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Abstract

Analysis and Design of Metamaterial-Inspired Microwave Structures and Antenna

Applications

Titos Kokkinos

Doctorate of Philosophy

Department of Electronic and Electrical Engineering

Loughborough University

2010

Novel metamaterial and metamaterial-inspired structures and microwave/antenna ap-

plications thereof are proposed and studied in this thesis. Motivated by the challenge

of extending the applicability of metamaterial structures into practical microwave so-

lutions, the underlying objective of this thesis has been the design of low-cost, easily

fabricated and deployable metamaterial-related devices, and the development of com-

putational tools for the analysis of those. For this purpose, metamaterials composed

of tightly coupled resonators are chosen for the synthesis of artificial transmission lines

and enabling antenna applications. Specifically, fully-printed double spiral resonators

are employed as modular elements for the design of tightly coupled resonators arrays.

After thoroughly investigating the properties of such resonators, they are used for the

synthesis of artificial lines in either grounded or non-grounded configurations. In the

first case, the supported backward waves are exploited for the design of microstrip-based

filtering/diplexing devices and series-fed antenna arrays. In the second case, the effective

properties of such structures are employed for the design of a novel class of self-resonant,

low-profile folded monopoles, exhibiting low mutual coupling and robust radiating prop-

erties. Such monopoles are, in turn, used for the synthesis of different sub-wavelength

antenna arrays, such as superdirective arrays. Finally, an in-house periodic FDTD-based

computational tool is developed and optimized for the efficient and rigorous analysis of

planar, metamaterial-based, high-gain antennas.
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Chapter 1

Introduction

This chapter offers a general introduction to the thesis. Initially, a brief but inclusive

introduction to electromagnetic metamaterials is attempted. In the second section of the

chapter, the major classes of metamaterial applications are described. The reasons that

motivated this research endeavor are discussed in the third section of the chapter, while

an overview of the thesis is offered in the last section of the chapter.

1.1 Electromagnetic Metamaterials

Electromagnetic metamaterials constitute an extended class of electromagnetic struc-

tures that has attracted significant interest among electromagnetic engineers, microwave

engineers and physicists during the last decade. Deriving its name from the Greek prefix

µǫτα−, meaning beyond, the term “metamaterial” had been originally employed to de-

scribe any artificial (engineered) structure possessing effective electromagnetic properties

not encountered among natural materials.

The first theoretical study of the properties of a hypothetical medium possessing un-

natural electromagnetic parameters was pursued in 1967 by V.G. Veselago who examined

the electromagnetic properties of an ideal medium that possesses simultaneously negative

values of its electric permittivity ǫ and its magnetic permeability µ [7]. In this study,

Veselago showed that when both ǫ and µ are negative, the phase constant β = ω
√

ǫµ of a

wave that propagates in that medium remains real allowing the electromagnetic waves to

propagate without any attenuation, losses or internal reflections. By means of Maxwell’s

equations, he proved that in such a medium the electric field E, the magnetic field H and

the wave vector k form a left-handed triplet, in contrast to the ordinary media where they

1
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form a right-handed triplet. Therefore, media with simultaneously negative values of ǫ

and µ are nowadays called Left-Handed Media (LHM). Also, by comparing the direction

of the wave vector k to the Pointing vector S, defined as S = E×H∗ and always forming

a right-handed triplet with the electric and magnetic field components, he concluded that

in media that simultaneously exhibit negative ǫ and µ the wave vector k and the Poynting

vector S are contra-directional, as opposed to common right-handed media where they

are co-directed. This suggests that in LHM the power flows in the opposite direction

of phase progression or, equivalently, that the group velocity ug and the phase velocity

uϕ are antiparallel. The electromagnetic waves which are characterized by antiparallel

group and phase velocities are called backward-waves 1 and such waves can be supported

in LHM. Extending his study, Veselago examined the reflection of a wave at an interface

between a right-handed and a left-handed medium. By properly applying the boundary

conditions at this interface, he proved that the angle of refraction of this wave is negative,

regardless of its polarization. This finding suggests that the index of refraction of LHM is

negative and can be mathematically formulated by recalling the definition of the index of

refraction, which is n = ±√
ǫµ. When ǫ and µ are of the same sign, the index of refraction

remains real and therefore lossless propagation in the medium is allowed. For the case

of a right-handed medium, the “+” sign is chosen for n (Positive-Refractive-Index (PRI)

medium), while for the case of the left-handed medium, Veselago proved that the “-”

sign should be chosen, resulting in a negative, relative to the vacuum, index of refraction

(Negative-Refractive-Index (NRI) medium).

Veselago’s seminal work on media possessing simultaneously negative values of ǫ and

µ was purely theoretical given that at that time no media with such properties had been

engineered. Even though it was known that electromagnetic plasma exhibits negative ǫ

values below its cut-off and W. Rotman had proposed an artificial dielectric, composed

of periodic arrays of wires, that simulated plasma operation 2 [9], no medium with a

1Backward-waves had been known for years before Veselago’s study and have been extensively used in
numerous electromagnetic applications such as backward-wave oscillators and backward-wave amplifiers.
Nevertheless, in the aforementioned applications backward-waves are supported by periodic structures
that exhibit periodic effective refractive indexes, and they correspond to higher-order spatial harmon-
ics (i.e. n=-1 spatial harmonic) [8], as compared to Veselago’s backward-waves that are attributed to
negative values of the fundamental spatial mode (i.e. n=0) of the refractive index.

2Plasma is any gas that contains certain quantities of charged (ionized) particles. From an electro-
magnetic point of view, in the absence DC magnetic fields, plasma can be considered as an isotropic lossy

dielectric with magnetic permeability of unity and dispersive electric permittivity ǫp = 1− ω2

p

ν2+ω2 +j
ω2

p
ν/ω

ν2+ω2 ,
where ωp is the so-called plasma frequency and ν is the collision frequency.
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negative µ property was available.

The interest for artificial media possessing electromagnetic properties not encountered

among natural materials was renewed in the 90′s mostly by physicists and engineers work-

ing on photonic crystals (PC) [10], [11], [12], electromagnetic/photonic bandgap struc-

tures (EBG/PGB) [13], [14], [15], frequency selective surfaces (FSS) [16], [17], hard/soft

electromagnetic surfaces [18], chiral media [19], [20], [21] and other periodic artificial

structures.

Since 1996 Sir J. Pendry had been studying plasmons supported by arrays of wires [22]

while in his seminal work published in 1999 he reported the magnetic activity of conduct-

ing resonators interacting with electromagnetic waves [3]. Specifically, in this work Sir J.

Pendry showed that arrays of metallic resonators, each of those being of sub-wavelength

dimensions, when properly excited with plane waves, form an effective medium exhibiting

negative µ property for a certain frequency band after the self-resonance of the resonators.

This work constituted the most significant step towards the experimental verification of

negative refraction from LHM, since it provided all the theoretical background for the

synthesis of media exhibiting an effective negative µ property, even though composed

of non-magnetic modular elements. Shortly afterwards, D.R Smith et al. experimen-

tally demonstrated negative refraction using artificial LHM [23], [24], by synthesising a

medium composed of arrays of properly tuned sub-wavelength metallic resonators, sim-

ilar with those proposed by Sir J. Pendry in [3], and metallic wires, similar with those

studied by W. Rotman in [9].

Simultaneously with the efforts for the development of LHM, other engineers and

scientists had been working on the synthesis and development of artificial dielectrics

(either 3-D structures or 2-D surfaces) possessing properties resembling those of what

would be magnetic conductors in the existence of magnetic charges. Published results

of these studies suggested that such properties can be obtained from arrays of properly

excited resonators and for frequency bands centered at the resonance of these resonators

[25], [26], [27]. As a result, a new type of artificial structures/surfaces, emulating the

inexistent magnetic conductor and called either Artificial Magnetic Conductors (AMC)

or High Impedance Surfaces (HIS), was added to the class of metamaterials, attracting

significant interest among researchers. At this point, it is worth mentioning that both

the synthesis of LHM, reported in [24], and AMC or HIS, reported in [27] and [25],

relied on the synthesis of specific effective permeability profiles using arrays of resonating

metallic modular elements of sub-wavelength dimensions. Therefore, in both types of
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metamaterial structures the results of [3] have been exploited.

Another type of metamaterial structures that are directly derived from the work of

[3] are the so-called artificial magneto-dielectrics, that are composed of arrays of non-

magnetic, metallic resonators and are employed to provide unusual magnetic permeability

values, such as µ >> 1 or µ → 0, or certain spatial permeability profiles (tensors), such

as magnetically anisotropic media. Similar artificial dielectrics can be employed for the

extraction of the corresponding cases for the effective electric permittivity.

The last major type of metamaterial structures, that were proposed shortly after

the experimental verification of LHM negative refraction by D.R Smith et al., were the,

so-called, LC-loaded transmission lines and were introduced independently G.V. Elefthe-

riades et al. [28], [29], and C. Caloz et al. [30]. In this approach, LHM are synthesised by

periodically loading, in the sub-wavelength scale, conventional transmission lines (sup-

porting TEM or quasi-TEM modes) with series capacitance and shunt inductance. The

origin of this idea for the implementation of LHM can be traced back to the equiva-

lent circuit representations of media supporting conventional (right-handed) plane/TEM

waves. The propagation properties in such cases can be modeled through series induc-

tances and a shunt capacitances representing the magnetic permeability and the electric

permittivity, respectively, of these media. Therefore, it is reasonable to suggest that the

dual equivalent circuit representation (series capacitors and shunt inductors) would corre-

spond to the propagation of a left-handed waves. Even though such dual 1-D transmission

lines had been used in the past for the representation of backward waves [31] or the im-

plementation of high-pass filter configurations [32], they had never been treated in the

context of LHM, considering effective negative indexes of refraction for the fundamental

spatial harmonic and all the emerging microwave applications (these applications will be

presented in the following section of the thesis). Furthermore, the 2-D [33] and 3-D [34],

[35] versions of these structures and the properties of those had never been investigated.

Given that the LC-loaded transmission lines metamaterials are usually implemented by

loading conventional (right-handed) transmission lines with series capacitors and shunt

inductors, the final structures are composed of series and shunt branches that can be

both capacitive and inductive. Therefore, a single structure may support simultaneously

forward (right-handed), backward (left-handed) and standing (phase-matched) waves.

This feature together with the compatibility of this type of metamaterials with standard

microwave technologies (such as microstip and CPW lines) enabled the use of LC-loaded

transmission lines in numerous microwave and antenna applications that require phase
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manipulation of the involved waves.

The term “metamaterials” was originally used exclusively in order to refer to any of

the aforementioned periodic structures that possess effective electromagnetic parameters

that are not encountered among natural substances/materials. Because of the unusual

but promising properties of these structures, the interest for metamaterials expanded

rapidly among physicists and engineers, and more and more researchers were initiat-

ing new research projects on metamaterials and other periodic or dispersive structures

that could possibly lead to further interesting applications or unusual phenomena. As

a result, nowadays, approximately 10 years after the first metamaterial electromagnetic

structure, the term “metamaterials” has gained a much broader context, including almost

any periodic structure that is employed as a substrate or superstrate to enhance the per-

formance or the properties of conventional microwave and antenna structures, and even

non-periodic structures that rely their operation on some kind of phase manipulation

technique, similar with those of the LC-loaded transmission lines.

Finally, it is worth mentioning that metamaterials, since ever their formulation as

a research field, apart from intense interest have also attracted severe critique. Origi-

nally, that critique was focused on the physics of LHM [36], [37], [38], [39], while later

on that critique was maintained by engineers working in other well-established areas

of electromagnetism and microwave engineering such as microwave filters [40] and FSS

[41]. The latter critique was mostly focused on the novelty of some metamaterial struc-

tures and their applications, given that all metamaterials, microwave filters and FSS rely

their operation predominantly on very well known and extensively studied electromag-

netic/microwave resonators. Furthermore, during the recent years, the critique against

metamaterials also refers to their applicability only to a limited number of microwave

and antenna applications, the inherent imperfections associated with their operation (i.e.

ohmic losses, narrow bandwidth of operation) and the inexistence of rigorous proof of

the superior performance of metamaterial-based applications through their systematic

comparison with their conventional counterparts.
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1.2 Metamaterial and Metamaterial-Inspired Appli-

cations

The rapid spread of the interest for metamaterial structures must be attributed to the

several promising applications that have been proposed in the literature and that involve

both interesting/unusual physical aspects and device designs with enhanced characteris-

tics/performance as compared to their conventional counterparts.

The first and possibly the most significant application of LHM and negative refraction

is the, so-called, perfect lens. Veselago had already in the 60’s envisioned the possibility

of designing a new type of flat lens composed of a NRI slab bounded by two conventional

PRI slabs. In such configuration, any cylindrical wave traveling in the first PRI slab

and impinging on the first PRI/NRI interface would be negatively refracted and, hence,

focused within the NRI slab. Consequently, waves emanating from the NRI focal point

would be again negatively refracted at the second NRI/PRI interface, creating a second

focal point withing the second PRI slab. Many decades after the proposal of the flat

NRI lens by Veselago, Sir J. Pendry not only confirmed the feasibility of such a scheme,

but also showed that such lens, if properly designed, could function as “perfect”lens,

being able to focus the whole spectrum of the source (i.e. both the propagating and the

evanescent spectrum) [42]. This is achieved by the evanescent part of the source spectrum

being amplified within the NRI slab and, hence, recovered at its original magnitude at

the two focal points. This property of the Veselago-Pendry flat lens offers the possibility

of imaging beyond the diffraction limit (sub-wavelength imaging). Up to date, even

though there have been several attempts, the only successfully experimental verification

of the Veselago-Pendry flat lens has been presented by G.V. Eleftheriades et al. and A.

Grbic et al., initially using a planar 2-D lens [43] and thereafter full 3-D structures [44],

[45], [46]. All these structures, that have been implemented employing either directly or

indirectly the LC-loaded transmission lines metamaterials, have been used to reconstruct

point source images of sub-wavelength dimensions.

Another large class of metamaterial applications are those involving artificial di-

electrics and magneto-dielectrics exhibiting tailored values and forms of their effective

dielectric constants. An extremely popular example of these applications is the con-

trolling of electromagnetic waves using engineered dielectric/magneto-dielectric tensors

(anisotropic artificial material profiles) [47] and the synthesis of coatings (cloaks) [48],
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[49] that offer electromagnetic invisibility to coated scatterers. Another example of meta-

material applications involving artificial dielectrics with permittivities near to zero are

those referring to the tunneling of electromagnetic energy through waveguides of arbi-

trary shapes filled with such artificial dielectrics [50], [51]. Finally, the most popular

application of metamaterial magneto-dielectrics, composed of several non-magnetic res-

onant modular elements such as those of [3], [52], [53], is their use to provide increased

miniaturization factors, potentially without significantly reducing the operating band-

width 3, in several antenna, mostly microstrip-based, applications [59], [60], [61], [62],

[63]. In such antenna applications, artificial magneto-dielectrics exhibiting high-µ val-

ues could provide similar miniaturization factors with those of conventional dielectrics

(λg = λ/
√

ǫrµr) while when used together with conventional dielectrics may be exploited

to maintain the impedance level close to that of free space (Z =
√

µr/ǫr).

A third class of metamaterial applications are those involving the use of AMC/HIS

and other periodic meta-surfaces or EBG structures for the size-reduction and the radi-

ating properties enhancement of highly-directive antennas and antenna arrays [27], [6],

[64], [65], [66], [67], [68], [69],[70], [71], [72].

Finally, the most extended class of metamaterial applications are those employing

the LC-loaded transmission line structures for the design of microwave devices and an-

tennas with enhanced performance as compared with their conventional counterparts.

Given the compatibility of this type of metamaterial with standard microwave technolo-

gies (i.e. microstrip, CPW, CPS), its use for the development of such applications had

been a straightforward procedure. A big portion of these applications are based on the

phase-shifting lines of [73] that exploit the backward and forward waves that can be sup-

ported simultaneously by 1-D LC-loaded transmission lines to design phase-shifters that

can insert any required phase-shift (positive or negative) independently of their physical

dimensions (usually being of sub-wavelength dimensions). The possibility of controlling

the phase of microwaves using devices of sub-wavelength dimensions can be employed for

the miniaturization of the vast majority of microwave devices that involve phase-shifting

lines (e.g. power dividers, baluns, couplers etc) [74], [75], [76], [77]. Other applications of

3It is pointed out that the performance of all radiating structures is governed by fundamental physical
limits that relate the antennas operating bandwidth with their volume and their radiating efficiency (Chu
and Chu-Harrington limits [54], [55], [56], [57], [58]). Operation of any antenna beyond these limits is
not possible by any means. Nevertheless, smart design approaches could enable the design of antennas
operating closer to the these limits than others. Metamaterial magneto-dielectrics have been proposed
as one of these design approaches.



Chapter 1. Introduction 8

the LC-loaded transmission lines include spatial filtering applications [78], [79], minia-

turized filters [80], [81], zeroth-order resonators (inspired by the work of N. Engheta [82]),

leaky-wave antennas able of scanning their beams with frequency from the backward to

the forward direction [83], [84], [85] and other antenna designs that employ negative- and

zeroth-order resonances of LC-loaded structures to achieve miniaturization [86], [87].

Apart from microwave devices and antenna designs that involve directly metamaterial

structures, in recent years there have have been several other designs that even though

they do not employ any of the well-known metamaterial structures, they can be consid-

ered to be metamaterial-inspired. An example of such design is the small antenna design

of [88] that has been inspired by the ideal metamaterial-based structures that had been

proposed and theoretically studied in [89] (the term metamaterial-inspired has been at-

tributed to Prof. R. Ziolkowski). Another example of metamaterial-inspired designs are

the near-field plates of [90], [91] that can be employed to focus an impinging plane wave

to a focal point of sub-wavelength dimensions (subdiffraction focusing). This design has

been directly inspired by Veselago-Pendry perfect lens given that the flat-plates opera-

tion is based on the reconstruction of the impedance profile along the second NRI/PRI

interface of the Veselago-Pendry perfect lens.

1.3 Motivation

Electromagnetic metamaterials are definitely an interesting and challenging area of study

and research. The richness of the electromagnetic phenomena associated with their oper-

ation, the great variety of their unconventional properties and their potential applicability

in the design of novel applications or alternative implementations of conventional appli-

cations with enhanced performance have motivated several engineers to perform research

in that area.

When this research endeavor started, back in 2005, most of the conceptual aspects

related to the operation of electromagnetic metamaterials had been well studied and

understood, and the research interest was moving towards the development of metama-

terials structures operating in higher frequencies (i.e millimeter waves, THz and optical

frequencies) and the development of metamaterial-based devices that could be employed

in practical applications. In the latter front, there are three major challenges that have

to be faced in order to allow metamaterial enabled devices to penetrate into real world

applications. First, being inherently resonant structures, metamaterials usually exhibit
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narrowband and lossy operation. Secondly, the LC-loaded transmission lines, the only

broadband implementation of metamaterials, in most of the cases incorporate large num-

bers of lumped-elements that would increase the fabrication cost and the required fabrica-

tion effort of applications employing them. Finally, being periodic structures, metamate-

rials and metamaterial-based applications usually require large computational resources

and time to be analysed or synthesised, unless dedicated periodic tools are employed.

The three aforementioned constraint factors are those that motivated this research

project. The main target of this project has been set to be the proposal of metamaterial

or metamaterial-inspired structures and devices that would be easily fabricated and could

be used to tackle major challenges in modern microwave and antenna design, such as size

miniaturization, fabrication cost reduction and performance enhancement. Also, on the

front of modeling, the evolution of pre-existing periodic tools, such as the periodic FDTD

tool of [92], to allow for the fast and computationally efficient analysis and synthesis of

useful antenna applications, such as the high-gain antenna designs presented in this thesis,

has been considered of great importance, as well.

1.4 Aim and Overview of the Thesis

The main objective of this thesis has been the enhancement of the applicability of meta-

material and metamaterial-inspired structures and devices into practical microwave and

antenna solutions. For this purpose, novel, low-cost, compatible with standard mi-

crowave technologies, 1-D artificial lines are synthesised using compact, fully-printed,

tightly coupled resonators. Such artificial lines are initially employed in grounded con-

figurations for the synthesis of innovative series-fed microstrip patch arrays and com-

pact filtering/diplexing devices. In turn, similar artificial lines are employed in non-

grounded configurations for the design of a novel class of self-resonant, low-profile folded

monopoles with enhanced, as compared to their conventional counterparts, performance.

The unique features of these radiators are exploited for the synthesis of different compact

(sub-wavelength) antenna arrays that could be employed in several emerging wireless ap-

plications. Finally, novel and computationally efficient approaches are proposed for the

rigorous modeling of periodic, metamaterial-based leaky-wave structures, enabling the

fast, accurate and optimized design of flat-plate, metamaterial-based, high-gain anten-

nas.

The thesis has been divided into seven chapters. In chapter 2, that follows this in-
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troductory chapter, all the theoretical aspects that are employed within the thesis are

presented. In the first part of this chapter, an inclusive derivation of any metamate-

rial properties through the equivalent circuit analysis of random resonators is presented.

This analysis shows that metamaterial properties can be derived not only in the well-

known case of free standing resonators interacting with impinging plane waves but also

in the much less investigated case of tightly coupled resonators. The results of the lat-

ter case have been employed in the following chapters for the synthesis of fully-printed,

microstrip-based metamaterial lines. In the second part of the same chapter the theo-

retical background of the periodic FDTD tool that has been developed in [93] is briefly

presented. This tool has been furthered developed and optimized as part of this research

endeavor while it has been extensively used for the analysis of some of the proposed struc-

tures of this thesis. Finally, in the last part of chapter 2 the commercial electromagnetic

solvers that have been employed throughout the thesis are briefly presented.

In chapter 3, fully-printed, microstrip-based resonators are studied and employed

together with the theory of chapter 2 for the synthesis of novel metamaterial 1-D lines

supporting backward waves. The proposed lines are fabricated and tested and their

metamaterial properties are experimentally validated. Finally, these lines are employed

for the synthesis of series-fed microstrip patch arrays.

In chapter 4, fully-printed, metamaterial-inspired phase-shifting lines composed of

tightly coupled resonators are employed for the synthesis of a novel class of low-profile

folded monopoles. The operation of these monopoles are explicitly explained through

the phase-shifting properties of the employed lines, while an equivalent circuit for the

proposed antennas is presented. Several versions of the proposed antenna design are

examined, and the impact of the ground plane against which it is fed and its profile

on its radiating properties are thoroughly investigated. Finally, two different versions

of the proposed antennas are built and measured. Finally, the electromagnetic coupling

between any pair of the proposed antennas is modeled.

Chapter 5 is dedicated to the design of different types of sub-wavelength antenna ar-

rays. Initially, two sub-wavelength phased arrays, one composed of conventional monopoles

and one composed of the low-profile folded monopoles of chapter 4, are built, measured

and compared, exhibiting the importance of using low-coupling radiating elements when

designing sub-wavelength antenna arrays. Subsequently, the low-coupling monopoles of

chapter 4 are employed for the design of single-port, off-the-shelf, superdirective arrays

and the limits of such arrays are explored. Finally, in the last part of chapter 5, a novel,
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metamaterial-inspired scheme for the decoupling of PIFAs on handhelds is presented and

experimentally validated.

In chapter 6, the periodic FDTD tool originally developed in [93] is furthered de-

veloped, optimized and employed for the analysis of novel leaky-wave sub-wavelength

resonant cavity type high-gain antennas. Specifically the computational performance of

the FDTD tool, when employed for the modeling of leaky-wave structures, is signifi-

cantly improved by introducing rigorous post-processing techniques that are based on

solid electromagnetic arguments. In turn, this tool is employed for the analysis of the

computationally demanding, novel class of sub-wavelength resonant cavity type leaky-

wave antennas comprising of an AMC and a PRS. Finally, a second post-processing

algorithm, that is also derived from electromagnetic arguments, is developed, enabling

the approximate calculation of the radiation patterns of the aforementioned antennas

employing only the periodic FDTD tool and the developed post-processing algorithm.

In chapter 7, the conclusions of the thesis are summarized.



Chapter 2

Theoretical Background

In this chapter, the theoretical aspects, the analytical and numerical methodologies and

the commercial electromagnetic tools that have been developed and employed throughout

this thesis are being reported. The majority of the reported material has been extracted

from the general literature. In the first section of the chapter, an inclusive theory for the

analysis or synthesis of any metamaterial structure through its equivalent circuit is pre-

sented. This theory has been inspired from the study of numerous metamaterial-related

references and has been formulated in accordance with the standard approaches for the

analysis of periodic structures [2], [94]. Following this theory, a periodic FDTD-based

computational tool that has been developed and optimized for the analysis and modeling

of periodic metamaterial structures is reported. The reported FDTD background has

been mostly extracted from [1], while the presented FDTD-based tool was originally re-

ported in [93], [95]. Finally, in the last section of this chapter, a short description of the

commercial electromagnetic solvers employed for the needs of the thesis is also provided.

2.1 Synthesis and Analysis of Metamaterial Struc-

tures Considering Arbitrary Resonators and Their

Equivalent Circuits

2.1.1 General

A simplified theory for the analysis of any metamaterial structure already proposed in the

literature and the synthesis of novel metamaterial structures is reported in this section.

12
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According to this theory, any metamaterial-like properties can be obtained by consid-

ering two discrete cases. The first of them refers to the interaction of arbitrary chosen

resonators with plane waves, and the second to the electromagnetic behavior of arrays of

tightly coupled resonators. Even though the first case (synthesis of metamaterial struc-

tures considering interaction of resonators with plane waves) has been well-known for

years, it is hereby suggested that this case is only one of the eigen-solutions of the prob-

lem of metamaterial synthesis and that the consideration of tightly coupled resonators

provides the second eigen-solution of the same problem. This second eigen-solution has

been employed extensively in this thesis for the synthesis of novel metamaterial structures

and corresponding microwave applications.

2.1.2 Free-Standing Resonators Interacting with Plane Waves

In this section, it is shown how it is possible to obtain several metamaterial-like properties

by considering arbitrary chosen resonators interacting with impinging plane waves. This

is achieved through the analysis of the equivalent circuits of resonators excited either by

the magnetic or the electric component of the impinging plane wave. In practice, it is hard

to imagine any resonator that interacts with impinging plane waves purely electrically or

purely magnetically, but for the sake of the presentation of the proposed theory, the as-

sumption of the existence of purely electrically or purely magnetically excited resonators

is made. Specifically, it is shown that a medium loaded with resonators magnetically in-

teracting with plane waves behaves like an artificial magneto-dielectric, exhibiting either

high-µ or negative-µ values. Similarly, it is shown that a medium loaded with resonators

electrically interacting with plane waves behaves like an artificial dielectric, exhibiting

either high-ǫ or negative-ǫ values. Therefore, by properly combining or configuring these

artificial media, all the well-known metamaterial structures can be designed.

Resonators Magnetically Coupled to Plane Waves

Let us consider a free-standing LC resonator and an incident plane wave that magnet-

ically excites the resonator (i.e. the magnetic component of the plane wave is aligned

with the magnetic moment of the resonator), as in Fig. 2.1. The propagation of the

plane wave through the resonator can be modeled using the lumped-element circuit rep-

resentation of Fig. 2.2(a). Specifically, the propagation characteristics of the plane

wave along a distance d of free space are modeled through the distributed inductance
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Figure 2.1: Schematic representation of an LC resonator inductively coupled to an im-

pinging plane wave.

Ld = µo = 4π×10−7 H/m and the distributed capacitance Cd = ǫo = 8.854×10−12 F/m,

resulting in a wave impedance Zo = Ldd/Cdd = 120πΩ (free space impedance). The pres-

ence of the magnetically excited resonator is taken into account through an LC circuit,

that is composed of an inductance Lo and capacitance Co, exhibiting a self-resonance

ωo = 1/
√

LoCo. No losses are assumed at this stage of the analysis. Given that magnetic

interaction between the plane wave and the resonator has been considered, the inductor

of the resonator Lo is shown to be coupled to the distributed inductance of the hosting

medium Ld, exhibiting a coupling coefficient kM .

The Kirchoff’s voltage law applied to the lumped-element circuit of Fig. 2.2(a) reads

V1 − jωLddI1 + jωLmIo − V2 = 0 (2.1)

or, equivalently,

V1 − V2 = jω (LddI1 − LmIo) , (2.2)

where Lm = kM

√
LddLo is the mutual inductance supported between the resonator and

the hosting medium. Besides, the Kirchoff’s voltage law applied to the resonator of Fig.

2.2(a) gives

jωLoIo − jωLmI1 +
Io

jωCo

= 0 (2.3)

Equation (2.2) can be rewritten, using equation (2.3), as

V1 − V2 = jωI1

[

Ldd + Ldd
ω2k2

MLoCo

1 − ω2LoCo

]

. (2.4)

Equation (2.4) suggests that the lumped-element circuit of Fig. 2.2(a) is equivalent

with the lumped-element circuit of Fig. 2.2(b), in which the series equivalent inductance
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Figure 2.2: a) Lumped-element circuit model for a plane wave magnetically coupled to

a free-standing LC resonator. b) Equivalent circuit of the model a).

Leq is given by equation

Leq = Ldd

(

1 + k2
M

ω2LoCo

1 − ω2LoCo

)

(2.5)

The equivalent inductance of equation (2.4) expresses the effective distributed induc-

tance encountered by a plane wave traveling in a medium loaded with resonators that

are being excited magnetically. Therefore, the equivalent circuit of Fig. 2.2(b) can be

employed for the analysis of this type of loaded medium and the extraction of its ef-

fective constitutive parameters or the dispersion diagram of a periodic structure that is

composed of unit cells similar with that of Fig. 2.1.

It is well-known that the equivalent circuit of Fig. 2.2(b) models a medium with the

effective constitutive parameters:

µeff =
Z (ω) /d

jω
(2.6)

ǫeff =
Y (ω) /d

jω
(2.7)

where Z (ω) and Y (ω) are the series impedance and the shunt admittance of the equiv-

alent circuit [28]. Hence, equations (2.6) and (2.7), together with equation (2.5), result
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Figure 2.3: Relative effective constitutive parameters when free-space is loaded with

inductively excited resonators. The parameters of the resonators are Lo = 3.0 nH,

Co = 1.0 pF , fo = 2.906 GHz, kM = 0.5 and d = 3 mm

in the following constitutive parameters for a medium loaded with inductively excited

resonators

µeff =
jωLd

(

1 + k2
M

ω2LoCo

1−ω2LoCo

)

jω
(2.8)

ǫeff =
jωCd

jω
(2.9)

In the case that the hosting medium is free space,

µeff = µo

(

1 − k2
M

1

1 − ω2
o

ω2

)

(2.10)

ǫeff = ǫo (2.11)

Assuming that the parameters of the loading resonators are Lo = 3.0nH, Co = 1.0pF

and fo = 2.906 GHz, and that the coupling between the resonators and the impinging

wave is kM = 0.5, the relative effective parameters of equations (2.10) and (2.11) are

shown in Fig. 2.3.

As equations (2.10) and (2.11), and Fig. 2.3 suggest the effective electric permittivity

of the loaded medium remains constant, as frequency increases, and equal to that of the

free space. Therefore, it is concluded that the loading of a medium with inductively

excited resonators does not affect its effective electric permittivity. On the other hand,

the effective magnetic permeability is significantly affected by the presence of the induc-

tively coupled resonators. Specifically, Fig. 2.3 suggests that the effective permeability
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of the loaded medium is increased from the original value of the permeability of the

hosting medium, in this case that of free-space (µeff = µo), to infinity. This maximum

value occurs at frequency fo, which is the self-resonance of the loading resonators. In

this bandwidth the structure behaves as a magneto-dielectric or ferromagnetic material,

although composed exclusively of non-magnetic structures. From frequency fo to fre-

quency fz, given by equation (2.12), the effective permeability of the loaded medium

assumes negative values. Given that in this bandwidth the effective electric permittivity

of the loaded medium remains positive, the effective refractive index neff = ±√
µeffǫeff

becomes imaginary suggesting that the examined medium can not support any propa-

gating wave. Finally, above the frequency fz the effective permeability of the loaded

medium grows from 0 to the the permittivity values of the hosting medium.

ωz =
ωo

1 − k2
M

(2.12)

All the aforementioned suggestions are also validated through the dispersion analysis

of the equivalent circuit of Fig. 2.2(b) that can be performed using the analysis of [2].

The extracted dispersion diagram of the unit cell of Fig. 2.2(b) is presented in Fig. 2.4.

This dispersion diagram has been plotted for both positive and negative values of the

wavenumber k and suggests that the examined medium exhibits two passbands, with

right-handed modes supported in both these passbands (for any mode on any of the

curves of the dispersion diagram the corresponding group velocity, calculated as ug = ∂ω
∂k

,

and the phase velocity, calculated as uph = ω
k
, are of the same sign). Specifically, the first

right-handed mode extends from dc to the frequency fo and corresponds to the variation

of µeff from unity to ∞, and the second mode is supported from the frequency fz and

upwards and corresponds to the variation of µeff from zero to unity. A stopband is being

developed within the bandwidth fz −fo that is attributed to the effective negative values

of the magnetic permeability of the proposed medium.

Resonators Electrically Coupled to Plane Waves

The second major class of artificial materials that are examined are composed of res-

onators electrically excited by impinging plane waves, resulting in artificial dielectrics.

Such a configuration is shown in Fig. 2.5. Similar to the case of the magnetically excited

resonators, the effective parameters can be extracted from the analysis of the equivalent

circuit of Fig. 2.6(a). In that case the capacitance Co of the resonator is shown to be

coupled to the distributed capacitance of the free space under a coupling coefficient kE.
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Figure 2.4: Dispersion analysis of the unit cell of Fig. 2.2(b) extracted through the

periodic analysis of [2].
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Figure 2.5: Schematic representation of an LC resonator electrically coupled to an im-

pinging plane wave.
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Figure 2.6: a) Lumped-element circuit model for a plane wave electrically coupled to a

free-standing LC resonator. b) Equivalent circuit of the model a).

Kirchoff’s current law on the hosting transmission line equivalent circuit reads

I1 − I2 = VojωCm − V2jωCdd, (2.13)

where Cm = kE

√
CddCo is the mutual capacitance supported between the resonator and

the hosting medium.

Also, Kirchoff’s current law on the resonator reads

jωCoVo − jωCmV2 +
Vo

jωLo

= 0. (2.14)

Equation (2.13) can be rewritten, using equation (2.14), as

I2 − I1 = jωV2

[

Cdd + Cdd
ω2k2

ELoCo

1 − ω2LoCo

]

, (2.15)

suggesting that the lumped-element circuit of Fig. 2.6(a) is equivalent with that of Fig.

2.6(b), where the shunt capacitance Ceq is given by equation

Ceq = Cdd

(

1 + k2
E

ω2LoCo

1 − ω2LoCo

)

. (2.16)
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Figure 2.7: Relative effective constitutive parameters when free-space is loaded with

capacitively excited resonators. The parameters of the resonators are Lo = 3.0 nH,

Co = 1.0 pF , fo = 2.906 GHz, kE = 0.5 and d = 3 mm

Similar as before, the effective constitutive parameter of the resulting medium are

µeff =
jωLd

jω
(2.17)

and

ǫeff =
jωCd

(

1 + k2
E

ω2LoCo

1−ω2LoCo

)

jω
(2.18)

In the case that the hosting medium is free space,

µeff = µo (2.19)

ǫeff = ǫo

(

1 − k2
E

1

1 − ω2
o

ω2

)

(2.20)

Equations (2.19) and (2.20) have been plotted in Fig. 2.7. The frequency dependence

of the effective electric permittivity in that case is identical with that of the magnetic

permeability in the case of the magnetically excited resonators. Therefore, it is reasonable

to expect that the dispersion analysis of the unit cell of Fig. 2.6 results in the dispersion

diagram of Fig. 2.4.

Examples of Resonators

Up to this point, all the considered resonators have been represented through their equiva-

lent circuits and no mention has be made to any specific type of resonators. Nevertheless,
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dx 

dy 

din,x 

din,y 

Figure 2.8: The well-known split-ring resonator [3] has been extensively used in the

literature for the synthesis of artificial magnetodielectrics.

in practice, not all resonators can be employed to synthesise such artificial media. For

example, in the case of magnetically excited resonators, the employed resonators should

possess a discrete magnetic moment, so that they can couple effectively to the magnetic

component of an impinging wave. Such a resonator is the well known split-ring res-

onator [3] (shown in Fig. 2.8). The major advantage of this resonator is its compact

size that is attributed to the capacitance supported between the two rings. The shape

of the resonator also defines the coupling coefficient between itself and the impinging

wave. For example, for the split-ring resonator of Fig. 2.8 the coupling coefficient kM

can be approximated as kM ≈ (din,xdin,y) / (dxdx). Other examples of resonators that can

be employed for the synthesis of artificial magneto-dielectrics are several slightly altered

versions of the original spit-ring resonator, the swiss-roll resonator, the omega particle,

the spiral resonator [52] and others.

In order for a resonator to be electrically excited by impinging plane waves, it should

possess a discrete electric moment. Such an example is the dipole resonator of Fig.

2.9. Its use for the synthesis of artificial dielectrics was originally proposed in [9] and

in [22] thereafter. For this resonator the coupling coefficient kE can be approximated

as kE ≈ (dmet,xdmet,x) / (dxdx). Other examples of electrically excited resonators include

tripole resonators, square patches and others.

Metamaterial Applications

As shown above, the analysis a medium loaded either with magnetically or electrically

excited resonators can provide all the well-known metamaterial-like properties and elec-

tromagnetic parameters. For example, given that it has been shown that by loading a

medium separately with magnetically and electrically excited resonators it is possible to
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Figure 2.9: The well-known dipole resonator. Arrays of such resonators can be used for

the synthesis of artificial dielectrics.

obtain negative values for the effective magnetic permeability and electric permittivity,

respectively, for a bandwidth just after the self-resonance of the resonators, it is rea-

sonable to suggest that by loading a medium simultaneously with both electrically and

magnetically excited resonators of similar self-resonances, it is possible to achieve a band-

width at which both the effective magnetic permeability and electric permittivity assume

negative values and therefore obtain a left-handed behavior. The equivalent circuit of

such a scenario is depicted in Fig. 2.10.

Besides, in both cases of resonators-loaded media, a stopband is created that is at-

tributed to the negative effective µ or ǫ, obtaining an FSS behavior. Also, in the case of

the magnetically excited resonators, the exhibited effective permeability values before the

self-resonance assume large values even though the loaded medium consists exclusively

of non-magnetic materials. Therefore, such a medium can be employed as an artificial

magneto-dielectric. Finally, given that the effective impedance of any medium is defined

as Zeff =
√

µeff/ǫeff , it is clear that both media can be employed for the synthesis

of High-Impedance Structures or, equivalently, Artificial Magnetic Conductors. For the

case of the magnetically excited resonators, this is achieved exactly at or slightly before

the resonance, where the effective permeability assumes very large values. For the case of

the electrically excited resonators, this is achieved exactly at or slight after the frequency

fz at which the effective permittivity becomes zero.

2.1.3 Arrays of Tightly Coupled Resonators

Up to this point, only interaction of resonators with plane waves has been considered,

while any interaction between resonators has been ignored. In this section, the other
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Figure 2.10: Equivalent circuit of a medium loaded with both magnetically and electri-

cally excited resonators. By properly tuning the two resonators, left-handed modes may

be supported by the loaded medium.

extreme scenario is considered. Specifically, it is assumed that the wave propagation is

achieved exclusively through interacting resonators (tightly coupled resonators), in the

absence of free-space propagation. It will be shown that through this approach, a second

class of structures with metamaterial-like properties can be formed.

For this purpose, let us assume an infinite array of ideal, lossless L−C resonators with

resonant frequency ωo = 1/
√

LoCo. In the general case, each resonator can be assumed

to be both electrically (capacitively) and magnetically (inductively) coupled with its

adjacent resonators, as in Fig. 2.11, exhibiting a total coupling coefficient k = kE + kM ,

where kE and kM are the electric and magnetic coupling coefficients, given by equations

(2.21) and (2.22), respectively. In the following text, the two extreme cases, in which the

coupling between the resonators is considered either purely electric or purely magnetic,

are examined and the traveling waves supported by such arrays are studied.

kE =

∫ ∫ ∫

ǫ ~E1 · ~E2dυ
√

∫ ∫ ∫

ǫ
∣

∣

∣

~E1

∣

∣

∣

2

dυ ×
∫ ∫ ∫

ǫ
∣

∣

∣

~E2

∣

∣

∣

2

dυ

(2.21)

kM =

∫ ∫ ∫

µ ~H1 · ~H2dυ
√

∫ ∫ ∫

µ
∣

∣

∣

~H1

∣

∣

∣

2

dυ ×
∫ ∫ ∫

µ
∣

∣

∣

~H2

∣

∣

∣

2

dυ

(2.22)
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Figure 2.11: An array of tightly coupled resonators. In the general case, the resonators

may be both electrically (kE) and magnetically (kM) coupled.
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Figure 2.12: A unit cell of the array of Fig. 2.11, where the resonators are considered to

be exclusively electrically coupled.

Electrically Coupled Resonators

In the first instance, each resonator of the chain of Fig. 2.11 is assumed to be purely

electrically coupled with its adjacent resonators, i.e. kM = 0, as shown in Fig. 2.12. In

this figure, each resonator has been redrawn as a series connection of two 2Co capacitors

and two Lo/2 inductors, in order to allow for the better representation of the capacitive

coupling between any two adjacent resonators and point out the symmetries in the result-

ing array. The mutual capacitance supported between the electrically coupled resonators

Cm = kE2Co assumes negative values, since the electric coupling coefficient kE, given by

equation (2.21), also assumes negative values. In fact, the sign of kE is defined by the dot

product ~E1 · ~E2. Due to the existence of electric charges, the aforementioned dot product

assumes large negative values if the vectors ~E1 and ~E2 are contra-directional and small

positive values if the vectors ~E1 and ~E2 are co-directional (uncoupled resonators).

The unit cell of Fig. 2.12 has been redrawn in Fig. 2.13, where the coupling mech-

anism is represented with an admittance inverter J = ωCm. Fig. 2.13 can be employed

for the analysis of electrically coupled resonators and the modeling of traveling waves

supported by such arrays. For example, the transmission (ABCD) matrix of the unit

cell can be employed together with Floquet′s theorem, in a similar manner as in [96] and



Chapter 2. Theoretical Background 25

 

Lo/2 Lo/2 

 (1-|kE|)2Co 

|kE|2Co 

(1-|kE|)2Co Vn+1 

In In+1 

+ + 

- - 

Vn 

Figure 2.13: Equivalent circuit of the unit cell of Fig. 2.12. The coupling mechanism has

been represented with an admittance inverter J = ωCm

[97], to solve for the complex propagation of the waves supported by infinite arrays of

electrically coupled resonators. Specifically, the transmission matrix employed together

with the Floquet′s theorem, as in [96], reads

[

Vn

In

]

=

[

A B

C D

]

UC

·
[

Vn+1

In+1

]

=

[

Vn+1e
γd

In+1e
γd

]

. (2.23)

where γ = α + jβ is the complex propagation constant of the sought traveling waves.

For reciprocal unit cells, equation (2.23) leads to nontrivial solutions of the form

cosh (γd) =
AUC + DUC

2
(2.24)

Calculating the parameters AUC and DUC for the unit cell of Fig. 2.13 and substitut-

ing them in equation (2.24) leads to the following dispersion relation for the supported

traveling waves:

cosh (γd) = −2Co

Cm

+ ω2Lo

(

(2Co)
2 − C2

m

)

2Cm

(2.25)

Given that Cm = − |kE| (2Co) and ωo = 1/
√

LoCo, equation (2.25) becomes equivalent

to

cosh (γd) =
1

|kE|
− ω2

ω2
o

1 − |kE|2
|kE|

(2.26)

The dispersion relation of equation (2.26) is exclusively depended on the parameters of

each of the resonators and the electric coupling between them. When a purely imaginary

propagation constant is assumed, γ = jβ, equation (2.26) results in dispersion curves

similar with those depicted in Fig. 2.14. These curves correspond to the well-known

forward, slow waves, that have been extensively studied in the past in the context of

filter design. These slow waves are supported within a bandwidth that is defined by the

frequencies flower and fupper (obtained from equation (2.26) for βd = 0, π and given in

equations (2.27) and (2.28), respectively) and depends on the coupling coefficient kE,

according to equation (2.29).
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Figure 2.14: Dispersion relation (2.26) for different values of the coupling coefficient |kE|.

flower = fo

√

1 − |kE|
1 − |kE|2

(2.27)

fupper = fo

√

1 + |kE|
1 − |kE|2

(2.28)

∆f

fo

=

√

1 + |kE| −
√

1 − |kE|
√

1 − |kE|2
(2.29)

For ω = ωo, the dispersion relation of equation (2.26) is simplified to cosh (γd) =

kE. Hence, the dispersion equation still depends on the electric coupling between the

resonators. This is the reason why the dispersion curves of Fig. 2.14 do not intersect at

a certain point. Also, in Fig. 2.14 the dotted curve L − L corresponds to the light-line

when periodicity of d = 10 mm is considered.

Magnetically Coupled Resonators

In this section, the resonators that form the array of Fig. 2.11 are assumed to be exclu-

sively magnetically (inductively) coupled, as shown in Fig. 2.15. It will be shown that

this case is much more interesting than the previous one and can lead to much more

interesting results. In Fig. 2.15, the L−C resonators have been redrawn as a series con-

nection of two Lo/2 inductors and two 2Co capacitors, so as to exhibit the symmetries

in the array and show schematically that half of the total inductance of each resonators

is coupled to each of the two adjacent resonators. In that case the mutual inductance
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Figure 2.15: L − C resonators array consisted of magnetically coupled resonators.
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Figure 2.16: Equivalent circuit of the structural unit cell of the magnetically coupled

resonators array. In this unit cell the inductive coupling mechanism is represented with

an equivalent impedance inverter K = ωLm.

between any pair of adjacent resonators is Lm = kMLo/2. The magnetic coupling coeffi-

cient kM , that is given from equation (2.22), assumes both positive and negative values,

due to the non-existence of magnetic charges and because of the fact that the magnetic

fields appear always with closed magnetic lines.

Careful observation of Fig. 2.15 shows that such an array can be created by the

repetition of a structural unit cell that includes the two halves of two adjacent resonators

and the coupling mechanism between them. The exact equivalent circuit of this unit

cell is dependent by both the sign of the magnetic coupling coefficient and the relative

polarity of the coupled inductors. In order, though, to strictly speak about the relative

polarity of two inductors and sign of their coupling coefficient the exact topology of

the inductors should be known. Therefore, a generic equivalent circuit, identical with

that of [32], is employed for the purposes of this analysis. This equivalent circuit cell is

shown in Fig. 2.16. In this equivalent circuit of the unit cell, the coupling mechanism is

represented by an impedance inverter K = ωLm, as also suggested in [32].

Using the unit cell of Fig. 2.16 and equations (2.6) and (2.7), it possible to calculate

the equivalent effective parameters of an 1-D array composed of inductively coupled

resonators. It is pointed out that the extraction of such parameters for a structure that

is composed of tightly coupled resonators and the electromagnetic wave propagation is

exclusively achieved through these resonators (spatial resonances) is not an absolutely
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rigorous way of modeling since the formed arrays do not constitute an actual medium

and, therefore, can not be described through its effective parameters. Furthermore, the

extraction of the effective parameters for an one-dimensional array can be more effectively

substituted by simply carrying out the dispersion analysis of the periodic structure.

Nevertheless, the effective parameters of the array of inductively coupled resonators are

extracted here in order to point out the nature of the supported propagating waves for

different values and signs of the coupling coefficient kM .

After calculating equations (2.6) and (2.7) for the unit cell of Fig. 2.16, the effective

magnetic permeability and the electric permittivity of the considered arrays of inductively

coupled resonators are found to be

µeff (ω) = −
1 − (1 − kM) ω2

ω2
o

ω2Cod
(2.30)

ǫeff (ω) = − 2

ω2kMLod
(2.31)

where Lo, Co and ωo are the self-inductance, self-capacitance and self-resonance of the

considered resonators, kM is the magnetic coupling coefficient, and d is the periodicity

of the array. Equations (2.6) and (2.7) suggest that both µeff (ω) and ǫeff (ω) assume

negative values when kM > 0 for any frequency smaller than fupper, where fupper is

given by equation (2.32). In that case, the supported modes by the examined arrays are

expected to be left-handed or, equivalently, backward-waves .

fupper = fo

1√
1 − kM

(2.32)

On the other hand, for negative values of the coupling coefficient (kM < 0), both the

effective constitutive parameters assume positive values for any frequency larger than

flower, where flower is given by equation (2.33). In that case, the corresponding supported

modes are right-handed and the corresponding medium can be considered as an artificial

magnetodielectric.

flower = fo

1√
1 + kM

(2.33)

Similar conclusions can be extracted through the dispersion analysis of the unit cell

of Fig. 2.16. Specifically, employing equations (2.23) and (2.24) together with the unit

cell of Fig. 2.16, similar to the case of the electrically coupled resonators, the dispersion

relation for the waves supported by an array of magnetically coupled resonators is found

to be
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Figure 2.17: Dispersion relation (2.34) for different values of the coupling coefficient |kM |.

cosh (γd) =
1

kM

− ω2
o

ω2

1

kM

(2.34)

As with the dispersion relation of the electrically coupled resonators, equation (2.34)

depends only on the characteristics of the resonators that comprise the array and the

coupling between them. For positive values of the coupling coefficient kM , the dispersion

equation (2.34) has been plotted in Fig. 2.17, where γ = jβ. This figure validates that

indeed the supported waves by an array of inductively coupled resonators with kM > 0

are backward and the corresponding modes are left-handed.

These modes are supported between the frequencies flower and fupper, as described

above, over a fractional bandwidth that is given by equation (2.35). This equation

suggests that the larger kM is, the larger is the bandwidth of these left-handed modes.

For ω = ωo, the dispersion relation of equation (2.34) is simplified to cosh (γd) = 0,

hence the dispersion equation does not depend on the magnetic coupling between the

resonators. This is the reason why the dispersion curves of Fig. 2.17 intersect at the

point (π/2, ωo) of the dispersion diagram.

∆f

fo

=

√
1 + kM −

√
1 − kM

√

1 − k2
M

(2.35)

Metamaterial Applications

The synthesis of metamaterial structures using tightly coupled resonators has not been

extensively described in the literature. For this reason, a portion of this thesis has been

dedicated to the development of such structures and corresponding antenna applications.
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Nevertheless, there are two types of already reported metamaterial structures that can

be assumed to be part of this class of metamaterials. The first type of those is the well-

known LC-loaded transmission lines. This type of left-handed media can be considered

as arrays of inductively coupled resonators where kM = 1, suggesting a perfect coupling

between the resonators [98]. The second refers to the magneto-inductive waves that

have been experimentally shown to be supported by arrays composed of large coupled

inductive loops [99], [100].

2.1.4 Discussion

In the theory presented in the previous paragraphs, all the possible ways to synthesise

any of the well-known metamaterial properties were derived through the consideration

of resonators either interacting with impinging plane waves or forming tightly coupled

arrays. Therefore, all the up-to-date proposed metamaterial structures should attribute

their operation either to one of those cases or to a combination of both. In the framework

of this thesis, novel metamaterial structures that rely their operation on the second, least

investigated, case will be developed and studied.

2.2 Periodic FDTD Analysis of Metamaterial Struc-

tures

The theory presented in the previous section of this chapter offers an analytical tool for

the synthesis of any type of metamaterial structure. Nevertheless, it can be employed

only as a first step towards the design or the analysis of a metamaterial structure. For

a more accurate analysis of these structures, a full-wave tool would be required. Given

that metamaterial structures are usually periodic structures, a periodic full-wave compu-

tational tool should be employed for the rigorous and computationally efficient modeling

of metamaterial structures. For this reason, the development of such a tool was consid-

ered extremely important and effort was dedicated to it. Specifically, this tool is a Finite

Difference Time-Domain (FDTD) code that terminated the computational domain with

periodic boundary conditions. Therefore, by simulating a single unit cell of a periodic

structure, the expected response of an infinitely large structure can be obtained. Even

though this tool was initially reported in [93], [95], [92], it has been furthered developed

and optimized for the needs of this thesis and, also, has been extensively employed for
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the analysis of the metamaterial and metamaterial-inspired structures proposed in this

thesis. Therefore, the theoretical background of the tool is reported in this chapter for

reasons of completeness.

2.2.1 The Finite-Difference Time-Domain Technique

In the FDTD technique, initially proposed by K.S. Yee in 1966 [101], the space for

which Maxwell’s equations have to be solved is properly discretized and all the related

components of the electromagnetic fields are properly located within the formulated

mesh. In turn, time-dependent Maxwell’s equations, in their differential form, are solved

by means of approximative numerical procedures (centered differences), resulting in a

time-marching technique that provides with the temporal evolution of the fields within

the space under consideration.

Although Yee’s algorithm was proposed almost 40 years ago, it was not until the 80′s

that scientists started to further develop it and use it for the modeling of practical appli-

cations. This delay was caused by the lack of computational resources by the time that

the algorithm was initially proposed; the FDTD technique is a computationally demand-

ing technique (in terms of computational memory and power), as Maxwell’s equations

are solved for the whole medium under consideration on a rather dense mesh, in order for

certain conditions, related with the accuracy of the technique, to be satisfied. Therefore,

the development of advanced computational systems was a prerequisite for the further

development and the extended use of the technique.

Maxwell’s Equations in the FDTD Technique

The centered-difference approximation can be used for the solution of the three-dimensional

time-dependent Maxwell’s equations, resulting in a fully explicit, time-stepping, algo-

rithm. Time-dependent Maxwell’s equations, in their differential form, are those of equa-

tions (2.36)-(2.39). Out of these 4 equations, only (2.36)-(2.38) are linearly independent,

while equation (2.39) can be derived using the other three.

∇× E = −∂B

∂t
(2.36)

∇× H =
∂D

∂t
+ JC (2.37)

∇ · E = ρ (2.38)
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∇ · B = 0 (2.39)

For the needs of the FDTD technique, only equations (2.36) and (2.37) are used, while

it can be shown that equation (2.38) is inherently satisfied for a charge free medium

[1]. Equations (2.36) and (2.37), together with the constitutive relations D = ǫE and

B = µH, can be cast, in rectangular coordinates, for a source free and lossless medium,

in the form:

∂
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Ez
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1

ǫ
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∂

∂t









Hx

Hy

Hz









=
1

µ









∂Ey

∂z
− ∂Ez

∂y

∂Ez

∂x
− ∂Ex

∂z

∂Ex

∂y
− ∂Ey

∂x









(2.41)

Then, the problem of the proper discretization of the field components in the three-

dimensional space and time is raised. The best up-to-date solution to this problem has

been proposed by K.S. Yee [101]. According to this solution, the spatial discretization

of the fields should be done according to Fig. 2.18, where the, so-called, Yee’s cell is de-

picted. The first sign for the validity of this discretization scheme is that on the Yee’s cell

each electric/magnetic field component is encircled by all the perpendicular to it mag-

netic/electric, respectively, components, fact that is implied by the Maxwell’s integral

equations. Therefore, in order to apply the centered-differences approximation for the

solution of three-dimensional problems, the space should be discretized using such cubic

unit cells, with dimensions ∆x × ∆y × ∆z, and the field components should be located

on each cell as shown in Fig. 2.18 and extensively presented in Table 2.1. As far as

the discretization in time is concerned, again it is chosen that electric field components

should be sampled at time moments n∆t and the magnetic field components at time

moments (n+ 1
2
)∆t. Hereafter, the points is space and time at which the derivatives will

be approximated have to be properly chosen. As far as the temporal derivatives are con-

cerned, they are calculated at points (n + 1
2
)∆t and n∆t, for the electric and magnetic

field components, respectively. The points at which the spatial derivatives are calcu-

lated are shown in Table 2.2. Finally, equations (2.40) and (2.41) can be approximated,
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Figure 2.18: Yee’s cell.

Field Component Location on Yee’s Space Lattice

Ex (i + 1
2
)∆x, j∆y, k∆z

Ey i∆x, (j + 1
2
)∆y, k∆z

Ez i∆x, j∆y, (k + 1
2
)∆z

Hx i∆x, (j + 1
2
)∆y, (k + 1

2
)∆z

Hy (i + 1
2
)∆x, j∆y, (k + 1

2
)∆z

Hz (i + 1
2
)∆x, (j + 1

2
)∆y, k∆z

Table 2.1: Location of field components on the Yee’s space lattice (according to the

convention of this thesis).
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∂/∂x ∂/∂y ∂/∂z

Ex (i + 1
2
)∆x, (y + 1

2
)∆y, k∆z (i + 1

2
)∆x, j∆y, (k + 1

2
)∆z

Ey (i + 1
2
)∆x, (j + 1

2
)∆y, k∆z i∆x, (j + 1

2
)∆y, (k + 1

2
)∆z

Ez (i + 1
2
)∆x, j∆y, (k + 1

2
)∆z (i + 1

2
)∆x, j∆y, (k + 1

2
)∆z

Hx i∆x, j∆y, (k + 1
2
)∆z i∆x, (j + 1

2
)∆y, k∆z

Hy i∆x, j∆y, (k + 1
2
)∆z (i + 1

2
)∆x, j∆y, k∆z

Hz i∆x, (j + 1
2
)∆y, k∆z (i + 1

2
)∆x, j∆y, k∆z

Table 2.2: Points on the Yee’s cell at which the partial spatial derivatives of the field

components are calculated (according to the convention of this thesis).

resulting in the following FDTD update equations for the field components:
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Up to this point, only isotropic, homogeneous, lossless and source/charge free media

have been assumed. However, the FDTD technique is much more general and can be used
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for the solution of Maxwell’s equations in any kind of medium or topology, by properly

adjusting equations (2.42)-(2.47). An extended analysis of how arbitrary media should

be treated can be found in [1].

2.2.2 Floquet’s Theorem

Floquet’s Theorem in Frequency-Domain

The cornerstone of the analysis of any type of periodic structures is Floquet’s theorem,

named after the French mathematician G. Floquet whose work on periodic coefficients

theory [102] inspired the formulation of the theorem. For the purpose of illustration of

the theorem, an arbitrary periodic structure is assumed with spatial period d and the axis

of periodicity to be along the z-axis. According to Floquet’s theorem, if Ẽ (x, y, z) and

H̃ (x, y, z) are the phasors of the fields in the unit cell between 0 ≤ z ≤ d, then the phasors

of the fields in the unit cell located in the region d ≤ z ≤ 2d should be e−jγdẼ (x, y, z) and

e−jγd H̃ (x, y, z), where γ stands for the complex propagation constant. Consequently,

everywhere in the periodic structure, the fields at two different points, being one period

apart, are related according to equation set (2.48).

Ẽ(x, y, z + d) = e−jγdẼ(x, y, z)

H̃(x, y, z + d) = e−jγdH̃(x, y, z) (2.48)

Equivalently, the fields everywhere in a periodic structure are given by equation set

(2.49),

Ẽ(x, y, z) = e−jγzẼp(x, y, z)

H̃(x, y, z) = e−jγzH̃p(x, y, z) (2.49)

where Ẽp(x, y, z) and H̃p(x, y, z) are periodic functions of z with period d. These func-

tions can be expanded to the infinite Fourier series of equation set (2.50).

Ẽp(x, y, z) =
∞
∑

n=−∞

Ẽpn(x, y, z)e−j 2nπ
d

z

H̃p(x, y, z) =
∞
∑

n=−∞

H̃pn(x, y, z)e−j 2nπ
d

z (2.50)

Using (2.49) together with (2.50), the fields anywhere in the periodic structure can
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be written as:

Ẽ(x, y, z) =
∞
∑

n=−∞

Ẽpn(x, y, z)e−jγz−j 2nπ
d

z

H̃(x, y, z) =
∞
∑

n=−∞

H̃pn(x, y, z)e−jγz−j 2nπ
d

z (2.51)

Given that the propagation constant γ can be written as γ = β − jα, where α is

the attenuation constant and β the real propagation constant, equation set (2.51) can be

rewritten as:

Ẽ(x, y, z) =
∞
∑

n=−∞

Ẽpn(x, y, z)e−αz−j(β+ 2nπ
d

)z

H̃(x, y, z) =
∞
∑

n=−∞

H̃pn(x, y, z)e−αz−j(β+ 2nπ
d

)z (2.52)

where βn = β + 2nπ
d

defines all the possibly supported modes (spatial harmonics).

Floquet’s Theorem in Time-Domain

Floquet’s theorem in the form of equation set (2.48) involves the phasors of the fields

(frequency-domain analysis). In order for this theorem to be applied to a time-domain

analysis, it has to be properly expressed in terms of the actual time-varying fields.

In the case of a lossless medium (α = 0), Floquet’s theorem suggests that the fields

at two points, that are one period apart, differ only by the phase factor e−βd. This

phase corresponds to the phase added to a wave after traveling distance d. The proper

interpretation of this statement in time-domain implies that the actual fields, at those

two points, are identical at two time moments which differ by the time interval τd needed

for the wave to travel from the first point to the other (equation set (2.53)).

E(x, y, z, t) = E(x, y, z + d, t + τd)

H(x, y, z + d, t) = H(x, y, z, t − τd) (2.53)

According to equation set (2.53), Floquet’s theorem in time-domain involves both

previous as well as future snapshots of the fields. The time difference between these

snapshots is dependent on the periodicity of the structure and the phase velocity of the

waves in the medium under consideration, and usually is unknown. This interpretation

of Floquet’s theorem suggests that the theorem cannot be used directly in any kind of

time-marching algorithm, as the knowledge of future snapshots of the fields is impossible.
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FDTD with Periodic Boundary Conditions

Direct Field Methods Field Transformation Methods

Normal Incidence Method Multi-Spatial Grid

Sine-Cosine Method Split-Field

Multiple Unit Cell Methods

Angled Update Method

Table 2.3: Methods that have been proposed for the application of periodic boundary

conditions in time-domain [1].

2.2.3 Periodic Boundary Conditions in the FDTD Technique

General

Floquet’s theorem in the time-domain, as expressed in equation (2.53), can not be used

directly within the FDTD technique, given that this would require the knowledge of

future snapshots of the fields. On the other hand, the existence of several electromag-

netic applications which involve periodic structures and the intense interest for the time-

domain modeling of these structures have motivated researchers to develop techniques

that would overcome this inherent difficulty and allow for the use of Floquet’s theorem

in time-domain analyses. Some of the techniques that have been developed in order to

apply periodic boundary conditions in time-domain are shown in Table 2.2.3. The tech-

niques listed on the right side of Table 2.2.3 are based on a field transformation, used

to overcome the need for time-advanced data, while those listed on the left side provide

ways of directly solving equations (2.42)-(2.47).

Out of these techniques, the one that seems to be more promising for the needs

and the purposes of this thesis is the, so-called, sine-cosine method. This method will

be extensively presented in the next section, while further details about all the other

techniques can be found in [1].

Sine-Cosine Method

The sine-cosine method was initially proposed by Harms et al. [103]. In this method, a

transformation of the Floquet’s theorem is used to overcome the problem of applying the

periodic boundary conditions in time-domain. For the purpose of illustrating the method,

let us assume an arbitrary two-dimensional periodic structure with a direct lattice vector
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p = dxx̂ + dyŷ and reciprocal lattice wave vector k = kxx̂ + kyŷ. In that case, Floquet’s

theorem of equation (2.48) (expressed in frequency-domain), for a point of the structure

r, can be written as follows:

Ẽ(r) = Ẽ(r + p)e+jk·p (2.54)

H̃(r + p) = H̃(r)e−jk·p (2.55)

Assuming that the wave vector k = kxx̂ + kyŷ corresponds to a wave of frequency ω,

equations (2.54) and (2.55) are equivalent with (2.56) and (2.57), respectively.

Ẽ(r)ejωt = Ẽ(r + p)e+jk·pejωt (2.56)

H̃(r + p)ejωt = H̃(r)e−jk·pejωt (2.57)

Expanding all the exponential factors of equations (2.56) and (2.57), using Euler’s re-

lation, and carrying out some basic algebraic manipulations, equation (2.56) becomes

equivalent with equation set (2.58), while equation (2.57) is equivalent to the equation

set (2.59):

Ecos(r, t) = Ecos(r + p, t)cos(k · p) − Esin(r + p, t)sin(k · p)

Esin(r, t) = Esin(r + p, t)cos(k · p) + Ecos(r + p, t)sin(k · p) (2.58)

Hcos(r + p, t) = Hcos(r, t)cos(k · p) + Hsin(r, t)sin(k · p)

Hsin(r + p, t) = Hsin(r, t)cos(k · p) − Hcos(r, t)sin(k · p) (2.59)

In equation sets (2.58) and (2.59), Ecos(r, t) and Hcos(r, t) stand for the actual

time-varying electric and magnetic fields that possess cosinusoidal time variation1, while

Esin(r, t) and Hsin(r, t) stand for time-varying electric and magnetic fields that possess

sinusoidal time variation2.

Using this transformation, equation sets (2.58) and (2.59), which are equivalent to

Floquet’s theorem of equation (2.48) and its expression in time-domain (equation (2.53)),

are extracted. These equations involve field values which refer exclusively to the same

snapshot. This fact enables the use of periodic boundary conditions, through equation

sets (2.58) and (2.59), within the FDTD technique and the time-domain modeling of

periodic structures.

1Ecos(r, t) = Ẽ(r) · cos(ωt) and Hcos(r, t) = H̃(r) · cos(ωt)
2Esin(r, t) = Ẽ(r) · sin(ωt) and Hsin(r, t) = H̃(r) · sin(ωt)
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Sine-Cosine Method in Practice

In order to illustrate how periodic boundary conditions, through the sine-cosine method,

are applied in practice within the FDTD algorithm, the computational domain of Fig.

2.19 is used. This computational domain can be employed for the modeling of a two-

dimensional periodic structure of a direct lattice vector p = dxx̂ + dyŷ. In the following,

without loss of generality, only TM waves are assumed and, therefore, only the Ex, Ey

and Hz field components are shown on the computational domain of Fig. 2.19. This

analysis can be easily extended to full three-dimensional cases.

The computational domain of Fig. 2.19 is composed of two grids; the first for the

electric field components (solid line) and the second for the magnetic field components

(dashed line). The dimensions and the location of the electric grid are identical with

the dimensions and the location of the actual physical structure, while the magnetic grid

is half Yee’s cell offset with respect to the electric grid. The location of all the field

components has been chosen in accordance with Table 2.1.

When the computational domain is terminated with periodic boundary conditions,

enforced through the sine-cosine method, the dimensions of the electric and the magnetic

grids have to be identical. In that occasion, the exterior field components of the com-

putational domain are always the electric field components, resulting in a electric grid

which is larger, by one Yee’s cell, than the magnetic grid.

As mentioned in section 2.2.1, the core of the FDTD algorithm is the update equations

(2.42)-(2.47). For those equations to be solved, each electric/magnetic field component

should be encircled by all the perpendicular to it magnetic/electric, respectively, field

components. Going back to the computational domain of Fig. 2.19, it is easy to observe

that the majority of the electric/magnetic field components are encircled by the proper

magnetic/electric field components, so that they can be updated by FDTD equations.

At the same time, this is not the case for certain arrays of grid points. These are the

array of Ex components along the line y = yo, the array of Ey components along the line

x = xo, the array of Hz components along the line y = yo + dy + ∆y/2 and the array

of Hz components along the line x = xo + dx + ∆x/2, as shown in Fig. 2.19. Each of

these arrays is on each of the four exterior boundaries of the rectangular computational

domain. Besides, for all these four grid points arrays, there is the corresponding, parallel

to each of them, array, which is exactly one spatial period (dx or dy) apart. The elements

of the latter grid points arrays can be calculated through Maxwell’s update equations, as
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x∆
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Figure 2.19: Computational domain used for the FDTD analysis of a two-dimensional

periodic structure (only TM modes are assumed).

they are composed of field elements that are encircled by the proper field components.

Therefore, it is reasonable to suggest that the elements of each array of the first category

should be updated through the periodic boundary conditions and the use of the field

elements of the arrays of the second category. The pairs of the arrays of field components,

that are updated through the periodic boundary conditions, are summarized in Table 2.4.

After exhibiting how the periodic boundary conditions are applied in space, it remains

to be explained how they will be applied within a time-marching technique. Equation

sets (2.58) and (2.59) involve field snapshots with sinusoidal and cosinusoidal time vari-

ation. Given that a single computational domain could be either exclusively sinusoidally

or cosinusoidally time-varying, it is suggested that two identical computational domains

(e.g. this of Fig. 2.19) should be used for the simulation of a single structure. In the first

one, all the field components will be characterized by a sinusoidal time variation (sine

computational domain) and in the second, all the field components will be characterized

by a cosinusoidal time variation (cosine computational domain). These two computa-

tional domains simulate the same structure, for the wave vector k = kxx̂ + kyŷ, that

is involved in equation sets 2.58) and (2.59), and run in parallel. The only difference
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Array of field components Array of field components

updated using Maxwell’s Equations updated using Periodic Boundary Conditions

Ex at y = yo + dy Ex at y = yo

Ey at x = xo + dx Ey at x = xo

Hz at y = yo + ∆y/2 Hz at y = yo + dy + ∆y/2

Hz at x = xo + ∆x/2 Hz at x = xo + dx + ∆x/2

Table 2.4: Pairs of field elements arrays of the computational domain of Fig. 2.19 that

are involved in the application of the periodic boundary conditions.

of these domains is that the excitation of the first is sinusoidally modulated, while the

excitation of the second is cosinusoidally modulated. These two domains interact only

when the periodic boundary conditions of equation sets (2.58) and (2.59) have to be

calculated. It has to be pointed out that, although, these two domains run in parallel

and interact only for the calculation of the periodic boundary conditions, none of them

can produce correct results independently. The whole algorithm for the use of periodic

boundary conditions, through sine-cosine method, in the FDTD technique is shown in

the flow chart of Fig. 2.20.

At this point, the key role of the reciprocal lattice wave vector k = kxx̂ + kyŷ, which

is involved in equation sets (2.58) and (2.59), should be explicitly discussed. As shown in

the flow chart of Fig. 2.20, the first step of any simulation that involves periodic boundary

conditions, through the sine-cosine method, is the enforcement of a certain value for this

reciprocal lattice wave vector k, both in the sine and the cosine computational domains.

The knowledge of the value of this wave number is a prerequisite for the use of the

algorithm. Therefore, the algorithm calculates the time-domain response of a periodic

medium that corresponds to a certain lattice wave number. This fact imposes a certain

limitation to this type of analysis; each time it is applied to a structure, it solves only

for the waves that correspond to the enforced reciprocal lattice wave vector. Therefore,

in the case that a periodic structure has to be solved for a certain range of wave vectors,

the simulation has to be repeated for all the possible values of the wave vector. The

impact of this limitation to the proposed methodology is reduced by L. Brillouin’s work

on periodic structures [104]. According to this work, for a periodic structure that is

described by a lattice vector p = dxx̂ + dyŷ, where dx = dy (square unit cell), all the

supported modes are characterized by a wave vector k = kxx̂+kyŷ that assumes a limited
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Cosine Computational Domain

Magnetic field update equations Magnetic field update equations

Periodic Boundary Conditions 
for the the magnetic field

Electric field update equations Electric field update equations

Set wave vector k

Additional calculations for the electric field
(sources, conductors, ABCs, etc)

Additional calculations for the electric field
(sources, conductors, ABCs, etc)

Periodic Boundary Conditions 
for the the electric field

Sine Computational Domain

Figure 2.20: Flow chart of the algorithm that is used for the application of periodic

boundary conditions, through the sine-cosine method, in the FDTD technique.
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Γ
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(y)

(x)

dx

dy

Figure 2.21: Square unit cell (dashed line) and its reciprocal irreducible Brillouin zone

(solid line).

number of values. These values belong to the reciprocal irreducible Brillouin zone on the

k−space. For the case of a two-dimensional periodic structure with square unit cell, the

irreducible Brillouin zone is the triangle ΓXM on the k−space of Fig. 2.21, where Γ

corresponds to the point (kx, ky) = (0, 0), X corresponds to the point (kx, ky) = (π, 0)

and M corresponds to the point (kx, ky) = (π, π).

To conclude this discussion about the way sine-cosine method is applied in practice,

a last comment should be made about the broadband character of the FDTD technique

and whether or not it is affected by the fact that equations (2.56) and (2.57) refer to

monochromatic waves. It has to be pointed out that the periodic boundary conditions of

(2.58) and (2.59) do not affect the broadband characteristics of FDTD. Using arguments

related to Fourier analysis, it can be shown that an analysis that employs equation sets

(2.58) and (2.59) can provide simultaneously with all the supported frequencies (modes)

that correspond to the enforced reciprocal lattice wave vector k = kxx̂ + kyŷ. This

statement is also supported in [105].

2.2.4 Applications of the Periodic FDTD-based Tool

Dispersion Analysis of Periodic Structures

The first type of analysis that can be performed using the proposed computational tool is

the dispersion analysis of any type of periodic/metamaterial structure. In order for such

an analysis to be carried out successfully, all the modes that can be supported by the
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structure, for all the wave vectors k = kxx̂ + kyŷ of the reciprocal irreducible Brillouin

zone on the k-space of Fig. (2.21), have to be detected. This is achieved by enforcing

the aforementioned wave vectors through the periodic boundary conditions and, in turn,

by detecting all the supported resonances through the spectral analysis of the extracted

time-domain responses of the simulated unit cell.

Modal Field Patterns Extraction

Apart from the calculation of the dispersion equations and diagrams of periodic struc-

tures, the proposed methodology can be directly applied to the extraction of the modal

field patterns of the supported modes. These field patterns are calculated from the Fourier

transform of the field components within the FDTD computational domain, iteratively

applied on their time samples. In particular, the Fourier transform of the electric field is

evaluated at a known frequency ω as in equation (2.60),

Ẽ (ri,j,k, ω) ≈
Ntot
∑

n=1

E (ri,j,k, n∆t) × exp(−jωn ∆t) (2.60)

where ri,j,k = x̂ i∆x + ŷ j∆y + ẑ k∆z is the position vector of a FDTD grid point, N the

number of time-steps, counted after the excitation has faded away, used for the Fourier

transform, and E (ri,j,k, n∆t) = Ecos (ri,j,k, n∆t) + jEsin (ri,j,k, n∆t).

Analysis of Leaky-Wave Structures

Finally, the proposed methodology can be employed for the analysis of leaky-wave struc-

tures and the calculation of the complex wave numbers of leaky-waves. The details of

this type of analysis will be presented in details in chapter 6 of this thesis, where this

methodology is developed, optimized and employed for the analysis of several leaky-wave

structures.

2.3 Commercial Electromagnetic Solvers

2.3.1 General

The theory for the synthesis of metamaterial structures considering coupled resonators

and the developed periodic FDTD numerical tool have been extensively used throughout

this thesis, mostly during the initial stages of the analysis and design of novel periodic
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structures and devices. Nevertheless, many additional commercially available numerical

tools were used for the complete and inclusive characterization of the developed finite-

size structures. These tools are briefly presented in the following text for reasons of

completeness of this theoretical chapter.

2.3.2 Ansoft HFSS

Ansoft HFSS used to be for years the most popular, commercially available, 3-D full-

wave electromagnetic solver. It employs the finite-element-method (FEM) for the solu-

tion of Maxwell’s equation in frequency domain. Ansoft HFSS offers a stable, rigorous,

frequency-domain electromagnetic solver that can be effectively employed for the com-

putationally efficient analysis of complicated structures. It’s comparative advantages are

becoming critical when referring to highly resonant structures, such as filters or meta-

material structures, while its weak points are becoming dominant when referring to the

analysis of broadband structures (frequency sweeping is required for any broadband anal-

ysis). Ansoft HFSS was one of the first commercially available full-wave tools to support

periodic boundary conditions and a periodic (eigenmode) solver. For this reason, HFSS

was used for the validation of the developed periodic FDTD-based tool.

2.3.3 Ansoft Designer

Ansoft Designer is a 2.5-D, method-of-moment (MOM) based electromagnetic tool, capa-

ble of solving Maxwell’s equations in planar electromagnetic structures. Its use becomes

efficient, in terms of the required computational resources and time, when referring to

planar electromagetic structures, such as microstrip-based microwave circuits and an-

tennas. Ansoft Designer also includes a circuit simulator that was used for the circuit

simulations that were required for needs of this thesis.

2.3.4 CST Microwave Studio

CST Microwave Studio (CST MWS) is a relatively new commercial, 3-D full-wave, numer-

ical tool. In its present form, it integrates three different electromagnetic solvers; a finite-

integral time-domain solver, a finite-element frequency-domain solver and a transmission-

line-matrix (TLM) time-domain solver (prior Microstripes solver). The first solver to be

included in CST Microwave Studio was the finite-integral time-domain solver. This solver
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employs sophisticated, non-orthogonal discretization (meshing) schemes, that allow the

tool to efficiently and rigorously model complicated structures. CST Microwave Studio

offers an extremely convenient and robust graphical user interface that allows for the

accurate and fast insertion of complicated electromagnetic models. Being a time-domain

solver, allows for the broadband analysis of the structures under investigation, while it

becomes inefficient (time-consuming) for highly resonant structures. Nevertheless, for the

analysis of such highly resonant structures, the available frequency-domain solver may

be used. Conclusively, CST Microwave Studio constitutes a robust, rigorous and efficient

computational electromagnetic tool that can be employed for the analysis of almost any

type of electromagnetic problems. This feature together with its excellent graphical user

interface justifies the impressive spread of its use among microwave engineers during the

recent years.
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Spiral-based Artificial Transmission

Lines and Applications

In this chapter, a novel class of uniplanar, fully-printed, microstrip-based artificial lines

supporting backward waves is reported. The synthesis of these lines has been based

on the theory of section 2.1.3 for the synthesis of arrays supporting left-handed modes

considering exclusively inductively tightly coupled resonators. The resonators employed

for the synthesis of the proposed artificial lines are compact, symmetrical, microstrip-

based, fully-printed resonators that possess well-defined inductive characteristics and,

therefore, tend to couple inductively to similar adjacent resonators. These resonators

are explicitly described and modeled in the first section of the chapter. In turn, these

resonators are properly arranged in arrays that support backward waves. Such arrays

are built, measured and characterized at microwave frequencies. Finally, these artificial

lines are employed in the design of series-fed microstrip patch arrays.

3.1 Review of Artificial Transmission Lines

Artificial transmission lines are any engineered transmission lines that apart from the tra-

ditional parameters of conventional transmission lines (characteristic impedance, phase

velocity, time delay) also possess additional features that make them attractive for cer-

tain microwave applications. One of the most popular classes of artificial transmission

lines are the so-called slow-wave transmission lines [32], that exhibit effective refractive

indexes smaller than the unity. In the context of metamaterials and LHM, the first

class of artificial transmission lines was proposed by G.V. Eleftheriades et. al [28] and C.

47
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Caloz et. al [30]. These artificial transmission lines are synthesized by periodically load-

ing conventional transmission lines with series capacitances and shunt inductances, and

exhibit dispersive properties for their effective index of refraction and their characteris-

tic impedance. Following the original implementation of these lines, several alternative

implementations have been proposed in the literature (e.g. [86], [87], [81]).

3.2 Double Spiral Resonators

3.2.1 Description

The fundamental resonator employed in this chapter for the synthesis of the artificial,

fully-printed, microstrip-based left-handed lines is the, so-called, double spiral resonator

(DSR), shown in Fig. 3.1. It is composed of two single spirals that are connected in

series and printed on a grounded dielectric substrate (microstrip-like configuration). This

structure can be assumed to be an alteration of the well-known open-loop resonator (Fig.

3.2), or even the split-ring resonator, towards the direction of enhancing its inductive

components and further minimizing its total size. In its final version, the DSR can be

considered to be composed of two single spirals connected in series. The main reasons

why the DSR has been chosen, in the framework of this project, are its symmetric

properties and the fact that it possesses two discrete and spatially separated magnetic

moments that could be separately coupled to adjacent elements. Even though DSR is not

the most compact resonant element that has been proposed so far in the literature (for

example, the SRR is more compact), for the purposes of this work, these two features

are of much higher importance.

The structure of Fig. 3.1 is an extremely interesting element that could be exploited

both for its inductive and capacitive properties. Therefore, the study of its electro-

magnetic properties in several different configurations (backed on several types of sub-

strates, free standing in the air and others), in accordance with the theory of section 2.1,

could potentially lead to several different metamaterial applications, such as the design

of magneto-dielectrics, EBG structures, LHM, AMC and others. Nevertheless, in the

framework of this thesis, the DSR will be studied exclusive for the case in which they

form arrays of tightly coupled resonators. Furthermore, as far as this chapter of the thesis

is concerned, DSR will be considered exclusively backed on grounded dielectric substrates

(microstrip-like configuration), forming transmission lines that support backward waves.
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dx 

dy 

(x) 

(y) 

Figure 3.1: Schematic of a double spiral resonator. In our approach, the spiral is to be

printed on a grounded substrate. The figure should be also assumed to be the computa-

tional domain of the full-wave periodic analysis.

a) b) 

Figure 3.2: a) Open-loop resonator. b) Double spiral can be formed by wounding the

open ends of the open-loop resonator.
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3.2.2 Periodic Analysis

As it has been already mentioned in the introduction of the thesis, metamaterials are

periodic structures whose properties are partially attributed to their periodic nature.

Therefore, a periodic analysis of the structural unit cell under consideration should be

always considered as the first step in their analysis. In the following, the double spiral

of Fig. 3.1, backed on a grounded dielectric substrate, will be treated as the structural

unit cell of two-dimensional arrays. The periodicity of these arrays is assumed to be

dx = 6.4mm and dy = 3.2mm, along x− and y−axis, respectively, both the strips width

and the gaps width are s = w = 0.2 mm, while the arrays are built on a substrate of

dielectric constant ǫr = 2.2 and height h = 1.15 mm.

Dispersion Analysis

In order to calculate the modes supported by an array of DSR, the unit cell is anal-

ysed using full-wave simulations with the computational domain being terminated with

periodic boundary conditions. In turn, the frequencies of all the supported modes are

estimated in terms of the phase shift per unit cell of all the Bloch wave-vectors being

within the irreducible Brillouin zone. For the DSR of Fig. 3.1, the calculated dispersion

diagram is shown in Fig. 3.3. These results were extracted using the periodic FDTD

tool presented in section 2.2 and validated (at several points) using Ansoft HFSS.

The results of the dispersion analysis of the DSR show that the first (fundamental)

mode supported by the proposed structure is a backward wave since the corresponding

phase and group velocities are anti-parallel. The formulated passband in which the two-

dimensional structure supports backwards waves extends from approximately 2.5 GHz

to 4 GHz. Specifically for the case that 1-D propagation along x−axis is assumed, the

bandwidth over which backward waves are supported extends from 3.3GHz to 3.9GHz,

a fractional bandwidth of FGW = 17 %. At these frequencies, the total length ℓDblSpiral

of the turns of the double spiral corresponds approximately to the half of the guided

wavelength (ℓDblSpiral = λg/2). Furthermore, the physical dimensions of the unit cell of

Fig. 3.1 are equivalent to λg/12 and λo/16, where λg and λo are the guided and free-

space wavelength of the frequencies within the passband. As a result the medium under

consideration can be treated as an effective dielectric.
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Figure 3.3: Dispersion diagram of the unit cell of Fig. 3.1. The first formulated passband

(fundamental mode) is clearly a backward wave band.

Modal Field Patterns

In order to study the identifying characteristics of the left-handed modes supported by

the double spirals, the in-house FDTD code is employed for the extraction of the modal

field patterns of the major field components of the modes. The periodic FDTD analysis

of the unit cell shows that the identifying components of the electric and magnetic field

that determine the operation of this structure are the electric field components along x−
and z− axes and the magnetic field component along z− axis.

In Fig. 3.4, the modal pattern of the Ex field component is plotted for a backward

wave supported at fo = 3.4 GHz and propagating along x−axis (kxdx = π/2,kydy = 0).

This modal field pattern shows that the electric field along x−axis is negligible everywhere

in the unit cell, but the edges of the unit cell and the very middle of the unit cell. These

observations lead to three important conclusions. First, it is shown that between the

adjacent y−oriented metal strips of the spirals the magnitude of the fringing fields are

orders of magnitude below the maximum value of the Ex field component. Therefore,

these strips can be assumed to be coupled under an even-mode excitation (see appendix

A) and no capacitance is developed between them. The same is the situation with the
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x−axis 

y−axis
 

Ex 

Figure 3.4: Modal field pattern of the electric field component oriented along x−axis

for the mode that is supported at fo = 3.4 GHz and propagating along x−axis (kxdx =

π/2,kydy = 0).

x−oriented strips of the spiral, conclusion that can be extracted from the observation

of the modal field patterns of the Ey electric field component. The second conclusion

is based on the observation of the very strong Ex component that is supported between

the two adjacent y−oriented strips that belong to the two different single spirals in the

middle of the unit cell. These two strips will be assumed as coupled under an odd-mode

excitation and the supported capacitance between them should be always taken into

account. Last but not least, the Ex field that is supported along y−axis at the edges of

the unit cell (this electric field component is actually supported between two neighboring

unit cells) lead to the conclusion that there is some capacitive coupling supported between

adjacent double spirals.

Fig. 3.5 shows the modal field pattern of the z−oriented component of the electric

field of the same wave as before. The reason why this pattern is presented is to show that

the Ez field component is strong all along the length of the wounded spiral. Therefore, it

can be concluded that all along the length of the spiral a quasi-TEM wave is supported

between the spiral and the ground plane. The same conclusion is supported by obser-

vation of the Hx and Hy modal field patterns, in which the x−oriented component of

the magnetic field assumes large values below the y−oriented strips of the spiral and the

y−oriented component of the magnetic field assumes large values below the x−oriented

strips.
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x−axis 

y−axis 

Ez 

Figure 3.5: Modal field pattern of the electric field component oriented along z−axis for

the mode that is supported at fo = 3.4 GHz and propagating along x−axis (kxdx =

π/2,kydy = 0).

To conclude the analysis of the modal field patterns of the supported backward waves,

the modal pattern of the z−oriented component of the magnetic field is shown in Fig. 3.6.

This pattern suggests that the vertical magnetic field is assumes large values in the middle

of each of the single spirals that compose the double spiral. This field is supported by the

currents on the spirals and suggests that the DSR can support a shunt inductance that

is required for the generation of backward waves, as suggested by Eleftheriades etal. in

[28]. Observation of the phase of the two discrete magnetic components shows that these

are in phase. In an array configuration, these components couple to the corresponding

components of the adjacent DSR, providing the required inductive coupling for the array

to support backward waves.

3.2.3 Equivalent Circuit

In this section, a simplified equivalent circuit for the DSR backed on grounded dielectric

substrates is proposed. This equivalent circuit will be employed in the following text for

the efficient analysis and design of DSR-based artificial transmission lines.
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x−axis 

y−axis 

Hz 

Figure 3.6: Modal field pattern of the magnetic field component oriented along z−axis

for the mode that is supported at fo = 3.4 GHz and propagating along x−axis (kxdx =

π/2,kydy = 0).

Lossless Approach

As it was shown though the extraction of the modal field patterns of the DSR there are

two identifying field components associated with the operation of the DSR; the strong

vertical magnetic field supported by the single spiral resonators and the series capacitance

supported between the two different single spirals of the same DSR. Therefore in the

extraction of the equivalent circuit those two characteristics should be taken into account.

The most simplified equivalent circuit that rigorously and effectively describes all the

electromagnetic properties of the DSR is the one proposed in Fig. 3.7. In this equivalent

circuit, each single spiral is represented with a shunt LC resonator of inductance Lss and

capacitance Css, connected with each other through a series capacitance Cser.

The shunt inductance of each of the single spiral resonators Lss can be calculated

analytically using several different approaches [106], [107], [108]. Most of these models

were compared with each other and were shown to be in good agreement. For the purposes

of this thesis, the inductance of a spiral resonator is calculated using the modified Wheeler

formula proposed in [107]. According to this model, the inductance of a printed spiral

resonator is given by equation (3.1)

Lspiral = K1µ0
n2davg

1 + K2ρ
(3.1)
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Lss Lss  Css  Css 

 Cser 

Figure 3.7: Equivalent circuit of the DSR of Fig. 3.1 (lossless case).

where n are the number of the turns of the spiral, davg is the average value of the inner and

outer diameter of the spiral (davg = (din + dout) /2), ρ is the so-called fill ratio of the spiral

defined as ρ = (dout − din) / (dout + din), and the coefficients K1 and K2 are dependent

on the geometry of the spiral under consideration and are reported in [107]. For the case

of the square spiral, K1 and K2 have been found to be 2.34 and 2.75, respectively.

Equation (3.1) estimates the inductance of a printed spiral that is not in close prox-

imity to a ground plane. According to the analysis of [32], when an inductive structure

is in close proximity to a ground plane and a microstrip-like mode is supported, the in-

ductance of the structure in the absence of the ground plane should be corrected by the

factor

Kg = 0.57 −
(

0.145 ∗ ℓn
w

h

)

(3.2)

in order to account for the presence of the ground plane. In equation (3.2) h is the

distance between the spiral and the ground plane and w stands for the width of the

strips that forms the spirals. Combining equations (3.1) and (3.2), the inductance Lss

involved in the proposed equivalent circuit is given by equation

Lss = KgLspiral. (3.3)

For the single spirals of the DSR of Fig. 3.1, equation (3.3) calculates its inductances

Lss as Lss = 13.78 nH.

The capacitance Css of the single spiral involved in the equivalent circuit of Fig. 3.7

is attributed to both the capacitance supported between the strips that form the spiral

(minor contribution) and the capacitance supported between the strips and the ground

plane (major contribution). The analytical calculation of this parameter in much more

challenging than the calculation of the inductance. Even though there are references in
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Figure 3.8: Equivalent circuit of the DSR of Fig. 3.1 (including losses).

the literature that could be employed for this calculation ([107], [108]), it has been seen

that this calculation does not lead to satisfying accurate results and inserts a major error

to the extracted self-resonance of any of the single spirals ωss. For this reason, in the

following analysis, the estimation of the capacitance Css is performed through the full-

wave estimation of the self-resonance of the single spirals. Specifically, the self-resonance

fss of the single spirals is estimated through the full-wave analysis of a weakly excited

single spiral. Then, the capacitance Css is calculated through equation

Css =
1

(2πfss)
2 Lss

(3.4)

For the single spirals of the DSR of Fig. 3.1, full-wave simulation carried out using

Ansoft Designer estimated the self-resonance of the single spiral to be fss = 5.05 GHz.

Then, equation (3.4) estimates the capacitance Css as Css = 0.072 pF

Finally, the series capacitance Cser involved in the equivalent circuit of Fig. 3.7 can be

considered as the capacitance supported between two strips coupled under an odd mode.

The equations for the calculation of this capacitance are provided in appendix A, and

for the DSR of Fig. 3.1 the series capacitance has been calculated to be Cser = 0.053 pF

Impact of Losses

The equivalent circuit of Fig. 3.7 does not involve any kind of losses. In practice,

however, the operation of the proposed DSR is associated with some ohmic losses that

are attributed mostly to the resistance of the metallic spirals. This resistance can be

represented as an ohmic resistance Rss connected in series with the inductances Lss, as

in Fig. 3.8.



Chapter 3. Spiral-based Artificial Transmission Lines and Applications 57

3.1 3.15 3.2 3.25
−55

−50

−45

−40

−35

−30

−25

Frequency (GHz)

T
ra

ns
m

is
si

on
 (

dB
)

Eq. Circuit
Full−wave

Figure 3.9: Normalized transmission through a weakly excited DSR calculated using the

equivalent circuit of Fig. 3.8 and Ansoft Designer.

The value of the resistance Rss can be approximated using equation (3.5) [109].

Rss =
ℓ

σwδ
(

1 − e−
t
δ

) (3.5)

In equation (3.5), ℓ is again the total length of the strips that form the single spiral

resonators, w is the width of these strips, σ is the conductivity of the metal employed to

print the spirals (in our case copper), δ is the skin-depth of the strips at the frequencies

of interest, and t is the actual thickness of these strips. For the DSR of Fig. 3.1 and for

operation around 3.2 GHz, Rss is approximated as Rss ≈ 1.4 Ω

In order to validate the equivalent circuit of Fig. 3.8 and the approximated associated

parameters, the transmission through a weakly excited DSR, calculated using both the

equivalent circuit of Fig. 3.8 and a full-wave simulation, are compared. For the case

of the results extracted through the equivalent circuit, the equivalent inductors of the

DSR were considered to be weakly coupled to two auxiliary inductors that were directly

connected to the ports of a circuit simulator, while for the case of the full-wave results,

the DSR was excited through two microstrips that were weakly and inductively coupled

to it. Given that for these two cases equivalent coupling coefficients were hard to be

obtained, the magnitudes of the two extracted curves were normalized to each other.

Finally, the results are depicted in Fig. 3.9.

The results of Fig. 3.9 show that the proposed equivalent circuit predicts quite ac-



Chapter 3. Spiral-based Artificial Transmission Lines and Applications 58

curately both the self-resonance and the Q-factor of the DSR. Specifically, both the

equivalent circuit and the full-wave results suggest that the self-resonance of the DSR is

achieved at fo = 3.2GHz, while the associated Q-factor, approximated as Q ≈ fo/∆f3dB,

has been calculated to be Q = 170. Nevertheless, this equivalent circuit is valid only over

a narrow bandwidth around the resonance of the modelled structure, given that some of

the values of the involved lumped elements were extracted considering resonance condi-

tions. This is the reason why some divergence between the full-wave and the equivalent

circuit results is observed away from the resonant frequency.

3.3 Analysis of Coupled DSR

Up to this point, the properties of the self-standing DSR have been studied. In the

following text, the DSRs are employed for the synthesis of optimized 1-D arrays sup-

porting backward waves. As shown in chapter 2, the properties of such arrays are much

depended on both the nature and the magnitude of the coupling between the modular

elements. In the case of DSR, the coupling between adjacent unit cells has been found to

be dominantly inductive, supported between any pair of adjacent single spirals belonging

to different DSR, without the existence of capacitance coupling to be ruled out. Never-

theless, for the purposes of this study, the capacitive coupling between the DSR will be

considered unwanted as it turns out to cancel with the inductive coupling, and, as shown

in section 2.1.3, larger inductive coupling values lead to more broadband backward wave

passbands and more accurate phase control across these passbands. Therefore, the pur-

pose of this analysis is to come up with DSR configurations that enhance the inductive

coupling between them.

3.3.1 DSR Coupling Configurations

As it has been already mentioned, the inductive coupling coefficient kM , given by equation

(3.6), can be both positive and negative due to the inexistence of magnetic charges (always

closed magnetic lines). Also, between any two coupled inductors (spirals) there are two

possible relative polarities, depending on the windings of the two inductors. Inclusively,

for the case of 1-D DSR arrays (periodicity along the x−axis of Fig. 3.1 is considered),

there are four different scenarios for the coupling between adjacent spirals. These coupling

scenarios, depicted in Fig. 3.10, correspond to all the possible combinations of polarities
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and signs of the coupling coefficient.

kM =

∫ ∫ ∫

µ ~H1 · ~H2dυ
√

∫ ∫ ∫

µ
∣

∣

∣

~H1

∣

∣

∣

2

dυ ×
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µ
∣

∣

∣

~H2

∣

∣

∣

2

dυ

(3.6)

Specifically, Fig. 3.10(a) and Fig. 3.10(c) depict the case in which the coupled spirals

possess opposite polarities (the left spiral has a clockwise winding and the right spiral

has an anti-clockwise winging). This configuration occurs when the spirals are aligned

symmetrically with respect to the y−axis. Depending on the currents that flow on the

spirals, this configuration may lead to two signs of the coupling coefficient; when currents

are flowing as shown in Fig. 3.10(a) the supported inductive coupling coefficient is nega-

tive (considering that the magnetic lines of each spiral close through its adjacent spiral,

the two magnetic components, where overlapping, are contra-directional and, hence, the

dot product ~H1 · ~H2 is negative). For the same reasons, the inductive coupling coefficient

of the configuration of Fig. 3.10(c) is positive. The lumped-element representations of

the two scenarios are depicted in Fig. 3.10(b) and Fig. 3.10(d), respectively.

Accordingly, the scenarios in which the coupled spirals possess same polarities are

shown in Fig. 3.10(e) and Fig. 3.10(g). For the same reasons as before, the coupling

coefficient in the first of these scenarios will be positive and in the second will be negative.

Artificial lines composed of coupled DSR would not necessarily result in transmission

lines supporting backward waves. On the contrary, as mentioned in chapter 2, the type

of the supported waves will be depending on the sign of the coupling coefficient, or, more

accurately, on the combination of coupling sign and polarity. Specifically, out of the four

scenarios of Fig. 3.10 only two of them will result in backward waves and two of them will

result in forward, right-handed, slow-waves, attributed to an effective high-µ property

(magneto-dielectric). The exact equivalent circuits of these four cases are depicted in Fig.

3.11. The dispersion analysis of all the four equivalent circuits of Fig. 3.11 shows that

the two scenarios that lead to backward waves are the first and the third (Fig. 3.11(a)

and Fig. 3.11(c)) (effective left-handed behaviour) , while those of Fig. 3.11(b) and Fig.

3.11(d) provide solutions only for forward waves (effective magneto-dielectric behavior).

In fact, the cases that lead to backward waves are those that involve shunt inductances

(in Fig. 3.11(a) the equivalent shunt inductance of the coupled spirals is −(− |kM |Lo)

while in Fig. 3.11(c) is (|kM |Lo)).

Given that the purpose of this chapter is the synthesis of artificial lines supporting
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Figure 3.10: Four possible scenarios and equivalent lumped-element representation for

two inductively coupled spirals, depending on their polarities (windings of the spirals) and

the sign of the coupling coefficient (direction of the flowing currents and the corresponding

magnetic flux).
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Figure 3.11: Exact equivalent circuits of the four scenarios of Fig. 3.10. For all the

equivalent circuits, regardless of the sign of kM , Lm = kMLo



Chapter 3. Spiral-based Artificial Transmission Lines and Applications 62

backward waves, only the cases of Fig. 3.10(a) and Fig. 3.10(e) will be further investi-

gated. On the other hand, in the following chapters of the thesis, the remaining two cases

will be exploited. Finally, it is clarified that the two coupling scenarios that correspond

to each of the two spirals configurations (polarities) correspond to the two eigensolutions

(modes) of each configuration. Which of the two modes will be established in a certain

application will be depended on the way the spirals are being excited and the surround-

ing electromagnetic environment (boundary conditions). Specifically for the case of the

DSRs-based arrays, it has been seen that the dominant mode is determined by the num-

ber of the DSRs that constitute the array: even number of resonators enhance the modes

that lead to backward waves and odd number of resonators enhance the modes that lead

to forward waves. The latter observation applies exclusively to finite size arrays.

3.3.2 DSR Coupling Assessment

In order to decide which of the two configurations of Fig. 3.10 that lead to backward

waves will be chosen for the synthesis of artificial lines supporting such waves, the coupling

coefficient for the two cases will be calculated. In turn, the configuration that exhibits

larger coupling will be chosen, given that, as shown in chapter 2, larger couplings between

the resonators lead to larger useful bandwidths.

Before proceeding to the rigorous quantitative calculation of the coupling in these two

cases, a comparative estimation for the coupling can be made only by the observation of

Fig. 3.10 and the schematic representation of the currents on this figure. As it has been

mentioned, the coupling between the resonators is mainly inductive and any capacitive

coupling between the DSRs tends to cancel with the inductive coupling, reducing the

total coupling coefficient. The schematic representation of the currents on Fig. 3.10(a)

shows that for this configuration the adjacent strips of the two neighboring spirals are

flown by contra-directional currents (coupled lines under an odd-mode excitation) and,

hence, some coupling capacitance will be supported between them. This capacitance

corresponds to the Ex component that is supported at the edges of the unit cell in the

modal field pattern of Fig. 3.4. Such capacitance is not supported in the configuration

of Fig. 3.10(e), given that the corresponding currents are co-directional. Therefore, it is

expected that the total coupling will be larger for the configuration of Fig. 3.10(e).

For the numerical estimation of the coupling of the two configurations, the well-known

technique of the full-wave simulation of the transmission through pairs of weakly excited
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coupled resonators is employed. Ansoft Designer is used for the full-wave transmission

simulation and the employed models for the two configurations are depicted in Fig. 3.12

and Fig. 3.13, respectively.

Figure 3.12: Ansoft Designer model used for the calculation of the transmission through

a weakly excited pair of coupled DSRs. In this configuration, the double spirals have

been arranged symmetrically along the axis of propagation (as in Fig. 3.10(a) ).

Figure 3.13: Ansoft Designer model used for the calculation of the transmission through

a weakly excited pair of coupled DSRs. In this configuration, the double spirals have

been arranged asymmetrically along the axis of propagation (each spiral is rotated by

180o compared to its adjacent spirals) (as in Fig. 3.10(e) ).

The transmission results obtained for the models of Fig. 3.12 and Fig. 3.13 are

depicted in Fig. 3.14 and Fig. 3.15, respectively. In both cases, the transmission is

maximized at the frequencies f1 and f2, that correspond to the two eigenmodes of each
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configuration. Finally, according to the analysis of [32], the magnitude of the coupling

between the DSR for each configuration is given by equation (3.7).

k =
|f 2

1 − f 2
2 |

f 2
1 + f 2

2

(3.7)
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Figure 3.14: Simulated transmission through the weakly excited pair of coupled DSR of

Fig. 3.12.
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Figure 3.15: Simulated transmission through the weakly excited pair of coupled DSRs of

Fig. 3.13.

Using the results of Fig. 3.14 and Fig. 3.15 together with equation (3.7), the coupling

coefficient for the configuration of Fig. 3.12 is found to be k = 0.0085 (f1 = 3.175 GHz
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and f2 = 3.23 GHz), while for the configuration of Fig. 3.13 k = 0.035 (f1 = 3.1 GHz

and f2 = 3.31 GHz).

As expected, the total coupling coefficient for the configuration of Fig. 3.13 and Fig.

3.10(e) is larger of that of Fig. 3.12 and Fig. 3.10(a). Therefore, the configuration of

Fig. 3.13 is the one that will be used for the synthesis of 1-D artificial transmission lines

supporting backward waves.

3.4 1-D DSR-based Artificial Transmission Lines

In this section, DSR are employed for the design and fabrication of microstrip-based

transmission lines that support backward waves. Such transmission lines are simulated

and the propagation characteristics are studied. The results of these studies are validated

through the fabrication and measurement of the aforementioned lines. The advantages

of such transmission lines are that these lines are compatible with standard microwave

technologies (microstrip lines), will be fully-printed, and therefore easily fabricated, com-

pletely uniplanar and easily scalable to higher and lower frequencies.

3.4.1 Simulation

Up to this point, the configurations of the DSR along 1-D arrays has been optimized.

What still remains to be identified is the way spiral based transmission lines will be

fed and will match the standard 50 Ω impedance level. It is a common practice, in the

literature, to feed left-handed media using planes waves, properly polarized to excite

the structural elements of the medium. In our case, though, this technique can not be

used given the topology of the medium (printed on a grounded substrate). Furthermore

this technique is usually accompanied by poor transmission through the medium due to

mismatching effects between of the medium with the air.

Therefore a different technique is used to feed the spirals. At the two edges of the

DSR-based transmission lines, single spirals, identical with those that compose the DSR,

properly oriented and perfectly coupled to the adjacent DSR are employed. These single

spirals are open-ended and, therefore, they can be directly attached to a conventional

transmission line. Due to the way the single spirals are located at the edges of the lines

they can be assumed to be part of them. Consequently, these transmission line are fed

by exciting currents directly on them. This is the first time that direct excitation of



Chapter 3. Spiral-based Artificial Transmission Lines and Applications 66

Figure 3.16: Top view of a DSR-based transmission line composed of 4 DSR and embed-

ded within a common 50 Ω microstrip line.

currents on the left-handed medium is reported in the literature to feed such a medium.

Finally, the resulting artificial transmission line is shown in Fig. 3.16.

The simulated S−parameters of the line of Fig. 3.16 are shown in Fig. 3.17. These

results show that the proposed structure exhibit a passband from 3 GHz to 3.4 GHz

(FBW = 13 %), in which the backward waves are supported.

3.4.2 Fabrication and Measurements

In this section, the fabrication and measurement of the transmission line of Fig. 3.16

is reported. The dimensions of each of the DSR that are used are dx = 6.4 mm and

dy = 3.2 mm, while the width of the metallic strips and the gabs between them are g =

s = 0.2mm. The LHM transmission lines are built on RT/duroid5880 dielectric substrate

of dielectric constant ǫr = 2.2 and height h = 1.15mm. The fabricated prototype is shown

in Fig. 3.18. In this prototype six unit cells have been used for the synthesis of the line.

In Fig. 3.19 and Fig. 3.20 the measured and simulated S−parameters of a fabricated

prototype that is composed of four unit cells have been plotted. These figures show

that the fabricated LHM transmission line supports backward waves from 2.9 GHz to

3.3 GHz, a fractional bandwidth of about FBW = 13 %. In this passband, a fairly

satisfying trasmission of −1.8 dB is achieved.

In order to experimentally validate the suggestion that the supported modes in the

formulated passband correspond to backward waves, the inserted phases, by two LHM

transmission lines of different lengths, to a propagating wave are examined. It is well-

known that the difference between these phases are given by equation (3.8), where d1
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Figure 3.17: Simulated S−parameters of the transmission line of Fig. 3.16.

 

Figure 3.18: Fabricated prototype of a spiral-based transmission line that is composed

of six unit cells.
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Figure 3.19: Measured and simulated S11 of the prototype of Fig. 3.18.

2 2.4 2.8 3.2 3.6 4 4.24.2
−70

−60

−50

−40

−30

−20

−10

0

Frequency (GHz)

S
21

 d
B

 

 

Measured S
21

Simulated S
21

Figure 3.20: Measured and simulated S21of the prototype of Fig. 3.18.

and d2 are the lengths of the transmission lines under consideration [110].

∆ϕ = ϕ2 − ϕ1 = −ωn (ω)

c
(d2 − d1) (3.8)

Fig. 3.21 shows the measured unwrapped phases that are inserted to a propagating

wave by two of the proposed LHM transmission lines that are composed of four and six

unit cells, respectively. According to these results, the phase inserted by the six unit cells
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Figure 3.21: Measured unwrapped transmission phases of two DSR-based transmission

lines that are composed of 4 and 6 unit cells, respectively.

line is always greater than this inserted from the four unit cells one. Assuming that d2 is

the total length of the six unit cells and that d1 is the length of the four unit cells, then

∆ϕ > 0, d2 − d1 > 0 and, hence, in order for equation (3.8) to be satisfied, n (ω) must be

negative. Therefore, the effective index of refraction of the proposed transmission lines

is negative.

3.4.3 Impact of Losses

One of the major constraints in the operation of LHM that are composed of highly

resonant metallic particles, such as the SRR or the DSR, is the losses that are inserted

to the waves within the bandwidth of interest. These losses are attributed mostly to

the strong currents that are induced on the metallic elements of the aforementioned

structures at their resonance (ohmic losses). In the following, the nature of these losses

and their impact to the operation of DSR-based transmission lines are studied.

In Fig. 3.22 the simulated power losses across a transmission line that is composed

of four unit cells are plotted for four different cases. In the three of them, the spirals

are assumed to be formed by perfect conductors (σ → ∞), being printed on a substrate

with variable losses. In the fourth case, the spiral are assumed to be printed on a lossless

substrate but using copper (σ = 5.88 ∗ 1007 Siemens/m). For the cases that the losses

of the dielectric substrate are varied (tanδ = 0, 10−4, 10−3) and perfect conductor is

assumed, the power losses across the transmission line are growing as the loss tangent
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Figure 3.22: Simulated power losses across a 4-unit-cell spiral-based transmission line for

several cases of ohmic and dielectric losses.

of the substrate grows, but still assume extremely small values (at the order of 0.05 dB

for a four-cell long line). These values of power losses are of the same order as the losses

that are encountered in the case that no dielectric and conductor losses are assumed

(inherent radiation losses of the structure, at the order of 0.025 dB for a four-cell long

line). Therefore it is concluded that neither the inherent radiation losses of the structure

itself, nor the losses inserted by the dielectric substrate are of critical importance for the

operation of the structure, allowing for the spiral based medium to be printed on cheap

and relatively lossy dielectric substrates (e.g. FR − 4).

On the other hand, the role of the ohmic losses in the operation of this structure is

much more significant. As shown in Fig. 3.22, for the case that conductor losses are

taken into account, the total power losses are significantly large and, specifically, four

times larger than the losses inserted by a substrate of tanδ = 10−3 (worst case scenario

for the dielectric losses). This is due to the strong currents that are developed on the

spirals at their fundamental mode (backward waves modes).

A rough quantitative estimation of ohmic losses, for the structure under consideration,

can be performed by means of the measured transmitted and reflected power. In Fig.

3.23 the total transmitted and reflected power at two LHM transmission lines that are

composed of four and six unit cells is plotted.

Although the exact value of the ohmic losses varies with frequency within the pass-

band (group delay variation), it can be seen that the four unit cells degrade the total
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Figure 3.23: Measured power losses across a 4-unit-cell and a 6-unit-cell spiral-based

transmission line.

transmitted and reflected power by 1.6 dB, on average, while the six unit cells degrade

the total power by 2.4 dB. Both these observations conclude that each unit cell inserts,

approximately, 0.4 dB power loss. In practice, the actual ohmic power losses per unit

cell are even less since in the estimation of the total losses other sources of power loss,

such as dielectric losses and losses inserted by the connectors, have been included.

3.5 DSR-based Artificial Transmission Lines Appli-

cations

In this section, an application that employs the proposed DSR-based artificial lines is

presented. This application is a series-fed microstrip patch array.

3.5.1 Series-Fed Patch Arrays

General

Series-fed microstrip patch arrays are always good candidates as radiators for applications

that require single-feed, low-profile, fully-printed, highly directive antennas. During the

years, several different series-fed microstrip patch array topologies have been proposed

in the literature. Depending on the specific topology, series-fed arrays can deliver high

directivities in either their E-plane or their H-plane, while, in cases in which both series
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and parallel feeding networks are employed, increased directivities in both the E-plane

and H-plane can be achieved. Furthermore, several studies have been published proposing

techniques for the shaping of the radiated beams. These techniques are mostly employing

the beam shaping possibilities offered by the parameters involved in the array factor of

the array under consideration, i.e. the relative magnitude and phase of the excitations of

each of the elements of the phased array.

In this study, equally spaced, series-fed, microstrip patch arrays that achieve increased

directivity in the E-plane and radiate at broadside are considered. In order for these

arrays to be synthesised, the microstrip patches should be connected in series along their

resonating dimension and be fed in phase. Given the resonant length of each patch

antenna (λg1/2) and that between the radiating edges of each microstrip patch there is

a phase shift of −180o, the interconnecting transmission lines should also insert a phase

shift of 180o between neighboring patches, in order for the latter condition to be fulfilled.

Therefore, conventional microstrip transmission line segments of length λg2/2 should be

used to connect any pair of neighboring patches. Usually, λg1/2 and λg2/2 significantly

differ in length, even though they are referring to the same operating frequency and the

same hosting medium, because of the different widths of the microstrip patches and the

interconnecting transmission lines that result in different effective dielectric constants.

As far as the calculation of the input impedance of such arrays is concerned, it is

possible to assume that both the microstrip patches and the interconnecting transmission

lines act as half-wavelength transformers of the loads that correspond to each of the

radiating edges of the microstrip patches. Therefore the total input impedance of such

array can be assumed, in good proximity, to be equal to the parallel combination of

these loads. In order to get a decent input real impedance, the width of each patch, that

defines the equivalent load of each radiating edge, should be decreased as the number of

the array elements is increased

Proposed study

It is well-known that the directivity of uniformly excited, equally spaced, broadside arrays

depends both on the number of array elements N and the element spacing d. In Fig.

3.24, the analytically calculated directivity of two microstrip patch arrays, composed

of 3 and 4 elements, respectively, as a function of the distance between the edges of

any pair of neighboring array elements, is depicted. For this calculation it has been
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Figure 3.24: Analytically calculated directivity of a three-element and a four-element

microstrip patch array, as a function of the distance between any pair of neighboring

patches.

assumed that the minimum distance between the edges of any pair of neighboring array

elements (0 mm) corresponds to a λg1/2 distance (resonant length of the patch) between

the point radiators for which the array factor has been calculated. As it is shown in

Fig. 3.24, for any given element spacing, the four-element array always achieves higher

directivity (larger effective radiating aperture), while any specific value of directivity

can be achieved by both the three- and four-element arrays, provided that the distance

between the elements is properly set.

As it has been already mentioned, the use of artificial phase-shifting lines allows for

the manipulation of the phase of electromagnetic waves independently of the size of the

structure that supports these waves. In the framework of the uniformly excited, equally

spaced, broadside series-fed arrays, this property could be exploited for the synthesis of

arrays that will be composed of different number of elements but will be able to achieve

the same directivity and occupy the same volume.

Based on this idea, the properties of two different broadside, series-fed arrays, that

are composed of 3 and 4 microstrip patches, respectively, occupy the same volume and

have been designed so as to deliver the same directivity, are compared in this section.

More specifically, the first of these two arrays, shown in Fig. 3.26(a), is composed of
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Figure 3.25: Array factors of a three-element (point A in Fig. 3.24) and a four-element

array (point B in Fig. 3.24) occupying the same area.

3 microstrip patches that are connected using conventional transmission line segments

that are 43 mm long (point A in Fig. 3.24). The second array, shown in Fig. 3.26(b),

is composed of 4 microstrip patches that are connected in series using the proposed

DSR-based artificial lines. Given that these lines can be designed to insert the phase-

shift required for the patches to radiate in phase irrespectively of their physical length,

the distance between these patches was chosen to be 15.75 mm, so that the two arrays

occupy the same volume/area and deliver approximately the same directivities (point

B in Fig. 3.24). The analytically calculated array factors for the two aforementioned

cases are depicted in Fig. 3.25. These patterns suggest that indeed the two arrays

deliver approximately the same directivity but the four-element one achieves a reduced

by 2.5 dB sidelobe level.

In the following text, the exact dimensions of the two arrays, their fabrication, mea-

surement and comparison are reported.

Fabrication and Measurements

The three-element series-fed array of Fig. 3.26(a) is designed and fabricated on a

TACONIC TLY − 5, 2.38 mm thick, dielectric substrate of dielectric constant ǫr = 2.2.

Each patch is designed to operate at 2.40GHz; its resonant length is l1 = λg1/2 = 40mm

and its width is w1 = 34mm. The interconnecting transmission line segments are of length



Chapter 3. Spiral-based Artificial Transmission Lines and Applications 75

 
b) a) 

Figure 3.26: a) Three-element series-fed array, incorporating conventional interconnecting

lines, that corresponds to point A of Fig. 3.24 and b) four-element series-fed array,

incorporating artificial DSR-based interconnecting lines, that corresponds to point B of

Fig. 3.24.
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d1 = λg2/2 = 43 mm (point A in Fig. 3.24) and width 2.0 mm. The total length of the

array is 3l1 + 2d1 = 206.0 mm, while it is fed with a coaxial cable that is attached on the

first element of the array.

The four-element series-fed array of Fig. 3.26(b) is designed and fabricated on the

same dielectric substrate. This array is composed of 4 microstrip patches that are iden-

tical with those employed in the three-element array. The conventional interconnecting

transmission lines of the three-element array have been substituted in this array with

the spiral-based artificial lines. These lines are composed of two DSRs each. The total

physical length of each of the spiral-based lines is d2 = 15.3mm. Each DSR has been de-

signed according to the unit cell of Fig. 3.1, employing 0.35mm wide strips and gaps (to

reduce ohmic losses). In order for the spiral-based artificial line to enforce the elements

of the array to radiate in phase at the targeted operating frequency (2.45 GHz), each

DSR has been designed so as this frequency point to correspond to the +90o phase-shift

point on its dispersion diagram. Finally, the total length of the four-element array is

4l1 + 3d2 = 205.9 mm.A photograph of the two fabricated prototypes is depicted in Fig.

3.27. Both antennas are being fed using a coaxial cable, that is connected to the first

patch through the ground plane and the dielectric substrate.

The measured return loss of the conventional three-element array is presented in Fig.

3.28. These results suggest that the three-element array achieves five different resonances

from 1.9 GHz to 2.9 GHz. The third of them, that supported at 2.40 GHz, is the one at

which the array has be designed to operate. Indeed, this is the resonance that corresponds

to the the case that all the array elements are fed in-phase and the array is radiating

at the broadside direction. The measured −10 dB fractional bandwidth of the antenna

at this frequency is FBW−10 dB = 2.0%. All the other four resonances correspond to

traveling waves that are supported by the array.

The measured return loss of the fabricated four-element array is presented in Fig. 3.29.

These results show that the four-element array exhibits a −10 dB fractional bandwidth

of the order of FBW−10 dB = 15.0% that extends symmetrically around 2.4 GHz. This

bandwidth corresponds to the fractional bandwidth of the employed DSR-based artificial

lines (because of the larger size of the employed DSRs and the higher dielectic substrate,

the bandwidth of these DSRs is larger than those examined in the previous sections of this

chapter). Across that bandwidth of the metamaterial series-fed array multiple resonances

are observed. These resonances are attributed to both the discrete resonances of the 3-

element array, that have been now all included in the operational bandwidth of the
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Figure 3.27: Photograph of the fabricated three- and four-element series-fed array pro-

totypes.

1.5 2 2.5 3
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency (GHz)

|S
11

| (
dB

)

Figure 3.28: Measured return loss of the conventional three-element array.
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Figure 3.29: Measured return loss of the four-element array.

4-element array, and the resonances of each of the resonators (spirals) that constitute the

artificial inteconnecting lines. A similar phenomenon (multiple resonances) has been also

observed in [111], where a different class of series-fed arrays with artificial inteconnecting

lines has been investigated.

The E-plane radiation patterns of both the three-element and four-element arrays at

2.4GHz are shown in Fig. 3.30. At this frequency, both arrays exhibit broadside radiation

patterns. The three-element array is slightly more directional than the four-element array,

delivering broadside gain of 11 dBi with a radiation efficiency of approximately 75%. As

far as the four-element array is concerned, it exhibits approximately 2.5 dB reduced

sidelobe levels, as compared to the three-element array, while the delivered gain of this

antenna is 9 dBi and its radiation efficiency approximately 50%. The reduced efficiency

of the four-element array is attributed to the losses on the artificial transmission lines.

Finally, three different E-plane measured radiation patterns of the four-element ar-

ray across its enhanced operating bandwidth are presented in Fig. 3.31. It has been

found that the four-element array scans its main radiating beam with frequency from

the backward direction to the forward direction. Specifically, in Fig. 3.31 the radiation

patterns at frequencies 2.31 GHz, 2.40 GHz and 2.49 GHz are presented. At 2.31 GHz

the four-element array scans its beam at −25o. This beam scans with frequency towards

broadside, where the beam is scanned at 2.40 GHz, and then through broadside towards

positive scanning angles (at 2.49 GHz that beam is scanned at 30o). The efficiency of
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Figure 3.30: Measured E-plane radiation patterns of the three-element and four-element

patch arrays at 2.4 GHz.

this antenna across the entire operating bandwidth and all the scanning angles remains

roughly constant. Therefore, the proposed four-element array that employs the artifi-

cial interconnecting lines could be used in application that require beam scanning with

frequency (such as radar applications). The major advantage of the proposed array, as

compared to other metamaterial-based beam-scanning arrays [83], [84], [92], is that it

scans its beam through broadside without any significant reduction of the total achieved

radiation efficiency due to either mismatching effects [92] or increased ohmic losses.
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Figure 3.31: E-plane radiation patterns of the four-element array at frequencies 2.31GHz,

2.40 GHz and 2.49 GHz.



Chapter 4

A Metamaterial Low-Profile

Monopole-Like Antenna

The analysis, design and measurement of novel, low-profile, small-footprint folded monopoles

employing planar metamaterial phase-shifting lines is presented in this chapter. These

lines are composed of fully-printed spiral elements, that are inductively coupled in order

to exhibit an effective high-µ property. An equivalent circuit for the proposed structure

is presented, validating the operating principles of the antenna and the metamaterial

line. The impact of the antenna profile and the ground plane size on the antenna perfor-

mance are investigated using accurate full-wave simulations. A λ/9 antenna prototype,

designed to operate at 2.36 GHz, is fabricated and tested on both electrically large and

small ground planes, achieving on average 80% radiation efficiency, 5% (110 MHz) and

2.5% (55 MHz) −10 dB measured bandwidths, respectively, and fully omnidirectional,

vertically polarized, monopole-type radiation patterns.

4.1 Introduction

Folded dipoles and monopoles are well-known radiators [112] that provide increased radi-

ation resistance, as compared to the original dipoles and monopoles, while retaining the

same self-resonance. A self-resonant folded monopole of N arms is formed when N − 1

shorted λ/4 monopoles are placed in close proximity to a driven monopole, with the open

ends of all the N wires being connected. At resonance the input radiation resistance of

81
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Figure 4.1: Schematic representation of a) the typical folded monopole of height h1 = λ/4

and b) a low-profile folded monopole with an embedded metamaterial phase-shifting line.
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the N -arm folded monopole is

Rrad,fold−mono ≈ N2Rrad,mono (4.1)

where Rrad,mono is the radiation resistance of the single monopole. A coaxially fed folded

monopole composed of two arms is shown in Fig. 4.1(a). The operation of a folded

monopole can be assumed as a superposition of a non-radiating transmission line mode

(contradirectional currents on the wires of the monopole) and an antenna mode (codirec-

tional currents on the wires of the monopole) [112]. The resonance condition of the first

mode is ∆ϕtl = n2π, n = 0,±1,±2... , while the resonance condition for the antenna

mode is ∆ϕant = (n + 1/2)2π, n = 0,±1,±2..., where ∆ϕ denotes the phase shift of

currents flowing between the feeding and the shorting points of the wire that forms the

folded monopole (effective electrical length of the wire). The total current distribution

on a radiating folded monopole is schematically shown in Fig. 4.1(a), suggesting that

the antenna mode becomes dominant.

The radiation resistance of a λ/4 monopole is approximately Rmono = 36.5 Ω. Ac-

cording to equation (4.1), the radiation resistance of the λ/4 folded monopole of Fig.

4.1(a) is expected to be Rfold−mono = 146 Ω. This feature makes the full-length λ/4

folded monopole inappropriate for applications that involve 50Ω feeding lines. Neverthe-

less, the folded monopole configuration has been proved extremely useful in the design

of electrically small antennas that involve low-profile arms with much smaller radiation

resistances than that of the λ/4 monopole. In these cases, the self-resonance of the an-

tenna is secured either by loading the low-profile monopoles with discrete or distributed

inductance (properly meandered radiating wires) or by increasing the monopoles capaci-

tance to the ground. An inclusive study of electrically small folded monopoles, in either

loaded or meandered and multiple-arm configurations, has been presented in [113].

With the advent of metamaterial structures a novel approach for the design of self-

resonant, low-profile folded monopoles has been proposed, originally in [114], [115], [116]

and very recently in [117]. According to this approach, the use of sub-wavelength meta-

material phase-shifting lines is exploited in order to connect the radiating posts of the

folded monopoles and satisfy a self-resonance condition, as shown in Fig. 4.1(b). Specif-

ically, in the antenna designs of [114], [115], [116], [117] different numbers of radiating

posts have been connected through zero-degree phase-shifting L − C loaded transmis-

sion lines that enforce the posts to radiate in-phase, resulting in a folded-monopole-like

behavior.
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In the present chapter, a new approach for the design of self-resonant, low-profile

folded monopoles is reported. In this approach, the use of subwavelength metamaterial

phase-shifting lines is exploited in order to connect the radiating low-profile posts of

two-arm folded monopoles and enforce the actual resonance condition of the supported

antenna mode. In the proposed antenna design, the phase-shifting line is implemented

through a single line that is composed of fully-printed, inductively coupled resonators that

synthesise a medium supporting mostly slow waves and characterized by an effective high-

µ property. In fact, the embedded phase-shifting lines are employed in order to insert the

phase-shift required to be added to the phase of the currents flowing on the radiating,

low-profile posts in order for the resonance condition of the antenna mode ∆ϕant = π to

be established between the feeding and shorting points, in contrast to the antenna designs

of [114], [115], [116], [117] in which the metamaterial phase-shifting lines were employed

to insert a zero-degree phase shift and enforce the radiating posts to radiate in-phase. As

compared to the folded monopoles investigated in [113], the proposed low-profile folded

monopoles do not require any loading with discrete elements (lumped inductors), do not

involve any meandered radiating wires (that may impose difficulties in the fabrication

procedure), and exhibit much smaller footprint than that of the capacitively loaded

monopoles.

A general description of the proposed class of self-resonant, coaxially-fed low-profile

folded monopoles is presented in section 4.2 of the chapter. A detailed description of the

employed phase-shifting lines and their operation when embedded within the proposed

folded monopoles is presented in section 4.3, while a simplified equivalent circuit for the

proposed antenna is presented in section 4.4. Subsequently, an initial implementation

of the proposed low-profile folded monopole, designed to operate at 2.4 GHz and built

on an electrically large ground plane, together with simulated and measured results are

reported in section 4.5. In section 4.6, it is shown that the employed phase-shifting lines

can be used to enforce the antenna mode irrespectively of the profile of the radiating posts

and the radiation properties of ultra low-profile folded monopoles are investigated. In

section 4.7, the impact of the ground plane against which the proposed antennas are built

is examined. Based on the results of this study, the measurement of two optimal antenna

designs are reported in the same section. In section 4.8 a microstrip-fed version of the

proposed antenna is presented and, finally, in section 4.9 the electromagnetic coupling

between pairs of the proposed antenna is assessed.
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4.2 Proposed Antenna Design - General Description

A general description of the proposed antenna design that effectively implements the

antenna model of Fig. 4.1(b) is reported in this section. The side view of the proposed

antenna is depicted in Fig. 4.2(a). As shown in Fig. 4.2(a), the antenna is mainly

composed of two vertical posts, that constitute the main radiation mechanism of the

antenna. The bottom of the first post is directly connected to a feeding port that is a

coaxial cable in this case (feeding post). The second post is connected directly to the

ground plane against which the antenna is fed, at an electrically small distance from

the first post, similarly with the folded monopoles of Fig. 4.1 (shorting post). These

two posts are connected through a spiral-based, metamaterial, phase-shifting line that is

presented in detail in the next section. In the space around these two posts, three layers

of different materials are present. Two of them, these represented with grey color in

Fig. 4.2(a), are dielectric substrates of dielectric constant ǫr and heights hsub1 and hsub2,

that are used in order to bear the ground plane against which the antenna is fed and

the printed metamaterial phase-shifting line, respectively. The space between these two

substrates is filled with air or any other material with dielectric constant close to that of

the free space ǫ0 (e.g. Rohacell foam) that can be employed to hold the two substrates

apart at a certain distance hair. The total profile of the antenna is h = hsub1+hair +hsub2.

The top view of the proposed antenna is shown in Fig. 4.2(b). It mainly depicts

the metalization that is printed on the top side of the upper dielectric substrate of

Fig. 4.2(a). The metalization is composed of two square pads that directly load the

two posts, and the employed metamaterial phase-shifting line that is composed of two

inductively coupled spiral resonators directly attached to the square pads. The operation

of the phase-shifting line will be explicitly explained in the following section. The total

dimensions of the metalization printed on the top side of the upper dielectric substrate

are dx,total × dy,total. For the cases that will be discussed in the following text, these

dimensions are always much smaller than the operating wavelength (dx,total, dy,total << λ),

ensuring that the employed metamaterial phase-shifting line is always of subwavelength

dimensions and the two vertical posts are separated by a subwavelength distance. In

contrast to all the antenna designs investigated in [113], in the proposed antenna design

there is no dc connection between the two vertical posts. The latter feature, apart from

being a major differentiator of the proposed antenna, could be potentially exploited

for the design of easily fabricated reconfigurable monopoles. Such reconfigurable folded
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Figure 4.2: a) Side view and b) top view schematic of the proposed low-profile antenna.

monopoles could be designed if the employed phase shifting lines were loaded with any

dc-controlled reactive elements (such as PIN diodes or varactors). In that case, the

biasing dc signal would be multiplexed with the RF at the input port of the antenna and

no additional biasing circuitry would be required.

The radiation resistance of the proposed antenna at its self-resonance can be effec-

tively approximated under the assumption that the currents flowing through the two

posts are equal in magnitude and constant across the length of the posts (this assump-

tion is valid given the low-profile characteristics of the proposed antenna). In that case,

the radiation resistance of any of the two posts is given by equation (4.2) [112]

Rrad,post = 160π2

(

h

λ

)2

(4.2)

and the total radiation resistance of the proposed antenna can be approximated, using

equation (4.1), as

Rrad,in ≈ 640π2

(

h

λ

)2

. (4.3)

Equation (4.3) suggests that the proposed antenna design, at its self-resonance, could

achieve a radiation resistance of the order of 50 Ω even for a profile of h ≈ λ/12.
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Figure 4.3: Unit cell of a) a free standing DSR and b) a DSR participating in an array.

4.3 Spiral-Based Phase-Shifting Lines

An antenna design similar to the low-profile folded monopole of Fig. 4.1(b) requires

a metamaterial phase-shifting line that would be compact (s << λ/4), non-radiating,

and preferably planar, fully-printed and low-loss. It is reminded at this point that the

purpose of this phase-shifting line is to add the required phase in order for the flowing

on the radiating posts currents to satisfy the resonance condition of the antenna mode of

a typical folded monopole (∆ϕant = π). For the design of such a phase-shifting line, the

use of tightly coupled resonators can be considered. Nevertheless, for this application,

the wanted supported mode is not the backward wave mode discussed in chapter 3, but

a slow wave mode instead.

For the implementation of the required slow waves, the use of the DSR, similar with

that of Fig. 4.3(a), is also proposed. Nevertheless, in this case different polarities, as

compared to these considered in chapter 3, between adjacent spirals will be required

to achieve the required operating mode. Specifically, the relative polarities of adjacent

tightly coupled spirals in this case will be similar with that depicted in Fig. 4.3(b).

The equivalent circuit of the DSR of Fig. 4.3(a) is depicted in Fig. 4.4(a), while

that of the configuration of Fig. 4.3(b) is depicted in Fig. 4.4(b). For a DSR employed
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Figure 4.4: Equivalent circuit representation of the unit cells of a) Fig. 4.3(a) and b)

Fig. 4.3(b).

in a non-grounded configuration, printed on a substrate of dielectric constant ǫr = 2.2,

and designed to operate at the 2.4 GHz band, with dx = 8.2 mm, dy = 3.8 mm and

w = s = 0.2 mm, the involved equivalent circuit parameters have been found to be

Lss = 24.8 nH, Css = 0.085 pF and Cser = 0.06 pF .

For reasons of completeness, it is reminded that, in the general case, the periodic

analysis of the configuration of Fig. 4.3(b) and the equivalent circuit of Fig. 4.4(b) can

provide non-trivial solutions both for backward and forward slow waves, depending on the

sign of the coupling coefficient kM (as also shown in Fig. 4.5 and Fig. 4.6). Nevertheless,

the specific configuration secures an optimized (maximized) positive coupling coefficient

that enables the forward slow waves to become dominant.

Finally, in order to quantify the propagation characteristics along a single unit cell

identical with that of Fig. 4.3(b), its transmission magnitude and phase, obtained

through the analysis of the equivalent circuit of Fig. 4.4(b), are presented in Fig. 4.7.

These results suggest that the single unit cell exhibit satisfying transmission for all the

points of its dispersion curve. Across this bandwidth, the single unit cell could provide

any phase-shift between 0o and −180o. Therefore, the single unit cell of Fig. 4.3(b) could

be used as phase-shifting line for the proposed low-profile folded monopole of Fig. 4.1(b).
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absolute value of their mutual inductance.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

βd (Radians)

F
re

qu
en

cy
 (

G
H

z)

  k
M

 < 0
  k

M
 > 0

Light−line

Figure 4.6: Dispersion curves of the unit cell of Fig. 4.4(b) for positive and negative

values of the coupling coefficient kM .



Chapter 4. A Metamaterial Low-Profile Monopole-Like Antenna 90

1.6 1.8 2 2.2 2.4 2.6 2.8 3
−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

|S
21

| (
dB

)
1.6 1.8 2 2.2 2.4 2.6 2.8 3

−180

−150

−120

−90

−60

−30

0

30

60

90

120

150

180

Frequency (GHz)

A
rg

(S
21

) 
(D

eg
re

es
)

Figure 4.7: Transmission magnitude and phase through a single unit cell similar with

that of Fig. 4.4(b) for a positive coupling coefficient (kM > 0).

4.4 Equivalent Circuit

Given the general description of the proposed antenna and the analysis of the employed

spiral-based phase-shifting lines, the extraction of the equivalent circuit of the proposed

low-profile folded monopoles is possible. This equivalent circuit, that could be used as

a design tool for this type of antennas, is composed of three discrete entities; the two

vertical posts and the phase-shifting line. Even though the two posts slightly differ from

each other (the first is coaxially fed and the second is directly connected to the ground

plane), for reasons of simplicity and without significantly affecting the final results, they

will be considered identical and they will be both treated as coaxially fed monopoles.

Regarding the spiral-based line, it will be modeled according to the equivalent circuit of

Fig. 4.4(b). 
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Figure 4.8: Equivalent circuit of the proposed low-profile folded monopole antenna.

The proposed equivalent circuit for the reported antenna design is depicted in Fig.
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4.8. The first and the last parts of the proposed equivalent circuit correspond to the

two vertical monopoles. The inductance Lmono of the two posts depends on their length

and their radius and can be calculated, assuming the quasi-static analysis of [106], using

equation (4.4).

L mono = 0.2 · h ·
[

ℓn

(

4h

dpost

)

− 3

4

]

[nH] . (4.4)

Assuming that the vertical posts are lossless, the only resistive component involved

in their equivalent circuit is their radiation resistance Rrad. The radiation resistance

of each post can be calculated, when considering it to be short and be driven by a

constant current, using equation (4.2). Finally, the capacitances C1,mono and C2,mono

involved in the equivalent circuit of Fig. 4.8 represent the internal capacitance of each

monopole, that defines together with Lmono the input impedance and the self-resonances

of the monopole, and its external capacitance, that is encountered when a monopole is

fed coaxially against a ground plane, respectively. These capacitances depend on the

loading of each of the posts (surrounding dielectric material, loading pads etc) and the

most effective way to be calculated are through the full-wave simulation of the coaxially

fed short monopole and the full-wave estimation of its self-resonance ωres and its anti-

resonance ωanti−res. Specifically, given that the series branch Lmono −C1,mono defines the

resonance of the monopole and the parallel combination of the branch Lmono − C1,mono

with the capacitance C1,mono defines its anti-resonance, the capacitances C1,mono and

C2,mono can be approximated, when ωres and ωanti−res have been estimated through a

full-wave simulation, using equations (4.5) and (4.6), respectively.

C1,mono ≈
1

ω2
resLmono

(4.5)

C2,mono ≈
C1,mono

ω2
anti−resLmonoC1,mono − 1

(4.6)

The remaining lumped elements involved in the equivalent circuit of Fig. 4.8 refer

to the employed phase-shifting line. Both the impact and the way their values can be

estimated have been reported in section 4.3. Therefore, the only parameter involved in

the equivalent circuit that remains to be quantified is the inductive coupling coefficient

kM . According to [32], when the transmission through a weakly excited pair of coupled

resonators is known, the coupling coefficient can be calculated using equation

kM =
f 2

2 − f 2
1

f 2
2 + f 2

1

, (4.7)
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where f1 and f2 are the two resonances of the coupled configuration (frequencies at

which the transmission through the coupled pair is maximized). At these frequencies

the transmission phase sign is altered. Consequently, in cases that only the transmission

through a strongly excited pair is known, as in Fig. 4.7, the coupling coefficient can

be approximated by calculating equation (4.7) for two frequencies that correspond to

transmission phases that differ by 180o.

Considering the antenna model of section 4.2 with a profile of λ/9 and the spiral

dimensions reported in section 4.3, the parameters of the presented equivalent circuit

assume the following values; for the short monopoles Lmono = 9.3 nH, Rrad = 19 Ω,

C1,mono = 0.25 pF and C2,mono = 0.29 pF , and for the metamaterial phase-shifting line

Lss = 24.8 nH, Css = 0.081 pF , Cser = 0.06 pF and kM = 0.2. It is pointed out that

all the values of the parameters associated with the operation of the phase-shifting line

are dependent on the distance of the line from the employed ground plane. Therefore,

different antenna profiles will result in different values for these parameters.

The input impedance of the considered λ/9 antenna design, calculated using the

proposed equivalent circuit and also using a full-wave Ansoft HFSS simulation, is shown

in Fig. 4.9 and Fig. 4.10. The equivalent circuit results are in good agreement with

the full-wave results. The major disagreement between them concerns the values of the

calculated impedance around the anti-resonances of the structure. This disagreement

should be attributed to the modeling of the posts and the phase-shifting line as lossless

structures and also to the fact that the two posts were considered identical. However,

good agreement is achieved for the resonances that are of our interest.

4.5 Low-Profile Antenna at 2.4 GHz

4.5.1 Antenna Parameters and Full-wave Simulations

The parameters that were considered in the previous sections for the profile of the folded

monopole and the dimensions of the spirals are used in this section for the simulation

and fabrication of an initial prototype of the proposed low-profile antenna that would

operate at approximately 2.4 GHz. The profile of this initial antenna prototype has

been chosen to be approximately λ/9 in order to ensure that, according to equation

(4.3), the antenna prototype would exhibit a decent radiation resistance (≈ 50 Ω) and,

therefore, could be easily matched to a 50 Ω feeding port (SMA connector). This λ/9
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Figure 4.9: Input resistance of the antenna of section 4.2 calculated using the equivalent

circuit of Fig. 4.8 and Ansoft HFSS simulations.
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Figure 4.10: Input reactance of the antenna of section 4.2 calculated using the equivalent

circuit of Fig. 4.8 and Ansoft HFSS simulations.

monopole is initially built on an electrically large ground plane (the employed ground

plane dimensions are 2λ × 2λ). At the targeted operating frequency the wavelength is

λ = 125 mm. In order to achieve an antenna profile of h = λ/9, the length of the

employed posts is set to be hpost = hsub1 + hair + hsub2 = 13.8 mm. The diameter of the

posts is dpost = 0.91 mm. This dimension is mainly enforced by fabrication restrictions

(core wire of the used coaxial cable). The employed dielectric substrates are of dielectric

constant ǫr = 2.2 and height hsub1 = hsub2 = 2.4 mm. Therefore, the distance between

the two substrates is set to be, in this initial design, hair = 9.0 mm. Referring to
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the top view of the reported design (Fig. 4.2(b)), the total footprint of the antenna is

dx,total × dy,total = 15.8 mm × 3.8 mm ≈ λ/8 × λ/33. The square pads that directly load

the posts are of dimensions 3.8 mm × 3.8 mm.

As far as the metamaterial phase-shifting line is concerned, the double spiral res-

onators are designed to achieve their first self-resonance (half-wavelength resonators) at

2.34 GHz, when placed 13.8 mm above a ground plane and in the presence of all the

dielectric layers of Fig. 4.2(a). Referring to Fig. 4.3, this is achieved when dx = 8.2 mm,

dy = 3.8 mm and the width of the strips and the gaps between them is set to be

w = s = 0.2 mm. The transmission characteristics of this specific phase-shifting line

have been already presented in Fig. 4.7.

The proposed antenna was simulated using Ansoft HFSS. The simulated input impedance

of the λ/9 antenna design is depicted in Fig. 4.11. This result suggests that the pro-

posed structure achieves its first self-resonance (Xin (ω) = 0 and ∂Xin (ω) /∂ω > 0) at

1.8 GHz. Even though this frequency is out of the band of operation of the employed

phase-shifting line (Fig. 4.7), there is some wave transmission through the spirals at this

frequency, with a positive phase-shift added to the transmitted waves (assuming that

negative phase is added to a forward propagating wave). In fact, what occurs at 1.8GHz

is that the phase-shifting line compensates the negative phase-shift added to the currents

when flowing on the radiating posts, resulting in a 0o phase-shift between the feeding and

shorting points. Therefore the resonance condition that is satisfied at 1.8 GHz is that of

the transmission line mode.

The second self-resonance of the proposed antenna is achieved at 2.36 GHz. The

supported currents on the posts at this resonance are depicted in Fig. 4.12. These

codirectional currents suggest that this resonance corresponds to the antenna mode of

the proposed low-profile folded monopole. Therefore, the electrical length of the structure

at 2.36 GHz is of the order of −180o. According to the calculated transmission phase

of the phase-shifting line, shown in Fig. 4.7, the effective electrical length of the phase-

shifting line at this frequency is approximately −120o. Therefore, it is estimated that

the effective total length of the radiating posts is approximately −60o, which is close to

the effective length of a line with physical length 2 × λ/9.

In order to validate the aforementioned arguments regarding the nature of the two

self-resonances of the proposed antenna, the transmission of waves from the feeding point

to the shorting point of the proposed structure has been simulated using Ansoft HFSS.

For this purpose, coaxial ports have been attached to both posts. Similarly to the case of
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Figure 4.11: Simulated input impedance of the proposed antenna.

 

Figure 4.12: Currents on the vertical posts at 2.36 GHz.
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Figure 4.13: Simulated (using Ansoft HFSS) transmission magnitude and phase when

both posts are terminated with coaxial ports (none of the ports is shorted in this case).

the extraction of the equivalent circuit, substituting the shorting post with a coaxially fed

post does not significantly influence the electromagnetic characteristics of the structure.

The results of this full-wave simulation are shown in Fig. 4.13 and certify that the

currents at the feeding and shorting points of the proposed antenna are −180o out of

phase in the 2.4 GHz region (antenna mode resonance) while they are in phase in the

1.8 GHz region (transmission line resonance).

4.5.2 Fabrication and Measurement

The proposed antenna, operating at 2.4 GHz and built on an electrically large ground

plane, was in turn fabricated and measured. The dielectric material that was used for

the two substrates was the TACONIC TLY − 5A (ǫr = 2.2), while the thickness of the

layer of air between the two dielectric substrates was relatively accurately maintained

using Rohacell foam. Note that the dimensions of the lower substrate, on which the

ground plane of the antenna was built, were 25cm × 25cm, while the dimensions of the

upper substrate were slightly greater than the total dimensions the top-loading phase-

shifting line. This spiral-based phase-shifting line was printed on the upper side of the

top substrate using standard photolithography techniques (chemical etching). A semi-

rigid coaxial cable RG 405 was employed to directly feed the antenna. In fact, the core

wire of this cable was also used to implement the radiating via that was supposed to

be connected directly with the feeding cable. This choice significantly simplified the
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Figure 4.14: Measured and simulated return loss of the proposed antenna.

fabrication procedure. The second radiating post was implemented with a typical wire

of the same diameter with that of the core of the coaxial cable.

The simulated and measured return loss (S11) of the proposed antenna is shown in Fig.

4.14. These results suggest that the proposed antenna is well-matched within a fractional

bandwidth of 5% (|S11| < −10dB) around 2.36GHz, while it is not matched at 1.8GHz.

This is due to the fact that for the antenna mode a decent radiation resistance, given by

equation (4.3), is achieved, while for the transmission line mode resonance the effective

resistance is too small for the antenna to be matched to a 50 Ω feeding line.

The simulated (Ansoft HFSS) and measured radiation efficiency of the proposed an-

tenna together with the measured input reflection coefficient are plotted in Fig. 4.15.

The measured efficiency curve has been calculated using the conventional Wheeler cap

method [118] and considering constant power losses both in the presence and the absence

of the cap. For the implementation of the measurement in the presence of the cap, a

half-spherical cap of radius slightly larger than λ/2π has been backed on the ground

plane of the antenna. Even though the employed measurement technique has not been

optimized and the method is conceptually an approximate one, the measured and sim-

ulated results are in good agreement and they both show that at the lower edge of the

operating band (2.32 GHz) rather high radiation efficiencies of the order of 90% can

be achieved, while when moving towards the upper edge of the band (2.42 GHz) the

radiation efficiency decreases to about 60%, due to the ohmic losses on the employed

spiral-based phase-shifting line. This finding is also validated by the results of Fig. 4.13,
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Figure 4.15: Measured (Wheeler cap method) and simulated (Ansoft HFSS) radiation

efficiency of the proposed antenna.

that show a rapidly reducing transmission magnitude when moving towards the upper

edge of the radiation band. This reduction must be caused by a rapid increase of the

ohmic losses on the phase-shifting line, given that the radiation losses are expected to

be approximately constant within the radiation bandwidth. Finally, note that the simu-

lated and measured efficiency results are in excellent agreement (the two curves cross) at

two frequency points. These two frequencies approximately coincide with the simulated

resonance and the anti-resonance of the proposed antenna, as shown in Fig. 4.11. In

fact, at these frequencies the measured input reflection coefficient assumes purely real

values and the error in the calculation of the measured efficiency is minimized. At the

resonance of the investigated antenna, the measured radiation efficiency is 90%.

Finally, the simulated E− and H−plane radiation patterns of the proposed low-profile

folded monopole are reported in Fig. 4.16 and Fig. 4.17, respectively. Both radiation

patterns are affected by the square shape and the electrically large size (2λ × 2λ) of the

ground plane on which the antenna is built. Specifically, the electrically large ground

plane tilts the E−plane pattern off the endfire direction (θ = 90o), resulting in a radiation

pattern that achieves its maximum at approximately θ = 60o. Furthermore, its square

shape enables the creation of non-negligible standing currents at all its four corners that

radiate constructively in the far-field, resulting in a square-like H-plane pattern.
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Figure 4.16: Simulated E−plane

(xz−plane) of the proposed low-profile

folded monopole, built on a 2λ × 2λ

ground plane.
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Figure 4.17: Simulated H−plane

(xy−plane) of the proposed low-profile

folded monopole, built on a 2λ × 2λ

ground plane.

4.5.3 Q-factor calculation

In this section of the thesis, the Q-factor of the proposed antenna design is reported. For

the calculation of the Q-factor the lossless case is considered and equation (4.8) [113], [57]

is employed. In equation (4.8), R (ω) and X (ω) stand for the resistance and reactance

functions at the input of the investigated antennas, respectively, and R′ (ω) and X ′ (ω)

stand for their first derivatives with respect to frequency.

Q (ω) ≈ ω

2R (ω)

√

R′ (ω)2 +

[

X ′ (ω) +
|X (ω)|

ω

]2

(4.8)

Using equation (4.8) together with full-wave simulations of a lossless antenna model,

the Q-factor of the investigated λ/9 LPFM is found to be Q ≈ 15. This value is compa-

rable with the Q-factors of the antennas investigated in [113] (in that study, a Q-factor of

Q ≈ 17.4 had been reported for a 2-arm λ/10 folded monopole), and it is approximately

4 times larger than the Chu limit [54], [57]. In order to provide a intuitive reference for

the performance of the proposed antenna, it is pointed out that the lowest Q-factor that

has been ever reported in the literature was 1.5 times above the Chu limit [119].



Chapter 4. A Metamaterial Low-Profile Monopole-Like Antenna 100

4.6 Towards Ultra Low-Profile Folded Monopoles

The major advantage of the proposed antenna is that it can be designed to be self-

resonant, within the operating bandwidth of the phase-shifting line, irrespectively of

its profile. Therefore, the proposed model could be used for the design of ultra low-

profile, self-resonant antennas with monopole-like radiation properties. In this section,

the limits of this possibility are examined by studying different versions of the proposed

antenna with decreasing profiles. Specifically, referring to the side view of the proposed

antenna (Fig. 4.2(a)), four antenna designs with different values of the parameter hair are

considered. For these designs the parameter hair assumes the values hair = 9mm, 6mm,

2.4 mm and 0 mm, respectively, resulting in total antenna profiles of approximately λ/9,

λ/12, λ/17 and λ/26 (at 2.4 GHz).

When reducing the profile of the proposed antenna by decreasing the length of the

radiating posts, its antenna mode self-resonance is expected to move to a frequency that

corresponds to a larger electrical length for the phase-shifting line, or, equivalently, to-

wards the right on the transmission phase diagram of Fig. 4.7. The simulated, using

Ansoft HFSS, input resistance and reactance for the aforementioned antennas are pre-

sented in Fig. 4.18 and Fig. 4.19, respectively. These results validate that, as far as

the second self-resonance of the proposed structure is concerned, the resonant frequency

is slightly increased with the decrease of the antenna profile. Exemption to the latter

observation consists the λ/26 antenna design, that achieves its antenna mode resonance

at approximately the same frequency with the λ/9 antenna design. This is due to the

phase-shifting line of the λ/26 antenna design being that close to the ground plane that

its transmission properties have changed, as compared to the transmission properties of

the phase-shifting lines in the other investigated designs. As far as the first self-resonance

is concerned, this resonance is also moving to higher frequencies as the profile of the pro-

posed structure is decreased. Nevertheless, this shift is much more rapid, as compared

to the second self-resonance shift. This rapid increment is attributed to the fact that

the transmission phase curve of Fig. 4.7 is almost flat before the formulated passband

(where the first resonance occurs).

Although the proposed antennas achieve an antenna mode self-resonance within the

operating bandwidth of the phase-shifting line for any possible profile, their radiation

properties do not remain unchanged with the reduction of their profile. First of all,

their radiation resistance decreases proportionally to the ratio (h/λ)2, as equation (4.3)
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Figure 4.18: Simulated input resistance of four antennas of different profiles.
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Figure 4.19: Simulated input reactance of four antennas of different profiles.

suggests and is shown in Fig. 4.18. Therefore, ultra low-profile versions of the proposed

antenna exhibit too small resistances to be matched to 50 Ω feeding lines. This is shown

in Fig. 4.20, where the simulated return losses of the aforementioned antenna designs

are plotted. Secondly, as their radiation resistance decreases and their ohmic resistance,

that is mainly attributed to the operation of the employed phase-shifting line, remains

unchanged, the delivered radiation efficiency also decreases with the reduction of their

profile. The simulated radiation efficiencies of the four examined antennas are shown in

Fig. 4.21. A proof for the validity of these curves has been shown in section 4.5 and

Fig. 4.15, where the simulated curve of the λ/9 monopole was directly compared with a

measured efficiency curve. Finally, the reduction of the profile of the proposed antennas
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Figure 4.20: Simulated reflection coefficient of four antennas of different profiles.

results in the increase of their quality factor and the reduction of their useful bandwidth,

as also shown in Fig. 4.20. An inclusive comparison of the properties of the four antennas

under consideration is presented in Table 4.1 and Table 4.2.

Antenna Profile hair (mm) fres (GHz) FBW−10 dB FBW−6 dB

λ/9 9.0 2.365 GHz 3 % 5 %

λ/12 6.0 2.398 GHz 2 % 3 %

λ/17 2.4 2.409 GHz 1 % 2 %

λ/26 0.0 2.372 GHz − 1 %

Table 4.1: Resonance and fractional bandwidth of the four antennas of different profiles.

Antenna Profile hair (mm) Rin (Ω) (Full-wave) Rrad (Ω) (Eq. (4.3)) Sim. Efficiency

λ/9 9.0 70 78 88 %

λ/12 6.0 57 44 69 %

λ/17 2.4 38 22 38 %

λ/26 0.0 19 9 15 %

Table 4.2: Input resistance, radiation resistance and simulated radiating efficiency (at

resonance) of the four antennas of different profiles.
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Figure 4.21: Simulated radiation efficiency of four antennas of different profiles. The dots

on the traces denote the resonance of each antenna design.

4.7 Impact of the Ground Plane

4.7.1 Reducing the Ground Plane Size

The ground plane against which the proposed low-profile folded monopoles are fed has a

major impact on the performance of the antennas. Up to this point, all the investigated

monopoles have been considered to be on an electrically large square ground plane of size

2λ × 2λ. In this section, the exact impact of the employed ground plane size on the op-

eration and the radiation properties of the proposed structure is studied by investigating

several versions of the proposed antenna built on ground planes of different sizes.

In Fig. 4.22 the simulated input reactance of the λ/9 antenna built on square ground

planes of five different sizes is plotted. The largest of these ground planes is 2λ× 2λ and

the smallest is λ/8 × λ/8. These results suggest that for any ground plane larger than

λ/2 × λ/2 the self-resonance of the antenna is not perturbed. Nevertheless, for smaller

ground planes the self-resonance of the antenna changes, while for extremely small ground

planes (i.e. λ/8 × λ/8) the resonance tends to vanish. This conclusion is also validated

by the results of Fig. 4.23, where the simulated return losses of the five antennas are

plotted. For this reason, it is reasonable to suggest that the proposed folded monopoles

should be built on at least λ/2 × λ/2 large ground planes in order for the ground plane

not to significantly and destructively affect the properties of the antenna.
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Figure 4.22: Simulated input reactance of the λ/9 folded monopole built on ground planes

of different sizes.
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Figure 4.24: Photograph of the proposed λ/9 folded monopole built on a λ/2 × λ/2

ground plane.

4.7.2 Antenna Designs on a λ/2 × λ/2 Ground Plane

Based on the conclusion of the study on the impact of the ground plane size to the input

impedance of the proposed antenna, the fabrication and measurement of two antenna

designs built on a λ/2 × λ/2 ground plane is reported in this section.

λ/9 folded-monopole on a λ/2 × λ/2 ground plane

The first of the two antennas reported in this section is a λ/9 folded-monopole built on

a λ/2 × λ/2 ground plane. Other than the ground plane size, the antenna parameters

are identical with those of the antenna reported in section 4.5. Besides, a sleeve balun

has been used to coaxially feed the antenna and ensure that the feeding cable in not

radiating. A photograph of the fabricated prototype is depicted in Fig. 4.24.

The simulated and measured return losses of this antenna design are shown in Fig.

4.25. A 2.5% −10 dB and a 4% −6 dB fractional bandwidths were measured for this

design. These bandwidths are smaller (approximately by a factor of 2) than those mea-

sured for the antenna fed against the 2λ× 2λ large ground plane. As far as the radiation

patterns are concerned, the simulated and measured E− and H−plane patterns of an-
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Figure 4.25: Measured and simulated return loss of the λ/9 folded monopole built on a

λ/2 × λ/2 ground plane.

tenna are shown in Fig. 4.26 and Fig. 4.27, respectively. It is noted that the measured

E−plane pattern is not tilted off the θ = 90o direction, as was for the antenna built

on the large ground plane, and is similar to the doughnut-shaped radiation patterns of

conventional dipoles, with the exception of the relatively high cross-polarization levels

that have been measured in the θ = 0o and θ = 180o directions and are attributed to

the radiation of the edges of ground plane. Also, the measured H−plane for this design

is almost perfectly omnidirectional, as opposed to the antenna of section 4.5 where the

standing currents on the corners of the large ground plane affected the H−plane pat-

tern. Radiation efficiencies of the order of 85% were measured for this antenna using the

Directivity/Gain comparison method. Specifically, by measuring the full 3-D radiation

patterns with an angular step of 5o in both the θ− and φ−planes, a maximum direc-

tivity of 2.57 dBi and a maximum gain of 2 dBi were measured at the resonance of the

antenna, yielding an efficiency value of 87.7%. This value is of the same order with the

efficiency values measured using the Wheeler cap method for the antenna built on the

2λ × 2λ large ground plane. Similarly with that antenna, the measured efficiency values

decreased towards the upper edge of the operating band.

λ/17 folded-monopole on a λ/2 × λ/2 ground plane

The second low-profile antenna built and measured on a λ/2 × λ/2 ground plane was a

λ/17 folded-monopole. For this antenna, the thickness of the air layer between the two
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Figure 4.26: Measured and simulated

E−plane radiation pattern of the λ/9

folded monopole built on a λ/2 × λ/2

ground plane.
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Figure 4.27: Measured and simulated

H−plane radiation pattern of the λ/9

folded monopole built on a λ/2 × λ/2

ground plane.

dielectric layers has been set to 2.4 mm. According to the conclusions of section 4.6,

further reducing the distance of the spiral-based lines from the ground plane affects the

properties of the phase-shifting lines. Therefore, the λ/17 folded-monopole is among the

very ultra low-profile antenna designs that can be obtained using the proposed approach.

A photograph of the fabricated prototype is shown in Fig. 4.28

The simulated and measured return losses of this antenna are shown in Fig. 4.29.

These results suggest that the λ/17 antenna design does not exhibit satisfying input

resistance to be well-matched to a 50Ω feeding line. In fact, equation (4.3) suggests that

the theoretically estimated radiation resistance for this profile is only 22Ω. Nevertheless,

a measured −8 dB return loss is achieved at 2.45GHz. For this frequency, the simulated

and measured E− and H−plane radiation patterns are shown in Fig. 4.30 and Fig. 4.31,

respectively. These radiation patterns show that even for such low profiles the monopole-

like radiation pattern characteristics are well-retained. Nevertheless, a total radiation

efficiency of only 20% was measured (using the full 3-D radiation pattern measurements

and the Directivity/Gain comparison method) for this antenna.
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Figure 4.28: a) Top view and b) side view photograph of the λ/17 low-profile folded

monopole built on a λ/2 × λ/2 ground plane.
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Figure 4.29: Measured and simulated return loss of the λ/17 folded monopole built on a

λ/2 × λ/2 ground plane.
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Figure 4.30: Measured and simulated

E−plane radiation pattern of the λ/17

folded monopole built on a λ/2 × λ/2

ground plane.
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Figure 4.31: Measured and simulated

H−plane radiation pattern of the λ/17

folded monopole built on a λ/2 × λ/2

ground plane.

4.8 Microstrip-fed Low-Profile Folded Monopoles

Up to this point, all the considered low-profile monopoles were coaxially-fed. In many

applications, though, the use of microstrip feeding lines may drastically simplify the

design and fabrication of the RF front-end. For this reason, the proposed antenna is

tested in this section when considered to be fed by a microstrip line.

The schematic of the proposed microstrip-fed low-profile folded monopole is depicted

in Fig. 4.32. In fact, the only difference between this antenna and the coaxially-fed

monopole is that instead of the antenna to be fed below its ground plane, it is fed from

above the ground plane, using a 50Ω microstrip line. This slightly reduces the total length

of the radiating posts, resulting in a slightly reduced radiation resistance, as compared

to its coaxially-fed counterpart of the same profile. This feature could be inverted by

designing the feeding line at the other side of the ground plane.

The microstrip-fed low-profile monopole of Fig. 4.32 was built similarly as before.

The dielectric material used was again the TACONIC TLY − 5A (ǫr = 2.2). This time

the thickness of the substrates was hsub1 = hsub2 = 1.15 mm, while the ground plane size
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Figure 4.32: a) Top view and b) side view schematic of the microstrip-fed low-profile

antenna.

is set to be λ/2 × λ/2. A photograph of a λ/12 microstrip-fed low-profile monopole is

shown in Fig. 4.33.

Figure 4.33: a) Side view and b)top view photograph of the microstrip-fed low-profile

antenna.

The measured and simulated return losses of the antenna of the λ/12 folded monopole

of Fig. 4.33 are depicted in Fig. 4.34. The simulated results were obtained using CST
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Figure 4.34: Simulated and measured return loss of the microstip-fed single element.

Microstripes. As it can be seen in Fig. 4.34, there is a discrepancy between the simulated

and measured results. This can be attributed to two reasons. The first is related to the

full-wave simulation of the structure. In particular, the full-wave simulation of the an-

tenna structure together with the feeding line requires a significantly large computational

domain that could be hardly solved by the available in the lab computational systems.

Therefore, the meshing procedure for this structure was carried out manually, enforcing a

less dense mesh. Also, the convergence criteria employed during the solution of the model

were not so strict. The second reason that might have caused the observed discrepancy

is the fabrication of the antenna and, specifically the microstrip-to-wire transition. It has

been experimentally validated that the quantity of soldering material used to solder the

radiating wire on the microstrip-line influences the inductance of the wire and, therefore,

slightly detunes the final structure.

A second comment on the simulated and measured return losses of the proposed

microstrip-fed low-profile monopole is that even though at resonance the antenna can be

considered matched (|S11| < −10 dB), the return loss does not achieve very small values.

This is attributed to the reduced radiation resistance of the microstrip-fed antenna (as

compared to the coaxially-fed counterpart of the same profile).

The measured E−plane and H−plane radiation patterns of the microstrip-fed an-

tenna are shown in Fig. 4.35 and Fig. 4.36, respectively. These results consist the major

difference between the microstrip-fed and the coaxially-fed antenna. Specifically, given

that in the microstrip-fed case the port is located within one of the two principal planes

of the antenna (H−plane), it significantly affects its radiation patterns resulting in a
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more directive H−plane pattern than the almost perfectly omnidirectional H−plane of

the coaxially-fed antenna. Referring to the H−plane pattern of Fig. 4.36, the feeding

port is located at direction ϕ = 270o and causes the two nulls at the ϕ = 225o and

ϕ = 315o directions. The measured maximum directivity of the microstrip-fed antenna

is 3.16 dBi. The efficiency value that was extracted from the Gain/Comparison method

for the microstrip-fed λ/12 antenna was 43%.
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Figure 4.35: E-plane radiation pattern

for a single low-profile folded monopole

fed with a microstrip line.
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Figure 4.36: H-plane radiation pattern

for a single low-profile folded monopole

fed with a microstrip line.

4.9 Coupling Assessment Between Low-Profile Folded

Monopoles

Throughout the study of the proposed low-profile folded monopoles, it has been dis-

covered that one of their major advantages, as compared to conventional monopoles, is

that they exhibit reduced mutual coupling when operating in close proximity to each

other. This feature might be extremely useful for many applications. For this reason,

in this section the coupling between two λ/12 low-profile folded monopoles is assessed

as a function of the distance between them, and compared to the coupling between the

conventional λ/4 monopoles. The assessment is performed through both full-wave and
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Figure 4.37: Return loss and coupling coefficient between two λ/4 monopoles and two

low-profile folded monopoles (LPFM), respectively, being 0.2λ apart.

semi-analytical methods.

4.9.1 Full-wave Analysis

The most accurate assessment of the coupling between any pair of antennas can be

performed through full-wave simulations. In this section, the results of the full-wave

analysis of two-element arrays of conventional monopoles and the proposed low-profile

monopoles are reported.

Inter-element spacing : 0.2λ

In the first case, the inter-element distance is assumed to be d = 25mm or, approximately,

d = 0.2λ. In this case, the return loss and the coupling coefficient between the λ/4

monopoles and the proposed low-profile monopoles are shown in Fig. 4.37. According to

this figure, the maximum coupling level for the low-profile folded monopole is of the order

of S21 = −13.5dB, while for the conventional monopoles the corresponding coupling level

is approximately 3.5 dB larger.

Inter-element spacing : 0.15λ

In the second case, the inter-element distance is assumed to be d = 19 mm or, approx-

imately, d = 0.15λ. In this case, the return loss and the coupling coefficient between
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Figure 4.38: Return loss and coupling coefficient between two λ/4 monopoles and two

low-profile folded monopoles (LPFM), respectively, being 0.15λ apart.

the λ/4 monopoles and the proposed low-profile monopoles are shown in Fig. 4.38. Ac-

cording to this figure, the maximum coupling level for the low-profile folded monopole is

of the order of S21 = −10 dB, while for the conventional monopoles the corresponding

coupling level is approximately 3.0 dB larger. In this case, the coupling between the

conventional monopoles is that high that the monopoles are also detuned.

All the results for the full-wave coupling assessment between pairs of λ/4 monopoles

and the proposed low-profile folded monopoles (LPFM) for different inter-element dis-

tances are summarized in Table 4.3.

A/A λ/4 Monopole Proposed LPFM

d = 0.2λ S21 = −9.0 dB S21 = −13.0 dB

d = 0.15λ S21 = −6.5 dB S21 = −10.0 dB

Table 4.3: Coupling coefficients between pairs of λ/4 monopoles and the proposed low-

profile folded monopoles (LPFM) for different inter-element distances.

4.9.2 Analytical Approach

For the rigorous modeling of the coupling between a pair of monopoles, the EMF method,

as presented in [120], for the calculation of the mutual impedance supported between two

side-by-side dipoles could be employed. Nevertheless, some initial comparative quantita-
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Figure 4.39: Configurations for the calculation of the mutual inductances supported

between a pair of a) λ/4 monopoles and b) the proposed low-profile folded monopoles.

tive results can be faster obtained by the assumption that the major coupling mechanism

between the λ/4 monopoles or the proposed the low-profile folded monopoles is the mu-

tual inductance supported between the radiating vertical wires of the antennas. The

mutual inductance at the operating frequencies of the examined antennas can be approx-

imated using the electrostatic analysis of [106]. According to this analysis the mutual

inductance between two wires of length h, being at a distance d apart, is given by equation

(4.9).

M (h, d) = 0.2 · h ·
[

ℓn

(

h

d
+

√

1 +
h2

d2

)

−
√

1 +
d2

h2
+

d

h

]

[nH] (4.9)

Equation (4.4) can be employed directly for the estimation of the mutual inductance

supported between two λ/4 monopoles in the configuration of Fig. 4.39(a). For the calcu-

lation of the mutual inductance in the case of the proposed low-profile folded monopoles

the total mutual inductance of each of the two vertical posts of the first element with

both posts of the second element should be considered. Therefore, using the notation of

Fig. 4.39(b), the total mutual inductance of the proposed folded monopoles is given by

equation (4.10), where h is the profile of the folded monopoles, d is the distance between

them and ddiag =
√

d2 + d2
1.

MLPFM = 2 (M (h, d) + M (h, ddiag)) [nH] (4.10)
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Figure 4.40: Mutual inductance supported between two λ/4 monopoles and two low-

profile folded monopoles as a function of the distance between them.

The total mutual inductance supported between two λ/4 monopoles and two low-

profile folded monopoles, calculated using equations (4.9) and (4.10), respectively, as a

function of the distance between them is depicted in Fig. 4.40. By observing these results,

it is concluded that the total mutual inductance supported between the λ/4 monopoles

is approximately double than that supported by the low-profile folded monopoles for any

possible distance between them. This conclusion is in agreement with the conclusion

of the full-wave analysis, that suggested that the coupling coefficient for the proposed

antennas are approximately 3 dB below that of the conventional monopoles.



Chapter 5

Sub-wavelength Antenna Arrays

In this chapter, three different classes of compact (sub-wavelength) antenna arrays are

designed and investigated. In all of the three cases, emphasis has be given on the en-

hancement of the array performance by means of reducing the electromagnetic coupling

between the individual radiators. The first of these arrays is a two-element phased array

with inter-element separation of the order of 0.2λ. The low-profile folded monopoles pro-

posed in chapter 4 are employed in order to prevent the array performance degradation

caused by the coupling between the array elements. The second investigated class of

sub-wavelength arrays is the superdirective endfire arrays formed by low-profile folded

monopoles. The reduced electromagnetic coupling between these antennas allows for the

design of such arrays without the use of complicated decoupling networks or other tun-

ing elements. Three superdirective arrays are designed and compared in terms of their

achieved directivities and the delivered radiation efficiencies. Finally, a novel approach

for the decoupling of conventional planar inverted-F antennas (PIFAs) built on a com-

mon compact ground plane is presented. The proposed approach could be used for the

implementation of diversity gain schemes in handheld devices.

5.1 Introduction

The use of sub-wavelength antenna arrays in modern communication systems is becoming

more and more frequent. This trend is imposed by the need for miniaturization of mobile

terminals and the implementation of advanced communication techniques that exploit

multiple antenna terminals for more efficient spectral usage (e.g. MIMO, beamforming,

diversity schemes etc). The major difficulty in the design of such sub-wavelength antenna

117
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arrays is the electromagnetic coupling between the individual radiators that results in the

change of the antennas’ input impedance (increase of the corresponding return loss) and

also the increase of their mutual impedance (increased correlation between the received

signals by different antennas).

In order to overcome these difficulties, two major strategies have be proposed in the

literature. The first of them relies on the use of decoupling feeding networks that com-

pensate for any perturbation of the input impedance of each radiator due to its mutual

impedances with its adjacent radiators [121], [122],[123], [124]. The major disadvantages

of this approach are that for the efficient design of the decoupling networks the mutual

impedances of the array elements should be known a priori (a condition that can not be

always satisfied) and that imperfections in the operation of the decoupling networks (e.g.

ohmic losses) degrade the performance of the designed arrays.

The second approach for the reduction of the coupling between radiators partici-

pating in arrays is the use of insulating structures between the radiating elements [72],

[125], [126]. This approach became quite popular with the advent of electromagnetic

bandgap (EBG) and other metamaterial structures that can act as electromagnetic in-

sulators between the radiating elements. The major disadvantage of this approach is

that the employed insulating structures are being placed in the near-field of the radiat-

ing elements, affecting the radiating properties of the antennas and dissipating power.

Besides, given that the insulating structures are usually periodic structures, they occupy

certain volume/area and therefore their use in ultra compact arrays encounters practical

restrictions.

In this chapter, it is shown that sub-wavelength arrays could be designed and effec-

tively operate without the use of decoupling networks or insulating structures, provided

that self-resonant radiating elements exhibiting ultra low coupling between them are be-

ing employed. The low-profile folded monopoles of chapter 4 meet all these requirements

and, hence, in this chapter are employed for the design of sub-wavelength arrays. Specif-

ically, first, a two-element sub-wavelength phased array, composed of two low-profile

folded monopoles and designed to scan its beam at 60o off broadside, is built and com-

pared with the corresponding sub-wavelength array that is composed of λ/4 monopoles.

In turn, the theory for the design of superdirective endfire arrays, that considers uncou-

pled array elements, along with the proposed low-profile folded monopoles, are effectively

employed for the synthesis of sub-wavelength superdirective endfire arrays. Finally, for

applications that require the use of arrays of conventional antennas, such as PIFAs, built
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within small volumes, a simplified metamaterial-inspired approach is proposed for the

decoupling of such antenna elements.

5.2 Sub-wavelength Phased Arrays

In this section of the chapter a sub-wavelength two-element phased array comprising of

low-profile folded monopoles is built and its performance is compared to a two-element

phased array composed of conventional λ/4 monopoles. The purpose of this study is

to examine the potential advantages of sub-wavelength arrays composed of low-coupling

radiating elements as compared to their conventional counterparts.

The design procedure starts with the assumption of the design parameters of the

phased array. First, the targeted operating frequency of the sub-wavelength phased

array is set to be 2.45 GHz. For the design of the considered sub-wavelength phased

array, microstrip technology will be employed. In this framework, both the low-profile

folded monopoles and the feeding network will be microstrip-based. This will enable

the simplification of the fabrication procedure, reduce the fabrication cost (fully-printed

feeding network and radiating elements) and will also allow the direct deployment of the

array (passive, single-port-fed antenna).

The fully-printed, microstrip-based feeding network that will be employed for the

design of the sub-wavelength phased array is depicted in Fig. 5.1. It is composed of a

quadrature hybrid that equally splits the power of a single microstrip feeding port and

provides two signals of equal amplitude being −90o out-of-phase. Then, a transmission

line segment of electrical length −215o connected in series with the out-of-phase port

secures a 55o phase difference between the two output ports at 2.45 GHz. The physical

distance between these ports is d = 22.0mm. Given that this feeding network was already

available when the sub-wavelength phased arrays were investigated, it was decided for the

built phased array to be fed with a phase progression of a = 55o and the array elements

to be at a distance d = 22.0 mm. At 2.45 GHz, this physical length corresponds to an

electrical length of βd = 0.36π. The normalized array factor of the two-element array is

then given by equation (5.1), where φ = ±90o along the axis of the array, and φ = 0o in

the broadside direction.

|AF (φ)| =

∣

∣

∣

∣

cos

(

βdsinφ + a

2

)∣

∣

∣

∣

(5.1)
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Equation (5.1) assumes its maximum when
∣

∣cos
(

βdsinφ+a

2

)∣

∣ = 1, or equivalently when

βdsinφ + a = 0. For a phase progression a = 55o, an ideal two-element array similar

with the one under investigation is expected to scan its beam at 58o off broadside.

Figure 5.1: Microstrip-based feeding network employed for the synthesis of the two-

element sub-wavelength phased array.

The feeding network of Fig. 5.1 was built on 1.15 mm thick TACONIC TLY − 5A

dielectric substrate (ǫr = 2.2). The simulated (ANSOFT Designer) S−parameters of the

feeding network are shown in Fig. 5.2 and Fig. 5.3 (magnitude and phase, respectively).

These results validate that the quadrature hybrid is designed to operate in the 2.45GHz

band. Specifically, at 2.45 GHz |S11| < −20 dB, |S21| ≈ |S31| ≈ −3 dB and also ∠S31 −
∠S21 ≈ 55o.

The feeding network of Fig. 5.1 is employed to feed two different two-element antenna

arrays. In the first array, the radiating elements are low-profile folded monopoles, iden-

tical with those presented in section 4.8. Their profile is considered to be h = 10.3 mm

(λ/12). In the second array, the radiating elements are conventional λ/4 monopoles.

Both types of monopoles are directly attached at the open ends of the feeding networks.

A photograph of the fabricated array with the low-profile folded monopoles is depicted

in Fig. 5.4.

In the following text, the two phased arrays are compared in terms of their measured

performance. Specifically, in Fig. 5.5 the return losses of the two arrays are shown. As

expected, the return loss of the conventional monopoles are much more broadband than

the return loss of the low-profile folded monopoles array. Nevertheless, both arrays can

be considered to be matched at 2.45 GHz (|S11 < −10 dB|).
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Figure 5.2: S−parameters (magnitude) of the feeding network of Fig. 5.1.
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Figure 5.3: S−parameters (phase) of the feeding network of Fig. 5.1.

In Fig. 5.6 the normalized patterns of the two arrays under investigation are plot-

ted. The range of the patterns extends from −90o to +90o. These results show that the

radiation pattern of the low-profile monopole array achieves its maximum closer to the

theoretically calculated scanning angle of ϕo = 58o. Specifically, the low-profile monopole

array scans its beam at 55o while the conventional monopole array scans its beam at 50o.

It is noted that the angular resolution during the radiation pattern measurements is

5o. One potential physical explanation for the divergence between the measured and

the theoretically calculated scanning angles could be the coupling between the radiating

elements of the array, that affects the feeding phase of each of the elements of the array.
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Figure 5.4: Photograph of the fabricated prototype of the investigated sub-wavelength

phased array of low-profile folded monopoles.
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Figure 5.5: Measured return losses (S11) of the two sub-wavelength arrays.

In that case, given that the coupling between the low-profile folded monopoles has been

shown to be weaker than that between conventional monopoles, the performance of the

low-profile array is less affected by the coupling and the error in its scanning angle be-

comes smaller. Finally, the measured results show that the delivered radiation efficiency

of the low-profile array (this efficiency was measured to be 45%) is almost equal with

that of the conventional array (the radiation efficiency for the conventional array was

measured to be 48%). Even though this result is slightly counterintuitive, given that the

low-profile monopoles are significantly less efficient than conventional monopoles, this

result was validated through multiple measurements.
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Figure 5.6: H−plane patterns of the two compared sub-wavelength arrays.

5.3 Sub-wavelength Superdirective Endfire Arrays

5.3.1 General

Superdirective arrays have attracted for years the interest of antenna engineers both from

theoretical (conceptual) and practical point of view [127], [128], [129]. In principle, the

design of superdirective antennas relies on the synthesis of optimized current distribu-

tions on a given physical area that enables this area to deliver high effective aperture

efficiencies. In linear arrays, it corresponds to the synthesis of N−element arrays that

would be excited with such currents that would enable the array to deliver array gains

higher than N .

For endfire arrays composed of N isotropic and uncoupled radiators, it has been

shown that, as element spacing goes to zero, the upper limit for the delivered directivity

is given by equation (5.2) [4]. The maximum directivity can be delivered only if the

elements of the arrays are properly excited. Nevertheless, in practice, the theoretical

upper limit of the endfire directivity has never been achieved as the superdirective arrays

are extremely sensitive to any deviations between the theoretical and the experimental

excitation signals and the coupling between the radiating elements [127].

D =
N−1
∑

n=0

(2n + 1) = N2 (5.2)

Out of all the types of superdirective antennas, the design of electrically small su-

perdirective arrays is potentially the most demanding and attractive. One of the most
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challenging tasks in the design of a superdirective electrically small array is the design of

its feeding network. Such a feeding network usually performs two majors tasks. First, it

is responsible for the matching of the electrically small radiating elements that, in most

cases, are not self-resonant. Secondly, it decouples the radiating elements that, being in

close proximity, exhibit high mutual impedances and properly sets the relative magni-

tude and phase of the excitation signals at the port of each antenna of the array. The

complexity of these networks and the imperfections associated with their operation (i.e.

ohmic losses) are usually the reasons for not experimentally demonstrating the maximum

directivity of equation (5.2).

With the use of metamaterial structures some of the issues currently handled by the

feeding network could be possibly addressed in a different way, simplifying the design

of the feeding network and improving its performance. For example, in [72], the use

of a metamaterial insulator was proposed for the decoupling of the array elements. In

the present work, the self-resonant low-profile folded monopoles presented in chapter 4,

that exhibit reduced mutual coupling, are employed for the design of two-element endfire

superdirective arrays. Given the features of the employed radiators (self-resonant, low-

coupling), the feeding network can be simplified and perform a single function; that of

properly setting the excitation currents of the array elements. As a result, this feeding

network becomes simple to design, low-cost and easy to fabricate.

5.3.2 Feeding Network

As it has been already mentioned, in this approach, self-resonant, low-coupling radiating

elements are employed for the design of two-element superdirective endfire arrays. As

a result, the required feeding network implements a single function, that of setting the

proper excitation currents at the inputs of the two radiating elements. Based on the

analysis of [4], for two-element arrays, endfire superdirective patterns are obtained when

the two radiators are fed with currents equal in magnitude and a relative phase-shift equal

with that of Fig. 5.7. As Fig. 5.7 suggests, the phase-shift between the two elements

is dependent on the distance between them. Therefore different separation between the

radiators would require different phase-shifts to deliver superdirective patterns.

The results of Fig. 5.7 show that the required phase-shift between the excitation

currents of the two radiating elements of the considered superdirective antennas are of

the order of 140o − 180o. Therefore, the required feeding network has been chosen to be
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Figure 5.7: Relative excitation phase, according to the analysis of [4], for the design of

two-element superdirective arrays.

implemented through a 180o microstrip-based ring hybrid. Specifically, the differential

ports of the hybrid are employed together with transmission line segments of proper

length connected in series to them to synthesise the required pairs of phase-shift and

distance according to Fig. 5.7. The ring-based feeding network is depicted in Fig. 5.8.

The single feeding port of the antenna arrays is considered the port 1 of the ring of Fig.

5.8. The incoming signal is split into two equal in magnitude and 180o out of phase

output signals. The length of the transmission line segments attached to the output

ports of the hybrid are properly adjusted so that the distance d between the physical

ports 2 and 4 of the feeding network corresponds to the phase required for the synthesis

of the two-element endfire superdirective array (according to the results of Fig. 5.7).

Figure 5.8: Top view schematic of the modified ring hybrid used as feeding network for

the proposed superdirective endfire two-element array designs.

The feeding network of Fig. 5.8 is built on a TACONIC TLY − 5A dielectric
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substrate of dielectric constant ǫr = 2.2 and is designed for operation in the 2.45 GHz

band. The S−parameters of this feeding network, optimized to feed a superdirective

endfire array with element separation of 0.2λ, are shown in Fig. 5.9.
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Figure 5.9: Insertion loss and phase difference between the two output ports of the

modified hybrid of Fig. 5.8.

5.3.3 Driven Superdirective Arrays

In the following text, the measurement results of two different designs of superdirective

enfdire arrays driven by the feeding network of Fig. 5.8 are presented. A representative

schematic of the fabricated and measured driven superdirective arrays is shown in Fig.

5.10.

In the first of the fabricated prototypes, the separation between the radiating elements

is considered to be 0.2λ. The employed feeding network and its S−parameters are those

presented in the previous section. In the second fabricated prototype, the separation

between the radiating elements is decreased to 0.15λ. For this design the transmission

line segments attached to the outputs of the ring have been adjusted according to the

requirements suggested by Fig. 5.7. It is noted that for both these designs the height of

the employed low-profile monopoles is h = 10.3 mm (λ/12)
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Figure 5.10: A schematic representation of the proposed superdirective arrays.

0.2λ Array

The first fabricated prototype is the 0.2λ array. A photograph of this prototype is shown

in Fig. 5.11.

Figure 5.11: Photograph of the fabricated two-element superdirective endfire array.

The measured and simulated return loss of the prototype of Fig. 5.11 is depicted in
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Fig. 5.12. These results show that the designed array is matched at the target frequency

of 2.45 GHz. The second deep that appears at the return loss curve at approximately

2.1GHz, and is more profound for the simulated results, corresponds to the transmission

line resonance of the employed low-profile folded monopoles.
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Figure 5.12: Return loss for the 0.2λ superdirective endfire array.

To experimentally show the highly directive properties of the fabricated prototype,

the radiation patterns of the array were measured and compared to that of a single

microstrip-fed low-profile folded monopole. As was expected, the directive properties

of the synthesised arrays appear in the H-plane. The measured H-plane of the 0.2λ

prototype, measured at 2.45 GHz, together with that of the single low-profile monopole,

are depicted in Fig. 5.13.

These results suggest that the synthesised array exhibits a much more directive pat-

tern than the single element. Specifically, the directivity of the array in the endfire

direction was measured to be 5.7dBi, while the directivity of the single low-profile folded

monopole in the same direction had been measured to be 3.17 dBi.

0.15λ Array

The 5.7 dBi of the 0.2λ array do not prove the superdirective properties of the designed

array, given that the two-element array exhibits less than 3dB improvement in the direc-

tivity as compared to the single element. A second attempt to implement a superdirective,



Chapter 5. Sub-wavelength Antenna Arrays 129

Figure 5.13: H−plane radiation pattern for the 0.2λ array prototype compared with that

of a single low-profile monopole. The orientation of the 2-element array with respect to

the measured pattern has been noted with the two dots in the middle of the plot (each

dot represents each element of the array).

two-element array is presented in this section. In this effort, the separation between the

antenna elements is considered to be 0.15λ at 2.45 GHz. For the implementation of this

design the feeding network of Fig. 5.8 has been properly adjusted to implement the phase

requirement suggested by the results of Fig. 5.7. Other than that, all the parameters of

this array are identical with that of the 0.15λ array.

The simulated and measured return loss of the 0.15λ array is depicted in Fig. 5.14.

These results validate that the antenna arrays is matched at the target frequency of

2.45 GHz

The measured H-plane pattern of the 0.15λ array, compared with that of the single

element, is shown in Fig. 5.15. These results suggest that the H-plane pattern of the

0.15λ array is more directive than that of the 0.2λ array. Specifically, the directivity

of the 0.15λ array at the endfire direction was measured to be 6.9 dBi, as compared to

3.16dBi of the single element and 5.7dBi of 0.2λ array. This proves that a superdirective

sub-wavelength array design has been achieved.
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Figure 5.14: Return loss for the 0.15λ superdirective enfdire array.

Figure 5.15: H−plane radiation patterns for the 0.15λ array prototype and the single

monopole. The orientation of the 2-element array with respect to the measured pattern

has been noted with the two dots in the middle of the plot (each dot represents each

element of the array).

5.3.4 0.1λ Parasitic Array

Considering the fabrication and testing of further smaller superdirective arrays, practical

difficulties on the implementation of the feeding network were encountered. Therefore,

for the design of further smaller superdirective endfire arrays alternative approaches were
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searched.

As Fig. 5.7 suggests, for inter-element separations smaller than 0.15λ and as d → 0

the phase-shift between the feeding currents of the two elements moves linearly to 180o.

This observation, together with the fact that for such small separations between the low-

profile monopoles the electromagnetic coupling is not insignificant, lead to the conclusion

that two-element superdirective endfire arrays could be designed with the one of the

elements being directly-fed and the other being parasitically-fed, as also suggested in

[130]. Similarly with the Yagi-Uda antennas, the excited current on the parasitically-fed

element is expected to be approximately equal in magnitude and roughly 180o out of

phase, as compared with the current of the directly-fed element, implementing in that

way the requirement imposed by Fig. 5.7

Based on these arguments, a parasitic two-element array, with element separation

equal to 0.1λ was built and its electromagnetic properties were measured. For the fab-

rication of this array, a ground plane of identical dimensions with those of the driven

arrays was employed. The driven element was fed using a 50 Ω microstrip-line, while

both posts of the parasitic element were shorted to the common ground plane. Given

that a microstrip-fed low-profile folded monopole is slightly electrically smaller than an

identical shorted folded monopole, in the proposed two-element array the parasitic ele-

ment behaves as the reflector of a conventional two-element Yagi-Uda antenna.

The measured and simulated return loss of the parasitic array is depicted in Fig. 5.16

and its H−plane is depicted in Fig. 5.17.

The measured directivity of the parasitic array in the endfire direction was measured

to be 7.6 dBi.

5.3.5 Comparison

All the presented antenna designs exhibited enhanced directivities as compared to the

single low-profile monopole. Specifically, it has been shown that the achieved directivity is

increasing as the distance between the antenna elements is decreasing, as also suggested

by the theory for the design of superdirective arrays. Nevertheless, a more inclusive

characterization and comparison of the three different designs showed that the increment

of the directive properties of the arrays is accompanied by a decrease in their radiation

efficiencies. Specifically, the use of the Directivity/Gain comparison method for the

estimation of the efficiency of each of the designs provided the results presented in Table
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Figure 5.16: Return loss for the 0.1λ parasitic array.

Figure 5.17: H−plane radiation patterns for the 0.10λ array prototype and the single

monopole. The orientation of the 2-element array with respect to the measured pattern

has been noted with the two dots in the middle of the plot (each dot represents each

element of the array).

5.1. These results show that the most directive array design (parasitic array) achieves an

average efficiency of only 24%, while the directivity of the least directive array (0.2λ) was

measured to be 40%, which is very close with the efficiency of the single element (43%).

This trent is attributed to the fact that decrease of the inter-element separation leads to
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antenna designs with higher current densities. Given that the single element is inherently

lossy, the higher current densities lead to higher losses on the antenna structure and hense

reduced radiation efficiencies.

At this point, it should be pointed out that there is always an error associated with

the measurement of antenna radiating efficiencies and gains. This error is dependent on

the performance/accuracy of the employed measurement setup. For the measurement

setup (fully automated anechoic chamber) employed for the characterization of the su-

perdirective antennas of this section, it has been estimated that the absolutely maximum

uncertainty that is introduced in the radiation efficiency measurements due to the asso-

ciated measurement errors is approximately 6 percentage units on the reported efficiency

values. In other words, a maximum deviation of ±3 percentage units may be expected

for any reported efficiency value. This rough empirical estimation has been extracted

through multiple measurements of the same antenna in the chamber and through the

comparison of the efficiency values of the same antenna measured using different mea-

surement techniques (i.e. Wheeler Cap measurement results compared with the anechoic

chamber measurement results for the same antenna). Nevertheless, given that all the

superdirective antennas reported in this section were measured using the same measure-

ment setup, it is expected that a uniform error would have been applied to all of them

and, therefore, it is believed that the accuracy of the comparative reported results is even

better.

Antenna Description Directivity (dBi) Efficiency (%) Gain (dBi)

Single element 3.16 43 -0.5

Driven 0.2λ array 5.7 40 1.7

Driven 0.15λ array 6.9 30 1.6

Parasitic 0.10λ array 7.6 24 1.4

Table 5.1: Comparative study of the three antenna designs with enhanced directivities.

5.4 Decoupling PIFAs on Handhelds

In the previous sections of this chapter, antenna elements that exhibit reduced mutual

electromagnetic coupling were employed for the synthesis of sub-wavelength arrays. In

this section of the chapter, a novel approach for reducing the electromagnetic coupling
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between conventional planar inverted-F antennas (PIFAs), built on a common ground

plane and forming sub-wavelength antenna arrays on handheld devices, is presented.

The use of multiple-element antenna arrays, implementing either diversity gain or

spatial multiplexing schemes, has been extensively proposed for the enhancement of the

spectral efficiency of wireless communication systems. In mobile communication systems

such antenna arrays are already being employed at the base stations. Nevertheless, the

implementation and the performance of these schemes at mobile terminals are influenced

by the spatial fading correlation [131] and the electromagnetic coupling between the

densely packed array elements [132], [133]. The latter factor is addressed in this section

and a novel approach for the suppression of the electromagnetic coupling between PIFA

elements, built on the same handheld device, is proposed.

PIFAs have been proved the most popular antenna solution for compact handheld

devices (cellular mobile terminals, PDAs, etc). Nevertheless, in such applications the

coupling between the antenna elements is significantly high, due to the fact that all

the antenna elements are usually built on the same ground plane and the high degree of

integration, while none of the conventional approaches for coupling reduction (decoupling

networks, metamaterial insulating structures) is of great applicability (the first would

increase the cost and reduce the efficiency of handheld devices, while the second could not

be employed due to size and volume restrictions). Therefore, an alternative technique,

inspired by the design of metamaterial resonators, for the coupling reduction in such

application is presented in the following text.

The proposed technique is based on the insertion of two coupled quarter-wavelength

slits on the ground plane between the antennas. By optimizing the distance between the

coupled slits, a magnetic resonance can be established within the operating bandwidth

of the PIFAs. This resonance inserts a transmission zero in the coupling path between

the closely spaced PIFAs, enabling the reduction of the coupling between them to very

low levels without significantly disturbing their operating bandwidth.

For the demonstration of the proposed decoupling scheme, let us consider a two-

element PIFA array built on a 100 mm x 40 mm large, 1.55 mm thick, grounded FR − 4

dielectric substrate (ǫr = 4.5). The layout of each of the employed single-band PIFA

elements, designed to operate from 1.7 GHz to 2.0 GHz, and the original two-element

array configuration are depicted in Fig. 5.18(a) and Fig. 5.18(b), respectively. At the

considered frequency band, the two PIFAs are approximately half-wavelength apart and,

therefore, the spatial fading correlation shall not impose major limitations. Nevertheless,
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Figure 5.18: Layout of the a) single PIFA element, b) two-element array on handheld (no

slits on the ground plane), c) coupling reduction scheme by inserting a single slit (notch)

on the ground plane, d) coupling reduction scheme by inserting two coupled slits at a

distance d from each other.
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the electromagnetic coupling between the two array elements, that is attributed mostly to

the currents on the common ground plane, was found to be relatively high. Specifically,

the structure was simulated using CST Microwave Studio (CST MWS) and the maximum

coupling between the antennas was found to be S21 = −9dB (Fig. 5.19, original design).

A well-known practice in reducing the coupling between antenna elements built on

a common ground plane is the introduction of resonant defects on the ground plane

between the antennas [134], [135]. Such an approach is shown in Fig. 5.18(c), where

a slit (represented also as a magnetic current JM) has been inserted at the edge of the

ground plane. By properly setting the length of the slit to be 29 mm (approximately a

quarter-wavelength at the middle of the operating bandwidth), the slit resonates acting

as a notch and trapping some of the power that was to be transmitted between the

two radiating elements. In fact, for the configuration of Fig. 5.18(c) it was found that

the insertion of such a slit reduces the coupling between the antennas by approximately

4.5 dB (in this case S21 = −13.5 dB, as shown in Fig. 5.19). The coupling between

the two antennas can be further reduced by inserting a second slit of the same length

at a distance d from the first slit, as in Fig. 5.18(d). In the general case, the second

notch introduces another 4.5 dB reduction of the coupling between the antennas (for

the configuration of Fig. 5.18(d), with an arbitrarily chosen value for d, S21 = −18dB).

Nevertheless, even in that case the coupling between the PIFAs, being approximately

half-wavelength apart, remains above -20 dB.

In the proposed approach, it is suggested that a configuration similar with that of Fig.

5.18(d) can be employed to achieve coupling coefficient values significantly below −20dB,

provided that the distance between the two slits is properly chosen. Careful examination

of the electromagnetic fields in the configuration of Fig. 5.18(d) suggests that the two

slits are coupled. Hence, by optimizing the distance between them, they can be made

to resonate forming an effective magnetic loop. By this means, a transmission zero is

introduced in the coupling path between the two radiating elements, reducing further the

electromagnetic coupling between them. Full-wave optimization of the distance between

the slits, carried out using CST MWS, showed that the value of d that makes the coupled

slits to resonate at 1.85GHz (middle frequency of the operating band) is d = 11mm. In

order to show that the distance between the slits can be set so as for the coupled pair of

slits to behave as a magnetic loop, the currents on the ground plane and the electric field

normal to it are depicted in Fig. 5.20. These results validate that the currents on the slits

simultaneously achieve their maximum values (being in phase), resulting in a common,
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Figure 5.19: Simulated (using CST MWS) S−parameters of the two-element array in the

cases that no slits (original design), one slit, two slits and two resonating coupled slits

have been inserted on the common ground plane.
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Figure 5.20: Ground plane currents and normal electric field for the resonating effective

magnetic loop.

maximized vertical electric field component in the area between the two coupled slits.

For the value of d that the two slits behave as a resonating magnetic loop, the coupling

between the two antennas is also plotted in Fig. 5.19. This result suggests that for the

resonating coupled slits, the coupling between the PIFAs, at 1.85 GHz, drops below

−50 dB (transmission zero), while it remains below −23 dB for the whole bandwidth of

interest. At this bandwidth both PIFAs remain matched (S11 < −6dB and S22 < −6dB),

even though their input impedances are slightly altered.

It is noted that the resonating coupled slits are expected to radiate. Therefore, the

radiation patterns of the proposed decoupled antenna array have been studied and have

been found to be slightly different than those of the array without the slits. In fact, the

patterns of the proposed structure is slightly more omni-directional (maximum directivity

of 3.5 dBi compared to 4.5 dBi) which is well suited for handset applications. This is
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Figure 5.21: Radiation patterns comparison between the conventional and the decoupled

PIFA arrays at 1.85 GHz.

shown in Fig. 5.21, where the radiation patterns for the two compared cases have been

plotted. Also, regarding the radiation efficiency of the decoupled array elements, it has

been found that the proposed scheme for the reduction of coupling decreases the efficiency

of each of the radiating elements by approximately 4% (due to the strong currents on

the ground plane).

In order to experimentally validate the proposed technique for coupling reduction

between PIFAs built on the same ground plane, two antenna prototypes (the original

array and the one with the resonating coupled slits) have been fabricated and measured.

The measured S−parameters in the two cases are depicted in Fig. 5.22. These results
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Figure 5.22: Measured S−parameters for the configurations of Fig. 5.18(b) and Fig.

5.18(d), when d = 11mm. Due to fabrication imperfections, the resonance of the coupled

slits is achieved at 1.92 GHz.

suggest that the measured maximum coupling in the original array is of the order of

S21 = −9dB and that the insertion of the resonating coupled slits adds a transmission

zero in the coupling coefficient between the antennas. Nevertheless, in the measured data,

this transmission zero occurs at 1.92 GHz, instead of the design frequency (1.85 GHz),

due to fabrication imperfections (mostly to the length of the slits). As a result, the

coupling coefficient becomes slightly larger than −20dB at the lower edge of the operating

bandwidth and a slightly decreased operating bandwidth for the second PIFA is observed.

However, at the resonance of the coupled slits (1.92 GHz) both antennas are matched

(S11 < −6dB and S22 < −6dB) and the coupling drops below −50 dB, as suggested by

the simulations. Furthermore, the measured coupling coefficient between the antennas

in the proposed design is significantly reduced, as compared to the original design, for

the whole operating bandwidth of the PIFAs.



Chapter 6

Periodic FDTD Analysis of

Leaky-Wave Antennas

This chapter presents the development of an efficient and accurate periodic FDTD-based

computational tool for the analysis of leaky-wave structures and its application to the

design and optimization of novel, flat-plate, metamaterial-based, high-gain leaky-wave

antennas. Specifically, in the first part of the chapter, a post-processing methodology that

allows the periodic FDTD tool of [93] to solve periodic leaky-wave structures employing

half of the computational resources that were originally required is derived and validated.

In turn, employing this improved methodology, a novel, computationally demanding, pe-

riodic leaky-wave antenna is modeled and its radiation properties are optimized. Finally,

a semi-analytical model that allows for the fast calculation of the radiation patterns of

finite-size, 2-D leaky-wave structures, given the complex propagation constants of the

supported leaky-modes, is developed.

6.1 Introduction

Leaky-wave structures have been for decades a particularly challenging research field due

to their several applications in antenna technology and the richness of electromagnetic

phenomena associated with them. During the recent years, the interest for leaky-wave

structures has been renewed mostly because of the development of metamaterials and

their potential applicability for the design of novel in leaky-wave antennas (LWAs). To-

wards this direction, two main classes of novel leaky-wave structures have been proposed

in the literature. The first of them involves LWAs that are formed from NRI metamateri-

141
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als. These structures have been shown to support both backward and forward fast-waves

and, therefore, they are capable of continuously steering their main radiating lobe with

frequency, theoretically from backward to forward endfire [83],[84],[136],[137]. The second

class of the recently proposed metamaterial-based LWAs includes structures that make

use of High-Impedance Surfaces (HISs) or Artificial Magnetic Conductors (AMCs) to-

gether with Partial Reflective Surfaces (PRSs) for the formation for sub-wavelength cavity

type LWAs [65],[67]. These LWAs are low-profile, low-cost, highly directive, broadside

radiators. Both these novel classes of LWAs involve periodic structures.

For the analysis of leaky-wave structures, the estimation of the complex propagation

constant γ = β − jα of the supported fast-waves is of first priority. The phase constant

β defines the scanning angle of the leaky-wave beam according to equation (6.1), while

the attenuation constant α effectively defines the beamwidth of this beam and correlates

the total size of the radiating structure with the total radiating efficiency of the LWA

according to equation (6.2). For the analytical calculation of the complex propagation

constants of leaky-waves and the efficient and rigorous modeling of LWAs, during the

years, several analytical techniques have been proposed. Nowadays, though, the develop-

ment of numerical methodologies that would allow for the efficient modeling of any kind

of LWAs is strongly favored. On this front, the most challenging issue to be resolved is

the usually large physical and electrical size of actual LWAs or segmentations of them

that would electromagnetically behave as their original versions.

Novel numerical approaches for the numerically efficient analysis of LWAs and appli-

cations of those are discussed in this chapter.

θm
∼= sin−1(

β

ko

) (6.1)

∆θ ∼= 1
L
λo

cosθm

≈
α
ko

0.183cosθm

(6.2)

6.2 Periodic FDTD Analysis of LWA

6.2.1 Background

Towards the direction of creating a technique for the efficient numerical modeling of

periodic leaky-wave structures, the periodic FDTD analysis of [92] was proposed (the

major aspects of this technique were presented in chapter 2). In that approach, the unit
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cell of a periodic leaky-wave structure is modeled within a FDTD computational domain

that is terminated with periodic boundary conditions, implemented through the sine-

cosine technique [103]. As it was shown in [92], when exciting the computational domain

with a broadband source and enforcing, through the periodic boundary conditions, a

phase-shift between the planes of periodicity (corresponding to a real phase constant

β), this type of modeling is able of rigorously solving for all the bounded (slow) and

radiating (fast) waves supported by the structure under consideration. The output of

this type of computational analysis is time-domain waveforms similar with those of Fig.

6.1 and Fig. 6.2. Specifically, Fig. 6.1 corresponds to a bounded slow-wave, since the

amplitude of the supported resonance remains constant with time. On the contrary, Fig.

6.2 corresponds to a radiating fast-wave, since the decaying amplitude of the supported

resonance suggests some kind of power loss or power leakage from the structure.
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Figure 6.1: Time-domain waveform ex-

tracted from the simulation of a non-

radiating structure using the periodic

FDTD technique presented in chapter 2.
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Figure 6.2: Time-domain waveform ex-

tracted from the simulation of a leaky-

wave structure using the periodic FDTD

technique presented in chapter 2.

The calculation of the parameters of the supported modes (e.g. dispersion relation,

attenuation constant) relies on the post-processing of the time-domain waveforms such as

those of Fig. 6.1 and Fig. 6.2. The calculation of the dispersion diagram can be directly

performed by the spectral analysis of the time-domain data, using either Fourier trans-

form or more sophisticated techniques such as Matrix Pencil [138], [139], [140]. On the

other hand, for the calculation of the attenuation constant of leaky-waves, more sophis-
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ticated electromagnetic arguments were employed in [92]. According to the approach of

[92], the complex propagation constant of the leaky-modes can be calculated by treating

radiating structures as lossy. In this approach, the complex propagation constant γ is

given by equation (6.3). This equation involves two different time-domain samples of the

fields w(t, zi) and w(t, zj), sampled at two different points zi and zj which are usually one

spatial period apart. Therefore for the calculation of equation 6.3, the periodic FDTD

analysis of two unit cells is required (as shown in Fig. 6.3).

γ(ω) = j
1

zj − zi

log
F [w(t, zi)]

F [w(t, zj)]
, (6.3)
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Figure 6.3: Generic representation of the periodic FDTD computational domain required

for the implementation of equation (6.3).

Treating leaky-wave structures as lossy and calculating the complex propagation con-

stant using equation (6.3) has been proved to work satisfying rigorously and efficiently.

Nevertheless there is a significant weak point associated with this technique; two spa-

tially separated field samples, being usually one spatial period apart, are required for the

calculation of equation (6.3). This usually requires the simulation of two identical unit

cells of the structure under consideration, leading to the increase of the computational re-

sources and the computational time required for the inclusive characterization of a single

structure. Furthermore, it is because of this feature that the proposed technique can be

applied only to propagating (traveling) waves with relatively small attenuation constant,

and not to quickly attenuated traveling waves or even evanescent waves. Although the

latter restriction usually does not apply to the analysis of leaky-waves, it does prevent

the use of the proposed technique for the analysis of periodic structures employed as

EBGs and the calculation of the attenuation constants of modes within stop-bands.
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6.2.2 An Improved Methodology

In order to further reduce the computational resources required for the analysis of leaky-

wave structures and allow the use of the periodic FDTD tool for the calculation of large

attenuation constant values, an improved methodology is developed and proposed in this

section. The novel features of the improved methodology are related mostly with the

post-processing of the time-domain data obtained from the periodic FDTD simulation of

the single unit cell of a periodic structure.

For the presentation of the improved methodology, let us assume a complex leaky-

wave U (z, t) propagating along the z−axis. This wave can be written as in equation

(6.4)

U (z, t) = Uoe
−jγzejωrt (6.4)

where γ = β−jα stands for the complex propagation constant and ωr is the real frequency

of the propagating wave. Substituting γ in equation (6.4), the leaky-wave can be rewritten

as

U (z, t) = Uoe
−j(β−jα)zejωrt (6.5)

or, equivalently,

U (z, t) = Uoe
−jβzej(ωr+j αz

t )t (6.6)

In equation (6.6), the leaky-wave has been represented in terms of a real propagation

constant β and an effective complex frequency ω = ωr + j αz
t
. This effective complex

frequency defines the characteristics of the decaying time-domain waveform of Fig. 6.2

and, therefore, can be estimated from the spectral analysis of a single waveform such as

that of Fig. 6.2. As a result, it can be suggested that the attenuation constant α of the

complex propagation constant can be linked directly to the imaginary part of the complex

frequency extracted from the spectral analysis of the decaying time-domain waveforms.

According to equation (6.6), the imaginary part of the effective complex frequency of

the leaky-wave, that can be calculated through the spectral analysis of the time-domain

waveform, is ωi = αz
t
. Given that in a homogeneous and stationary (i.e. non time-

varying) medium the phase velocity is defined as |uph| =
∣

∣

dz
dt

∣

∣ ≈
∣

∣

z
t

∣

∣, and also |uph| =
∣

∣

∣

ωr

β

∣

∣

∣
,

the ratio z
t

can be approximated as z
t
≈ ωr

β
. Hence, the imaginary part of the effective

complex frequency of the leaky-wave ωi can be rewritten as

ωi =
αωr

β
. (6.7)
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Equation (6.7) can be employed for the extraction of the following expression for the

attenuation constant of the leaky-wave under consideration

α =
ωi

ωr

β. (6.8)

Equation (6.8) relates the attenuation constant α of a leaky-wave with the propagation

constant of the same leaky-wave β and the real and imaginary parts of its corresponding

effective complex frequency. Given that all the aforementioned quantities can be calcu-

lated by the periodic FDTD analysis of a single unit cell of a leaky-wave structure and

the post-processing of a single time-domain waveform, equation (6.8) can be employed

for the estimation of the attenuation constant α from the periodic FDTD analysis of a

single unit cell. This constitutes a major computational improvement of the developed

technique and also provides the possibility of its applicability to the analysis of periodic

structures supporting rapidly attenuated waves. Specifically, regarding the computa-

tional benefits of the proposed algorithm, it is expected to reduce the computational

memory requirements by a factor of two, the total calculations during the solution of a

3-D electromagnetic problem by a factor of two, as well, and the total execution time of

a single simulation by a factor of four.

6.2.3 Validation of the Improved Methodology

For the validation of the improved methodology, two periodic leaky-wave structures are

analysed using both the two-unit-cells and the single-unit-cell approaches and the results

are compared. The two leaky-wave structures that are being analysed are the metal-strip-

loaded dielectric rod LWA [141], [142], [143], [144] and the partially-reflective-surface

(PRS) half-wavelength LWA of [5].

Metal-strip-loaded dielectric rod LWA

The first leaky-wave antenna that is analysed for the validation of the proposed method-

ology is the well-known metal strip loaded dielectric rod leaky-wave antenna. This leaky-

wave antenna is fabricated by periodically loading a simple dielectric rod with metallic

strips. These periodic perturbations allow the structure to support fast-waves that result

in leaky-wave radiation. The unit cell of the simulated structure is depicted in Fig. 6.4.

For the purposes of this study, a metal-strip-loaded dielectric rod leaky-wave antenna

designed to operate around 80 GHz is simulated. The physical length d of the unit cell,
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Figure 6.4: Unit cell of the metal-strip-loaded dielectric rod LWA, as modeled through

the periodic FDTD analysis.

i.e. the spatial periodicity of the structure, is d = 2.5 mm. The width and the height

of the dielectric rod is w = 3 mm and h = 1.5747 mm, respectively, and the dielectric

constant of the rod is ǫr = 2.33. The width of the metal strips are 0.5d, while they are

modeled as perfect conductors. For the needs of this analysis, a computational domain of

Nx ×Ny ×Nz = 20×40×33 Yee’s cells is used. This computational domain includes the

dielectric rod surrounded with air: as far as the z−direction is concerned, 15 cells of air

are assumed below and above the structure, to make sure that the absorbing boundary

conditions do not affect the radiation of the structure, while in the x-direction two cells

of air are assumed at the sides of the structure. The computational domain is excited

with a Gabor pulse (sinusoidally modulated Gaussian pulse) of a bandwidth of 10 GHz

around the operating frequency. This pulse excites an electric field which is polarized

parallel to the metal strips and has a spatial profile of the form F (x, z) = sin(πx
w

)sin(πz
h

),

which corresponds to the TE11 mode.

The results of the dispersion analysis (complex propagation constant calculation) of

the unit cell of Fig. 6.4 employing the two-unit-cells approach (lossy medium approach)

and the improved methodology (complex frequency exploitation) are shown in Fig. 6.5.

These results suggest that the α values obtained by treating the leaky-wave structure as

a lossy structure are in good agreement with those obtained using equation (6.8) and the

extracted complex frequency values. As a result, the proposed improved methodology

can be considered valid.
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Figure 6.5: Complex propagation constant calculation for the leaky-mode supported by

the antenna of Fig. 6.4 calculated using both equation (6.3) and the improved method-

ology.

Partially-reflective-surface (PRS) half-wavelength LWA

To further validate the proposed methodology, a second leaky-wave structure is analysed

using both the improved methodology and the lossy medium approach. The second con-

sidered leaky-wave structure is the dipole-based PRS half-wavelength LWA. This struc-

ture, that has been analysed in [5] using the lossy medium approach, is composed of a

ground plane and a dipole-based PRS being half wavelength above the ground plane.

Between these two surfaces leaky-modes can be supported (these leaky-waves are per-

turbations of the standard parallel-plate modes) allowing for the structure to radiate.

The schematic representation of this structure is shown in Fig. 6.6(a). Referring to Fig.

6.6(a), the parameters of the leaky-wave structure that was analysed in [5], using the

lossy medium approach, are l1 = 14.5 mm, l2 = 13.5 mm, w1 = 1 mm, w2 = 0.5 mm and

h = 10.7 mm. This structure supports a perturbed (leaky) TE1 parallel-plate mode that

is developed slightly beyond 14GHz.The computational domain that has been employed

in this work for the analysis of the unit cell of that structure, also schematically shown

in Fig. 6.6(b), is Nx × Ny × Nz = 8 × 116 × 40 Yee’s cells, while 15 cells have been

considered in the parallel-plate cavity. For the excitation of the perturbed TE1 mode,

propagating along x−axis (short unit cell dimension), a y−oriented current source has

been used. The spectrum of this source extended from 6 GHz to 20 GHz (Gabor pulse).
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Figure 6.6: a) Schematic representation of the dipole-based partially-reflective-surface

(PRS) half-wavelength leaky-wave structure of [5]. b) Computational domain used for

the periodic FDTD analysis of the unit cell of the structure of a).

The results of the dispersion analysis for the considered x−axis propagating, per-

turbed TE1 leaky-wave are depicted in Fig. 6.7. In that plot the extracted attenuation

constant values estimated using the complex frequencies that correspond to the extracted

time-domain waveforms are compared with the results reported in [5], where the lossy

medium approach has been employed. These results are in good agreement, validating

the proposed improved methodology that allows for the analysis of the same structure

using approximately half the computational resources (computational time and memory).

6.2.4 Large alpha Values Assessment

The major disadvantage of the calculation of complex propagation constants using a

periodic FDTD analysis together with the lossy medium approach [92] is the failure of

the methodology to solve for large values of the attenuation constant α. This is due to

the large and fast spatial decay of the propagating signal and the fact that two spatial

samples, being one spatial period apart, are required for the calculation of the complex

propagation constant. Nevertheless, experimentation has shown that this disadvantage

remains unimportant for the analysis of any leaky-wave structure, given that in leaky-

wave structures the attenuation constant assumes relatively small values (α/ko assumes
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Figure 6.7: Complex propagation constant values of the perturbed, x−axis propagating

TE1 mode, calculated using the lossy medium approach [5] and the proposed improved

methodology.

values in the range of 10−5−10−3 in order for the resulting LWA to achieve high directivity

through the maximization of its effective radiating aperture). On the other hand, this

disadvantage becomes dominant when periodic structures are solved for evanescent modes

(e.g. in cases in which periodic structures are designed to be used as EBGs). This

suggestion had been also mentioned in [92], where the the proposed methodology had

failed to calculate the dispersion diagram of the unbalanced LC loaded transmission line

metamaterial within the formulated stopbands.

Given the fact that the improved methodology employs only one spatial sample of the

field, it is expected to exhibit an enhanced performance as far as the calculation of large

α values are concerned. In the following text, it is attempted to quantify this expectation

and quantitatively compare the two approaches by means of a numerical experiment. For

this purpose, an 1-D wave of the form of equation (6.9) is assumed.

A (x, t) = Aoe
−j((β−jα)(x−xo)−ωr(t−to)) (6.9)

As shown above, this wave can be rewritten as

A (x, t) = Aoe
−j(β(x−xo)−(ωr+j αωr

β )(t−to)) (6.10)

This wave is considered to be a leaky-wave (i.e. β < ko and α > 0) of radial frequency

ω = ωr, emanating from point x = xo at the time moment t = to. The attenuation
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Figure 6.8: Error in α calculation using the lossy medium approach the improved method-

ology as a function of the magnitude of α.

constant α is considered to be arbitrary large, while its exact value is being preset. To

make this ideal wave to resemble more a real-world wave, white Gaussian noise is added to

it so as its SNR level to be 40dB. This 1-D wave is sampled at points x = x1 and x = x2,

where x1−xo = 0.1λ and x2−x1 = 0.2λ (the first sampling point x = x1 is considered to

be very close to the source x = xo, while the second sampling point x = x2 is considered

to be λ/5 away from the first point, distance that could in many cases correspond to the

periodicity of a periodic EBG structure). Then, the two samples are employed together

with the lossy medium approach for the estimation of the preset attenuation constant

value while only the first sample is employed together with the improved methodology for

the estimation of the same attenuation constant value. The error between the calculated

values and the preset value of α is then estimated and the same experiment is repeated

for several growing α values. The results of this numerical experiment are reported in

Fig. 6.8. These results suggest that for small values of the attenuation constant α both

methods can effectively estimate it with an average error of 1 %. This error must be

attributed to the numerical errors involved in the implementation of the two methods.

Nevertheless, the error in the calculation of α when using the traditional lossy medium

approach starts increasing for values of α that are greater than 0.11ko. On the other

hand, the error remains bounded when the improved methodology is employed for values

of α as large as ko. Therefore, it is reasonable to suggest that the proposed improved

methodology may be used for the estimation of attenuation constant values that are 10

times larger that those that can be estimated using the lossy medium approach.
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6.3 Periodic FDTD Analysis of Sub-wavelength Res-

onant Cavity Type 2-D LWA

In this section, the periodic FDTD technique of [92] together with the proposed im-

proved methodology for the post-processing of the time-domain data and the calcula-

tion of the complex propagation constants of leaky-modes are employed for the anal-

ysis of a novel leaky-wave structure, namely, the sub-wavelength resonant cavity type

2-D LWA. The underlying operating concept for this class of antennas is similar with

any partially-reflective-surface cavity-type LWA, such the one analysed in the previous

section; the power leakage accompanying a perturbed parallel plate mode, supported

between a ground plane and a partially-reflective-surface, is exploited for the design of

highly-directive antennas. Nevertheless, the structures under consideration are of sub-

wavelength heights (instead of being of height λ/2, at which the first mode of a parallel

plate waveguide is supported). This is achieved with the use of artificial magnetic con-

ductors (AMCs) (or high impedance surfaces (HISs)) for ground planes instead of conven-

tional electric conductors. By properly setting the properties of the employed artificial

ground plane (the reflective coefficient of the AMCs or the impedance of the HISs), the

first cavity resonance between the PRS and the artificial ground plane is supported for

separations (cavity heights) much smaller than half-wavelength.

A schematic representation of the investigated sub-wavelength resonant cavity type

2-D LWA is depicted in Fig. 6.9. Specifically, in Fig. 6.9(a), where the side view of

the antenna is depicted, it can be seen that the antenna is mainly composed of a PRS,

printed on a free standing dielectric substrate, and a magnetic ground plane (MGP),

printed on a grounded dielectric substrate. These two surfaces, brought close to each

other (at distance h < λ/2), form a resonant cavity. As already mentioned, the resonant

height h is defined mostly by the properties of the MGP. In the following text, cavities of

different heights, PRSs and MGPs will be investigated. In Fig. 6.9(b) the top view of the

PRS is depicted. For the investigated antenna designs the PRS is composed of square

aperture patches (of length Lprs) arranged in 2-D periodic configurations (of spatial

period Dprs) and printed on low loss dielectric substrates. This substrate is considered

to be outside the cavity (just above the cavity) to minimize the dielectric losses of the

antenna. Finally, the top view of the of the employed MGP is shown in Fig. 6.9(c).

The MGP is composed of square patches (of length Lmgp) arranged in a 2-D periodic
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Figure 6.9: Schematic representation of the investigated sub-wavelength resonant cavity

type 2-D leaky-wave antennas. a) Cross-section of the investigated antennas, b)top-view

of the employed PRS and c) top-view of the employed MGP.

configuration (of spatial period Dmgp) and is printed on a grounded dielectric substrate.

Due to the strong fields that are supported in this substrate, the employed dielectric

substrate should be of minimal dielectric losses. The aforementioned dimensions of the

PRS and the MGP determine the electromagnetic properties of these two surfaces and

the LWA thereof. Specifically the dimensions related to the PRS define its reflection

coefficient and therefore the power leakage rate of the LWA. Those related to the MGP

define its reflection phase and by adjusting them different resonant cavity heights can be

achieved.

The purpose of the periodic FDTD analysis for this class of antennas is the investi-

gation of the impact of the cavity height to the complex propagation constants of the

supported leaky-modes, and, therefore, the optimization of the delivered directivity by an

antenna of a given physical aperture with respect to its cavity height. For this purpose,

several resonant cavity antennas of different cavity heights (and, therefore, of different

MGP parameters) are analysed and the supported complex propagation constants are

compared. A list of all the antenna structures that have been investigated is reported

in Table 6.3. It is pointed out that all these structures have been designed for opera-

tion at about 3.7 GHz. In all of them, the periodicity of both the PRS and the MGP
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are Dprs = Dmgp = 22 mm (Dprs, Dmgp ≈ 0.27λ), while the employed dielectric sub-

strates parameters in all of them are ǫr,prs = 2.46, hsub,prs = 3.198 mm, ǫr,mgp = 2.56,

hsub,prs = 3.152 mm.

Structure ID CavityHeight (mm) Lmgp (mm) ∠Lmgp (degrees)

λ/2 38.89 - -

λ/3 26.6 18.25 75.45

λ/3.9 20.9 19.03 15.67

λ/4.9 16.5 19.50 -33.43

λ/6.1 13.2 19.80 -62.05

λ/7.0 11.6 19.95 -74.33

λ/12.7 6.4 20.50 -107.92

λ/19.8 4.1 20.80 -120.67

Table 6.1: Cavity heights and MGP parameters of the investigated antenna structures.

Fig. 6.10 shows the cross-section of the computational domain that is used for the

periodic FDTD analysis of the sub-wavelength resonant cavity type 2-D LWAs. As

already suggested, this computational domain is comprised from a single unit cell of the

antenna and is terminated with PBCs at the planes of periodicity. A polarized line current

source along x−axis is employed to excite simultaneously TE modes along the z−axis and

TM modes along the x−axis. It is pointed out that, given that different discretization

(meshing) schemes were employed for each of the structures of Table 6.3, very dense

meshes, that would minimize the numerical error in each of them, were employed. The

need for extremely dense meshes was also imposed by the strong electric fields supported

within the resonating cavity and especially within the substrate of the MGP. Due to all

these reasons, the computational domain of Fig. 6.10 was composed of large numbers of

Yee’s cells (of the order of several millions). Therefore, the improved methodology that

allows for the calculation of the complex propagation constants using a single spatial

time-domain sample enabled and significantly accelerated the implementation of this

study.

The computational domain of Fig. 6.10 is initially employed for the analysis of four

of the antenna structures that are described in Table 6.3, namely the λ/2, the λ/4.9, the

λ/12.7 and the λ/19.8 . All these designs incorporate a PRS having a reflection coefficient

of 0.962 (i.e., Lprs = 14. mm). The results of the analysis of these four structures
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Figure 6.10: Side view of the computational domain employed for the periodic FDTD

analysis of the sub-wavelength resonant cavity type 2-D LWAs.

are depicted in Fig. 6.11 and Fig. 6.12. Specifically, Fig. 6.11 shows the section

of the dispersion diagram that corresponds to TE leaky-modes which only propagate

along the z−axis and are characterized by small phase constants (i.e., βd ≤ 15o ). The

reason for the latter restriction is that this analysis is focused on broadside radiators, and

broadside radiation occurs when |α| ≤ |β| . All of the four antennas support fast-waves

at approximately 3.7 GHz. It has to be pointed out that all the modes depicted in Fig.

6.11 are deep in the radiating region of the dispersion diagram, given the relatively large

periodicity of the antennas under investigation.

Based on simple inspection of the slope of the dispersion curves of Fig. 6.11, it is

concluded that the investigated antenna becomes more narrowband as the cavity height

is reduced. Therefore, the λ/19.8 resonant cavity antenna is the most narrowband of the

four structures considered, while the λ/2 antenna is the most broadband.

Fig. 6.12 depicts the attenuation constants associated with the fast-waves shown in

Fig. 6.11. Inspection of these results suggests that the attenuation constants do not

vary monotonically with the change of the cavity height. Instead, they decrease as the

cavity height is reduced from to λ/9 to λ/4.9. When the cavity height is reduced below

λ/4.9 the attenuation constants begin to increase again. This observation, motivated us

to extend our study to consider additional cavity heights, and further antenna designs

were investigated (i.e. all the antennas of Table 6.3, in conjunction with three different
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Figure 6.11: Phase constant of the sup-

ported TE leaky-modes.

 

 

Figure 6.12: Attenuation constants of

the leaky-modes shown in Fig. 6.11.

 

Figure 6.13: Normalized attenuation constant as a function of cavity height for three

different PRSs.

PRSs). The results of this study are presented in Fig. 6.13. Upon inspection of this

graph it is possible to precisely point out the cavity height which yields the smallest

attenuation constant. This height is of the order of λ/4.9. There is however a trend

for this optimum point to move towards lower cavity heights as the PRS reflectivity is

increased. It is expected, therefore, that for the first two PRS designs (those with reflec-

tivity |ΓPRS| = 0.901 and |ΓPRS| = 0.962) this cavity height will deliver the maximum

value of directivity. For a PRS reflectivity of 0.998 the optimum point occurs for a cavity

height of approximately λ/6.

All the aforementioned conclusions were validated through full-wave simulations of

antenna structures of finite lateral dimensions and were employed for the fabrication of

antenna prototypes with optimized (maximized) delivered directivities. Several of these

results have been presented in [6].
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6.4 Radiation Pattern Calculation of Finite-size LWAs

Using Periodic FDTD Simulations

6.4.1 General

Up to this point, the periodic FDTD technique together with the proposed improved

methodology for the post-processing of time-domain waveforms were presented and em-

ployed for the calculation of the complex propagation constants of the leaky-modes sup-

ported by sub-wavelength resonant cavity type 2-D LWAs. Although the values of the

complex propagation constants of the leaky-modes provide several indirect information

about the radiating properties of the considered structures, they can not provide di-

rectly their radiation patterns. For this reason, the development of a semi-analytical

formulation for the estimation of the expected radiation patterns of periodic, finite-size,

sub-wavelength resonant cavity type 2-D LWA, composed of sub-wavelength unit cells,

given the complex propagation constants of the supported modes is presented in this

section.

Under the effective aperture condition, any infinitely long 1 periodic LWA, composed

of unit cells of sub-wavelength dimensions, can be treated as a phased array [145], [146].

In that case, each cell of the antenna is assumed to be an omnidirectional point radiator

fed with a current of the form In = Ioe
−nαde−jnβd, where γ = β − jα is the complex

propagation constant of the supported leaky-wave. That current value would correspond

to the magnitude of a traveling leaky-wave at the location of this unit cell. Therefore,

the total radiation pattern of the array is identical with the array factor of the equivalent

phased array (equation (6.11)) and is given by equation (6.12).

AF =
N−1
∑

n=0

Ine
jnkodcosθ (6.11)

AF =
N−1
∑

n=0

e−nαdejn(kodcosθ−βd) (6.12)

1A LWA can be assumed to be infinitely long when it is long enough to radiate all the power that is
fed to it.
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6.4.2 Electromagnetic Behavior of Finite-size LWA

The attenuation constant of the supported leaky-waves α usually assumes extremely small

values and, therefore, in order for most of the power fed into the antennas to be radiated,

leaky-wave structures should be large in size (several wavelengths). In many practical

cases, this is not possible due to space/volume restrictions. Such is the case for the

sub-wavelength resonant cavity type 2-D LWA of the previous section; for an attenuation

constant of α = 0.01, in order for the 90% of the fed power to be radiated the structure

should be approximately 4.5 m long. This is not possible for an antenna operating at

3.7 GHz and being designed for use in commercial communications. Nevertheless, the

aforementioned antennas have been prototyped in reasonable lateral sizes (i.e. 29 cm,

13 unit cells) and have been measured to deliver high gains corresponding to aperture

efficiencies of the order of 50% or more [6], [5]. Therefore, the question to be answered is

how such high aperture efficiencies are achieved by antennas of finite and compact lateral

size.
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•  H-plane 
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Dz 

Dx 

Figure 6.14: Top view of a finite size resonant cavity type 2-D LWA. If the structure

is excited with an x−axis oriented current source, a TE wave will be supported along

z−axis and a TM wave along x−axis. The TE wave will correspond the yz−plane to the

H-plane of the antenna and the TM wave would create an E-plane in the xy-plane.

In order to answer this question, let us use the resonant cavity type 2-D LWA as a

driving example and consider the leaky-modes supported in these structures. In Fig. 6.14

the top view of a square, periodic resonant cavity type 2-D LWA with finite dimensions
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Dz and Dx is depicted. If this structure is excited with an x−oriented line source, the

fundamental established modes will be a TE wave along z−axis and a TM wave along

x−axis. These waves are in principle perturbations of the TE and TM modes supported

by parallel plate waveguides (PPW) [5]. Therefore the impedance of these two modes

can be approximated by the impedances of the unperturbed modes

ZTM,perturbed ≈ ZTM,PPW =
β (ω)

ωǫ
(6.13)

ZTE,perturbed ≈ ZTE,PPW =
ωµ

β (ω)
(6.14)

where β (ω) =
√

ω2ǫµ − (nπ/h) is the dispersion relation of the unperturbed modes and

ǫ, µ the parameters of the materials filling the cavity. When the perturbed TE and TM

waves are excited with small phase velocities βTM,perturbed −→ 0 and βTE,perturbed −→ 0

(very close to the cut-off frequency of the mode), equations (6.13) and (6.14) suggest that

ZTM,perturbed −→ 0 and ZTE,perturbed −→ ∞. In that case, the TM leaky-waves supported

by the open resonant cavity type 2-D leaky-wave structure will propagate through a very

small impedance and the corresponding TE leaky-waves through a very high impedance.

This is depicted in Fig. 6.15 and Fig. 6.16 where the analytical dispersion relations and

the corresponding impedances of the TE1 and TM1 modes supported by a λ/2 parallel

plate waveguide with a cut-off frequency at 3.7 GHz have been plotted.

Going back to the motivating example of the resonant cavity type 2-D LWA of Fig.

6.14, when the perturbed TM waves, that propagate along the x−axis through a low

impedance, and the perturbed TE waves, that propagate along the z−axis through a

high impedance, reach the edges of the finite-size structure, they face free space and a

medium impedance of 120πΩ. Because their characteristic impedances are much different

than the free space impedance, both waves will be reflected back in the structure and will

start traveling towards the opposite directions. If we ignore any diffraction effects that

might appear when the traveling waves reach the edges of the structure, the reflection

coefficients for both the TM and TE waves at the edges of the structure are presented in

Fig. 6.17. These results suggest that the TM waves are reflected with a positive coefficient

RTM that assumes the maximum value of unity at cut-off (when ZTM,perturbed −→ 0 ) and

decays away from cut-off. On the other hand, the TE waves are reflected with a negative

coefficient RTE that again assumes the maximum magnitude of unity at cut-off (when

ZTE,perturbed −→ ∞) and decays away from cut-off. In other words, the open edges of

the finite size structure act as shorts (electric walls) for the impinging TE waves and as
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Figure 6.15: Dispersion relations of the

TE1 and TM1 modes supported by a

λ/2 parallel plate waveguide with a cut-

off frequency at 3.7 GHz
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Figure 6.16: Impedances of the TE1 and

TM1 modes supported by a λ/2 parallel

plate waveguide with a cut-off frequency

at 3.7 GHz.

opens (magnetic walls) for the TM waves.

Based on this analysis, it is concluded that in a finite size resonant cavity type 2-

D leaky-wave structure, such as that of Fig. 6.14, traveling waves are bouncing back

and forth, being reflected whenever they impinge on an open edge. Between any two

consecutive reflections they remain leaky, radiating power towards y−axis. Therefore, in

configurations like that of Fig. 6.14, traveling leaky-waves form after multiple reflections

a standing field distribution in the structure, and, hence, the radiating properties of the

structure (i.e. aperture efficiency, radiation patterns) should be attributed more to that

standing field distribution than to a single conventional, traveling leaky-wave.

6.4.3 Array Factor of Finite-size LWA

Proposed Model

Given the analysis of the previous section it becomes clear that equation (6.12) can

not be employed, under the effective aperture approach, for the calculation of the ra-

diation patterns of finite size LWAs, when the complex propagation constants of the

supported modes are known. This is because equation (6.12) considers conventional

traveling leaky-waves and, hence, excitation currents for the point radiators of the form
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Figure 6.17: Reflection coefficients for the TE and TM wave impinging at the open ends

of a finite size waveguide structure (with a cut-off frequency at 3.7GHz), when diffraction

effects are not considered.
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Figure 6.18: Array representation of a cross section of a finite size LWA along any of its

principal planes.

In = Ioe
−nαde−jnβd. On the contrary, it is suggested hereby, that the generic array factor

equation (6.11) could be used for the calculation of the radiation patterns of finite-size

LWAs, at least at the principal radiation planes of the antenna, provided that the correct

current coefficients In that correspond to each of the unit cells along these planes are

calculated in accordance with the analysis of the previous section. That calculation of

the current coefficients is attempted in the following text.

For this purpose, let us consider an 1-D array of N point radiators (N is considered

to be an odd number) terminated at both edges with reflective surfaces of reflection coef-

ficient R, as shown in Fig. 6.18. These point radiators correspond to the sub-wavelength

unit cells of the finite-size LWA under investigation, R corresponds to the reflection co-

efficient facing the traveling leaky-waves when reaching the edges of the structure, while
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the entire array can be representative of any principal planes cross sections of the LWA.

Assuming that the array is externally fed at its middle element with a current Io (feed-

ing point of the LWA), traveling leaky-waves will be excited towards both directions of

the array, with respect to the middle element (left and right). Each of these two waves

will be consecutively reflected whenever it reaches any edge of the array and eventually a

standing field distribution will be created. For the estimation of the equivalent excitation

currents of the array elements, it is considered that the total current of the nth−radiator

In is consisted of two components; the first is derived from the wave the directly arrives at

this unit cell from the feeding point of the array and the multiple reflections of that wave,

and the second is derived from that wave that originally traveled towards the opposite

direction and indirectly reached that unit cell after a single reflection at the opposite

edge, and the multiple reflections of that wave. This is also shown in Fig. 6.18, and can

be expressed as

In = In,dir + In,indir (6.15)

The component In,dir of equation (6.15) can be expressed in terms of the array pa-

rameters and the complex propagation constant of the examined leaky-waves as

In,dir = I+
n +I+

n

(

Φ+RΦ+
)

+I+
n

(

Φ+RΦ+
) (

Φ−RΦ−
)

+I+
n

(

Φ+RΦ+
) (

Φ−RΦ−
) (

Φ+RΦ+
)

+...

(6.16)

where I+
n is given by equation (6.17) and corresponds to the wave that directly reaches

the nth unit cell from the feeding point, the second term of equation (6.16) corresponds

to the first reflection of I+
n to the closest reflection surface, the third term of equation

(6.16) corresponds to the second reflection of I+
n to the opposite reflection surface etc.

The coefficient Φ+ is the transmission coefficient (phasor) of a wave traveling from the

nth element to the nearest reflecting surface and is given by equation (6.18), and Φ− is the

transmission coefficient of a wave traveling from the nth element to the other (opposite)

reflecting surface and is given by equation (6.19)

I+
n = Ioe

−jn(β−jα)d (6.17)

Φ+
n = e−j(N−1

2
−n)(β−jα)d (6.18)

Φ−

n = e−j(N−1

2
+n)(β−jα)d (6.19)

Similarly, the contribution of the indirect component involved in equation (6.15) can
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be written as

In,indir = I−

n +I−

n

(

Φ+RΦ+
)

+I−

n

(

Φ+RΦ+
) (

Φ−RΦ−
)

+I−

n

(

Φ+RΦ+
) (

Φ−RΦ−
) (

Φ+RΦ+
)

+...

(6.20)

where I−

n corresponds to the indirect wave that reaches the nth radiatos and is given by

equation (6.21).

I−

n = Ioe
−j(N−1

2
)(β−jα)dΦ−

n (6.21)

Combining equation (6.15) with equations (6.16) and (6.20), the total current on the

nth element of the array can be written as

In =
∞
∑

m=0

(

I+
n + I−

n

) [

Φ+
n RΦ+

n

]m [

Φ−

n RΦ−

n

]m
+

∞
∑

m=1

(

I+
n + I−

n

) [

Φ+
n RΦ+

n

]m [

Φ−

n RΦ−

n

](m−1)

(6.22)

Equation (6.22) can be then used together with the conventional generic array factor

equation (6.11) for the calculation of the principal planes radiation patterns of finite size

LWAs.

Validation - Discussion

For the validation of the proposed model, the principal radiation patterns of a sub-

wavelength finite size resonant cavity type 2-D LWA are calculated, using the proposed

model together with the FDTD results reported in section 6.3, and are compared with the

corresponding radiation patterns, obtained through the simulation of the entire finite-size

structure using a commercial full-wave EM solver (CST Microstripes), that have been

reported in [6].

The antenna under consideration is a λ/4.9 resonant cavity type 2-D LWA composed

of 13 unit cells, identical with that of Fig. 6.10, along both principal planes (the antenna

is composed of 132 unit cells in total). The reflection coefficient of the employed PRS

has been considered to be ΓPRS = 0.962, while the periodicity of the structure is d =

22 mm in both principal planes. This unit cell has been analysed in section 6.3 and the

supported complex propagation constants derived by its periodic FDTD analysis have

been presented in Fig. 6.11 and Fig. 6.12.

Using the proposed model (with RE−plane = 1 and RH−plane = −1), the aforemen-

tioned parameters and the results of the periodic FDTD analysis of the unit cell, the

calculated E- and H-plane radiation patterns are presented in Fig. 6.19.
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Figure 6.19: E- and H-plane radiation patterns of a λ/4.9 resonant cavity type 2-D

leaky-wave antenna composed of 13 unit cells, calculated using the proposed model.

 

Figure 6.20: E- and H-plane radiation patterns of a λ/4.9 resonant cavity type 2-D leaky-

wave antenna composed of 13 unit cells, calculated using the a full-wave simulation of

the entire finite size structure (obtained from [6]).



Chapter 6. Periodic FDTD Analysis of Leaky-Wave Antennas 165

In Fig. 6.20 the radiation patterns of the same structure, calculated using CST Mi-

crostripes and originally reported in [6], are depicted. Comparing the radiation patterns

of Fig. 6.19 and Fig. 6.20 good agreement can be observed. The E-plane radiation

pattern calculated using the proposed model achieves the same number of nulls and at

roughly the same angles with that calculated through the full-wave simulation. The side-

lobe level and the endfire radiation in both patterns are of the same order of magnitude

(roughly −13 dB and −19 dB, respectively), while similar directivity values can be ex-

tracted from both patterns. Good agreement is also observed for the H-plane patterns.

In that case, both the full-wave and the array factor patterns exhibit two nulls left and

right of the broadside direction, both patterns exhibit a sidelobe level of the order of

−23 dB and endfire directivity of the order of −28 dB, and both patterns suggest that

the H-plane pattern of the investigated antenna is less directive than its E-plane pattern.

Nevertheless, between the two sets of patterns there are also some disagreements,

mostly related with the exact position and the depth of the nulls. This disagreement is

attributed to the fact that no diffraction effects have been considered in the proposed

model for the calculation of the radiation patterns. In fact, diffraction is expected to

affect the total radiation patterns of the finite-size antenna in two different ways. First,

due to the diffraction of waves at the open edges, the reflection coefficient encountered

by the traveling leaky-waves when reaching the edges of the structure would deviate

form the ideal values of RE−plane = 1 and RH−plane = −1 that were considered in the

proposed model. This deviation concerns both the magnitude of the reflection coefficients

(they are expected to be less than the unity) and also its phase (due to the diffraction,

the reflection coefficients are expected to possess some small imaginary part). Secondly,

the diffracted power at the edges of the finite-size structure is also radiated in the free

space and is part of the total radiation patterns that are calculated with the full-wave

simulation of the finite structure. Therefore, the patterns of Fig. 6.20 also include the

contributions of the diffracted fields, while those of Fig. 6.19 were derived by considering

only radiated from the array fields.

Conclusively, even though the proposed model is inherently an approximate one, it

could be used to some extend for the fast and analytical calculation of the radiation

patterns of finite-size LWAs. For the calculation of these patterns, only the complex

propagation constants of the supported leaky-waves, that can be extracted using the

proposed single-cell periodic FDTD methodology, are required. The benefit of using this

model may be huge as the full-wave simulation of the entire finite-size LWA may require
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several hours of computational time and significantly large computational resources.



Chapter 7

Conclusions

7.1 Review

In this thesis, the analysis, design and modeling of novel metamaterial and metamaterial-

inspired microwave structures and antenna applications were presented. Motivated by the

challenge of enhancing the penetration of metamaterial-related applications into commer-

cial products, novel, low cost, easily deployable metamaterial structures were proposed.

Such metamaterial structures were employed for the design of easily fabricated antenna el-

ements and arrays of those. Also, a periodic, full-wave, FDTD-based tool was developed,

optimized and linked to novel post-processing algorithms that enabled the computation-

ally efficient, rigorous and inclusive characterization of high-gain, metamaterial-based,

flat-plate antennas.

In chapter 2, all the theoretical aspects that were employed throughout the thesis

were presented. Specifically, all the possible approaches for the synthesis of metamaterial

structures were briefly described and modeled through the equivalent circuit analysis of

resonators either interacting with impinging plane waves or forming arrays of tightly

coupled unit cells. It was shown that the latter approach, that has been much less

investigated in the literature, can be employed for the synthesis of any of the well-known

metamaterial properties and applications, depending on the magnitude and the nature

of the coupling between the resonators. Also, in the same chapter, all the theoretical

background of the in-house periodic FDTD-based computational tool, that has been

extensively employed and furthered developed in this thesis, was briefly presented.

In chapter 3, the theory for the design of metamaterial structures employing tightly

coupled resonators was employed together with compact resonators printed on grounded
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dielectric substrates for the synthesis of microstrip-based artificial transmission lines and

applications of those. Specifically, the double-spiral resonator (DSR) was identified as a

proper modular element for the design of such lines, was extensively analysed and all its

unique properties were identified. In turn, such resonators were employed for the design

of DSR-based artificial lines supporting backward waves over a measured fractional band-

width of 13%. Such lines were used for the synthesis of broadband series-fed microstrip

patch arrays, exhibiting reduced sidelobe levels and beam-scanning capabilities.

In chapter 4, tightly coupled resonators were employed in non-grounded configura-

tions for the synthesis of compact, phase-shifting lines that were used for the design of

low-profile folded monopoles. In the proposed approach, two low-profile, vertical, radi-

ating posts were connected through an artificial, non-radiating, phase-shifting line that

was used to enforce the resonance condition of conventional folded monopoles. Therefore,

the resulting radiators were self-resonant while they exploited the four-fold increase of

the radiation resistance of folded monopoles to exhibit decent radiation resistances even

though being of low profile. Such monopoles were explicitly modeled and analysed, radi-

ators of different profiles were investigated while the impact of the ground plane against

which they were fed was also studied. Both coaxially and microstrip-fed monopoles were

considered while it was shown that pairs of such monopoles exhibit reduced electromag-

netic coupling as compared to the coupling between conventional quarter-wavelength

monopoles.

The self-resonant, low-profile, low-coupling monopoles of chapter 4 were employed in

chapter 5 for the design of two classes of sub-wavelength antenna arrays. The first of them

was a two-element phased array in which the array element separation was approximately

λ/5. Even that small inter-element separation the measured performance of the array was

close to the theoretically expected, in contrast to the performance of the corresponding

array of conventional monopoles. The second class of sub-wavelength arrays that were

investigated were two-element superdirective endfire arrays. In that case, the inherent

properties of the employed low-profile folded monopoles enabled the simplification of the

required feeding network and the fabrication of single-port microstrip-based arrays. The

directivity and the gain delivered by such arrays were rigorously measured to validate

both their superdirective properties and the fundamental limitations associated with their

operation. In the same chapter, a metamaterial-inspired decoupling mechanism was

proposed for the coupling reduction between conventional planar inverted-F antennas

participating in compact arrays built on a common ground plane (handheld devices).
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According to this scheme, a resonating pair of slits (effective magnetic loop) was added

in the coupling path between the two coupled antennas to insert a transmission-zero.

The last chapter of the thesis was dedicated to the numerically efficient modeling

of periodic leaky-wave structures with emphasis to metamaterial-based high-gain leaky-

wave antennas. The periodic in-house FDTD-based tool of [92] was linked with novel

post-processing algorithms that enabled the reduction of the computational resources

required for the analysis of periodic leaky-wave structures. The numerically improved

methodology was employed for the analysis of novel sub-wavelength resonant cavity type

2-D leaky-wave antennas and the optimization of their directivity with respect to their

profile. Finally, post-processing algorithms that allowed the approximate calculation of

radiation patterns of electrically large, finite-size, 2-D leaky-wave antennas through the

periodic FDTD analysis of their unit cell were developed.

7.2 Future Work

The objective of this thesis was to propose novel, low-cost, easily fabricated metamate-

rial structures that could be easily deployed within commercial microwave applications.

For this purpose, the least investigated class of metamaterial structures, those formed

by arrays of tightly coupled resonators, was employed. The outcomes of this research

endeavor include several interesting metamaterial structures that could be deployed in

several commercial applications given that they address many of the requirements of

modern telecommunication systems such as size/volume reduction, low fabrication cost

and compatibility with standard microwave technologies. For this reason, it is believed

that this research endeavor could potentially inspire future research activity targeting at

the development and validation of more metamaterial-based microwave applications. In

the following text, some of the directions of future research related with the context of

this thesis are briefly presented.

First, on the front of the synthesis of metamaterial structures using tightly coupled

resonators, it would be interesting if the coupling requirements for the synthesis of differ-

ent metamaterial properties could be married with traditional filter synthesis theory [32].

The results of this study should comment on which of the metamaterial properties could

be achieved under the restrictions imposed by the filter synthesis theory on the sign of

the coupling coefficients. Then, these metamaterial properties could be synthesised over

an exact and predefined bandwidth.



Chapter 7. Conclusions 170

On the front of the design of microstrip-based artificial lines, the use of different

resonators for the synthesis of such lines may be worth investigating. Even though the

double-spiral resonator investigated in this thesis exhibits several comparative advantages

(small footprint, discrete inductive components) it does not provide a direct means of

reconfiguring its electromagnetic properties (e.g. through a tuning discrete component

such a varactor or a PIN diode). This is mostly due to the fact that it does not possess a

discrete capacitive gap on which a tuning discrete element could be fit. Therefore, future

research on reconfigurable resonators and how they could be employed for the synthesis

of artificial lines could lead to the design of novel reconfigurable metamaterial structures.

Regarding the proposed low-profile folded monopoles, future research work may in-

volve the implementation of these monopoles in planar form, using both single layer and

multilayer PCB technology. Some initial investigations carried out showed that such im-

plementations are definitely possible. In their planar form, such antennas could be also

considered for applications that require integrated, fully-printed, electrically small radi-

ators. Also, in their planar form, such monopoles could be designed in dually-polarized

configurations. Another promising feature of the proposed low-profile folded monopoles

is that their radiating mechanism is to a certain degree decorrelated to their reactive

components. Therefore, the self-resonance of such monopoles can be tunned only by

tunning the properties of the embedded matching network (phase-shifting line). As a

result, it is reasonable to expect that reconfigurable folded monopoles could be easily

designed if reconfigurable coupled resonators were employed as embedded phase-shifting

lines. Also, regarding the arrays of low-profile folded monopoles, given the comparative

advantages of such monopoles when forming compact arrays (reduced mutual coupling,

robust input impedance), it would be interesting to test such compact arrays within an

experimental MIMO setup in order to experimentally assess the capacity gain obtained

by employing such sub-wavelength arrays.

Finally, on the front of the periodic modeling of electrical large, metamaterial-based,

high-gain antennas, it is strongly believed that most of the identifying antenna parameters

of such radiators can be rigorously obtained by the full-wave periodic analysis of a single

unit-cell and the post-processing of the extracted data. Therefore, more post-processing

algorithms, similar with those presented in this thesis, should be developed and employed

together with the periodic analysis to achieve the computationally efficient analysis of

these antennas. For example, such post-processing algorithms may be developed for the

calculation of the impedance characteristics of an antenna, its effective aperture and its
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radiation efficiency. For the improvement of the accuracy of all these algorithm the effect

of the diffraction at the edges of the finite-size antenna should be also modeled and taken

into account.



Appendix A

Analysis Of Coupled Lines

Any pair of microstrip lines that are located close to each other can be assumed to

be coupled. In this case, the electrical characteristics of these lines, for TEM type of

propagation, can be completely determined in terms of the phase velocity supported by

each line and the effective capacitances between them.

In the following, two different extreme types of excitations for the coupled lines are

examined. The first type refers to the case in which the currents on the coupled strips

are equal in magnitude and in the same direction. This type of coupled line is shown

in Figure A.1 and is referred in the literature as even-mode excited lines. In this case,

a hypothetical magnetic wall can be assumed between the two lines, no displacement

currents and no effective capacitance are supported between the lines, and, consequently,

the propagation on each line is defined by the characteristics of each line.

The second type of excitation is the odd-mode excitation, in which the currents on

the lines are of the same magnitude but are flowing in opposite directions. This case is

depicted in Figure A.2.

Under an odd-mode excitation, a hypothetic electric wall can be assumed between the

lines and the coupling between the lines can be modeled through a capacitance between

the strips. This capacitance can be expressed in terms of the parallel combination of a

capacitance that represents the fringing fields within the dielectric substrate just below

the strips (Cgd/2 in Figure A.2) with the capacitance that represents the fringing fields

in the air just above them Cga/2 in Figure A.2). Each one of these two capacitances are

expressed as a series combination of two capacitors (Cgd and Cga, respectively), while the

mutual poles of these capacitors are grounded, due the created electric wall. Therefore,

all the capacitances of Figure A.2 are grounded.
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Figure A.1: Microstrip lines coupled under an even-mode excitation. In that case a mag-

netic wall can be assumed between the lines and, therefore, no capacitance is supported

between them.
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Figure A.2: Microstrip lines coupled under an odd-mode excitation. In that case an

electric wall can be assumed between the lines and, therefore, a fringing field capacitance

is supported between them.
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To conclude the analysis of the coupled lines under an odd-mode excitation, the values

of the aforementioned capacitances should be estimated. For this purpose, in this study,

the semi-empirical formulas of [147] are employed.

According to the analysis of [147], the fringing fields capacitances for the air is given

by the equation

Cga = ǫo

K(k′)

K(k)
(A.1)

where,

k =
s/h

s/h + 2w/h
(A.2)

and

k′ =
√

1 − k2. (A.3)

Then, the ratio of the elliptic function of equation A.1 depends on the value of k.

Specifically,

K(k′)

K(k)
=

1

π
ℓn

(

2
1 +

√
k′

1 −
√

k′

)

, if 0 ≤ k2 ≤ 0.5 (A.4)

and
K(k′)

K(k)
=

π

ℓn
{

2
(

1 +
√

k
)

/
(

1 −
√

k
)} , if 0.5 ≤ k2 ≤ 1 (A.5)

Finally, the fringing field capacitances on the dielectric are given by equation A.6

Cgd =
ǫoǫr

π
ℓn
{

coth
(π

4

s

h

)}

+ 0.65Cf

(

0.02

s/h

√
ǫr + 1 − ǫ−2

r

)

(A.6)

where

Cf =

√
ǫeff

2cZ0

− Cp

2
(A.7)

and

Cp = ǫoǫr

w

h
. (A.8)
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