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Abstract 

During recent years crystallisation has found applications in many chemical industries, such 

as pharmaceutical, petrochemical, micro-electronics and food industries. Crystallisation is a 

basic step for purification or separation for a large variety of organic, inorganic and 

pharmaceutical compounds. Most of the product qualities are directly related to the shape of 

the crystal size distribution (CSD). The main difficulty in batch crystallisation processes is to 

accomplish a uniform and reproducible CSD. On-line control during the process allows for 

improved crystalline product quality, shorter process times and reduction or elimination of 

compromised batches. The actual prediction and estimation of the shape of the distribution at 

the end of the batch can provide useful information for monitoring or designing the operating 

curve for the supersaturation controller. Model-based approaches provide consistency of the 

CSD, can be used for better control and also for product design by reverse engineering the 

process to achieve the desired CSD and shape.  

This research presents a novel methodology for solving the population balance equation 

(PBE) for the estimation of the shape of the crystal size distribution for batch crystallisation 

processes. The approach combines the quadrature method of moments (QMOM) and the 

method of characteristics (MOCH), and provides a computationally efficient technique for 

the reconstruction of the whole crystal size distribution. The technique was used to estimate 

the kinetic parameters for the size-dependent growth and secondary nucleation, for potash 

alum-water system using industrial pilot plant data provided by BASF, Chemical Company. 

The combined technique was also used to estimate the size-dependent dissolution parameters 

for potash alum-water system, using laboratory scale data. The QMOM-MOCH solution 

approach is evaluated in a model-based dynamic optimization study, with the aim to obtain 

the optimal temperature profiles, which drive the system in both the supersaturated and 

under-saturated region, to achieve desired target CSD. Using growth, dissolution and 

nucleation parameters the technique was used to optimise the temperature trajectories to 

obtain bimodal and mono-modal distributions. The technique can serve as a soft sensor for 

predicting the CSD, or as a computationally efficient algorithm for off-line design or on-line 

adaptation of operating policies based on knowledge of the full CSD data. 
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Additionally, the PBE model was solved using the method of characteristics under the 

assumption of constant supersaturation. At constant supersaturation growth is the dominating 

phenomenon, yielding a simplified analytical expression for the prediction of the CSD. The 

research presents the new methodology for the systematic design of the setpoint operating 

curves for supersaturation controlled crystallisation processes, which produces a desired 

target crystal size distribution (CSD) at the end of the batch. A design parameter, was 

introduced as a function of the supersaturation and time, and is evaluated for supersaturation 

controlled processes. Based on the design parameter and the simplified analytical model, the 

supersaturation setpoint and batch time are determined using an optimisation approach to 

obtain a target distribution with a desired shape. Two additional methods are also proposed 

that use the seed in conjunction with the supersaturation setpoint design, and analytical CSD 

estimator for shaping the product CSD. The first approach designs a seed recipe as a mixture 

of crystals resulting for example from standard sieve analysis. In this approach the seed was 

introduced at the beginning of the batch. The second approach introduces the dynamic 

seeding concept, which allows an easily implementable methodology to achieve complex 

target CSDs using seed with mono-modal distribution as a process actuator.  

These methodologies were validated for potassium dichromate-water system. Size-dependent 

growth kinetic parameters for the potassium dichromate-water system were identified using 

as experimental setup developed at Loughborough University. The experiments presented in 

the thesis also illustrates the simultaneous application of in situ Process Analytical 

Technology (PAT) tools, such as focused beam reflectance measurement (FBRM) for 

nucleation detection, attenuated total reflection (ATR) UV/Vis spectroscopy for 

concentration monitoring, as well as the in-line use of a Mastersizer for real-time CSD 

measurement in the case of the potassium dichromate in water system. 

The approaches provide a comprehensive framework for model-based dynamic optimisation 

of crystallisation processes, which combines efficient numerical solution approaches of the 

PBE with the formulation of novel optimisation problems. The techniques presented include 

controlled dissolution, simultaneous optimisation of operating policies and seed recipes and 

dynamic seeding. Simulation and experimental evaluations of the proposed approaches 

demonstrate the potential of the techniques to provide significant improvement in the current 

state-of-the-art in crystallisation control.   
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Chapter 1  
Introduction 

1.1 Background 

Crystallisation is a widely used separation technique for solid-liquid separation due to its 

ability to provide high purity separation. Crystallisation has a wide range of applications in 

different industries, such as food, fine chemical and pharmaceutical industries. According to 

estimates, 60% of the end products in the chemical industries are manufactured as solid 

particles with an additional 20% using powder ingredients (Christofides et al., 2008). 

Crystallisation is particularly used in the processing of high value-added products. 

Crystallisation is also used for purification and separation in the petrochemical industry. In 

the pharmaceutical industries, drug design methods often make use of protein crystallisation 

(Olesberg et al., 2000; Shi et al., 2005; Wiencek, 2002). Some pharmaceuticals are 

crystallised for special bioavailability and stability reasons during the preparation of various 

drug delivery devices (Garcia et al., 1999; Mangin et al., 2006). Crystallisation applications 

are also found in the microelectronics industry for silicon production for the manufacture of 

semiconductors (Middlebrooks, 2001). The possibility of growing pure crystals of controlled 

size distribution has made crystallisation one of the most important purification and 

separation technique in the food industries, particularly in the sugar and dairy industries (Vu 

et al., 2006) because of stability and texture issues (Hartel, 2002; Patience et al., 1999).  

Most of the crystallisation applications discussed above are batch processes. Batch 

crystallisation is an attractive mode of operation owing to a number of reasons. Batch 

production is more economical when small product volumes are required. Batch 

crystallisation might be the only available option for manufacturing products to meet certain 

specific regulatory requirements and specifications, such as viscosity, toxicity, hygiene 

standards in food industry, or specific bio-performance and dissolution properties of active 

pharmaceutical ingredients. Batch crystallisation is the best available option for multi-

product manufacturing (Barker and Rawtani, 2005) because it is simpler than continuous 
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processes and provides the flexibility of reusing the same equipment for processing different 

chemical substances. Batch crystallisers are also cheaper and easier to develop than 

continuous crystallisers (Tavare and Chivate, 1995).  

The key concern in industrial batch processes is to maximise the production efficiency while 

improving the quality and consistency of the final products. The development of 

crystallisation process from laboratory to industrial scale is a tedious process, requiring high 

financial investment, time and effort, due to the complex hydrodynamics and kinetics 

(characteristics of these systems). Scientists and researchers have spent considerable time 

and effort in the development of batch crystallisation processes for the production of 

crystalline compounds (Braatz, 2002; Braatz and Hasebe, 2002; Hounslow and Reynolds, 

2006) with consistent crystal properties i.e. purity, morphology, size distribution and 

polymorphic form. Despite batch crystallisation being one of the oldest unit operations there 

is a disproportionate number of problems associated with its control, resulting from the 

complex dynamics of the process and the generally significant uncertainties related to the 

exact mechanisms of the governing phenomena.  

The shape of the crystal size distribution (CSD), obtained from the crystallisation process, 

strongly affects the efficiency of downstream operations such as filtration, drying and 

washing (Chung et al., 2000; Mullin, 2001; Wibowo et al., 2001). This may also have 

considerable impact on the bioavailability of the active pharmaceutical ingredient (API). 

Most of the product properties e.g. dissolution rate, bulk density, flow-ability, packing 

properties, etc. are also directly related to the CSD (Chung et al., 2000). Some of these 

properties can be controlled by expressing them in terms of the moments of the CSD, 

however most properties require the detailed knowledge of the entire shape of the CSD. 

Knowledge and prediction of the entire shape of the distribution allows the design and 

adaptation of operating policies to achieve improved product quality, and to accomplish 

novel quality-by-design (QbD) procedures (Braatz, 2002). 

The major challenge in batch crystallisation is to produce a uniform and reproducible CSD  

(Braatz, 2002; Wibowo and Ng, 2001), which has been addressed by several approaches in 

the literature (Aamir et al., 2009b; Braatz and Hasebe, 2002; Chung et al., 2000; Nagy et al., 

2008b; Worlitschek and Mazzotti, 2004). Although these approaches can provide improved 

consistency of the CSD, they do not address the actual design of the CSD. On-line 



Chapter 1: Introduction 3 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

estimation and control during batch crystallisation offers the possibilities for improved 

crystal product quality, shorter process times and reduction or elimination of compromised 

batches (Braatz, 2002; Chiu and Christofides, 2000; El-Farra et al., 2006; Nagy and Braatz, 

2003a; Zhang and Rohani, 2003). The prediction and estimation of the shape of the 

distribution at the end of the batch can provide useful information for monitoring or 

designing the operating curves. Model-based approaches can be used for better predictive 

control (Chung et al., 1999; Fujiwara et al., 2005; Grosso et al., 2009; Larsen et al., 2006; 

Rawlings et al., 1993; Sheikhzadeh et al., 2008a, b) and also for product design by reverse 

engineering the process to achieve the desired CSD (Hounslow and Reynolds, 2006; Lee et 

al., 2002; Rusli et al., 2006). Most work in literature has been carried out to obtain large 

crystals with narrow distribution. The major focus of this research is to develop model-based 

control strategies which are able to predict and control the shape of the crystal size 

distribution (CSD) at the end of the batch, opening the ways towards novel product 

engineering and integrated process design approaches. 

1.2  Research methodology 

A schematic of the overall research methodology is shown in Figure 1.1. The research is 

comprised of population balance modelling of seeded batch crystallisation processes with 

the development of efficient solution approaches, simulation studies and experimental 

programme for the implementation of the developed open-loop optimal control strategies. 

Experimentation was carried out to gather the measured data for state variables such as 

temperature, concentration and CSD using on-line, in situ and off-line measurement 

techniques, as shown in Figure 1.1. The population balance model was initialised using the 

information gathered from these experiments such as moments calculated from the seed 

distribution, initial concentration, batch times and temperature trajectories. The population 

balance model was solved using an efficient and novel approach based on the combination 

of the quadrature method of moments (QMOM) and method of characteristics (MOCH). The 

QMOM technique was used to calculate the dynamic evolution of the moment of the 

distribution, the change in supersaturation with time, ( )S t , and to conserve the overall mass 

balance, as shown in Figure 1.1.  The MOCH was used to obtain the dynamic evolution of 

the entire CSD throughout the batch, while using the dynamic supersaturation profile 

obtained from QMOM. 
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Figure 1.1: The mains steps for the development of model predictive control algorithms for CSD 
shape control. 

  

 

Empirical relationships were used to model the growth, dissolution and nucleation kinetics 

for the crystallisation processes. The model parameters were estimated using concentration 

and volume population density function measurements from the experiments. The 

parameters were determined to fit the experimental concentration and CSD at the same time. 

After parameter estimation the model validation was carried out for new sets of experiments. 

Once the models were validated, off-line optimisation was carried out, using the model. To 
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achieve the required shape of the crystal size distribution, temperature and supersaturation 

trajectories as well as seed mass and seed distributions were optimised, as shown in Figure 

1.1. The optimal results were validated using laboratory scale experiments. The model 

systems used in the research were: 

 Potash alum in water 

 Potassium dichromate in water 

For the qualitative and quantitative monitoring of the crystallisation experiments and 

products a series of in situ process analytical technology (PAT) tools, such as focused beam 

reflectance measurement (FBRM), conductivity, attenuated total reflectance (ATR)  UV/Vis 

spectroscopy, and on-line laser diffraction based CSD measurement were used along with 

off-line optical and scanning electron microscopy (SEM).   

1.3 Aims and objectives 

The overall aim of this research was to develop population balance model-based optimal 

control approaches for batch crystallisation processes for CSD design. The following 

objectives were identified to achieve the overall aim of the research: 

 To identify approaches to reconstruct the CSD in real-time, based on 

computationally efficient algorithms. 

 To determine the kinetics involved in the studied crystallisation processes, which 

can represent the processes.  

 To develop an algorithm which can be applied for the solution of population balance 

equations with generic size-dependent growth, dissolution and nucleation kinetics 

and can provide a generic framework for the efficient solution of PBEs. 

 Experimental determination of the key process parameters such as temperature, 

concentration and CSD, and their use for parameter estimation of the kinetics of the 

systems. 

 Validation of the kinetic parameters using experimental data.  

 Evaluation and optimisation of temperature and supersaturation trajectories, and 

seed recipes to obtain the required shape of the product CSD. 
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 To develop a systematic methodology for the analysis and design of supersaturation 

controlled crystallisation processes. 

 To evaluate the effect of the seed preparation method on the product CSD and on the 

prediction ability of the models. 

 To carry out the experimental evaluation of the developed control methods using 

two different inorganic compounds:   

 Potash alum-water system  

 Potassium dichromate-water system  

1.4 Main contribution of this work 

The main contributions of the work presented in the thesis can be summarised as follows: 

 Development of a new solution approach for population balance equations (PBEs), 

which combines the advantages of QMOM and the MOCH to provide a 

computationally efficient technique for the prediction of the entire CSD. The 

algorithm (combined QMOM-MOCH) can be applied for the solution of population 

balance equations with generic size-dependent growth, dissolution and nucleation 

kinetics providing a general framework for the efficient solution of PBEs.  

 Determination of optimal temperature trajectories, which take into account growth, 

nucleation and dissolution mechanisms to produce the required shape of the product 

CSD. The approach is evaluated for the potash alum-water system for which the 

size-dependent growth and secondary nucleation parameters were identified based 

on industrial pilot scale experimental data, and size-dependent dissolution kinetics 

was obtained from laboratory experiments. 

 Development of an analytical CSD estimator, which can be used in the case of 

supersaturation controlled, growth-dominated processes. It is shown that the 

proposed approach provides a computational efficient CSD estimation technique, 

which can be used for off-line parameter estimation, crystallisation design or for on-

line estimation and control.  
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 Development of a direct design approach for supersaturation controlled (SSC) 

crystallisation systems, in which the supersaturation trajectories can be defined in 

terms of the temperature trajectories. Temperature trajectories in the time domain 

can be designed for a desired supersaturation set-point, 
sp
S , from the solubility 

curve, concentration and moments of the crystal size distribution. The experimental 

validation of the direct design approach is also carried out for the potassium 

dichromate-water system. For the  experimental investigation an  experimental setup 

was specially designed, which includes in situ process analytical technology (PAT) 

tools, such as focused beam reflectance measurement (FBRM), attenuated total 

reflectance (ATR) UV/Vis spectroscopy, as well as on-line CSD measurement using 

Malvern Mastersizer. 

 Systematic design of optimal seed recipes for crystallisation processes, to achieve a 

desired target CSD with a desired shape. The seed recipe is obtained by blending 

different mixtures of seeds resulting from sieve analysis. The optimal seed recipe is 

obtained by solving a constrained non-linear optimisation problem with the 

objective to achieve a desired shape of the CSD at the end of the batch, while 

operating within equipment and operational constraints (e.g. fixed temperature 

profile). One of the novelty of the proposed method is that the optimisation 

automatically selects between existing seed fractions, which practically would result 

from standard sieve analysis, and simultaneously determines the amounts and sieve 

fractions (with fixed CSDs), which need to be mixed to produce the seed. Hence the 

proposed approach provides a practical framework for seed recipe design. A 

systematic methodology for dynamic seeding by introducing a mono-modal seed in 

the crystalliser during the crystallisation processes to obtain the desired shape of the 

CSD is also presented in this thesis. The novel dynamic seeding methodology is the 

first approach that proposes to use seeding as an actuator rather than initial condition 

for the crystallisation process. 

 Experimental evaluation of the seed recipe design approach for the potassium 

dichromate-water system, for which size-dependent growth kinetic parameters have 

been identified from data obtained using the specially designed experimental setup 
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with ATR/UV-Vis based in situ concentration and on-line CSD measurements. The 

seed recipe optimisation methods are designed for processes with generic apparent 

size-dependent growth kinetics. 

1.5 Thesis structure 

A brief description of each chapter of the thesis is as follows:  

Chapter 2: Literature review: This chapter presents a review of the literature to provide a 

relevant context of the research. The chapter is divided in three main parts. In the first part 

the main mechanisms and kinetics of crystallisation processes are summarised and a 

selection of relationships for modelling of growth, dissolution and nucleation are presented. 

The second part provides an overview of different numerical techniques available for the 

solution of PBE for the modelling of crystallisation processes. The last part provides a brief 

review of the optimisation and control strategies used for crystallisation processes. 

Chapter 3: Techniques to reconstruct the CSD from moments: In Chapter 3 techniques 

to reconstruct the crystal size distribution using moments have been evaluated. The 

advantages and the limitations of the techniques are highlighted.  

Chapter 4: Combined QMOM-MOCH approach for the efficient solution of 

population balance equations for batch crystallisation processes: A novel methodology 

for the solution of PBEs is presented in this chapter. The methodology is developed to take 

into account size independent or size-dependent dissolution and growth, as well as 

secondary nucleation kinetics for the modelling of batch crystallisation processes. The 

approach provides a numerically very efficient framework for the prediction of the shape of 

the entire CSD for the whole duration of the batch. 

Chapter 5: Model identification and validation for the potash alum-water system: The 

results of the industrial pilot plant experiments for the potash alum-water system are 

presented in this chapter. Details of materials, experimental conditions and experimental 

results are provided. Using the experimental data, the parameter estimation and validation 

has been carried out for the size-dependent growth and secondary nucleation mechanisms. 

For the estimation of the kinetic parameters for the size-dependent dissolution, experiments 



Chapter 1: Introduction 9 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

were carried out using a laboratory scale setup. The kinetic parameters for growth, 

nucleation and dissolution have been identified and validated. 

Chapter 6: Dynamic optimisation of temperature trajectories for shaping the product 

CSD: Temperature trajectories were optimised to obtain the desired shape of the product 

CSD. These trajectories take into account growth, nucleation and dissolution mechanisms. 

For the efficient solution of population balance equation, the combined QMOM-MOCH 

approach (described in Chapter 4) has been used. 

Chapter 7: A systematic framework for CSD control of supersaturation controlled 

(SSC) crystallisation processes, using direct design (DD), seed recipe optimisation and 

dynamic seeding: The chapter presents the development of an analytical CSD estimator, 

which can be used in the case of supersaturation controlled, growth-dominated processes, for 

off-line parameter estimation, crystallisation design or for on-line estimation and control. 

Based on the analytical estimator a direct design (DD) approach has been developed for 

supersaturation controlled (SSC) crystallisation systems, in which the constant 

supersaturation trajectories in the phase diagram can be defined in terms of temperature 

trajectories, in the time domain, to produce a desired CSD. A novel SSC design parameter is 

introduced, which can be used for the systematic analysis of the correlation between batch 

time and supersaturation and their effect on the product CSD. The chapter also presents a 

novel framework for the simultaneous SSC design and seed recipe optimisation, and 

introduces the concept of dynamic seeding for CSD control. 

Chapter 8: Experimental evaluation of the direct design (DD) approach for SSC 

crystallisation processes for shaping the CSD: The chapter presents experimental results 

for the model identification and validation for the potassium dichromate-water system. 

Cubic and linear temperature profiles were implemented, and the dynamic concentration and 

CSD measurements were used for parameter identification and model validation. In the 

second part of the chapter the experimental results are presented, which were carried out to 

test the direct design approach. 

Chapter 9: Experimental and simulation-based evaluation of seed quality and seed 

recipe design for shaping the product CSD in batch crystallisation: The first part of the 

chapter provides a detailed evaluation of the effect of various seed preparation methods on 
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the final product CSD for the batch cooling crystallisation of potassium dichromate in water. 

Various seeds (crystalline-sieved, milled-washed-sieved and milled-sieved) were used in the 

experiments, and the effect of the seed quality was investigated using various PAT tools.  In 

the second part of the chapter the experimental evaluation of seed recipe design was carried 

out for the potassium dichromate-water system. Results and detailed discussion for these 

experiments are provided. 

Chapter 10: Conclusions and recommendation for future work: This chapter provides a 

summary of the main simulation and experimental results presented in the thesis. The 

conclusions of the research along with proposals for future work are also presented.  
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Chapter 2  
Literature review  

2.1 Introduction 

Crystallisation processes can be challenging to control because of the complex non-linear 

dynamics associated with variations in solution kinetics and non-ideal mixing. The first 

section of the chapter provides an overview of crystallisation processes followed by a review 

of the methods for modelling of batch crystallisation processes and on overview of the 

solution approaches for the population balance equation. A brief presentation of the main 

measurement techniques used for different state variables is also presented. A concise 

summary of the literature related to the optimisation and control of crystallisation processes 

is provided. 

2.2 The crystallisation process 

2.2.1  Fundamentals of crystallisation processes 

A significant proportion of materials are produced and marketed in crystalline form (Braatz 

et al., 2002). According to statistics 90% of the Active Pharmaceutical Ingredients (API’s) 

are found in crystalline form (Choong and Smith, 2004a). Crystallisation may occur as the 

formation of solid particles from a vapour, as solidification of a liquid melt, or as the 

formation of dispersed solids from a solution. Hence the formation of solid particles requires 

a phase change.  

The concepts of solubility, supersaturation and metastable zone width (MSZW) are vital in 

developing and characterising the behaviour of crystallisation system. The solubility is 

defined as the amount of a substance (solute) that can be dissolved in a given amount of 

solvent at given set of temperature and pressure conditions. A saturated solution is defined 

as the solution that is in equilibrium with excess of the solute present in the solution. Under 

certain conditions, a solution can dissolve more solute than defined by the condition of 
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saturation at a particular temperature and is referred to as supersaturated solution. 

Supersaturation is the main driving force for crystallisation processes and is often expressed 

as the difference in concentration of the solute (C ) and the saturation concentration at a 

particular temperature ( satC ), called as absolute supersaturation: 
sat

S C C , with units 

consistent with the units of the concentrations (e.g. kg solute/kg solvent or kg solute/kg 

solution). Alternatively the relative supersaturation can also be used, which is defined as: 

( )/s sat satC C C , which is a dimensionless quantity. 

Crystallisation from solution involves at least a two component system: a solute and a 

solvent. The phase relationship of the system can be illustrated by a composition versus 

temperature ( )C T  diagram known as the equilibrium phase diagram. In the equilibrium 

phase diagram, shown in Figure 2.1, there are two curves: solubility curve and nucleation 

curve. The solubility curve AB  is determined by thermodynamics and is a function of 

temperature, solvent and impurities present in the system (which may influence e.g. the 

solvent activity). At the solubility curve the solution is said to be in saturation equilibrium. 

The curve CD  is the nucleation curve where the spontaneous nucleation starts. The 

nucleation curve is thought of as a region where the nucleation rate increases rapidly rather 

than a sharp boundary. These two curves divide the phase diagram in three important zones, 

as shown in Figure 2.1: 

 Undersaturated zone - a region in which crystals present will dissolve (region below 

equilibrium solubility curve AB ). The dissolution rate of disappearing crystals 

depends on the degree of undersaturation, which is expressed similarly to the 

supersaturation. 

 Metastable zone - a supersaturated region in which crystals will grow (region that 

lies in between the equilibrium solubility curve AB  and nucleation curveCD ) with 

a rate defined by the level of supersaturation. The metastable limit is not a 

thermodynamic property and kinetically not very well defined (Barrett and Glennon, 

2002) . It depends on a number of parameters such as temperature, rate of generating 

the supersaturation, solution history, impurities and fluid dynamics.  The metastable 

zone width (MSZW) may vary to different extents for different systems and is said 

to be the point after which continuous nucleation occurs. Seed crystals would grow 

within the MSZW but no significant amount of new nuclei should form. MSZW is 
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therefore an important property in assessing the tendency of a system to crystallise 

and in deciding the crystallisation technique. Many techniques have been suggested 

and used to determine the MSZW and solubility curve, including the use of Focused 

Beam Reflectance Measurement (FBRM), turbidity probe, attenuated total 

reflectance (ATR) spectroscopy, calorimetry and image analysis (Barrett and 

Glennon, 2002; Kougoulos et al., 2005; Simon et al., 2009a, b). Information about 

the MSZW has been used for the estimation of the nucleation kinetics (Nagy et al., 

2008c). In other words, optimum crystallisation processes can only be accomplished 

if the MSZW is known and controlled during the entire process. This necessitates 

control strategies capable of using the online information measured through sensors. 

 Labile or unstable zone - a supersaturated region in which solution will nucleate 

spontaneously (region above the nucleation curve CD ) . 

Supersaturation can be created in crystallisers by different modes. The most widely used 

method is by cooling a solution through indirect heat exchange. This is the preferred 

approach when the solubility of the solute decreases significantly with temperature and 

hence the solution becomes supersaturated. In Figure 2.1, cooling trajectory is shown 

by( )abcd . Starting from point a  in the undersaturated region, the equilibrium solubility 

curve is crossed at point b  and enters into the metastable region.  

 
 
 

 
Concentration
of Solute
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Figure 2.1: Supersaturation in crystallisation processes (Smith, 2005). 
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As soon as the system crosses the solubility curve and enters the metastable region, the 

solution becomes supersaturated. In Figure 2.1, crystallisation will not start until it has been 

sub-cooled to point c  on the nucleation curve. Evaporation of solvent is another mode to 

generate supersaturation in the system and is often used when the solute has weak 

dependency of solubility on temperature. Solvent is removed gradually from solution by 

evaporation and this increases the concentration of the solute in the solution. In Figure 2.1, 

evaporation trajectory is shown by ( )aefg . Starting from point a  in the undersaturated 

region, the equilibrium solubility curve is crossed at point e  and enters into the metastable 

region by slowly removing the solvent by evaporation. Crystallisation will not start until the 

concentration reaches point f  on the nucleation curve by evaporating the solvent. 

Another way to create supersaturation in crystallisation process is to add an extraneous 

substance, generally known as anti-solvent. The selection of anti-solvent depends on several 

factors: 

 should be miscible with the solvents; 

 must change the solubility of solute in the primary solvent; 

 its polarity should be different from the primary solvent polarity. 

The disadvantage of this technique is an added unit for the separation of this extraneous 

material, which can add complexity to the solution and increase cost. A pH switch can also 

be used to adjust the solubility of sparingly soluble salts in aqueous solution. Alternatively, a 

chemical reaction can produce solute (precipitation) when the concentration of the reaction 

product is higher than its solubility in a solution. Therefore, the solution becomes 

supersaturated with respect to the new compound. This is an attractive option when reaction 

and separation can be done simultaneously. Some of the above mentioned techniques can 

also be combined together to induce supersaturation in the system such as the combined 

cooling-evaporation method known as vacuum crystallisation or the combined cooling-

antisolvent addition method (Nagy et al., 2006a, b, 2008b; Woo et al., 2009a; Zhou et al., 

2006a).  

The main steps for the development of a typical crystallisation process can be summarised 

as: 
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 To determine the solubility of a substance in solvent. For crystallisation to occur the 

solution should be in a supersaturated state at the process temperature. Otherwise, 

the system is under-saturated and solids will dissolve. Thus determination of the 

solubility curve for a specific system is a crucial step in crystallisation design. 

 Selection of the mode to induce supersaturation in the system. The most common 

approach is either to follow a cooling profile in time, to use evaporation of the 

solvent (Tavare and Chivate, 1977) or the addition of a poor solvent (anti-solvent). 

Some of these techniques can also be combined together to induce supersaturation 

in a system. Another attractive option includes chemical reaction (precipitation). 

 To determine the metastable zone width in which crystals will grow and nucleation 

can be avoided. 

The major interest in the design and control of crystallisation processes has been directed 

towards avoiding excessive nucleation and very broad distributions. This is because many 

problems in downstream processes can be attributed to poor crystal characteristics 

established in the crystallisation step. Table 2.1 summarizes the potential problems that can 

be created at the crystallisation step for the downstream processes. The CSD may contain 

too many fines, can be too broad or too narrow and the average crystal size may be too large 

or too small. For example an unacceptably long filtration time can be caused due to small 

average crystal size or wide crystal size distribution. Similarly, fines from the crystalliser 

can also clog the filter medium. Cake permeability ( k ) and porosity ( ) are the most 

important variables, which can be influenced by the CSD. These properties can be related to 

CSD by equations (2.1)-(2.3). Permeability can be estimated using the generalized Blake-

Kozeny equation (MacDonald et al., 1991): 

 
3

22
2

1

1
( )

180 (1 )
k , (2.1) 

where 
1
 and 

2
 are the first and second moments. The cake porosity can be determined 

using the CSD (Ouchiyama and Tanaka, 1984) by 
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where H  is the Heaviside function, 
m
L  is the mean particle size, 

i
L  is the particle size in 

interval i , 
,n i
f  is the number fraction of particles in the size interval i , 0  is the average 

porosity of uniformly sized spheres.  

Table 2.1: Potential problems related to CSD in crystallisation and downstream processes. 
Equipment Potential Problems Possible Crystal Size Distribution Sources 

Too 
much 
fines 

CSD 
too 

wide 

CSD 
too 

narrow 

Avg. size 
too small 

Avg. 
size too 
large 

Filtration Filtration time is too long      

Filter medium is easily 
clogged 

     

Washing Washing time is too long       

Solvent requirement is too 
high leading to expensive 
recovery cost 

     

Re- 
crystallisation 

If impurity inclusion level is 
too high, re-crystallisaiton is 
necessary 

     

Drying Drying time is too high      

Too much dust in drying 
system 

     

Deliquoring Deliquoring time to achieve 
a specified saturation level is 
too long.  

     

Residual liquid content of 
the cake is too high 

     

 

Long washing and drying time can be because of small average crystal size and wide CSD 

(Wakeman and Tarleton, 1999). Another commonly encountered problem is the reduction in 

crystal purity in the form of inclusions. These inclusions are caused during crystal growth 

when small pockets of mother liquor are often trapped in the crystal interior. Since the 
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mother liquor contains the solvent and other solutes, inclusions have a significant effect on 

the crystal quality and re-crystallisation is the only way to purify the crystals.  

To develop an integrated system for the production of solid products, which would take into 

account the separation/isolation as well as the downstream processing steps, it is important 

to control the CSD produced during the crystallisation step. Crystallisation is a complex 

phenomenon with highly interrelated kinetic mechanisms. To develop a model-based control 

strategy for CSD it is important to understand these complex mechanisms and their influence 

on each other. Knowledge of these kinetic mechanisms, such as nucleation, growth, 

aggregation and dissolution along with macroscopic phenomena is required for modelling of 

the crystallisation process. The overall physico-chemical process of crystallisation can be 

viewed in terms of the following main mechanism:0 

1. Nucleation mechanism; 

2. Growth/dissolution mechanisms; 

3. Aggregation and breakage mechanisms. 

2.2.2  Mechanisms of crystallisation processes 

The primary particle formation processes, which occur during crystallisation, are nucleation, 

which determines the initial formation of crystals, and crystal growth, which determines the 

subsequent size. A further growth process is known as aggregation. Breakage may also 

occur due to collision of crystals with each other and walls of the container and stirrer. 

Nucleation 

Nucleation is the formation of a solid crystalline phase.  Both the nucleation and the growth 

depend on the degree of supersaturation, but usually to different orders (Dixit and Zukoski, 

2002; Dunham et al., 1997; Garside and Davey, 1980). Nucleation mechanisms are 

commonly lumped into one of two categories – primary and secondary nucleation 

(Hounslow et al., 1988; Jones, 2002; Mullin, 2001).  

Primary nucleation is the formation of a solid phase from a clear liquid and it is more 

prevalent in un-seeded crystallisation (Hardenberg et al., 2004; Jones et al., 1993; Scott et 

al., 1997). Primary nucleation is usually categorised as homogeneous nucleation and 

heterogeneous nucleation. Homogeneous nucleation occurs in the pure bulk solution. It is 
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determined by the formation of stable nuclei in a supersaturated solution, which means 

molecules of solute come close together to form clusters in an arranged order (Pollanen et 

al., 2006). Heterogeneous nucleation is induced by foreign surfaces such as impurities 

present in the solution and can become significant at much lower supersaturation levels than 

homogeneous primary nucleation. However, it is difficult to distinguish between the 

homogeneous and heterogeneous nucleation for most practical cases. 

Secondary nucleation is caused by the presence of crystals and can be induced by:  

 contact of crystals with an external surface 

 continuous removal of dendrites due to free energy driving force 

 fluid shear 

 initial breeding 

 fracture/attrition  

Secondary nucleation  is generally more easily controlled than primary nucleation and is the 

most dominant mechanism in most industrial crystallisation processes (Rawlings et al., 

1993). Attrition can be induced by agitation or pumping and can generate significant 

secondary nucleation in industrial crystallisation systems. The greater the intensity of 

agitation the greater the rate of secondary nucleation. Table 2.2 summarises some commonly 

used empirical relationships to capture nucleation kinetics for particular process conditions. 

The modelling of nucleation is highly complex due to the variety of mechanisms, 

collectively termed as nucleation (Kalani and Christofides, 2002; Kumar and Ramkrishna, 

1997). The types of nucleation are shown in Figure 2.2. 

 
Nucleation

Primary 
Nucleation

Secondary 
Nucleation

Homogeneous
Nucleation

Heterogeneous
Nucleation

 
 

Figure 2.2: Types of nucleation. 
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Table 2.2:  Summary of some commonly used empirical relationships for nucleation. 

Mechanisms Expression References Remarks 

Primary 
Nucleation* 

b

b
B k S  

(Mullin and 
Nyvlt, 1971) 

 

Homogeneous 
Nucleation 

3 2

,hom 3 3 2

16
exp

3 (ln( 1))b

s

B k
k T

 

(Mullin, 2001)  

Heterogeneous 
Nucleation 

3 2

, 3 3 2

16 ( )
exp

3 (ln( 1))b het

s

f
B k

k T

 

(Sohnel and 
Garside, 1992) 

Extra factor ( )f corrects 
nucleation on foreign 

surfaces 

Secondary 
Nucleation* 2

b

b
B k S  

(Garside and 
Davey, 1980) 

 

 

3

b

b
B k S  

(Scott et al., 
1997) 

 

3
exp b k

b s

E
B k

T
 

 
(Larson and Helt, 

1977) Temperature dependent 
b
k  

3 min
( )b j

b s
B k L  

 
(Jones et al., 

1993; Matthews 
and Rawlings, 

1996) 

min
L is the minimum size 
required for a crystal to 
participate in collisions 
that produce secondary 

nucleation 

2

3

b l j

b

b l j

b

B k S N

B k S N
 

 
(Patience, 2002) 

 
Includes crystal agitation 
and crystal-crystal effects 

Note 2.1:  “*” indicates that both absolute and relative supersaturation can be used. Variables are defined in 
nomenclature list. 

 

Growth and dissolution 

The newly born nuclei grow with time. Two successive steps are required for crystal growth: 

 mass transport of solute molecules from the solution to the crystal surface by 

diffusion, convection or the combination of both mechanisms (see Figure 2.3); and  

 incorporation of the material into the crystal lattice through surface adsorption, also 

described as surface reaction step, as shown in Figure 2.3.   

The second step is further subdivided into a number of stages which are as follows: 

 adsorption of the growth unit on the crystal surface first; 

 release of part of its solvation shell, followed by the diffusion of growth unit into the 

adsorption layer until it is either incorporated into the lattice or leaves the adsorption 

layer and returns back into the solution;  
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 if the growth unit reaches into the layer where it can be added to the lattice, it loses 

the remainder of its solvation shell before its incorporation in the lattice. 

The solute molecules reach the growing faces of the crystal by diffusion through the liquid 

phase. At the surface they become organized into the lattice space through an adsorbed layer 

(Volmer, 1939), as shown in Figure 2.3. Neither the diffusion step nor the surface reaction 

step proceeds as long as the solution is supersaturated (Granberg and Rasmuson, 2005). 

Since the kinetic processes occur consecutively, the solution concentration adjusts itself in 

such a way that the rates of the two steps are equal in a quasi steady state. In most cases, 

several mechanisms influence the rate of crystal growth. The processes take place in series 

and hence the slower mechanism will control the overall rate (Mullin, 2001). If the growth 

rate is limited by mass transfer through a laminar film then the growth is said to be diffusion 

controlled. Table 2.3 summarises some commonly used empirical relationships for the 

growth mechanisms used for modelling of particular conditions and hydrodynamics. 

Crystal growth rate is also expressed as a rate of increase in length (Bravi and Mazzarotta, 

1998; Garside and Jancic, 1978).  The overall crystal growth in one characteristic dimension 

( )L  can be expressed as: 

 
dL

G
dt

 (2.4) 
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Figure 2.3: Growing crystal - solution interface. 
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Table 2.3: Summary of some commonly used empirical relationships for growth and 
dissolution. 

Mechanisms Expression References Remarks 

Size-independent 
growth * 

g

g
G k S  

(Beckmann and 
Randolph, 1977; 

Choong and 
Smith, 2004b) 

Commonly used growth 
expression 

Size-dependent 
growth* 

(1 )g p

g
G k S L  

(1 )g

g
G k S L  

(Garside and 
Jancic, 1978; 
Granberg and 

Rasmuson, 2005) 

 

Power law growth* g p

g
G k S L  

(Garside, 1984, 
1985; Garside and 

Jancic, 1978) 

 

Burton , Cabrera 
and Frank (BCF) 
model of Growth 

2 tanh ,
bcfg

bcf s

kk
G S

k
 

(Larsen et al., 
2006; Rawlings et 

al., 1993) 

Include effects of surface 
defects 

Arrhenius type 
growth expression* exp gG

g s

E
G k

RT
 

(Rawlings et al., 
1993) 

Semi-empirical relationship, 
temperature dependent 

g
k  

Size-independent 
dissolution * 

( )d
d

D k S  
(Sahin et al., 

2000) 
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(Mangin et al., 
2006) 

Dissolution mechanism 
controlled by mass transfer 

Size-dependent 
dissolution* 

( ) (1 )d q

d
D k S L  

(Aamir et al., 
2009a) 

 

Note 2.2: “*” indicates that both absolute and relative supersaturation can be used. In the expressions ( )S is the 

absolute under-saturation and ( )
s

is the relative under-saturation. Variables are defined in the nomenclature 
list.  

 

The reverse process of the crystallisation is known as dissolution, which occurs in the under-

saturated region (shown in Figure 2.1). As dissolution proceeds, the concentration of the 

solute increases. If given enough time at fixed conditions, the solute will eventually dissolve 

up to a maximum solubility where the rate of dissolution equals to the rate of crystallisation 

(Smith, 2005). It is well understood that neither nucleation nor growth can occur unless the 

solute concentration exceeds the saturation value (Rawlings et al., 1993). Some commonly 

used relationships for the dissolution are summarised in Table 2.3. Additionally to growth 

and nucleation, the enlargement of the particles and the birth of new smaller particles can be 

the result of other mechanisms. 
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Aggregation and breakage 

Another important phenomenon in the crystallisation process is aggregation. Aggregation is 

a particle size enlargement process, which joins fines in an assembly. The particle 

characteristics obtained in the product depend strongly on the mechanism of aggregation. 

Aggregation results in relatively rapid size enlargement. There are two main types of 

aggregations: primary and secondary. First, a crystalline particle may undergo a form of 

mal-growth, related to its crystallography, which comprises of individual crystals within the 

structure of parallel units, dendrites or twins. Secondly, crystals suspended in liquids may 

undergo collisions induced by the flow and join together i.e. aggregate to form a larger 

particulate entity, which may subsequently be disrupted and re-dispersed or fused to form an 

aggregate. Both types of aggregation occur simultaneously. Researchers and scientists have 

extensively studied and modelled the aggregation processes (David et al., 2003; Lee et al., 

2001; Lewiner et al., 1999; Wachi and Jones, 1992; Yu et al., 2005; Zumstein and Rousseau, 

1989). 

Particle formation can also occur via particle breakage processes that start with existing 

particles and form new smaller ones of varying sizes. The breakage of the particles can occur 

due to several reasons, which include particle-particle collisions, collisions of particles with 

the walls of the container and impeller, etc. Breakage processes have also been under intense 

investigation by researchers (Diemer and Olson, 2002a, b, c; McCoy and Madras, 2004; 

Soos et al., 2006).   

For modelling of crystallisation processes, most often empirical relationships for the kinetic 

mechanisms are used.  The parameters of the kinetic mechanisms are identified for a set of 

operating conditions. Empirical relationship for secondary nucleation is used for seeded 

batch cooling crystallisation, due to the presence of crystals and crystal-crystal collisions. 

Primary nucleation is used if the system nucleates in an un-seeded crystallisation process. 

The selection of empirical relationship for growth depends on the compound and the way in 

which the crystals for that compound have grown. The systems considered in this work are 

considered to be governed mainly by the growth and nucleation mechanisms only. Hence, 

the aggregation and breakage mechanisms have not been discussed in detail. After 

identifying the kinetic mechanism, the next step is the selection of a model and an efficient 

technique to solve the system of equations.  
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2.3 Population balance modelling of batch crystallisation 

processes 

For complex processes such as crystallisation and polymerisation, modelling can be a 

valuable tool for process analysis, design, scale-up, monitoring and control (Borcho, 2002; 

Ramkrishna, 2000). 

It is worth noting that a single model of crystallisation system is not able to predict a wide 

range of process development and operating activities. The choice of model and its structure 

depends on the control objectives (Kalbasenka, 2009; Roffel and Betlem, 2006). The 

following aspects may be considered before the selection of a model: 

 Generally models derived from first principles are preferred compared to empirical 

models due to their better prediction ability and validity for broader operating 

ranges. Models derived from first principles are based on laws of conservation, such 

as material and energy conservation. The technique has advantage of preserving the 

physical insight into the process as the model variables coincide with the process 

variables. However, development of first principle models is generally time-

demanding. Additionally, due to the complex kinetics of the crystallisation 

processes, empirical or semi-empirical models are often used. Generally the 

approach adopted is to apply population balance equations with empirical kinetic 

models. Empirical relationships (described in section 2.2.2) are most often used to 

model, growth, nucleation and dissolution kinetics. However it has to be emphasized 

that in these cases the kinetic models are generally system specific and may not be 

robust and portable enough between different experimental setups, or for example 

for scale-up studies. 

 For control and optimisation purposes the process model should be simple. 

Therefore, lumped parameter models are preferred over distributed parameter 

systems, as they are simple and computationally more efficient to solve.  Hence 

crystallisation processes are in the optimisation and control literature are generally 

considered well-mixed and are modelled as lumped parameter systems, hence results 

need to be evaluated carefully especially in the case of larger scale processes. 

 Batch crystallisation is a highly non-linear process and contains a large number of 

time-varying kinetic and transport parameters. Therefore crystallisation processes 

cannot be modelled over a broad range of operating conditions using linear models, 

and classical linear control theory cannot be used for controller synthesis. More 
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complex nonlinear control techniques and dynamic optimisation approaches are 

required batch crystallisation control and optimisation, which generally involve the 

repeated solution of the population balance equation. 

The population balance framework has been accepted for some time as the most 

fundamental approach for modelling particulate, droplet or bubble dynamics in multiphase 

polymerisation, crystallisation and precipitation systems. The classical framework of 

modelling crystallisation processes consists of coupled population, mass and energy 

balances. The main mechanisms of crystallisation processes such as nucleation, growth, 

aggregation and breakage are well established. Many researchers have applied and analysed 

the population balance equation (PBE) in the case of these crystal formation mechanisms 

(Bove et al., 2005; Costa et al., 2007; Hulburt and Katz, 1964; Mahoney and Ramkrishna, 

2002b; Randolph and Larson, 1988). The population balance equation is a material balance 

that accounts for the distribution in particle size, location and other state variables. The 

population balance modelling framework provides a deterministic description of the 

dynamic evolution of the crystal size distribution by forming a balance to calculate the 

number of crystals in the crystalliser (Hounslow, 1998; Hulburt and Katz, 1964; 

Ramkrishna, 2000). The solution of such balance is the distribution of the number of crystals 

across the temporal and spatial domains, where the spatial domain may include both internal 

and external coordinates. The external coordinates typically consist of the ordinary ( , , )x y z  

Cartesian coordinate system specifying the location of the crystals, whereas the internal 

coordinates represent the characteristic sizes of the crystals (Mahoney and Ramkrishna, 

2002a; Ramkrishna and Borwanker, 1973, 1974).  

A dynamic population balance equation for a closed homogeneous system can be written 

using one characteristic size ( )L  as the single internal coordinate and neglecting all external 

coordinates (Hulburt and Katz, 1964; Randolph and Larson, 1988; Marchisio et al., 2003a; 

Rod and Misek, 1982) as follows: 
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where ( )
n
f L is the crystal size distribution expressed as a number density function, i.e. 

number of crystals within a size range per unit volume, F  is the aggregation kernel, g  is the 

breakage kernel, G  is the growth rate, B  is the nucleation rate and b  is the daughter 

particle size distribution, and 
0

( )L r  is the continuous Dirac delta function 

0 0
( 1   and 0  )if L r if L r  respectively.  The solution of equation (4.1) is the 

initial value problem with initial condition given by the size of the seed distribution 

,0 0
( ,0) ( )
n n
f L f L . The boundary condition is 

( ; )
(0, ) .

( , ; )
b

n

g

B S
f t

G S L
  There are various 

approaches to solve the equation (2.5) which are discussed in the next section. 

2.4 Numerical techniques for the solution of population 

balance equations 

The solution of the generic population balance equation (PBE) usually requires 

computationally expensive, complex numerical solution techniques (Gerstlauer et al., 2006; 

Ramkrishna, 2000). These approaches can be categorised in four main groups: 

a. Standard method of moments (SMOM).  

b. Numerical non-linear model reduction approaches (e.g. method of characteristics 

(MOCH) and quadrature method of moments (QMOM)). 

c. Direct numerical solution approaches involving finite-element or finite-volume 

discretisation of the partial differential equation (discretised population balances, 

DPB). 

d. Dynamic Monte Carlo simulation (DMC). 
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All four approaches ultimately transform the equation (2.5), which is a partial differential 

equation (PDE) into a set of ordinary differential equations (ODEs). The first method 

characterises the distribution only through its moments whereas the other approaches give 

the time dependence of the entire distribution or transform them into algebraic equations. 

There are large differences between the various numerical approaches for the 

aforementioned solution categories, especially within category ( )b  and ( )c . This section 

describes briefly the main advantages and short-comings of the most common approaches in 

each category. 

2.4.1 Standard method of moments (SMOM) 

The standard method of moment (SMOM) is one of the simplest and most widely used 

methods of solving population balance equations. The PBE  in equation (2.5) can be further 

simplified by using a moment transformation, by multiplying the population balance 

equation by kL  (in a length based PBE) and integrating it from zero to infinity (John et al., 

2005; Kiparissides et al., 2006; Salvatori et al., 2005). 

The thk moment is defined as, 

  
0

( ) ( , )                where   0,1,2,..., .j

j n
t f L t L dL j      (2.6) 

After the moment transformation, the PBE can be represented by a set of moment equations 

and the thk moment is given by (Hulburt and Katz, 1964; Randolph and Larson, 1988), 
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The equation (2.7) is solvable for growth (except for size-dependent growth) and nucleation 

problems. One of the disadvantages of the method is the mathematical complication in the 

equations when the growth rate is described by a size-dependent mechanism. This method 
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also suffers from closure problem for cases involving aggregation and breakage mechanisms 

in equation (2.7), since the integrations cannot be written in terms of the moments only.  

The closure problem can be eliminated using quadrature method of moments, which will be 

described in next section. Equation (2.7) can be simplified for growth and nucleation 

mechanisms only:  

 1

0

0 0

( ) ( ) ( )k kk
n

d
L B L r dL kL G L f L dL

dt
. (2.8) 

Expanding the equation (2.8) for the first four moments (starting from the zeroth moment), 

for size-independent growth and nucleation mechanisms only, gives the following results: 

                                                 0
d

B
dt

, (2.9) 
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d
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, (2.10) 

 22
1 0

2
d

G Br
dt

, (2.11) 

 33
2 0

3
d

G Br
dt

, (2.12) 

where 
0
r  is the size of the newly nucleated crystals and 

0 1 2
, ,  and 

3  are the zeroth , first, 

second and third moment respectively. The lower order moment (i.e. zeroth to third) are 

important because they are related to the physical properties of the CSD. The zeroth moment 

gives the total number of crystals per unit volume, 
1
 is related to the total length 

(characteristic size) of crystal, 
2  is related to the total crystal surface area, and 

3
 gives the 

volume of all crystals. 

The method gives the exact solution for the moments of the distribution. However, in 

addition to the limitations mentioned above, reconstructing the real distribution from its 

moments is numerically unstable (Giaya and Thompson, 2004; Nallet et al., 1998; White, 

1990). Therefore the retrieval of the exact and full distribution shape using the standard 

method of moments is not possible, although several inversion approaches have been 

proposed for coarse approximation of the distribution (Flood, 2002; Randolph and Larson, 

1971).  Alternatively, orthogonal polynomials can be used to correct the population density 
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functions (pdf’s) by preserving the original moments. These methods have various 

limitations and are discussed in detail in Chapter 3. Although the SMOM generally cannot 

provide enough information about the shape of the distribution, the following terms can be 

defined in terms of lower order moments: 

 The variance of the distribution function, which quantifies the width of the 

distribution: 

 

2

2
2 0 2 1
var 2

0 0

0

( ) ( , )

( , )

m n

n

L L f L t dL

f L t dL

. (2.13) 

 The coefficient of variation, which quantifies the width of the distribution function 

relative to its mean: 

  var 0 2

2

1

. . 1
m

c v
L

. (2.14) 

 Number mean size providing information about the mean particle size (more 

sensitive for small particles sizes): 

1
10

0

d .
     

(2.15) 

 Weight mean crystal size, which provides information about the mean particle size 

(with more sensitivity towards larger particles):   

   4
43

3

d . (2.16) 

 Sauter mean diameter, which gives information related to the ratio between the 

volume of the dispersed phase to its surface area: 

        3
32

2

d .          (2.17) 

2.4.2 Numerical nonlinear model reduction approaches 

The approaches considered in this category are commonly called “global methods” and are 

also considered as nonlinear model reduction techniques for the PBE. This category includes 

different variants of the “method of weighted residuals”, which have been frequently used in 
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the crystallisation-control community for general solution of the PBE. The algorithms are 

based on the idea of approximating the population density function (pdf) as a linear 

combination of chosen basis functions. The coefficients of the linear combination are 

obtained by minimizing the residuals between the approximation and the distribution such 

that for a chosen set of weighting functions, the residual will be orthogonal and hence will 

represent the pdf with a small number of terms. There are various possibilities to select the 

basic functions; e.g. Laguerre polynomials have been used with very good computational 

performance in Non-Linear Model Predictive Control (NMPC) schemes for crystallisation 

processes (Rawlings et al., 1993). The difficulty associated with these techniques is related 

to the choice of the proper basis functions. Note that the SMOM can be also considered as a 

model reduction technique, being the particular case when the weighting functions are 

considered as polynomials. Generally, the accuracy of the weighted residual approaches 

depends on the set of  basis functions used for approximation. However it has been shown 

that if the only mechanism that governs the crystallisation is growth, good accuracy can be 

expected. This has been demonstrated for example for cases with growth rate proportional to 

the inverse of the characteristic crystal size by Kalani and Christofides, (2002). 

Quadrature method of moments (QMOM) 

The first approach discussed in this category is the quadrature method of moment (QMOM). 

The method was proposed by McGraw (1997) and has been used for a wide variety of 

applications of population balance models. The method is a particular case of the generic 

weighted residual approach, which uses a particular form for the basis function (quadrature 

approximation given by the quadrature theory) that allows an explicit calculation of the 

weights from the moments, hence providing a solution to the moment closure problem from 

the SMOM. The QMOM proposed by McGraw (1997) is based on the product difference 

(PD) algorithm (Gordon, 1968). The PD algorithm is employed to calculate the weights (
i
w ) 

and the abscissas ( i
L ) from the moments following the quadrature approximation (McGraw, 

1997), 

 
10

( ) ,        where      0,1,2,..., .
qN

k k

k n i i
i

f L L dL w L k  (2.18) 
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where 
q
N  is the number of quadrature points, 

i
w  are the corresponding quadrature weights 

and 
i
L  are the abscissas, which can be determined through the product-difference (PD) 

algorithms or via direct solution of a differential-algebraic equation (DAE) system (Gimbun 

et al., 2009), based on the idea of minimizing the error committed by replacing the integral 

from the moment definition with its quadrature approximation.  

After applying the quadrature rule, equation (2.7) can be written as (Alopaeus et al., 2006): 
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Now the closure problem has been eliminated and hence the PBE given by (2.7) is solvable 

by means of the quadrature method of moments by following the evolution of 
i
w  and 

i
L . 

The QMOM gives a coarse approximation of the change in the shape of the CSD, however 

the weights and abscissas do not directly provide the shape of the distribution. The 

application of the QMOM has been extended to aggregation, coagulation and breakage 

mechanisms (Fan et al., 2004; Marchisio et al., 2003b; Rosner et al., 2003; Rosner and 

Pyykonen, 2002; Wright et al., 2001). 

The PD algorithm however is not always the best approach for computing the Gauss 

quadrature approximation, since the computation of the weights and abscissas is sensitive to 

small errors in the moments. Thus, the applicability of QMOM is limited to no more than six 

quadrature points (Gordon, 1968) and often even fewer for some cases, such as diffusion-

controlled growth with secondary nucleation. Apart from the product difference algorithm 

based QMOM, there are several other variations of the approach, such as fixed quadrature 

method of moments (FQMOM) (Alopaeus et al., 2006), Jacobian matrix transformation 

(JMT) (McGraw and Wright, 2003) and direct quadrature method of moments (DQMOM) 

(Fan et al., 2004); however these techniques are not widely used. 
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Method of characteristics (MOCH) 

Another efficient technique to solve population balance equations is the method of 

characteristics (MOCH) (LeVeque, 1992). The technique provides an elegant way to 

determine the evolution of the crystal size distribution for crystallisation processes. It has 

been used for the crystal size determination in case of size-independent growth and 

nucleation by many researchers (see e.g. Hounslow and Reynolds (2006)). The method of 

characteristics for first order PDEs determines lines, called characteristic lines (or 

characteristics), along which the PDE degenerates into a set of ODEs. The ODE can be 

solved and transformed into a solution for the original PDE. The equation for each 

characteristic line ( )L t  is: 

         
0

( ) ( ( ))
t

L t G S t dt ,       i.e.    ( )
dL

G t
dt

. (2.20) 

To illustrate the technique it’s application to the solution of the PBE is illustrated next for a 

crystallisation process with size-independent growth the only governing phenomenon. 

The population balance equation for a crystallisation process with one dimensional growth 

and no nucleation can be obtained by rearranging equation (2.5), 

            
( , ) ( , )( , )

0
nn

G S L f L tf L t

t L
, (2.21) 

where n
f  is the pdf, which can be a function of the characteristic size (L ) and time ( t ). If 

the growth rate G  only depends on the supersaturation ( )S t , equation (2.21) can be 

transformed into a homogeneous hyperbolic equation,  

 
( , ) ( , )

( ) 0n n
f L t f L t

G S
t L

. (2.22) 

The aim of the method of characteristics is to solve the PDE by finding curves in the ( )L t  

plane, which reduces the partial differential equation to a system of ODEs. The ( )L t  plane 

can be expressed in a parametric form by ( )L L  and ( )t t , where the parameter  

gives the measure of distance along the characteristic curve. Therefore,     

    ( , ) ( ( ), ( ))
n n
f L t f L t ,                                   (2.23) 
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and applying the chain rule gives, 

                                             n n n
f f dfdL dt

d L d t d
.                                          (2.24) 

Comparing equations (2.22) and (2.24) a set of ODEs can be derived:  

 1
dt

d
, (2.25) 

     ( )
dL

G S
d

, (2.26) 

 0n
df

d
,   (2.27) 

with initial conditions (corresponding to 0 ) 0t , 
0

L L  and
,0 0

( ,0) ( )
n n
f L f L . From 

equation (2.25)-(2.27) t  and the actual characteristic equations can be written as:  

 ( )
dL

G S
dt

,     (2.28) 

 0ndf

dt
.   (2.29) 

To obtain the dynamic evolution of the crystal size distribution, ( , )
n
f L t , equation (2.26) and 

(2.27), with prescribed growth expressions can be integrated repeatedly for different initial 

values 
0 ,0 0

[ , ( )]
n

L f L  where  ,0 0( )nf L  is the seed distribution. The initial conditions start from 

along the L  axis of the L t  plane, with values calculated by choosing a discretisation 

interval 
0
L  and using 

0
0t  and 0 0,max 0max(0, )L L k L , 0,1, ,k N , where N  is 

the number of discretisation points. The discretisation interval 
0
L  will determine the 

number of integrations (the number of characteristic lines) and hence the resolution of the 

dynamic evolution of the seed CSD. The growth rate is a function of supersaturation, which 

is changing with time, ( )S t  which can be determined from the mass balance and the third 

moment of the distribution obtained from the SMOM, using equation (2.8). Growth rate is a 

function of the supersaturation, g
gG k S , with g  and gk  being the growth kinetic 

parameters. The supersaturation (S ) is expressed as the difference between the solute 

concentration ( )C t  and equilibrium concentration ( )satC T  at time t , ( ) ( ) ( )satS t C t C T . 

The equilibrium concentration (solubility) is a function of the temperature (T ), which is 
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generally a function of time during the batch, ( )T t , hence ( )sat satC C t . The solute 

concentration can be calculated from the material balance: 

                           
3 3

( ) (0) ( ( ) (0))
v c

C t C k t ,                          (2.30) 

where 
c

 is the density of crystals and 
v
k  is the volumetric shape factor. The third moments 

are computed from the SMOM. 

To illustrate the methodology a simulation was performed for a real crystallisation process 

(crystallisation of potash alum in water) using the experimental conditions described in 

Chapter 5, however considering the following fictitious size-independent growth parameters: 

growth rate constant 12.5
g
k  /m s  and growth order 1.2g . A batch time of 5400 s 

was used in the simulations. The actual temperature trajectory from the experiment (shown 

in Figure 5.4(a)) was used for the simulation. Because of the particular experimental 

conditions the supersaturation was changing during the batch. The initial conditions for the 

simulations were given based on the initial experimental concentration and on the measured 

seed distribution used in the experiments (described in Chapter 5). 

Figure 2.4 (a) illustrates the evolution in time of the characteristic lines for the crystallization 

process using the size independent growth mechanism. All characteristic lines have the same 

slope at a given time and the pdf values are constant during the whole batch according to the 

size-independent growth mechanism and no nucleation. The CSD can be represented at any 

time by plotting the pdf values versus the corresponding L  values obtained from the 

characteristic lines. The dynamic evolution of the CSD during the batch is illustrated in 

Figure 2.4 (c). 
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Figure 2.4: Simulation results of a crystallisation process with size-independent growth, using 
the method of characteristics. a) Characteristic lines for size (the slopes of all characteristic lines 
are the same due to the size independent growth mechanism). b) Characteristic lines for the 

( , )
n
f L t  (showing constant values due to size independent growth and no nucleation). c) 
Evolution of the CSD obtained from the characteristic lines at different time steps.  

 

2.4.3 Direct numerical solution 

The direct numerical solution approaches based on various finite-element, finite-difference 

or finite-volume schemes, such as the Upwind, Lax-Wendroff or Beam-Warming method 

(Costa et al., 2007; LeVeque, 1992), or different high resolution approaches, like Hi-Res 

Van Leer are usually computationally too expensive for control purposes (Christofides, 

2002). However, these are often applied in open-loop control simulation studies.  
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Finite difference methods and discretised population balance equations (DPE) 

These are frequently used approaches for solving generic population balance equations. 

These methods turn the population balance equation into a discretised population balance 

equation consisting of a set of ODEs equal to the number of classes. The computational 

effort for the numerical solution can be significantly reduced using a grid according to a 

geometric progression (Rigopoulos and Jones, 2003). Coarse discretisation produces a fast 

solution if there are no discontinuities. These techniques can be applied in principle to any 

mechanism, however have the following limitations: 

 Because of the numerical diffusion, the method often leads to the broadening of 

sharp discontinuities (Mahoney and Ramkrishna, 2002a) which may arise along the 

curve that divides the states resulting from the initial conditions from those arising 

from the boundary conditions. 

 High resolution is required to ensure the number and mass conservation of the 

population (Patankar, 1980). 

Recently, combined Lax-Wendroff/Crank-Nicholson method has been applied for solving 

the population balance equations (Bennett and Rohani, 2001), which shows promising 

results and is free from numerical instabilities. 

Marchal et al. (1988) introduced the method of classes to solve a PBE considering 

agglomeration, breakage and size dependent growth mechanisms. The method discretises the 

size domains in the grids generating bins. The mean size in each class is assumed to be the 

characteristic size for all the particles which belong to that class. The density function in 

each bin is considered constant in this method. The method of classes has been frequently 

used to solve the population balance equation in crystallisation, precipitation and 

polymerisation processes (Blandin et al., 2001; David et al., 1991; Litster et al., 1995; 

Monnier et al., 1997; Puel et al., 2003a, b). The main drawbacks of the technique are: 

 The computational time increases with increasing number of discretisations. To 

avoid this, adaptive discretisation has been suggested (Kumar and Ramkrishna, 

1996b; Peglow et al., 2006). Adaptive discretisation reduces the number of ODE’s 

without affecting the precision of the results. 
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 The method can exhibit oscillatory behaviour and hence may produce negative pdf’s 

(Kumar and Ramkrishna, 1996a, 1997). 

Finite volume method (FVM) 

The finite volume method (FVM) is a standard approach used in computational fluid 

dynamics, however it has been often used also for the solution of population balance 

equations (Gerstlauer et al., 2001; Gunawan et al., 2004, 2008; Ma et al., 2002a). The finite 

volume method (FVM) involves the discretisation of the spatial domains and uses piece-

wise functions to approximate the derivatives of the distribution function with respect to the 

spatial variables. The values of growth rate, nucleation rate and number density at the cell 

boundaries are required to calculate the values at each grid point. The simplest interpolation 

formula that can be used to approximate the number density at each cell boundary is the 

upwind interpolation scheme. This approach however also suffers from numerical diffusion 

unless a very fine grid mesh is used. Mesbah et al. (2009) have recently shown that high 

order finite volume methods in combination with flux limiting functions can lead to high 

order accuracy on a coarse grid mesh. 

Finite element method (FEM) 

The hyperbolic population balance equation can be solved in its continuous form using the 

Finite Element Method (FEM). This technique approximates the solution using piecewise 

low-order polynomials that are local and capable of capturing highly irregular solutions 

(Rigopoulos and Jones, 2003). Orthogonal collocation based finite element method has been 

used with modest computation burden for the modelling of both continuous and batch 

crystallisation systems (Rawlings et al., 1992). Steady-state population balance equations 

were solved using collocation and Galerkin FE algorithms by Hounslow (1998). Lagrange 

cubic interpolation polynomials were used along with equally spaced nodes within each 

element for the solution of PBE’s. The results showed that the number density function is 

predicted reasonably well using very few numbers of (Hounslow, 1998; Nicmanis and 

Hounslow, 1998). Rigopoulos and Jones (2003) used a FE scheme with linear collocation 

elements and an upwind propagation of the growth term. The authors claimed that the 

method is computationally faster than higher order FE collocation methods. Generally FEM 

is not an attractive option for model-based control approaches due to its significant 

computational requirement and relatively large implementation complexity. 
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2.4.4 Dynamic Monte Carlo (DMC) simulations 

The DMC approach is the most generic solution approach since it can be applied for all 

cases of PBEs. However, it is computationally too expensive for on-line implementations. 

The computation of the dynamic evolution of the CSD using stochastic dynamic Monte 

Carlo (DMC) simulations has been reported for several particulate processes (Haseltine et 

al., 2005; Ramkrishna, 1981; Shah et al., 1977; Spielman and Levenspiel, 1965; Zhao et al., 

2005a, b). Monte Carlo simulations are time consuming but present some important 

advantages when applied to the solution of the general PBE. Firstly they provide information 

about the history of each particle in the population and secondly they can be easily 

implemented to higher dimensional problems.  

2.4.5 Summary 

A brief overview of various techniques used for the solution of generic population balance 

equations has been presented. The key advantages and disadvantages of the techniques are 

summarised in Table 2.4. A number of techniques are available for solution of population 

balance equations. Techniques such as the standard method of moments (SMOM) and 

quadrature method of moments (QMOM) are useful to compute average properties of the 

CSD expressed by the lower order moments of the distribution. The QMOM provides the 

additional benefit compared to the SMOM that it can be applied to size-dependent growth, 

aggregation and breakage mechanisms. Both methods are computationally very efficient, 

however they cannot retrieve the complete shape of the distribution.  
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Table 2.4: Comparison for different numerical methods for the solution of population balance 
equations. 

Numerical 
Method 

Advantages Disadvantages Remarks 

Method of 
Moments 

Simple and 
computationally efficient 

Moment transformation is 
possible for size 
independent growth and 
nucleation 

Closure problem in case of 
size-dependent growth, 
aggregation and breakage. 

Cannot retrieve the complete 
CSD 

It can be used in case of simple 
crystallisation model when 
growth and nucleation are 
considered but cannot be used 
for CSD retrieval 

Quadrature 
method of 
moments 

Computationally efficient 

Moment transformation is 
possible for size-
dependent growth, 
aggregation and breakage 

Gives the coarse 
approximation of CSD but 
cannot retrieve the full CSD 

 

Cannot be used to develop a 
model-based control strategy 
for shaping the CSD as it 
cannot retrieve the complete 
distribution  

Method of 
characteristics 

Simple and 
computationally efficient 

Can retrieve complete 
CSD 

Considers growth and 
nucleation only 

It is an attractive option for 
controlling the CSD as it 
retrieves complete CSD in real 
time; while the crystallisation 
process is governed by growth 
and nucleation phenomena 
only. 

Finite 
Difference 
Methods and 
DPE 

Provides universal 
framework for the 
solution of generic PBMs 

Sharp discontinuity may be 
obtained which can broaden 
because of numerical 
diffusion. 

Very large resolution is 
required for number and mass 
conservation 

May show spurious 
oscillations and negative pdf 
values. 

May show errors in the 
retrieved distribution. 

It is computationally inefficient 
due to the generally large 
discretization.  

Difficulty in 
predicting/avoiding the 
occurrence of errors in the 
obtained CSD. 

Not a preferred option for 
model based control and 
optimisation. 

Method of 
classes 

(MOC) 

Discretises the size 
domain in grids 
generating bins  

It becomes computationally 
inefficient as the number of 
discretisation increase with 
the number of classes. 

May show spurious 
oscillations and hence can 
generate negative pdf values. 

Not an attractive option for 
model based optimisation and 
control. 

Finite element 
/ Finite volume 

Provides a universal 
framework for the 
solution of generic PBMs 

Computationally inefficient 
since the solution of integrals 
is required 

Not an attractive option for 
model based optimisation and 
control. 

Dynamic 
Monte Carlo  

Provides information 
about the history of each 
particle in the population. 

Can be easily 
implemented to higher 
dimensional problems.  

Computationally inefficient The technique is time 
consuming and is not an 
attractive option for on-line 
control 
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The method of characteristic is a computationally efficient approach, capable of retrieving 

the CSD. However large number of characteristic lines (fine discretisation) is needed to 

accurately compute the moments from the distribution, needed to conserve the mass and 

acquire the change in supersaturation with time, ( )S t . Additionally, the method cannot be 

readily applied to aggregation, breakage and certain nucleation mechanisms.  

Other techniques are also used for the solution of generic population balance equations such 

as the method of classes, finite element, finite volume and kinetic Monte Carlo methods. 

However these techniques may suffer from spurious oscillations, numerical diffusion and are 

computationally inefficient hence are not an attractive option for model-based optimisation 

and control. When fast computation is a requirement and the information about the moments 

of the distribution only is sufficient the moment methods and the method of characteristics 

seems to be the most feasible numerical techniques. 

2.5 Measurement techniques for state variables 

During experiments the data is gathered for state variables such as temperature, 

concentration and CSD using on-line, in situ and off-line measurement techniques. The 

population balance model is initialised using the information gathered from these 

experimental measurements, e.g. moments calculated from the seed distribution, initial 

concentration, and temperature trajectories. The measurement of these key variables is 

required for several reasons: 

 To obtain insight into limiting processing and main governing phenomena. 

 To design the experiments and obtain data for model parameter identification. 

 To design controllers to maximize product quality and minimize operating costs. 

 To drive the process to its desired state. 

In all cases, the experimental data should provide sufficient information about the system 

under investigation. Two types of experimental data are generally required: one, which gives 

the information about the solution phase, and another, which gives the information related to 

the solid phase. The information about the solution phase in provided by the solution 

temperature, supersaturation and concentration, while crystal size distribution provides 
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information about the dispersed solid phase. The corresponding measurement techniques can 

be classified into three main categories: 

 On-line measurements: these techniques provide information during the course of 

the batch. 

 In situ measurements: these techniques consist of measurements made directly in the 

process medium.  

 Off-line measurements: these techniques are used to characterise the properties 

based on samples taken from the process and often analysed after the process 

completed. 

The model-based predictive control (MPC) approaches use the model of the crystalliser and 

measurements of important variables to compute optimal control actions corresponding to a 

certain objective function (Rawlings, 2000). Model identification is considered reasonably 

complete when the parameter uncertainty and the model reliability have been assessed. A 

wide variety of experimental techniques have been used for parameter estimation for 

crystallisation processes. In most of the practical situations, not all variables can be reliably 

measured. Therefore, those unmeasured variables should be estimated using available 

measurements and the model, using state estimators or observers (Eek and Dijkstra, 1995; 

Motz and Gilles, 2008; Nagy and Braatz, 2003a). For batch cooling crystallisation, the states 

of interest are the solution temperature, concentration and the crystal size distribution 

(CSD). Different techniques can be used to measure the concentration and CSD which are 

summarized below. 

2.5.1 Temperature measurement 

Thermocouples are used to measure the temperature. Some important factors which need to 

be considered while selecting a thermocouple are; temperature range, medium, required 

response time and accuracy. Generally the temperatures for the slurry, inlet and outlet jacket 

temperatures are obtained from PT-100 thermocouples. These thermocouples have quick 

response time and are accurate within 0.15 °C. 
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2.5.2 Concentration/supersaturation measurement 

Supersaturation is the main driving force for all kinetic mechanisms such as dissolution, 

growth, nucleation and aggregation, which occur during crystallisation processes. It is 

important to control the extent of the supersaturation during crystallisation since the size, 

shape and solid-state phase of the product crystals are dependent on the supersaturation 

profile achieved during the crystallisation process. One way to enhance the control of CSD 

is to use supersaturation control (SSC) (Doki et al., 2004; Gron et al., 2003; Liotta and 

Sabesan, 2004), which drives the process within the metastable zone to avoid or to produce 

controlled nucleation (Woo et al., 2009a). Usually the supersaturation setpoint (
sp
S ) curve is 

chosen experimentally and is followed in the phase diagram using a supersaturation 

controller, based on concentration measurement. In seeded crystallisation, the 

supersaturation is usually maintained at a desired constant value throughout the entire batch 

by the application of properly designed control algorithms (Chung et al., 1999; Fujiwara et 

al., 2005; Zhang and Rohani, 2003). Concentration and supersaturation measurement 

sensors can be selected based on the properties of the solution and the methods used to 

correlate the measured property to the concentration can largely vary from application to 

application (Loffelmann and Mersmann, 1999, 2002).  Some of the most traditional ways to 

measure the concentration of the solute in the continuous phase are briefly described next. 

Conductivity 

The solute concentration can be measured using conductivity probes for conducting 

solutions, such as salts. The technique has been demonstrated in the case of crystallisation 

processes by Hlonzy et al. (1992) and Nyvlt et al. (1994), for the crystallisation of inorganic 

salts. Conductivity measurement has several potential problems. First of all, it can only be 

applied for a limited number of conducting crystallisation systems, which excludes most 

organic compounds and solvents. The probe can be clogged with crystals during 

measurements. When crystals touch the probe, it can produce noise in the measured data 

(Hlozny et al., 1992; Nyvlt et al., 1994). Measurement can be influenced by the solid 

content making the correlation of the conductivity signal with the concentration difficult. 

Frequent re-calibration of the probe limits its usefulness in long-term industrial 

crystallisation applications. It is difficult to apply this technique to batch cooling 
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crystallisation processes because conductivity is also strongly (and generally nonlinearly) 

affected by temperature.  

Refractive index 

Another technique to measure concentration is the refractive index, which is well correlated 

to the concentration for many solutions (Zhou et al., 2006b). The technique can work if there 

is a significant change in refractive index with change in concentration (Braatz et al., 2001). 

However the technique is sensitive to ambient light and air bubbles. 

Density 

Another way to measure the change in concentration is to measure the change in density. To 

measure the density, a sample of slurry (crystals along with solution) is taken out of the 

crystalliser, crystals are filtered and then the density of the liquid phase is measured. The 

technique has also been used on-line for potassium nitrate-water system (Miller and 

Rawlings, 1994). This approach requires an external sampling loop, which can lead to 

following problems: 

 clogging of the filters, which are used to separate the solution and crystals, 

 temperature fluctuation in the sampling loop, which can cause the solution to 

nucleate and hence creating errors in the measurements.  

Spectroscopy 

A major limitation of all aforementioned techniques is the lack of ability to measure the 

concentration of multiple dissolved species or to consider multiple solvents (Braatz et al., 

2001). Most pharmaceutical crystallisation processes have multiple solutes and/or solvents. 

Modern equipment such as Attenuated Total Reflectance (ATR) Fourier Transform Infrared 

(FTIR), and ultra-violet–visible (UV-Vis) spectrometers coupled with chemometrics can be 

used to track the changes in the concentration with time (Berglund and Feng, 2002; 

Dunuwila and Berglund, 1997; Fujiwara et al., 2002).  

The applications of spectroscopic techniques have increased in recent years (Liotta and 

Sabesan, 2004; Pollanen et al., 2005; Yu et al., 2006)  because they provide the following 

main advantages: they do not clog with crystals (although nucleation and crusting on the 

probe window may be a problem), give in situ measurements and can effectively monitor the 
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change in concentration/supersaturation (Gron et al., 2003; Gron and Roberts, 1999; 

Lewiner et al., 1999). The signal also depends on the temperature, which however can be 

taken into account using suitable calibration models.  

2.5.3 Crystal Size Distribution (CSD) measurement 

CSD can be measured by a series of methods described next. 

Sieve analysis 

Sieve analysis is a simple, portable, inexpensive and widely used method for the 

measurement of particle size. Generally the equipment allows the use of a wide range of 

sieve sizes to measure the particle sizes, ranging from 10 m  to 5500 m  (depending on the 

availability of sieves). The key variables that influence sieving include: particle shape, 

presence of very fine particles, initial sieve loading, and hardness of particles, time and 

method of agitation. Reproducibility is often poor due to these variables. Although sieving 

provides a good method for the evaluation of the quality of the crystalliser product, it is time 

consuming and cannot be used for online measurement of particle size distribution (Adi et 

al., 2007; Ludwick and Henderson, 1968).  

Laser diffraction 

 Laser diffraction is based on the principle that particles passing through a laser beam will 

scatter light at an angle that is directly related to their size. Large particles therefore 

scatter light at narrow angles with high intensity, whereas small particles scatter at wider 

angles but with low intensity. To determine the particle size from the diffraction pattern 

two theories are used: the Fraunhofer and the Mie theory (Monnier et al., 1996). The 

theories are based on the assumptions that 

 the particles are spherical and  

 the suspension is dilute. 

Equipment, such as the Malvern Mastersizer and Malvern Insitic are based on the principle 

of laser diffraction. Malvern Mastersizer can be used to obtain both on-line as well as off-

line measurement of the CSD. They are able to measure a size range of 0.01 to 1000 m . 

For on-line CSD measurement a sampling loop is required, which may introduce problems 
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related to nucleation or breakage. Additionally for systems, with larger solid content the 

measurement loop must include an additional dilution loop, with flow that may be tailored 

during the crystallisation (if the solid content increases) to maintain the required obscuration 

number for the measurements. 

Laser backscattering 

Another solid phase measurement technique is based on the laser backscattering method. 

The Lasentec Focused Beam Reflectance Measurement (FBRM) instrument works on this 

principle. The equipment provides the chord length distributions of the crystal size. The laser 

beam is focused by a rotating lens, which causes the beam to scan in a circular motion 

through a sapphire window at a fixed high speed (generally 2 m/s). The light is scattered in 

all directions when the laser intersects the crystal, and the probe collects the light which is 

scattered back by the crystal. The time period of the back scattering is recorded and is 

multiplied with the scanning speed of the beam to give the distance between the two edges 

of the crystal. Therefore the distance measured by the FBRM is called chord length. Using 

FBRM coupled with inverse geometric modelling the chord length distribution (CLD) can 

be transformed into size distribution (Hukkanen and Braatz, 2003; Ruf et al., 2000) when the 

shape of the crystals is known and is well-defined. The equipment can measure from a size 

range of approximately 0.5 to 1000 m . A method is also required to convert the chord 

length distribution to CSD and vice-versa for on-line estimation and control. 

The above mentioned techniques (such as the Mastersizer, and FBRM) have many 

advantages (Fujiwara et al., 2002; Hukkanen and Braatz, 2003) such as minimal calibration 

and easy automation for possible use as a feedback signal for control purposes. A weakness 

of the aforementioned CSD sensors is that the distribution of crystal shapes cannot be 

directly determined. For example, a collection of rod-like crystals are characterised 

mathematically by a two dimensional distribution, but the light scattering instruments only 

provide one-dimensional distributions. It is impossible to uniquely determine a two-

dimensional distribution from a one-dimensional distribution. FBRM along with ATR-FTIR 

was used to monitor the polymorphic transformation in the case of D-mannitol (O'Sullivan 

and Glennon, 2005). The authors used FBRM successfully to investigate the crystallisation 

system and to identify different polymorphic forms of the compound. The FBRM was also 

used for monitoring the efficiency of the fine removal process in a modified mixed 
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suspension mixed product removal crystalliser (MSMPR), along with particle vision 

imaging using the Lastentec particle vision measurement (PVM) probe (Kougoulos et al., 

2005). Due to the nature of the organic crystals and their opacity, FBRM results were not 

satisfactory for small size particles.  

The in situ process analytical tools have been extensively used for monitoring and control of 

particulate system. More detailed information about these tools can be found in several 

review papers (see e.g. Braatz et al., 2002; Lawrence et al., 2004; Yu et al., 2004) and books 

(e.g. Bakeev, 2005). 

Image analysis 

Image analysis is the simplest technique to monitor the crystal size and shape in 

crystallisation processes. It is a direct observation technique and it does not require any 

assumptions for the size or shape of the crystals. In recent years, many applications of on-

line and off-line image analysis techniques have been reported for monitoring the shape and 

size of the particles. Image analysis can be used for the classification of crystals based on 

their polymorphic and morphological forms. A method has been developed based on on-line 

imaging and image analysis, which can be used for classification of polymorphic forms in 

real-time by De Anda et al., (2005).  

Two dimensional information can be obtained in situ from the Lasentec Particle Vision 

Measurement (PVM) system, which provides pictures of the crystals in the solution using a 

probe inserted directly into the dense crystal slurry (Barrett and Glennon, 2002; Fevotte, 

2002; Kempkes et al., 2008). This video microscope can collect 10-30 pictures a second, 

providing two dimensional snapshots of the crystals in real time. On-line video microscopy 

can measures crystals as small as 1-15 m , which is not as small as by laser scattering 

instruments. The quality of images limits the ability of the imaging software to automatically 

identify individual particles and quantify the characteristics of these particles. On-line video 

microscopy has the advantage that the crystals are directly observed, allowing shape 

information to be obtained. PVM is suitable for using in industrial crystallisers (Braatz, 

2002), therefore, process video microscopy is becoming increasingly used to image the 

crystals as they grow in solution, to visualize the extent of agglomeration and changes in 

crystal size and shape. An on-line high speed imaging system was developed by 



Chapter 2: Literature review 46 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

GlaxoSmithKline and has been used for the monitoring of size and shape of crystals during 

batch cooling crystallisation (Dharmayat et al., 2006). Image analysis based methods have 

also been used for monitoring nucleation and polymorphic transformation. Simon et al., 

(2009a, b) developed the external and internal Bulk Video Imaging (eBVI and iBVI), based 

on low cost video hardware (simple camera for the eBVI and endoscope for iBVI), and 

showed that the method can provide earlier detection of nucleation than spectroscopy or 

FBRM based approaches. The authors also used the BVI approach to monitor the 

polymorphic transformation during the crystallisation of caffeine. 

2.6 Crystallisation control and optimisation 

Particulate processes are widely used and applied in industry for the manufacturing of a 

large variety of products, such as in the crystallisation of proteins (Wiencek, 2002), 

production of latexes by emulsion polymerisation (Immanuel and Doyle, 2002) and aerosol 

synthesis of titania powders (Kalani and Christofides, 2000). The PSD of the particulate 

(dispersed) phase strongly influences both the mechanical and physicochemical properties of 

the product materials. This has motivated a growing attention on the control of particulate 

processes and has often resulted in model-based control approaches due to the underlying 

complexities of the phenomena involved (Braatz, 2002; Christofides et al., 2008; Nagy, 

2009). 

Model-based control strategies have been widely used for various particulate processes 

including emulsion polymerisation (Doyle et al., 2002; Immanuel and Doyle, 2003), 

granulation (Wang et al., 2006), fermentation (Henson et al., 2002; Zhu et al., 2000), 

cellular biological systems (Stelling et al., 2004), aerosol (Kalani and Christofides, 2002) 

and thermal spray coating processes (Li et al., 2004). In the last decade much effort has been 

devoted to the development of model-based control strategies of the CSD for crystallisation 

processes (Aamir et al., 2010; Aamir et al., 2009b; Braatz and Hasebe, 2002; Ma et al., 

2002a; Nagy and Braatz, 2003a; Shi et al., 2006; Shi et al., 2005). Most of the strategies 

used for control and optimisation rely on lumped parameter system, assuming homogeneous 

systems. The discrepancies with the experimental data are usually reduced through the 

adjustment of only few sensitive parameters, generally related to the kinetics of the 

crystallisation. This makes the updated model/parameters valid only in the vicinity of the 
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current operating conditions. In light of this, a knowledge-based approach to the problem, 

based on the actual understanding of the process, the implementation of a detailed 

mechanistic model and a robust run-to-run or within run adaptive model update are crucial 

aids to the parameter identification. In recent years, the availability of more accurate 

mathematical models, solution techniques for complex mathematical systems, advances in 

on-line measurements and control theory created the ground for advancements in the field of 

nonlinear optimisation and control of the CSD in crystallisation processes (Braatz, 2002; 

Larsen et al., 2006; Yu et al., 2007). Different strategies have been proposed to control the 

crystal size distribution. They include feed forward (open-loop) control, batch-to-batch 

strategies and on-line model-based control. 

The model-based control approaches for crystallisation processes can be divided in two main 

categories: (i) open-loop (feed-forward) control and (ii) on-line model-based feedback 

control approaches. Open-loop (or feed-forward) control approaches are techniques for 

which the process outputs have no effect on the inputs, whereas feed-back control systems 

are implemented in a closed-loop setting with the outputs that affect the inputs in such a way 

to keep the outputs at the desired value (Braatz, 2002; Chew et al., 2007; Immanuel and 

Doyle, 2002; Nagy and Braatz, 2004). Note that open-loop or closed-loop control 

approaches are defined with respect to some final product property at the end of the batch. In 

the case of open-loop control approaches the operating conditions are optimised off-line 

based on model predictions to achieve a desired product property at the end of the batch (e.g. 

maximize mean size). The resulting optimal operating policies (e.g. temperature versus time 

or anti-solvent addition rate versus time profiles) then are implemented using simple 

feedback tracking control systems.  

The operation of crystallisation processes using programmed temperature profiles, derived 

based on the assumption of constant supersaturation, was introduced in the 1970s (Jones and 

Mullin, 1974; Mullin and Nyvlt, 1971). The application of programmed temperature profiles 

yields better CSD properties compared to the natural or linear cooling, traditionally used for 

crystallisation operation. Performing the open-loop optimisation off-line with nominal 

values of the model parameters and then implementing the optimal trajectory is the most 

frequently used model-based control approach. One of the first applications of optimal 

control theory to crystallisation processes was reported by Jones and Mullin in (1974). The 

author computed optimal cooling trajectories that maximized the final size of the seed 

crystals for a batch crystallisation process. In the past few decades optimal control has been 

widely recommended to improve batch crystallisation operations (Rawlings et al., 1993). 
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The final CSD is dependent on the supersaturation profile created over the batch time, hence 

the supersaturation profile (generated e.g. by cooling, anti-solvent addition or evaporation) is 

the most important decision variable in the optimisations. Various objective functions have 

been used in the optimisations. A detailed review of the optimisation approaches for the 

properties of the CSD expressed by its moments were given by (Ward et al., 2006) and are 

summarised in the Chapter 3. The optimal operating profile is strongly influenced by the 

objective optimised. For example the solution of the optimal control problems with the aim 

to maximize the weight-average mean crystal size generally leads to convex cooling profiles, 

whereas the minimization of the coefficient of variation of the CSD in un-seeded 

crystallisation processes results in fast cooling during the initial part of the operation to 

generate nuclei in short time period (Nagy and Braatz, 2003b). Detailed overviews of model 

development and advances in crystallisation control approaches are given in several 

comprehensive review articles (Braatz, 2002; Braatz et al., 2002; Larsen et al., 2006; 

Rawlings et al., 1993; Yu et al., 2007). Using optimal temperature trajectories the 

improvement in the mean crystal size of a potassium nitrate system was reported (Miller and 

Rawlings, 1994).  The mean crystal size and crystal quality of adipic acid was improved 

using optimal temperature trajectories (Costa et al., 2005).  

Anti-solvent addition profile was optimised to improve the product CSD by (Nowee et al., 

2008a). More recently model-based optimisation was applied to the combined cooling and 

anti-solvent crystallisation of lovastatin (Nagy et al., 2008b). The authors showed that the 

optimal operating trajectories and whether the crystallisation process is controlled by 

cooling, anti-solvent addition or a combination of the two approaches strongly depend on the 

objective function used in the optimisation. Hence the model-based optimisation approach in 

this case has become not only a methodology to determine the best operating curve but also 

a process design tool, capable of automatically selecting the best supersaturation generation 

methodology for the process (cooling or anti-solvent addition). 

The significant improvement in the computational performance allowed the solution of more 

complex optimal control problems or the use of more comprehensive models in the 

optimisation. For example (Ma et al., 2002b) considered two-dimensional growth, solving a 

corresponding two-dimensional PBE for temperature optimisation in the cooling 

crystallisation of potassium dihydrogen phosphate (KDP) in water. Costa et al. (2005) 

incorporated aggregation and (Hu et al., 2005) considered growth rate dispersion in their 

model-based optimisation studies. The paper by (Woo et al., 2006) provides and exemplary 

case study of using combined computational fluid dynamics (CFD) and PBM for model-

based optimisation. The authors used an efficient high resolution finite volume scheme to 
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solve the coupled PBM-CFD model, which also incorporated the effect of micromixing, for 

an anti-solvent crystallisation system. The complex model was used for open-loop 

optimisation however the approach is computationally too expensive for real-time model 

predictive control. 

Parameter uncertainties can also be considered during the optimisation to achieve robust 

open-loop optimal operating trajectories (Nagy and Braatz, 2004), which minimizes the 

variability in the product property due to errors in the model. Open-loop optimisation of the 

temperature trajectories for polymorphic crystallisation was illustrated by (Hermanto et al., 

2007).   

In addition to the supersaturation profile the seed mass and seed distribution can also be 

optimised to achieve a desired product property (Bohlin and Rasmuson, 1996; Chung et al., 

1999; Kalbasenka et al., 2007). A more detailed overview of these approaches, as well as a 

novel methodology that simultaneously designs supersaturation profile and seed recipe, or 

applies dynamic seeding, for the control of the shape of the CSD are provided in Chapters 7 

and 9.  

A product engineering approach has been proposed by several authors who considered the 

integrated design of crystallisation and downstream process units to achieve desired 

performance of the integrated process chain or to produce target end-product quality 

(Hounslow and Reynolds, 2006; Wibowo et al., 2001).   

In addition to the overview of the open-loop model-based control approaches provided in 

this section there is a vast literature related to the model-free control (direct design) 

approaches for crystallisation processes, which are based on the application of 

supersaturation control approaches to control the crystallisation process in the phase 

diagram. This literature is briefly reviewed in Chapter 7, for more details see e.g. the review 

papers by Fujiwara et al. (2005) and Nagy et al., (2008a, b). These approaches provide fast, 

robust and reliable control, of crystallisation processes, which can be supported in an 

industrial environment; however they are designed based on heuristics and trial-and-error 

experimentations. Hence, the application of these approaches to the control of crystallisation 

systems is not directly within the scope of the thesis; however a novel methodology to 

analyse and provide a systematic framework for direct design (based on a simplified model-

based optimisation approach) is presented in Chapters 7 and 8. 

In addition to the open-loop model-based control approaches significant effort has been 

devoted to the development and implementation of closed-loop model based control 

approaches (Larsen et al., 2006; Nagy and Braatz, 2003a; Rawlings et al., 1993; 
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Sheikhzadeh et al., 2008b). Although these control approaches in principle solve similar 

dynamic optimisation problems as the open-loop model-based control techniques their 

implementation complexity is significantly larger than in the latter case. The main 

difficulties arise from the requirement of on-line state and parameter estimation approaches 

as well as due to the necessity of computing the solution of the optimisation problem within 

the sampling period in the process (real-time implementation). These approaches provide the 

benefits of inherent robustness due to their closed-loop architecture and the ability to adapt 

the operating conditions to unforeseen disturbances. Nevertheless, the practical application 

of these approaches is still very scarce both in laboratory as well as industrial environments, 

due the increased complexity of the control algorithm but also because of regulatory 

constraints related to the changing/adaptation of operating conditions. Due to their currently 

very limited applicability these approaches are not considered in this thesis and the focus of 

the research is directed towards the development and evaluation of efficient open-loop 

model-based optimal control approaches for CSD control in crystallisation processes. 

 

2.7 Conclusions 

Crystallisation is a widely used technique in different chemical industries, very often used in 

the production of pharmaceuticals and fine chemicals. The driving force for crystallisation 

process is the supersaturation. Supersaturation can be created in a crystalliser by different 

operating modes i.e. cooling, evaporation, reaction and anti-solvent addition. Some of these 

techniques can also be combined together to induce supersaturation in the system. 

Determination of the solubility curve, nucleation curve and metastable zone width is of key 

importance for the development of a crystallisation processes. The metastable zone is the 

region bounded by the equilibrium (solubility) and the metastable (nucleation) curves, where 

the solution is supersaturated while spontaneous crystallisation does not occur. Seed crystals 

may also grow within the metastable zone. The metastable zone width is therefore an 

important factor in assessing the tendency of a system to crystallise and in deciding the 

crystallisation technique.  

After achieving supersaturation, crystallisation from solution can be considered as a two step 

process. The first step is a phase separation and called as nucleation, and the second step is 

the subsequent growth of nuclei to crystals. The small crystals grow larger in size as more 
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and more solute molecules deposit on the surface of the crystals. Generally growth and 

nucleation are the two basic phenomena, which govern crystallisation processes.  

To model a particulate system such as crystallisation, population balance equations have 

been accepted for some time as the most fundamental framework. The population balance 

equation is a material balance that accounts for the distribution in particle size, location and 

other state variables. There are various approaches to solve the population balance 

equations.  

The most commonly used method is the standard method of moments (SMOM). This 

solution technique has closure problem in case when the growth is size dependent or when 

agglomeration and breakage mechanisms also need to be included in the model. Robust 

retrieval of the full CSD using the standard method of moments is not possible, although it 

gives the exact solution for the moments of the distribution. To control the CSD it is 

important that the solution technique should be able to retrieve the entire CSD. Therefore 

SMOM alone is not a suitable technique for distribution shaping control algorithms. 

Another important technique is the quadrature method of moments (QMOM), which solves 

the closure problem in the case of size dependent growth, agglomeration and breakage. 

QMOM can be used to solve the PBE for most crystallisation mechanisms. However, the 

retrieval of the full CSD is still not possible as the method only gives a coarse approximation 

of the distribution. Therefore this technique alone is not suitable again for distribution 

shaping control. The method of characteristics is another promising technique for the 

solution of PBEs, which gives the complete dynamic evolution of the CSD. Most of the 

crystallisation systems in the literature, for which the MOCH is applied, are processes with 

size independent growth and nucleation, with virtually no applications reported for processes 

with size-dependent growth and nucleation. The aforementioned techniques (SMOM, 

QMOM and MOCH) are simple and computationally efficient, which make these techniques 

an attractive option for model-based control and optimisation, however only the MOCH can 

provide the full shape of the distribution (in particular cases), suitable for distribution 

shaping control.  

The method of classes turns the population balance equation into a discretised population 

balance equation with a resulting set of ODEs with a number equal to the number of classes. 
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The computational effort for the numerical solution can be high due to the large number of 

classes. The method is able to retrieve the full CSD information, however it can exhibit 

spurious oscillations and hence give negative pdf values in the CSD estimate. The approach 

is also computational inefficient due to the generally large number of classes required and 

hence it is not the best option for model-based control. 

The finite volume methods (FVM) involve the discretisation of the spatial domain and the 

use of piece-wise functions to approximate the derivatives of the distribution function with 

respect to the spatial variables. Calculation at each grid point requires the values of growth 

and nucleation rate as well as the number density at the cell boundaries. The simplest 

interpolation formula that can be used to approximate the number density at each cell 

boundary is the upwind interpolation scheme. The approach is applicable to a generic PBE 

with all mechanisms, however may suffer from numerical diffusion unless a very fine grid 

mesh is used, increasing the computational burden potentially too much for model-based 

control and optimisation. 

The hyperbolic population balance equation can be solved in its continuous form using the 

Finite Element Methods (FEM). These techniques approximate the solution using piecewise 

low-order polynomials but require more computational time due to additional integrations. 

The dynamic evolution of the size distribution in a particulate process with any mechanisms 

can also be obtained via stochastic Monte Carlo (MC) simulations. However, due to its 

computational inefficiency, the method is not an attractive option for model-based control. 

Online measurements of state variables such as temperature, concentration and CSD are also 

required for model-based estimation and control. In most of the practical situations not all 

variables can be (reliably) measured. Therefore, those unmeasured variables should be 

estimated using available measurements and the crystallizer model using state estimators or 

observers. Estimation of unmeasured properties to predict the future behaviour can be used 

to adjust the operating conditions. In recent years, the availability of more accurate 

mathematical models, solution techniques for complex mathematical systems, advances in 

on-line measurements and control theory created the ground for advancements in the field of 

nonlinear optimisation and control of the particle size distribution in crystallisation 

processes. Different strategies have been proposed to control the crystal size distribution 

including feed forward control, batch-to-batch strategies and on-line model-based control. 
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For the implementation of these control strategies a robust model is required, which is able 

to capture the dynamic evolution of the distribution, and can be solved in a computational 

efficient way. Therefore, it is important to have numerical solution techniques, which are 

able to provide information about the distribution using the data from the available 

measurements of the state variables. Several techniques to obtain the dynamic evolution of 

the CSD have been reviewed in this chapter. However, all techniques have some limitations; 

hence there is a clearly identified requirement for the development of computationally 

efficient methodologies that can be used to predict the entire shape of the crystal size 

distribution throughout the batch. The methodology should be robust enough to be used for 

on-line estimation and control and should be applicable for a wide range of operating 

conditions.  
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Chapter 3  
Techniques to reconstruct crystal size 
distribution from moments 

3.1 Introduction 

In Chapter 2 models were reviewed for their ability to predict the shape of the CSD. The 

SMOM and QMOM give coarse approximations and the statistics of the CSD. Researchers 

have tried to develop methods for the reconstruction of the crystal size distribution (CSD) 

from moments. Moments may also be estimated from the experimentally measured CSD or 

numerically determined from different distribution functions. A number of instrument types 

can be used to measure the CSD, as described in section 2.5. Converting experimental 

measurements to moments is a crucial step in the process of obtaining moments, since as 

small as 5% error in the moments can lead to large errors in the approximated shape of the 

distribution. Predicting the CSD using moments provides an insight to the limiting factors of 

the controller design, which can help to improve product quality and reduce operating cost. 

Table 3.1 summarizes different forms of objective functions used in the literature (Ward et 

al., 2006) to achieve different physical properties of the crystals, based on lower-order 

moments. The final product CSD depends strongly on the selected optimisation objective 

function (Chung et al., 2000; Ge et al., 2000). The properties used in the objective functions 

include for example average crystal size, maximum growth and variation in size of crystals. 

Multi-objective optimisation techniques can also be used to optimise several statistics of the 

CSD at the same time. Several multi-objective optimisation functions used by different 

researchers are summarised in Table 3.1. Table 3.1 shows that most of these properties are 

expressed by lower-order moments i.e. zeroth to fourth order moments. Lower-order 

moments are generally used as they are subject to less error than higher order moments 

(Flood, 2002; Marchisio et al., 2003a). Although various properties of the CSD can be 

optimised based on several lower order moments, it is generally not clear that how many 

moments are required for the reconstruction of a complete crystal size distribution.  
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Table 3.1: Summary of objective functions used for the optimal control of batch crystallisation 
processes. 

Single attribute objective  
functions 

Multiple attribute objective 
functions 

Moments 
considered 

Author 

Maximise the size of 
crystals, 

,1seed
 

-- First moment of 
seed. 

(Jones, 1974) 

Maximise number average 
size of crystals, 

1 0
/  

 

Maximise average number size 
and minimise variation in size of 

crystals, 2

2

1 1

0 0 0

 

Zeroth, first, 
second 

moments. 

(Chang and 
Epstein, 1982) 

Minimise variation in size 
of crystals, 

2

2 0 1
/ 1  

-- Zeroth, first and 
second 

moments. 

(Chung et al., 
2000) 

Minimise the growth of 
nucleated crystals and 

variation in size of 
crystals, 

,3 ,3
/

N seed
 

-- Third moment 
of nucleated 
crystals and 

seed. 

(Chung et al., 
2000; Miller 

and Rawlings, 
1994; Rawlings 

et al., 1992) 

Maximise the weight 
average size of the 
crystals, 

4 3
/  

-- Fourth & third 
moments.  

(Berglund and 
Feng, 2002; 
Choong and 

Smith, 2004a, b; 
Chung et al., 

2000) 

-- Maximise the average size of 
crystals and minimise the 

variation in size of crystals, 

2

4 3 5 3 1
/ 0.0005 ( / ) 1

 

First, third, 
fourth and fifth 

moments. 

(Zhang and 
Rohani, 2003) 

-- Minimise the growth of nucleated 
crystals, maximise the average 

size of crystals and minimise the 
variation in size of crystals, 

4 3 3 3

2

2 0 1

0.00081 / 0.025 /

0.1 ( / ) 1

N  

Zeroth, first, 
second, third, 

fourth moments 
and fourth 
moment of 
nucleated 
crystals. 

(Ge et al., 2000) 

Minimise variation in size 
of crystals, 2

5 3 4
/ 1  

-- Third, fourth 
and fifth 

moments. 

(Choong and 
Smith, 2004b) 
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3.2 Approaches to reconstruct the CSD 

Several techniques will be used to reconstruct the distribution from the moments. Figure 3.1 

gives the overall structure of Chapter 3, describing different techniques used to reconstruct 

the distribution from moments. 

 

Figure 3.1: Classification of the distribution reconstruction methods from moments evaluated in 
Chapter 3. 

 

The most commonly used method to reconstruct distribution, is to assume a generic form of 

the distribution, such as Gaussian, lognormal, bimodal distribution etc (John et al., 2005), 

and to determine the shape by obtaining the parameters of these distributions from the 

moments. Reconstruction based on known distribution functions is a powerful and fast 

method and gives result instantaneously, but the method requires a priori knowledge of the 

shape and distribution (Diemer and Olson, 2002a, b; Giaya and Thompson, 2004; John et al., 

2005). In the case of a new application, with an unknown CSD, this method may not work 

well. Additionally most chemical processes do not possess a simple Gaussian or lognormal 

distributions. Thus, improved methods of CSD prediction are based on the lower order 

moments coupled with mathematical functions. Some of these techniques use orthogonal 

polynomials to correct the population density functions (pdf) by preserving the original 

moments.  

3.2.1 Orthogonal polynomials 

In this method, the most often used distributions are: lognormal distribution, gamma 

distribution and Gaussian (or normal distribution). These can be used to approximate the 

Approximation using 
known pdf functions 

Simple linear 
inversion 

Linear inversion 
using non-negative 

least squares 

Non-linear 
inversion  

Inversion technique 

CSD reconstruction from 
moments 

Generic pdf 
functions (gamma, 

lognormal etc.) 

Generic pdf 
modified with 

orthogonal 
polynomials 
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shape of the actual distribution. This method uses a basic pdf in combination with 

orthogonal polynomials, which modify the shape of the core pdf (Hulburt and Katz, 1964). 

The coefficients of the polynomial are calculated so that the moments of the modified pdf 

are preserved. Orthogonal polynomials are classes of polynomials { ( )}np x  defined over a 

range of [ , b] a that obey an orthogonality relation, 

( ) ( ) ( )
b

m n mn n

a

w x p x p x dx c ,                           (3.1) 

where ( )w x  is a weighting function and 
mn

 is the Kronecker delta ( 0 for mn m n  and 

1 for mn m n ). If 1
n
c , then the polynomials are not only orthogonal, but 

orthonormal (MathWorld, 2009). Orthogonal polynomials have very useful properties in the 

solution of mathematical and physical problems. Orthogonal polynomials provide a natural 

way to solve, expand and interpret the solutions to many types of differential equations 

(Randolph and Larson, 1988).  

Table 3.2: List of orthogonal polynomials used to modify some basic distribution functions. 
Distributions Orthogonal Polynomials 

Gamma Laguerre  

Gaussian Hermite  
Beta Jacobi 

Uniform Legendre 

 

Table 3.2 summarises the most commonly used basic distribution functions with the 

corresponding orthogonal polynomials used as weighting functions. In this chapter the major 

emphasis is on the gamma distribution modified using Laguerre polynomials. The gamma 

distribution is given by: 

                                    
1

( ) ,
( ) 

L

n

L
f L e                                          (3.2) 

where  is the gamma function,  is the scale parameter,  is the shape parameter, L  is 

the characteristic length in m  and ( )
n
f L  is the number pdf. The gamma function extends 

the factorial function to real numbers and is defined as: 
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                                    1

0

( ) .t zz e t dt                                              (3.3) 

If z  is a positive integer, then  ( ) ( 1)!z z . The gamma distribution can be coupled with 

Laguerre polynomials to modify the gamma distribution while preserving the original 

moments. The thn  order Laguerre polynomials ( )
n
P z  are defined by a contour integral, 

which encloses the origin but not the point 1,z   (MathWorld and Arfken, 1985; Randolph 

and Larson, 1971): 

                                                
(1 )

1

1
( ) .

2 (1 )

zt

t

n n

e
P z dt

i t t
                                                (3.4) 

The first three Laguerre polynomials are 

                                                 
0

1

2

2

( ) 1,

( ) 1,

1
( ) ( 4 2),

2

P z

P z z

P z z z

 

and can be generalized for any 1n  using a recurrence relationship: 

                    
1 1

1
( ) (2 1 ) ( ) ( ) .

1n n n
P z n z P z nP z

n
                                  (3.5) 

The crystal size distribution (CSD) may be approximated in terms of a gamma pdf with 

polynomial correction terms involving Laguerre polynomials having moment dependent 

coefficients.  The parameters required for gamma distribution are the zeroth, first and second 

moments. Thus the polynomial corrections having coefficients involving the third and higher 

moments are used only. This representation is given by Randolph and Larson (1971) as: 

                                

1

( )

0
3

( ) ( ) ,
( 1)!

L

a
j

n n n
n

L
e

a a
f L k l z                           (3.6) 

where 
0
 is the zeroth moment and the parameters  and a  are related to the parameters of 

the gamma distribution, and are given in terms of moments, 
1 0
/a , 

2 2

2 0
/(( / ) )a a  and  ( / )z L a . The complete derivation is described by Randolph 

and Larsen (1971). The thn order Laguerre polynomials are given as: 
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0

!( 1)!
( ) ( 1) ,

!( )!( 1 )!

n
j n j

n
j

n n
l z z

j n j n j
                                 (3.7) 

                
0

( 1)!

( 1) .
!( 1 )!( )!

n j

n
j

n n j
j

a
k

j n j n j
                                          (3.8) 

 

An interface has been developed in MATLAB, which calculates the form of gamma 

distribution with Laguerre polynomials as an approximation for different types of 

distributions.  The sum squared errors (SSE) are calculated for the difference between the 

target distribution and the approximated distribution. These SSE are calculated as: 

                                                         2

, ,
1

1
( ) ,

en

n i n i
ie

SSE f f
n

                                       (3.9) 

where 
,n i
f  is the target distribution, 

,n i
f  is the approximated value of the population density 

function and 
e
n  is the number of the evaluation points.   

Figure 3.2 shows the results for the approximation properties using gamma with Laguerre 

polynomials for some commonly used distributions including Gaussian, lognormal and 

bimodal distribution. The forms of the three target distributions are: 

                                       
2 2[( ) ]/(2 )1

, 2
,L L

n G
f e                                                    (3.10) 

                                                2 2[ (log( ) log( )) ]/(2 )1
, 2

,L L

n LN L
f e                                     (3.11) 

                                     
4 2

1 2 1[ ( ) ( ) ]

,
.L L

n BM
f e                                                  (3.12) 

Lower-order moments were used to approximate these basic distributions and the moments 

were calculated numerically for the respective distribution functions. Figure 3.2 (a) shows 

the comparison of the reconstructed distribution for Gaussian distribution and gamma 

distribution with Laguerre polynomials. The method was able to capture the shape of the 

Gaussian distribution well by using the first four moments only.  It can also be observed 

from Figure 3.2 (b) that the shape of the lognormal distribution was also captured well using 

gamma distribution with Laguerre polynomials, using only the first four moments. However 

the shape of the bimodal distribution was not captured well by the gamma distribution with 
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Laguerre polynomials, as shown in Figure 3.2 (c). The results indicate that gamma with 

Laguerre polynomials can produce good approximations for Gaussian and lognormal 

distribution using lower-order moments. However the approach was not able to approximate 

the bimodal distribution using lower-order moments only.  
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Figure 3.2: Comparison of approximation of different distribution using 4th order gamma with 
Laguerre polynomials for a) Gaussian distribution ( 50 and 10L ) b) lognormal 
distribution ( log(1.2) and 0.3L ) and c) bimodal distribution (

1 2
3 and 1). 

 

Therefore higher-order moments (from 10-16) were used to reconstruct the bimodal 

distribution. As the number of moments has increased a better reconstruction of the bimodal 

distribution has been obtained, as shown in Figure 3.3. The sum squared errors for 10th and 

16th order approximation were 0.33 and 0.18 respectively, which confirms that by increasing 

the number of moments, a better CSD approximation can be obtained even for bimodal 

distribution, however negative values in the pdf’s can also be observed when higher 

moments were used. 
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Figure 3.3: Comparison of a bimodal distribution (
1 2

3 and 1) with the approximation 
from gamma with Laguerre polynomials a) using up to 10th order moments and b) using up to 
16th order moments.  
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The reconstructed distribution results for Gaussian and lognormal distribution has been 

obtained using lower-order moments but higher order moments were required for bimodal 

distribution. Therefore the higher-order moments were used for simple Gaussian and 

lognormal distribution to check the capability of the technique. Results shown in Figure 3.4 

(a and b), indicate that higher order corrections involving Laguerre polynomial terms 

produce oscillations about the gamma distribution. These oscillations grow larger with 

increasing number of terms. However the reconstruction of the bimodal distribution has 

improved with higher-order of moments, as already shown in Figure 3.3 (c). 
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Figure 3.4: Approximation of distributions using gamma with Laguerre polynomials using 9th 
order moments a) Gaussian distribution ( 50 and 10L ) and b) lognormal distribution 
( log(1.2) and 0.3L ). 

 

The results indicate that the technique has some limitations. These are mainly related to how 

different the shape of the target distribution is from the gamma distribution. Since the 

Laguerre polynomial modifies the basic shape of the gamma distribution in the case when 

the approximated distribution has a very different shape, the quality of the approximation 

with smaller number of polynomial terms, is poor, as shown in Figure 3.2 (c). In this case 

generally a higher order approximation is required, as shown in Figure 3.3 (a and b). 

However, when higher order coefficients are used for the approximation of simpler 

distributions (e.g. Gaussian and lognormal) the approximated distribution often exhibits 

oscillations. Hence the main disadvantage of the approach is the difficulty in the 

determination of the suitable number of polynomial terms, which requires a priori 

knowledge about the shape of the distributions. Additionally if during the crystallisation 

process the shape of the distribution changes (e.g. from mono-modal to bimodal due to 

nucleation) the number of Laguerre polynomial terms should be adapted. In the previous 
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technique the CSD was reconstructed by assuming a priori shape. Another way to 

approximate the CSD is to use moments of the distributions in inversion approaches. 

3.2.2 Linear inversion technique 

Another category of distribution reconstruction techniques is based on moment inversion. 

The thj  moment of a distribution is written as: 

                                      
0

,j

j n
f L dL                                                           (3.13) 

for which, the first-order approximation is given as: 

                                                   
, ,

1

,
dN

j

j n k m k k
k

f L L                                                   (3.14) 

where 
,n k
f is the value of the population density function 

n
f  at the midpoint 

,m k
L  of a size 

range 
k
L  and 

d
N  is the number of discretisation points. Figure 3.5 gives a graphical 

representation of the discretisation points for the linear inversion technique.  

 

     

 

Figure 3.5: Graphical representation of the discretisation points and mid points, for the linear 
inversion technique. 
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Rewriting equation (3.14) as a linear combination of 
d
N  ordinate values of the distribution  

,n k
f  gives 

                                        ( )

,
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,
dN

j

j k n k
k

a f                                                     (3.15) 

where ( )

,

j j

k m k k
a L L . The number of discretisation is given by

d
N . Expanding the above 

relationship for 1k  to 
d
N  gives: 

                            

0 ,1 1 ,2 2 ,

1 ,1 ,1 1 ,2 ,2 2 , ,

1 1 1

1 ,1 ,1 1 ,2 ,2 2 , ,

...

...

... .

d d
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d d d d

n n n N N

n m n m n N m N N

N N N

N n m n m n N m N N

f L f L f L

f L L f L L f L L

f L L f L L f L L

                      (3.16) 

Rewriting equation (3.16) in matrix form 
n

Af , (3.17), where  
( ,1)dN

 is a column vector 

with 
d
N  elements,  

( , )d dN N
A  is a 

d d
N N  matrix and 

,( ,1)dn N
f  is a column vector with 

d
N  

elements containing the values of the number density function results in a system of linear 

equations, as the only unknown are the values of 
n
f . Equation (3.17)  is a simple linear 

system of equation 
n

Af  with the solution 1

n
f A . The moments required can either be 

calculated numerically from a model or can be determined from experimental data. For 

following examples the used moments were calculated numerically from known distribution 

functions, and the whole distribution is divided into equal parts 
1

...
dN

L L L . The 

methods to calculate the mid points, discretisation points, size ranges and their effects are 

described in detail in Section 3.3. 

 

1 20 ,1
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d d
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n N N

N N N
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L L Lf
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f A
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 (3.17) 

                                                                                

Figure 3.6 shows the results of reconstruction of CSD for commonly used distribution 

functions by using linear inversion technique. Different number of discretisations was used 

to approximate the shape of the distributions. It can be observed that linear inversion method 
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gives reasonable approximation for Gaussian distribution, as shown in Figure 3.6 (a-c).  The 

sum squared errors for these distributions are given in Table 3.3. 

 

Table 3.3: The sum square errors (SSE) calculated for different distribution functions and 
discretisation numbers for linear inversion. 
Distributions Sum Squared Error (SSE) 

3 discretisation  points 5 discretisation points 8 discretisation points 
Gaussian 0.22 0.01 0.03 
Lognormal 0.21 0.02  0.46 
Bimodal 0.45 0.38 0.11 

 

Figure 3.6 (a-c) shows that increasing the number of discretisation give better approximation 

for the Gaussian distribution. However the technique gives negative pdfs for Gaussian 

distribution at more than ten discretisation points. The sum square error value was the 

smallest in the case of five discretisation points, as given in Table 3.3. The SSE is similar 

using eight discretisation points. However in this case eight moments are required, which are 

practically difficult to obtain. Similarly, in the case of lognormal distribution, the shape of 

the lognormal distribution was captured well using five discretisation points and no negative 

pdf values were observed. The value of SSE is also the smallest for five discretisation points, 

which corresponds to the reconstructed distribution shown in Figure 3.6 (e). Negative pdf 

values were observed at eight discretisation points for the lognormal distribution, as shown 

in Figure 3.6 (f), hence indicating that higher discretisation points cannot be used in this 

particular case.  In the case of lognormal distribution the best reconstruction of the shape 

was achieved using 5
d
N , as shown in Figure 3.6 (e). The shape of the bimodal 

distribution cannot be captured using only three or five discretisation points, as shown in 

Figure 3.6 (g) and (h). Using higher number of discretisation points ( 8
d
N ) the shape of 

the bimodal distribution is captured better, as shown in Figure 3.6 (i), however some 

negative pdf values started to appear. These results indicate that the major problem with the 

linear inversion approach is the generation of negative values in the reconstruction of the 

distribution. Increasing the number of moments produced negative pdf values in case of 

lognormal and bimodal distribution. The other common problem related to linear inversion 

technique is ill-conditioning, which has been described in detail in the literature (Flood, 
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2002; John et al., 2005; Mesbah et al., 2009), therefore examples for ill-conditioning are not 

included in the thesis. 
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Figure 3.6: The approximation of CSD using linear inversion technique using 3, 5 and 8 
discretisation points.  Gaussian distribution (a-c) ( 50 and 10L ), lognormal distribution 
(d-f) ( log(2.0) and 0.2L ) and bimodal distribution (g-i) (

1 2
3 and 1). 

 

The linear inversion technique can be improved by solving it as an optimisation problem 

using hard constraints for positive pdf values. The mathematical form for constrained linear 

inversion technique is given by: 

                             
,

2 1
2

, ,
1 1

min ( ) ,
d d

n i

N N
j

j m i i n if
j i

L L f                                               (3.18) 

              subject to:                     
,

0.
n i
f   

This problem is solved to achieve the best fit for the distribution using the lsqnonneg 

function in MATLAB (Mathworks, Inc), which implements the non-negative least square 

(NNLS) optimisation approach. The constraint 
,

0
n i
f  is added so that negative values can 

be avoided. The number of moments used is 2 dN . The system is over-determined, since 2
d
N  
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equations are used for a number of unknowns equal to 
d
N .  Figure 3.7 shows the results of 

the CSD reconstruction using the constrained linear inversion technique. The results indicate 

that poor approximation of the Gaussian distribution was achieved although there are no 

negative values in the distribution. The comparison of the SSE values is given in Table 3.4. 

It can be observed that the SSE values were 0.01 and 0.89 for the linear and optimisation-

based linear inversion techniques, respectively. The distribution reconstructed by the linear 

inversion technique is better than the optimised linear inversion technique, due to the 

difficulty in finding the global optimum in the latter case. In the case of the lognormal and 

bimodal distributions, the optimisation-based linear inversion eliminates the negative pdf 

values, however overall the approximation is worse than in the case of simple linear 

inversion. 
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Figure 3.7: Comparison of linear and optimisation-based linear inversion techniques: a) 
Gaussian ( 50 and 10L ); b) lognormal ( log(2.0) and 0.2L ) and c) bimodal 

distribution (
1 2

3 and 1). 
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Table 3.4: The sum square errors (SSE) calculated for different distribution functions shown in 
Figure 3.7 using the linear and optimisation-based linear inversions. 

Distribution 
Sum Squared Error  (SSE) 

Linear inversion Optimisation-based linear inversion 
Gaussian (5 discretisations) 0.01 0.89 
Lognormal (6 discretisations) 0.12 0.25 
Bimodal (6 discretisations) 0.24 0.49 

3.2.3 Non-linear inversion technique 

In the non-linear inversion technique, 
n
f  and L  are treated as unknowns and the distribution 

is discretised into 
d
N  intervals. In this case L  is not equally spaced and the 

m
L  and L  

are calculated from the respective length intervals, where 
0
L  and 

f
L  are the initial and final 

particle sizes determined by the algorithm described in Figure 3.9. The methods to calculate 

the mid points, discretisation points, size ranges and their effects are described in detail in 

Section 3.3. Initially the discretisation steps are initiated as:      

                                      
0 0
: ( )/ :

f d f
L L L L N L ,                                     (3.19) 

both 
0
L  and 

f
L  are fixed and then 

m
L  and L  are calculated using the following 

relationships: 

                             

1 1 0 ,1 0 1

2 2 1 ,2 1 2

1 , 1

          and        ( ) / 2,

          and        ( ) / 2,

      and        ( ) / 2.
d d

m

m

N f f m N f f

L L L L L L

L L L L L L

L L L L L L

         (3.20) 

The set of non-linear equations for the non-linear inversion is as follows: 

  

,1 1 ,2 2 , 0

,1 ,1 1 ,2 ,2 2 , , 1

2 1 2 1 2 1

, ,1 , ,2 , , 2 1

... 0

... 0

... 0.

d d

d d d

d d d

d d d d d d d d

n n n N N

n m n m n N m N N

N N N

n N m N n N m N n N m N N N

f L f L f L

f L L f L L f L L

f L L f L L f L L

               (3.21) 

Since there are two sets of unknowns ( n
f  and L ) in the non-linear inversion, 2

d
N  moments 

are required for the calculation of the distribution. To solve this system, the fsolve  

MATLAB function was used. Figure 3.8 shows the results obtained using the non-linear 

inversion technique.  
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Table 3.5: The sum square error (SSE) calculated for the reconstruction of different 
distribution functions for different discretisation numbers using the non-linear inversion 
approach. 
Distribution Sum Squared Error (SSE) 
 3 discretisation points 5 discretisation points 8 discretisation points 
Gaussian 0.31 0.05 0.08 
Lognormal 0.28 0.10  0.32 
Bimodal 0.68 0.44 0.11 

 

For comparison purpose the same number of discretisation points was used as for the linear 

inversion technique. Comparing the results shown in Figure 3.6 and Figure 3.8 for the same 

number of discretisation points indicates that the linear inversion generally gives better 

results for Gaussian, lognormal and bimodal distributions than the non-linear inversion 

technique. This is also evident by the sum square errors calculated for the two techniques 

and shown in Table 3.3 and Table 3.5.  
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Figure 3.8: The approximation of CSD using non-linear inversion technique using 3, 5 and 8 

discretisation points.  Gaussian distribution ( 50 and 10L ) (a-c), lognormal distribution 

( log(2.0) and 0.2L ) (d-f) and bimodal distribution (
1 2

3 and 1  ) (g-i). 

Other major problems have also been observed in the non-linear inversion technique. 

Increasing the number of discretisations increases the number of evaluations and number of 
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iterations to acquire the best solution, increasing significantly the computational effort 

required to obtain the solution. The problem also becomes numerically more ill-conditioned, 

and hence more difficult to solve. Therefore the non-linear inversion technique cannot be 

used successfully for CSD approximation. The negative pdf values can be eliminated in non-

linear inversion technique by using constraints and solving the inversion as an optimisation 

problem. The mathematical representation is given by: 

                                      
, ,

2 1
2

, ,,
1 1

min ( )
d

n i m i

N n
j

j m i i n if L
j i

L L f ,                                     (3.22) 

subject to:    
,

0
n i
f .                                                                  

This problem was solved using the fmincon function in MATLAB (Mathworks, Inc). The 

constraint 
,

0
n i
f  was added to remove the negative values of the pdf. The number of 

moments used was 2
d
N . The system was not over-determined as in this case we have two 

unknowns. No significant improvement in the results was obtained by solving the problem 

as a constrained optimisation, the negative pdf’s were removed, however the overall CSD 

approximation has become worse compared to the approximation using the solution as a 

system of nonlinear equations. 

 All aforementioned inversion techniques require input of the moments, the initial and the 

final value for the particle size, number and length of discretisation points and intervals and 

the calculation of mid points for the discretisation intervals. Therefore, all these factors are 

of key importance. If the given range of particle size is very large and the distribution lies in 

a very small range, it is possible that that the whole distribution is embedded in a few 

discretisation intervals only. It is also possible that if the given range is very small and the 

actual distribution is broad enough, the whole distribution cannot be captured. Even a slight 

change in the range can give variations in the approximations. Similarly errors in the 

moments can also lead to significant errors in the results of the inversion techniques. The 

most important factors, which can affect the results of the inversion techniques, are 

discussed in the next section. 
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3.3 Factors affecting the moment inversion technique 

3.3.1  Selection of size range  

For the reconstruction of the distributions the selection of the size range is important to 

avoid negative values in the reconstructed pdf’s. The methodology for selecting the size 

range is given in Figure 3.9. Instead of using a trial-and-error approach the size range is 

selected using the moments of the distribution obtained e.g. from a moment based model. 

Then the mean and standard deviation are calculated using the moments with the following 

relationships: 

                               

2

1 2 1

0 0 0

    and     ,L                                (3.23) 

where L  is the mean,  is the standard deviation, 
0
, 

1
and 

2
 are the zeroth, first and 

second order moments, respectively. The mean and standard deviation are used to derive the 

lower and the upper bounds for the size range, using a size range parameter . The value of 

 selected was 3, 3.5 or 4. The selection of value of  is based on the fact that three sigma 

covers 99.97% of the whole distribution (note that this is true for Gaussian distribution only; 

for significantly skewed distributions a different approach for the determination of  may 

be required), hence a value between 3 to 4 should provide a size range large enough to cover 

the range of the distribution, without being too broad to generate inversion problems, due to 

the size bins where the distribution has zero values. For all results shown previously in 

Section 3.2 the value of 4.0  was used. 

 

 

Figure 3.9: Algorithm for calculating the size range for the distribution reconstruction by 
inversion of moments. 

    

min
L L  

  Moment generation, e.g. from a 
moment based model    

Calculation of mean and standard 

deviation 

  
  

  

Calculation of mean and standard 
deviation using moments 

max
L L  
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3.3.2 Number and type of the discretisation intervals 

The calculation of the discretisation points is also very important for the inversion approach. 

For the linear inversion technique the discretisation points may be equally spaced in 

accordance to an arithmetic progression or calculated based on a geometric progression. For 

the equally spaced discretisation the size bins are calculated as follows;                  

 
1 2 0

..... ( )/
dN f d

L L L L L L N , (3.24) 

and the discretisation points (edges of the size bins) are calculated as 

1
,  1,...,

i i d
L L L i N . When a geometric progression is used the edges of the size bins 

are not equally spaced; they follow a geometric progression characterized by a constant ratio 

(
G
r ) between two neighboring sizes: 1/ ,  1,...,G i i dr L L i N . For a generic geometric 

progression the ration 
G
r  can be calculated by 1/

0( / ) dN
G fr L L . 

3.3.3  Calculation of mid points 

Three different techniques can be used for the calculation of the mid points for the inversion 

techniques as required for equations (3.16) and (3.21): arithmetic mean, geometric mean and 

Hounslow mean.  

a. Arithmetic mean 

Considering 
0
L  as the initial (minimum) and 

f
L  the final (maximum) particle size (in m ), 

the arithmetic mean values for the size bins are: 

                  
,1 0 1 ,2 1 2 , 1

( )/ 2,   ( )/ 2  ,...,  ( )/ 2.
d dm m m N N f

L L L L L L L L L           (3.25) 

As L  represents the discretised length which are equally spaced therefore calculating 
m
L  

in form of L  will give: 

       
,1 0 1 ,2 1 2 , 1

( / 2), ( / 2),..., ( / 2)
d d dm m m N N N

L L L L L L L L L .        (3.26) 

b. Geometric mean 
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In many CSD measuring instruments such as Malvern Mastersizer, Coulter and Malvern 

Insitec the geometric mean is used to calculate the mean of the size intervals. The geometric 

mean corresponding to the size bins can be defined as:
 

                                        
,1 0 1 ,2 1 2 , 1

,   ,  ... , .
d dm m m N N f

L L L L LL L L L        (3.27)

Calculating 
m
L  in terms of L  will give:

 

                 
,1 0 1 0 ,2 1 2 1 ,

( ), ( ),..., ( )
d dm m m N f f N

L L L L L L L L L L L L .       (3.28) 

c. Hounslow mean 

The Hounslow mean was developed specifically for discretised population balance equations 

(Hounslow et al., 1988) and is given by the following expression:  

                                             
1

, 1

1

( 1)( 1)

j
j j H
m k k

H

r
L L

r j
,                                                  (3.29) 

The Hounslow mean is used in conjunction with constant ratio discretisation (in general 

3
1/ 2H j jr L L ). Generally the Hounslow mean is more difficult to use than the 

arithmetic or geometric means, since the mean varies with the moment it is used for (Flood, 

2002). The mean for the zeroth moment is the lower limit of the size interval, the mean for 

the first moment is slightly larger than the geometric mean, whereas the mean for the large 

moments approaches the upper limit of the size class. Figure 3.10 shows a comparison of the 

inversion approach using arithmetic and geometric means with linearly spaced discretisation 

intervals, as well as for constant ratio discretisation (Figure 3.10 (d)). The limits of the 

discretisation intervals were calculated according to Figure 3.9, using 4.0  (
0
L L  

and 
f
L L ). A linearly distributed discretisation of 6

d
N  was used in Figure 3.10 

(a-c), with a discretisation interval 0( )/ (2 )/f d dL L L N N . For the constant ratio 

discretisation (Figure 3.10(d)) 3
d
N  was used, yielding a ratio of 1/3

0( / )G fr L L . The 

arithmetic mean gives a slightly better approximation than the geometric mean in case of the 

Gaussian and lognormal distributions, as shown by the SSE values in Table 3.6. However in 

the case of the bimodal distribution negative values in the pdf were observed at lower 

discretisation points using the arithmetic mean, and the geometric mean provided a slightly 



Chapter 3: Techniques to reconstruct crystal size distribution from moments 73 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

better approximation (lower SSE value). Using the constant ratio discretisation (Figure 3.10 

(d)) gives negative pdf values even for three discretisation points for the simple Gaussian 

distribution, independently whether arithmetic or geometric mean were used. 
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Figure 3.10: Comparison of approximated distribution using arithmetic and geometric mean 
for 6 discretisation points: a) Gaussian distribution ( 50 and 10L ) b) lognormal 
distribution ( log(2.0) and 0.2L ) c) bimodal distribution (

1 2
3 and 1) and d) 

arithmetic and geometric means using constant ratio discretisation, on three intervals for 
Gaussian distribution ( 50 and 10L ).  

 

Table 3.6: The sum square error (SSE) calculated for different distribution functions to 
compare the difference between using arithmetic and geometric mean for the inversion. 

Distributions No of discretisation 
Sum Squared Error (SSE) 

Arithmetic Mean Geometric Mean 
Gaussian 6 0.005 0.007 
Lognormal 6 0.12 0.14 
Bimodal 6 0.24 0.20 
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3.3.4 Error in moments 

In all previous examples the moments used were obtained numerically from different 

distribution functions. This method gives exactly the required initial moments for the 

inversion. However even with the exact moments the reconstruction of the distribution was 

just satisfactory in some cases, and more often was not good enough to be used for model 

based control and optimisation approaches. Alternatively moments can be determined from 

the experimental measurement of CSD, as shown in Figure 1.1. However the errors in the 

experimental moments can be very high due to uncertainties and disturbances related to the 

measurement approaches. As both the inversion techniques and the approaches based on 

modified distribution functions using polynomial based corrections are based on the 

moments, therefore errors in the moments can lead to large errors in the CSD approximation.    

3.4 Case study for seeded batch crystallisation processes 

The distribution reconstruction techniques described in the previous sections were used to 

simulate the dynamic evaluation of the CSD for a seeded batch crystallisation process. The 

generic form of the population balance equation, for a well-mixed crystalliser, considering a 

single growth direction with one characteristic length L , is given as 

                           
( ( , ; ) ( , ))( , )

0,g nn
G S L f L tf L t

t L
                       (3.30) 

where ( , )
n
f L t  is the crystal size distribution expressed as the number density function 

(number of crystals per unit volume), t  is the time, ( , ; )
g

G S L  is the rate of crystal growth, 

( )
sat

S C C  is the absolute supersaturation, C  is the solute concentration, ( )
sat sat
C C T  

is the saturation concentration with T  being the temperature, and 
g
 is a vector containing 

the growth kinetic parameters. For the simulations a system with linear size-dependent 

growth is considered with a particular growth rate given by 

                                                1 0.02 .G L                                                         (3.31) 

It is considered that the seed charged to the crystallizer is normally distributed with a mean 

50sL m  and standard deviation 10s m : 
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2

2

( )

21
( ) .

2

s

s

L L

n

s

f L e                                                (3.32) 

In the case of constant supersaturation the PBE (3.30) can be solved analytically using the 

method of characteristics (as explained in detail in Chapter 2).  Rearranging equation (3.30) 

gives: 

                  
( ( , ; ))( , ) ( ( , ))

( , ; ) ( , ) .gn n
g n

G S Lf L t f L t
G S L f L t

t L L
                    (3.33) 

Comparing equation (3.33) with equations (2.24) in Chapter 2 results in the following set of 

ordinary differential equations (ODEs) which give the characteristic equations of the PBE: 

                                                1 0.02 ,   
dL

L
dt

                                 (3.34) 

                                                 0.02 ,n
n

df
f

dt
                              (3.35) 

with initial conditions 
0 ,0 0

[ , ( )]
n

L f L . Solving the system of ODE (3.34) and (3.35) the 

following time dependent expression for the evolving distribution can be obtained,  

                                      

20.02

2

( 50) 50

2 0.021
( , ) .

2

t
s

s

L e L

t
n

s

f L t e e                             (3.36) 

The moments were calculated numerically using the equation (3.36) or alternatively they can 

be calculated using the QMOM explained in detail in Chapter 2.  

The seed distribution was approximated using the linear inversion technique. For the linear 

inversion technique five discretisation points were used and the size range was selected 

using the algorithm shown in Figure 3.9 with 4.0 . It can be seen from Figure 3.11 (a) 

that although the linear inversion gives a good approximation of the seed CSD, a larger 

number of discretisation points would be required to attain the actual shape of the CSD. The 

sum squared errors between the seed distribution and the approximated distributions for 

different number of discretisations are shown in Figure 3.11 (b). It can be seen that at least 

four to five moments are required to attain a good approximation of the distribution. 

However, when more than five discretisation points are used the error increases again due to 

numerical errors caused by the ill-conditioning of the inversion problem. Thus the linear 
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inversion approach is unable to provide the shape of the distribution with a high enough 

resolution for CSD shape optimisation. 
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Figure 3.11: a) Approximation of the seed distribution using linear inversion technique with five 
discretisation points. b) Sum squared errors vs. number of discretisation corresponding to the 
linear inversion based approximation of the seed distribution. 

Using five discretisation points and 4.0  produced the best approximation for the seed 

distribution. Therefore five discretisation points with 4.0  were used to approximate the 

distribution at several time steps during the batch. The total batch time for the simulated 

crystallisation process was 60 minutes. Figure 3.12 shows the comparison between the 

dynamic evolution of the exact CSD (obtained from equation (3.36)) throughout the batch 

and the reconstructed distribution using the linear inversion technique. 
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Figure 3.12: Comparison of the dynamic evolution of the exact and approximated (using the 
linear inversion technique) crystal size distributions for the simulated seeded batch 
crystallisation processes with linear size dependent growth kinetics, at a) t = 0 min, b) t = 15 
min, c) t = 30 min, d) t = 45 min and e) t = 60 min. 
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Due to selected growth kinetics (i.e. linear size-dependent growth) the shape of the 

distribution broadened with time. The approximated distribution using linear inversion 

technique captured the dynamic evolution of crystal distribution very well. However the 

technique can only provide a coarse approximation. For on-line optimisation and control of 

the shape of the CSD higher resolution is required. Therefore in practical scenarios linear 

inversion technique might not be an attractive option for the approximation of the 

distribution for optimisation and control, however it may provide a quick and easy solution 

for qualitative and semi-quantitative CSD monitoring in certain applications. 

The gamma distribution with Laguerre polynomials was also used to approximate the seed 

distribution. Figure 3.13 (a) shows a comparison of the seed distribution and the 

approximated distribution using the gamma with Laguerre polynomials. Figure 3.13 (b) 

indicates that the sum squared error was very low using up to 5th order polynomials. 

However, as the number of polynomials was increased, the error between the seed and the 

approximated distribution increased. When eighth order polynomial was used oscillations 

were observed in the approximated distribution. 
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Figure 3.13: a) Approximation of seed distribution using the gamma distribution with Laguerre 
polynomials using 5th order coefficients. b) Sum squared errors vs. order of Laguerre  
polynomials for the approximation of the target distribution. 

 

The approach works very well with lower-order moments. Using first five moments only, 

the approximated distribution captured the shape of the seed distribution very well. Same 

number of coefficients of polynomial, (i.e. 5 coefficients of polynomials) was used to 

evaluate the approximation for several time steps, during the crystallisation process. The 

moments for several time steps were calculated from the analytical solution using equation 
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(3.36). Figure 3.14 show that the gamma distribution with Laguerre polynomials has 

approximated the distribution very well throughout the entire batch. Since the distribution 

has a simple shape, the gamma distribution with a low order Laguerre polynomial is able to 

provide a very good approximation.  

Both approximation approaches worked well for the presented case study. This can be 

explained by the fact that although the shape of the distribution has changed during the batch 

(the distribution has broadened) the actual type of the distribution remains the same. The 

analytical solution given by equation (3.36) can be rearranged in the following form:  
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e
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e

 (3.37) 

which indicates that the type of the distribution is Gaussian throughout the batch, with time 

dependent mean 0.02( ) (50 ) 50t

s
L t L e  and time dependent standard deviation 

0.02( ) t

s
t e . In fact the distribution in this case could be easily approximated by a simple 

Gaussian distribution using the first three moments only to calculate the mean and standard 

deviation at any moment during the batch. However this approximation would rely on the 

knowledge that the distribution maintains its Gaussian type during the batch, information 

which would not be available in a generic case. 
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Figure 3.14: Comparison of dynamic evolution throughout the batch of the exact crystal size 
distribution and the approximated distribution using the gamma with Laguerre polynomials for 
the seeded batch crystallisation processes with linear size dependent growth kinetics.  
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To evaluate the capability of the approximation technique for a case when the type of the 

distribution changes during the batch, the dynamic evolution of the CSD obtained during an 

experiment was used next (the details of the experiment are given in Chapter 5). In the 

experiment a mono-modal seed was used, however due to secondary nucleation a bimodal 

distribution has developed during the crystallisation process. The moments were calculated 

from the measured CSDs. These moments were used off-line to reconstruct the distribution 

using the approximation based on gamma distribution with Laguerre polynomials.  
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Figure 3.15: Comparison of the experimental CSD and the approximated distribution, using 
gamma distribution with 5th order Laguerre polynomials, for a seeded batch crystallisation 
processes throughout the batch. 

 

Based on the mono-modal seed distribution 5th order Laguerre polynomials were selected as 

weighting functions for the gamma distribution. Figure 3.15, shows that the approximation is 

very good for the seed distribution and for the first part of the batch when the distribution 

remains mono-modal. However as soon as the distribution has changed from mono-modal to 

bimodal, the approximation was unable to capture the shape. As the bimodal features 

develops even further during the batch (after 15 minutes) the approximated distribution 

exhibits large oscillations even with the 5th order polynomial and thus are not shown in the 

figure for clarity of presentation.  

These results indicate that the gamma+Laguarre approximation can be a very efficient CSD 

reconstruction method, which can be used in conjunction with the SMOM or QMOM, for 

cases when during the batch the CSD remains mono-modal. In these cases generally the 
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shape of the seed CSD would be available from off-line analysis, and could be used to tune 

the approximation method. Subsequently the SMOM or QMOM could be used for the 

prediction of the moments, which then can be used with the gamma+Laguerre 

approximation (with the number of polynomials determined based on the seed CSD) to 

reconstruct the CSD at any given time. This method could be used efficiently for 

supersaturation controlled and growth dominated processes. However when the 

crystallisation process involves multimodal distributions, e.g. due to secondary nucleation 

the approach may not be applicable. Therefore for more complex CSD design and control 

problems there is a strong incentive for methodologies that can predict the evolution of the 

shape of more complex distributions without requiring a priori information. 

3.5 Conclusions 

In this chapter different techniques were evaluated that can be used to predict the crystal size 

distribution by using lower order moments determined numerically for various distribution 

functions. The most common way of approximating the CSD is to assume a priori shape of 

the distribution, such as Gaussian, lognormal, bimodal, etc. Reconstruction based on known 

functions is a simple and fast method however requires information concerning the expected 

shape of the distribution. For new applications with an unknown CSD, or when the shape of 

the CSD can change during the process, this method is unlikely to be applicable.  

Other techniques which can be used to approximate the CSD, such as gamma distribution 

with Laguerre polynomials, linear inversion, optimisation-based linear inversion, non-linear 

inversion and optimisation-based non-linear inversion techniques were also evaluated. 

Different types of distributions, such as Gaussain, lognormal and bimodal were 

approximated. It was observed that a gamma distribution modified with Laguerre 

polynomials approximated these distributions relatively well. The technique is able to 

capture some common distributions qualitatively, and most of the cases even quantitatively 

well, using lower order moments. When bimodal distribution is used higher order moments 

are required for the approximation; however negative pdf values and oscillatory behaviour 

was observed when higher order moments were used for the approximation of the simpler 

mono-modal distributions. 
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Linear inversion technique was also able to coarsely approximate various distributions; 

however negative pdf values were observed with higher discretisations. No significant 

improvement was observed using non-linear inversion technique, despite the significantly 

increased computational requirement compared to the linear inversion. The selection of mid 

points and discretisation points are very important factors and may affect the approximated 

CSD by these techniques. 

The linear inversion and the gamma+laguarre approximation techniques were also tested for 

a seeded batch crystallisation process with growth the only dominating phenomenon, under 

the assumption of constant supersaturation and linear size-dependent growth mechanism. 

The linear inversion technique provided a good but coarse approximation of the CSD during 

the batch, however with increasing the number of discretisations the inversion problem has 

become ill-conditioned. This approach may provide a good qualitative and semi-quantitative 

approximation of the evolution of the CSD during a crystallisation process and could be 

used for monitoring purposes, however cannot provide the resolution and accuracy needed 

for CSD shape optimisation and control. Using gamma distribution with orthogonal 

polynomials approximated the seed distribution and the dynamic evolution of the shape of 

the CSD very well using lower order moments. This approach can provide an efficient CSD 

approximation method for growth dominated processes for which the distribution is mono-

modal during the whole batch. However, in the cases when the shape of the distribution may 

change from mono-modal to bimodal or multimodal (e.g. due to secondary nucleation or 

breakage) the approach fails. The linear inversion and gamma+laguarre approximation 

techniques are unable to provide a generic approximation method for the CSD due to ill-

conditioning, negative values in the pdf and oscillatory behaviour. Therefore efficient CSD 

reconstruction techniques are required, which are applicable for growth and nucleation 

mechanisms, and for complex CSD optimisation and control problems.   
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Chapter 4  
Combined QMOM-MOCH approach for 
the efficient solution of PBE for batch 
crystallisation processes 

4.1 Introduction 

As discussed in Chapters 2 and 3, both the standard method of moments (SMOM) and the 

quadrature method of moments (QMOM) provide efficient solutions of the PBE and have 

been widely used in the literature for optimisation and control purposes (Fujiwara et al., 

2005; Nagy and Braatz, 2003a). However, these approaches only provide the moments of 

the CSD and not the entire distribution. Several techniques are available to reconstruct the 

distribution from its moments, e.g. using linear or non-linear inversion approaches (as 

discussed in Chapter 3). These techniques often have the disadvantage that they require a 

larger number of moments, produce negative pdf values and generally suffer from solution 

multiplicity and ill-conditioning problems. Approximate distribution functions (e.g. 

polynomial, normal, gamma or lognormal), or a weighted sum of distributions, using for 

example orthogonal polynomials as weighting functions, can also be used to reconstruct the 

shape of the distribution from the moments (Flood, 2002; Randolph and Larson, 1971) (also 

discussed in Chapter 3). However, the solution of such inverse problems is usually not 

unique. There is also a lack of systematic methodologies for the choice of the suitable type 

and number of base functions and distributions. Hence the approximate distribution 

functions resulting from both categories of reconstruction methods may be subject to 

spurious oscillations and the correctness of the resulting shape of distribution is difficult to 

evaluate in most practical cases. The method of characteristics (MOCH) in combination with 

the SMOM has been used successfully for processes with size-independent growth and 

nucleation (Hounslow and Reynolds, 2006), including the modelling and control of 

polymorphic transformations (Hermanto et al., 2007; Ono et al., 2004). However this 

approach does not apply in the more generic case of a PBE with size-dependent growth, 



Chapter 4: Combined QMOM-MOCH approach for the efficient solution of PBE for batch 
crystallisation processes 83 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

dissolution and secondary nucleation or when breakage and agglomeration mechanisms need 

to be considered. 

The approach presented in this chapter combines the advantages of QMOM and the MOCH 

to provide a computationally efficient technique for the prediction of the entire CSD. The 

algorithm can be applied for the solution of population balance equations with generic size-

dependent growth and nucleation kinetics and have a potential for more general framework 

for the efficient solution of PBEs even in the case of breakage and agglomeration. This is a 

novel approach, when these two approaches have been combined which provides an efficient 

solution for a model-based control of distribution shaping.  

4.2 Novel methodology for the efficient solution of the 

PBE based on combined QMOM-MOCH 

Crystallisation processes can often be modelled by considering the growth and nucleation 

mechanisms only. Considering a single growth direction with one characteristic length, L , 

and a well-mixed crystalliser with growth and nucleation as the only dominating phenomena 

the expression for the population balance equation (PBE) has a simplified form of 

 
0

( , ; ) ( , )( , )
( ; ) ( , ),

g nn
b

G S L f L tf L t
B S r L

t L
 (4.1) 

where ( , )
n
f L t is the crystal size distribution expressed in the number density function 

(# /  crystals kg slurry ), t  is time in ( )s  , ( , ; )
g

G S L is the rate of crystal growth ( 1 m s ), 

( , )
b

B S  is the nucleation rate (#/ /kgslurrys ), 
sat

S C C  is the absolute supersaturation 

in ( /  kg kg slurry ), C  is the solute concentration expressed in (  /  )kg solid kg slurry , 

( )
sat sat
C C T  is the saturation concentration with T  being the temperature in ( )C , 

0
r  is the 

size of nuclei, 
0

( , )r L  is the Dirac delta 0 0
( 1   and 0  )if L r if L r , 

g
 is the 

vector of growth kinetic parameters and b is the vector of nucleation kinetic parameters. 

The solution of equation  (4.1) is an initial value problem with initial condition given by the 

size distribution of the seed, 
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The boundary condition is 
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4.2.1 Combined QMOM-MOCH approach for size-dependent growth 

and secondary nucleation 

Equation (4.1) can be transformed into a system of ODEs by applying the standard method 

of moments (in the case of size-independent growth and nucleation) or the quadrature 

method of moments (in more generic cases including size-dependent growth, breakage and 

aggregation). Both methods allow the calculation of the evolution of the moments of the 

distribution, defined as 

 
0

( ) , 0,1,2, ,j

j n
f L LdL j . (4.3) 

The quadrature method of moments (QMOM) is a generic solution approach for the PBE 

(Marchisio et al., 2003a; Marchisio et al., 2003b; McGraw, 1997). It employs a quadrature 

approximation of the distribution function  
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where 
q
N  is the number of quadrature points. The corresponding weights, 

i
w , and abscissas, 

i
L , can be determined through the product-difference (PD) algorithm (Gordon, 1968) or via 

direct solution of a differential-algebraic (DAE) system (Gimbun et al., 2009), based on the 

idea of minimizing the error committed by replacing the integral from the moment definition 

with its quadrature approximation,  

 
10

( ) .
qN

j j

j n i i
i

f L LdL w L  (4.5) 
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Applying the moment transformation to equation (4.1) with the quadrature approximation of 

equation (4.5) the resulting moment equations have the form   

 
0

1

0
1

( ; ),

( , ; ) ( ; ) , 1,2, 3,...
q

b

N
j j j

i i i g b
i

d
B S

dt
d

j w L G S L B S r j
dt

 (4.6) 

Note that the abscissas, 
i
L , in the QMOM are used to compute the moments only, and are 

different from the characteristic length L  used to characterise the particle size in the PBE. 

The generic PBE equation (4.1) can be reduced to a system of ODEs by applying the method 

of characteristics (MOCH). The aim of the MOCH is to solve the PBE by finding 

characteristic curves in the L t  plane that reduce the partial differential equation to a 

system of ODEs.  The L t  plane is expressed in a parametric form by ( )L L  and 

( )t t , where the parameter  gives a measure of the distance along the characteristic 

curve (as mentioned in Chapter 2, equation (2.24). Therefore, ( , ) ( ( ), ( ))
n n
f L t f L t , and 

applying the chain rule gives: 

                                       n n n
f f dfdL dt

d L d t d
. (4.7) 

The generic growth expression used for size-dependent growth is: 

 (1 )g p

g
G k S L , (4.8) 

where [ , , , ]
g g
k g p  is the growth parameter vector. In the case of generic growth kinetics, 

equation (4.1) can be rewritten in the form of  

 
0

( , ; )( , ) ( , )
( , ; ) ( , ) ( ; ) ( , )gn n

g n b

dG S Lf L t f L t
G S L f L t B S r L

t L dL
. (4.9) 

Comparing equations (4.7) and (4.9) it can be shown that t  and the characteristic 

equations are given by the following system of ODEs: 
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                                                       ( , ; )
g

dL
G S L

dt
,            (4.10) 

                            
0

( , ; )( , )
( , ) ( ; ) ( , )gn
n b

dG S Ldf L t
f L t B S r L

dt dL
,            (4.11) 

with initial conditions 
0

L L  and 
,0 0

( ,0) ( )
n n
f L f L , i.e. the seed CSD. To obtain the 

dynamic evolution of the crystal size distribution ( , )
n
f L t , equations (4.10)-(4.11) with 

prescribed nucleation and growth expressions can be integrated repeatedly for different 

initial values 
0 ,0 0

[ , ( )]
n

L f L . The initialization of the integrations in the L t  plane are 

illustrated in Figure 4.1, showing typical evolutions of the characteristic lines during the 

integration. To simulate the growth of the seed, the initial conditions start from along the L  

axis of the L t  plane, with values calculated by choosing a discretisation interval 
0
L  and 

using 
0

0t  and 
0 0,max 0

max(0, )L L k L , 0,1, ,k N , where N  is the number of 

discretisation points for the seed distribution and 
0.max
L  is chosen to be greater or equal to 

the maximum size range of the seed crystals. The discretisation interval 
0
L  will determine 

the number of integrations (the number of characteristic lines) and hence the resolution of 

the dynamic evolution of the seed CSD, as shown in Figure 4.1. For this part of the 

integration the initial values for the probability distribution function are calculated from the 

seed distribution 
,0 0 0
( ) ( )

n seed
f L f L  and all integrations start from an initial time 

0
0t . 
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Figure 4.1: Evolution of characteristic lines with the generic approach of calculating the initial 
conditions for the method of characteristics in the case of growth and nucleation mechanisms. 
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Figure 4.1 also shows the methods employed to represent the contribution to the overall 

distribution function from nucleation events, which may occur during the batch.  In this case, 

the characteristic lines for nucleation and growth of new particles, start from initial 

conditions along the t  axis of the L t  plane, using 
0

0L ,  
,0 0
( ) 0

n
f L , and 

0 next
t t . 

The initial time for the next integration,
next
t , is calculated by interpolating the characteristic 

line for 
0

L r , as shown in Figure 4.1. The number of integrations within this part of the 

algorithm is not predetermined and will depend on the evolution of the characteristic lines 

governed by the growth kinetics. This is an adaptive feature of the algorithm, which allows 

the high resolution prediction of the part of the CSD that result from nucleation events. The 

iterations are stopped when 
next f
t t  where 

f
t  is the end time of the batch. For the solution 

of equations (4.10)-(4.11) it is considered that at the moment of nucleation, nuclei can have 

any size between 0 and 
0
r . This is described by the modified delta function defined as: 

                                     0

0
0

1 if [0, ]
( , )

0 if [0, ]

L r
r L

L r
.    (4.12) 

Thus nucleation events are assumed to occur for 
0

L r . For seeded crystallisation, 

secondary nucleation is considered as the dominating nucleation phenomenon, which is 

generally expressed as a function of the supersaturation and the volume of the existing 

crystals, given by the third-order moment of the size distribution. Hence in the model the 

empirical relationship for secondary nucleation is given by,   

 
3
,b

b
B k S  (4.13) 

where [ , ]
b b
k b  is the nucleation parameter vector. This formulation allows the direct 

consideration of apparent nucleation kinetics in the model, where 
0
r  is the size of the 

particles when they are first detected with a particular measurement approach. In this study 

0
1r m  is used since it represents approximately the size of particles which can be 

detected by typical in situ process analytical tools based on image analysis or focused beam 

reflectance measurements.  
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Both the growth and nucleation rates are functions of the supersaturation S , which can be 

calculated from the material balance. The solute concentration is given by: 

                           
3 3

( ) (0) ( ( ) (0))
v c

C t C k t ,                          (4.14) 

where 
c

 is the density of crystals and 
v
k  is the volumetric shape factor, while the 

supersaturation can be expressed as: 

                                       ( ) ( ) ( )
sat

S t C t C t .                                                      (4.15) 

The solution of equations (4.10) and (4.11) requires a priori knowledge of the dynamic 

evolution of the supersaturation, ( )S t  and/or the third moment 
3
( )t , which can be obtained 

by using the moment transformation of equation (4.1) via the SMOM or QMOM. The main 

steps of the proposed algorithm are shown in Figure 4.2. In the case of secondary nucleation 

and size-dependent growth, the ODEs from the QMOM have to be integrated together with 

equation (4.14), once for the duration of the batch, to predict the evolution of 
3
 and the 

variation of supersaturation with time. Then ( )S t  and 
3
( )t  are used in the nucleation and 

growth kinetic expressions during repeated integrations of equations (4.10)-(4.11) with 

different initial conditions, to map out the complete evolution of the full CSD via the 

MOCH, as shown in Figure 4.2.  

When nucleation is included in the model, an iterative integration of equations (4.10)-(4.11) 

is needed, since the number of initial conditions along the t  axis, for nucleating and growing 

particles, is not known a priori. In the case of growth only processes the PBM can be solved 

using the MOCH only, by simultaneously integrating all the ODEs resulting by applying 

equations (4.10)-(4.11), to the discretised initial conditions. In this case the 
3
( )t  required 

for the mass balance would be calculated from the discretised n
f  and L  values, 

simultaneously with the integration of the characteristic equations.   
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Figure 4.2: Flowchart of the combined QMOM-MOCH approach for the solution of PBEs using 
size dependent growth and secondary nucleation mechanisms. (Note that “k” is a loop counter 
in the algorithm). 
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In this approach high accuracy of 
3
( )t would require large number of discretisation for the 

initial conditions, resulting also in large number of ODEs to integrate throughout the entire 

batch. The application of the QMOM, however, allows a more accurate calculation of the 

moments (Gimbun et al., 2009) with only a few number of quadrature points, ( 2,3
q
N  is 

typically sufficient). Hence the number of discretisation points for the MOCH part can be 

chosen independently to estimate the shape of the CSD. The combined QMOM-MOCH 

approach allows for a trade-off between high resolution of the CSD and computational 

efficiency (coarse approximation of the CSD) without compromising the accuracy of the 

moments, and hence providing proper closure of the mass balance. Note that the method also 

applies to dissolution problems and has a potential to be extended for certain breakage and 

agglomeration mechanisms. Since often controlled dissolution can be an efficient way to 

control the CSD (Abu Bakar et al., 2009b) and to correct for the effects of unwanted 

nucleation events, the next section illustrates how the proposed method can be extended to 

the dissolution mechanism. 

4.2.2 Combined QMOM-MOCH approach for size-dependent 

dissolution 

For a one-dimensional dissolution mechanism characterized by a characteristic length L , 

and a well-mixed system with dissolution as the only dominating phenomena, the population 

balance equation (PBE) has the form:                

                

( , ) ( ( , ; ) ( , ))
0,n d n

f L t D S L f L t

t L
      (4.16) 

where ( , )
n
f L t is the crystal size distribution expressed in the number density function 

(# /  crystals kg slurry ), t  is time in ( )s , ( , ; )
d

D S L  is the rate of crystal dissolution 

( 1 m s ), ( )
sat

S C C  is the under-saturation ( /  kg kg slurry ), C  is the solute 

concentration ( /  )kg kg slurry , ( )
sat sat
C C T  is the saturation concentration with T  being the 

temperature (in C ), and d  is a vector of dissolution kinetic parameters. 
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The solution of eq. (4.16) is an initial value problem, with initial condition given by the size 

distribution of seed, (here seed refers to the initial large sized crystals charged to the system 

for dissolution) 
,0 0

( ,0) ( )
n n
f L f L . Due to the under-saturated conditions crystals reaching a 

limit size 0( )r  disappear. Hence the left boundary condition was left undefined.  The right 

boundary condition is given by ( , ) 0
n
f t  where the “infinite size” represents any limit 

size that is larger than the size of any crystal (Fevotte et al., 2007). The generic PBE 

equation (4.16) can be reduced to a system of ODEs by applying the method of 

characteristics (MOCH) as described in section 4.2.1. The characteristic equations are given 

by the following system of ODEs: 

                                               
( , ; )

d

dL
D S L

dt
,                                    (4.17) 

                                              

( , ) ( , ; )
( , )n d
n

df L t dD S L
f L t

dt dL
,                                       (4.18) 

with initial conditions 
0

L L  and 
,0 0

( ,0) ( )
n n
f L f L , i.e. the seed CSD (where seed  refers to 

the initial large sized crystals charged to the system for dissolution). To obtain the dynamic 

evolution of the crystal size distribution ( , )
n
f L t , equations (4.17)-(4.18) with a prescribed 

dissolution rate expression can be integrated repeatedly for different initial values 

0 ,0 0
[ , ( )]

n
L f L . The initial conditions start with values calculated by choosing a discretisation 

interval 
0
L  and using 

0
0t  and 

0 0,max 0
max(0, )L L k L , 0,1, ,k N , where N  is 

the number of discretisation points for the seed distribution and 
0,max
L  is chosen to be larger 

or equal to the maximum size range of the seed crystals. The discretisation interval 
0
L  will 

determine the number of integrations and hence the resolution of the dynamic evolution of 

the CSD. The initial values for the probability distribution function are calculated from the 

seed distribution 
,0 0 0
( ) ( )

n seed
f L f L  and all integrations start from an initial time 0

0t . The 

disappearance of fines is assumed to occur for 0
L r , as shown in Figure 4.3. This 

formulation allows the incorporation of the disappearance of fines in the model, where 
0
r  is 

the detectable size of the particles in the bulk solution. In this study 
0

1r m  is used since 
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it represents approximately the size of particles which can be detected by typical in situ 

process analytical tools based on image analysis or focused beam reflectance measurements.  

To solve the material balance, equation (4.16) can be transformed into a system of ODEs by 

applying the standard method of moments (in the case of size-independent dissolution) or 

the quadrature method of moments (in the more generic case of  size-dependent dissolution), 

similarly as described in detail in section 4.2.1. Applying the moment transformation to 

equation (4.16), with the quadrature approximation of equation (4.5), the resulting moment 

equations for size-dependent dissolution have the form, 

                                  

0

1

1

0,                                                           

( , ; ), 1,2, 3,... 
qN

j j
i i i d

i

d

dt
d

j w L D S L j
dt

 (4.19) 

The first equation in (4.19) indicates that in this approach the number of particles is 

considered constant 
0

( constant) . However all particles eventually will reach a size of 

zero or 
0
r  (i.e. below the detection limits), and hence will disappear, as shown in Figure 4.3. 

This formulation neglects the kinetics of “disappearance” of particles (the opposite 

mechanism to nucleation), which would describe how quickly each characteristic line, 
n
f  

decays to zero when the corresponding 
i
L  reaches 

0
r .  In this approach it is considered that 

the particles disappear instantaneously, by having size below the detection limit 
0
r . The 

QMOM formulated by the ODE system (4.19) provides asymptotically decreasing moments 

( , 1,2,...)
j
j , and abscissas ( , 1,2,..., )

i q
L i N  to zero. Hence the proposed approach with 

the limiting size 
0

0r eliminates numerical problems that may arise at the near zero sizes  if 

the disappearance of the particles would be considered at 
0

0r . Figure 4.3 presents the 

concepts used to model the dissolution phenomenon. 
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Figure 4.3: Evolution of characteristic lines obtained from the method of characteristics in the 
case of dissolution mechanism. 

 

The dissolution is a function of the under-saturation,  

                                                     ( ) ( ) ( )
sat

S t C t C t . (4.20) 

The generic empirical relationship used for size-dependent dissolution is expressed as,   

 (1 )d q

d
D k S L , (4.21) 

where [ , , , ]
d d
k d q  is the dissolution parameter vector. The dissolution kinetics for the 

particles would be considered until the size of particles is 
0

L r . When 
0

L r  the crystals 

would be regarded as dissolved and would not be considered for the growth or dissolution 

unless they are reborn as new nuclei in the supersaturated region. 

During crystallisation processes it is important to make use of both supersaturation and 

under-saturation regions, while designing temperature trajectories to achieve the desired 

CSD. Therefore in the next section the combined QMOM-MOCH approach is elaborated, 

taking into account growth, nucleation and dissolution mechanisms together. 
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4.2.3 Combined QMOM-MOCH approach for nucleation and size-

dependent growth and dissolution 

The combined QMOM-MOCH can be used for the solution of models in which dissolution, 

growth and nucleation mechanisms are used together depending on whether the system is 

supersaturated or under-saturated. Figure 4.4 presents a schematic representation of the 

approach when dissolution, growth and nucleation mechanisms are used together. In this 

case both PBEs (one for growth and nucleation, (4.1), and one for the dissolution, (4.16)) are 

included in the model, and are applied to the CSD, 
n
f , depending on whether the operating 

curve is in the supersaturated ( 0)S  or under-saturated region ( 0)S . 

After the initialisation of the method with initial conditions 
0

L L  and 
,0 0

( ,0) ( )
n n
f L f L , the 

moments are calculated. Using the quadrature method of moments (QMOM) the dynamic 

evolution of the supersaturation, ( )S t  and the third moment 
3
( )t , are computed. 

The QMOM is applied with the dissolution or the growth and nucleation mechanisms based 

on whether the 0S  or 0S , respectively. The dynamic evolution of the supersaturation 

would suggest whether the system is in supersaturated or under-saturated region. If 0S  

the system is in the supersaturated region and the MOCH is applied to the PBE with growth 

and nucleation kinetics, as shown in Figure 4.4. If 0S  the system is in the under-saturated 

region and the MOCH is applied to the PBE with dissolution mechanism until the size of 

particles reaches 
0

L r , as shown in Figure 4.4. To obtain the dynamic evolution of the 

CSD, ( , )
n
f L t , equations (4.10)-(4.11) and (4.17)-(4.18) with the corresponding nucleation, 

growth and dissolution expressions are integrated repeatedly for different initial values 

0 ,0 0
[ , ( )]

n
L f L , as shown in Figure 4.4. In this way the approach is able to consider all three 

mechanisms i.e. growth, nucleation and dissolution, based on the supersaturated or under-

saturated state of the system at a particular time of the batch. 
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Figure 4.4: Flowchart of the combined QMOM-MOCH approach for the solution of PBE using 
size-dependent growth and dissolution and nucleation mechanisms for supersaturated and 
under-saturated regions. (Note that “k” is a loop counter in the algorithm). 
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4.3 Conclusions 

The chapter describes a novel methodology for solving population balance equations. The 

approach combines the quadrature method of moments (QMOM) with the method of 

characteristics (MOCH), and provides a computationally efficient method of reconstructing 

the full shape of the crystal size distribution (CSD). The technique is developed for generic 

empirical expressions for growth, dissolution and nucleation, allowing for consideration of 

size-dependent growth, and dissolution and variable supersaturation. The computational 

efficiency and robustness of the combined QMOM-MOCH technique makes it a suitable 

approach for off-line or on-line optimisation of batch crystallisation processes. 
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Chapter 5  
Model identification and validation for 
potash alum-water system  

5.1 Introduction 

This chapter describes the methods, equipment, procedures and operating conditions of the 

experiments used for the modelling of the batch crystallisation process of the potash alum-

water system. The experiments were used to determine the various kinetic parameters for the 

seeded batch cooling crystallisation process. These kinetic parameters describe the growth, 

nucleation and dissolution mechanisms and were identified using a least square optimisation 

approach solved by applying a sequential quadratic programming (SQP) based non-linear 

optimisation method implemented in MATLAB. The identified parameters were validated 

for various sets of experiments operated under different conditions. The operating conditions 

include variations in the total batch time, initial concentration, supersaturation set-points and 

seed mass. The state variables, such as concentration, process temperature, jacket 

temperature and CSD were measured during the experiments using various off-line, on-line 

and in situ measurement techniques. The growth parameters were identified using pilot scale 

experimental data provided by, the chemical company, BASF, Ludwigshafen, Germany. 

To identify the kinetic parameters for dissolution, experiments were carried out at 

Loughborough University, UK. The experimental data is used for parameter identification 

and validation in the case of the potash alum-water system. 

5.2 Material 

Potassium aluminium sulphate dodecahydarte 2 4 2 2
(KAl (SO ) .12H O)  (>99.95% purity, Fisher 

Bio Reagents) compound was used in all the experiments discussed in this chapter. De-

ionised water was used as solvent. The solution was prepared using 11.7 g of potash alum in 
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100 g of water, corresponding to a saturation temperature of 40 °C (Barrett and Glennon, 

2002; Mullin, 2001). 

5.3 Experimental set-up for the identification of the 

growth and nucleation parameters 

The experimental data was obtained from an industrial pilot crystallisation system located at 

BASF (Ludwigshafen, Germany).  

5.3.1 Apparatus 

A schematic diagram of the experimental setup is shown in Figure 5.1. A 3 L jacketed batch 

crystalliser was used for the experiments. The cooling and heating of the crystalliser was 

carried out with a thermostat equipped with an internal compressor to enhance the cooling. 

A thermocouple (PT100) was immersed in the solution to measure the temperature of the 

system. To enhance mixing, the crystalliser is equipped with a pitched blade turbine that 

rotates at a speed of 500 rpm. This agitation speed was chosen to be high enough to 

guarantee that particles were well suspended throughout the process, but low enough to 

avoid attrition of crystals or entrainment of bubbles due to vortex formation. 

The vessel contained 3 baffles to promote mixing and minimise vortex formation.  Two 

probes were used in the crystalliser to withdraw samples. A Malvern Instruments Insitec, 

laser diffraction system, was used to obtain the on-line measurements for the dynamic 

evolution of the crystal size distribution. A peristaltic pump (P1) was used to pump the 

slurry (solids with solvent) from the crystalliser to the Insitec and then back to the 

crystalliser. The flow rate of pump was 1.19 L/min to maintain continuous flow of the 

solution between the Insitec equipment and the crystalliser. The pipeline that transports the 

suspension from the crystalliser to the Insitec and back to the crystalliser was jacketed and 

was heated to keep the temperature of the solution constant through the path to avoid any 

nucleation or dissolution of the crystals. Two thermocouples were inserted in the pipeline 

before and after the Insitec to measure the suspension temperature.  
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Figure 5.1: A schematic representation of experimental setup for batch cooling crystallisation to 
determine growth and nucleation parameters. Drawing is for illustration only and may not be a 
true representation of the actual setup. 

 

A second peristaltic pump (P2) was used to pump the second sample stream from the 

crystalliser to the DMA 5000 Density Meter to measure the density and hence the 

concentration of the solution; this stream contained the solution without crystals. A filter 

element of 60 µm pore size was used to make sure that there were no crystals in the solution 

stream.  

5.3.2 Seed preparation 

Seeds were prepared using sieve analysis. A JEL 200 shaker was used for sieving; a stack of 

sieves was placed in the equipment, with the coarsest sieve opening on the top and the finest 

sieve at the bottom. The sieve sizes were 1 mm, 350 μm, 250 μm, 125 μm, 90 μm and 63 

μm. The run time was 90 minutes and the medium shaking amplitude was selected to 

distribute the crystals throughout the sieve stack and reduce breakage of the crystals. The 

product obtained between the sieve sizes of 90-125 µm was collected for seeding.  

Potash alum is a hygroscopic substance and adsorbs moisture from air. Seed can aggregate 

and adhere to each other as moisture from the environment is adsorbed. Thus, to minimize 

moisture adsorption, seed was stored in a desiccator. 
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5.3.3 Concentration measurement using density meter 

An Anton Paar DMA 5000 density meter was used to measure the concentration throughout 

the experiment. The Anton Paar density meter combines the well-known Anton Paar U-tube 

with a reference oscillator and a high-precision platinum thermometer to measure the 

density. An oscillating U-shaped hollow glass tube of known volume and constant mass 

oscillates at a frequency ( )f . The vibration frequency changes when the tube is filled with a 

sample. The frequency is inversely proportional to the density ( )  of the filled sample: the 

higher the mass of the sample, the lower the vibration frequency. This frequency is 

measured and converted into density using the relationship: 

 
0 1
b P b , (5.1) 

where P  is the oscillating period, which can be calculated as 1/P f , and 
0
b  and 

1
b  are 

constants. 

Once the instrument has been calibrated with air and water to obtain 
0
b  and 

1
b , the density 

of a sample can be determined. A temperature controller is often necessary to keep the 

temperature constant as the density of the sample is affected by temperature variations. The 

measured density was used to calculate the concentration of the solution at the saturation 

temperature. A correlation between the density and the concentrations of the potash alum 

can be found by measuring the density of known concentrations.  

5.3.4 On-line CSD measurement using Malvern Insitec 

The on-line CSD was measured using Malvern Insitec particle size analyzer. The working 

principle of the equipment is similar to Malvern Mastersizer (i.e. based on laser diffraction) 

and it can measure particle sizes in the range of 0.108 to 1000 µm. The equipment is 

designed for real-time measurement of size distribution in solid and liquid suspensions in 

dilute and concentrated liquid streams. The crystal size distribution was measured after 

every 5 minutes. The BASF company has made modifications to the equipments to measure 

on-line Sauter mean diameter (d32) and De-Brocukere mean diameter (d43) measurements 

after every 2 second. Limited information about the experimental setup was provided by the 

company due to their data protection policy. 
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5.3.5 Method 

Potash alum was dissolved in water by heating up to 50°C at a rate of 0.8°C/min. The 

solution was equilibrated at 50°C for 30 minutes, to ensure complete dissolution of solids, 

which was also indicated by the decrease of the FBRM counts. Then the temperature of the 

solution was reduced to 38°C at a ramp rate of 0.5°C/min.   

Table 5.1: Operating conditions for the seeded-batch cooling crystallisation experiments A and 
B performed at BASF, Germany. 

Operating Conditions Units Experiment 
A 

Experiment 
B 

Initial saturation temperature  C  40.0 40.0 
Seed mass , ( )

seed
m  kg  32.98 10  34.00 10  

Batch time , 
batch
t  min  90.0 160.0 

Initial solute concentration ( )
i
C  kg solute/ kg slurry  0.104 0.108 

Sieve sizes for seed,  m  90-125       90-125 
Initial temperature at seeding and 
start of profile, 

0
( )T ,  

C  50 50 

Final temperature, ( )
f
T ,  C  17.0 30.0 

Supersaturation set-point, 
sp
S   %wt  0.60 0.30 

Agitation speed rpm  500 500 
Density of crystals, ( )

c
 3/kg m  1750 1750 

Volumetric shape factor, ( )
v
k  -- 0.62 0.62 

Mass of slurry, ( )
slurry
m  kg  4 4 

Mass flow of CSD 
measurements,( )m  

/kg s  0.02 0.02 

Mass of water in the jacket, ( )
j
m  kg  10.738 10.738 

Mass flow of heat transfer medium 
in the jacket, ( )

j
m   

kg  0.35 0.35 

Heat capacity of slurry, 
,

( )
p s
c  /( )J kgK  1.4 103 1.4 103 

Heat capacity of water, 
,

( )
p w
c  /( )J kgK  4.2 103 4.2 103 

Heat of crystallisation,
c
h  /J kg  2 105 2 105 

 

The temperature of the solution was maintained for 15 minutes at 38°C prior to the start of 

experiment, after which sieved seed (in the size range between 90-125 m ) was added and 

the temperature of the system was decreased. Supersaturation control was implemented 

during these experiments to maintain constant supersaturation ( )
sat

S C C  throughout the 
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experiments. During this period, FBRM readings were monitored to check if seed had either 

dissolved or secondary nucleation had occurred. Throughout the experiments, the 

concentration was measured using the Anton Paar DMA 5000 density meter and the crystal 

size distribution was measured on-line using the Malvern Insitec. The same procedure was 

repeated for all the experiments. Two different experiments were carried out with variations 

in the initial conditions.  These experiments are referred as experiment A and B in Chapter 5 

and 6 and Table 5.1 gives the detailed experimental conditions. The raw experimental results 

for the measured CSD throughout the batch for experiments A and B, are shown in 

Appendix A. Experiment A is used for parameter identification whereas experiment B is 

used for model validation. 

5.4 Experimental results 

Gravimetric analysis was used to obtain the solubility data for the anhydrous potash alum 

and was validated against literature results. Figure 5.2 illustrates that the experimental 

solubility measurements are in very good agreement with the literature data (Barrett and 

Glennon, 2002; Xie et al., 2001; Zhang and Rohani, 2003). The concentration measurements 

were expressed in mass percentage of anhydrous potash alum, whereas the compound 

crystallises as dodecahydrate. Thus the solubility curve for the anhydrous compound was 

calculated as 

 ,

, ,

,

w anh

sol anh sol hyd

w hyd

M
C C

M
, (5.2) 

where 
,

258.21
w anh
M  and 

,
474.39

w hyd
M  are the molecular weights for the anhydrous and 

hydrous forms respectively. A second-order polynomial was fitted to the experimental 

solubility data, obtained at BASF, 

                                                   2

0 1 2
( )

sat
C T a aT aT ,                              (5.3) 

where 0
3.63a , 2

1
2.43 10a , 3

2
3.58 10a , T  is the temperature in C  and sat

C  is 

in weight percentage expressed in the anhydrous potash alum.  
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Figure 5.2: Solubility data for anhydrous potash alum-water system. 

The operating profiles for the two experimental runs A and B are shown in Figure 5.3. 

Experiment A was conducted at a supersaturation set-point 0.60%
sp
S  (weight percent in 

kg solute / kg slurry), and experiment B used a constant supersaturation set-point of 

0.3%
sp
S  (weight percent).  The nucleation curve, shown in Figure 5.3, was also 

determined at BASF. 
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Figure 5.3: Experimental results in the case of supersaturation controlled experiments: 
(a) Experiment A: 0.60 wt%

sp
S , used for parameter identification; (b) Experiment B: 

0.3 wt%
sp
S , used for validation. 

 

In the case of experiment A, it can be seen that the supersaturation controller exhibits an 

overshoot during the initial part of the operating curve, as also shown in Figure 5.4 (a), 

which leads to secondary nucleation.  Both growth and nucleation phenomena occurred in 

experiment A and hence both mechanisms were included for model parameter identification 

using the QMOM-MOCH approach described in Section 4.2.1. Experiment B was used for 

Fitted 2nd Order 
Polynomial 

(b) (a) 
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model validation. Figure 5.4(b) shows (in contrast to experiment A) that supersaturation was 

very well controlled throughout experiment B. 
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Figure 5.4: Experimental results for temperature, supersaturation set-point and measured 
supersaturation profile throughout the batch for (a) experiment A and (b) experiment B. 

 

The Sauter mean diameter and the weight mean diameter for the experiments measured 

throughout the batches are shown in Figure 5.5. For these measurements modifications were 

made to Malvern Insitec software by BASF, to obtain the data after every 2 seconds. 
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Figure 5.5: Experimental results for Sauter mean diameter and De-Brocukere mean diameter 
throughout the batch after seed addition for (a) experiment A and (b) experiment B. 

 

Some disturbance can be observed in d43 measurement for Experiment A, as shown in Figure 

5.5 (a), which happened during the same time when an overshoot was observed in the 

supersaturation and it is due to the disturbance in the recycle loop. 
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5.5 Model identification and validation considering size-

dependent growth and secondary nucleation 

5.5.1 Model identification 

For the potash alum system, size dependent growth has been reported in literature (Brecevic 

and Garside, 1980; Garside and Jancic, 1978; Molnar et al., 1990) and was also observed 

experimentally in this research. Hence, a generic size-dependent growth rate law described 

by equation (4.8)  and a secondary nucleation rate law described by equation (4.13)  were 

used for model identification. The nucleation and growth parameters were determined to 

capture the dynamic evolution of the shape of the crystal size distribution, as well as the 

experimental concentration profile. The optimisation problem for the parameter estimation 

using concentration and volume population density function is given by, 

 exp 2 exp 2

est , ,
1 1 1

min ( ( ) ( )) ( ) ,
dNK K

f v k l v k l C k k
k l k

J w f L f L w C C  (5.4) 

 
min max

subject to:   (5.5) 

where [ , , , , , ]
g b
k g p k b , is the model parameter vector for the growth and nucleation 

kinetic parameters, 
min

 and 
max

 are vectors with specified minimum and maximum bounds 

for each parameter, respectively, 
k
C  and exp

k
C  are the simulated and experimental 

concentration values at the discrete time steps 1, ,k K , 
,v k
f  and exp

,v k
f  are the values of the 

simulated and experimental volume probability distribution functions, corresponding to the 

discretised size l
L , 1, ,

d
l N , with d

N  being the number of experimental size bins, 
f
w , 

C
w  are objective function weighting factors and 

est
J is the estimation objective function (sum 

square error). The simulated volume pdf was computed from the number pdf obtained from 

the MOCH and interpolated for the experimental size range. The conversion from number 

pdf to volume pdf is given as: 

 3 3

, , ,1
/ ( )dN

v i n i i n i i ii
f f L f L L  (5.6) 



Chapter 5: Model identification and validation for potash alum-water system 106 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

The weighting factors are selected in such a way that the distribution and the concentration 

are similar in magnitude after multiplication by the scaling factors, and the used values were 

10 and 1 for 
f
w  and 

C
w , respectively. Scaling via these weighing factors will help the 

optimiser to take into account both the concentration and the crystal size distribution for 

parameter estimation. The optimisation problem is solved using a sequential quadratic 

programming (SQP) approach implemented using the MATLAB function fmincon. Note that 

finding the best kinetic parameters is generally a difficult optimisation problem due to the 

strong correlation between the parameters, and this non-convex optimisation problem is 

given by equations (5.4)-(5.5). Supersaturation controlled experiments can be used to design 

experiments, which allow to decouple the identification of the kinetic parameters or quick 

metastable zone determination experiments can be used for providing experimental data 

based initial guesses for the parameter identification process (Nagy et al., 2008a). In 

experiment B the supersaturation control was very good and no nucleation was observed. 

Therefore experiment A is better for parameter identification, since the overshoot triggered 

secondary nucleation. Hence using experiment A provides an opportunity to identify the 

kinetic parameters for growth as well as secondary nucleation.  

To evaluate the robustness of the identified model, the confidence intervals of the estimated 

parameters were also calculated by the method described in detail by (Nagy et al., 2008c). In 

this approach the objective function is calculated in the discrete time points 

0, 1, ...
ll l Kt t t  with ex = 1,...,l N  (

ex
N being the number of experiments) and lK  the 

number of discrete time points in experiment l . The estimation problem is formulated as: 

 
ex

exp 2
est , ,

1 0 1

min { ( ; ) ( )} ,
yl NN K

k l i k l
l k i

J y t y t  (5.7) 

where 
y
N  is the number of measured model outputs ( )y  and exp

i
y  are the experimental 

values. In the estimation problem presented in this chapter, and comparing equations (5.4)-

(5.5) to equation (5.7) it can be seen that, ex 1l N  (experiment A), 1
y d
N N  

(corresponding to the CSD values in 86
d
N  size bins plus the concentration) and 

measurements at 13lK K  time steps were used. For estimating the confidence interval 

the measurement matrix ( )M is given by the block matrix, 
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ex

0

1

Nk

M

M
M

M

 (5.8) 

with 
ex

ex

1

N

N l
l

k K K , number of ( )
y
N N  sensitivity matrixes,  

 
l

l

k
k dy

M
d

, (5.9) 

with 0,...,lk K . The sensitivity matrices in this study were computed numerically by the 

central difference scheme. The precision matrix ( )P , and covariance matrix ( )V are given 

by: 

 1( )TP M M , (5.10) 

 2

R
V s P , (5.11) 

 

where the residual variance is given by  2

est
/

R df
s J N  with 

ex
( 1) 1

df y N
N N k N  

being the number of degrees of freedom. Here 87(13 1) 6 1 1211
df
N . The 

confidence intervals are calculated using the t-test (Beck and Arnold, 1977) as: 

 
/2,

ˆ ( )
dfN

t diag V  (5.12) 

where ˆ  is the nominal parameter vector, 
/2, dfN
t is the t  distribution with 

df
N  degrees of 

freedom. The 95% confidence intervals are obtained for 0.05 . The resulting model 

parameters for the potash alum system are presented in Table 5.2 (Aamir et al., 2008; Aamir 

et al., 2009b).  
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Table 5.2: Size-dependent growth and nucleation parameters for the crystallisation of potash 
alum in water (units for S = /  kg kg slurry ). 

Parameter Value Error bounds at 95% 
confidence interval  

Growth Parameters  

Growth rate constant (
g
k ), 1 m s  8.5708 ± 0.036 

Growth constant ( ), 1m  0.0050 ± 0.0035 

Growth constant ( p ), -- 1.5777 ± 0.079 

Growth order constant ( g ), -- 1.0000 ± 0.095 

Nucleation Parameters  

Nucleation rate constant (
b
k ), 3 1m s   0.0380 ± 0.044 

Nucleation order constant (b ), -- 3.4174 ± 0.037 

 

The dynamic evolution of the modelled and the experimental CSDs are in very good 

agreement during the entire batch, as shown in Figure 5.6. The CSD broadens with 

decreasing heights with time, confirming the requirement of size-dependent growth kinetics.  

The formation of a secondary CSD peak at low particle sizes can also be observed, which is 

the result of secondary nucleation, which occurred due to overshoot at 10 minutes into the 

batch, as shown in Figure 5.4 (a). The QMOM-MOCH approach with the model using the 

identified growth and nucleation parameters is able to describe the main features of the CSD 

throughout the entire batch. The complete dynamic evolution of the CSD obtained using the 

combined QMOM-MOCH method for experiment A is given in Appendix B. 

Figure 5.7 illustrates the evolution of the characteristic lines and the discretised number 

distribution function predicted by the simulation of experiment A, using the combined 

QMOM-MOCH. The evolution of the characteristic lines show the broadening of the 

distribution function because of the size-dependent growth kinetics, as can be observed from 

Figure 5.6. The distribution function is initialized at 0t  with values obtained from the 

seed distribution, after which the values of n
f  decrease as the distribution broadens. At 

different time steps, new nuclei and new characteristic lines appear using the methods 

described in Section 4.2.1. The discretisation intervals along the time axis depend on the 

growth kinetics, according to the approach described in Section 4.2.1 and illustrated in 

Figure 4.1 and Figure 4.2. 
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Figure 5.6:  Dynamic evolution of the modelled and experimental CSD for experiment A. 

 

It can be observed that during the period 10-30 minutes, the growth is faster and the 

nucleation rate is also more significant, hence the discretisation is finer compared to the later 

stages of the batch, which are characterised by slower growth. 
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Figure 5.7: Evolution of characteristic lines (a) and number distribution function (b) for the 
simulated experiment A. 
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Figure 5.8 shows the comparison between the experimental and the modelled concentrations 

and weight mean sizes throughout the batch, which are also in relatively good agreement. As 

it can be seen in Figure 5.8 (b), the model under-predicted d43, which also correlates with the 

entire CSD prediction shown in Figure 5.6. This indicates that in the simulation the number 

of larger particles was less than it was measured experimentally. The simulated 

concentration is lower than the experimental concentration, as shown in Figure 5.8. This 

may be due to the fact that the number of particles 
0

( )  initially calculated from the seed 

CSD has some error; therefore more concentration was consumed initially during the 

simulation than in the experiment.   
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Figure 5.8: Experimental and simulated results: a) concentration b) De-Broucker mean 
diameter during the entire batch of experiment A. 
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The combined QMOM-MOCH can be used not only for model parameter identification, but 

also for CSD prediction. The simulation time for the reconstruction of the entire evolution of 

the CSD during the batch, takes only a few seconds on a standard PC running MATLAB.  

Table 5.3: Computational time for different number of discretisation points using the combined 
QMOM-MOCH technique, for the entire batch time. (Simulation of experiment A was in 
MATLAB 7.0 running on a PC with 2.0 GHz Intel Core 2 Duo processor with 4 GB RAM). 

No of discretisation Computational Time (s) Absolute Tolerance 
60 38 1e-10 
30 28 1e-10 
15 12 1e-10 
6 5 1e-10 

 

It can be observed in Table 5.3 that the proposed technique is computationally very effective 

even using higher discretisation points, to obtain the complete evolution of the CSD. The 

technique has a potential to be used on-line because of its computational effectiveness and 

robustness. 

Using the combined QMOM-MOCH it is possible to eliminate the problems related to 

simple inversion or approximation approaches discussed in detail in Chapter 2 and Chapter 

3, such as negative values in the pdf, ill-conditioning, or requirement of a priori information 

of the shape of the distribution. The combined technique uses the advantages of both 

methods i.e. quadrature method of moments and method of characteristics, shown in Table 

2.4.  As was mentioned in Chapter 2 the quadrature method of moments only gives a coarse 

approximation of changes in the CSD, but provides complete information about the 

moments. Similarly using the method of characteristics alone is only feasible for growth and 

primary nucleation. The combined technique can predict the complete dynamic evolution of 

the CSD for any empirical growth and nucleation expressions. The QMOM part of the 

method provides the moment information with high accuracy with only a few quadrature 

points, which can be used to calculate the overall mass balance throughout the batch 

allowing the case of varying supersaturation to be studied. The method provides a great 

improvement for the real-time prediction of the complete CSD in crystallisation processes, 

while considering size-dependent growth, size-dependent dissolution, and nucleation 

mechanisms and variable supersaturation. 

Another advantage of the technique is in the method employed to represent the contribution 

from nucleation events to the overall distribution function. The method is adaptive, as the 
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number of integrations is not predetermined and depends on the evolution of the 

characteristic lines governed by the growth kinetics. This feature allows high resolution 

prediction of the part of the CSD that result from nucleation events. An important aspect of 

this algorithm is the selection of the nuclei size 
0
r ; nucleation is assumed to occur in the 

range from 0 to 
0
r . In this work 

0
r  is the size of the particles that are first detected by a 

particular measurement approach (e.g. FBRM). The resolution of a CSD will be determined 

by the discretisation interval 
0
L  and the size at which the nucleation event occurs 

0
r . 

Therefore the selected 
0
r  value should be small enough, to make sure that the value is close 

to the original nucleation event detectable by several measurement equipments during 

crystallisation process. This gives an additional benefit to the technique for direct 

consideration of apparent nucleation kinetics in the model. 

The technique is robust and is able to capture the shape of the CSD with less computational 

burden even with sharp discontinuities in the algorithm (such as related to the calculation of 

the nucleation events). The technique also has the advantage that it does not exhibit 

oscillatory behaviour (which could result in negative number densities), or numerical 

diffusion, which can be major drawbacks in the case of some other numerical techniques 

used to solve population balance equations.  

5.5.2 Model validation 

The kinetic parameters identified using experiment A are given in Table 5.2. These 

identified parameters were used for the validation of the model using experiment B. Good 

agreement was observed between the experimental and the modelled concentration as well 

as the weighted mean diameter, as shown in Figure 5.9. The supersaturation was well 

controlled during experiment B, therefore the simulated concentration is quite close to 

experimental concentration. Weighted mean diameter is slightly over predicted towards the 

end of the batch, which can also be observed in Figure 5.10. The model concentration is 

consumed slightly more than the experimental concentration, due to which d43 and CSD 

were slightly over estimated towards the end of the batch. The dynamic evolution of the 

modelled and the experimental CSDs are in good agreement during the the first 80 minutes 

of the batch, as shown in Figure 5.10. 
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Figure 5.9: Experimental and simulated results: a) concentration b) De-Broucker mean 
diameter during the entire batch of experiment B. 

 

It can be seen that the CSDs broaden with decreasing height during the batch and the 

formation of a secondary CSD peak can also be observed. These features are captured by the 

model prediction. The distribution function is initialized at 0t  with values obtained from 

the seed distribution used for experiment B, after which the values of 
n
f  decrease as the 

distribution broadens. New nuclei and new characteristic lines appear at different time steps. 

The discretisation intervals along the time axis depend on the growth kinetics. 
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Figure 5.10: Dynamic evolution of the modelled and experimental CSD for experiment B using 
the kinetic parameters identified using experiment A. 
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The complete dynamic evolution of the CSD obtained from the combined QMOM-MOCH 

for experiment B is given in Appendix B.  Figure 5.11 (a and b) illustrates the evolution of 

the characteristic lines and the discretised number distribution function predicted by the 

simulation of experiment A, using the combined QMOM-MOCH. 
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Figure 5.11: Evolution of characteristic lines (a) and number distribution function (b) for the 
simulated experiment B. 

It can be observed in Figure 5.4 (b) that the supersaturation was controlled well throughout 

the entire experiment B. By controlling the crystallisation process at a small and constant 

supersaturation, generally growth becomes the dominating phenomenon.  

If supersaturation is constant and there is no nucleation then faster computational 

performance can be achieved, via an analytical solution of equations (4.10) and (4.11), of the 

form:  
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The derivation of equations (5.13)-(5.14) is given in Appendix C. Comparison of the 

experimental and the simulated CSD obtained from the analytical CSD estimator is given in 

Figure 5.12 at different time intervals. In the simulations the experimental initial 

concentration, temperature profile and seed distribution were used. The kinetic parameters 

were based on experiment A (given in Table 5.2). In the case of experiment B, the 

supersaturation was well maintained at its constant set-point. Figure 5.12 shows that the 

simulated and the experimental CSDs are in good agreement. However, the experimental 

CSD shows evidence of secondary nucleation, which is indicated in Figure 5.12 by the 

secondary CSD peak developed during the crystallisation process.  
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Figure 5.12: Comparison between the measured and the simulated CSD using the analytical 
CSD estimator (experiment B with supersaturation set point 

sp
S = 0.3%). 

The analytical solution is derived based on the assumption of constant supersaturation and 

no nucleation. Therefore, by initializing the model with the seed CSD and applying it in an 

open-loop, the analytical solution is not able to predict the development of a secondary 
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nucleation peak at small crystal sizes. However, in the case of many practical applications, 

an on-line measurement of the CSD is available, typically with a sampling time in the range 

of 1-15 min (e.g. by using focused beam reflectance measurement coupled with inverse 

geometric modelling to transform chord length distributions into size distributions) 

(Hukkanen and Braatz, 2003; Ruf et al., 2000). In these cases the analytical solutions can be 

used in closed-loop, initialising it with the new CSD measurement every time it becomes 

available.  
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Figure 5.13: Performance of the analytical estimator initialised with CSD at t = 30 min 
(experiment B). 

 

Figure 5.13 illustrates the results when the analytical estimator was initialised using the 

measured CSD after 30 min. The effect of the secondary nucleation, which occurred in the 

first 30 minutes of the batch, on the final CSD is partially predicted. The proposed method 

can be used as an efficient estimator for monitoring and predicting the CSD at the end of the 

batch, or in off-line or on-line optimisation approaches for designing crystallisation systems 

to produce consistently the desired final CSD. The results also show that in practical 

applications, the analytical technique can be used for estimation of the CSD even if the 

supersaturation is not constant during the initial phase of the batch. As new CSD 

measurements become available and the supersaturation reaches its constant set-point value, 

the predicted CSD will converge to the correct value. 

Experiments A and B do not involve any dissolution of small particles. However if Direct 

Nucleation Control (DNC) (Abu Bakar et al., 2009b) needs to be implemented then the 

dissolution of fines becomes part of the CSD control strategy. Therefore knowledge of 
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dissolution kinetics is required for a model-based design of operating policies, which make 

use of controlled dissolution. The next sections describe the parameter identification of the 

dissolution kinetics for the potash alum-water system. 

5.6 Experimental setup for determination of dissolution 

parameters 

5.6.1 Apparatus 

The temperature in a 0.5 L jacketed glass vessel was controlled with a Pt100 thermocouple 

using a Huber VPC CC3 450 thermostat. An overhead stirrer with a four-blade pitch type 

impeller was used to agitate the system at 350 rpm. This agitation speed was chosen to be 

high enough to guarantee that particles were well suspended throughout the process, but low 

enough to avoid attrition or entrainment of bubbles due to vortex formation. A FBRM probe 

(model D600, Lasentec) was inserted into the solution to measure chord length distributions. 

The reproducibility of the FBRM measurement was verified by changing the place and the 

orientation of the probe in different locations within the crystalliser. The chord length 

distribution and number of count measurements were reproducible indicating that the 

crystallisation vessel was well mixed. When the same amount of seed was added to the 

crystalliser, the total number of counts measured by FBRM was very consistent with in the 

range of 1000 to 1200 counts/s for all experiments.  The concentration was measured in situ 

using conductivity probe. Conductivity (voltage) was measured using a CM 35 meter with 

WPA-35 conductivity probe. The CSD at the end of runs with different time duration (off-

line) was measured using a laser-diffraction equipment, (Mastersizer 2000 with a hydro 

2000 SM dispersion unit). Hexane was used to disperse potash-alum crystals to measure the 

CSD. The samples were analysed off-line. Hence experiments were performed by repeating 

the same experimental conditions but stopping the experiments at different stages of the 

batch and analysing the samples obtained at the end. Images of crystals were also taken 

using a Leica DM LM microscope equipped with a Leica PFC 350 FX camera. A schematic 

representation of the experimental setup is shown in Figure 5.14. The operating conditions 

for the experiment are summarised in Table 5.4.  
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Figure 5.14: A schematic representation of the experimental setup used for the determination of 
dissolution parameters. 

 

Table 5.4: Operating conditions for dissolution experiment for seeded-batch cooling 
crystallisation. 

Operating Conditions Units Experiment  
Saturation temperature  C  30 
Seed mass , ( )

seed
m  kg  1.9 10-2 

Batch time, 
batch
t   min  80 

Initial solute concentration ( )
i
C  g solid/ g water  0.084 

Initial temperature at seeding and start 
of profile, 

0
( )T ,  

C  29 

Final temperature, ( )
f
T ,  C  35 

Temperature profile followed -- Linear 

0 0
( )( / )

linear f batch
T T T T t t  

Points for smooth profile, ( )N  -- 60 

Sampling time for FBRM measurement 
and conductivity measurement 

s 10  

Sieve sizes for seed,  m  300-355 

Agitation speed rpm  350 
Density of crystals (Mullin, 2001), ( )

c  3/kg m  1750 

Volumetric shape factor, ( )
v
k  -- 0.62 

Mass of slurry, ( )
slurry
m  kg  0.52 

Number of samples for CSD -- 12 
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measurements 

5.6.2 Seed preparation 

Seeds were prepared using sieve analysis. The sieve sizes used were: 500 μm, 355 μm, 300 

μm, 300 μm, 280 μm,200 μm, 150 μm and 125 μm. The run time for the sieving operation 

was set to 120 min, and the rotation and shaking caused the crystals to distribute throughout 

the sieve stack. The product obtained on the sieve size of 300 µm was collected for seeding 

and was stored in a desiccator.  

5.6.3 Method 

A solution of potash alum and water was prepared to obtain the kinetic parameters for 

dissolution. A 0.5 L jacketed crystallisation vessel equipped with thermocouple, 

conductivity and focused beam reflectance measurement (FBRM) probes was used. The 

saturation temperature used for these experiments was 30°C (8.4 g of potash alum dissolved 

in 100 g of water). Potash alum was dissolved in water by heating to 40°C at a rate of 

0.8°C/min. The solution was equilibrated at 40°C for 30 minutes and then the temperature of 

the solution was reduced to 29°C at a rate of 0.5°C/min. The temperature of the solution was 

maintained at 29°C prior to the start of experiment. After 10 minutes, 19 g of sieved seed in 

the size range between 300-355 µm (CSD determined using Malvern Masterizer) was added 

to the solution and the temperature was maintained at 30°C for 10 minutes. During this 

period, the conductivity and FBRM readings were monitored to check if any amount of the 

seed had dissolved. Both FBRM and conductivity meter showed constant readings before 

and after the addition of the seed, which verified that the seed had not dissolved and the 

solution was saturated at 30°C. In the next step, the process temperature was increased 

linearly to 35°C over a duration of 80 minutes. The same initial procedure was used for a 

sequence of nine runs using batch times of 0,  10,  20,...,80t  minutes. At the end of each 

run the temperature profile was stopped and the product was removed for CSD 

measurement. 
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5.6.4 Concentration measurement using conductivity meter 

Conductivity (voltage) was measured using a CM 35 voltmeter with WPA-35 conductivity 

probe. For calibration, the conductivity was measured for several concentrations over a 

range of temperatures, as shown in Figure 5.15, to cover the MSZW and a range of under-

saturation conditions, where dissolution occurs. The temperature was decreased by 1°C at 

each concentration until the system got nucleated. Hence the nucleation points, as shown in 

Figure 5.15, were determined experimentally. The solubility curve was obtained from 

literature. The sensitivity of the conductivity measurement to the solid content in the slurry 

was evaluated by measuring the conductivity at constant temperature in the equilibrated 

slurry, and changing the agitation speed to vary the solid fraction passing through the 

electrodes of the conductivity probe. Due to the relatively large surface area of the electrodes 

the sensitivity was practically negligible; hence the conductivity probe was considered to be 

suitable for concentration measurement in the slurry. 
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Figure 5.15: Measurement points for conductivity for the used concentrations and temperature 
ranges including solubility curve (Mullin, 2001) and the detected nucleation points. 

 

Figure 5.16 (a and b) show the dependence of the conductivity on temperature at various 

concentrations, and the variation of the conductivity with concentrations at different constant 

temperatures. Both dependences appear to be linear with relatively constant slopes over the 
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tested temperature and concentration ranges, hence a simple bivariate linear regression based 

calibration model was used: 

 
0 1 2k k k

C aV aT a  (5.15) 

where T  is the temperature in C , V  is the measured voltage (output from the conductivity 

meter), and 
k
C  is experimental concentration values at the discrete measurement points 

1, , .k K    
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Figure 5.16: Experimentally observed relationship between conductivity and a) temperature 
and b) concentration. 
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The parameters for the calibration model were estimated by a least square optimisation 

approach solved using the fmincon function in MATLAB. The optimisation problem for the 

parameter estimation is given by: 

 exp 2

1

min ( ) .
i

K

k ka
k

C C  (5.16) 

where 
k
C  and  exp

k
C  are the estimated and experimental concentration values at the discrete 

measurement points 1, , .k K  The fitted parameters for the calibration model are given in 

Table 5.5. 

Table 5.5: Calibration model parameters for concentration measurement using a conductivity 
probe for potash alum-water system. 

Parameters Values Error Bound at 95% confidence interval 

0
a  0.2994 ± 0.0106 

1
a  -0.0013 ± 0.0008 

2
a  0.0091 ± 0.0017 

 

The measured and the estimated concentrations using the calibration model show that they 

are in good agreement (Figure 5.17). The calibration equation (5.15) was validated against 

literature solubility data for anhydrous potash alum.  
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Figure 5.17: Comparison of measured and estimated concentrations using the calibration 
parameters shown in Table 5.5.  
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An experiment was conducted in which, the temperature of a slurry containing excess solid 

was increased in several steps as shown in Figure 5.18 (a). Figure 5.18 (b) shows a 

comparison between the estimated concentrations for the solubility curve using the 

calibration model and the literature data (Barrett and Glennon, 2002; Mullin, 2001; Xie et 

al., 2001; Zhang and Rohani, 2003).  Good agreement between the measured results and the 

literature data was observed, with a sum square error of only 0.002. Since the concentration 

measurements are expressed in weight fraction of anhydrous potassium alum, the solubility 

curve is calculated for the anhydrous potash alum as given by equation (5.2). 
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Figure 5.18: a) Determination of the solubility curve to validate the calibration parameters by 
increasing the temperature from 15 to 45 °C in 5 °C steps while containing 10% excess solids in 
the slurry throughout the process b) Comparison between the experimental solubility curve 
using conductivity and literature data.       

5.7 Size-dependent dissolution model identification for the 

potash alum in water system 

Repeated dissolution experiments were conducted under identical experimental conditions, 

but stopping the batches at different times (10, 20, ... , 80 min) for off-line CSD 

measurement using the Malvern Mastersizer unit. This approach was chosen to avoid 

disturbances in the mass balance due to samples taken during a single batch run. Details of 

the operating conditions of the experiments are shown in Table 5.4. The same seed was 

introduced in each experiment shortly after the process temperature was stabilised at 29°C 

within ten minutes. Figure 5.19 shows the concentration and FBRM results for the longest 

batch (80 min). The measurements from the shorter runs were consistent following the trend 

of the longest batch. The FBRM probe used in the experiments also detected a decrease in 

 (Mullin, 2001) 
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the square weighted mean chord length (SWMCL), as shown in Figure 5.19 (a), caused by 

the disappearance of the smaller particles and the reduction in the size of the larger particles. 

The change in the concentration throughout the batch is shown in Figure 5.19 (b) indicating 

a continuous increase with the dissolution of particles. As the temperature was increased 

from 30 to 35°C, the smaller particles dissolved, whilst the size of the larger particles 

decreased, hence narrowing the associated distribution. Figure 5.20 shows microscopic 

images of samples collected during the dissolution experiment. These images provide visual 

evidence of the disappearance of small particles and the reduction of size of the larger 

crystals as compared to the size of the seed. 
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Figure 5.19: a) Measured total number of counts (# /s) and square weighted mean chord length 
detected by FBRM throughout the experiment; b) Temperature profile and measured 
concentration throughout the batch; c) Chord length distribution throughout the batch for the 
dissolution experiment conducted to determine the kinetic parameters. 

 

A total of 8 batches were conducted, leading to 9 CSD measurements (with the seed CSD at 

0t , and at 10,  20, ... , 80 mint ). The dynamic evolution of the measured CSD is 

shown in Figure 5.21. The seed used in the experiments (and simulation) was bimodal as 

indicated by the two peaks in the distribution at the initial time ( 0)t , shown  in Figure 

5.21. The same bimodal feature of the seed can be observed in the microscopic image in 

Figure 5.20 (a).  As the temperature increased according to the temperature profile in Figure 

5.19 (b), the fine particles were dissolved, whilst the size of the larger particles decreased 

with the concomitant narrowing of the distribution, confirming the size-dependent 

mechanism of dissolution. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.20: Microscopic images of crystals a) seed at t= 0 min, b) t = 16 min, c) t = 32 min, d) t 
= 48 min, e) t = 64 min and f) t = 80 min at the end of the experiment. 

 

The dissolution parameters were determined to capture the dynamic evolution of the shape 

of the size distribution, as well as the experimental concentration profile. The optimisation 

problem for the parameter estimation is given by equation (5.4) and (5.5), having the same 

form as the problem used for the model identification of the size-dependent growth and 

nucleation. The size-dependent dissolution parameters were estimated for the empirical 

relationship shown in equation (4.21). 
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Figure 5.21: Dynamic evolution of the CSD throughout the batch for simulated and 
experimental CSD during dissolution mechanism. 
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In this case [ , , , ]
d
k d q  is the model parameter vector containing the dissolution kinetic 

parameters. The optimisation problem is solved using a sequential quadratic programming 

(SQP) based optimisation approach implemented in the MATLAB function fmincon. The 

PBE was solved using the QMOM-MOCH approach, for which the simulation time for the 

reconstruction of the entire evolution of the CSD during the batch only takes a few seconds 

on a standard PC running MATLAB. To evaluate the robustness of the identified model, the 

confidence intervals of the estimated parameters were also calculated using equation (5.8)-

(5.12).  The resulting dissolution model parameters for the potash alum system are given in 

Table 5.6: 

Table 5.6: Kinetic parameters for size-dependent dissolution for potash alum-water system. 
Parameters Value Error bound at 95% confidence 

interval 

Dissolution rate constant (
d
k ), 1 m s  1.28 ± 0.072 

Dissolution constant ( ), 1m  0.02 ± 0.063 

Dissolution constant (q ), -- 0.86 ± 0.081 

Dissolution order constant (d ), -- 0.98 ± 0.062 

 

Figure 5.21 illustrates the dynamic evolution of the simulated and the experimental CSDs, 

which are in reasonable agreement during the entire batch. The proposed dissolution model 

with the identified parameters and solution algorithm based on the combined QMOM-

MOCH method is able to describe the main features of the CSD throughout the entire batch. 

The dissolution of the fine particles and the decrease of the size of the particles together with 

the narrowing of distribution are well captured by the model. Figure 5.22 illustrates the 

evolution of the characteristic lines and the number distribution function predicted by the 

simulation for dissolution, using the combined QMOM-MOCH. The evolution of the 

characteristic lines shows the narrowing of the distribution function due to the size-

dependent dissolution kinetics. 
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Figure 5.22: Evolution of characteristic lines (a) and number distribution function (b) for the 
simulated results for dissolution with the identified kinetic parameters. 

 

5.8 Conclusions 

The chapter describes the materials and methods used for the experiments carried out to 

estimate the kinetic parameters for the potash alum-water system. The combined quadrature 

method of moments and the method of characteristics (QMOM-MOCH) approach was used 

for the solution of the population balance equations. The combined technique provides a 

computationally efficient framework for reconstructing the dynamic variation of the whole 

crystal size distribution (CSD) during the dissolution, growth and nucleation processes. The 

kinetic parameters for nucleation and growth were determined to capture the dynamic 

evolution of the shape of the crystal size distribution, as well as the experimental 

concentration profile. 

Size-dependent growth and secondary nucleation parameters were evaluated for the seeded 

system of potash alum in water, using industrial pilot plant data provided by BASF. The data 

consists of on-line measurement of CSD using Malvern Insitec and concentration, which 

was measured using an on-line density meter. The kinetic parameters estimated for size-

(b) 

(a) 
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dependent growth and nucleation were able to predict the concentration and mean diameters 

very well and capture the dynamic evolution of crystal size distribution very well for both 

experiments (identification and validation experiments). 

In the second part of the chapter the approach used for the determination of the dissolution 

parameters for potash alum-water system is described. The kinetic parameters for size 

dependent dissolution were identified using laboratory scale experiments. During these 

experiments the CSD was measured off-line using a Malvern Mastersizer. The concentration 

was measured using a conductivity probe and was converted to concentration using a 

bivarite linear regression calibration model. The process was also monitored using a focused 

beam reflectance measurement (FBRM) probe, which showed that smaller particles 

dissolved, whilst the size of the larger particles decreased and the distribution narrowed. 

Microscopic images provided the same evidence qualitatively, confirming the size-

dependent dissolution mechanism. Parameters with their confidence intervals were identified 

through a similar least square type non-linear optimisation approach as for the size-

dependent growth and nucleation mechanisms. The simulation results were in very good 

agreement with the experimental data, capturing well the main features of the dynamic 

evolution of the CSD. 
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Chapter 6  
Dynamic optimisation of temperature 
trajectories for shaping the product CSD 

6.1 Introduction 

Objective functions for optimisation of a crystallisation operation can be defined in terms of 

product purity, filtration time, crystallisation batch time, drying time, particle size, shape of 

particle size distribution and quality of crystals. Depending upon the definition of the 

objective functions, different optimal operating conditions may be obtained. For a batch 

crystalliser the dynamic optimisation of temperature trajectories are often important and 

hence have been extensively studied (Sarkar et al., 2006; Ward et al., 2006). Mostly single 

attribute objective functions are considered for the optimisation of batch crystallisation 

processes. However, in reality during the design of crystallisation processes, the desire is to 

achieve a CSD, which fulfils multiple objectives such as large mean size, small coefficient 

of  variation, high yield and smaller batch times (Sarkar et al., 2006). This chapter presents 

studies aimed at obtaining optimal temperature trajectories to produce the desired shape of a 

crystal size distribution at the completion of a batch. The optimal temperatures trajectories 

have been achieved by including different kinetic mechanisms for crystallisation processes 

including growth, nucleation and dissolution. For the optimisation, kinetic parameters have 

already been identified and were presented in Chapter 5. The dynamic optimisation to obtain 

the temperature profiles that maintain the supersaturation at optimum levels are discussed 

for a batch cooling crystalliser for which the PBE is solved using the combined quadrature 

method of moments and method of characteristics (QMOM-MOCH) approach presented in 

Chapter 4. 
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6.2 Model based dynamic optimisation of temperature 

trajectories using the combined QMOM-MOCH approach 

The combined QMOM-MOCH approach described in Chapter 4 was used to solve the 

population balance model (PBM) in a model-based dynamic optimisation scheme. The aim 

was to determine the optimal temperature trajectories, which yield desired target CSDs at the 

end of the batch. The final CSD is dependent on the supersaturation profile created over the 

batch time and hence the cooling trajectory is of critical importance. During optimisation, 

both the temperature trajectory and the batch time were optimised. The batch time horizon 

[0, ]
f
t  was divided into 

b
N  equally spaced time intervals of duration t  (stages), with 

discrete time steps 
k
t j t , 0,1, ,

b
j N  for the solution of the dynamic optimisation 

problem. The temperature trajectory is approximated by a piece-wise linear function 

determined by the fixed initial temperature at 0t , (0)T  and the slopes ( )
T
j  in each 

discretised period t . Since the batch time is also optimised, the duration of the time 

interval t  is changing during the optimisation, but the number of discretisations 
b
N  is 

fixed. This formulation allows easy incorporation of the temperature rate constraints as 

bounds on the decision variables ( )
T
j , which are important to obtain a practically 

implementable temperature trajectory.  The optimisation problem is formulated as follows: 

                         target 2

, ,( ),
1 1

min ( ( ) ( ))
d

T f

NK

v k l v k lj t
k l

f L f L                                       (6.1) 

  subject to:      

                                        
,min ,max

( ) , 0,1, ,
T T T b

j j N                                  (6.2) 

                                                      
,max

0
f f
t t                                                     (6.3) 

                                                       
,max

( )
f f

C t C                                                    (6.4)   

where ( )
T
j  are the elements of the vector containing the slopes ( /dT dt ) for the 

temperature trajectories depending on the implementable heating and cooling capacity of the 
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system, 
f
t  is the total batch time, ( )

f
C t is the solute concentration at the end of the batch, 

,maxf
C  is the maximum acceptable concentration at the end of the batch to achieve the 

required yield, 
,v k
f  and target

,v k
f  are the values of the simulated and the target volume 

probability distribution functions at the discrete time steps 1, ,k K , where measurement 

data was available corresponding to the discretised sizes 
l
L , 1, ,

d
l N  with 

d
N  being the 

number of experimental size bins. The optimisation problem is solved using a sequential 

quadratic programming (SQP) approach implemented using the MATLAB function fmincon. 

The kinetic parameters were presented in Tables 5.2 and 5.6. 

6.3 Simulation results 

6.3.1 Optimal temperature trajectory using size-dependent growth and 

secondary nucleation 

Temperature profiles have been optimised for three fictitious target distributions and are 

described in the following sections. 

Case I: Bimodal distribution with pronounced secondary nucleation. 

The target bimodal distribution used for the simulations is expressed as:   

 

 
2 2 2 2target ( 55) /(2.35 ) ( 360) /(2.50 )1 1

,bimodal 2 2.35 2 2.50
0.98 0.02L L

n
f e e  (6.5) 

 

For these simulations the number of discretisations was 50
b
N  and 

( )
f

C t =
,max

0.4
f
C ( /  )kg kg slurry . The bounds on the cooling rate were 

0.5 / min     0C . The value of t  was calculated as 
0

( )/
f b

t t t N . The seed 

and target distributions are shown in Figure 6.1 (at 0t ). Figure 6.1 shows the dynamic 

evolution of the CSD, and Figure 6.2 shows the optimal temperature profile, concentration 

and supersaturation profiles, throughout the batch, for the distribution shaping optimal 

control.  
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Figure 6.1:  Simulated dynamic evolution of CSD with optimal temperature profile throughout 
the batch. 
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Figure 6.2: Optimal control results of the simulations for bimodal target distribution with 
pronounced secondary peak: (a) Optimised temperature profile with 50 discretisation points, 
(b) phase diagram showing solubility and optimal operating curve, (c) concentration profile 
during the batch, (d) supersaturation ( )

sat
C C  profile (kg/kg slurry) during the batch, (e) 

nucleation rate profile during the batch and (f) growth rate profile during the batch. 
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A mono-modal seed was selected for simulation. Based on a measurement of the seed sizes 

used in the experiments (Chapter 5) the CSD was represented by a Gaussian distribution 

with a mean of 54 m  and a standard deviation of 15 m . Figure 6.1 shows the dynamic 

evolution of the CSD towards the target bimodal distribution, when the optimal temperature 

trajectory shown in Figure 6.2 (a) was implemented in the simulation. The final CSD is in 

good agreement with the target distribution (sum square error between target and simulated 

distribution was 0.00024). The initial 10-15 min of the batch is mainly devoted to the growth 

of the seed crystals, which approach rapidly the larger size mode of the target distribution. 

This was due to the high driving force in this period (i.e. large supersaturation), as can be 

seen in Figure 6.2 (b) and (d). The supersaturation achieves its peak value at about 10 min as 

shown in Figure 6.2 (d) yielding the appearance of a second mode because of secondary 

nucleation, which develops clearly by 17t  min.  

The optimal temperature profile, as shown in Figure 6.2 (a), was obtained using 50 

discretisation points in the optimisation. The selection of the number of discretisations is a 

trade-off between computational time and accuracy. The improvement in SSE from 30 to 50 

discretisation points was just 0.03%. No significant improvement in the objective function 

was achieved when the discretisation was increased from 30 to 50 intervals, as shown in 

Figure 6.3 and hence the finer discretisation was not considered necessary. The target CSD 

can be achieved within the temperature range of 40C to 5C during a batch period of 

approximately 1 h with the desired yield being larger than 60%, as shown in Figure 6.2  (c).  
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Figure 6.3: Optimal temperature profiles for bimodal target distribution with pronounced 
secondary with 30 and 50 discretisation points. 
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The temperature profile shows several distinguishing slope changes, which correspond to the 

secondary nucleation events generated to achieve the desired shape of the target distribution. 

After the initial peak at around 10 minutes, the supersaturation rises again between 27-36 

minutes and subsequently towards the end of the batch between 50-55 minutes, as can be 

seen in Figure 6.2 (d). These increases in the supersaturation lead to additional nucleation 

events and growth required to achieve the target distribution, as shown in  Figure 6.2 (e) and 

(f). 

Figure 6.1 shows that the first mode of the bimodal target distribution is skewed, requiring 

the subsequent nucleation events to improve the shape of the obtained CSD. The third region 

of the increased supersaturation has significantly smaller values and is mainly to facilitate 

growth of the larger particles to obtain a better fit to the second mode of the target CSD. 

Figure 6.1 shows no significant change in the first mode of the CSD after 41t  min, 

indicating mainly the growth of the second mode. The previous target CSD showed a 

pronounced secondary peak to illustrate the ability of the approach to achieve a bimodal 

distribution.  

Case II: Bimodal distribution with suppressed secondary nucleation                                   

In industrial scenarios, a major emphasis is to suppress the nucleation and minimise the 

formation of small particles during the crystallisation process. Therefore, the temperature 

profile was optimised for another fictitious target CSD distribution (selected based on 

experimental data to guarantee achievability of the target), with a significantly smaller 

fraction of fine particles:  

                2 2 2 2target ( 55) /(2.35 ) ( 380) /(2.60 )1 1
,bimodal 2 2.35 2 2.60

0.91 0.09L L

n
f e e          (6.6) 

For these simulations the number of discretisations ( )
b
N  was 30 and ( )

f
C t =

,max
0.4

f
C   

( /  )kg kg slurry , and same bounds were used on  as in case I. The seed and target 

distributions are shown in Figure 6.4  (at 0t ). Figure 6.4 represents the dynamic 

evolution of the CSD, and Figure 6.5 shows the optimal temperature profile, concentration 

and supersaturation profiles, throughout the batch, for the distribution shaping optimal 

control, for the bimodal target distribution with suppressed secondary nucleation. 
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Figure 6.4: Simulated dynamic evolution of CSD with optimal temperature profile throughout 
the batch. 
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(f) 

Figure 6.5: Optimal control results of the simulations for bimodal target distribution with less 
pronounced secondary peak: (a) optimised temperature profile with 30 discretisation points, (b) 
phase diagram showing solubility and optimal operating curve, (c) concentration profile during 
the batch, (d) supersaturation ( )

sat
C C  profile (kg/kg slurry) during the batch, (e) nucleation 

rate profile during the batch and (f) growth rate profile during the batch. 
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Figure 6.4 shows that the CSD predicted by the model is very close to the target distribution. 

The slight deviation of the first peak from the target distribution indicates that it is not 

possible to achieve any arbitrary target distribution by simply designing the cooling profile. 

There are limitations on the attainable CSD shapes given by particular nucleation and 

growth kinetics as well as the shape of the seed distribution. The optimised temperature 

profile ranges from 40C to 7C, as shown in Figure 6.5 (a). It can be observed in Figure 6.5 

(a) that during the first 20 minutes, the cooling rate is slower than the rest of the profile, and 

mainly devoted to the growth of the crystals.  During 20-57 minutes the rate of cooling is 

higher than the initial 20 minutes, during this time there is a higher supersaturation (driving 

force), as can be seen in Figure 6.5 (d). The supersaturation achieves its peak value at about 

22 minutes as shown in Figure 6.5 (d) yielding the appearance of a second mode because of 

secondary nucleation, which develops clearly by 33.3t  minutes. During 57-77 minutes of 

the batch the cooling rate reduces again for another 20 minutes, however the supersaturation 

level during this period is still relatively high leading to additional nucleation events and 

growth required to achieve the target distribution. During this period the growth of the 

crystals was the dominating phenomenon, as shown in Figure 6.5 (e).  During the last 19 

minutes of the batch the cooling rate increases again. Figure 6.5 (d) shows that at 77 

minutes, a slight increase in the supersaturation is observed. This slight increase in 

supersaturation level is used to complete the growth of the particles to the required size and 

to achieve the required yield of at least 60%, as shown in Figure 6.5 (c).  

The initial 20-30 minutes of the batch are devoted mainly to the growth of the seed crystals 

because of the high driving force in this period i.e. large supersaturation, as can be seen in 

Figure 6.5 (b) and (d). 

The distinguishing slope change in the temperature profile at 78 minutes corresponds to 

secondary nucleation, which was generated to achieve the desired shape of the target 

distribution. After the initial peak in supersaturation at around 22 minutes, the 

supersaturation raises again at 78 minutes, as shown in Figure 6.5  (d).  These increases in 

the supersaturation lead to additional nucleation and growth, required to achieve the target 

distribution, as shown in Figure 6.5 (e) and (f).  

The batch time for this case has increased with 34% compared to the bimodal distribution 

(case I) with a more pronounced nucleation peak. In the previous case the total batch time 
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was 63 minutes whereas for case II the total batch time was approximately 96 min. The 

number of discretisations used in this case was also 30, as it was described in case I that 30 

discretisation was enough to achieve a smooth, practically implementable, temperature 

trajectory.  

Case lll: Mono-modal distribution without any nucleation 

After using bimodal distributions as target CSDs, the temperature trajectory was optimised 

to achieve a fictitious mono-modal distribution, with the aim to try to eliminate completely 

the effect of secondary nucleation. The target mono-modal distribution can be expressed as: 

 
2 2target ( 378) /(2.50 )1

,mono-modal 2 2.50

L

n
f e  (6.7) 

The same mono-modal seed was used, as in the previous two cases, i.e. a Gaussian 

distribution with a mean of 54 m  and a standard deviation of 15 m . Figure 6.6 shows a 

comparison of the target and the simulated CSD at the end of the batch when the optimal 

temperature profile was implemented. The simulated CSD is still bimodal despite the target 

being a mono-modal distribution. The optimal CSD captures the large peak very well, 

however the optimal operating trajectory, which is constrained in this case to be within the 

metastable zone ( 0)  is unable to avoid the development of the secondary peak due to 

secondary nucleation. 

 

0 200 400 600 800
0

1

2

3

4

5

6

7

x 10
-3

Particle Size (m)

Vo
lu

m
e 

pd
f (

m

-1
)

 

 

Simulated
Target
Mono-modal

 
0 20 40 60 80

10

15

20

25

30

35

40

Time (min)

Te
m

pe
ra

tu
re

 (o C
)

 

 
Optimal Temp Profile
(30 discretisation)

 
Figure 6.6: a) Comparison of simulated and target mono-modal CSD (b) optimal temperature 
profile with 30 discretisation points.  

 

The temperature trajectory was designed using growth and secondary nucleation. Both 

mechanisms occur in the supersaturated solution within the metastable zone. The secondary 

Fine 
particles due 
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nucleation (a) (b) 



Chapter 6: Dynamic optimisation of temperature trajectories for shaping the product CSD 140 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

nucleation produces fines even when the supersaturation is not very large. This is in 

correlation with findings by other researchers (Doki et al., 2004) who showed that in the 

case of particular seed loading in many cases it is practically impossible to avoid the 

formation of bimodal CSD, due to secondary nucleation. The only way to remove the fine 

crystals is to cross the solubility curve ( )
sat
C  into the under-saturated region, where 

eventually the fine crystals should preferentially dissolve leading to a mono-modal CSD of 

large sized crystals. Thus to obtain the desired mono-modal target distribution, an optimal 

temperature profile can be designed, while using both supersaturated and under-saturated 

regions.  

6.3.2 Designing mono-modal target distribution using size-dependent 

growth, nucleation and size-dependent dissolution mechanisms 

The temperature profile was optimised for the same mono-modal target distribution 

described in Section 6.3.1 (case III). The under-saturated region and supersaturated region 

both were used to design the optimal temperature profile, by allowing increase in the 

temperature ( 0.5 /min     0.5 /min)C C  and using the model that incorporates 

growth, nucleation and dissolution mechanisms. The model was solved using the combined 

QMOM-MOCH technique. The kinetic parameters used are identified in Chapter 5 and are 

presented in Tables 5.2 and 5.6. Figure 6.7 shows the main results of the optimisation 

considering growth, nucleation and dissolution mechanisms. The target distribution is very 

well achieved with no secondary peak (see Figure 6.7 (a)) which was impossible to eliminate 

while operating within the metastable zone (MSZ) only. 

The resulting batch time in this case, was 100 minutes which is more than in both previous 

cases (bimodal distributions), i.e 37% more than in case I and 4% greater than in case II.  It 

can be observed in Figure 6.7 (b) that the temperature trajectory can be divided in three 

phases. During the first phase of 40 minutes of the batch, the temperature decreased from 40 

to 28°C. In the second phase, the temperature increased from 28 to 32°C from 40 to 74 

minutes. In the last phase, the temperature decreased again from 32 to 17°C for the 

remaining 26 minutes of the batch. 
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Figure 6.7: a) Comparison of simulated and target mono-modal distribution, b) optimal 
temperature profile c) growth and dissolution rates and d) nucleation rate profile within the 
supersaturated and under-saturated region for the mono-modal target distribution, considering 
dissolution along with growth and nucleation. 

 

The supersaturation profile corresponding to the optimal temperature trajectory is shown in 

Figure 6.8. The complete dynamic evolution of the CSD is shown in Figure 6.10 and the 

phase diagram showing the solubility curve along with the optimal temperature trajectory is 

presented in Figure 6.9.  In the latter a dissolution loop can be clearly seen which indicates 

the initial cooling, followed by a heating stage and then cooling of the system again. When 

the temperature is decreased from 40 to 28°C the solution was supersaturated.  
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Figure 6.8: Supersaturation and under-saturation profile for mono-modal target distribution. 

During this time the supersaturation reached its maximum value at around 22 minutes and 

then decreased to zero within the next 18 minutes.  During this process, the seed has grown, 

and the apparition of a smaller peak is also observed due to secondary nucleation, as shown 

in Figure 6.10 at 32t  and 39t minutes.  In the next phase, the temperature was 

increased from 28°C to 32°C and the system entered the under-saturated region as shown in 

Figure 6.8. 
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Figure 6.9: Phase diagram showing solubility curve and optimal operating profile with the 
dissolution loop for mono-modal target distribution. 
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Figure 6.10: Dynamic evolution of CSD using size-dependent growth, secondary nucleation and 
size-dependent dissolution kinetics for potash alum-water system. 

 

When the temperature is increased, the smaller particles dissolve and the size of the larger 

particles decrease. The dissolution of particles during this heating phase leads to the 
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formation of the dissolution loop, shown in Figure 6.9.  It can be seen in Figure 6.10 that 

between 59t  and 74t  minutes, the small peak in the distribution has disappeared and 

the distribution has become narrower. During this period the supersaturation started 

increasing and the system re-entered the super-saturated region from the under-saturated 

region, as shown in Figure 6.8. During the last 26 minutes the temperature decreased from 

32 to 17°C within the supersaturated region. The crystals grow in size due to the available 

super-saturation and due to the size dependent growth the CSD broadened, as shown in 

Figure 6.10 at 90t  and 100t minutes. Some secondary nucleation was also observed 

during the last 26 minutes, but it was not very significant. This secondary nucleation can 

also be observed in Figure 6.11 (b). 

Figure 6.11 (a) shows the characteristic lines ( )L , which correspond to the combined 

phenomena of growth, nucleation and dissolution. The characteristic lines correspond to the 

size-dependent growth in the first 40 minutes, which is indicated by the broadening of these 

lines. Then these lines started narrowing down as dissolution took place and in the last phase 

the lines started broadening again to fit the final shape of the distribution. In Figure 6.11 (b) 

some nucleation can be observed between 74 to 90 minutes which shows that some fine 

particles were produced due to secondary nucleation, also shown in Figure 6.7 (d). However, 

secondary nucleation was not significant and hence no fines peak is shown in the final CSD 

of Figure 6.7 (a).  

The described case study shows that by operating both within the metastable zone and in the 

under-saturated region, it is possible to obtain mono-modal CSD. Using both phases to 

design an optimal profile provides the possibility to dissolve the fine particles produced by 

secondary nucleation. The simulation results show that a mono-modal target CSD is difficult 

to achieve, while just operating within the metastable zone and considering only growth and 

nucleation mechanisms. Operating within and outside the metastable zone gives more 

flexibility to design an operating profile to achieve a target CSD using the kinetic rate laws 

for growth/dissolution and nucleation mechanisms, identified for the system.  
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Figure 6.11:  Evolution of characteristic lines (a) and number distribution function (b) for the 
simulated mono-modal target distribution. 

 

6.4 Conclusions 

The combined QMOM-MOCH technique was used to solve the PBE in dynamic 

optimisations formulated to obtain cooling temperature trajectories, which maintain the 

supersaturation at an optimum level for a batch cooling crystalliser and were used to obtain a 

variety of desired target CSDs. The final CSD is dependent on the supersaturation profile 

created over the batch time and therefore, cooling trajectories play a vital role in shaping of 

final CSD. In the optimisations, both the temperature trajectory and the batch time were 

optimised. The case studies used both the supersaturated and the under-saturated regions to 

design the optimal temperature profiles.  

Three case-studies were used to obtain optimal temperature trajectories for designing 

different target CSDs. First, the technique was used to achieve the optimal temperature 

profile for a fictitious bi-modal target distribution with a pronounced secondary peak. With 

the resulting optimal temperature trajectory the bimodal target distribution was achievable. 

However, in industrial scenarios, generally the major emphasis is to suppress nucleation and 

minimise the formation of small particles during the crystallisation process. Therefore the 

temperature profile was optimised for another fictitious target distribution, with a 

(a) 

(b) 
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significantly smaller fraction of fine particles. With the implemented optimal temperature 

trajectory, the target distribution was achievable however with a slight discrepancy in the 

fine peak compared to the target. These results indicate that it is not always possible to 

achieve an arbitrary target distribution simply by designing the cooling profile. There are 

limitations on the potentially attainable CSD shapes given by the particular nucleation and 

growth kinetics, as well as the shape of the seed distribution.  

Lastly, the temperature profile was optimised for a mono-modal target distribution. When 

the temperature profile was optimised within the metastable limit (allowing growth and 

secondary nucleation), it was not possible to achieve the desired target CSD. Therefore, to 

obtain the mono-modal target distribution both the supersaturated and the under-saturated 

regions were used in the design of the temperature trajectory, making use of the dissolution 

mechanism to remove the fine crystals.  

The simulation results presented in the chapter provide an illustrative case study for using 

model-based design of controlled dissolution to achieve a target distribution, which cannot 

be obtained operating within the metastable zone only. 
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Chapter 7  
A systematic framework for CSD control of 
supersaturation controlled crystallisation processes, 
using direct design, seed recipe optimisation and 
dynamic seeding 

7.1 Introduction 

The first part of this chapter presents a novel methodology for the systematic design of the 

setpoint operating curves for supersaturation controlled seeded crystallisation processes, 

which produce a desired target crystal size distribution (CSD). The population balance 

model is solved using the method of characteristics under the assumptions of constant 

supersaturation and a growth dominated process, yielding a simplified analytical expression 

for the evolving size distribution. A design parameter for supersaturation controlled 

processes is introduced as a function of the supersaturation, time and growth kinetics. Based 

on the design parameter and the simplified analytical model, the supersaturation setpoint and 

batch time are determined using an optimisation approach to obtain a target distribution with 

a desired shape. The methodology can be used to obtain the temperature profiles in the time 

domain, corresponding to a desired target CSD, providing a systematic direct design 

approach for practical applications and scale-up. 

In the second part of the chapter, two methods are proposed that use seed design in 

conjunction with supersaturation setpoint control, for shaping the product CSD. The first 

approach designs a seed recipe as a mixture of crystals resulting, for example, from a 

standard sieve analysis. In this approach all of the seed is introduced at the beginning of the 

batch. The second approach proposes a dynamic seed addition profile, which allows an 

easily implementable methodology to achieve complex target CSDs using seed with mono-

modal CSD, as a process actuator to control the desired final CSD. The proposed methods 

are exemplified for the model system of potash alum in water, for which the apparent size 

dependent growth kinetic parameters have been identified in Chapter 5.  
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7.2 Comparison of different approaches for designing the 

operating curves 

Several approaches have been proposed for designing the operating curves for crystallisation 

systems. Generally speaking, two main categories can be distinguished (Nagy et al., 2008a), 

which are schematically depicted in Figure 7.1. The model-based design approach involves 

development of a detailed model, which is used with optimisation techniques to determine 

temperature versus time or anti-solvent addition rate versus time trajectories (Nowee et al., 

2008a, b; Woo et al., 2006), as shown in Figure 7.1. Advantages of the model-based 

approach include its ability to obtain a theoretically optimal recipe, requiring a much smaller 

number of experiments, than for statistical experimental design of batches, increased process 

understanding, and the possibility of incorporating the effects of non-ideal mixing via 

computational fluid dynamics (Ward et al., 2006).  

 
 
 
 

Figure 7.1: Schematic representation of the model-based, model-free and supersaturation 
control (SSC) design approaches for crystallisation systems. 
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Disadvantages associated with the model-based approach are mainly related to the difficulty 

in modelling practical objectives (e.g., filterability, purity, tablet stability, etc.), and the 

significant time and engineering effort required for the model development. Additionally, 

the performance of the model-based approach depends on the model accuracy; however the 

robustness of the approach can be improved by formulating the robust counterpart of the 

optimisation problem (Hermanto et al., 2007; Nagy and Braatz, 2004). 

An alternative way to enhance the control of the CSD is to use supersaturation control (SSC) 

(Gron et al., 2003; Zhou et al., 2006a) or direct nucleation control (Hojjati and Rohani, 

2005; Woo et al., 2009a), which are methodologies that drive the crystallisation process 

within the metastable zone to avoid nucleation or produce controlled nucleation/dissolution 

events. Although these approaches have proven to produce high quality crystals, the setpoint 

operating profiles for the supersaturation controller are usually chosen arbitrarily or by trial-

and-error experimentation. Although a complex model-based design of supersaturation 

controlled processes has been applied recently (Nagy, 2009), until now there have been no 

systematic procedures reported for the design of supersaturation controlled processes.  These 

designs could exploit the fact that the underlying process is controlled at a constant 

supersaturation and/or could combine setpoint design with seed recipe optimisation. The 

proposed framework provides for the first time a link between the model-based and model-

free design approaches, as shown in Figure 7.1, using simplified analytical expressions for 

the estimation of the CSD. In the case of seeded batch cooling crystallisation processes 

controlled at constant supersaturation, the main governing phenomenon is growth. For these 

systems an analytical solution of the population balance equation can be obtained, which 

gives the entire CSD at any moment of the batch. A design parameter, as a function of the 

batch time and supersaturation, is introduced for supersaturation controlled crystallisation 

processes. The optimal design parameter is obtained by solving a constrained nonlinear 

optimization problem with the objective to achieve a desired shape of the CSD at the end of 

the batch, while maintaining a required minimum yield. The supersaturation setpoint and 

batch time required to achieve the desired CSD can be obtained from the optimal design 

parameter, taking into account the boundaries of the metastable zone, with additional 

uncertainty margins for robust operating profiles. A methodology to derive the temperature 

versus time profiles from the optimal design parameter is also illustrated, which can be 
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readily implemented in the case of industrial crystallizers based on classical temperature 

control systems, using the direct design concept. 

7.3 Direct Design Approach 

The traditional way of controlling a seeded cooling-crystallisation processes is to follow a 

predetermined temperature profile in time. Recent developments in the direct design of 

crystallisation processes have lead to more widespread application of supersaturation 

control. The direct design approach is based on the idea of operating the system within the 

metastable zone (as shown in Figure 7.2) bounded by the nucleation and the solubility 

curves. The nucleation and solubility curves can be predetermined in automated experiments 

(Barrett and Glennon, 2002; Fujiwara et al., 2002). Operation close to metastable limit (high 

supersaturation) results in excessive nucleation, increased agglomeration, lower purity and 

longer filtration times. Operation close to solubility curve (low supersaturation) leads to 

slow growth and long batch times (Fujiwara et al., 2005).  
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Figure 7.2: Operation of seeded batch cooling crystallisation. 

 

The setpoint supersaturation curve is the result of a compromise between fast crystal growth 
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the product crystals are dependent on the supersaturation. In seeded crystallisation, the 

supersaturation is usually maintained at the desired constant value throughout the entire 

batch by application of properly designed control algorithms (Fujiwara et al., 2005; Zhou et 

al., 2006a). Since direct supersaturation measurement sensors often have limited availability 

for industrial scale use, the supersaturation profiles can be redefined in terms of the 

temperature profiles in time, which are developed to maintain the supersaturation at a certain 

setpoint. In this case supersaturation control using expensive and generally complex 

concentration measurement hardware and software can be implemented only once, based on 

the knowledge of the metastable zone. The supersaturation controller will automatically 

generate a temperature versus time profile (or solvent/anti-solvent addition rate versus time 

profile for anti-solvent crystallisation, or heat input versus time profile for evaporative 

crystallisation) by trying to keep the supersaturation at the desired constant value. In 

subsequent operations the resulting temperature versus time profile can be used without the 

need of concentration control. This will provide an open loop control strategy that leads to 

an inferential constant supersaturation control, according to the direct design concept. Since 

these technologies are becoming increasingly accepted in the pharmaceutical industries, it is 

important to have a systematic methodology for designing the supersaturation and 

corresponding temperature trajectories to obtain products with the desired CSD.    

7.4 Population Balance Modelling of Supersaturation 

Controlled, Growth Dominated Batch Crystallisation 

Processes 

Considering a single growth direction with one characteristic length L , and a well-mixed 

crystalliser with supersaturation control and growth as the only dominating phenomena, the 

population balance equation (PBE) given in equation (4.1) can be re-written as: 

 
( ( , ; ) ( , ))( , )

0,g nn
G S L f L tf L t

t L
 (7.1) 

 where ( , )
n
f L t  is the crystal size distribution expressed as the number density function 

(number of crystal per unit mass of slurry), t  is time, ( , ; )
g

G S L  is the rate of crystal growth, 
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( )
sat

S C C  is the absolute supersaturation, C  is the solute concentration, ( )
sat sat
C C T  

is the saturation concentration, T  the temperature, 
g
 is a vector of growth kinetic 

parameters. The generic PBE (7.1) can be reduced to a system of ODEs by applying the 

method of characteristics (MOCH).  When seed is added in the case of supersaturation 

controlled crystallisation, the process will generally be dominated by growth. For the generic 

case of apparent size-dependent growth, for which the kinetics is given by equation (4.8), 

using the initial conditions already described in Chapter 4 and applying the MOCH, reduces 

equation (7.1) to the following system of two ODEs: 

 (1 ) ,g p

g

dL
k S L

dt
 (7.2) 

 1( , )
(1 ) ( , ).g pn

g n

df L t
k S p L f L t

dt
 (7.3) 

In the case of well-controlled constant supersaturation, which follows the desired set-point 

value, 
sp
S , the system of equations (7.2)-(7.3) can be solved analytically with the solution 

given by: 

 

1

1 1
0

(((1 ) (1 )) 1)p g p
g

L k S t p
L  (7.4) 

 
1

,0 0 1

0

(1 )
( ) ( ) 1

(1 )

p
g p

g

n n p

k S t p
f L f L

L
 (7.5) 

Discretizing the initial (seed) distribution 
,0 0 0
( ) ( )

n seed
f L f L  for different values of 

0
L , 

equations (7.4)-(7.5) can be used to compute the dynamic evolution of the CSD for a generic 

growth dominated process (the analytical solution is valid for 1p and 0 ). Table C.1 

in Appendix C summarizes the results of the analytical solutions for different growth 

expressions. The complete derivation of equation (7.4) and (7.5) is given in Appendix C.  



Chapter 7: A systematic framework for CSD control of SSC crystallisation processes, using 
direct design, seed recipe optimisation and dynamic seeding 153 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

7.5 Systematic Design of Supersaturation controlled 

Crystallisation 

The CSD given by the system (7.4)-(7.5) (or alternatively using the equations shown in 

Table C.1 depending on growth kinetics), is determined by the product between gS  and t . 

Hence a design parameter ( ) can be defined as,  

 gS t . (7.6) 

The optimal supersaturation control (SSC) design parameter ( ) can be determined by 

minimizing the difference between the discretised target distribution and the predicted CSD 

obtained from the analytical estimator (7.4)-(7.5);  

                                              2

, ,
1

min ( ) ,
dN

v i v i
i

f f                                                  (7.7) 

                        
subject to:                     

max
0 ,                                                  (7.8) 

                                                
,max

( )
batch f

C t C ,                                                     (7.9) 

where 
d
N  is the number of discretisations,  

,v i
f  is the discretised target CSD (volume 

particle density function); ( )
batch

C t is the solute concentration at the end of the batch, 
batch
t  is 

the duration of the batch, and 
,maxf

C  is the maximum acceptable concentration at the end of 

the batch to achieve a required yield.  The number density function can be converted to 

volume particle density function using the relationship given in equation (5.6). 

The MATLAB (Math Works Inc.) function fmincon was used to solve the constrained non-

linear optimisation problem (7.7)-(7.9). Once the design parameter, ,was optimised for a 

desired target distribution, by using equation (7.6)  it is possible to determine the 

supersaturation setpoint 
sp
S  for a given batch time  ( batch

t ), or to calculate the required batch 

time to achieve the desired distribution by controlling the process at a given supersaturation 

value. A batch processing unit may be a multi-purpose unit, which is used for several 

processing phases and may support multi-product manufacturing. In this case, the batch 

scheduling becomes of key importance due to raw material and time constraints. The control 
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design parameter, , gives the flexibility to adjust the supersaturation for a fixed batch time, 

which can be calculated as, 

 1/

/
g

sp batch
S t  (7.10) 

with 
sp max
S S , where 

max
S  is the boundary in which the supersaturation can be operated 

with confidence without producing nuclei, delimiting the robust operating zone (ROZ), and 

is given by, 

 
max MSZW MSZW
S S S  (7.11) 

where 
MSZW
S  is the metastable zone width and 

MSZW
S  is a safety back-off from the MSZ 

limit to provide robust performance, as shown in Figure 7.3. The ROZ can be determined for 

example by repeated MSZW experiments under various experimental conditions and scales. 

These experiments can be easily automated and the results can statistically estimate the 

potential changes in the MSZW due to scale-up.  
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Figure 7.3: The supersaturation boundary limits and the robust operating zone (ROZ) in which 
the 

sp
S  can be chosen with confidence that nucleation or dissolution will be avoided, even under 

changing process conditions (mixing, impurities, etc.). 

 

The corresponding minimum batch time (
,batch min

t ) for the maximum supersaturation 

considering the ROZ is given by: 
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,

/ g

batch min max
t S  (7.12) 

In the cases of no scheduling limitations the batch time is the preferred design parameter to 

be adjusted, especially during the batch (e.g. in an on-line optimisation based control 

scheme) since changes in the setpoint of the supersaturation controller may lead to control 

problems, such as undesired oscillations or overshoot. Hence, the approach based on the 

supersaturation control design parameter allows tailoring the batch time in correlation with 

the supersaturation setpoint, according to the process requirements/limitation, while 

maintaining a desired target CSD, corresponding to a particular value of . 

In industrial practice, it is often difficult to control supersaturation due to the unavailability 

of installed sensors for the measurement of concentration. However temperature control 

systems are readily available for all cooling crystallisation systems. The temperature 

trajectory in the time domain can be designed for a desired supersaturation setpoint 
sp
S , 

from the solubility curve and from the dynamic variation of the concentration and moments 

for the crystal size distribution along the batch. The solubility curve is given as a function of 

temperature, ( )
sat
C T . In the current work, a second-order polynomial was fitted to 

experimental data for the potash alum-water system and has already been given in equation 

(5.3) with coefficient values: -2 4 5

0 1 2
=3.63 10 , 2.43 10 , 3.58 10a a a . The change in 

concentration with time was given by equation (4.14), 
3 3

( ) (0) [ ( ) (0)]
c v

C t C k t .  The 

moments of crystal size distribution can be obtained from:  

 
,

10

( ) ( ),
dN

k k

k n n i i i
i

t f L dL f L L    where  0,1,2,...k  (7.13) 

where 
n
f  is the crystal size distribution expressed as the number density function (number of 

crystal per unit mass of slurry), L  is the particle size in m , L is the difference between 

two consecutive size range and d
N  is the total number of size ranges. The third moment is 

required to calculate the mass balance. 
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The temperature profile in the time domain, used as the setpoint for the temperature 

controller, ( )
sp
T T t , can be obtained by solving the following nonlinear equation for a 

given concentration measurement ( )C t , 

 2

2 1 0
( ) 0.

sp
S C t a T aT a  (7.14) 

Although equation (7.14) was derived considering a simple polynomial representation of the 

solubility equation the approach works for other solubility expressions, such as the generic 

van’t Hoff type equation.  

7.6 Simulation results and discussions 

The apparent size-dependent growth parameters for potash alum system in water were 

obtained using a model-based parameter estimation, assuming a well-mixed system and 

growth and secondary nucleation mechanisms, with the values given in Table 5.2.  

A target CSD was generated by performing a simple experiment using a cubic cooling 

profile. The total batch time was 90 min. Then the SSC design parameter ( ) was optimised 

in order to achieve the target experimental CSD using the same experimental seed CSD in 

the simulations, (seed CSD used for experiments described in Chapter 5, Section 5.5.1). The 

optimal  was next used to obtain either the setpoint for the supersaturation controller or the 

batch time, using equations (7.10) and (7.12). Results are shown in Figure 7.4 (a) and (b). 

Since the target CSD was obtained experimentally, it represents a feasible setpoint for the 

system. Hence the simulated and experimental CSDs are in good agreement. Figure 7.4 (a) 

and (b) show the results using different pairs of supersaturation values and batch times, 

corresponding to a constant value of the design parameter , indicating that the same target 

CSD can be achieved using different batch times if the process is controlled under a 

supersaturation chosen according to the SSC design parameter.  



Chapter 7: A systematic framework for CSD control of SSC crystallisation processes, using 
direct design, seed recipe optimisation and dynamic seeding 157 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

0 200 400 600 800 1000
0

0.005

0.01

0.015

Particle size(m)

V
ol

um
e 

pd
f (

m

-1
)

 

 

Target CSD
Simulated CSD
Seed CSD

 
 

0 200 400 600 800 1000
0

0.005

0.01

0.015

Particle size(m)

V
ol

um
e 

pd
f (

m

-1
)

 

 

Target CSD
Simulated CSD
Seed CSD

 
 

Figure 7.4: Results with the optimized design parameter 0.206min , designed to achieve 

the target experimental CSD; (a) fixed batch time of 80
batch
t min  and calculated 

0.00257 (kg/kg)
sp
S  ; (b) fixed supersaturation setpoint 0.00215 (kg/kg)

sp
S

 
and 

calculated batch time 96
batch
t min . Both cases give the same target CSD corresponding the 

optimized . 

 

The experimental target CSD is bimodal showing one of the modes at smaller sizes due to 

the secondary nucleation during the experiment. Since the methodology considers the 

growth mechanism only, the mode corresponding to the smaller crystals (newly formed 

nuclei) is not captured in the simulations. 

The approach was also used to design crystallisation systems with arbitrary target CSDs 

using the same experimental seed CSD as in the previous case. A lognormal target 

distribution was selected with mean 420 
m
L m  and standard deviation 0.22 , 

however which is close to the experimental target distribution used on the previous case. 

Figure 7.5 (a) shows that the system with the optimised supersaturation design parameter of 

0.203 min  is able to achieve a product CSD in good agreement with the target CSD. As 

expected, the optimal SSC design parameter is very similar to the previous value since the 

target distributions also have similar shapes. The actual shape of the CSD, which can be 

achieved by designing the supersaturation level and/or batch time, is limited and is 

determined by the seed distribution and growth kinetics of a particular system. Figure 7.5 (b) 

illustrates the results of the optimal design when the same experimental seed, but a narrower 

(a) (b) 
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target distribution (lognormal distribution) is used with the same mean 420 
m
L m , but a 

smaller standard deviation 0.17 .  
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Figure 7.5: a) Results with the optimized design parameter 0.203 min  obtained to achieve 

a target lognormal CSD with 420
m
L m  and 0.22 . b) Results with the optimized design 

parameter 0.198 min  obtained to achieve a target lognormal CSD with 420
m
L  m  

and 0.17 . 

 

The resulting optimal design parameter ( 0.198 min)  provides a product with similar 

mean size, however the achievable width of the distribution is limited by the growth kinetics 

of the system. Since growth rate ( )G  is a monotonically increasing function of size ( )L , 

therefore the  CSD has to get wider as the crystals grow. The results demonstrate that since 

in the case of constant supersaturation controlled processes the only degree of freedom is the 

SSC design parameter, ; hence it is not possible to independently tailor mean size and 

width (standard deviation) of the product distribution. Therefore more complex control 

approaches are needed for higher degree of control of the shape of the product CSD (e.g. by 

using a variable supersaturation profile, using controlled nucleation and/or dissolution, or 

including seed CSD and addition time as control variables). Nevertheless the methodology 

presented here provides a practical framework for systematically designing the setpoint for a 

supersaturation controller and to produce a relatively quick and robust direct design 

approach for achieving a consistent product CSD. 

(a) (b) 
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The designed supersaturation setpoints can be transformed into temperature profiles using 

the model inversion approach described in Section 7.5. Figure 7.6 (a) shows the temperature 

profiles corresponding to a design parameter 0.206 min , obtained for different 

supersaturation setpoints and batch times in the case of the experimental target CSD. All the 

temperature profiles provide the same target CSD but with different batch times and 

supersaturations. The corresponding concentration profiles are shown in Figure 7.6 (b). The 

yields produced are around 61% in all cases, being close to the minimum 60% required in 

the optimisation. 
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Figure 7.6: a) Temperature profiles and b) concentration profiles obtained at different setpoint 
supersaturation values (S  in weight %), and batch times ( t  in min) corresponding to the same 
design parameter 0.206 min , optimised to achieve the experimental target CSD. 

 

The proposed simplified model-based direct design approach provides a systematic 

inferential control approach that allows operating the crystallisation process at a constant 

supersaturation by controlling a temperature trajectory throughout the batch. Later in 

Chapter 8 experiments will be discussed which were carried out to implement SSC in terms 

of temperature trajectories. 

7.7 Shaping the CSD through Seed Recipe Design 

In addition to the supersaturation and batch time (determined by the SSC design parameter 

), the seed recipe (Hojjati and Rohani, 2005; Kubota et al., 2001) may also be optimised 

to obtain the desired target CSD, which may not be achieved by optimising the SSC design 

parameter  only. A particular seed CSD can be obtained experimentally by mixing 

different amounts of seeds with different size distributions. In a generic case the 

(a) (b) 
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distributions of various available seed fractions could be represented by their actual 

experimental distributions, which may be of different type for different fractions.  However 

without loss of generality, for the illustration of the approach here the seed recipe is 

represented by a sum of Gaussian distribution functions. The optimisation problem, with the 

objective of shaping the distribution at the end of batch by simultaneously designing the 

supersaturation controller and the seed recipe, is formulated as follows,  

 2

, ,, ,
1

min ( ( ) )
d

seed

N

v i batch v im
i

f t f , (7.15) 

                           subject to:     
1

1
GN

i
i

w , (7.16) 

        
                  

                                 0 ,                  (7.17) 

 
min max

, (7.18) 

 0 0.05 (0)
seed slurry
m C m , (7.19) 

 
,max

( )
batch f

C t C , (7.20) 

2 2
,( ) /(2 )1

, , ,3 2
1 ,

1
( ) ( ; , ),  with  ( ; , )

G

m i i

i

N
L Lseed i

n seed i m i i i m i i
islurry c v m i

m w
f L L L L L e

m k L
 (7.21) 

where 
seed
m  is the total seed mass (g), and 

1 ,1 1 ,
[ , , ,..., , , ]

G G Gm N m N N
w L w L  is the seed 

design vector with [0, 1]
i
w  the weight fractions of seeds from particular sieve fractions in 

the final seed mixture, 
,m i

L  the mean sizes ( )m  and 
i
 ( )m  the standard deviations of the 

respective Gaussians distributions with 1,2,...,
G

i N  with 
G
N  being the number of Gaussian 

distributions (sieve fractions), 
min

 and 
max

 are the vectors of lower  and upper bounds on 

the seed recipe parameters, 
slurry
m  is the mass of potash alum solution (g) without seed, (0)C  

and ( )
batch

C t  are the solute concentrations at the beginning and end of the batch, respectively. 

The constraints given by inequalities (7.19)  restrict the amount of seed added to a maximum 

of 5% of the mass of solid dissolved in the system, whereas the constraint given by (7.20) is 

a productivity constraint with 
,maxf

C  being the maximum acceptable concentration at the end 

of the batch to achieve the required yield. The objective function is expressed as the sum 
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square error between the simulated (
,v i
f ), and target (

,v i
f ) volume distributions, respectively. 

Since the optimisation problem (7.15)-(7.21) is formulated for a supersaturation-controlled 

growth-dominated crystallisation process, the predicted CSD can be computed easily using 

the corresponding analytical solution from  Table C.1 (given in Appendix C), and the 

optimisation problem can be solved with standard non-linear constrained optimisation 

approaches and tools (e.g. sequential quadratic programming implemented in the MATLAB 

fmincon function). 

The seed recipe can be designed for any target CSD, e.g. lognormal or bimodal.  Figure 7.7 

shows the result of the simultaneous supersaturation control and seed recipe design, for the 

narrow lognormal target distribution, also shown in Figure 7.5 (b). The mass of slurry is 

568 
slurry
m g  and the initial concentration of the solution is (0) 0.12C  (g/g). It can be 

seen that by simultaneously designing the supersaturation controller and the seed recipe, a 

very good agreement between the target and simulated CSDs can be achieved, even for the 

case when design based on an optimal  on its own does not give a satisfactory outcome. 

The results indicate that the optimal SSC design parameter in this case is also 

0.198 min , however the seed required to produce the target CSD is narrower than the 

experimental seed used in the previous cases.  
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Figure 7.7: Results of the free seed recipe design for the lognormal target CSD shown in Figure 
7.5 (b). 

 

The characteristics of the resulting seed recipe are included in Table 7.1. The optimised seed 

is a mix of two seed fractions, represented by two Gaussians. However the contribution of 
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the second seed fraction is practically negligible and increasing the number of seed fractions 

further, 2
G
N , does not provide any additional benefit. 

  

Table 7.1: Optimised seed recipe and supersaturation control design parameter for different 
target crystal size distributions using free seed size distribution. 

Target distribution Optimised seed recipe SSC 
 w  

m
L  (m)  w   

m
L (m) (m) 

seed
m (g)    (min) 

lognormal 1.00 420 0.17 0.999 84.9 12.7 0.450 0.198 
   0.001 69.4 28.3   

bimodal 
(sum of two 
Gaussians) 

0.85 350 32 (m) 0.85 57.68 9.56 0.334 0.206 
0.15 600 45 (m) 0.15 124.11 10.36   

trapezoidal    0.157 137.83 7.45 0.985 0.206 

   0.157 121.37 8.0   

   0.151 67.49 8.0   

   0.154 46.80 8.0   

   0.079 148.98 4.72   
    0.151 104.17 7.50   
    0.151 86.38 8.50   

 

The seed recipe design approach was further evaluated for another two, more complex target 

distributions. Figure 7.8 (a) illustrates the results of the seed design when an arbitrary 

bimodal distribution was used in the case of fixed 0.206 min .  It can be seen that the 

simulated CSD is in good agreement with the desired bimodal CSD (characteristics of the 

optimised seed are shown in Table 7.1) using a seed recipe consisting of a mixture of two 

seed size ranges. The results for a trapezoidal distribution using the optimal supersaturation 

control design parameter 0.206 min  are shown in Figure 7.8 (b). It can be seen that by 

designing the seed recipe it is possible to capture relatively well even this unusual target 

distribution; however the seed recipe in this case is a mixture of crystals from 7 size ranges 

(as shown in Table 7.1). The amount of seed required to obtain the desired minimum yield 

of 60% varies with the shape of the target distribution. 
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Figure 7.8: Results of the free seed recipe design for (a) bimodal distribution and (b) trapezoidal 
distribution.                          

 

The seed design problem defined by equations (7.15)-(7.21) allows the optimisation of 

weights of various seed fractions. Additionally, the mean size and standard deviations of the 

CSD of individual seed distributions are treated as free decision variables, and hence this 

method is referred to here as free seed design. However in practice it may be difficult to 

produce seed fractions with size distributions with arbitrary mean sizes and standard 

deviations. Generally seeds are prepared by sieving using standard sieve sizes. Hence a more 

practical approach to design seed recipes is to use the size distribution of existing sieve 

fractions and optimize the weights of the selected fractions only. The most commonly used 

sieve sizes are shown in Table 7.2 (Perry and Green, 1997). 

Table 7.2: Standard sieve series and their equivalents. 
Sieve numbers corresponding to selected 

sieves for simulation  
Sieve designation 
standard ( m ) 

14 354* 
13 297 
12 250* 
11 210 
10 177* 
9 149 
8 125* 
7 105 
6 88* 
5 74 
4 63* 
3 53 
2 44* 
1 37 

Note: *Sieve corresponds to those proposed by the International Standard Organisation (ISO). 

(a) (b) 
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The seed recipe was optimised for fixed mean and standard deviations based on the selection 

of relevant sieves. Generally these values are material dependent and would result from the 

sieve analysis of a particular system. In this work the mean values of the seed distributions 

were calculated as the arithmetic means of the consecutive sieve sizes, 
1,

( )/ 2
i im i

L , 

and the standard deviations were considered to be equal to half of the size ranges determined 

by the corresponding sieves 
1

( )/ 2
i ii

, where 
i , 0,1,...,

G
i N , are the standard 

sieve sizes (in m ), with 
G
N  being equal to the total number of selected sieves. These 

values provide approximately a 2  overlap between the distributions of seeds from adjacent 

sieve ranges, and correspond to the experimental observations of the sieve analyses of 

several compounds. The optimisation was solved considering the SSC design parameter, the 

total seed mass and the weight fractions of seeds used in the various size ranges, 

1 2
[ , , , ]

G
N

w w w , as the decision variables. The seed was designed for the same lognormal 

and bimodal target distributions as used for the free seed design and the results are shown in 

Table 7.3. 

 

Table 7.3: Total mass for optimised seed to achieve the target CSD distributions using selected 
sieves.  

Target distribution Optimised seed recipe SSC 
 w  

m
L (m)  w  

m
L (m) (m) 

seed
m (g) Selected 

Sieves (µm) 
 

(min) 

lognormal 1.00 420 0.17 1 84 21 0.895 63-105 0.202 

Bimodal 
(sum of two 
Gaussians) 

0.85 350 32 (m) 0.05 40.5 3.5 1.185 37-44 0.206 

0.15 600 45 (m) 0.30 48.5 4.5  44-53  

   0.07 58.0 5.0  53-63  

   0.32 68.5 5.5  63-74  

   0.16 115 10  105-125  

   0.10 137 12  125-149  

 

Figure 7.9 shows the results for the lognormal target distribution, indicating a very good 

agreement between the simulated and desired product CSDs. Sieve fractions from Table 7.2 

were used and the optimisation automatically selected the seed, which would be retained 

between sieves 63 m and 105 m, by setting the weights of other sieve ranges to zero.  
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Figure 7.9: Results of the simultaneous supersaturation control design and seed recipe 
optimisation for a lognormal target distribution using sieved seed fractions. 

 

It can be observed that the mean size of the seed CSD based on the selected sieves is close to 

the mean size resulting from the free seed design shown for lognormal distribution in Table 

7.1. However the standard deviation of the seed CSD corresponding to the selected sieves is 

broader compared to the free seed design, which was compensated by the optimiser by 

selecting a larger value for the SSC design parameter, . 

For the bimodal target distribution the optimal supersaturation control parameter is 

0.206  and the optimal seed recipe consists of six sieve size ranges (as shown in Table 

7.3) automatically selected by the optimisation algorithm. The first four are consecutive size 

ranges, followed by a gap before the last two consecutive seed size ranges selected. Figure 

7.10 (a) illustrates how the seed distribution is constructed as a weighted mixture of the 

individual seed fractions. The limitation on the existing seed size fractions due to fixed sieve 

sizes leads to a difference between the simulated optimal CSD and the target CSD, 

especially for the larger size mode, as seen in Figure 7.10 (b). The trapezoidal target 

distribution, which was relatively well constructed using the free seed design method, was 

not possible to obtain using the fixed sieve size ranges. The results indicate that the 

achievable target distributions for a particular process are determined not only by the growth 

kinetics of the system, but also by the physical limitations on the size distributions for the 
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seeds which can be produced. The total amount of seed required to achieve the desired target 

yield is larger in the case of the sieved seed recipe than for the free seed design. 
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Figure 7.10: Seed design for bimodal target distribution, a) illustration of how the distributions 
of the individual seed fractions yield the overall seed distribution, b) comparison of target and 
simulated CSDs at the end of the batch.                   

 

Figure 7.11 illustrates the concentration profiles for the bimodal target distribution 

corresponding to the free seed design, the sieved seed design and in the case when the 

amount of seed resulting from the free design is used but the seed is prepared from the 

sieved fractions. In the former two cases the same target yield is achieved since the 

optimisation tailors the seed masses required to meet the hard constraint on the yield. 

However if a smaller amount of seed (resulting from the free seed design) is used but with 

the seed distribution being prepared from the sieved fractions, the final yield would be 

significantly smaller (20% compared to the target 60%). The results demonstrate that 

although conceptually seed recipe design has a great potential to be used for CSD design, 

practical limitations on size ranges of seed fractions may lead to errors in the final 

distribution or product yield, and may greatly limit the achievable shape of the final 

distribution. Hence it is important to incorporate into the optimisation problem the 

limitations on the achievable seed size distributions, as illustrated here. To eliminate some of 

the disadvantages related to the seed design as a mixture of sieved seed fractions an 

alternative approach is proposed next, according to which a single mono-modal seed fraction 

is added at different times during the process to produce a given target distributions. 
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Figure 7.11: Comparison of concentration profiles for three different seed recipes for the same 
bimodal target distribution. 

 

7.8 Shaping the CSD via optimal dynamic seed addition 

Achieving the shape of the final CSD by designing the initial size distribution as a mixture 

of seed with different size distributions can be difficult to apply in practice due to the limited 

amount of seed which can be produced and the constraints on the size and width of the CSD 

in various size ranges. Similar results can be achieved if a mono-modal seed is introduced in 

the crystalliser during the crystallisation process, using the seed as an actuator rather than an 

initial condition. For processes with size-dependent growth of the form of equation (4.8) 

with 0p  the seed CSD must be narrower than the target distribution. The narrower the 

seed distribution is, the closer the final CSD will be to the target CSD and the more freedom 

exists in the design of the shape of the target distribution. For the dynamic seed addition 

approach, the batch period 0, ][
batch
t  is divided into N  intervals via a series of grid points 

0 1 2
0

N batch
t , where the time steps 

i
, 1, ,i N  are the discrete times 

when seed is added into the system, and can be equally distributed or at different intervals, 

fixed or determined by the optimisation. The amounts of seeds and the moments when they 

are added into the system are determined by solving the following dynamic optimisation 

problem: 
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,1 ,

1
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, ,, ,
1, ,

min ( )
d

s s N

N

batch

N

v i v im m
i

t

f f , (7.22) 

where 
,s i

m , 1,2,...,i N , are the amounts of seed introduced into the vessel at discrete times 

i
. In the case of constant supersaturation the final distribution 

v
f  can be computed very 

efficiently using the analytical expressions from Table C.1, applying for each seed fraction 

added at time  
i
 the growth time 

,growth i batch i
t t . Hence the optimisation can be solved 

using a fine and constant time discretisation, excluding the time steps from the decision 

variables. In this case the optimisation will eliminate automatically some of the dropping 

times by setting the corresponding amounts of seeds to zero. The optimisation can be solved 

using fixed or free batch time, based on practical requirements, and productivity constraints 

can be added to the problem. Additionally the seeding period may be restricted to a certain 

initial period of the batch to avoid seeding for the entire duration of the crystallisation, 

which may not be a practically acceptable procedure. 

Figure 7.12 (a)-(d) show the result of the dynamic seed addition optimisation in the case of 

the same bimodal and trapezoidal target distributions as those used in the previous cases, 

defined in Table 7.1. For both targets the seed distribution was a mono-modal Gaussian 

distribution with mean size of 40.5 m  and standard deviation of 3.5 m , the discretisation 

interval was 2 min, the batch time was fixed to 120 min and the supersaturation was 

0.00257S  kg/kg slurry . It can be seen from Figure 7.12 (a) that the simulated and target 

distributions are in very good agreement, indicating that the dynamic seed addition approach 

can provide multimodal target distributions using mono-modal seed only. Figure 7.12 (b) 

shows that in the case of the bimodal target distribution, seed addition was required during 

the first 40 min of the batch to achieve the shape of the distribution. All crystals in the 

product are larger than 200 m and hence an aging period of at least 80 min is required to 

grow the crystals to the desired size range. There are clearly two main seeding periods, each 

corresponding to one of the two modes of the target CSD. One consists of the first three 

additions during the initial 10 minutes of the batch and contributes to the mode of larger size 

of the product CSD, whereas the second, between 20-40 minutes, consists of a more fine 
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control for the smaller size range of the target distribution, consisting of a number of 

additions of smaller amounts of seed. 
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Figure 7.12: Results for the dynamic seed addition for bimodal and trapezoidal distributions; a) 
and c) show the comparisons of target and simulated CSDs at the end of the batch, and b) and 
d) illustrate the dynamic seed addition profiles, with amount of seed in weight %. 

 

The results of the dynamic seed optimisation in the case of the trapezoidal target distribution 

are shown in Figure 7.12 (c) and (d). A good fit of the target distribution is achieved despite 

the fact that a mono-modal seed was used. The resulting optimal dynamic seed addition 

profile, shown in Figure 7.12(d), indicates that seed is added into the system during the first 

half of the batch (60 min). The error in the larger size range of the target distribution is due 

to the fact that the size dependent growth generates a widening of the seed distribution. 

Although the seed distribution is narrow, it also has a small mean size requiring a long 

growth time to develop crystals of the larger size ranges needed for the target CSD. During 

this longer growth period the distribution of the added seed crystals becomes wider, leading 
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to the differences between the simulated and target distributions. Overall the distribution 

matches very well the target CSD, however this is only achievable with a relatively narrow 

seed distribution only. 

To illustrate the importance of a narrow seed distribution for dynamic seed design, 

simulations were performed using a broader seed, with a mean size of 60 m and a standard 

deviation of 35 m. The results for the bimodal target distribution are shown in Figure 7.13 

(a) and (b), indicating that if the seed is too large and/or the distribution too broad the target 

CSD may not be achievable. Dynamic seed addition can be automated easily using a solid 

dosing system, or could be achieved by coupling an impinging jet crystallisation process 

with an aging vessel (Kee et al., 2009; Woo et al., 2009b) providing a practical approach for 

CSD control. Impinging jet crystallisation has also been recognized recently as a reliable 

method to produce small crystals with narrow distributions, which are suitable for the 

dynamic seeding procedure (Woo et al., 2009b).  
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Figure 7.13: Results for the dynamic seed addition for bimodal distribution when larger and 
broader seed is used with mean size of 60 m  and standard deviation of 35 m ; a) comparison 
of target and simulated CSDs; b) resulting seed addition profile. 

 

The results demonstrate that using the design parameter ( )  and analytical solutions, 

supersaturation controlled processes can be designed to obtain certain target distribution, 

which can be implemented in the phase diagram, or in the time domain, allowing the 

implementation of novel quality-by-design approaches. However a greater variety of shapes 

of the product CSD may be obtained if the seed recipe is designed simultaneously with the 
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supersaturation controller, or if seed is used as an actuator during the process. Figure 7.14 

shows the main steps of the proposed comprehensive and systematic methodology for 

shaping the product CSD for supersaturation controlled crystallisation processes, which 

combines seed recipe and operating policy designs. Using the growth kinetics of the process, 

and assuming constant supersaturation control, the analytical solutions shown in Table C.1 

in Appendix C can be exploited, and the approach very efficiently provides a supersaturation 

setpoint and batch time, or temperature versus time setpoint (corresponding to a desired 

constant supersaturation according to the direct design concept) together with the optimal 

seed recipe to produce a final product with desired CSD. If the final CSD are linked to other 

product properties, then the methodology proposed here can be extended for other product 

property designs or downstream process optimisation. 
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Figure 7.14: Flow chart of the systematic design of supersaturation controlled crystallisation 
processes, to achieve a desired target CSD. 

 

7.9 Conclusions 

The chapter describes a novel methodology for the systematic design of supersaturation 

controlled crystallisation processes. The approach is based on the idea that in the case of 

supersaturation-controlled, seeded crystallisation systems the supersaturation is constant 

throughout the batch and the assumption is that the process is dominated by growth only. A 

design parameter ( )gS t  for supersaturation controlled seeded batch crystallisation 

processes is introduced, and a simplified model-based optimisation is used to derive the 

setpoint operating curve and batch time required to achieve the desired shape of the product 

CSD. The designed operating curve can be implemented in the phase diagram using 
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supersaturation control, or in the time domain using classical temperature control. The 

analytical expressions presented in the chapter based on the assumption of supersaturation 

controlled process, can be easily implemented in industrial process monitoring software and 

can serve as an inferential product property estimator or can be used for simple real-time 

adaptive control strategies. The introduced SSC design parameter also allows the systematic 

analysis and comparison of supersaturation controlled processes, by quantitatively 

evaluating the trade-off between batch time and supersaturation level, in terms of the 

product CSD. 

An approach to design an optimal seed recipe is also presented, which can be used to 

achieve a desired shape of the product CSD, in conjunction with the supersaturation control 

design. The technique is used to design different target distributions i.e. lognormal, bimodal 

and trapezoidal distributions. The seed design problem allows the optimisation of weights, 

means and standard deviations of various seed fractions of the CSD. However in practice it 

may be difficult to produce seed fractions with size distributions of arbitrary mean size and 

standard deviations. Therefore the technique was modified for known sieve fractions. The 

seed recipe was optimised for fixed mean and standard deviations based on the selection of 

relevant sieves. However, note that not all target distributions are achievable because there 

are some practical limitations related to the yield and shape of seed distribution.  

An alternative seeding approach is also presented, based on the idea of using seed as a 

process actuator to control the final shape of the product CSD. This approach uses dynamic 

seed addition during the batch and is able to produce complex CSDs using a mono-modal 

seed. All methods are exemplified in the case of the batch cooling crystallisation of potash 

alum system in water.  
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Chapter 8  
Experimental evaluation of the direct design 
approach for SSC crystallisation processes 
for shaping the CSD  

8.1 Introduction 

This chapter describes the experimental evaluation of the direct design approach described in 

detail in Chapter 7, for supersaturation controlled crystallisation processes.  All experiments 

were carried out for the potassium dichromate-water system. The kinetic parameters for the 

system were identified and validated based on the methodology and technique described in 

detail in Chapters 4 and 5. The first part of the chapter describes the operating conditions 

and experimental procedures for the experiments carried out for parameter estimation and 

validation. The batch crystallisation model was solved using the combined QMOM-MOCH 

technique. The parameters were identified using a sequential-quadratic-programming (SQP) 

type non-linear optimisation approach implemented in MATLAB (as described in Chapter 

5). For in situ measurement of concentration ATR-UV/Vis probe was used. A multi-linear 

calibration model was adopted to calculate the concentration from the absorbance measured 

by the ATR-UV/Vis probe.  

The second part of the chapter describes the experiments, which were carried out for the 

implementation of the direct design approach. The direct design approach is based on the 

idea of operating the system within the MSZ bounded by the nucleation and the solubility 

curves. The setpoint supersaturation (
sp
S ) curve is the result of the compromise between fast 

crystal growth and low nucleation rate. Therefore a supersaturation setpoint curve is chosen 

experimentally and is followed in the phase diagram using a supersaturation controller based 

on concentration measurement. Since direct supersaturation measurement sensors are at 

prototype stage (Loffelmann and Mersmann, 2002) and are often not available for industrial 

scale use, the supersaturation profiles can be redefined in terms of the temperature profiles in 

time, which are designed to maintain the supersaturation at a certain setpoint. Experimental 
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evaluations of two temperature trajectories with low and higher supersaturation levels were 

carried out to acquire the desired target shape of the CSD. The experiments illustrates that it 

is possible to design different temperature profiles and hence batch times, which lead to 

similar product CSD. 

For all the experiments discussed in this chapter, off-line concentration was measured using 

gravimetric analysis and in situ measurement of concentration was carried out using ATR-

UV/Vis spectroscopy. CSD was measured off-line using Sympatec Qicpic, whilst Malvern 

Mastersizer was used for on-line CSD measurements. FBRM (focused beam reflectance 

measurement) was used for in situ measurement of the CLD and particle counts. 

Microscopic images were taken at the end of the batches using optical and scanning electron 

microscopy (SEM).  

8.2 Experimental set-up 

The experimental investigation of the batch cooling crystallisation for an inorganic 

compound was carried out to determine the kinetic parameters for the system. The 

experimental data was obtained from a laboratory scale crystallisation system at 

Loughborough University. This section describes the experimental setup in detail.  

8.2.1 Material  

Potassium dichromate 
2 2 7

( )K CrO  (>99.95% purity, Fisher Bio Reagents) compound with de-

ionised water as a solvent was used in the experiments. The solution was prepared, 

corresponding to a solubility of  20.0  g of potassium dichromate in 100 g of water at 30 °C 

(Mullin, 2001).  

Potassium dichromate is a common inorganic chemical reagent. It is a crystalline ionic solid 

with a very bright, red-orange colour with monoclinic crystals, as shown in Figure 8.1. It is 

mostly used as an oxidising agent in various laboratory and industrial application. In 

biological field, potassium dichromate is used as an adhesive for preservation of tissue 

sections. It is potentially harmful for health and must be handled and disposed off 

appropriately. 
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Figure 8.1: Potassium dichromate crystals with very bright, red-orange colour and monoclinic 
shape.  

 

8.2.2 Apparatus 

Schematic representation of the experimental setup is shown in Figure 8.2. Temperature in 

the 0.5 L jacketed glass vessel was controlled with a Pt100 thermocouple using a Huber 

VPC CC3 450 thermostat, controlled via a specially designed crystallisation control 

interface in Labview (National Instruments). An overhead stirrer with a four-blade marine 

type impeller was used to agitate the system at 380 rpm. This agitation speed was chosen to 

be high enough to guarantee that particles were well suspended throughout the process as the 

potassium dichromate crystals have relatively high density and require high agitation speed 

for proper suspension. However, the agitation speed was low enough to avoid attrition or 

generation of bubbles due to vortex formation. An FBRM probe (model A100, Lasentec) 

was inserted into the solution to measure chord length distributions in the range of 0.8 to 

1000 μm at every 20 s. An ATR-UV/Vis spectrometer (model MCS 621, Carl Zeiss) with a 

deuterium source (UV-Vis/CLD 600) was used to measure the concentration. The 

absorbance was recorded every 20 s over a wavelength range of 240 – 720 nm, and the 

absorbance values at selected wavelengths were used in calibration to determine the 

concentration.  
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Figure 8.2: A schematic representation of the experimental setup for the batch cooling 
crystallisation of potassium dichromate-water system. 

 

The CSD was measured after every 3 minutes using a Malvern Mastersizer 2000 laser-

diffraction equipment. A peristaltic pump was used to circulate the slurry (solids with 

solvent) between the crystalliser and the Mastersizer. The pump flow rate was adjusted in 

such a way that the Mastersizer cell does not saturate with crystals and the solids remain in 

the allowable range to 10-20% of the total volume. The refractive index for potassium 

dichromate-water system (potassium dichromate dissolved in water) was measured using 

refractometer, and was 1.52, at 25°C. The refractive index of potassium dichromate crystals 

is 1.72. The difference between the refractive index of crystals and solution (solvent with 

dissolved solids) was significantly different for suitable CSD measurement. To measure the 

CSD the background measurement was taken only once, to align the laser, before the seed 

addition and was kept constant for all readings throughout the batch. The length of the 

piping was minimised and the crystallisation experiments were carried out in a relatively 

narrow temperature range of 29-20°C, close to room temperature, to avoid nucleation. The 

initial solution at the initial temperature was circulated continuously throughout the tubes 

and Mastersizer until a constant temperature was achieved in the whole system. After 

equilibration, the temperature was gradually decreased from 40°C to 29°C while maintaining 

the circulation of the solution throughout the experimental setup to avoid nucleation in the 
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silicon tubing. The FBRM probe was used to detect nucleation in the system. Samples were 

taken at the end of each batch for microscopic analyses carried out using a Leica DM LM 

microscope equipped with a Leica PFC 350 FX camera. An image of the experimental setup 

is shown in Appendix D. 

8.2.3 Seed preparation 

Seeds were prepared using laboratory scale sieves. The consecutive sieve sizes used were: 

355-300, 300-250, 250-212, 212-180, 180-150, 150-125, 125-106, 106-90, 90-75, 75-63 and 

63-45 μm, (coarser sizes were placed on the top and finer at the bottom). The sieving time 

was 120 minutes, and the rotation and shaking caused the crystals to distribute throughout 

the sieve stack. The product obtained between the sieve sizes of 106-125 µm was collected 

for seeding in the parameter identification and validation experiments. The required amount 

of the seed mass was achieved after running four batches of sieving. The seed quantities 

obtained on each sieve are shown in Figure 8.3. 

0

5

10

15

20

25

M
as

s F
ra

ct
io

ns
 (%

)

Sieve Sizes  (µm)

Batch 1
Batch 2
Batch 3
Batch 4

 
 

Figure 8.3: Mass fractions obtained between different sieve sizes at the end of four batches.  

 

Microscopic images of the seeds obtained in sieve fraction 106-125 μm at the end of the four 

batches are shown in Figure 8.4. It can be observed in Figure 8.4 that batches 3 and 4 

contained less fine particles then batches 1 and 2. The crystal shape is irregular in all the 
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batches. The seeds obtained from Batch 3 were used for all experiments. The comparison of 

other seed fractions for all four batches is shown in Appendix E. 

 

Figure 8.4: Comparison of seed fraction 106-125 µm obtained at the end of four sieving batches. 

 

8.3 Methods 

Potassium dichromate was dissolved in water by heating to 40°C at a rate of 0.8°C/min. The 

solution was equilibrated at 40 °C for 20 minutes, to ensure complete dissolution of the 

solids, which was indicated by the decrease of the FBRM counts. Temperature of the 

solution was then reduced to 29°C (one degree below saturation) at a rate of 0.5°C/min and 

was maintained for 10 minutes prior to the start of the experiment, after which 1.2 g of 

sieved seed (in the size range between 106-125 m) was added to the solution and the slurry 

was cooled to 20°C over a duration of 60 minutes following a cubic profile. During this 

period, the FBRM readings were monitored to check if the seed dissolved or secondary 

nucleation occurred. The ATR-UV/Vis spectrometer was used to measure the absorbance 

throughout the experiment, which was calibrated to provide in situ concentration 

measurement. Malvern Mastersizer 2000 was used to measure online the CSD with a 
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sampling time of 3 minutes. The whole experimental procedure was repeated for a linear 

temperature profile. The details of the operating conditions are summarized in Table 8.1. 

 
Table 8.1: Operating conditions for potassium dichromate-water system for seeded-batch 
cooling crystallisation. 

Operating conditions Units Experiment A Experiment B 
Saturation temperature , ( )

sat
T  C  30 30 

Seed mass, ( )
seed
m   kg  1.2 ×10-3 1.2 ×10-3 

Seed loading % 1.5 % of total 
solid 

1.5 % of total solid 

Batch time, ( )
batch
t   min  60 60 

Initial solute concentration ( )
i
C  kg solid/ kg water

 
0.20 0.20 

Initial temperature at seeding 
and start of profile, 

0
( )T  

C  29 29 

Final temperature, ( )
f
T  C  20 20 

Temperature profile followed -- Cubic 

0
3

0
( )( / )
cubic

f bacth

T T

T T t t

 

Linear 

0

0
( )( / )
linear

f batch

T T

T T t t
 

Points for smooth profile, ( )N  -- 60 60 

Sieve sizes for seed,  m  106-125 106-125 

Agitation speed rpm  380 380 
Density of crystals, ( )

c
 3/kg m  2676 2676 

Volumetric shape factor, ( )
v
k  -- 0.80 0.80 

Mass of slurry, ( )
slurry
m  kg  0.49 0.49 

Sampling time for ATR/UV-
Vis and FBRM measurement 

s  20 20 

Sampling time for CSD 
measurement 

min 3 3 

 

8.4 Concentration measurement using ATR/UV-Vis 

spectroscopy 

The absorbance of the solution was measured using an ATR-UV/Vis spectrometer at 

different concentrations and temperatures. Figure 8.5 shows sample spectra of potassium 

dichromate solution in water at different concentrations. The spectrum of potassium 
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dichromate system in water indicates two absorbance peaks at wavelengths 270.15 nm and 

377.89 nm. 

For the calibration model the absorbance values were measured for several concentrations at 

different temperature ranges, as shown in Figure 8.6. The temperature was decreased in 

steps of  1°C for each concentration until the system nucleated. Hence the nucleation points 

shown in Figure 8.6 were determined experimentally. The solubility curve was obtained 

from literature. A second order polynomial is fitted to the literature data to obtain the 

solubility curve, 

 

                                                   2

0 1 2
( )

sat
C T a aT aT ,                                  (8.1) 

 

where 
0

3.29a , 1

1
4.48 10a , 3

2
3.30 10a , T  is the temperature in C  and 

sat
C  is 

in g/100 g of water. 
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(b) 
Figure 8.5: UV/Vis spectra of potassium dichromate in water at different concentrations 
obtained using in situ ATR-UV/Vis spectroscopy. 
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Figure 8.6: Measurement points for absorbance values for the used concentrations and the 
temperature ranges, including solubility curve (Mullin, 2001) and the nucleation points. 

 

A linear relationship between concentration and absorbance was observed for both 

wavelengths at 270.15 nm and 377.89 nm, as shown in Figure 8.7 (a and b).  
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Figure 8.7:  Effect of absorbance vs. concentration for six different temperatures a) absorbance 
at 270.15 nm and b) absorbance at 377.89 nm. 

 

 

A linear relationship between absorbance and temperature was observed for both 

wavelengths at 270.15 and 377.89 nm. The slopes for both wave lengths at different 

temperatures were quite uniform, as shown in Figure 8.8 (a and b). The effect of temperature 

(a) (b) 
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on the absorbance is relatively small, as shown by the very small spread of points on Figure 

8.7 (a and b) and by the small slopes of trend lines in Figure 8.8 (a and b). However, 

temperature effect was considered in the calibration model to increase the accuracy and 

precision of the concentration predictions. Based on the analysis of Figure 8.7 and Figure 

8.8, various forms of the calibration model were evaluated (shown in Appendix F) using 

different absorbance values. It was found that using the two peak absorbance values along 

with temperature significantly improves the prediction accuracy of the calibration model. 

 
 

0.09

0.14

0.19

0.24

0.29

10 20 30 40 50

A
bs

or
ba

nc
e 

at
 2

70
.1

5 
nm

Temperature  C

0.11 (g/g)

0.12 (g/g)

0.152 (g/g)

0.199 (g/g)

0.23 (g/g)

0.267 (g/g)

 

 
 

0.08

0.13

0.18

0.23

0.28

10 20 30 40 50

A
bs

or
ba

nc
e 

at
 3

77
.8

9 
nm

Temperature ( C)

0.11 (g/g)

0.12 (g/g)

0.152 (g/g)

0.199 (g/g)

0.23 (g/g)

0.267 (g/g)

 
Figure 8.8:  Effect of absorbance vs. temperature for six different concentrations a) absorbance 
at 270.15 nm and b) absorbance at 377.89 nm.   

 

Therefore the following multi-linear calibration model was adopted:  

                                
0 1 1 2 2 3

C a a A a A a T ,                                   (8.2) 

where 
1
A  and 

2
A  are the absorbance values at the two wavelengths 270.15 nm and 377.89 

nm, respectively, C  is the concentration (g/g solvent) and T  is the temperature (C). The 

parameters for the calibration model ( ia  with 0,1,...,3i ) were estimated using the fmincon 

function in MATLAB, by a standard least-squares optimisation approach. The optimisation 

problem for the parameter estimation is given by: 

                               exp 2

1

min ( ) ,
i

K

k ka
k

C C
                                                      

 (8.3) 

where 
k
C  and exp

k
C  are the simulated and the experimental concentration values at the 

discrete measurement steps 1, ,k K , respectively, with K  being the number of 

(a) (b) 



Chapter 8: Experimental evaluation of the direct design approach for SSC crystallisation 
processes for shaping the CSD 183 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

measurement points. The parameters obtained with their uncertainty bounds (representing 

the 95% confidence interval) are shown in Table 8.2. Figure 8.9 (a) indicates that the simple 

form given by Equation (8.2) provides a very good calibration model, hence more complex 

robust chemometrics based calibration was not considered necessary in this case. 

Table 8.2: Estimated parameters for calibration of the ATR-UV/Vis spectrometer. 
Parameter Value Error bounds at 95 % Confidence Interval 

0
a  0.0086 0.0002  

1
a  -0.6737 0.0025  

2
a  1.7332 0.0013  

3
a  0.0004 0.0001  

 

Figure 8.9 (a) shows the comparison of the estimated and the simulated concentrations using 

the calibration model with parameters shown in Table 8.2, which are in good agreement. The 

validation point of a concentration, which was not included in the calibration model 

development, also indicates good accuracy of the calibration model. The excellent 

agreement between the experimental and the predicted concentrations and the very small 

error bounds (95% confidence interval) on the parameters of the calibration model provide 

evidence that the ATR-UV/Vis, with calibration models of relatively simple forms, can be 

used as a reliable in situ process analytical technology (PAT) tool for real-time concentration 

monitoring of crystallisation processes (Abu Bakar et al., 2009a).  

The calibration model (8.2) was further validated against literature solubility data for 

potassium dichromate-water system (already shown in Section 8.4 equation (8.1)).  An 

experiment was performed in which the temperature of a slurry containing excess solid was 

increased in several steps, as shown in Figure 8.9 (c).  The temperature at each step was 

maintained for 45 minutes to ensure the complete equilibrium at that temperature. The 

samples for gravimetric analysis were taken around 40 minutes. The measured FBRM 

counts and absorbance values throughout the experiment are shown in Figure 8.9 (c). The 

number of FBRM counts/s has decreased as the temperature was increased from 15 to 45°C, 

because more solids dissolved with the increase of temperature. However, the absorbance 

has increased as the temperature has increased from 15 to 45°C. As the dissolution of 

particles increased in the solution due to increase in temperature the absorbance increased 
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with time. This effect was more significant than the week inverse relationship between 

absorbance and temperature. Figure 8.9 (b) shows a comparison between estimated 

concentrations for the solubility curve using the calibration model, literature data (Mullin, 

2001) and the gravimetric analysis carried out at various temperatures. Very good agreement 

is observed, indicating the reliability of the calibration model. 
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Figure 8.9: a) Estimation and validation of calibration parameters using measured and 
simulated concentrations; b) Comparison of concentration for solubility curve obtained from 
gravimetric analysis, experimental concentration and literature data to validate the calibration 
parameters; c) Process temperature, FBRM counts/s and absorbance values versus time during 
the equilibrated slurry experiment. 

8.5 CSD measurements  

On-line CSD measurement was carried out using a laser diffraction based, Malvern 

Mastersizer. The equipment can measure particle sizes from 0.108 to 1000 µm. The on-line 
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crystal size distribution was measured after every 3 minutes during the experiments. 

Symaptec Qicpic was used to measure the CSDs off-line. The equipment is based on image 

analysis and can measure particle size from 1 µm to 20 mm. Sympatec equipment can be 

used to measure CSD using both wet and dry dispersion methods and can be used for both 

on-line and off-line measurements. 

8.5.1 Comparison of off-line and on-line measured CSD using 

different measurement techniques 

An off-line comparison of the CSD measurements was carried out. Sampling of materials 

play a key role in these measurements therefore British sampling standard BS 5309-4 

(British standard, 1976) was followed to make sure that samples were best representatives of 

the original product, especially for the off-line measurements. For comparison of the 

distributions using two different equipments, these measurements were converted into their 

pdf’s and interpolated for the same number of size bins (discretisation) for the particle size 

range.  The CSD measurements are highly effected by measurement techniques and for this 

purpose the laser diffraction based Malven Mastersizer was compared to the image analysis 

based Sympatec Qicpic equipment.  

Figure 8.10 shows comparison of the off-line measured CSD using Malvern Mastersizer and 

Symaptec Qipcic, for five sieve size fractions: 63-75, 75-90,106-125, 150-180 and 212-250 

µm. It can be observed from the results (shown in Figure 8.10) that the measured CSD’s 

show the same trends for the same sieve fractions. The Off-line measurements using 

Sympatec Qicpic were narrower than the off-line measurements using Malvern Mastersizer 

for the same sieve fractions. The Symaptec Qicpic results are generally shifted towards 

smaller size particles compared to the distributions measured with the Malvern Mastersizer 

and showed narrower distributions. This can be due to the reason that both equipments have 

different measurement principle, and used different sample dispersion techniques. In Malven 

Masteriszer wet dispersion technique was used to measure the distribution. The solvent used 

to disperse the solid crystals was hexane (with refractive index of 1.38). However in case of 

Sympatec Qicpic dry dispersion method was used to measure the CSD. The dispersion 

technique may also influence whether particles in the samples agglomerated or not.  
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Figure 8.10: Comparison of CSD measured off-line and on-line a) 63-75 µm b) 75-90 µm c) 106-
125 µm d) 150-180 µm and e) 212-250 µm, sieve fractions. 

 

The comparisons of the CSD, using different equipment, measured off-line indicate that the 

reproducibility of the shape of the CSD is acceptable and the measurements can be useful for 

the model-based control strategies. However these results also demonstrate that the model 

parameters will also depend on the measurement technique used in the experiments. 
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Additionally, the off-line and on-line measured CSD’s were compared for the size range 

used in the experiments to evaluate the efficiency of the on-line sampling method. This 

comparison is important to check the reproducibility of the measured CSD as there is always 

a chance of sedimentation and/or nucleation in the tubing. Additionally the refractive index 

of solvents hexane (in case of off-line measurement) and potassium dichromate dissolved in 

water (in case of online measurement) are significantly different from each other and may 

influence the CSD measurement. Therefore it was important to compare the off-line and on-

line measurement for the same size fraction to make sure that the on-line configuration of 

Malvern Masteriszer was working correctly and there were no sedimentation or breakage 

problems. Figure 8.10 (c) shows that the CSD measured off-line and on-line using Malvern 

Mastersizer were very close, hence the setup with the on-line sampling loop can be 

considered to provide representative measurements. 

8.6 Model identification and validation using combined 

QMOM-MOCH technique 

8.6.1 Experimental results for model identification and validation 

The operating conditions for the identification and validation experiments are given in Table 

8.1. In experiment A a cubic profile was followed throughout the batch whereas in 

experiment B simple linear cooling was used. In both cases, seed was introduced, shortly 

after the supersaturated state had been reached and the process temperature was stabilised at 

29 °C for ten minutes. Figure 8.11 (a) indicates that in the case of experiment A (with cubic 

cooling profile), no nucleation happened during the crystallisation since the FBRM number 

of counts/s is practically constant throughout the batch after the initial increase 

corresponding to the seed addition. However in experiment B, some secondary nucleation 

was observed, as shown in Figure 8.11(b). This secondary nucleation was observed around 

35 minutes from the start of the batch and was the result of the fast supersaturation 

generation by the linear cooling profile. Experiment A was used for model parameter 

identification (following the same approach as described in Chapter 5) with the PBM solved 

using the QMOM-MOCH approach (described in Chapter 4), whereas experiment B was 

used for validation purposes. 
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Figure 8.11: Total counts measured by FBRM throughout the entire batch a) when the cubic 
profile b) when the linear profile was run for a duration of 60 minutes. 

 

 

8.6.2 Model  identification 

The size-dependent growth parameters were determined for the batch cooling crystallisation 

of the inorganic compound, potassium dichromate (
2 2 7
K CrO ) in water. The generic apparent 

size-dependent growth expression, given by equation (4.8), was used in the model 

identification. The optimisation problem for the parameter estimation and the calculation of 

error bounds was described in Section 5.5.1 and 5.5.2. The resulting model parameters for 

the potassium dichromate system are presented in Table 8.3. The dynamic evolutions of the 

experimental and modelled CSDs are in very good agreement during the entire batch, as 

shown in Figure 8.12 (a).  It can be seen that due to the particular size-dependent growth 

kinetics of this system, the CSD broadens with decreasing height during the batch. The PBM 

with the identified growth parameters is able to describe the main features of the CSD 

throughout the entire batch. Figure 8.12 (b) and (c) show comparison between the 

experimental and modelled concentrations and weight mean size 
43

( )d throughout the batch, 

which are also in very good agreement. 

 

 

 

Seed addition Seed addition 
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Table 8.3: Estimated parameters for potassium dichromate-water system considering size- 
dependent growth. 

Parameter Units Value Error bonds at 95% confidence 
interval  

Growth rate constant, ( )
g
k  1ms  9.56 ± 0.0832 

Growth constant, ( )  1m  7.510-3 ± 0.0021 

Growth constant, ( )p  -- 1.24 ± 0.0633 

Growth order constant, ( )g  -- 0.80 ± 0.2411 
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Figure 8.12: a) Dynamic evolution of the modelled and experimental CSD for potassium 
dichromate in water system for experiment A (seeded crystallisation with cubic cooling profile). 
Experimental and simulated results: b) concentration c) De Brouckere mean diameter (d43) 
during the entire batch of experiment A. 
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8.6.3 Model  validation 

The linear profile was used for model validation. Figure 8.13 (a and b) show the validation 

results for the CSD and concentration for experiment B. Figure 8.13 (a) shows that towards 

the end of the batch, the CSD is slightly over predicted. Additionally, Figure 8.13 (a) 

indicates the apparition of a small (as volume pdf) secondary peak in the experimental CSD 

at 35 minutes during the process, which was due to the secondary nucleation event detected 

by the FBRM approximately at the same time, as shown in Figure 8.11 (b). This nucleation 

event was not considered in the model, which was based only on the growth kinetics and 

hence contributes to the over-prediction of the measured CSD by the simulation. 

Nevertheless, the maximum difference between the simulated and the experimental 

concentration is only 6.5%, which corresponds to higher consumption of solute 

concentration in the simulation, as shown in Figure 8.13 (b). This higher consumption of 

solute concentration also corresponds to the over-prediction of the experimental CSD by the 

simulation. 
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Figure 8.13: Experimental and simulated results for experiment B (linear cooling) to validate 
the modal parameters.  a) Dynamic evolution of CSD and b) concentration throughout the 
batch. 

 

For both experiments, A and B, the same amount of seed was used, which was retained 

between sieve sizes 106-125 µm (as described in Table 8.1). A sample microscopic image of 

the seed used in the experiments is shown in Figure 8.14 (a). Microscopic images of the 

products obtained at the end of experiments A and B are shown in Figure 8.14 (b and c), 
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respectively. It can be observed that the crystals obtained at the end of the cubic profile are 

larger and more uniform in size with few fines and very few agglomerates. However, the 

crystals obtained at the end of the linear profile are smaller, more agglomerated and with 

clear evidence of the existence of fine particles due to secondary nucleation, also indicated 

by the CSD measurement shown in Figure 8.13 (a). 

 

 
(a) 

 
(b) 

 
(c) 

Figure 8.14: Microscopic images of the a) seed crystals and b) crystals obtained at the end of 
experiment A (cubic profile) and c) crystals obtained at the end of experiment B (linear profile). 

 

After parameter identification the experimental evaluation of the direct design approach is 

presented as previously discussed in Section 7.5 - 7.6. The direct design approach is based 

on the idea of operating the system within the MSZ. The supersaturation setpoint designed in 

the phase diagram is redefined in terms of temperature vs. time profile for practical 

implementation. Experimental evaluation of two temperature trajectories corresponding to 

lower and higher supersaturation levels was carried out with the aim to obtain the same 

target CSD. The two experiments are referred to as experiments C and D. The temperature 
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trajectories were optimised using the analytical CSD estimator, under constant 

supersaturation assumption. 

8.7 Experimental evaluation of the direct design approach 

of supersaturation controlled crystallisation processes 

8.7.1 Experimental setup 

The schematic diagram of the experimental setup is shown in Figure 8.2. Same material, 

apparatus and seed preparation techniques were used as described in Sections 8.2.1- 8.2.3. 

8.7.2 Determination of control design parameter ( )  for potassium 

dichromate-water system 

For the implementation of the temperature trajectories for constant supersaturation, first the 

control design parameter is determined, using equations (7.6) - (7.9) by minimising the 

difference between the discretised target distribution and the predicted CSD obtained from 

the analytical estimator. The distribution obtained at the end of experiment A (cubic profile) 

was taken as target distribution. For this simulation, the same experimental conditions were 

used as shown in Table 8.1 (used for cubic profile). The initial seed distribution corresponds 

to the experimental seed CSD. Figure 8.15 shows the result of the control design parameter 

optimisation. The predicted CSD using the analytical CSD estimator was in good agreement 

with the target distribution. The optimised control design parameter for potassium 

dichromate-water system, corresponding to the chosen target distribution was 

0.1357 (min) . Once the design parameters  is obtained, it is possible to determine the 

temperature trajectories for a chosen supersaturation setpoint, 
sp
S  or batch time, batcht . The 

process conditions used for simulation are summarised in Table 8.4, for two different batch 

times, 180 min and 90 min, respectively. The corresponding supersaturation values were 

calculated using the optimal control design parameter . The growth parameters used for 

these simulations are given in Table 8.3.  
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Figure 8.15:  Comparison between simulated and target (experimental) product distributions 
using the optimised control design parameter 0.1357 min . Seed distribution corresponds 
to the experimental seed distribution.  

 

Table 8.4: Operating conditions for simulations to design the temperature trajectories for 
selected batch times. 

Process conditions Experiment C Experiment D 
Initial concentration, (g/g of water) 0.1928 0.1928 

Seed loading, (%) 1.5 % of solid content 1.5 % of solid content 

Seed mass, (g) 1.2 1.2 

Saturation temperature, 
sat
T , (°C) 30 30 

Initial temperature (at seeding and start of 

profile),
0
T , (°C) 

29 29 

End temperature, 
f
T  (°C) 20 20 

Supersaturation setpoint,
sp
S (g/g of water) 41.2490 10  42.9706 10  

Total batch time, 
batch
t , (min) 180 90 

Control design parameter, ( )   0.1357 0.1357 

 

8.7.3 Results and discussion 

Two temperature trajectories were designed (as described in Chapter 7) to achieve the same 

target distributions for a lower and a higher supersaturation set-point. The first temperature 

trajectory was designed for a batch time of 180batcht  min (experiment C). For the second 
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experiment (experiment D) the aim was to achieve the same target distribution within a 

smaller batch time. Therefore for the second experiment the batch time was reduced to 90 

mins which results in a corresponding higher supersaturation setpoint than for experiment C. 

The resulting temperature trajectories for the corresponding supersaturation setpoints ( )
sp
S  

are shown in Figure 8.16.  
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Figure 8.16: Temperature profiles obtained for different batch times ( )
batch
t  and corresponding 

supersaturation setpoints (
sp
S ), corresponding to the same design parameter 0.1357 min . 
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Figure 8.17: Comparison of measured product CSDs for experiments C and D and the target 
distribution for which the temperature trajectories were designed. 

 

The designed temperature trajectories were implemented as setpoints for the temperature 

controller in the experiments according to the direct design concept described in Chapter 7. 
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Figure 8.17 depicts the final product CSDs obtained at the end of experiments C and D 

(measured with Malvern Mastersizer) in comparison with the target distribution used for the 

SSC design (corresponding to 0.1357 min ). It can be seen that the product CSD 

obtained from experiment C is very close to the target. The batch time for experiment D was 

only half of the duration of experiment C. The product CSD resulting from experiment D is 

shifted to smaller crystal sizes however it is still relatively close to the desired target 

distribution. These results indicate that using the direct design concept it is possible to 

achieve similar product distributions with significantly reduced batch time. The microscopic 

images of the products shown in Figure 8.18 also provide evidence for the similar product 

qualities from the two experiments, with somewhat smaller crystals from the shorter batch 

(experiment D). 

 
(a) 

 
(b) 

Figure 8.18: Microscopic images for the products at the end of the batches a) experiment C (180 
minutes) and b) experiment D (90 minutes). 
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Figure 8.19: Total number of counts/s and square weighted mean chord length (SWMCL) 
measured throughout the experiments for a) experiment C and b) experiment D. 
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The total number of counts/s and square weighted mean chord length (SWMCL) were also 

measured throughout the experiments C and D, and are shown in Figure 8.19 (a and b). It 

can be observed that the total number of counts/s remained constant throughout both 

experiments, indicating that no nucleation has occurred during the batches. The square 

weighted mean chord length (SWMCL) has increased during both experiments indicating 

significant growth throughout the batches. The SWMCL at the end of experiment C is 

slightly larger than at the end of experiment D, also indicating somewhat more crystal 

growth during the longer batch.  

Theoretically the two experiments should have yielded the same product CSDs. To explain 

the differences between the resulting product CSDs the supersaturation profiles during the 

experiments are shown in Figure 8.20 together with the setpoint and actual process 

temperatures during the two experiments. For both experiments the measured 

supersaturation values are generally higher than the theoretical setpoints (which were 

41.2490 10  g/g water for experiment C and 42.9706 10  g/g water for experiment D). 

However, overall the measured supersaturations exhibit relatively constant profiles during 

the batches. Figure 8.20 (b) indicates that for experiment D initially the supersaturation was 

significantly higher than the desired setpoint, however it rapidly decayed to a relatively 

constant value for the duration of the rest of the batch. For experiment C the supersaturation 

was maintained more constant during the entire batch. The measured supersaturation appears 

to be larger than the theoretical setpoints in both cases; however the product distributions are 

close to the target (very close for experiment C) and shifted towards smaller crystals for 

experiment D. This is in contradiction with the consistently larger supersaturation values 

measured (which should have yielded larger product CSD than the target for both cases), 

indicating that most likely the concentration measurement was affected by errors. The 

potassium dichromate in water is a very fast growing system, thus the theoretical 

supersaturation setpoints are very close to the equilibrium. The precision of the 

concentration measurement is not sufficient to indicate accurately such small levels of 

supersaturation. However the setpoint temperature profiles were relatively well followed, 

except during the last 20 min of the batches, when the steep decrease in the temperature 

setpoints was difficult to track by the temperature controller. Nevertheless, these results 

indicate the practical advantages of the direct design approach, which allows the 



Chapter 8: Experimental evaluation of the direct design approach for SSC crystallisation 
processes for shaping the CSD 197 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

implementation of an inferential constant supersaturation trajectory by tracking a properly 

designed temperature profile. Since temperature measurement is more accessible with high 

accuracy even in industrial setups, the direct design approach can lead to good CSD control 

(as shown in Figure 8.17) even when the lack of accurate concentration measurement makes 

the supersaturation control impractical.  
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Figure 8.20: Measured and designed process temperature and measured supersaturation with 
setpoint supersaturation, throughout the two experiments a) experiment C (180 min) and b) 
experiment D (90 min).  

 

The methodology suggests that even with errors in the supersaturation measurement if the 

temperature trajectories are designed and implemented properly, it is possible to produce the 

desired product distribution. The key parameter for designing the temperature trajectories is 

the supersaturation control design parameter . The parameter  can also be used for the 

evaluation and comparison of supersaturation controlled processes in terms of the product 

CSD. Since increasing the supersaturation setpoint to enhance growth rate, leads to 

decreased batch time and hence shorter time period in which crystals are allowed to grow, 

there is an inherent compromise between the chosen supersaturation setpoint and the 

resulting batch time. By knowing the supersaturation values and the duration of the 

corresponding batches, calculating , indicates which batch will produce larger crystals. 

The larger the value of , the larger the crystals will be (under the assumption of growth 

dominated process). 
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To evaluate the difference in the final distributions obtained at the end of the two 

experiments the supersaturation control design parameter ( ) was calculated for both 

experiments using the average values of the measured supersaturation. For experiment C, 

with 180 min
batch
t , the average value of supersaturation for the entire batch was 

0.00331
avg
S . The actual value of the supersaturation control design parameter was 

1.86504 min . In the case of experiment D, with 90 min
batch
t , the average value of 

supersaturation was 0.00364
avg
S  corresponding to a value of 1.0077 min . The 

supersaturation control design parameter value for experiment C was larger than for 

experiment D, which corresponds to the larger growth of the crystals. The larger error in the 

product CSD for the faster batch (experiment D) may be explained by the larger error in the 

temperature control (especially during the last 20 min of the batch, as shown in Figure 8.20), 

caused by the difficulty in tracking the steep nonlinear temperature trajectory by the standard 

PID controller. Additionally conducting the crystallisation at a larger supersaturation may 

have triggered additional mechanisms not considered in the model, such as agglomeration 

and nucleation. Although the FBRM results do not indicate significant increase in the 

number of counts/s for experiment D, some evidence of smaller crystals and agglomerates 

was observed by the microscopic examination of the product from experiment D, as also 

indicated by Figure 8.18 (b). 

To investigate further the differences between the product CSDs obtained in the two 

experiments, the actual experimental process temperature trajectories for both experiments 

were simulated, using the population balance model solved by the combined QMOM-

MOCH technique. The simulated distributions were compared with the target and 

experimental CSDs obtained at the end of the two experiments. Figure 8.21 (a) indicates that 

the simulated distribution for experiment C (long batch, lower supersaturation) was very 

close to the measured and target distributions. In case of experiment D (short batch, higher 

supersaturation) the simulated CSD is closer to the measured CSD, as shown in Figure 8.21 

(b). This suggests that for experiment D, the difference between the experimental product 

CSD and target distribution is partially indeed due to the larger error in tracking the 

theoretical temperature setpoint profile during the experiment. However, since the simulated 

CSD still shows some difference compared to the measured CSD, it is likely that other 
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mechanisms not included in the model (e.g. nucleation, and agglomeration promoted by the 

higher supersaturation) have also contributed to the observed discrepancy between the 

product and target CSDs. Additionally, since in the case of the short profile (90 min) the 

actual process temperature was lagging behind the setpoint, at the end of the 90 min the 

actual final temperature in the simulation was higher than the target temperature value at that 

moment. This leads to smaller yield for the faster experiment, hence the simulated CSD is 

shifted to the left. 
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Figure 8.21: Comparison of target distribution, measured distribution and simulated 
distribution using the measured process temperature trajectories for a) experiment C (180 min) 
and b) experiment D ( 90 min). 

 

 

8.8 Conclusions 

The chapter describes the materials and methods used for the experiments carried out to 

estimate the parameters for the size-dependent growth kinetics for the seeded-batch cooling 

crystallisation process of potassium dichromate-water system. A specially designed 

experimental setup was developed for the experiments, which included several PAT tools, 

such as ATR-UV/Vis spectroscopy for in situ concentration measurement, particle counts 

and chord length measurement with FBRM, as well as on-line CSD measurement using a 

laser diffraction equipment with a sampling loop (Malvern Mastersizer). To obtain the 

concentration, a multivariate linear regression-based calibration model was developed that 
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correlated the two peak absorbance values of the potassium dichromate-water system 

measured by the ATR-UV/Vis probe with the concentration, correcting for the effect of the 

temperature on the absorbance. 

The experimental CSD and concentration measurements were used to identify the size-

dependent growth kinetics for the system. The combined quadrature method of moments and 

method of characteristics (QMOM-MOCH) approach was used for the solution of the 

population balance equation. The kinetic parameters for size-dependent growth were 

determined to capture the dynamic evolution of the shape of the crystal size distribution, as 

well as the experimental concentration profile. The model was validated against 

experimental data and the results indicated a very good agreement between simulations and 

experiments.  

In the second part of the chapter, the direct design approach for supersaturation controlled 

growth dominated processes was implemented for the potassium dichromate-water system. 

The supersaturation control (SSC) design parameter was determined via nonlinear 

optimisation to achieve a desired target distribution. The SSC design parameter was used to 

determine the temperature trajectories which would lead to the same product CSDs for a 

longer and a shorter batch, using the constant supersaturation and growth dominated process 

assumptions. The resulting temperature trajectories with lower and higher supersaturation 

levels (longer and shorter batches) were implemented to achieve the desired target shape of 

the CSD. The results indicate that with suitable temperature control it is possible to achieve 

the required shape of the crystal size distribution and maintain constant supersaturation 

level, while the batch time can be reduced significantly. However the approach has to be 

applied with caution since by reducing the batch time the corresponding supersaturation 

level increases, which may trigger other mechanisms (e.g. nucleation, agglomeration) not 

conserved in the direct design approach.  
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Chapter 9  
Experimental and simulation-based evaluation of 
seed quality on product CSD and seed recipe design 
for shaping the product CSD in batch crystallisation 

9.1 Introduction 

Usually, most batch crystallisation processes involve seeding. Seed loading varies from as 

low as 0.5% to as high as 10% depending on the size and volume of the batch crystalliser. 

Seeding has been known for a long time as an effective technique to stabilise batch 

crystallisation processes (Mullin, 2001). In seeded crystallisation, the supersaturation is 

maintained at a low value away from the nucleation curve, by slow cooling, optimal cooling 

(or anti-solvent addition), or in more recent systems, at a desired constant value throughout 

the entire batch by application of properly designed control algorithms, using either model-

based optimisation (Chung et al., 1999; Nagy, 2009; Ward et al., 2006; Xie et al., 2001) or 

model-free approaches based on supersaturation control (Sarkar et al., 2006; Zhou et al., 

2006a) and direct design concepts (Abu Bakar et al., 2009b; Woo et al., 2009a). These 

approaches can be implemented in open-loop or closed-loop structure with respect to the 

product property. Although product property-based closed-loop implementation will show a 

certain level of inherent robustness to uncertainties (Heffels and Kind, 1999; Nagy and 

Braatz, 2003a), and robust open-loop control strategies have also been developed (Nagy and 

Braatz, 2004), these advanced control approaches are very seldom applied in practice due to 

their increased implementation complexity. In the vast majority of cases crystallisation 

processes are controlled by tracking operating trajectories determined off-line by nominal 

open-loop optimisation or trial-and-error procedures. In these cases the properties of seed 

play an important role and strongly affect the quality of the crystal size distribution obtained 

at the end of the batch. Although several techniques have been proposed for the in situ 

generation of seeds via controlled nucleation/dissolution events (Abu Bakar et al., 2009b; 

Woo et al., 2009a), seeded crystallisation is still predominantly applied in the chemical and 

pharmaceutical industries using seeds generated from the crystallisation product. 
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Generally many steps are involved during the preparation of seed, such as milling, blending, 

grinding, sieving, washing etc.  (Adi et al., 2007; Wibowo et al., 2001; Wibowo and Ng, 

2001). All these processes affect the quality and properties of the seed and significant 

variations in seed quality may be observed based on the method used to produce the seed 

(Jagadesh et al., 1996; Kubota et al., 2001; Ludwick and Henderson, 1968). In addition, 

quantitative information on the quality and property of seeds, and the variation in these, are 

seldom considered in the control of the process. Variations in seed CSD and properties are 

generally considered as uncertainties rather than actuators for the control of final CSD. 

Seeding seems to be treated as an art rather than science (Adi et al., 2007). There is a very 

limited amount of work available in the literature, which considers the effect of seed on the 

final CSD, and all focus on empirical evaluations of the operating conditions and seed 

amount on the final product, or on the design of the shape of the seed distribution to achieve 

a desired target distribution (Bohlin and Rasmuson, 1996; Kalbasenka, 2009; Lung-

Somarriba et al., 2004).  

The first part of the chapter provides and experimental and simulation based analysis of the 

effect of seed quality on the shape of the crystal size distribution obtained at the end of the 

batch. To study these effects seeds were prepared using different processes, such as milling, 

washing and sieving. Process Analytical Technology (PAT) equipment can play an 

important role in studying and monitoring the seed quality and its effect on the product (Yu 

et al., 2004). The application of these tools has lead to novel control approaches for 

crystallisation processes, which can lead to significant product quality improvements 

(Braatz, 2002; Fujiwara et al., 2005). The data provided by these instruments during the 

development stage can provide key information about the seed quality and help to improve 

and maintain the end results consistent. In this study focused beam reflectance measurement 

(FBRM) is used to detect the evolution of the number of particles during the crystallisation 

process. The data is used in combination with on-line CSD measurement techniques, using 

laser diffraction equipment (Malvern Mastersizer). The final CSD is dependent on the 

supersaturation profile created during the batch time. In this work the concentration is 

measured in situ using attenuated total reflectance (ATR) UV/Vis spectroscopy, calibrated 

by correlating the change in absorbance to the concentration variation and correcting for the 

effect of temperature. The results obtained from these in situ and on-line PAT instruments 
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are analysed to evaluate the effect of the seed quality, resulting from various preparation 

protocols, on the product CSD. The experiments illustrate that seeds having a large amount 

of very fine particles resulting from the milling process (which usually appear as dust) give 

rise to agglomeration of these small particles. Additionally, the irregular morphology of 

milled crystals can influence the shape of the crystal size distribution at the end of the batch. 

The fine particles in the seed lead to the formation of bimodal product distribution with 

significant amount of fines and agglomerates. These can affect the efficiency of the 

downstream processes such as filtration and drying since fine particles can clog filters and 

agglomerate, causing solvent inclusion in the product. The selected model system was 

potassium dichromate in water, for which a population balance model (PBM) was also 

developed and validated using experimental data. The process is growth dominated and an 

apparent size dependent growth mechanism can describe the dynamic evolution of the 

experimental CSD and concentration. The model is solved using an efficient solution 

approach based on a combined quadrature method of moment and method of characteristics 

(QMOM-MOCH) (Aamir et al., 2010; Aamir et al., 2009b). The simulation results 

combined with the experimental evaluation, supported by the use of a set of PAT tools, show 

that during the process development stages the variation in seed quality can be detected and 

should be taken into account in model-based control strategies. 

9.2 Seed preparation to analyse the quality of seed 

Three different types of potassium dichromate seeds were prepared using different 

combinations of milling, sieving and washing methods. Table 9.1 summarises the process 

conditions used for each method of seed preparation. 

9.2.1 Crystallised and sieved seed (seed A) 

Potassium dichromate and water solution was prepared corresponding to a solubility of 20 g 

of potassium dichromate per 100 g of water at 30°C. Potassium dichromate was dissolved in 

water by heating to 40°C at a rate of 0.8°C/min. The solution was equilibrated at 40 °C for 

20 minutes, to ensure complete dissolution of solids and then the temperature of the solution 

was reduced from 40°C to 18°C following a linear cooling profile at a rate of 0.5°C/min. 

The solution was left at 18°C for 15 minutes so that newly nucleated crystals could grow. 
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The crystals obtained were filtered, dried and then sieved. The sieve sizes used were: 500 

μm, 355 μm, 300 μm, 250 μm, 300 μm, 200 μm, 150 μm, 125 μm, 106 μm, and 90 μm 

(coarser size on the top and finer at the bottom). The run time was set to 90 minutes, and the 

rotation and shaking caused the crystals to distribute throughout the sieve stack.  The 

product retained between sieve sizes 106-125 μm was collected for seeding.  Figure 9.1 (a) 

and (b) show the SEM images of the obtained seed. It can be clearly observed that seed 

contains no fine particles. Crystals have distinctive shape and they look uniform in size and 

shape. However, a small amount of broken crystals can also be observed. This seed would 

be referred to as “Seed A” hereafter.  

Table 9.1: Process conditions used for the preparation of seed. 
Process conditions Crystallised sieved 

seed 
Milled washed 

sieved seed 
Milled sieved seed 

Crystallisation    

Milling -   

Milling time - 45 min 45 min 

Washing -  - 

Washing time - 25 mins - 

Solvent for washing - Iso-Proponal (IPA) - 

Drying after washing 
with solvent 

-  - 

Drying time (min) - 20 - 

Sieving    

Sieving time 90 min 25 min 25 min 

Sieve size  (µm) 106-125 106-125 106-125 

Referred as Seed A Seed B Seed C 

Remarks Crystallised seed 
retained on 106 µm 

sieve was collected as 
crystallised and sieved 

seed. 

Half of milled seed 
was washed with 

solvent and sieved. 
The seed retained on 

106 µm sieve was 
collected as milled 

washed sieved seed. 

Remaining half of 
milled seed was sieved 
without washing. The 
seed retained on 106 

µm sieve was collected 
as milled sieved seed. 

 

9.2.2 Milled, washed and sieved seed (seed B) 

The crystallised seed retained between sieve sizes 300 to 500 μm was collected and milled in 

a traditional ball mill. The milling was carried out for 45 minutes with four metallic balls. 



Chapter 9: Experimental and simulation-based evaluation of seed quality and seed recipe design for 
shaping the product CSD in batch crystallisation 205 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

After every 5 minutes, the sample was taken out and sieved to reduce excessive powder 

formation. In total, 20 g of milled seed was collected at the end of the milling. Half of the 

collected seed (10 g) was washed thoroughly with iso-proponol (IPA) solvent for 25 minutes 

to remove fine particles and dust (very fine particles).  

 

  
 
                             (a) 

 
 
                           (b) 

 
 
                              (c) 

 
 
                              (d) 

 
 
                               (e) 

 
 
                             (f) 

Figure 9.1: SEM images showing the size and the surface of crystals prepared by three different 
methods. Crystallised-sieved seed (a-b) , milled-washed-sieved seed (c-d) and milled-sieved seed 
(e-f). 
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After washing, the seed was dried for 20 minutes, then sieved again and the seed retained 

between sieve sizes 106 -125 μm was collected as final product. Figure 9.1 (c) and (d) show 

the SEM images of the milled, washed and sieved seed. Due to milling, there is no 

distinctive shape of the crystals and the majority of particles are broken. Some dust (very 

fine particles) and small particles attached to the surface of the crystals can be clearly 

observed, despite the seed being thoroughly washed with IPA. This seed is referred to as 

“seed B” hereafter. 

9.2.3 Milled and sieved seed (seed C) 

The other 10 g of seed obtained after milling was sieved without any washing and the solid 

retained between sieve sizes 106-125 μm was collected as seed. Figure 9.1 (e) and (f) show 

the SEM images of the milled and sieved seed. As expected, the SEM images indicate that 

the seed produced by milling and then sieving has the worst quality compared to seeds A 

and B, having large amount of very fine particles (dust). This seed is referred to as “seed C” 

hereafter.  

9.3 Results and discussion 

Experimental investigations of the batch cooling crystallisation of potassium dichromate in 

water were carried out.  The material used for these experiments is described in Section 

8.2.1 and the experimental setup is shown in Figure 8.2. The experimental data was obtained 

using a laboratory scale cooling crystallisation system. The experimental conditions are 

summarised in Table 9.2.  

During these experiments FBRM was used to monitor the dissolution, Ostwald ripening or 

secondary nucleation. ATR/UV-Vis spectrometer was used to measure the concentration and 

the on-line Malvern Mastersizer was employed to measure the crystal size distribution. 

Sampling time for on-line CSD measurement was 3 minutes. The same amount of seed was 

added in all three experiments (1.2. g, corresponding to 1.5 % seed loading), and the same 

initial concentration was prepared for all cases. The relative errors calculated between the 

concentrations prepared and the values measured by the ATR-UV/Vis, after complete 

dissolution, for the three different experiments were 0.5 %, 0.25 % and 1.5 %, respectively, 

indicating that the initial concentration was reproducible, within reasonable limits. 
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Temperature was maintained at 29°C for 10 minutes and the seed was added before 

implementing the cubic trajectory. The same procedure was repeated for all three 

experiments. 

Table 9.2: Operating conditions for experiments using different quality seeds. 
Operating conditions Values 

Temperature profile followed Cubic 
3

0 0
( )( / )

cubic f bacth
T T T T t t

 

Points for smooth profile, ( )N  60 

Initial concentration, (g/g of water) 0.19 

Seed loading, (%) 1.5 % of solid content 

Sieve sizes for seed, (µm) 106-125 

Seed mass, (g) 1.2 

Saturation temperature, 
sat
T , (°C) 30 

Initial temperature (at seeding and start of profile),
0
T , (°C) 29 

End temperature, 
f
T  (°C) 20 

Relative error between prepared and measured initial 

concentration for three experiments  

Experiment when seed A was used 

  Experiment when seed B was used 

Experiment when seed C was used 

 

 

                    0.50 % 

0.25 % 

1.50 % 

Sampling time for on-line measurements of CSD, (min) 3 

Sampling time for ATR-UV/Vis and FBRM (s) 20 

Batch time, 
batch
t (min) 60 

 

9.3.1 Comparison of FBRM data 

The FBRM counts were monitored throughout the experiments. Figure 9.2 shows the FBRM 

data resulting from the three experiments.  The total counts for FBRM increased after seed 

addition. Seed A yields the smallest number of counts/s (around 8200 counts/s), after 

introduction into the system, whereas in the case of seed B the total counts increased to 9500 

counts/s. This is in correlation with the seed quality shown in Figure 9.1 that indicates more 

fines in the case of seed B. For seeds A and B after addition, the total counts/s measured by 
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FBRM show no further increase or decrease, which indicates that these systems were 

supersaturated and there was no secondary nucleation throughout the experiment. 
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Figure 9.2: a) Comparison of measured total counts/s using FBRM and b) comparison of square 
weighted mean chord length (SWMCL) for the experiments using the three seeds (A,B and C) 
of different quality. 

 

In the case of the experiment with seed C, immediately after the introduction of the seed, the 

total counts increased to the highest value of 11,000 counts/s. As expected, this indicates a 

significantly larger number of particles compared to the case of seeds A and B, due to the 

large amount of fines contained in the seed (as shown in Figure 9.1). After the initial 

increase to 11,000 counts/s the number of counts deceased to 9500 counts/s. The sudden 

decrease in the number of counts, without increase in concentration, as shown in Figure 9.3, 

can be explained by Ostwald ripening. During Ostwald ripening the smaller crystals act as 

nutrients for the bigger crystals. As the larger crystals grow, the area around them is depleted 

of smaller crystals. The disappearance of smaller particles and solute deposition on larger 

Seed addition  
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particles is a spontaneous process. Molecules on the surface are energetically less stable than 

the ones already well-organized in the crystal system. Large crystals, with their greater 

volume to surface area ratio, represent a lower energy state than smaller crystals, that have 

larger surface area to volume ratio. Thus the small particles disappear and the large ones 

grow. In case of seed C there is a large amount of very fine particles. Thus, ripening can be 

observed during the experiment and process analytical equipment such as FBRM is able to 

detect this process.  Figure 9.3 indicates that the concentration decreased during the initial 

period of the batch. Hence the decrease in the number of counts is not caused by dissolution, 

further supporting the occurrence of the ripening phenomenon.  

The square weighted mean chord lengths were also measured throughout the batch, and are 

shown in Figure 9.2 (b). It can be observed that in case of experiment with seed A the initial 

SWMCL is larger and the crystal growth was more pronounced than in the case of the 

experiments with seeds B and C, which contain more fines. The smallest initial size and least 

crystal growth was observed in case of the experiment with seed C. 

9.3.2 Comparison of concentration profiles  

The absorbance was measured during all three experiments and was converted to 

concentration (using the calibration parameters shown in Table 8.2).  Figure 9.3 indicates 

that at the time of seed addition the initial concentrations were close and the solution was 

supersaturated (no increase in concentration after seed addition). Potassium dichromate is a 

fast growing system, which is also indicated by the rapid decrease in the concentration for 

all three experiments during the 1 hour batch, during which the FBRM indicated no 

nucleation. The concentration profiles obtained from the experiments with the three different 

seeds suggest that the crystalline seed has consumed the most solute. Based on the final 

concentration, the yields for the experiments with seeds A, B and C were 33%, 31% and 

26%, respectively. The final concentration in the case of seeds A and B are relatively close, 

whereas the experiment with seed C shows the least solute consumption. Thus, the most 

growth of crystals is expected in case of seed A, whereas least growth is expected in the case 

of seed C, which was also indicated by the SWMCL, as shown in Figure 9.2 (b). The 

microscopic images of the crystalline product obtained at the end of the batch also confirm 

the same conclusion, as shown in Figure 9.4  (b), (d) and (f).  
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Figure 9.3 also suggests that the experiment with seed A not only results in higher yield at 

the end of the batch, but also indicates a faster initial growth during the first few minutes of 

the batch. This can be explained on one hand by the slightly larger initial supersaturation 

than for the experiments with seed B and C, but also by the form of the growth kinetics, and 

the lack of very fine particles, which could promote Ostwald ripening. The size dependent 

growth expression given by eq. (4.8) indicates that larger crystals grow faster. The initial 

shape of seeds A was in general uniform (as shown in Figure 9.4 (a)) and the average size is 

significantly larger than for seeds B and C (compare Figure 9.4 (a), (c) and (e)), hence a 

more pronounced growth can be expected.  
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Figure 9.3: Comparison of concentration profiles measured using ATR-UV/Vis spectroscopy for 
the experiments with the three seeds (A, B and C) of different quality.  

 

In the case of seed C, the presence of a large amount of small particles causes a smaller 

decrease in the initial concentration. This can be explained by the fact that in this case, the 

growth initially is mainly governed by the Ostwald ripening phenomenon. Thus the nutrient 

for the growth of part of the seed crystals initially comes from the very fine particles and not 

from the solute, yielding slower depletion of the solute concentration. 

9.3.3 Comparison of microscopic images 

The microscopic images shown in Figure 9.1 and Figure 9.4 (a), (c) and (e) indicate a 

significant variation in quality, despite the seeds were obtained from the same sieve fraction. 
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In case of seed A, the crystals have distinctive shapes and contain very few fine particles, as 

shown in Figure 9.4 (a). In case of seed B the particles appear under irregular shapes caused 

by the breakage due to milling. The seed was thoroughly washed to remove fines and dust 

but some fine particles can still be observed, as shown in Figure 9.1 (c)-(d) and Figure 9.4 

(c). Seed C particles have no distinctive shapes and contain a significant amount of fines 

with many small particles attached to the surface of the crystals as shown in Figure 9.1 (e)-

(f) and Figure 9.4 (e). 

As expected the end products obtained from these three seeds are also significantly different 

from each other, as shown in Figure 9.4 (b), (d) and (f).  The end crystals obtained from seed 

A are uniform and large in size, (as shown in Figure 9.4 (b)). The crystals obtained at the 

end of the batch using seed B have distinctive shape but relatively significant agglomeration 

can also be observed, as seen in Figure 9.4 (d). The growth of crystals is less than in the case 

of the final product obtained from seed A. Figure 9.4 (f) indicates that for the experiment 

with seed C, the end product has a large quantity of agglomerates and fines with fewer large 

crystals. The overall growth of crystals is less than in both previous cases. The 

agglomeration observed in the product crystals is the result of the increased tendency of 

small particles to agglomerate. The agglomeration of the fine particles in the seed competes 

with their consumption through Ostwald ripening. Hence when seed C is introduced in the 

solution some of the fine particles agglomerate and then grow into agglomerated product 

crystals, whereas others are consumed through Ostwald ripening. From a practical 

perspective the level of agglomeration could be decreased by applying temperature cycling, 

when the heating phases would promote de-agglomeration of the initially loosely bound fine 

particles and promote their elimination through Ostwald ripening (Abu Bakar et al., 2009a) . 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

Figure 9.4: Microscopic images of seed A, B and C crystals  (a, c, e) and the corresponding final 
product crystals when seed A, B and C were used for seeding (b, d, f). 
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9.3.4 Comparison of seed and product size distributions using on-line 

laser diffraction measurement 

The measured CSDs for the seeds and the final distribution using the on-line laser diffraction 

(Malvern Mastersizer) are shown in Figure 9.5 (a) and (b). The results are shown in volume 

%, as obtained from the instrument and on logarithmic size scale, to better distinguish the 

particular features of the three distributions. Figure 9.5 (a) indicates that seed C contains a 

large amount of very small particles (dust of size below 1 m) and the distribution appears 

to be tri-modal with a pronounced shoulder due to small particles (with size of 10-40 m). In 

case of seed B, it can be seen that washing eliminated the dust and decreased significantly 

the amount of fines. The distribution for seed B is bimodal due to the presence of small 

particles (with size of 10-40 m), which were not removed during washing. However the 

peak in this size range (10-40 m) is significantly smaller than in the case of seed C. Seed A 

has a narrow, mono-modal distribution, corresponding to the uniform shape and size with 

negligible traces of fines shown in the micrograph in Figure 9.4 (a). The product CSDs are 

also in correlation with the micrographs in Figure 9.4 (b), (d) and (f). The product resulting 

from seed A shows the most significant growth and narrow mono-modal distribution. The 

product from seed B indicates significant growth for the majority of particles but the 

distribution exhibits a long tail due to the fines present in the seed.  
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Figure 9.5: Comparison of distributions (volume %) measured online using Malvern 
Mastersizer a) seed (beginning of batch) and b) product (at the end of the batch) for the 
experiments with seeds A, B and C. 
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The product distribution resulting from seed C suggests the least growth and in addition to 

the long tail, due to smaller particles, the product distribution also shows a third peak at 

small particle range (below 1 m). These results are also in correlation with the size-

dependent growth mechanism, which suggests that larger particles should exhibit more 

growth than fines. Larger particles have higher terminal velocities hence in the case of 

diffusion controlled growth the larger the crystal size the faster the growth.  

The results also show that the very fine particles (dust with size < 1 m ) barely grow.  This 

can be explained by the fact that these small particles have very small terminal velocities and 

sizes smaller than that of the turbulent eddy’s. Thus these particles grow in a virtually 

stagnant medium even in an apparently well agitated vessel. Additionally, since the 

potassium dichromate in water, is a very fast growing system, growth happens at very low 

supersaturation. Close to the equilibrium, the Gibbs-Thomson effect (Mullin, 2001) becomes 

significant, according to which particles near nucleic size (e.g. 1-2 m ) may grow at 

extremely slow rate due to their higher solubility (and hence lower supersaturation).  

The experimental results demonstrate that under the same process conditions, the properties 

of the product obtained at the end of the batch can be significantly influenced by the 

properties of the initial seed.  

9.3.5 Evaluation of seed quality on the product CSD through model-

based simulations 

Combined QMOM-MOCH technique (described in Chapter 4, Section 4.2.1) was used to 

predict the product CSDs using the distributions of seeds A, B and C, together with the 

corresponding initial concentrations as initial conditions in the model. The experimental 

cubic temperature profile was used in the simulations and the product CSDs predicted are 

compared with the experimental CSDs. The growth parameter used for these simulations are 

shown in Table 8.3, and were obtained from an experiment that used seed A. Therefore, as 

expected the prediction of the product CSD (shown in Figure 9.6) is in very good agreement 

with the measured CSD. Figure 9.7 compares the simulated and experimental product CSDs 

when seed B was used as initial condition in the simulation. The simulated product CSD 

indicates more growth than the experimental final CSD with a bimodal shape, similarly to 
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the seed CSD. Despite the bimodal seed distribution the experimental product CSD is mono-

modal, which can be explained by the agglomeration of the small particles, which can also 

be observed in Figure 9.4 (d). 
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Figure 9.6: Comparison of simulated and experiment CSDs at the end of the batch when the 
CSD of seed A was used as initial condition for the simulation. 

 

Agglomeration competes with growth, hence part of the supersaturation is used to form the 

bonds between the particles in the agglomerates, resulting overall in less growth compared 

to the simulated CSD. Hence experimentally the fines are eliminated through agglomeration 

but overall less growth can be observed for the larger seed particles. Agglomeration is not 

taken into account in the model, hence all supersaturation is used for growth in the 

simulation, leading to over-estimation of the overall growth. Additionally, due to the 

different preparation mode of seed B (milling and washing) compared to seed A (crystalline 

seed) the surface properties can differ significantly (e.g. exhibiting very different kink 

densities and surface dislocations), leading to differences in the growth rates (surface 

integration kinetics). Since the parameters for the growth kinetics were identified using the 

crystalline seed, these parameters may not be suitable when another seed is used with 

significantly different surface properties (e.g. due to milling). 
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Figure 9.7: Comparison of simulated and experiment CSDs at the end of the batch when the 
CSD of seed B was usd as initial condition for the simulation. 

 

Figure 9.8 indicates that using seed C to initialise the model, the simulated distribution 

highly over-predicts the experimental CSD. The simulated product distribution has a tri-

modal shape, which is in correlation with the experimental observation (best seen in Figure 

9.5 (b)), however the modes at the smaller size ranges are significantly more pronounced in 

the simulation than in the case of the experimental CSD. Seed C contains a large amount of 

very fine particles (dust), which initially generate growth through the mechanism of Ostwald 

ripening (Gibbs-Thomson effect), leading to slower growth. Additionally, the milled seed 

including the dust particles most likely have very different surface properties compared to 

the crystalline seed A (similarly as in the case of seed B), and may grow much slower due to 

their smaller size than the size of the turbulent eddies. The microscopic image of the product 

CSD (Figure 9.4 (f)) also indicates significant agglomeration. Since the mechanisms of 

Ostwald ripening, agglomeration and effect of mixing are not included in the simulation 

model, and due to the variation of growth rates due to the significantly different surface 

properties of the seed C, there are considerable differences between the shape and size of the 

predicted and experimental product CSDs.  
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Figure 9.8: Comparison of simulated and experiment CSDs at the end of the batch when the 
CSD of seed C was used as initial condition for the simulation. 

 

The simulation results indicate that in the case of open-loop control strategies, which do not 

account for changes in the seed property, the variations in the quality of seed can lead to 

major differences in the product CSD. These results also underline the importance of 

analysing the effects of seed preparation on the product property, and emphasize the 

requirement for careful seed preparation protocols, which can yield seed with consistent 

properties. Milled seeds which contain large amounts of fine particles can produce large 

amount of agglomerated crystals, which not only reduces the efficiency of the downstream 

processes but can have great impact on the bioavailability and purity of active 

pharmaceutical ingredients. In case of milling, washing should be applied properly to 

remove the small particles. When variation in the seed properties are difficult to avoid, more 

advanced crystallisation control strategies can be used, which are able to decrease the 

variability of the product CSD due to changes in the seed quality, such as temperature 

cycling (Abu Bakar et al., 2009a), direct nucleation control (Abu Bakar et al., 2009b) or in 

situ seed generation (Woo et al., 2009a). 
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9.4 Summary for effect of seed preparation method on the 

product CSD  

Seeding is a well-known technique to stabilise the crystallisation processes, however the 

quality of seed has a large impact on the final crystalline product. This section provides an 

experimental and simulation based evaluation of the effect of the seed quality, determined 

by the preparation protocol, on the product crystal size distribution (CSD). A set of 

experiments were carried out for potassium dichromate in water system using seeds from the 

same sieve fraction but prepared using different methods. Experiments with crystalline-

sieved, milled-washed-sieved, and milled-sieved seeds were carried out. The distributions of 

three different seeds were also used as initial conditions in a simulation model and the 

results were compared with the measured distributions. Experimental results were in good 

agreement with the model-based CSD prediction, when the quality of seed was good with 

less fine particles. However the product distribution was over-predicted by the model in the 

case of the seeds, which contained fine particles or dust (very fine particles). These 

differences could be explained by changes in the growth mechanisms due to the different 

surface properties (different kink densities) of the milled and crystalline seeds, the existence 

of Ostwald ripening (Gibbs-Thomson effect) indicated by focused beam reflectance 

measurement promoted by the very fine particles, the pronounced agglomeration of the fine 

particles (in case of the milled seeds with fines), and by the effect of the mixing on the 

growth of the particles with different sizes. These phenomena were not included in the 

simulation model hence have lead to considerable difference between the predicted and 

measured product CSDs compared to the excellent prediction when the crystalline seed was 

used. This section also illustrates the simultaneous application of in situ process analytical 

tools, such as focused beam reflectance measurement (FBRM) for the detection of Ostwald 

ripening, attenuated total reflection (ATR) UV/Vis spectroscopy for concentration 

monitoring, as well as the on-line use of a laser diffraction instrument (Malvern Mastersizer) 

for real-time CSD measurement in the case of the potassium dichromate in water system. 



Chapter 9: Experimental and simulation-based evaluation of seed quality and seed recipe design for 
shaping the product CSD in batch crystallisation 219 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

9.5 Experimental evaluation of the CSD design using 

mixture of seeds 

The seed recipe design methodology was described in Chapter 7, Section 7.7. To evaluate 

the seed design methodology using mixtures of different seeds an arbitrary bimodal 

distribution was selected as target:            

                     2 2 2 2( 280) /(2.40 ) ( 470) /(2.68 )1 1

2 2.40 2 2.68
0.72 0.28tar L L

n
f e e            (9.1) 

Equation (9.1) was converted to volume pdf using the equation (5.6) and was taken as the 

target distribution in an optimisation problem defined similarly to equations (7.15)-(7.21) as 

follows:  
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where 
seed
m  is the total seed mass (g), 

i
w  are the weight fractions of seeds from a particular 

sieve fraction in the final seed mixture, 1, 2, ...,
G

i N , 
G
N  is the number of Gaussians 

corresponding to the CSDs of a particular seed fraction, 
,m i

L  the mean sizes (m), 
i  (m) 

the standard deviations of the respective Gaussian distributions, 
sol
m  is the mass of water 

used as solvent (g), (0)C  and ( )
batch

C t  are the solute concentrations at the beginning and end 

of the batch, respectively. The constraints given by inequalities (9.5) restrict the amount of 

seed added to a maximum of 10% of the mass of solid dissolved in the system, whereas the 
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constraint given by (9.6) is a productivity constraint with 
,maxf

C  being the maximum 

acceptable concentration at the end of the batch to achieve the required yield. The seed 

recipe design is formulated for the practical situation when the mean and standard deviations 

characterizing the seeds in a particular size ranges are fixed, being determined by the method 

and equipment used to produce the particles (here sieving), and only the total amount of seed 

and the weight fractions in which the various size ranges are mixed together are optimised, 

with the vector of decision variables being defined as 
1 2

[ , , , ],
G
Nseed

m w w w . The mean values of 

the seed distributions were calculated as the arithmetic means of the consecutive sieve sizes 

and the standard deviations were considered to be equal to half of the size ranges determined 

by the corresponding sieves. In this case a fixed cubic temperature profile was used (cooling 

from 29°C to 20°C within 60 min, as shown in Figure 8.11(a)), hence the SSC parameter  

was not included in the optimisation. The model was solved using the QMOM-MOCH 

method under variable supersaturation, corresponding to the fixed temperature profile. This 

is a more practical scenario, since the implementation of a particular predetermined 

temperature profile is easier and more reliable than the application of supersaturation 

control, especially at the low supersaturation values required by this fast growing  system (as 

discussed in Chapter 8). The initial concentration of the system was 0.2 g/g of water 

corresponding to an equilibrium temperature of 30°C, and seed was added at 29°C.  

The target distribution is shown in Figure 9.9 (b). In the seed recipe optimisation 

consecutive sieve sizes were used, which defined a set of seven sieve size ranges 

{37 88, 88 105, 105 177, 177 210, 210 250, 250 297, 297 354} . The optimal 

seed is the result of a mixture of four Gaussian distributions with 

parameters, [0.73, 0.02, 0.23, 0.02]w , [62.5 m, 96.5 m, 141.0 m, 193.5 m]
m
L  and 

[25.5 m, 8.5 m, 36 m, 16.5 m]  corresponding to the selected sieve size ranges of 

* {37 88, 88 105, 105 177, 177 210}  and the optimised mass of seed was 1.214  g.  

An experiment was designed to achieve the target bimodal distribution described by 

equation (9.1). The schematic of experimental setup is shown in Figure 8.2. Same material, 

apparatus and seed preparation technique were used as described in Section 8.2.1- 8.2.3.The 

sieve analysis of the raw material indicated that the seed fractions available in considerable 
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quantity were only in the size ranges of 40-63, 63-90 and 90-106 m. Hence the seed recipe 

optimisation was performed again for these size ranges only. The optimised seed was a 

mixture of two Gaussians with parameters [0.50, 0.50]w , [51.5 m, 98 m]
m
L  and 

[11.5 m, 8 m]  corresponding to the selected sieve sizes of 40-63 and 90-106 m and 

the optimised mass of seed was 1.118 g.  Hence, the seed used for the experiment was a 

blend of two sieve fractions retained between 40-63 µm and 90-106 µm.  Figure 9.9 (a) 

shows the comparison between the optimised seed as four Gaussians, the optimal seed as 

two Gaussians, and the actual seed used for the experiment (measured using Malvern 

Mastersizer).  
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Figure 9.9: Comparison of a) experimental and optimal seed distribution, and b) experimental 
and target distribution (for which a mixture of seed was optimised) at the end of the batch and 
the simulated distribution with the experimental seed used as the initial condition in the model. 
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It can be observed that the experimental and optimal seed distributions are very close, 

although the two optimal seeds were blend of different sieve size ranges in different amounts 

(weight fractions). These results indicate that a particular optimal seed CSD can be the result 

of blending different sieved seed fractions. The optimal seed recipe resulting from the 

mixture of the two seed fractions was used in an experiment with the cubic temperature 

trajectory, (cooling the solution from 29°C to 20°C during a 60 minutes duration) using the 

experimental setup as described in Chapter 8, Section 8.2.1- 8.2.3. The initial concentration 

of the system was 0.20 g/g water corresponding to an equilibrium temperature of 30°C and 

seed was added at 29°C. These experimental conditions are identical to the ones used in the 

simulations. 

Figure 9.9 (b) shows a comparison between the target and the experimental CSDs at the end 

of the batch. The final product CSD measured is shifted towards slightly smaller particles 

compared to the target distribution. Nonetheless, the seed recipe design procedure was able 

to provide a product distribution which is remarkably close to the target distribution. The 

difference between the target and product CSDs may be caused by the discrepancy between 

the theoretical optimal seed recipe and the actual seed recipe prepared experimentally as 

shown in Figure 9.9 (a). Although the differences in the seed CSDs are small, they may be 

amplified during the crystallisation processes, leading to increasingly larger errors between 

the experimental and target CSD. Additionally, although the model identification indicated 

that the process model is in very good agreement with the experimental data a certain level 

of model prediction error is present, which may lead to errors in the theoretical seed recipe. 

To further evaluate this, a simulation was carried out using the measured experimental seed 

CSD as initial condition in the model. Figure 9.9 (b) shows that the experimental and 

simulated CSDs are very close when the model was initiated with the measured 

experimental seed. These results indicate that the model prediction is very good, and the 

difference between the target and experimental product CSDs is caused by the accumulating 

prediction error due to the discrepancy between the optimal and experimental seed recipes.  

The absorbance was measured using the ATR-UV/Vis spectrometer throughout the 

experiment and was converted to concentrations, using the parameters shown in Table 8.2. A 

comparison between the simulated and experimental concentrations is shown in Figure 9.10. 
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Figure 9.10: Comparison of experimental concentration, simulated concentration with 
theoretical seed recipe and the simulated concentration when the experimental seed was used. 

 

The simulated concentration falls below the experimental concentration (error of 1.74%), 

which also agrees with the discrepancy between the experimental and target CSDs. However 

when the simulations are initiated with the experimental seed CSD, the simulated and 

experimental concentration profiles are in very good agreement, reinforcing that the model 

developed with the identified kinetic parameters, describes very well the real process. Figure 

9.11 (a and b) show the microscopic images for the mixture of the seed and the final 

distribution obtained at the end of the experiment and indicate that the final distribution of 

crystals is indeed a mixture of two different sizes. 

 

 

 
(a) 

 

 
(b) 

Figure 9.11:  Microscopic image of the a) seed (blend 1), and b) product crystals obtained at the 
end of the batch (using seed blend 1). 
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To provide further experimental evidence of the seed recipe design approach an additional 

target bimodal distribution was designed, given by 

 
2 2 2 2( 210) /(2.18 ) ( 370) /(2.76 )1 1

,bimodal 2 2.18 2 2.76
0.60 0.40tar L L

n
f e e  (9.8) 

To carry out the experiments, the seed was optimised for the available sieve sizes, 40-63 and 

90-125 m . The optimised seed was a mixture of two Gaussians with weight fractions 

[0.54, 0.46]w . The means and standard deviations of the seed fractions are  

[51.5 m, 107.5 m]
m
L  and [11.5 m, 17.5 m] , respectively, corresponding to the 

selected sieve sizes of 40-63 and 90-125 m. The optimised mass of seed was 1.115 g.  

Figure 9.12 (a) shows the comparison between the optimised seed as two Gaussians and the 

actual seed used for the experiment (measured using Malvern Mastersizer). It can be 

observed that the experimental and optimal seed distributions are close but not in as good 

agreement as in the previous case.  
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Figure 9.12: Comparison of a) experimental and optimal seed distributions; b) Comparison of 
experimental and target distribution (for which a mixture of seed was optimised) at the end of 
the batch. 

 

For the second seed blend the experiment was carried out under the same conditions as for 

the first seed blend. The same cubic temperature trajectory was used, cooling the solution 

from 29°C to 20°C during a 60 minutes period. The initial concentration of the system was 

0.20 g/g of water corresponding to an equilibrium temperature of 30°C and seed was added 

at 29°C. The experimental characteristics of the optimised seed recipes for both experiments 

are summarised in Table 9.3. 
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Table 9.3: Optimised seed parameters for the arbitrary bimodal target CSDs designed for 
experimental investigation. 

Simulation Conditions Seed blend 1 Seed blend 2 
Target distributions, ( )tar
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Sieve fractions, (µm) 40-63, 90-106 40-63, 90-125 
Number of Gaussians, ( )

G
N  2 2 

Seed mass,
seed

( )m , (g) 1.118 1.115 

Mean,( )
m
L , (µm) 51.5, 98 51.5, 107.5 

Weight fractions, ( )w  0.50, 0.50 0.54 , 0.46 
Standard deviations, ( ), (µm) 11.5, 8 11.5, 17.5 

 

Figure 9.12 (b) shows the comparison between the target and the experimental CSDs 

resulting at the end of the batch for the second arbitrary bimodal distribution. The final 

product CSD showed smaller but broader peaks than the target distribution. Overall the 

shape of the product distribution is close to the target distribution, relative to the differences 

in the experimental and optimal seeds, indicating that the seed recipe design procedure was 

able to provide a product CSD relatively close to a desired target. The comparison between 

the simulated and experimental concentrations is shown in Figure 9.13. The simulated 

concentration indicates a higher solute consumption, which is also in correlation with the 

discrepancy between the experimental and target distributions. 
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Figure 9.13: Comparison of experimental and simulated concentration throughout the entire 
batch (for seed blend 2). 
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The difference between measured and simulated concentrations at the end of the batch is 

4.63%. This is greater than in the previous experiment (1.73%), which is also in correlation 

with the larger difference between the target and experimental CSDs, and is the result of the 

more significant discrepancy between the optimal and experimental seed CSDs, compared to 

the experiments with seed blend 1. 

Figure 9.14 (a and b) show the microscopic images for the mixture of the seed and the final 

distribution obtained at the end of the experiment for the second seed blend. The 

microscopic images also indicate that both the seed and the final distribution of crystals are 

mixtures of two different size ranges. The experimental results show that it is possible to 

achieve a desired multimodal distribution by a model-based optimal design of an appropriate 

seed blend from various fractions of sieved seeds. The methodology provides a systematic 

approach to obtain seed mixture recipes by using available sieve sizes, which will yield the 

required shape of the product CSD. This can be used to achieve e.g. a desired therapeutic 

effect by designing dissolution profiles, or to achieve improved packing properties during 

the formulation of the final product. 

 

 
(a) 

 

 
(b) 

Figure 9.14: Microscopic image of a) seed (blend 2), and b) product crystals at the end of the 
batch (using seed blend 2). 

 

Summary of seed recipe design 

The second part of the chapter provides an experimental evaluation of the seed recipe design 

approach as mixtures of sieved fractions to achieve a target distribution. Seed recipes were 
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optimised for two arbitrary bimodal target distributions. For the first target distribution the 

prepared seed CSD was very close to the optimised seed distribution. The final product CSD 

(measured) was remarkably close to the target distribution, indicating that the seed recipe 

design procedure was able to provide a product CSD very close to a desired target. For the 

second target distribution the prepared seed distribution was broader than the theoretical 

optimal seed distribution. Consequently, the final product CSD was also broader than the 

target distribution, however overall the shape of the target CSD was well achieved. The 

experimental results indicate that it is possible to achieve desired multimodal distributions 

by a model-based optimal design of an appropriate seed blend from various fractions of 

sieved seeds.  

9.6       Conclusions 

Seed is an important control variable for batch crystallisation processes. For achieving a 

target distribution it is important to take into account the characteristics of the seed. There is 

a lack of systematic evaluation of the seed preparation methods. The chapter provides 

systematic analyses of the effect of the seed characteristics (determined by the preparation 

method) on the product distribution. It is shown that large variations in seed size (presence 

of very fine particles) and difference in the surface properties can lead to large errors 

between the predicted and experimental CSDs, while very good prediction is achieved when 

seed with similar quality is used in the experiments as for the model identification. If growth 

is the only dominating phenomenon, then the degree of size enlargement of crystals depends 

on the amount of dissolved material in the supersaturated solution that is available for 

crystallisation and the total crystal surface in the suspension. The number of particles is 

constant and hence the mass balance can be used to estimate the evolution of the CSD. The 

chapter also provides an experimental evaluation of the seed recipe design approach 

described in Chapter 7. 
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Chapter 10  
Conclusions and recommendations for 
future work  

10.1 Conclusions 

The thesis presents a new methodology for solving population balance equations (PBE). The 

approach combines the quadrature method of moments (QMOM) with the method of 

characteristics (MOCH), and provides a computationally efficient technique for the 

reconstruction of the whole crystal size distribution (CSD), for generic size-dependent 

growth, size-dependent dissolution, and nucleation mechanisms.  

The approach was evaluated in the case of a seeded system of potash alum in water. The 

size-dependent growth and secondary nucleation kinetic parameters for the process were 

identified using industrial pilot plant data, provided by BASF, Germany. The concentration 

was measured on-line using density meter and the in situ CSD was measured using Malvern 

Insitec. The size dependent dissolution kinetics was identified using laboratory experimental 

data consisting of off-line CSD measurements and in situ concentration measurement based 

on a conductivity probe. The process was also monitored using a focused beam reflectance 

measurement (FBRM) probe.  

Optimal temperature trajectories have also been designed for various bimodal target CSDs. 

The results demonstrate the computational efficiency of the approach based on the combined 

QMOM-MOCH method for the off-line or on-line optimisation of batch crystallisation 

processes. The simulation case studies indicated that it was possible to achieve bimodal 

distributions while operating within the metastable zone width for the case when size-

dependent growth and secondary nucleation are considered. However to eliminate the effect 

of secondary nucleation and achieve a mono-modal product distribution the optimal 

temperature trajectories has to be designed using both the under-saturated and supersaturated 

regions of the phase diagram, considering all three phenomena: size-dependent dissolution, 

size-dependent growth and secondary nucleation. The proposed approach generates optimal 

operating temperature profiles, which provides fine removal by controlled dissolution and 

can achieve target distributions with shapes unachievable operating within the metastable 

zone only. 
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The combined QMOM-MOCH method can be used to solve the PBE under considering 

dynamic supersaturation. Additionally, the population balance model was solved using the 

MOCH under the assumption of constant supersaturation. At constant supersaturation 

growth is the dominating phenomenon, yielding a simplified analytical expression for the 

prediction of the CSD. A design parameter for supersaturation controlled processes was 

introduced as a function of the supersaturation, time and growth kinetics. Based on the 

design parameter and the simplified analytical model, the supersaturation set-point and batch 

time are determined using an optimisation approach to obtain a target distribution with a 

desired shape.  

The methodology was used to obtain the temperature profiles in the time domain, which will 

lead to constant supersaturation corresponding to a desired target CSD, providing a 

systematic direct design approach for practical applications and scale-up. Temperature 

trajectories in the time domain were designed for a desired supersaturation point or batch 

time from the solubility curve, concentration and moments of the crystal size distribution. 

The experimental validation of the novel direct design methodology for the systematic 

design of the setpoint operating curves, which produce desired target CSDs at the end of the 

batch was presented.  

Kinetic parameters of the apparent size-dependent growth rate expression were identified for 

the potassium dichromate water system, using an experimental setup developed at 

Loughborough University. The experiments presented in the thesis also illustrates the 

simultaneous application of in situ process analytical tools, such as focused beam reflectance 

measurement (FBRM) for nucleation detection, attenuated total reflection (ATR) UV/Vis 

spectroscopy for concentration monitoring, as well as the in-line use of a Malvern 

Mastersizer for real-time CSD measurement in the case of the potassium dichromate in 

water system. 

Two experiments were carried out for the potassium dichromate water system by redefining 

the supersaturation trajectories in terms of temperature trajectories corresponding to the 

same supersaturation control design parameter and hence same target CSD. The 

experimental results indicated that defining the supersaturation trajectories in terms of 

temperature trajectories is a powerful technique to control the supersaturation throughout the 

batch. The temperature trajectories are easy to implement because of the availability of good 

quality temperature sensors. Another advantage is the flexibility for adjusting the batch time 

or the supersaturation, which provides an additional benefit for industrial scale usage.  
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Two additional methods were proposed that use the seed in conjunction with the 

supersaturation setpoint design, and analytical CSD estimator for shaping the product CSD. 

The first approach designs a seed recipe as a mixture of crystals resulting for example from 

standard sieve analysis. In this approach the seed was introduced at the beginning of the 

batch.  The second approach proposes a dynamic seed addition profile, which allows an 

easily implementable methodology to achieve complex target CSDs using seed with mono-

modal CSD as a process actuator to control the desired final CSD.  

The optimal seed recipe design for crystallisation processes, by automatically determining 

the amounts of seeds from various sieved seed fractions required to achieve a desired shape 

of the product CSD, was also proposed. To evaluate the methodology experiments were 

carried out for the potassium dichromate-water system. The estimated parameters were used 

to optimise the seed recipe by mixing different amounts of sieved seed fractions. Seed 

mixtures were represented as a sum of Gaussian distributions, with each Gaussian 

corresponding to the seed distribution in a particular sieve size range. Experimental results 

were in good agreement with the model-based CSD design, providing evidence that it is 

possible to achieve a desired multimodal product distribution by designing appropriate seed 

mixtures from various fractions of sieved seeds. The quality of the model-based prediction 

and hence the benefits of the model-based optimisation of temperature trajectories and seed 

recipes strongly depends on the seed quality. Experimental and simulation-based 

investigation provided evidence of the importance of developing suitable seed preparation 

protocols and to provide a comprehensive seed characterisation framework to achieve 

consistent product quality. The thesis provides a comprehensive and systematic framework 

of combined methodologies for the CSD shaping control for seeded batch cooling 

crystallisation processes. 

10.2 Future Work 

The proposed QMOM-MOCH can be extended for the solution of PBE incorporating 

breakage and aggregation mechanism too. Additionally the models could be developed to 

incorporate micro-scale and molecular level information in the mechanisms, such as the 

Gibbs-Thomson effect to incorporate Ostwald ripening, to include surface properties and 

surface integration mechanisms for better growth rate prediction. All these features with the 

consideration of non-ideal mixing and better integration with computation fluid dynamics 

(CFD) models, would not only enhance the prediction ability of the approaches but would 
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also open new opportunities for additional novel CSD control approaches, e.g. via controlled 

Ostwald ripening or induced and controlled agglomeration/breakage. 

The described methodologies have been evaluated for open loop control. However these can 

be extended to real-time closed loop control strategies. The methods can be used for on-line 

optimisation using closed loop control strategies to predict, monitor and control the crystal 

size distribution in a nonlinear model predictive control framework. This could be applied 

both within the batch, and in a batch-to-batch framework using a model-based iterative 

learning control approach. 

The CSD shaping control could be linked with end-product properties by integrating the 

crystallisation process with the downstream processes. The model-based optimisation, 

design and control of the integrated separation-formulation process could provide significant 

efficiency improvements and increase in the consistency of the final product properties. 

The model based optimisation approaches could be further developed to take the model 

parameter uncertainties into account to design robust operating policies which decrease the 

variability in the product quality. These robust optimal control approaches could be 

combined with model-based experimental design techniques, which would maximise the 

information content for the model identification experiments, and hence decrease the 

uncertainties in the model parameters, consequently providing better robustness of the 

optimal control policies. 

The thesis focused on the investigation of the proposed approaches in the case of two 

inorganic compounds. The applicability of the methodologies for organic compounds (e.g. 

pharmaceuticals, agrochemicals) could be evaluated to investigate their benefits in the case 

of high value-added products. 

 

 



References 232 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

References 

Aamir, E., Nagy, Z.K., Rielly, C.D., 2009a. Population balance modelling of the dynamic 
evolution of the crystal size distribution under a size-dependent dissolution mechanism., in: 
Louhi-Kultanen, M., Hatakka, H. (Eds.), Proc. of the 16th Int. Workshop on Industrial 
Crystallization, Lappeenranta, Finland, pp. 61-68. 

Aamir, E., Nagy, Z.K., Rielly, C.D., 2010. Optimal seed recipe design for crystal size 
distribution control for batch cooling crystallisation processes. Chem. Eng. Sci. 65, 3602-
3614. 

Aamir, E., Nagy, Z.K., Rielly, C.D., Kleinert, T., Judat, B., 2008. Efficient crystal size 
distribution estimation approach for growth dominated crystallisation processes., in: Jansens, 
J.P., Ulrich, J. (Eds.), Proc. of the 17th International Symposium on Industrial Crystallisation, 
Maastricht -The Netherlands, pp. 1733-1740. 

Aamir, E., Nagy, Z.K., Rielly, C.D., Kleinert, T., Judat, B., 2009b. Combined quadrature 
method of moments and mthod of characteristics approach for efficient solution of 
population balance models for dynamic modelling and crystal size distribution control of 
crystallisation processes. Ind. Eng. Chem. Res. 48, 8575-8584. 

Abu Bakar, M.R., Nagy, Z.K., Rielly, C.D., 2009a. Seeded batch cooling crystallisation with 
temperature cycling for the control of size uniformity and polymorphic purity of 
sulfathiazole crystals. Org. Process Res. Dev. 13, 1343-1356. 

Abu Bakar, M.R., Nagy, Z.K., Saleemi, A.N., Rielly, C.D., 2009b. The impact of direct 
nucleation control on crystal size distribution in pharmaceutical crystallization processes. 
Cryst. Growth Des. 9, 1378-1384. 

Adi, H., Larson, I., Stewart, P., 2007. Use of milling and wet sieving to produce narrow 
particle size distributions of lactose monohyrate in the sub-sieve range. Powder Technol. 
179, 95-99. 

Alopaeus, V., Laakkonen, M., Aittamaa, J., 2006. Numerical solution of moment-
transformed population balance equation with fixed quadrature points. Chem. Eng. Sci. 61, 
4919-4929. 

BS 5309-4: 1976. Methods for sampling chemical products. Sampling of solids.  

Bakeev, K.A., 2005. Process Analytical Technology: Spectroscopic tools and 
implemenetation strategies for the Chemical and Pharmaceutical industries. Wiley-
Blackwell. 

Barker, M., Rawtani, J., 2005. Practical Batch Process Management. IDC Technologies. 

Barrett, P., Glennon, B., 2002. Characterizing the metastable zone width and solubility curve 
using Lasentec FBRM and PVM. Trans IChemE, Part A 80, 799-805. 

Beck, J.V., Arnold, K.J., 1977. Estimation in Engineering and Science. Wiley, New York. 



References 233 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Beckmann, J.R., Randolph, A.D., 1977. Crystal size distribution dynamics in a classified 
crystallizer: Part II. Simulated control of crystal size distribution. AlChE J. 23, 510-520. 

Bennett, M.K., Rohani, S., 2001. Solution of population balance equations with a new 
combined Lax-Wendroff/Crank-Nicholson method. Chem. Eng. Sci. 56, 6623-6633. 

Berglund, K.A., Feng, L., 2002. ATR-FTIR for determining optimal cooling curves for 
batch crystallisation of succinic acid. Cryst. Growth Des. 2, 492-452. 

Blandin, A.F., Mangin, D., Nallet, V., Klein, J.P., Bossoutrot, J.M., 2001. Kinetics 
identification of salicilic acid precipitation through experiments in batch stirred vessel and a 
T-Mixer. Chem. Eng. J. 81, 91-100. 

Bohlin, M., Rasmuson, A.C., 1996. Application of controlled cooling and seeding in batch 
crystallisation. Can. J. Chem. Eng. 70, 120-126. 

Borcho, K., 2002. The importance of population balance dynamics from the prespective of 
the chemical industry. Chem. Eng. Sci. 57, 4257-4266. 

Bove, S., Solberg, T., Hjertager, B.H., 2005. A novel algorithm for solving population 
balance equations: The parallel parent and daughter classes. Diversion, analysis and testing. 
Chem. Eng. Sci. 60, 1449-1464. 

Braatz, R.D., 2002. Advanced control of crystallisation processes. Annual Reviews in 
Control. 26, 87-99. 

Braatz, R.D., Fujiwara, M., Ma, D.L., Togkalidou, T., Tafti, D.K., 2002. Simulation and new 
sensor technologies for industrial crystallisation: A review. International Journal of Modern 
Physics 16, 346-353. 

Braatz, R.D., Hasebe, S., 2002. Particle size and shape control in crystallisation processes. 
AIChE Symp. Series 98, 307-327. 

Braatz, R.D., Togkalidou, T., Fujiwara, M., Patel, S., 2001. Solute concentration prediction 
uing chemometrices and ATR-FTIR spectroscopy. J. Cryst. Growth 231, 534-543. 

Bravi, M., Mazzarotta, B., 1998. Size dependency of citric acid monohydrate growth 
kinetics. Chem. Eng. J. 70, 203-207. 

Brecevic, L., Garside, J., 1980. On the measurement of crystal size distributions in the 
micrometer size range. Chem. Eng. Sci. 36, 867-869. 

Chang, C.T., Epstein, M., 1982. Identification of batch crytsallisation control strategies 
using characteristic curves. In: nucleation, growth and impurity effects in crystallisation 
process engineering., AIChE series, New York. 

Chew, J.W., Black, S.N., Chow, P.S., Tan, R.B.H., 2007. Comparison between open-loop 
temperature control and closed loop supersaturation control for cooling crystallisation of 
Glycine. Ind. Eng. Chem. Res. 46, 830-838. 

Chiu, T.Y., Christofides, P.D., 2000. Robust control of particulate processes using uncertain 
population balances. AIChE J. 46, 266-280. 

Choong, K.L., Smith, R., 2004a. Novel strategies for optimization of batch, semibatch and 
heating/cooling evaporative crystallization. Chem. Eng. Sci. 59, 329-343. 



References 234 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Choong, K.L., Smith, R., 2004b. Optimization of batch cooling crystallization. Chem. Eng. 
Sci. 59, 313-327. 

Christofides, P.D., El-Farra, N.H., Li, M., Mhaskar, P., 2008. Model based control of a 
particulate systems. Chem. Eng. Sci. 63, 1156-1172. 

Chung, S.H., Ma, D.L., Braatz, R.D., 1999. Optimal seeding in batch crystallisation. Can. J. 
Chem. Eng. 77, 590-595. 

Chung, S.H., Ma, D.L., Braatz, R.D., 2000. Optimal model-based experimental design in 
batch crystallisation. Chemom.  Intell.  Lab.  Syst. 50, 83-90. 

Costa, C.B.B., Costa, A.C., Filho, R.M., 2005. Mathematical modelling and optimal control 
strategy development for an adipic acid crystallisation process. Chem. Eng. Process. 44, 
737-753. 

Costa, C.B.B., Maciel, M.R.W., Filho, R.M., 2007. Considerations on the crystallisation 
modelling: Population balance solution. Comput. Chem. Eng. 31, 206-218. 

David, R., Paulaime, A.M., Espitalier, F., Rouleau, L., 2003. Modelling of multiple-
mechanism agglomeration in a crystallization process. Powder Technol. 130, 338-344. 

David, R., Villermaux, J., Marchal, P., Klein, J.P., 1991. Crystallisation and precipitation 
engineering-lV. Kinetic model of adipic acid crystallisation. Chem. Eng. Sci. 46, 1129-1136. 

De Anda, J.C., Wang, X.Z., Lai, X., Roberts, K.J., 2005. Classifying organic crystals via in-
process image analysis and the use of monitoring charts to follow polymorphic and 
morphological changes. J. Process Control 15, 785-797. 

Dharmayat, S., De Anda, J.C., Hammond, R.B., Lai, X.J., Roberts, K.J., Wang, X.Z., 2006. 
Polymorphic transformation of L-glutamic acid monitored using combined on-line video 
microscopy and x-ray diffraction. J.Cryst. Growth 294, 35-40. 

Diemer, R.B., Olson, J.H., 2002a. A moment methodolgy for coagulation and breakage 
problems: Part 2 - moment models and distribution reconstruction. Chem. Eng. Sci. 57, 
2211-2228. 

Diemer, R.B., Olson, J.H., 2002b. A moment methodology for coagulation and breakage 
problems: Part 3 - generalized daughter distribution functions. Chem. Eng. Sci. 57, 4187-
4198. 

Diemer, R.B., Olson, J.H., 2002c. A moment methodology for coagulation and breakage 
problems: Part I- analytical solution of the steady - state population balance. Chem. Eng. Sci. 
57, 2193-2209. 

Dixit, N.M., Zukoski, C.F., 2002. Nucleation rates and induction times during colloidal 
crystallization: Links between models and experiments. Phys. Rev. Lett. 66, 1-10. 

Doki, N., Seki, H., Takano, K., Asatani, H., Yokota, M., Kubota, N., 2004. Process control 
of seeded batch cooling crystallisation of the metastable alpha-form glycine using an in-situ 
ATR-FTIR spectrometer and an in-situ FBRM particle counter. Cryst. Growth Des. 4, 949-
953. 



References 235 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Doyle, I.F.J., Soroush, M., Cordeiro, C., 2002. Control of product quality in polymerization 
processes., in: Rawlings, J.B., Ogunnaike, B.A., Eaton, J.W. (Eds.), AIChE Symp. Series, 
New York, pp. 290-306. 

Dunham, S.T., Clejan, I., Gencer, A.H., 1997. Accurate and efficient modelling of 
nucleation and growth processes. Mater. Sci. Eng., A A238, 152-159. 

Dunuwila, D., D, Berglund, K.A., 1997. ATR-FTIR spectroscopy for in situ measurement of 
supersaturation. J. Cryst. Growth 179, 185-193. 

Eek, R.A., Dijkstra, S., 1995. Design and experimental evaluation of a state estimator for a 
crystallisation process. Ind. Eng. Chem. Res. 34, 567-574. 

El-Farra, N.H., Shi, D., Li, M., Mhaskar, P., Christofides, P.D., 2006. Predictive control of 
particle size distribution in particulate processes. Chem. Eng. Sci. 61, 268-281. 

Fan, R., Marchisio, D.L., Fox, R.O., 2004. Application of the direct quadrature method of 
moments to polydisperse gas-solide fluidized beds. Powder Technol. 139, 7-20. 

Fevotte, G., 2002. New perspectives for the on-line monitoring of pharmaceutical 
crystallisation processes using in situ infrared spectroscopy. Int. J. Pharm. 241, 263-278. 

Fevotte, G., Alexander C., Nida, S.O., 2007. A population balance model of the solution-
mediated phase transition of citric acid.. AIChE J. 53, 2578-2589. 

Flood, A.E., 2002. Thoughts on recovering particle size distributions from the moment form 
of the population balance. Dev Chemical Engineering Mineral Process 10, 501-519. 

Fujiwara, M., Chow, P.S., Ma, D.L., Braatz, R.D., 2002. Paracetamol crystallisation using 
laser backscattering and ATR-FTIR spectroscopy: metastability, agglomeration and control. 
Cryst. Growth Des. 2, 363-370. 

Fujiwara, M., Nagy, Z.K., Chew, J.W., Braatz, R.D., 2005. First-principles and direct design 
approaches for the control of pharmaceutical crystallisation. J. Process Control 15, 493-504. 

Garcia, E., Veesler, S., Boistelle, R., Hoff, C., 1999. Crystallisation and dissolution of 
pharmaceutical compounds an experimental approach. J. Cryst. Growth 198/199, 1360-
1364. 

Garside, J., 1984. Advances in the characterisation of crystal growth. AIChE Symp. Series 
80, 194-198. 

Garside, J., 1985. Industrial crystallization from solution. Chem. Eng. Sci. 40, 3-26. 

Garside, J., Davey, R., 1980. Secondary contact nucleation: Kinetics growth and scale up. 
Chem. Eng. Commun 4, 393-424. 

Garside, J., Jancic, S.J., 1978. Prediction and measurement of crystal size distributions for 
size dependent growth. Chem. Eng. Sci. 33, 1623-1630. 

Ge, M., Wang, Q.-G., Chiu, M.-S., Lee, T.-H., Hang, C.-C., Teo, K.-H., 2000. An effective 
technique for batch  process optimisation with application of crystallisation Trans IChemE, 
Part A 78, 99-106. 



References 236 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Gerstlauer, A., Gahn, C., Zhou, H., Rauls, M., Schreiber, M., 2006. Application of 
population balances in the chemical industry - current status and future needs. Chem. Eng. 
Sci. 61, 205-217. 

Gerstlauer, A., Mitrovic, A., Motz, S., Gilles, E.D., 2001. A population model for 
crystallisation processes using two independent particle properties. Chem. Eng. Sci. 56, 
2553-2565. 

Giaya, A., Thompson, R.W., 2004. Recovering the crystal size distribution from the 
moments equations. AIChE J. 50, 879-882. 

Gimbun, J., Nagy, Z.K., Rielly , C.D., 2009. Simultaneous quadrature method of moments 
for the solution of population balance equations, using a differential algebraic equation 
framework. Ind. Eng. Chem. Res. 48, 7798-7812. 

Gordon, R.G., 1968. Error bounds in equilibrium statistical mechanics. J Math Phys. 9, 655-
663. 

Granberg, R.A., Rasmuson, A.C., 2005. Crystal growth rates of paracetamol in mixtures of 
water+acetone+toluene. AIChE J. 51, 2441-2456. 

Gron, H., Borissova, A., Roberts, K.J., 2003. In-process ATR-FTIR spectroscopy for closed-
loop supersaturation control of a batch crystallizer producing monosodium glutamate 
crystals of define size. Ind. Eng. Chem. Res. 42, 198-206. 

Gron, H., Roberts, K.J., 1999. Application of ATR-FTIR spectroscopy for on-line 
determination of solute concentration and solute supersaturation., Proc. of the14th Int 
Symposium on Industrial Crystallisation Cambridge , UK, pp. 1-9. 

Grosso, M., Galan, O., Baratti, R., Romagnoli, J.A., 2009. A novel approach for the 
prediction of PSD in antisolvent mediated crystallisation. Chem. Eng. Sci. 27, 291-296. 

Gunawan, R., Fusman, I., Braatz, R.D., 2004. High resolution algorithms for 
multidimensional population balance equations. AIChE J. 34, 1821-1832. 

Gunawan, R., Fusman, I., Braatz, R.D., 2008. Parallel high resolution simulation of 
particulate processes with nucleation, growth and aggregation. AIChE J. 54, 1449-1458. 

Hardenberg, J.v., Kenning, D.B.R., Xing, H., Smith, L.A., 2004. Identification of nucleation 
site interactions. International Journal of Heat and Fluid Flow 25, 298-304. 

Hartel, R.W., 2002. Crystallization in Foods, in: Myerson, A.S. (Ed.), Handbook of 
Industrial Crystallisation, 2nd ed. Butterworth-Heinemann, Oxford, UK, pp. 287-304. 

Haseltine, E.L., Patience, D.B., Rawlings, J.B., 2005. On the stochastic simulation of 
particulate systems. Chem. Eng. Sci. 60, 2627-2641. 

Heffels, C.M.G., Kind, M., 1999. Seeding technology: an underestimated critical success 
factor for crystallisation., Proc. of the 14th International Symposium on Industrial 
Crystallisation., pp. 2234-2246. 

Henson, M.A., Muller, D., Reuss, M., 2002. Cell population modelling of yeast glycolytic 
oscillations. Biochem. J. 368, 433-446. 



References 237 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Hermanto, M.W., Chiu, M.-S., Woo, X.Y., Braatz, R.D., 2007. Robust optimal control of 
polymorphic transformation in batch crystallisation. AIChE J. 53, 2643-2650. 

Hlozny, L., Sato, K., Kubota, N., 1992. On-line measurement of supersaturation during 
batch cooling crystallisation of Ammonium Alum. J. Chem. Eng. Jpn. 25, 604-606. 

Hojjati, H., Rohani, S., 2005. Cooling and seeding effect on supersaturation and final crystal 
size distribution (CSD) of ammonium sulphate in a batch crystallizer. Chem. Eng. Process. 
44, 949-957. 

Hounslow, M.J., 1998. The population balance as a tool for understanding particle rate 
processes. Kona Powder and Particle 16, 1821-1832. 

Hounslow, M.J., Reynolds, G.K., 2006. Product engineering for crystal size distribution. 
AIChE J. 52, 2507-2517. 

Hounslow, M.J., Ryall, R.L., Marshall, V.R., 1988. A discretized population balance for 
nucleation, growth and aggregation. AIChE J. 34, 1821-1832. 

Hu, Q., Rohani, S., Wang, D.X., Jutan, A., 2005. Optimal control of a batch cooling seeded 
crystalliser. Powder Technol. 156, 170-176. 

Hukkanen, E.J., Braatz, R.D., 2003. Measurement of particle size distribution in suspension 
polymerization using in situ laser backscattering. Sensors and Actuators B: Chemical 96, 
451-459. 

Hulburt, H.M., Katz, S., 1964. Some problems in particle technology - A statistical 
mechanical formulation. Chem. Eng. Sci. 19, 555-574. 

Immanuel, C.D., Doyle, I.F.J., 2002. Open-loop control of particle size distribution in semi-
batch emulsion copolymerization using a genetic algorithm. Chem. Eng. Sci. 57, 4415-4427. 

Immanuel, C.D., Doyle, I.F.J., 2003. Computationally efficient solution of population 
balance models incorporating nucleation, growth, coagulation: Application to emulsion 
polymerization. Chem. Eng. Sci. 58, 3681-3698. 

Jagadesh, D., Kubota, N., Yokota, M., Sato, A., Tavare, N.S., 1996. Large and mono-sized 
product crystals from natural cooling mode batch crystalliser. J. Chem. Eng. Jpn. 29, 865-
873. 

John, V., Angelov, I., Oncul, A.A., Sundmacher, K., Thevenin, D., 2005. Towards the 
optimal reconstruction of a distribution from its moments, AIChE Annual meeting, 
Cincinnati, OH, USA. 

Jones, A.G., 1974. Optimal operation of a batch cooling crystallizer. Chem. Eng. Sci. 29, 
1075-1087. 

Jones, A.G., 2002. Crystallization process systems. Butterworth heinemann, Oxford, UK. 

Jones, A.G., Chianese, A., Berardino, F.D., 1993. On the effect of secondary nucleation on 
the crystal size distribution from a seeded batch crystallizer. Chem. Eng. Sci. 48, 551-560. 

Jones, A.G., Mullin, J.W., 1974. Programmed cooling crystallization of potassium sulphate 
solutions. Chem. Eng. Sci. 29, 105-118. 



References 238 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Kalani, A., Christofides, P.D., 2000. Modelling and control of a titania aerosol reactor. 
Aerosol Sci. Tech 32, 369-391. 

Kalani, A., Christofides, P.D., 2002. Simulation, estimation and control of size distribution 
in aerosol processes with simultaneous reaction, nucleation, condensation and coagulation. 
Comput. Chem. Eng. 26, 1153-1169. 

Kalbasenka, A.N., 2009. Model-based control of industrial batch crystallisers. Experiments 
on enhanced controllability by seeding actuation., Department of Chemical Engineering. 
Delft University of Technology, pp. 1-325, PhD thesis. 

Kalbasenka, A.N., Spierings, L.C.P., Huesman, A.E.M., Kramer, H.J.M., 2007. Application 
of seeding as a process actuator in a model predictive control framework for fed-batch 
crystallisation of ammonium sulphate. Part. Part. Syst. Charact. 24, 40-48. 

Kee, N., Woo, X.Y., Tan, R.B.H., Braatz, R.D., 2009. Precise tailoring of the crystal size 
distribution by optimal seeding time profile., AIChE Annual Meeting. 

Kempkes, M., Eggers, J., Mazzotti, M., 2008. Measurement of particle size and shape by 
FBRM and in situ microscopy. Chem. Eng. Sci. 63, 4656-4675. 

Kiparissides, C.A., Meimaroglou, D., Roussos, A.I., 2006. Part IV: Dynamic evolution of 
the particle size distribution in particulate processes. A comparative study between Monte 
Carlo and the generalized method of moments. Chem. Eng. Sci. 61, 5620-5635. 

Kougoulos, E., Jones, A.G., Jennings, K.H., Wood-Kaczmar, M.W., 2005. Use of focused 
beam reflectance measurement (FBRM) and process video imaging (PVI) in a modified 
mixed suspension mixed product removal (MSMPR) cooling crystallizer. J Cryst. Growth 
273, 529-534. 

Kubota, N., Doki, N., Yokota, M., Sato, A., 2001. Seeding policy in batch cooling 
crystallisation. Powder Technol. 121, 31-38. 

Kumar, S., Ramkrishna, D., 1996a. On the solution of population balance equations by 
discretization - I. A fixed pivot technique. Chem. Eng. Sci. 51, 1311-1332. 

Kumar, S., Ramkrishna, D., 1996b. On the solution of population balance equations by 
discretizations-II. A moving pivot technique. Chem. Eng. Sci. 51, 1311-1332. 

Kumar, S., Ramkrishna, D., 1997. On the solution of population balance equations by 
discretization- III. Nucleation, growth and aggregation of particles. Chem. Eng. Sci. 52, 
4659-4679. 

Larsen, P.A., Patience, D.B., Rawlings, J.B., 2006. Industrial crystallisation process control. 
IEEE Control Systems Magazine 26, 70-80. 

Larson, M.A., Helt, J.E., 1977. Effect of temperature on the crystallisation of potassium 
nitrate by direct measurement of supersaturation. AIChE J. 23, 822-830. 

Lawrence, X.Y., Robert, A.L., RAw, A.S., D'Costa, R., Wu, H., Hussain, A.S., 2004. 
Applications of process analytical technology to crystallisation processes. Adv. Drug 
Delivery Rev. 56, 349-369. 



References 239 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Lee, G., Yoon, E.S., Lim, Y.-I., Lann, J.M.L., Meyer, X.n.-M., Joulia, X., 2001. Adaptive 
mesh method for the simulation of crystallization processes including agglomeration and 
breakage: the potassium sulfate system. Ind. Eng. Chem. Res. 40, 6228-6235. 

Lee, K., Lee, J.H., Fujiwara, M., Ma, D.L., Braatz, R.D., 2002. Run-to-run contol of 
multidimensional cystal size distribution in a batch crystalliser., Proc. of the American 
Control Conference; IEEE Press Piscataway, NJ, pp. 1013-1018. 

LeVeque, R.J., 1992. Numerical methods for conservation laws. Birkhauser Verlag, Basel, 
Switzerland. 

Lewiner, F., Fevotte, G., Klein, J.P., Pfefer, G., 1999. Application of in situ ATR-FTIR to 
the on-line monitoring of batch crystallisation with agglomeration, 14th Int Symposium of 
Industrial crystallisation, Cambridge, UK, pp. 145-152. 

Li, M., Shi, D., Christofides, P.D., 2004. Diamond jet hybrid HVOF thermal spray: gas-
phase and particle behaviour modeling and feedback control design. Ind. Eng. Chem. Res. 
43, 3632-3652. 

Liotta, V., Sabesan, V., 2004. Monitoring and feedback control of supersaturation using 
ATR-FTIR to produce an active pharmaceutical ingredient of a desired crystal size. Org. 
Process Res. Dev. 8, 488-494. 

Litster, J.D., Smith, D.J., Hounslow, M.J., 1995. Adjustable discretized population balance 
for growth and aggregation. AIChE J. 41, 591-603. 

Loffelmann, M., Mersmann, A., 1999. Innovative supersaturation sensor for industrial 
crystallisation, Proc. of the 14th Int. Symp. on Industrial crystallisation, Cambridge, UK, pp. 
210-216. 

Loffelmann, M., Mersmann, A., 2002. How to measure supersaturation? Chem. Eng. Sci. 57, 
4301-4310. 

Ludwick, J.C., Henderson, P.L., 1968. Particle shape and inference of size from sieving. 
Sedimentology 11, 197-235. 

Lung-Somarriba, B.L.M., Moscosa-Santillan, M., Porte, C., Delacroix, A., 2004. Effect of 
seeded surface area on crystal size distribution in glycine batch cooling crystallisation: a 
seeding methodology. J Cryst. Growth 270, 624-632. 

Ma, D.L., Tafti, D.K., Braatz, R.D., 2002a. High resolution simulation of multidimensional 
crystal growth. Ind. Eng. Chem. Res. 41, 6217-6223. 

Ma, D.L., Tafti, D.K., Braatz, R.D., 2002b. Optimal control and simulation of 
multidimensional crystallisation processes. Comput. Chem. Eng. 23, 1103-1116. 

MacDonald, M.J., Chu, C.F., Guilloit, P.P., Ng, K.M., 1991. A generalized Blake-Kozeny 
equation for multisized spherical particles. AIChE J. 37, 1583-1588. 

Mahoney, A.W., Ramkrishna, D., 2002a. Efficient solution of population balance equations 
with discontinuties by finite elements. Chem. Eng. Sci. 57, 1102-1119. 

Mahoney, A.W., Ramkrishna, D., 2002b. Population balance modelling: Promise for the 
future. Chem. Eng. Sci. 57, 595-606. 



References 240 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Mangin, D., Garcia, E., Gerard, S., Hoff, C., Klein, J.P., Veesler, S., 2006. Modeling and 
dissolution of a pharmceutical compound. J. Cryst. Growth 286, 121-125. 

Marchisio, D.L., Pikturna, J.T., Fox, R.O., Vigil, R.D., Barresi, A., 2003a. Quadrature 
method of moments for population-balance equations. AlChE J. 49, 1266-1276. 

Marchisio, D.L., Vigil, R.D., Fox, R.O., 2003b. Quadrature method of moments for 
aggregation–breakage processes. J Colloid Interf. Sci. 258, 322-334. 

MathWorld, W., 2009. Orthagonal Polynomials. 

MathWorld, W., Arfken, 1985. Laguerre Polynomials. 

Matthews, H.B.M., Rawlings, J.B., 1996. Model identification for crystallization: Theory 
and experimental verification. Powder Technol. 88, 227-235. 

McCoy, B.J., Madras, G., 2004. Reversible crystal growth-dissolution and aggregation-
breakage: numerical and moment solutions for population balance equations. Powder 
Technol. 143-144, 297-307. 

McGraw, R., 1997. Description of aerosol dynamics by the quadrature method of moments. 
Aerosol Sci. Technol. 27, 255-265. 

McGraw, R., Wright, D.L., 2003. Chemically resolved aerosol dynamics for internal 
mixtures by the quadrature method of moments. J Aerosol Sci. 34, 189-209. 

Mesbah, A., Kramer, H.J.M., Huesman, E.M., Van den Hof, P.M.J., 2009. A comparative 
study on the numerical solution of the poplation balance equation for crystallisation 
processes. Chem. Eng. Sci. 64, 4262-4277. 

Middlebrooks, S.A., 2001. Modelling and control of Silicon and Germanium thin film 
chemical vapor deposition. University of Wisconsin-Madison, PhD thesis. 

Miller, S.M., Rawlings, J.B., 1994. Model identification and control strategies for batch 
cooling crystallisers. AIChE J. 40, 1312-1327. 

Molnar, I., Halasz, S., Blickle, T., 1990. Determination of size-dependent growth crystal 
growth characteristics from batch experiments. Chem. Eng. Sci. 45, 1243-1251. 

Monnier, O., Fevotte, G., Hoff, C., Klein, J.P., 1997. Model identification of batch cooling 
crystallization through calorimetry and image analysis. Chem. Eng. Sci. 52, 1125-1139. 

Monnier, O., Klein, J.P., Hoff, C., Ratsimba, B., 1996. Particle size determination by laser 
reflection: methodology and problems. Part. Part. Syst. Charact 13, 10-17. 

Motz, S., Gilles, E.D., 2008. State estimation in batch crystallisation using reduced 
population balance models. J. Process Control 18, 361-337. 

Mullin, J.W., 2001. Crystallization, Fourth ed. Butterworth Heinemann: London, UK. 

Mullin, J.W., Nyvlt, J., 1971. Programmed cooling of batch crystallisers. Chem. Eng. Sci. 
26, 369-377. 

Nagy, Z.K., 2009. Model-based robust control approach for batch crystallisation product 
design. Comput. Chem. Eng. 33, 1685-1691. 



References 241 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Nagy, Z.K., Braatz, R.D., 2003a. Robust nonlinear model predictive control of batch 
processes. AIChE J. 49, 1776-1786. 

Nagy, Z.K., Braatz, R.D., 2003b. Worst-case and distributional robustness analysis of finite-
time control trajectory for non-linear distributed parameter systems. IEEE Transactions on 
Control Systems Technology. 11, 694-704. 

Nagy, Z.K., Braatz, R.D., 2004. Open-loop and closed-loop robust optimal control of batch 
processes using distributional and worst-case analysis. J. Process Control 14, 411-422. 

Nagy, Z.K., Chew, J.W., Braatz, R.D., 2008a. Comparative performance of concentration 
and temperature controlled crystallisation. J. Process Control 18, 399-407. 

Nagy, Z.K., Fujiwara, M., Braatz, R.D., 2006a. Optimal control of combined cooling and 
anti-solvent pharamceutical crystallisation., Proc. of the 13th International Workshop on 
Industrial Crystallisation., Delft, The Netherlands, pp. 16-23. 

Nagy, Z.K., Fujiwara, M., Braatz, R.D., 2006b. Recent advances in the modelling and 
control of cooling and anti-solvent crystallisation of pharmaceuticals., Proc. of the 8th 
International IFAC Symp.on Dynamics and Control of Process Systems., Cancun, Mexico, 
pp. 29-38. 

Nagy, Z.K., Fujiwara, M., Braatz, R.D., 2008b. Modelling and control of combined cooling 
and anti-solvent crystallisation processes. J. Process Control 18, 856-894. 

Nagy, Z.K., Fujiwara, M., Woo, X.Y., Braatz, R.D., 2008c. Determination of the kinetic 
parameters for the crystallisation of paracetamol from water using metastable zone width 
experiments. Ind. Eng. Chem. Res 47, 1245-1252. 

Nallet, V., Mangin, D., Klein, J.P., 1998. Model identification of batch precipitations: 
Application to salicylic acid. Comput. Chem. Eng. 22, S649-S652. 

Nicmanis, M., Hounslow, M.J., 1998. Finite element methods of steady state population 
balance equations. AIChE J. 44, 2258-2272. 

Nowee, S.M., Abbas, A., Romagnoli, J.A., 2008a. Direct control of particle size in anti-
solvent crystallisation Part I: Model indentification, experimental validation and dynamic 
simulation. Chem. Eng. Sci. 63, 2046-2054. 

Nowee, S.M., Abbas, A., Romagnoli, J.A., 2008b. Model-based optimal strategies for 
controlling particle size in antisolvent crystallisation operations. Cryst. Growth Des. 8, 2698-
2806. 

Nyvlt, J., Karel, M., Pisarik, S., 1994. Measurement of supersaturation. Cryst. Res. Technol. 
29, 409-415. 

O'Sullivan, B., Glennon, B., 2005. Application of in situ FBRM and ATR-FTIR to the 
monitoring of the polymorphic transformation of D-mannitol. Org. Process Res Dev. 9, 884-
889. 

Olesberg, J.T., Arnold, M.A., Hu, S.-Y.B., Wiencek, J.M., 2000. Temperature-insensitive 
near-infrared method for determination of protein concentration during protein crystal 
growth. Analytical Chemistry 72, 4985-4990. 



References 242 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Ono, T., Kramer, H.J.M., Ter Horst, J.H., Jansens, P.J., 2004. Process modelling of the 
polymorphic transformation of L-glutamic acid. Cryst. Growth Des. 4, 1161-1167. 

Ouchiyama, N., Tanaka, T., 1984. Porosity estimation for random packings of spherical 
particles. Ind. Eng. Chem. Fundam 23, 490-493. 

Patankar, S., 1980. Numerical heat transfer and fluid flow. Hemisphere Publishing, New 
York. 

Patience, D.B., 2002. Crystal engineering through particle size and shape monitoring, 
modeling and control, Department of Chemical Engineering. University of Wisconsin - 
Madison, pp. 1-233, PhD thesis. 

Patience, D.B., Hartel, R.W., Illingworth, D., 1999. Crystallization and pressure filtration of 
anhydrous milk fat: mixing effects. Journal of the American Oils Chemists' Society 76, 585-
594. 

Peglow, M., Kumar, J., Warnecke, G., Heinrich, S., Tsotsas, E., Morl, L., Hounslow, M.J., 
2006. An improved discretized tracer mass distribution of Hounslow et al. AIChE J. 52, 
1326-1332. 

Perry, R.H., Green, D.W., 1997. Perry's Chemical Engineer's Handbook. McGraw-Hill, 
London, UK. 

Pollanen, A.K., Hakkinen, A., Reinikainen, S.P., Rantanen, J., Minkkinen, P., 2006. 
Dynamic PCA-based MSPC charts for nucleation prediction in batch cooling crystallization 
processes. Chemom.  Intell.  Lab.  Syst. 84, 126-133. 

Pollanen, K., Hakkinena, A., Reinikainen, S.-P., Louhi-Kultanen, M., Nystrom, L., 2005. 
ATR-FTIR in monitoring of crystallization processes: comparison of indirect and direct 
OSC methods. Chemom.  Intell.  Lab.  Syst. 76, 25-35. 

Puel, F., Fevotte, G., Klein, J.P., 2003a. Simulation and analysis of industrial crystallization 
processes through multidimensional population balance equations. Part 2: a study of semi-
batch crystallization. Chem. Eng. Sci. 58, 3729-3740. 

Puel, F., Fevotte, G., Klein, J.P., 2003b. Simulation and analysis of industrial crystallization 
processes through multidimensional population balance equations. Part I: a resolution 
algorithm based on method of classes. Chem. Eng. Sci. 58, 3715-3727. 

Ramkrishna, D., 1981. Analysis of population balance-IV. The precise connection between 
Monte Carlo and population balances. Chem. Eng. Sci. 36, 1203-1209. 

Ramkrishna, D., 2000. Population Balances. Theory and Applications to Particulate Systems 
in Engineering. Academic Press San Diego, USA. 

Ramkrishna, D., Borwanker, J.D., 1973. A puristic analysis of population balance - I. Chem. 
Eng. Sci. 28, 1423-1435. 

Ramkrishna, D., Borwanker, J.D., 1974. A puristic analysis of population balance - II. 
Chem. Eng. Sci. 29, 1711-1721. 

Randolph, A.D., Larson, M.A., 1971. Theory of particulate processes: Analysis and 
Techniques of Continuous Crystallisation. Academic Press, San Diego, USA. 



References 243 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Randolph, A.D., Larson, M.A., 1988. Theory of Particulate Processes. Academic Press, 
NewYork, USA. 

Rawlings, J.B., 2000. Tutorial overview of model predictive control. IEEE Control Systems 
Magazine 20, 38-52. 

Rawlings, J.B., Miller, A.G., Witkowaski, W.R., 1993. Model identification and control of 
solution crystallisation processes: A review. Ind. Eng. Chem. Res. 32, 1275-1296. 

Rawlings, J.B., Witkowaski, W.R., Eaton, J.W., 1992. Modelling and control of crystallisers. 
Powder Technol. 69, 3-9. 

Rigopoulos, S., Jones, A.G., 2003. Finite element scheme for solution of the dynamic 
population balance equation. AIChE J. 49, 1127-1139. 

Rod, V., Misek, t., 1982. Stochastic modelling of dispersion formation in agitated liquid-
liquid systems. Trans IChemE 60, 48-53. 

Roffel, B., Betlem, B., 2006. Process dynamics and control: Modeling for control and 
prediction. John Wiley & Sons Ltd, Wets Sussex, England. 

Rosner, D.E., McGraw, R., Tandon, P., 2003. Multivariate population balances via moment 
and monte carlo simulation methods: An important sol reaction engineering bivariate 
example and “mixed” moments for the estimation of deposition, scavenging, and optical 
properties for populations of nonspherical suspended particles. Ind. Eng. Chem. Res. 42, 
2699-2711. 

Rosner, D.E., Pyykonen, J.J., 2002. Bivariate moment simulation of coagulation and 
sintering nanopartilces in flames. AIChE J. 48, 476-491. 

Ruf, A., Worlitschek, J., Mazzotti, M., 2000. Modelling and experimental analysis of PSD 
measurements through FBRM. Part. Part. Syst. Charact. 17, 167-179. 

Rusli, E., Lee, J.H., Braatz, R.D., 2006. Optimal distributional control of crystal size and 
shape., Proc. of the 5th World Congress on Particle Technology., Orlando, FL, p. 240f. 

Sahin, O., Ozdemir, M., Kendirci, H., Bulutcu, A.N., 2000. Determination of growth and 
dissolution mass rate of boric acid crystals by a simple computer program. J. Cryst. Growth 
219, 75-82. 

Salvatori, F., Muhr, H., Plasari, E., 2005. A new solution for closure problem in 
crystallisation modeling using moments method. Powder Technol. 157, 27-32. 

Sarkar, D., Rohani, S., Jutan, A., 2006. Multi-objective optimisation of seeded batch 
crystallisation processes. Chem. Eng. Sci. 61, 5282-5295. 

Scott, T.D., Clejan, I., Gencer, A.H., 1997. Accurate and efficient modeling of nucleation 
and growth processes. Materials Science and Engineering A A238, 152-159. 

Shah, M.B., Borwanker, J.D., Ramkrishna, D., 1977. Simulation of particulate systems using 
the concept of the interval of quiescence. AIChE J. 23, 897-904. 

Sheikhzadeh, M., Trifkovic, M., Rohani, S., 2008a. Adaptive MIMO neuro-fuzzy logic 
control of a seeded and an unseeded anti-solvent semi-batch crystalliser. Chem. Eng. Sci. 63, 
1261-1272. 



References 244 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Sheikhzadeh, M., Trifkovic, M., Rohani, S., 2008b. Fuzzy logic and rigid control of a seeded 
semi-batch, anti solvent, isothermel crystalliser. Chem. Eng. Sci. 63, 991-1002. 

Shi, D., El-Farra, N.H., Li, M., Mhaskar, P., Christofides, P.D., 2006. Predictive control of 
particle size distribution in particulate processes. Chem. Eng. Sci. 61, 268-281. 

Shi, D., Mhaskar, P., El-Farra, N.H., Christofides, P.D., 2005. Predictive control of crystal 
size distribution in protein crystallisation. Nanotechnology 16, S562-S574. 

Simon, L.L., Nagy, Z.K., Hungerbuhler, K., 2009a. Comparison of external bulk video 
imaging with focused beam reflectance measurement and ultra-violet visible spectroscopy 
for metastable zone identification in food and pharmaceutical crystallisation processes. 
Chem. Eng. Sci. 64, 3344-3351. 

Simon, L.L., Nagy, Z.K., Hungerbuhler, K., 2009b. Endoscopy-based in situ bulk video 
imaging of batch crystallisation processes. Org. Process Res Dev. 13, 1254-1261. 

Smith, R., 2005. Chemical Process Design and Integration. John Wiley and Sons limited, 
West Sussex, UK. 

Sohnel, O., Garside, J., 1992. Precipitation. Butterworth-Heinemann, Oxford, UK. 

Soos, M., Sefcik, J., Morbidelli, M., 2006. Investigation of aggregation, breakage and 
restructuring kinetics of colloidal dispersions in turbulent flows by population balance 
modelling and static light scattering. Chem. Eng. Sci. 61, 2349-2363. 

Spielman, L.A., Levenspiel, O., 1965. A monte carlo simulation of population balances. 
Chem. Eng. Sci. 53, 1777-1786. 

Stelling, J., Sauer, U., Szallasi, Z., Doyle, I.F.J., Doyle, J., 2004. Robustness of cellular 
functions. Cell 118, 675-685. 

Tavare, N.S., Chivate, M.R., 1977. Analysis of batch evaporative crystallisers. Chem Eng J. 
14, 175-180. 

Tavare, N.S., Chivate, M.R., 1995. Industrial Crystallisation. Process Simulation Analysis 
and Design. Plenum Press, NewYork, USA. 

Volmer, M., 1939. Kinetic der Phasenbildung. Steinkopff, Leipzig. 

Vu, T.T.L., Durham, R.J., Hourigan, J.A., Sleigh, R.W., 2006. Dynamic modelling 
optimisation and control of lactose crystallisations: Comparison of process alternatives. Sep. 
Purif. Technol. 48, 159-166. 

Wachi, S., Jones, A.G., 1992. Dynamic modelling of particle size distribution and degree of 
agglomeration during precipitation. Chem. Eng. Sci. 47, 3145-3148. 

Wakeman, R.J., Tarleton, E.S., 1999. Filtration: Equipment Selection, Modelling and 
Process Simulation., Oxford, UK. 

Wang, F.Y., Ge, X.Y., Balliu, N., Cameron, I.T., 2006. Optimal control and operation of 
drug granulation processes. Chem. Eng. Sci. 61, 257-267. 

Ward, J.D., Mellichamp, D.A., Doherty, M.F., 2006. Choosing an operating policy for 
seeded batch crystallisation. AIChE J. 52, 2046-2054. 



References 245 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

White, W.H., 1990. Particle size distributions that cannot be distinguished by their integral 
moments. J Colloid Interf. Sci. 135, 297-299. 

Wibowo, C., Chang, W.-C., Ng, K.M., 2001. Design of integrated crystallisation systems. 
AlChE J. 47, 2474-2492. 

Wibowo, C., Ng, K.M., 2001. Operational issues in solids processing plants: systems view. 
AIChE J. 47, 107-125. 

Wiencek, J.M., 2002. Crystallisation of proteins, in: Myerson, A.S. (Ed.), Handbook of 
Industrial Crystallisation, 2nd ed. Butterworth-Heinemann, Oxford, UK, pp. 267-285. 

Woo, X.Y., Nagy, Z.K., Tan, R.B.H., Braatz, R.D., 2009a. Adaptive concentration control of 
cooling and antisolvent crystallisation with laser backscattering measurement. Cryst. Growth 
Des. 9, 182-190 
 

Woo, X.Y., Tan, R.B.H., Braatz, R.D., 2009b. Modelling and computational fluid dynamic-
population balance equation-micromixing simulation of impinging jet crystallisers. Cryst. 
Growth Des. 9, 156-164. 

Woo, X.Y., Tan, R.B.H., Chow, P.S., Braatz, R.D., 2006. Simulation of mixing effects and 
antisolvent cystallisation using a coupled CFD-PDF-PBE approach. Cryst. Growth Des. 6, 
1291-1303. 

Worlitschek, J., Mazzotti, M., 2004. Model based optimization of particle size distribution in 
batch cooling crystallization of Paracetamol. Cryst. Growth Des. 4, 891-903. 

Wright, D.L., McGraw, R., Rosner, D.E., 2001. Bivariate extension of the quadrature 
method of moments for modelling simultaneous coagulation and sintering of particle 
populations. J Colloid Interf. Sci. 236, 242-251. 

Xie, W., Rohani, S., Phoenix, A., 2001. Dynamic modelling and operation of a seeded batch 
cooling crystalliser. Chem. Eng. Commun. 187, 229-249. 

Yu, L.X., Lionbergera, R.A., Rawa, A.S., D'Costa, R., Wub, H., Hussain, A.S., 2004. 
Applications of process analytical technology to crystallisation processes. Adv. Drug 
Delivery Rev. 56, 349-369. 

Yu, Z.Q., Chew, J.W., Chow, P.S., Tan, R.B.H., 2007. Recent advances in crystallisation 
control. An industrial perspective. Chem. Eng. Res. Des. 85, 893-905. 

Yu, Z.Q., Chow, P.S., Reginald, B.H.T., 2006. Seeding and constant-supersaturation control 
by ATR-FTIR in anti-solvent crystallisation. Org. Process Res. Dev. 10, 717-722. 

Yu, Z.Q., Tan, R.B.H., Chow, P.S., 2005. Effects of operating conditions on agglomeration 
and habit of paracetamol crystals in anti-solvent crystallisation. J Cryst. Growth 279, 477-
488. 

Zhang, G.P., Rohani, S., 2003. On-line optimal control of a seeded batch cooling 
crystalliser. Chem. Eng. Sci. 58, 1887-1896. 

Zhao, H., Zheng, C., Xu, M., 2005a. Multi monte carlo method for particle coagulation and 
condensation/evaporation in dispersed systems. J Colloid Interf. Sci. 286, 195-208. 



References 246 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Zhao, H., Zheng, C., Xu, M., 2005b. Multi monte carlo method for particle coagulation: 
description and validation. Applied Mathematics and Computation 167, 1383-1399. 

Zhou, H., Fujiwara, M., Woo, X.Y., Rusli, E., Tung, H.H., Starbuck, C., Davidson, O., Ge, 
Z.H., Braatz, R.D., 2006a. Direct design of pharmaceutical antisolvent crystallisation 
through concentration control. Cryst. Growth Des. 6, 892-898. 

Zhou, J., Moehary, F., Gross, B., Ahmed, S., 2006b. Particle size and refractive index 
retrieval from the backscattering spectrum of white light using the two way iterative method: 
simulation and experiment. Applied Optics 45, 6676-6685. 

Zhu, G.Y., Zamamiri, A., Henson, M.A., Hjortso, M.A., 2000. Model predictive control of 
continuous yeast bioreactors using cell population balance models. Chem. Eng. Sci. 55, 
6155-6167. 

Zumstein, R.C., Rousseau, R.W., 1989. Agglomeration of copper sulfate pentahydrate 
crystals within well-mixed crystallisers. Chem. Eng. Sci. 44, 2149-2155. 

 

 



Appendix A 247 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Appendix A  

The CSD was measured throughout the batch for experiment A and B using Malvern Insitec.  

The results are shown below. 
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Figure A.1: Volume % measured by Malvern Insitec at BASF company throughout the batch, 
used for parameter identification and validation in chapter 5 a) experiment A and b) 
experiment B. 
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Appendix B  

The simulated CSD for experiments A and B throughout the batch using the combined 

QMOM-MOCH technique.  
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Figure B.1: The dynamic evolution of the CSD predicted using the combined QMOM and 
MOCH solution technique for the experiments performed at BASF a) experiment A and b) 
experiment B. 
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Appendix C  

Derivation of the analytical expression for the pdf in the case of size 

dependent growth at constant supersaturation. 

The population balance equation for batch crystallisation is given as 
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0,

nn
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f f G
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The expression for growth is given by: 

 (1 )g p

g
G k S L . (C.2) 

Supersaturation is constant which is possible in controlled crystallisation. In equation (C.2), 

( ) ( )
sat

S C t C t . Now differentiating equation (C.2) w.r.t. characteristic size, 

 1(1 )g p

g

dG
k S p L

dL
. (C.3) 

As                  ( , ) [ ( ), ( )]
n n
f L t f L t  , 

so,                                    n n n
f f dfdL dt

d L d t d
.                                    (C.4) 

Comparing equation (C.1) and (C.4) we have 
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Substituting the values in above, we can have the required odes. 
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Integrating equation (C.5) with limits 
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Now integrating equation (C.6) with limits, 
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Now integrating equation (C.7) with limits 
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Substituting the value of 1(1 ) pL in the above equation 
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Now calculating the value of 
0
L  from equation (C.9), 
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Now substituting the value of  1

0
(1 ) pL  in the equation above, 

                                      
1

,0 0 1

(1 )
( ) 1

(1 )

p
g p

g
n n p

k S t p
f f L

L
. 

The CSD can be obtained at any moment t  by giving values to 0L  and calculating the seed 

distribution ,0 0( )nf L   and the L  and corresponding pdf values nf . 

Table C.1: Analytical solutions for different growth kinetics of the PBE for supersaturation 

controlled (growth dominated) crystallisation processes.  
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Appendix D Experimental setup 

 

 
 
 

Figure D.1: Image of the experimental setup used to carry out the experiments for the 
potassium dichromate water system. In situ measurement for concentration and chord length 
distribution was obtained using ATR-UV/Vis and FBRM probes and CSD was measured on-
line using a Malvern Mastersizer. 

 



Appendix E 254 
 

Population Balance Model Based Optimal Control of Batch Crystallisation Processes for Systematic CSD Design 2010 

Appendix E Comparison of seed fractions 

Microscopic images for different sieve fractions from four different batches of potassium 

dichromate. 

 
Figure E.1: Comparison of seed fraction 75-90 µm obtained at the end of the four sieve batches. 

   
Figure E.2: Comparison of seed fraction 90-106 µm obtained at the end of the four sieve 
batches. 
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Figure E.3: Comparison of seed fraction 125-150 µm obtained at the end of the four sieve 
batches. 

 

 
Figure E.4: Comparison of seed fraction 150-180 µm obtained at the end of the four sieve 
batches. 
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Figure E.5: Comparison of seed fraction 180-212 µm obtained at the end of the four sieve 
batches. 

 

 
Figure E.6: Comparison of seed fraction 212-250 µm obtained at the end of the four sieve 
batches. 
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Appendix F Comparison of different 
calibration models 

Case 1: Both absorbance, and temperature were used to estimate the parameters 

For the different models the variables are defined as follows: C  is the simulated 

concentration, 
1
A  is the absorbance measured at 270.15 nm, 

2
A  is the absorbance measured 

at 377.89 nm, 
0 1 2 3
, ,  &  a a a a  are the coefficients and T is the temperature in °C.  

Expression used 
0 1 1 2 2 3

C a a A a A a T  
0 1 1 2 2

C a a A a A  

Parameters Values Values 

a0 0.0086 0.0137 

a1 -0.6737 -0.8194 

a2 1.7332 1.9491 

a3 0.0004 -- 

SSE 0.0021 0.83 
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Figure F.1: Comparison between simulated and 
measured concentration using absorbance and 

temperature 
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Figure F.2: Comparison between simulated and 
measured concentration using absorbance only 
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Case 2: Absorbance 270.15 and temperature was used in the calibration model 

Expression used 
0 1 1 2

C a a A a T  
0 1 1

C a a A  

Parameters Values Values 

a0 -0.0132 -0.0098 

a1 0.9133 0.9867 

a2 0.0005 -- 

SSE 1.9647 3.1544 
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Figure F.3: Comparison between simulated 

and measured concentration using absorbance 
270.15 (nm) only 
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Figure F.5: Comparison between simulated 

and measured concentration using absorbance  
270.15 (nm) and temperature 

 

Case 3: Absorbance 377.89 and temperature were used in the calibration model 

Expression 
0 1 2 2

C a a A a T  
0 1 2

C a a A  

Parameters Values Values 

a0 -0.0007 0.0029 

a1 1.0005 1.0658 

a2 0.0005 -- 

SSE 0.05249 1.3103 
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Figure F.6: Comparison between simulated and 

measured concentration using absorbance 
377.83 (nm) only 
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Figure F.7: Comparison between simulated and            

measured concentration using absorbance                  
377.83 (nm) and temperature 

 

Hence the smallest SSE between the simulated and the measured concentrations was 

obtained when the model took into account both absorbance values as well as the 

temperature. 
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