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Abstract

This thesis is concerned with the weighted L2(R) boundedness of the family of

convolution operators corresponding to the kernels Kt = eiΦ/tψ, where ψ is a smooth

cutoff, Φ is a function on R that looks locally like (·)` in the support of ψ for some

integer ` ≥ 3 and 0 < t < 1 . Using the techniques of Bennett et al inequalities of

the form

∫
R
|Kt ∗ f |2dµ . Ct

∫
R
|f |2Mt,`(µ)

are proven, where µ is an arbitrary Borel measure on R, and Mt,` is a maximal

function depending on t and `. The weighted L2(R) estimates that are derived are

shown to be sharp in the sense that the Lp(R) boundedness of Mt,` can be used

to recover the sharp exponent in t for the Lp(R)→ Lp(R) constant for convolution

with Kt when `′ ≤ p ≤ `.
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Introduction

The provenance of this thesis can be traced back to 1978 when Stein, at a con-

ference in Williamstown (see [27]), suggested that it would be worthwhile to study

two-weighted norm estimates for the disc multiplier operator. In the years leading

up to this, the Lp boundedness of the disc multiplier had provoked a great deal of

interest and speculation, and one of the fundamental problems of twentieth century

harmonic analysis was laid to rest when Charles Fefferman proved that the disc

multiplier is bounded only on L2. Studying weighted L2 inequalities for the disc

multiplier could then help one gain further knowledge of its L2 behaviour.

It is necessary at this point to clarify some terminology. By a two-weighted norm

estimate for an operator T , we mean an inequality of the form

∫
|Tf |2w .

∫
|f |2W

for all f ∈ L2(W ), where w and W are a pair of a Borel measures, or suitable

weight functions. In particular, we are interested in the case where w and W are

in a correspondence determined by an operator (typically some kind of maximal

function) MT , for which MT (w) = W . This also includes the case where MT (w)

happens to be constant for each w. In this case, we have a functional w 7→ C(w)



such that

∫
|Tf |2w . C(w)

∫
|f |2.

We will refer to such an inequality as a one-weighted L2 estimate.

A pivotal point in the history of harmonic analysis was the birth of the study of

Ap weights. When investigating the functions w for which the inequality

∫
Rn
|Tf |pw ≤ Cp,n

∫
Rn
|f |pw

holds for a suitable maximal function or singular integral operator T , it emerged

that necessary and sufficient geometric conditions could be placed on w in order for

the above to hold. Functions satisfying such conditions are said to belong to the

class Ap. One of the canonical texts on the subject is the book by Garćıa-Cuerva

and Rubio de Francia ([19]) which was among the first to dedicate itself to the

treatment of Ap weights. The success of the theory of Ap weights has a led to a

good understanding of two-weighted norm estimates for singular integral operators,

maximal functions and square functions.

This way of looking at the Lp boundedness of operators proved to be very in-

fluential to the point that weighted norm estimates are now a familiar sight to the

harmonic analyst, and are central to the study of certain important operators that

don’t fall under the remit of the Ap theory. In particular, we are interested in

integral operators with kernels that display oscillation. What emerges when one

examines how estimates for these operators have been studied in the past is that

their usages tend to be somewhat disparate - the question of for which oscillatory



integral operators T we can expect to have estimates of the form

∫
|Tf |2w .

∫
|f |2MT (w)

remains largely unaddressed. The aim of this thesis is to begin to explore this

question, beginning with a family of oscillatory convolution kernels on R. This

family of kernels (which are introduced in Chapter 4) is a natural place to start and

they give one an opportunity to see the role that oscillation plays in such estimates.

We begin by reviewing some preliminary material, namely some useful results

from Littlewood-Paley theory, and some techniques for analysing certain oscilla-

tory integrals. In the chapter that follows, we review some particular examples of

weighted L2 inequalities for the disc multiplier operator, and for extension opera-

tors. Since the material in Chapter 4 makes heavy use of techniques from [5], we pay

special attention to the results in this paper. We then go on to prove two-weighted

norm inequalities for the aforementioned family of convolution operators, and from

this we obtain information about the Lp(R) to Lp(R) boundedness for this fam-

ily. Finally, we prove a one-weighted estimate for convolution operators with radial

oscillatory kernels on Rn.
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Chapter 1

Weighted Littlewood-Paley

Theory

Littlewood-Paley theory is a broad term relating to a collection of results con-

cerning the Lp-boundedness of operators with some sort of quadratic nature. The

Lp-boundedness of classical Littlewood-Paley operators (or ‘square functions’ as they

are also known) is well understood, and the study of such operators and their ap-

plications forms one of the canons of harmonic analysis. A good introduction to

the subject is given by Duoandikoetxia in [15]. One of the classical applications

of Littlewood-Paley theory is the famous Marcinkiewicz multiplier theorem, which

gives sufficient conditions for a Fourier multiplier to define a bounded operator on

Lp. Among the various types of square function that are of use in harmonic analysis

are ones that involve decomposing the Fourier support of a function f in certain

ways. For example, if we let {∆j} denote a collection of (unions of) dyadic intervals

in R, ∆j = (−2j+1,−2j] ∪ [2j, 2j+1), then we may define a family of operators by

Ŝjf(ξ) = χ∆j
(ξ)f̂(ξ)

1



for j ∈ Z, and a corresponding operator S by

Sf(x) =

(∑
j∈Z

|Sjf(x)|2
) 1

2

.

By Plancherel’s Theorem, it is easy to show that ‖Sf‖2 = ‖f‖2, and a classical

result of Littlewood and Paley also states that ‖f‖p ∼ ‖Sf‖p for 1 < p <∞.

One may construct a ‘smoothed-out’ version of the operator S as follows: let

ψ ∈ S(R) be non-negative, supported in {ξ : 1/2 ≤ |ξ| ≤ 4}, and equal to 1 when

1 ≤ |ξ| ≤ 2. Let ψj(ξ) = ψ(2−jξ) and define a family of operators {S̃j} by

̂̃
Sjf(ξ) = ψj(ξ)f̂(ξ).

We may then define a corresponding Littlewood-Paley operator by

S̃f(x) =

(∑
j

|S̃jf(x)|2
) 1

2

.

1.1 Littlewood-Paley Theory with Weights on R

In order to carry to carry out (and subsequently ‘undo’) the frequency decom-

position that is central to the proof of Theorem 4.2.2 we require several results

concerning the weighted L2 boundedness of the types of square functions described

above.

We include here two weighted Littlewood-Paley type lemmas that we will use

later on, both of which are adapted from results by Bennett et al in [5]. Our first

lemma concerns an ‘equally-spaced’ frequency decomposition and has its basis in

a result from [19] . This is followed by a weighted estimate for a square function

arising from a dyadic decomposition.

2



Lemma 1.1.1. For L > 0, let WL be a function on R with suppŴL ⊂ {x ∈ R :

|x| ≤ 2L}, such that

∑
k∈Z

ŴL(x+ kL) = 1

for all x ∈ R, and satisfying the estimate

|WL(x)| . L

(1 + L|x|)N

for any x ∈ R and any N ∈ N.

For a function f on R, let fk(x) = f∗(e2πikL(·)WL)(x). Then for any non-negative

w on R, ∫
R

∑
k

|fk|2w .
∫

R
|f |2|WL| ∗ w.

Proof. Observe that

fk(x) = e2πikLx(f(·)WL(x− ·))̂(kL),

and so

∑
k

|fk(x)|2 =
∑
k

|(f(·)WL(x− ·))̂(kL)|2.

Fix x ∈ R, and let gx(y) = f(y)WL(x− y). By the Poisson Summation Formula,

∑
k

ĝx(kL)e2πikLy =
1

L

∑
k

gx(y + k/L),

3



and by Plancherel’s Theorem,

∑
k

|ĝx(kL)|2 = L

∫ 1/L

0

∣∣∣∣∣ 1L∑
k

gx(y + k/L)

∣∣∣∣∣
2

dy.

This may be written as

∑
k

|fk(x)|2 =
1

L

∫ 1/L

0

∣∣∣∣∣∑
k

f(y + k/L)WL(x− y − k/L)

∣∣∣∣∣
2

dy

≤ 1

L

∫ 1/L

0

∑
k

|f(y + k/L)|2|WL(x− y − k/L)|
∑
l

|WL(x− y − l/L)|dy

=
1

L

∑
k

∫ (k+1)/L

k/L

(∑
l

|WL(x− z − (k − l)/L)|

)
|f(z)|2|WL(x− z)|dz

.
∫

R
|f(z)|2|WL(x− z)|dz

= |f |2 ∗ |WL|(x)

using the fact that

1

L

∑
l

|WL(x− z − (k − l)/L)|

is uniformly bounded by our assumptions on WL. It then follows that

∫
R

∑
k

|fk|2w .
∫

R
|f |2|WL| ∗ w,

as claimed.

Remark. It is proved in [5] that Lemma 1.1.1 holds when f , WL, and w are

similarly defined on S1, the proof of which forms the basis for the proof of Lemma

1.1.1.

The following lemma may also be found in [5], but we present here a corrected

4



proof that addresses an error in the original found by the author. The major changes

to the proof are summarised in the associated corrigendum [6].

Lemma 1.1.2. For each k ∈ N let Qk ∈ C1(R) be such that supp Q̂k ⊂ {x ∈ R :

|x| ∼ 2k}, and suppose further that for each N ∈ N there is a constant CN ≥ 0 such

that

|Qk(x)|+ 2−k|Q′k(x)| ≤ CN
2k

(1 + 2k|x|)N

for all k. Then, with M denoting the Hardy-Littlewood maximal function,

∫
R

∑
k

|f ∗Qk|2w .
∫

R
|f |2Mw,

Proof. For each j, k ∈ Z we define collections of sets Ej and Aj,k by

Ej = {x ∈ R : Mw(x) > 2j}

Aj,k = {x ∈ R : B(x, 2−k) ⊂ Ej}.

We now choose another similar bump function Q̃k at scale 2−k and an odd function

Rk such that Q̃k ∗Rk = Qk for every k. Now by Jensen’s inequality,

∫
R

∑
k

|Qk ∗ f |2w .
∫

R

∑
k

|Rk ∗ f |2|Q̃k| ∗ w

=
∑
j

∑
k

∫
Aj,k\Aj+1,k

|Rk ∗ f |2|Q̃k| ∗ w, (1.1)

and since |Q̃k ∗ w(x)| . 2j whenever x ∈ Aj,k \ Aj+1,k, (1.1) is bounded by

∑
j

2j
∑
k

∫
Aj,k

|Rk ∗ f |2.

5



Now let {Pn}n∈N be a smooth partition of unity on R with each Pn even, and such

that supp Pn ⊂ {x ∈ R : |x| ∼ 2−n}. For uniformity purposes let us suppose that

{Pn} is constructed in the standard way by scaling a certain fixed smooth function

and taking differences. For k ∈ N and integers ` with 0 ≤ ` ≤ ∞ we now define

Pk,` =

 Pk−` if 0 < ` <∞∑
n≥k Pn if ` = 0.

Thus for each k, {Pk,`}0≤`≤∞ forms a partition of unity on R.

We claim that

(RkPk,`) ∗ f(x) = (RkPk,`) ∗ (χEj−`f)(x)

for all x ∈ Aj,k. To see that the above assertion holds, we write

(RkPk,`) ∗ f(x) =

∫
R
RkPk,`(y)f(x− y)dy.

Notice that if y is in the range of integration and x ∈ Aj,k then |y| . 2−(k−`) and

M(w)(x′) > 2j for x′ ∈ B(x, 2−k). As a consequence,

Mw(x− y) > 2−`Mw(x) > 2j−`.

In other words, x− y ∈ Ej−` and so

(RkPk,`) ∗ f(x) =

∫
R
RkPk,`(y)χEj−`(x− y)f(x− y)dy = (RkPk,`) ∗ (χEj−`f)(x)

as claimed.

6



By Plancherel’s Theorem,

(∑
j

2j
∑
k

∫
Aj,k

|Rk ∗ f |2
) 1

2

=

∑
j

2j
∑
k

∫
Aj,k

∣∣∣∣∣∑
`

(RkPk,`) ∗ (fχEj−`)

∣∣∣∣∣
2
 1

2

≤

∑
j

2j
∑
k

∫
R

∣∣∣∣∣∑
`

R̂kPk,`(ξ)f̂χEj−`(ξ)

∣∣∣∣∣
2

dξ

 1
2

≤
∑
`

(∑
j

2j
∑
k

∫
R
|R̂kPk,`(ξ)f̂χEj−`(ξ)|2dξ

) 1
2

=
∑
`

(∑
j

2j
∫

R

(∑
k

|R̂kPk,l(ξ)|2
)
|f̂χEj−`(ξ)|2dξ

) 1
2

. (1.2)

Fix ξ ∈ R. If |ξ|2`−k ≤ 1, then

|R̂kPk,`(ξ)| =
∣∣∣∣∫

R
RkPk,`(x)[e−ixξ − 1]dx

∣∣∣∣ ≤ 2`−k|ξ|2−`(N−1),

since
∫
RkPk,` = 0, for any N ∈ N, and so

∑
k:|ξ|2`−k≤1

|R̂kPk,`(ξ)|2 . 2−2`(N−1). (1.3)

On the other hand, if |ξ|2`−k > 1 we integrate by parts once to obtain

|R̂kPk,`(ξ)| ≤
1

|ξ|

∫
R
|(RkPk,`)

′(η)|dη ≤ 1

|ξ|
2k2−`(N−1) =

2−`(N−1)

|ξ|2`−k
. (1.4)

Hence by (1.3) and (1.4),

∑
k

|R̂kPk,`(ξ)|2 . 2−2`(N−2)

7



for each N ∈ N, and so by Plancherel’s Theorem, (1.2) is bounded by a constant

multiple of

∑
`

2−`(N−2)

(∑
j

2j
∫

R
|f̂χEj−`(ξ)|2dξ

) 1
2

=
∑
`

2−`(N−5/2)

(∑
j

2j−`
∫

R
|f(x)|2χEj−`(x)dx

) 1
2

.

(∫
|f |2Mw

) 1
2

.

The use of a dyadic frequency decomposition in Chapter 4 necessitates the use

of an inequality to act as a ‘reverse’ of that in Lemma 1.1.2. The author was unable

to find a suitable result in the existing literature and so we will derive the following

lemma, which is sufficient for our purposes.

For non-negative integers k let Qk be a smooth function on R with supp Q̂k ⊂

{|ξ| ∼ 2k} when k > 0 and supp Q̂0 ⊂ {|ξ| . 1}. Suppose further that

∑
k≥0

Q̂k = 1.

Let us define a family of operators ∆k for integers k ≥ 0 by ∆kf = f ∗ Qk, so

that

f =
∑
k∈Z

∆kf.

For our purposes, we may choose the Qk such that ∆j∆k = 0 if |j − k| > 1.

Now for integers k ≥ 1 let Pk be a collection of odd functions such that P̂k(ξ) =

Q̂k(ξ) for ξ > 0 and P̂k(ξ) = −Q̂k(ξ) for ξ < 0. For ease of notation we let P0 = Q0

8



and add P0 to our collection of Pk.

Lemma 1.1.3. For all weights w,

∫
R
|f(x)|2w(x)dx .

∫
R

∑
k≥0

|Pk ∗ f(x)|2M3(w)(x)dx (1.5)

Before proceeding with the proof, we state a weighted estimate for singular

integral operators due to Pérez (from [24]) that will be of use:

Theorem 1.1.4. Let Tf = K ∗ f where the kernel K on Rn is C1 away from the

origin, has mean value zero on the unit sphere and satisfies

|K(y)| ≤ C/|y|n and |∇K(y)| ≤ C/|y|n+1

for y 6= 0. Then for each weight w on Rn,

∫
Rn
|Tf |pw .

∫
Rn
|f |pM [p]+1(w)

where [p] denotes the integer part of p.

Moreover, this result is sharp in the sense that it fails if [p] + 1 is replaced with

[p].

Proof of Lemma 1.1.3. We begin by splitting f into its ‘even’ and ‘odd’ parts. Let

T e =
∑
k>0

∆2k, and T o =
∑
k≥0

∆2k+1,

so that f = ∆0f + T ef + T of , and define two related operators as follows: Let {εk}

9



be an arbitrarily chosen sequence with εk ∈ {−1, 1} for integers k ≥ 0, and define

T̃ ef =
∑
k>0

ε2kP2k ∗ f, and T̃ o =
∑
k≥0

ε2k+1P2k+1 ∗ f.

Now, we aim to find operators Se and So such that SeT̃ e = T e, and SoT̃ o = T o.

To construct such an Se, let Rk be an odd function on R such that R̂k(ξ) = 1 on

suppQ̂k∩[0,∞), R̂k(ξ) = −1 on suppQ̂k∩(−∞, 0] and vanishing outside of a slightly

larger set, for each k ∈ Z. With the Rk defined in this way we have Rk ∗ Pk = Qk.

Define Sef =
∑

k>0 ε2kR2k ∗ f . If we choose the Pk and Rk such that R̂2jP̂2k = 0

for j 6= k, as we may, then SeT̃ e = T e. If in addition we choose the Rk such that

they satisfy the decay estimates

|R(j)
k (x)| . (2k)j+1

(1 + 2k|x|)N
j = 0, 1

for any N ∈ N (N = 2 is enough here) then Se is a convolution operator with kernel∑
k≥0 ε2kP2k that satisfies Theorem 1.1.4 and so we have the inequality

∫
|Sef |2w .

∫
|f |2M3(w)

which holds uniformly in the choice of {εk}. We may define So in a similar way.

By the triangle inequality,

‖f‖L2(w) ≤ ‖∆0f‖L2(w) + ‖T ef‖L2(w) + ‖T of‖L2(w)

= ‖∆0f‖L2(w) + ‖SeT̃ ef‖L2(w) + ‖SoT̃ of‖L2(w)

. ‖∆0f‖L2(w) + ‖T̃ ef‖L2(M3w) + ‖T̃ of‖L2(M3w)

Since this holds uniformly in our choice of sequence {εk}, we may take εk = rk(t),

10



where rk is the kth Rademacher function and t ∈ [0, 1]. With T̃ ef and T̃ of now

implicitly functions of t ∈ [0, 1],

‖f‖L2(w) =

(∫ 1

0

‖f‖2
L2(w)dt

)1/2

.

(∫ 1

0

(‖∆0f‖L2(w) + ‖T̃ ef‖L2(M3w) + ‖T̃ of‖L2(M3w))
2dt

)1/2

≤
(∫ 1

0

‖∆0f‖2
L2(w)dt

)1/2

+

(∫ 1

0

‖T̃ ef‖2
L2(M3w)dt

)1/2

+

(∫ 1

0

‖T̃ of‖2
L2(M3w)dt

)1/2

.

= ‖∆0f‖L2(w) +

(∫ 1

0

‖T̃ ef‖2
L2(M3w)dt

)1/2

+

(∫ 1

0

‖T̃ of‖2
L2(M3w)

)1/2

.

Observe that ‖∆0f‖L2(w) is bounded by the square root of the right hand side of

(1.5). Now,

(∫ 1

0

‖T̃ ef‖2
L2(M3w)dt

)1/2

=

(∫ 1

0

(∫
|
∑
k>0

r2k(t)P2k ∗ f |2M3w

)
dt

)1/2

=

(∫ (∫ 1

0

|
∑
k>0

r2k(t)P2k ∗ f |2dt

)
M3w

)1/2

.

(∫ ∑
k>0

|P2k ∗ f |2M3w

)1/2

by Khinchine’s inequality

≤

(∫ ∑
k≥0

|Pk ∗ f |2M3w

)1/2

.

Similarly, one may show that

(∫ 1

0

‖T̃ of‖2
L2(M3w)dt

)1/2

.

(∫ ∑
k≥0

|Pk ∗ f |2M3w

)1/2

,

which completes the proof.

11



1.2 Some Littlewood-Paley Theory on Rn

The weighted Lp-boundedness of certain square functions on Rn is studied exten-

sively by Wilson in [34], from which one may obtain as a corollary an n-dimensional

version of Lemma 1.1.2. More specifically, let {Qk}k∈Z be a family of smooth radial

functions on Rn such that supp Q̂k ⊂ {ξ ∈ Rn : |ξ| ∼ 2k}. We may suppose further

that, if Rk is a function on R such that Rk(|x|) = Qk(x),

|R(j)
k (x)| ≤ Cn

(2k)n+j

(1 + 2k|x|)n+1
j = 0, 1.

As above, one may define a corresponding square function S̃ by

S̃(f) =

(∑
k

|Qk ∗ f |2
)1/2

.

Lemma 1.2.1. For all weights w,

∫
Rn
|S̃(f)|2w .

∫
Rn
|f |2M(w).

Proof. This inequality can be deduced as a corollary from two powerful results

proved by Wilson in [34] which combine to show the weighted L2 boundedness

of a square function that pointwise dominates S̃.

Let 0 ≤ α ≤ 1, and let Cα denote the family of functions φ : Rn → R such that

φ has support in {x : |x| ≤ 1},
∫
φ = 0, and

|φ(x)− φ(x′)| ≤ |x− x′|α

12



for all x, x′ in Rn. For (t, y) ∈ Rn+1
+ , let

Aα(f)(t, y) = sup
φ∈Cα
|f ∗ φy(t)|,

where φy denotes the dilation y−nφ(y−1·), and define a corresponding square function

by

Gα(f)(x) =

(∫
Γ(x)

(Aα(f)(t, y))2dtdy

yn+1

)1/2

where Γ(x) = {(t, y) : |x− t| < y}, the cone of aperture one. One may also define a

similar-looking square function, the underlying convolution kernels of which are not

required to have compact support. For 0 < α ≤ 1 and ε > 0, let Cα,ε be the set of

functions φ : Rn → R such that

•
∫
φ = 0

• |φ(x)| ≤ (1 + |x|)−(n+ε)

• for all x and x′ in Rn,

|φ(x)− φ(x′)| ≤ |x− x′|α((1 + |x|)−(n+ε) + (1 + |x′|)−(n+ε)).

Notice that the functions in Cα,ε are not required to have compact support. Then

as before we define

Ãα,ε(f)(t, y) = sup
φ∈Cα,ε

|f ∗ φy(t)|,
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with the corresponding square function

G̃α,ε(f)(x) =

(∫
Γ(x)

(Ãα,ε(f)(t, y))2dtdy

yn+1

)1/2

.

A third square function that is also of relevance here is the discretised form of G̃,

which is defined by

σ̃α,ε(f)(x) =

(∑
k∈Z

(Ãα,ε(f)(x, 2k))2

)1/2

.

It is shown by Wilson in [34] that

G̃α,ε(f) ∼ σ̃α,ε(f) (1.6)

with implicit constant depending on α, ε and n. The two aforementioned theorems

from [34] are the following:

Theorem 1.2.2. For 0 < α ≤ 1 and 1 < p ≤ 2,

∫
Rn
|Gα(f)|pw ≤ C(p, n, α)

∫
Rn
|f |pM(w).

Theorem 1.2.3. Let 0 < α′ ≤ α ≤ 1 and α′ < ε, then for all x ∈ Rn,

G̃α,ε(f)(x) ≤ C(α, α′, ε, n)Gα′(f)(x).

An immediate corollary of these two theorems and (1.6) is that

∫
Rn
|σ̃α,ε(f)|2w ≤ C(α, ε)

∫
Rn
|f |2M(w),
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so in order to complete the proof of the lemma it will suffice to show that

|Qk ∗ f | . Ã1,1(f)(·, 2−k), (1.7)

since this implies that S̃(f) . σ̃1,1(f). Recall that

A1,1(f)(·, 2−k) = sup
φ∈C1,1

|f ∗ φ2−k(·)|,

and so (1.7) will follow from the observation that (2−k)nQk(2
−k·) ∈ C1,1.

For ease of notation let Q̃k = (2−k)nQk(2
−k·). By our assumptions on Qk, the

first two criteria for inclusion in C1,1 are immediate for Q̃k. It only remains to be

seen that

|Q̃k(x)− Q̃k(x
′)| . |x− x′|((1 + |x|)−(n+1) + (1 + |x′|)−(n+1)) (1.8)

for all pairs of points x, x′ ∈ Rn. By the decay assumption on Qk, (1.8) clearly holds

when |x− x′| ≥ 1, so we only need to consider the case when |x− x′| < 1. Suppose

that |x − x′| is fixed, then since Qk is radial the left hand side of (1.8) is largest

when x and x′ are collinear with the origin, so we may assume that both x and x′

lie on, say, the x1-axis. By the Mean Value Theorem, there exists a point c ∈ [x, x′]

such that

|Q̃k(x)− Q̃k(x
′)| = |x− x′| · |∂x1Q̃k(c)|

. |x− x′|((1 + |x|)−(n+1) + (1 + |x′|)−(n+1)).
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Chapter 2

Oscillatory Integral Techniques

It will often be the case that we wish to understand the behaviour of integrals

with an oscillatory factor in the integrand, generally integrals of the form

∫
eiλφ(x)ψ(x)dx,

where φ and ψ are smooth, and real and complex valued respectively. We are

interested in results which give us estimates on the decay of such integrals as λ→∞.

The results in this section can be found in [28].

2.1 Important results

Our first situation deals with the case where ψ has compact support, and φ has

no stationary points in the support of ψ.

Lemma 2.1.1. Let φ and ψ be smooth real-valued functions such that ψ has compact

support in (a, b), and φ′(x) 6= 0 for all x ∈ [a, b]. Then

∣∣∣∣∫ b

a

eiλφ(x)ψ(x)dx

∣∣∣∣ = O(λ−N) (2.1)

as λ→∞ for all N ≥ 0.
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Remark. We would expect to see this sort of behaviour, since as λ increases there

will be a large amount of oscillation in the integrand, and therefore a great deal of

cancellation.

Proof. First, we notice that

eiλφ(x) =
1

iλφ′(x)

d

dx
(eiλφ(x)).

If we define a differential operator D by

Df(x) =
1

iλφ′(x)

d

dx
f(x)

then D(eiλφ(x)) = eiλφ(x), and so DN(eiλφ(x)) = eiλφ(x) for all N ∈ N. If we define

another differential operator D∗ by

D∗f(x) = − d

dx

(
f(x)

iφ′(x)

)
,

then

∫ b

a

eiλφ(x)ψ(x)dx =

∫ b

a

DN(eiλφ(x))ψ(x)dx

= (−λ)−N
∫ b

a

eiλφ(x)(D∗)Nψ(x)dx,

a Lebesgue integral, since φ′ 6= 0 on [a, b]. If we integrate by parts then we see that

this holds for N = 1, and then inductively for all N ∈ N. Therefore

∣∣∣∣∫ b

a

eiλφ(x)ψ(x)dx

∣∣∣∣ ≤ λ−N
∫ b

a

|(D∗)Nψ(x)|dx

= CNλ
−N
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for some CN <∞.

Our next result concerns the dependence of the decay rate in λ on the order of

vanishing of the stationary points of φ.

Lemma 2.1.2 (Van der Corput). Suppose that φ is real-valued and smooth in (a, b),

and that |φ(k)(x)| ≥ 1 for all x ∈ (a, b). Then

∣∣∣∣∫ b

a

eiλφ(x)dx

∣∣∣∣ ≤ ckλ
−1/k (2.2)

holds whenever

1. k ≥ 2, or

2. k = 1 and φ′(x) is monotonic.

Furthermore, the constant ck is independent of φ and λ.

Proof. Suppose that k = 1 and φ′(x) is monotonic. Define Iλ =
∫ b
a
eiλφ(x)dx. Then

Iλ =

∫ b

a

1

iλφ′(x)

d

dx
eiλφ(x)dx

=

[
eiλφ(x)

iλφ′(x)

]b
a

− 1

iλ

∫ b

a

d

dx

(
1

φ′(x)

)
eiλφ(x)dx

which implies that

|Iλ| ≤
1

λ|φ′(b)|
+

1

λ|φ′(a)|
+

1

λ

∫ b

a

∣∣∣∣ ddx
(

1

φ′(x)

)∣∣∣∣ dx.
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Using the fact that φ′(x) is monotone, and the Fundamental Theorem of Calculus,

|Iλ| ≤
2

λ
+

1

λ

∣∣∣∣∫ b

a

d

dx

1

φ′(x)
dx

∣∣∣∣
≤ 4

λ

proving Case 1.

We now proceed by induction on k. Assume that the result holds for some k ≥ 1,

and suppose that |φ(k+1)(x)| ≥ 1 on [a, b]. Since φ is smooth we can assume, without

loss of generality, that φ(k+1)(x) ≥ 1. Let c denote the point at which the minimum

value of |φ(k)(x)| is attained on [a, b]. Suppose that for some δ to be determined

later, we have |x − c| ≥ δ . If φ(k)(c) ≥ 0 then by the Mean Value Theorem, for

some θ ∈ (c, x),

|φ(k)(x)| ≥ |φ(k)(x)− φ(k)(c)| = |(x− c)φ(k+1)(θ)| ≥ δ|φ(k+1)(θ)| ≥ δ

If φ(k)(c) < 0, then for some θ ∈ [c, x],

|φ(k)(x)| = | − φ(k)(x)|

≥ | − φ(k)(x)− (−φ(k)(c))|

= | − (x− c)φ(k+1)(θ)|

≥ δ|φ(k+1)(θ)|

≥ δ.

So |φ(k)(x)| ≥ δ whenever |x− c| ≥ δ. Now, we rewrite Iλ as

Iλ =

(∫ c−δ

a

+

∫ c+δ

c−δ
+

∫ b

c+δ

)
eiλφ(x)dx,
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unless c−δ ≤ a, in which case the first integral doesn’t appear. Now by our inductive

hypothesis,

∣∣∣∣∫ c−δ

a

eiλφ(x)dx

∣∣∣∣ =

∣∣∣∣∫ c−δ

a

eiλδ(δ
−1φ(x))dx

∣∣∣∣
≤ ck(λδ)

−1/k.

Similarly,

∣∣∣∣∫ b

c+δ

eiλφ(x)dx

∣∣∣∣ ≤ ck(λδ)
−1/k.

In addition, we have the elementary estimate

∣∣∣∣∫ c+δ

c−δ
eiλφ(x)dx

∣∣∣∣ ≤ 2δ,

which implies that

|Iλ| ≤ 2(ck(λδ)
−1/k + δ).

The case k = 1, and hence the result, follows by taking δ = ck
k/(k+1)λ−1/(k+1), so

that ck+1 = 4ck.

Van der Corput’s Lemma has the following useful corollary:

Corollary 2.1.3. Suppose that ψ is differentiable, then under the assumptions on

φ in van der Corput’s Lemma we have

∣∣∣∣∫ b

a

eiλφ(x)ψ(x)dx

∣∣∣∣ ≤ ckλ
−1/k

(
|ψ(b)|+

∫ b

a

|ψ′(x)|dx
)
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Proof. We write

∫ b

a

eiλφ(x)ψ(x)dx =

∫ b

a

F ′(x)ψ(x)dx,

with

F (x) =

∫ x

a

eiλφ(t)dt.

Integrating by parts and using the estimates obtained from van der Corput’s Lemma

gives the desired result.

2.2 An Application

In particular, we will be interested in decay estimates for integrals of the following

form:

Claim 2.2.1. Let ` ≥ 2 be an integer, and let ξ ∈ R. Then

∣∣∣∣∫
R
ei(x

`−ξx)dx

∣∣∣∣ . |ξ|− `−2
2(`−1) .

Proof. We will apply van der Corput’s Lemma. Let φ(x) = x` − ξx, then on the

interval I := [−1
2
(ξ/3)

1
`−1 , 1

2
(ξ/3)

1
`−1 ] we have |φ′(x)| & |ξ|, giving the estimate

∣∣∣∣∫
I

eiφ(x)dx

∣∣∣∣ . |ξ|−1

by van der Corput’s Lemma. However, for x outside of I, |φ′′(x)| & |ξ|−
`−2
`−1 and so

∣∣∣∣∫
R\I

eiφ(x)dx

∣∣∣∣ . |ξ|− `−2
2(`−1) .
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Overall, this gives us an estimate of

∣∣∣∣∫
R
eiφ(x)dx

∣∣∣∣ . |ξ|− `−2
2(`−1) .
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Chapter 3

Some Weighted L2 Theory

We a present here a selection of examples of how weighted L2 estimates have been

used in the analysis of various fundamental objects in modern harmonic analysis.

This chapter is not intended to be an exhaustive review but rather to demonstrate

how the use of weighted norm estimates is ingrained in modern harmonic analy-

sis, and to show how their application to certain important operators provides the

motivation for the results in Chapter 4.

3.1 The Disc Multiplier

The disc multiplier operator T on Rn is defined by

(T̂ f)(ξ) = χD(ξ)f̂(ξ)

where D is the set {x ∈ Rn : |x| ≤ 1}. While this operator is clearly bounded on

L2, determining the Lp boundedness of T for p 6= 2 proved to be a difficult problem.

For n = 1, T can be written as a linear combination of Hilbert transforms and so

boundedness of T may be deduced from this observation. For n > 1, it was originally
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conjectured that T is bounded on Lp if and only if

2n

n+ 1
≤ p ≤ 2n

n− 1
.

However, a clever counterexample shows that T is bounded only on L2, an “unfor-

tunate fact” according to the author of the counterexample, Charles Fefferman (see

[18]).

It was proposed in 1978 by Stein that weighted inequalities for the disc multiplier

should be studied in order to better understand its L2 behaviour. The question

of which maximal functions control T in weighted L2 is open in general. It is

conjectured that

∫
Rn
|Tf(x)|2w(x)dx . Cs

∫
Rn
|f(x)|2Ms(w)(x)dx, (3.1)

for any s > 1, whereM is the universal maximal function on Rn, defined by taking

maximal averages over arbitrary rectangles in Rn, and Ms(w) is (M(ws))
1
s .

Inequality (3.1) can be proven to hold for radial weights due to an elegant ar-

gument by Carbery et al, which we will now sketch, whereby the problem can be

reduced to certain weighted estimates for the Hilbert transform. The full proof can

be found in [10].

For a suitable test function f on Rn, we consider its spherical harmonic expansion

f(x) =
∑
k,j

fk,j(|x|)Y(k)
j

(
x

|x|

)
.

Basic properties of spherical harmonics (see [29]) allow us to expand the Fourier
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transform of f as

f̂(ξ) =
∑
k,j

i−k

|ξ|(n−2)/2
Hk+(n−2)/2(fk,j(s)s

(n−2)/2)(|ξ|)Y(k)
j

(
ξ

|ξ|

)
,

where H` is the Fourier-Hankel transform of order ` defined by

H`g(r) =

∫ ∞
0

g(s)J`(rs)sds,

with J` denoting the Bessel function of order `. Since we have that (T̂ f)(ξ) =

f̂(ξ)χ|x|≤1(ξ), we may write

Tf(x) =
∑
k,j

1

|x|(n−2)/2
Tk+(n−2)/2(fk,j(s)s

(n−2)/2)(|x|)Y(k)
j

(
x

|x|

)
,

where

T`g(r) =

∫ ∞
0

g(s)

[
(rs)1/2

∫ 1

0

J`(st)J`(rt)tdt

]
ds.

If we write our desired weighted norm inequality

‖Tf‖2
L2(w) ≤ Cα‖f‖2

L2(Mα(w))

in polar coordinates, then it becomes clear that proving (3.1) is equivalent to proving

that

∫ ∞
0

|T`g(r)|2w0(r)dr ≤ Cα

∫ ∞
0

|g(r)|2Mαw0(r)dr,

uniformly in `, where w0(r) andMw0(r) are given by w(r, 0, . . . , 0) andMαw(r, 0, . . . , 0)
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respectively. We may simplify the kernel of T` using the identity

2(rs)1/2

∫ 1

0

J`(rt)J`(st)tdt

=
µ`(s)σ`(r)

r − s
− σ`(s)µ`(r)

r − s
+
µ`(s)σ`(r)

r + s
+
σ`(s)µ`(r)

r + s

=
4∑
i=1

Ki
`(r, s)

where

µ`(r) = r1/2J`(r), and σ`(r) = r1/2J ′`(r)

for r > 0. As a consequence of this, (3.2) can be obtained by proving the four

inequalities

∫ ∞
0

∣∣∣∣∫ ∞
0

Ki
`(r, s)g(s)ds

∣∣∣∣2w0(r)dr ≤ Cα

∫ ∞
0

|g(r)|2Mαw0(r)dr,

for i = 1, 2, 3, 4. The inequalities corresponding to i = 1, 3 are equivalent to, with

H denoting the Hilbert transform,

∫
R
|H(gµ`)|2σ2

`w0 ≤ Cα

∫
R
|g|2Mαw0, (3.2)

and the inequalities corresponding to i = 2, 4 are equivalent to

∫
R
|H(gσ`)|2µ2

`w0 ≤ Cα

∫
R
|g|2Mαw0, (3.3)

where g is a function defined on R, and the functions w0, σ`, µ`,Mαw0 have been

extended from functions on [0,∞) to even functions on R.

In order to prove inequality (3.2), the authors then go on to show, using estimates
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on J` and J ′`, and properties of Ap weights, that

∫
R
|H(gµ`)σ`|pw0 ≤ Cp,α

∫
R
|g|pMαw0,

provided that p > 4/3 and Mαw0 is finite almost everywhere, where Mα(w) =

M(wα)1/α for α > 1. Notice that this is stronger than required to prove (3.2) since,

in particular, the maximal function Mα is small than Mα.

Now the weighted L2 properties of the Hilbert transform are well understood,

and in particular we have that

∫
R
|H(gσ`)|2µ2

`w0 ≤ Cγ

∫
R
|g|2σ2

`Mγ(w0µ
2
`)

for every γ > 1. The proof of inequality (3.1) is concluded by showing that for every

α > 1, there exist γ > 1 and C = Cα,γ such that

σ2
` (s)Mγ(w0µ

2
`)(s) ≤ CMα(w0)(s), s > 0,

thus establishing inequality (3.3) and proving the main result.

It is a useful feature of inequalities of the form

∫
|Tf |2w .

∫
|f |2MT (w),

where T is some operator and MT a maximal function, that Lp bounds on the

operator T can be obtained from the Lp boundedness of the maximal functionMT ,

and this will be a recurring theme of the material that follows. If T denotes the

disc multiplier operator then we can derive the following mixed-norm inequality: for
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2n/(n+ 1) < p < 2n/(n− 1) there exists Cp,n such that

∫ ∞
0

(∫
Sn−1

|Tf(r, ω)|2dω
)p/2

rn−1dr ≤ Cp,n

∫ ∞
0

(∫
Sn−1

|f(r, ω)|2dω
)p/2

rn−1dr(3.4)

where dω denotes surface measure on Sn−1. This inequality is established as follows:

let us write the above mixed norm as

‖g‖p
LprL2

ω
=

∫ ∞
0

(∫
Sn−1

|g(r, ω)|2dω
)p/2

rn−1dr,

then our first observation is that if 2 < p < 2n/(n− 1),

‖g‖2
LprL2

ω
= sup

∫
Rn
|g(x)|2w0(|x|)dx, (3.5)

where the supremum is taken over all functions w0 ∈ L(p/2)′(rn−1dr) of unit norm.

We can apply this followed by inequality (3.1) to obtain

‖Tf‖2
LprL2

ω
= sup

∫
Rn
|Tf(x)|2w0(|x|)dx

≤ supCα

∫
Rn
|f(x)|2Mα(w0)(x)dx,

where the supremum is taken as above. It is at this stage that the we use the

boundedness of Mα: as the authors demonstrate, Mα is bounded on L
(p/2)′

rad (Rn),

the set of radial functions in L(p/2)′ , for each α > 1 provided that αn < (p/2)′. Since

L
(p/2)′

rad (Rn) can be identified with L(p/2)′(rn−1dr), it follows from the boundedness of

Mα as described above that

sup
w0

∫
Rn
|f(x)|2Mα(w0)(x) ≤ Cα,p sup

v0

∫
Rn
|f(x)|2v0(x)dx

= Cα,p‖f‖2
LprL2

ω
,
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where w0 and v0 are taken to be in L(p/2)′(rn−1dr), and so inequality (3.4) is estab-

lished for 2 < p < 2n/(n− 1). For 2n/(n+ 1) < p < 2 we appeal to duality and the

self-adjointness of T on L2(Rn).

3.2 The Extension Operator and the Bochner-

Riesz Means

The extension operator E on the unit sphere in Rn is defined by

Ef(ξ) = f̂dσ(ξ) =

∫
Sn−1

f(x)e−2πix·ξdσ(x),

with dσ denoting the Lebesgue measure on Sn−1. Like the disc multiplier, the

extension operator is central to modern harmonic analysis, and in dimensions greater

than 2, the Lp boundedness of E remains one of harmonic analysis’ most fundamental

unsolved problems. The extension operator is the adjoint of the restriction operator

R defined by the map

R : f → f̂ |Sn−1 ,

and so by duality, Lp bounds on E are equivalent to certain Lp bounds on R.

The so-called restriction conjecture on Rn (formulated in terms of E) states that

E is bounded from Lp(Sn−1) to Lq(Rn) if and only if

1

q
≤ n− 1

n+ 1
· 1

p′
and

1

q
<
n− 1

2n
.

It is easily shown by testing the boundedness of E on certain functions that the

conjectured range of p and q is the best possible. The restriction conjecture is known

to be true in R2, but is open in all higher dimensions although partial progress on
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the conjecture has reduced matters somewhat. The most celebrated partial result

is the Stein-Tomas Theorem, which establishes boundedness of E from L2(Sn−1) to

Lq(Rn) when

1

q
≤ n− 1

n+ 1
· 1

2
.

These results, along with further information regarding the extension operator, can

be found in [28] and [36].

As with the disc multiplier, we may study weighted inequalities for the extension

operator to better understand its Lp boundedness. One may consider global and

local weighted L2 inequalities for the extension operator of the form

∫
Rn
|f̂dσ(ξ)|2dµ(ξ) .

∫
Sn−1

|f |2M(µ)dσ,

and

∫
B(0,1)

|f̂dσ(Rξ)|2dµ(ξ) .
∫

Sn−1

|f |2MR(µ)dσ, R ≥ 1,

respectively. As was the case with the disc multiplier, information about the Lp

boundedness of the maximal function M (or MR) could then be used to extract

corresponding bounds for the extension operator.

It is conjectured that

∫
Rn
|f̂dσ(x)|2dµ(x) .

∫
Sn−1

|f(ω)|2M(µ)(ω)dσ(ω), (3.6)
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or equivalently, for any R > 1 and measure µ supported in B(0, 1)

∫
B(0,1)

|f̂dσ(Rx)|2dµ(x) .
1

Rn−1

∫
Sn−1

|f(ω)|2M(µ)(ω)dσ(ω), (3.7)

where the maximal function M is defined by

M(µ)(ω) = sup
T‖ω

µ(T )

w(T )n−1
,

with the supremum taken over all infinite rectangles T in Rn with n− 1 short sides

of length w(T ), and remaining side doubly infinite in the direction of ω.

The conjectured inequality (3.7) is known to be true when µ is radial, in which

case MR(µ) is constant and equal to

‖M(µ)‖∞ = sup
T

µ(T )

w(T )n−1
,

with the supremum taken over tubes with dimensions as described above. A proof of

this may be found in [4] where, for suitable functions f and radial weight functions

V it is shown that

∫
|f̂dσ(Rξ)|2V (ξ)dξ .

C(V )

Rn−1

∫
|f(ω)|2dσ(ω)

with C(V ) equal to the supremum of the X-ray transform of V . If V is radial with

support in the unit ball then C(V ) and ‖M(V )‖∞ coincide.

From here onwards we will consider local weighted estimates for the extension

operator at scale R, where we take R ≥ 1 to be a fixed large parameter. Let B

denote a δ-neighborhood of a point on the surface of Sn−1, for small δ, and define

a function g(x) = eia·xχB(x) for a ∈ Rn. It is well known that |ĝdσ(Rx)| is large
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for x belonging to a certain rectangle in Rn. More precisely, |ĝdσ(x)| & δn−1χT (x)

where T is a rectangle in Rn with n− 1 short sides of length δ−1 and one long side

of length δ−2. Applying this information to the inequality

∫
B(0,1)

|ĝdσ(Rx)|2dµ(x) . C(µ,R)

∫
Sn−1

|g(ω)|2dσ(ω)

suggests that it may be the case that

∫
B(0,1)

|ĝdσ(Rx)|2dµ(x) ≤ C

Rn−1
sup

R−1≤α≤R−1/2

{
µ(T (α, α2R))

αn−1

}
‖g‖2

L2(Sn−1), (3.8)

for all g ∈ L2(Sn−1), where T (α, α2R) denotes a rectangle in Rn with arbitrary

position and orientation, and having n − 1 short sides of length α, and one long

side of length α2R, for R−1 ≤ α ≤ R−1/2. If inequality (3.8) were true it would

imply inequality (3.7) for radial measures, since µ(T (α, α2R))/αn−1 ≤ ‖M(µ)‖∞

uniformly in α and R. However, it is proven in [1] that (3.8) fails, and for radial

weights it fails by a factor of log logR. Furthermore, this factor of log logR is sharp

in the following sense:

Theorem 3.2.1. Let µ be a non-negative radial Borel measure supported on B(0, 1).

There exists a constant 0 < C <∞, depending on at most n, such that

∫
B(0,1)

|ĝdσ(Rξ)|2dµ . C
log logR

Rn−1
sup

R−1≤α≤R−1/2

{
µ(T (α, α2R))

αn−1

}
‖g‖2

L2(Sn−1) (3.9)

for all g ∈ L2(Sn−1) and R ≥ 1. Conversely, there exists a constant 0 < c < ∞,

depending on at most n, such that for each R ≥ 1 there is a non-negative radial

Borel measure µ supported on B(0, 1) for which

∫
B(0,1)

|d̂σ(Rx)|2dµ(x) ≥ c
log logR

Rn−1
sup

R−1≤α≤R−1/2

{
µ(T (α, α2R))

αn−1

}
.
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For a function f ∈ L2(Sn−1), we may express f in terms of its spherical harmonics

as

f =
∑
`

a∑̀
m=1

c`,mY(`)
m .

The action of the extension operator on the basis elements of the spherical harmonics

allows us to write

f̂dσ(ξ) =
∑
`

a∑̀
m=1

c`,m|ξ|−
(n−2)

2 J`+n−2
2

(ξ)Y(`)
m

(
ξ

|ξ|

)
,

where Jν denotes the Bessel function of order ν. If we write the left hand side of

inequality (3.9) in polar coordinates and use the standard orthogonality properties

of the spherical harmonics, then proving Theorem 3.2.1 is reduced to demonstrating

that

∫
|x|≤1

|Jν(R|x|)|2

|Rx|n−2
dµ(x) .

log logR

Rn−1
sup

R−1≤α≤R−1/2

{
µ(T (α, α2R))

αn−1

}
,

which is achieved through some subtle analysis of the left hand side of the above

inequality.

The second part of Theorem 3.2.1, which shows that inequality (3.9) is optimal, is

proved by the authors using the following example: let µ be a radially non-increasing

Borel measure supported in B(0, 1). The supremum on the right hand side of (3.9)

is attained by a rectangle centred at the origin with long side parallel to the x1-axis.

For such a rectangle T = T (α, α2R) we have that

1

αn−1
µ(T (α, α2R)) .

1

α

∫ α

0

tdµ(t) +

∫ α2R

α

dµ(t). (3.10)
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We now construct our measure µ. First, we define a collection of positive real

numbers {αj}kj=0 by setting α0 = 0, α1 = 2/R and

αj+1 = Rα2
j for 2 ≤ j < k

where k is such that αk ∼ R−1/2. We now define our measure µ by

dµ(t) =
k∑
j=0

1

αj+1

χ(αj ,αj+1](t)dt.

Observe that since αj = 22j

R
, we have that k ∼ log logR. A well-known asymptotic

formula states that

d̂σ(x) = c|x|−
n−1

2 cos(|x| − π/4) +O(|x|−
n+1

2 ) as |x| → ∞,

which one may use to obtain

∫
|d̂σ(Rx)|2dµ(x) &

1

Rn−1

∫
1
R
≤|x|≤1

1

|x|n−1
dµ(x) &

log logR

Rn−1
.

This gives the desired inequality, since by (3.10) we have

sup
R−1≤α≤R−1/2

{
µ(T (α, α2R))

αn−1

}
. 1.

The Bochner-Riesz means are a family of operators that have a deep connection

to both the disc multiplier and the extension operator and arise from partial Fourier

inversion. The partial Fourier integrals on Rn are defined as

SR(f)(x) =

∫
|ξ|≤R

e2πix·ξf̂(ξ)dξ.
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They are, in other words, operators whose multiplier corresponds to the character-

istic function of the disc {|ξ| ≤ R}, and related questions of convergence concerning

Fourier inversion can be formulated in terms of these operators and the related

maximal function, S∗(f)(x) = supR>0 |SR(f)(x)|. As one would expect, almost-

everywhere convergence of SR(f) to f is controlled by the Lp-boundedness of the

maximal function S∗, and the celebrated Carleson Theorem shows that S∗ is a

bounded operator on Lp(R) for 1 < p < ∞ (see, for example, the text of Grafakos

[20]).

As we know, operators corresponding to disc multipliers fail to be bounded on

any Lp(Rn) when n ≥ 2 other than the trivial case p = 2. The Bochner-Riesz means

present an alternative way of summing an inverse Fourier transform that is similar

to a disc multiplier, but with control over the ‘roughness’ of the cutoff. For positive

R and non-negative δ define an operator SδR by

SδR(f)(x) =

∫
|ξ|≤R

f̂(ξ)

(
1− |ξ|

2

R2

)δ
e2πix·ξdξ.

Notice that when δ = 0 the above operator corresponds to the disc multiplier {|ξ| ≤

R}.

It is natural to ask whether SδR(f) converges to f in Lp norm, and this reduces

to the Lp boundedness of the operator Sδ := Sδ1 .

The operator Sδ is expressible as a convolution operator with kernel Kδ, where

Kδ(x) =
Γ(1 + δ)

πδ|x|n/2+δ
Jn/2+δ(2πx), (3.11)

with Jµ denoting the Bessel function of order µ. It follows that Kδ is an L1 function

when δ > (n− 1)/2, and so for this range of δ the operator Sδ is bounded on all Lp

(1 ≤ p ≤ ∞). The application of Besssel function asymptotics to the formula (3.11)
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shows that

2n

n+ 1 + 2δ
< p <

2n

n− 1− 2δ
(3.12)

is a necessary condition for Sδ to be bounded on Lp(Rn). Equivalently put, if Sδ is

bounded on Lp(Rn) then we must have δ > δ(p) where

δ(p) = n

∣∣∣∣1p − 1

2

∣∣∣∣− 1/2

when δ < (n−1)/2. In fact, it is conjectured that Sδ is bounded on Lp(Rn) whenever

p satisfies (3.12), This conjecture was proven to be true when n = 2 by Carleson

and Sjölin (see [13]). Standard arguments may then be used to deduce the norm

convergence of SδR to f as R→∞ when f ∈ Lp(R2). Further information about the

Lp(Rn) boundedness of Sδ can be found in [28] and [31].

It is not surprising that almost-everywhere convergence of SδR(f) to f is controlled

by the maximal function

Sδ∗(f)(x) = sup
R>0
|SδR(f)(x)|

and it is known from [8] that Sδ∗ is bounded on Lp(R2) when δ > 0 and 2 ≤ p ≤ 4.

There is, however, a more recent weighted L2(R2) estimate for Sδ∗ that is strong

enough to recover the known Lp(R2) boundedness. The following theorem is proved

by Carbery and Seeger in [11]:

Theorem 3.2.2. Given δ > 0 there exists εδ > 0 and an operator Wδ bounded on

Lq(R2) for 2− εδ ≤ q ≤ ∞ such that

∫
R2

|Sδ∗(f)(x)|2w(x)dx ≤ Cδ,s

∫
R2

|f(x)|2MsWδ(w)(x)dx, (3.13)
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where Ms(f) = M(|f |s)1/s for s > 1.

This supercedes an earlier result by Carbery ([9]) where it is shown that for each

q ≥ 2 there exists a maximal function Wδ,q, bounded on Lq(R2), for which (3.13)

holds with Wδ,q in place of MsWδ. Further to this, Wδ,q(w) = Wδ,2(wq/2)2/q and Wδ,q

is bounded on Lp(R2) for 2 ≤ p ≤ 4.

The proof of Theorem 3.2.2 gives a direct construction of Wδ and relates it to the

Kakeya maximal function: Let RN denote the family of rectangles centered at the

origin with the property such that the ratio of the larger to the smaller sidelength

is equal to 2N . Define

MN(f)(x) = sup
x∈R∈RN

1

|R|

∫
R

|f(x+ y)|dy.

Then Wδ satisfies the estimate

Wδ(w) ≤ Cε
∑
j≥1

2−jε(Mj/2(w2)(x))1/2

for ε < 2δ. It is conjectured that a weighted L2 estimate of the form (3.13) holds for

Sδ∗ with the maximal function given on the right by
∑

j≥1 2−jεMj/2 for ε < 2δ, which

is perhaps not surprising given the acknowledged connection between Kakeya-type

maximal functions and the Bochner-Riesz operators. In particular, there is a sense

in which the Bochner-Riesz operators are controlled by maximal functions of Kakeya

type, which is explored in [20] and [14].

Such weighted estimates for Bochner-Riesz operators are often proved via weighted

estimates for a related square function: Let φ be a smooth real-valued bump func-

tion with support in [−1, 1] and let φα(x) = φ((|x| − 1)/α). Let ψ̂α = φα and we
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define, with ψαt = t−2ψα(t−1·), the square function

Tα(f)(x) =

(∫ ∞
0

|ψαt ∗ f(x)|2dt
t

)1/2

.

In [9], for example, it is shown that if Tα satisfies

∫
R2

|Tα(f)(x)|2w(x)dx .
∫

R2

|f(x)|2Qα(w)(x)dx,

for a maximal function Qδ then Sδ∗ is controlled in a weighted L2 inequality by an

operator of the form
∑

k>0CkQ2−k .

It is known that there is a relationship between norm estimates for the Bochner-

Riesz means and norm estimates for the restriction operator. For n ≥ 2, it is shown

by Tao in [31] that if Sδ(p)+α is bounded on Lp(Rn) for some p then the localised

restriction estimate

‖R(f)‖Lp(Sn−1) . R2α‖f‖Lp(B(0,R))

holds. Furthermore, certain weighted estimates for Bochner-Riesz means and the

extension operator are shown to be equivalent in [12]. The functions φ2−k for k > 0

are a convenient way to decompose the multiplier (1 − |ξ|2)δ and it is often useful

to consider them as multipliers in their own right. Let Φ be a non-negative bump

function of one variable, and let Tδ be the operator with multiplier given by Φ(|ξ| −

δ−1) (similar to a rescaled φδ). Then the estimate

∫
|x|≤1

|Tδ(f)(x)|2w(x)dx ≤ A

∫
Rn
|f(x)|2dx
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for all f ∈ L2(Rn) is equivalent to

∫
|x|≤1

|ĝdσ(Rx)|2w(x)dx ≤ B

Rn−1

∫
Sn−1

|g(ω)|2dσ(ω)

for all g ∈ L2(Sn−1) with R = 1/δ, where the constants A and B are equivalent. It

has already been mentioned that there is a connection between the Bochner-Riesz

operators and Kakeya-type maximal functions, and it is conjectured that

∫
|Tδ(f)|2w .

∫
|f |2Mδ(w) (3.14)

where Mδ is the maximal average of w taken over rectangles with eccentricity δ−1.

If, then, (3.14) did hold, by the above equivalence we would have

∫
|x|≤1

|ĝdσ(Rx)|2w(x)dx .
1

Rn−1

supw(T )

|T |

∫
Sn−1

|g(ω)|2dσ(ω)

where the supremum is taken over all rectangles in the unit ball of eccentricity less

than R. This might lead one to conjecture that

∫
|x|≤1

|ĝdσ(Rx)|2w(x)dx .
1

Rn−1

∫
Sn−1

|g(ω)|2 sup
w(T )

|T |
dσ(ω)

where the supremum is taken over rectangles T in the unit ball of direction ω with

eccentricity less than R. The above considerations are noted in [5] in justification

that weighted estimates for the extension operator of the above kind could rightly

be considered as being of Stein-type.
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3.3 The Extension Operator on a Hypersurface

For functions f on Rn−1 consider the map f 7→ eit∆f where

eit∆f(x) =

∫
Rn−1

e−iπt|ξ|
2+2πix·ξf̂(ξ)dξ.

It is well known (and verifiable using a straightforward application of the Fourier

transform) that u(x, t) = eit∆f(x) is the solution to the initial value problem for the

free Schrödinger equation,

i∂tu+ ∆xu = 0 (x, t) ∈ Rn−1 × R n ≥ 2

u(x, 0) = f(x).

Strichartz inequalities can naturally lead one to consider one-weighted estimates

for the Schrödinger operator eit∆. For example, it is known that

‖eit∆f‖Lrx,t(Rn×R) . ‖f‖Ḣs(Rn),

for 0 ≤ s < n/2 and r = 2(n+2)
n−2s

where Ḣs(Rn) is the homogeneous Sobolev space.

This is equivalent by duality and Hölder’s inequality to the weighted estimate

‖eit∆f‖2
L2
x,t(V ) . ‖V ‖

L
(r/2)′
x,t (Rn×R)

‖f‖2
Ḣs(Rn)

for all V in L
(r/2)′

x,t (Rn×R). This raises the possibility of other functionals V 7→ C(V )

such that

‖eit∆f‖2
L2
x,t(V ) . C(V )‖f‖2

Ḣs(Rn)
.
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Such functionals are investigated in [3], where it is shown that eit∆ is controlled in

the above one-weighted sense by Morrey-Campanato norms.

For α > 0 and 1 ≤ p ≤ n+2
α

, let

Lα,ppar = {F ∈ Lploc(R
n × R) : ‖F‖Lα,ppar <∞}

where

‖F‖Lα,ppar = sup
(x,t)∈Rn×R,r>0

rα
(
r−(n+2)

∫
C(x,t,r)

|F (y, s)|pdyds
)1/p

with C(x, t, r) denoting the ‘parabolic box’ B(x, r)× (t−r2, t+r2). The main result

from [3] is that if n/4 ≤ s ≤ n/2 and 1 < p ≤ n+2
2s+2

then

‖eit∆f‖2
L2
x,t(V ) . ‖V ‖L2s+2,p

par (Rn×R)‖f‖
2
Ḣs(Rn)

.

This Morrey-Campanato norm permits weights V that do not belong to any Lp

space, such as V (x, t) = |x|−a|t|−b where ap < n, bp < 1 and a + 2b = 2s + 2 + n+2
p

with p and s as above.

The Schrödinger operator is also of interest from the point of view of extension

operators arising from hypersurfaces. Let n ≥ 2, and let S be a bounded hypersur-

face in Rn with everywhere non-vanishing Gaussian curvature. For any such S, we

may define a corresponding extension operator - let σ denote the induced Lebesgue

measure on S, and for f ∈ L1(S) consider

f̂dσ(ξ) =

∫
f(x)e−2πix·ξdσ(x).

The extension operator for the surface S is thus defined by the mapping f 7→ f̂dσ.
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It is interesting to note that if S is taken to be the base of the paraboloid, then f̂dσ

coincides with the solution to the Schrödinger equation in the following way:

If we take S to denote the section of the paraboloid

{ξ = (ξ′, ξn) ∈ Rn−1 × R : ξn = |ξ′|2/2, 0 ≤ ξ1, . . . , ξn−1 . 1} (3.15)

and let dσ be the induced Lebesgue measure on S, then

ĝdσ(x) =

∫
|ξ′|≤1

e−2πix′·ξ′+πi|ξ′|2xn f̂(ξ′)dξ′ = eixn∆f(x′), (3.16)

where x = (x′, xn) ∈ Rn−1 × R, and f̂(ξ′) = g(ξ′, |ξ′|2)(1 + |ξ′|2)1/2.

For a general bounded hypersurface S in Rn, there has been much recent activity

on weighted estimates of the form

∫
B(0,1)

|ĝdσ(Rx)|2dµ(x) ≤ C(µ)

Rγ
‖g‖2

L2(S).

It is of particular interest to consider the pairs of exponents γ > 0 and 0 ≤ η ≤ n

for which the inequality

∫
B(0,1)

|ĝdσ(Rx)|2dµ(x) . R−γ sup
x∈Rn,r>0

µ(B(x, r))

rη
‖g‖2

L2(S) (3.17)

holds for all g ∈ L2(S), R ≥ 1, and Borel measures µ supported in B(0, 1). Such

inequalities have a deep connection to certain areas of geometric measure theory,

and particularly Falconer’s work on distance sets:

For a compact set E in Rn, the distance set ∆(E) of E is defined by

∆(E) = {|x− y| : x, y ∈ E}.
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There are significant open questions concerning the relationship between the Haus-

dorff dimension of E and the Lebesgue measure of ∆(E) (see [23], or [36] for a

discussion of the theory). What is known (due to Falconer - [17]) is that if E ⊂ Rn

has Hausdorff dimension greater than (n + 1)/2 then ∆(E) has positive Lebesgue

measure. It was shown by Mattila (see [23]) that |∆(E)| > 0 if there exists a Borel

measure µ supported on E such that

∫ ∞
1

(∫
Sn−1

|µ̂(tω)|2dσ(ω)

)2

tn−1dt <∞. (3.18)

This naturally leads one to consider the measures µ for which we can expect to have

a good rate of decay in t for the inner integral of the expression above, ie. for which

measures µ and exponents β > 0 do we have

∫
Sn−1

|µ̂(tω)|2dσ(ω) ≤ Cβt
−β.

A natural class of measures to consider here are those that have finite α-dimensional

energy. If µ is a non-negative compactly supported measure on Rn, and α ∈ (0, n),

then the α-energy of µ is given by

Iα(µ) =

∫ ∫
dµ(x)dµ(y)

|x− y|α
,

which, by Plancherel’s Theorem, is equal to cα,n
∫
|µ̂(ξ)|2|ξ|α−ndξ. Mattila’s result

(3.18) is exploited by Bourgain in [7] to obtain an improvement on Falconer’s result

for the dimension on E when n = 2.

There is a close connection between measures µ for which Iα(µ) <∞, the Haus-

dorff dimension of the supports of such measures, and measures µ which satisfy

µ(B(x, r)) . rα for all x ∈ Rn and r > 0. As is detailed in [23], for a set A ⊂ Rn,
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the Hausdorff dimension of A is equal to

sup{α : ∃µ with Iα(µ) <∞},

and

sup{β : ∃µ with µ(B(x, r)) ≤ rβ for x ∈ Rn, r > 0}

where in each case the µ are assumed to be finite Radon measures on Rn with

compact support in A.

Inequality (3.17) has an elegant connection to the concepts from geometric mea-

sure theory described above. Fix η ∈ [0, n] and let γ(η) be the supremum of the

numbers for which (3.17) holds. It is noted in [2] that, in two dimensions, we have

η/2, 1 ≤ η ≤ 2 (3.19)

γ(η) = 1/2, 1/2 ≤ η ≤ 1 (3.20)

η, 0 ≤ η ≤ 1/2. (3.21)

The first of the these results, (3.19) is due to Wolff [35], and (3.20) and (3.21) to

Mattila [22], in which it is shown that if µ is a finite compactly supported Radon

measure on Rn, and 0 ≤ α ≤ 1
2
(n− 1),

∫
|µ̂(Rω)|2dσ(ω) ≤ cR−αIα(µ).

This tells us that if n = 2, 0 ≤ α ≤ 1/2 and 0 ≤ β ≤ α,

∫
|ĝdµ(Rω)|2dσ(ω) . R−βIα(µ)‖g‖L2(dσ),
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when g ≡ 1 on S. Now when n = 2, one can also show by decomposing the integral

Iα(µ) into dyadic annuli that

Iα(µ) . sup
x∈R2,r>0

µ(B(x, r))

rα
,

which gives

∫
|ĝdµ(Rx)|2dσ(x) . R−β sup

x∈Rn,r>0

µ(B(x, r))

rα
‖g‖2

L2(dµ), (3.22)

when n = 2, 0 ≤ α ≤ 1/2 and 0 ≤ β ≤ α. One can then show that if inequality

(3.22) holds for g ≡ 1, then it must also hold for general g in L2(dµ). (For example,

it is not hard to see that if (3.22) holds for g ≡ 1 then it holds for g equal to

1 on subsets of S, and subsequently for g essentially constant on subsets of S.)

Finally, (3.22) may be dualised to show that, for n = 2, inequality (3.17) holds

when 0 ≤ η ≤ 1/2 and 0 ≤ γ ≤ η. In other words, (3.21) holds. Since γ(η) is

non-decreasing in η, and γ(1/2) = γ(1) = 1/2, this forces (3.20) to be true.

The situation is less straightforward in higher dimensions. As described above,

it is known that γ(η) = η for 0 ≤ η ≤ (n − 1)/2, and γ(n) = n − 1. However,

the upper and lower bounds for γ(η) with η in the region (n−1
2
, n) do not coincide.

Arguments that lead to lower bounds arise due to Sjölin in [26] and the more recent

[16] by Erdog̃an. An example that leads to a new upper bound for γ(η) can be found

in [2], where it is shown that for all bounded hypersurfaces S, if (3.17) holds for all

g ∈ L2(S), all R ≥ 1, and all Borel measures µ supported in B(0, 1), then

γ ≤ (η + 1)

(
n− 1

n+ 1

)
. (3.23)

if (n− 1)/2 < η < n.
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3.4 The Extension Operator - Weighted Inequal-

ities on S1

As we have seen, weighted L2 inequalities for the extension operator on the circle

are well understood if the weight in question is radial. Here we present a result from

[5] that establishes for the extension operator L2 inequalities on R2 that are weighted

with very different measures - ones that are supported on S1:

Theorem 3.4.1. For all R > 1 and measures µ supported on S1,

∫
S1

|ĝdσ(Rx)|2dµ(x) .
logR

R

∫
S1

|g(ω)|2MMR(µ)(ω)dσ(ω), (3.24)

and

∫
S1

|ĝdσ(Rx)|2dµ(x) .
1

R

∫
S1

|g(ω)|2MMRM2(µ)(ω)dσ(ω), (3.25)

where

MR(µ)(ω) = sup

T‖ω

R−1 ≤ α ≤ R−2/3

µ(T (α, α2R))

α
,

and M is the Hardy-Littlewood maximal function.

As before, the form of the maximal function MR is suggested by the example

g(ω) = eia·ωχC(ω) where C is a δ-cap on S1 and a ∈ R2.

We will now give a sketch of the proof. The proof of Theorem 3.4.1 has extra

significance here in that, philosophically and technically, it is very similar to the

proof of Theorem 4.2.2 and any areas that we may skip over here will get a full
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exposition in Chapter 4.

Let g be a function on S1. We begin by defining a collection of sets that partition

Z, and treating separately the cases where g has Fourier frequencies supported in

each of these sets. By subsequently decomposing the frequencies of g further, we

reach a stage where the geometric action of the operator g 7→ ĝdσ(R·)|S1 can be more

easily identified. This enables one to derive a collection of weighted inequalities, each

of which is valid for g on S1 with Fourier frequencies supported in one of our original

collection of sets, from which (3.24) and (3.25) can be deduced using Littlewood-

Paley theory.

The initial frequency decomposition is based on the following collection of sets:

fix p such that 1 ≤ 2p ≤ R2/3 and define

Ap =

 {j ∈ Z : R− j ∼ 2−pR} if 1 < 2p < R2/3,

{j ∈ Z : 0 ≤ R− j ≤ R1/3} if 2p = R2/3,

Bp =

 {j ∈ Z : j −R ∼ 2−pR} if 1 < 2p < R2/3,

{j ∈ Z : 0 ≤ j −R ≤ R1/3} if 2p = R2/3,

along with

C0 = {j ∈ Z : |j| ≤ R/2}

C∞ = {j ∈ Z : |j| > 3R/2}.

The sets described above, along with −Ap and −Bp, form an approximate partition

of Z. It is important to note that the operator

g 7→ ĝdσ(R·)|S1
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coincides with convolution on S1 with eiR cos ·. If g has Fourier frequencies supported

in Ap (for example) then we may write

g(θ) =
∑
j∈Ap

αje
ijθ

and so for |x| = 1,

ĝdσ(Rx) =
∑
j∈Ap

αjJj(R)eij arg(x). (3.26)

Since we have the estimate

|Jk(s)| ≤ cs−1/2 min

{
k1/6,

∣∣∣∣ |s|+ |k||s| − |k|

∣∣∣∣1/4
}
,

we have control over Jj(R) when j ∈ Ap, and similarly for −Ap, ±Bp. How this

manifests itself in the maximal function will become clear later on. Theorem 3.4.1

is established by way of the following result:

Proposition 3.4.2. Let µ be a measure supported on S1.

1. If g has Fourier frequencies supported in either Ap, −Ap, Bp, or −Bp, then

∫
S1

|ĝdσ(Rx)|2dµ(x) .
1

R

∫
S1

|g(ω)|2Mp(µ)(ω)dσ(ω).

2. If g has frequencies supported in C0 or C∞, then

∫
S1

|ĝdσ(Rx)|2dµ(x) .
1

R

∫
S1

|g(ω)|2M0(µ)(ω)dσ(ω),
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where, for p such that 1 ≤ 2p ≤ R2/3,

Mp(µ)(ω) = sup
T‖ω

µ(T (2p/2/R, 2p/R))

2p/2/R
.

Let us start with part 1 of the proposition, and suppose that g has Fourier

frequencies supported in Ap. Using the formula (3.26) one may argue that

∫
S1

|ĝdσ(Rx)|2dµ(x) =

∫
S1

|ĝdσ(Rx)|2Pp ∗ µ(x)dσ(x)

where Pp is any function satisfying P̂p(j) = 1 when |j| ≤ 4 · 2−pR. We may choose

Pp to be the kernel of an approximation to the identity on S1 at scale 2p/R such

that, for any N ∈ N,

|Pp(x)| . 2−pR

(1 + 2−pR|x|)N

for all x ∈ [−π, π]. In other words, restricting the frequencies of g allows us to

smooth-out the measure µ, in this case at scale 2p/R.

Now let φp be a bump function at scale 2p/R such that φ̂p(j) = 1 when j ∈

Ap. Then ĝ = ĝφ̂p, implying that g = φp ∗ g, and so (bearing in mind that the

extension operator coincides on the circle with a convolution operator) we have

ĝdσ(x) = φ̂pdσ ∗ g(x) for x ∈ S1. One might then be tempted to reason that

the map g 7→ ĝdσ(R·)|S1 can be understood by its action on such functions as φp.

However, a bump function at this scale is not smooth enough for any such action to

be established. For this reason, a further frequency decomposition is to be carried

out, but first it is necessary to dominate the weight Pp ∗ µ by a function with an

increased level of smoothness in order to recover some partial orthogonality from the
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forthcoming second frequency decomposition: first, we dominate Pp ∗µ pointwise by

ψ1(θ) = sup
|η−θ|≤2−p/2

|Pp ∗ µ(η)|.

Now let Θp be a non-negative function on S1 with non-negative Fourier coefficients

supported in {j ∈ Z : |j| ≤ 2p/2} We may choose Θp such that for each N ∈ N,

Θp(θ) .
2p/2

(1 + 2p/2|θ|)N

and such that there is an absolute constant c > 0 (independent of p) for which

Θp(θ) & 2p/2 whenever |θ| ≤ c2−p/2. Let ψ2 = Θp ∗ ψ1. The scale of the local

supremum above and the conditions on Θp allow one to argue that ψ1 . ψ2 as

follows:

Lemma 3.4.3. ψ1 . ψ2

Proof. By the properties of Θp,

Θp ∗ ψ1(θ) & 2p/2
∫
|φ|.c2−p/2

ψ1(θ − φ)dφ.

By elementary considerations, either

ψ1(θ′) ≥ ψ1(θ) for all θ − 2−p/2 ≤ θ′ ≤ θ,

or

ψ1(θ′) ≥ ψ1(θ) for all θ ≤ θ′ ≤ θ + 2−p/2,

and so Θp ∗ ψ1(θ) & ψ1(θ) uniformly in θ.
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Therefore it suffices to control

∫
S1

|ĝdσ(Rx)|2ψ2(x)dx.

We now carry out our second frequency decomposition as follows: for L ∈ N, let WL

be a function on S1 with frequencies supported in {j ∈ Z : |j| ≤ 2L} such that

∑
k

ŴL(j + kL) = 1

for all j in Z. We also choose WL (as we may) such that for each N ∈ N,

|WL(θ)| . L

(1 + L|θ|)N

for all θ ∈ [−π, π]. If for each q with 0 ≤ q ≤ 2−3p/2 we write

gq(θ) =

∫ π

−π
g(φ)e−i(q2

p/2+R(1−2−p+1))φW2p/2(θ − φ)dφ,

then

g(θ) = eiR(1−2−p+1)θ

2−3p/2R∑
q=0

eiq2
p/2θgq(θ).

Now let Φp be a function on S1 satisfying

Φ̂p(j) =

 1 if |j| ≤ 2p/2+1

0 if |j| ≥ 2p/2+2,

so that gq = Φp ∗ gq for each q. We may choose Φp such that for each N ∈ N, the
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derivatives of Φp satisfy

|Φ(k)
p (θ)| . 2(k+1)p/2

(1 + 2p/2|θ|)N
(3.27)

for all θ ∈ [−π, π]. With this notation, we have the formula

ĝdσ(Reiφ) = eiR(1−2−p+1)φ

2−3p/2R∑
q=0

eiq2
p/2

gq ∗Ψp,q(φ),

where

Ψp,q(φ) =

∫ π

−π
eiR[(1−2−p+1+q2p/2/R)θ+cos θ]Φp(φ− θ)dθ,

and as a result,

∫ π

−π
|ĝdσ(Reiφ)|2ψ2(φ)dθ

=
∑
q,q′

∫ π

−π

∫ π

−π
gq(u)gq′(v)

×
(∫ π

−π
Ψp,q(φ− u)Ψp,q′(φ− v)ψ2(φ)ei(q−q

′)2p/2φdφ

)
dudv.

Since Ψ̂p,q(k), Ψ̂p,q′(k), ψ̂2(k) = 0 when |k| ≥ 4 · 2p/2, one can argue that

∫ π

−π
Ψp,q(φ− u)Ψp,q′(φ− v)ψ2(φ)e−(q−q′)2p/2φdφ = 0

whenever |q − q′| > 12. Since |gq(y)gq′(z)| ≤ 1
2
(|gq(y)|2 + |gq′(z)|2), by symmetry it
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suffices to control

∑
|q−q′|≤12

∫
R
|gq(y)|2

(∫
R

∫
R
|Ψp,q(φ− u)||Ψp,q′(φ− v)|ψ2(φ)dφdv

)
du

=
∑

|q−q′|≤12

∫
R
|gq(y)|2

(∫
R
|Ψp,q(φ− u)|ψ2(φ)dφ

)(∫
R
|Ψp,q′(v)|dv

)
du.

(3.28)

Since we have the decay estimate (3.27), one may argue in the manner of Lemma

2.1.1 to obtain the following result, which can be thought of as identifying the

geometric action of convolution with eiR cos ·.

Lemma 3.4.4.

|Ψp,q(φ)| . 2p/4

R1/2
Hp(φ− π/2)

uniformly in q, where Hp satisfies

Hp(φ) .
2p/2

(1 + 2p/2|φ|)N

for each N ∈ N.

As a consequence, we have that

∫ π

−π
|Ψp,q′(v)|dv .

2p/4

R1/2
,

and so in inequality (3.28) this gives

∫ π

−π
|ĝdσ(Reiφ)|2ψ2(φ)dφ .

2p/2

R

∫ π

−π

∑
q

|gq(u)|2ψ3(u− π/2)du.

Now Littlewood-Paley theory (see the remark following the proof of Lemma 1.1.1)
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allows us to deduce that

∫ π

−π
|ĝdσ(Reiθ)|2ψ2(θ)dθ .

1

R

∫ π

−π
|g(θ)|22p/2ψ4(θ − π/2)dθ

where ψ4 = |WL| ∗ψ3. In order to establish part 1 of Proposition 3.4.2 it remains to

be proved that 2p/2ψ4(· − π/2) is dominated pointwise by Mp(µ). The can be seen

as follows: let Cλ denote the arc on S1 centred at −π/2 of length 2λ · 2p/R, where

1 ≤ 2p ≤ R2/3 and 1 ≤ λR/2p. Let T = T (2p/2/R, 2p/R) have long side parallel to

the x-axis. By arguing that Cλ is contained in at most 4λ2 of such rectangles T , it

follows that µ(Cλ) ≤ 4λ2 supT µ(T ). We now apply this fact to show that

2p/2Pp ∗ µ(θ − π/2) .Mp(µ)(θ) (3.29)

for all θ ∈ [−π, π]: By rotational symmetry we may assume that θ = 0. The kernel

Pp is dominated by

∑
1≤2k≤R/2p

1

2kN
χ{|·|.2k2p/R}

2k2p/R
,

for any N ∈ N, and so

Pp ∗ µ(−π/2) .
R

2p

∑
1≤2k≤R/2p

µ(C2k)

2k(N+1)

.
R

2p

 ∑
1≤2k≤R/2p

22k

2k(N+1)

 sup
T
µ(T ),

where the supremum is taken over all rectangles T = T (2p/2/R, 2p/R) with long side
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parallel to the x-axis. Hence

2p/2Pp ∗ µ(−π/2) . sup
T‖(1,0)

µ(T (2p/2/R, 2p/R))

2p/2/R
=Mp(µ)(0).

Geometric considerations allow one to argue that for any measure ν on the unit ball

in R2,

Mp(ν)(θ − φ) . (1 + 2p/2| sinφ|)Mp(ν)(θ). (3.30)

from (3.29) and (3.30) it follows that

2p/2ψ1(· − π/2) .Mp(µ).

Next, let χp be a bump function at scale 2−p/2 satisfying

|χp(φ)| . 2p/2

(1 + 2p/2|φ|)`

for some ` > 2. Then by (3.30),

χp ∗Mp(µ)(θ) . Mp(µ)(θ)

∫
(1 + 2p/2|φ|)|χp(φ)|dφ

. Mp(µ)(θ)

∫
2p/2

(1 + 2p/2|φ|)`−1
dφ

. Mp(µ)(θ).

Since ψ2, ψ3 and ψ4 are obtained by successive convolutions with such bump func-

tions at scale 2−p/2, it follows that 2p/2ψ4(· − π/2) .Mp(µ) and the proof of part

1 of Proposition 3.4.2 is complete.

Part 2 of Proposition 3.4.2 is considerably easier to prove. If g has frequencies
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supported in C0, one can replicate the argument with p = 1. If g has frequencies

supported in C∞, one can argue in the following way. Let Φ be a Schwartz function on

R2 such that Φ̂ is equal to 1 on the ball of radius 2 in R2. If we write Φ1/R = R2Φ(R·)

then |ĝdσ(R·)|2 = |ĝdσ|2 ∗ Φ1/R and so

∫
S1

|ĝdσ(Rω)|2dµ(ω) =

∫
R2

|ĝdσ(Rx)|2Φ1/R ∗ µ(x)dx

where ∗ now denotes convolution on R2. Using polar coordinates, and the rapid

decay of Φ, it suffices to assume that µ is essentially constant at scale 1/R. In which

case,

∫
S1

|ĝdσ(Rx)|2dµ(x) . ‖µ‖∞‖ĝdσ(R·)‖2
2

. ‖µ‖∞ sup
|j|≥3R/2

|Jj(R)|2‖g‖2
2

.
1

R

∫
S1

|g(ω)|2M0(µ)(ω)dσ(ω),

using the fact that M0(µ) is constant and of the order of ‖µ‖∞, which completes

the proof of Proposition 3.4.2. We are now in a position to deduce Theorem 3.4.1

from Proposition 3.4.2 using Littlewood-Paley theory.

Let A+
p , A−p , B+

p , B−p , C0 and C∞ be appropriate smoothed out Littlewood-

Paley convolution operators associated to the intervals A+
p , A−p , B+

p , B−p , C0 and C∞

respectively, so that

g =
∑
p

A+
p g
∑
p

A−p g +
∑
p

B+
p g
∑
p

B−p g + C0g + C∞g

= gA+ + gA− + gB+ + gB− + g0 + g∞.

Now ĝ+
Adσ =

∑
p Â

+gdσ, and since for any fixed R there are ∼ logR intervals Ap,
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we have

|ĝA+dσ|2 . logR
∑
p

∣∣∣Â+gdσ
∣∣∣2 .

As a consequence of this fact and Proposition 3.4.2,

∫
S1

|ĝA+dσ(Rx)|2dµ(x) .
logR

R

∫
S1

∑
p

|A+g(ω)|2Mp(µ)(ω)dσ(ω),

and so by Lemma 1.1.2,

∫
S1

|ĝA+dσ(Rx)|2dµ(x) .
logR

R

∫
S1

|g(ω)|2MMR(µ)(ω)dσ(ω).

The terms gA− , . . . , g∞ may all be treated in the same way, thus proving the first

claimed inequality of Theorem 3.4.1. As for the second inequality, the fact that the

map g 7→ ĝdσ(R·) coincides with convolution on S1 allows one to apply classical

Littlewood-Paley theory (see [32] and [33]) and Proposition 3.4.2 to obtain

∫
S1

|ĝA+dσ(Rx)|2dµ(x) .
∫

S1

∑
p

|Â+
p gdσ(Rx)|2M2(µ)dσ(x)

.
1

R

∫
S1

∑
p

|A+
p g(ω)|2MpM

2(µ)(ω)dσ(ω),

to which one applies Lemma 1.1.2 which yields

∫
S1

|ĝA+dσ(Rx)|2dµ(x) .
1

R

∫
S1

|g(ω)|2MMRM2(µ)(ω).

Again, a similar treatment of gA− , . . . , g∞ completes the proof.

As a corollary of Theorem 3.4.1 one is able to deduce the following inequality:
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Corollary 3.4.5. For all g ∈ L3(S1),

‖ĝdσ(R·)‖L3(S1) . R−1/3‖g‖L3(S1). (3.31)

Note that inequality (3.31) can be viewed as a consequence of a result of Greenleaf

and Seeger in [21]. Using a standard duality argument (see the proof of Corollary

4.3.2 in the following chapter), to prove Corollary 3.4.5 it is sufficient to show that

‖MR(ψdσ)‖L3(S1) . R1/3‖ψ‖L3(S1)

for all g ∈ L3(S1) andR ≥ 1. This is achieved as follows: it is convenient here to work

with functions on R here rather than on S1. let Φ be a compactly supported bump

function at scale 1, Φy = y−1Φ(y−1·), and β ≥ 0. For j ∈ N with 1 ≤ 2j ≤ R1/3,

and for ψ ∈ L3(S1) define

ψ∗β,j(t) = sup
(x,y)∈ΓjR(t)

yβ|Φy ∗ ψ(x)|

where

ΓjR(t) = {(x, y) ∈ R× R+ : 0 < y < 2−jR−1/3, |x− t|2y < 2jR−1}.

Then

MR(ψdσ)(θ) . sup
j
R1/22−j/2

(
ψ∗1

2
,j

(θ + π/2) + ψ∗1
2
,j

(θ − π/2)
)

and so it suffices to show that

‖ψ∗1
2
,j
‖3 . 2j/6R−1/6‖ψ‖3. (3.32)
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By Stein’s method of analytic interpolation (see [28]), inequality (3.32) can be ob-

tained from the estimates

‖ψ∗3
2
,j
‖L1 . 2j/2R−1/2‖ψ‖H1 (3.33)

where H1 denotes the Hardy space, and

‖ψ∗0,j‖∞ . ‖ψ‖∞.

The second of these follows directly from the definition of ψ∗0,j, and the first can

be proved by testing on H1-atoms. For an H1-atom a with corresponding support

interval I, one can use the pointwise bound

|Φy ∗ a(x)| .


1/|I|, if y . |I| and |x| . |I|

|I|/y2, if y & |I| and |x| . y

0, otherwise.

to show that

‖a∗3
2
,j
‖L1 . 2j/2R−1/2

from which the estimate (3.33) follows.
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Chapter 4

Weighted L2 Estimates for a

Family of Oscillatory

Convolution Kernels on R

4.1 Bessel Potentials

In order to provide a more transparent example of how frequency decompositions

can be used to prove two-weighted L2 inequalities, we consider the following example,

which can be considered a simpler version of Theorem 4.2.2. Define an operator Ts,

for 0 < s < 1, by

T̂sf(ξ) = (1 + |ξ|2)−s/2f̂(ξ).

The operators Ts are known as the Bessel potentials. While this operator may appear

different to the operators we will encounter in the next section, the multipliers exhibit

a similar type of decay in both cases for which the dyadic frequency decomposition

is particularly appropriate.

We will use a frequency decomposition based on the following collection of sets,
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which form an approximate partition of R:

Ap = [2p, 2p+1] for integers p ≥ 0

A0 = [−1, 1].

This is a natural frequency decomposition to use since the multiplier (1 + |ξ|2)−s/2

is effectively “constant” (to the order of 2−ps) on the sets Ap. The aim is to find

maximal functions Mp,s such that

∫
R
|Tsf(x)|2dµ(x) .

∫
R
|f(x)|2Mp,s(µ)dx

if supp(f̂) ⊂ Ap, for p a non-negative integer, and then use Littlewood-Paley theory

to derive a weighted L2 inequality for f with unrestricted Fourier support.

Suppose first that we have supp(f̂) ⊂ A0, and let φ0 be a smooth function such

that φ̂0(ξ) = 1 when |ξ| ≤ 1 and φ̂0 = 0 when |ξ| ≥ 2. Then f = f ∗ φ0 and so, with

µ a Borel measure on R we have

∫
R
|Tsf(x)|2dµ(x)

=

∫
R
|Ts(φ0 ∗ f)(x)|2dµ(x)

=

∫
R
|Ts(φ0) ∗ f(x)|2dµ(x)

=

∫
R

∫
R

∫
R
f(y)f(z)Ts(φ0)(x− y)Ts(φ0)(x− z)dµ(x)dydz.

Since |f(y)f(z)| ≤ 1
2
(|f(y)|2 + |f(z)|2), it suffices by symmetry to bound

∫
R

∫
R
|f(y)|2

∫
R
|Ts(φ0)(x− y)||Ts(φ0)(x− z)|dµ(x)dydz

=

∫
R
|f(y)|2

(∫
R
|Ts(φ0)(x− y)|dµ(x)

)(∫
R
|Ts(φ0)(z)|dz

)
dy.
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We now wish to estimate Ts(φ0). Integrating by parts yields, for any N ∈ N,

Ts(φ0)(x) =

∫
R
e2πixξφ̂0(ξ)(1 + |ξ|2)−s/2dξ

= (−1)N(2πix)−N
∫

R
e2πixξ d

N

dξN
[φ̂0(ξ)(1 + |ξ|2)−s/2]dξ,

and so

|Tsφ0(x)| . |x|−N
∫ 2

−2

| d
N

dξN
[φ̂0(ξ)(1 + |ξ|2)−s/2]|dξ

≤ CN |x|−N

since

| d
N

dξN
[φ̂0(ξ)(1 + |ξ|2)−s/2]| . CN

for all ξ. Since Ts(φ0)(x) is clearly a bounded function, we have that |Ts(φ0)(x)| .

H0(x) where H0(x) . (1 + |x|)−N for all N ∈ N.

We have thus proved that

∫
R
|Tsf(x)|2dµ(x) .

∫
R
|f(x)|2H0 ∗ µ(x)dx

when supp(f̂) ⊂ [−1, 1]. We now seek to prove similar weighted L2 inequalities for

functions f with supp(f̂) ⊂ Ap for p > 0. To do this, we proceed as before. Let φp

denote a smooth function with φ̂p(ξ) = 1 when ξ ∈ Ap and φ̂p(ξ) = 0 when ξ lies

outside of a slightly larger interval containing Ap, so that f = φp ∗f . For uniformity

purposes, we take φp to be a dilation of a smooth function φ such that φ̂(ξ) = 1 if

1/2 ≤ ξ ≤ 2, and φ̂(ξ) = 0 if ξ lies outside of the interval [1/4, 2]. In particular,
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|φ̂(k)
p (x)| . 2−kp. We then have

∫
R
|Tsf(x)|2dµ(x)

=

∫
R
|Ts(φp) ∗ f(x)|2dµ(x)

=

∫
R

∫
R

∫
R
f(y)f(z)Ts(φp)(x− y)Ts(φp)(x− z)dµ(x)dydz,

and so, as before, it suffices to bound

∫
R
|f(y)|2

(∫
R
|Ts(φp)(x− y)|dµ(x)

)(∫
R
|Ts(φp)(z)|dz

)
dy.

Since T̂s(φp)(ξ) = (1 + |ξ|2)−s/2φ̂p(ξ) ∼ 2−psφ̂p(ξ), one might expect Ts(φp) to look

like 2−psφp. This is, in fact, true in the following sense: we may choose φp such that

for any N ∈ N,

|φp(x)| . 2p

(1 + 2p|x|)N
,

and for such a φp we will show that

|Ts(φp)(x)| . 2−psHp(x)

where Hp satisfies

Hp(x) .
2p

(1 + 2p|x|)N

63



for any N ∈ N. We integrate by parts N times to obtain

|Ts(φp)(x)| =

∣∣∣∣∫
R
eixξ(1 + |ξ|2)−s/2φ̂p(ξ)dξ

∣∣∣∣
≤ |x|−N

∫
R
| d

N

dξN
[(1 + |ξ|2)−s/2φ̂p(ξ)]|dξ.

Now for ξ in the support of φ̂p,

| d
N

dξN
[(1 + |ξ|2)−s/2φ̂p(ξ)]| . 2−p(N+s),

and so

|Ts(φp)(x)| . |x|−N · 2p · 2−p(N+s) = 2−ps
2p

(2p|x|)N
.

Again, since |Ts(φp)| . 2p we may conclude that there is a function Hp satisfying

Hp(x) .
2p

(1 + 2p|x|)N

for any natural number N such that

|Ts(φp)(x)| . 2−psHp(x),

as claimed. We have therefore proven that if suppf̂ ⊂ Ap,

∫
R
|Ts(f)(x)|2dµ(x) .

∫
R
|f(x)|22−2psHp ∗ µ(x)dx.

Notice how the behaviour of the multiplier (1 + |ξ|2)−s/2 on Ap has been “encoded”
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in the weight in the form of a factor of 2−2ps. We also showed that if suppf̂ ⊂ A0,

∫
R
|Ts(f)(x)|2dµ(x) .

∫
R
|f(x)|2H0 ∗ µ(x)dx.

Our overall aim is to find a maximal functionM such that
∫
|Ts(f)|2dµ .

∫
|f |2M(µ)

for all f , and so if we can findM such thatM(µ) dominates H0 ∗µ and 2−2psHp ∗µ

pointwise for all p ∈ N this would clearly be a strong candidate for our requirements.

We have several choices here: firstly, by using the change of variable r = 2−p we

could take M to be defined by

Ms(µ)(x) = sup
0<r<1

r2s|Φr ∗ µ(x)|

where Φr is an appropriate kernel of an approximation to the identity at scale r, eg.

a standard bump function or the Poisson kernel, for example. We could also take

M to be the fractional maximal function M2s, defined by

M2s(φ)(x) = sup
r>0

1

2r1−2s

∫ r

−r
|φ(x− y)|dy.

We may now move beyond the case where f̂ is supported in one of the Ap’s. Let

{Ap}p∈N denote an enumeration of the smoothed-out Littlewood-Paley convolution

operators associated to the intervals A0, Ap, and −Ap for p ∈ N. Lemma 1.1.3 may

65



be applied here to obtain

∫
R
|Tsf |2dµ =

∫
R
|
∑
p

ApTsf |2dµ

.
∑
p

∫
R
|ApTsf |2M3(µ)

=
∑
p

∫
R
|TsApf |2M3(µ)

.
∑
p

∫
R
|Apf |2MM3(µ)

whichever our choice of M. By Lemma 1.1.2,

∫
R
|Tsf |2dµ .

∫
R
|f |2MMM3(µ).

In particular we have that Ts is controlled (in the weighted L2 sense) by the

fractional maximal function M2s. This is also the case for the fractional integral

operators. The fractional integral operator of order α on Rn is given by

Iα(f) =

∫
Rn

f(y)

|x− y|n−α
dy

for 0 < α < n, which can also be realised as a multiplier operator with multiplier

equal to Cα| · |−α. It is shown by Pérez in [25] that the operators Iα satisfy the

weighted norm estimate

∫
Rn
|Iα(f)(x)|pw(x)dx .

∫
Rn
|f(x)|pMpαM

[p]+1(w)(x)dx (4.1)

where [p] denotes the integer part of p for 1 < p <∞. Furthermore this is sharp in

the sense that (4.1) fails if [p] + 1 is replaced by [p].
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4.2 A Family of Oscillating Kernels on R

Define a new kernel on R by

Kt(x) = eiΦ(x)/tψ(x)

for small t, where the functions Φ and ψ are as-yet unspecified.

It is desirable for the phase function Φ to locally resemble the model cases (·)`

for integers ` ≥ 3, and so we suppose that Φ is a C∞ function satisfying

Φ(k)(x0) = 0 for 0 ≤ k ≤ `− 1, and Φ(`)(x0) > ε > 0, (4.2)

for some ε.

As one might expect from the main result in [5], trigonometric phases such as

Φ(x) = x− sinx satisfy the above conditions as do the aforementioned model cases

Φ(x) = x` for integers ` ≥ 3.

Let 0 ≤ k ≤ `− 1, then by Taylor’s theorem, for each fixed x we have

Φ(k)(x) = Φ(k)(0) + xΦ(k+1)(0) + · · ·+ x`−kΦ(`)(yx,k)

= x`−kΦ(`)(yx,k)

for some yx,k ∈ (0, x). As a result we have functions Φk for 0 ≤ k ≤ `− 1 such that

Φ(k)(x) = x`−kΦk(x).

Since |Φ(`)| is bounded below in a neighborhood of the origin, so is each of the Φk,

and so we choose the smooth cutoff function ψ so that |Φ(`)| is bounded below on

supp ψ.
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For uniformity purposes, we wish to make the conditions on Φ and ψ more

quantitative. In addition to (4.2), Let {Aj} be a collection of positive constants for

integers j ≥ 0, and suppose that

‖Φ(j)‖∞ ≤ Aj.

By the Mean Value Theorem, there exists a neighbourhood V of x0, depending only

on ε and A`+1 such that Φ`(x) ≥ ε/2 for x ∈ V . Finally, let ψ be a smooth function

with support in V such that
∫
|ψ′| ≤ B for some positive constant B.

Notice that if φ is a local diffeomorphism on R with φ(y0) = x0 for some y0, then

the new phase function Φ ◦ φ satisfies the hypotheses (4.2) at the point y0 with a

different value of ε. Due to this diffeomorphism invariance, we may suppose that

x0 = 0.

As in the case of the Bessel potentials, we will proceed using a frequency decom-

position motivated by the following estimates for K̂t.

Proposition 4.2.1.

|K̂t(ξ)| .


t1/`, |ξ| ≤ t−1/`

t
1

2(`−1) |ξ|−
`−2

2(`−1) , t−1/` ≤ |ξ| ≤ 2A1t
−1

|ξ|−N for any N ∈ N, |ξ| ≥ 2A1t
−1,

with implicit constant depending on `, the Aj, B and ε.

Proof. By corollary 2.1.3, the first two claimed estimates follow from corresponding

estimates on the integral

∫
I

ei(Φ(x)/t−xξ)dx
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that are uniform in I, where I is an interval contained in supp ψ. If we write

the phase of the above integral as p(x)/t where p(x) = Φ(x) − txξ, then p(`)(x) is

bounded below on I, and so by van der Corput’s Lemma,

∣∣∣∣∫
I

ei(Φ(x)/t−xξ)dx

∣∣∣∣ . t1/`.

For the second estimate, let I1 = {x ∈ I : |x| . |tξ|
1
`−1}, with suitably small

implicit constant, and I2 = {x ∈ I : |x| & |tξ|
1
`−1}. If we write the phase of the

integral in question as ξp1(x), where p1(x) = Φ(x)/tξ − x, then |p′1(x)| & 1 for

x ∈ I1, and so

∣∣∣∣∫
I1

ei(Φ(x)/t−xξ)dx

∣∣∣∣ . |ξ|−1

by van der Corput’s Lemma. If one writes the phase as t−
1
`−1 ξ

`−2
`−1p2(x) where p2(x) =

Φ(x)(tξ)−
`−2
`−1 − xξ

1
`−1 t

1
`−1 then |p′′2(x)| & 1 for x ∈ I2. This gives an estimate of

∣∣∣∣∫
I2

ei(Φ(x)/t−xξ)dx

∣∣∣∣ . t
1

2(`−1) |ξ|−
`−2

2(`−1) .

Overall, the estimate becomes

∣∣∣∣∫
I

ei(Φ(x)/t−xξ)dx

∣∣∣∣ . max{|ξ|−1, t
1

2(`−1) |ξ|−
`−2

2(`−1)},

but for t−1/` ≤ |ξ| we have that |ξ|−1 ≤ t
1

2(`−1) |ξ|−
`−2

2(`−1) , and so the second estimate

is complete.

For the third estimate, suppose that |ξ| ≥ 2A1t
−1 and write K̂t(ξ) =

∫
eiξh(x)ψ(x)dx,

where h(x) = Φ(x)/tξ − x. Then for all x in the support of the integrand, |h′(x)| ≥

1/2 and |h(j)(x)| ≤ Aj for integers j ≥ 2. Proceed in the spirit of Lemma 2.1.1 and
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define a differential operator D by

Df(x) =
1

ih(x)
f ′(y),

then integrating by parts N times yields

|K̂t(ξ)| . |ξ|−N
∫
|(tD)Nψ(x)|dx

where

tDf(x) =
d

dx

(
f(x)

h′(x)

)
.

By our assumptions on ψ, and our estimates on the derivatives of h,

∫
|(tD)Nψ(x)|dx ≤ CN

with CN depending on the Aj’s for each N ∈ N, and so |K̂t(ξ)| ≤ CN |ξ|−N , as

claimed.

This motivates a frequency decomposition using the following collection of sets:

A0 = {ξ ∈ R : |ξ| . t−1/`}

Ap = {ξ ∈ R : ξ ∼ 2−p/t} for p such that 1 . 2p . t−(`−1)/`

A∞ = {ξ ∈ R : |ξ| & t−1},

along with the sets −Ap, with implicit constants depending only on A1, which will

be used to prove the following:

Theorem 4.2.2. For all Borel measures µ there exist constants C1 and C2 depending
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on `, the Aj, B and ε such that

1.

∫
R
|Kt ∗ f(x)|2dµ(x) ≤ C1t

1
`−1

∫
R
|f(x)|2M2Mt,`M

3(µ)(x)dx (4.3)

2.

∫
R
|Kt ∗ f(x)|2dµ(x) ≤ C2t

1
`−1 log (t−1)

∫
R
|f(x)|2M2Mt,`(µ)(x)dx (4.4)

where Mk denotes the k-fold composition of the Hardy-Littlewood maximal function

M , and Mt,` is given by

Mt,`(φ)(x) = sup
(y,r)∈Γt,`(x)

r
`−2
`−1 |Pr ∗ φ(y)|

where Pr is the kernel of a suitable approximation to the identity at scale r, and

Γt,`(x) is the region

{(y, r) : 0 < r ≤ t1/`, and |y − x| ≤ t
1
`−1 r−

1
`−1}.

Proof. We will suppose first that suppf̂ ⊂ A0. Although the following argument is

less technical than when f̂ is supported in Ap, it gives us a clear philosophical and

theoretical framework for that case.

Let φ0 and P0 be functions on R such that φ̂0(x), P̂0(x) = 1 if |x| . t−1/` and

satisfying the estimates

|φ(k)(x)| . (t−1/`)k+1

(1 + t−1/`|x|)N
,
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and

|P0(x)| . t−1/`

(1 + t−1/`|x|)M

for every N,M ∈ N. Then

∫
R
|Kt ∗ f(x)|2dµ(x)

=

∫
R

∫
R

[∫
R
e2πi(y−z)xdµ(x)

]
K̂t(y)K̂t(z)f̂(y)f̂(z)dydz

=

∫
R

∫
R
µ̂(z − y)K̂t(y)K̂t(z)f̂(y)f̂(z)dydz

=

∫
R

∫
R
P̂0(z − y)µ̂(z − y)K̂t(y)K̂t(z)f̂(y)f̂(z)dydz

=

∫
R
|Kt ∗ f(x)|2P0 ∗ µ(x)dx

=

∫
R
|(Kt ∗ φ0) ∗ f(x)|2P0 ∗ µ(x)dx

=

∫
R

∫
R

∫
R
f(y)f(z)Kt ∗ φ0(x− y)Kt ∗ φ0(x− z)P0 ∗ µ(x)dxdydz.

Since |f(y)f(z)| ≤ 1
2
(|f(y)|2 + |f(z)|2), it suffices by symmetry to bound

∫
R

∫
R
|f(y)|2

∫
R
|Kt ∗ φ0(x− y)||Kt ∗ φ0(x− z)||P0 ∗ µ(x)|dxdydz

=

∫
R
|f(y)|2

(∫
R
|Kt ∗ φ0(x− y)||P0 ∗ µ(x)|dx

)(∫
R
|Kt ∗ φ0(z)|dz

)
dy.

In the following lemma we observe that bump functions at an appropriate scale

are left looking similar when convolved with Kt. Identifying this action of Kt is a

crucial stage in the proof, and allows to move from working with oscillatory integrals

to working with bump functions.
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Lemma 4.2.3.

|Kt ∗ φ0(x)| . t1/`H0(x),

where H0 satisfies

H0(x) .
t−1/`

(1 + t−1/`|x|)N

for integers 0 < N < (`− 1)2.

Proof. Let Ψ(x) =
∫

R e
iΦ(y)/tψ(y)φ0(x−y)dy, and let {νn}n∈Z be a smooth partition

of unity on R with suppνn ⊂ {|x| ∼ 2n}. It is important to note here that, for

uniformity purposes, {νn} and any other partitions of unity that are used in this

proof are constructed in the standard way from a fixed smooth function and taking

differences. Define

ηj =

 νj(t
−1/`·) if j > 0∑

n≤0 νn(t−1/`·) if j = 0.

Now {ηj}j≥0 defines a partition of unity on R. Write

Ij(x) =

∫
R
eiΦ(y)/tψ(y)φ0(x− y)ηj(x− y)dy

so that

|Ψ(x)| ≤
∑

2jt1/`&|x|

|Ij(x)|+
∑

2jt1/`.|x|

|Ij(x)|. (4.5)

To deal with the first sum in inequality (4.5) above, it will be sufficient to prove the
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uniform estimate

|Ij(x)| . 2−jN

for any N ∈ N. Integrating by parts, we may deduce that

Ij(x) =

∫
R

d

dy

(∫ y

−1

eiΦ(z)/tψ(z)dz

)
φ0(x− y)ηj(x− y)dy

= −
∫

R

(∫ y

−1

eiΦ(z)/tψ(z)dz

)
d

dy
(φ0(x− y)ηj(x− y))dy.

Now as indicated previously,

∣∣∣∣∫ y

−1

eiΦ(z)/tψ(z)dz

∣∣∣∣ . t1/`

uniformly in y, and so, for each N ∈ N,

|Ij(x)| . t1/` · t1/`2j (t−1/`)2

(1 + t−1/` · t1/`2j)N

≤ 2−j(N−1),

as required.

Now suppose that ct1/`2j ≤ |x|, for some constant c. If we take c to be suitably

large, then |y| ∼ |x| for all y in the support of ηj(x− ·).

If we define a differential operator D (in the spirit of Lemma 2.1.1) by

Df(y) =
t

iΦ′(y)
f ′(y),
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then

|Ij(x)| . tN
∫

R
|(tD)N(ψ(y)φ0(x− y)ηj(x− y))|dy,

where

tDf(y) = − d

dy

(
f(y)

Φ′(y)

)
.

For 0 ≤ N ≤ `− 1 we may write (tD)Nf(y) as a sum of terms of the form

f (p)(y)(Φ′(y))−nΠi(Φ
(qi)(y))mi

where p +
∑

imiqi = n, n −
∑

imi = N , and 0 ≤ p ≤ N . By our observations on

the derivatives of Φ,

|f (p)(y)(Φ′(y))−nΠi(Φ
(qi)(y))mi | ∼ |f (p)(y)||y|

∑
imi(`−qi)|y`−1|−n = |f (p)(y)||y|−(`N−p).

It follows that |(tD)Nf(y)| is controlled by a sum of terms of the form |y|−k|f (`N−k)(y)|

for (`− 1)N ≤ k ≤ `N , the number of which depends only on N .

In order to bound |Ij(x)|, it therefore suffices to control

tN
∫

R
|y|−k|(ψ(y)φ0(x− y)ηj(x− y))(`N−k)|dy

where (` − 1)N ≤ k ≤ `N . Since |y| ∼ |x| for all y in the support of ηj(x − ·), for
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each k,N ∈ N we have

tN
∫

R
|y|−k|(ψ(y)φ0(x− y)ηj(x− y))(`N−k)|dy . tN |x|−kt1/`2j · (t−1/`)`N−k+1

(1 + t−1/` · t1/`2j)N

≤ 2−j(N−1)

(t−1/`|x|)k

= 2−j(N−1)t1/`
t−1/`

(t−1/`|x|)k
,

from which the desired bound for |Kt ∗ φ0| follows.

The previous lemma yields, for supp(f̂) ⊂ A0, the inequality

∫
R
|Kt ∗ f(x)|2dµ(x) . t2/`

∫
R
|f(x)|2H0 ∗ |P0 ∗ µ|(x)dx

= t
1
`−1

∫
|f(x)|2H0 ∗ |t

`−2
`(`−1)P0 ∗ µ(x)|dx.

Since P0 is a kernel of an approximation to the identity at scale t1/`, |t
`−2
`(`−1)P0 ∗µ| .

Mt,`µ(x), and so H0 ∗ |t
`−2
`(`−1)P0 ∗ µ(x)| . MMt,`µ(x). As a result,

∫
R
|Kt ∗ f(x)|2dµ(x) . t

1
`−1

∫
R
|f(x)|2MMt,`µ(x)dx (4.6)

whenever supp(f̂) ⊂ A0.

We now consider the case where f has Fourier frequencies supported in Ap, and

76



proceed as before. Now,

∫
R
|Kt ∗ f(x)|2dµ(x)

=

∫
R

∫
R

[∫
R
e2πi(y−z)xdµ(x)

]
K̂t(y)K̂t(z)f̂(y)f̂(z)dydz

=

∫
R

∫
R
µ̂(z − y)K̂t(y)K̂t(z)f̂(y)f̂(z)dydz

=

∫
R

∫
R
P̂p(z − y)µ̂(z − y)K̂t(y)K̂t(z)f̂(y)f̂(z)dydz

=

∫
R
|Kt ∗ f(x)|2Pp ∗ µ(x)dx,

(4.7)

for any function Pp satisfying P̂p(x) = 1 whenever |x| . 2−p/t. We may choose Pp

to satisfy

|Pp(x)| . 2−pt−1

(1 + 2−pt−1|x|)N

for every N ∈ N. The proof in this case now diverges from the proof in the previous

case for the following reason: before, we were able to identify the action of Kt on a

bump function at a reciprocal scale to the support of f̂ . However, a bump function

at scale 2pt with Fourier support in {|x| ∼ 2−p/t} is not smooth enough for this

action to be satisfactorily identified, and so it is necessary to carry out a further

‘equally spaced’ frequency decomposition as follows: let WL be a function on R with

supp ŴL ⊂ {x ∈ R : |x| ≤ 2L} such that

∑
k∈Z

ŴL(x+ kL) = 1

for all x ∈ R. The value of L is to be determined later, and will depend on p. We
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may also specify that WL satisfies

|WL(x)| . L

(1 + L|x|)N

for all x ∈ R and for any N ∈ N. Let

fk(x) =

∫
R
f(y)WL(x− y)e−2πi(2−p/t+kL)ydy,

for integers k with 0 ≤ k ≤ (2ptL)−1 so that

f(x) = e2πi2−pt−1x

(2ptL)−1∑
k=0

e2πikLxfk(x).

Let φp be a function on R satisfying

φ̂p(ξ) =

 1 if |ξ| ≤ 2L

0 if |ξ| ≥ 4L

so that fk = φp ∗ fk for each k, since suppf̂k ⊂ {|x| ≤ 2L}. We may also choose φp

such that for each N ∈ N,

|φ(c)
p (x)| . Lc+1

(1 + L|x|)N

for every x ∈ R. Then Kt ∗ f(x) may be written as

(2ptL)−1∑
k=0

∫
R
eiΦ(x−y)/t+2πi(2−p/t+kL)yψ(x− y)

∫
R
fk(z)φp(y − z)dzdy

= e2πi2−pt−1x

(2ptL)−1∑
k=0

e2πikLxfk ∗Ψp,k(x),

(4.8)
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where

Ψp,k(x) =

∫
R
eiΦ(w)/t−2πi(2−p/t+kL)wψ(w)φp(x− w)dw.

For our purposes it will be necessary to fix L = 2p/(`−1). Referring back to (4.7), we

have replaced the arbitrary Borel measure µ with the weight Pp ∗ µ. However, it is

necessary to dominate Pp ∗ µ by a function with an increased level of smoothness

in order to recover some partial orthogonality from the frequency decomposition we

have just carried out. For our new weight to have Fourier support in {x : |x| . L}

is desirable, and so we construct such a weight as follows: firstly, we bound Pp ∗ µ

pointwise by

ψ1(x) = sup
|y−x|≤L−1

|Pp ∗ µ(y)|,

and secondly let ψ2(x) = Θp ∗ ψ1(x) where Θp is a non-negative function on R such

that Θ̂p is non-negative and supported in {ξ ∈ R : |ξ| . L}. We may also choose

Θp such that

1. for each N ∈ N,

Θp(x) .
L

(1 + L|x|)N
, and

2. There exist constants C, c > 0 independent of p such that Θp(x) ≥ CL when-

ever |x| ≤ cL−1.

Using the argument from Lemma 3.4.3 allows us to argue that ψ2 ≥ Cψ1 and so
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it suffices to control
∫

R |Kt ∗ f(x)|2ψ2(x)dx. Now from (4.8) we may write

∫
R
|Kt ∗ f(x)|2ψ2(x)dx

=

∫
R

∑
k,k′

e−2πiL(k−k′)xfk ∗Ψp,k(x)fk′ ∗Ψp,k′(x)ψ2(x)dx

=
∑
k,k′

∫
R

∫
R
fk(y)fk′(z)

×
(∫

R
Ψp,k(x− y)Ψp,k′(x− z)ψ2(x)e−2πi(k−k′)Lxdx

)
dydz.

Now Ψ̂p,k(ξ) = Ψ̂p,k′(ξ) = ψ̂2(ξ) = 0 when |ξ| ≥ 4 · L and so

∫
R

Ψp,k(x− y)Ψp,k′(x− z)ψ2(x)e−2πi(k−k′)Lxdx = 0

whenever |k − k′| > 12. To see this, we write the above integral as

∫ ∫ ∫ ∫
e2πi[(x−y)ξ−(x−z)η−xν−(k−k′)Lx]Ψ̂p,k(ξ)Ψ̂p,k′(η)ψ̂2(ν)dxdξdνdη

=

∫ ∫ ∫
e2πi[−yξ+zη]Ψ̂p,k(ξ)Ψ̂p,k′(η)ψ̂2(ν)

∫
e2πix[ξ−η+ν−(k−k′)L]dxdξdηdν

=

∫ ∫ ∫
e2πi[−yξ+zη]Ψ̂p,k(ξ)Ψ̂p,k′(η)ψ̂2(ν)δ(ξ − η + ν − (k − k′)L)dξdνdη.

Since Ψ̂p,k(ξ) = Ψ̂p,k′(ξ) = ψ̂2(ξ) = 0 when |ξ| ≥ 4 · L, the integrand above is zero

when |k − k′| > 12.

Since |fk(y)fk′(z)| ≤ 1
2
(|fk(y)|2 + |fk′(z)|2), by symmetry it suffices to control

∑
|k−k′|≤12

∫
R
|fk(y)|2

(∫
R

∫
R
|Ψp,k(x− y)||Ψp,k′(x− z)|ψ2(x)dxdz

)
dy

=
∑

|k−k′|≤12

∫
R
|fk(y)|2

(∫
R
|Ψp,k(x− y)|ψ2(x)dx

)(∫
R
|Ψp,k′(z)|dz

)
dy.

Our next lemma identifies the action of Kt on bump functions at scale L−1.
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Lemma 4.2.4. With our choice of L,

|Ψp,k(x)| . t1/22
p(`−2)
2(`−1)Hp(x)

where Hp satisfies

Hp(x) .
2

p
`−1

(1 + 2
p
`−1 |x|)N

for 0 ≤ N ≤ (`− 1)2.

Proof. Let {ηn} be a partition of unity on R with supp ηn ⊂ {x ∈ R : |x| ∼ 2n}.

Define

ηp,j =

 ηj(2
p

(`−1) ·) if j > 0∑
n≤0 ηn(2

p
(`−1) ·) if j = 0.

Then supp ηp,0 ⊂ {|x| . 2
−p

(`−1)}, supp ηp,j ⊂ {|x| ∼ 2
−p

(`−1)
+j}, and {ηp,j}j≥0 is a

partition of unity on R for every p. Recall that

Ψp,k(x) =

∫
R
eiΦ(y)/t−2πi(2−p/t+kL)yψ(y)φp(x− y)dy.

With this in mind, we write ck = 2π(2−p/t+ kL) and let

Ip,k,j(x) =

∫
R
ei(Φ(y)/t−cky)ψ(y)φp(x− y)ηp,j(x− y)dy.

Now the phase of the integral in question has a stationary point when Φ′(y) = ckt,

which occurs for y ∼ (ckt)
1/(`−1) =: yk.

Since we expect the main contribution of this integral to occur around stationary

points of the phase, it makes sense to decompose the integral relative to |x − yk|.
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Note that yk ∼ 2−
p
`−1 . We write

|Ψp,k(x)| ≤
∑

2j&2
p

(`−1) |x−yk|

|Ip,k,j(x)|+
∑

2j.2
p

(`−1) |x−yk|

|Ip,k,j(x)|

and consider each of the sums separately. Since |yk| ≤ 2−p/(`−1), it suffices to show

that

|Ψp,k(x)| . t1/22
p(`−2)
2(`−1) · 2

p
`−1

(1 + 2
p
`−1 |x− yk|)N

for every N ∈ N, and 0 ≤ k ≤ (2ptL)−1. Fix x and suppose that 2j & 2
p

(`−1) |x− yk|,

then integrating by parts we have

Ip,k,j(x) =

∫
R

d

dy

(∫ y

−1

ei(Φ(z)/t−ckz)ψ(z)dz

)
φp(x− y)ηp,j(x− y)dy

= −
∫

R

(∫ y

−1

ei(Φ(z)/t−ckz)ψ(z)dz

)
d

dy
(φp(x− y)ηp,j(x− y))dy.

By Proposition 4.2.1, we have the estimate

∣∣∣∣∫ y

−1

ei(Φ(z)/t−ckz)ψ(z)dz

∣∣∣∣ . t
1

2(`−1) |2−p/t|−
`−2

2(`−1) = t1/22
p(`−2)
2(`−1) ,

uniformly in y, and so

|Ip,k,j(x)| . t1/22
p(`−2)
2(`−1) · 2

−p
`−1

+j · (2
p
`−1 )2 · 2−Nj

= t1/22
p(`−2)
2(`−1) · 2

p
`−1 · 2−(N−1)j

for any N ∈ N, which is sufficient.
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We now suppose that 2j . 2
p
`−1 |x− yk|. Then

|Ip,k,j(x)| ≤ tN
∫

R
|(tD)Nψ(y)φp(x− y)ηp,j(x− y)|dy (4.9)

for any N ∈ N where

(tD)g(y) = − d

dy

(
g(y)

Φ′(y)− y`−1
k

)
,

with the operator tD corresponding to a differential operator D in the spirit of

Lemma 2.1.1. For 0 ≤ N ≤ `− 1 we may write (tD)Ng(y) as a sum of terms of the

form

g(p)(y)(Φ′(y)− y`−1
k )−nΠi(Φ

(qi)(y))mi

where p +
∑

imiqi = n, n −
∑

imi = N , and 0 ≤ p ≤ N . By our observations on

the derivatives of Φ,

|g(p)(y)(Φ′(y))−nΠi(Φ
(qi)(y))mi | ∼ |g(p)(y)||y|

∑
imi(`−qi)|y`−1Φ1(y)− y`−1

k |
−n.

By the above relations, (` − 1)n −
∑

imi(` − qi) + p = `N , and so we may bound

|(tD)g(y)| by a sum of terms of the form

|y|α|y`−1Φ1(y)− y`−1
k |

−β| d
γ

dyγ
g(y)|,

where (`− 1)β − α + γ = `N , and 0 ≤ γ ≤ N .

Thus, |Ip,k,j(x)| may be bounded by a sum of terms (the number of which de-
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pending only on N) of the form

tN
∫

R
|y|α|y`−1Φ1(y)− y`−1

k |
−β| d

γ

dyγ
(ψ(y)φp(x− y)ηp,j(x− y)|dy.

Now if 2jc ≤ 2
p
`−1 |x − yk| with c sufficiently large then, for all y in the range of

integration we have |x − yk| ∼ |y − yk| and |y| . |x − yk|. We also have that

|yΦ1(y)1/(`−1) − yk| ∼ |y − yk|, and so

|y|α

|y`−1Φ1(y)− y`−1
k |β

.
|y|α

|yΦ1(y)1/(`−1) − yk|(`−1)β

∼ |y|α

|y − yk|(`−1)β

∼ |x− yk|α−(`−1)β

and so we may bound (4.9) by a constant multiple of

tN |x− yk|α−(`−1)β(2
−p
`−1

+j)
(2

p
`−1 )γ+1

(1 + 2
p
`−1 · 2

−p
`−1

+j)N

≤ tN |x− yk|α−(`−1)β(2
p
`−1 )γ2−j(N−1)

= 2−j(N−1) tN(2
p
`−1 )`N

(2
p
`−1 |x− yk|)`N−γ

= 2−j(N−1) · (t2
`p
`−1 )N−1/2 · t1/22

p(`−2)
2(`−1)

2
p
`−1

(2
p
`−1 |x− yk|)`N−γ

from which the desired bound follows, since t2
`p
`−1 . 1.

If we let ψ3 = Hp ∗ ψ2, then we have that

∫
R
|Kt ∗ f(x)|2dµ(x) .

∫
R

∑
k

|fk(x)|2[t2
p(`−2)
`−1 ψ3(x)]dx.
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Now on applying Lemma 1.1.1, our weighted estimate for convolution with Kt be-

comes

∫
R
|Kt ∗ f(x)|2dµ(x) .

∫
R
|f(x)|2[t2

p(`−2)
`−1 ψ4(x)]dx, (4.10)

where ψ4 = |WL| ∗ ψ3.

Claim 4.2.5.

t2
p(`−2)
`−1 ψ4(x) . t

1
`−1MMt,`(µ)(x).

Proof. Writing ψ4 out in full we have that

t2
p(`−2)
`−1 ψ4(x) = |WL| ∗Hp ∗Θp ∗ t2

p(`−2)
`−1 ψ1(x)

where

t2
p(`−2)
`−1 ψ1(x) = t2

p(`−2)
`−1 sup

|y−x|≤L−1

|Pp ∗ µ(y)|.

Now if we write r = 2pt, then bearing in mind that L = 2
p
`−1 the expression becomes

t2
p(`−2)
`−1 ψ1(x) = t

1
`−1 sup

|y−x|≤t
1
`−1 r

−1
`−1

r
`−2
`−1 |Pr ∗ µ(y)|

where Pr is a smooth bump function satisfying |Pr(x)| . r−1/(1 + r−1|x|)N for any

N ∈ N. By assumption, p is a non-negative integer with 1 . 2p . t−
`−1
` , and so
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t . r . t1/`. Taking the supremum over r ∈ (0, t1/`] yields that

t2
p(`−2)
`−1 ψ1(x) ≤ t

1
`−1 sup

0<r≤t1/`
sup

|y−x|≤t
1
`−1 r

− 1
`−1

r
`−2
`−1 |Pr ∗ µ(y)|

= t
1
`−1 sup

(y,r)∈Γt,`(x)

r
`−2
`−1 |Pr ∗ µ(y)|

= t
1
`−1Mt,`(µ)(x),

where Γt,`(x) is defined to be the region

{(y, r) : 0 < r ≤ t1/` and |y − x| ≤ t
1
`−1 r

−1
`−1}.

Now since each of WL, Hp and Θp is a bump function at the same scale, we have

t2
p(`−2)
`−1 ψ4(x) . MMt,`(µ)(x),

as required.

It then follows that if suppf̂ ⊂ Ap, we have

∫
R
|Kt ∗ f |2dµ . t

1
`−1

∫
R
|f |2MMt,`(µ) (4.11)

The final case to consider is when f̂ is supported in A∞. Consider a bump

function Ψ such that Ψ̂(ξ) = 1 for x ∈ [1, 2], and Ψ̂(ξ) = 0 for x outside a slightly

larger interval. For p such that 2p ≥ t−1, define a new function Ψp by Ψ̂p = Ψ̂(2−p·).

Then Ψ̂p(ξ) = 1 on {ξ ∼ 2p}, and |Ψ̂(k)
p (ξ)| . 2−pk. We can estimate the action of

convolution with Kt on Ψp as follows. Integrating by parts N times (in the manner
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of Lemma 2.1.1) on the expression

Kt ∗Ψp(x) =

∫
eixξΨ̂p(ξ)K̂t(ξ)dξ

yields

|Kt ∗Ψp(x)| . |x|−N
∫
| d

N

dξN
(Ψ̂p(ξ)K̂t(ξ))|dξ.

Now one may show by using the integration by parts argument from the final part

of the proof of Proposition 4.2.1 that whenever |ξ| & t−1 we have

| d
N

dξN
K̂t(ξ)| . |ξ|−M

for all natural numbers N and M , with implicit constant depending on N , M and

the Aj. Using this and the above estimate on the derivatives of Ψ̂p, along with the

assumption that suppΨ̂p ⊂ {ξ ∼ 2p}, it follows that

|Kt ∗Ψp(x)| . 2−pM |x|−N

for all N , M ∈ N. We may also use the rapid decay of K̂t to obtain the trivial

estimate

|Kt ∗Ψp(x)| ≤
∫
|Ψ̂p(ξ)K̂t(ξ)|dξ . 2−pM

for all M ∈ N. It therefore follows that

|Kt ∗Ψp(x)| . 2−pMHp(x), (4.12)
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for all M ∈ N, with implicit constant depending on M and the Aj, where Hp is a

non-negative bump function satisfying

Hp(x) ≤ CN
2p

(1 + 2p|x|)N

for all N ∈ N.

Now let {Ψp}p∈N be a smooth partition of unity on R, constructed in the standard

way, with suppΨ̂p ⊂ {ξ : |ξ| ∼ 2p}. If f̂ is supported in A∞ then

f =
∑

2p&t−1

f ∗Ψp

and so

∫
|Kt ∗ f |2dµ =

∫
|
∑

2p&t−1

(Kt ∗Ψp) ∗ f |2dµ.

By multiplying out the integrand and using Fubini’s Theorem,
∫
|Kt ∗ f |2dµ is

controlled by

∑
2p,2q&t−1

∫
|f(y)|2

(∫
|Kt ∗Ψp(x− y)|dµ(y)

)(∫
|Kt ∗Ψq(z)|dz

)
dy.

By estimate (4.12), for any M ∈ N this is dominated by a constant multiple of

∑
2p&t−1

∫
|f(y)|22−pMHp ∗ µ(y)dy .

∫
|f(y)|2

[
sup

0<r<t
rMHr ∗ µ(y)

]
dy,

where Hr is the kernel of a suitable approximation to the identity at scale r. We
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may clearly choose M large enough that the bound

sup
0<r<t

rMHr ∗ µ ≤ t
1
`−1Mt,`(µ)

holds uniformly in µ and t, and so for f with suppf̂ ⊂ A∞,

∫
|Kt ∗ f |2dµ . t

1
`−1

∫
|f |2Mt,`(µ). (4.13)

We may now suppose that f has unrestricted Fourier support, and apply Lemma

1.1.2. Let {Ak} denote an enumeration of the smoothed-out Littlewood-Paley con-

volution operators associated with the intervals A0, Ap and −Ap for p ∈ N with

1 . 2p . t−
`−1
` , and A∞. Then

f =
∑

Akf. (4.14)

Since for any fixed t there are ∼ log (t−1) intervals Ap, we have that

|
∑

Kt ∗ Akf |2 . log (t−1)
∑
k

|Ak(Kt ∗ f)|2.

Hence, we may apply inequalities (4.6), (4.11) and (4.13), and Lemma 1.1.2 to obtain

∫
|Kt ∗ f |2dµ =

∫
|
∑
k

Kt ∗ Akf |2dµ

. log (t−1)
∑
k

∫
|Kt ∗ Akf |2dµ

. t
1
`−1 log (t−1)

∫ ∑
k

|Akf |2MMt,`(µ)

. t
1
`−1 log (t−1)

∫
|f |2M2Mt,`(µ),
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which establishes (4.4).

Alternatively, let {Pk}k≥0 be functions such that supp P̂0 ⊂ {|ξ| . t−1/`}, and

for integers k such that 2k & t−1/`, Pk is odd with supp P̂k ⊂ {|ξ| ∼ 2k}. Then by

our Littlewood-Paley Lemma 1.1.3, and inequalities (4.6), (4.11) and (4.13) we have

∫
R
|Kt ∗ f |2dµ .

∫
R

∑
|Pk ∗ (Kt ∗ f)|2M3(µ)

=
∑∫

R
|Kt ∗ (Pk ∗ f)|2M3(µ)

. t
1
`−1

∫
R

∑
|Pk ∗ f |2MMt,`M

3(µ).

By Lemma 1.1.2 we may therefore conclude that

∫
R
|Kt ∗ f(x)|2dµ(x) . t

1
`−1

∫
R
|f(x)|2M2Mt,`M

3(µ)dx,

completing the proof.

4.3 Corollaries of Theorem 4.2.2

A one-weighted L2 estimate for convolution with Kt may be deduced as a simple

consequence of Theorem 4.2.2. However, it may also be proven directly without the

need to resort to a second frequency decomposition, using little more than the decay

estimates on K̂t.

Corollary 4.3.1.

∫
R
|Kt ∗ f(x)|2dµ(x) . t

1
`−1 log (t−1)‖Mt,`(µ)‖∞

∫
R
|f(x)|2dx, (4.15)

with implicit constant depending on `, the Aj, B and ε.
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Proof. Firstly, suppose that suppf̂ ⊂ A0. Then for a suitable bump function P0 at

scale t1/` we have

∫
|Kt ∗ f |2dµ =

∫
|Kt ∗ f |2P0 ∗ µ

. ‖P0 ∗ µ‖∞
∫
|Kt ∗ f |2

= ‖P0 ∗ µ‖∞
∫
|K̂t|2|f̂ |2

. sup
ξ∈A0

|K̂t(ξ)|2‖P0 ∗ µ‖∞
∫
|f̂ |2

. t2/`‖P0 ∗ µ‖∞
∫
|f |2,

and |t2/`P0 ∗ µ| = |t1/(`−1)(t1/`)
`−2
`−1P0 ∗ µ| . t1/`−1Mt,`(µ), which implies that

t2/`‖P0 ∗ µ‖∞ . t
1
`−1‖Mt,`(µ)‖∞.

For f with f̂ supported in Ap we argue in a similar way to obtain, for a suitable

bump function Pp at scale 2pt,

∫
|Kt ∗ f |2dµ . [(2−p/t)−

`−2
2(`−1) t

1
2(`−1) ]2‖Pp ∗ µ‖∞

∫
|f |2

= t(2p)
`−2
`−1‖Pp ∗ µ‖∞

∫
|f |2

. t
1
`−1‖Mt,`(µ)‖∞

∫
|f |2,

since t(2p)
`−2
`−1Pp ∗ µ = t1/(`−1)(2pt)

`−2
`−1Pp ∗ µ . t1/(`−1)Mt,`(µ).

It follows from (4.13) that

∫
|Kt ∗ f |2dµ . t

1
`−1‖Mt,`(µ)‖∞

∫
|f |2

when suppf̂ ⊂ A∞, and so the desired one-weighted inequality holds for functions
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f that have Fourier support in a piece of our frequency decomposition. Again, we

use the fact that there are ∼ log(t−1) intervals Ap in our frequency decomposition,

and Littlewood-Paley theory, to conclude that inequality (4.15) holds for f with

unrestricted Fourier support.

As indicated previously, a simple duality argument can be applied to weighted

inequalities such as (4.3) which allows us to obtain Lp bounds on our operator via Lp

bounds on our controlling maximal functionMt,`. As one might hope, our maximal

functionMt,` is sharp in the sense that it allows us to recover the Lp to Lp operator

norm of convolution with Kt, for certain p. Like Corollary 3.4.5, the operator norm

is already known as a consequence of [21].

Corollary 4.3.2. The inequality

‖Kt ∗ f‖p . t1/`‖f‖p, (4.16)

with implicit constant depending on `, the Aj, B and ε, holds for all f ∈ Lp(R) if

and only if `′ ≤ p ≤ `.

Proof. To see that the claimed range of p is necessary, consider the following exam-

ple. Fix a t ∈ (0, 1), and define a function f by f(x) = e−i(−x)`/tχ[−t,t](x). Consider

the special case when Kt(x) = eix
`/tψ(x) for an integer ` ≥ 3, and a smooth cutoff

ψ with support in (−1, 1). Then

|Kt ∗ f(x)| =

∣∣∣∣∫ t

−t
ei(x−y)`/t−i(−y)`/tψ(x− y)dy

∣∣∣∣
&

∣∣∣∣∣
∫ t

−t
cos

(
1

t

`−1∑
j=1

(−1)j
(
`

j

)
yjx`−j

)
ψ(x− y)dy

∣∣∣∣∣ .
Let T = {x : |x| . 1}. We may take the implicit constant sufficiently small

92



(depending only on `) that T ⊂ supp(Kt ∗ f), and for all x ∈ T we have

∣∣∣∣∣1t
`−1∑
j=1

(−1)j
(
`

j

)
yjx`−j

∣∣∣∣∣ . 1/8,

and so

|Kt ∗ f(x)| & tχT (x).

As a consequence, ‖Kt ∗ f‖p & t. Now ‖f‖p = t1/p, and so if we assume inequality

(4.16) to be true for some 1 ≤ p <∞, we must have t . t1/`+1/p. Since all implicit

constants are independent of t, we must have 1/` + 1/p − 1 ≤ 0, which rearranges

to `′ ≤ p. By duality we must also have p ≤ `.

We now proceed using a standard duality argument. For f ∈ L`(R),

‖Kt ∗ f‖2
` = ‖(Kt ∗ f)2‖ `

2

= sup
‖g‖

( `2 )′=1

∣∣∣∣∫ |Kt ∗ f |2g
∣∣∣∣

. t
1
`−1 sup
‖g‖

( `2 )′=1

∣∣∣∣∫ |f |2M2Mt,`(M
3g)

∣∣∣∣ by Theorem 4.2.2

≤ t
1
`−1 sup
‖g‖

( `2 )′=1

‖(f)2‖ `
2
‖M2Mt,`(M

3g)‖( `
2

)′ by Hölder’s inequality

≤ t
1
`−1‖M2Mt,`M

3‖( `
2

)′→( `
2

)′‖f‖
2
` .

In order to show that

‖Kt ∗ f‖` . t1/`‖f‖`
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for all f ∈ L`(R), it therefore suffices to show that

‖Mt,`‖( `
2

)′→( `
2

)′ . t
`−2
`(`−1) , (4.17)

since M is bounded on Lp for all p > 1. Write M1,` = M`, then by scaling in t,

(4.17) is equivalent to the estimate

‖M`‖( `
2

)′→( `
2

)′ . 1, (4.18)

which is established as follows:

For integers k ≥ 0, let Pk,r be compactly supported bump functions at scale 2kr

respectively such that

Pr(x) .
∑
k≥0

2−kNPk,r(x)

for N ∈ N, and define a new maximal function M̃`,k by

M̃`,k(φ)(x) = sup
(y,r)∈Γ`(x)

r
`−2
`−1 |Pk,r ∗ φ(y)|.

where Γ`(x) denotes Γ1,`(x). Since we have

M`(φ)(x) .
∑
k≥0

2−kNM̃`,k(φ)(x)

for functions φ, it will suffice to show that

‖M̃`,k‖( `
2

)′→( `
2

)′ . 1, (4.19)

uniformly in k.
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A simple scaling argument shows that

M̃`,k(φ)(2kx) . 2−kM̃`,0(φ2k)(x), (4.20)

where φ2k denotes the dilation 2kφ(2k·). Using (4.20) and a change of variables, we

have

∫
|M̃`,k(φ)(x)|(

`
2

)′dx = 2k
∫
|M̃`,k(φ)(2kx)|(

`
2

)′dx

. (2k)1−( `
2

)′
∫
|M̃`,0(φ2k)(x)|(

`
2

)′dx.

As we will go on to show below,

‖M̃`,0‖( `
2

)′→( `
2

)′ . 1, (4.21)

and so

∫
|M̃`,k(φ)(x)|(

`
2

)′dx . (2k)1−( `
2

)′
∫
|φ2k(x)|(

`
2

)′dx

=

∫
|φ(x)|(

`
2

)′dx,

which establishes (4.19).

All that remains now is to prove (4.21). Define

Mβ
` (φ)(x) = sup

(y,r)∈Γ`(x)

r
`β
`−1 |Pr ∗ φ(y)|

where Pr is a compactly supported bump function at scale r. By Stein’s method of

analytic interpolation (again, see [28]), inequality (4.21) can be obtained from the
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estimates

‖M0
`(φ)‖∞ . ‖φ‖∞

and

‖M1
`(φ)‖L1 . ‖φ‖H1 .

The first estimate is elementary, and the second may be verified by testing on atoms.

Let a be an H1-atom with support interval I (by translation invariance we may

suppose that I is centered at the origin). For an atom a as described above, we have

the pointwise bound

r
`
`−1 |Pr ∗ a(x)| .


r

`
`−1/|I|, if r . |I| and |x| . |I|

|I|/r2− `
`−1 , if r & |I| and |x| . r

0, otherwise.

First, suppose that |I| ≥ 1, so that our pointwise estimate becomes

r
`
`−1 |Pr ∗ a(x)| .

 r
`
`−1/|I|, if |x| . |I|

0, otherwise.
(4.22)

If |x| ≤ 4|I|, then M1
`(a)(x) . 1/|I| (since r

`
`−1 |Pr ∗ a(x)| . r

`
`−1/|I|) which con-

tributes ≈ 1 to ‖M1
`(a)‖L1 . On the other hand, suppose that x ≥ 4|I|. Then the

right hand side of (4.22) is maximised for (y, r) ∈ Γ`(x) when r ≈ (x − |I|)−(`−1),

and so

M1
`(a)(x) ≈ |I|−1(x− |I|)−`.
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This contributes

|I|−1

∫
x≥4|I|

(x− |I|)−` ≈ |I|−` ≤ 1

to ‖M1
`‖L1 . The case when x ≤ −4|I| may be treated similarly, and so combining

these estimates we have that ‖M1
`(a)‖L1 . 1 when |I| ≥ 1.

Now suppose that |I| < 1. For any (y, r) ∈ Γ`(x), r
`
`−1 |Pr ∗ a(y)| . |I|

1
`−1 so for

|x| ≤ 4|I|−
1
`−1 we have the estimate M1

`(a)(x) . |I|
1
`−1 which contributes ≈ 1 to

‖M1
`(a)‖L1 . If x ≥ 4|I|−

1
`−1 , then again we have

M1
`(a)(x) . |I|−1(x− |I|)−`

which contributes

|I|−1

∫
x≥4|I|−

1
`−1

(x− |I|)−` ≈ |I|−1(|I|−
1
`−1 )−(`−1) = 1

to ‖M1
`(a)‖L1 , and so we may conclude that

‖M1
`‖H1→L1 . 1

as required.

This is establishes that ‖Kt ∗ f‖` . t1/`‖f‖`, which allows one to deduce using

duality that ‖Kt ∗ f‖`′ . t1/`‖f‖`′ for all f ∈ L`′(R). One may now interpolate to

show that ‖Kt ∗ f‖p . t1/`‖f‖p, for all f ∈ Lp(R), whenever `′ ≤ p ≤ `.
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Chapter 5

Higher Dimensions

An obvious extension of the results in chapter 5 to consider is that of analogues

of Theorem 4.2.2 in higher dimensions. For example, define a convolution kernel by

Kλ(x) = eλiΦ(x)ψ(x),

where Φ is a suitable smooth function on Rn, λ ∈ [1,∞), and ψ is an appropriate

cut-off supported in a neighborhood of the origin. It is natural to address the

matter of determining the functions Φ for which we find a maximal functionMΦ or

a correspondence w 7→ Cw such that

∫
Rn
|f ∗Kλ|2w .

∫
Rn
|f |2MΦw,

or

∫
Rn
|f ∗Kλ|2w . Cw

∫
Rn
|f |2

for all weights w on Rn. As before, the maximal function MΦ should be suitably

geometric in nature. We present here some partial answers to the above problems.
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5.1 Corollaries of Theorem 4.2.2 Continued

Theorem 4.2.2 may be used to prove two-weighted estimates for certain convo-

lution kernels on Rn. For example, for 1 ≤ j ≤ n let Φj and ψj be functions on R

satisfying the hypotheses of Theorem 4.2.2, and define

Kj(x) = eiΦj(x)/tψj(x)

for x ∈ R. We may then define a kernel K on Rn by

K(x) =
∏

1≤j≤n

Kj(xj)

for x = (x1, . . . , xn) ∈ Rn.

Corollary 5.1.1. Let M̃t,`,j denote M2Mt,` acting in the jth variable. Then with

K as defined above,

∫
Rn
|K ∗ f |2µ . (t

1
`−1 log(t−1))n

∫
Rn
|f |2M̃t,`,nM̃t,`,n−1 · · · M̃t,`,1(µ). (5.1)

Proof. For functions f : Rn → C and g : R → C, let g ∗j f denote convolution in

the j variable of g with f . More precisely, for x = (x1, . . . , xn),

g ∗j f(x) =

∫
R
f(x1, . . . , xj − y, . . . , xn)g(y)dy.

Then as a consequence of Theorem 4.2.2,

∫
Rn
|Kj ∗j f(x)|2dµ(x) . t

1
`−1 log(t−1)

∫
Rn
|f(x)|2M̃t,`,j(µ)(x)dx. (5.2)
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Observe that

K ∗ f(x) = Kn ∗n Kn−1 ∗n−1 · · · ∗2 K1 ∗1 f(x),

and so by repeated iterations of (5.2) we obtain (5.1).

Recall the uniformity considerations on the phase and associated cutoff of the

kernel that preceded Theorem 4.2.2. As a consequence of these, a two-weighted

estimate on R2 can be obtained if the phase function Φ : R2 → R has a suitably

‘weak’ dependance on one of the variables. This notion of ‘weakness’ is made clear

below.

Suppose that Φ : R2 → R satisfies the hypotheses of Theorem 4.2.2 in the first

variable, uniformly in the second variable. More precisely, suppose that

∂k1 Φ(0, ·) = 0

for 1 ≤ k ≤ `− 1, and there exists ε > 0 such that

∂`1Φ(0, x2) > ε

for all x2. Let ψ : R2 → R be a suitable smooth cutoff around zero with compact

support in [−1, 1]2, and define a kernel K(x1, x2) = eiΦ(x1,x2)/tψ(x1, x2). If g is a

function from R2 to C then we will sometimes write g(x, y) = gy(x) for notational

convenience.

Notice that a function such as Φ(x1, x2) = Φ1(x1)Φ2(x2) where Φ1 satisfies the

hypotheses from Theorem 4.2.2 and Φ2 is bounded below gives an example of a

phase satisfying the above conditions.
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In what follows we let ? denote convolution on R2 and ∗ denote convolution on

R to avoid ambiguity. We denote by ‖ · ‖Lp2(Lq1) the mixed norm corresponding to an

Lq norm in the first variable followed by Lp in the second, i.e.

‖f‖Lp2(Lq1) =

(∫
R

(∫
R
|f(x, y)|qdx

)p/q
dy

)1/p

.

Corollary 5.1.2. Let w be a weight function on R2, then with K as defined above,

∫
R2

|K ? f(x1, x2)|2w(x1, x2)dx1dx2 . t
1
`−1 log(t−1)

∫
R2

|f(x1, x2)|2M(w)(x1, x2)dx1dx2,

where

M(w)(x1, x2) =

∫
R
M̃t,`,1(w)(x1, y)χ(y − x2)dy

= χ ∗2 M̃t,`,1(w)(x1, x2)

for any non-negative compactly-supported bump function χ on R at scale 1 with

χ(x) = 1 when x ∈ [−1, 1]. If 2 ≤ p <∞ then we have the mixed norm estimate

‖K ? f‖Lp2(L`1) . t1/`‖f‖Lp2(L`1).

Proof. We begin by using the support of K to write

K ? f(x1, x2) =

∫
R

∫
R
K(x1 − y1, x2 − y2)f(y1, y2)dy1dy2

=

∫
|x2−y2|<1

Kx2−y2 ∗ fy2(x1)dy2

=

∫
|x2−y2|<1

Kx2−y2 ∗ fy2(x1)χ(x2 − y2)dy2

for a suitable non-negative bump function χ at scale 1. By the Cauchy-Schwarz
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inequality we obtain

|K ? f(x1, x2)| . ‖Kx2−· ∗ f·(x1)χ(x2 − ·)‖L2(R).

As a consequence,

∫
R2

|K ? f(x1, x2)|2w(x1, x2)dx1dx2

≤
∫

R2

(∫
R
|Kx2−y ∗ fy(x1)|2χ2(x2 − y)dy

)
w(x1, x2)dx1dx2

=

∫
R

∫
R

(∫
R
|Kx2−y ∗ fy(x1)|2w(x1, x2)dx1

)
χ2(x2 − y)dx2dy

. t
1
`−1 log(t−1)

∫
R

∫
R

∫
R
|f(x1, y)|2M̃t,`,1(w)(x1, x2)dx1χ

2(x2 − y)dx2dy

= t
`
`−1 log(t−1)

∫
R2

|f(x1, y)|2
(∫

R
M̃t,`,1(w)(x1, x2)χ2(x2 − y)dx2

)
dx1dy.

Relabeling the variables gives the desired result.

To prove the mixed norm inequality we write

‖K ? f‖2
Lp2(L`1) = ‖(K ? f)2‖

L
p/2
2 (L

`/2
1 )

= sup

∫
R2

|(K ? f(x, y))2|w(x, y)dxdy

where the supremum is taken over w on R2 with ‖w‖
L

(p/2)′
2 (L

(`/2)′
1 )

= 1. With w

described thus we have

∫
R2

|K ? f(x, y)|2w(x, y)dxdy

. t
1
`−1

∫
R2

|f(x, y)|2M(w)(x, y)dxdy

≤ t
1
`−1‖f‖2

Lp2(L`1)‖M(w)‖
L

(p/2)′
2 (L

(`/2)′
1 )

by applying Hölder’s Inequality twice.
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It therefore suffices to show that

‖M(w)‖
L

(p/2)′
2 (L

(`/2)′
1 )

. t
`−2
`(`−1)‖w‖

L
(p/2)′
2 (L

(`/2)′
1 )

.

We use the fact that M(w) is M̃t,`,1(w) convolved with a non-negative bump

function χ on R in the second variable to obtain

‖M(w)(·, y)‖(`/2)′ = ‖
∫

R
M̃t,`,1(w)(·, z)χ(z − y)dz‖p

≤
∫

R
‖M̃t,`,1(w)(·, z)‖pχ(z − y)dz

by Minkowski’s Inequality. It follows that

‖M(w)‖
L

(p/2)′
2 (L

(`/2)′
1 )

. ‖M̃t,`,1(w)‖
L

(p/2)′
2 (L

(`/2)′
1 )

. t
`−2
`(`−1)‖w‖

L
(p/2)′
2 (L

(`/2)′
1 )

.

As a consequence,

∫
R2

|K ? f(x, y)|2w(x, y)dxdy . t2/`‖f‖2
Lp2(L`1)‖w‖L(p/2)′

2 (L
(`/2)′
1 )

and so taking the supremum over w of unit mixed-norm yields the desired inequality.

5.2 A One-Weighted estimate on Rn

As in the one-dimensional case, a one-weighted estimate for a family of convolu-

tion kernels of the above type is readily obtainable using estimates on the Fourier

transforms of those kernels. As before, the frequency decomposition we use will

be motivated by the behaviour of the Fourier transforms of the kernels in different
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regions of Rn.

Let Φ be an even function on R such that

• Φ ∈ C∞ in a neighborhood of the origin.

• Φ(k)(0) = 0 for 0 ≤ k ≤ `− 1, and Φ(`)(0) 6= 0

for an integer ` greater than 2, and ψ is a smooth, even function with compact

support containing the origin chosen such that Φ(`) is bounded below in its support.

We let Kλ(x) = eiλΦ(|x|)ψ(|x|) for λ ≥ 1 and x ∈ Rn.

It is well known that the Fourier transform of a radial function is itself radial,

and can be written in terms of the Hankel transform. Let f be a radial function on

Rn, and let f0 be the function on [0,∞) such that f(x) = f0(|x|). Then

f̂(ξ) = CnHn−2
2

(f0)(|ξ|),

where, for t ∈ [0,∞),

Hν(f0)(t) = t−ν
∫ ∞

0

f0(r)Jν(rt)r
1+νdr,

which is the modified Hankel transform of f0. If f is radial we will sometimes abuse

notation and write Hν(f) when we mean Hν(f0). In order to estimate K̂λ it therefore

suffices to consider the corresponding Hankel transform.

We will go on to prove a one-weighted L2 estimate using a similar argument to

that of Corollary 4.3.1. As before, we need to estimate the decay of K̂λ which will

then give an indication of the frequency decomposition to proceed with.
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Lemma 5.2.1.

|K̂λ(ξ)| .


λ−1/`, |ξ| . λ1/`

λ
−1

2(`−1) |ξ|−
`−2

2(`−1) , λ1/` . |ξ| . λ

|ξ|−N for any N ∈ N, |ξ| & λ.

The following lemma gives a description of the action of convolution with Kλ

on a bump function which has Fourier support in the region where K̂λ is rapidly

decreasing.

Lemma 5.2.2. Let Ψp be a smooth radial function on Rn such that suppΨ̂p ⊂ {|ξ| ∼

2p} for some p with 2p & λ. Let Ψ̃p be a function on R such that Ψp(x) = Ψ̃p(|x|)

and assume further that dk

dtk
Hn−2

2
(Ψ̃p)(t) is bounded uniformly in t and p. Then

|Kλ ∗Ψp(x)| . 2−pNQp(x)

where

Qp(x) .
(2p)n

(1 + 2p|x|)M

for all N,M ∈ N.

The proofs of these Lemmas are left until after the proof of Theorem 5.2.3.

These estimates on K̂λ suggest that the following collection of sets is an appro-

priate frequency decomposition with which to proceed:

A0 = {ξ ∈ Rn : |ξ| . λ1/`}

Ap = {ξ ∈ Rn : |ξ| ∼ 2−pλ} for p such that 1 . 2p . λ(`−1)/`

A∞ = {ξ ∈ R : |ξ| & λ}.
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Theorem 5.2.3.

∫
Rn
|Kλ ∗ f(x)|2dµ(x) . λ−

1
`−1 log(λ)‖Mλ,`(µ)‖∞

∫
Rn
|f(x)|2dx (5.3)

for all non-negative Borel measures µ on Rn. There exists a function Pr on Rn such

that

Mλ,`(µ)(x) = sup
0≤r≤λ−1/`

r
`−2
`−1 |Pr ∗ µ(x)|,

and Pr satisfies

Pr(x) .
(r−1)n

(1 + r−1|x|)N

for all N ∈ N.

Proof. We argue in the manner of Corollary 4.3.1, and suppose that suppf̂ is re-

stricted to an Ap, A0 or A∞. Firstly, suppose that suppf̂ ⊂ A0, and let P0 be a

function on Rn such that P̂0(ξ) = 1 when ξ . λ1/`. Then

∫
|Kλ ∗ f |2dµ =

∫
|Kλ ∗ f |2P0 ∗ µ

≤ ‖P0 ∗ µ‖∞
∫
|Kλ ∗ f |2

= ‖P0 ∗ µ‖∞
∫
|K̂λ|2|f̂ |2

≤ sup
ξ∈A0

|K̂λ(ξ)|2‖P0 ∗ µ‖∞
∫
|f̂ |2

. λ−2/`‖P0 ∗ µ‖∞
∫
|f |2.
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For f with f̂ supported in Ap, the above argument yields

∫
|Kλ ∗ f |2dµ . λ−1(2p)

`−2
`−1‖Pp ∗ µ‖∞

∫
|f |2

where Pp is a function on Rn with P̂p(ξ) = 1 for |ξ| . 2−pλ. Now we may choose Pp

to satisfy

|Pp(x)| . (2−pλ)n

(1 + 2−pλ|x|)N

for all N ∈ N, and since λ−1(2p)
`−2
`−1Pp ∗ µ = λ−

1
`−1 (2p/λ)

`−2
`−1Pp ∗ µ we have

λ−1(2p)
`−2
`−1‖Pp ∗ µ‖∞ . λ−

1
`−1‖Mλ,`(µ)‖∞.

Similarly, one may show that λ−2/`‖P0 ∗ µ‖∞ . λ
1
`−1‖Mλ,`‖∞.

Finally, we consider the case when suppf̂ ⊂ A∞. Let {Ψp}p∈N be a smooth

partition of unity on Rn, constructed in the standard way, with suppΨ̂p ⊂ {ξ : |ξ| ∼

2p} and each Ψp radial. If f̂ is supported in A∞ then

f =
∑
p:2p&λ

f ∗Ψp

and so

∫
|Kλ ∗ f |2dµ =

∫
|
∑
2p&λ

(Kλ ∗Ψp) ∗ f |2dµ.

By multiplying out the integrand and using Fubini’s Theorem,
∫
|Kλ ∗ f |2dµ is
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controlled by

∑
2p,2q&λ

∫
|f(y)|2

(∫
|Kλ ∗Ψp(x− y)|dµ(y)

)(∫
|Kλ ∗Ψq(z)|dz

)
dy.

By Lemma 5.2.2, for any M ∈ N this is dominated by a constant multiple of

∑
2p&λ

∫
|f(y)|22−pMQp ∗ µ(y)dy .

∫
|f(y)|2

[
sup

0<r<λ−1

rMQr ∗ µ(y)

]
dy,

where Qr is as in the lemma. We may clearly choose M large enough that the bound

sup
0<r<λ−1

rMQr ∗ µ . λ−
1
`−1Mλ,`(µ)

holds uniformly in µ and λ, and so for f with suppf̂ ⊂ A∞,

∫
|Kλ ∗ f |2dµ . λ−

1
`−1

∫
|f |2Mλ,`(µ).

We have therefore established that

∫
Rn
|Kλ ∗ f |2dµ . λ−

1
`−1‖Mλ,`(µ)‖∞

∫
Rn
|f |2

whenever the support of f̂ is restricted to A0, Ap for some p or A∞. Since there

are ∼ log(λ) sets in our frequency decomposition we can conclude that, for f with

unrestricted Fourier support,

∫
Rn
|Kλ ∗ f |2dµ . λ−

1
`−1 log(λ)‖Mλ,`(µ)‖∞

∫
Rn
|f |2

as claimed.
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Proof of Lemma 5.2.1. Let us abuse notation and write

Hν(Kλ)(t) = t−ν
∫ ∞

0

eiλΦ(r)ψ(r)Jν(rt)r
1+νdr

for t > 0. Using Fubini’s Theorem and the formula

Jν(z) = Cνz
ν

∫ 1

−1

eizs(1− s2)ν−1/2ds

we have

Hν(Kλ)(t) = Cν

∫ 1

−1

(1− s2)ν−1/2

[∫ ∞
0

ei(λΦ(r)+rst)ψ(r)r1+νdr

]
ds.

From Proposition 4.2.1, we know that

∣∣∣∣∫ ∞
0

ei(λΦ(r)+rst)ψ(r)r1+νdr

∣∣∣∣ .
 λ−1/`, t . λ1/`

λ
−1

2(`−1) |ts|
−(`−2)
2(`−1) , λ1/` . t . λ,

and since | · |
−(`−2)
2(`−1) is integrable on [−1, 1] we have

|Hν(Kλ)(t)| .

 λ−1/`, t . λ1/`

λ
−1

2(`−1) |t|
−(`−2)
2(`−1) , λ1/` . t . λ.

It remains to be shown that Hν(Kλ)(x) has rapid decay when x & λ. Let D

denote the differential operator

Df(t) =
1

t

d

dt
f(t),

109



then it is easily verified by integration by parts and induction (see [30]) that

Hν(Kλ)(x) = (−1)NHν+N(DNKλ)(x)

= (−1)Nx−(ν+N)

∫ ∞
0

DNKλ(t)Jν+N(tx)tν+N+1dt, (5.4)

where N is an integer that will be treated as fixed.

One may write DNKλ as

DNKλ(t) =
N∑
j=0

Dj(eiλΦ(t))DN−jψ(t),

and for each j = 1, . . . , N there exists functions Φj,k such that

Dj(eiλΦ(t)) = eiλΦ(t)

j∑
k=1

λkΦj,k(t).

Each Φj,k is expressible as a linear combination of terms (the number of which

depending on j) of the form

∏
l

(DplΦ)ql

for some integers pl and ql with
∑

l plql = j. It is shown in [30] that the operator

D maps even Schwartz functions to even Schwartz functions, so if we assume, as we

may, that Φ extends to an even Schwartz function on R, then we must have that

Φj,k is also Schwartz for each j and k. Consequently, one may write DNKλ(t) as a

sum of terms (the number of which depending only on N) of the form

eiλΦ(t)λaΨ(t)Dbψ(t)
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where a and b are integers with 0 ≤ a, b ≤ N , and Ψ is a Schwartz function which

is equal to Φj,a for some 0 ≤ j ≤ N . So, Hν(Kλ)(x) may be controlled by a sum of

terms, the number of which depending only on N , of the form

λa

xN
x−ν

∣∣∣∣∫ ∞
0

eiλΦ(t)Dcψ(t)Ψ(t)Jν+N(tx)tν+N+1dt

∣∣∣∣ . (5.5)

Since Dcψ and Ψ are both even Schwartz functions, so is their product and so for

ease of notation we relabel Dcψ ·Ψ as Ψ.

Note that |λa/xN | . 1. If µ is an integer, then by the classical asymptotic theory

of Bessel functions one may write

Jµ(r) = r−1/2eir
µ∑
j=0

ajr
−j + r−1/2e−ir

µ∑
j=0

bjr
−j + e(r), (5.6)

for constants aj and bj and a function e with |e(r)| ≤ r−(µ+1). If µ ∈ Z + 1/2, then

there exists constants aj and bj for which

Jµ(r) = r−1/2eir
µ−1/2∑
j=0

ajr
−j + r−1/2eir

µ−1/2∑
j=0

ajr
−j.

See, for example, Stein [28].

Suppose that ν (and by implication ν + N) is an integer. Consider the integral

term in (5.5): By using the asymptotic formula (5.6), it is bounded by the sum

of three terms I1, I2 and I3 where the first two correspond to substituting the

summations in (5.6) and the third to the error term. Specifically,

I1(x) =
ν+N∑
j=0

aj

∣∣∣∣∫ ∞
0

ei(λΦ(t)+tx)Ψ(t)(tx)−(j+1/2)tν+N+1dt

∣∣∣∣ ,
I2(x) =

ν+N∑
j=0

bj

∣∣∣∣∫ ∞
0

ei(λΦ(t)−tx)Ψ(t)(tx)−(j+1/2)tν+N+1dt

∣∣∣∣ ,
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and

I3(x) =

∣∣∣∣∫ ∞
0

eiλΦ(t)Ψ(t)e(tx)tν+N+1dt

∣∣∣∣ .
Fix a value of j in the sum defining I1 and call this I1,j, i.e.

I1,j(x) = aj|x|−(j+1/2)

∣∣∣∣∫ ∞
0

ei(λΦ(t)+tx)Ψ(t)tν+N+1/2−jdt

∣∣∣∣
for 0 ≤ j ≤ ν +N .

Write the phase of I1,j(x) as xh(t), where h(t) = λΦ(t)/x+ t. Then in the range

of integration, |h′(t)| & 1, and |h(k)(t)| . 1 for k ≥ 2, and

I1,j(x) = aj|x|−(j+1/2)

∣∣∣∣∫ ∞
0

eixh(t)Ψ(t)tν+N+1/2−jdt

∣∣∣∣ .
Once again, we proceed in the manner of Lemma 2.1.1. Let D1 be a differential

operator defined by

D1f(t) =
1

ih′(t)
f ′(t),

then

I1,j(x) = aj|x|−(j+1/2)

∣∣∣∣∫ ∞
0

DN
1 (eixh)(t)Ψ(t)tν+1/2+N−jdt

∣∣∣∣ .
If we integrate this expression by parts ν +N − j times, then

I1,j(x) = aj|x|−(j+1/2)|x|−(ν+N−j)
∣∣∣∣∫ ∞

0

eixh(t)(D∗1)ν+N−j(Ψ(t)tν+N+1/2−j)dt

∣∣∣∣ ,
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with

D∗1f(x) =
d

dt

(
f(t)

ih′(t)

)
,

where the vanishing of the boundary terms is due to the compact support of Ψ and

the fact that (D∗1)k(Ψ(t)tν+N+1/2−j)|t=0 = 0 for 1 ≤ k ≤ ν + N − j. Since Ψ is a

compactly supported even Schwartz function,

(D∗1)ν+N−j(Ψ(t)tν+N+1/2−j)

is always bounded on supp Ψ. Therefore

I1,j(x) . |x|−(ν+N−1/2),

and as a consequence, the same bound holds for I1(x). Since a similar argument

shows that I2(x) . |x|−(ν+N−1/2), it only remains to deal with I3. To these ends, we

simply use the bounds on the error term e and the compact support of Ψ to obtain

I3(x) . |x|−(ν+N)

∫ ∞
0

|Ψ(t)|tdt . |x|−(ν+N),

and our estimates on I1, I2 and I3 are complete.

Since Hν(Kλ) is controlled by terms of the form (5.5), which we have shown to

have decay |x|−N for x ≥ λ and any N ∈ N, it then follows that |Hν(Kλ)(x)| . |x|−N

as well, and the estimate is complete for ν ∈ N. If ν is a half-integer then the above

argument may be replicated but without the error term.
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Proof of Lemma 5.2.2. Our first observation is that

∣∣∣∣ dNdtNHn−2
2

(Kλ)(t)

∣∣∣∣ ≤ CN,M t
−M (5.7)

for N,M ∈ N when t & λ. This holds since for any N ∈ N we have

dN

dtN
Hn−2

2
(Kλ)(t) = tNHn−2

2
+N(Kλ)(t)

which is dominated by CN,M t
−M for any M ∈ N by Lemma 5.2.1.

In what follows we let H denote Hn−2
2

and HN denote Hn−2
2

+N for notational

convenience. Now by Hankel transform inversion and (5.4) for any natural number

N we have

Kλ ∗Ψp(x) = H(H(Kλ)H(Ψp))(|x|)

= (−1)NHN(DN(H(Kλ)H(Ψp))(|x|)

= (−1)N |x|−(n−2
2

+N)

×
∫ ∞

0

DN(H(Kλ)H(Ψp))(t)Jn−2
2

+N(t|x|)t
n−2

2
+N+1dt.

(5.8)

By (5.7), |DN(H(Kλ)H(Ψp))(t)|t
n−2

2
+N+1 ≤ CN,M2−pM for t in the support of H(Ψp)

for any M ∈ N, and we also have that |Jn−2
2

+N(t|x|)| ≤ Cn,N uniformly in t and x.

Applied to (5.8) this yields

|Kλ ∗Ψp(x)| ≤ CN,M |x|−(n−2
2

+N)2−pM (5.9)

for any N,M ∈ N.
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Finally, we use the fact that t−νJν(t) is bounded uniformly in t to observe that

|Kλ ∗Ψp(x)| = |H(H(Kλ)H(Ψp))(|x|)|

=

∣∣∣∣∣
∫ ∞

0

H(Kλ)(t)H(Ψp)(t)
Jn−2

2
(t|x|)

(t|x|)n−2
2

tn−1dt

∣∣∣∣∣
.

∫ ∞
0

|H(Kλ)(t)H(Ψp)(t)|tn−1dt

. 2−pN (5.10)

for any N ∈ N. The estimates (5.9) and (5.10) may then be combined to yield

|Kλ ∗Ψp(x)| . 2−pN
(2p)n

(1 + 2p|x|)M

for any M,N ∈ N as claimed.

The existence of the one-weighted estimate (5.3) could reasonably lead one to

conjecture that a two-weighted estimate for convolution with Kλ holds on Rn, where

the controlling maximal function is some suitable n-dimensional analogue of Mt,`.

A major obstacle towards proving an estimate of this kind using the methods used

in Chapter 4 would be the probable necessity of the second (the ‘equally spaced’)

frequency decomposition. If the Fourier support is decomposed initially by dyadic

annuli then it is not beyond the realms of possibility that the second may involve

some kind of tiling of the annuli with rectangles in Rn. The Littlewood-Paley theory

associated with such a decomposition would inevitably involve some Kakeya-type

information.

A more modest approach would be to consider weighted norm estimates of the

115



form

∫
Rn
|Kλ ∗ f |2dµ . Cλ

∫
Rn
|f |2M(µ)

that are valid for radial functions f , radial weights µ and radial kernels Kλ. An

approach such as this would naturally lend itself to the exploitation of properties

of Bessel functions and associated Hankel transforms. There is, however, still no

obvious way of carrying out a “nice” second frequency decomposition to correspond

to the “equally spaced” decomposition on R.
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