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ABSTRACT 

This thesis investigates the constant pressure cake filtration of interacting 

cellulose fibre/TiO2 (rutile) mixtures, and involved experimental studies using an 

automated pressure filtration apparatus. The influence of suspension composition, 

filtration pressure and solution environment on filtration has been discussed in relation 

to cake properties such as average cake porosity and specific resistance. To help 

interpret the filtration results, sedimentation data were also obtained. 

The average porosities of filter cakes formed from pure rutile and fibre 

suspensions in deionised water were approximately 0.6 and 0.75, respectively, and a 

steady and progressive increase in porosity with fibre fraction was generally observed. 

With filtrations at 450 kPa, the average specific cake resistances for pure fibre and rutile 

in deionised water were approximately 9.4x1013 and 4.2x1012 m kg-1 respectively, with 

the variation of specific resistance with solids composition showing a minimum. Similar 

trends were observed at other tested filtration pressures with suspensions in deionised 

water but not with filtrations of suspensions in 0.2 M NaCl and 0.1 M CaCl2 solutions. 

The minima in average specific cake resistance with solids composition for feeds in 

deionised water was attributed to rutile-fibre interactions. Abrupt transitions in cake 

structure were evident part way through some filtrations, and resulted in unexpected 

filtrate flow behaviour. This is an interesting phenomenon, and not only were the 

changes in cake structure relatively reproducible, but also the nature of the change could 

be altered by changes in filtration pressure, solids composition and/or solution 

environment. 

The study of fibre/particle binary filtration behaviour, in particular the porosity 

and specific cake resistance trends, were substantiated by relevant theoretical treatment 

and modelling analysis. With the porosity trends, an additive porosity concept seemed 

to represent the data better than interparticle penetration models. With the specific cake 

resistance trends, a semi-empirical equation was proposed which appeared to represent a 

wide range of binary mixture filtration data. A mathematical framework was also 

developed in an attempt to understand the underlying physical mechanisms which led to 

filter cake restructuring, and possible explanations were postulated. 
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CHAPTER 1:  INTRODUCTION 

 

1.1. MOTIVATION FOR RESEARCH 

Cake filtration is an important and widely used separation process in many areas 

in which the objectives may be to either recover a clear filtrate, or to recover the 

suspended solids, or both. The aforementioned areas include the chemical and 

petrochemical, mineral, food, pharmaceutical and water treatment industries. In the 

process industries, separation and purification of the product stream is probably the 

stage where most value is added. Also, increasing environmental awareness has resulted 

in ever more stringent legislations to control liquid discharge compositions. These two 

factors have led to separation science and technology playing a pivotal role in the 

relationship between product quality, competitiveness and the environment. The 

resurgence of interest in separation technology in recent years has led to a revival of 

cake filtration studies. However, the improvement of this technology relies on 

understanding with greater insight and better information of the various aspects of the 

filtration process (Tien, 2002).  

Fibrous solids are known to induce complexities in filtration due to their 

irregular shapes, high aspect ratios and wide size distributions. A significant proportion 

of process/waste streams that require dewatering contain fibrous or similarly elongated 

solids, and are usually complex mixtures containing various solids of differing sizes, 

shapes and surface properties. Examples of industries where such suspensions may be 

commonplace include water and wastewater treatment, paper and pulp, and 

pharmaceutical (where needle shaped particles are often encountered). The study of 

binary suspensions containing particles and fibres are therefore of significant industrial 

and academic interest as such systems are representative of process/waste streams 

involving one particulate component, which can be colloidal in nature, and another 

which is much larger and of a high aspect ratio. Despite its importance, there appears to 

be a sparsity of research on the cake filtration of fibrous suspensions, and particularly 

for binary suspensions containing particles and fibres. Moreover, in the study of binary 
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suspension filtration, a further level of complexity is introduced when the two 

constituent solid components interact with one another (e.g. aggregate). 

Designing and scaling-up pressure filtration systems depend largely on the 

availability and accuracy of relevant experimental data as well as the interpretation of 

this data which can be hindered by difficulties such as theoretical limitations. Certain 

mechanisms that can lead to non-linear and anomalous ‘filtration plots’ are currently not 

well understood and this gives rise to an inherent problem because the assumption of 

(almost) linear filtration plots is an indispensable component of traditional filtration 

analysis, with the slope of these filtration plots being an important parameter in many 

practical scale up and optimum cycle calculations. Elucidating the mechanisms that lead 

to unusual filtration plots is therefore of both practical and academic interest.  

 

1.2. AIMS AND OBJECTIVES 

The main aim of this research is to understand the constant pressure cake 

filtration behaviour of interacting cellulose fibre/TiO2 (rutile) mixtures. The research 

involves experimental studies using a computer controlled pressure filtration apparatus 

capable of automated data acquisition. The influence of suspension composition, 

filtration pressure and solution environment on filtration is discussed in relation to cake 

properties such as average cake porosity (εav) and average specific cake resistance (αav). 

To help interpret the filtration results, sedimentation data is also obtained. 

The stages involved in achieving the desired aims were as follows: 

1. Characterising the materials and filter medium, in terms of the relevant properties; 

2. Understanding the apparatus to be used, along with producing a detailed operating 

procedure; 

3. Carrying out pressure filtration experiments systematically, according to an outlined 

experimental matrix formulated to isolate the effects of specific variables such as 

solids composition, filtration pressure and solution environment; 

4. Carrying out sedimentation experiments to assist with the interpretation of filtration 

results; 
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5. Undertaking further theoretical analysis, particularly on the effects of aggregation of 

the constituent solids at the various solids compositions, filtration pressures and 

solution environments. 

A secondary aim of this research was to attempt to elucidate the mechanisms 

that lead to anomalous filtration plots. The effects of solids composition and filtration 

pressure on the abrupt changes that occur during a filtration are briefly investigated. In 

some cases, hydraulic pressure profiles through the filter cake were obtained for the 

duration of the formation stage. 

 

1.3. THESIS STRUCTURE 

This thesis consists of six chapters. Chapter 1 is intended to put the thesis into 

general context in terms of the research performed and where it fits into the present field 

of knowledge. Chapter 2 critically reviews relevant literature, including the 

experimental techniques used by selected previous researchers. Chapter 3 outlines the 

experimental apparatus and presents some initial results obtained to validate the 

apparatus and the operating procedure. Chapter 3 also discusses relevant properties of 

the materials used in the current investigation. Chapters 4 to 6 discuss the important 

findings of the research. Chapter 4 discusses the overall filtration results; sedimentation 

data was used to aid in the filtration data interpretation. In Chapter 5, a modelling 

approach for binary suspension filtration is presented and discussed in relation to the 

assumptions and limitations. A curve fitting approach is taken to fit the model to the 

experimental data and this is discussed towards the end of Chapter 5. Chapter 6 

discusses some interesting observations during selected individual experiments, in 

particular anomalous filtration plots. Chapter 7 concludes the thesis by providing 

overall conclusions and suggesting potential future investigations. 

 

REFERENCES 

Tien, C. (2002) Cake filtration research- a personal view. Powder Technology 127, 1-8.
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1. INTRODUCTION 

This chapter critically reviews previously published literature relevant to the 

present work. An introduction to filtration and modes of operation is followed by a 

review of cake filtration fundamentals, where relevant design equations are presented. 

Discussions of compressible cake filtration begin with an explanation of why 

‘conventional filtration theory’ can fail, especially with highly compressible cakes. The 

importance of physico-chemical properties on filtration are presented and discussed. 

Some previous works that attempt a more rigorous analysis of compressible cake 

filtration are also reviewed, with shortcomings highlighted. Taking the review into 

further depth, deviations from traditional compressible cake filtration behaviour that 

have been previously observed are presented; these unusual occurrences take the form 

of abrupt changes to cake structure part way through a filtration. Researchers have 

attributed the transitions in cake structure to various causes and these are discussed, but 

as yet the exact mechanism(s) that lead to this phenomenon is not well understood. 

After a discussion on some advances in binary suspension filtrations, a review of 

previous relevant experimental investigations is given, highlighting techniques, 

advances and limitations. 

 

2.2. FILTRATION AND MODES OF OPERATION 

Filtration can be classified according to the mode of operation, namely deadend 

or crossflow (Wakeman and Tarleton, 1999). In dead-end filtration, the feed flow is 

perpendicular to the filter surface whereas in crossflow filtration the feed flow is 

tangential to the filter surface; these two processes are shown schematically in Figure 

2.1. The process involved in this study is the dead-end filtration of solid/liquid mixtures. 

The filter medium, denoted by the dotted lines in Figure 2.1, is that critical component 

which determines whether or not a filter will perform adequately and can be defined as 



Chapter 2:  Literature Review 
______________________________________________________________________ 

 5

any permeable material upon or within which particles are deposited by the process of 

filtration (Purchas, 1996).  

 

 

 

 
Figure 2.1: Schematic showing the two filtration modes, dead-end and crossflow. 

  

 

Dead-end filtration can be further sub-divided to cake filtration and depth 

filtration. With depth filtration, the particles are generally smaller than the filter pores 

and particle deposition is predominantly inside the filter medium. The particles either 

get trapped or lodged in the tortuous filter pores or are adsorbed onto active sites within 

the depth of the filter medium. The adsorption of these particles depends to a large 

extent on the electrostatic interaction between the particles and the surface, which in 

turn depends on the pore surface and particle’s repulsive electrical double layer forces 

and attractive van der Waals forces. Cake filtration occurs when the solids concentration 

is sufficiently high and the particles are more similar in size or larger than the filter 

pores, so that the particles bridge over the entrance of the filter medium pores to form a 

deposit on the filter surface known as the ‘filter cake’. This filter cake brings about an 

additional resistance to flow and acts as a ‘secondary filter’, through which subsequent 

filtration occurs.  

The so-called ‘laws’ of filtration inferred by the mechanisms described by 

Figure 2.2 have been studied by Grace (1956) and Hermia (1982) amongst others. Their 

origins stem from the stochastic modelling of filtration and the behaviour of a particle 
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arriving at the surface of a filter medium. The characteristic form of the filtration laws 

is: 

2

12

2 k

dV

dt
k

dV

td






                                                  (2.1) 

 

 

 

Figure 2.2: Mechanisms of filtration. Depth filtration occurs by the standard blocking law whilst 

most cake filtrations occur by a combination of blocking and bridging. The ‘intermediate 

blocking mechanism’ (not shown here) allows for the particles to cause both pore blocking and 

cake formation (Wakeman and Tarleton, 1999). 
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for constant pressure filtration, where k1 and k2 are constant. k1 is dependent on the 

initial flow rate of slurry reaching the medium, and k2 = 2, 1.5, 1 and 0 for complete 

blocking, standard blocking, intermediate blocking and cake filtration respectively. 

These ‘laws’ are convenient for visualising and giving an understanding to the 

microscopic phenomena that may take place at the filter medium surface, but they do 

not describe the physics of particle deposition beyond the initial few moments of 

filtration (Wakeman and Tarleton, 1999). 

A filter may be operated under a variety of conditions depending on how the 

driving pressure for the process is developed. When the suspension is fed to the filter 

from a feed vessel where the space above the suspension is subjected to a source of 

compressed gas, or when the volume downstream of the filter is subjected to vacuum 

conditions, filtration is accomplished at a constant pressure differential and in this case 

the rate of filtration decreases with time. When the suspension is fed using a positive 

displacement pump, filtration is performed under constant flow rate conditions; in this 

case the pressure drop increases with time.   

 

2.3. CAKE FILTRATION FUNDAMENTALS 

Figure 2.3 shows a schematic of a growing filter cake (Wakeman, 1978). When 

all the solids are part of the filter cake (i.e. no more solids are in the slurry phase), 

filtration ends and deliquoring begins. Classical cake filtration theory was initially 

developed from Darcy’s equation for fluid flow through a porous medium. The equation 

relates the flow rate (q) of a filtrate of dynamic viscosity μ to the driving pressure 

gradient and can be written in one dimensional spatial coordinates as: 

k

q

dx

dpL 
                                                       (2.2) 

where pL is the hydraulic pressure at a distance of x through the cake and k is the local 

permeability.  

 



Chapter 2:  Literature Review 
______________________________________________________________________ 

 8

 

Figure 2.3: Schematic of growing filter cake (Wakeman, 1978). 

 

 

Ruth (1946) modified Darcy’s equation to material coordinates, given as: 

q
dw

dpL                                                        (2.3) 

where α is the local specific cake resistance and w is the mass of dry solids deposited 

per unit area up to height x. The specific cake resistance is defined by 

 ks 





1

1
                                                   (2.4) 

and the mass of dry solids is related to thickness by 

 dxdw s   1                                                  (2.5) 

where ρs is the true density of the solid and ε the local porosity. Ruth showed that the 

resistance of a cake formed during filtration is proportional to the amount of cake 

deposited provided the cake porosity (and hence the specific cake resistance) is constant 

for a fixed filtration pressure. Therefore, the proportionality is only valid for essentially 

incompressible cakes.   

 As the solids deposit on the surface of, or within, a one dimensional cake, the 

liquid flows through the interstices of the porous cake and filter medium, exiting at the 

other side. The hydraulic pressure drops throughout the cake due to friction as the liquid 
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flows over the surfaces of the individual particles. The drag imparted to the particles 

results in a compression process which causes a decrease in porosity and an increase in 

resistance. Heertjes (1964) correctly pointed out that this factor should ideally be 

recognized in filtration theory. The total force experienced by a particle is the sum of all 

the surface and body forces. The particles transmit stresses throughout the filter cake, 

and for this to happen it is commonly assumed that the particles are in point contact. 

The total drag force divided by the cross-sectional area is termed the effective pressure, 

ps (Tiller and Green, 1973); for a more detailed description of the parameter ps, see 

Wakeman (1985). The effective pressure has also been denoted as the solids 

compressive pressure (Teoh et al., 2002), solid stress (Landman et al., 1995), drag 

pressure (Theliander and Fathi-Najafi, 1996) and particle pressure (Landman and White, 

1994).   

Neglecting gravity forces, wall friction and inertial forces, a force balance on a 

one dimensional filter cake results in: 

appLs Ppp                                                      (2.6) 

where Papp is the applied pressure (Tiller and Leu, 1980). Typical curves illustrating 

variations of hydraulic and effective pressures within a filter cake are presented in 

Figure 2.4. At a constant applied pressure, differentiating equation (2.6) with respect to 

material coordinates yields: 

0














t

L

t

s

dw

dp

dw

dp
                                              (2.7) 

Although equations (2.6) and (2.7) are the most commonly used relationships linking 

the hydraulic and effective pressures, it is noted that various other relationships between 

effective and hydraulic pressures have also been obtained by applying multiphase flow 

theory and carrying out volume averaging of the momentum equations of the liquid and 

solid phases; the differences between these relationships are due to the assumptions and 

volume averaging procedures used (e.g. Willis et al., 1974; Rietema, 1982; Tien et al., 

2001).  
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Figure 2.4: Variation of hydraulic pressure and solid compressive pressure within a filter cake 

(Tiller and Leu, 1980). 

 

 

 Substituting equation (2.7) into equation (2.3) and integrating over the entire 

cake depth and total filtration time with respect to  ms ppp ,0  and  0,cww  gives 

av

c

av

m

av

m
c

PqRPpP
qw














                                (2.8) 

where μqRm represents the pressure (pm) required to overcome the resistance of the filter 

medium (Rm = Lm/km), ∆P is the applied pressure and ∆Pc is the pressure drop across the 

cake. As integration over the entire cake depth has been performed, the specific cake 

resistance is no longer the local value as in equation (2.3) but is now an average value 

(αav). Equation (2.8) can be rearranged to give: 

 mcav Rw

P

dt

dV

A
q







1
                                         (2.9) 

where V is the volume of filtrate collected in time t through a filter of area A. From a 

mass balance on the filtration system: 

  A

V
cV

msA

s
wc 




1


                                 (2.10) 
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where c is the effective feed concentration, s the mass fraction of solids in the feed and 

m the ratio of mass of wet cake to mass of dry cake. m can be related to average cake 

porosity using equation (2.11) and c can be related to m using equation (2.12). 

  sav

avm






1

1                                               (2.11) 

ms

s
c




1


                                                     (2.12) 

where ρ is the liquid density. Substituting equation (2.10) into equation (2.9) gives: 

mRAcV

PA

dt

dV

A
q

 



1

                                       (2.13) 

 Equation (2.13) is generally called the classical filtration equation. For constant 

pressure operations, integrating equation (2.13) at constant P  gives 

pA

R
V

pA

c

V

t m








22

                                            (2.14) 

Equation (2.14) implies that a plot of t against V will yield a parabolic profile. In order 

to simplify the extraction of desired information, Vt  is commonly plotted against V, 

generally giving a straight line whose slope is an indication of the specific resistance 

provided the fluid viscosity and filtration area remain constant throughout filtration. 

Plots of dt/dV against V generally also give straight lines, in accordance with equation 

(2.13). Plots in the form of t/V against V or dt/dV against V are commonly known as 

‘filtration plots’ and an example is shown in Figure 2.5 (taken from Wakeman et al., 

1991). In accordance with equation (2.14), the gradient on the initial portion of these 

plots is proportional to the average specific cake resistance; it is noted that the gradient 

decreases less rapidly for progressive increases in applied pressure, resulting in an 

increase of specific resistance with applied pressure due to cake compressibility.   

 It is important to keep in mind the assumptions made in deriving equations 

(2.13) and (2.14). Besides the aforementioned assumptions (such as constant specific 

cake resistance), it is also assumed that the filter medium characteristics remain 
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unaltered during filtration, streamline flow occurs through the whole filter cake so the 

only pressure loss across the cake is due to frictional drag, the filtration area is constant, 

permeability is time independent and the rate of fluid flow into one face of the cake is 

equal to the discharge from the opposite face. The classical filtration equation, equation 

(2.13), also does not explicitly take into account forces arising from physico-chemical 

interactions, which can be a significant factor when filtering finer particles. The average 

specific cake resistance and cake porosity effectively ‘lump’ all difficult to account for 

parameters into measurable/characteristic values. 
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Figure 2.5: Effect of pressure on ‘filtration plot’ of anatase experimental data (mean particle 

size = 0.3 μm, pH = 4 (isoelectric point)) (adapted from Wakeman et al., 1991). 

 

 

2.4. COMPRESSIBLE CAKE FILTRATION 

2.4.1. Deviations from ‘incompressible’ cake behaviour 

 In reality, almost all cakes are compressible to a certain extent. From the 1950s 

to the 1970s, filtration analysis using Equations (2.8-2.14) have almost completely 
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dominated the literature. Some of the factors which complicate the filtration of some 

materials (Tiller et al., 1979) are: 

1. Cake compression involving re-alignment of particles with a subsequent  

decrease in porosity; 

2. Deformation of fragile particles under high pressures and break up of particles 

under shearing; 

3. Increase in filter medium resistance due to blinding; 

4. Variation of cake resistance as a result of smaller particles blinding the filter 

cake; 

5. The fact that solid velocities cannot be neglected for more concentrated  

suspensions at short filtration times.  

 The specific cake resistance is perhaps the most important term in equation 

(2.13) because it determines the filtrate flow rate and pressure drop across the cake. For 

compressible filter cakes, the specific cake resistance in equations (2.8), (2.9), (2.13) 

and (2.14) becomes an average value (αav), following Ruth’s concept (Ruth, 1946). It 

has been found that εav, αav and c can be functions of applied pressure, time of filtration 

(Tiller, 1953; Bakker et al., 1959; Hameed, 1970; Christensen, 2006), suspension 

concentration (Bakker et al., 1959; Wakeman, 1979; Rushton et al., 1980), particle size 

distribution (Grace, 1953; Wakeman et al., 1991; Wakeman, 2007a), particle shape and 

morphology (Grace, 1953; Bakker et al., 1959; Wakeman, 2007a), particle surface 

charge (Wakeman et al., 1989; 1991) and blinding of the filter cake and/or the filter 

medium (Sørensen et al., 1995).   

 Average specific resistance has been analysed from a basic viewpoint in the 

study of viscous flow through packed beds of particulate materials by several workers 

such as Carman (1937; 1938), Fair (1951), Fair and Hatch (1933) and Coulson (1949). 

Perhaps the most significant outcome of this collection of work was the development of 

the Kozeny-Carman equation which was derived for viscous flow in granular beds by 

the assumption of perfectly random packing of discrete particles and through the use of 

a mean hydraulic pore diameter expressed in terms of the void fraction and particle 

specific surface. Comparing the Kozeny-Carman equation to Darcy’s equation yields an 
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expression for specific resistance in terms of the porosity, specific surface, solid density 

and permeability. The Kozeny-Carman model is a useful tool for correlating resistance 

data for fluid flow through porous media and for determining the specific surface of 

powder samples from permeability data. The Kozeny-Carman equation has received 

much criticism, largely undeserved since it correlates bed resistance data for a wider 

range of porous media types than any other permeability theory (Spielman, 1973). 

Instead of viewing a packed bed as a bundle of tortuous channels as the Kozeny-Carman 

theory does, the Happel cell model (Happel and Brenner, 1965) views the bed grains as 

an assemblage of interacting, but essentially individual spheres, with the flow field 

around an average sphere being described more realistically and in more detail. For 

spherical particles, the expression for the permeability derived from the cell model is: 

     

    










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
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36

2



x
k                             (2.15) 

The Kozeny-Carman and Happel cell model have generally been applied 

macroscopically, giving estimates of the average permeability and specific cake 

resistance. Shirato and Aragaki (1972) argue that the determination of an average 

specific resistance will not shed any light on the internal mechanism of cake filtration 

operations nor on some particular problems which are encountered in industry. Kelsey 

(1965) found that the specific cake resistance decreased with higher suspension 

concentrations and attributed this to a reduction in the time available for particles to 

orientate themselves. The arrival rate of the particles at the filter medium is also thought 

to influence cake properties as has been reported by Rushton (1973; 1976) and 

Wakeman (1979). Particle size distribution is known to affect cake resistance as the fine 

particles may pass through the cake along with the suspending liquid and lodge 

themselves at various locations within the cake depth, producing a non-homogenous 

cake (Tien, 1991). Wakeman (2007a) discusses the influence of particle properties on 

filtration. He pointed out that the particle properties with the most profound effects on 

the specific resistance are the particle size, size distribution, shape and interaction with 

the surrounding fluid. Furthermore, if the particle properties could be specified for a 
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filtration, the target properties would be for the particles to have as large a size as 

possible, be as near to spherical as possible, and have a monosize distribution. 

 Tiller and Crump (1977) acknowledged the fact that, generally, the porosity is 

minimum at the filter medium surface and a maximum at the cake-suspension interface 

(refer to Figure 2.3, for example). This is due to the nature of the drag exerted by the 

fluid. Tiller and Crump went on to experimentally show that the porosity of a latex cake 

remained almost constant over 80 % of the cake, and that a resistant ‘skin’ developed in 

the 20 % of the cake closest to the medium. Tiller and Green (1973) had suggested in a 

previous paper that when compressible materials experience rapid changes of flow 

resistance at low pressures, a thin ‘skin’ of dry, resistant material may form next to the 

filter media and that most of the hydraulic pressure drop is located within this narrow 

region. Tiller and Green (1973) showed that porosity was unaffected by pressure 

through 90 % of the cake, even at applied pressures as high as 1000 kPa, suggesting that 

the thin ‘skin’ effectively absorbs most of the pressure and contributes the most to 

resistance. Wakeman (2007b) recalculated data from Sørensen’s (1992) work on 

biological sludge and noted a steep gradient of the solids concentration profile close to 

the filter media (Figure 2.6). Wakeman acknowledged that this ‘skin’ formation occurs 

only with extremely compressible cakes and causes a low permeability (and hence a 

high localised pressure loss) close to the filter medium. Wakeman (2007b) went on to 

point out that although ‘skin’ formation is a property of a cake, it results from 

consolidation of the cake by constituents of the material packing more closely due to a 

wide size distribution or deformation of components in the feed. However, although 

various researchers (Sørensen, 1992; Bierck and Dick, 1990) have noted the occurrence 

of ‘skin’ formation, the phenomenon is still not currently well understood from a 

fundamental point of view.  

 

2.4.2. Importance of physico-chemical properties 

Belfort et al. (1994) claimed that many experimental works show that 

productivity and efficiency during filtration depend on the physico-chemical properties 

of the suspension being filtered, such as pH or salinity. Wakeman et al. (1989) also 
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highlighted the importance of colloid science in cake filtration, especially with fine 

colloidal particles. In general, the lower the repulsive force between particles so the 

greater is the extent of aggregation. Hence a greater effective particle size makes 

separation easier. The extent of aggregation of interacting particles may be assessed by 

sedimentation experiments whereby particles of a greater effective size should generally 

settle more quickly.  

 

 

 

Figure 2.6: Variation of solid volume fraction through the cake thickness during an expression 

process (Wakeman, 2007b). 

 

 

It has been stated in the literature that only models taking into account physico-

chemical properties of the suspension can accurately and thoroughly describe 

experimental filtration performance (Cohen and Probstein, 1986). Rietema (1953) had 

previously shown how introducing ions into the suspension to be filtered changed its 

stability and hence cake structure, but he was unable to correlate the results for this 

effect at that time. It was later shown that surface interaction variations induce changes 

in the cake permeability (McDonogh et al., 1984; 1992). Hlavacek and Remy (1995) 

established a link between the specific resistance of a filter cake, the zeta potential of 
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the feed suspension and the particle size distribution. The surface interaction between a 

filter medium and solute has also been shown to affect solute retention (Bacchin et al., 

1996). Detailed discussions of physico-chemical influences on filtration is not attempted 

here, instead an introduction to the fundamental nature of these influences is presented. 

Interested readers are referred to the authoritative text by Hunter (2001).  

The interplay of forces between particles in lyophobic sols may be interpreted 

noting that the potential energy of interaction between a pair of particles consists of two 

components (Derjaguin and Landau, 1941): 

1. A repulsive component, VR, arising from the overlap of the electrical double 

layers (assuming ion adsorption equilibrium is maintained), and 

2. A component, VA, due to van der Waals attraction arising from electromagnetic 

effects.   

A sol is defined as a suspension of colloidal particles in a liquid and the term lyophobic 

is indicative of the repulsion that the solid material has for the liquid in which it is 

dispersed. The total potential energy of interaction is given by (Wakeman and Tarleton, 

1999): 

ART VVV                                                     (2.16) 
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where p  is the permittivity of the fluid, 1a  and 2a  the particle radii,  1 and  2 the 

potentials measured at the outer boundary of the Stern layer,   the reciprocal electrical 

double layer thickness, H the interparticle distance, A the Hamaker constant, 

 21 aaHx   and 21 aay  .  

A schematic diagram of the potential energy barrier generated between two 

approaching particles is shown in Figure 2.7 (Wakeman and Tarleton, 1999). If particles 



Chapter 2:  Literature Review 
______________________________________________________________________ 

 18

are brought sufficiently close to either the primary or secondary minima, the potential 

energy is either partially or fully breached and the particles are considered to aggregate. 

At very small distances of separation Born repulsion is predominant due to overlapping 

electron clouds. A primary minimum potential energy exists where VR + VA is 

significantly negative, limiting the distance of closest approach, HS min. At intermediate 

distances of separation, the electrical repulsion term is dominant at low ionic strength 

and high surface potentials, giving rise to a primary maximum, Vm. If Vm is large 

compared with the thermal energy of the particles, KT (~4.2x10-20 J), the system should 

be stable, otherwise particles will aggregate. The height of the energy barrier to 

aggregation depends on the magnitude of the Stern and zeta potentials and on the range 

of repulsive forces. At larger distances of separation VR decreases more rapidly than VA 

and a secondary minimum may appear.  
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Figure 2.7: Schematic of the potential energy barrier generated between two approaching 

particles (Wakeman and Tarleton, 1999). 
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2.4.3. Rigorous analysis of compressible cake filtration  

 In attempting to improve the fundamental understanding of compressible cake 

filtration, more rigorous models have been developed without some of the assumptions 

used in the conventional theory. Smiles (1970) was one of the first to come up with a 

model based on the differential equations of continuity and momentum using a 

Lagrangian coordinate system. Atsumi and Akiyama (1975) and Tosun (1986) criticized 

Smiles’ boundary condition at the cake-suspension interface as it indicated no flux at 

this interface; Atsumi and Akiyama went on to use a moving boundary condition at the 

growing cake surface in their work. Numerous other workers (Willis and Tosun, 1980; 

Tosun, 1986; Stamatakis and Tien, 1991; Chase and Willis, 1992; Tosun et al., 1995; 

Burger et al., 2001) have carried out theoretical studies on cake filtration based on 

volume averaged continuum theory for multiphase flow. The fundamental basis of the 

different models proposed by these various workers is similar; discrepancies arise due 

to differing assumptions, constitutive equations, boundary/initial conditions and 

solution procedures. As pointed out by Olivier et al. (2007), the fundamental basis for 

these various works are the material and momentum balance equations for both the 

liquid and solid phases and material property parameters (compressibility and 

permeability). An illustration of some of the typical forces acting on a portion of a filter 

cake is shown in Figure 2.8. 

A typical form of the basic partial integro-differential equation describing liquid 

movement and cake volume change is given by Wakeman (1978) as: 
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As Koenders and Wakeman (1997a) pointed out, another common feature of these 

models is that they do not recognise any interparticle interactions and if they have any 

validity it is only for systems of large particles. The models developed by Auzerais et 

al. (1988), Buscall and White (1987) and Landman et al. (1991, 1993, 1995) have 

attempted to overcome the theoretical deficiencies of previous models by using the 

concept of the particles being networked and defining a gel point at which the 
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suspension becomes fully networked (Auzerais et al. used the volume packing at close 

packing rather than the gel point).  

 

 

 

Figure 2.8: Forces on a portion of a filter cake. 

 

 

 

Koenders and Wakeman (1997a; 1997b) analysed the initial stages of cake 

formation by developing semi-empirical expressions for filter cakes consisting of 

charged, inorganic, colloidal interacting particles. Expressions for the two-particle 

interactive potential, which is a function of particle size, zeta potential, electrical double 

layer thickness and the distance between particle surfaces, were obtained from the 

DLVO theory (Hunter, 2001). Although the work of Koenders and Wakeman give a 

more fundamental understanding of how pH, particle size, zeta potential and ionic 

strength influence the compressibility of filter cakes, Teoh et al. (2006) argue that the 

expressions developed by Koenders and Wakeman do not give a good fit to their 

experimental data. Teoh et al. pointed out that the expressions developed by Koenders 
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and Wakeman suggest that a plot of v/t against t1/2 for data during the initial period of 

filtration should yield a straight line. Meeten (2000) claimed that this linearity at the 

initial period of filtration only holds for relatively incompressible cakes. In their work, 

Koenders and Wakeman assumed that compressive stress is only due to the double layer 

force. On the other hand, previous work by Bowen and Jenner (1995) assumed the 

compressive stress (or the disjoining pressure) to be the sum of the double layer force, 

van der Waals force and the hydration force. However, Bowen and Jenner’s work 

involved micromechanics that did not allow for structure formation and as a 

consequence the theory is inadequate for low zeta potential or low solidosity. 

 

2.5. ANOMALOUS FILTRATION BEHAVIOUR  

 ‘Cake collapse’, where abrupt changes in cake structure occur partway through a 

filtration, was first observed by Rietema (1953) and subsequently by Baird and Perry 

(1967). Rietema hypothesised a concept of ‘flow stabilised cakes’ for constant pressure 

and constant rate filtrations. Rietema proposed that when a random packing of rather 

loose structure, non-deformable particles is compressed vertically then it is necessary 

that each particle should move not only in a vertical, but also in a horizontal, direction. 

Rietema acknowledged the fact that the compressive force originates from the cake 

solids pressure which increases from the cake-suspension interface to the cake-medium 

interface. If the component of this compressive force which tries to move the particle in 

a direction other than the axial is counterbalanced by a second force of other origin, 

compression will be prevented and the cake structure will retain its packing density and 

porosity. Rietema suggested that such a stabilising force should be the same throughout 

the cake and should originate from the interstitial liquid flow. Therefore, when the 

filtration rate decreases below a critical value, or when the cake reaches a critical 

thickness, a layer of denser packing and increasing thickness is formed at the bottom of 

the cake (the cake rapidly collapses to a new pseudo-equilibrium state) while the upper 

layer retains its original packing and porosity. Rietema called this phenomenon 

‘retarded packing compressibility’ and claimed that it can greatly affect the average 

filtration rate. Shirato and co-workers (1971, 1972) disagree with the concept of 

retarded packing compressibility and pointed to Rietema’s experimental set up and 
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conditions as being a contributing factor, not allowing normal compression to occur. 

However, various other works (Fathi-Najafi and Theliander, 1995; Sørensen et al., 

1995; Tarleton and Willmer, 1997) have also reported the ‘retarded packing 

compressibility’. Furthermore, some of the aforementioned works did not use an 

intrusive experimental set up similar to Rietema’s, 

One observation made with retarded packing compressibility is that the cake 

gives a minimum porosity not at the cake-medium interface but at a position further into 

the cake. Wakeman (1981a) deduced that cake collapse indicates the assumption of 

point contact of particles is invalid and so the force balance is incomplete. Banda and 

Forssberg (1988) claimed that particles are not always in point contact after examining 

micrographs of particulate filter cakes showing contact between particles across finite 

areas. Antelmi et al. (2001) used small-angle neutron scattering as well as void volume 

fraction and permeate flux measurements to analyse latex filter cakes and concluded 

that at all tested filtration pressures (20-400 kPa), the cakes were extensively collapsed. 

They claimed that the mechanisms that produced this collapse only required very small 

relative motions of the particles, which leave the local coordination of the latex particles 

unchanged but allow large voids to be reduced. Antelmi et al. also claimed that these 

motions can be inhibited by using particles with non-spherical shapes and by increasing 

the friction forces that act between particle surfaces. 

Sørensen et al. (1995) found dramatic deviations from their expected filtration 

behaviour, in terms of an abrupt increase in filtrate flux part way through a filtration. 

They initially listed possible reasons to account for this abrupt change including: 

penetration of air through the filter cake, channelling, wall effects, sedimentation, and 

compression/blinding interactions. Sørensen et al. subsequently went on to eliminate all 

of the above possibilities (in the context of their work) apart from the 

compression/blinding interaction. They suggested the most likely reason to be 

deposition of small scale solids within the cake structure increasing the flow resistance 

and consequently the local effective pressure. The local effective pressure then causes a 

decrease in porosity due to the compressible behaviour. Sørensen et al. suggested that in 

some parts of the cake the hydraulic pressure gradient may increase due to this 

compression/blinding interaction, leading to a detaching shear force on the walls of the 
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channels forming the filter cake structure. This gives rise to the possibility of a situation 

where locally increasing hydraulic pressure gradients in some sections of the cake cause 

an erosion of previously deposited small-scale solids resulting in a temporary reduction 

in the flow resistance, as well as an increase in filtrate turbidity (as evidenced by their 

experimental measurements).  

Tarleton and Willmer (1997) noted abrupt changes during the filtration of zinc 

sulphide suspensions. Figures 2.9 and 2.10 illustrate the effects of the abrupt change in 

terms of the macroscopic effect on the filtrate flow through the cake as well as the 

corresponding measurements of solids volume fraction within the cake. It is seen that 

large deviations from the expected linear behaviour occur after approximately 9000 s 

into filtration. The filtrate flow rate seen at point B increased to three times the rate 

experienced at point A and then reduced again to a value close to the original flow rate 

at point C.  

Tarleton and Willmer (1997) point out that the corresponding solids 

concentration given by the electrode pairs 10, 15 and 20 mm above the membrane show 

that between points B and C the measured solids concentrations either remained 

essentially constant or reduced and then increased more sharply at the point C. They 

then go on to point out that the gradient of the t/V against V plot after point C appears to 

be similar to that recorded up to the point A, indicating that suspension was still present 

above the cake and thus essentially eliminating the notion that sedimentation resulted in 

supernatant permeating through a formed cake after point B. In their paper, Tarleton and 

Willmer discuss the complexities of analysing such forms of cake restructuring or 

‘collapse’ and the confusion it has brought about. 

 

2.6. FILTRATION OF BINARY MIXTURES 

 The properties of a filter cake at any given time during a filtration depend, to a 

large extent, on the packing behaviour of its constituent particles. Many researchers 

have investigated the packing of assemblies of equal spheres because of its simplicity 

and its convenience in theoretical work. Six typical unit cells are shown in Figure 2.11 

(Suzuki, 2006). Regular packings of equal spheres are seldom encountered in filtration.  
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Figure 2.9: Anomalous ‘filtration plot’ of a zinc sulphide suspension filtration (Tarleton and 

Willmer 1997). 
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Figure 2.10: Changes in measured solids concentration with time for the zinc sulphide filtration. 

The corresponding ‘filtration plot’ is shown in Figure 2.9 (Tarleton and Willmer 1997).  
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Irregular shaped particles of wide size distributions often add to the complexity of 

random packing structures where porosities and coordination numbers vary with 

filtration time and spatially within a filter cake. Figure 2.12 (Wakeman and Tarleton, 

2005) illustrate the typical effects of some common, regular, particle shapes on the 

specific surface.   

 

 

 

 

 

Figure 2.11: Regular packing structures of equal spheres. The coordination numbers and 

corresponding porosities are shown (Suzuki, 2006). 
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Figure 2.12: Effect of particle shape on specific surface (Wakeman and Tarleton, 2005). 

 

 

 Shirato et al. (1963) proposed a simple additive law for predictions of porosities 

of filter cakes resulting from filtrations of binary suspensions. Say the two solids 

components are denoted 1 and 2, and that the cake porosity produced from the filtration 

of the pure component 1 is εav,1 and its volume fraction of solids in the mixture is XD. 

The corresponding values for pure component 2 are εav,2 and (1-XD). Then the associated 

void volume for component 1 will be εav,1XD/(1- εav,1) and εav,2(1-XD)/(1- εav,2) for 

component 2. The additive porosity at a fixed XD is given by the sum of the void 

volumes divided by the sum of the total volumes due to each solids component1:   
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Shirato et al. tested this additive law on different mixtures of clay slurries and claimed 

that, when filtering mixtures whose particle size distributions are similar, the 

equilibrium porosity of the resultant filter cake will be close to that predicted by his 

proposed additive law. He went on to suggest that when the particle size distributions 

                                                 
1 Shirato’s equation (equation (2.20)) is discussed further and used in Chapter 4 (as equation (4.24)). 
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are considerably different, the equilibrium porosity will be less than the additive value, 

owing to the fact that the smaller solids will fill in the voids created by the larger solids. 

As discussed by Heertjes and Zuideveld (1978), a drawback of the Shirato additive law 

is that the filling of a pore volume generated by one component by another (finer) 

component cannot be described.  

Tokumitsu2 (1964) proposed an equation for porosity prediction for a packed 

bed rich in small particles:  
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and another for a packed bed rich in large particles: 
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where βs and βc are given by: 
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x1 is the size of large particles and x2 the size of small particles. Correspondingly, εav,1 

and εav,2 are the average porosities of the pure large and small component cakes, 

respectively. The physical significance of the parameters used in equations (2.21) to 

(2.24) is briefly discussed as follows (Abe and Hirosue, 1982). When large particles are 

added to a packed bed of small particles, the large particles need excess space beyond 

their own true volume. These large particles penetrate into the packed bed of fines 

taking up a volume A times their own true volume, where A is given by: 
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2 The appropriate forms of Tokumitsu’s equations are used in Chapter 4. 
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where fc takes the value of 1 for x2/x1 ~ 0.5, 1.2 for x2/x1 ~ 0.25, and 1.4 for x2/x1 <0.125, 

respectively. On the other hand, when fines are added to a packed bed of large particles 

they tend to not only fill up inter-particle voids but also eventually force the large 

particles apart. The two main factors that influence the altered packing due to the 

addition of fines are the particle size ratio (as described by βs in equation (2.23)) and 

solids composition (as described by βc in equation (2.24)). n in equation (2.23) depends 

on the particle shape and takes the value of 1/2 for rounded particles and 1/3 for angular 

ones. The combined use of Tokumitsu’s equations is an example of an interparticle 

penetration model and generally predicts a minimum in porosity at some intermediate 

solids composition. 

Much of the published work on the packing of binary mixtures of solids suggests 

that a minimum porosity occurs at some intermediate solids composition (McGeary, 

1961; Gray, 1968; Sohn and Moreland, 1968; Haughey and Beveridge, 1969; Leclerc, 

1975; Harr, 1977; Abe and Hirosue, 1982). Some more recent theoretical (Yu and 

Standish 1988, Yu et al., 1996; Mota et al., 2001; Dias et al., 2004a) and experimental 

(Suzuki et al., 1986; Mota et al., 2001; Dias et al., 2004a) works suggest that the larger 

the difference in size between the coarse and fine particles in a mixture so the more 

pronounced is the non-linearity in the porosity versus solids composition relationship. 

Some packing characteristics of a binary mixture of spheres showing a minimum 

porosity is illustrated in Figure 2.13 (Dias et al., 2004b). More pertinent to the deadend 

filtration of binary suspensions, in particular with regards to specific cake resistance, are 

the works of Shirato et al. (1963), Abe and Hirosue (1982), Wakeman (1996) and Iritani 

et al. (2002).  

In terms of specific resistance, Shirato et al. (1963) pointed out that if one 

follows the concepts by Grace (1953) and Tiller (1953), and defines S as the average 

effective specific surface area, the following equation will result: 
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Figure 2.13: Dependence of the binary mixture porosity, εav, on volume fraction of large 

particles, XD, for a glass beads size ratio of 3.33. The boxes illustrate the packing, (a) mixture 

enriched with small particles; (b) mixture close to the maximum packing density (minimum 

porosity); (c) mixture enriched with large particles (Dias et al., 2004b).  

 

 

 

where k is the Kozeny constant, εx the local porosity and ΔP the filtration pressure. Abe 

and co-workers (1979, 1993) claimed that the specific resistance of cakes formed from 

binary mixtures can be described by3: 
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3 Equation (2.27) is further discussed and developed in Chapter 5. 
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where subscripts 1 and 2 refer to the large and small solids component, respectively, XD 

refers to the volume fraction of the larger particles, x refers to particle size and   refers 

to a surface factor. The surface factor for each component at an arbitrary pressure is 

determined by using the experimental data (αav and εav) from the filtration of a single 

component suspension. 

Wakeman (1996) came up with an empirical relationship between the single 

component values of specific resistance and the mixture value at a given pressure, this 

relationship may be expressed as: 

  2
,2,1,2,2 2 DavDavavavav XX                               (2.28) 

where again subscripts 1 and 2 refer to the large and small solids components, 

respectively. It is noted that when XD = 0, αav = α2,av and when XD = 1, αav = α1,av. 

Wakeman developed this empirical equation to estimate the filtration characteristics in 

the absence of a fundamental model that is able to predict the specific resistance of the 

cake formed from binary mixtures. Although the equation gave a good fit to 

Wakeman’s experimental data (calcite/anatase mixtures), in his paper Wakeman 

explicitly mentioned that it is not claimed that the equation is a general one for use with 

any mixture of solids.   

 

2.7. PREVIOUS EXPERIMENTAL TECHNIQUES  

 Generally speaking, for any physically meaningful analysis of filtration data to 

be made, reliable filtration apparatus and a skilled operator are necessary for good 

quality data acquisition. Basic filtration data are commonly obtained in laboratories 

with relatively elementary equipment such as the single leaf filter operating at either 

constant under- or over-pressure, with data manually recorded. Performing these 

experiments manually can introduce significant errors unless great care is taken.  

The importance of local filter cake properties have been established and to 

enable analysis of these local properties, it is common practice to perform sequences of 

constant pressure and/or vacuum experiments and analyse the resultant data with the aid 
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of cake samples. The difficulties of taking representative cake samples and the desire to 

assess in situ cake formations has lead researchers to the development, though not 

widespread adoption, of alternative techniques which in some cases facilitate the near 

continuous determination of cake structure throughout an experiment (Tarleton, 1999a). 

Some of these experimental techniques include the use of intrusive electrodes (Rietema, 

1953; Baird and Perry, 1967; Dobson, 1970; Wakeman, 1981b; Holdich, 1990; Tarleton 

and Hancock, 1996; 1997) or intrusive pressure probes (Shirato et al., 1980; Willis et 

al., 1983; Murase et al., 1989; Wu, 1994; Fathi-Najafi and Theliander, 1995; Sedin et al. 

2003; Johansson and Theliander, 2007), flush mounted electrodes (Shirato et al., 1971; 

Shirato and Aragaki, 1972) or flush mounted pressure probes (Harvey et al., 1988) and 

spectroscopy methods such as X-rays and NMR (Bierck et al., 1988; Bierck and Dick, 

1990; Tiller et al., 1995; La Heij et al., 1996; Erk et al., 2006). Tarleton (1999a) pointed 

out that although the measurement techniques employed in filtration differ in detail, the 

generic arrangements are similar and the advantages and disadvantages can be 

summarised as shown in Table 2.1 (Tarleton, 1999a) 

Shirato et al. (1971) and Murase et al. (1989) claim that horizontal electrodes 

that intrude the filter cake (like the one used by Rietema, 1953) will tend to interfere 

with cake formation such that the probes artificially support a growing filter cake. 

However, these researchers had not quantified the erroneous effects of intrusive 

electrode probes. Tarleton (1999a) attempted to quantify the influence of intrusive 

electrodes on cake formation with respect to filtration parameters by conducting a series 

of experiments on calcite and talc using a 102 mm diameter filter cell and varying 

electrode lengths (0-50 mm) and diameters (0-3.5 mm). Tarleton found that 

macroscopic cake formation and properties are significantly altered only over more 

extreme ranges of electrode length and diameter, whereby further increase in length 

and/or diameter decreased the measured cake porosity of the more compressible talc 

filtration but had relatively little influence for the nearly incompressible calcite 

filtration.   

 

 

 



Chapter 2:  Literature Review 
______________________________________________________________________ 

 32

Table 2.1: Summary of the methods for assessing cake structure in filtration processes 

(Tarleton, 1999a). 

 Electrodes 
(electrical 
resistance) 

Pressure 
transducers 

X-rays etc. 

Type of field 
soft (electric field 
lines can distort) 

n/a 
hard (passage of 
radiation is not 

distorted) 

(Potential) accuracy moderate-good 
can be good 

(depending on the 
transducer quality) 

good 

Speed of 
measurement 

fast fast can be slow 

Ease of use good good poor 

Ability to measure a 
range of cake 

properties 
good poor poor 

Cost relatively low can be high can be high 

 

 

 

Although electrode design and arrangements can be made in a non-intrusive 

manner, a fundamental problem with this technique is that measurements close to the 

filter medium, which is the region of greatest interest, cannot be made due to unwanted 

distortion of the electric field lines close to the filter medium. For example, in 

Tarleton’s work (1999a), the closest electrode is 10 mm above the filter medium. 

Shirato et al. (1971) illustrate one advantage of using pressure probes by simultaneously 

measuring the cake’s electrical resistance (using electrodes) and hydraulic pressure 

profiles (using pressure probes). In their work, the electrode closest to the medium is 

positioned at a height of 10.5 mm above the medium and the probe closest to the 

medium is at a height of only 1.8 mm. 

Shirato et al. (1980) conducted experiments to investigate variations of 

hydraulic pressure throughout the filter cake using six pressure probes protruding from 
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the top of the filter cell (Figure 2.14). These pressure transducers are connected to 

pressure probes made of brass tubes of 3 mm inner diameter. The lower ends of the 

probes were located at different (by several millimetres) heights above the filter 

medium. Shirato et al. completely filled each probe with deionised water; otherwise the 

measurements led to significant errors.  

 

 

 

Figure 2.14: Schematic diagram of filter (Shirato et al., 1980). 

 
 
 
 

Wu (1994) used an apparatus similar to Shirato et al. (1980). After an 

experiment, Wu sliced the cake into six pieces and each piece was weighed and dried to 

assess the porosity at various heights. Fathi-Najafi and Theliander (1995) tried to 

alleviate the problem of particle sedimentation during filtration by separating the filter 

cake into two and recirculating some of the suspension from the upper part of the 

chamber (Figure 2.15). However, the problem of intrusive probes influencing the filter 

cake formation was still not solved. Many of the filtrations performed by Fathi-Najafi 

and Theliander using this apparatus resulted in ‘cake collapse’ (see Section 2.5 for some 
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discussion on such anomalous filtration behaviour) and was attributed to the formation 

of channels within the cake. 

 

 

 

Figure 2.15: Apparatus used by Fathi-Najafi and Theliander (1995). 

 

 

 

 Tarleton and Hancock (1997) recognised a lack of consistency in test methods 

and analysis procedures for filtration experiments and investigated a technology to try 

to rectify this. Tarleton and co-workers (1997; 1998; 1999b) proposed the use of 

mechatronic principles, which integrates electronics, computers, process control and 

mechanical systems, to investigate the local properties of filter cakes during filtration. A 

schematic representation of the mechatronic based filtration apparatus is shown in 

Figure 2.16 (Tarleton, 1999b). Ten micro-pressure transducers (for hydraulic pressure 

measurements) were fixed in a spiral arrangement around the inner circumference of the 

filter cell and ranged from heights of 0.5 mm to 15.3 mm from the filter medium and 

protrude ~2 mm into the cell. This essentially allows non intrusive measurements of 
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cake properties to be made close to the filter medium. Moreover, the pneumatic valves 

are computer controlled and the relevant filtration data semi-continuously transmitted 

and displayed on the personal computer. Tarleton (1999b) pointed out that this allows 

filtration data to be acquired in a repeatable and reliable manner with a minimum of 

operator interference for either constant or variable pressure conditions. The on-line 

measurement of experimental parameters also allowed a real time display of results on 

the computer screen as an experiment proceeded. Examples of hydraulic pressure 

profile results from test talc filtration experiments by Tarleton and Hadley (2003) using 

the aforementioned apparatus are shown in Figure 2.17.  

 

2.8. CLOSURE 

 Many of the complications that arise during filter cake formation have been 

highlighted in this chapter. Some of these complications can lead to unusual filtration 

behaviour, and hence subsequent complexities in design procedures and calculations for 

solid/liquid separation equipment. Filtrations of binary suspensions add a level of 

complexity to single component suspension filtrations. Investigations into binary 

suspension filtrations and anomalous filtration plots require an appropriate apparatus, 

enabling reliable determination of data, and systematically planned filtration 

experiments. An apparatus similar to that used by Tarleton (1999b) has been identified 

as being suitable for this work and a description of this apparatus and its operational 

procedures are given in the next chapter. 
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Figure 2.16: Schematic representation of the mechatronic based filtration apparatus (Tarleton, 

1999b). 

 

 

Figure 2.17: Hydraulic pressure history of a 400 kPa constant pressure filtration of a talc 

suspension (Tarleton and Hadley, 2003). Legend represents the height that a pressure probe is 

above the filter medium 
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CHAPTER 3:  EXPERIMENTAL MATERIALS AND METHODS 

 

3.1. INTRODUCTION 

This chapter covers the preparatory elements for the main experimental study 

(the results of which are presented and discussed in Chapters 4 to 6). The mechatronic 

filtration apparatus used for the constant pressure filtration experiments is described 

with the aid of relevant, labelled schematics. The operating procedure for the apparatus 

is outlined with reference to the schematics and the safety precautions to be taken are 

highlighted. The cleaning and calibration procedures are also shown. As discussed in 

more detail in Chapter 4, sedimentation data was obtained to help interpret the filtration 

results. The apparatus used for sedimentation experiments is shown in this chapter and 

the method for carrying out a sedimentation experiment discussed. 

Calcium carbonate (calcite) suspensions were filtered to attain familiarity with 

the filtration apparatus and check its correct operation. Another important reason for the 

calcite filtrations (validation experiments) was to obtain and subsequently carry out 

checks on the filtrate flow data and hydraulic pressure profiles within the forming 

cake/suspension. The checks were in relation to trends and reproducibility, and were 

useful assurance that any trends and characteristics observed with the fibrous and binary 

suspensions were not just artefacts of the apparatus or operating procedure. 

The final part of this chapter presents the work done on characterising the 

materials used for the filtration and sedimentation experiments discussed in Chapter 4. 

Titania (rutile) and tissue paper (predominantly cellulose fibres) were characterised in 

terms of their size, size distribution, shape and surface charge. The filter medium used 

was characterised in relation to its thickness, permeability and structure.  
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3.2. CONSTANT PRESSURE FILTRATION APPARATUS 

3.2.1. Apparatus description 

Figure 3.1 shows a photograph of the experimental apparatus, Figure 3.2 shows 

a schematic of the pressure filtration apparatus without the compressed air system and 

Figure 3.3 gives a schematic of the compressed air circuit. A stainless steel suspension 

feed vessel of 2 L capacity was connected to a stainless steel filter cell (Figure 3.2). 

Although both vessels were built to withstand 1000 kPa pressures, the maximum 

operating pressure was 600 kPa. The feed was manually fed into a funnel located above 

the feed vessel inlet; the flow into the feed vessel was controlled by a manual valve 

(V16). A stainless steel stirrer was employed in the feed vessel to keep the suspension 

well mixed and to help prevent particle settling. The stirrer, driven by a Parvalux motor, 

was operated by a switch on the main control box and rotated at a fixed speed of 330 

rpm. Suspension flowed from the feed vessel to the filter cell though an automated ball 

valve (CV2) which was sequenced by means of a personal computer.  

 

 

 

Figure 3.1: Photograph of the experimental apparatus. 
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Figure 3.2: Schematic of pressure filtration apparatus without the compressed air circuitry. 
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Figure 3.3: Schematic of the pressure filtration apparatus compressed air circuitry. 
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The filter cell base rested on a detachable platform whose position could be 

adjusted by means of a pneumatic system to enable cleaning, insertion and removal of 

the filter medium as well as filter cake removal. The air pressure controlling the 

platform height was maintained at 200 kPa by means of a Norgren manual pressure 

regulator (R4) which prevented the carriage from rising or falling too quickly. The filter 

medium (120 cm2 area) rested upon a sintered support, which in turn rested on a star 

shaped support to maintain the sinter’s shape on a sloping filter cell base. The filter cell 

base was sloped to angle the filtrate flow directly to an electronic balance with minimal 

hold up. Both the feed vessel and filter cell had tubing attached for drainage and 

venting. The drainage and venting for the suspension feed vessel were manually 

controlled by the drain valve V18 and the vent valve V17. For the filter cell, draining 

was manually controlled by the drain valve V19 and the venting was automatically 

controlled by ball valve CV3. All the drain valves in the apparatus were connected to 

the same outlet and closed during feeding and filtration.  

The personal computer attached to the filter and ancillaries utilised a QuickBasic 

computer program to control the automated pneumatic ball valves via solenoid valves 

situated in the main control box. The program enabled the user to control the valve 

sequencing and also to carry out experiments at constant flow, constant pressure and 

stepped pressure. The user specifies the parameters for each experiment. Although this 

apparatus allows for experimentation under constant pressure, constant flow and 

variable pressure/flow conditions, this thesis features only constant pressure filtrations. 

For a constant pressure filtration experiment, the sample time (time between each data 

sample) and the filtration pressure are specified.  

The filtration pressure was pneumatically generated and transmitted to the 

personal computer by a pressure transducer (PT1); the personal computer sent a signal 

to the electronic pressure regulator (CV5) which set the desired filtration pressure 

(Figure 3.3). A Norgren pressure relief valve (RV1) prevented the filter cell and 

suspension vessel from experiencing pressures higher than 600 kPa. The filtrate was 

collected and weighed by an Ohaus electronic balance which sent its readings to the 

personal computer. The balance was capable of weighing up to 4000 g accurate to 2 

decimal places and could take up to 10 readings per second. Values of filtration 
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pressure, filtrate volume, hydraulic pressure and time were saved at set intervals on the 

personal computer for further analysis.  

In an attempt to determine the transient liquid pressure variations within the 

filter cake, titanium micro-pressure transducers were fixed in a spiral arrangement 

around the circumference of the wall of the filter cell. These transducers sent electrical 

signals to the personal computer, enabling liquid pressure profiles to be measured, 

which in turn allowed further analysis of cake characteristics and filtration behaviour. 

The transducers were attached to custom made stainless steel holders and micro-bore 

tubes (0.5 mm I.D.). As illustrated in Figure 3.4, the ten transducers ranged from 0.5 

mm to 15.3 mm in height above the filter medium (0.5, 0.8, 1.0, 1.3, 1.8, 2.3, 3.3, 5.3, 

9.3 and 15.3 mm) and protruded ~2 mm into the cell. A liquid bridge was created 

between the cake and the tip of a transducer by injecting deionised water from a 

separate reservoir into each holder. This water was delivered through nylon piping from 

the transducer feed vessel reservoir and valves V5-V14. The transducer feed vessel was 

filled with deionised water through its filling point with the flow being controlled by 

valve V3.  

 

3.2.2. Typical operating procedure 

Prior to using the rig, all electrical equipment was safety tested and a COSHH 

form completed. Appropriate personal protective equipment (PPE) such as a lab coat 

and safety glasses were worn throughout experimentation and the laboratory 

environment was maintained in a clean and tidy state. A typical experiment utilised the 

following procedure:  

 With preliminary safety preconditions satisfied, the compressor was switched on to 

allow the build up of air pressure. Meanwhile the computer was booted up and the 

software opened, and a new results file created and named for data storage. The 

required inputs such as the filtration pressure and sample times were specified. The 

drain valves were closed and an empty beaker was placed under the drain outlet. 
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Figure 3.4: Micro-pressure transducer arrangement of the mechatronic pressure filtration 

apparatus (Tarleton, 2008) 

 

 

 

 The manual pressure regulator, R1, was set to 600 kPa. Once the compressor had 

built up sufficient air pressure (approximately 5 minutes after the compressor was 

switched on), the airline valve V2 was opened. The transducer feed vessel was then 

filled with deionised water through its fill point. Valves V5–V14 were subsequently 

opened and closed to allow sufficient liquid to flow between the tip of each 

transducer and the end of the corresponding microbore tube; a jet of water from the 

tube tip indicated that the required liquid bridge was in place.  

 Next the filter cell base was placed correctly upon its carriage; a spirit level was 

periodically used to ensure that the surface was horizontal. The star shaped sintered 

support for the sinter plate was fitted into the base, followed by the sinter plate and 

the chosen filter medium. The filter cell base was carefully raised (pneumatically) 

via a lever and fastened to the filter cell and the securing nuts tightened to the 

required torque with a torque wrench. The Ohaus balance was placed beneath the 

filter cell with a container placed upon the pan in order to collect the filtrate.  
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 A known volume of suspension was made up in a beaker to the required solids 

composition and solution environment (see Section 3.5.4 for more detail); the 

constituents were carefully weighed. A suspension was made immediately prior to 

its introduction into the suspension feed vessel (and subsequently the filter cell) to 

prevent alterations of its characteristics due to ageing. Care was taken to ensure that 

the suspension was well mixed, with the solids homogeneously distributed 

throughout the suspension. With the aid of a ladder, the vent valve (V17) and the 

suspension inlet valve (V16) on the feed vessel were opened, and the suspension 

gradually poured into the feed funnel. With all the suspension poured (and the stirrer 

on), both the vent and inlet valves (V17 and V16) were closed. The experiment was 

then started via the personal computer which sequenced the appropriate valves and 

recorded all relevant filtration data. 

 Once the experiment was complete and the data recorded and saved, the filtration 

pressure was automatically relieved. The stirrer was stopped after draining the feed 

vessel of remaining suspension. The electronic balance and container were removed 

from beneath the filter cell. The carriage was raised via the lever to support the base 

of the filter cell which was then unfastened from the filter call and carefully 

lowered. Any excess slurry on top of the cake was removed using a pipette and the 

height of the cake recorded before as much of the cake as possible was separated 

from the filter medium and weighed. This cake was then placed in an oven and 

allowed to dry overnight at a moderate temperature of ~60oC after which the cake 

was re-weighed and the ratio of wet cake to dry cake determined. 

 Following an experiment the suspension feed vessel, filter cell, base and sinter were 

cleaned with distilled water and a brush, and then wiped clean. The manual pressure 

regulator, R1, was set to 0 kPa and the air to the rig isolated using V2. The 

compressor was switched off and the drain valves (V4, V17, V18 and V19) opened. 

The main power to the apparatus and personal computer were turned off as 

necessary.  

 In the event of an emergency during an experiment, the emergency stop button (red 

button on the control box) was pressed, shutting off all electrical power to the rig. 
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The air pressure was subsequently isolated using V2 and the manual vent and drain 

valves (V4, V17, V18 and V19) opened.  

 

3.2.3. Cleaning and calibration 

Before the commencement of experiments, the apparatus was dismantled and 

cleaned with deionised water and a clean brush. After thorough cleaning, the apparatus 

was flushed with deionised water by allowing water to permeate through the sinter 

plate; this process was repeated several times. Any blockages in the micro-pressure 

transducers were unclogged by means of a suitable fine wire.  

The main (upstream) pressure transducer (PT1 in Figure 3.3) was calibrated by 

recording the transducer voltage output at various known applied pressures. The voltage 

outputs, given in terms of analogue-digital (AD) readings, were then plotted against the 

applied pressures. As seen in Figure 3.5, the relationship between the AD readings and 

the applied pressures was linear. The calculated gradient and intercept were 

subsequently inserted into the computer program used to drive the rig. The micro-

pressure transducers within the filter cell were similarly calibrated, but in this case, the 

filter cell base was filled with water prior to calibration. The micro-pressure transducer 

voltage outputs were plotted against the applied pressures (the relationship between 

them was again linear), and calculated gradients and intercepts were again inserted into 

the computer program. Typical micro-pressure transducer calibration curves are shown 

in Figure 3.6. Although it was necessary to calibrate the main pressure transducer once, 

the micro-pressure transducers were recalibrated every few experiments because of 

potential blockages in the micro-bore tubes. 

 

3.3. SEDIMENTATION APPARATUS AND METHODS 

For a sedimentation experiment, a well mixed suspension (990 ± 10 ml) was 

poured into a plastic 1 litre graduated measuring cylinder (of 360 mm length and 59.5 

mm inner diameter). The suspension-supernatant interface height and corresponding 

elapsed time were recorded at suitable intervals. The corresponding time was measured 
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Figure 3.5: The main (upstream) pressure transducer (PT1 in Figure 2.3) calibration. The 

gradient and intercept were inserted into the computer program. 

 

 

Figure 3.6: Example of typical micro-pressure transducer (the transducer closest to the medium 

is used here as an example) calibration. The gradient and intercept were inserted into the 

computer program. 
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using a stopwatch. Initial settling rate was determined from a graph of suspension-

supernatant interface height vs. time, where the initial points fall on a straight line 

whose gradient can be calculated. Another parameter of interest was the proportion of 

sludge, which was taken as the final sediment height (after 24 h settling) expressed as a 

percentage of the initial suspension height. Figure 3.7 shows a photograph of completed 

sedimentation experiments. After a sedimentation experiment, the measuring cylinder 

was emptied and then washed thoroughly with deionised water and a brush. 

 

 

Figure 3.7: Photograph of suspensions settled in their measuring cylinders. 

 
 

3.4. VALIDATION FILTRATION EXPERIMENTS 

Constant pressure validation filtration experiments were carried out with 

calcium carbonate (calcite) suspensions as these filtrations are relatively well studied. 

The 10% w/w calcite suspensions were prepared by stirring 100 g calcite in 900 g 

deionised water at approximately 700 rpm for an hour prior to filtration. Approximately 

700 g of suspension was used for each filtration.  

A typical plot of cumulative volume of filtrate vs. filtration time for filtrations at 

300 kPa is shown in Figure 3.8; the error bars are based on three repeat experiments. 
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Relative to the filtrate flow data, the hydraulic pressure profiles within the forming filter 

cake generally had lower, but still acceptable, reproducibility. As an example, Figure 

3.9 illustrates the hydraulic pressure history as recorded by the micro-pressure 

transducer 0.5 mm above the filter medium (closest to the septum) during three repeat 

filtrations. An example of the hydraulic pressure profile within the growing filter cake is 

illustrated in Figures 3.10 and 3.11. Figure 3.10 shows the hydraulic pressure history 

during a 300 kPa filtration at various depths within the forming cake/suspension and 

Figure 3.11 shows the corresponding hydraulic pressure profile at various times. At the 

start of filtration (t = 0 s) the calcite suspension was in its original homogenously mixed 

state. At t = 0 s the particles in suspension were sufficiently far apart to carry zero 

compressive solids pressure and the liquid pressure was equal to the filtration pressure. 

Once the solids phase became sufficiently concentrated (i.e. ‘a cake formed’), the liquid 

pressure typically began to fall. The cake thickness increased as time progressed in the 

filtration, causing reductions in liquid pressure at heights further away from the medium 

surface (Figures 3.10 and 3.11). Simultaneously, regions of cake closest to the medium 

became more compact due to the drag imparted by the continual flow of liquid through 

the cake interstices as well as the increasing weight of particles above those already 

constituting the cake. As a direct result of this compaction, the liquid pressure at any 

given height tended to decrease with time and the lowest measured liquid pressures 

were at the two transducers closest to the medium (0.5 and 0.7 mm from the medium 

surface). 

From Figure 3.10, an unusual pattern is seen at a height of 3.3 mm above the 

medium where the liquid pressure appears to persistently rise abruptly back to the 

filtration pressure following steep decreases. In repeat experiments, a similar pattern 

was shown by between one and three transducers at heights between 1.8 and 5.3 mm 

above the medium. This behaviour may be due to a thickening/settling moving 

interface, particles intermittently blocking the transducers, or a combination of both. 

The general pressure profile trends within the forming cakes obtained from repeat 

experiments were similar. The transducers of greatest interest are the ones closest to the 

filter medium (0.5, 0.7 and 1.0 mm from the medium), and these transducers all showed 

similar and consistent trends.   
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Figure 3.8: Plot of cumulative volume of filtrate vs. time for filtrations of 10% w/w calcite 

suspensions at a constant pressure of 300 kPa. The error bars are based on three repeat 

filtrations.  

 

 

Figure 3.9: Liquid pressure history 0.5 mm above the filter medium as obtained from three 

repeat 300 kPa filtrations of 10% w/w calcite suspensions. 
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Figure 3.10: Hydraulic pressure history in a forming calcite cake/suspension 

at a constant filtration pressure of 300 kPa. 

 

 

Figure 3.11: Hydraulic pressure profiles through the filter cake at various times during the 300 

kPa filtration of a 20% w/w calcite suspension. 
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In general, the expected trends were observed. The filtrate flow data was 

reproducible. It was noted that the micro-pressure transducers can be prone to some 

fluctuations and/or blockages, resulting in a slightly more, but still generally acceptable, 

variation in liquid pressure profiles. 

 

3.5. MATERIALS AND METHODS 

After acknowledging the fact that an accurate determination of solids properties 

would greatly enhance the state of knowledge or fundamental understanding of 

solid/liquid separation theory, Beddow (1986) described particle characterisation as 

being the term generally used to indicate a measured property or properties of the solids. 

Wakeman (2007) claimed that three parameter types may be identified to fully describe 

a solid/liquid system: the primary properties, the state of the system and the 

macroscopic properties. The primary properties are those which can be measured 

independently of the other components of the system, and are the solid and liquid 

physical properties such as the size, size distribution and shape of the particles, and the 

surface properties of the particles in their solution environment. The description of the 

state of a system includes parameters such as concentration and extent of dispersion of 

the solid phase. This description combines with the primary properties to control the 

macroscopic properties that are measured to investigate a particular separation method. 

Such measurements may include the bulk settling rate of solids in a suspension and the 

specific resistance of a filter cake. When considering a particular solid/liquid separation, 

the filter medium is that critical component which can be defined as any permeable 

material upon or within which particles are deposited by the process of filtration 

(Purchas, 1996). Consequently, the relevant filter medium properties are generally also 

of interest. 

 

3.5.1. Titania (rutile) characterisation 

Titania is commonly found in two crystal forms, rutile and anatase. Rutile is the 

polymorph used in this work and is also the most common. The rutile (RSM-2) used in 
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this work was obtained from Tioxide Plc. (now Huntsman) and Figure 3.12 shows a 

typical Scanning Electron Micrograph image. The tendency of primary particles to form 

clusters is noted. Rutile particle size distributions in deionised water were measured 

using a Malvern Zetasizer 3000 HS, and a Malvern Mastersizer was used for rutile 

particle size distributions in 0.2 M NaCl and 0.1 M CaCl2 solutions. The Zetasizer 

employs photon correlation spectroscopy using a single detector at a 90o angle with the 

collimated laser light scattered by each particle to produce a diffraction pattern which is 

subsequently analysed by a computer algorithm.  

 

 

Figure 3.12: Scanning Electron Micrograph image of the rutile used. 

 

 

Electrophoretic mobility (particle velocity/electric field strength) measurements 

of rutile were also made at various pH values using the Malvern Zetasizer 3000 HS. pH 

values were decreased by dropwise addition of a 0.1 M HCl solution and increased by 

dropwise addition of a 0.1 M NaOH solution. According to Henry’s formula (Hunter, 

2001): 

 afU E 


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where   is the zeta (ζ) potential, EU  the electrophoretic mobility,   the viscosity,   

the dielectric constant, and  af   is a monotonically varying function which increases 

from 1.0 at a  = 0 to 1.5 at a  =  .   has the dimensions of (L)-1 and is called the 

Debye-Huckel parameter. The reciprocal of the Debye-Huckel parameter is taken as the 

thickness of the electrical double layer. The parameter a refers to the radius of the 

particle and therefore a  measures the ratio of the particle radius to the electrical 

double layer thickness. In the context of this work, where relatively large particles are 

used in aqueous media, this ratio can be taken to approach  , because the double layer 

thickness is negligible compared to the particle size. When dealing with particles of this 

size range, the force on the particle is almost solely due to the electrophoretic 

retardation whereby the ions in the double layer drag the fluid with them and the 

particle moves in the opposite direction (Hunter, 2001). Therefore, the Smoluchowski 

limit was used to convert the mobility measurements to ζ-potential values, taking  af   

as 1.5 which results in: 




 EU
                                                         (3.2) 

Figure 3.13 shows the cumulative size distribution for rutile in deionised water. 

It is well known that complexities arise in particle size analysis due to several factors 

such as aggregate formation (states of dispersion), particle geometry (deviations from 

sphericity), and measuring techniques/measurement device algorithm. However, the 

median particle size of approximately 0.45 μm (as obtained from the Zetasizer) is 

considered to be a reasonable representation. This value also corresponds with the 

Scanning Electron Micrograph images taken (Figure 3.12 for example) and with the 

measurements of previous researchers studying the filtration characteristics of rutile 

(Mikulášek et al., 1998; Iritani et al., 2002; Tarleton et al., 2003). It is also noted from 

Figure 3.12 that rutile is not exactly spherical but rather elliptical and slightly elongated 

with an aspect ratio of 2-4.  

 Figure 3.14 shows the variation of rutile ζ-potential with pH. It is common for 

particles in aqueous media to exhibit a negative charge due to cations being more 

readily hydrated than anions (Shaw, 1992). The hydrated cation generally has a greater  
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Figure 3.13: Rutile cumulative size distribution as measured using the Zetasizer. A median size 

of ~0.45 μm was obtained.  

  

 

Figure 3.14: Zeta potential values of rutile in deionised (DI) water as well as 0.2 M NaCl and 

0.1 M CaCl2 solutions. Error bars shown are based on three repeat measurements. 
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tendency to remain in the aqueous medium whereas the less hydrated and more 

polarising anions are more likely to be specifically adsorbed at the particle-fluid 

interface. When a surface has become negatively charged it preferentially attracts 

positive charges and so a charge reversal can result. The point at which charge reversal 

takes place (ζ-potential = 0) is commonly known as the isoelectric point and at this 

point there is generally minimal long range repulsions between primary particles and 

hence a greater tendency for aggregate formation. It is seen that the isoelectric point of 

rutile in deionised water is at a pH of approximately 4.3; similar results for rutile 

suspensions have been shown in previous works (Marchant, 1999; Mikulášek et al., 

1998). Ca2+ ions appear to adsorb onto rutile surfaces, leading to charge reversal. In the 

presence of 0.1 M CaCl2 solution, rutile surface charge appears to be almost invariant 

with pH over the range tested. Na+ ions appear to be an indifferent electrolyte, not 

significantly altering rutile suface charge. The natural pH of rutile suspensions were 8.4 

in deionised water, 7.5 in 0.2 M NaCl solution, and 6.9 in 0.1 M CaCl2 solution. Over 

this experimental pH range of interest, the ζ-potential values for rutile were 

approximately -35 mV in deionised water, -30 mV in 0.2 M NaCl solution, and +21 mV 

in 0.1 M CaCl2 solution. 

Figure 3.15 illustrates the size distributions of rutile in deionised water as well 

as in 0.2 M NaCl and 0.1 M CaCl2 solutions. It is seen that the addition of NaCl and 

CaCl2 resulted in a wider distribution and larger size; the median size of rutile particles 

in 0.2 M NaCl and 0.1 M CaCl2 solutions were approximately 4.2 and 15 μm 

respectively. These values do not refer to rutile’s primary particle size but instead are 

indications of the degrees of aggregation that occur in the NaCl and CaCl2 solution 

environments. The aggregation is attributed to suppression of the rutile electrical double 

layer. It can be seen that the extent of aggregation is greater in 0.1 M CaCl2 and this 

could be due to: (1) Ca2+ ions physically adsorbing onto the solids surfaces whereas Na+ 

ions behaved as an indifferent electrolyte, and/or (2) the 0.1 M CaCl2 solution being of a 

greater ionic strength than the 0.2 M NaCl solution. The ionic strength (I) of 0.2 M 

NaCl and 0.1 M CaCl2 solutions were 0.2 and 0.6 respectively, as calculated using the 

Debye-Hückel theory (Atkins, 1998): 
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where zj is the charge number of an ion j and bj its concentration. Aggregate breakage 

(and possibly re-agglomeration) may perhaps occur during a filtration, making the rutile 

effective size in these solution environments a dynamic parameter. 

 

 

Figure 3.15: Size distributions of rutile in deionised (DI) water, 0.2 M NaCl and 0.1 M CaCl2 

solutions.  

 

 

3.5.2. Tissue paper (fibre) characterisation 

The fibres used were in the form of tissue paper (Merton Cleaning Supplies 

(Leicester) Ltd). When the tissue paper was dispersed into deionised water two types of 

suspended solids were produced, cellulose fibres and the fillers associated with the 

tissue. Such suspensions are notoriously difficult to characterise. The true density of the 

tissue paper (including the fillers) was 1300 kg m-3, as measured using a pycnometer. 

Figure 3.16 shows a Scanning Electron Micrograph (SEM) image of a section of tissue 

paper. 
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Figure 3.16: Scanning Electron Micrograph image of the tissue paper used. 

 

 

Energy dispersive X-ray spectroscopy (EDX) was used to determine the type of 

fillers in the tissue paper (see Figure 3.17). The carbon and oxygen peaks (the carbon 

peak overlaps with calcium peaks) are due to the presence of cellulose fibres. Cellulose 

fibres (organic compounds with the chemical formula (C6H10O5)n) are polysaccharides 

consisting of a linear chain of several hundred to over ten thousand linked glucose units 

(Crawford, 1981). It may be inferred from the calcium, carbon and oxygen peaks in 

Figure 3.17 that the main filler used in the tissue paper is calcium carbonate (CaCO3). 

The presence of CaCO3 was also confirmed by placing the cursor over the individual 

filler particles on the monitor interfaced with the EDX instrument. Calcite is the most 

stable polymorph of CaCO3 and is a common filler in many paper making industries. 

The presence of the gold peak is due to the gold coating of the sample prior to analysis 

and the presence of the other peaks are most likely due to the impurities in the water 

used by the paper making process.  

Wakeman (2007) explained that if the solid properties could be specified for a 

filtration, the target properties would be for the solids to have as large a size as possible,  

100 microns 
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Figure 3.17: EDX plot (frequency against energy levels) of a sample of tissue paper. 

 

 

be as near to spherical as possible, and have a monosize distribution. However, in 

Figure 3.16, the highly irregular nature of the fibre shapes and sizes are illustrated. The 

fibres are seen to be non-cylindrical and upon closer inspection appear to have angular 

edges. Due to the high aspect ratio and non-uniform shape of the fibres, neither light 

scattering nor photon correlation spectroscopy could be used for reliable fibre size 

distribution measurements. The size (width) distributions of the fibres were therefore 

obtained by measuring more than a hundred fibres at various magnifications of SEM 

image. Care was taken to ensure each fibre was only measured once. SEM images of 

different, strategically selected magnifications were used to avoid partiality in the 

measurements and measurement artifacts due to the choice of scale. The large numbers 

of fibres carefully measured at the selected magnifications approximately ensure that a 

representative distribution was obtained. The fibres were generally non-cylindrical with 

aspect ratios more than 10, and more likely in the region of 100. Although 

determinations were difficult, estimates were obtained by examining images of 

individual fibres ‘rubbed-off’ from samples of the tissue paper. 

The median and mean diameters are a measure of the central tendency of the 

distribution, and the standard deviation is a measure of the spread of the data. The 
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median fibre diameter ( 50x ) is seen to be approximately 15 μm (Figure 3.18), the mean 

fibre diameter is 17.1 μm and the standard deviation is 10.8 μm.   

 

 

Figure 3.18: Cumulative size (width) distributions of the fibres in the tissue paper, as obtained 

by measuring more than one hundred fibres from SEM images at various magnifications. 

 

 

The formulae used to calculate the mean diameter, 
_

x , and the standard 

deviation, σ, are given in equations (3.4) and (3.5), respectively: 
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where xi is the midpoint of a size class range, ni the number of fibres with diameters in 

that class range and fi the fraction of total fibres with diameters in that class range. The 
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standard deviation of 10.8 μm is quite large (much wider distribution than rutile) but 

this is not surprising as fibre diameters as small as 0.8 μm and as large as 69 μm were 

observed.  

The CaCO3 fillers were removed by acid treatment for the purpose of 

characterisation. Torn pieces of toilet paper were dried (to remove moisture) and 

subsequently weighed. 5 g of dry paper were sheared in a weak acid (HCl) solution (500 

g) of pH 2.5 at a relatively high rotational stirrer speed of 900 rpm for 3 hours. In order 

to further enhance the dislodgement of CaCO3 from the fibrous network, the suspension 

was sonicated using a Branson Digital Sonifier for 5 minutes at an amplitude setting of 

50% 2 hours into the stirring. The suspension was then poured into a graduated cylinder 

with a permeable sintered stainless steel support at the bottom in order to allow the acid 

solution to drain under gravity. The sintered support was expected to contain the fibres. 

During gravity drainage, more acid solution was gradually poured into the cylinder to 

efficiently wash the fibres while the suspension was stirred gently with a metal rod. A 

total of 2.3 L of acid solution was used, and it was expected that the vast majority of 

CaCO3 would be removed from the fibrous network by this method. The fibres 

deposited on the sintered support were then dried and reweighed. It was noted that these 

fibres were far less ‘white’ compared to the initial toilet paper, due to the removal of 

CaCO3. From a mass balance, it was determined that 10% w/w of the tissue paper 

consisted of CaCO3 fillers. Using this knowledge, and considering that the density of 

the tissue paper is 1300 kg m-3, it was calculated that the tissue paper contains 

approximately 4.8% v/v CaCO3 and that the density of the cellulose fibre alone was 

1230 kg m-3. In the calculation it was assumed that the density of CaCO3 is 2700 kg m-3, 

which is a typical value for calcite.   

It should be noted that some of the values presented above may not be 

absolutely accurate (due to the inherent difficulties in characterising such complex 

suspensions), but they serve as adequate approximations for the purpose of this work. It 

should also be noted that attempts were made to remove fillers by vacuum filtration in a 

sequential stage-wise manner (a fairly common method), initially starting with a 10 μm 

rated track-etched membrane, with the idea of using finer membranes for subsequent 

stages. However, filtrations using the 10 μm membrane (also using a 4 μm filter cloth) 
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were extremely slow as hardly any filtration occurred in the first few hours, presumably 

due to medium blinding. Therefore, this line of filler removal was not pursued. 

Figure 3.19 shows ζ-potential values of fibres in deionised water as well as 0.2 

M NaCl and 0.1 M CaCl2 solutions. There were no limitations in using the Zetasizer for 

measuring the fibre ζ-potential as the Smoluchowski equation can be applied to particles 

of arbitrary shape provided the particle dimensions are much greater than the electrical 

double layer thickness (Hunter, 2001). Although Figure 3.19 shows the surface charge 

of fibres including the fillers, the presence of fillers did not appear to significantly 

influence the measurements and this maybe due to the low concentration of fillers 

and/or similarly charged fibres and fillers. For example, the measured ζ-potential for 

cellulose fibres alone (after the removal of CaCO3 fillers via acid washing), in deionised 

water, was approximately -15 mV at a pH of 7.5 (not shown in Figure 3.19).  

 

 

 

Figure 3.19: Zeta potential values of fibres (with fillers) in deionised (DI) water as well as 0.2 

M NaCl and 0.1 M CaCl2 solutions. 
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As with rutile, it is again likely that Ca2+ ions adsorb onto the fibre surfaces 

while Na+ ions behave as an indifferent electrolyte. In the 0.1 M CaCl2 solution 

environment the fibre ζ-potential is close to its isoelectric point and almost invariant 

with pH. The 0.2 M NaCl solution environment did not significantly alter the fibre ζ-

potential. The natural pH of fibre suspensions were 7.6 in deionised water, 8.2 in 0.2 M 

NaCl solution, and 7.3 in 0.1 M CaCl2 solution. Over this experimental pH range of 

interest, the ζ-potential values for fibres were approximately -18 mV in deionised water, 

-20 mV in 0.2 M NaCl solution, and -5 mV in 0.1 M CaCl2 solution.  

For this thesis, a pure fibre suspension refers to the toilet paper suspended in a 

given solution environment, prepared as outlined in Section 3.5.4. The fillers were not 

removed prior to a filtration or sedimentation experiment as they were low in 

concentration (tissue paper contains ~4.8% v/v of fillers), and it was unsure how acid 

washing would alter the cellulose fibre properties and hence filtration and sedimentation 

performance. The fillers, along with the cellulose fibres and fibre fines, were taken to 

represent one entity, referred to in the rest of this thesis simply as ‘fibres’.  

 

3.5.3. Membrane characterisation 

A microporous, hydrophilic Versapor membrane, manufactured by Pall 

Corporation was used as the filter medium, as it was in the work of Willmer (1997). The 

membrane comprised an acrylic copolymer cast on a nonwoven nylon substrate. The 

membrane was rated at 0.2 μm and had a thickness of 185 μm. The manufacturer quoted 

membrane permeability was 7.9x10-15 m2 and the membrane permeability as measured 

by Wakeman and Tarleton (1992) was 7.0x10-15 m2. Figures 3.20 and 3.21 are 

reproduced from Willmer’s thesis and show the membrane pore size distribution and a 

Scanning Electron Micrograph image of the topographic view of the membrane, 

respectively. A Coulter Porometer was used to determine the pore size distribution of 

the membrane which appears to be relatively narrow, peaking at approximately 0.2 μm.  
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Figure 3.20: Pore size distribution of the Versapor membrane (taken from Willmer, 1997). 

 

 

 

 

Figure 3.21: Scanning Electron Micrograph of the topographic view of a Versapor membrane 

(taken from Willmer, 1997). 
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3.5.4. Suspension preparation methods 

Suspensions consisting of either pure fibres, or rutile, or binary mixtures of the 

two, in double distilled deionised water, 0.2 M NaCl or 0.1 M CaCl2 solutions were 

used in experiments. With sedimentation experiments, the suspension total solids 

concentration was maintained at 1.1% v/v. With filtration experiments, the total solids 

concentration was maintained at 1.1 ± 0.2% v/v as calculated after an experiment using 

the dry solids true volume, as well as the final filtrate volume and cake moisture 

content. Although ~80% of filtration experiments were with suspensions of 1.1 ± 0.1% 

v/v solids concentration, a greater variance was evident relative to the sedimentation 

experiments due to inherent handling and flow issues using the described filtration 

apparatus with such complex suspensions (in particular due to the fibre component). 

This variance in suspension total solids concentration is not expected to significantly 

influence the filtration results, as illustrated by repeat experiments which gave an 

acceptable degree of reproducibility (discussed in Chapter 4). All suspensions were 

prepared in 1 L quantities, but only ~500 ml were used for each filtration.  

In an experiment involving NaCl or CaCl2, homogeneous solutions were 

prepared prior to any solids addition. In an experiment involving fibres, small pieces of 

torn up tissue paper were continually introduced into the aqueous phase (deionised 

water, 0.2 M NaCl or 0.1 M CaCl2 solutions). In an experiment involving a binary 

mixture, rutile was added into the suspending medium and mixed for 30 minutes at 600 

rpm prior to fibre addition in an attempt to reduce problems relating to dispersion. The 

final suspension was stirred for approximately 3 h at 800 rpm with a flat blade stirrer 

prior to a filtration or sedimentation experiment. Care was taken to ensure that 

suspensions were well mixed so as to minimise batch to batch variations (especially in 

parameters such as fibre length). Experiments were carried out at a constant temperature 

of 21±2oC and over a narrow pH range. The pH of suspensions in deionised water 

ranged from approximately 8.4 (pure rutile) to 7.6 (pure fibres), in 0.2 M NaCl solution 

from 7.5 (pure rutile) to 8.2 (pure fibres) and in 0.1 M CaCl2 solution from 6.9 (pure 

rutile) to 7.3 (pure fibres).  
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 3.6. SUMMARY 

The mechatronic filtration apparatus has been discussed in detail, mainly with 

regard to its arrangement and operating procedure. Validation experiments enabled 

familiarity with the apparatus and some of its intricacies. The resulting trends were as 

expected and consistent, thus validating the apparatus and operating procedure. The 

relevant properties of the materials used in subsequent filtration experiments (tissue 

paper, titania and Versapor membranes) have been characterised. The type of filler used 

in the tissue paper was determined along with the approximate amount of filler per unit 

weight or volume of tissue paper. Although the characterisations carried out have some 

limitations, as would almost any attempt at characterising such complex particle and 

fibre systems, the results are considered to be sufficiently accurate and representative 

for the purpose of this work. The method of preparing suspensions for subsequent 

experiments has also been outlined. 
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CHAPTER 4:  SEDIMENTATION AND FILTRATION RESULTS 

 

4.1. INTRODUCTION 

This chapter presents relevant experimental results and discusses the constant 

pressure cake filtration performance of fibrous as well as interacting binary (fibre and 

rutile) suspensions. The influence of suspension composition, filtration pressure and 

solution environment on filtration is discussed in relation to cake properties such as 

average cake porosity (εav) and average specific cake resistance (αav). Interpretation of 

the filtration data is aided by the analysis of sedimentation behaviour for identical 

suspensions. 

The experimental data presented are representative of the dataset obtained 

during the investigation. Error bars shown for some datasets indicate the level of 

reproducibility. The effects of solids composition on binary suspension filtration are 

presented in terms of the variable XD which is defined as the ratio of the volume of 

fibres to the total volume of solids in the suspension; XD = 0 indicates a pure rutile 

suspension (i.e. no fibres) whereas XD = 1 indicates a pure fibre suspension (i.e. no 

rutile). The filtration pressures investigated ranged from 50 kPa to 600 kPa. The 

solution environments investigated were deionised water as well as 0.2 M NaCl and 0.1 

M CaCl2 solutions. For all experiments, the total solids concentration was kept constant 

at 1.1% v/v (unless stated), as discussed in Section 3.5.4. More detailed descriptions of 

the apparatus, materials and method of suspension preparation have been given in 

Chapter 3. 

 

4.2. SEDIMENTATION RESULTS AND DISCUSSION 

For a sedimentation experiment, a well mixed suspension (990 ± 10 ml) was 

poured into a plastic 1 litre graduated measuring cylinder (of 360 mm length and 59.5 

mm inner diameter). The suspension-supernatant interface height and corresponding 
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elapsed time were recorded at suitable intervals and the experimental parameters of 

interest, for aiding in the interpretation of the filtration results, were the initial settling 

rate and proportion of sludge; the determination of these two parameters were discussed 

in Section 3.3. 

The initial settling rate gives an indication of the extent of aggregation (or the 

effective particle size in terms of settling) and the proportion of sludge gives some 

indication of the sediment packing tendencies. The results below are presented in the 

form of initial settling rate and proportion of sludge vs. XD to assist in: (1) qualitative 

assessments of the degree of physico-chemical interactions (state of aggregation); and 

(2) determination of packing characteristics at different solids compositions and 

solution environments.  

 

4.2.1. Single component sedimentation 

Pure fibres (1.1% v/v suspensions) did not settle appreciably in any of the 

solution environments investigated (deionised water, 0.2 M NaCl or 0.1 M CaCl2 

solutions) as the constituent fibres appeared to be networked in the settling cylinder. 

Pure rutile did not settle appreciably in deionised water (initial settling rate = 1.1x10-5 m 

s-1). However, as shown in Figure 4.1, pure rutile settled more readily in 0.1 M CaCl2 

solution (initial settling rate = 3.2x10-2 m s-1) and this is attributed to suppression of the 

rutile electrical double layer which promoted aggregation. Figure 4.2 shows that pure 

fibre suspensions of lower total solids concentrations (0.16% v/v) settled more readily 

and the initial settling rate was greater for fibre suspensions in 0.1 M CaCl2 solution 

(1.4x10-1 m s-1) than in deionised water (3.9x10-2 m s-1). Further, the supernatant of a 

settled fibre suspension in deionised water was significantly more turbid than the 

supernatant of a corresponding suspension in 0.1 M CaCl2 solution. It is noted that the 

fibres were close to their isoelectric point in 0.1 M CaCl2 solution (see Figure 3.19). As 

illustrated by Figure 4.3, the improved settling performance of fibre suspensions in 0.1 

M CaCl2 was only evident at lower concentrations, because at higher concentrations the 

constituent fibres started to network. 
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Figure 4.1: Sedimentation curves for pure rutile in deionised (DI) water and 0.1 M CaCl2. 

 

 

Figure 4.2: Sedimentation curves for pure fibres in deionised (DI) water and 0.1 M CaCl2 

solution. The total solids concentration for these two experiments was 0.16% v/v; pure fibres 

did not settle appreciably in either solution environments at 1.1% v/v. 
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Figure 4.3: Initial settling rate vs. total solids (fibre) concentration for pure fibre suspensions. 

 

 

4.2.2. Binary suspension sedimentation 

Example batch settling curves for binary suspensions in deionised water and 0.1 

M CaCl2 solution are shown in Figures 4.4 and 4.5. It is seen that the equilibrium 

packing and times taken to reach equilibrium conditions varied with solids composition. 

In general, the approximate time taken to reach pseudo-equilibrium conditions (te) 

decreased with increasing fibre fraction until ~50% by volume of solids consisted of 

fibres. The time taken to reach pseudo-equilibrium conditions increased with further 

increase in fibre fraction (above 50%). For instance, with suspensions in deionised 

water, te ~10,000 s at an XD of 0.067; ~2000 s at an XD of 0.391; and ~14,000 at an XD 

of 0.856. With fibre rich suspensions, even after this pseudo-equilibrium state is 

reached, a slow and gradual compression of the deposit was observed.  

It is seen that pure rutile and fibre suspensions in deionised water and pure fibre 

suspensions in 0.1 M CaCl2 solutions do not readily settle. For suspensions in deionised 

water, mixtures of rutile and fibres were observed to settle more readily than pure 

component suspensions. This is perhaps more clearly illustrated in Figure 4.6 where it is  
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Figure 4.4: Example batch settling curves for binary suspensions in deionised water. 

 

 

 

Figure 4.5: Example batch settling curves for binary suspensions in 0.1 M CaCl2 solution. 
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seen that pure rutile and pure fibre in deionised water appear to be stable suspensions. 

With only small amounts of fibres added to a pure rutile suspension, rutile-fibre 

interactions take place and the suspension de-stabilises. The initial settling rate 

continues to increase with XD up to the point where ~50% by volume of the solids 

consists of rutile, presumably due to the increasing surface area available for interaction. 

Further increases in XD caused a sharp reduction in initial settling rate until 

approximately 75% by volume of the solids consisted of fibres, and subsequent 

increases in XD rendered the suspension essentially stable once again. It is interesting 

that XD = 0.5 is also the approximate threshold where the proportion of sludge begins to 

undergo a more marked increase (Figure 4.7). The reduction in initial settling rate and 

increase in proportion of sludge when more than 50% of the solids consist of fibres may 

be an indication of the constituent fibres becoming networked, resulting in more 

structured suspensions. The general sedimentation trends for suspensions in deionised 

water and 0.1 M CaCl2 solution appear to be similar. Initial settling rates in the range 

0.1 < XD < 0.8 were lower for suspensions in CaCl2 solution, presumably due to the 

formation of low density, loosely networked aggregates. The presence of more loosely 

networked aggregates in CaCl2 solution was evidenced by the greater proportions of 

sludge at a given XD (Figure 4.7).  

The effect of increasing fibre fraction on the resultant deposit packing appears to 

become more pronounced as XD increases. The proportion of sludge progressively 

increases with fibre fraction; from a minimum obtained for pure rutile suspensions4 to a 

maximum for pure fibre suspensions (XD = 1), where the deposit bed porosity was close 

to that present before settling commenced. The progressive increase in proportion of 

sludge is an interesting result considering the rutile/fibre size ratio since if the rutile was 

free to migrate within interfibre voids then this would lead to a minimum proportion of 

sludge at an intermediate solids composition. Typical theoretical predictions for binary 

mixtures almost always show a minimum porosity (maximum packing density) at some 

intermediate mixture fraction, generally attributed to interparticle penetration (see, for 

example, Mota et al., 2001; Dias et al., 2004). Theoretical works have been backed up 

by experimental findings (McGeary, 1961; Leclerc, 1975), which suggest that the 

greater the difference in size between the coarse and fine particles in a mixture so the   
                                                 
4 an exception being pure rutile in DI water which did not readily settle (proportion of sludge ~100%) 
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Figure 4.6: Effect of fibre fraction (XD) on the initial settling rate for suspensions in deionised 

(DI) water and 0.1 M CaCl2 solution. 

 
 

 

Figure 4.7: Effects of fibre fraction (XD) on the proportion of sludge for suspensions in 

deionised (DI) water and 0.1 M CaCl2 solution.  
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more pronounced is the non-linearity in the porosity versus solids composition 

relationship.  

It is noted that the batch settling tests resulted in some amounts of foam at the 

top of the cylinder (~1.5-3 cm thick) at certain mixture compositions. In some cases, 

this foam appeared to have entrained some solids; this was however not expected to be a 

significant issue that affected the results. The mud line clarity was primarily affected by 

the supernatant turbidity where a turbid supernatant resulted in a mud line of low 

visibility. Table 4.1 summarises some observations made during batch settling tests. 

 

Table 4.1: Batch gravity settling experimental observations for suspensions of various fibre 

fractions in deionised water. 

XD 
Presence 
of foam  

Solids apparently 
entrained in the foam 

Visibility of mud line 

0 No No No appreciable settling  

0.067 Yes Not apparent High 

0.154 Yes Possibly small amounts High 

0.264 Yes Possibly small amounts Initially moderate 

0.391 Yes Yes Initially moderate 

0.521 Yes Yes Initially low, turbid supernatant  

0.645 Yes Yes Initially low, turbid supernatant 

0.764 No No Initially low, very turbid supernatant 

0.856 No No Initially low, very turbid supernatant 

1 No No No appreciable settling 
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4.3. FILTRATION RESULTS AND DISCUSSION 

4.3.1. Basic data treatment and calculations 

The filtrate flow data from each filtration test were saved on the interfacing 

computer, copied onto floppy disk and stored as Unicode files. Selected datasheets for 

the filtration experiments discussed in this chapter are presented in Appendix A. 

Although liquid pressure profiles were recorded by the micro-pressure transducers in 

the validation experiments, the majority of pressure profiles in this investigation could 

not be reliably measured due to the nature of the binary cakes, particularly the fibre rich 

ones. As an example, the recorded liquid pressure profiles for an XD = 0.859 suspension 

in deionised water at three filtration pressures are given in Appendix B, where it is seen 

that the measured liquid pressure at various heights within the cake unexpectedly (and 

perhaps erroneously) remained almost constant at the applied filtration pressure 

throughout. However, with a few filtration experiments, the liquid pressure profiles do 

show some variation with time, and were analysed (where appropriate) to provide some 

insight into specific filtration behaviour as discussed in Chapter 6. Although these 

values may not be absolute in their accuracy, they were useful for the purpose of 

comparing the behaviour at one cake height relative to another. No further reference to 

recorded liquid pressure profiles is made in this chapter. 

To maintain consistency in parameters such as the total solids concentration, so 

that comparisons could be made between different solids fractions, it was important to 

establish appropriate relationships and systematically calculate relevant parameters each 

time. The need to regularly check mass and volume balances were made more 

significant due to the complex nature of the binary mixtures in this investigation, in 

particular the fibre component (in terms of handling and flow characteristics). It was 

mentioned in Section 3.5.4 that checks were made on the solids concentration after a 

filtration experiment. In order to allow for checks and calculation of parameters of 

interest, besides the filtrate flow data, other information recorded included the mass of 

fibres (M1) and rutile (M2) in the feed and the mass of wet (Mwc) and dry (Mdc) cake 

after a filtration. Other relevant constants include the filtration area (A = 0.012 m2), fibre 
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density (ρ1 = 1300 kg m-3), rutile density (ρ2 = 4200 kg m-3) and liquid density (ρl = 

1000 kg m-3). From the aforementioned constants and recorded information, relevant 

checks on the mass and volume balance can be made and other parameters of interest 

can be calculated using the following relationships:  
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where ρs is the effective solids density, s the mass fraction of total solids in the feed, c 

the mass of solids per unit volume of feed liquid, m the ratio of mass of wet cake to 

mass of dry cake, w the mass of dry solids deposited per unit filtration area, L the final 

cake thickness, and Vfeed the total feed volume. The two key cake properties investigated 

were the average specific cake resistance (αav) and average cake porosity (εav), and were 

calculated using equations (4.18) and (4.19): 

c

PAm dVdt
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/                                               (4.18) 
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where dVdtm  is the gradient of a dt/dV vs. V ‘filtration plot’. 

 

4.3.2. General filtration behaviour of single component suspensions 

Before looking at binary suspension filtration behaviour, it is pertinent to get a 

feel for the filtration behaviour of the two single component suspensions; especially 

with pure fibre suspensions, since there is a seeming lack of published data in this area. 

Filtrations of fibre suspensions were carried out at various pressures between 50 and 
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600 kPa. Figure 4.8 shows a typical plot of cumulative filtrate volume vs. filtration time 

at a pressure of 450 kPa and Figure 4.9 shows the initial (linear) portion of the 

reciprocal filtrate flow rate vs. cumulative filtrate volume plot; data for a rutile 

suspension filtration at the same pressure is included in these two figures for 

comparison purposes.  

 

 

Figure 4.8: Plots of cumulative filtrate volume vs. filtration time for 1.1% v/v fibre and rutile 

suspensions in deionised water at a constant filtration pressure of 450 kPa. 

 

 

Rutile, and particularly fibre, suspensions in deionised water were generally 

difficult to filter and formed cakes of relatively high resistance. Filtration of pure fibre 

and rutile suspensions from deionised water at various pressures resulted in cakes 

displaying average specific resistance values between 1013 and 1014 m kg-1 for pure fibre 

cakes and between 1012 and 1013 m kg-1 for pure rutile cakes. Wakeman and Tarleton 

(2005) classified the relative ease of filtration using the magnitude of the specific 

resistance and claimed separation becomes ‘difficult’ when αav ~ 1012 m kg-1 and ‘very 

difficult’ when αav > 1013 m kg-1. Filtration of fibre suspensions at various pressures and 

with other filter media (a 4 μm rated filter cloth was also trialled) were unexpectedly 
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slow. Moreover, with pure fibre suspensions the 4 μm rated filter cloth gave much 

slower filtration rates than with the 0.2 μm rated membrane, and this was attributed to 

fibre fine fractions blinding the filter cloth. The presence of fibre fine fractions were 

visually observed and evidenced by the turbid supernatant obtained from a settled 

0.16% v/v fibre suspension.  

 

 

Figure 4.9: The initial (linear) portion of the plots of reciprocal filtrate flow rate vs. cumulative 

filtrate volume for 1.1% v/v fibre and rutile suspensions in deionised water at a constant 

filtration pressure of 450 kPa. 

 

 

Figures 4.10 and Figure 4.11 show example plots of cumulative filtrate volume 

vs. filtration time and reciprocal flow rate vs. cumulative filtrate volume for pure fibre 

suspensions at various filtration pressures. Figure 4.12 shows plots of cumulative filtrate 

volume vs. filtration time for pure rutile suspensions at various filtration pressures. 

Figures 4.10 – 4.12 show expected trends. In Figures 4.10 and 4.12, it is seen that at a 

given time, the cumulative filtrate volume for a pure fibre or rutile suspension is greater 

for raised filtration pressure. The instantaneous filtrate flow rate can be determined from 

the gradient of the V vs. t plot at a given time, and from Figures 4.10 and 4.12 it is seen 
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that this behaviour follows a consistent sequence with flow rate generally increasing 

with pressure. This trend is also manifested in Figure 4.11, where the gradient of the 

dt/dV vs. V plot decreases as the filtration pressure increases. Consistent with 

‘established’ filtration theory, the decrease in gradient is most evident at the lower 

filtration pressures. The average specific resistance values were calculated from such 

plots of reciprocal flow rate vs. cumulative filtrate volume according to equation (4.18).  

A regression analysis determined the compressibility index values (n value in 

the relationship αav = α0(1–n)ΔPn) to be approximately 0.6 for pure fibre cakes and 0.3 

for pure rutile cakes (refer to Figure 4.13). These values indicate moderate 

compressibility, with the pure fibre cakes having a greater compressibility. α0 is the 

specific resistance at unit applied pressure. Values of α0 for pure fibres and rutile were 

determined to be 1.23x1011 m kg-1 Pa-n and 6.12x1010 m kg-1 Pa-n, respectively.  

 

 

Figure 4.10: Cumulative filtrate volume vs. filtration time for 1.1% v/v fibre suspensions in 

deionised water at various filtration pressures. 
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Figure 4.11: Reciprocal filtrate flow rate vs. cumulative filtrate volume for 1.1% v/v fibre 

suspensions in deionised water at various filtration pressures. 

 

 

Figure 4.12: Cumulative filtrate volume vs. filtration time for 1.1% v/v rutile suspensions in 

deionised water at various filtration pressures. 
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Figure 4.13: Effect of filtration pressure on average specific cake resistance for 1.1% v/v fibre 

and rutile suspensions in deionised water.  

 

 

4.3.3. General filtration behaviour of binary suspensions 

Examples of typical data obtained by the filtration of binary suspensions from 

deionised water, as well as 0.2 M NaCl and 0.1 M CaCl2 solutions are shown in Figures 

4.14 to 4.18. Figures 4.14 and 4.15 give examples of typical filtration plots for 150 kPa 

filtrations with deionised water. It is seen that a variation in solids composition results 

in relatively large variations in filtration behaviour. It is apparent that the filtration rates 

are greatest with the filtration of suspensions consisting of 39.1% and 64.6% by volume 

fibres (Figure 4.14) in the solids phase. Figure 4.15 shows the gradient of the initial 

(linear) portion of the dt/dV vs. V plots is smallest at XD = 0.391 and 0.646. However, it 

should be noted that the average specific resistance is not exclusively a function of this 

gradient as c (mass of solids per unit volume of feed liquid) in equation (4.18) changes 

with solids composition even though the total solids concentration was kept constant. 

Filtration of a pure fibre suspension proceeded at the slowest rate, followed by filtration 

of a pure rutile suspension.  
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Figure 4.14: Cumulative filtrate volume vs. filtration time for 150 kPa filtrations of 1.1% v/v 

binary suspensions in deionised water at various solids compositions. The solids compositions 

are quantified in terms of the XD values. 

 

 

Figure 4.15: Reciprocal filtrate flow rate vs. cumulative filtrate volume for 150 kPa filtrations of 

binary suspensions in deionised water at various solids compositions. 
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Figures 4.16 shows typical filtration plots for 450 kPa filtrations from deionised 

water and similar general trends are observed. Once again filtration with XD = 0.646 was 

quickest. It should also be noted that, under certain conditions, unusual filtration plots 

were observed; this anomalous behaviour has not been illustrated in the figures in the 

current chapter but is discussed further in Chapter 6. 

Figure 4.17 shows an example of typical filtration plots for 450 kPa filtrations 

from 0.1 M CaCl2 solution. In comparison to Figure 4.16, it is seen that a greater 

variation in filtration behaviour due to variation in solids composition is observed with 

suspensions made up in deionised water. Figure 4.18 shows typical filtration plots for 

450 kPa filtrations from 0.2 M NaCl solution. It is again seen that, relative to filtrations 

from deionised water, variations in solids composition had less of an effect on the 

filtration behaviour although the same general trends were observed.  

 

 

Figure 4.16: Cumulative filtrate volume vs. filtration time for 450 kPa filtrations of binary 

suspensions in deionised water at various solids compositions. 
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Figure 4.17: Cumulative filtrate volume vs. filtration time for 450 kPa filtrations of binary 

suspensions in 0.1 M CaCl2 at various solids compositions. 

 

 

Figure 4.18: Cumulative filtrate volume vs. filtration time for 450 kPa filtrations of binary 

suspensions in 0.2 M NaCl at various solids compositions. 
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Figure 4.19 indicates the effects of rutile/fibre composition and solution 

environment on the filtration rate during the initial stage of the 450 kPa filtrations. As 

inferred from Figures 4.16 – 4.18, the effects of solids composition were less evident on 

the filtration performance for suspensions in 0.2 M NaCl and 0.1 M CaCl2 solution 

environments relative to suspensions made with deionised water. With the suspensions 

in deionised water, the filtration rate generally increased from pure rutile up to a 

maximum at XD ~ 0.5. A further increase in fibre fraction reduced the filtration rate 

down to a minimum for a pure fibre suspension (XD = 1). This behaviour is also evident 

in Figure 4.16. The filtration rates with a pure fibre suspension were lower than with a 

pure rutile suspension. Filtration rates with suspensions in 0.1 M CaCl2 were marginally 

greater than with suspensions in 0.2 M NaCl. Over the range 0.3 < XD < 0.7, the 

influence of solution environment seemed less significant than with rutile rich 

suspensions (XD < 0.3), where the 0.2 M NaCl and 0.1 M CaCl2 solutions seemed to 

increase the filtration rates. The effects of solution environment were seen to be most 

significant for fibre rich suspensions (0.7 < XD), where the 0.2 M NaCl and particularly 

the 0.1 M CaCl2 solutions seemed to cause a pronounced increase in the filtration rates. 

 

 

Figure 4.19: Cumulative filtrate volumes 10 s into the 450 kPa filtrations at various solids 

compositions and solution environments. 
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Figures 4.20 and 4.21 summarise the effects of rutile/fibre composition and 

filtration pressure on the filter cake average porosity and specific resistance for 

filtrations from deionised water. It is clearly evident that solids composition had a 

greater effect on filtration performance compared to applied pressure. With filtrations at 

450 kPa, the average specific cake resistances for pure fibre and rutile in deionised 

water were approximately 9.4x1013 and 4.2x1012 m kg-1 respectively, with the variation 

of αav with fibre fraction showing a minimum. The minimum in αav was in the region of 

2.7x1011 m kg-1 and observed at an XD of 0.646. Filtrations with deionised water at the 

other trialled pressures showed similar trends. The average porosities of filter cakes 

formed from pure rutile and fibre suspensions in deionised water were approximately 

0.6 and 0.75, respectively. In general, a steady and progressive increase in εav with fibre 

fraction was observed.   

 

 

 

 

Figure 4.20: Effects of solids composition and filtration pressure on filter cake average porosity 

for filtrations from deionised water. 
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Figure 4.21: Effects of solids composition and filtration pressure on filter cake average specific 

resistance for filtrations from deionised water. 

 

 

 

Considering the relationships between the parameters αav and εav with fibre 

fraction gives rise to an apparent anomaly. As suggested by the Kozeny-Carman 

(Wakeman and Tarleton, 2005) and Happel cell (Happel and Brenner, 1965) models, an 

increase in porosity generally results in a decrease in specific resistance (see Section 

2.4.1). However, it should be recognised that these models only provide reasonable 

approximations and the correlation of resistance data obtained from these models could 

be used for comparison purposes if the solids form remains similar. The fibres and rutile 

are of very different forms (see Figures 3.12 and 3.16 for example), and this may result 

in varying packing mechanisms when moving from pure rutile to pure fibre cakes. Also, 

possible fibre-rutile interactions may further influence the specific surface exposed to 

fluid flow (and hence the total drag force experienced at the solid/liquid interface) at the 

various solids compositions, which in turn will affect the specific resistance. Due to the 
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change in solids form and possible interactions, the Kozeny-Carman and Happel cell 

models cannot be used with confidence across the range of solids composition.  

Figures 4.22 and 4.23 show the effects of solids composition and solution 

environment on the filter cake average porosity and specific resistance for 450 kPa 

filtrations from deionised water as well as 0.2 M NaCl and 0.1 M CaCl2 solutions. Error 

bars for some data were obtained from up to three repeat experiments and are included 

to illustrate the level of reproducibility. The results illustrated in Figure 4.23 are 

generally consistent with Figure 4.19, where the lowest filtration rates were due to a 

greater average specific resistance. It is seen that, to a certain extent, the NaCl and 

CaCl2 solution environments produced similar trends in filtration behaviour; these 

solution environments resulted in a greater average porosity for rutile rich cakes and a 

lower average specific resistance for rutile and fibre rich cakes. The behaviour shown in 

Figures 4.20 to 4.23 is further described and interpreted in the following sections.       

 

 

Figure 4.22: Effects of solids composition and solution environment on filter cake average 

porosity for 450 kPa filtrations.  
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Figure 4.23: Effects of solids composition and solution environment on filter cake average 

specific resistance for 450 kPa filtrations. 

 

 

4.3.4. Effects of solids composition  

4.3.4.1. Effects of solids composition on porosity 

Typical theoretical predictions for binary mixtures show a minimum in the 

variation of porosity with solids composition, and a larger difference in size between the 

coarse and fine solids generally yields a more pronounced non-linearity (see Section 

2.6). However, in this study, the variation of porosity with volume fraction of fibres is 

shown to be relatively limited and in many cases almost linear despite the fibres being 

of wide size distribution and generally several orders of magnitude larger than the rutile 

particles. By way of example, two models are presented and compared to illustrate the 

fibre/rutile packing characteristics. These two models are taken to be representative of 

two approaches; the first attempts to describe the concept of interparticle penetration 

(Tokumitsu, 1964), and the second the concept of additive porosity (Shirato et al., 

1963). Although there are various interparticle penetration models (or variants) that 

have been previously developed for binary mixture packing (see Dias et al., 2004 for 
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example, which gives further references), they all show similar general trends; the 

Tokumitsu model is used in this chapter as a representative example. Further discussion 

on this point, and justifications for the use of the Tokumitsu model to represent the 

interparticle penetration mechanism, are presented in Appendix C where another 

interparticle penetration model (from Dias et al., 2004) is also presented for comparison 

purposes. 

The following two equations have been proposed by Tokumitsu (1964) to 

predict the porosity of a packed bed formed from a binary mixture of particles. For a 

packed bed rich in small particles: 
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and for a packed bed rich in large particles: 
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where x1 is the size of large particles (fibres in this case) and x2 the size of small 

particles (rutile in this case)5. Correspondingly, εav,1 and εav,2 are the average porosities 

of pure fibre and rutile filter cakes, respectively. Briefly, equation (4.20) attempts to 

describe the penetration of large particles into a packed bed of fines and equation (4.21) 

attempts to describe the penetration of fines into a packed bed of large particles. Plots of 

equations (4.20) and (4.21) vs. solids composition, with equation (4.20) emanating from 

the pure fine component and equation (4.21) emanating from the pure large component, 

will result in two curves which intersect at some intermediate solids composition. This 

point of intersection is generally taken to be representative of a minimum porosity and 

indicates a transition from one dominant mechanism to another. Discontinuation of 

these two curves beyond the intersection point results in one smooth curve which 

attempts to describe the variation of porosity with solids composition. Further details of 
                                                 
5 The original form of Tokumitsu’s equations is presented in Section 2.6. 
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the physical meaning behind equations (4.20) and (4.21) are given in Section 2.6 and by 

Abe and Hirosue (1982).  

The difficulty in determining an appropriate value for fibre ‘size’ for input into 

equation (4.21) led to, in the first instance, the use of the fibre median width of 15 μm to 

represent fibre ‘size’. Predictions of εav given by equations (4.20) and (4.21) for cakes 

formed from suspensions in deionised water at 450 kPa are plotted in Figure 4.24 along 

with the experimental data to illustrate a typical theoretical prediction assuming 

interparticle penetration.  

 

 

Figure 4.24: Effects of solids composition on εav for filtrations from deionised water at constant 

pressures of 150, 450 and 600 kPa. The prediction given by equations (4.20) and (4.21), 

Tokumitsu model, is included for the 450 kPa data and predictions given by equation (4.24), 

Shirato model, are included for all pressures. 

 

 

Similar results were obtained using equations (4.20) and (4.21) on the 150 and 

600 kPa data. In general, similar trends were also obtained when an ‘equivalent packing 

diameter’, xp1, was used instead of x1 (fibre width) in equations (4.20) and (4.21) (see 
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Appendix C). Previous researchers (Yu and Standish, 1993; Yu et al., 1993) have 

claimed that the equivalent packing diameter is a useful concept in relating non-

spherical packing to spherical packing. The equivalent packing diameter (xp1) of a non-

spherical solid is defined by Yu and Standish (1993) and Yu et al. (1993) as the 

diameter of a sphere having the same size-dependent packing behaviour as the solid and 

can be expressed for a cylindrical fibre as:  
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where   is the fibre sphericity and l1 the fibre length. Fibre lengths were calculated 

assuming an aspect ratio of 100; see Section 3.5.2 for fibre characterisation. Assuming 

the fibre to be cylindrical, the fibre sphericity is given by: 
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It should be noted that the fibres were shown to be non-cylindrical with more angular 

edges (Section 3.5.2). However, approximating the fibres to a cylindrical form appears 

to be a reasonable approach and comparisons with another interparticle penetration 

model (Dias et al., 2004) seems to validate the claims made by Yu and co-workers that 

the equivalent packing diameter is a useful concept in relating non-spherical packing to 

spherical packing (again, see Appendix C). 

Using the Shirato additive law, the additive porosity is given by the sum of the 

void volumes divided by the sum of the total volumes due to each component:  
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Table 4.2 illustrates how Shirato et al. (1963) arrived at equation (4.24). Predictions of 

εav given by the Shirato additive law are also plotted in Figure 4.24.  

 

Table 4.2: A breakdown of the Shirato additive law (equation (4.24)). 

 First component Second component 

Volume fraction XD 1 - XD 

Porosity in pure state at a 
given pressure 1,av  2,av  

Total bed volume in pure 
state due to component 1,1 av
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From Figure 4.24 it is seen that equation (4.24) represents the behaviour of the 

rutile/fibre system better than equations (4.20) and (4.21) and assuming the theoretical 

justifications of either model is correct, this brings about some physical implications. As 

discussed by Heertjes and Zuideveld (1978), a drawback of the Shirato additive law is 

that the filling of a pore volume generated by one component by another (finer) 

component cannot be described. This filling of pore volume can be expected to occur 

when the fines are free to migrate within the cake structure. However, it has previously 

been shown when discussing sedimentation results (Section 4.2.2) that rutile-fibre 

aggregation occurs, as observed visually and evidenced by the fact that mixtures settled 

far more readily than pure component suspensions. Considering the fibre and rutile 

shapes and the size distributions, the fibres may be coated by rutile to reduce the 

interfibre porosity to a small extent; the schematic representation in Figure 4.25 is an 

attempt to illustrate this.  
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Figure 4.25: Schematic representation of the rutile particles coating the fibre surfaces. The 

schematic is not to scale and the rutile particles have been represented by spheres. 

 

 

In Figure 4.25, it is suggested that the rutile particles deposit on fibre surfaces, 

where clusters of rutile form. Due to the significant size difference between rutile and 

fibres, these clusters result in a change in the fibre bed porosity towards the porosity of 

a pure rutile bed as the filter cake becomes richer in rutile. If the rutile was free to 

migrate within the fibrous bed instead of being held onto fibre surfaces, then one may 

have expected the trend as suggested by interparticle penetration models, where a 

maximum packing density (minimum porosity) would be evident at some intermediate 

solids composition. Figure 4.24 suggests that for the system investigated, the general 

concept of additive porosity seems to be better than interparticle penetration. Despite its 

simplicity and the criticism directed towards it, the Shirato additive law may still be 

useful in describing the packing of aggregating binary systems where adsorption of one 

solids component onto the surfaces of the other reduces the occurrence of fines freely 

migrating within the filter cake. 
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4.3.4.2. Effects of solids composition on specific resistance 

The trend of αav with solids composition for filtrations from deionised water 

passes through a minimum in the region 0.3 < XD < 0.7 (Figure 4.26). This minimum is 

an interesting result as in many cases specific resistance has previously been reported to 

decrease gradually and become lowest when XD = 1 (for example, Shirato et al., 1963; 

Wakeman, 1996). However, a similar minimum in αav at an intermediate XD value was 

more recently reported by Iritani et al. (2002) when aggregation occurred between the 

two solids (rutile and silica) being filtered from the binary mixture. Iritani et al. did not 

observe a minimum in αav in the absence of such aggregation. Similarly, the most likely 

reason for the concave αav vs. XD trend observed in the present work is rutile-fibre 

aggregation. A contributing factor may be simultaneous sedimentation which leads to 

size classification within the cake where larger solids are more prevalent closer to the 

medium which promotes a reduced αav.   

 

 

 

Figure 4.26: Effects of solids composition on αav for filtrations from deionised water at constant 

pressures of 150, 450 and 600 kPa.  
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The αav vs. XD trend for suspensions in deionised water generally corresponds to 

the trend of initial settling rate vs. XD (Figure 4.6) where the greatest initial settling rates 

were obtained in the region 0.3 < XD < 0.6; this is not surprising as the initial settling 

rates were largely influenced by the degree of aggregation. It is well known in 

flocculation/coagulation studies that a minimum specific resistance can coincide with a 

maximum settling rate. Further, the influence of simultaneous sedimentation with 

filtration is most significant for suspensions which give the greatest initial settling rates. 

However, a more explicit relationship between αav and initial settling rate cannot be 

easily formulated because: (1) at higher fibre concentrations suspensions tend to 

become structured, thereby altering the settling behaviour; (2) settling rates will be 

reduced for loosely networked aggregates (lower effective density difference between 

the settling solids and suspending liquid); and (3) complications arise from 

simultaneous sedimentation during filtration. 

An increase in fibre volume fraction (XD) results in somewhat more porous 

cakes (larger εav) and also in a greater mean ‘size’. Hence, increasing values of XD may 

be expected to result in more permeable filter cakes (i.e. lower αav). However, when 

fibres dominate the filtration further complexity is introduced by a fibre’s ability to coil 

up and ‘mat out’ (Wakeman and Tarleton, 2005). Yet more complications arise due to 

the presence of solids of widely varying shapes and sizes in the fibrous suspension with 

fines potentially present under conditions conducive to blinding of the forming cake. 

Supporting evidence for the presence of fines is that filtrations of fibrous suspensions 

proceeded at an extremely slow rate using a 4 μm rated filter medium, and the turbidity 

of the supernatant of a fibrous suspension settled in deionised water was significantly 

greater than that of the corresponding supernatant in 0.1 M CaCl2 (see Figure 4.2 for the 

corresponding settling curves).  

Further theoretical and modelling analysis on the effects of interactions between 

the two solids in a binary mixture on the average specific resistance of a filter cake is 

discussed in Chapter 5. In Chapter 5, it is also discussed how aggregation may lead to a 

loss in effective specific surface, which in turn results in a decrease in specific 

resistance. 
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4.3.5. Effects of filtration pressure 

The porosities of all binary mixture cakes were slightly greater at 150 kPa than 

at 450 and 600 kPa, presumably because the aggregates were able to maintain a more 

open structure at the lower pressure. However, in general the effects of filtration 

pressure on εav seemed to be limited. Also, the effects of filtration pressure on αav are 

less evident relative to the effects of solids composition and solution environment.  One 

noticeable effect on Figure 4.26 is the increase in αav for filtrations of 0.3 < XD < 0.7 

suspensions at the highest pressure of 600 kPa, which is perhaps not surprising as the 

extent of aggregation is seemingly greatest over this solids composition range and so the 

filter cake compressibility could reasonably be expected to be higher. A direct 

consequence of the increase in αav is that the minimum observed in the αav vs. XD trend 

for filtrations at 600 kPa is less pronounced (Figure 4.26). 

 

4.3.6. Effects of solution environment  

With filtrations at 450 kPa, αav values for rutile (XD < 0.3) and fibre (XD > 0.7) 

rich cakes were significantly lower for the suspensions in 0.2 M NaCl and in particular 

0.1 M CaCl2 solutions (Figure 4.23). The set of specific resistance data corresponding to 

filtrations with 0.1 M CaCl2 were more in keeping with the rising εav vs. XD trend. The 

CaCl2 solution environment had a marginally greater effect on the filtration behaviour 

relative to the NaCl solution environment and this could be due to: (1) Ca2+ ions 

physically adsorbing onto the solids surfaces whereas Na+ ions behaved as an 

indifferent electrolyte (see Sections 3.5.1 and 3.5.2), and/or (2) the 0.1 M CaCl2 solution 

being of a greater ionic strength. The ionic strength (I) of 0.2 M NaCl and 0.1 M CaCl2 

solutions were 0.2 and 0.6 respectively, as calculated using the Debye-Hückel theory 

(see Section 3.5.1). The larger ionic strength with 0.1 M CaCl2 solution would tend to 

result in a greater reduction in the solids electrical double layer, and hence a lower 

specific resistance relative to the 0.2 M NaCl solution environment; this can be seen in 

Figure 4.23. 
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The reduction in αav for feeds of pure rutile in CaCl2 solution corresponded with 

increases in cake porosity and initial settling rate. The reduction in αav for rutile rich 

cakes was therefore attributed to suppression of the rutile electrical double layer 

resulting in a larger effective particle size. The reduction in αav for fibre rich cakes was 

more significant and more difficult to reconcile. A 0.1 M CaCl2 solution environment 

reduced αav values for pure fibre cakes by two orders of magnitude. Potential reasons 

include charge, packing and/or swelling effects. 

Swelling of the fibres in CaCl2 solution will result in a larger fibre size and 

hence tend to lower αav. Although swelling may be a contributing factor, parameter 

proportionality shows that to solely account for the reduction in αav the effective fibre 

‘size’ will have to increase by more than ten times its original value in deionised water. 

This parameter proportionality was assessed using the Kozeny-Carman theory 

(Wakeman and Tarleton, 2005). An increase in fibre effective ‘size’ by an order of 

magnitude seems unlikely since it is difficult to imagine a cluster of ten fibres. Changes 

to fibre packing in the presence of CaCl2 may alter the volume specific surface in 

contact with the fluid (Sv). To solely account for the reduction in αav, Sv would need to 

decrease by approximately fifteen times its original value in deionised water (again 

assessed using the Kozeny-Carman theory). Due to the high aspect ratio of the fibres, 

such a reduction in Sv may be plausible via changes in fibre packing. Although charge 

effects on fibres may initially appear to be insignificant due to the relatively large fibre 

dimensions, it is perhaps the most likely reason for the reduction in αav. The fines 

present in the fibre suspensions may have been removed (aggregated) in the presence of 

CaCl2. The fines, along with wide shape and size distributions, may be responsible for 

the large αav value with feeds of pure fibre in deionised water in the first place. The 

presence of fines was previously suggested in Section 4.3.4.2 and is supported by the 

fact that filtrations of fibre suspensions proceeded at an extremely slow rate using a 4 

μm rated filter medium. The fines aggregation hypothesis is further supported by the 

fact that: 1) at a lower solids concentration (0.16% v/v), the initial settling rate for pure 

fibres was greater in 0.1 M CaCl2 solution than in deionised water; (2) the supernatant 

of a settled fibre suspension in deionised water was significantly more turbid than the 

supernatant of a corresponding suspension in 0.1 M CaCl2 solution; and (3) the fibrous 

solids were close to their iso-electric point in 0.1 M CaCl2 (see Figure 3.19). 
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Taking into account that the fibres and rutile were oppositely charged in 0.1 M 

CaCl2 solution, the effect of CaCl2 solution environment on rutile-fibre interactions 

could be expected to be greater than on rutile-rutile and fibre-fibre interactions as rutile-

fibre electrostatic repulsions were not just reduced but altered to become attractive 

forces. Hence the 0.1 M CaCl2 solution environment may have been expected to cause a 

greatest effect in the intermediate solids composition range (in the region 0.3 < XD < 

0.7). However, although there is a significant difference in αav with rutile rich (XD < 0.3) 

and fibre rich (0.7 < XD) cakes due to the three different solution environments, there 

was little variation in εav (Figure 4.25) and αav (Figure 4.26) due to NaCl and CaCl2 

addition in the solids composition range 0.3 < XD < 0.7. This apparent discrepancy may 

be explained by the fact that αav cannot be expected to continually decrease and εav to 

continually increase with increased states of aggregation as there will eventually be a 

lower limit to the packing fraction under a given applied pressure. This limit seems to 

have already been reached by filter cakes formed from suspensions in deionised water 

over the solids composition range 0.3 < XD < 0.7.   

 

4.4. CONCLUSIONS 

Filtration data presented in this chapter indicate the significance of physico-

chemical interactions as the most likely cause of minima in the trend of αav with solids 

composition for feeds in deionised water. In general, the relationship between αav and 

solids composition corresponded with the sedimentation data. The influence of solids 

composition was most pronounced in the absence of NaCl and CaCl2 and the influence 

of solution environment was most pronounced at the extremes of solids composition 

(i.e. rutile rich and fibre rich). For rutile rich cakes, the reduction in αav due to 0.2 M 

NaCl and 0.1 M CaCl2 solution environments were most likely via suppression of the 

rutile electrical double layer. For fibre rich cakes, although several hypotheses have 

been postulated, definitive reasons for the reduction in αav due to NaCl and CaCl2 

addition were not apparent. Compared to the influence of solids composition and 

solution environment, the influence of filtration pressure on αav was less significant. The 

general concept of additive porosity seems to be better than interparticle penetration 
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with the rutile/fibre system, and this was attributed to rutile coating fibre surfaces 

instead of more freely migrating within the filter cake. 
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CHAPTER 5:  FURTHER DISCUSSION AND MODELLING 

 

5.1. INTRODUCTION 

The permeability of a filter cake is the most important factor in cake filtration (in 

relation to filter design and scale-up) and is often interpreted through a measure of the 

cake’s specific resistance. Models for flow through porous media are generally based on 

Darcy’s law, which uses a single parameter (the permeability) to account for the 

characteristics of the porous medium in so far as they affect fluid flow. There have been 

many attempts to relate permeability to the geometric considerations of a porous 

medium. One of the most widely used of these theories is that due to Kozeny-Carman. 

In this theory, fluid flowing through a porous body loses energy where it is in contact 

with the internal surfaces of the body; these surfaces generally possess a very complex 

geometry which cannot be easily described mathematically, but for practical purposes 

can be interpreted through the body’s porosity and specific surface (Wakeman and 

Tarleton, 2005). The Kozeny-Carman theory is based on the internal pores being 

represented by a bundle of capillary tubes whose orientation is at 45o to the fluid inflow 

face of the porous medium. The theory has received some criticism, which is largely 

undeserved since it correlates bed resistance data for a wider range of porous media 

types than any other permeability theory. Although the combination of the Kozeny-

Carman equation and Darcy’s law provide a relatively well established basis for 

determining the specific surface of particle samples from permeability data and 

correlating resistance data for fluid flow through a porous bed consisting of a single 

component solid, the situation is less obvious for binary mixtures.  

A particular objective of this chapter is to assist in the interpretation of the 

filtration results presented in Section 4.3. In this chapter, the combined use of the 

Kozeny-Carman equation and Darcy’s law is presented and discussed in relation to 

application in the filtration of binary mixtures. Upon close study, this approach is shown 

to have its limitations, particularly when significant aggregation takes place between the 

two solids phases. The difficulties in overcoming these limitations from a purely 
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fundamental basis are highlighted, and a semi-empirical model is presented and 

discussed.  

 

5.2. MODEL DERIVATION 

Abe et al. (1979) had previously derived a model to predict the average specific 

cake resistance of binary mixtures based on the Darcy and Kozeny-Carman equations. 

The model derivation is briefly presented here together with further development, 

starting from the Kozeny-Carman equation: 
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The height of the packed bed is given by: 
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and substituting (5.2) into (5.1) gives: 
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Pressure drop across the cake is also given by: 

cRuP                                                        (5.4) 

Replacing the resistance of the cake with the average specific cake resistance leads to: 

wuP av                                                     (5.5) 

Substituting (5.5) into (5.3) and rearranging gives: 
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But v/w is the inverse of the packed bed true density, expressed by equation (5.7): 
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Substituting equation (5.7) into equation (5.6) gives: 
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Assuming an ‘additive’ mechanism, the specific surface of the binary mixture at a given 

solids composition can be expressed in terms of the effective specific surface of the two 

solids components6: 
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Substituting (5.9) into (5.8) gives: 
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Abe et al. (1979) related the specific surface to particle size (assuming spherical 

particles) and referred to  i (where i = 1 for solids component 1 and 2 for solids 

component 2) as a surface factor without providing a clear explanation of the parameter. 

In this thesis, no relationship between specific surface and particle size is assumed and 

i  is (perhaps more appropriately) termed a shape factor. Also, the term Si/ i is kept as 

a ratio and not broken up since little is known about the exact relative magnitudes of 

either Si or  i.  i can be thought of as a lumped parameter taking into account 

sphericity, surface roughness, as well as pure component size distribution and surface 

interactions. Hence, Si can be considered to be the specific surface that corresponds to 

idealised spheres. As pointed out by Donohue and Wensrich (2009), although a shape 

factor can be used to account for irregular particles, it must be determined empirically. 

The effective specific surface (Si/ i) for both components in equation (5.9) is 

determined using the specific resistance and porosity values of a cake formed from 

filtration of a single component solid as:  

                                                 
6 The significance of equation (5.9) is discussed later, an alternate form is presented as equation (5.43). 
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where i = 1 for the first pure solids component or 2 for the second; for the data in this 

thesis, 1 refers to fibres and 2 to rutile. Equation (5.11) was obtained from equation 

(5.10) by substituting for XD = 0 or 1 for the two pure solids components, and 

rearranging.   

The ratio of effective specific surfaces is a commonly recurring parameter and is 

defined by SB according to equation (5.12): 
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Using equation (5.11) to determine the effective specific surfaces in equation (5.12) 

leads to: 
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Substituting equation (5.12) into equation (5.10) and manipulating gives: 
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It should be noted that SB as defined in equation (5.13) refers to the ratio of pure 

component specific surfaces, with a pure component’s specific surface determined from 

equation (5.11). However, a pure component’s effective specific surface may vary in the 

presence of another solids component due to physico-chemical effects and/or varying 

packing mechanisms. If the changes in S1/ 1 and S2/ 2 are disproportionate, then SB 

will vary with solids composition. It is not known how, if at all, SB varies with solids 

composition. These possibilities are explored further in the next section.  

 



Chapter 5:  Further Discussion and Modelling 
______________________________________________________________________ 

 117

5.3. ANALYSIS OF THE MODEL CHARACTERISTICS 

Experimental data for filtrations from deionised water show a minimum in 

specific resistance as illustrated in Figure 4.24. It is interesting to see how the model 

derived in Section 5.2 represents the experimental data, in particular the minimum 

observed in the specific resistance vs. solids composition trend. However, before direct 

application of the model to the experimental data, the general characteristics of the 

model are first discussed. The conditions under which minima in specific resistance can 

be obtained at some intermediate solids composition and the role of specific surface in 

the model are investigated using various assumptions. The validity of these assumptions 

is also assessed. 

 

5.3.1. Analysis assuming constant porosity and effective specific surface 

Assuming that average cake porosity, and the effective specific surface values of 

the two solids components (S1/ 1 and S2/ 2) remain constant (invariant with respect to 

solids composition), a minimum or maximum in average specific cake resistance can 

only be obtained if: 
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Carrying out the differentiation (presented in detail in Appendix D) leads to: 
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Utilising the fact that a minimum in specific resistance is to occur when 0 < XD < 1 

leads to (again, see Appendix D):  
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 BS                                           (5.17)                  

Equation (5.17) is an interesting result as it outlines the range of SB, exclusively in terms 

of the two pure solids densities, within which a minimum or maximum in αav could 
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occur at some intermediate solids composition; the equation should, in theory, hold for 

any binary mixture where the average cake porosity and effective specific surface 

values of the two solids components do not vary with solids composition.   

As an example, under the current experimental conditions with fibre/rutile 

mixtures, a minimum or maximum in αav at some intermediate solids composition will 

only be obtained if (substituting for fibre and rutile densities): 

66.047.0  BS                                                (5.18)                   

According to equation (5.13), the expression represented in equation (5.18) is not met 

experimentally if SB values are calculated from the pure component filtration data. From 

the values calculated using data from filtrations with deionised water, SB was 

approximately 3.7, 4.6 and 5.5 for filtrations at 150, 450 and 600 kPa, respectively; 

these values are an order of magnitude above the range specified by equation (5.18). 

The next step will therefore be to examine the role of variations in porosity. 

 

5.3.2. Analysis assuming constant effective specific surface 

The porosity variation with solids composition can be represented by an 

appropriate model (such as interparticle penetration or the Shirato additive law) to keep 

the model independent of experimental data for intermediate solids compositions. When 

no appropriate existing model can be applied, the experimental data may be directly 

used. It has been previously shown (Section 4.3.4) that the average porosity of cakes 

resulting from filtrations with deionised water can be adequately represented by 

Shirato’s additive law (equation (4.24)). Substituting equation (4.24) into equation 

(5.10) results in: 
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Assuming that the effective specific surface values of the two solids components remain 

constant (invariant with respect to solids composition), a minimum or maximum in 

average specific cake resistance can only be obtained if:  
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Carrying out the differentiation (presented in Appendix D) gives:  
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Utilising the fact that a minimum in specific resistance is to occur when 0 < XD < 1 

leads to equation (5.22) (the algebraic manipulation is given in Appendix D). 

2

1

1,

2,

2,

1,

1

2

2,

1,

1,

2,

5.0
1

1
15.1

5.0
1

1
15.1

1





































































 av

av

av

av
B

av

av

av

av

S      (5.22) 



Chapter 5:  Further Discussion and Modelling 
______________________________________________________________________ 

 120

 

Equation (5.22) is another interesting result as it outlines the range of SB, in terms of the 

two pure solids densities and pure component εav, within which a minimum or 

maximum in αav could occur at some intermediate solids composition. This equation 

should, in theory, hold for any binary mixture where the effective specific surface 

values of the two solids components do not vary with solids composition and the εav vs. 

solids composition trend can be satisfactorily represented by the Shirato additive law.    

As an example, substituting fibre and rutile densities and pure component 

porosities into equation (5.22), reveals that under the current experimental conditions, a 

minimum or maximum in αav at some intermediate solids composition will only be 

obtained if (the data for filtrations from deionised water at 450 kPa was used here as an 

example, filtrations at other pressures result in similar limits):  

67.158.0  BS                                                (5.23)                   

In a similar way to the analysis in Section 4.4.2.1., the expression in equation (5.23) is 

not met experimentally if SB values are calculated from the pure component suspension 

data (using equation (5.13)); as noted previously, values for SB are approximately 3.7, 

4.6 and 5.5 for filtrations with deionised water at 150, 450 and 600 kPa, respectively.  

It has been shown that accounting for the variation in porosity using the Shirato 

additive law increases the range of limits for SB within which a minimum in specific 

resistance at some intermediate composition is possible. Also, the experimentally 

obtained values of SB are closer to the limits set by equation (5.23) than equation (5.18), 

however, the experimental values of SB are still outside the range specified by equation 

(5.23). As a consequence, equation (5.19) will not be able to represent the experimental 

data for filtrations with deionised water if it is assumed that the effective specific 

surface of the two solids components remains constant. Furthermore, in the filtration of 

binary mixtures, the surface area per unit volume of the two solids components in 

contact with the permeating fluid may vary with solids composition. The next step will 

therefore be to analyse the role of effective specific surface.   
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5.3.3. Analysis of the role of effective specific surface in the model 

A family of curves were drawn using equation (5.19) with SB across the range 

specified by equation (5.23), by varying first S1/ 1 keeping S2/ 2 constant (Figure 5.1), 

and then S2/ 2 keeping S1/ 1 constant (Figure 5.2). For the purpose of this illustrative 

example, the curves in Figure 5.1 were plotted using the value of S2/ 2 as determined 

from equation (5.11) with experimental data from a 450 kPa filtration of a pure rutile 

suspension in deionised water. Values of S1/ 1 were varied such that SB ranged from 

0.3 to 4.6. Similarly, for the curves in Figure 5.2, S1/ 1 was determined from equation 

(5.11) with experimental data from a 450 kPa filtration of a pure fibre suspension in 

deionised water. Values of S2/ 2 were varied such that SB ranged from 0.3 to 4.6. The 

pure component porosities used were from the 450 kPa pure component filtrations with 

deionised water. Tables 5.1 and 5.2 summarises the effective specific surface values of 

the two solids components used in Figures 5.1 and 5.2, respectively.  

It is noted that the curves corresponding to SB = 4.6 in Figures 5.1 and 5.2 are 

identical since for this curve, both S1/ 1 and S2/ 2 were calculated from equation (5.11) 

using data from 450 kPa filtrations of pure fibre and pure rutile suspensions in deionised 

water, respectively. The modelled curve when SB = 4.6 is therefore meant to correspond 

to the present work’s experimental data if it is assumed that the fibre and rutile effective 

specific surfaces do not vary with solids composition, and is equal to the value obtained 

from the pure component filtrations. However, the SB = 4.6 curve (Figures 5.1 and 5.2) 

shows a gradual increase in αav from pure rutile to pure fibres; no minimum in αav at an 

intermediate solids composition is obtained. Also, even with the hypothetical curves 

which show a minimum, the minimum shown is not as pronounced as that obtained 

experimentally. This apparent discrepancy may not be surprising since, as noticed 

visually and evidenced by the sedimentation data (where both pure component 

suspensions do not settle but settling rates are significantly increased for mixtures), the 

physical nature of the binary suspensions are altered synergistically. An analysis of the 

behaviour of an interacting binary suspension cannot be made by a simplistic 

extrapolation from the known behaviour of the two pure component suspensions.  
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Figure 5.1: Family of curves obtained using equation (5.19), varying S1/ 1  and keeping S2/ 2  

constant. Experimental data from 450 kPa filtrations with deionised water is included. The 

parameters used for the curves are summarised in Table 5.1. 

 

 

 

Table 5.1: Parameters for the curves plotted in Figure 5.1 at the various SB. 

SB S1/ 1  (m
-1) S2/ 2  (m

-1) 

0.3 1.31x107 4.36x107 

0.65 2.83x107 4.36x107 

1 4.36x107 4.36x107 

1.45 6.32x107 4.36x107 

4.6 2.00x108 4.36x107 
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Figure 5.2: Family of curves obtained using equation (5.19), varying S2/ 2 and keeping S1/ 1  

constant. Experimental data from 450 kPa filtrations with deionised water is included. The 

parameters used for the curves are summarised in Table 5.2. 

 

 

 

Table 5.2: Parameters for the curves plotted in Figure 5.2 at the various SB. 

SB S1/ 1  (m
-1) S2/ 2  (m

-1) 

0.3 2.00x108 6.67x108 

0.65 2.00x108 3.08x108 

1 2.00x108 2x108 

1.45 2.00x108 1.38x108 

4.6 2.00x108 4.36x107 

  

 



Chapter 5:  Further Discussion and Modelling 
______________________________________________________________________ 

 124

5.3.3.1. Analysis assuming a constant value of SB 

It is seen from Figures 5.1 and 5.2 that equation (5.19) cannot adequately 

represent the experimental data and this was attributed to rutile-fibre aggregation 

resulting in a decreased effective specific surface for both solids. The next step will 

therefore be to account for variations in effective specific surface across the range of 

solids composition. In the first instance, it is assumed that S1/ 1 and S2/ 2 may vary 

with solids composition, but vary such that the ratio SB stays approximately constant. 

 It may be expected that the greater the extent of aggregation, the lower the 

effective specific surface; this is generally the motivation behind inducing aggregation 

during chemical pretreatment of a slurry before filtration. The extent of aggregation is 

expected to be affected by parameters such as solids composition, solution environment 

and filtration pressure. However, it is very difficult to experimentally obtain accurate 

information regarding the effective specific surface of the two solids components in an 

interacting binary mixture under the various conditions (as required for predictions of 

specific resistance of cakes consisting of two solids phases). Therefore, a simplifying 

assumption is used and its validity is subsequently assessed. Essentially, what is 

investigated is how much S1/ 1 and S2/ 2 will have to vary over the range of solids 

compositions, filtration pressures and solution environments in order to match the 

experimental filtration data, assuming constant SB. 

Using the Kozeny-Carman model, the relevant equation used to estimate the 

specific surface of particles forming a single component porous bed from fluid flow 

data is given as: 
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To the author’s knowledge, a corresponding equation for binary mixture porous beds 

has not been previously discussed in literature. Considering the derivation outlined in 

Section (5.2), a framework is hereby presented for estimation of the effective specific 

surface of the two solids components in a binary mixture porous bed, assuming that the 

ratio of effective specific surfaces, SB, remains constant. The validity of this framework 



Chapter 5:  Further Discussion and Modelling 
______________________________________________________________________ 

 125

is then assessed, particularly in relation to the assumption of SB not varying with solids 

composition.  

Rearranging equation (5.14) gives: 
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Similarly, the specific surface of the small component (rutile in this thesis) is given by: 
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It was previously shown in Section 4.3.4 that, for suspensions in deionised water, the 

relationship between average porosity and solids composition can be represented 

adequately by the Shirato additive law (equation 4.24). Substituting equation (4.24) into 

equations (5.25) and (5.26) gives equations (5.27) and (5.28), respectively: 
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Equations (5.27) and (5.28) were used to plot the surfaces in Figure 5.3. As seen 

in Figure 5.3, the ratio of S1/ 1 to S2/ 2 (i.e. SB) remains constant throughout. Also, at 

the minimum, it is seen that an approximately 10% reduction in effective specific 

surface for both solids is required to account for the experimental specific resistance 

data. Although the 10% reduction in effective specific surface appears reasonable, upon 

closer examination, the assumption of constant SB does not. Like the rest of Section 5.3, 

this sub-section and Figure 5.3 are merely presented to serve as an illustrative analysis 

of the characteristics of the model derived in Section 5.2, using hypothetical scenarios.   

Rutile-fibre interaction can be expected to alter the effective specific surface in 

contact with the permeating fluid. When a rutile particle coats a fibre surface, the total 

volume of the solids remains constant but the total area in contact with the permeating 

fluid is reduced. The magnitude of this reduction will depend on the total rutile-fibre 

contact area. To illustrate this dependence, equations (5.29) and (5.30) are presented: 
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where n1 and n2 are respectively the number of fibres and rutile particles, A1 and A2 are 

the average surface area (in contact with the permeating fluid) of a fibre and rutile 

particle assuming no rutile-fibre aggregation. Vav,1 and Vav,2 are the average volume of a 
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fibre and rutile particle, and AcT the total rutile-fibre contact area. The effective specific 

surface of both fibres and rutile will decrease with increasing contact area (i.e. 

increasing extent of aggregation). Equations (5.29) and (5.30) are applicable to any 

interacting binary mixture and for the model developed in Section 5.2 to be physically 

meaningful in relation to interacting binary mixtures, this loss in effective specific 

surface will have to be accounted for. In Figure 5.3, this loss in specific surface due to 

rutile-fibre aggregation is essentially, and perhaps erroneously, accounted for by 

assuming a constant SB, and then fitting the model to experimental data. 

 

 

 

Figure 5.3: Variation in fibre (S1/ 1) and rutile (S2/ 2) specific surface area in contact with the 

permeating fluid (deionised water) as determined from equations (5.27) and (5.28) assuming SB 

remains constant with solids composition. The corresponding experimental data for cake 

average specific resistance is shown in Figure 4.21.  

 

 

From equations (5.12), (5.29) and (5.30), SB can be expressed as: 
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Considering that the ratio of the total volumes of the two components can be expressed 

as: 
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equation (5.31) can be re-written as: 
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Physical reasoning, sedimentation and filtration data suggest that AcT increases from 0 at 

XD = 0 up to a maximum value at some intermediate solids composition and then 

decreases back to 0 at XD = 1. With rutile or fibre rich mixtures, AcT may be limited by 

the lack of surface area of the more scarce solids component. Furthermore, the values of 

A1 and A2 may vary across the range of solids composition, due to varying packing 

mechanisms and physico-chemical factors. Due to this highly non-linear relationship, 

the assumption of constant SB is expected to be unreasonable. Some further inference 

can be made from equation (5.33), such as when XD → 0 (pure rutile), or when XD → 1 

(pure fibres), the concept of SB becomes meaningless. As XD → 0, 
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and 
D
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 → ∞, and as XD → 1, 
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11  → ∞ and 
D

D

X

X1
 → 0. Using this 

approach of constant SB, another concern will be that we do not know at which solids 

composition the relationship breaks down. Taking equation (5.27) for example, setting 

XD = 1 results in the Kozeny-Carman equation for pure fibres (equation (5.24) for pure 

fibres). In other words, the limit for equation (5.27) is correct for when XD → 1. 

However, from equations (5.12) and (5.13), it should be possible to calculate S2/ 2 

from S1/ 1, according to:  
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Besides the fact that it makes little physical sense that S2/ 2 should depend on S1/ 1 as 

expressed by equation (5.34), it is seen that the limit for equation (5.34) is wrong for 

when XD → 0. Equation (5.34) does not approach the Kozeny-Carman equation for pure 

rutile. A similar analysis can be carried out on equation (5.28) which will give the 

correct limit for pure rutile, but if S1/ 1 is calculated from S2/ 2 using equations (5.12) 

and (5.13) and S2/ 2, it is seen that the limit is wrong for when XD → 1. These 

erroneous limits are due to the assumption of constant SB. 

 

5.3.3.2. Analysis assuming two values of SB 

The initial approach taken to account for varying SB was the simple case of SB 

taking on two distinct values, one for rutile rich cakes and the other for fibre rich cakes. 

The idea behind this approach was that two separate mechanisms promoted the 

observed behaviour across the solids composition range; one mechanism was dominant 

for rutile rich cakes and the other for fibre rich cakes.  

It was envisaged that, from the curves in Figure 5.1, further decreasing SB whilst 

keeping S2/ 2 constant may eventually result a curve which represents the experimental 

data for rutile rich cakes. Similarly, from the curves in Figure 5.2, further increasing SB 

and keeping S1/ 1 constant may eventually result in a curve which represents the 

experimental data for fibre rich cakes. These two corresponding values of SB may then 

provide some insights into the two mechanisms. Figure 5.4 was therefore plotted to see 

if increasing SB in Figure 5.2 will eventually result in a curve that represents the 

experimental data for fibre rich cakes. However, as seen from Figure 5.4 for instance, 

no matter how much SB is increased, the experimental data is not represented. This is 

due to the fact that, as seen in Table 5.2 and equation (5.12), SB is increased by 

decreasing S2/ 2 (rutile effective specific surface) whilst keeping S1/ 1 (fibre effective 

specific surface) constant; loss of fibre specific surface is not accounted for with fibre 

rich cakes. In Figure 5.4 it is seen that the curve reaches a plateau and does not 
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significantly alter as the rutile effective specific surface is reduced further (even using 

unrealistically low values of S2/ 2). This plateau does not represent the experimental 

data for fibre rich cakes, perhaps illustrating the significance of accounting for loss in 

fibre specific surface even at larger values of XD. 

It is also interesting that with rutile rich cakes, a better fit to the experimental 

data can be obtained by using a constant value of SB (compare Figure 5.1 to Figures 5.2 

and 5.4). A potential reason for this is that the pure rutile specific surface is significantly 

lower than the pure fibre specific surface (as determined from the two pure component 

filtrations). Further, the decrease in specific resistance from pure fibre cakes (in the 

range XD > 0.8) is steeper than that from pure rutile cakes (in the range XD < 0.3). In 

other words, the fibre component can be considered more ‘dominant’ than the rutile 

component. Nevertheless, as inferred from the fibre rich cakes in particular, it does not 

 

 

Figure 5.4: Family of curves produced by increasing SB, keeping the fibre effective specific 

surface constant. Experimental data from 450 kPa filtrations with deionised water is included. 

The parameters used for the curves are summarised in Table 5.3. 
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Table 5.3: Parameters for the curves plotted in Figure 5.4 at the various SB. 

SB S1/ 1  (m
-1) S2/ 2  (m

-1) 

4.6 2.00x108 4.36x107 

46 2.00x108 4.36x106 

460 2.00x108 4.36x105 

4600 2.00x108 4.36x104 

  

 

 

seem reasonable to represent the experimental data using this method. Also, from a 

fundamental perspective, it does not seem correct to assume a constant effective specific 

surface for either component over any solids composition where fibre-rutile aggregation 

takes place.  

 

5.3.3.3. Significance of SB 

The ratio of effective specific surfaces (SB) is shown to be a critical parameter in 

the filtration of aggregating binary mixtures and requires further analysis. The 

significance of SB is also seen via equations (5.17) and (5.22), where its range 

determined some characteristics of the specific resistance vs. solids composition trend. 

The values of SB at the different filtration pressures and solution environments are 

shown in Figure 5.5, as determined from the pure components. It is interesting that SB 

varies linearly with filtration pressure, and it is also evident that the values of SB in the 

NaCl and CaCl2 solution environments are similar and much lower than the values of SB 

in deionised water. However, it should be noted that the values of SB shown in Figure 

5.5 are merely determined from the two pure components for each case, and are not 

representative of the ratio of effective specific surfaces of the two solids across the 

range of solids compositions. Although the effective specific surfaces of the two solids 

at their pure component packing can be estimated from the corresponding pure 
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component filtrations, and the ratio of these two specific surface values will give a value 

of SB, this value is not likely to correspond to the ratio of fibre to rutile specific surfaces 

exposed to the permeating fluid at intermediate solids compositions. Not only may the 

packing characteristics be different, but the proportion of rutile and fibre specific 

surface lost will vary with solids composition. With binary mixture filtrations, for SB 

values to be the basis of a meaningful study, it will have to represent the true ratio of 

effective specific surfaces at any given solids composition. 

 

 

Figure 5.5: Values of SB calculated from equation (4.40) for the filtrations from deionised water 

as well as 0.2 M NaCl and 0.1 M CaCl2 solutions. 

 

 

SB is expected to be a function of solids composition (equation (5.33)); the form 

of this function will depend on the interaction forces and mechanisms, and the resultant 

packing at that solids composition. In light of the significance of SB, it is too simplistic 

to represent the SB vs. solids composition trend by using one or even two constant 

values. Also, the values of SB at the various solids compositions are required in order to 

calculate the specific surface of one solids component from the other at that respective 

solids composition. The basis of the presented model (see equation (5.10)) is that it 

requires the specific surface of the two solids components at the various solids 
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compositions; this requirement is difficult to satisfy if the values of SB at the various 

solids compositions are not known. Perhaps it is therefore unrealistic to attempt to 

obtain estimates for the specific surface of the two solids components. In the next 

section, a curve fitting approach is taken to represent the total solids effective specific 

surface at the various solids compositions. 

 

5.4. APPLICATION OF MODEL TO EXPERIMENTAL DATA 

Considering the difficulties involved in estimating the specific surface of the two 

solids components as required by equation (5.10), the use of equation (5.9) in equation 

(5.8) is not explored further. Instead, representations of S0 are experimentally 

determined by rearranging equation (5.8) to give: 
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
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0                                 (5.35) 

Equation (5.9) gives an ‘additive’ type approach to describing the variation of effective 

specific surface with solids composition, and may not be appropriate with interacting 

binary mixtures. Figure 5.6 shows a plot of S0 vs. solids composition for 450 kPa 

filtrations with deionised water; the experimental representations of S0 were determined 

from equation (5.35) and relevant experimental data. Filtrations with deionised water at 

150 kPa and 600 kPa showed similar trends.  

Although the total solids specific surface with 450 kPa filtrations are presented 

in Figure 5.6 as an example, for all filtrations from deionised water, a minimum in 

S1/ 1 and S2/ 2 was seen at XD ~ 0.65. Besides causing the observed αav vs. XD trend 

(Figure 4.21), this reduction in specific surface also resulted in the observed initial 

settling rate vs. XD trend (Figure 4.7). When a solid body settles in a fluid at a velocity 

us, the drag force, FD, opposing its motion is expressed by Newton’s law as (Wakeman 

and Tarleton, 2005):  

2

2
sl
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u
ACF


                                               (5.36) 
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where AP is the area of the solid projected in the direction of motion, CD the drag 

coefficient, and ρl the liquid density. For a constant solids volume, a decrease in the 

specific surface will result in a lower AP and hence easier settling. However, a more 

explicit correlation between the total solids specific surface vs. XD, and initial settling 

rate vs. XD trends cannot be easily formulated mainly because at higher fibre 

concentrations suspensions tend to become structured (thereby altering the settling 

behaviour) and settling rates will be reduced for loosely networked aggregates (lower 

effective density difference between the settling solids and suspending liquid).  

 

 

Figure 5.6: Plot of S0 vs. solids composition, the experimental representations were calculated 

from equation (5.35) and data from 450 kPa filtrations with deionised water. The pure 

component specific surface values (S1/ 1 and S2/ 2) were calculated from equation (5.11). 

 

 

From Figure 5.6, it may be inferred that two separate mechanisms promoted the 

observed behaviour across the solids composition range; one mechanism was dominant 

for rutile rich cakes (XD from 0 to 0.65) and the other for fibre rich cakes (XD from 1 to 

0.65). The approach of inferring two separate mechanisms across a solids composition 

range has been taken by various researchers in the past when analysing binary mixture 
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packing (McGeary, 1961; Tokumitsu, 1964; Abe and Hirosue, 1982; Abe et al., 1993; 

Dias et al., 2004). Any interaction effects with one packing mechanism may manifest 

itself on the filtration performance in a different way than with the other. Due to the 

inherent difficulties in fundamentally accounting for these factors, a curve fitting 

procedure was carried out and, as seen in Figure 5.6, the two mechanisms apparent in 

the specific surface-solids composition data are represented well by:  
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                                        (5.37) 
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where equations (5.37) and (5.38) apply to fibre and rutile rich cakes respectively, and 

b1a and b2a are experimentally determined coefficients. From equation (5.37) S0 = S1/ 1 

when XD = 1. Correspondingly, from equation (5.38), S0 = S2/ 2 when XD = 0. 

Substituting equations (5.37) and (5.38) into equation (5.8) gives equations (5.39) and 

(5.40), respectively: 
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where equation (5.39) applies to filter cakes rich in the larger solids component and 

equation (5.40) to filter cakes rich in the smaller solids component.  

The pure component effective specific surface values, S1/ 1 and S2/ 2, are 

determined from the pure component filtrations. The parameters b1a and b2a are 

determined by a curve fitting regression analysis. The curve fitting procedure could be 

carried out using the few experimental points closest to XD = 0 and XD = 1. However, 

from Figure 5.6, a minimum was noted at an XD of 0.65, and so for accuracy this was 

taken to be the transition point. Hence b1a was determined by curve fitting experimental 
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points that lie between 0.65 ≤ XD ≤ 1 and b2a was determined by curve fitting 

experimental points that lie between 0 ≤ XD ≤ 0.65.    

Data for 450 kPa filtrations with deionised water are used to help provide a 

descriptive example of how the model is applied to the experimental data. The effective 

specific surface of pure fibres and rutile were determined from the pure component 

filtration data according to equation (5.11). Values of S0 at the different solids 

compositions were determined from equation (5.35) and relevant experimental values. 

Curve fitting equation (5.37) to the values of S0 at XD ≥ 0.65, and equation (5.38) to the 

values of S0 at XD ≤ 0.65, gave b1a and b2a as 8.92 and 1.85, respectively. Linear 

interpolations were carried out on the experimental porosity vs. solids composition 

trend, and these values were used in equations (5.39) and (5.40) for the cake average 

porosity. It is noted that an alternate method for accounting for the experimental 

porosity trend will be to use an appropriate packing model such as the Shirato additive 

law or interparticle penetration model (see Section 4.3.4 for further discussions on these 

models). Appropriately substituting for the average cake porosities (εav), the pure 

component densities (ρ1 and ρ2) and the effective specific surface values (S1/ 1 and 

S2/ 2), as well as the values of b1a and b2a into equations (5.38) and (5.39), and plotting 

versus solids composition will result in two curves. The first emanates from the pure 

rutile data point and the other from the pure fibre data point. These two curves intersect 

at some intermediate solids composition, and are discontinued at the intersection 

resulting in one curve as shown in Figure 5.7. The experimental specific resistance data 

is included in Figure 5.7 for comparison, and it is seen that a relatively good fit is 

obtained. Relatively good fits are also obtained on the corresponding plots with 150 and 

600 kPa filtrations (see Appendix E).  

An alternative approach used was to ‘combine’ equations (5.39) and (5.40) to 

give: 
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where b1 and b2 are the fitting parameters. The curve fitting process to determine b1 and 

b2 using non-linear regression in SigmaPlot is further described in Appendix E, where 

an example non-linear regression results file is given. Although b1 and b2 carry a 

different meaning to b1a and b2a, Figure 5.7 shows that similar trends which represent 

the experimental data can be obtained by using either equations (5.39) and (5.40) or 

equation (5.41). One noticeable difference may be at the intersection between equations 

(5.39) and (5.40) (at XD ~ 0.64 in Figure 5.7), where equation (5.41) resulted in a 

smoother curve. The values of b1 and b2 for 450 kPa filtrations with deionised water 

were 8.41 and 0.76, respectively. Similarly good representations was generally noted 

with the other trialled filtration pressures and solution environments. Figure 5.8 shows 

the fits given by equation (5.41) to the deionised water filtration data at 150 kPa and 

600 kPa, where smooth curves representative of the data are presented.  

 

 

Figure 5.7: Experimental filtration data at 450 kPa with deionised water and the model fit using 

equations (5.39) and (5.40) as well as equation (5.41).  
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Figure 5.8: Experimental filtration data at 150 kPa and 600 kPa with deionised water and the 

model fits using equation (5.41). 

 

 

The model was also fitted to data for 450 kPa filtrations of fibre/rutile mixtures 

in 0.2 M NaCl and 0.1 M CaCl2 solutions; the resultant curves are shown in Figure 5.9. 

For the filtrations with NaCl, the values of b1 and b2 were approximately 3.15 and -0.31, 

respectively; and for the filtrations with CaCl2, the values of b1 and b2 were 

approximately 8.61 and -0.75, respectively. It is seen that it was possible to fit the 

model to represent the experimental data not only for filtrations with deionised water 

but also with the other solution environments tested. 

To further trial the model, the filtration data reported by Iritani et al. (2002) were 

used. The suspensions that Iritani et al. filtered consisted of mixtures of rutile and silica 

in deionised water at two different pH values (4.5 and 9.6). The filtrations were at 196 

kPa and the pH was adjusted downwards using an HCl solution and upwards using a 

NaOH solution. At pH 4.5 rutile-silica interactions resulted in a minimum in the specific 

resistance vs. solids composition trend, and at pH 9.6 the particles were well dispersed 

(Iritani et al., 2002). Hence, the model could also be tested on a particle-particle binary 
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Figure 5.9: Experimental filtration data at 450 kPa with 0.2 M NaCl and 0.1 M CaCl2 solutions, 

and the model fits using equation (5.41). 

 

 

mixture for when aggregation does and does not occur, and the resultant fits are shown 

in Figure 5.10. For the filtrations at pH 4.5, the values of b1 and b2 were approximately 

2.90 and 0.67, respectively; and for the filtrations at pH 9.6, the values of b1 and b2 were 

approximately 0.48 and 0.05, respectively. Although equation (5.41) has been used for 

Figures 5.8 - 5.10, the combined use of equations (5.39) and (5.40) also gave reasonably 

good fits to the experimental data; these fits are given in Appendix E.  

The experimental points presented in Figure 5.10 were recalculated from Iritani 

et al. (2002) as they studied the effects of solids composition in terms of mass fractions. 

Iritani and co-workers kept the total mass fraction of solids in suspension constant, and 

varied the mass fraction of rutile, filtering solids ranging from pure rutile to pure silica. 

Recalculations to obtain the corresponding volume fractions from the various mass 

fractions were made using the following relationship:  
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where (st/s) is defined in Iritani et al.’s paper as the ratio of mass fraction of rutile to the 

total mass fraction of solids in suspension, and ρt and ρs are the pure rutile and silica 

densities, respectively. As consistent with the rest of this thesis, XD is defined as the 

ratio of volume of the larger solids component (silica in the case of Iritani et al.’s data) 

to the total volume of solids in the suspension.  

 

 

Figure 5.10: Experimental filtration data at 196 kPa with deionised water at pH 4.5 (where 

rutile-silica aggregation occurred) and pH 9.6 (where no aggregation occurred), and the model 

fits using equation (5.41). In this figure, an XD of 0 refers to pure rutile and an XD of 1 to pure 

silica. The experimental data points were recalculated from Iritani et al. (2002).  

 

 

Although a potential drawback of Iritani et al.’s data is that the solids 

concentration (by volume) is not constant across the solids composition range, this may 

not be significant for the purpose of testing the model. The model does not contain nor 

require any explicit information regarding the initial suspension concentration. Instead, 
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as is the case with the Kozeny-Carman equation, information regarding solids 

concentration is implicitly accounted for via the cake average porosity and solids 

specific surface. Furthermore, two factors that make Iritani et al.’s work particularly 

interesting for trialling the model on experimental data extending beyond those obtained 

in this thesis are that: (1) they studied a particle-particle system (rutile-silica) as 

opposed to a fibre-particle system, and (2) they studied one solution environment where 

rutile-silica aggregation occurred, and another where no apparent aggregation took 

place and the solids were well dispersed. These two factors provide an interesting test 

for the model (equation (5.41)). 

From Figures 5.7 to 5.10, it is seen that the model represents a wide range of 

binary suspension filtration data reasonably well using two fitting parameters. The 

aforementioned data encompass filtrations of fibre/rutile mixtures at various pressures 

and with different solution environments, as well as filtrations of silica/rutile mixtures at 

two different pH values (one induced silica/rutile aggregation and the other did not).  

Equation (5.9) gives an ‘additive’ type approach to describing the variation of 

effective specific surface with solids composition, where it is assumed that no changes 

in either component’s packing mechanism or interactions between the two components 

take place. Figure 5.11 illustrates a schematic of such a hypothetical scenario, where 

equation (5.9) may be used to describe the variation of effective solids specific surface 

with solids composition. Where the two solids are well mixed and of significantly 

different size distributions and/or shapes, and in particular where interactions between 

the two solids occur, then equation (5.9) may not be appropriate. Instead, equation 

(5.43) was used to represent the variation of effective specific surface in the model 

(equation (5.41)): 

      DDDD Xb
S

XXb
S

XS 2
2

2
1

1

1
0 exp11exp 


                (5.43) 

Comparing equations (5.43) and (5.9), it is seen that the difference is due to the two 

exponential terms in equation (5.43).  
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Figure 5.11: A schematic representation of a hypothetical case where equation (5.9) may be 

used to describe the variation of effective solids specific surface with solids composition. Here 

no changes in either component’s packing (due to the presence of the other component) or 

interactions between the two components take place. 

 

 

The use of an exponential type relationship in the model is interesting 

considering that it appears to fit the data reasonably well. It may be considered that the 

mechanisms involved across the range of solids compositions effectively account for 

three separate developments: 

(1) the difference in total solids specific surface brought about by progressively 

‘removing’ a given volume of rutile particles from a pure rutile filter cake and 

‘replacing’ them with fibres of a similar volume, eventually ending with a pure 

fibre filter cake; 

(2) any change in rutile and fibre specific surface from their pure component values 

due to varying packing mechanisms;  

(3) any possible loss in rutile and fibre specific surface due to rutile-fibre 

interactions. 

Although the development (1) may be satisfactorily expressed by equation (5.9), this 

equation says nothing about the packing mechanisms and possible interactions. As 

discussed in Section 5.3.3, developments (2) and (3) are significant but cannot easily be 
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described by an equation derived purely from fundamental principles. An example of an 

equation form which can capture the aforementioned developments appears to be the 

exponential form, with the fitting parameters b1 and b2 giving a quantitative estimate of 

the effects, especially at both extremes of solids composition, by behaving as ‘lumped 

coefficients’.  

The fitting parameter b1 is a coefficient for describing the effects of the addition 

of small solids on the larger solids component’s effective specific surface (due to 

changes in packing and interactions). Correspondingly, the fitting parameter b2 is a 

coefficient for describing the effects of the addition of larger solids on the small solids 

component’s effective specific surface. For example, as the cake becomes richer in the 

small solids component (XD decreases), then the term ‘exp(-b2XD)’ in equation (5.43) 

becomes less significant indicating that the influence of the larger solids component on 

the effective specific surface of the small solids component becomes less significant. 

However, the term ‘(1-XD)(S2/ 2)’ becomes greater due to the increasing volume of the 

small solids component in the cake. Further, the greater the magnitude of b2, so the 

more of an effect the term ‘exp(-b2XD)’ will have on the term ‘(1-XD)(S2/ 2)exp(-

b2XD)’. The difference between the fitting parameters in equation (5.43) (b1 and b2) and 

those in equations (5.37) and (5.38) (b1a and b2a), is that b1a only has an influence with 

filter cakes rich in the larger solids component and b2a with filter cakes rich in the 

smaller solids component (see equations (5.37) and (5.38)), whereas b1 and b2 exert 

their influence over the entire range of solids compositions for binary cakes (with 

different ‘weightings’). Hence equation (5.43) may be regarded to be more physically 

meaningful than equations (5.37) and (5.38), and therefore the use of equation (5.41) 

may be a better approach than the combined use of equations (5.39) and (5.40). The 

parameters b1 and b2 are expected to be unique for a given system.  

For rutile-fibre binary mixture filtrations with deionised water, the parameters b1 

and b2 are plotted against filtration pressure (Figure 5.12). Values of b1 and b2 are also 

tabulated along with values of b1a and b2a and other relevant parameters; this is 

presented as Table 5.4. From Table 5.4, it is noted that when the effective specific 

surface of pure rutile was calculated from the data of Iritani et al. (2002), the values 

obtained were close to those calculated from the data obtained in this thesis.  
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Figure 5.12: Values of b1 and b2 (equation (5.41)) for rutile/fibre binary suspension filtrations 

with deionised water at the different filtration pressures. Corresponding values of b1a and b2a 

(equations (5.39) and (5.40)) are included for comparison. 

 

 

 

From Figure 5.12 and Table 5.4, it is seen that b1 values were significantly larger 

than b2 values for fibre/rutile mixtures, indicating that the effects (on the filtration 

performance) of adding rutile to a fibre rich suspension were more significant than 

adding fibres to a rutile rich suspension. The negative values of b2 perhaps indicate that 

the presence of fibres increases the rutile effective specific surface for rutile rich cakes. 

This increase in rutile specific surface may be possible via changes in rutile packing 

brought about by the presence of fibres; as an example, the rutile primary particles 

could preferentially deposit onto fibre surfaces instead of forming collections of rutile 

clusters. Alternatively, since the negative values of b2 are low in magnitude, it may just 

be an artefact (experimental and/or fitting) with b2 actually being ~ 0.    
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Table 5.4: Summary of parameters relevant to Figures 5.7 – 5.10. 

Solution 
environment

Filtration 
pressure 

(kPa) 

S1/ 1
 * 

(m-1) 

S2/ 2 
** 

(m-1) 
b1 b2 b1a b2a 

Deionised 
water 

150 1.16x108 3.08x107 8.51 -0.13 7.73 1.07 

Deionised 
water 

450 2.01x108 4.12x107 8.41 0.76 8.92 1.85 

Deionised 
water 

600 2.08x108 3.81x107 12.72 -0.10 10.00 1.22 

0.2 M NaCl 450 1.34x107 1.91x107 3.15 -0.31 3.27 0.79 

0.1 M CaCl2 450 2.81x107 2.50x107 8.61 -0.75 2.04 0.85 

Deionised 
water, pH 4.5 
(aggregation 
occurred) *** 

196 
2.79x107

(silica) 
4.69x107 2.90 0.67 1.48 1.61 

Deionised 
water, pH 9.6 

(no 
aggregation 
occurred) *** 

196 
3.10x107

(silica) 
4.47x107 0.48 0.05 -0.13 0.52 

*    Values for pure fibres unless stated. 
**   Values for pure rutile. 
***   From the data of Iritani et al. (2002). Iritani and co-workers carried out experiments   
      such that there was an increase in the number of particle species leading to a    
      variation in total particle volume from one experiment to another. 
 

 

 With the binary mixture filtrations carried out by Iritani et al. (2002), values of 

b1 and b2 were more comparable, particularly when no silica-rutile aggregation was 

reported (pH 9.6). A likely reason for this is that rutile and silica are more comparable 

in terms of their physical dimensions (size distribution and shape) relative to rutile and 

fibre. It could be that b1 and b2 are material specific parameters which are specific to the 

solids form in a given solution environment.  
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 Although the potential physical significance in the methods presented for 

describing the variation of solids specific surface with solids composition (equations 

(5.37) and (5.38) and equation (5.43)) is discussed for binary mixture filter cakes, it 

should be noted that the reason for the exponential form was because it fits the data and 

due to the absence of a more fundamental model. However, considering that equation 

(5.41) (and equations (5.39) and (5.40)) appear to agree reasonably well with a range of 

experimental data, the possibility that there may be some underlying fundamental 

meaning should not be prematurely discarded. More rigorous investigation of this 

possibility, and indeed other approaches of modelling the experimental data which may 

hold some fundamental basis, is beyond the scope of this thesis and will be an 

interesting subject for future work. 

 

5.5. CONCLUSIONS 

It was shown that, up to a certain extent, interaction (aggregation) between the 

two solids components will strongly affect a binary cake’s average specific resistance 

via a decrease in specific surface and/or increase in porosity, with the magnitude of the 

effects varying with solids composition. Extension of the Kozeny-Carman/Darcy 

equations resulted in a model whose characteristics were studied under various 

assumptions. The ratio of the specific surface of the two constituent solids (SB) was 

shown to be a critical parameter in the analysis of binary suspension filtrations.  

A semi-empirical equation was presented which describes the specific resistance 

trend with solids composition. This equation was shown to represent a wide range of 

experimental data reasonably well. The two fitting parameters were b1 and b2. b1 

represented a coefficient for describing the effects of the addition of small solids on the 

larger solids component’s effective specific surface, due to changes in packing and 

aggregation. Correspondingly, b2 represented a coefficient for describing the effects of 

the addition of larger solids on the small solids component’s effective specific surface. 

b1 and b2 were more comparable in magnitude when the solids were of similar size and 

shape, and in particular when no significant aggregation was evident. It is possible that 

b1 and b2 are system specific parameters. 
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CHAPTER 6:  ANOMALOUS FILTRATION BEHAVIOUR 

 

6.1. INTRODUCTION 

In Chapter 4, it was stated that abrupt changes in cake structure were noted part 

way through some filtrations, resulting in unusual deviations in filtration plots. Various 

works (Rietema, 1953; Baird and Perry, 1967; Sørensen, 1992; Sørensen et al., 1995; 

Fathi-Najafi and Theliander, 1995; Tarleton and Morgan, 2001) have previously 

reported such abrupt changes and have attributed them to various potential causes. 

These are discussed briefly (in relation to the present data) so as to narrow them down 

while providing context; the most likely causes are then discussed in further detail using 

theoretical tools as an aid. This chapter then draws to a close by discussing the potential 

reasons for the abrupt changes in cake structure noted in the present work. 

 

6.2. PREVIOUS RESEARCH 

Rietema (1953) noted transitions in cake structure leading to unexpected 

reductions in filtrate flow rate during the filtration of polyvinyl chloride particles in 

water. Although he initially postulated scouring as a potential reason, where fines are 

entrained by liquid flow through the pores of the cake, he went on to eliminate this 

hypothesis as scouring should have led to temporary increases in filtrate flow rate. 

Rietema claimed that the most likely explanation was destabilisation of the cake 

structure; the higher filtrate flow through the cake toward the start of filtration was 

deemed to stabilise it prior to a flow transition point at which so called ‘retarded 

packing compressibility’ (RPC) occurred. A logical inference is that once the stabilising 

force (due to the filtrate flow) becomes smaller than the compressing force (which 

increases from the top to the bottom of the cake), then the packing can be significantly 

rearranged. Whether or not the packing is stabilised therefore depends on the cake 

thickness and the pore velocity of liquid in the cake.   
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Fathi-Najafi and Theliander (1995) attributed the abrupt changes in cake 

structure they observed in the filtration of calcium carbonate, calcium silicate and lime 

mud7, which was accompanied by steep increases in liquid pressure at various heights in 

the filter cake, to the formation of unobstructed channels within the filter cake. Sørensen 

et al. (1995) noted anomalous filtration behaviour with wastewater solids suspensions 

and provided a more elaborate discussion on the subject. They postulated wall effects, 

sedimentation, channelling and the migration of fines as potential reasons. They 

dismissed wall effects and sedimentation as potential causes, and their arguments are 

equally valid in the current work. It is perhaps surprising that channelling was ruled out 

as a possible reason; their rationale for doing so was that the solids pressure in the filter 

cakes was generally quite large and this closes the channels. They claim that migration 

of fines/compression mechanism best explains the strange filtration behaviour observed. 

Sørensen et al. suggested that the situation is possible when erosion of previously 

deposited small size solids results in a temporary reduction in the flow resistance. 

However, they perhaps failed to recognise that such a mechanism could lead to the 

formation of preferential flow channels (essentially ‘channelling’). Tarleton and Morgan 

(2001) acknowledge this last point by suggesting that the changes in cake structure they 

noted were due to more local variations in cake structure brought about by simultaneous 

particle fines migration and the subsequent formation of preferential flow channels. 

They postulated that part(s) of a cake may become sufficiently eroded by the flowing 

filtrate to generate preferential flow channel(s) that remain ‘open’ for a significant 

period. Although they noted anomalous filtration behaviour with aggregated zinc 

sulphide, Tarleton and Morgan found no evidence of RPC or related phenomena during 

experiments performed with more discrete zinc sulphide particles. 

In summary, when the feed particles exhibited a degree of structure, there 

appears to be an increased tendency for relatively sudden changes in a forming cake to 

occur. In general, particle networking was a common theme about the cakes that 

underwent abrupt change. Although Rietema (1953) postulated the RPC mechanism as 

a potential explanation for abrupt decreases in filtrate flow rate, it may be possible 

(though intuitively unlikely) that cake collapse due to RPC leads to the temporary 

increases in filtrate flow rate observed in the present work (see Section 6.3). Also, 
                                                 
7 All described as being in a state of agglomeration in suspension. 
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migration of fines (what Rietema termed scouring) should not be ruled out as a potential 

reason, as restructuring of the cake in the present work frequently led to temporary 

increases in filtrate flow rate (unlike in Rietema’s). Sørensen et al.’s (1995) analysis and 

postulations regarding migration of fines perhaps substantiates the case for considering 

this mechanism as a potential reason for restructuring of the filter cake part way through 

a filtration. The arguments presented by Tarleton and Morgan (2001) relate the effects 

of fines migration to the formation of preferential flow channels within the cake. This 

therefore suggests that critical values of filtrate flow rate and cake thickness may occur; 

these critical values are presented and discussed in the following. A theoretical analysis 

is also presented and intended to provide estimates of the relative magnitudes involved 

should the formation of preferential flow channels be the cause of the observed abrupt 

changes during filtration. The results presented are representative of the dataset obtained 

during the investigation. 

 

6.3. GENERAL EXPERIMENTAL OBSERVATIONS   

The occurrence of abrupt changes to cake structure part way through filtration of 

a fibre suspension (1.1% v/v) was limited to higher filtration pressures (above ~400 

kPa); there was no evidence of RPC or related phenomena during experiments 

performed at filtration pressures of 300 kPa and below. Figure 6.1 illustrates a 

phenomenon showing a significant deviation from the ‘expected’ filtration behaviour 

(i.e. linear plot of reciprocal filtration rate vs. cumulative filtrate volume) was apparent 

for the filtration of pure fibre suspensions at a filtration pressure of 450 kPa but not for 

filtration pressures of 150 and 300 kPa. After approximately 3x10-4 m-3 of filtrate had 

been produced, the cakes formed during the 150 and 300 kPa filtrations undergo cake 

deliquoring (at approximately point A in Figure 6.1). On the other hand, the cake 

formed during the 450 kPa filtration showed phenomena related to abrupt changes in 

cake structure, evidenced by the marked change from the expected behaviour. 

Figure 6.2 gives an indication of the reproducibility attainable. Although not all 

experiments had such a degree of reproducibility, in general the effects of cake 

restructuring on filtration rates were broadly similar in repeated experiments. Figure 6.3 
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illustrates the effects of cake restructuring on the instantaneous filtrate flow rate for 

filtrations of pure fibre suspensions from deionised water at filtration pressures of 450, 

550 and 600 kPa. In all cases the changes in cake structure were accompanied by 

approximately an order of magnitude increase in filtrate flow rate. The filtrate flow rate 

just before the abrupt transition in cake structure is denoted (dV/dt)|tr and changes to the 

cake structure increased the filtrate flow rate from (dV/dt)|tr to a maximum peak of 

(dV/dt)|tr,max. At 450 kPa this change was from approximately 1x10-7 m3 s-1 to 1.3x10-6 

m3 s-1, at 550 kPa from approximately 1.1x10-7 m3 s-1 to 1.5x10-6 m3 s-1, and at 600 kPa 

from approximately 2.6x10-7 m3 s-1 to 1.9x10-6 m3 s-1. Generally, when restructuring of 

the filter cake led to increases in the filtrate flow rate, the maximum peak reached 

increased with filtration pressure.   

 

  

Figure 6.1: Filtration plots for pure fibre suspensions (1.1% v/v) in deionised water at three 

filtration pressures. 
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Figure 6.2: Filtration plots for pure fibre suspensions in deionised water at 550 kPa; a repeat 

experiment is shown to indicate reproducibility. 

 

 

Figure 6.3: Filtrate flow rate profile for pure fibre suspensions (1.1% v/v) in deionised water at 

three filtration pressures.  
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The similar gradients of filtrate flow rate vs. filtration time before and after the 

change in cake structure for all cases in Figure 6.3 may suggest that filtration continues 

with similar causes of flow resistance before and after the change. The effects of 

simultaneous sedimentation is ruled out as a possible cause of the observed filtration 

behaviour as sedimentation effects cannot increase the flow rate as seen in Figure 6.3. 

Figures 6.4 and 6.5 illustrate the effects of solids composition on cake restructuring for 

binary suspensions in deionised water. Figure 6.5 again indicates similar gradients of 

filtrate flow rate vs. filtration time before and after the change in cake structure. Figure 

6.4 suggests that the addition of rutile resulted in less pronounced deviations from the 

‘expected’ filtration behaviour. This effect of rutile addition is seen by comparing the 

difference between the inverse of the filtrate flow rates just before the transition, with 

the corresponding inverse of the maximum filtrate flow rates during the transition, for 

the three different solids compositions.  

 

 

 

Figure 6.4: Filtration plots for binary suspensions of various solids compositions (fibre rich 

suspensions of total solids concentration of 1.1% v/v) in deionised water at 450 kPa. 
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Figure 6.5: Filtrate flow rate profile for binary suspensions of various solids compositions (total 

solids concentration of 1.1% v/v) in deionised water at 450 kPa.  

 

 

Addition of more significant amounts of rutile past a critical concentration 

altered the nature and hence outcomes of cake restructuring altogether, as illustrated by 

Figure 6.6. By way of example, unlike with suspensions of XD  ≥  0.928 (see Figure 6.4), 

filtration plots for XD = 0.859 and XD = 0.764 exhibit an increase in filtration resistance 

(upward curvature of the dataset) prior to a relatively short period of increased filtration 

rate. To further illustrate this, with XD = 0.859, it can be seen from Figure 6.6 that the 

upward curvature starts at point A. This increase in filtration resistance (reduction in 

filtration rate) at point A can be seen more clearly in Figure 6.7 which shows the filtrate 

flow rate profile corresponding to the reciprocal flow rate on Figure 6.6 at XD = 0.859. 

The regression curve in Figure 6.7 was obtained based on the experimental data points 

before point A. It is seen that the relatively short period of increased filtration rate takes 

place from ~150 s to point B, and is small in magnitude when compared to, for instance, 

the suspensions with less rutile in Figure 6.5 (XD  ≥  0.928). 

 



Chapter 6:  Anomalous Filtration Behaviour 
______________________________________________________________________ 

 155

 

Figure 6.6: Filtration plots for binary suspensions of various solids compositions (from fibre 

rich to intermediate solids compositions, with total solids concentration of 1.1% v/v) in 

deionised water at 450 kPa.  

 

 

Figure 6.7: Filtrate flow rate profile for an XD = 0.859 suspension in deionised water. The data, 

and points A and B, correspond with those in Figure 6.6 at XD = 0.859.   

 



Chapter 6:  Anomalous Filtration Behaviour 
______________________________________________________________________ 

 156

 

Based on intuition alone, the altered nature of cake restructuring below XD ~ 0.9 

may have been attributed to the increased proportion of rutile, which has a more 

isometric shape relative to the fibres. Although this may indeed be a contributing 

reason, upon closer inspection another factor appears to be the greater filtration rates 

over the intermediate solids composition range (see the deionised water curve in Figure 

4.19 or Figure 4.21 for example); this inference can be substantiated using data from 

filtrations with 0.1 M CaCl2 solution. Figure 6.8 shows that with filtrations from 0.1 M 

CaCl2 solution, even pure fibre suspension filtrations displayed an increase in filtration 

resistance (upward curvature of the dataset) prior to a relatively less significant period 

of increased filtration rate. This behaviour is more akin to the behaviour of, for instance, 

XD = 0.859 and XD = 0.764 suspensions in deionised water than to the behaviour of more 

fibre rich suspensions (1 ≥ XD  ≥ 0.928) in deionised water (see, for example, Figures 6.4 

and 6.6). It should be noted that the filtration rates were significantly greater for pure 

fibre suspensions in 0.1 M CaCl2 solution than deionised water. 

Rietema (1953) claimed that it is likely that the onset of transition is due to 

either the filter cake having achieved a critical height or the pore velocity decreasing 

below a critical value. He proposed a stabilising effect of the original cake structure 

originating from the pore velocity of liquid in the filter cake. If his proposal is true, then 

it may explain the difference in the nature of cake restructuring with cakes containing a 

significant proportion of rutile (e.g. XD = 0.764) and fibre rich cakes in 0.1 M CaCl2 

solution, and fibre rich cakes in deionised water (XD  ≥ 0.928). Cakes containing a 

significant proportion of rutile and fibre rich cakes in 0.1 M CaCl2 solution generally 

had greater filtration rates (for example, see Figure 4.19 or 4.23), suggesting greater 

pore velocities. On the other hand, fibre rich cakes in deionised water resulted in lower 

filtration rates which suggest lower pore velocities, and hence a lower stabilising effect. 

Therefore, fibre rich cakes in deionised water had a greater tendency for more 

significant cake restructuring, and resulted in temporary increases in filtration rate of 

greater magnitudes.  
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Figure 6.8: Filtration plots for binary suspensions of various solids compositions in 0.1 M CaCl2 

solution at 450 kPa. 

 

 

Table 6.1 presents some critical parameters just prior to the transition in cake 

structure for selected filtrations to enable a closer examination. The cake thickness at 

the transition in structure (htr) was calculated using equation (6.1): 
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where Vtr is the cumulative volume of filtrate at the transition, s the solids mass fraction 

in the feed, A the filter area, ρs and ρl are the solids and filtrate density respectively and 

m the ratio of mass of wet cake to mass of dry cake as measured at the end of an 

experiment. An assumption made here is that the value of m remains constant 

throughout the filtration and for the purposes of comparison in this analysis, this 

assumption is expected to be reasonable. The values of cake thickness reported in Table 

6.1 are, in some cases, averaged from up to three experiments with an error of not more 

than 3%. 
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Table 6.1: Some parameters of interest during the abrupt transition in cake structure for selected 

filtrations. The values reported here are representative of the datasets obtained. 

XD 
Solution 

environment 

Filtration 
pressure 

(kPa) 

Cake 
thickness 

at the 
transition, 
htr (mm) 

htr, as a 
percentage of 

final cake 
thickness 

(%) 

Filtrate flow 
rate at the 
transition, 

trdt

dV
 (x10-7 

m3 s-1) 

1 Deionised water 550 1.46 79 1.10 

1 Deionised water 600 1.25 67 2.57 

1 Deionised water 450 1.24 75 1.47 

0.992 Deionised water 450 1.32 71 1.45 

0.928 Deionised water 450 1.14 70 3.11 

0.859 Deionised water 450 1.20 73 20.5 

0.764 Deionised water 450 1.56 77 77.5 

1 0.1 M CaCl2 450 1.40 70 414 

0.859 0.1 M CaCl2 450 1.18 78 233 

0.391 0.1 M CaCl2 450 1.04 83 131 

0.154 0.1 M CaCl2 450 1.31 85 65.9 
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It can be seen from Table 6.1 that the abrupt changes to cake structure appear to 

occur once a cake reaches a similar thickness. The cake thicknesses where such 

transitions occur were all within 1.3±0.3 mm and, similar to the results of Sørensen et 

al. (1995) and Tarleton and Morgan (2001), alterations in cake structure were noted 

toward the later stages of filtration. It may also be inferred from Table 6.1 along with 

Figures 6.6 and 6.8 that the nature of the abrupt transitions to cake structure is altered 

from one which causes a pronounced increase in filtration rate when (dV/dt)|tr is in the 

region of 10-7 m3 s-1 to one that causes a decrease in filtration rate followed by a 

relatively less significant period of increased filtration rate when (dV/dt)|tr is in the 

region of 10-6 m3 s-1 or greater, and this, as mentioned, could be due to stabilising 

effects. Also, the introduction of rutile into fibre suspensions does not only affect the 

nature of alterations in cake structure but also the magnitudes. The behaviour exhibited 

by XD = 0.391 in Figure 6.8 is an example of the effects of even further introduction of 

rutile which resulted in a more significant decrease in filtration rate at the onset of 

transition. This is an example of cake restructuring with a greater proportion of particles 

of more isometric shape and with a lower stabilising effect since (dV/dt)|tr was greater 

for XD = 1 than it was for XD = 0.391 (see Figure 6.8 and Table 6.1).  

The shear stress experienced by the walls of pores in the filter cake at the point 

of cake restructuring is likely to be important, depending on the mechanism causing the 

abrupt change, and is inferred through values of (dV/dt)|tr. (dV/dt)|tr does not seem to 

vary much with filtration pressure for pure fibre suspensions but does so with solution 

environment and solids composition. Figure 6.9 illustrates the variation of (dV/dt)|tr 

with fibre fraction. Although abrupt transitions in filter cake structure apparently 

occurred during all experiments performed with suspensions in 0.1 M CaCl2 solution, 

there was no evidence of RPC or related phenomena with suspensions in deionised 

water containing less than ~15% v/v of fibres. This is in keeping with the observation 

made by Tarleton and Morgan (2001) that all reports of abrupt changes in cake structure 

have occurred during the filtration of suspensions containing networked solids, since 

fibre rich and intermediate composition suspensions in deionised water appeared to be 

networked (for example, see Section 4.2), and in 0.1 M CaCl2 solution even pure rutile 

suspensions seemed to flocculate. Rutile rich suspensions in deionised water seemed 

less structured, and with these suspensions no abrupt restructuring of the filter cake 
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occurred, presumably since there was less scope for constituent solids and liquid 

movements within the cake. The trend seen in Figure 6.9 is comparable to that in Figure 

4.19; in general, greater filtration rates resulted in a larger value of (dV/dt)|tr. Also, as 

discussed, the nature of cake restructuring and magnitude of the resultant increase 

and/or decrease in filtrate flow rates varied with solution environment and solids 

composition, and hence (dV/dt)|tr.  

  

 

Figure 6.9: Filtrate flow rate just prior to the transition vs. solids composition for experiments 

performed with deionised water and 0.1 M CaCl2 solution. 

 

Rietema (1953) and Baird and Perry (1967) exclusively noted cakes that 

collapsed during filtration with the consequence of reduced filtration rates (increased 

resistance) while later work by Sørensen et al. (1995) and Tarleton and Morgan (2001) 

exclusively noted changes in cake structure with the consequence of increased filtration 

rates (reduced resistance). It is, perhaps interestingly, shown in this work that not only 

can the changes in cake structure be relatively reproducible, but also the nature of the 

change can be altered by changes in solids composition and/or solution environment. 

This degree of control of the alterations in filter cake structure is likely to be due to the 

control over filtration rate (via changes in filtration pressure, solids composition and 
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solution environment) and also solids form. It was discussed that various factors 

potentially had some effect on the nature of the abrupt change and magnitude of the 

consequent increase and/or decrease in filtrate flow rate. Considering all these 

parameters and the inherent complexity, it is difficult to accurately quantify the effects 

of each factor separately, particularly since the specifics of the contributing 

mechanism(s) are unclear. However, in the following section, a quantitative analysis is 

carried out based on some simplifying assumptions to assess the likelihood of 

contributing mechanisms postulated by past researchers (see Section 6.2). 

 

6.4. ANALYSIS OF CAKE STRUCTURE CHANGES  

Considering the almost exclusive reliance on qualitative rather than quantitative 

assessments when it comes to analysis of abrupt changes to cake structure part way 

through a filtration, a theoretical framework is presented here to obtain estimates of the 

magnitudes involved if it is assumed that the formation of channels, change in channel 

radius and/or changes in cake porosity is the cause of the transitions to cake structure, 

and the pores in the filter cake can be interpreted as straight circular tubes normal to the 

cake surface. Of particular interest in this analysis are the filter cakes obtained from the 

filtration of fibre rich suspensions in deionised water where anomalous filtration 

behaviour occured, since: (1) the magnitudes of increase in filtration rates were most 

significant with the fibre rich filter cakes, and (2) analysis of intermediate solids 

compositions and other solution environments bring about extra variables (e.g. solids 

form and physico-chemical interactions). For laminar flow through a straight circular 

channel: 

L

PR

A

Q

ch 8

2
                                                     (6.2) 

where Q is the channel volumetric flow rate, Ach the average channel cross-sectional 

area, R the average channel hydraulic radius, ΔP the pressure difference across the 

channel, μ the viscosity and L the channel length. Considering N to be the number of 

channels within the filter cake and QT to be the total volumetric flow rate through these 

channels: 



Chapter 6:  Anomalous Filtration Behaviour 
______________________________________________________________________ 

 162

L

PRA
NQ ch

T 8

2
                                                 (6.3) 

Taking a to be the fraction of flow channels present at a given time that can alter during 

a filtration and b to be the remaining fraction of channels, then a + b = 1 and: 

  
L

PbRaRbRaR
NQ baba

T 


8

222 
                                 (6.4) 

where Ra is the average hydraulic radius of the flow channels that can alter their size 

and Rb the average hydraulic radius of the remaining channels. Taking A to be the 

filtration area and �av to be the average porosity within the filter cake: 

  avbach AbRaRNNA   22                                      (6.5) 

Considering the assumption of straight channels, L is taken to be the cake thickness (h) 

and calculated using: 
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                                       (6.6) 

where V is the cumulative filtrate volume at a given time. Similarly, QT is taken to be 

the instantaneous filtrate flow rate.  

The fundamental basis of this framework may be questioned with regards to 

unaccounted for parameters such as tortuosity and varying pore radius. However, 

considering the complex structure of binary filter cakes and that quantification of the 

magnitudes involved with absolute accuracy is not practically feasible at present, the 

framework outlined above is considered to be useful. Based on the equations derived 

above and the relevant assumptions, two scenarios are investigated to study the 

observed filtration behaviour. The first scenario, discussed in Section 6.4.1, considers 

changes in channel radius and number of channels to account for the observed filtration 

behaviour, with the cake average porosity remaining constant. The second scenario, 

discussed in Section 6.4.2, considers changes in cake porosity and channel radius to 

account for the observed filtration behaviour, with the number of channels remaining 

constant. In both scenarios, the degree of how ‘localised’ changes within the filter cake 



Chapter 6:  Anomalous Filtration Behaviour 
______________________________________________________________________ 

 163

can be controlled by changing the parameters a and b is investigated. For example, if a 

= 0.05 and b = 0.95, then the changes in channel radius take place in a region containing 

5% of the cake’s total channels. 

 

6.4.1. Changing channel radius and number of channels 

Substituting equation (6.5) into equation (6.4) and rearranging gives:  


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
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
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                                          (6.7) 

and from equation (6.5), the number of channels is given by: 

 22
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
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
                                                (6.8) 

Solving equations (6.7) and (6.8) gives values for channel radius of the channels that 

can alter in size, and the number of channels (unique combination). Here, the porosity is 

assumed constant and any changes in filtrate flow rate during a filtration are attributed 

to expansions and contractions of some or all of the hypothetical channels. The 

assumption of equation (6.6) holding throughout is expected to be reasonable. Although 

compression may take place during a filtration and the cake may ‘collapse’ reducing h 

at a certain time during a filtration, all cakes in this investigation were relatively thin 

and trial calculations shows that minor changes in cake length do not cause significant 

variation in the results obtained (see Appendix F).  

Solving equations (6.7) and (6.8) gives a unique solution for channel radius and 

number of channels which corresponds to the instantaneous filtration rate, in accordance 

with the aforementioned assumptions. Essentially, what is being investigated here is the 

range of magnitudes involved if the deviations in expected filtrate flow rate can be 

explained by changing pore size (interpreted via channel diameter), with the average 

cake porosity kept constant. Further, if an unexpected increase in filtrate flow rate is 

attributed to the expansion of a proportion of channels within a cake, with the average 

cake porosity kept constant, then some channels will have to ‘close’ (‘loss of pores’). In 



Chapter 6:  Anomalous Filtration Behaviour 
______________________________________________________________________ 

 164

reality the ‘loss of pores’ could correspond to: (1) the ingress of freshly filtered solids, 

or migration of fines (fibre fines and/or rutile) followed by deposition in constricted 

regions of a channel within a cake, and/or (2) ‘collapsed’ solids from the already formed 

cake.  

Figure 6.10 illustrates how the average channel radius would need to vary to 

account for the filtrate flow rate profiles shown in Figure 6.3 for the hypothetical case 

where a = 1 (when all the channels present at a given time expand and contract 

uniformly). Figure 6.11 shows the corresponding plot of number of channels vs. time. It 

is seen that to solely account for the marked increases in filtration rate shown by Figure 

6.3, the average channel radius has to increase by approximately three times its original 

value, and the number of channels reduce by approximately an order of magnitude. 

Using the Kozeny-Carman and Happel models, Tarleton and Morgan (2001) showed 

that unrealistically large macroscopic changes (increases) in average porosity are 

required to promote the flow increases observed after the change in cake structure. 

Similar calculations were carried out in this investigation and led to a similar conclusion 

(see, for example, Appendix F). However, the results illustrated by Figures 6.10 and 

6.11 suggest that the formation of large channels within the cake can account for the 

increases in filtration rate, though the ‘number of open pores’ may correspondingly 

reduce keeping the porosity essentially constant. 

It may be unrealistic to assume that all the pores present in the cake at a given 

time can expand. As pointed out by Sørensen et al. (1995), the effective pressure in 

filter cakes tends to be quite large and the formation of channels will have to (in a 

sense) open up ‘against’ this effective pressure. Sørensen et al. go on to suggest that 

locally increasing liquid pressure gradients in some sections of the cake can cause an 

erosion of previously deposited small-scale solids. It may be possible that this could 

result in a more localised channel formation. It may also be possible that compression in 

certain regions leads to interconnection of two previously ‘closed’ pores, leading to the 

formation of a preferential channel. The idea of more localised cake restructuring has 

been promoted by previous workers (Rietema, 1953; Sørensen et al., 1995; Tarleton and 

Morgan, 2001). 
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Figure 6.10: Average channel radius vs. filtration time for filtrations of pure fibre suspensions 

from deionised water at three filtration pressures when a = 1. The corresponding flow rate 

profiles are given in Figure 6.3. 

 

 

Figure 6.11: Number of channels vs. filtration time for filtrations of pure fibre suspensions from 

deionised water at three filtration pressures when a = 1. The corresponding flow rate profiles are 

given in Figure 6.3.  
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Figures 6.12 and 6.13 illustrate the effects of changing a on plots of Ra vs. 

filtration time and corresponding number of channels vs. filtration time during the 

period of increased filtration rate in the 450 kPa filtration of a pure fibre suspension 

from deionised water. For instance, a value of a of 0.05 indicates that only 5% of the 

pores within the cake (interpreted as channels in this model) can alter in size, and this 

may be more physically realistic, if indeed the change is more localised. Ra (the average 

hydraulic radius of pores that can alter size) was calculated using equation (6.7), with 

the value of Rb set to equal the quasi-steady state value (prior to the onset of transition) 

of Ra for the case when a = 1. For example, from Figure 6.10 the quasi-steady state 

values of Ra were 0.015 μm, 0.016 μm, and 0.021 μm for filtrations at 450 kPa, 550 kPa 

and 600 kPa, respectively. These values were then substituted into equation (6.7) as Rb 

(a constant for a given filtration) to enable calculation of Ra at various times during 

filtration at the specified pressure.  

 

 

Figure 6.12: Effect of varying a on the increase in Ra during the period of increased filtration 

rate for the filtration of pure fibre suspension from deionised water at 450 kPa. 
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Figure 6.13: Effect of varying a on the number of channels during the period of increased 

filtration rate for the filtration of pure fibre suspension from deionised water at 450 kPa. 

 

 

 

Although Figure 6.10 shows that when all the channels within the cake can 

expand, an increase in average channel radius to a maximum of ~0.065 μm is required 

to promote the observed flow increase; Figure 6.12 illustrates a perhaps more likely 

case when only 5% of the channels can expand (a = 0.05) where an increase in average 

channel radius to a maximum of approximately 1 μm is required. Also, from Figure 

6.13, it is seen that if only 5% of the channels can expand, then to account for the 

observed flow increase while keeping the porosity constant, the number of pores will 

have to decrease from approximately 1x1013 to a minimum of 5x1010. In this theoretical 

scenario with a = 0.05, just prior to the transition there were approximately 1x1013 

channels of ~0.02 μm radius within the cake, and at the maximum measured filtration 

rate there were approximately 2.5x109 (5% of 5x1010)  channels of ~1 μm radius and 

4.75x1010 (95% of 5x1010) channels of ~0.02 μm radius. It is obvious that with more 

localised changes so the greater the magnitude of the change will have to be. 
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Potential reasons for the ‘loss of pores’ was earlier suggested to be ingress of 

solids, cake ‘collapse’ and/or formation of preferential flow channels rendering 

neighbouring channels essentially ‘ineffective’ in relation to liquid flow. However, 

arguments could also be made against the ‘loss of pores’ hypothesis since this 

hypothesis probably implies that the pores ‘reappear’ after a temporary increased 

filtration rate (see Figures 6.11 and 6.13 for example).  

Since the exact extent of local changes in cake structure is unknown, the 

remainder of this section assumes only 5% of the channels present within the cake at 

any given time can expand or contract (a = 0.05). Figures 6.14 and 6.15 illustrate how 

Ra and N will have to change with filtration time in order to account for the observed 

flow increases in the filtration of fibre suspensions at 450, 550 and 600 kPa when a = 

0.05. From Figure 6.14 it is seen that Ra will have to increase from the region of 0.02 

μm to ~1 μm in all cases, and from Figure 6.15 it is seen that N will have to decrease by 

approximately two orders of magnitude in all cases. 

 

 

Figure 6.14: Ra profile for filtrations of pure fibre suspensions from deionised water at three 

filtration pressures when a = 0.05.  
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Figure 6.15: Number of channels vs. filtration time for filtrations of pure fibre suspensions from 

deionised water at three filtration pressures when a = 0.05. 

 

 

 

Figures 6.16 and 6.17 illustrate how Ra and N will have to change with filtration 

time in order to account for the observed flow increases in the 450 kPa filtrations of 

binary suspensions when a = 0.05, the corresponding filtration rate profiles are 

illustrated in Figure 6.5. It is seen that the channel radius will have to increase from the 

region of 0.02 μm to the region of 1 μm. In this theoretical scenario, taking XD =0.992 

by way of example, just prior to the transition there were approximately 7.5x1012 

channels of ~0.02 μm radius within the cake, and at the maximum measured filtration 

rate there were approximately 1.9x109 (5% of 3.7x1010)  channels of ~1.3 μm radius and 

3.52x1010 (95% of 3.7x1010) channels of ~0.02 μm radius. 
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Figure 6.16: Ra profile for filtrations of binary suspensions of various solids composition from 

deionised water at 450 kPa when a = 0.05. The corresponding flow rate profiles are given in 

Figure 6.5. 

 

 

Figure 6.17: Number of channels vs. filtration time for filtrations of binary suspensions of 

various solids composition from deionised water at 450 kPa when a = 0.05. The corresponding 

flow rate profiles are given in Figure 6.5.  
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6.4.2. Changing channel radius and cake porosity 

 Rearranging equation (6.4) gives: 

  
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hQ
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
8222                                   (6.9) 

and rearranging equation (6.5) gives: 
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Solving equations (6.9) and (6.10) gives values which represent the average channel 

radius of the channels that can alter in size and the filter cake average porosity, 

respectively. Here the number of channels (N) is assumed constant and any changes in 

filtrate flow rate during a filtration are attributed to expansions or contractions of some 

or all of the hypothetical channels, resulting in an increase or decrease in cake average 

porosity. The value of N in equations (6.9) and (6.10) is constant and was set to equal 

the quasi-steady state value (prior to the onset of transition). For example, from Figure 

6.11, the quasi-steady state values of N are 1x1013 for filtrations at 450 kPa and 550 kPa 

and 6x1012 for filtrations at 600 kPa; these values were inserted into equations (6.9) and 

(6.10) to obtain Ra and average cake porosity. However, solving equation (6.9) was still 

not as straightforward as solving equation (6.7) since equation (6.9) is a fourth order 

equation and so has four roots. Equation (6.9) was solved using Maple and it was found 

that it only had one physically meaningful solution for Ra at all the filtration pressures 

and times trialled and at the different values of a. All the other three roots were negative 

and/or involved the imaginary number (I). For sample calculations of equation (6.9) for 

Ra using Maple, see Appendix F. This one physically meaningful value of Ra was used 

in equation (6.10) to calculate filter cake average porosity at various filtration times and 

pressures. 

 Figure 6.18 illustrates the profile of the model’s representation of filter cake 

average porosity for a 550 kPa filtration of a pure fibre suspension in deionised water. 

During the transition in cake structure, the representation of average porosity rises 
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above 1, but it is obvious that the true porosity cannot rise above 1 as the volume of 

voids within a cake can never be greater than the total volume of the cake! However, 

Figure 6.18 is meant to serve as an illustrative example to suggest the likelihood of the 

mechanism inferred by this variation of the model (equations (6.9) and (6.10)). The 

porosity values prior to the transition are reasonable, considering that the average 

porosity as calculated after the experiment was 0.75.   

With a = 1 and 0.05, the maximum porosity as determined from equation (6.10) 

was 2.7 and 4.9, respectively. Though it is not suggested that either of these values 

accurately represent the true porosity values at the transition, it does suggest that when 

the transition is due to a more localised change in pore diameter(s), so the greater the 

change in average porosity will be. However, physical reasoning and previous 

researchers (for example, see Tarleton and Morgan, 2001) suggest that it is unlikely that 

the changes in pore diameters occur macroscopically throughout the cake.  

 

 

Figure 6.18: Variation of the model representation of filter cake average porosity with filtration 

time for a 550 kPa filtration of a pure fibre suspension in deionised water.  
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Considering the unexpected increases in filtration rate as evident with pure fibre 

suspensions at higher pressures, the results from this analysis suggest that it is unlikely 

that changes in porosity alone (via changes in channel diameter) can promote the 

observed behaviour. In the author’s opinion, it is likely that the more dominant factor in 

this case would be the formation of sufficiently large preferential flow channels, even if 

this is at the expense of neighbouring channels either ‘closing’ or becoming essentially 

‘inactive’. However, an accompanying increase in porosity may potentially be a 

contributing mechanism, and will mean that the increases in Ra and decreases in N will 

not have to be as significant as suggested in Figures 6.10 – 6.15. 

 

6.5. DISCUSSION AND IMPLICATIONS 

Although a definite description of the mechanism(s) that caused the transitions 

in cake structure cannot be given, potential reasons that are largely consistent with the 

observed phenomena have been presented. With pure fibre suspensions, no abrupt 

changes were noted with filtrations pressures below 400 kPa. At higher pore filtrate 

velocities, although there may be a greater stabilising force (if indeed the cake is 

initially flow stabilised) there will also be a greater shear stress at the pore walls 

resulting in a greater tendency for the erosion of fines from the walls of channels 

forming the porous structure in the filter cake, especially for cakes consisting of 

networked solids. As the transitions in cake structure were all noted once the cake 

reached a similar thickness, it could be that a sufficiently large local gradient of 

compressive force resulted in a ‘critically’ high hydraulic pressure gradient locally 

which in turn resulted in an increased detaching shear force. The erosion of fines may 

then have resulted in preferential flow channels which would have caused an increase in 

filtration rate. A theoretical investigation assuming straight circular channels showed 

the changes in channel diameter required to promote the observed flow increases, even 

without the need for changes in cake average porosity.  

The region surrounding that involved in this channel formation is also 

significant. The formation of preferential channels is more likely when the surrounding 

region is made up of structured or loosely networked solids. With regions of this nature, 
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it is possible that pores in the vicinity could ‘close’ due to ingress of the eroded solids, 

or ‘collapse’ of that local region of the cake. It was shown that to promote the 

unexpected increases in filtration rate as encountered with fibre rich cakes, it is likely 

that there will be some ‘loss’ of pores, as inferred from the model which suggests that if 

the number of pores remain roughly the same and a proportion of pores increase in size 

to promote the increased flow, then this would imply an unrealistically large cake 

average porosity. However, it may be that if the pore velocity in the surrounding region 

during a transition in cake structure is sufficiently high, then the cake is adequately 

stabilised and less likely to experience formation of preferential channels with the 

accompanying ‘loss’ of pores. This dependence of the nature of transition on pore 

velocity is illustrated by the fact that when the filtrate flow rate just prior to the change 

is in the region of 10-7 m3 s-1 then the change in cake structure results in a marked 

decrease in resistance and when the filtrate flow rate just prior to the change is in the 

region of 10-6 m3 s-1 or greater then the change in cake structure results in a relatively 

less pronounced increase in resistance generally followed by a less significant period of 

decreased resistance (see, for example, Figures 6.6 and 6.8, and Table 6.1). 

Figure 6.19 shows the liquid pressure profiles at various heights within a cake 

forming during the 450 kPa filtration of a XD = 0.154 suspension from 0.1 M CaCl2 

solution, and Figure 6.20 the corresponding filtration plot. Just prior to point A, a 

significant decrease in hydraulic pressure may have developed close to the medium, 

which led to a localised increase in hydraulic pressure gradient. It is possible that this 

increase in hydraulic pressure gradient resulted in erosion of some fines, which, due to 

the sufficiently high filtrate flow rate stabilising the surrounding region, did not result in 

the formation of preferential flow channels (since this may need the closing of other 

pores in the vicinity) but instead in the blinding of channels within the cake. This 

erosion-blinding mechanism correspondingly resulted in an increase in filtration 

resistance (as seen in Figure 6.20) as well as an increase in the compressive solids 

pressure. The increase in compressive pressure is seen in Figure 6.19 manifested as a 

drop in liquid pressure close to the medium at point A, and the increased compressive 

force may have resulted in a return to ‘no cake’ condition (liquid pressure equal to the 

filtration pressure) 1 mm above the medium. In principle, this mechanism is similar to 

that proposed by Sørensen et al. (1995), with one difference being that the temporary 
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increase in filtrate flow that they reported was accompanied by a sudden increase in the 

filtrate turbidity whereas the filtrate remained visually clear at all times in the present 

work. At point B, the liquid pressure throughout the cake returned to the filtration 

pressure until filtration ceased.    

Figure 6.21 shows liquid pressure profile at various heights within a cake 

forming during the 600 kPa filtration of an XD = 0.391 suspension from deionised water 

and Figure 6.22 the corresponding filtration plot. The solids composition, solution 

environment and filtration pressure for the filtrations represented by Figures 6.21 and 

6.22 are different to that represented by Figures 6.19 and 6.20, and so it is likely that the 

mechanisms involved in the cake structure alterations are also dissimilar. Figure 6.21 

shows that just before 28 s into the filtration, a more noticeable liquid pressure gradient 

built up close to the top of the cake, again resulting in an erosion-blinding mechanism 

which increased the filtration resistance (Figure 6.22). Just before 38 s, the migration of 

 

 

Figure 6.19: Liquid pressure profile at various heights (from the medium) within a cake forming 

during the 450 kPa filtration of a XD = 0.154 suspension from 0.1 M CaCl2 solution. The 

corresponding filtration plot is shown in Figure 6.20. 
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Figure 6.20: Filtration plot for a XD = 0.154 suspension in 0.1 M CaCl2 solution  at a filtration 

pressure of 450 kPa. The corresponding liquid pressure profile is given as Figure 6.19. 

 

 

Figure 6.21: Liquid pressure profile at various heights (from the medium) within a cake forming 

during the 600 kPa filtration of a XD = 0.391 suspension from deionised water. The 

corresponding filtration plot is shown in Figure 6.22. 
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Figure 6.22: Filtration plot for a XD = 0.391 suspension in deionised water at a filtration pressure 

of 600 kPa. The corresponding liquid pressure profile is given as Figure 6.21. 

 

 

fibre fines and/or rutile towards the medium may have been the cause of the more 

noticeable liquid pressure gradient which appeared closer to the medium, and at 38 s the 

transducer closest to the medium showed a sudden drop in liquid pressure. At this point 

the drop in liquid pressure close to the medium was accompanied by an unexpected 

increase in filtrate flow. The instantaneous filtration rate reached a peak 44 s into the 

filtration, when all the transducers within the cake had returned to the filtration pressure 

until filtration ceased. 

Although the liquid pressure values may not be absolute in their accuracy (see 

Appendix B), they were useful for the purpose of comparing the behaviour at one cake 

height and time to another. Further, the liquid pressure profiles do not seem to 

contradict the postulated mechanisms. However, even with the liquid pressure profiles, 

it was difficult to ascertain the definite mechanism(s) that resulted in the anomalous 

filtration behaviour.  
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6.6. CONCLUSIONS 

Abrupt changes to cake structure part way through a filtration appear to be 

affected by parameters such as filtration pressure and filtrate pore velocity. These 

transitions appear to occur at a given cake thickness. Previous workers who have noted 

broadly similar phenomena have generally observed the consequences sporadically 

(without much control over when it occurs) and exclusively reported either a resultant 

increase or decrease in filtration rate. It is, perhaps interestingly, shown in this work that 

not only are the changes in cake structure relatively reproducible, but also the nature of 

the change can be altered by changes in filtration pressure, solids composition and/or 

solution environment (some transitions in cake structure result in an increased filtration 

rate while others in a decreased filtration rate). A postulated mechanism that appeared 

largely consistent with the observations was that erosion of fines yields an increased 

filtration rate in some cases via the formation of preferential flow channels, and a 

decreased filtration rate in others via blinding of channels within the cake. Which of 

these two cases occur during a filtration appeared to be dependent on the degree of 

structure exhibited by the cake and the filtrate flow rate just prior to the transition. A 

theoretical investigation using straight circular channels to represent the pores in a filter 

cake suggested that the changes in pore size needed to promote the observed flow 

increases were sufficiently large that it would require the ‘loss’ of some surrounding 

pores, otherwise it would imply an unrealistically large value of average cake porosity. 

Potential mechanisms that would have resulted in this ‘loss’ of pores were discussed, 

and are more likely to occur if the surrounding regions exhibited a degree of structure. 
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CHAPTER 7:  OVERALL CONCLUSIONS AND FUTURE WORK 

 

7.1. OVERALL CONCLUSIONS 

Reproducible and accurate filtration data have been obtained through the use of 

a well controlled automated pressure filtration apparatus, and the constant pressure 

filtration results of both pure component and binary suspensions were discussed in 

relation to cake properties such as average porosity and specific resistance. 

Sedimentation experiments aided the interpretation of filtration results. The effects of 

solids composition, filtration pressure and solution environment were investigated. The 

significance of physico-chemical factors was highlighted and the effects of rutile-fibre 

interactions discussed. Packing models were applied to binary filter cakes and a 

permeability model was investigated and further developed to advance understanding of 

interacting fibre/particle mixtures. Deviations from expected filtration behaviour were 

noted with some filtrations and this was attributed to abrupt transition in cake structure. 

The average porosities of filter cakes formed from pure rutile and fibre 

suspensions in deionised water were approximately 0.6 and 0.75, respectively, and a 

steady and progressive increase in porosity with fibre fraction was generally observed. 

Packing models describing the concepts of interparticle penetration and additive 

porosity were presented and compared to illustrate the fibre/rutile packing 

characteristics. The additive porosity concept represented the data better, and this was 

attributed to the limited freedom of rutile particles to migrate within the cake, due to 

interaction with fibre surfaces. The concept of ‘equivalent packing diameter’ was also 

discussed in relation to the non-spherical fibrous solids. 

With filtrations at 450 kPa, the average specific cake resistances for pure fibre 

and rutile in deionised water were approximately 9.4x1013 and 4.2x1012 m kg-1 

respectively, with the variation of specific resistance with solids composition showing a 

minimum. Similar trends were observed at filtration pressures of 150 and 600 kPa. No 

minimum in specific resistance was observed with 450 kPa filtrations of suspensions 
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made using 0.2 M NaCl and 0.1 M CaCl2 solutions. Filtration data presented indicated 

the significance of physico-chemical interactions as the most likely cause of minima in 

the trend of average specific cake resistance with solids composition for feeds in 

deionised water. In general, the relationship between specific resistance and solids 

composition corresponded with the sedimentation data, where the trend of initial 

settling rate with solids composition experienced a maximum at a fibre fraction of 

~50% v/v. This is not surprising as the initial settling rates were also largely influenced 

by the degree of aggregation.  

Relative to the influence of solids composition and solution environment, the 

influence of filtration pressure on specific resistance was less significant. The influence 

of solids composition was most pronounced in the absence of NaCl and CaCl2 and the 

influence of solution environment was most pronounced at the extremes of solids 

composition (i.e. rutile rich and fibre rich). With rutile rich cakes, the reduction in 

specific resistance due to the 0.2 M NaCl and 0.1 M CaCl2 solution environments were 

most likely due to suppression of the rutile electrical double layer resulting in a larger 

effective rutile size; this was supported by size distribution measurements and an 

increase in settling rate and average cake porosity. The influence of the 0.1 M CaCl2 

solution was relatively more substantial, and this could have been due to a greater ionic 

strength and/or Ca2+ ions physically adsorbing onto the solids surfaces whereas Na+ ions 

behaved as an indifferent electolyte. For fibre rich cakes, although definitive reasons for 

the reduction in specific resistance due to NaCl and CaCl2 addition were not apparent, 

several hypotheses were postulated and the most likely reason was suggested to be the 

aggregation of fibre fines. 

The functional dependence of a filter cake’s average specific resistance on 

porosity and the solids effective specific surface has been illustrated by extending the 

Kozeny-Carman equation for binary mixtures, and the effects of aggregation on these 

parameters highlighted. Extension of the Kozeny-Carman/Darcy equations resulted in a 

model whose characteristics were investigated under various assumptions. The ratio of 

the specific surface of the two constituent solids was shown to be a critical parameter in 

determining the trend of specific resistance with solids composition for binary mixture 

filtrations. The difficulties in describing the variation in solids effective specific surface 
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of the two solids components with solids composition were due to the complexities 

arising from varying packing mechanisms and aggregation.  

A semi-empirical equation was proposed to represent the average specific 

resistance trend with solids composition. This equation contains two exponential terms 

and fitting parameters. The model was trialled on fibre/rutile mixtures in various 

solution environments and at different filtration pressures, as well as on aggregating and 

non-aggregating silica/rutile mixtures. The model was shown to represent a wide range 

of experimental data reasonably well. The two fitting parameters were b1 and b2. b1 

represented a coefficient for describing the effects of the addition of small solids on the 

larger solids component’s effective specific surface, due to changes in packing and 

aggregation. Correspondingly, b2 represented a coefficient for describing the effects of 

the addition of larger solids on the small solids component’s effective specific surface. 

b1 and b2 were more comparable in magnitude when the solids were of similar size and 

shape, and in particular when no significant aggregation was evident. It is possible that 

b1 and b2 are system specific parameters. b1 and b2 were analysed and may be 

practically useful for characterisation purposes and/or to serve as a good platform on 

which to build on in order to increase fundamental understanding of the filtration of 

binary mixtures. 

Abrupt changes to cake structure were evident part way through some filtrations, 

and resulted in unexpected filtrate flow behaviour. The alterations in cake structure 

were affected by parameters such as solids form, filtration pressure and filtrate pore 

velocity, and seemed to occur at a given cake thickness. It was shown that not only are 

the changes in cake structure relatively reproducible, but also the nature of the change 

can be altered by changes in filtration pressure, solids composition and/or solution 

environment (some transitions in cake structure resulted in an increased filtration rate 

while others in a decreased filtration rate). The nature of the transition in cake structure 

appeared to be dependent on the degree of structure exhibited by the cake and the 

filtrate flow rate just prior to the transition. For example, the nature of cake restructuring 

is altered from one which causes a pronounced increase in filtration rate when the 

filtrate flow rate just before the transition is in the region of 10-7 m3 s-1, to one that 

causes a decrease in filtration rate followed by a relatively less significant period of 
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increased filtration rate when the filtrate flow rate just before the transition is in the 

region of 10-6 m3 s-1 or greater.  

A mechanism was postulated that appeared consistent with the experimental 

observations, which suggested that erosion of fines (fibre fines and/or rutile) from the 

walls of a pore in the cake results an increased filtration rate in some cases (due to the 

formation of preferential flow channels), and a decreased filtration rate in others (due to 

blinding of surrounding channels). A theoretical investigation using straight circular 

channels to represent the pores in a filter cake suggested that the changes in pore size 

needed to promote the observed flow increases were sufficiently large that it would 

require the ‘loss’ of some surrounding pores, otherwise it would imply an unrealistically 

large value of average cake porosity. It is more likely for a ‘loss’ of pores to occur with 

a cake consisting of more structured solids. Potential mechanisms that would have 

resulted in this ‘loss’ of pores were suggested to be: (1) the ingress of solids blinding 

channels, and/or (2) ‘collapsed’ regions of a formed cake.  

 

7.2. FUTURE WORK 

Investigations into constant pressure cake filtration of binary suspensions are 

sparse. It would be useful to obtain a substantial body of data, including data for 

filtrations of mixtures of particles of varying sizes (but of a sufficiently large size ratio) 

and mixtures of fibres and particles. This data collection exercise may be time 

consuming and should not be done randomly but in a systematic manner. It is quite 

likely that if an appropriate apparatus is used, liquid pressure profiles within a forming 

binary cake could be measured (especially for mixtures of particles). These profiles 

should provide interesting insights. An experimental matrix could be drawn to isolate 

variables in binary suspension filtration such as particle size ratio of the two solids and 

shape combinations. Elucidating the effects of such a matrix of variables could prove 

significant for, as an example, the drilling fluids industry, where it is common to try to 

control the filtration performance of drilling fluids by manipulating the solids 

properties. 
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A reasonable system to start off with could be two industrially relevant and 

common minerals whose sizes differ by roughly an order of magnitude. In order to look 

at the effects of solids shapes and solids composition on cake filtration performance, an 

experimental matrix could be developed on 3-4 differently shaped solids, for example 

fibrous, cylindrical, spherical and flaky. For example, a fibre/bentonite system will be 

interesting since bentonite cakes are generally more compressible than rutile cakes and 

particles are less isometric in shape. Also, a fibre/bentonite system will be relevant to 

the paper and pulp industry since bentonite is a common filler. A plot of 

‘compressibility index’ vs. solids composition will be quite novel and interesting when 

accompanied by a modelling analysis, particularly if the surface properties of the solids 

could be controlled to induce aggregation. For instance, the surface properties of the 

solids could be altered by changing the pH or solution environment. It is noted that 

surface forces have the greatest influence when the particles are smaller than a few 

microns. Another, more long term, option will be rigorous experimentation with ternary 

systems.  

The current work resulted in abrupt changes to cake structure part way through 

some filtrations, which could be controlled to a reasonable extent. This is an interesting 

phenomenon that should be further investigated. It is also likely that with filtration 

experimentation with other binary (and perhaps ternary) suspensions, abrupt changes in 

cake structure are noted and occur in a manner that can be well controlled by changes in 

filtration pressure, solution environment and/or suspension composition. If better 

control and accuracy could be exerted on such phenomena, and with a broader matrix of 

variables designed specifically to elucidate the cause mechanisms, this could potentially 

lead to great fundamental insight into cake filtration in general and not just when such 

transitions occur.  

Considering that all anomalous filtration behaviour induced by abrupt transitions 

in cake structure has occurred during the filtration of suspensions containing networked 

solids, polymeric flocculants could be introduced into suspension. However, this may 

result in further complications by introducing a third phase and so careful thought will 

have to be put into what effects the polymers themselves would have on the filtration 

performance. The extents of aggregation could again be assessed by sedimentation 
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experimentation. The effect of flocculant concentration on binary suspension filtration 

performance will then be another fascinating variable for investigation, and may result 

in an interesting interpretation of ‘optimum’ flocculant concentration.  

Binary filtration experiments could be coupled with spectroscopy methods such 

as X-rays, small angle neutron scattering and/or NMR or optical methods like confocal 

laser scanning microscopy to get a better picture of localised behaviour within the cake. 

For example, Antelmi et al. (2001) used small-angle neutron scattering as well as void 

volume fraction and flux measurements to analyse latex filter cakes which extensively 

collapsed at all tested filtration pressures (20-400 kPa) to investigate the relative 

motions of the particles. Further, La Heij et al. (1996) used NMR imaging to determine 

porosity profiles during filtration of sewage sludge and claimed that the potential 

applications of the technique are, for example, checking the constitutive parameters or 

boundary conditions. To add on to their claim, it is suggested that further insight could 

be obtained on the internal mechanisms during transitions in cake structure, and binary 

suspension filtration in general, using NMR imaging either independently or to 

complement another measurement technique. 

The generation and collation of aforementioned data will be a useful addition to 

those available in the filtration literature, and may present interesting insights into some 

of the mechanisms involved in the industrial filtration of some complex, heterogeneous 

suspensions. To complement the data, the packing models presented and discussed in 

Section 4.3.4.1 and Appendix C of this thesis could be employed and eventually 

developed further. Also, the concept of ‘equivalent packing diameter’ as developed by 

Yu and Standish (1993) and Yu et al. (1993), which was shown to be a useful concept 

in relating non-spherical packing to spherical packing (see, for example, Appendix C), 

may prove useful when investigating the effects of particle shape. The permeability 

model discussed and developed in Chapter 5 could be further developed in terms of its 

sophistication and/or physical significance. If somehow in the future the effective 

specific surface values corresponding to the two solids species of a binary cake could be 

determined, than the ratio of these two values should be analysed in light of the 

discussions presented in Chapter 5. Otherwise, the potential physical significance of the 
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fitting parameters b1 and b2 should be interesting and useful, or perhaps the 

development of a more fundamental model which represents the data.  

A model was developed in Chapter 6 to obtain estimates of the magnitudes 

potentially involved during abrupt transitions in filter cake structure. Based on the 

equations derived and the relevant assumptions, two scenarios were investigated in this 

thesis to study the observed filtration behaviour. The first considered changes in channel 

radius and number of channels to account for the observed filtration behaviour, with the 

cake average porosity remaining constant, and the second considered changes in cake 

porosity and channel radius to account for the observed filtration behaviour, with the 

number of channels remaining constant. It would be useful if the model could be 

increased in sophistication, based on the theoretical framework, and if a scenario could 

be investigated where simultaneous variation in all three parameters (channel radius, 

number of channels and porosity) could be meaningfully analysed. 
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LIST OF NOTATION 

 

A   filtration area (m2)  

Ach  average cross-sectional area of a channel (m2) 

AcT  total contact area between two interacting solids species in a binary 
mixture (m2) 

Ai  average surface area (in contact with the permeating fluid) of a solids 
species in a binary mixture, assuming no aggregation (m2) 

AP  the area of a solid projected in the direction of motion during 
sedimentation (m2) 

a fraction of channels that can expand and contract during filtration (-) 

b  fraction of channels that cannot expand and contract during filtration (-) 

b1 fitting parameter defined by equation (5.41) (-) 

b1a fitting parameter defined by equation (5.37) (-)  

b2 fitting parameter defined by equation (5.41) (-) 

b2a fitting parameter defined by equation (5.38) (-) 

CD  drag coefficient (-) 

CV  concentration of solids component in feed by volume (%) 

c  mass of solids per unit volume of feed liquid (kg m-3) 

FD  drag force opposing the motion of a solid body during sedimentation (N) 

h  cake thickness (m) 

L  final cake thickness (m) 

l1  fibre length (m) 

M  mass of solids in suspension (kg) 

Mdc  mass of dry cake (kg) 

Mwc  mass of wet cake (kg) 

m   ratio of mass of wet cake to mass of dry cake (-) 

N number of hypothetical channels present in a filter cake (-) 

n  compressibility index, or number of particles or fibres (-) 

Q   channel volumetric flow rate 

R   average channel hydraulic radius (m) 

Rc  resistance to fluid flow through a filter cake (m-1) 
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SB ratio of the larger component’s specific surface to the smaller 
component’s specific surface in a binary mixture (-) 

S0  specific surface of solids in binary mixture (m3 m-2) 

Si/ i  specific surface of the larger (i = 1) or smaller (i = 2) solids component 
in contact with the permeating fluid with binary mixtures (m3 m-2) 

s  mass fraction of solids in suspension (-) 

t   cake formation time (s) 

u  filtrate superficial velocity (m3 m-1 s-1) 

us  sedimentation velocity of a solid body (m s-1) 

V  cumulative filtrate volume (m3) 

V1  volume of fibres (m3) 

V2  volume of rutile (m3) 

Vfeed  volume of feed (m3)  

Vfin  final filtrate volume (m3) 

v true volume (excluding voids) of filter cake per unit filtration area (m3 m-

2) 

w  mass of dry solids deposited per unit area (kg m-2) 

XD ratio of volume of fibres to the total volume of solids in the binary 
suspensions (-) 

XM ratio of mass of fibres to the total mass of solids in the binary suspension 
(-)  

x  particle size (width for fibres) (m) 

xp  equivalent packing diameter (m) 

 

Greek letters 

αav  average specific resistance of a filter cake (m kg-1) 

α0  average specific resistance at unit applied pressure (m kg-1 Pa-n) 

∆P  filtration pressure (Pa) 

μ  liquid viscosity (Pa s) 

εav  average filter cake porosity (-) 

ρ  pure component solids true density (kg m-3) 

ρl  liquid density (kg m-3) 

ρs  effective solids density for binary mixtures (kg m-3) 

ψ  sphericity (-)  
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Subscripts 

a  channels that can alter in size during cake restructuring (Chapter 6) 

b  channels that cannot alter in size during cake restructuring (Chapter 6) 

l  referring to liquid phase 

s  referring to solids phase 

tr  value just before an abrupt transition in cake structure (Chapter 6) 

1  referring to the (larger) solids component 1 (fibres in this work) 

2  referring to the (smaller) solids component 2 (rutile in this work) 
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APPENDIX A:  SELECTED FILTRATION DATASHEETS  

 
 In this Appendix, data sheets for selected filtration experiments discussed in 

Chapter 4 are presented with some relevant experimental parameters given. XD was 

defined in the thesis to be the ratio of the volume of fibres to the total volume of solids 

in the mixture. The temperature was measured using a thermometer prior to an 

experiment. Filter cake parameters such as average specific cake resistance, average 

cake porosity and final cake height were calculated after a filtration experiment, as 

described in Chapter 4. To ensure consistency, the values of total solids concentration 

and feed volume given were as calculated after an experiment. 

 
 
 
 
 

Datasheet 1 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres (1.2) 

XD 1 

Solution environment deionised water 

Feed volume (x10-4 m3) 5.03 

Pressure (kPa) 450 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 1.28x1014 

Average cake porosity 0.72 

Final cake height (mm) 1.81 
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Datasheet 2 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres (1.3) 

XD 1 

Solution environment deionised water 

Feed volume (x10-4 m3) 5.4 

Pressure (kPa) 550 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 1.05x1014 

Average cake porosity 0.75 

Final cake height (mm) 2.30 

 

 

Datasheet 3 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.1) 

XD 0.992 

Solution environment deionised water 

Feed volume (x10-4 m3) 5.2 

Pressure (kPa) 450 

Temperature (oC) 22 

Average specific cake resistance (m kg-1) 8.57x1013 

Average cake porosity 0.75 

Final cake height (mm) 1.85 
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Datasheet 4 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.928 

Solution environment deionised water 

Feed volume (x10-4 m3) 5.1 

Pressure (kPa) 450 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 3.59x1013 

Average cake porosity 0.70 

Final cake height (mm) 1.62 

 

 

Datasheet 5 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.928 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.9 

Pressure (kPa) 550 

Temperature (oC) 22 

Average specific cake resistance (m kg-1) 2.99x1013 

Average cake porosity 0.77 

Final cake height (mm) 2.11 
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Datasheet 6 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) rutile (1.2) 

XD 0 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.4 

Pressure (kPa) 450 

Temperature (oC) 22 

Average specific cake resistance (m kg-1) 5.45x1012 

Average cake porosity 0.59 

Final cake height (mm) 1.09 

 

 

Datasheet 7 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.1) 

XD 0.068 

Solution environment, deionised water 

Feed volume (x10-4 m3) 4.7 

Pressure (kPa) 450 

Temperature (oC) 23 

Average specific cake resistance (m kg-1) 3.19x1012 

Average cake porosity 0.62 

Final cake height (mm) 1.12 
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Datasheet 8 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.0) 

XD 0.154 

Solution environment deionised water 

Feed volume (x10-4 m3) 5.1 

Pressure (kPa) 450 

Temperature (oC) 23 

Average specific cake resistance (m kg-1) 3.50x1012 

Average cake porosity 0.61 

Final cake height (mm) 1.04 

 

 

Datasheet 9 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.0) 

XD 0.265 

Solution environment deionised water 

Feed volume (x10-4 m3) 5.2 

Pressure (kPa) 450 

Temperature (oC) 23 

Average specific cake resistance (m kg-1) 1.70x1012 

Average cake porosity 0.63 

Final cake height (mm) 1.16 
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Datasheet 10 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.1) 

XD 0.391 

Solution environment deionised water 

Feed volume (x10-4 m3) 5.1 

Pressure (kPa) 450 

Temperature (oC) 23 

Average specific cake resistance (m kg-1) 4.77x1011 

Average cake porosity 0.68 

Final cake height (mm) 1.45 

 

 

Datasheet 11 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) 1.2 

XD 0.520 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.7 

Pressure (kPa) 450 

Temperature (oC) 22 

Average specific cake resistance (m kg-1) 2.69x1011 

Average cake porosity 0.68 

Final cake height (mm) 1.45 
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Datasheet 12 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.0) 

XD 0.646 

Solution environment deionised water 

Feed volume (x10-4 m3) 5.5 

Pressure (kPa) 450 

Temperature (oC) 22 

Average specific cake resistance (m kg-1) 2.74x1011 

Average cake porosity 0.67 

Final cake height (mm) 1.41 

 

 

Datasheet 13 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.1) 

XD 0.764 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.9 

Pressure (kPa) 450 

Temperature (oC) 22 

Average specific cake resistance (m kg-1) 8.50x1011 

Average cake porosity 0.78 

Final cake height (mm) 2.03 
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Datasheet 14 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.1) 

XD 0.859 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.5 

Pressure (kPa) 450 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 5.28x1012 

Average cake porosity 0.76 

Final cake height (mm) 1.64 

 

 

Datasheet 15 (repeat experiment) 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres (1.1) 

XD 1 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.0 

Pressure (kPa) 450 

Temperature (oC) 20 

Average specific cake resistance (m kg-1) 9.80x1013 

Average cake porosity 0.77 

Final cake height (mm) 1.65 
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Datasheet 16 (repeat experiment) 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) rutile (1.0) 

XD 0 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.7 

Pressure (kPa) 450 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 4.96x1012 

Average cake porosity 0.57 

Final cake height (mm) 0.92 

 

 

Datasheet 17 (repeat experiment) 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.1) 

XD 0.520 

Solution environment deionised water 

Feed volume (x10-4 m3) 5.0 

Pressure (kPa) 450 

Temperature (oC) 22 

Average specific cake resistance (m kg-1) 3.52x1011 

Average cake porosity 0.68 

Final cake height (mm) 1.46 
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Datasheet 18 (repeat experiment) 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) 1.1 

XD 0.154 

Solution environment deionised water 

Feed volume (x10-4 m3) 5.2 

Pressure (kPa) 450 

Temperature (oC) 23 

Average specific cake resistance (m kg-1) 3.27x1012 

Average cake porosity 0.61 

Final cake height (mm) 1.20 

 

 

Datasheet 19 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (0.9) 

XD 0.391 

Solution environment 0.1 M CaCl2 

Feed volume (x10-4 m3) 5.1 

Pressure (kPa) 450 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 3.71x1011 

Average cake porosity 0.68 

Final cake height (mm) 1.25 
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Datasheet 20 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) rutile (0.9) 

XD 0 

Solution environment 0.1 M CaCl2 

Feed volume (x10-4 m3) 5.5 

Pressure (kPa) 450 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 5.61x1011 

Average cake porosity 0.65 

Final cake height (mm) 1.16 

 

 

Datasheet 21 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.154 

Solution environment 0.1 M CaCl2 

Feed volume (x10-4 m3) 5.4 

Pressure (kPa) 450 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 6.16x1011 

Average cake porosity 0.66 

Final cake height (mm) 1.54 
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Datasheet 22 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.646 

Solution environment 0.1 M CaCl2 

Feed volume (x10-4 m3) 4.9 

Pressure (kPa) 450 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 3.04x1011 

Average cake porosity 0.66 

Final cake height (mm) 1.51 

 

 

Datasheet 23 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.859 

Solution environment 0.1 M CaCl2 

Feed volume (x10-4 m3) 4.3 

Pressure (kPa) 450 

Temperature (oC) 22 

Average specific cake resistance (m kg-1) 1.70x1011 

Average cake porosity 0.71 

Final cake height (mm) 1.52 
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Datasheet 24 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.992 

Solution environment 0.1 M CaCl2 

Feed volume (x10-4 m3) 4.4 

Pressure (kPa) 450 

Temperature (oC) 20 

Average specific cake resistance (m kg-1) 4.19x1011 

Average cake porosity 0.75 

Final cake height (mm) 1.83 

 

 

Datasheet 25 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres (1.2) 

XD 1 

Solution environment 0.1 M CaCl2 

Feed volume (x10-4 m3) 4.5 

Pressure (kPa) 450 

Temperature (oC) 20 

Average specific cake resistance (m kg-1) 3.52x1011 

Average cake porosity 0.77 

Final cake height (mm) 1.98 
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Datasheet 26 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres (1.3) 

XD 1 

Solution environment deionised water 

Feed volume (x10-4 m3) 3.8 

Pressure (kPa) 150 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 3.19x1013 

Average cake porosity 0.73 

Final cake height (mm) 1.58 

 

 

Datasheet 27 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.3) 

XD 0.646 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.4 

Pressure (kPa) 150 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 2.47x1011 

Average cake porosity 0.78 

Final cake height (mm) 2.27 
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Datasheet 28 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) rutile (1.1) 

XD 0 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.7 

Pressure (kPa) 150 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 1.95x1012 

Average cake porosity 0.61 

Final cake height (mm) 1.07 

 

 

Datasheet 29 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (0.9) 

XD 0.391 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.5 

Pressure (kPa) 150 

Temperature (oC) 22 

Average specific cake resistance (m kg-1) 2.85x1011 

Average cake porosity 0.72 

Final cake height (mm) 1.18 
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Datasheet 30 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.3) 

XD 0.154 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.6 

Pressure (kPa) 150 

Temperature (oC) 23 

Average specific cake resistance (m kg-1) 1.43x1012 

Average cake porosity 0.70 

Final cake height (mm) 1.64 

 

 

Datasheet 31 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.3) 

XD 0.859 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.1 

Pressure (kPa) 150 

Temperature (oC) 22 

Average specific cake resistance (m kg-1) 1.55x1012 

Average cake porosity 0.79 

Final cake height (mm) 2.13 
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Datasheet 32 (repeat experiment) 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres (1.3) 

XD 1 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.2 

Pressure (kPa) 150 

Temperature (oC) 24 

Average specific cake resistance (m kg-1) 3.00x1013 

Average cake porosity 0.77 

Final cake height (mm) 1.91 

 

 

Datasheet 33 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres (1.0) 

XD 1 

Solution environment deionised water 

Feed volume (x10-4 m3) 5.0 

Pressure (kPa) 600 

Temperature (oC) 22 

Average specific cake resistance (m kg-1) 8.66x1013 

Average cake porosity 0.77 

Final cake height (mm) 1.87 
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Datasheet 34 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) rutile (1.1) 

XD 0 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.6 

Pressure (kPa) 600 

Temperature (oC) 22 

Average specific cake resistance (m kg-1) 2.07x1012 

Average cake porosity 0.64 

Final cake height (mm) 1.14 

 

 

Datasheet 35 (repeat experiment) 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) rutile (1.1) 

XD 0 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.8 

Pressure (kPa) 450 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 2.34x1012 

Average cake porosity 0.59 

Final cake height (mm) 1.05 
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Datasheet 36 (repeat experiment) 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) rutile (0.9) 

XD 0 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.7 

Pressure (kPa) 600 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 2.98x1012 

Average cake porosity 0.62 

Final cake height (mm) 0.93 

 

 

Datasheet 37 (repeat experiment) 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres (1.1) 

XD 1 

Solution environment deionised water 

Feed volume (x10-4 m3) 5.0 

Pressure (kPa) 450 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 5.70x1013 

Average cake porosity 0.76 

Final cake height (mm) 1.84 

 
 



Appendix A:  Selected Filtration Datasheets 
______________________________________________________________________ 
 

 209

 
Datasheet 38 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.154 

Solution environment deionised water 

Feed volume (x10-4 m3) 5.4 

Pressure (kPa) 600  

Temperature (oC) 22 

Average specific cake resistance (m kg-1) 1.54x1012 

Average cake porosity 0.67 

Final cake height (mm) 1.60 

 

 

Datasheet 39 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.1) 

XD 0.646 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.9 

Pressure (kPa) 600 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 6.51x1011 

Average cake porosity 0.70 

Final cake height (mm) 1.54 
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Datasheet 40 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.391 

Solution environment deionised water 

Feed volume (x10-4 m3) 5.3 

Pressure (kPa) 600 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 9.02x1011 

Average cake porosity 0.67 

Final cake height (mm) 1.53 

 

 

Datasheet 41 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.859 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.5 

Pressure (kPa) 600 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 1.90x1012 

Average cake porosity 0.75 

Final cake height (mm) 1.86 
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Datasheet 42 (repeat experiment) 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.859 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.5 

Pressure (kPa) 450 

Temperature (oC) 21 

Average specific cake resistance (m kg-1) 2.57x1012 

Average cake porosity 0.76 

Final cake height (mm) 1.81 

 

 

Datasheet 43 (repeat experiment) 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.859 

Solution environment deionised water 

Feed volume (x10-4 m3) 4.8 

Pressure (kPa) 600 

Temperature (oC) 20 

Average specific cake resistance (m kg-1) 2.47x1012 

Average cake porosity 0.75 

Final cake height (mm) 1.95 
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Datasheet 44 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) rutile (1.0) 

XD 0 

Solution environment 0.2 M NaCl 

Feed volume (x10-4 m3) 5.1 

Pressure (kPa) 450 

Temperature (oC) 24 

Average specific cake resistance (m kg-1) 9.55x1011 

Average cake porosity 0.65 

Final cake height (mm) 1.17 

 

 

Datasheet 45 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.646 

Solution environment 0.2 M NaCl 

Feed volume (x10-4 m3) 5.1 

Pressure (kPa) 450 

Temperature (oC) 23 

Average specific cake resistance (m kg-1) 3.36x1011 

Average cake porosity 0.66 

Final cake height (mm) 1.52 
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Datasheet 46 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres (1.2) 

XD 1 

Solution environment 0.2 M NaCl 

Feed volume (x10-4 m3) 4.4 

Pressure (kPa) 450 

Temperature (oC) 23 

Average specific cake resistance (m kg-1) 1.60x1012 

Average cake porosity 0.77 

Final cake height (mm) 1.89 

 

 

Datasheet 47 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.391 

Solution environment 0.2 M NaCl 

Feed volume (x10-4 m3) 5.4 

Pressure (kPa) 450 

Temperature (oC) 24 

Average specific cake resistance (m kg-1) 7.04x1011 

Average cake porosity 0.66 

Final cake height (mm) 1.56 
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Datasheet 48 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.154 

Solution environment 0.2 M NaCl 

Feed volume (x10-4 m3) 5.1 

Pressure (kPa) 450 

Temperature (oC) 23 

Average specific cake resistance (m kg-1) 1.15x1012 

Average cake porosity 0.67 

Final cake height (mm) 1.59 

 

 

Datasheet 49 

Experimental Parameters Data 

Solids (total solids concentration, % v/v) fibres and rutile (1.2) 

XD 0.859 

Solution environment 0.2 M NaCl 

Feed volume (x10-4 m3) 4.4 

Pressure (kPa) 450 

Temperature (oC) 22 

Average specific cake resistance (m kg-1) 1.01x1012 

Average cake porosity 0.75 

Final cake height (mm) 1.83 
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APPENDIX B:  RECORDED LIQUID PRESSURE PROFILES 

 

Although liquid pressure profiles were successfully recorded by the micro-

pressure transducers in the validation experiments, the majority of pressure profiles in 

this investigation could not be reliably measured due to the nature of the binary cakes, 

particularly the fibre rich ones. Although it is difficult to know exactly why this 

happened, a potential reason is the relatively low solids concentrations tested. For 

example, the recorded liquid pressure profiles appeared more reliable and were more 

consistent with rutile rich cakes of higher total solids concentration. Further, due to the 

greater solids presence, filter cakes generally form at a greater rate with suspensions of 

higher total solids concentrations, and there is less time and space for solids to 

‘rearrange’ themselves in the vicinity of a micro-pressure transducer. Another potential 

reason is the fibre shapes, and how these fibres align themselves and pack in the vicinity 

of a micro-pressure transducer. An alternative, more simple, explanation is that the filter 

cakes are too open.    

As an example, the recorded liquid pressure profiles during filtrations of an XD = 

0.859 suspension in deionised water at three filtration pressures are shown in Figure B1, 

where it is seen that the measured liquid pressure at various heights within the cake 

unexpectedly (and perhaps erroneously) remained almost constant at the applied 

filtration pressure throughout. Therefore, no further reference to recorded liquid 

pressure profiles is made in Chapters 4 and 5. However, with a few filtration 

experiments, the liquid pressure profiles do show some variation with time, and were 

analysed (where appropriate) to provide some insight into specific filtration behaviour 

as discussed in Chapter 6. Although these values may not be absolute in their accuracy, 

they were useful for the purpose of comparing the behaviour at one cake height relative 

to another. Further, with the experiments where the liquid pressure profiles do show 

variation with time, transitions in cake structure generally corresponded with abrupt 

changes in liquid pressure as recorded by one or more transducers. 
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Figure B1: Recorded liquid pressure profiles at various heights above the filter medium during 

filtrations of an XD = 0.859 suspension in deionised water at three filtration pressures 
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APPENDIX C:  FURTHER DISCUSSION ON THE PACKING 

MODELS 

 

In Section 4.3.4.1, the Tokumitsu model was used to describe the variation of 

porosity with fibre fraction, using the concept of interparticle penetration. Although 

there have been various interparticle penetration models developed, the Tokumitsu 

model was taken as a representative example. To illustrate the fact that it is indeed 

representative in the context of this thesis, for comparison purposes the equations 

presented by Dias et al. (2004) were used as an alternative to the Tokumitsu model. 

After presenting a system of equations, Dias and co-workers reduced them to the two 

equations, one for a packed bed rich in small particles: 
















2,

2, 1

1

avD

D
avav X

X


                                                                             (C1) 

and another for a packed bed rich in large particles: 

D

av
av X

1,1
1





                                                                                                           (C2) 

where εav,1 is the average porosity of a bed of large particles (fibres in this case) and εav,2 

the average porosity of a bed of small particles (rutile in this case). Similar to the 

Tokumitsu model, plots of equation (C1) and (C2) vs. solids composition, with equation 

(C1) emanating from the pure small component and equation (C2) emanating from the 

pure large component, will result in two curves which intersect at some intermediate 

solids composition. This point of intersection is generally taken to be representative of a 

minimum porosity and indicates a transition from one dominant mechanism to another. 

Discontinuation of these two curves beyond the intersection point results in one smooth 

curve which attempts to describe the variation of porosity with solids composition. 

Equations (C1) and (C2) correspond to the classic linear mixing model, which has been 

developed in some previous works (Yu and Standish, 1991; Yu et al., 1996; Dias et al., 

2004). 
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 Predictions of εav given by equations (C1) and (C2) for cakes formed from 

suspensions in deionised water at 450 kPa has been plotted in Figure C1 along with the 

experimental data for the purposes of comparison with another interparticle penetration 

model, the Tokumitsu model (equations (4.20) and (4.21)). Predictions given by the 

Shirato equation for additive porosity (equation (4.24)) were also included in this figure. 

It is seen that, in general, equations (C1) and (C2) produced a trend similar to that 

obtained using the Tokumitsu model where a minimum in porosity (εav,min < 0.5) was 

obtained at an XD ~ 0.4. Hence, the use of the Tokumitsu model as being representative 

of the interparticle penetration mechanism in Section 4.3.4.1 is justified. It is also seen 

that the concept of additive porosity is apparently more representative of the 

experimental data than the two interparticle penetration models used (the Tokumitsu 

model and equations (C1) and (C2)).   

 

 

Figure C1: Effects of solids composition on εav for filtrations from deionised water at 450 kPa. 

The predictions given by equation (4.24) (Shirato model), equations (4.20) and (4.21) 

(Tokumitsu model), and equations (C1) and (C2) (Dias, et al., 2004) are included along with the 

experimental data. 
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It is seen that, with fibre rich cakes, the Tokumitsu model predicts a greater 

porosity than equation (C2), and this could be due to the fibre ‘size’ (x1) used in the 

Tokumitsu model. A convenience in the use of equations (C1) and (C2) is that these 

equations do not require a particle size, since ‘size’ becomes difficult to define, 

particularly with fibrous type solids. In Section 4.3.4.1, it has been mentioned that the 

Tokumitsu model showed similar trends (in general) when an ‘equivalent packing 

diameter’ was used in place of the fibre diameter. Assuming the fibre to be cylindrical, 

the fibre sphericity is given by equation (4.23) with the ‘equivalent packing diameter’ 

calculated using equation (4.22). However, as discussed in Section 3.5.2, the fibres were 

not perfectly cylindrical but had more angular edges. The sphericity of a fibre assumed 

to take on the shape illustrated in Figure C2 is derived below. 

 

 

Figure C2: A hypothetical fibre with annotated dimensions. 

 

 

 The surface area of the fibre in Figure C2, SA1, is given by: 

  hLLhwS A 21                                                                                                      (C3) 

The volume of the fibre, VA1, is given by: 

whLVA 2

1
1                                                                                                                   (C4) 

If xv is defined as an equivalent volume diameter, or the diameter of a sphere having the 

same volume as the fibre, then the following relationship holds: 
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3

6

1

2

1
vxwhL                                                                                                               (C5) 

Rearranging equation (C5) gives an expression for the equivalent volume diameter: 

3

1

3






 whLxv 

                                                                                                            (C6) 

The surface area (SA2) of this sphere having the same volume as the fibre is then given 

by: 

 3

2
2

2 048.3 whLxS vA                                                                                              (C7) 

The fibre sphericity ( ), which is defined as the ratio of the surface area of a sphere 

(with the same volume as the fibre) to the surface area of the fibre, is then obtained as 

SA2/ SA1, and can be determined by dividing equation (C7) by equation (C3) to give: 

 
  hLLhw
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2

048.3 3

2


                                                                                                      (C8) 

Yu and Standish (1993) empirically derived the following equation relating the 

equivalent packing diameter, xp1, to the equivalent volume diameter, xv, and the solids 

sphericity: 
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It can be seen from equation (C9) that for spherical particles   = 1 and xp1 = xv. For a 

cylindrical shaped fibre, the equivalent volume diameter is given by: 
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and sphericity by: 
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Substituting equations (C10) and (C11) into equation (C9) and rearranging gives: 
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which is the equivalent packing diameter of a cylindrical fibre. Similarly, for a fibre 

with the dimensions illustrated by Figure C2, substituting equations (C6) and (C8) into 

equation (C9) and rearranging gives the corresponding equivalent packing diameter as: 
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In Section 3.5.2, the fibres were shown to have a median width of ~15 μm and 

an aspect ratio in the region of 100, and this was used to provide estimates of the 

parameters in equations (C12) and (C13). x1, w and h were assigned a value of 15 μm, 

and l1 and L were assigned a value of 1.5 mm. In an attempt to analyse the sensitivity of 

the Tokumitsu model to the input fibre ‘size’, three cases were studied: 

 Case 1: the fibre width of 15 μm was used to represent the fibre ‘size’ as 

required by the Tokumitsu model; 

 Case 2: the fibre ‘size’ as required by the Tokumitsu model was calculated using 

equation (C12), assuming cylindrical fibres; 
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 Case 3: the fibre ‘size’ as required by the Tokumitsu model was calculated using 

equation (C13), assuming fibres shaped as illustrated in Figure 2B. 

The plots corresponding to Cases 1-3 (based on the Tokumitsu model) are illustrated in 

Figure C3, along with equations (C1) and (C2) (as an alternate interparticle penetration 

model), the Shirato model (concept of additive porosity), and the experimental data for 

450 kPa filtrations from deionised water.  

 

 

Figure C3: Effects of solids composition on εav for filtrations from deionised water at 450 kPa. 

The predictions given by equation (4.24) (Shirato model), equations (2A) and (2B) (Dias et al., 

2004), and Cases 1-3 (Tokumitsu model) as described above, are included along with the 

experimental data. 

 

 

It is evident that in Cases 2 and 3, the Tokumitsu model approaches the model 

(equations (C1) and (C2)) presented in the paper published by Dias et al. (2004) for 

spherical particles, substantiating the claims made by Yu and Standish (1993) and Yu et 

al. (1993) that the equivalent packing diameter is a useful concept in relating non-

spherical packing to spherical packing. Moving from (physically meaningless) 

‘spherical fibres’ (Case 1) to cylindrical ones (Case 2) resulted in a decrease in the 
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predicted porosity for fibre rich cakes, and a shift in the solids composition at which a 

minimum in porosity is observed (to cakes richer in fibres). Moving from cylindrical 

fibres (Case 2) to ones with angular edges as schematically illustrated Figure C2 (Case 

3) did not bring about much change in the porosity vs. solids composition trend.   

 This appendix is presented to complement the discussions made in Section 

4.3.4.1. In conclusion, the use of the Tokumitsu model to represent the interparticle 

penetration mechanism has been justified by comparison with another, widely used, 

interparticle penetration model. It is seen that a complication with the Tokumitsu model 

is that a fibre ‘size’ input is required. This input affects the predictions, and using the 

fibre width as a single parameter to represent its ‘size’ may not be the best approach. 

The concept of ‘equivalent packing diameter’, as developed by Yu and Standish (1993) 

and Yu et al. (1993), is shown to be a useful concept in relating non-spherical packing 

to spherical packing. However, whichever fibre ‘size’ used, it is clear that Shirato’s 

concept of additive porosity represented the experimental data better than the 

interparticle penetration models, which all showed similar general trends, in particular a 

minimum porosity at some intermediate fibre fraction.  
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APPENDIX D:  ADDITIONAL DETAILS OF PERMEABILITY 

MODEL 

 

This appendix gives further details and discussion on the permeability model 

presented in Chapter 5. It is a supplement to Section 5.3, and provides further details on 

the differentiation and relevant manipulation of equations (5.15) and (5.20). Further 

checks on the methods and results presented here have been made, including checks 

with Maple. 

 

 

SUPPLEMENT TO SECTION 5.3 

 

Differentiation and manipulation of equation (5.15) 

 

Equation (5.10) was written as: 

 
  
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
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av                                                (D1) 

Assuming a constant solids effective specific surface and cake average porosity across 

the range of solids composition, a minimum or maximum in αav can be obtained when: 

0
,



i

i
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d
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                                                                     (D2) 

Substituting for the specific resistance in equation (D2) gives: 
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Removing the constants from the term in brackets to be differentiated gives: 
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and carrying out the differentiation in equation (D4) gives: 
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Equation (D5) can be rearranged to give: 
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Manipulating the left hand side term gives equations (D7) and (D8): 
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Rearranging equation (D8) gives equations (D9) and (D10): 
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Manipulating to obtain XD as the subject expressed in the most convenient manner 

results in equations (D11): 

21

2

12

21
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1
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



 
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S

S
X D                                                                                           (D11) 

 

Since XD is defined as the fibre fraction, it ranges from 0 to 1 and so a minimum in 

specific resistance at an intermediate solids composition can only occur at 0 < XD < 1. 

From equation (D11), using the constraint XD > 0 gives: 
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From equation (D11), using the constraint XD < 1 gives: 

1
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From equations (D12) and (D13), using the definition of SB leads to (i.e. a minimum is 

observed if): 

2

21

21

1

2

2





 


 BS                                                     (D14) 

Equation (D14) gives the limits of SB within which a minimum in specific cake 

resistance can be obtained at some intermediate solids composition, in terms of the 

solids densities. Equation (D14) highlights the significance of the ratio of solids 

effective specific surfaces (SB).  

 

 

Differentiation and manipulation of equation (5.20) 
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Unlike equation (5.15) which assumes a constant porosity, in equation (5.20) the 

variation in cake porosity with solids composition is accounted for via the Shirato 

model (equation (4.24)). The corresponding form of equation (D1) accounting for 

varying porosity is given as:  
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Assuming a constant solids effective specific surface across the range of solids 

composition, a minimum or maximum in αav can be obtained when: 
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If, for convenience we define terms P, Q, T and U as: 
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  21 1  DD XXU          (D20) 

Then it follows that: 
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and 
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Now equation (D15) can be written as: 
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P

Q
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
   (since P - Q = 1)     

 

Differentiating equation (D23) with respect to solids composition gives:                                              
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Removing the like terms on the right hand side of equation (D24) gives: 
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Checks on equation (D26) were made using Maple and Excel. 
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At the minimum, 0
D

av

dX

d
 and so equation (D26) is set to 0, also it is noted that 

UQ

PT
3

5  cannot equal 0. So, setting equation (D26) to 0 and rearranging gives: 

 21
2

2

1

1 322 












U

PT

Q

PTWSS
PTV                                                          (D27) 

Rearranging equation (D27) gives the following equations: 
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Since XD is defined as the fibre fraction, it ranges from 0 to 1 and so a minimum in 

specific resistance at an intermediate solids composition can only occur at 0 < XD < 1. 

 

Using the limit XD = 0 to simplify the terms P, Q, T, U, V and W from equations (D17-

D22) gives the following equations: 

2,1

1

av

P


           (D29) 

2,

2,

1 av

avQ





           (D30) 

2

2


S

T            (D31) 

2U           (D32) 

2,1, 1

1

1

1

avav

V
 




         (D33) 



Appendix D:  Additional Details of Permeability Model 
______________________________________________________________________ 
 

 230
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Substituting equations (D29-D34) into equation (D28) for when XD = 0 gives: 
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Rearranging equation (D35) gives the following equations: 
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Finally, put in the simplest form: 
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Using the limit XD = 1 to simplify the terms P, Q, T, U, V and W from equations (D17-

D22) gives the following equations: 
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Substituting equations (D40-D45) into equation (D26) for when XD = 1 gives: 
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Rearranging equation (D46) gives the following equations: 
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Finally, put in the simplest form: 
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From equations (D39) and (D51), considering a minimum is to occur at 0 < XD < 1 and 

using the definition of SB: 
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Assuming the solids specific surface remains constant at the various solids 

compositions, than a minimum in specific cake resistance at some intermediate solids 

composition can only occur if equation (D52) is satisfied. 

 



Appendix E:  Supplement to Permeability Model Fitting 
______________________________________________________________________ 
 

 233

APPENDIX E:  SUPPLEMENT TO PERMEABILITY MODEL 

FITTING 

 
 Equation (5.41) was chosen over the combined use of equations (5.39) and 

(5.40) for Figures 5.8 - 5.10 because: (1) it results in a smoother curve, and (2) equation 

(5.41) seems to be more physically meaningful. Although further discussion is given in 

Section 5.4, one reason why equation (5.41) is perhaps more meaningful is due to the 

difference between the fitting parameters in equation (5.41) (b1 and b2) and those in 

equations (5.39) and (5.40) (b1a and b2a); which is that b1a only has an influence with 

filter cakes rich in the larger solids component and b2a with filter cakes rich in the 

smaller solids component (see equations (5.37) and (5.38)), whereas b1 and b2 exert 

their influence over the entire range of solids compositions for binary cakes (with 

different ‘weightings’). However, the combined use of equations (5.39) and (5.40) also 

gave acceptable fits to the experimental data, as illustrated in Figures E1 – E4.  

 

 

Figure E1: Experimental filtration data for a fibre/rutile system in deionised water at 450 kPa, 

and the model fit using equations (5.39) and (5.40). 
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Figure E2: Experimental filtration data for a fibre/rutile system in deionised water at 150 and 

600 kPa, and the model fits using equations (5.39) and (5.40). 

 

 

Figure E3: Experimental filtration data for a fibre/rutile system in two solution environments at 

450 kPa, and the model fits using equations (5.39) and (5.40). 
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Figure E4: Experimental filtration data at 196 kPa with deionised water at pH 4.5 (where rutile-

silica aggregation occurs) and at pH 9.6 (where no aggregation took place), and the model fits 

using equations (5.39) and (5.40). In this figure, an XD of 0 refers to pure rutile and an XD of 1 

refers to pure silica. The experimental data points were recalculated from that reported by Iritani 

et al. (2002).  

 

 

 It is seen that the combined use of equations (5.39) and (5.40) also gave 

reasonably good fits to a wide range of experimental data. A descriptive example of 

how the combined use of equations (5.39) and (5.40) is applied to the experimental data 

has been given in Section 5.4. A similar procedure was used for equation (5.41), where 

equation (E1) was curve fitted to the experimentally determined representation of total 

solids specific surface trend with solids composition, to determine the values of b1 and 

b2. 

      DDDD Xb
S

XXb
S

XS 2
2

2
1

1

1
0 exp11exp 


      (E1) 

The experimentally determined representations of total solids specific surface were 

calculated from equation (5.35).  
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Once values of b1 and b2 were determined, they were used in equation (5.41) to 

represent the variation of specific cake resistance with solids composition. Fitting 

equation (E1) to the calculated total solids specific surface vs. solids composition trend 

was done using non-linear regression in SigmaPlot. It should be noted that the equation 

was coded into SigmaPlot (user defined) and in the code, a represented the specific 

surface of pure fibres (S1/ 1) and c the specific surface of pure rutile (S2/ 2). a and c 

were determined from the two pure component filtrations and since these were known 

for a given set of conditions (binary mixture, solution environment and filtration 

pressure), they were input as constraints. Also, in the code, b represented the fitting 

parameter b1, and d represented the fitting parameter b2. An example SigmaPlot non-

linear regression results file with fibre/rutile mixtures in deionised water at a filtration 

pressure of 450 kPa is given as Table E1. An example plot generated using SigmaPlot, 

for the non-linear regression shown in Table E1 (fibre/rutile in deionised water at 450 

kPa), is presented as Figure E5; this plot shows the fit of equation (E1) to the calculated 

specific surface data.   

 

 

 

Table E1: Example SigmaPlot non-linear regression results file. 

 

 
Nonlinear Regression   Fibre/rutile in deionised water, 450 kPa 
 
Data Source: 150 kPa in f(S) vs Xd 2 
Equation: User-Defined, Kuhan 
f=x*a*exp(-b*(1-x))+(1-x)*c*exp(-d*x) 
 
Data Source: 450 kPa in f(S) vs Xd 2 
Equation: User-Defined, Kuhan 
f=x*a*exp(-b*(1-x))+(1-x)*c*exp(-d*x) 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
 
0.997 0.994 0.992  5940310.459  
 
  Coefficient Std. Error t P  
 
a 200821320.944 4466833.190 44.958 <0.0001  
b 8.411 0.615 13.683 <0.0001  
c 41166647.955 4521351.789 9.105 <0.0001  
d 0.758 0.567 1.337 0.2180  



Appendix E:  Supplement to Permeability Model Fitting 
______________________________________________________________________ 
 

 237

 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 4 9.962E+016 2.491E+016  
Residual 8 2.823E+014 3.529E+013  
Total 12 9.990E+016 8.325E+015  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 3 5.014E+016 1.671E+016 473.653 <0.0001  
Residual 8 2.823E+014 3.529E+013  
Total 11 5.042E+016 4.584E+015  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.9754) 
 
W Statistic= 0.9782 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.5877) 
 
Fit Equation Description: 
[Variables] 
x = col(3) 
y = col(8) 
reciprocal_y=1/abs(y) 
reciprocal_ysquare=1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q)=max(abs(q))-abs(q) 
yatxnear0(q,r)=xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)/2  ''Auto {{previous: 2.00821e+008}} 
b = if(x50(x,y)-min(x)=0, 1, -ln(.5)/(0.5*(x50(x,y)-min(x))))  ''Auto {{previous: 8.41123}} 
c = yatxnear0(y,x)/2  ''Auto {{previous: 4.11666e+007}} 
d = if(x50(x,y)-min(x)=0, .5,  -ln(.5)/(1.5*(x50(x,y)-min(x))))  ''Auto {{previous: 0.758021}} 
[Equation] 
f=x*a*exp(-b*(1-x))+(1-x)*c*exp(-d*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
a=200821321 
c=41166648 
[Options] 
tolerance=1e-010 
stepsize=1 
iterations=200 
 
Number of Iterations Performed = 8 
 
______________________________________________________________________ 
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Figure E5: Plot of S0 vs. solids composition. The line corresponds to equation (E1). The data 

points were calculated from 450 kPa filtrations with deionised water using equation (5.35), and 

the pure component effective specific surface values (S1/ 1 and S2/ 2) from equation (5.11) 

and the pure component filtration data. 
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APPENDIX F:  SUPPLEMENT TO SECTION 6.4 

 

 This appendix discusses three points relevant to Section 6.4 by means of 

examples and sample calculations. These points are: 

1. the sensitivity of parameters such as average channel radius and number of 

channels as determined from equations (6.7) and (6.8) to the cake height (h) 

value used in these equations; 

2. the use of the Kozeny-Carman model to get a ‘feel’ for the macroscopic changes 

(increases) in cake average porosity required to promote the flow increases 

observed after a change in cake structure; 

3. the solution of equation (6.9) to determine the value of Ra using Maple. 

 

 

 

1. Sensitivity to cake height 

This part discusses the sensitivity of the model presented in Section 6.4 to the 

cake height, which is the parameter h in the model. Using equation (6.6) to obtain 

values of h, and substituting into equations (6.7) and (6.8) to solve for average channel 

radius and number of channels, resulted in the plots illustrated by Figures 6.10 and 6.11 

(respectively) for pure fibre suspensions in deionised water at three filtration pressures 

with a = 1. Here, the 550 kPa filtration of a pure fibre suspension in deionised water, 

with a = 1, has been used as an example to illustrate the sensitivity of the model to the 

parameter h. Figure F1 illustrates the cake height profile, as calculated from equation 

(6.6). It is unlikely that the true cake height profile is represented by Figure F1, 

particularly when restructuring of the cake occurs (~1500 s), and this makes it all the 

more important to determine the sensitivity of the model to cake height. 
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Figure F1: Cake height profile for a 550 kPa filtration of a pure fibre suspension in deionised 

water as determined from equation (6.6). 

 

 

 

 To investigate the sensitivity of equations (6.7) and (6.8) on cake height, two 

cases were compared to the one presented in Section 6.4.1, which assumes a cake height 

profile as illustrated in Figure F1. Case 1 assumes that, from a filtration time of 1000 s, 

the cake height remains constant at the value just before the transition in cake structure 

of 1.46 mm (see Figure F1). Case 2 assumes that, from a filtration time of 1000 s, the 

cake height remains constant at the final cake height value of 1.85 m (Figure F1). The 

results of these two cases have been plotted alongside the data presented in Figures 6.10 

and 6.11 for the channel radius and number of channels, respectively; these plots have 

been presented as Figures F2 and F3. 
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Figure F2: Illustration of the sensitivity of average channel radius as determined from equation 

(6.7) to the value of cake height (h) used. 

 

 

Figure F3: Illustration of the sensitivity of number of channels as determined from equation 

(6.8) to the value of cake height (h) used. 
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It is seen that the lines in Figures F2 and F3 are similar regardless of whether the 

cake height profile (equation (6.6)), or two different (constant) values of cake height 

were used in equations (6.7) and (6.8). In conclusion, although compression may take 

place during a filtration and the cake may ‘collapse’ reducing h at a certain time during 

a filtration, all cakes in this investigation were relatively thin and trial calculations (an 

example has been shown here for a 550 kPa filtration of pure fibres in deionised water) 

shows that minor changes in cake height do not cause significant variation in the results 

obtained. Hence the use of equation (6.6) in the model in Section 6.4 is validated. 

 

 

2. Calculations using Kozeny-Carman for change in porosity 

 The Kozeny-Carman equation can be written as: 
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where S0
2 is the solids specific area in contact with the permeating fluid. The average 

cake permeability, kav, is related to the liquid flow rate and filter cake thickness 

according to Darcy’s Law: 
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where dP is the pressure difference across thickness dx of filter cake of permeability kav. 

Substituting equation (F1) into equation (F2) and rearranging gives:  
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It is assumed that the variation in cake thickness is negligible, and the specific surface 

remains approximately constant over this short period. By way of example, equation 

(F3) is applied to the data for a 550 kPa filtration of a fibre suspension in deionised 

water. It is noted that the final filter cake average porosity was approximately 0.75 for 
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this filtration. Further, there was an approximately 8 times increase in liquid flow after 

the change in cake structure. To account for this measured increase, the average cake 

porosity needs to change over the range 0.75 to 0.89 if it is assumed that 0.75 is the 

average cake porosity just before the transition, or 0.55 to 0.75 if it is assumed that 0.75 

is the average cake porosity at the maximum filtrate flow rate. These ranges are purely 

to serve as an example to obtain a ‘feel’ for the magnitudes involved, and both show 

that a relatively large, and probably unrealistic, macroscopic changes in average 

porosity are required to promote the observed flow increases. Further discussions on 

how porosity may have influenced the measured filtrate flow behaviour are presented in 

Section 6.4.2. 

 

 

 

3. Sample Maple calculations for the solution of equation (6.9) 

Equation (6.9) is a fourth order equation and so has four roots. This equation 

was solved using Maple and it was found that it only had one physically meaningful 

solution for Ra at all the filtration pressures and times trialled and at the different values 

of a; the other three roots were negative and/or involved the imaginary number (I). For 

example, the following Maple solution scheme is for a 550 kPa filtration of a pure fibre 

suspension in deionised water:  

 

>  

>  

 

>  
 

>  
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With the above, a = 0.05, b = 0.95, Rb = 1.6x10-8 m, and the right hand side of equation 

(6.9) given by: 

30100971.1
8 

PN

hQT




 

It is seen from the Maple solution scheme above that only one physically meaningful 

value for Ra was obtained, the other three roots were either negative and/or involved the 

imaginary number (I). This one value for Ra was then inserted into equation (6.10) to 

calculate the filter cake average porosity. 
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APPENDIX G:  PAPERS ARISING FROM THE RESEARCH 

 
This appendix gives the academic papers arising from the research, which have 

either been published or submitted for publication. These include: 

Refereed Journals: 

1. Chellappah K., Tarleton E.S. and Wakeman R.J. (2009) Filtration and 

sedimentation behaviour of fibre/particle binary suspensions. FILTRATION 9(4), 

286-294.  

2. Chellappah K., Tarleton E.S. and Wakeman R.J. (2010) The porosity, 

permeability and restructuring of heterogeneous filter cakes. Chemical 

Engineering and Technology (In Press). 

3. Chellappah K., Tarleton E.S. and Wakeman R.J. (2010) Aggregation effects in 

the cake filtration of interacting binary mixtures (submitted to Chemical 

Engineering Science). 

Conference Contributions- refereed: 

1. Chellappah K., Tarleton E.S. and Wakeman R.J. (2009) Cake filtration of 

fibre/particle mixtures. Proceedings of FILTECH 2009, Vol. 1, pp. 260-267, 

Wiesbaden, Germany. 

Others (not given here): 

1. Chellappah K., Tarleton E.S. and Wakeman R.J. (2009) Cake filtration and 

sedimentation of fibre/particle mixtures. Poster session presented at: 10th UK 

Particle Technology Forum, 2009 Jul 1-2; Birmingham, UK (won 2nd place in 

poster competition). 

2. Chellappah K., Tarleton E.S. and Wakeman R.J. (2009) Cake filtration of 

fibre/particle binary suspensions. Poster session presented at: IChemE Particles 

(of all shapes and sizes) into liquids, 2009 Sept 23; GSK Stevenage, UK. 

3. Chellappah K., Tarleton E.S. and Wakeman R.J. (2009) Cake filtration of 

fibre/particle mixtures. Oral presentation at: IChemE What’s New in Fluid 

Separations, 4th June, Sunbury, UK. 
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