

• use of simpler electronics due to a reduction in overall processing (Bilin-

skis 2007)

• Overall simplification of complex system designs (Sonnaillon & Bonettot

2007)

A typical digital control system arrangement with a uniform rate controller

is depicted in Fig. 1.1. The complete design and analysis of such real-time

control systems can be lacking in many ways, due to the involvement of various

issues of controller design and processor implementation. Modern control en-

gineers pay scant attention to the implementation constraints, conspicuously

because it is assumed that digital controllers are being executed on dedicated

processors that are fast and deterministic enough to ignore the implications

of any timing constraints on control activities that may have an effect on the

implementation. Furthermore, the diffusion of FPGA technology in the DSP

market has allowed significant progress in the execution of very fast signal

processing applications (Goslin 1996). Despite all this, processing resources
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are always limited in practice and variations in timing instances in control

algorithms do occur.

Classical discrete-time implementations only assume uniform sampling the-

ory for execution, which obviously imposes a restriction if a non-uniform sam-

pling rate is to be adopted. Practically, several factors during controller im-

plementation (such as the sampling process, the control algorithm and the

actuation) may not be sequential due to the variability in job executions pro-

duced by sampling and latency jitter (Arzen, Cervin, Eker & Sha 2000). This

inadvertent jitter between sampling intervals tends to deteriorate the control

system performance and, in the worst-case situation, bring the system to insta-

bility1 (Marti, Fuertes & Fohler 2001). There can be two perspectives to this:

sample time variations can degrade the control performance and may even

lead to the instability of the feedback control system. On the other hand, any

efforts to reduce the possibility of sample time variations during the algorithm

execution may over-constrain the control processor and affect the execution of

other important tasks.

Thesis aims

This work investigates the creative use of non-uniform sampling for the field

of digital control; with the foremost questions focusing upon:

Q1 Can intentional non-uniform sampling administer any benefits in digital

control applications?

Q2 With time varying instances, how should the discrete-time transfer

function relationship be examined in real-time? Can the z-transform

be used for this purpose?

1Such limitations are particularly pertinent when there are high complexity and/or high
bandwidth requirements.
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Q3 If the answer to Q2 is true then, how can the frequency response of

such a function be evaluated?

Q4 Can the non-uniform rate controller be realized with a real physical

system?

Chapter 2 fills the need for a concise discussion concerned with Q2 by provid-

ing a brief overview of how non-uniform sample instances are typically dealt

with in control related applications. Chapter 3 is the core chapter of the thesis

since it addresses Q1, Q2 and Q3. It helps in identifying the appropriate anal-

ysis methods and the implementation aspects of non-uniform rate controllers.

Chapter 4 helps to answer Q4 and shows that control signals may correctly be

processed with intentional non-uniform sample rates using standard technolo-

gies.

1.1.1 Non-uniform control systems

Control literature, for the most part, disregards sample non-uniformity in the

controller design of continuous-time linear systems (Marti, Fuertes & Fohler

2001, Marti, Fuertes, Fohler & Ramamritham 2001, Marti 2002). This is prob-

ably ignored due to the lack of convenient analysis techniques of the close loop

systems. In theory, whenever a signal is digitized, there is loss of information

and an overall performance degeneration by the quantisation and sampling

errors incurred when reading continuous data. However, Edwards & Durkin

(1968) presented an analysis and attempted to reduce this degenerative ef-

fect by exercising a non-uniform quantiser at the input. It was demonstrated

that, under small signal conditions, the spectrum of the non-uniform quanti-

sation errors is essentially white and hence the technique readily improved the

steady-state accuracy of the existing system.
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The work presented in this thesis proposes a similar approach to the tradi-

tional concepts of digital control, and extends the idea by endeavouring to use

intentional non-uniform sampling2 in the sampling instances as a tool. This

is largely due to the gaining popularity of non-uniform sampling theory as a

cheap alternative to uniform sampling. Forasmuch as there are many ways in

which non-uniformity can occur, this work hence adopts a much more flexible

design approach and assumes that the correct processing of sampled signals

with non-uniform time intervals is valid only if the time intervals are known

in advance (or before the next sample period). The control system of a non-

uniform rate equivalent controller can then be setup as depicted in Fig. 1.2.

As compared to Fig. 1.1, the only modification is the addition of a separate

non-uniform sampling instances block which stores the various sample periods

that are to be to used. It also enables the interfacing mechanisms to operate

in-sync with the controller operations.

According to Bilinskis (2007), whenever a continuous-time signal is to be

digitized and the best sampling technique has to be determined, then the

aspects to be considered are the:

2—in the context of a uniform, truncated gaussian and other probability distributions.
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• spectrum of the sampled signal

• acceptable sampling rate

• subsequent processing of the digitized signal

However, overlapping of additional frequency components do occur in the case

with uniform sampling. This phenomenon is known as aliasing, which enables

many sinusoids to be drawn through a given sample value set. With non-

uniform sampling, the sampling operation is carried out in such a way that

the sequence of signal samples obtained is as closely related to the original

signal as possible. Over the past couple of decades, studies in non-uniform

sampling (Bilinskis & Mikelsons 1990, Wojtiuk 2000) have propounded that

signals formed by irregular spacings have features strongly differing from typ-

ical ones obtained in the case when signals are sampled periodically. Since

it avoids the overlapping of high frequency sinusoidal signals, it opens up the

possibility of distinguishing all spectral components of the signal, even if their

frequencies substantially exceed the mean sampling rate.

Due to the ongoing importance of producing adequate digital controllers

that can process signals with wider bandwidths (Goodall 2001) for control

systems, this concept lays down the foundation of this research. From a control

engineering point of view, the postulated technique of ‘alias-free’ sampling may

allow significant reductions in the requirements of speed when sampling, which

will help to improve the sensitivity issues of real-time controllers.

Assumptions

Prior works in non-uniform sampling have made some general assumptions

regarding the characterisation of the system structures. For instance, the

sampling periods of the digital sampling device is operating with some criterion
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defined by the user and hence could be deterministic or vice-versa. In the

non-deterministic case, the sample periods {Ti, i=1,2,. . .} are assumed to be

a sequence of random variables with some probabilistic property3 in which the

sample periods are bounded by a maximum/minimum value (Marti 2002, Eng

2007).

Other important assumptions are that the system is linear and time in-

variant (LTI), and it is stable in the sense that all the poles of the closed-loop

Laplace transfer function are in the left half s-plane. This simple criterion suf-

fices to the analysis and design techniques for classical continuous-time sam-

pled data control systems (Middleton & Goodwin 1990). Unfortunately, once

an element of randomness is added in the controller sampling frequency, the

stability problem becomes more complex. However, if it is assumed that the

output remains bounded for all combinations of possible sample time varia-

tions, the system is still stable in the sense above (Dannenberg 1972).

1.2 Research contributions

The scientific contributions of this thesis have been categorised into two groups.

The main contributions are summarised as follows:

1. Brief study on the role of non-uniform sampling in control, with par-

ticular emphasis on the use of deliberate variations in the sampling

regimes: Variations experienced during control implementation often re-

sult in poor system performances, or even instability. The reasons that

bring about variations are highlighted and the techniques to compensate

3The probability distribution describes the range of possible values that a random vari-
able can attain and the probability that the value of the random variable is within any
(measurable) subset of that range, such as a uniform distribution or a truncated gaussian
distribution
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their effects are discussed.

2. Non-uniform rate control design: A flexible controller design approach is

adopted that goes beyond the classic discrete-time control theory timing

assumptions of uniform sampling that are given by constant sampling

period values. Instead of specifying a single value for the sampling pe-

riod, the controller is designed for a set of pre-defined sampling times.

This strategy relies on the idea of adjusting the controller parameters

at run time according to the specific implementation timing behaviour.

The calculations can either be

• performed online; if the processing overheads allow, or

• determined off-line to form look-up tables

3. The study develops the analysis techniques for evaluating non-uniform

rate controllers. It makes use of the Fourier analysis and assesses the

control systems in the time domain. The technique is used to evaluate

the frequency characteristics under uniform and non-uniform sampling

conditions.

The additional contributions are:

1. Implementation structure importance: The modified canonic δ and the

direct z structures are identified to provide a much more robust imple-

mentation and are better suited for non-uniform sampling due to their

transient suppression capabilities. The transient phenomenon is exten-

sively discussed in Chapter 3 §3.3.

2. The control algorithms are implemented on standard hardware to demon-

strate their functionality on existing technologies. These include an 8051

microcontroller and an FPGA starter board.
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1.3 Thesis outline

The thesis is structured as followed:

Chapter 2 discusses a brief overview of the role of signal sampling in general.

Moreover, it also presents some basic but important concepts in both non-

uniform sampling and control systems theory that are related to the context

of this work. It highlights the potential benefits of using non-uniform sampling

regimes and discusses the direction of this thesis.

Chapter 3 further explains the objective of this research. It then identifies

the relevant methods for enabling intentional non-uniform sampling in discrete

controllers. §3.2.3 places an emphasis on the limitations of the developed

control algorithm and the possible solutions are discussed. In addition, §3.2.2

highlights a technique for estimating the frequency response of the non-uniform

rate controller over time and provides examples for validating the procedure.

Chapter 4 is aimed towards the hardware implementation aspects of the

non-uniform rate control algorithm and the essential components for its practi-

cal realisation as real-time controllers. Some of the issues that were mentioned

in the previous chapters are now discussed in more detail. Specific attention

is given to the software structure and C/C++ is used to develop the program

routines for the algorithm. In addition, the application is applied to the 8051

microcontroller family and the Xilinx FPGA development board Spartan-3E.

Chapter 5 addresses the future of non-uniform sampling in control theory in

the context of exploiting the benefits from such variations and finally, draws

the conclusions on this thesis. It highlights the main contributions in the

control literature and discusses extensions and open problems for potential

future work.



Chapter 2

Background and Literature

Review

Chapter overview

It comes as no surprise that the theory of discrete-time signals has had sig-

nificant developments in the last century, from which has emanated numer-

ous techniques and mathematical tools for digital signal processing purposes.

The idea for analysing and implementing non-uniform sampling schemes in

a feedback control systems is therefore another step forward in this vibrant

engineering research field, which requires a sound knowledge and understand-

ing in between two ubiquitous disciplines: control theory and signal analysis.

To date, the approach of benefiting from non-uniform sampling patterns has

chiefly been a part of communication applications only.

This chapter presents a brief overview of some basic but fundamental con-

cepts in sampling theory and for non-uniform sampling in particular. Avoiding

too many intricate technicalities of the technique, the chapter places an empha-

sis on the recent developments and discusses the possible role of non-uniform

sampling in control theory. In approaching the problem in this fashion, the

motivation is to introduce the rudimentary notions for understanding sampled-

data systems and non-uniform sampling, at the same time as bridging the gap

11
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between the two. The objective of this chapter can therefore be summarised

as:

• To review the relevant background material on signal processing and

digital control.

• To identify the potential benefits of non-uniform sampling schemes.

• To present an argument on dealing with intentional non-uniform sam-

pling for control related applications.

2.1 The sampling process

What is sampling?

Sampling is the process of converting an analogue signal (for example, a func-

tion of continuous time or space) into a numeric sequence (a function of discrete

time or space). Sampling theory has been elaborately expounded in literature

(Nise 2007, Marvasti 2001, Feuer & Goodwin 1996) and is well understood.

Since sampling is a linear operation, linear system theories can be applied to

its analysis. A continuous analogue signal x(t) can be presented where all the

variables are known at all times. To model these variables in the digital do-

main xs(t), the signal is multiplied by a infinite sequence of pulses p(t). Such

a sampling action will fix and store the characteristics of the analogue signal

by the digital system for analysis. The continuous time sampled data can be

represented by:

xs(t) = p(t)x(t) (2.1.1)

Fig. 2.1 illustrates the sampling process where T is the sampling period. It

may be noted that as the pulse duration, γ, approaches zero, the impulse
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Figure 2.1: Sampling process pulse train (0 ≤ γ ≤ T )

function in the sampling process will approach to a unit strength or impulse

sampling. To enable an effective reconstruction from a sampling process, it

is essential that the frequency content of the pulse signal xs(t) contains all

the frequency information that existed previously in x(t). These samples of

the pulse signal are available at a succession of uniform time intervals and are

acquired using data acquisition devices.

It is well known that, with a uniform sample rate, a continuous set of data

must be sampled at a minimum of twice the signal bandwidth in order to avoid

adding replicas or false images of the signal in its spectral content. This implies

fs > 2f0 where fs is the sampling frequency and f0 is the signal bandwidth

of interest. The Sampling theorem is a fundamental result in the field of

information theory, in particular the telecommunications fields (Nyquist 1928).

The theorem stipulates: if a function x(t) contains no frequencies higher than
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B1 cps, it is completely determined by giving its ordinates at a series of points

spaced 1/(2B) seconds apart.

In essence the theorem shows that an analogue signal that has been sampled

can be perfectly reconstructed from the samples if the sampling rate exceeds

2B samples per second, where B is the highest frequency in the original sig-

nal. The theorem also leads to a formula for reconstruction of the original

signal (Shannon 1949). The constructive proof of the theorem leads to an un-

derstanding of the aliasing phenomenon that can occur whenever a sampling

system does not satisfy the conditions of the theorem.

Generalised sampling model

The mathematical description of a uniformly sampled signal xs(t) can be gen-

erated on a pulse train p(t) (Bilinskis 2007):

p(t) =

∞
∑

n=−∞

δ(t− kT ) (2.1.2)

The sampling instants in Eq. 2.1.2 are separated on the time axis by sampling

interval T and can only be applied to periodic sampling. To enable the analysis

of non-uniform samples, this equation is modified as:

pNUS(t) =
∞

∑

n=−∞

δ(t− tn) (2.1.3)

where δ(t − tn) is the delta function. The sampled signal can be represented

similarly as in Eq. 2.1.1. Graphically, this process can be seen in Fig. 2.2.

If the time instances at which these samples are taken are equidistant, for

example every T seconds, x[n] = x(nT ), then the signal is uniformly sampled

(Fig. 2.2a). If the time instances are not equidistant, that is the samples

1A baseband bandwidth (B) is equal to the highest frequency of a signal or system, or
an upper bound on such frequencies.
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Figure 2.2: The signal sampling process
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are taken at arbitrary points tk ∈ R, x[n] = x(tn) then this is known as non-

uniform or irregular sampling (Fig. 2.2b).

Digital processing requirements

Sampling is an integral part for processing analogue signals whose exact de-

scription can be represented by a multiplication of the signal with a sequence

of Dirac delta pulses to form a digital equivalent. The process is carried by

a sample-and-hold device which processes according to the current value until

the next sample arrives. The sample-and-hold device usually has a fixed num-

ber of bits, where each sample value is compared to a predefined binary num-

ber that corresponds to the level closest to the input value. This quantisation

process rounds the input value to the nearest level and therefore, the digital

representation is only an approximation to the original input signal. How-

ever, amplitude quantisation issues are beyond the scope of this thesis, which

concentrates mainly on the randomization in the sampling time instances.

As adduced earlier the most common problem in digital processing appli-

cations is aliasing, which is a result of the violation of the sampling theorem.

Therefore in signal processing applications, the selection criterion for an ap-

propriate sample rate is limited by the Sampling theorem. Historically, the

sampling rate selection is a compromise between the simplicity of high per-

formance prediction from high rates and the practical processing capability.

Therefore, during the preliminary design of signaling applications, the issues

of sampling rates and other real-time requirements must be addressed (Mitra

2001).
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2.1.1 Sampling of control systems

As outlined in §2.1, the foundation for selecting the sampling frequency in sig-

nal processing is the Sampling theorem. The theorem specifies that sampling

rate should be at least twice the operating bandwidth of the system. Houpis &

Lamont (1985) argue that the theorem might further suggest the assumption

of two properties:

• the sampled signal is to be reconstructed

• infinite accuracy of computations

However, when designing digital control systems, these two conditions will

eventually become invalid due to issues such as coefficient sensitivity and the

limited processing capability of the controller. In a real-time control system,

there will often be induced time delays due to the discretization process and

computational processes, even though the signal is not yet being reconstructed.

Many authors (Nise 2007, Li & Fang 2006) strongly recommend that the time

delays should be assumed to be less than the sampling time so that the the-

oretical development can proceed but, this assumption might not always be

true in a given implementation due to the hardware constraints and extensive

multiprocessing in the system. Therefore, the selection of the sampling fre-

quency will depend on the nature of the system characteristics, and the overall

system requirements.

Furthermore, the finite word length of the processor will truncate the orig-

inal values of the controller coefficients, ADC and DAC conversions, and com-

puter arithmetic operations that will affect the accuracy performance (Feuer

& Goodwin 1996). Other accuracy considerations include the compensator

structure, disturbance signals, noise, uncontrollable system modes at high fre-

quencies and the inherent time delays that introduce phase lags in a closed-loop
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(Forsythe & Goodall 1991). In essence, the primary influence on the sampling

frequency is the bandwidth characteristics of various signals such as measure-

ment noise, disturbance signals and time delays (Houpis & Lamont 1985). It

is worthy to make a note that the single most important impact of the sample

rate in a control system is the delay associated with the reconstruction device.

A sampled signal y[tn] can be converted back into a continuous signal y(t)

by the Zero-Order-Hold (ZOH). It is thus important to assess its effects for

a given system. Fig. 2.3 depicts the frequency response characteristics of a

ZOH. The magnitude response of the device has a characteristic similar to a

low-pass filter with a drop in the gain at high frequencies, and the phase of

the device is also of concern since it contributes to a lag of π
2
, which degrades

the degree of system stability at high frequencies. The phase delay introduced

is approximately (Wu 2005):

φs ≃ 360f0
1

2fs

(2.1.4)

where φs is the phase delay introduced by sampling, fs is the sampling fre-

quency and f0 is the signal bandwidth.

In general, selecting a sample rate solely based on the Sampling theorem is

not enough as it will introduce a phase difference which is not satisfactory for

real-time control2. A common rule of thumb when selecting the sample rate is

to start with the highest frequency of interest and use the Sampling theorem

to acquire a rough idea of the minimum bound of the sampling frequency

required. Then this bound will be increased by a factor of 10, 20 or even

up to 100 times the control bandwidth according to the desired performance

criterion.

2—i.e., the phase lag will seriously limit the ability to provide a high performance
controller.
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However, the question to be asked during digital controller executions

should be: What is the optimum sample frequency for the required perfor-

mance? Control literature discusses various methods of accomplishing the

sampling rate selection. For example, for a system with resonant modes which

are higher than the closed-loop bandwidth, the sample rate is sometimes se-

lected to be a multiple of the highest important resonant mode. Johnson

(1974) has shown that the appropriate value of this multiple is from 4 to 5.

Others sources (Scaechter 1982) used a sample rate of 12 to 15 times the high-

est important resonant mode frequency. Conversely, Gran & Berman (1974)

have suggested that the proper sample rate should be selected based solely on

the disturbance effects, independent of the resonant frequency.

Goodall (2001) points out that achieving a very high sampling frequency is

not the problem using modern day chips, but rather it is necessary to establish

a proper understanding of the recursive processes and design of the compu-

tational aspects. The author further discusses the impact of the increasing

phase lag in a closed loop, which will degrade the stability margins. Since the

computation may in fact take up a whole sample period, the implications on

the selection of the sampling frequency become more stringent. For example,

Wu (2005) argues that to achieve a phase delay no more than 5 ◦, the corre-

sponding sampling frequency should be increased by 72 times the operating

bandwidth of the control system. This criterion should be enough to suffice

the control stability requirements and this is why, particular emphasis has to

be placed on the numerical requirements needed from the controller.

Furthermore, it should be pointed out the other techniques that are used

to compensate for lags/delays, such as forward extrapolation, can aid in re-

ducing the sampling frequency requirements. However, most practical appli-

cations may still have unmodelled dynamics at high frequencies e.g. structural
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resonance, that will cause problems as the prediction process approaches the

sampling frequency. Moreover, Goodall, Jones & Cumplido-Parra (1998) out-

lined the difficulties of the implementation requirements of digital filters used

in control systems and proposed a highly efficient processor core for a wide

variety of control applications. Discussing the various types of controller struc-

tures and numerical requirements, the authors emphasised the importance of

the implementation operators.

The selection of the sampling frequency of a digital control system is usually

a compromise among many aspects of the design. The basic motivation for

lowering the sample rate is cost (Clarke & Maslen 2007). A slow sample

rate directly reduces the hardware costs and makes its possible for a slower

computer to achieve a given control function; or provides greater capability for

a given computer. The potential disadvantages of slow sampling, relative to

controller bandwidth, may lead to open loops between samples3 or a control

input with large steps4. On the other hand, a very fast sample time can assure

stability and performance of a system, based on certain selection criterion that

can provide the overall frequency response after the reconstruction process.

Strictly speaking, real signals will not have any bandwidth limits, i.e. there

always exist small energy components outside the bandwidth (Middleton &

Goodwin 1990), but when implementing a digital control system, it is always

required to sample higher than the theoretical minimum (Feuer & Goodwin

1996).

3The sampled output will be a poor representation of the actual continuous-time re-
sponse; inter-sample ripple (Goodwin & DeSouza 1984).

4These can feed significant energies to high frequency mechanical resonances.
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Clock-driven and event-driven approaches

Two different approaches could be utilised when implementing real-time con-

trol systems: clock-based and event-based. The clock-driven approach is a

time-based strategy where the control algorithms are executed at predefined

times. A periodical sample rate is an example of a time-based approach since

it is independent of the signal being sampled. On the contrary, an event-

based approach is when the sampling scheme is implemented by specifying

adequate conditions when an event or activity occurs. Since most control al-

gorithms usually update their controller outputs at fixed sampling frequencies

or are time-driven, event-based approaches offer a method for producing the

output at a non-uniform rate, where the decisions are made only when signif-

icant information has been changed (McCann, Gunda & Damugatla 2004)5.

It may provide a faster response and hence is much more suitable where the

input signal changes dynamically (Astrom & Bernhardsson 2002). Therefore,

event-based strategies assist in improving control delays, however, they cater

time-varying systems which become difficult to analyse (Nilsson 1998).

More recently, two approaches were compared by Cuenca, Garcia, Arzen

& Albertos (2009), for dealing with variable network delays and scarce data

availability when the control system is integrated in a network environment.

The first approach used a predictor-observer in order to recover lost informa-

tion and eliminate delays. In addition, an event-based control system was used

which sampled signals only when certain events occurred. After several simula-

tion results, the main conclusion was that the event-based sampling approach

achieves a shorter settling time than the other. Event-based measurement

5Examples of event-driven strategies include adaptive sampling, integral sampling, level-
crossing/send-on-delta sampling, etc., which are all signal dependent techniques (Miskowicz
2007).
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Figure 2.4: The event-based approach

updating methods have also been introduced for discrete Kalman filters to

estimate the state feedback (Le & McCann 2007). The method significantly

reduced the number of network communications events while contributing to-

wards improved accuracy. Fig. 2.4 illustrates an event based approach scheme

in operation. Note that events are not necessarily equally spaced.

2.2 Non-uniform sampling

The basic signal analysis techniques related to digital control have been well

defined for several decades and a great deal of research has continued in the

areas of implementation accuracy, quantisation effects and many other topics.

These studies almost unanimously assume periodic sampling, in which the

difference in sample times (tk − tk−1) remains constant, or the mathematical
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understandings of sampling periods is uniform.

The minimum sampling frequency is imposed by the Sampling theorem,

which states that it is possible to recover the original signal if, and only if,

its contents are less then half the sampling rate — the Nyquist limit. If this

condition is not met, the effect of aliasing or overlapping frequencies becomes

discernible. This requirement imposes technological limits to signal process-

ing at higher frequencies and it is often advocated to sample more than twice

the maximum bounds, for instance, in applications such as radio communi-

cations and cellular phones (Wojtiuk 2000). However, instead of pushing the

hardware to its limits, there are other techniques to reduce or even elimi-

nate the adverse effects of aliasing when sampling below the Nyquist rate.

Non-uniform sampling addresses the problem of acquiring a set of irregularly

spaced samples from a continuous signal x(t) to form an irregular sample set.

It has successfully been used to identify the underlying spectrum of a signal,

even at substantially lower average sample rates as compared to their uniform

sampling counterpart requirements. Though non-uniformity of sampling can

exist in various forms, it is often characterised according to some probability

distribution:

Truncated gaussian or normal distribution To achieve normally (Gaus-

sian) distributed sample times, the sample time fluctuation is added to the

sampling system that can be given by:

tk = kT + τk, T > 0, k = 0, 1, 2, . . . , (2.2.1)

where {τk} is a set of independent and identically distributed random variables

with zero mean. Bilinskis (2007), Marvasti (2001), Martin (1998) and many

others claim that this type of sampling regime is present in any practical

sampling system for reasons such as the phase noise of the sampling clock or
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the finite aperture uncertainty within the sampling device and can be used in

the analysis of various applications. In most cases the effects of the fluctuations

are ignored and hence can contribute to performance degradation of the overall

system. Wojtiuk (2000) presented several experiments on this distribution

and concluded that increasing the randomness does not appear to have any

benefits. In fact, since the Probability Density Function (PDF) is oscillatory

in nature, a significant number of samples in the sampling sequence violate

the condition tn > tn−1.

Uniform distribution Here the probability that a uniformly distributed

random variable falls within any interval of fixed length is independent of

the location of the interval itself. Sampling according to sawtooth or triangle

waves at predetermined intervals can produce samples times with a uniform

distribution.

Another uniform distribution is based on the sampling model proposed

by Shapiro & Silverman (1960) called the additive pseudo-random sampling

scheme, that can be constructed by adding the sampling fluctuation to the

previous sampling time:

tk = tk−1 + τk, k = 0, 1, 2, . . . , (2.2.2)

where τk is a set of independent and identically distributed random variables

having a mean µ, and variance σ. The PDF of the sampling instances can be

presented as a convolution of the random variables:

pk(t) = pk−1(t) ⋆ pτ (t) (2.2.3)

where the ⋆ denotes the convolution operation. The mean sampling rate can

be given by p(t) = 1
µ
. Bilinskis & Mikelsons (1992) presented the mathematical

description that the sampling sequence eventually approaches a mean sample
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rate due to the build up of the variance in the PDF, and that stationarity is

achieved more rapidly with a higher value of initial variance. However, too

much variance might result in statistical errors and therefore an intermediate

value must be chosen that can provide reasonable results.

Other distributions Other sampling schemes include sampling regimes pro-

duced by using a sine wave p(t) = sin(x). The events can be viewed as a

vector that is rotating at an angle and moving at a speed varied according to

the frequency of the sine wave. Likewise, a digital wave can also be used to

produce a sampling regime that comprises two consecutive sample rates.

2.2.1 Developments and applications

Non-uniform sampling comes naturally in many applications, for instance,

imperfect sensors, mismatched clocks or event-driven systems. Examples of

such can be found in the fields of communications, astronomy, medicine, etc.

Yet, most of the literature to a large extent focuses on algorithms and analysis

of uniformly sampled data. The past few decades have witnessed an important

number of publications that present the diverse possibilities of non-uniform

sampling patterns in engineering applications.

Much work has been devoted for calculating the frequency spectrum and

towards studying its statistical properties (Beutler & Leneman 1966, Beutler

1970, Eng 2007, Martin 1998), whose contributions are not only of theoreti-

cal importance but very practical as well. Other pioneering works have been

recorded by Marvasti (2001) who presents an exhaustive compendium of tech-

niques that make use of non-uniform sampling, in particular the reconstruction

aspects. However, it is the work of Bilinskis & Mikelsons (1992) that has trig-

gered the idea to use intentional sample time randomization as the ultimate
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economical tool for alias suppression. The authors’ efforts have concentrated

on enabling the possibility of increasing the frequency range of engineering

applications. Fig. 2.5 effectively demonstrates the application of the concept,

which is discussed in more detail in Appendix B. Since there is no Nyquist

rate associated with the spectral estimation: an alias-free sampling scheme in

principle permits correct identification of the underlying spectrum regardless

of the sample rate (Martin 1998).

The idea of alias-free sampling was first proposed by Shapiro & Silver-

man (1960). Soon, other investigators (such as Beutler (1970), Masry (1978))

became aware of the concept and extended the idea. However, most of the

research was conducted by mathematicians, and hence the study on random

sampling was not directly applicable for practical engineering purposes. More-

over, modern scientists often ended up contributing their feats to the theory of

sampling and ignoring the strong limitations imposed by the technology and

existing analysis techniques (Martin 1998). Yet, the concept is very attractive

simply because of the advantages it can offer to the signal processing needs.

A copious review of the literature on sampling theory and methods for

analysing signals that have been non-uniformly sampled can be found in Mar-

tin (1998). The work has contributed towards various aspects of prediction,

filtering, spectrum analysis and the use of non-linear prediction for analysing

signals of nonlinear dynamical origin. The author further indicates that classi-

cal signal processing techniques such as system identification, convolution and

filtering are not the preserves of uniform sampling and can readily be extended

in the case with irregular sampling.

Bilinskis & Mikelsons (1992) published several key papers on non-uniform

sampling, which has since been investigated for numerous applications. Their

efforts has influenced other notable research areas that can demonstrate the
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(a) The magnitude response
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(b) The phase response

Figure 2.5: (a) The frequency response to a 80Hz sinusoidal signal with a uni-
form sampling frequency at 100Hz. The aliases are clearly visible and have
corrupted the signal information. (b) The frequency response of a 80Hz sinu-
soidal signal with a non-uniform sampling pattern with an average sampling
frequency at 100Hz. The aliases are suppressed and the true signal content is
apparent.
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applicability of alias-free sampling. This includes the work done by Sonnail-

lon, Urteaga & Bonettot (2008) who proposed the use of random sampling to

implement a high frequency lock-in amplifier. The analysis showed that the

maximum operating frequency can be several times higher than the Nyquist

frequency, and that the maximum frequency is only limited by the minimum

time step of the acquisition device. Moreover, Wojtiuk (2000) investigated the

application of random sampling schemes to design a radio transceiver. The au-

thor analysed the power spectrum with different types of sample distributions

and studied the degree of alias suppression achieved. In addition, the signal re-

constructions aspects was highlighted and suggestions for a new receiver front

end architecture were made.

Principal applications

It should be noted that non-uniform measurement and computing methods are

not yet regarded as the ultimate achievement in signal processing. However,

the potential contributions have been demonstrated repeatedly by results of

successful engineering attempts to use this approach for development of high

performance instruments; such as in oscilloscopes (Artyukh, Medniks & Vedin

1997) and ADCs (Papenfuss, Artyukh, Boole & Timmermann 2003).

Various systems have been developed that are capable of processing sig-

nals in a frequency range many times exceeding the mean sampling rate. The

most popular one is the computer based system of Virtual Instruments called

the DASP-Lab Systems, which is a versatile analyser of wideband RF signals

(Artyukh, Bilinskis, Greitans & Vedin 1997, Bilinskis 2007). It serves as a

demonstrator that can undertake radio frequency signal analysis in the time

and frequency domains, with an operating bandwidth ranging up to 1.2GHz
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at a mean non-uniform sample rate of 80MS/s6. Besides anti-aliasing mea-

sures, there is another system aspect improvement that can be resolved using

the technique. This includes massive data acquisition from distributed signal

sources, making it technically and economically feasible to gather cost-effective

data (Artyukh, Bilinskis, Sudars & Vedin 2008). Since the operational envi-

ronment of the data acquisition system often plays an important role, the

sample values are taken at random unpredictable time instants. The obtained

sequence of the signal sampling values under these conditions are unavoidably

non-uniform and have to be treated as it occurs unintentionally as a side ef-

fect. Even so, instruments can exploit this and enable the correct processing

to resolve the uncertainty.

The main benefit of non-uniform sampling designs for spectral analysis is

where direct digital processing of a wide band is desirable. That is why the use

of such strategies is generally justified for high frequency applications; i.e to

reduce the speed requirements of converters and subsequently, the speed of cal-

culations in the processor. The main disadvantage acknowledged in literature

is the presence of a ‘noise’ floor in the output spectrum7.

2.3 Control systems design

A control system is an interconnection of components or set of devices to

manage, command, direct or regulate the behaviour of other devices or systems

(Ragazzini & Franklin 1958). Classical control analysis makes use of transfer

functions8, which are mathematical representation of the relation between the

input and output of a linear time-invariant system. In the s-domain, transfer

6—MS/s — Million samples per second.
7This is discussed with detail in Appendix B.
8—also known as the network function.
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functions commonly take the form:

H(s) =
n0 + n1s + ... + nis

i

1 + m1s + ... + misi
(2.3.1)

where ni are the numerator coefficients, mi are the denominator coefficients

and i is the order of the function.

Control systems can be considered in two cases: open-loop control where

the feedback of the process is not observed to determine if its output has

achieved the desired goal. A typical cause-effect relationship in an open-loop

(also known as feed-forward loop)9.

Conversely, closed-loop control monitors the output process and contin-

uously adjusts the control input as necessary to keep the control error to

a minimum. Feedback on how the system is actually performing can allow a

controller to dynamically compensate for disturbances to the system. An ideal

feedback control system would cancel out all errors, effectively mitigating the

effects of any forces that may or may not arise during operation and producing

a response in the system that perfectly matches the reference input.

2.3.1 Digital control

Continuous-time control is implemented using analogue electronics. However,

if the analogues are replaced by a digital computer within the loop, it becomes

a computer-controller system. The controllers may therefore be designed in

the discrete-time domain10. Since a digital computer is a discrete system, the

Laplace transform is superseded with the z-transform. Also since a digital

9Sometimes closed-loop and open-loop control can also be used simultaneously. In such
systems, the open-loop control is termed feed-forward and serves to further improve reference
tracking performance.

10A discrete control system is described schematically in Fig. 1.1 on page 3.
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computer has finite precision11, extra care is needed to ensure the error in co-

efficients, ADC conversion, DAC conversion, etc. are not producing undesired

or unplanned effects. Unlike analogue electronics, digital computers cannot

integrate. In order to solve the differential equation using a computer, the

equation must be approximated by using mapping rules that can reduce the

maths to algebraic expressions. These approximations are often referred to

as numerical integration rules. In particular, a simple technique to solve the

differential equation using a computer is Euler’s method. If follows from the

definition of a derivative that:

ẋ = lim
x→∞

∂x

∂t
(2.3.2)

where ∂x is the change in x over a time interval ∂t. Even if ∂t is not equal to

zero, the following relationship will be approximately true, and:

ẋ ∼= x(k + 1)− x(k)

T
(2.3.3)

where

T = tk+1 − tk (sample interval)

tk = kT (time instant)

k is an integer

x(k) is the value of x at time tk

x(k + 1) is the value of x at time tk+1

This approximation can be substituted in place of all derivatives that ap-

pear in the controller differential equations to produce difference equations

that can be solved by the computer. Obviously, the faster the sampling, the

better the approximation, although a price that is paid in terms of higher com-

putation requirements. Apart from conforming to the Sampling theorem, the

11—quantisation effects.
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sampling frequency for discrete-time control systems is often chosen according

to one of various rules-of-thumb mentioned in §2.1.1.

2.3.2 Implementation operators

The z -transform The transfer function of a linear, time-invariant and

discrete system can be obtained by the method of z-transform analysis. The

z-transform is widely used in digital control and has the same role in discrete

systems that the Laplace transform has in the analysis of continuous systems.

The transfer function for a discrete controller can be obtained by using estab-

lished s− z mapping rules12. A popular rule is the bilinear transform13 which

provides an accurate representation and ensures stability:

s =
T

2

z + 1

z − 1
(2.3.4)

The Bilinear transform is a first-order approximation that substitutes into the

continuous-time transfer function H(s), as s← 2
T

z−1
z+1

, i.e. H(s) ≈ H( 2
T

z−1
z+1

) =

H(z). It is a highly preferable technique in digital control since it preserves

stability and maps every point of the continuous-time filter frequency response,

H(jω), to the corresponding points in the digital domain to estimate the

discrete-time filter frequency response, H(ejωT ). However, since this is only

an approximation, it is likely that the corresponding digital transfer function,

H(z), will give similar gain and phase margins in its frequency response only

at low frequencies. The differences become quite evident at higher frequencies

or close to the Nyquist limit.

The generalised discrete equivalent transfer function in the z-domain for

12The resulting discrete transfer function will be similar in form to that of the s-plane
transfer function of Eq. 2.3.1 on page 32.

13See Schneider, Kaneshige & Groutage (1991) for more mapping techniques.
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Eq. 2.3.1 is then defined as:

H(z) =
a0 + a1z

−1 + ... + aiz
−i

1− b1z−1 − ...− biz−i
(2.3.5)

where ai are the numerator coefficients, bi are the denominator coefficients and

i is the order of the function.

In order to implement the discrete controller using the z-operator, an im-

plementation structure will have to be determined. These structures reflect

the ways in which the discrete transfer functions can be interpreted both the-

oretically and diagrammatically. The most commonly used z-operator imple-

mentation methods are the direct and canonical form’s, shown in Fig. 2.6 for

a 2nd order filter. It is widely recognised that the canonical form has certain

benefits over the direct form since there are fewer stored variables and shift

operations and hence is the most popular choice for implementation (Forsythe

& Goodall 1991).

However, considerable progress has been made towards ameliorating prob-

lems of the z-operator through the use of a δ-transform, that enhances the

numerical conditioning of control algorithms at high sample rates. Middle-

ton & Goodwin (1990) argue that that this change in the foundations of the

system representation and analysis has the potential of superseding the tra-

ditional analysis methods based on the conventional shift operator. Although

the choice of the z-operator is quiet natural for control engineers, opting for

the opting for the δ-operator can provide:

• better closed-loop stability margins

• low coefficient sensitivity

• significant reduction in the wordlengths for the coefficients
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(a) Direct form

(b) Canonical form

Figure 2.6: Structures of a 2nd order digital z-filter.
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The δ-transform The difference operator can also be used defined by:

δ =
dx

dt
=

x(k)− x(k − 1)

T
(2.3.6)

where T is a small time difference. The difference application becomes more

precise as T approaches 0. Middleton & Goodwin (1990) presented a historical

perspective on the use of this operator along with the general system calculus

to unify the continuous-time and discrete-time system theories. The δ operator

is defined as:

δ =
z − 1

T
(2.3.7)

As compared to the z-filter, it seems that the only alteration in the δ-filter

implementation equations is that the original ‘shift’ operation have to be re-

placed by additions. The discrete transfer function in δ can be written in

identical form to that of the z, although the coefficient values will naturally

be different:

H(δ) =
c0 + c1δ

−1 + · · ·+ ciδ
−i

1 + r1δ−1 + · · ·+ riδ−i
(2.3.8)

Forsythe & Goodall (1991) have offered another definition for the δ-operator:

δ = z − 1 (2.3.9)

This definition has the important benefit that the feedback coefficients have

now been moved to the forward path of the digital filter, with suitable adjust-

ments to the coefficient values. In addition, this modification leads to an extra

benefit that some of the numerator coefficients may now be approximated to

0 or 1 in certain situations, resulting in a reduction in the number of multipli-

cations needed. The discrete-time transfer function for the modified canonic

δ-filter presented by Forsythe & Goodall (1991) can be written as:

H(δ) =
p0 + d1p1δ

−1 + · · ·+ d1 . . . dipnδ
−i

1 + d1δ−1 + · · ·+ d1 . . . diδ−i
, (2.3.10)
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(a) Canonic δ-filter

(b) Modified canonic δ-filter

Figure 2.7: Structures of a 2nd order digital δ-filter
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where pn is the last feed-forward coefficient.

The problem with the z-operator is that, high sample rates can result in

very long wordlengths when representing the filter coefficient values. The δ-

operator however, uses the differences between successive intervals and there-

fore provides a lower coefficient sensitivity in its representations. Such means of

signal analysis and function implementations have shown considerable promise

and therefore is expected to perform better under non-uniform sampling regimes.

Fig. 2.7 shows the diagrammatic representation of the two δ-filter structures

for a 2nd order digital filter. Note that the feedforward coefficients in Fig. 2.7b

have been renamed p, q and r for simplicity of the 2nd order filter as compared

to its generalised definition in Eq. 2.3.10.

2.4 Non-uniform sampling in control theory

A limited number of control applications have been considered with random

sampling. However, most industrial control applications are rather forced to

use different sampling schemes largely due to the nature of the systems being

used and the way information is handled. Therefore, processing irregular sam-

pling correctly requires a synergy between well-designed control algorithms

and carefully implemented electronic systems.

For instance, the control signal may be updated at a fixed rate, while

the output feedback signal might be measured by different sensors, each one

possibly having a different sampling rate, noise characteristics and reliability.

In such cases, the control updating rate can be faster than the measurement

output rate, inducing discontinuities14 (Chaumette, Mansard & Remazeilles

2009). The situation also raises in the use of multi-rate control schemes, where

14In some cases the output might not even be available at every sampling time.



2.4. NON-UNIFORM SAMPLING IN CONTROL THEORY 39

the selection of the sampling rate is based on its suitability to control each

controlled variable. This of course, imposes the use of discrete-time models

with different sampling periods, even for the same process (Balbastre, Ripoll

& Crespo 2000).

Furthermore, situations might appear in networked control systems whose

sensors, controllers and actuators are connected through a communications

link. The insertion of this communications element introduces timing varia-

tions in the control loop, and the application of dynamic bandwidth alloca-

tion/scheduling techniques may vary the sampling rates for each control loop

(Marti, Frigola & Velasco 2005). Wittenmark, Nilsson & Torngren (1995)

focused upon the timing issues from a sampled-data point of view. They

acknowledged that, while inaccuracies, disturbances, etc. have been exten-

sively treated at the process side, very little work has treated deficiencies in

the real-time control system. In addition, Colandairaj, Irwin & Scanlon (2007)

suggested a technique in which the sample rate is adapted to network and con-

trol parameters. By increasing the sample rate during periods of high traffic,

the control and network performance were maintained simultaneously.

Interests in the development of analysis and design of non-uniform sam-

pling is also found in intelligent sensing technology. It essentially uses event-

based systems to detect specified events of interest in a sensor field. Miskowicz

(2007) discussed an event-driven approach where the input is sampled accord-

ing to some integral criterion. The work presented an analytical method for

estimating the communication bandwidth and the sampling effectiveness for

event-based integral sampling.

More recently, Albertos & Crespo (1999) reviewed and proposed improve-

ments in control design techniques under non-uniform sampling schemes mainly
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concentrating on scheduling and multitasking timing constraints. They exam-

ined industrial perspectives for real-time control with non-uniform sampling

and discussed the interaction between control algorithms and their implemen-

tations. Their conclusion of the analysis was that due to the complexity

of modern control systems, sample update irregularities become inevitable.

Therefore, controllers should provide certain timing constraint guarantees to

implement task scheduling, or the issues could be solved by the use of addi-

tional specific hardware (such as multiprocessors, parallel processing, or digital

signal processor units).

Other basic issues that result in non-ideal implementation of digital control

algorithms are due to:

• time delays (Marti, Fuertes, Fohler & Ramamritham 2001)

• lost of data samples15 (Sanchis, Sala & Albertos 1997, Wittenmark, Nils-

son & Torngren 1995)

• hardware constraints from the data acquisition mechanisms (Clarke &

Maslen 2007)

• various software interactions during event-driven procedures16(Nilsson

1998)

To deal with such issues in real-time control, the solutions usually consider

the following alternatives:

• The sample rate is often increased according to some user defined crite-

rion17.

15Such as lost data packets due to errors in the communications medium.
16—also known as scheduling issues.
17This is discussed with detail in §2.1.1.
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• In the case with multi-rate control systems, it is assumed that, although

the sampling rate for all the variables is not the same, the whole system

is considered to be periodic to simplify the analysis (Voulgaris & Bamieh

1993).

• Control algorithms can be modified when dealing with random sampling.

Linear extrapolation techniques might be used to predict the output at

the next sampling instant and compensate for lost information (Bibian

& Jin 2000).

2.4.1 The impact of sample time variations

From the above brief, it is evident that the ideology of non-uniformity is by no

means new to control theory. Even so, most of the work done is moderately tar-

geted towards compensating the adverse effects that unintended non-uniform

sampling might impose on the control system. Concepts of adding intentional

variations in the sampling frequency are primarily lacking and hence various

methods of employing additional controllers and look-up tables are demon-

strated to eliminate the effects of sample variations.

It is possible to adapt to a changing sampling frequency by modifying the

digital controller coefficients. This must me done in correspondence to the

desired filter characteristics that are to be achieved and essentially requires

the discrete operation to preserve the impulse response represented by the

continuous filter18 (Akira 2006).

Recently, several works combining control and scheduling co-design ap-

proaches have focused on the jitter problem (Marti 2002, Arzen et al. 2000).

Here the main goal, again, has been to demonstrate the degradation effects on

18This concept is covered with detail in Chapter 3.
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controlled system performance due to scheduling jitters in control task execu-

tions and how to minimise these effects by computing and switching controllers

accordingly. In addition, specific tools have been presented for simulation and

performance analysis of real-time control systems (Cervin, Henriksson, Lin-

coln & Arzen 2002). Obviously this adds more constraints onto the digital

controllers, and therefore would demand more high speed processors. Sur-

prisingly, none of the above work considered the possibility of intentionally

randomizing the sampling rate of a controller.

The added randomness might possibly be utilised for some particular pur-

pose, principally as a result of enabling a lower sampling frequency without

compromising the operating bandwidth of the digital compensator, with re-

ductions in the overall processing. Furthermore, it would be valuable if the

control design determines and specifies a range of allowable sampling intervals,

where larger periods give deteriorated but still acceptable control performance.

This would be very useful and open up a new degree of freedom for design of

real-time systems. Some work with non-uniform sampling was conducted by

Jugo & Arredondo (2007), to design an estimation algorithm for an adaptive

vibration controller. The controller updated its parameters for the compensa-

tion signals on non-uniform time instances and the resulting signals effectively

counteracted the effects of any perturbations.

Either way, as far as the author can tell, there has been no research re-

ported that investigates the opportunities of using intentional non-uniform

sample rates for feedback control systems. More recently, Bilinskis (2007)

coined together the term ‘alias-free signal processing’ which demonstrates the

reality of expanding the frequency range of a signal without being corrupted

by aliasing. The implications of the phrase alias-free are that it is possible

to determine information at frequencies well in excess of the average sample
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rate. The corollary for control, perhaps, is that the effect of sampling delays

could be reduced such that the average sampling frequency does not need to

as high19.

2.5 General remarks

• Phase lag issues are acknowledged to be the predominant reasons for

causing instability in control systems. As a result, the sample rates are

increased to ensure stability at high frequencies.

• Intentional random sampling offers potential in reducing the high sample

rate requirements for signal processing. It is able to recover the almost

complete spectral contents of an under-sampled signal, even if the aver-

age sample rate is below the Nyquist criterion. However, it has not yet

been used in control theory due to a lack of design and analysis methods.

• Some non-uniform sampling concepts in digital control are encountered

in relation to event-based sampling. However, such strategies are pre-

dominately used to reduce the amount of processing required20 and do

not necessarily improve the quality/performance of overall control pro-

cess.

• Control theory norms: Control algorithms are inherently designed for

uniform sampling. Therefore, an applicable algorithm (or filter struc-

ture) must be identified that can perform the control operations cor-

rectly.

19The idea has been discussed in Goodall (2001).
20—by reducing the number of samples being processed.
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• Evaluation techniques: Appropriate methods must be developed that

can allow the identification of the frequency response of a non-uniform

rate control system.

2.6 Summary

Digital control theory deals with real time control issues. Nowadays, the use

of powerful design tools often lead to solutions with numerical problems. De-

spite the fact that the obtained control structures, their parameters and their

operational properties are derived through standard mathematical procedures,

the physical meaning of the actions are often hidden which makes it difficult

to interpret and change unexpected behaviours. The tendency to generalise to

a generic property by employing rules of thumb could lead to wrong actions,

and the selection of the sample rate is often at the forefront of such rules. It

is well known that in digital control, the faster sampling rate is not always

the best one, due to numerical and resolution problems (Forsythe & Goodall

1991). Thus, the selection of the sample rate is a trade-off between loss of

information21 and the processing capability of the digital system.

This work investigates the application of applying intentional variations

in the sampling frequency of digital controllers. Non-uniform sampling has

largely been part of mathematical research and theories, but it has gained

much attention due to the added advantages it can provide. Nonetheless,

the field is still very immature and has yet to highlight the border line of its

preference over uniform sampling.

Evidently, certain signal processing applications have embraced the random

sampling nature of their process operations and have used it for their benefit.

21Which increases the phase lag in the loop.
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Random sampling has been noted as a useful tool to improve the quality of

numerical computation of signals for tracking problems by adapting the sample

rate to the frequency content in the signal at that time. Moreover, non-uniform

sampling presents new possibilities of processing signals without the stringent

restrictions of the Nyquist limits.

From a controls perspective, processing controller data at irregular times

poses a complex challenge but it may ensure a good compromise between

the control performance and algorithmic computations. Since conventional

algorithms are exclusively designed to process uniformly sampled signals, it is

worth exploring its impact on the operating bandwidth of digital controllers.



Chapter 3

Continuous-time Transfer

Function Emulation with

Non-uniform sampling

Chapter overview

Various applications in digital systems require the involvement of concepts

from signal processing and filtering. These specific problems often need the

linear dynamic systems to have a transfer function that can specify the be-

havioural characteristics of the system. When operating in the digital domain,

such functions can effectively be used to approximate the same characteristics

over the frequency range of importance as any given continuous-time transfer

function. Therefore, this chapter aims to explore the possibilities of implement-

ing non-uniform rate transfer functions and begins the detailed description for

control system development. It highlights the adopted approach in this work

for non-uniform sampling and control co-design, in order to build an effective

real-time controller. The objectives of this chapter are to:

• further investigate the issues identified in Chapter 2, the impact of sample

time variations
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• establish design assumptions for implementing non-uniform rate control

systems

• identify and examine the controller design techniques that can be utilised

and subsequently, the experimental work is carried out

• discuss the limitations of implementing the developed non-uniform rate

algorithm

• realise a convenient method for estimating the frequency response of

non-uniform rate control systems

• establish the performance evaluation criteria

Instinctively, the first technique of interest is the topic of numerical meth-

ods with varying step sizes for integration of differential equations. Ordinary

differential equations have been the subject of much study for a very long

time and numerous methods with many refinements have been derived for

their numerical solution. However, an alternative approach can often be used

which, though by no means new, has been subject to less sustained exami-

nation. This is to replace the nth order differential equation by the nth order

difference equation though the use of mapping rules. This will be looked at in

detail and the major limitations that reside with the implementation modes

of the non-uniform rate transfer functions are identified and their solution is

demonstrated through examples.

This chapter is organised as follows: §3.1 introduces relevant design tech-

niques for incorporating non-uniformity in discrete-time transfer functions.

These techniques are based on classical controller design methods used in

control theory. The chapter then progresses on to identify the limitations

that non-uniform sampling adds during implementation of digital controllers.
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However, the effects of these limitations can be reduced and the solutions are

provided in §3.3. §3.4 demonstrates a simple but important technique for

calculating the frequency response of non-uniform rate control systems, the

accuracy of which can be measured by some performance criterion defined by

the designer. Finally, a DC motor controller example is provided that is de-

signed, implemented, simulated and analysed using the tools and techniques

outlined in the chapter.

3.1 Design of discrete equivalents

The primary design methods for discretization of linear continuous-time trans-

fer functions include the standard z transformation or impulse invariant method,

the bilinear transform and related transformation methods, and the matched

z transform techniques. All these methods are essentially algebraic in na-

ture and differ primarily only in the details of the approximation from the

continuous-time domain to the discrete. They can be used to yield a dig-

ital filter approximation for a continuous-time linear system, that is of the

recursive form1.

Although highly-developed theories on control design are available for LTI

systems, both in continuous-time and discrete-time cases (Nise 2007, Houpis &

Lamont 1985), these would be insufficient to deal with loops that experience

time variations within its controller actions. Historically, the time-domain

formulation is the most commonly used method for performing a time-varying

analysis due to its simplicity. Although, such analysis may not provide an

1—i.e., the calculation of the next output value depends not only on the present and a
select few of the past values of the input but also on the previous values of the output.



3.1. DESIGN OF DISCRETE EQUIVALENTS 49

accurate answer since the convolution rule does not exist in the case with time-

varying systems (Wang 2008). Most of the literature on sampled-data control

therefore is not applicable for non-uniform rate transfer function design.

An obvious obstruction to the development of the non-uniform rate the-

ory are the added time variations. According to Freudenberg, Middleton &

Braslavsky (1995), most of the control literature implies that transfer func-

tions cannot effectively be used to describe the input-output properties in

such cases. However, if the Laplace transform of the response and the time

instants are available, then it might be possible to redesign the controller in

the discrete domain according to the changing time instants.

3.1.1 Numerical integration methods

It is a fundamental concept to represent a continuous-time transfer function as

a differential equation and then to derive a discrete-time or difference equation

from it. Many numerical approximates exist in literature that are able to

calculate the discrete-time solution of a differential equation, e.g. Euler’s

method, Tustin’s rule2, etc. Consider the 2nd order continuous-time transfer

function:
y(s)

x(s)
=

n0 + n1s

m0 + m1s + s2
(3.1.1)

Forsythe & Goodall (1991) remark that the structure of Eq. 3.1.1 can be

expressed as in Fig. 3.1a, where xn and yn are the input and output signals,

respectively, n0, n1 & n2 are the feed-forward coefficients, m0 & m1 are the

feedback coefficients and the 1
s

is the integration operation in the filter.

Rabbath & Hori (2001) have discussed a similar setup for obtaining the

discrete equivalent representation of a continuous-time controller by replacing

2—also known as Trapezoidal integration or in engineering terminology ‘the Bilinear

transform’ as discussed on page 33.
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Figure 3.1: Continuous and discrete-time representation for a 2nd order trans-
fer function
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the integrator term of Fig. 3.1a by a numerical integration rule (as illustrated

in Fig. 3.1b which uses the bilinear transform). Any numerical integration

rule can be used for this purpose. This direct approach is obviously valid for

both uniform and non-uniform step sizes. Furthermore, the filter coefficients

in both situations will remain the same since they are independent of the

sampling interval.

Even though this is a very convenient way to look at the problem for

general purpose applications, poor accuracies result in the discrete equivalent,

unless the sampling interval is chosen sufficiently small. For instance, a stable

continuous-time transfer function may go unstable if discretised with the direct

approach using a large sampling interval. This is due to the fact that the

discrete integrator gain does not depend on the controller parameters.

Another approach is based on working in the z-domain. It is demonstrated

by Albertos & Salt (1990), where a classical PID controller is considered with

non-uniform time steps. Acknowledging that a continuous-time control action

of a PID controller can be given as:

u(t) = Kp · e(t) + Kd ·
d

dt
e(t) + Ki ·

∫ t

0

e(τ)dτ (3.1.2)

the discrete-time equivalent can be described as:

uk = Kp · ek +
Kd

Tn

· (ek − ek−1) + Ki · Tn ·
k−1
∑

j=0

ej (3.1.3)

the generalised difference equation in the discrete domain with a constant

sample period Tn takes the form:

uk = uk−1 + q0 · ek + q1 · ek−1 + q2 · ek−2 (3.1.4)

where the subindex k stands for time kTn, i.e. uk = u[kTn]. The discrete-

time coefficients qi, if applying an Euler’s approximation, can be expressed by
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making substitutions in Eqs. 3.1.3:

q0 = Kp +
Kd

Tn

q1 = −Kp − 2 · Kd

Tn

+ Ki · Tn

q2 =
Kd

Tn

(3.1.5)

The discrete-time coefficient equations of Eqs. 3.1.5 indicate their dependence

on the sampling period due to the Tn factor. Simple formulae can hence be

derived from continuous-time equations to allow the discrete-time controller

coefficients to be updated directly in case the sampling period changes. There-

fore, when the sampling is irregular, i.e. it takes place at the time sequence

{. . . , tk−2, tk−1, tk . . .}, the discrete-time coefficients can be recalculated by us-

ing the following generalised discrete-time coefficient equations:

q0 = Kp +
Kd

tk − tk−1

q1 = −Kp −
Kd · (tk − tk−2)

(tk − tk−1) · (tk−1 − tk−2)
+ Ki · (tk − tk−1)

q2 =
Kd

tk−1 − tk−2

(3.1.6)

Likewise, when the sampling becomes periodic/constant, Eqs. 3.1.6 will com-

pute the same coefficient results of Eqs. 3.1.5 i.e. of a uniform discrete-time

transfer function.
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3.1.2 Mapping techniques

The Laplace transform makes it much easier to solve linear differential equa-

tions. It essentially converts the equations into an algebraic expression, which

can easily be manipulated. In the design of digital control systems, it is pos-

sible to go through the design process entirely in the discrete domain, often

using mapping rules, to realise the discrete-time transfer function F (z). The

process of converting the Laplace equation F (s) to its discrete equivalent F (z)

is sometimes referred to as emulation, which is usually regarded as a viable

approach, whenever the sampling rates are kept high. The resulting discrete-

time equation will be arranged in a similar manner to that of the original

continuous-time equation, apart from the coefficients values, which will plau-

sibly be different. The discrete-time filter takes the form as described by Eq.

2.3.5 on page 34: Consequently, the design method presented in this chapter

adopts the philosophy of emulation, but performs the transition from s to z in

such a manner as to make due allowance for variations in the sampling period.

3.1.3 Transient management for control systems

Adaptive filtering is a promising solution for systems where digital filters with

time-invariant conditions are often inappropriate. Such techniques can im-

prove the filtering operation by accommodating coefficient variations in order

to retain the continuous-time filter characteristics. However, such reconfigu-

rations often cause undesirable transients which may (momentarily) degrade

the overall system performance.

Transients usually occur when a digital filter switches from one opera-

tional mode to another3. The phenomenon appears as a damped oscillatory

3Such as a change in the coefficient values.
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motion, that persists for a short while after the switch happens. An intro-

ductory example that demonstrate this effect is shown in the Example A.

Example A: Transient analysis

The following is an emulation of a practical phase lag-lead compensator

based on IIR filtering, where the filter coefficients are switched just once

at Time = 1s. The compensator has the transfer function:

H(s) =
10 + 0.35s + 0.0025s2

1 + 0.105s + 0.0005s2
(3.1.7)

The filter makes use of the canonic z-filter structure for implementation.

The digital filter coefficients of Eq. 3.1.7 are changed according to the

sample rate parameter, Tn, as listed in Table. 3.1. The filter stability is

maintained for all chosen sample rates, e.g. in this case, the filter will

remain stable for both sample rates being used in the experiment. For

simplicity in this demonstration, the sample rate is changed just once

during operation, at Time=1s. This means that two filter coefficient sets

will be used during the simulation, set-1 from 0s→ 1s (where Tn = 0.01s),

and set-2 from 1s → 2s (where Tn = 0.02s). In addition, the simulation

will also attempt to account for non-uniform sampling with constant

coefficients i.e. the digital filter coefficients remain unchanged under the

non-uniform sampling conditions. These coefficients are calculated using

the sampling interval Tn=0.01s, and applied to the filter.

Since the step response of a LTI system is well understood, it is an ade-

quate tool to demonstrate the transient effects from a digital filter. The

step response can readily be calculated from its corresponding differen-

tial or difference equation. The reason for the unwanted transients is
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(b) The digital filter output to a 0.5Hz sinusoid input (amplitude = 1)

Figure 3.2: Demonstrating the transient phenomenon (filter structure:
z-canonic)
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Discrete Tn = 0.01s Tn = 0.02s Tn=0.01s
coefficients 0s→1s 1s→2s 0s→2s

a0 4.285714 4.242424 4.285714
a1 -4.285714 -1.818182 -4.285714
a2 0.952381 0 0.952381
b1 -0.904762 -0.484848 -0.904762
b2 0 -0.272727 0

Table 3.1: Accommodating for sample period change

as follows: the output of a discrete-time filter can be considered as the

sum of different components. One is the response to the input, while

the others are the responses due to the internal variables. When there

is a change in the sample rate, the internal variables produce an output

that is incorrect for the new set of coefficients4. These conditions then

generate an impulse response from the output of the storage device to

the output of the filter. Fig. 3.2 is a pictorial description of the effects

that a change in the sample rate will cause to the output of the filter.

It can be observed in Fig. 3.2a that with a step input, the switch has

significantly affected the digital filter’s output response by causing an

incorrect transient in the output response at Time=1s. Fig. 3.2b shows

a similar behaviour on the output response for a 0.5Hz sinusoid input

(amplitude=1).

Comparing the case of holding the digital filter coefficient values constant

under non-uniform sampling conditions also presents the motivation for

using the non-uniform rate control algorithm. It is clear from the simu-

lation that by not accounting for the variations in the sampling regime

not only affects the desired characteristics of compensator but can also

deteriorate its performance. However, in order for the non-uniform rate

4—dynamically or in steady state.
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control algorithm to operate correctly, the transient issue demonstrated

in this example must be addressed.

It should be noted that if implemented in the correct way, such transient

phenomenon will not occur in the case of non-recursive filters (Tarczynski,

Valimaki & Cain 1997, Valimaki & Tarczynski 1996). Furthermore, a recur-

sive time-varying filter can be transient-free only when its feedback coefficients

are kept unchanged throughout the whole process. Zetterberg & Zang (1988)

presented a solution to this problem based on the assumption that images of

recursive filters are running for each coefficient set that is ever encountered in

the system, but only one of them is connected to the output at one time. How-

ever, this approach requires a very large number of filters running in parallel

which makes it increasingly complex. In practice, this is not computationally

viable and Valimaki, Laakso & Mackenzie (1995) further suggested modifica-

tions to this method and presented a solution for transient suppression that

could give an acceptable performance at a reasonable implementation com-

plexity. However, using these techniques to resolve the non-uniform sampling

being considered in this work will be insufficient due to the continuous varia-

tions in the time periods.

Some more transient management techniques are discussed by (Simon, Ko-

vacshazy & Peceli 2002, Valimaki & Laakso 1998), such as smoothing tech-

niques that can reduce the transient at the price of a much longer transition

interval, or whenever possible, using look-up tables and make changes to the

internal state variables of the digital filter, because the transients are due to

the mismatch of these variables before and after reconfiguration. Again, such

solutions are valid only for cases where the abrupt changes in the parameters
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during the operation are limited. The important questions that arise here are:

• What will happen to the digital filter output when the sample frequency

changes at every consecutive sample period?

• How can these undesirable transients be eliminated/suppressed during

run-time?

Despite the fact that there are some problems of reconfiguration transients

reported in the audio signal processing communities, very few research reports

exist on strategies for eliminating or reducing these transients in time-varying

systems. An approach to utilize the structure dependence of transients (see

§3.3.1), is, to the author’s knowledge, largely missing in control literature.

Therefore, it must be established that transient management is an important

aspect to be considered with context to this work and two factors that can

effectively be used to influence its behaviour are:

• the proper run-time transient management techniques as mentioned in

this section (Simon et al. 2002)

• the implementation structure, as discussed in §3.3

3.2 Non-uniform rate discrete equivalents

This section derives an algorithm to process a discrete-time controller with

non-uniform sampling. If the sampling becomes uniform, the algorithm will

give the same result as with the conventional uniform rate transfer function.

A typical control setup is composed of a number of elements. The input-

s/outputs are continuous-time signals, with the outputs being generated by
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passing the inputs through the analogue plant and sensor dynamics. Hold de-

vices (such as DAC converters) are then used to maintain a continuous signal

driving the plant.

The controller design is usually done in the continuous plane and later, once

a sampling frequency is selected, the discrete-time equivalent is computed and

used to replace the continuous-time design. The problem with a time-varying

sampling frequency poses an obvious question: Can the z-transform equivalent

be used in a time varying sampling frequency? This section therefore attempts

to answer this question.

3.2.1 General assumptions

Due to the variations in the sample period, several simplifying assumptions are

made in order to obtain a more tractable system model for analysis purposes.

The primary assumptions made are as follows:

• Sensor dynamics are negligible

• Plant dynamics are described by linear, time invariant differential equa-

tions

• All sampling occurs simultaneously and independent of the input signal

The first two assumptions are not restrictive in any way, but are primar-

ily for subsequent notational convenience. An LTI plant places the same re-

strictions on the analysis that exist for all classical control system techniques.

However, the assumption of simultaneous, signal-independent sampling is some

what of a restrictive approach, but it is crucial to the development of the theory

to follow (Marti 2002).
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Opting to use the z-transform technique for analysing continuous-time fil-

ters with a periodic sample frequency can provide a ready access to the system

response characteristics and stability margins as the control gains and filter

coefficients. But, due to the involvement of the random time variable, the

transform might not necessarily exist. Although, if the sample time instants

are known before hand, the transfer function characteristics can be adjusted

by recalculating its coefficients in the z-transform according to the changing

sampling frequency.

3.2.2 Mathematical formulation

For the sake of clarity, the arguments presented here are built up around

specific examples of differential equations and subsequently generalised. The

problem under discussion is the representation of a given differential equation

by a difference equation. The equations for calculating the coefficients of a

digital filter can be generalised in the digital domain. The approach makes

use of the difference equations rather than the z-transform, though it is often

convenient to express the results in term of z. Although the concept can be

generalised, for simplicity consider the 2nd order differential equation:

y + m1ẏ + m2ÿ = n0x + n1ẋ + n2ẍ (3.2.1)

where x and y denote x(t) and y(t) are the control and dependent variables,

respectively; m1, m2, n0, n1 and n2 are the continuous-time coefficients; ÿ, ẏ,

ẋ and ẍ are the derivatives. It must be noted that although this section

considers a 2nd order equation, the procedure can be generalised for an nth

order equation.
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Choice of digital algorithm

Eq. 3.2.1 can also be written as transfer function in the Laplace domain as:

y(s)

x(s)
=

n0 + n1s + n2s
2

1 + m1s + m2s2
(3.2.2)

Applying a mapping rule (such as the Tustin’s rule) to Eq. 3.2.2 and rearrang-

ing the equation according to Eq. 2.3.5 on page 34, the difference equation

can be represented arbitrarily in discrete form as:

y[tk] = x[tk] · a0 + x[tk−1] · a1 + x[tk−2] · a2 − y[tk−1] · b1 − y[tk−2] · b2 (3.2.3)

where x and y are functions of time

Computation of coefficients ai, bi and implementation

The coefficients equations must be generalised to accommodate any changes

in the sample time value. This means that the filter coefficients will have to

be recalculated accordingly5:

a0 =
n0 · (Tn)2 + 2 · n1 · Tn + 4 · n2

(Tn)2 + 2 ·m1 · Tn + 4 ·m2

a1 =
n0 · (Tn)2 − 2 · n1 · Tn − 4 · n2

(Tn)2 + 2 ·m1 · Tn + 4 ·m2
+

n0 · (Tn−1)
2 + 2 · n1 · Tn−1 − 4 · n2

(Tn−1)2 + 2 ·m1 · Tn−1 + 4 ·m2

a2 =
n0 · Tn · Tn−1 − n1 · (Tn + Tn−1) + 4 · n2

Tn · Tn−1 + m1 · (Tn + Tn−1) + 4 ·m2

b1 =
(Tn)2 − 2 ·m1 · Tn − 4 ·m2

(Tn) + 2 ·m1 · Tn + 4 ·m2

+
(Tn−1)

2 + 2 ·m1 · Tn−1 − 4 ·m2

(Tn−1)2 + 2 ·m1 · Tn−1 + 4 ·m2

5The derivation of the coefficient equations is shown in Appendix D.1.
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b2 =
Tn · Tn−1 −m1 · (Tn + Tn−1) + 4 ·m2

Tn · Tn−1 + m1 · (Tn + Tn−1) + 4 ·m2
(3.2.4)

With a constant sample rate value, Eqs. 3.2.4 will compute the same coefficient

results as the uniform sampling equations. The implementation equations for

the canonic z-filter can be expressed as:

v0 = utk − b1 · v1 − b2 · v2

ytk = a0 · v0 + a1 · v1 + a2 · v2

v2 = v1

v1 = v0 (3.2.5)

where ytk & utk are the output and input variables, respectively, and v0, v1 &

v2 are used for internal variable shifting of past input and output values.

It is worth mentioning that, as the order of the discrete-time filter in-

creases, the coefficient calculations will need to take the preceding sample rates

into consideration. For example, assuming the non-uniform time sequence

{. . . , tk−2, tk−1, tk, . . . }, a 3nd order filter will have to consider the sample rate

values {Tn, Tn−1 and Tn−2} to calculate the correct digital filter coefficients

that will be used to produce the output result.
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Validation of the algorithm

After deriving the generalised equations that calculate the coefficients, the

next step is to answer: How to verify the ‘functionality’ of the non-uniform

rate sampling algorithm? As mentioned earlier, in the case when the sampling

becomes uniform, the non-uniform rate sampling algorithm should give the

same result as with the conventional uniform rate transfer function.

Example B: simulations with the Non-uniform rate algorithm

This example considers the same digital phase lag-lead controller used

earlier in Example A on page 54. The following simulations will illustrate

the output responses for uniform and non-uniform sampling.

With uniform sampling

The primary aim for these simulations is to validate the non-uniform

sample rate algorithm. Since the sampling rate is periodic, the algorithm

should produce an identical result to that with the uniform sampling

algorithm. During implementation, the digital filter coefficient values

will remain constant due to the uniform sample period. Simulations are

carried on with a uniform sample period of Tn=0.01s (100Hz), with a

step input and a 0.5Hz sinusoid input (amplitude = 1).

Observing the results of Fig. 3.3 produced with the uniform sample rate,

it is established that the algorithm is operating correctly and outputs

valid results.
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(b) The digital filter output to a 0.5Hz sinusoid input (amplitude = 1)

Figure 3.3: Non-uniform sampling algorithm validation (uniform sample
rate Tn: 0.01s). Note that, this simulation utilises the algorithm without
sample time variations in the sampling period; filter structure: canonic-z
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With non-uniform sampling

Going a step further in the analysis, consider the case when a time

varying sampling scheme is used. Once again, the simulation will make

use of the phase lead-lag compensator of Eq. 3.1.7. The sampling scheme

under consideration belongs to a uniformly distributed set of samples: Tn

∼ U(0.01,0.02), 0.01 ≤ Tn ≤ 0.02 and uses a different sample rate value

for each consecutive sample period. Fig. 3.4a depicts the filter sample

rate values being used over time. The average sampling rate is 0.015s

(66.67Hz).

Fig. 3.5 depicts when non-uniform sampling is applied to the digital

filter. Clearly, the discrete response has been corrupted and hence it

is concluded that although the non-uniform sampling algorithm oper-

ates correctly with uniform sampling, the transient phenomenon has a

deleterious effect on it during implementation6.

6—this effect was expected; the digital filter response is clearly corrupted by the transient
phenomenon that was discussed in §3.1.3. The reason for such an effect is due to the
recursive nature of IIR filters. In the case with non-uniform sampling, the discrete-time
filter coefficient values keep changing accordingly. The output result is then calculated
based on incorrect internal variables that depend on different delays. Such variations hence
introduce unexpected changes within the digital filter, causing disturbances to the output.
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(a) The sample rate of the digital filter changes for consecutive sampling periods
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Figure 3.4: Accommodating for sample period change (uniform distribution
with an average sample rate: 0.015s)



3.2. NON-UNIFORM RATE DISCRETE EQUIVALENTS 67

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

time (s)

ou
tp

ut

 

 

continuous
discrete

(a) The digital filter output to a step input
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(b) The digital filter output to a 0.5Hz sinusoid input

Figure 3.5: The transient phenomenon with non-uniform sampling (uniform
distribution (Tn ∼ U(0.01,0.02), 0.01 ≤Tn≤ 0.02) with an average sample rate:
0.015s); filter structure: canonic-z
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3.2.3 Limitations on design

The major limitations identified when designing digital controllers with non-

uniform sample times are the reconstruction aspects and the issue with un-

wanted transients during IIR filter implementation.

As cited in signal processing literature, a bandlimited signal can be recon-

structed from its non-uniformly spaced samples provided the average sampling

rate is at least the Nyquist rate7. However, in most of the published methods,

the algorithms derived provide a fast and numerically robust reconstruction

by utilising FIR filters with a number of taps (Johansson & Lowenborg 2004).

Furthermore, they require a modest amount of over-sampling to achieve high

accuracy. Other reconstruction algorithms published over the last two decades

cannot be used in real-time implementation and hence are not applicable for

real-time control purposes. Marvasti (2001) gives a good review of reconstruc-

tion techniques, but in order for a low-pass reconstruction to be successful,

some sort of minimal (average) sampling rate will be required. However, the

principal aim of this thesis has been to develop methods for analysing non-

uniformly sampled control systems and hence signal reconstruction is not of

prime importance due to the inclusion of an over-sampling factor with digital

controllers8.

The other limitation is the existence of unwanted transients when trying

to implement IIR filters in real-time with non-uniform sampling. This effect

becomes increasingly critical during the implementation of higher order filters,

where the difference of the prior sample times result in incorrect gain values

in the interval variables. The next section briefs on a convenient method

7This theory is primarily based upon the work done by Shannon, C. on non-uniform
sampling (Marvasti 2001).

8See discussion in §2.1.1 on page 17.
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for suppressing the transients during digital implementation when using non-

uniform sampling, essentially by utilising an appropriate filter implementation

structure.

3.3 Suppressing the transient effects

The coefficients of digital controllers depend on the sampling interval being

used in the process. With periodic sampling, these coefficients are usually

calculated just once at the start of the control program execution. However,

when a non-uniform rate sampling frequency is employed, the filter coefficients

are updated every time the sample interval changes. This is needed to ensure

that the discrete-time filter retains the desired characteristics set out during

the analogue filter design. In the case of recursive filter implementations with

non-uniform sampling, the output signal suffers from a transient phenomenon

that can corrupt the filter response. This is because in such a non-uniform

setup, the filter is loaded with its internal variables based on previous coeffi-

cient sets. In addition, the severity of a transient signal depends on the filter

input signal and the size of magnitude change in the filter coefficients.

3.3.1 The importance of implementation structure

The simulation results from Example A & B show that the usual canonic-z

implementation structure, often used in digital control, is unsuitable for non-

uniform sampling. Therefore, other possibilities need to be examined to ensure

the correct implementation. The significance of choosing the right structure

for the purpose of transient reduction was first documented by Kovacshazy,

Peceli & Simon (2001). Using the proper structure for the controller realization
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can aid in suppressing transients in the steady-state of the system, and some

structures can assure smaller transients than others for small disturbances.

Consider the δ-operator which is discussed on page 36. It provides a much

superior performance over the shift law implementation. Middleton & Good-

win (1990) recognised that the application of the δ-operator can lead to reli-

able and robust numerical algorithms. Since the internal variables in the delta

structure are no longer successive values of the same quantity, the operation

is rather an accumulation of the previous values with the new values.

Canonic δ-form Recall Eq. 2.3.8 on page 36 of the canonic δ-filter. It

can be represented in 2nd order as:

H(δ) =
c0 + c1δ

−1 + c2δ
−2

1 + r1δ−1 + r2δ−2

The corresponding generalised coefficient equations for recalculating a 2nd or-

der canonic δ-filter with non-uniform sampling periods are9:

c0 =
n0 · (Tn)2 + 2 · n1 · Tn + 4 · n2

(Tn)2 + 2 ·m1 · Tn + 4 ·m2

c1 =
2 · n0 · (Tn)2

(Tn)2 + 2 ·m1 · Tn + 4 ·m2
+

2 · n0 · (Tn−1)
2 + 4 · n1 · Tn−1

(Tn−1)2 + 2 ·m1 · Tn−1 + 4 ·m2

c2 =
4 · n0 · Tn · Tn−1

Tn · Tn−1 + m1 · (Tn + Tn−1) + 4 ·m2

r1 =
2 · (Tn)2

(Tn) + 2 ·m1 · Tn + 4 ·m2
+

2 · (Tn−1)
2 + 4 ·m1 · Tn−1

(Tn−1)2 + 2 ·m1 · Tn−1 + 4 ·m2

r2 =
4 · Tn · Tn−1

Tn · Tn−1 + m1 · (Tn + Tn−1) + 4 ·m2
(3.3.1)

9The derivation of the coefficient equations is shown in Appendix D.2.
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The implementation equations are written as:

v = utk − r1 · w − r2 · x

ytk = c0 · v + c1 · w + c2 · x

x = x + w

w = w + v (3.3.2)

where utk and ytk are the input and output signals respectively, and v, x &

w are the three internal variables that perform the delta operations.

The simulation setup utilised in Example A & B is repeated with the

canonic δ-filter. The non-uniform sample rate has a uniform distribution Tn

∼ U(0.01,0.02), 0.01 ≤ Tn ≤ 0.02. Fig. 3.6 illustrates the digital filter coeffi-

cient variations depending on the sample rate. The time responses to a step &

0.5Hz sinusoid input (amplitude = 1) are shown in Fig. 3.7. Once again, the

switching transients have a significant and unwanted effect. Hence, it is con-

cluded that this structure is not suitable for implementation with non-uniform

sampling. The reason for this is due to the fact that the static/dynamic val-

ues of the internal variables are still dependent upon the sample period and

coefficient sets.
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(a) The sample rate of the digital filter changes for consecutive sampling period, Tk ∼ U(0.01,0.02)
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(b) The digital filter coefficient values change depending on the sample rate for the canonic δ-filter

Figure 3.6: The non-uniform sampling being used belong to a uniform distri-
bution Tn ∼ U(0.01,0.02), 0.01 ≤ Tn ≤ 0.02, average sampling frequency at
0.015s
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(a) The digital filter output to a step input
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(b) The digital filter output to a 0.5Hz sinusoid input

Figure 3.7: The filter output for non-uniform sampling (uniform distribution
Tn ∼ U(0.01,0.02), 0.01 ≤ Tn ≤ 0.02, average sampling frequency at 0.015s);
filter structure: canonic-δ
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Modified canonic δ-form Recall Eq. 2.3.10 on page 36, which described

how a discrete-time transfer function can be written in the modified canonic

δ-filter form. TIt can be represented in 2nd order as:

H(δ) =
p + d1qδ

−1 + d1d2rδ
−n

1 + d1δ−1 + d1d2δ−n

where r is the last feed-forward coefficient.

The corresponding generalised coefficient equations for recalculating a 2nd

order modified canonic δ-filter with non-uniform sampling periods are com-

puted using the substitutions:

p = c0

d1 = r1

q =
c1

d1

d2 =
r2

d1

r̄ =
c2

d1 · d2

(3.3.3)

where c0, c1, c2, r1 & r2 are computed using Eq. 3.3.1

The implementation equations are written as:

v = utk − w − x

ytk = p · v + q · w + r · x

x = x + d2 · w

w = w + d1 · v (3.3.4)

where utk and ytk are the input and output signals respectively, and v, x &

w are the three internal variables that perform the delta operations.

Figs. 3.8 and 3.9 demonstrate the simulations done with the modified

canonic δ-filter structure. The non-uniform sample rates have a uniform dis-

tribution Tn ∼ U(0.01,0.02), 0.01s ≤ Tn ≤ 0.02s. It is remarked that this
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structure performs better than the canonic δ-filter in the case with non-uniform

sampling, as it is able to suppress the unwanted transients during operation.

This is largely because in this case, the state variables of this structure are

independent of the coefficient values (look at the filter structure diagram in

Fig. 2.7b on page 37).

Direct-z form The direct z structure makes use of the same coefficient

equations of Eq. 3.2.4 on page 62 to compute its filter coefficient values. The

filter implementation, on the other hand, is performed with:

yt = a0 · utk + a1 · xt−1 + a2 · xt−2 − b1yt−1 − b2yt−2

xt−2 = xt−1

xt−1 = utk

yt−2 = yt−1

yt−1 = yt (3.3.5)

These equations show how to compute the next output sample, yt, in terms

of the past outputs, yt−1 & yt−2, the present input, utk , and the past inputs,

xt−1 & xt−2. The simulations results are illustrated in Figs. 3.10 and 3.11.

Observing the output response, the direct z-structure performs better than

its z-canonic counterpart and can be used for processing non-uniform sample

rates. The reason is due to fact that the stored variables are only the previous

input and output values, which do not depend upon the sample period and

coefficient sets.
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(a) The sample rate of the digital filter changes for consecutive sampling period, Tk ∼ U(0.01,0.02)
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(b) The digital filter coefficient values change depending on the sample rate for the modified canonic δ-filter

Figure 3.8: The non-uniform sampling being used belong to a uniform distri-
bution Tn ∼ U(0.01,0.02), 0.01 ≤ Tn ≤ 0.02, average sampling frequency at
0.015s
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(a) The digital filter output to a step input
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(b) The digital filter output to a 0.5Hz sinusoid input (amplitude = 1)

Figure 3.9: The filter output for non-uniform sampling (uniform distribution
Tn ∼ U(0.01,0.02), 0.01 ≤ Tn ≤ 0.02, average sampling frequency at 0.015s);
filter structure: modified canonic-δ
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(a) The sample rate of the digital filter changes for consecutive sampling period, Tk ∼ U(0.01,0.02)
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(b) The digital filter coefficient values change depending on the sample rate

Figure 3.10: The filter setup for non-uniform sampling (uniform distribution
with an average sampling frequency at 0.015s)
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(a) The digital filter output to a step input
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(b) The digital filter output to a 0.5Hz sinusoid input

Figure 3.11: The direct z-filter output with non-uniform sampling with a
uniform distribution Tn ∼ U(0.01,0.02) (0.01 ≤ Tn ≤ 0.02, and an average
sampling frequency at 0.015s); filter structure: direct-z
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3.3.2 Discussion

The simulations carried out in this section explicitly show that there exists a

broad range of behaviours depending on the implementation structure in use.

The results are related to the specific set of filters being used in the analysis,

where it is pointed out that correctly choosing the proper structure at the

design time can significantly reduce the undesirable effects of the digital filter

reconfigurations. Some important conclusions from the analysis are that the:

• transient phenomenon is caused when the internal variables of the filter

are not scaled according to the variations in the sampling period

• severity of a transient signal depends on the size of magnitude change in

the filter coefficients. This indicates that very large changes in between

consecutive sample periods cause increasingly bad effects

• canonic z-filter and the canonic δ-filter structures cannot be used for

implementing the non-uniform sampling algorithm

• modified canonic δ-filter and the direct z-filter structures offer a better

choice for suppressing the transient phenomenon. This is largely due to

the way the state variables are handled internally by the filter structure

The above findings lead to another interesting question: Between the di-

rect z and modified canonic δ, which implementation structure suits best for

non-uniform sample rates10? Perhaps, quantifying the difference between the

discrete and the continuous transfer function outputs with a sinusoid input11

10—with consecutive variations.
11The reason for opting for a sinusoid instead of a step input is because with a step input,

the system eventually reaches to a steady-state value. In which case some sampling schemes,
such as the dual rate, may not have enough time to be regulated.
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may provide an answer. The Mean Squared Error (MSE) is therefore cal-

culated for all the non-uniform sampling schemes considered in this thesis,

applied to the various filter structures. The filter used in the experiment is

from Eq. 3.1.7 used earlier in this section, with a 0.5Hz sinusoid signal. The

results are tabulated in Table 3.2.The simulation run-time is 4s.

As expected, the output produced by the canonic-z and the canonic-δ fil-

ters give an unacceptably high value for the MSE12. The direct-z and the

modified canonic-δ structures, which are able to suppress the transient issue,

produce the lowest MSE. Both structures produce similar results and there

is no conclusive evidence to differentiate the better structure amongst them.

However, from this point onwards, the simulations in this thesis will make use

the modified canonic δ-filter structure for implementing the non-uniform rate

algorithm, unless specified otherwise. An interesting consequence when the

filter coefficients are held constant throughout the simulation time under non-

uniform sampling conditions is evident from the table. Although unchanging

the coefficients helps avoid the transient issue, the output performance of the

filter deteriorates and results with a high MSE value.

After ensuring that the derived algorithm is operating correctly with non-

uniform sampling, the next step is to ensure the correct method to evaluate

the frequency response of the non-uniform rate transfer function. This is

important since the existing techniques13 do not necessarily apply in the case

with non-uniform sampling. The next section is concerned with this issue

and looks to answer Q3 from page 4: How can the frequency response of a

non-uniform rate controller be evaluated?

12This is because of the uncontrollable transients produced during implementation.
13See Rake (1980) and Dorf & Bishop (2007) for some of the most common frequency

analysis methods.
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canonic z-filter 0.0288 0.4350 1.5548 0.3062 0.6505
direct z-filter 0.0287 0.0266 0.0319 0.0219 0.0319

canonic δ-filter 0.0291 0.4349 1.555 0.3089 0.6589
modified canonic 0.0288 0.0265 0.0316 0.0218 0.0318

δ-filter

direct z-filter 0.0288 0.1504 0.1433 0.1343 0.1505
(no coefficient change)

modified canonic δ-filter 0.0288 0.1504 0.1432 0.1343 0.1504
(no coefficient change)

Table 3.2: Comparing the Mean Squared Error of the various filter structures
for various sampling conditions.
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3.4 Frequency analysis method for non-uniform

rate controllers

In control theory, a common technique for closed-loop analysis is to determine

the steady-state frequency response of the system, often plotted using the Bode

plot. The Bode plot represents the natural behaviour of a linear system over

a range of selected frequencies. The easiest way to calculate it is to substitute

s→ jw in the continuous-time transfer function and obtain the magnitude and

phase at different frequencies. However, an important question that arises with

context to this research is: How to analyse the frequency response of a system

with a non-uniform rate controller?

In the case with uniform sampling, linear systems theory can directly pro-

vide the answer i.e. simply by substituting z = ejw in the z transfer function.

Unfortunately, the same may not be used to perform an accurate frequency

analysis for the case with non-uniform sampling. Speculating the concept, the

most probable method is to revisit the basic foundations of signal analysis i.e.

the Fourier series.

As widely known, the Fourier analysis is a process that decomposes a given

function into various sinusoids of different frequencies. These sinusoids are ac-

tually the harmonics of the fundamental frequency of the original function

that is being analysed. In general, a Fourier analysis can be performed over a

running window of the fundamental frequency, that can allow the calculations

of the magnitude and phase of the observation signal. A much more com-

prehensive description of the analysis technique, its use, and its limitations is

given in Katznelson (1976).
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Rethinking the basic Fourier definition, a periodic signal f(t) can be ex-

pressed by a Fourier series in the form:

f(t) =
a0

2
+

∞
∑

n=1

an(t) cos(nw1t) + bn(t) sin(nw1t) (3.4.1)

where a0

2
is the DC component or the average value of the signal, and n rep-

resents the rank of the harmonics (n = 1, corresponds to the fundamental

component). The remaining variables are described as:

an(t) =
2

TF

t
∫

t−TF

f(t) cos(nw1t)dt

bn(t) =
2

TF

t
∫

t−TF

f(t) sin(nw1t)dt

T1 =
1

f1
=

2π

w1

TF = kT1

where f1 is the fundamental frequency and TF is the integration time being

averaged via a moving window over k periods of the fundermental for the

Fourier analysis.

The definition of the Fourier coefficients, an and bn, presented in Eq. 3.4.1

are considered to be components of time and hence can be used to describe

the behaviour of the signal frequency characteristics in the time domain. The

magnitude and phase of the observation signal f(t), or the selected harmonic

component, can be calculated by the following equations:

∠Hn = arctan

(

an(t)

bn(t)

)

|Hn| =
√

a2
n(t) + b2

n(t) (3.4.2)

After performing the Fourier analysis of the filter output and input signals,
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the frequency response of the transfer function is computed by:

Gain =
Houtput

Hinput

Phase(ϕ) = ∠Houtput − ∠Hinput (3.4.3)

The steady state response of a system can be evaluated for a sinusoidal input at

a given frequency. For a continuous-time system, the response will be the same

frequency as the input, but the frequency response parameters will be modified

with respect to the transfer function of the system being assessed under the

input frequency14. Example C demonstrates the method with a 0.5Hz input

sinusoid signal (amplitude = 1). The frequency response parameters of the

transfer function under observation can thus be obtained by performing a

complete analysis with different frequency values. These can then be compared

with the ideal frequency response to understand the characteristics when using

a non-uniform rate setup.

Example C: evolution of Fourier transform coefficients

Consider the phase lag-lead compensator of Eq. 3.1.7 from page 54. The

non-uniform sample rate being used in this exercise has a uniformly dis-

tributed set of samples between 0.01s and 0.02s, as illustrated in Fig.

3.8a. Therefore, the average non-uniform sample rate for the process is

0.015s. Using the approach highlighted in this section, a Fourier analysis

of the transfer function with a moving window of k=3. Fig. 3.12 illus-

trates the technique performed with the continuous filter, the uniform

filter (with sample rate at 0.015s) and the non-uniform sampling filter

14On the contrary, the response of a digital system to an input signal will consist of a sum
of many sinusoids spaced at integer multiples of the sampling frequency.
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(with uniformly distributed samples at an average sampling frequency

of 0.015s). It depicts the behaviour of the magnitude and phase at the

fundamental frequency of 5Hz after reaching the steady state value15.

This is the ‘Evolution of the Fourier Transform’ coefficient calculations

over time. From the simulation, the frequency response parameters are

tabulated below:

Frequency Continuous Uniform rate Non-uniform rate
(Hz) (dB) (dB) max min

5 12.11 11.88 12.26 11.48

Table 3.3: The filter magnitude values (dB)

Frequency Continuous Uniform rate Non-uniform rate
(Hz) (degrees) (degrees) max min

5 -25.65 -38.8 -36.5 -42

Table 3.4: The filter phase values (degrees)

As illustrated Fig. 3.12, the scope of the technique may further be

extended to observe the changes that may occur in the magnitude and

phase of non-uniform rate controllers over time. This will provide a

much accurate answer to the frequency response characteristics for non-

uniform sample rates. Furthermore, this procedure can be repeated for

a range of frequencies and a complete Bode diagram can now readily be

plotted for the non-uniform rate digital filter.

15The Fourier result reaches to a steady-state value after an initial transient. The later
simulations carried out in this thesis using this technique will consider only the final steady-
state values i.e. when this preliminary stage has died out.
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(a) The filter magnitude response at 5Hz
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(b) The filter phase response at 5Hz

Figure 3.12: The filter frequency response at 5Hz. After an initial tran-
sient, the values settle down towards a steady state to provide the mag-
nitude and phase values at the frequency of interest. The non-uniform
sampling used here belongs to a uniform distribution with an average
sampling frequency at 0.015s, where Tn ∼ U(0.01,0.02)
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Example D: approximate frequency domain response using the Fourier

analysis technique

The method demonstrated using Example C can effectively be used to

obtain the dynamic frequency response of a digital compensator. It is a

combination of the frequency domain and time domain analyses based

on the Fourier series. It can be used to evaluate the magnitude and

phase characteristics of uniform and non-uniform sample rate systems.

The following demonstration is an extension of Example C. The complete

frequency response of the phase lag-lead compensator of Eq. 3.1.7 is

estimated.

Simulation setup

The analysis consists of three compensators:

• the continuous controller

• the discrete controller with a uniform sampling rate Tn of 0.015s

• the discrete controller with non-uniform sampling with uniformly

distributed sample rates i.e. Tn ∼ U(0.01,0.02). The average sample

rate in which case will be 0.015s

Figs. 3.13 and 3.14 show the obtained magnitude and phase plots, re-

spectively, from the analysis of the three compensators, with frequencies

of 1, 2, 3, 4, 5 and 6Hz. The frequency response is then tabulated in

Tables 3.5 and 3.6 accordingly.
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(a) At frequency = 1
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(b) At frequency = 2
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(c) At frequency = 3
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(d) At frequency = 4
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(e) At frequency = 5
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(f) At frequency = 6

Figure 3.13: The magnitude (dB) values for the digital filters under
observation, at various frequencies.
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(b) At frequency = 2
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(c) At frequency = 3
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(d) At frequency = 4
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(e) At frequency = 5
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(f) At frequency = 6

Figure 3.14: The phase (degrees) values for the digital filters under ob-
servation, at various frequencies.
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Frequency Continuous Uniform rate Non-uniform rate
(Hz) (dB) (dB) max min

1 18.6 18.67 18.67 18.67
2 16.3 16.32 16.39 16.31
3 14.4 14.34 14.4 14.2
4 13 12.89 12.95 12.6
5 12.1 11.87 12.27 11.5
6 11.4 11.16 11.45 10.6

Table 3.5: The filter magnitude values (dB) for the compensators under
observation.

Frequency Continuous Uniform rate Non-uniform rate
(Hz) (degrees) (degrees) max min

1 -21.4 -24.25 -24.13 -24.35
2 -30.4 -35.7 -35.7 -36.15
3 -31.4 -39.2 -39.2 -40.3
4 -29 -38.6 -38.6 -40.7
5 -25.65 -38.8 -36.48 -42.3
6 -21.7 -39.25 -36.8 -42.4

Table 3.6: The filter phase values (degrees) for the compensators under
observation.

The complete Bode plot has be constructed using the values obtained in

Tables 3.5 and 3.6; see Fig. 3.17 on page 96.
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3.5 Performance evaluation criteria

The objective here is to evaluate, in terms of the frequency response, the

compensation approach as a design methodology to be used as a non-uniform

rate discrete equivalent for digital control tasks. Since it was made clear in

§3.2.2 that the variations of sample periods can be taken into account by the

control algorithm, this section will formally specify the performance index that

can be used for its evaluation.

To evaluate the performance with the non-uniform rate discrete equivalent

controller, a performance loss criterion can be defined. The applicability of this

criterion will allow the comparison of various frequency responses. One com-

mon technique that is usually adopted to compare the performance is based on

the discrepancy in between an exact value and the approximation. Typically,

the Absolute Error, Squared Error and their derivations are used to tabulate

data. Such criteria can give a measure of the error in the frequency response

of a transfer function. Therefore, using the same concept of such classic per-

formance criterions of error evaluation, the performance loss criterion for some

given value v and its approximation vapprox can be defined by its error.

Absolute Error, ǫ(f) = |υapprox − υ| (3.5.1)

where v is the true value of the frequency response, that is to be used as the

reference and vapprox is obtained form the discrete-time controllers.
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3.6 Open-loop analysis of the phase lead-lag

compensator

The compensator under consideration is Eq. 3.1.7 from page 54 which is a

combination of two 1st order filters: a phase lag and a phase lead. The following

exercise is used to observe if a non-uniform sampling frequency can enable

improvements in the phase response of a digital compensator. The digital filter

is implemented using the control algorithm outlined earlier to allow variations

in the sampling frequency with the modified canonic-δ structure. The filter is

implemented using the following sampling schemes accordingly

• uniform distribution of sample rates i.e. Tn ∼ U(0.01,0.02)

• a truncated gaussian distribution i.e. Tn ∼ N(0.015,0.12)

• dual sample rate (digital pattern) i.e. Tn = 0.01s or Tn = 0.02s

• a sine wave pattern at 5Hz i.e. 0.01s ≤ Tn ≤ 0.02s

All the possible values for Tn for the above sampling schemes will remain

confined within 50Hz and 100Hz i.e. 0.01s ≤ Tn ≤ 0.02s. These sample

rate values are computed and stored before hand and loaded into the control

algorithm for computations at run-time.
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Uniform distribution

Consider the case when the non-uniform sample rates to be used, generated

such that all intervals have a constant probability, where Tn ∼ U(0.01,0.02).

A histogram of the sample rates is illustrated in Fig. 3.15. The following sim-

ulations of the compensator include the time response (Fig. 3.16), frequency

response (Fig. 3.17) and performance loss in the frequency plot (Fig. 3.18).
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Figure 3.15: Histogram of uniformly distributed sample rates Tn ∼
U(0.01,0.02)
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(b) The digital filter output to a step input

Figure 3.16: The time response of the non-uniform sampling filter implement-
ing with uniformly distributed sample rates i.e. Tn ∼ U(0.01,0.02)
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(a) Digital filter magnitude estimation

(b) Digital filter phase estimation

Figure 3.17: The frequency response of the non-uniform sampling filter imple-
menting with uniformly distributed sample rates i.e. Tn ∼ U(0.01,0.02)



3.6. OPEN-LOOP ANALYSIS OF THE PHASE LEAD-LAG
COMPENSATOR 97

(a) Digital filter magnitude estimation performance loss

(b) Digital filter phase estimation performance loss

Figure 3.18: The performance loss in the frequency response of the non-
uniform sampling filter implementing with uniformly distributed sample rates
i.e. Tn ∼ U(0.01,0.02)
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Truncated gaussian distribution

Consider the case when the non-uniform sample rates to be used, generated

such that most of the intervals are clustered around the mean sample rate,

where Tn ∼ N(0.015,0.12). A histogram of the sample rates is illustrated in

Fig. 3.19. The following simulations of the compensator include the time

response (Fig. 3.20), frequency response (Fig. 3.21) and performance loss in

the frequency plot (Fig. 3.22).
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Figure 3.19: Histogram of normally distributed sample rates Tn ∼
N(0.015,0.12)
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(b) The digital filter output to a step input

Figure 3.20: The time response of the non-uniform sampling filter implement-
ing with truncated gaussian distributed sample rates i.e. Tn ∼ N(0.015,0.12)
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(a) Digital filter magnitude estimation

(b) Digital filter phase estimation

Figure 3.21: The frequency response of the non-uniform sampling filter im-
plementing with truncated gaussian distributed sample rates i.e. Tn ∼
N(0.015,0.12)
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(a) Digital filter magnitude estimation performance loss

(b) Digital filter phase estimation performance loss

Figure 3.22: The performance loss in the frequency response of the non-
uniform sampling filter implementing with truncated gaussian distributed sam-
ple rates i.e. Tn ∼ N(0.015,0.12)
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Dual sample rate

Consider the case when the non-uniform sample rates to be used, generated

according to a digital signal, where Tn = 0.01s or Tn = 0.02s. A histogram of

the sample rates is illustrated in Fig. 3.23. The following simulations of the

compensator include the time response (Fig. 3.24), frequency response (Fig.

3.25) and performance loss in the frequency plot (Fig. 3.26).
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Figure 3.23: Histogram of dual sample rates Tn = 0.01s or Tn = 0.02s
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(b) The digital filter output to step input

Figure 3.24: The time response of the filter implementing dual sample rate
(digital pattern) i.e. Tn = 0.01s or Tn = 0.02s
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(a) Digital filter magnitude estimation

(b) Digital filter phase estimation

Figure 3.25: The frequency response of the filter implementing dual sample
rate (digital pattern) i.e. Tn = 0.01s or Tn = 0.02s
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(a) Digital filter magnitude estimation performance loss

(b) Digital filter phase estimation performance loss

Figure 3.26: The performance loss in the frequency response of the filter im-
plementing dual sample rate (digital pattern) i.e. Tn = 0.01s or Tn = 0.02s
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Sinusoid distributed samples

Consider the case when the non-uniform sample rates to be used, generated

according to a sine wave pattern where the samples are distributed according

to a 5Hz sinusoid, 0.01s ≤ Tn ≤ 0.02s. A histogram of the sample rates is

illustrated in Fig. 3.27. The following simulations of the compensator include

the time response (Fig. 3.28), frequency response (Fig. 3.29) and performance

loss in the frequency plot (Fig. 3.30).
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Figure 3.27: Histogram of sin wave patter sample rates 0.01s ≤ Tn ≤ 0.02s
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(b) The digital filter output to step input

Figure 3.28: The time response of the filter implementing sample rates accord-
ing to a sin wave pattern i.e. 0.01s ≤ Tn ≤ 0.02s
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(a) Digital filter magnitude estimation

(b) Digital filter phase estimation

Figure 3.29: The frequency response of the filter implementing sample rates
according to a sin wave pattern i.e. 0.01s ≤ Tn ≤ 0.02s
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(a) Digital filter magnitude estimation performance loss

(b) Digital filter phase estimation performance loss

Figure 3.30: The performance loss in the frequency response of the filter im-
plementing sample rates according to a sin wave pattern i.e. 0.01s ≤ Tn ≤
0.02s
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3.7 General conclusions

• A suitable digital filter structure is defined. The control algorithm is

developed for implementing a non-uniform rate control system based on

the modified canonic δ-filter structure. Moreover,

◦ the control algorithm must be executed continuously in an infinite

loop, and,

◦ the sampling periods are predefined for the control program to select

in each execution.

• The canonic z-filter structure was initially used for implementation, how-

ever, it was identified that it leads to the inclusion of undesirable tran-

sients in the output result.

• The modified canonic δ-transform and the direct-z filter structures are

better at suppressing transients. This is largely due to way the internal

variables are handled for processing.

• It is established that the transients are proportional to the amount of

change in the sample rate. The severity of a transient signal depends

on the filter input signal and the size of magnitude change in the filter

coefficients.

• A combination of frequency domain and time domain analysis is used to

obtain the dynamic response of a digital compensator. The technique,

based on the Fourier analysis, can be used to evaluate the frequency

characteristics under uniform and non-uniform sampling conditions. The

Bode plot can now be obtained and be compared to observe the magni-

tude and phase response with that of the continuous-time system.
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• From the frequency analysis of the non-uniform sampling schemes used,

the magnitude plot seems to suffer from sudden gains. These are prob-

ably due to the reconfigurations or when the digital filter coefficients

switch from one operational mode to another. These gains obviously

depend on the amount of change in the sample rate.

• From the frequency analysis of the non-uniform sampling schemes used,

the phase plot remains bounded in between the maximum and minimum

sample rates being used in the experiment.

• The performance loss in the frequency characteristics are similar to the

case with uniform sampling at low frequencies, i.e. it keeps increasing

depending on the amount of variations induced in the sample frequency.

This attribute remains the same for all non-uniform sampling distribu-

tions used. At higher frequencies however, the variations in the sample

rates become much more evident largely due of the reconstruction as-

pects.

• Performing the analysis with an open-loop controller, it is concluded

that varying the distribution of non-uniform samples seems to provide

no added advantage16 in context to the phase response of the non-uniform

rate control system.

This section applies the basic analysis methods involved in analysing the

non-uniform rate control algorithm based on open-loop data. The next section

will repeat the analysis with a much more complex controller and a DC motor

model in a closed-loop.

16—at low frequencies.
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Figure 3.31: The DC motor block diagram

3.8 Practical example: closed-loop with DC

motor

The following model example is taken from Wu, X (2005). The objective of

the example is to control the position of a rotating load with some flexibility

in the drive shaft. The block diagram of the DC motor model is show in Fig.

3.31.

The 4th order tracking controller includes a P+I, a phase advance and a

notch filter to minimise the effects of resonance caused by the flexibility of the

physical system. The continuous-time transfer function of the controller can

be expressed as in Eq. 3.8.1:

H(s) =
1 + 1000s

1000s
.
1 + 0.1s

1 + 0.01s
.

1 + 0.0025s2

1 + 0.005s + 0.0025s2
(3.8.1)

The step response of the closed-loop system is shown in Fig. 3.32.

Simulation setup

The overall control scheme is depicted in Fig. 3.33 and is implemented dis-

cretely with the uniform and non-uniform rate controller using the delta trans-

form. The control algorithm implemented with the uniform controller is

straightforward, i.e. the analogue signals are sampled and fed into the dig-

ital controller, that causes an update of the control signal to the motor at a
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Figure 3.32: The step response with the continuous controller in a closed-loop

Figure 3.33: The overall control scheme
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uniform rate. This operation is similar in the non-uniform rate equivalent,

however, the main difference is that with the non-uniform rate controller, the

parameters are continuously being attuned during run time, according to the

sampling intervals, which are known before hand.

Therefore, in the analysis and design of non-uniform rate controllers, the

following steps have to be considered:

• the plant process

• a set of sample periods17

• the closed-loop performance specifications

and the objectives are being to analyse if the non-uniform rate controller can

map the performance of its continuous-time and the typical uniform rate coun-

terpart’s. The following closed-loop simulations include:

• uniform distribution of sample rates i.e. Tn ∼ U(0.01,0.02)

• a truncated gaussian distribution i.e. Tn ∼ N(0.015,0.12)

• dual sample rate (digital pattern) i.e. Tn = 0.01s or Tn = 0.02s

• a sine wave pattern at 5Hz i.e. 0.01s ≤ Tn ≤ 0.02s

17—which may or may not belong to some probability distribution.
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Uniformly distributed sample rate

Consider the case when the non-uniform sample rates to be used, are

generated such that all intervals have a uniform probability, where Tn ∼
U(0.01,0.02). The following simulations include the time response (in Figs.

3.34 and 3.35) and the frequency response (Fig. 3.36).
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Figure 3.34: The digital controller output to a step input
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Figure 3.35: The plant output response to a unit step input
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(a) The magnitude response

(b) The phase response

Figure 3.36: The frequency response of the closed-loop system implement-
ing the digital controller with uniformly distributed sample rates i.e. Tn ∼
U(0.01,0.02)
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Truncated gaussian distribution

Consider the case when the non-uniform sample rates to be used, are gen-

erated such that most of the intervals are clustered around the mean sample

rate, where Tn ∼ N(0.015,0.12). The following simulations of the compensator

include the time response (Figs. 3.37 and 3.38) and the frequency response

(Fig. 3.39).
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Figure 3.37: The digital controller output to a step input
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Figure 3.38: The plant output response to a unit step input
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(a) The magnitude response

(b) The phase response

Figure 3.39: The frequency response of the closed-loop system implementing
the digital controller with truncated gaussian distributed sample rates i.e. Tn

∼ N(0.015,0.12)
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Dual sample rate

Consider the case when the non-uniform sample rates to be used, are gen-

erated according to a digital signal, where Tn = 0.01s or Tn = 0.02s. The

following simulations of the compensator include the time response (Figs. 3.40

and 3.41) and the frequency response (Fig. 3.42).
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Figure 3.40: The digital controller output to a step input
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Figure 3.41: The plant output response to a unit step input
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(a) The magnitude response

(b) The phase response

Figure 3.42: The frequency response of the closed-loop system implementing
the digital controller with dual sample rate (digital pattern) i.e. Tn = 0.01s or
Tn = 0.02s
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Sinusoid distributed samples

Consider the case when the non-uniform sample rates to be used, are gen-

erated according to a sinusoid signal pattern, where 0.01s ≤ Tn ≤ 0.02s. The

following simulations of the compensator include the time response (Figs. 3.43

and 3.44) and the frequency response (Fig. 3.45).
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Figure 3.43: The digital controller output to a step input
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Figure 3.44: The plant output response to a unit step input
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(a) The magnitude response

(b) The phase response

Figure 3.45: The frequency response of the closed-loop system implementing
the digital controller with a sinusoid distribution i.e. 0.01s ≤ Tn ≤ 0.02s
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3.8.1 Discussion

The example provides an illustration of a relatively simple system which is

controlled by using a non-uniform rate controller, designed using classical tech-

niques. The simulation is implemented using the algorithm developed in this

chapter. The frequency response of the control system is determined by using

the Fourier analysis technique to estimate the magnitude and phase over time.

The exercise makes use of various sampling regimes to study the impact

on the control performance. One apparent conclusion that can be deduced

from the simulations carried out is that varying the sample rate does not have

any benefit on the phase response of the system at low frequencies. In fact,

as the operating frequency moves closer to the Nyquist limit, the variations

become more evident18. Similar insights were not obvious before i.e. the

more the variation in the sample rate distribution, the more the frequency

response diverges at high frequencies. However, the simulation model provides

a basis for very valuable testing of control systems with varying sampling

periods prior to any practical implementation in terms of real hardware. This

may particularly be of importance in safety critical applications such as flight

control (Kopetz 1997).

18This is due the reconstruction process not having enough samples to reform the complete
waveform.
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3.9 Summary

This chapter examined various concepts for implementing time varying sample

rates in digital control and proposed techniques for its analysis, design and

evaluation. Control analysis is extended to the non-uniform sampling case

and a controller design approach was presented based on the assumption of

having predefined non-uniform sample rates. This approach is based on the

same classic controller design methods used in control theory. It is interesting

that the presented approach to the design of digital algorithms need not be

confined to the case of uniform sampling; instead of specifying a single value for

the sampling period at the design stage, several values can be specified. Then

at each sample execution, the run time parameters can be adjusted according

to specific sample period values.

This chapter further worked on identifying the limitations of using the dig-

ital implementation structures. Switching in between different sample rates

introduced undesirable transients that can degrade the performance of the

system. Subsequently, the direct-z and the modified canonic δ-transform were

identified to be a better solution. Although the mean-square error analysis

between the direct-z and the modified canonic δ revealed no distinction be-

tween the outputs produced by the two filter structures, the modified canonic

δ structure is chosen for implementation in the remainder of this thesis.

Furthermore, an important technique for calculating the frequency re-

sponse of a non-uniform rate control system was highlighted. A formal Fourier

analysis can effectively be used on the system data to compute the magnitude

and phase of a transfer function at various frequencies in the time domain.

The technique presents an opportunity to calculate the frequency response

characteristics of the continuous, uniform rate and non-uniform rate filter’s
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over time. For completeness, a performance evaluation criteria was also in-

cluded that provides a measure of the error in the frequency response. It is

noted that the absolute error keeps increasing at higher frequencies due to its

association with the reconstruction process19. Such analysis can further be

used to study the relationship/impact of switching between various sampling

frequencies. Comparing the uniform sample rate and the average non-uniform

sample rate results, it is concluded that non-uniform sampling does not pro-

vide any added advantage for improving the phase lag issues at low frequencies.

The results are in fact very similar for all non-uniform sampling regimes (con-

sidered in this thesis), which may differ only at high frequencies due to the

reconstruction aspects.

In digital control, most of the tools and techniques cited in literature are

exclusively based on uniform sampling and hence the case for processing and

analysing with non-uniform sampling becomes even more difficult. Nonethe-

less, the chapter has imparted methods of adapting digital controllers to suit

non-uniform sample rates and evaluated their performance depending on var-

ious criterions. For completeness, a practical DC motor controller in a closed-

loop has been used to demonstrate and examine the applicability of the control

algorithm and analysis methods.

For the readers’s convenience, the examples and demonstrations used in

this chapter are summarised on page 130:

19There are not enough non-uniform samples available to reconstruct the complete signal.
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130

Sampling scheme Topic Implementation
structure

Example/Analysis Page

(i) Constant sample rate Algorithm validation Canonic z-filter B 64
(ii) Uniformly distributed

sample rate
Algorithm validation Canonic z-filter B 66

Fourier coefficient analysis Modified canonic
δ-filter

C 87

Bode plot Modified canonic
δ-filter

D 88

Bode plot, performance
evaluation

Modified canonic
δ-filter

Open-loop 96

Bode plot Modified canonic
δ-filter

Closed-loop 117

Transient analysis Canonic δ-filter 70
Transient analysis Direct z-filter 75

(iii) Normally distributed
sample rate

Bode, performance
evaluation

Canonic z-filter Open-loop 100

Bode plot Modified canonic
z-filter

Closed-loop 120

(iv) Dual sample rate Transient phenomenon Canonic z-filter A 54
Bode plot, performance
evaluation

Modified canonic
δ-filter

Open-loop 104

Bode plot Modified canonic
δ-filter

Closed-loop 123

(v) Sine wave distribution Bode plot, performance
evaluation

Modified canonic
δ-filter

Open-loop 108

Bode plot Modified canonic
δ-filter

Closed-loop 126



Chapter 4

Control algorithms for

implementation

Chapter overview

The preceding chapter has presented the analysis and design methods of non-

uniform rate digital controllers, mainly from an analytic and theoretical point

of view. In this chapter, an equally important aspect in the software imple-

mentation of the non-uniform discrete-time equivalent is discussed. It outlines,

in detail, the embedded software development in C/C++ and carries out two

implementations which include an 8051 microcontroller and an FPGA board.

The objectives of this chapter can be summarised as:

• To demonstrate and validate the proposed approach through the hard-

ware implementation of the non-uniform sampling algorithm.

• To verify the control program: an overall structure of the program that

implements the control algorithm is defined and programmed. This will

determine the order of in which the initialisations, control loops and

input sampling have to be implemented.

• To describe the process used to map the control algorithm directly onto

a hardware structure.

131
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§4.2 and onwards is concerned with hardware design aspects. These include the

verification of the control algorithm on a microcontroller unit and definition

of the Register Transfer Level (RTL) description to enable implementation of

non-uniform sampling schemes with FPGAs. The concept of hardware-in-the-

loop systems is discussed and an experiment is followed up with an industrial

standard target controller.

4.1 Software considerations

§2.1.1 established that computational tasks1 realised in control algorithms,

are usually implemented by treating their execution times and periods as un-

changeable parameters. On the other hand, controller design is primarily based

on the continuous-time dynamics of the physical system being controlled.

Although, software and hardware considerations can be dealt with sepa-

rately, there might be a strong interaction between the two. Such interactions

occur not only at the stage of deciding upon the particular processor to be

used, but also when it comes to the more detailed design aspects. In general,

an integrated approach can be adopted that allows a certain tolerance for vari-

ations in the execution periods, as long as a change does not affect the critical

control functions2 (Marti, Fuertes, Fohler & Ramamritham 2001).

Forsythe & Goodall (1991) argue that there are three main components

specific to the context of digital control; i.e. the overall structure of the soft-

ware, the numerical routines and the programming language used for the ac-

tual coding of the software3. The discussions point out the fact that in digital

1Such as coefficient calculations and operations.
2Such as stability.
3There are many other comprehensive texts devoted to provide an excellent guidance on

this subject, see eg. Houpis & Lamont (1985) and Kuo (1980).
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systems, there are physical limitations due to the inherent discrete nature,

especially on the sampling period. For instance, the sampling period of a con-

troller is governed by the clock rate and how fast the numerical operations and

instructions are executed by the digital processor. Therefore, in the case with

a non-uniform sampling routine, the speed of execution might be relatively

slow and this imposes an inherent upper limit on the fastest sampling instant

based on the hardware chosen for implementation.

4.1.1 Algorithm design

The basic modules for the digital controller are typical i.e. the input data, the

processing/filtering and the output data. Predominantly, there can be four

routines that will implement the non-uniform rate controller, which are listed

below:

Function Description

MAIN The executive routine that initialises the conversions and then

enters an infinite loop calling the input, filtering, non-uniform

sampling instances and the output

DELAY Delays the filtering operation depending on the value stored

in the register

NUS This stores a set of sampling time instances that will be used

by the DELAY routine. It loads the sampling periods into

the register

FILTER This is the digital controller. The routine is used to update the

coefficients sets depending on the sample instance acquired

by the NUS routine. It then performs the necessary filtering

operations on the recalculated coefficients of the difference

equation and updates the register’s former values.
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Note that the control algorithm requires the recursive execution of a set

of instructions and the program will update its sample time variables in each

MAIN execution. This will enable the filter coefficients to be recalculated for

each sample period variation accordingly. However, even though the number

of instructions in the control loop may be small in the case of implementing a

simple controller, the overhead that manipulates the program counter may be

relatively large.

Control program dataflow diagram

Fig. 4.1 depicts the control program flowchart, which summarises the con-

troller program operation. The initialisation block initialises all the control

variables. The sampling period is loaded from a look-up table that stores

a number of sample rates that are being used during the implementation.

Moreover, an internal clock keeps running in order to count until it is time

to execute the control program. Once the sample time is reached, the pro-

gram then enters the implementation stage where the input is sampled using

the analogue-to-digital converter (ADC), to be processed by the control al-

gorithm. After the necessary calculations, the output value will be provided

to the digital-to-analogue converter (DAC) and the loop will keep repeating

itself. The sample rate regulations depend on two blocks i.e. the ‘update

sample time’ and ‘sample time reached? ’. Their operation is expanded in Fig.

4.2, which shows how the sampling setup works.
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START

initialize
variables

sample_time
reached?

perform control
operation

sample input

write output

update internal
variables

update
sample_time

looping

no

yes

Figure 4.1: Control program dataflow diagram
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Sample rate regulation dataflow diagram

The sample rate is regulated according to the dataflow shown in Fig. 4.2. The

timer produces a sampling clock which is called sample clk. Before the data

can be loaded, the sample clk is initialise at 0, and the sample period value is

loaded in the variable sample time from a look-up table. When the program

is started, the counter keeps incrementing, and its value is compared to the

sample time value in every clock cycle. As soon as the counter reaches the

sample time data, the sample clk counter is reset back to 0 and a new sample

period value is loaded into the sample time variable.

START

sample_clk >=
sample_time

load
sample_time

set 
sample_clk=0

sample_clk++

noyes

Figure 4.2: Sample rate regulation dataflow diagram
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4.1.2 Embedded software development

The code to be implemented on the digital controller can be written in many

programming languages and be executed in various types of hardware; for

instance, C/C++ is commonly used by many control engineers for program-

ming embedded systems (Svenk 2002). In this case, the Keil Development

tools (Keil 2004) package has been used to design the application code for an

8051, a commonly-used microcontroller.

Consider a 2nd order digital IIR filter, where the overall procedure is carried

out by specifying functions that include a ranges of internal variables and

operations. A C/C++ program can be used to list the actual computations

and illustrate the real-time processes involved. Lst. 4.1 to 4.3 list the key

program routines written4.

4—i.e. the MAIN, NUS and FILTER routines, respectively.
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1 main ( ) {
2 int i=1,time=0,count=0; /∗ i n i t i a l i s e v a r i a b l e s ∗/
3 float y , u ;
4 if ( sample_clk>=sample_time ) /∗wait f o r sample time ∗/
5 {
6 u=input_adc ( ) ; /∗ input data ∗/
7 y=filter ( sample_time ) ; /∗ con t r o l operat i on s ∗/
8 output_dac (y ) ; /∗ output data ∗/
9

10 if (i==6)
11 {i=1;}
12 else

13 {i++;}
14

15 sample_time=int_clk∗nus (i ) ; /∗new sample per iod ∗/
16 sample_clk = 0 ; /∗ r e s e t counter ∗/
17 }
18 sample_clk++;
19 }

Listing 4.1: The MAIN routine (includes the DELAY operation)

1 float nus ( int i ) {
2 float j ; /∗ i n i t i a l i s e va r i ab l e ∗/
3 float ts [ 6 ]= [ 0 . 0 1 , 0 . 0 5 , 0 . 0 1 , 0 . 0 2 , 0 . 0 4 , 0 . 0 3 ] ;
4 /∗ s to r ed sample t imes ∗/
5 j=ts (i ) ; /∗ changing sample per iod ∗/
6 return j ; /∗ return new value∗/
7 }

Listing 4.2: The NUS routine
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1 float filter ( float ts , float in ) {
2 float c0 , c1 , c2 , r1 , r2 ;
3 float p , q , r , d1 , d2 , v , w , x , u , y , ts_1 ;
4 float n0 , n1 , n2 , m1 , m2 ; /∗ cont f i l t e r c o e f f s ∗/
5 /∗ r e c a l c u l a t e c o e f f s ∗/
6 c0=(n0∗ts∗ts+2∗n1∗ts+4∗n2 )/ ( ts∗ts+2∗m1∗ts+4∗m2 ) ;
7 c1=(2∗ts∗ts∗n0 )/ ( ts∗ts+2∗m1∗ts+4∗m2)+(2∗n0∗ts_1∗ts_1+4∗
8 n1∗ts_1 )/ ( ts_1∗ts_1+2∗m1∗ts_1+4∗m2 ) ;
9 c2=(4∗n0∗ts∗ts_1 )/ ( ts∗ts_1+m1∗( ts+ts_1)+4∗m2 ) ;

10 r1=(2∗ts∗ts )/ ( ts∗ts+2∗m1∗ts+4∗m2)+(2∗ts_1∗ts_1+4∗
11 m1∗ts_1 )/ ( ts_1∗ts_1+2∗m1∗ts_1+4∗m2 ) ;
12 r2=(4∗ts∗ts_1 )/ ( ts∗ts_1+2∗m1∗ts+4∗m2 ) ;
13

14 p=c0 ;
15 d1=r1 ;
16 q=c1/d1 ;
17 d2=r2/d1 ;
18 r=c2/( d1∗d2 ) ;
19

20 v=in−w−x ;
21 y=p∗v+q∗w+r∗x ; /∗ c a l c u l a t e output∗/
22 x=x+d2∗w ; /∗ perform de l t a ∗/
23 w=w+d1∗v ;
24 ts_1=ts ; /∗ s t o r e p r ev iou s sample rate ∗/
25 return y ; /∗ return output value ∗/
26 }

Listing 4.3: The FILTER routine of a 2nd order filter
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Notes

• The program MAIN starts executing the standard initialisations and

then enters an idle mode, waiting for the sample time.

• When the counter (sample clk) reaches the sample time value, the pro-

gram samples the input data and performs the filtering operations.

• The variable int clk depends on the value of the clock crystal being used.

• The variable sample time in Lst. 4.1 line 4 is initialised with a default

sample period before entering the main program. It is also scaled by

multiplying it with the internal clock value on line 15.

• The set of sample periods is stored in the NUS function variable ts[6],

which as shown an array with 6 sample values (although it can have

more sample periods as required).

• An important operation is to pass the sample time value to the FILTER

function in order to recalculate the coefficient values; before performing

the control operations

• At the very end, the routine outputs the data and resets the counter

sample clk. It then repeats the whole program again

• The equations can be modified for higher order filters, however, the over-

all approach presented will remain the same i.e. changing the sample

period, recalculating new values, etc.

Computational requirements

As it is known that all of the steps involved in the required implementation

consist largely of multiply or multiply-accumulate, which must be performed
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within one sampling interval, it is important to consider other possibilities to

reduce this burden. One option is to make use of stored coefficient values as

look-up tables. If look-up tables are used, they would free the controller from

the recalculation operations of the filter coefficients. On the other hand, if

look-up tables are not used, the controller will need to do extra processing to

adjust the coefficient values.

4.2 Microcontroller implementation

This section deals with the design and implementation of a microcontroller

for tracking control of a real physical system or ‘plant’. The objective is to

force the plant output to follow a given reference input with zero steady-state

error. The plant of the digital control system under test is a linear actuator5,

described in detail below.

4.2.1 Plant description

Fig. 4.3 illustrates the basic components of a moving coil electro-magnetic

actuator. It comprises a moving coil wound round the centre pole of a magnetic

assembly that produces a uniform magnetic field perpendicular to the current

conducted in the coil. On providing a voltage, a current flows in the coil

generating a force which is parallel to the direction of travel. This force causes

the coil, and the rod which is mounted to it, to move. The force is proportional

to the current in the coil, the number of turns, and the flux strength. End-stop

‘bumpers’ are set at each end of the travel to cushion any impact force that

may occur.

5The moving coil actuator has been provided by SMAC UK Ltd. (SMAC 2004).
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Figure 4.3: The SMAC actuator

4.2.2 Hardware realisation

Microcontrollers are often focused on integrating the peripherals needed to

provide control within an embedded environment. Commonly, they incor-

porate the necessary components like the CPU, memory, timers, interfacing

mechanisms, etc. These features allow them to be used as off-the-shelf solu-

tions. Generally, they can provide an inexpensive programmable logic control.

As a result, when connected in complex environments, they can be used to

interpret inputs, communicate with other devices, and output to a variety of

different devices. Such attributes add a great deal of flexibility in the devel-

opment process. The control strategy described in §4.1.2 can practically be

implemented by means of the standard 8051 8-bit microcontroller unit.

Fig. 4.4 gives a hardware description of the overall closed-loop system. The

transducer output is measured and scaled to a -5→+5V range on the ADC.

This value is then subtracted from the reference signal by the microcontroller

unit to produce an error signal. The error signal is then processed by the

control algorithm begin implemented by the 8-bit microcontroller to produce

a control signal. This signal is passed to the actuator through the DAC.
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Input
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micrcontroller
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scaling circuitry

SMAC
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A/D converter
and amplifier

8-bits

8-bits

Figure 4.4: Block diagram of the actuator control system

4.2.3 Hardware simulation: open-loop

The controller under test belongs to §3.8 Eq. 3.8.1 on page 112. It is a

4th order controller consisting of a proportional-integral, phase advance and a

notch filter. The transfer function is:

H(s) =
1 + 1000s

1000s
.
1 + 0.1s

1 + 0.01s
.

1 + 0.0025s2

1 + 0.005s + 0.0025s2

The transfer function includes a notch filter — this would be used to control

a resonant mode in the system which in fact does not exist with the actuator

chosen, but the more complex 4th order controller is chosen anyway to demon-

strate its applicability for a control algorithm with higher order controllers.

The implementation algorithm is initially simulated under the Keil devel-

opment platform. The output results are shown with constant sampling in

Fig. 4.5 and with non-uniform sampling in Figs. 4.6 and 4.7, for a step input.
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Figure 4.5: The response of the control signal to a step input, with constant
sampling Tn=0.015s

Figure 4.6: The response of the control signal to a step input, with non-
uniform sampling period: dual rate sampling Tn = 0.01s, 0.02s, average sample
rate=0.015s
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Figure 4.7: The response of the control signal to a step input, with non-uniform
sampling period: uniformly distributed sample rates (Sawtooth wave pattern)
Tn ∼ U(0.01, 0.02), average sample rate=0.015s

Figure 4.8: The experimental setup: includes the digital controller and the
actuator.



4.2. MICROCONTROLLER IMPLEMENTATION 146

The hardware simulations demonstrate that the non-uniform sample rate

control algorithm performs similarly to simulations conducted in Chapter 3.

Remnants of suppressed transients are visible in Figs. 4.6 and 4.7 at the point

of sample rate change. These however, are not too problematic now since the

implementation structure of the control algorithm is able to suppress them6.

4.2.4 Experimental Results: closed-loop with SMAC

actuator

The following is a tracking performance experiment of the controller. It consid-

ers the output with respect to step input set-point changes. The experimental

setup is shown in Fig 4.8.

Fig. 4.9 shows the result with constant sampling Tn=0.015s. The small

dynamic variations at the nominally constant position sections of the output

are the result of the limited (8-bit) position of the ADC converter. In addition,

since the reference signal is generated externally and sampled, the result is

slightly noisy. Figs. 4.10 and 4.11 show the outputs obtained with non-uniform

sample rates: dual sampling (digital wave pattern) and uniformly distributed

samples (sawtooth wave pattern), respectively. It can be seen that the output

responses have very similar characteristics to those with uniform sampling.

Discussion

The closed-loop experiment with the SMAC actuator was used to validate the

non-uniform control algorithm developed earlier in this thesis. It makes use of

a uniform and two non-uniform sampling schemes (dual rate sampling and a

sawtooth wave pattern, respectively) to track the reference input.

6—as discussed in §3.3.1.
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Figure 4.9: With constant sampling period: Tn = 0.015s
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Figure 4.10: With non-uniform sampling period: Dual rate sampling, Tn =
0.01s, 0.02s, average sample rate = 0.015s
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Figure 4.11: With non-uniform sampling period: uniformly distributed sam-
ples (sawtooth wave pattern), Tn ∼ U(0.01,0.02), average sample rate = 0.015s

The obtained results in Figs. 4.9, 4.10 and 4.11 can be quantified using

a performance criteria such as the Integral of absolute error (IAE). The IAE,

which weights all the errors equally, is generally used to evaluate a control

system design and performance (Nise 2007). Its mathematical formula can be

given as:

IAE =

∫ T

0

|e(t)|dt (4.2.1)

where T is the integration time and e(t) is the error signal.

Constant sample Dual sample Sawtooth wave
rate Tn=0.015s rate Tn=0.01s,0.02s pattern Tn=U(0.01,0.02)

0.4842 0.5421 0.5808

Table 4.1: IAE with various sampling schemes

The IAE results have been tabulated in Table 4.1. The values are simi-

lar (or close to each other), with the sawtooth wave pattern sampling scheme
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having the highest IAE value. This is probably because consecutive changes

in the sampling rate can generate more transients effects, as demonstrated in

§3.3.2. Nonetheless, the IAE can effectively be used as a criteria for perfor-

mance assessments of the results achieved with non-uniform sampling.

The hardware results presented here support the simulation conclusion

that the modified canonic δ structure is able to cope with non-uniform sample

rates. In addition, the use of a 4th order controller indicates the feasibility of

applying the approach to complex implementations. Other notable conclusions

with context to the micro-controller implementation are:

• The non-uniform rate control algorithm can operate effectively with a

uniform sample rate.

• Tracking performance is slightly degraded due to filter reconfigurations:

The transient issue is inevitable, however, the filter structure can sup-

press the problem.

• Consecutive variations in the sample rate (such as the case with the

sawtooth wave pattern) produces more transients due to the continuous

change in the filter coefficients.
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Figure 4.12: Simulink view of a 1st order non-uniform sample rate filter; im-
plementation structure: modified canonic-δ

4.3 Implementation with programmable Logic

This section describes validation using an FPGA implementation but this time

in a hardware-in-the-loop (HIL) environment rather than with a real physical

system.

Until recent years, DSPs have been the best choice for enabling high-

performance digital processing. However, due to their increasing speed and

ability to perform mathematical operations, FPGAs are replacing DSPs in

many processing applications. The modern FPGAs can have DSP process-

ing cores embedded that perform the multiplication and accumulation (MAC)

operations efficiently, without consuming any extra resources on the chip, al-

though this facility is not needed for this study. Furthermore, the large number

of programmable gates makes it possible to implement high performance sys-

tems on a single chip, reducing cost and space. Another advantage of FPGAs

is the ability to re-configure. This allows a cheap medium to rectify design
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errors and enables the same hardware to be used for a diverse range of appli-

cations. For the implementation of intentional non-uniform sampling schemes,

the FPGAs are a suitable platform since they allow the execution of all specific

tasks on a single chip, while performing operations in parallel.

In general, FPGAs contain programmable logic components called logic

blocks, with a hierarchy of reconfigurable interconnects that can be configured

to perform complex combinational functions. The FPGA configuration is gen-

erally specified using a hardware description language (HDL) which produces

a technology-mapped netlist. This netlist can be fitted to the actual FPGA

architecture for simulation and verification purposes.

The custom control algorithm has been designed using a MathWorks model-

based design environment Simulink and the Xilinx System Generator design

package can enable an accurate development of a Simulink model for generat-

ing a synthesizable HDL code. This Simulink plug-in for the Xilinx software

provides the graphical development of FPGA designs and can simulate the

implementation process on standard FPGA hardware.

4.3.1 RTL modelling of the non-uniform rate controller

This section describes the non-uniform rate controller design process using Xil-

inx’s System Generator. The transfer function that is implemented is same one

used earlier from Eq. 3.8.1 on page 112, i.e. consists of a notch, proportional-

integral and phase advance:

H(s) =
1 + 1000s

1000s
.
1 + 0.1s

1 + 0.01s
.

1 + 0.0025s2

1 + 0.005s + 0.0025s2
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Design issues

The methodology for implementing Simulink models using System Generator

involves several issues7, due to the underlying hardware characteristics of the

available System Generator blocks (Murthy, Alvis, Shirodkar, Valavanis &

Moreno 2008). Other significant issues include:

• Timing issues with algebraic loops: Since there is an element of feedback

involved, the logic gates will induce a delay that might affect the stability

of the system.

• Fixed point arithmetic: FPGA implementations expect fixed point arith-

metics that must be defined during the hardware design phase. There-

fore, it is necessary to determine the precision required against increased

logic and potential delays associated with long word lengths.

Building and testing in XilinxTM System Generator

The system generator based system design of a 1st order filter is shown in

Fig. 4.12. A word length of 24 bits is chosen, with 18 bits allocated to

the fractional portion and the most significant bit as the sign bit. The non-

uniform sample time coefficients are stored in a look-up table, avoiding the

need of the additional maths required to recalculate them. These are updated

appropriately depending on the current sample time value. As an example of

the code, the script which generates the non-uniform sample rates is listed in

Lst. 4.4. The script generates two sets of sample times (to form the digital

signal sampling scheme) and the coefficient values (in Tables 4.28, 4.3 and 4.4)

7—timing synchronisation, latencies associated with mathematical calculations conver-
sion, fixed-point conversations.

8To implement an integrator (such as listed in Table 4.2), the equivalent δ-filter would
have a pole at δ=0. Having no denominator, of course the corresponding equations are very
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are stored in the FPGA.

The complete schematic of the resulting 4th order filter is shown in Fig.

4.13. The output from the non-uniform rate controller designed using XilinxTM

System Generator is shown in Fig. 4.14. The blocks ‘PLcoeffs’, ‘PAcoeffs’and

‘NOTCHcoeffs’ contains the look-up tables for two sets of coefficients that

depend on the sample rate variable, x. The continuous controllers are also

included for comparison.

Figure 4.13: RTL view of a 4th order non-uniform rate controller

simple because there is no recursion.
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1 function [ u , t ] = fcn (xin )
2

3 /∗ i n i t i a l i s e v a r i a b l e s ∗/
4 p=({xlSigned , 24 , 12 , xlRound , xlWrap } ) ;
5 persistent ts , ts=xl_state (10 , p ) ; persistent a , a=xl_state (0 ,p ) ;
6 persistent b , b=xl_state (10 ,p ) ; persistent c , c=xl_state (10 ,p ) ;
7 persistent i , i=xl_state (0 ,{ xlUnsigned , 8 , 0 } ) ; persistent temp ,
8 temp=xl_state (0 , p ) ; persistent temp_1 , temp_1=xl_state (0 ,p ) ;
9 persistent pout , pout=xl_state (0 , p ) ;

10 persistent r1 , r1 = xl_state (0 , {xlUnsigned , 2 0 , 1 0} ) ;
11

12 /∗ va r i ab l e time step program∗/
13 r1 = xfix (p , r1 +1);
14 if (r1>=(ts ) )
15 pout=temp ;
16 a = xin ;
17 r1=0;
18

19 if (i>=50) /∗ changing the sample time ∗/
20 i=0;
21 if (ts==5)
22 ts=10;
23 else

24 ts=5;
25 end

26 else

27 i = xfix (p , i +1);
28 end

29

30 temp=a+pout ; /∗ de l t a operat i on ∗/
31 temp_1=temp ;
32

33 end

34

35 u=temp_1 ; /∗ output the value ∗/
36 t=ts ;
37 end

Listing 4.4: The non-uniform (dual rate) sampling routine: Tn is 0.01s and
0.02s
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1

2 /∗ i n i t i a l i s e v a r i a b l e s ∗/
3 p=({xlSigned , 20 , 10 , xlRound , xlWrap } ) ;
4 persistent ts , ts=xl_state (10 , p ) ; persistent a , a=xl_state (0 ,p ) ;
5 persistent temp , temp=xl_state (0 , p ) ;
6 persistent r1 , r1 = xl_state (0 , {xlUnsigned , 2 0 , 1 0} ) ;
7

8 /∗main program∗/
9 ts=t ;

10 r1 = xfix (p , r1 +1);
11 if (r1>=(ts ) ) /∗ check i f i t i s time to sample∗/
12 a = xin ;
13 r1=0;
14 end

15 u=a ; /∗ output value ∗/
16 end

Listing 4.5: A ZOH routine with a non-uniform sampling output. The value
of Tn is regulated by Lst. 4.4

Coefficients Tn = 0.02s Tn = 0.01s
c0 1 1
c1 0 0
r1 0 0

Table 4.2: PI coefficient parameters

Coefficients Tn = 0.02s Tn = 0.01s
p 7 8.2
q 1 1
d1 0.667 0.4

Table 4.3: Phase advance coefficient parameters

Coefficients Tn = 0.02s Tn = 0.01s
p 0.9902 0.995
q 0.6667 0.5
r 1 1
d1 0.0588 0.0199
d2 0.6667 0.5

Table 4.4: Notch filter coefficient parameters
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(a) Output from the non-uniform rate controller to a step input
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(b) The zoomed illustration of Fig. 4.14a.

Figure 4.14: Open-loop output to a unit step input (in Matlab) from the
non-uniform rate controller, designed using XilinxTM System Generator. The
non-uniform sample rate: Dual rate with Tn=0.01s, 0.02s.
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Matlab - Simulink

Physical system

FPGA Controller

Spartan3E

Figure 4.15: The HIL schematic block diagram of motor model

4.3.2 Hardware-in-the-loop simulation

In many cases, the most effective way to develop an embedded system is to

connect the system with the actual plant. However, another option is to per-

form a Hardware-in-the-loop (HIL) simulation. HIL simulation is a technique

that is used in the development and test of complex real-time embedded sys-

tems. It can provide an effective platform by adding the complexity of the

plant under control to be tested without compromising factors such as cost,

time and safety. Here, the non-uniform rate controller is implemented on the

board with a dual sample rate with Tn = 0.01s, 0.02s. The HIL model in

Simulink is the DC motor has been used earlier in Chapter 3, Fig. 3.31 on

page 112. The Laplace transfer function for the system is:

H(s) =
0.001 + 0.2501s + 0.25s2 + 0.001s3 + 0.0001s4

s + 0.11s2 + 0.011s3 + 0.0001s4
(4.3.1)

The output signals are then fed in to the physical system that is being simu-

lated in a Matlab-FPGA based environment.

Prototyping board

The implementation is performed using the Xilinx Spartan3E Starter kit (Xil-

inx 2006). The kit, illustrated in Fig. 4.16, includes 500000 equivalent gates
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Figure 4.16: The Spartan3E Development kit

(XC3S5500E), a 50MHz crystal oscillator, asynchronous serial port with RS232

drivers, flash memory for bitstream storage and a USB port for configuring

the FPGA and memory parameters. A PC is used to communicate with the

board and perform the simulation.

4.3.3 Hardware results: closed-loop with DC motor

The DC motor model has been used to verify the concept of treating non-

uniform sampling schemes. The final verification can be made by implementing

the hardware simulation of the controller. By selecting the prototype board,

System Generator can generate a hardware co-simulation block which can be

used to perform a hardware-in-the-loop simulation as in Fig. 4.17.

The System Generator plug-in enables the option of designing hardware

descriptive models in a Matlab based environment. Utilizing the presented

approach, the System Generator provides a graphical environment for simple

conversations into HDL designs as compared to the any manual conversions.



4.3. IMPLEMENTATION WITH PROGRAMMABLE LOGIC 159

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

7

8

9

time (s)

po
si

tio
n

 

 

Control signal
Actuator position output

(a) HIL simulation results with a step input
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(b) The zoomed illustration of Fig. 4.17a.

Figure 4.17: Closed-loop output produced using the non-uniform rate control
algorithm, with the DC motor model in a closed-loop. The non-uniform sample
rate: Dual rate with Tn=0.01s, 0.02s.
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After the non-uniform rate controller is mapped on the FPGA, a hardware-in-

the-loop simulation is exercised. The HIL simulation is an important aspect

for control engineering since the relevant theories can directly be applied to

real-time situations and be put into practice.

4.4 Summary

This chapter was aimed at the software and physical implementation aspects

of the non-uniform rate algorithm. Various non-uniform sampling schemes

can efficiently be processed using simple microcontrollers families. The con-

trol program typically executes recursively, with the sampling frequency and

controller coefficients being updated for the next sample period.

Moreover, this analysis is followed by an HDL implementation where a

DC motor model is used to verify the practicality of the control algorithm for

real-time control. The contributions are summarised as follows:

• The design of a well-defined control task to execute the controller for-

mulation developed in Chapter 3.

• The implementation on basic microcontrollers proves an efficient and

cost effective realization of the required processing functions.

• A Simulink plug-in was utilized to produce the hardware model of the

non-uniform rate controller. The model was verified by successfully per-

forming a HIL simulation.

• The implementation results demonstrate the efficacy of the proposed

approach in practice.



Chapter 5

Conclusions

Chapter overview

This chapter summarises the work done and draws conclusions from the re-

search. The objectives include:

• To summarise the aims and objectives of this research.

• To present the summary of results and conclusions mentioned in the

previous chapters.

• To discuss the strengths and shortcomings of this work.

• To present a framework of potential future work on non-uniform-rate

sampling in the context of control theory.

5.1 Summary of research

This thesis has amassed some theories and techniques from digital control, real-

time signal processing and non-uniform sampling to deal with the problem of

processing and analysing typical control system setups with non-uniform time

sampling. From a practical standpoint, the main theme has been the design

and analysis of control algorithms with intentional non-uniform sample rates.

161
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The Introduction briefly discussed the problems experienced in signal pro-

cessing, especially when implementing high performance control systems. It

then explained the potential benefits of adopting to a non-uniform sampling

regime, which is actively being researched for specific signal processing appli-

cations. It was hence established that this work is rather targeted towards the

introduction of a novel approach for the control communities to appreciate,

and the possibility of using intentional (or unintentional) variations in control

systems to provide a cost effective solution.

The historical perspective reviewed in Chapter 2 provided a genuine ar-

gument regarding the rigidity of control engineers for adhering with uniform

sampling throughout the vast developments in ongoing research. However, on

accounting the successful achievements with non-uniform sampling schemes in

signal processing applications and the potential benefits that can stem from

them, this work becomes relevant, especially when factors like cost, perfor-

mance, integration, easy development and power consumption can be improved

through its successful realization.

Chapter 3 described the methodology and design technique that can be

used to implement non-uniform rate control systems. The key developments

have been the non-uniform rate discrete equivalent transfer functions that can

be designed using the classical control theories. It is later established that

such algorithms are prone to suffer from transient errors that occur due to

the changes in the sample rate. Conversely, it is adjudged that the imple-

mentation structure plays an important role when dealing with non-uniform

sampling, and the direct-z and the modified canonic-δ structures offer a bet-

ter solution to resolve the problem. The identification of efficient controller

formulation to implement the control algorithm using the proper implementa-

tion structure offers a number of advantages if compared with the traditional
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canonic z approach. In addition, the motivation for using the non-uniform

rate control algorithm is further justified in the MSE analysis presented on

page 82. It is shown that not accounting for sample time variations results

in a high MSE value as compared to the case that accounts for non-uniform

sampling conditions. The Fourier transform was accepted to be the ultimate

tool for evaluating the system response and to provide an acceptable solution

for the frequency response characteristics. After the analysis, it was concluded

that, as far as the phase lag issues of the system are concerned, the results

of adopting a non-uniform sampling frequency are not very encouraging. It

was shown (for the first time) that the variations in the sampling distribution

does not provide any added advantage in the phase response, however the im-

portance of the non-uniform rate implementation algorithm and its evaluation

techniques is a plausible development for control literature. In addition, such

techniques can be used to provide a basis for very valuable testing of control

systems with varying sampling periods prior to any practical implementation

in terms of real hardware. Constraints arising due to jitter sampling issues in

real-time control can now be analysed thoroughly using the Fourier techniques

highlighted and the frequency characteristics can be determined.

Chapter 4 addressed the hardware and software implementation aspects of

the developed control algorithm and presented the general process of specify-

ing the main components and an overall specification for implementation. In

addition, the non-uniform rate control algorithm was validated using two hard-

ware implementations: with a microcontroller control of an electromechanical

magnetic positioning actuator and a HIL simulation of a DC motor. These

showed that intentional non-uniform sampling can be applied and regulated

using standard hardware technologies.

From the contributions of each chapter, it can finally be concluded that
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the objectives of this research work have been fulfilled. By exploiting the

requirements for implementing real-time control and by identifying the de-

pendence of non-uniform sampling on the filter implementation structure, a

method to implement the formulated control algorithm has been proposed. It

is demonstrated that such a design can also be applied to basic microcontroller

chips, which results in a low cost, numerically effective solution for real-time

applications.

Thesis aims

The aim of this thesis has been to investigate the idea of non-uniform sampling

and discuss some key questions that were mentioned at the outset, which have

been reproduced here for convenience:

Q1 Can intentional non-uniform sampling administer any benefit in digital

control applications?

A1 As far as the phase lag issue mentioned in §2.1.1 are concerned, No.

With a non-uniform sample rate, the phase response at low frequencies

remains bounded in between the maximum and minimum sample rate

values being used in the process. At higher frequencies (or close to the

Nyquist limit) the variations in the sampling scheme become apparent

largely due to the reconstruction process not having enough samples to

reform the complete waveform.

Q2 Given a continuous controller, how can its non-uniform rate discrete

equivalent be designed using the z-transform?

A2 Yes, although this can be done only if the sample time instants are

known in advance (or before the next sample instant). Then the transfer
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function characteristics can be adjusted by recalculating its coefficients

in the z-transform according to the changing sampling frequency. This

approach is based on the same classic controller design methods used in

control theory.

Q3 How to analyse the frequency response of a non-uniform rate controller?

A3 The Fourier analysis technique, highlighted in §3.4, can effectively be

used to observe the frequency datum for uniform and non-uniform sam-

pling conditions. Although there may be various techniques available

from the signal processing communities, the chosen technique offers a

combination of frequency domain and time domain analysis that plots

the magnitude and phase of the signal in the time domain. This is rela-

tive to plotting Bode plots for digital control.

Q4 Can the non-uniform rate controller be implemented using standard

hardware?

A4 Yes, the proposed control algorithm is implemented on an 8051 micro-

controller and an FPGA starter board. The results show that control of

a real system is possible and that the performance is no different than

the fixed rate control.

Key features of the research

• Brief review of the role of non-uniform sampling in control applications.

• Design and development of non-uniform rate controllers using classical

control theories. A flexible controller design approach is presented that

relies on adjusting the controller parameters at run time according to

the specific implementation timing behaviour.
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• Identification of limitations in digital control with non-uniform sampling:

limitations of the non-uniform rate control algorithm are demonstrated

through examples:

◦ the transient phenomenon is acknowledged to cause sudden ampli-

fications in the output response of the digital filter, whenever the

sample rate changes

◦ it is noted that the severity of the transient signal depends on the

size of magnitude change in the filter coefficients

◦ the canonic z-filter and the canonic δ-filter structures are identified

to be unsuitable for non-uniform sampling

◦ the modified canonic δ-filter and the direct z-filter structures are

able to suppress the transient phenomenon

• A Fourier analysis technique is used to analyze the frequency response

of the non-uniform rate controller in the time domain:

◦ a criterion is defined for performance evaluation

• Experiments with various sample rate distributions reveal no particular

benefit when utilising non-uniform sampling in digital controllers. In

addition, there is no significant detriment in the produced outputs (apart

from the point where a very large rate change is imposed).

• The developed control algorithm is formally designed in C/C++ and is

implemented on a standard 8051 microcontroller.

• The RTL modelling of the non-uniform rate controller is formulated by

effectively using XilinxTM ’s System Generator.
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• The implementations demonstrate the efficacy of the proposed approach

in practice.

5.2 Future work

The concept of using non-uniform sampling as a tool has opened up a door

of various possibilities in the engineering discipline. However, there will be

some application-specific limitations that need to be discovered and hence a

thorough design analysis will have to be carried out before the technique can

make its way into a practical solution. It should be noted that uniform sam-

pling is still the most preferable method to execute tasks due to its simplicity

and scope, and this research study has not highlighted any distinct advantages

of non-uniform sampling that will differentiate the choice of its suitability for

an application. This work has brought forward some specific digital control

issues to light and attempted to initiate and expand the scope of non-uniform

sampling in this subject for research. Realising the importance of the on-

going topic, some elements of this work can be extended for future research

endeavours:

• The non-uniform-rate control algorithm presented in §3.2.2 can regulate

control systems while accommodating several sample rates. This is in

particular interest to the application for analysing control systems for

jitter impacts on control performance. Moreover, the idea could be ex-

tended to the design of time varying control systems and robust control.

• The generalized DFT presented in Appendix B can effectively be used by

control engineers to estimate the spectral content of non-uniformly sam-

pled data. The algorithm can further be improved by using higher order
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numerical integration techniques to calculate the Fourier coefficients.

• The optimal strategy for eliminating/supressing the transient phenomenon

is still an open question. Selecting the correct implementation structure

reduces the unwanted transients, however, they still exist and may have

a significant effect in small signal analysis. Perhaps other filter struc-

tures (e.g. the lattice, all-pass based or wave structures, etc.) may offer

better suppression capabilities as compared to the ones identified here.

• Non-uniform sampling can also be speculated for the theory of fault

tolerant control (Bilinskis & Cain 1996, Mikelsons & Greitans 1996).

• The abstract of alias-free sampling can also be applied to the theory of

system identification (See §5.2.1).

5.2.1 Possible application to system identification

In the authors opinion, system identification is an area where the potential

benefits of non-uniform sampling are clear. Hence it is discussed in slightly

more detail.

The ability to identify and analyze control systems in an effective and ef-

ficient manner is crucial for the success of any application in the engineering

industry. If sufficient experimental data is available, the models can be con-

structed through the process of system identification, which can be applied to

virtually any system and typically yields relatively simple models that can well

describe the systems behavior within a defined operational regime. However,

since the emergence of nonlinear sophisticated applications, the control sys-

tem continually demands the development of increasingly complex means for
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system identification. In such an environment it is important that the exper-

imental data collected to be ‘rich enough’ to achieve a coherent specification

model that accurately describes the overall system behavior, and is constantly

synchronized with any changes to the system implementation (Landau, Lan-

dau & Zito 2006).

Dynamic systems in the physical world are naturally described in the

continuous-domain. However, most system identification techniques are based

on discrete-time models (Hugues & Liuping 2008), that are estimated from

sampled data collected with a fixed sample rate, which may not be valid at

other rates1. Furthermore, in some situations, it may be difficult to obtain

equidistantly sampled data and there is an absence of the appropriate non-

uniform sampling analysis techniques. The problem is of importance as the

case of non-uniformly sampled data occurs in several applications. Since most

of the study in control theory has been targeted towards uniform sampling, the

standard discrete-time linear, time invariant models might not be applicable

for continuous identification. Moreover, issues such as inter-sample behav-

ior and difficulties at high sampling frequencies are well known drawbacks of

discrete-time models (Hugues & Liuping 2008).

One promising solution to this problem is to make use of digital alias-

free signal processing techniques to identify continuous-time models that will

match more closely to the actual system2. Non-uniform sampling techniques

can be used to generate a tentative continuous-time model, by utilising the

randomization as a tool for improving the representation of the signals sampled

for processing. On the other hand, a uniformly sampled signal will rapidly

1—as discussed in §2.4 on page 38.
2It is worth mentioning that the concept of DASP does not use any sort of interpolation

to compensate for the non-uniformity in between the sample instances, due to which it
enables the simplification of complex designs.
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become obsolete as the signal frequency increases, the DASP non-uniform

sampling technique would enable the rapid and reliable processing of the signal

even at low average sample rates3. A pragmatic solution will therefore satisfy

the following properties:

• The algorithms must be able to adapt and process non-uniformly sam-

pled data correctly by utilizing the appropriate numerical techniques.

• It should be able to accept whatever information is provided, and pro-

duce a reasonably accurate hypothesis of the underlying model that is a

suitable generalization datum4.

3This is due to the preservation of the spectral contents of the sampled signal.
4Instead of expecting some notionally complete amount of initial information, the DASP

approach can aid in generating a reasonable estimate of the target from a limited (or po-
tentially missing) amount of input data.



Appendix A

Uniform sampling

A sample refers to a value or set of values at a point in time. In order to

acquire a sample, a sampler has to be used, which is a subsystem or operator

that extracts samples from continuous signal. A sampling process can convert

a continuous analogue x(t) into a discrete time representation x[n].

The plain conceptualization of sampling is that of an Ideal sampler:

Figure A.1: The uniform sampling process
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Let x(t) be a continuous signal which is to be sampled, and that sampling

is performed by measuring the value of the continuous signal every T seconds.

Thus, the sampled signal x[n] is given by:

x[n] = x(nT ), n = 0, 1, 2, · · · (A.0.1)

The sampling frequency or sampling rate fs is defined as the number of

samples obtained in one second, or fs = 1/T . The sampling rate is measured

in hertz or in samples per second. To reconstruct the original signal x(t)

completely and exactly, the Nyquist Sampling theorem needs to be followed,

i.e. sample at least twice the maximum signal bandwidth. Since the time

variable, T , in this case is a constant the sampling is uniform.

The phase lag

Generally, there is always a ‘half sample delay’ associated with uniform sam-

pling. This means that there is a linear relationship of the sampling error with

the sampling period1. To illustrate the ‘half sample delay’ is to reconstruct part

of the Fourier series to form the continuous equivalent as a staircase function.

With a Zero-order-hold, the DAC converter can produce the output signal by

holding the values constant between successive updated intervals (look at Fig.

A.2). The laplace transfer function of the ZOH can be defined as (Middleton

& Goodwin 1990):

ZOH(s) =
1− e−Ts

s

So the phase delay introduced is approximately:

φs ≃ 360f0
1

2fs

1If the speed of sampling is increased by a factor of two, the phase lag error will be
reduced by half.
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where φs is the phase delay introduced by sampling. Wu (2005) took the

additional effect of the computation time into consideration and derived the

total phase lag to be:

φ = φs + φc ≃ 360fc(
1

2fs

+ Tc) (A.0.2)

where Tc is the computation time, φc is the phase delay introduced by Tc and

φ is the total phase delay. This can be expressed in somewhat more practical

way. Let R be the ratio of the sampling frequency to the required bandwidth

frequency, and K be the proportion of the sample period taken up by the

computation. Then:

R =
fs

f0

K =
Tc

Ts

= fsTc

φ =
360(0.5 + K)

R

As the phase delay should be no more than 5 ◦, the corresponding interrela-

tionship between R and K to meet this requirement is given by:

R = 36 + 72K

which explains the high sampling requirements required by electromechanical

applications for maintaining a 5 ◦ phase margin.
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(a) The ZOH reconstruction

(b) Induced phase lag due to the ZOH

Figure A.2: The reconstruction process



Appendix B

Non-uniform sampling:

Frequency estimation

This Appendix gives the method to estimate the Non-uniform Discrete Fourier

Transform of a non-uniformly sampled signal1.

The Fourier transform is basically a mapping from the time domain to the

frequency domain. This transform defines the frequency content parameters

of a signal. Consider the Discrete Fourier Transform F (fk) which, according

to Ramirez (1992), can be defined as:

F (fk) =
N−1
∑

j=0

d(tj)exp{2πfktji} (B.0.1)

where

i =
√
−1

N is the total number of data points

fk is the frequency

1Despite the fact that the Fast Fourier transform is an effective technique to estimate the
spectral contents of a sampled signal, it is limited in its scope with equally spaced samples.
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Figure B.1: Uniformly sampled data. Sampling below the Nyquist frequency
causes aliases which can clearly be seen to have corrupted the signal

tj = j ∆T, j ∈ {0, 1, ..., N-1}, are periodic time instances

d(tj) is a complex discretely sampled data.

To illustrate the use of the Eq. B.0.1 as a frequency estimation tool, a

simulation is conducted with the signal data generated with a sample time of

∆T = 0.01s. The Nyquist critical frequency will be one-half the inverse of the

sample time:

fNc =
1

2T
= 50Hz (B.0.2)

With an input signal frequency of 80Hz2, the spectral plot generated is

illustrated in Fig. B.1. Clearly, due to under-sampling, the spectral contents

of the signal have been corrupted with false frequency images. For a much

2Since the input data is greater than the Nyquist frequency, aliasing will occur.
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Figure B.2: Non-uniformly sampled data. Adding variations to the sampling
scheme can mitigate the effects of aliasing

more in depth discussion on the topic, refer to Bretthorst (2008).

Consider the following generalisation of Eq. B.0.1:

F (fk) =

N−1
∑

j=0

d(tj)exp{2πfktgi} (B.0.3)

where all the parameters are the same as before with the exception of tg:

tg ∈ {..., tk−1, tk, tk+1, ...}, are non-uniform time instances

The results are demonstrated using a simulation illustrated in Fig. B.2, The

sampled signal is 80Hz being sampled with and average non-uniform sample

rate of 0.01s ∼ U(0.08,0.012). In generating the times to acquire the samples,

a uniform distribution is chosen3. It seems that when adding some randomness

3The discussion here pertains to all non-uniformly sampled data and not just to the
pseudo-random sampling scheme.
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in the sampling scheme, the aliases are converted into broadband noise which

does not have the same implications as aliases.

Aliasing a general phenomenon and exists in both uniform and non-uniformly

sampled data. It is the fact that all of the times may be expressed as an in-

teger multiple of the smallest sample time, which is the primary reason for

aliasing4. The addition of variations can help increase the operating band-

width where the Nyquist frequency will depend on the smallest sample time

parameter. Therefore, non-uniform sampling has an advantage over uniform

sampling since it not how fast the sampler can sample data, but about how to

use variations to measure frequencies with much larger bandwidths.

Improvements by numerical methods

Instead of using the Euler’s approximation, the Fourier coefficients can fur-

ther be improved by applying other sophisticated numerical integration rules5.

Consider the following substitution where

y(ti) = x(ti)e
−j2Πk∆fti

the result with trapezoidal integration can be expressed

Xd(k∆f) = ∆t

N−1
∑

n=0

[y(ti) + y(ti+1)]
(ti+1 − ti)

2
(B.0.4)

the result with Simpson’s integration can be expressed

Xd(k∆f) = ∆t

N−1
∑

n=0

[y(ti) + y(ti+1)]
(ti+1 − ti)

2
(B.0.5)

4Constant sampling has the smallest possible bandwidth.
5Although the improvement in approximation will come at the cost of increased com-

plexity of the expression.



Appendix C

Code implementation details

Matlab code

The following include the m-file codes for the:

• The conventional controller with the direct-z implementation structure.

• The non-uniform rate algorithm with the direct-z implementation struc-

ture.

• The non-uniform rate algorithm with the modified canonic δ implemen-

tation structure.

• Perform a non-uniform Discrete Fourier transform on a set of non-uniformly

collected data samples.
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17 out2s snoise wait ts sin sin_1 m temp v1 v2 q a0 a1 a2 b1 b2 global

18 input_1 input_2 output output_1 output_2 s s2 derivative outt ts_1

19 pseudo ii ptime time1 n0 n1 n2 m1 m2 time=x ( 1 ) ;
20

21 if ( time==0)
22

23 m=0;temp=0;input_1=0;output=0;output_1=0;ii=1;ptime=0;time1=0;
24 input_2=0;output_2=0;wait=0;s=0;s2=0;outs=0;out2s=0;v1=0;v2=0;outt=0;
25 ts=0.01;
26 samplerate=ts ;
27 n0=10;n1=0.35;n2=0.0025;m1=0.105;m2=0.0005;
28 % 2ˆ{nd} phase lead−lag compensator

29 %n0=1;n1=0;n2=0.0025;m1=0.005;m2=0.0025; % 2nd order notch

30 end

31

32 a0=((n0∗ts∗ts )+(2∗n1∗ts )+(4∗n2 ) ) / ( ( ts∗ts )+(2∗m1∗ts )+(4∗m2 ) ) ;
33 a1=((2∗n0∗ts∗ts)−(8∗n2 ) ) / ( ( ts∗ts )+(2∗m1∗ts)+(4∗m2 ) ) ;
34 a2=((n0∗ts∗ts)−(2∗n1∗ts )+(4∗n2 ) ) / ( ( ts∗ts )+(2∗m1∗ts )+(4∗m2 ) ) ;
35 b1=((2∗ts∗ts)−(8∗m2 ) ) / ( ( ts∗ts )+(2∗m1∗ts )+(4∗m2 ) ) ;
36 b2=((ts∗ts)−(2∗m1∗ts)+(4∗m2 ) ) / ( ( ts∗ts )+(2∗m1∗ts)+(4∗m2 ) ) ;
37

38 else

39 if ( time>=samplerate)
40 time1=time ;
41 ptime=samplerate ;
42 samplerate=pseudo (ii+1);
43 ii=ii+1;
44

45 input=x ( 2 ) ;
%input data streaming in

46

47 ts=samplerate−ptime ;
48 output = a0∗input + a1∗input_1 + a2∗input_2 − b1∗output_1 − b2∗output_2 ;
49 output_2=output_1 ; output_1=output ; input_2=input_1 ; input_1=input ;
50

51 end

52 end

53 u=output ;
54 end

Listing C.1: The conventional controller algorithm with the direct-z imple-
mentation structure
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55 outs out2s snoise wait ts sin sin_1 m temp v1 v2 q a0 a1 a2 b1 b2

56 global input_1 input_2 output output_1 output_2 s s2 derivative outt

57 ts_1 pseudo ii ptime time1 n0 n1 n2 m1 m2

58

59 time=x ( 1 ) ;
60 if ( time==0)
61 m=0;temp=0;input_1=0;output=0;output_1=0;ii=1;ptime=0;time1=0;
62 input_2=0;output_2=0;wait=0;s=0;s2=0;outs=0;out2s=0;v1=0;v2=0;outt=0;
63 pseudo = [ 0 . 0 1 , 0 . 0 1 5 , 0 . 0 2 , 0 3 , 0 . 0 3 5 , 0 . 0 5 , . . . ] ; %predefined sample times

64 samplerate=pseudo ( 1 ) ; ts=pseudo ( 1 ) ;
65 %n0=1;n1=0;n2=0.0025;m1=0.005;m2=0.0025; % 2nd order notch

66 n0=10;n1=0.35;n2=0.0025;m1=0.105;m2=0.0005;
% 2ˆ{nd} phase lead−lag compensator

67 end

68 if ( time>=samplerate)
69 time1=time ;
70 ptime=samplerate ;
71 samplerate=pseudo (ii+1);
72 ii=ii+1;
73

74 a0=(n0∗ts∗ts+2∗n1∗ts+4∗n2 )/ ( ts∗ts+2∗m1∗ts+4∗m2 ) ;
75 a1=(n0∗ts∗ts−2∗n1∗ts−4∗n )2/( ts∗ts+2∗m1∗ts+4∗m2)+
76 (n0∗ts_1∗ts_1−2∗n1∗ts_1−4∗n2 )/ ( ts_1∗ts_1+2∗m1∗ts_1+4∗m2 ) ;
77 a2=(n0∗ts∗ts−2∗n1∗ts+4∗ts∗n2 )/ ( ts∗ts+2∗m1∗ts+4∗m2 )
78 b1=(ts∗ts−2∗m1∗ts−4∗m2 )/ ( ts+2∗m1∗ts+4∗m2)+
79 ( ts_1∗ts_1+2∗m1∗ts_1−4∗m2 )/ ( ts_1∗ts_1+2∗m1∗ts_1+4∗m2 ) ;
80 b2=(ts∗ts−2∗m1∗ts+4∗m2 )/ ( ts∗ts+2∗m1∗ts+4∗m2 ) ;
81

82 input=x ( 2 ) ;
%input data streaming in

83

84 ts=samplerate−ptime ;
85 output = a0∗input + a1∗input_1 + a2∗input_2 − b1∗output_1 − b2∗output_2 ;
86 output_2=output_1 ; output_1=output ; input_2=input_1 ; input_1=input ;
87 end

88 end

89 u=output ;
90 end

Listing C.2: The non-uniform rate algorithm with the direct-z implementation
structure
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91 samplerate ts sin sin_1 m temp q a0 a1 a2 b1 b2 input_1 input_2

92 output output_1 output_2 derivative pseudo ii snoise global wait u1

93 v1 y1 x1 w1 r1 p1 q1 d1 d2 ptime n0 n1 n2 m1 m2 w1_1 v1_1 x1_1 y1_1

94 y1_2 y1_3 ts_1 global u1i v1i y1i x1i w1i r1i p1i q1i d1i d2i n0i

95 n1i n2i m1i m2i w1_1i v1_1i x1_1i y1_1i y1_2i y1_3i global v1j y1j

96 w1j p1j q1j d1j w1_1j v1_1j y1_1j y1_2j y1_3j c02 c12

97

98 time=x ( 1 ) ; input=x ( 2 ) ;
99

100 if ( time==0)
101 c02=0;c12=0;m=0; temp=0; wait=0; input_1=0; output=0; output_1 =0;
102 u=0;ii=1; w1_1=0; v1_1=0; x1_1=0; y1_1=0; y1_2=0; y1_3=0; ts_1=0;
103

104 pseudo =[ 0 . 0 1 , 0 . 0 1 5 , 0 . 0 2 , 0 3 , 0 . 0 3 5 , 0 . 0 5 , . . . ] ; %predefined sample times

105

106 u1i=0;v1i=0;y1i=0; x1i=0;w1i=0;r1i=0;p1i=0;q1i=0;d1i=0;d2i=0; w1_1i=0; v1_1i=0;
107 v1j=0;y1j=0;w1j=0; p1j=0;q1j=0;d1j=0; w1_1j=0; v1_1j=0; y1_1j=0; y1_2j=0; y1_3j=0;
108 ts=pseudo ( 1 ) ; samplerate=pseudo ( 1 ) ; snoise=0; x1_1i=0; y1_1i=0; y1_2i=0; y1_3i=0;
109 u1=0;v1=0;y1=0;x1=0;w1=0;r1=1;p1=0;q1=1;d1=0;d2=0; ptime=0;
110

111 %n0=1;n1=0;n2=0.0025;m1=0.005; m2=0.0025; % 2nd order notch

112 n0=10;n1=0.35; n2=0.0025;m1=0.105; m2=0.0005; % 2nd order phase lead−lag compensator

113 end

114 if ( time>=samplerate )
115

116 ptime=samplerate ;
117 samplerate=pseudo ( ii+1);
118 ii=ii+1;
119 ts=samplerate−ptime ;
120

121 c0=(n0∗ts∗ts+4∗n2+2∗n1∗ts )/( ts∗ts+2∗m1∗ts+4∗m2 ) ;
122 c1=(2∗ts∗ts )/( ts∗ts+2∗m1∗ts+4∗m2 )+(2∗ ts_1∗ts_1+4∗m1∗ts_1 )/( ts_1∗ts_1+2∗m1∗ts_1+4∗m2 ) ;
123 c2=(4∗n0∗ts∗ts_1 )/( ts∗ts_1+2∗m1∗ts+4∗m2 ) ;
124 r1=(2∗ts∗ts )/( ts∗ts+2∗m1∗ts+4∗m2 )+(2∗ ts_1∗ts_1+4∗m1∗ts_1 )/( ts_1∗ts_1+2∗m1∗ts_1+4∗m2 ) ;
125 r2=(4∗ts∗ts_1 )/( ts∗ts_1+2∗m1∗ts+4∗m2 ) ;
126

127 p=c0 ;
128 d1=r1 ;
129 q=c1/d1 ;
130 d2=r2/d1 ;
131 r=c2 /( d1∗d2 ) ;
132 u1=input ;
133

134 v1=u1−w1−x1 ;
135 y1=(( p1∗v1 )+( q1∗w1 )+( r1∗x1 ) ) ;
136 x1=x1+d2∗w1 ;
137 w1=w1+(d1∗v1 ) ;
138

139 w1_1=w1 ; v1_1=v1 ; x1_1=x1 ;
140 y1_3=y1_2 ; y1_2=y1_1 ; y1_1=y1 ;
141

142 w1_1j=w1j ; v1_1j=v1j ;
143 y1_3j=y1_2j ; y1_2j=y1_1j ; y1_1j=y1j ;
144 end

145 end

146 u=y1 ;
147 end

Listing C.3: The non-uniform rate algorithm with the modified canonic δ
implementation structure
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1 data = [ 5 , 1 . 2 , 3 , 4 . 5 , 1 , . . . ] ;
2

3 df=0.01; N=500;M=5/df ;
4

5 for k=1:(M )
6 Sf (k)=complex ( 0 , 0 ) ;
7 for n=1:N
8 dt=(time (n+1)−time (n ) ) ;
9 Sf (k)=Sf (k)+(data (n )∗ ( exp(−i∗2∗pi∗time (n )∗k∗df ) ) ) ;

10 Sf (k)=Sf (k )∗1/N ;
11 end

12

13 for k=1:M
14 F (k)=(k )∗df ;
15 end

16

17 mag=20∗log10 ( abs (Sf ) ) ; %magnitude in dB

18 pha=180/pi∗angle (Sf ) ; %phase in degrees

Listing C.4: Calculating the non-uniform Discrete Fourier transform



Appendix D

Derivation of the non-uniform

rate compensator coefficient

values

Although the main text includes the equations to calculate the filter coefficient

values, it is useful to know how they are derived for both the z and the δ-

operators.

D.1 The z-filter

Transforming to the z-domain:

Consider the generalise Laplace equation of a 2nd order filter:

H(s) =
n0 + n1s + n2s

2

1 + m1s + m2s2
(D.1.1)
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The bilinear transform uses s = 2
T

(z−1)
(z+1)

so:

H(z) =
n0 + n1[

2
T

(z−1)
(z+1)

] + n2[
2
T

(z−1)
(z+1)

]2

1 + m1[
2
T

(z−1)
(z+1)

] + m2[
2
T

(z−1)
(z+1)

]2
(D.1.2)

Since it is a 2nd filter, there are 2 sample rates that must be considered in the

analysis. Eq. D.1.2 can be rearranged to include the current sample rate, Tn,

as well as the previous sample rate, Tn−1:

H(z) =
n0 + n1[

2
T

(z1−1)
(z1+1)

] + n2[
2
T

(z1−1)
(z1+1)

2
T

(z2−1)
(z2+1)

]

1 + m1[
2
T

(z1−1)
(z1+1)

] + m2[
2
T

(z1−1)
(z1+1)

2
T

(z2−1)
(z2+1)

]
(D.1.3)

Eq. D.1.3 can be rearranged to give:

z1z2[n0T
2 + 2n1T + 4n2] + z1[n0T

2 + 2n1T − 4n2]+

z2[n0T
2 − 2n1T − 4n2] + [n0T

2 + 2n1T + 4n2]

H(z) =

z1z2[T
2 − 2m1T + 4m2] + z1[T

2 + 2m1T − 4m2]+

z2[T
2 − 2m1T − 4m2] + [T 2 − 2m1T + 4m2]

(D.1.4)

The z equivalent transfer function of Eq. D.1.1 is defined as:

H(z) =
a0 + a1z

−1 + a2z
−2

1− b1z−1 − b2z−2
(D.1.5)

To achieve the result in the form of Eq. D.1.5, all the variables of Eq. D.1.4

are divided by z1z2(T
2 − 2m1T + 4m2). The coefficient values are now given

as:

a0 =
n0T

2 + 2n1T + 4n2

T 2 + 2m1T + 4m2

a1 =
n0T

2 + 2n1T − 4n2

T 2 + 2m1T + 4m2
z−1
2 +

n0T
2 − 2n1T − 4n2

T 2 + 2m1T + 4m2
z−1
1
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a2 =
n0T

2 − 2n1T + 4n2

T 2 + 2m1T + 4m2
z−1
1 z−1

2

b1 =
T 2 + 2m1T − 4m2

T 2 + 2m1T + 4m2
z−1
2 +

T 2 − 2m1T − 4m2

T 2 + 2m1T + 4m2
z−1
1

b2 =
T 2 − 2m1T + 4m2

T 2 + 2m1T + 4m2
z−1
1 z−1

2 (D.1.6)

By associating the current sample rate, Tn with z−1
1 , and the previous sample

rate, Tn−1 with z−1
2 , hence:

a0 =
n0 · (Tn)2 + 2 · n1 · Tn + 4 · n2

(Tn)2 + 2 ·m1 · Tn + 4 ·m2

a1 =
n0 · (Tn)2 − 2 · n1 · Tn − 4 · n2

(Tn)2 + 2 ·m1 · Tn + 4 ·m2
+

n0 · (Tn−1)
2 + 2 · n1 · Tn−1 − 4 · n2

(Tn−1)2 + 2 ·m1 · Tn−1 + 4 ·m2

a2 =
n0 · Tn · Tn−1 − n1 · (Tn + Tn−1) + 4 · n2

Tn · Tn−1 + m1 · (Tn + Tn−1) + 4 ·m2

b1 =
(Tn)2 − 2 ·m1 · Tn − 4 ·m2

(Tn) + 2 ·m1 · Tn + 4 ·m2
+

(Tn−1)
2 + 2 ·m1 · Tn−1 − 4 ·m2

(Tn−1)2 + 2 ·m1 · Tn−1 + 4 ·m2

b2 =
Tn · Tn−1 −m1 · (Tn + Tn−1) + 4 ·m2

Tn · Tn−1 + m1 · (Tn + Tn−1) + 4 ·m2

(D.1.7)

D.2 The δ-filter

Transforming to the δ-domain:

Consider the generalise Laplace equation of a 2nd order filter:

H(s) =
n0 + n1s + n2s

2

1 + m1s + m2s2
(D.2.1)
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The δ transform uses s = 2δ
T (2+δ)

so:

H(δ) =
n0 + n1[

2δ
T (2+δ)

] + n2[
2δ

T (2+δ)
]2

1 + m1[
2δ

T (2+δ)
] + m2[

2δ
T (2+δ)

]2
(D.2.2)

Repeating the procedure carried out with the z-operator, the 2nd δ filter with

non-uniform sampling is expressed as:

H(δ) =
n0 + n1[

2δ1
T (2+δ1)

] + n2[
2δ1

T (2+δ1)
2δ2

T (2+δ2)
]

1 + m1[
2δ1

T (2+δ1)
] + m2[

2δ2
T (2+δ2)

]2
(D.2.3)

Eq. D.2.3 can be rearranged to give:

δ1δ2[n0T
2 + 2n1T + 4n2]+

δ1[2n0T
2 + 4n1T ] + δ2[2n0T

2] + [4n0T
2]

H(δ) =

δ1δ2[T
2 − 2m1T + 4m2]+

δ1[2T
2 + 4m1T ] + δ2[2T

2] + [4T 2]

(D.2.4)

The δ equivalent transfer function of Eq. D.2.1 is defined as:

H(δ) =
c0 + c1δ

−1 + c2δ
−2

1 + r1δ−1 + r2δ−2
(D.2.5)

To achieve the result in the form of Eq. D.2.5, all the variables of Eq. D.2.4

are divided by δ1δ2(T
2 − 2m1T + 4m2). The coefficient values are now given

as:

c0 =
n0T

2 + 2n1T + 4n2

T 2 + 2m1T + 4m2

c1 =
2n0T

2 + 4n1T

T 2 + 2m1T + 4m2
δ−1
2 +

2n0T
2

T 2 + 2m1T + 4m2
δ−1
1

c2 =
4n0T

2

T 2 + 2m1T + 4m2
δ−1
1 δ−1

2
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r1 =
2T 2 + 4m1T

T 2 + 2m1T + 4m2
δ−1
2 +

2T 2

T 2 + 2m1T + 4m2
δ−1
1

r2 =
4T 2

T 2 + 2m1T + 4m2
δ−1
1 δ−1

2 (D.2.6)

By associating the current sample rate, Tn with δ−1
1 , and the previous sample

rate, Tn−1 with δ−1
2 , hence:

c0 =
n0 · (Tn)2 + 2 · n1 · Tn + 4 · n2

(Tn)2 + 2 ·m1 · Tn + 4 ·m2

c1 =
2 · n0 · (Tn)2

(Tn)2 + 2 ·m1 · Tn + 4 ·m2
+

2 · n0 · (Tn−1)
2 + 4 · n1 · Tn−1

(Tn−1)2 + 2 ·m1 · Tn−1 + 4 ·m2

c2 =
4 · n0 · Tn · Tn−1

Tn · Tn−1 + m1 · (Tn + Tn−1) + 4 ·m2

r1 =
2 · (Tn)2

(Tn)2 + 2 ·m1 · Tn + 4 ·m2
+

2 · (Tn−1)
2 + 4 ·m1 · Tn−1

(Tn−1)2 + 2 ·m1 · Tn−1 + 4 ·m2

r2 =
4 · Tn · Tn−1

Tn · Tn−1 + m1 · (Tn + Tn−1) + 4 ·m2
(D.2.7)



Appendix E

Publications

The published work has been listed in this thesis for convenience. This includes

two conference papers:

• M. S. Khan, R.M. Goodall and R. Dixon, Implementation of non-uniform

sampling for alias-free processing in digital controls. UKACC Interna-

tional Conference on Control, 2008.

• M. S. Khan, R. Dixon, and R.M. Goodall, Design and analysis of non-

uniform rate controllers. UKACC International Conference on Control,

2010.
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Appendix F

Sampling models

Much of the theory in this appendix has been reported in Bilinskis (2007).

Randomizations in a sampling scheme can seriously affect the precision

of signal processing applications. Therefore it is important to analyse the

sampling model that can for the purpose of deliberate non-uniform sampling.

Normal distribution: jitter sampling

This type of sampling occurs naturally in many applications, e.g. imperfect

sensors, clock delays, etc. It can be defined by:

tk = kT + τk, T > 0, k = 0, 1, 2, · · · , (F.0.1)

where τk is a set of independent and identically distributed random variables

with zero mean. The sample scheme has been illustrated in Fig. F.1, which

depicts the probability density functions, p(t), of time intervals (tk-t0) for

k=1,2,3,· · · . The sampling point density function is characterized by:

p(t) =

∞
∑

k=1

pk(t) (F.0.2)
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Figure F.1: Probability density functions for jitter sampling. (a), (b), (c),
(d) are the functions of the time intervals t1-t0, t2 − t0, t3 − t0 and t7 − t0
respectively. (e) concluding sampling point density function.

Note that as t increases, the peaks of the function do not decrease. This

implies that when a signal, x(t), is sampled at the instants tk, some parts of

the signal will be sampled with a higher probability than others. This is an

undesirable characteristic and will lead to signal processing errors.
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Uniform distribution: additive random sampling

This type of sampling can be defined as:

tk = tk−1 + τk, k = 0, 1, 2, · · · , (F.0.3)

where τ is a random variable whose successive sampling intervals are statis-

tically independent and identically distributed. Consider the time intervals

[0,tk]=τ1+τ2+· · ·+τk. These variables can be characterised by their probabil-

ity density functions p(t). Then:

p1(t) = pτ (t),

p2(t) = p1(t) ⋆ pτ (t),

· · ·

pk(t) = pk−1(t) ⋆ pτ (t), (F.0.4)

where the ⋆ denotes the convolution operation. When such a sampling scheme

is used, the density function may vary within a wide boundary without wors-

ening the sampling conditions since as t increases, the sampling point density

function will tend to a constant level. Fig. F.2 illustrates the PDF of the

additive random sampling scheme. It can be seen as a function that enables a

signal to be sampled with an equal probability of all sampling instances.
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Figure F.2: Probability density functions for additive random sampling. (a),
(b), (c), (d) are the functions of the time intervals t1-t0, t2 − t0, t3 − t0 and
t7 − t0 respectively. (e) concluding sampling point density function.
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