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ABSTRACT 

Independent component analysis (ICA) has the potential of automatically determining 

metabolite, macromolecular and lipid (MMLip) components that make up magnetic 

resonance (MR) spectra. However, the realiability with which this is accomplished and the 

optimal ICA approach for investigating in vivo MR spectra, have not yet been determined.  

A wavelet shrinkage de-noising based enhancement algorithm, utilising a newly derived 

relationship between the real and imaginary parts of the MR spectrum, is proposed. This 

algorithm is more robust compared with conventional de-noising methods. 

The two approaches for applying ICA, blind source separation (BSS) and feature extraction 

(FE), are thoroughly examined. A feature dimension selection method, which has not been 

adequately addressed, is proposed to set a theoretical guideline for ICA dimension reduction. 

Since the advantages and limitations of BSS-ICA and FE-ICA are different, combining them 

may compensate their disadvantages and lead to better results. A novel ICA approach 

involving a hybrid of the two techniques for automated decomposition of MRS dataset is 

proposed. It has been demonstrated that hybrid ICA provides more realistic individual 

metabolite and MMLip components than BSS-ICA or FE-ICA. It can aid metabolite 

identification and assignment, and has the potential for extracting biologically useful features 

and discovering biomarkers. 
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CHAPTER 1 

INTRODUCTION 

Magnetic resonance spectroscopy (MRS) has been an important analytical tool in organic 

chemistry, biology, and materials science for more than a half-century (Salibi and Brown, 

1998). MRS applied to living animals and human beings is called in vivo MRS, and can 

obtain metabolic information about various tissues in a non-invasive way.  1H MRS is a 

clinically useful diagnostic tool for the in vivo assessment of brain tumours (Preul et al., 1996, 

Burtscher and Holtas, 2001, Howe and Opstad, 2003). Therefore, it can be used to 

complement the magnetic resonance imaging (MRI) and computed tomography (CT) 

information to give an additional dimension to predict the tumour aggressiveness (Ketonen et 

al., 2004). Many studies on adults have shown a high accuracy in the non-invasive diagnosis 

of brain tumours by MRS and evidence is emerging that the technique is also valuable in 

children (Peet et al., 2008).  

1H MRS is based on a well known property that a proton will resonate at a slightly different 

frequency depending on its molecular environment (Reiser et al., 2008). This phenomenon, 

known as ‘chemical shift’, is due to the fact that electrons surrounding a proton produce a 
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shielding effect, which influences the local magnetic field experienced by the proton. The 

concentrations of certain metabolites or macromolecular and lipid (MMLip) components can 

be calculated by measuring the area under the corresponding peaks in a magnetic resonance 

(MR) spectrum. As the proton has a high MR sensitivity and a high natural abundance, a large 

number of brain metabolites containing protons can generate signals at specific frequencies in 

the MR spectrum. 

The appearance of the MR spectra varies depending on the patient’s clinical presentation and 

the various metabolites’ concentrations. Although there exists a high degree of variability in 

human brain tumour types, some general characteristic differences between normal and brain 

tumour tissues have been reported (Govindaraju et al., 2000). Several metabolite 

concentrations have been found to be decreased or increased when measured in spectra of 

tumours compared to those within normal tissue (Reiser et al., 2008, Panigrahy et al., 2006, 

Barker and Lin, 2006, Gillard et al., 2004, Moreno-Torres et al., 2004). Furthermore, this 

change in concentration can be used for specific tumour determination. In tumour diagnosis, 

accurate determination of the grade of malignancy is one of the most important factors for 

some types of tumours. Generally, fast-growing tumours are much more likely to emerge 

again after treatment than slow-growing tumours (Pizzo and Poplack, 2006). On the other 

hand, high-grade tumours do respond better to radiotherapy and chemotherapy (Pizzo and 

Poplack, 2006). Certain metabolite and MMLip components are considered to be metabolic 

markers of tumour malignancy (Howe et al., 2003). 

The quantification of spectral peaks plays an important role in the diagnostic capacity of MRS 

compared to MRI. The reason is that MRI relies on the detection of spatial or tissue 

abnormalities as a result of disease conditions, while MRS reveals the differences in relative 
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proportions of metabolites peaks at a tissue voxel (volume of interest). However, metabolite 

concentration measurement in in vivo MRS is complicated by resonance overlap, baseline 

distortions, non-Lorentzian lineshapes and low signal-to-noise ratio (SNR) problems. It is 

hard for an untrained user to interpret these spectra visually. There is a need for an optimal 

data processing technique for 1H MR spectra to aid the characterisation of spectra and, 

therefore, support the identification of useful diagnostic and prognostic biomarkers for 

tumours.   

Various methods have been used to estimate the concentrations, ranging from simple 

integration of the spectra to fitting algorithms in the time or frequency domains (Joliot et al., 

1991).  Although there are a number of methods available for analysing spectra, most of these 

still need interaction by the user in order to determine which metabolites are present in the 

spectrum. A commonly used method to decompose the MR spectrum to its individual 

components is by fitting the spectrum to some predetermined basis set of simulated or 

measured metabolites and MMLip components, such as LCModel (Provencher, 1993, 

Provencher, 2001, Provencher, 2009), AQSES (Poullet et al., 2007) and QUEST (Ratiney et 

al., 2005). These methods, however, require a prior knowledge of the MR spectrum to choose 

which basis set spectra is to be included and to set the fitting parameters. The residual, which 

cannot be fitted by the basis set, is treated as noise (Provencher, 2009). 

A recent study showed that fitting spectra to yield metabolite concentrations and using these 

in a linear discriminant analysis (LDA) produced better results than pattern recognition 

performed directly on the spectra (Opstad et al., 2007). Highly accurate results were obtained 

when a similar approach was applied to MRS of childhood cerebellar tumours (Davies et al., 

2008). However, these approaches suffer from the disadvantage that metabolites will be 
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quantitated only if they were included in the basis set used to determine the metabolite 

concentrations. Furthermore, other metabolites will be overestimated to account for signals 

which have not been included. Evidence that this is a practical limitation of the method is 

available from studies, which have identified metabolites that are not in commonly used basis 

sets (Opstad et al., 2003). A definitive assignment of metabolite signals is not always possible 

from in vivo MRS (Panigrahy et al., 2006), a fact that hampers the construction of more 

complete basis sets.  

An alternative approach, which would automatically decompose a dataset of spectra into their 

metabolite signals, could be a potentially useful advance in the classification of tumours based 

on their MRS profiles. Independent component analysis (ICA) (Hyvärinen et al., 2001, 

Hyvarinen and Oja, 2000) is a statistical technique that reveals hidden factors within a dataset 

of signals and requires no prior knowledge of that dataset. This makes ICA a strong candidate 

for automated decomposition of MR spectra.  

There are two main approaches to the application of ICA, and it is important to compare these 

methods in order to understand their strengths and discover their limitations. Originally, ICA 

was developed to solve the blind source separation (BSS) (Cardoso, 1998) problem. In this 

problem, the method separates the unknown independent sources of signals from their 

experimentally observed mixtures. In parallel to the study of BSS, ICA can also be applied for 

extracting specific features (Feature Extraction - FE) from observed signals (Hoyer and 

Hyvärinen, 2000). The latter approach achieves dimensionality reduction, where features are 

extracted from the observed data for compression, de-noising and pattern recognition 

purposes (Guyon, 2006). Since the 1H MRS signal can be considered as a linear combination 
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of metabolite components and noise (Keeler, 2005), ICA may provide an automated method 

for identifying these signals.  

Tumours that occur in children are mainly different to those occurring in the adult population, 

with some tumour types being unique to the paediatric population. These are usually 

classified by the WHO classification system of 2007 (Louis et al., 2007). Astrocytomas are 

the most common type of glioma in both adults and children. They develop from cells called 

astrocytes. Astrocytomas can vary in aggression and prognosis, ranging from slow growing to 

very fast growing, highly invasive. In children, most of these tumours are considered low-

grade, while in adults most are high-grade (Burkhard et al., 2009). Medulloblastoma is the 

most common primary malignant central nervous system tumour arising in childhood. It 

accounts for 20-25% percent of paediatric brain tumours (Paulino and Melian, 1999). It is a 

highly invasive embryonal neuroepithelial tumour that arises in the cerebellum and has a 

tendency to disseminate throughout the CNS early in its course. Ependymomas are the third 

most common type of brain tumour in children (Pizzo and Poplack, 2006). It account for 5-

10% of paediatric brain tumours. The underlying cause and basic biology of these tumours is 

not fully understood, and the optimal staging and treatment of ependymomas in children 

requires more study. 

Childhood brain tumours are highly variable and particularly difficult to diagnose using MRI 

alone, and the MRS has lots of potential to provide addition useful information for this 

application. Although MRS has been investigated for the diagnosis of adult brain tumours, 

little work has been done on the clinically important area of the paediatric case. Therefore, the 

techniques investigated in this thesis will facilitate the use of MRS for the analysis and 

diagnosis of childhood brain tumour. Nevertheless, the techniques developed in this thesis are 
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not limited to childhood brain tumour. They should be applicable to the general clinical MRS 

data with certain threshold adjustments depending on cases.    

1.1 Aim and objectives  

Although the subjects of MRS data analysis (Henriksen, 1995, Mierisova and Ala-Korpela, 

2001, Barker et al., 2001) and ICA have been researched for decades, there are very few 

studies using ICA on MRS data for automated metabolite and MMLip components 

decomposition. It is hoped that this research will provide a thorough investigation on this 

topic.  

The previous studies of the ICA technique on in vivo MRS datasets did not clearly determine 

under what conditions ICA could extract individual metabolite and MMLip components, and, 

therefore, did not fully expose what the precise benefits of ICA were. The aim of the work 

described in this thesis is to investigate the ability of ICA for the automated decomposition of 

in vivo MRS datasets, and to realise its full potential as a supportive biomarker identification 

tool for diagnostic and prognostic purposes within the clinical setting.  

Four objectives are set for this study. The first objective is to reduce the noise effect on the 

MR spectra before the ICA decomposition. The MR spectra are usually corrupted by noise 

from various sources, hence de-noising should be performed as a pre-processing step of the 

data analysis. Noise reduction based on the mathematical property of Lorentzian lineshape 

and wavelet shrinkage de-noising (WSD) is investigated. 

The second objective is to search for a guideline for the feature dimension reduction in the 

ICA method. The actual number of dimensions of a dataset is usually unobservable, but a 
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truthful estimate is important for the ICA process. For MRS datasets, the dimension being 

reduced to should be the same as the number of individual metabolite and MMLip 

components contained in that dataset. A good estimate of the actual dimension in the dataset 

is the starting point for a reliable ICA decomposition.  

The third objective is to investigate the ability of ICA when applied to varied in vivo MR 

spectra. It is essential to have a sound knowledge of the ability of ICA to perform the 

automated decomposition of MRS data and the conditions under which it is likely to fail. 

Since a number of factors can potentially influence the performance of ICA, it is important to 

systematically evaluate each one individually.  

The fourth and final objective of this research is to develop a new and more efficient ICA-

based method for the automatic decomposition of the MR spectra into meaningful metabolite 

and MMLip components. Automation is not only important for the processing of a large 

dimensional dataset, but also for ensuring that results are reproducible and independent of a 

user and the bias of his prior knowledge of the character of the spectra. As ICA requires no 

prior information and knowledge about the observed dataset, it is hoped that this new method 

can reveal some hidden information about the MR spectra. 

1.2 Thesis original contributions and organisation 

This thesis is divided into nine chapters. The original contributions arise mainly in chapters 

five, six, seven and eight.  

The problem of how many ICs should be chosen in an ICA application (for an MRS dataset or 

any other type of datasets) has not been adequately addressed in previous ICA studies. Part of 
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Chapter five proposes a feature dimension reduction criterion for the ICA method. The overall 

SNR in the MRS dataset is used to estimate the percentage of the effective information 

content in the noisy dataset; hence the number of ICs to be used in the ICA process can be 

obtained. 

Chapter six is devoted to a more robust de-noising of the MR spectra for the purpose of 

supporting the ICA application. In previous studies, only the real part of the MR spectrum 

was analysed, the imaginary part was usually ignored. In this chapter, a WSD-based MRS 

enhancement algorithm is proposed, where both the real and imaginary parts of MR spectrum 

are employed. First, the relationship between the real and imaginary parts of the MR spectrum 

is derived, where the real part can be calculated from the imaginary part, and vice versa. Then, 

the WSD is applied on the imaginary part of the spectrum and an estimate of the real part is 

derived from the enhanced imaginary part according to the relationship between them. The 

final de-noised real part of the MR spectrum is obtained by averaging the directly WSD-

enhanced real part and the estimate obtained from the de-noised imaginary part. The noise 

reduction by combining the derived relationship and WSD has shown improvement in the de-

noised SNR value compared to the results by applying WSD on the free induction decay (FID) 

signal and on the real part of the MR spectrum. This work has been presented in the 20th 

Annual British Chapter of the ISMRM MR Symposium for Post-docs and PhD students 2010 

(Hao et al., 2010). 

Chapter seven provides a systematic comparison of the ability of ICA on both simulated and 

experimental in vivo 1H MRS datasets of childhood brain tumours. The study compared the 

performance of two ICA-based algorithms, FE and BSS algorithms. It was found that the FE-

based ICA method was limited in that a combination of metabolite and MMLip components 
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commonly appear in the same IC, and a large sample size is required, whereas most of the 

problems with the BSS-based ICA method were caused by the overlapping peaks. This work 

has been presented in the 13th Annual Meeting of the British Chapter of the ISMRM 2008 

(Hao et al., 2007 ) and published in the Journal of NMR in Biomedicine (Hao et al., 2009b).  

Chapter eight relates to the development of a novel hybrid ICA method for the automatic 

decomposition of in vivo 1H MR spectra of childhood brain tumours. This approach combines 

the advantages of both BSS-ICA and FE-ICA techniques. Experiments were performed on 

synthesised and experimental MRS datasets. The hybrid ICA method showed obvious 

improvements in its ability to decompose spectra compared with that of the FE-ICA or BSS-

ICA methods, with an increased correlation between the obtained ICs and simulated 

metabolite and MMLip components. The results demonstrated that the proposed hybrid ICA 

method provided more realistic individual metabolite and MMLip components than the BSS-

ICA or FE-ICA methods alone for both synthesised and experimental datasets. It can aid 

metabolite identification and assignment. The hybrid ICA method has the potential for 

extracting biologically useful features and discovering biomarkers. This work is currently 

under peer review to the Journal of NMR in Biomedicine and part of the work has been 

presented in European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 

2008 Congress (Hao et al., 2008) and ISMRM 17th Scientific Meeting and Exhibition 2009 

(Hao et al., 2009a). 

The rest of the thesis is organised as follows.  

Chapter two introduces the concepts of magnetic resonance and its applications in living 

systems. After a brief explanation of the physical principles that govern the technique of MRS, 

the information content of 1H MR spectra of the brain is presented. The potential benefits of 
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MRS in brain tumour diagnosis are outlined. The last section of this chapter contains a short 

review of the commonly used MRS metabolite component quantitation tool, namely the 

LCModel (Provencher, 2009). 

Chapter three discusses the two main approaches in solving the linear transformation problem 

in MRS, namely the second-order and higher-order statistical methods. The limitations of the 

second-order statistical methods, when decomposing the MR spectra, are addressed. The 

higher-order statistical methods make use of the higher-order information, which were 

ignored by the second-order statistical methods, and is considered to present a closer 

modelling of the MRS data. 

Chapter four reviews the theoretical and mathematical background of the ICA method. First, 

the derivation of the ICA technique is introduced, and then the assumptions and uncertainties 

of the ICA model are discussed. The relationship between the ICA and the well known 

second-order statistical method, principal component analysis (PCA), is also explained. 

Several representative ICA algorithms are briefly explained. The applications of ICA in MRS 

are reviewed at the end of this chapter.  

The rest of Chapter five addresses the materials and methods used for the completion of the 

research work discussed in this thesis. The different implementation aspects of FE- and BSS-

based ICA methods for the MRS dataset are presented. The details of constructing the 

simulated datasets and collecting the experimental dataset used in the experiments of this 

thesis are described.  

Chapter nine summarises this thesis and provides some concrete conclusions. Suggestions are 

given for possible future extension of the research, in the context of general digital signal 
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processing and for its application to MRS, specifically. 
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CHAPTER 2 

MAGNETIC RESONANCE SPECTROSCOPY 

2.1 Introduction 

Nuclear magnetic resonance (NMR), or magnetic resonance (MR)1 in short, is a phenomenon 

that relies on the magnetic properties of the atomic nucleus (Bloch, 1946, Purcell et al., 1946). 

Magnetic resonance spectroscopy (MRS) (Gillard et al., 2004, Vo-Dinh and Gauglitz, 2003, 

de Graaf, 2007, Reiser et al., 2008, Hoch and Stern, 1996, Jacobsen, 2007, Hore, 1995, Keeler, 

2005, Macomber, 1998) is a non-invasive analytical and diagnostic technique that exploits the 

NMR phenomenon and can be performed with a standard clinical magnetic resonance 

imaging (MRI) scanner. It can reveal the molecular structure of a tissue voxel of interest, 

through the measurement of the interaction between certain nuclei in a strong magnetic field 

and an oscillating radio frequency electromagnetic field (Keeler, 2005).  

There has been more interest in the clinical usefulness of proton MRS in recent years. The 

                                                            

1 The same phenomenon can occur with electrons, e.g. electron spin resonance (ESR), but here MR refer to NMR. 
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proton is the most sensitive nucleus for NMR, in terms of intrinsic NMR sensitivity (high 

gyromagnetic ratio), high natural abundance (>99.9 %) and high biological abundance of the 

1H isotope of hydrogen (Gillard et al., 2004). The positively charged spinning proton 

generates a magnetic field and possesses a magnetic moment. The NMR experiment can 

exploit the magnetic properties of 1H to provide detailed information on molecular structure.  

The basic principles of the MR spectroscopy are explained in section 2.2. Section 2.3 focuses 

on the information content of the proton MR spectra of the brain. The last section in this 

chapter briefly reviews the LCModel (Provencher, 2009), which is a quantitation tool 

commonly used in the further processing and analysis of in vivo MR spectra. 

2.2 Fundamentals of magnetic resonance spectroscopy  

2.2.1 Nuclear magnetic resonance 

Subatomic particles (electrons, protons and neutrons) behave as if they were spinning on their 

own axes, as shown in Figure 2.1(a). This spin is an inherent property of the nucleus. A 

spinning charge creates a small magnetic field aligned with the axis of spinning, and the 

spinning nucleus possesses a nuclear magnetic moment. When placed within an external static 

magnetic field, the nuclei can either be aligned along or opposed to it. In many nuclei (such as 

12C), these spins are paired against each other, such that the nucleus of the atom has no overall 

spin. Nuclei with zero spin have zero nuclear magnetic moment and cannot be detected by the 

NMR method. However, in some nuclei (such as 1H and 13C), the nucleus does possess an 

overall spin. It is observed that only isotopes with an odd number of protons and/or an odd 

number of neutrons possess non-zero nuclear spin. This is because a proton spin can only pair 

with another proton spin, but not a neutron spin, and vice versa (Macomber, 1998). The 
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different nuclear spin states of each nucleus can be characterised by the spin quantum number 

I. The rules for determining the spin quantum number I are as follows:   

1. I  is zero for a nucleus with both even numbers of neutrons and protons.  

2. I  is an integer for a nucleus with both odd numbers of neutrons and protons.  

3. I  is a half-integer for a nucleus with one odd number for either neutrons or protons. 

It is clear from the above rules that the spin quantum number of hydrogen is 1 2I  . From 

quantum mechanics (Gillespie, 1974), it is known that a nucleus with spin quantum number I 

adopts 2 1I   possible orientations in a magnetic field. Each of these 2 1I   orientations has 

its own magnetic quantum number mI in the range mI = −I : 1 : I. The spinning nucleus 

generates a small magnetic field, therefore, possesses a magnetic moment µ. Its magnitude 

can be expressed as (Reiser et al., 2008): 

 
 I2

h
m 


   (2.1) 

where   is the gyromagnetic ratio, which is a unique value for each type of nucleus, and h  is 

Planck’s constant 346.626 10 J sh    . 
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Figure 2.1: (a) The spin of a nucleus can be visualized as a rotational motion around its own axis, 
corresponding to the axis of its magnetic moment. (b) When applying an external static magnetic field 

B0, the spins are precessing around B0. The spin of an I =1/2 nucleus can be aligned along (low 
energy) or opposite (high energy) to the magnetic field.  

 

When a strong magnetic field B0 is applied along a direction designated as the z  axis, there is 

a slight tendency for magnetic moments to align in the lower energy direction. For nuclei with 

positive gyromagnetic ratios, such as protons, the lower energy direction is the general 

direction of the magnetic field B0. The alignment where it is opposed to the field B0 is less 

stable, as this requires a higher energy state. It is possible to make the nuclei flip from the 

more stable alignment to the less stable one by supplying exactly the right amount of energy. 

This will be explained later in this section.  

The separation of spin energy levels in a magnetic field is called the Zeeman effect 

(Macomber, 1998). The nuclear magnetic moments are not actually lined up parallel to the z  

direction. Instead, they move in a circular fashion about the z  axis, a motion called 

precession, as shown in Figure 2.1(b). The frequency of that precession is proportional to the 

gyromagnetic ratio   and to the applied magnetic field strength B0, in units of radians per 
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second,  

 
0 2L B v     (2.2) 

The above equation is known as the Larmor equation (McRobbie, 2007) and L  is termed as 

the Larmor frequency, where 0B is the magnitude of B0 and v  is the precession frequency in 

Hertz.  

In a strong magnetic field B0, the 2 1I   states for a spin-I nucleus are equally spaced. The 

energy difference ( E ) between adjacent energy levels is,  

 
02

h
E B


    (2.3) 

There are two possible spin states for a spin-1/2 nucleus, the lower energy spin state (mI =1/2) 

and the higher energy spin state (mI = –1/2). Their relative energies with an external magnetic 

field B0 are illustrated in Figure 2.2. 

 

Figure 2.2: Proton 1H energy level changing with and without an external magnetic field B0. 
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At thermal equilibrium, the ratio of the populations between the higher energy state and the 

lower energy state is given by the Boltzmann distribution (Jacobsen, 2007) as,  

 
 /higher E kT

lower

P
e

P
 (2.4) 

where P  is the population of the particles in each state, E  is the difference in energy 

between the two states, T  is the absolute temperature in Kelvin (K), and k  is the Boltzmann 

constant k  = 1.38110-23 J·K-1.  

The population difference between the higher and lower energy states is the most interesting 

thing for the MR phenomenon, because the magnetism of every “up” (higher energy) nuclear 

magnet cancels the magnetism of every “down” (lower energy) nuclear magnet, and it is only 

the difference in population that results in a “net magnetization” of the sample.  

It is possible for a nucleus in the lower energy state to absorb a photon of electromagnetic 

energy and be promoted to the adjacent higher energy state. A photon possesses a discrete 

amount of energy that is directly proportional to its frequency,  

 E = hv (2.5) 

The energy of the photon must exactly match the energy difference between adjacent energy 

levels to be absorbed by a particle, hence transferring energy. The frequency v of the photon 

depends on both B0 and γ, and is usually in the radio frequency (RF) range for 1H in clinical 

MR acquisition environment, from equations (2.3, 2.5) we get, 
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 0

2

B
v 


  (2.6) 

which indicates that v is equal to the Larmor frequency. At this condition, the system is said 

to be in resonance and v is called the resonant frequency. The amount of energy absorbed by 

the nuclei (and emitted at a later stage) depends on the population difference between the two 

energy states.  

In order to measure the resonant frequency of each nucleus within a molecule, we need to 

have some way of getting the nuclei to absorb or emit RF energy. If a weaker oscillating 

magnetic field B1 is applied perpendicular to B0 and at a frequency that exactly equals to the 

Larmor frequency v  of the nucleus, absorption of energy will occur. The nucleus will flip 

from its lower energy state to the higher energy state. At the same time, there is another 

process that is equally likely, called “stimulated emission” (Jacobsen, 2007), where the 

photon can also be absorbed by a spin in the higher energy state and flip it down to the lower 

energy state with the emission of two photons. The rate of these processes is proportional to 

the population of spins in each of the two energy states. According to the Boltzmann 

distribution, there will be a slight preference to the lower energy state at thermal equilibrium. 

So when we turn on the oscillating magnetic field B1 at the Larmor frequency, a net 

absorption of RF energy will be observed.  

After the B1 irradiation is switched off, the system will emit the absorbed energy and return to 

its initial equilibrium. The emitted signal is called the free induction decay (FID) signal and 

corresponds to an exponentially decaying sinusoid in the time domain (Reiser et al., 2008). 

The initial intensity of the signal is proportional to the number of nuclei that contributes to it. 

The precession of the magnetization vector to its equilibrium is what we actually detect in an 
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NMR experiment, which will induce an electromotive force (emf) in a receiving coil 

positioned in the transverse plane (McRobbie, 2007). This will be explained in detail in the 

next few sections. 

2.2.2 Chemical shift 

At any given field strength, each nucleus has a characteristic resonant frequency. It cannot be 

emphasized too much that the resonant frequency of a nucleus is proportional to the 

gyromagnetic ratio, γ, and to the magnetic field it experiences. This relationship forms the 

basis of nearly every experiment observed by NMR. But if all protons in a molecule had 

exactly the same resonant frequency, the technique would be useless because we would only 

see a single peak in the spectrum representing all of the protons. In fact, there are slight 

differences in resonant frequencies of different chemical elements depending on their 

chemical environment of the nucleus within a molecule.  

The nucleus is located at the centre of a cloud of electrons. From Lenz’s law (Reiser et al., 

2008), when the sample is inserted in the magnetic field, the electrons begin to rotate around 

the nucleus (the induced current) and produce a magnetic field that is proportional and 

opposed to the field B0 at the centre of the rotation. The induced magnetic field modifies the 

external magnetic field in the surrounding area of the nucleus. This subtle variation, on the 

order of one part in a million, is called the chemical shift, which can provide detailed 

information about the structure of molecules. Therefore, the resonant frequency is not only a 

characteristic of the type of nucleus but also varies slightly depending on the position of that 

atom within a molecule (molecular structure). The relationship that the resonant frequency is 

exactly proportional to external field strength still holds, but it is the local magnetic field 

strength at the position of the nucleus that is important. The magnitude of the effective field 
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(Hore, 1995), , constituted by the external magnetic field B0  and the induced magnetic field, 

can be expressed as, 

 
eff 0 (1 )B B    (2.7) 

where σ is a shielding constant, in units of parts per million, which reflects the extent to which 

the electron cloud around the nucleus “shields” it from the external magnetic field.  

As a result of nuclear shielding, the resonance frequency becomes,  

 
 eff 0 (1 )

2 2

B B
v

  
 


  (2.8) 

The chemical shift is defined in terms of the difference in resonance frequencies between the 

nucleus of interest and a reference nucleus. To make chemical shifts the same regardless of 

magnet strength, we use the δ scale in parts per million (ppm), where the proportionality to B0 

is already taken into account. 

 
 6 610 10

1
ref ref

ref ref

v v

v

 



 

 


(2.9) 

For 1H NMR, the reference molecule used is usually that of tetramethylsilane, Si(CH3)4.  

Nuclei in a different chemical environment emit signals with different frequencies. These 

differences in the chemical shifts are miniscule: for a 1H nucleus the “spread” of resonant 

frequencies around the fundamental frequency is only about 10 ppm. However, it is this 

minute frequency variation which makes MRS a very attractive tool, since it allows the 

differentiation between molecular structures, thus greatly aiding the unambiguous detection 
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and assignment of compounds. 

2.2.3 Spin-spin coupling 

Another valuable piece of information about molecular structure is obtained from the 

phenomenon called spin–spin coupling (Yan, 2002), which describes the interactions between 

neighbouring spins in the same molecule, and induces a further differentiation in resonance 

frequencies. This effect is transmitted through bonds and exists only when the two nuclei are 

very close (three bonds or less) in the bonding network (Jacobsen, 2007). Since the resonant 

frequency is always proportional to the magnetic field experienced by the nucleus, the 

interactions between nearby spins cause the protons to resonate at several slightly different 

frequencies very close to each other, shown as a doublet, triplet or multiplet in the NMR 

spectra. The frequency differences of the multiplets depend on the spin-spin coupling constant 

(Reiser et al., 2008), J, usually measured in Hz. The magnitude of J is independent of the 

strength of the applied magnetic field. This effect is another feature of NMR spectra that can 

aid in the identification and characterisation of biochemical compounds. 

2.2.4 Relaxation processes 

Before applying the oscillating magnetic field 1B , the nuclei in the two spin states are 

precessing with the Larmor frequency with random of phases. The net nuclear magnetization 

M  of all the individual nuclear magnetic moments µ is aligned with the magnetic field 

direction in the z  axis (Figure 2.3(a)). It has no component in the xy  plane due to phase 

cancellation. When the irradiation by 1B  begins, all of the individual nuclear magnetic 

moments become phase coherent, and form a precessing “bundle”. The magnetization M  
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now will precess around the z axis with the Larmor frequency and have a component in the 

xy  plane ( ,0xyM ) as shown in Figure 2.3(c).  

 
,0 sinxyM M   (2.10)

 

Figure 2.3: Precession of a collection of spin-1/2 nuclei around external magnetic field B0, the net 
nuclear magnetization M is the vector sum of all the individual nuclear magnetic moments, (a) before 
irradiation by B1, (b) the rotating magnetic field B1 in x, y plane, (c) during irradiation by B1. (Figure 

adopted from (Macomber, 1998)) 

 

The angle α is determined by the power and duration of the 1B irradiation. The magnetization 

M can be completely excited onto the transverse plane (α=90°) or even inverted to the −z axis 

(α=180°), giving rise to the effects of the so-called 90° or 180° pulse, respectively. After the 

1B irradiation is switched off, the nuclear magnetization returns to its initial equilibrium state 

by relaxation processes (Schorn and Taylor, 2004). The individual nuclear magnetic moments 

will gradually return to a random arrangement around the z  axis through spin-spin 

interactions with relaxation time 2T . Simultaneously, spins that were flipped to the higher 

energy state relax back to the lower energy state through spin-lattice interactions with 

relaxation time 1T . These biological parameters 1T  and 2T  are tissue-specific time constants, 
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which introduce the possibility to separate different tissue types.  

The spin-lattice relaxation time 1T  is the time it takes for the longitudinal component of the 

magnetization, zM , to return to 63% of its Boltzmann equilibrium value M  (Bigler, 2000),  

 1/( ) (1 )t T
zM t M e   (2.11)

The spin-spin relaxation time 2T  is the time it takes for the transverse component of the 

magnetization, xyM , to decay to 37% of its initial value after being flipped into the xy  plane.  

 2/
,0( )  t T

xy xyM t M e  (2.12)

In practice, the transverse decay time is also affected by the inhomogeneities of external 

magnetic field. The effective decay time *
2T  of xyM  is always smaller than 2T  and is defined 

as: 

 
*

2 2

1 1
B

T T
    (2.13)

where B  indicates the inhomogeneities of the magnetic field (Reiser et al., 2008). 

2.2.5 Free induction decay (FID) signal  

The radiofrequency field 1B  rotates around the z  axis at a frequency RF . Viewing this 

rotation from the fixed Cartesian coordinate’s perspective, the description of the motion of the 

magnetization vectors can be complicated and difficult to visualize. It can be more convenient 

if we consider the motion of the magnetization from the point of view of an observer rotating 
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about the z  axis, in synchronism with the rotating RF field: this is the so-called rotating 

frame of reference (Landini et al., 2005). This rotating frame is a coordinate system whose 

transverse plane is rotating at an angular frequency RF  around the longitude axis, so the field 

1B  appears stationary. To distinguish it from the conventional stationary frame, we use x′, y′, 

and z′ (same as z) to denote the three orthogonal axes of this frame.  

As M  precesses around the z  axis with the Larmor frequency effL B  , in the xy  plane, 

the xyM  precesses around the original point ( z  axis) with the same frequency  . If the 

precession frequency   of xyM  was identical to the radiofrequency RF , then xyM  would 

appear stationary in the rotating frame. In general, the frequency 0  with which xyM  appears 

to precess around the original point in the rotating frame is not zero and is reduced to: 

 
0 RF     (2.14)

If we place a receiver coil with its axis aligned in the x’y’ plane, the changing magnetization 

xyM  caused by the relaxation will induce a current in that coil. This current can be amplified 

and recorded, and is known as the free induction decay (FID) signal (as described before in 

section 2.2.1). Redraw the magnetization xyM  in the rotating x’y’ plane (Figure 2.4), and let 

the precession start from positive x towards y axis. The x and y components of the 

magnetization become: 

  *
2

*
2

/
0 ,0 0

/
0 ,0 0

( ) ( ) cos  cos

( ) ( )sin  sin

t T
x xy xy

t T
y xy xy
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Figure 2.4 Project the magnetization M to the x’y’ plane in the rotating frame. 

 

The FID signal recorded is proportional to the transverse magnetization. Its actual relation 

will not be discussed here. The x and y components of the signal can be represented as, 

  *
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S t S e t












 (2.16)

where 0S  is the maximum signal amplitude. If we regard the signal ( )xS t  and ( )yS t  as the 

real and imaginary part of a complex signal ( )S t  (Keeler, 2005), we have 
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(2.17)

In practice, the recorded signal ( )S t  may not always start at the positive x axis, it may have a 

different phase. Hence, the recorded signal ( )S t  is phase shifted. Mathematically, the phase 

shifted signal becomes, 

0
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 *
2 0 0/

0 0( ) t T i t t i ti iS t S e e S e e         (2.18)

where   is the phase shift as shown in Figure 2.5.  

 

Figure 2.5 The start point of the recorded signal S is phase shifted by   from the positive x axis. 

 

The received FID signal is usually the sum of contributions from the same type of nuclei with 

different Larmor frequencies and phases, which is a superposition of Lorentzian lineshapes. 
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  (2.19)

The MR spectrum is obtained by taking the Fourier transform on the FID signal (equation 

2.19) over a certain time. The frequency domain signal is known as the spectrum. Like the 

time domain signal, the frequency domain signal has real and imaginary parts.  
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At zero phase, 0   , the real part of the spectrum is called absorption mode Lorentzian,  and 

the imaginary part of the spectrum gives a lineshape known as the dispersion mode 

Lorentzian (Figure 2.6). The dispersion lineshape is broader than the absorption mode, and 

has positive and negative parts. It is commonly not interpreted as it appears more complex 

and can cause confusion.  

 

Figure 2.6: Spectrum of a Fourier transformation of an exponentially decaying FID gives rise to 
Lorentzian absorption and dispersion lineshapes. 

 

Figure 2.7 shows an example of short echo time (TE)2 proton FID signal and the real part of 

its MR spectrum. The peak intensities on the vertical axis of the spectrum correspond to the 

relative number of chemically equivalent protons, and the resonance frequencies are 

represented in ppm on the horizontal axis. 

                                                            

2 Echo time (TE) is defined as the time between the start of the RF pulse and the maximum in the signal. 
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Figure 2.7: In vivo 1H NMR spectra of the human brain.  

2.2.6 Spin Echo 

The spin echo can eliminate the influence of the inhomogeneity of the external magnetic field 

and thus allow the measurement of the T2 relaxation times specific to the substance/tissue. 

A spin echo is a sequence of a 90° pulse followed by a delay TE/2, a 180° pulse and a second 

delay TE/2 (Landini et al., 2005). The rotating frame view of an on-resonance magnetization 

subjected to this sequence is shown in Figure 2.8. The initial 90° pulse rotates the equilibrium 

magnetization M by 90° about the x’ axis to the y’ axis creating transverse magnetization 

(Figure 2.8a and 2.8b). During the first delay TE/2, this transverse magnetization decays 

because of spin-spin relaxation and the inhomogeneity of the B0 magnetic field (Figure 2.8c). 

Applying a 180° pulse at time TE/2 following the initial 90° pulse causes all the isochromats 

to rotate by 180° about the x’ axis; this brings the isochromats to their mirror image position 

(Figure 2.8d). Following the 180° pulse, since the Larmor frequency of each isochromat is 

unchanged, the frequency and direction of precession of isochromats in the x’y’ plane remain 

the same as prior to this pulse. Precession of isochromats for a period TE/2 after the 180° 
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pulse allows all the isochromats to refocus along the negative y' axis forming a “spin echo” 

(Figure 2.8e). 

 

 

Figure 2.8: Rotating frame view of a magnetization subjected to a spin echo sequence (Figure 
adopted from (Landini et al., 2005)). 
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2.2.7 Spatial localization 

Generally, two different approaches are used for collecting proton spectroscopy data from a 

voxel of interest: point resolved spectroscopy (PRESS) (Bottomley, 1984) and stimulated 

echo acquisition mode (STEAM) (Frahm et al., 1987) pulse sequence-based approaches. A 

single voxel is defined by the intersection of three mutually orthogonal slices. Each slice is 

excited by a spatially selective pulse, applied in the presence of a gradient (McRobbie, 2007). 

In PRESS, a 90° pulse is followed by two 180° pulses so that the primary spin echo is 

refocused again by the third pulse. Each pulse has a slice-selective gradient on one of the 

three principle axes (Figure 2.9), so that protons within the voxel are the only ones to 

experience all three RF pulses. After the excitation by the first 90° pulse, transversal 

magnetization is produced within a slice perpendicular to the z axis in this case. This 

magnetization starts to dephase and, after a time TE1/2, the magnetization of a part of the slice 

is refocused by the first 180° pulse in the same way as in conventional spin-echo sequences 

(McRobbie, 2007, Landini et al., 2005). The spin echo occurring at the time TE1 is not 

evaluated, the magnetization dephases again, and the second 180° pulse is applied at the time 

TE1+TE2/2 to give an echo at the time TE1+TE2, where the data acquisition time starts.  

The signal intensity depends on the time spacing of pulses and relaxation times, and is 

intrinsically twice as high as STEAM, so spectra can be acquired with good SNR in a 

relatively short time. The PRESS technique allows higher 1H MRS signal intensity in 

comparison to the STEAM sequence.  
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Figure 2.9: The PRESS pulse sequence (Figure adopted from (McRobbie, 2007)), TE denotes the 
echo time.  

 

STEAM uses the effect of a stimulated echo occurring after the application of three 

successive pulses. The most intense signal strength of a stimulated echo can be obtained if all 

three pulses are 90° pulses (Figure 2.10). The first 90° pulse is used to produce transversal 

magnetization within a selected slice, as in the PRESS sequence. Although most of the spins 

are in phase immediately after the excitation, they begin to dephase with time, under the 

influence of local inhomogeneities of the static magnetic field and that of the applied field 

gradients. After a time TE/2, the second 90° pulse rotates the dephased magnetization within 

the xy plane into the zy plane. After the last 90° pulses, the remaining part of the 

magnetization is again flipped into the transverse plane. After the third pulse, a rephasing 

occurs similar to conventional spin-echo sequences and, at the time TE+TM, all spins are 
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again in the same phase and build a measurable net magnetization vector.  

The main advantage of the STEAM sequence compared to PRESS is a reduced minimal TE, 

but is intrinsically only half the amplitude of a conventional echo.  

 

Figure 2.10: The STEAM pulse sequence (Figure adopted from (McRobbie, 2007)), TM denotes the 
mixing time. 

 

2.2.8 Challenges in MR spectroscopy 

The application of in vivo proton MRS is challenging for several reasons. In vivo MRS signals 

are characterized by a low SNR, the presence of unwanted spectral components like the 

residual water peak in proton MRS and distortions with respect to the expected model 

function. In short TE proton spectra, different peaks are strongly overlapping, making it 

difficult to determine the model parameters (Keshavan et al., 2000).  

The FID signal contains noise from various sources. The noise is contributed by the 
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amplifiers and other electronics in the spectrometer, the thermal noise from the coil used to 

detect the signal and the thermal noise from the sample (Edelstein et al., 1986). In order to 

increase the SNR, a number of data acquisitions are performed consecutively and the final 

signal is the average of all measured signals.  

Because the B0 magnetic field distribution in the human head is highly heterogeneous (Li et 

al., 1995), the spectral resolution can be decreased. To produce a more homogeneous 

magnetic field within the voxels, shim coils are used. The effect of the shimming process 

reduces spectral peak broadening and also improves SNR.  

The brain metabolite levels are on the order of 10 mM or less, whereas protons in brain water 

are approximately 80 M, and lipids containing protons are also present in high concentrations 

(Barker and Lin, 2006). This makes metabolite detection difficult and ambiguous. Numerous 

methods for water suppression have been developed in high-resolution NMR spectroscopy, 

and some of these methods have been applied to in vivo spectroscopy. Typically a very 

narrow bandwidth frequency-selective pulse, often called a CHEmical Shift Selective 

(CHESS) pulse (McRobbie, 2007), is applied at exactly the Larmor frequency of water using 

a low-power Gaussian shaped pulse to give a 90° pulse, followed by gradient pulses to spoil 

or suppress any transverse magnetization. Lipid suppression can be performed in several 

different ways. One approach is to avoid exciting the lipid signal using, e.g. STEAM or 

PRESS localization to avoid exciting lipid-containing regions.  

The phase of the raw spectrum after Fourier transformation is usually incorrect, and requires 

manual or automatic adjustment (Keeler, 2005). An MRS signal is typically represented by its 

real and imaginary part, and the process of “phasing” is required to correctly produce the real 

part of the spectrum for classification.   
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The baseline of the resulting spectrum is typically distorted, and has to be corrected. Short TE 

1H MRS signals are characterized by the presence of a partially unknown broad baseline 

underlying the sharper resonances of the metabolites of interest. For manual baseline 

correction, the user defines several spectral points, typically between the major metabolite 

peaks, as “baseline”. The computer then fits and subtracts a smooth curve through these 

points. The result is a spectrum with a flat baseline, which is better suited for determination of 

metabolite peak areas. 

2.3 Information content of proton MR spectra of the brain  

Since nearly all metabolites contain protons, in vivo 1H NMR spectroscopy is in principle a 

powerful technique to observe, identify and quantify a large number of biologically important 

compounds in intact tissue. Proton MRS of the brain provides a diagnostic modality for the 

biochemical characterization of developmental and pathologic neurological conditions. Either 

short or long TE can be employed to evaluate the brain parenchyma. In short TE (around 

30ms) spectra, metabolites with both short and long 2T  relaxation times are observed. Hence 

they are useful in evaluating complex metabolic abnormalities as more metabolites are 

presented for analysis. Glutamine, glutamate, myo-inositol, and most amino acids are better 

evaluated at short TE (Reiser et al., 2008). With a long TE, only metabolites with a long 2T  

are observed. It produces spectra with N-acetyl aspartate, creatine, and choline as the 

dominant peaks in normal brain tissue. Evaluation for the presence of lactate can be 

performed more easily at long TE (135ms) since the doublet peak is inverted relative to most 

other peaks.  

The information content of the main resonances (Gillard et al., 2004, Govindaraju et al., 2000) 
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appearing in in vivo 1H MR spectra of the brain will be briefly explained in this section. A 

quantum mechanics based simulation program (Appendix A) (Reynolds et al., 2006) is used 

to generate the 1H MR spectra of these metabolite and MMLip components at short TE and a 

field strength of 1.5T (Figure 2.11). The chemical structures of these metabolites are shown in 

Figure 2.12. These metabolite and MMLip components are also the main components used to 

construct the synthesised datasets (described in Chapter 5) for the experiments in this thesis.  
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Figure 2.11 The simulated 1H MR spectra for the most commonly seen metabolite and MMLip 
components at a field strength of 1.5T and a line width of 5.5 Hz in the range of 0 - 4.0 ppm. 
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Figure 2.12 The chemical structures of metabolites (de Graaf, 2007) shown in Figure 2.11, the 
exchangeable protons are indicated by asterisks. 
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2.3.1 N-acetyl aspartate (NAA) 

N-acetyl aspartate (NAA) is a free amino acid present in the brain at relatively high 

concentration. It has seven protons that give MR signals between 2.0 and 8.0 ppm. The most 

prominent resonance signal, a singlet at 2.02 ppm, occurs from the N-acetyl methyl (−CH3) 

group of NAA. At lower field strengths, this resonance may also contain smaller contributions 

from N-acetylaspartylglutamate (NAAG). NAA also has three doublet-of-doublets centred at 

2.49, 2.67 and 4.38 ppm that correspond to the protons of aspartate methylene (−CH2) and 

methine (−CH) groups. At shorter echo times NAA is overlapping with glutamate and 

macromolecules. Its exact physiological function is poorly understood, but brain NAA is 

commonly believed to be a health neuronal cell marker (Gillard et al., 2004, Panigrahy et al., 

2006). The presence of a large NAA peak normally indicates more normal neuronal presence 

and function, while diminished peaks occur in situations where neural damage (such as 

tumour) has occurred (Reiser et al., 2008). However this is not fully substantiated as NAA 

concentrations differ among neuron types.  

2.3.2 Alanine (Ala) 

Alanine (Ala) is a non-essential amino acid that contains a methyl group. Similar to lactate, 

the −CH3 and −CH protons of Ala give rise to a doublet at 1.47 ppm and a quartet at 3.77 

ppm. The spectral region at 1.47 ppm is usually overlapped with lipid resonances. It can be 

observed with current methods only at pathologically elevated concentrations (Panigrahy et al., 

2006).  
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2.3.3 Choline (Cho), Glycerophosphorylcholine (GPC) and Phosphorylcholine 

(PCh) 

Besides resonances from NAA and total creatine, the most prominent resonance in 1H MR 

spectra from brain arises from the methyl protons of choline-containing compounds. A strong 

singlet resonance at 3.2 ppm originating from the nine equivalent protons in trimethylamine 

(−N(CH3)3) groups of the free choline (Cho), glycerophosphorylcholine (GPC) and 

phosphorylcholine (PCh), which is often referred to as ‘total choline’ (tCho). Apart from the 

nine protons in the −N(CH3)3 group, there are a few small signals resonate from several −CH 

and −CH2 groups between 3.5 and 4.3 ppm. Increasing Cho levels seem to be a characteristic 

of many types of neoplasms, including high-grade brain tumours (provided that they are not 

necrotic), and others (Barker and Lin, 2006). At short echo times, overlapping resonances 

from myo-inositol, and taurine should be taken into account. Free choline is a minor 

contributor to the ‘total choline’ resonance, since the concentration is well below the NMR 

detection limit.  

2.3.4 Creatine (Cr) 

The creatine (Cr) signal contains two prominent singlet resonances from the methyl protons of 

creatine and phosphocreatine (PCr) at 3.03 ppm and methylene protons at 3.94 ppm for in 

vivo MR spectrum. Cr and PCr are presented in brain, muscle, and blood. The 1H MR spectra 

of creatine and phosphocreatine are very similar. The difference between the Cr (3.027 ppm) 

and PCr (3.029 ppm) methyl resonances is too small to allow a reliable separation at low field 

in vivo. These compounds are a marker of metabolic brain energy. In the normal brain, the Cr 

levels are higher in grey matter than those in white matter (Gillard et al., 2004). Its levels 
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remain relatively constant in tumours. In many disease processes, a relative loss or gain of 

NAA and Cho can be indicated by comparison with Cr (Ross and Bluml, 2001). However, 

since Cr levels are subject to variability in disease process such as creatine deficiency 

syndromes and in the setting of stroke, trauma, and necrotic tumours (Gillard et al., 2004), 

care must be taken when evaluating them. 

2.3.5 Glutamate (Glu)  

Glutamate (Glu) is an amino acid with an acidic side chain. Glutamate and glutamine are very 

difficult to separate in proton spectra at lower field strengths, i.e. below 3T, and are often 

labelled as a composite peak, Glx. Glu has two methylene groups and a methine group that 

are strongly coupled. As a result of the extensive and strong scalar coupling interactions Glu 

has a complex MR spectrum with signal spread out over many low intensity resonances. 

Signal from the single methine proton appears as a doublet-of-doublets centred at 3.75 ppm, 

while the resonances from the other four protons of the methylene groups appear as multiplets 

in the 2.04 − 2.35 ppm range.  

2.3.6 Glutamine (Gln) 

The amino acid glutamine (Gln) is a precursor and storage form of Glu located in astrocytes. 

Gln is found primarily in astrocytes. Gln is structurally similar to Glu with a single methine 

group and two methylene groups. As a result, the chemical shifts and scalar coupling 

interactions are also similar. The methine proton resonates as a triplet at 3.76 ppm, while the 

multiplets of the four methylene protons are closely grouped between 2.12 and 2.46 ppm. In 

addition, Gln has two NMR detectable amide protons at 6.82 and 7.73 ppm. Although the role 

and significance of the different levels of Glu and Gln is unclear, the quantitation of these 
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metabolites proved to be useful for the separation of several tumour groups (Panigrahy et al., 

2006). 

2.3.7 Glycine (Gly) 

Glycine (Gly) is a simple amino acid that functions as an inhibitory neurotransmitter and 

antioxidant, and is distributed throughout the brain and central nervous system. It has two 

methylene protons that co-resonate at 3.55 ppm. For in vivo MR spectrum, the Gly resonance 

overlaps with those of myo-inositol.  

2.3.8 Lactate (Lac) 

Lactate (Lac) is the end-product of anaerobic glycolysis. Its signal detection is commonly 

carried out via the doublet from the methyl group at 1.31 ppm. The single methine proton 

resonates as a quartet at 4.10 ppm. In normal human brain, it is not observed by in vivo MRS. 

Any detectable increase in Lac can be considered abnormal. Elevated Lac level is usually the 

result of deranged energy metabolism, and has been observed in brain tumours (Gillard et al., 

2004), and other conditions.  

2.3.9 Myo-inositol (m-Ins) 

Myo-inositol (m-Ins) is the most prominent form of the nine isomers of inositol in tissue 

(Cerdan et al., 1985). It is a cyclic sugar alcohol that has six protons and gives four groups of 

resonances. The two prominent multiplets are a doublet-of-doublets centred at 3.52 ppm 

originates from the 1CH and 3CH protons, while the 4CH and 6CH protons give rise to a 

triplet at 3.61 ppm. The largest signal occurs at 3.56 ppm. A triplet at 3.27 ppm is typically 

overlapped with Cho, and another at 4.05 ppm is usually not observed because of water 
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suppression. The function of m-Ins is uncertain.  

2.3.10 Taurine (Tau) 

Taurine (Tau) is an amino acid, which is found at high concentration at the time of birth and 

decreases with age. It has two adjacent methylene groups giving two triplets at 3.25 and 3.42 

ppm. At lower field in vivo studies, these resonances commonly overlap with the resonances 

from m-Ins and Cho. Tau is present in all cells of the central nervous system, its exact 

function is not known, however elevated concentration in medulloblastoma has been reported 

in the study by Panigrahy et al. (Panigrahy et al., 2006) and Moreno-Torres et al. (Moreno-

Torres et al., 2004).  

2.3.11 Macromolecules and lipids (MMLip) 

In short TE 1H MR spectra, a significant fraction of the observed signal must be attributed to 

macromolecular and lipid resonances underlying those of the metabolites. A minimum of 10 

macromolecular resonances (Hofmann et al., 2001, Pfeuffer et al., 1999) are observed 

between 0.93 and 4.3 ppm. Assigning them to specific proteins is currently virtually 

impossible. Lipids are either presented as subcutaneous or interstitial adipose tissue. It is 

usually observed in short TE spectrum due to the shorter T2 compared with metabolites. In 

MR spectra of human brain, the major lipid peaks occur at 1.3 ppm due to the methylene 

protons and at 0.89 ppm due to the methyl protons. Macromolecules and lipid components are 

often grouped together to account for three broad resonances at 0.89 ppm (MMLip0.89), 1.3 

ppm (MMLip1.3) and 2.05 ppm (MMLip2.05). 
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2.4 LCModel 

The linear combination model (LCModel) proposed by Provencher (Provencher, 1993, 

Provencher, 2001) is one of the more widely used methods, in recent years, for spectral 

quantitation and metabolite identification. The in vivo MR spectra are analysed as a linear 

combination of a basis set of individual in vitro metabolite solutions. In simple terms, it 

adjusts the amplitudes, frequencies, line widths and phases of the metabolite basis set to 

match the in vivo MR spectrum as closely as possible. It returns the estimated concentrations 

for each metabolite, lipid and macromolecular components by reference to an unsuppressed 

water spectrum from the same voxel (if available) and estimates the uncertainty in the fit by 

Cramer–Rao lower bounds (CRLB) (although systematic errors cannot be estimated in the 

same way) (Kay, 1993). A fitting error of 20% or greater generally indicates that the peak 

area determination is unreliable.  

The overlapping peaks and irregular baselines are dealt with by fitting the in vivo spectrum as 

a combination of pure, model spectra from each of the expected compounds in the tissue. The 

basis set used consists of a separate spectrum for each of the 16 metabolites and 9 lipid and 

macromolecular components likely to be present in the spectrum. One of the most important 

aspects of the LCModel analysis is the generation of an accurate basis set. There are generally 

two methods of obtaining a basis set, by measurement or through simulation (Provencher, 

2009). In the measurement approach, the solutions of expected metabolites are measured 

under similar conditions as used for the in vivo NMR measurement. An attractive alternative 

is simulating the basis spectra. By default, the LCModel simulates macromolecule and lipid 

basis spectra. 
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The spectral range for the analysis was set by default to 0.2–4.0 ppm in LCModel (Provencher, 

2009), as this region contains most signals of interest. Automatic phasing of the spectrum is 

carried out. Correction for eddy current distortion can be made, using a water spectrum (Klose, 

1990).  

The irregular spectral baseline contains broad signals from macromolecules. The LCModel 

baseline can automatically account for a missing or incorrect macromolecule model, with 

good data (Pfeuffer et al., 1999). With poorer data, the baseline becomes flatter (because there 

is no longer sufficient information to determine the baseline detail), and the concentration 

estimates systematically get worse. Methods always using flat baselines can yield more 

reproducible (consistently wrong) results, with deceptively low coefficients of variation. 

Flexible baselines are needed to compensate for the inevitable variability and machine 

induced acquisition effects, particularly of macromolecule and lipid signals. 

The LCModel estimates concentrations of even minor metabolites to high internal precision, 

which should be useful in physiological and clinical studies. A model of complete spectra is 

used rather than individual peaks, so two metabolites with very close peaks in one frequency 

region can still be resolved if they have different signals in other parts of the spectrum.  

The LCModel has the advantage that a maximal amount of prior knowledge can be used. 

Moreover, model distortions due to acquisition effects can also be taken into account. Ideally, 

the method requires the recording of a basis set of metabolite spectra under exactly the same 

settings as the signal under investigation and the model order should be provided prior to 

quantification. This not only includes knowledge about relations between the model 

parameters, but also about the model order, which is often unknown in experimental 

situations.  
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The LCModel performs under the assumption that all the metabolites presented in the MR 

spectrum should be included in the basis set. If a metabolite is missing from the basis set, it 

will usually lead to a systematic bias in the estimated parameters, and in particular the 

concentrations of the metabolites. It is possible that if an “unknown” signal is identified in the 

spectra, a peak or peaks could be simulated and the spectra can be re-analysed. However, this 

requires manual interactions, which are both subjective and time-consuming. Furthermore, in 

practice, where noise is present, the accuracy of determining individual metabolite levels is 

reduced. 

Thus, there is a need for a method that produces an automatic and objective decomposition, 

particularly when there is a large collection of spectra to analyse. 

2.5 Summary 

The concepts of MR spectroscopy and its application in living systems are briefly explained 

in this chapter. Since an MR spectrum can be considered as a linear combination of 

metabolites and MMLip components, one straight forward option to recover these 

components is through a linear transformation algorithm. Based on this idea, Chapters 3, 4, 5, 

7 and 8 explore in more detail applying the linear transformation algorithm, specifically the 

ICA algorithm, for metabolites and MMLip components decomposition.  

It is also explained that the MR spectrum is a complex valued signal with absorption and 

dispersion mode Lorentzian lineshapes as its real and imaginary parts, respectively. Although 

the imaginary part is not commonly used for spectrum analysis, it should contain the same 

amount of information as in the real part with certain phase difference. In practice, where 

noise is present, the imaginary part should be a useful addition to the real part in retrieving the 
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pure spectrum. This is investigated further in Chapter 6, where a more robust de-noising 

algorithm is proposed by utilising both the real and imaginary parts of an MR spectrum.  
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CHAPTER 3 

LINEAR TRANSFORMATION OF MRS DATA 

3.1 Introduction 

As discussed in Chapter 2, a proton MR spectrum can be considered as a linear mixture of 

metabolite and MMLip components with noise. In order to recover these components, a 

straight forward solution would be to linearly transform the observed spectra back to its 

individual components. The most popular methods for finding a linear transformation of an 

observed dataset are the second-order statistics based methods, which only use the 

information contained in the covariance matrix (second cumulant) of each variable. Principal 

component analysis (PCA) (Jolliffe, 2002) and factor analysis (Kim and Mueller, 1978) are 

two classical second-order statistics based methods (Hyvarinen, 1999). As an extension to the 

classical methods, the ICA (Hyvärinen et al., 2001) is believed to be a more powerful 

technique, capable of finding the underlying factors or sources when these classic methods 

fail completely. The use of these techniques is to be understood in the context of the classical 

assumption of Gaussianity as it will be described in the sections below. 
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3.2 Moments and cumulants 

Assume that x is a real-valued continuous scalar random variable with probability density 

function (pdf), ( )xp x . Every probability distribution is uniquely specified by its characteristic 

function, and vice versa (Papoulis, 1991). The first characteristic function,  f1(ω) of x, is 

defined as the continuous Fourier transform of the pdf (Hyvärinen et al., 2001), ( )xp x  : 

 1( ) {exp( )} exp( ) ( )xf E j x j x p x dx  



    

(3.1)

where ω is the transformed variable corresponding to x. Expanding the characteristic function 

f1(ω) into its Taylor series yields (Papoulis, 1991, Girolami, 1999), 
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Thus, the coefficient terms of this expansion are the moments { }kE x  of x. So this 

characteristic function f1(ω) is also called the moment generating function. 

The second characteristic function, f2(ω) of x, is given by the natural logarithm of the first 

characteristic function equation (3.1): 

  2 1( ) ln( ( )) ln {exp( )}f f E j x     (3.3)

The cumulants κk of x are defined in a similar way to the respective moments as the 

coefficients of the Taylor series expansion of the second characteristic function equation (3.3): 
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where the kth cumulant is obtained as the derivative, 
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Moments are one set of descriptive constants of a distribution. Cumulants make up another set 

of descriptive constants. Cumulants and moments are different, though clearly related. 

Cumulants are not directly estimable by summitry or integrative processes (Nandi, 1999). For 

zero-mean distributions, the first three central moments and the corresponding cumulants are 

identical, but they begin to differ from order four: 
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The fourth cumulant κ4 is the definition of kurtosis (Hyvärinen et al., 2001).  

Let 1[ ,..., ]T
Lx xx be a zero-mean observation sample of size L, then a commonly used 

consistent estimator of kurtosis is given by: 

 
24 2

4ˆ ( ) 3 ( )i iL x x        (3.7)

However, the above estimator is biased. Another frequently used estimator of kurtosis is 

defined as: 
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It has been proved that this is unbiased for normal distributions (Kendall et al., 1987). 

Kurtosis is a measure of the Gaussianity of the probability distribution of a real-valued 

random variable. For a Gaussian variable its kurtosis is zero. Kurtosis can also be used to 

further differentiate non-Gaussian variables into a sub-Gaussian distribution, which has a 

negative kurtosis value, and a super-Gaussian distribution, which has a positive value. 

Furthermore, the absolute value of kurtosis will be increasing as the non-Gaussianity 

increases. Higher kurtosis means more of the variance is due to infrequent extreme deviations, 

as opposed to frequent modestly sized deviations (Hyvärinen et al., 2001).  

Higher-order cumulants measure the departure of a random process, from a Gaussian random 

process, with an identical mean and covariance function. Thus a Gaussian random process has 

higher-order cumulants which are identically zero.  

Gaussian pdf is completely characterised by its first two moments, the analysis of linear 

systems and signals has so far been quite effective in many circumstances. It has nevertheless 

been limited by the assumptions of Gaussianity. When signals are non-Gaussian, the first two 

moments do not define their pdf and consequently higher-order statistics (of order greater than 

two), can reveal more information about them than the second-order statistics can do alone. 

3.3 Gaussian density  

For a L-dimensional random variable x , it is said to be Gaussian, if the pdf of x  has the form  
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where L is the dimension of x, xm  is its mean and    T
E  x x xC x m x m is the 

covariance matrix of x. The notation det Cx is used for the determinant of the matrix Cx. 

The multivariate Gaussian density (equation 3.9) is completely determined by the mean vector 

xm  and covariance matrix xC  of x . Therefore, all the higher-order moments should also 

depend only on xm and xC . This implies that higher-order moments do not carry any novel 

information about the Gaussian distribution. An important consequence of the Gaussian pdf is 

that linear processing methods based on first- and second-order statistical information are 

usually optimal for Gaussian data. It is useless to include any higher order information.  

Hence the second-order statistical methods, such as PCA and factor analysis, all assume the 

data being analysed are Gaussian. Besides, the second-order statistics based methods often 

require only classical matrix manipulations, which are computationally simple. ICA does not 

bring out anything new compared with standard PCA, if the data are Gaussian (Hyvärinen et 

al., 2001). 

3.4 Uncorrelatedness or independence? 

In reality, however, the data often do not follow a Gaussian distribution, and the situation is 

not as simple as those methods assume. Many experimentally observed datasets, including 

MR spectra, have super-Gaussian distributions (Hyvärinen et al., 2001). This can be easily 

verified by calculating the kurtosis of an MRS dataset; as a super-Gaussian signal will have a 

kurtosis value greater than zero. Data with a super-Gaussian distribution have a probability 
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density peaked at zero and heavy tails, when compared to a Gaussian density of the same 

variance. 

PCA, intimately related to singular value decomposition (SVD), is widely used in statistical 

data analysis, feature extraction and data compression (Jolliffe, 2002, Diamantaras and Kung, 

1996). The mathematical details of PCA will be explained in Chapter 4. The basic goal of 

PCA is to reduce the dimension L of the dataset to the dimension m (usually m << L), so that 

the m components explain the maximum amount of variance possible. Indeed, it can be 

proven that the representation given by PCA is an optimal linear transformation technique, in 

the mean-square sense (Jolliffe, 2002). However, the mean-square error (MSE) assesses the 

quality of an estimator in terms of its variation, which is based on the second-order 

information only. This is only adequate for Gaussian data. Non-Gaussian data may contain a 

lot of additional information in its higher-order statistics. The flexibility of the ICA approach, 

by incorporating higher-order statistical information, resides in transforming the PCA ill-

posed problem, associated with decorrelated decompositions, into a well-posed problem of 

independent decompositions, that is, ICA avoids the non-uniqueness associated with PCA 

(Mutihac and Van Hulle, 2004). By taking the non-Gaussianity into account, Zou et al. (Zou 

et al., 2006) have argued that for clean non-Gaussian signals or Gaussian noise corrupted 

signals, ICA-based feature extraction achieves the minimum mismatch (can be evaluated in 

terms of a statistic distance such as the Kullback-Leibler (KL) distance (Cover and Thomas, 

2006)) between the distributions of the represented features and original signals. It could be 

roughly described that the purpose of the second-order statistics based methods is to find a 

faithful representation of the data in the sense of MSE, whereas the ICA method tries to find a 

meaningful representation (Comon, 1994, Hyvärinen et al., 2001).  



 

 53 

The results from PCA, when applied on MRS data, usually represent various mixtures of 

metabolite and MMLip components instead of single ones (Kuesel et al., 1996). It is expected 

that ICA can give results related more closely to the underlying metabolite and MMLip 

components of the spectra, compared to the second-order statistics based methods.  

We want to find statistically independent components (ICs) under the general case of non-

Gaussian data. The first thing to note is that independence is a much stronger property than 

uncorrelatedness. Two random vectors x and y are uncorrelated if: 

 { } { } { }T TE E Exy x y  (3.10)

One way of stating how independence is stronger than uncorrelatedness is that independence 

implies nonlinear uncorrelatedness: If two random variables, e.g. x and y, are independent, 

then any nonlinear transformations of them, g(x) and h(y) are uncorrelated (in the sense that 

their covariance is zero). In contrast, if two random variables are merely uncorrelated, such 

nonlinear transformations do not have zero covariance in general.  

A key concept that constitutes the foundation of ICA is statistical independence. For 

simplicity, consider first the case of two different random variables x and y. The random 

variable x is independent of y, if knowing the value of y does not give any information on the 

value of x. 

Mathematically, statistical independence is defined in terms of probability densities. The 

random variables x and y are said to be independent if and only if 

 ( , ) ( ) ( )p p px,y x yx y x y  (3.11)
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In other words, the joint density ( , )px,y x y  of x and y must factorize into the product of their 

marginal densities px (x)  and py (y) .  

Uncorrelatedness in itself is not enough to separate the components. If two random variables 

are independent, they are uncorrelated, but uncorrelatedness does not imply independence. 

This is something that classical second-order statistics based methods cannot estimate, 

because they are essentially based on decorrelation (Hyvärinen et al., 2001). 

 3.5 Summary 

Independence is stronger than uncorrelatedness. The ICA transformation should reveal more 

meaningful information than the PCA transformation. A detailed discussion about the ICA 

method compared with PCA method will be presented in the next chapter. 
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CHAPTER 4 

INDEPENDENT COMPONENT ANALYSIS (ICA) 

This chapter explains the basic concepts of independent component analysis (ICA). It starts 

by introducing the derivation of the ICA technique. Then the assumptions and uncertainties of 

the ICA model are discussed. The relationship between the ICA and the well known PCA 

techniques is also illustrated. The latter discussion is followed by an outline of several 

representative ICA algorithms. The blind source separation (BSS) and feature extraction (FE)-

based ICA approaches are briefly described, with an overall review of the application of ICA 

to the MRS signal processing problem.  

4.1 Definition of ICA 

4.1.1 Problem description 

A long-standing problem in statistics is how to transform the data so that its essential structure 

is made more visible or accessible. In neural computation, this belongs to the area of 

unsupervised learning. The ICA technique has attracted much attention recently in dealing 
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with this kind of problem and is becoming more and more popular. The idea of ICA was first 

described by Herault, Jutten and Ans (Ans et al., 1985). Following this work, many ICA 

algorithms based on various criteria were proposed (Jutten and Herault, 1991, Comon et al., 

1991, Sorouchyari, 1991, Pham, 1992, Bell and Sejnowski, 1995, Cardoso and Souloumiac, 

1993, Cardoso and Laheld, 1996, Comon, 1994). In this section, we will give a definition of 

the problem within a mathematic framework. 

The ICA technique was initially researched in the context of the BSS problem, which is to 

find the original independent signals from linear mixtures of those signals, without knowledge 

of the physical mixing system. ICA could be applied to the analysis of data from many 

different applications, including digital images, economic indicators, psychometric 

measurements, etc (Hyvärinen et al., 2001). In many cases, the measurements are given as a 

set of parallel signals or time series. Typical examples include mixtures of simultaneous 

speech signals that have been picked up by several microphones, brain waves recorded by 

multiple sensors, interfering radio signals arriving at a mobile telephone, parallel time series 

obtained from some industrial process, etc. 

Suppose we have L observed data, 1[ ,..., ]T
Lx xx (the superscript T denotes the transpose), 

which are the linear mixtures of M  independent sources, denoted by 1[ ,... ]T
Ms ss =  with the 

linear mixing matrix L MA . The linear mixing model can be written as: 

 x = As  (4.1)  

The aim of ICA is to estimate the original independent sources s  from x  without knowing 

any information about A . This can be done by means of estimating an unmixing matrix B , 
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equal to the pseudo-inverse of A , so that 

 y = Bx  (4.2)  

where y  is the estimation of s . The mixing and unmixing network is depicted in Figure 4.1, 

where the mixing part is a weighted summation of the source signals, and the unmixing part is 

the reverse process of the previous step that theoretically should recover the original source 

signals. 

 

Figure 4.1 Linear mixing and unmixing network. 

 

The ICA technique aims to estimate B  so as to obtain y  from x  based on some statistical 

properties of the original sources. 

4.1.2 Assumptions in ICA 

We have to make some assumptions to guarantee that the ICA model can be estimated. 
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1. The original signals are assumed to be statistically independent3.  

2. The original signals must have non-Gaussian distributions. 

As discussed in Chapter 3, the higher-order cumulants are zero for Gaussian distributions, but 

such higher-order information is essential for estimation of the ICA model. Therefore, ICA is 

basically impossible for Gaussian variables.  

4.1.3 Uncertainties in ICA 

The ICA model can estimate the original sources, however, some uncertainties will still 

remain due to the limitation of the available information about the original sources. The 

following uncertainties will inevitably hold: 

1. The variances (energies) of the estimated independent components cannot be 

determined. Because the scales of s and A are unknown, changing the scales of s 

will not affect the model. So the unmixing matrix B  can be described as 

-1 -1B = Λ A , where Λ  is an invertible diagonal matrix with the diagonal 

components 0i  .  

2. The order of the estimated independent components cannot be determined. The 

reason is that a permutation matrix P  and its inverse can be substituted in the 

model without changing it, i.e., -1x = AP Ps . Since there is only one component 

equal to 1 in each row and column of P  and -1P , the elements of Ps  are the 

original independent signals but in another order, and -1AP  can be treated as a 

                                                            

3 This is the basic principle of ICA, and mostly the only assumption needed to ensure the estimation of the model. The 

independence is defined by the probability densities as described in Chapter 3. 
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new mixing matrix to be estimated by ICA. 

4.2 Solution of ICA 

In the ICA framework, the unmixing matrix B  is usually decomposed into a whitening matrix 

V  and an orthonormal ICA matrix W . Hence, the problem shown in Figure 4.1 can be 

solved using the ICA model as depicted in Figure 4.2.  

 

Figure 4.2: The mixing model and the two-step ICA unmixing model 

 

The details of obtaining the whitening and orthonormal matrices are explained in the 

following subsections. An example of the ICA algorithm in solving a practical problem of 

two mixtures with two independent components is also given to illustrate, step by step, the 

ICA model results. The procedures are the same for any number of dimension which is 

greater than one, however the 2-dimensional example is chosen here as it is visually more 

obvious.   

4.2.1 Centring the variables  

Without losing generality, both the mixture variables and the independent components are 

assumed to have a zero mean. If this assumption is not true, some pre-processing can be 
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performed to make it hold. The process is called “centring the variables”. This involves 

subtracting the variables’ sample mean. The ICA models presented in this thesis are all based 

on using centred variables, where the mean of the observed variable 'x  is subtracted: 

 ' { '}Ex x - x  (4.3)  

where {}E   is the expectation operation. The mean is estimated from the available 

observations 'x . The independent components s are also mean-centred,  

 1{ } { }E Es A x  (4.4)  

and the mixing matrix remains the same after this pre-processing, as follows: 

 ' { '}

' { '}

( ' { '})

E

E

E

x = x - x

 = As - A s

 = A s - s

  = As

 (4.5)  

where 's  is the non-zero mean independent components corresponding to 'x . 

So this can always be done without affecting the estimation of the mixing matrix A. After 

estimating the mixing matrix and the independent components for the zero-mean data, the 

subtracted mean can be simply reconstructed by adding -1 { '}EA x  to the zero-mean ICs after 

the estimation. 

 
1

' { '}

 { '}

E

E

 

 

s s s

s A x
 (4.6)  
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 4.2.2 Whitening in ICA 

Unlike correlation (second-order statistics) based transformations, e.g. PCA, ICA not only 

makes use of second-order statistics but it also utilises higher-order statistics to make the 

signals as independent from each other as possible. Nevertheless, PCA is often used as the 

first step in ICA to transform the variables into uncorrelated ones, a process which is typically 

called whitening (Comon, 1994). Sometimes, dimensionality reduction (Fukunaga, 1990) can 

also be performed if the number of independent components is less than the number of source 

variables. Further details on dimensionality reduction will be discussed in Chapter 5.  

Whitening is essentially a linear transformation of the observed data vector x into a set of 

uncorrelated variables, as described by the following equation:  

 z = Vx  (4.7)  

where V  is the whitening matrix, and the obtained data z  is whitened.  

A zero-mean random vector z = [z1 … zL]T is said to be white if its elements zi are uncorrelated 

and have unit variances (Hyvärinen et al., 2001): 

 { }i j ijE z z   (4.8)  

In terms of the covariance matrix, this means that, 

 { }TE zz I  (4.9)  

where I is the unit matrix. 



 

 62 

One popular method for whitening is to use the eigenvalue decomposition of the covariance 

matrix (Hyvärinen et al., 2001). This is straightforward in terms of the PCA expansion, as 

seen in the equation: 

 { }T TE xx = EDE  (4.10)  

where E  is the orthogonal matrix with the column vectors being eigenvectors ie  of the 

covariance matrix Cx=E{xxT}, and D  is the diagonal matrix of the corresponding eigenvalues, 

represented by 1diag( ,..., )Ld dD . 

The eigenvalues of xC  also give the variances of the principal components. Note that, 

because the principal components have zero means, a small eigenvalue (a small variance) 

indicates that the value of the corresponding principal component is mostly close to zero.  

An important application of PCA is data compression (Lv and Zhao, 2005, Majumdar, 2009, 

Jolliffe, 2002). It can be shown (Diamantaras and Kung, 1996) that the value of the minimum 

MSE is, 

 

1

L
PCA
MSE i

i m

J d
 

   (4.11)  

The sum of eigenvalues corresponding to the discarded eigenvectors em+1, …, eL.  

The error decreases when more terms are included (m increases) in equation (4.11). The error 

will equal to zero when m = L. However, a very important practical problem is how to choose 

m. This is a trade-off between error and the amount of data needed. A threshold is needed 

below which the eigenvalues, hence the principal components, are small and can be 
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considered insignificant. This limit determines how many principal components are used. It is 

usually set by choosing the minimum number of principal components that would explain the 

data well enough. However, in practice, with no use of prior information about the 

observations, its dimension is actually chosen by trial and error with no theoretical guidelines 

(Hyvärinen et al., 2001). A dimension reduction method for the MRS data is proposed in this 

thesis, and will be explained in detail in Chapter 5.  

Now the whitening transformation can be easily calculated as 

 1 2 TV D E  (4.12)  

Since whiteness is related to independence, one could hope that whitening solves the problem. 

As shown in Figure 4.3(c), now the mixtures are uncorrelated, but the distribution is clearly 

not the same as the original one in Figure 4.3(a). The independent components are still mixed 

by an orthogonal mixing matrix, which corresponds to a rotation of the plane. This shows that 

PCA is not enough to obtain independent sources. PCA is based on the second-order statistics 

(covariance), while independence is measured by higher-order statistics (such as kurtosis).  
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Figure 4.3: Illustration of the ICA algorithm: (a) the joint distribution of two uniform distributed original 
independent components s1 and s2. Horizontal axis: s1, vertical axis: s2, (b) the joint distribution of 
the observed mixtures x1 and x2. Horizontal axis x1, vertical axis: x2, (c) the joint distribution of the 

whitened mixtures of the independent components, where we can see that the whitening (PCA 
unmixing) is still a rotation away from its original form. (d) the joint distribution of estimated original 

independent components after one training iteration, (e) the joint distribution of estimated independent 
components after two training iterations, and (f) the joint distribution of estimated independent 

components after three training iterations. Gradually, the second half of ICA algorithm “rotates” the 
unmixed data back to its original form. 
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To show that the whitening is not enough for the estimation of independent components, 

consider an orthogonal transformation U of the whitened vector z:  

 y Uz  (4.13)  

Due to the orthogonality of U , we have:  

 { } { }T T T TE E  yy Uzz U UIU I  (4.14)  

where I is the identity matrix. This shows that y  is white as well; there is no unique solution 

for the independent components by using the whiteness property alone. Since y could be any 

orthogonal transformation of z, whitening gives the ICs only up to an orthogonal 

transformation, which is not enough in most cases. 

Uncorrelatedness is weaker than independence, and is not in itself sufficient for the estimation 

of the ICs. On the other hand, whitening exhausts the second-order information that is 

contained in the covariance matrix, and makes it easier to use the higher-order information 

available in the whitened vector z. Therefore, whitening is only the first half of ICA. 

4.2.3 The second half of ICA estimation 

Although the PCA technique cannot solve the ICA problem, we have shown that it can 

significantly simplify the computation. After the data in the ICA model is whitened by the 

matrix V given in equation (4.12), the mixing matrix becomes a new one, A , from equations 

(4.1) and (4.7),  
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   z Vx VAs As  (4.15)  

The benefit of whitening resides in the fact that the new mixing matrix A = VA is 

orthonormal. As illustrated in Figure 4.3, the transformation from s (Figure 4.3(a)) to z 

(Figure 4.3(c)) is just a rotation. It can also be seen from the following equation that the 

transpose of A  is equal to its inverse, which is the definition of orthonormal matrix: 

 { } { }T T T TE E  zz A ss A AA I     (4.16)  

This means we can restrict the finding of the mixing matrix to an orthonormal matrix W , so 

that 

 y = Wz  (4.17)  

where y  is a good estimate of the ICs in the original signal. 

As it has been shown by Hyvärinen et al. (Hyvärinen et al., 2001), performing whitening first 

is a good way to reduce the complexity of computation. Now the ICA problem is reduced to 

estimate an orthonormal matrix W  from z. According to the central limit theorem (Johnson, 

2004), we know that the distribution of the sum of non-Gaussian random variables tends to be 

closer to Gaussian than that of the original variables. It means that the distribution of a sum of 

independent random variables tends toward a Gaussian distribution, and it will be maximally 

non-Gaussian if it equals one of the independent components. Therefore, a quantitative 

measure of independency is the degree of non-Gaussianity of the signal. The W  can be found 

by maximizing the non-Gaussianity of y , which can be measured in terms of higher-order 
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statistics. 

4.3 ICA algorithms 

Various ICA algorithms have been proposed (Hyvärinen et al., 2001, Hyvarinen and Oja, 

2000, Bell and Sejnowski, 1995, Cardoso and Souloumiac, 1993, Cardoso and Laheld, 1996), 

most of them based on optimizing some criteria functions related to the higher-order statistics. 

Those algorithms can be categorized into explicit and implicit higher-order statistics 

algorithms. The explicit higher-order statistics algorithms directly employ the higher-order 

statistics, which are usually presented in terms of the fourth-order cumulant of the 

independent components, as the criterion function. The implicit higher-order statistics 

algorithms use some properties of independence in terms of mutual information (Coombs et 

al., 1970), likelihood (Pawitan, 2001), negentropy (Hyvarinen, 1999), etc., which are in turn 

fundamentally based on the higher-order statistics (Cardoso, 1999).  

4.3.1 Explicit higher-order statistics algorithms  

This family of ICA algorithms usually uses the fourth-order cumulant (Nandi, 1999) as the 

criterion function. Let , , ,i j k ly y y y  denote four zero mean variables, the fourth-order cumulant 

is defined as (Priestley, 1981): 

 
4 ( , , , )

{ } { } { } { } { } { } { }

i j k l

i j k l i j k l i k j l i l k j

cum y y y y

E y y y y E y y E y y E y y E y y E y y E y y   
 (4.18)  

A cumulant involving at least two different variables is called a cross-cumulant; otherwise it 

is called an auto-cumulant. The fourth-order auto-cumulant is also referred to as kurtosis, as 

defined in Chapter 3, equation (3.6): 
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 4 2 2( ) { } 3( { })k y E y E y=  (4.19)  

which can be used as a simple measure of non-Gaussianity if the signals to be compared are 

of the same type.  

From equation (4.8), it is obvious that for the whitened variables, the correlation terms in 

equations (4.18, 4.19) will be constant. This shows that whitening is an essential step in 

reducing the complexity of calculating the fourth-order cumulant and consequently the ICA 

estimation.  

The EASI (Cardoso and Laheld, 1996) and JADE (Cardoso and Souloumiac, 1993) (Cardoso, 

1999) are two widely used cumulant-based ICA algorithms. The EASI algorithm uses the 

kurtosis as its criterion function, where the gradient method is applied to optimize the kurtosis 

of y. In the JADE algorithm, a set of fourth-order cumulant matrices are constructed, whose 

diagonal components are the auto-cumulants, and the off-diagonal components are the cross-

cumulants. The Jacobi optimization algorithm (Golub and Van Loan, 1989) is applied to 

jointly diagonalise the cumulant matrices, i.e., make the off-diagonal components close to 

zero. The JADE algorithm can be summarized as: 

1. Initialization. Estimate a whitening matrix Ŵ  and set ˆZ = WX . 

2. Form statistics. Estimate a maximal set  ˆ
i
ZQ of cumulant matrices. 

3. Optimize an orthogonal contrast. Find the rotation matrix V̂ such that the cumulant 

matrices are as diagonal as possible, that is, solve ˆˆ arg min ( )T
ii

off  ZV V Q V . 

4. Separate. Estimate A as 1ˆ ˆ ˆ A VW  and/or estimate the components 

as 1ˆ ˆ ˆ T S A X V Z . 
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4.3.2 Implicit higher-order statistics algorithms 

For this group of algorithms, the objective functions used can be any suitable nonlinear 

functions as measures of non-Gaussianity. They are normally selected based on the 

information-theoretic quantity of differential entropy (Cover and Thomas, 2006). The most 

representative algorithms are infomax4 (Bell and Sejnowski, 1995, Linsker, 1988), which 

minimises mutual information, and negentropy-based FastICA (Hyvärinen et al., 2001), 

which maximises non-Gaussianity.  

Infomax approach 

According to (Bell and Sejnowski, 1995, Cardoso, 1997), the application of the infomax 

principle to source separation actually rests with minimizing the differential entropy of the 

output independent components. Entropy (Shannon, 1948), denoted by H, is the basic concept 

of information theory as a measure of the uncertainty associated with a random variable, and 

is defined as, 

 ( ) {ln ( )}H E p x x  (4.20)  

where p(x) is the distribution density function of x. However, simple minimization would be 

inappropriate because the entropy of y = Wz  diverges to infinity for an arbitrary W. As such, 

the real axis  ,  +   will be mapped to the interval (0,1) by using some nonlinear 

monotonously increasing functions g. 

The infomax principle is implemented by minimizing the entropy of nonlinear mapping 
                                                            

4 Infomax is an optimization principle for neural networks principle of maximization of information flow. 
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output ( ) ( )g g u y Wz . Hence the contrast function   will be defined as: 

 ( ) ( ( ))H H g  u Wz  (4.21)  

where H is the entropy as defined in equation (4.20), and g is the nonlinear function that maps 

the real axis  ,  +   to the interval (0,1). One option of g  is the distribution probability 

function as the range of the probability values fall into that interval. In this case, the 

differential of g  will be the distribution density function of iy , denoted by ( )ip y . We will 

have 
( )

( ) i
i

i

dg y
p y

dy
  and ( ) ( )

iy

ig y p u du


  .  

The multivariate probability density function of y  can be written as: 

 ( )
( )

| |

p
p 

z
y

J
 (4.22)  

where J  is the Jacobian of the transformation. The Jacobian is the determinant of the matrix 

of partial derivatives: 

 
1 1

1

1

,
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,

N

N N

N

y y

z z

y y

z z

  
   

  
   
   

J







 (4.23)  

From equations (4.20, 4.22), the entropy can be written as 

 ( ) {ln | |} {ln ( )}H E E p u J z  (4.24)  
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Because ( )p z  has no relation to the unmixing matrix W, in order to minimize the entropy, we 

need only concentrate to minimize the first term {ln | |}E J . So that the contrast function   

can be written as 

 {ln | |}E  J  (4.25)  

In the infomax algorithm, a sigmoid function (Mitchell, 1997), which has an "S" shape in the 

interval of (0,1), is proposed in place of the nonlinear function g . The ICA matrix W  can be 

obtained by optimizing the contrast function (equation (4.25)) using a gradient algorithm. 

Negentropy-based FastICA approach 

The information theory illustrates that the non-Gaussianity of signals can be evaluated in 

terms of entropy, which is maximized by Gaussian distributed signals and monotonously 

decreases as the non-Gaussianity of signals increases. The ICA can be performed by 

optimizing the entropy-based criterion function. A normalized version of entropy is often used, 

which is referred to as negentropy, 

 ( ) ( ) ( )GaussJ H H y y y  (4.26)  

The negentropy is zero for Gaussian signals and always non-negative. However, it is 

computationally very difficult to obtain, due to the integral of the probability functions in the 

expectation operation in equation (4.20) for entropy. To solve this problem, some 

approximation of negentropy is usually used. In the negentropy-based FastICA algorithm 

(Hyvärinen et al., 2001), the negentropy is approximated in terms of two non-polynomial 

functions, one odd and one even. The following approximation can be obtained: 
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 1 2 2 2 2
1 2( ) ( { ( )}) ( { ( )} { ( )})J k E G k E G E G  y y y v  (4.27)  

where 1k  and 2k  are constants, 1( )G   is the odd function, 2 ( )G   is the even function, and v  is 

a Gaussian variable with zero mean and unit variance. If y  has a symmetric distribution, the 

first term of equation (4.27) will be zero. It can be written as  

 2( ) ( { ( )} { ( )})J k E G E G y y v  (4.28)  

The negentropy can be maximized by using the gradient algorithm, and W  can be obtained 

by  

 { ( )}T
s E g w w z w z  (4.29)  

 /w w w  (4.30)  

where w is a row of W, s  is step size, ( )g   is the first derivative of ( )G  , which can be 

chosen from one of the following functions: 

 
1 1( ) tanh( )g ay y  (4.31)  

 2
2 ( ) exp( / 2)g  y y y  (4.32)  

 3
3( )g y y  (4.33)  

The drawbacks of the gradient algorithm are that it slowly converges and is sensitive to 

parameters, such as s  and initial value of W. As W  is a unitary matrix, it can be proven that 

the gradient of ( )J y  must point in the same direction as W. Based on that fact, a faster and 
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more reliable ICA algorithm can be obtained to replace equation (4.29) with, 

 { ( )} { '( )}T TE g E g w z w z w z w  (4.34)  

where '( )g   is the first derivative of ( )g  . The corresponding functions of '( )g   are 

 2
1 1 1' ( ) (1 tanh ( ))g a a y y    (4.35)  

 2 2
2' ( ) (1 )exp( / 2)g   y y y  (4.36)  

 2
3' ( ) 3g y y  (4.37)  

Equations (4.34, 4.30) form a basic iteration in negentropy-based FastICA algorithm. The 

converged W is the desired orthonormal matrix. The negentropy-based FastICA algorithm, 

proposed by Hyvärinen et al. (Hyvärinen et al., 2001), for finding one maximally non-

Gaussian direction can be described as: 

1. Centre the dataset to make the mean zero. 

2. Reduce the dimension and whiten the dataset to obtain z. 

 Find the eigenvectors and eigenvalues of the covariance matrix. 

 Set a limit for the cumulated energy content of the eigenvectors, and select the subset of the 
eigenvectors accordingly as basis vectors.  

 Compute the whitening matrix V from equation (4.12). 

3. Initialize the matrix W, e.g. to the unit matrix. 

4. Update W according to equation (4.34), then orthogonalize and normalize it. 

5. If W is not converged, go to step 4. 

6. The unmixing matrix B is calculated from the relation B = WV; consequently, the 
mixing matrix and ICs are obtained. 
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The negentropy-based FastICA in the FastICA MATLAB package (FastICApackage) is 

applied in all the experiments performed in this thesis. 

4.4 Blind source separation (BSS) and feature extraction (FE)-

based ICA  

ICA can be used to extract independent components from different kinds of observed 

variables. The BSS separates the original independent sources from the observed variable, 

whereas the FE expresses the observed variable in terms of the weighted summation of some 

bases. The fundamental difference between BSS and FE methods when applying ICA is their 

assumptions regarding statistical independence. The goal of BSS-based ICA is to recover any 

independent sources given only the linear mixtures of these sources as observations. The 

observations are the weighted summation of many sources; the goal of FE-based ICA is to 

estimate the weighting coefficients of the sources in the mixture.  

When applied to MRS data, the metabolite and MMLip components are assumed independent 

from each other for the BSS-based ICA, and their corresponding concentrations in the target 

voxel are assumed independent for FE-based ICA. 

Various efforts have shown that the ICA approach can obtain certain individual metabolite 

and MMLip components.  

In the following studies, the FE-based ICA is applied. The FE-based ICA algorithm was 

applied together with the SVD technique for de-noising and quantification of the MRS signals 

in the study by Stamatopoulos et al. (Stamatopoulos et al., 2009). The SVD algorithm was 

applied first to split the MRS signal into signal subspace and noise subspace. The ICA 
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transformation was applied in both of the subspaces. The ICA technique was used as a FE 

method for classifying brain tumours on in vivo magnetic resonance spectroscopy (MRS) data 

(Lee et al., 2000, Huang et al., 2003, Menze et al., 2006) and on magnetic resonance 

spectroscopic imaging (MRSI) data (Simonetti et al., 2005). In the study by Menze et al. 

(Menze et al., 2006) and Simonetti et al. (Simonetti et al., 2005), the FE-based ICA technique 

was compared for classification performance with PCA, simple quantitation and LCModel, 

but was not shown to be useful. The FE-based ICA was also applied to extract the individual 

metabolites from the MRS signal (Ma and Sun, 2005). The ICA technique was used as a 

feature extraction method for classifying low- and medium-grade astrocytic tumours (Huang 

et al., 2003). The ICA feature-based classification showed comparable results with using a 

subset of the original variables. Similarly, the FE-based ICA was applied for the 

discrimination of five classes of brain tumours (Lee et al., 2000). The ICA-based algorithm 

obtained comparable classification results against the PCA- and LDA-based algorithms. It 

was also applied on brain tumour MRS data for LDA and support vector machine (SVM)-

based classification and achieved accurate performance (Luts et al., 2008). The FE-based ICA 

was applied for classifying the acceptable/unacceptable data (quality control) using SVM and 

obtained a classification accuracy of over 90% (Wright et al., 2008). 

The BSS-based ICA is applied in the following studies. Szabo de Edelenyi et al. (Szabo de 

Edelenyi et al., 2005) applied the BSS-based ICA on a set of brain tumours MRSI data to 

reveal the necrosis, tumoural tissue and healthy tissue. The results showed the reliability of 

the independent component obtained by ICA. This approach was applied for decomposition 

of in vivo MR spectra by Ladroue et al. (Ladroue et al., 2003) and it showed that ICA can 

extract certain biochemical components from a large dataset. In the study by Pulkkinen et al. 

(Pulkkinen et al., 2005), the BSS-based ICA was also used to decompose MRSI data of brain 



 

 76 

tumours into diagnostically useful components. All these studies applied ICA to experimental 

data. 

From these previous studies, it was unclear under what conditions ICA could extract 

individual metabolite and MMLip components and, therefore, what the precise benefits of 

ICA were. While in this chapter the principle of ICA is explained in detail, in Chapter 7, a 

systematic comparison of the results of ICA applied to in vivo MRS datasets acquired under 

different experimental conditions is performed to evaluate the potential benefits of ICA for 

the interpretation of clinical MR spectra. A detailed explanation of the two approaches to ICA 

outlined here will be provided in the next chapter.  

4.5 Summary 

The theoretical background and the solutions of ICA algorithms were reviewed in this chapter. 

By employing higher-order statistics, ICA acknowledges the non-Gaussian distributions of 

practical signals, which have been ignored by classical methods. It can be seen as an 

extension to PCA, but ICA is a much more powerful technique. The central limit theorem 

shows that non-Gaussianity is a measure of independence. The independent components can 

be obtained by finding directions in which the data is maximally non-Gaussian. Various 

methods of measuring the non-Gaussianity form the bases of several different ICA estimation 

algorithms. The two main approaches of the ICA applications were reviewed as well, and 

details of their applications on MRS data will be investigated in the next chapter.  
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CHAPTER 5 

MATERIALS AND METHODS  

5.1 Introduction 

As explained in Chapter 4, the ICA algorithm can be applied in two ways on an MRS dataset. 

One is based on the assumption that the metabolite and MMLip components are independent 

from each other, which is referred to as the BSS-based ICA method. The other, namely the 

FE-based ICA method, is based on the assumption that the independency is only on their 

concentrations in the MR spectra. However, we can see that there are some metabolites and 

MMLip components which are un-independent from each other just by visually inspect their 

spectra lineshape; and there are chemical reactions between certain metabolite and MMLip 

components which will make their concentrations dependent from each other. Which of the 

above assumptions fits more closely to the true model of the MRS case will be revealed in 

Chapter 7, and a novel approach of combining the two assumptions to better fit the model of 

MRS will be explained in Chapter 8.  

For a given MRS dataset, once the concentrations are known, the corresponding metabolite 
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and MMLip components can be uniquely determined. The methods of applying BSS-ICA and 

FE-ICA to an MRS dataset are presented in the first part of this chapter.  

To reduce confusion in explaining the concepts of both BSS- and FE-based ICA on MRS 

dataset, the terms “basis” and “independent component (IC)” are referring to the individual 

metabolite or MMLip components in this thesis.   

The datasets used in this thesis consist of both synthesised and experimental MR spectra. The 

synthesised MR spectra were taken to be linear combinations of several most commonly seen 

metabolite and MMLip components in in vivo MR spectra of childhood cerebellar tumours. 

The experimental dataset contains MR spectra obtained from brain tumours in children before, 

during and after treatment, the details of which are explained in the second part of this chapter. 

5.2 Methods 

5.2.1 Blind source separation by ICA  

Since the proton MR spectra can be considered as a linear mixture of metabolite and MMLip 

components with noise, the retrieval of these ICs from a set of MR spectra can be considered 

as a BSS problem.  

Suppose we have a dataset of l  MR spectra, each of which has a dimension d, denoted by 

l dX , and assume there are  ( )m l m  independent metabolite and MMLip components, 

denoted by BSS
m dS . Then, equation (4.1) can be extended into the matrix notation, as follows: 

 BSS BSS
l d l m m d  X A S  (5.1)  
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where l dX  is the observed MRS dataset with MR spectra as its rows, BSS
l mA  is the matrix of 

the mixing coefficients for the metabolite and MMLip components and BSS
m dS contains the 

metabolite and MMLip components on its rows. 

Then ICA algorithm can be applied to l dX  to derive BSS
m dS  by maximizing the independency 

of BSS
m l l d B X , where  

 ( )BSS BSS
m l l mpinv B A  (5.2)  

The assumption taken here is that the metabolite and MMLip components are statistically 

independent from each other. 

5.2.2 Feature extraction by ICA  

The FE-ICA method is based on the idea that the observed signal is a composition of many 

bases with different weighting coefficients. In this case, the bases are spectra of metabolite 

and MMLip components and composition weighting coefficients indicate their concentrations 

in the MR spectra. Assuming these metabolite and MMLip components are mixed randomly, 

then the mixing coefficients can be considered to be independent from each other. In the 

context of feature extraction, the metabolite and MMLip components are indirectly achieved 

via estimating those independent mixing coefficients by using the ICA criterion. Once those 

coefficients are properly estimated, the bases of those coefficients will be the expected 

metabolite and lipid components.  

Considering the same dataset in the previous subsection, with the l MR spectra of dimension d, 

and assuming the dimension is to be reduced to m (m ≤ d), equation (4.1) can be rewritten in 
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matrix form as: 

 T FE FE
d l d m m l  X A S  (5.3)  

where T
d lX  is the observed MRS dataset with each MR spectrum as its columns, FE

d mA is the 

bases matrix with metabolite and MMLip components as its columns and FE
m lS the matrix of 

the corresponding concentration coefficients.  

The FE-based ICA algorithm will recover the concentration coefficients FE
m lS , and as such 

FE
d mA  can be determined.  

5.2.3 Noise 

In practice, the observed data matrix X  is always corrupted by a certain amount of noise, and 

our mixing model needs to be rewritten as, 

 obs X X + N  (5.4)  

where obsX is the observed data matrix, X  is the clean data matrix and N  is additive Gaussian 

noise. Any independent component estimated from the mixture obsX is also corrupted by noise. 

To obtain ICs closer to their true form, we need to remove the noise from the observed data 

matrix before applying ICA. In practice, the additive noise N  is removed by using signal 

enhancement algorithms.  

A wavelet shrinkage de-noising (WSD)-based algorithm is also proposed for the de-noising of 

MR spectrum, where a relationship between the real and imaginary parts of the MR spectrum 
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is derived and applied together with WSD. The detailed de-noising algorithm will be 

presented in Chapter 6. 

5.2.4 Feature dimension selection  

As already discussed in section 4.2.2, feature dimension selection is usually performed based 

on the PCA eigenvalue criterion. The number of ICs is usually chosen by finding the 

minimum number of principal components that explain the data well enough, which is 

indicated by their corresponding eigenvalues in terms of containing, for example, 95% (this 

number is arbitrarily chosen to aid the explanation of the concept, its value varies for each 

case) of the variance. As discussed before in section 4.2.2, the number of dimensions is 

actually chosen by trial and error with no theoretical guidelines. The reason may be that the 

information level in the dataset cannot be estimated in most cases.  

Here we propose a general guideline of dimension selection for the MRS dataset. Since the 

variance can be considered as the power of the signal, 95% of the variance means that the 

clean signal, denoted as vector x, has 95% of power over the noisy signal xobs and the 

remaining 5% is the noise n. Since the power of the clean signal is closely related to signal-to-

noise ratio (SNR), it could be used to estimate the percentage of the clean signal. Hence the 

information content in the data can be treated specifically for each dataset. A general 

definition of the estimated SNRE is the ratio of the clean signal power over noise power:  
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where xi is the ith element of vector x, and ni is the ith element of vector n, respectively. L  is 

the length of these vectors. We can easily calculate the percentage θ of the clean signal 

variance over the noisy one by the following equation. Hence the number of informative ICs 

can be obtained accordingly, as follows: 
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(5.6)  

where θ is the percentage threshold, obs
ix  is the ith element of vector xobs, and E{·} denotes 

expectation operation. From the definition, we know that the expectation of white Gaussian 

vector, { }E n , is zero. The following relationship between the powers (variances) of the noisy, 

clean and noise signals exists: 
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This thesis follows the LCModel definition of the SNR, which is the ratio of the highest 

signal intensity in the 0.2-4 ppm region to twice the root mean square (RMS) of the LCModel 

fit residuals, as in equation (5.8): 
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 (5.8)  

Since it is not obvious how to relate this to the signal power, we need to convert the LCSNR  to 

SNRE, in order to guide the dimension reduction. The following equation converts the 

LCModel SNR to the general SNR based on equations (5.5, 5.7 and 5.8): 
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 (5.9)  

The max( )x can be approximated by the maximum of the de-noised obsx . The feature 

dimension selection will be performed based on the ESNR  obtained from LCSNR using 

equation (5.9).  

The percentage threshold θ is calculated using equations (5.6, 5.9). In the PCA dimension 

reduction, the eigenvalues are sorted in descending order. The number of relevant components, 

m, can be obtained when the first m eigenvalues accumulates over the threshold θ. This can be 
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expressed as: 

 1

1 1

,  and 
m m

i i
i i

d d 


 

    (5.10)  

where di is the percentage of the ith eigenvalue in descending order. 

The SNR chosen for each dataset is an indication of the overall quality of MR spectra in the 

dataset. A few outliers with very high SNRs may bias the general quality of the spectra. 

Kurtosis is one of the higher-order statistical quantities, which are very sensitive to outliers. 

Kurtosis is a measure of the "peakedness" of the probability distribution of a real-valued 

random variable. Removing the outliers eventually reduces the kurtosis to a smaller value. 

The detailed findings will be presented in the results section in Chapter 8.  

5.2.5 Bootstrap confidence intervals 

The bootstrap (Johnson, 2001) was introduced by Bradley Efron (Efron and Tibshirani, 1993), 

mainly to calculate confidence intervals for parameters in situations where standard methods 

were not applicable (Efron and Gong, 1983, Zoubir and Iskander, 2004). With the bootstrap, a 

new set of experiments is not needed; instead, the original data is reused. Specifically, the 

original observations are randomly reassigned with a sample size identical to the original 

observations. These assignments and re-computations are done a large number of times and 

considered as repeated experiments. 

Suppose we want to find the 95% bootstrap confidence interval of a variable mean, from an 

observation (size n), the values c1 and c2 are sought, so that 
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2 1( ) 0.975 and ( ) 0.025P M m c P M m c       (5.11)  

where m  is the mean of the variable, and M denotes various possible mean values of an 

observation from the variable, which can be approximated by the original observation mean 

m . Then  

 
2 1( ) 0.95P M c M c      (5.12)  

So that  

 
2 1( , )M c M c   (5.13)  

is a 95% confidence interval for  . 

The procedural steps to find the approximate 95% confidence interval is (Johnson, 2001): 

(i) Reassign n samples which are chosen from the original observations, compute the 

mean, denoted as im , of the resample data.  

(ii) Repeat step (i) a number of times, B, to come up with estimates 1 2, ,... Bm m m . 

(iii) Use the sample percentiles to estimate the desired population percentiles. With B = 

1000, for example, sort the estimates above in ascending order as 

(1) (2) (999) (1000)... m m m m     and use (25)m  to estimate the 2.5th percentile of 

M and use (975)m  to estimate the 97.5th percentile of M . Solve c1 and c2 by using the 

equation (5.11). Finally, 2 1( , )m c m c   gives the desired confidence interval.  

It is important, in this procedure, to produce estimates im  with a sample size identical to the 
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original observations size of n. For a sample size less than n, the procedure will tend to give 

overestimated results; likewise, for a value more than n, the procedure would tend to give 

underestimated results. 

The bootstrap re-sampling was used to produce B = 1000 sample sets by repeated samples 

with replacement from the original sample set. The 95% confidence interval was calculated 

by finding the 2.5th and 97.5th percentiles from the B re-sampled sets. The synthesised results 

presented in Chapter 7 were the average of 200 repeated experiments and with a 95% 

confidence interval calculated by the bootstrap re-sampling method. 

5.3 Materials 

The experiments are carried out on both synthesised and experimental MRS datasets. The 

synthesised MR spectra were taken to be linear combinations of the most commonly 

quantitated metabolite and MMLip components in in vivo MR spectra of childhood cerebellar 

tumours (Ketonen et al., 2004). The coefficients chosen are such that their means and standard 

deviations corresponded to those determined from LCModel fits to experimental in vivo MRS 

data from three types of childhood cerebellar tumours. The experimental dataset contains in 

vivo MR spectra of childhood brain tumours acquired before, during and after treatment.  

5.3.1 Synthesised datasets 

Various sets of synthesised MR spectra of three types of childhood brain (cerebellar) tumours 

(TE = 30 ms, 1.5T and 3T) were generated using a quantum mechanical-based simulation 

program (Reynolds et al., 2006), more details are given in Appendix A. Each synthesised MR 

spectrum was constructed as a linear combination of the most commonly quantitated 
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individual metabolite and lipid components.  

The synthesised basis set 1 contains the following metabolite and MMLip components: 

Alanine (Ala) (doublet at 1.47 ppm and a quartet at 3.77 ppm), Choline (Cho) (singlet at 3.20 

ppm and multiplet around 6.6 ppm), Creatine (Cr) (singlets at 3.04 ppm and 3.9 ppm), Lactate 

(Lac) (doublet at 1.33 ppm), N-Acetyl Aspartate (NAA) (singlet at 2.01 ppm and multiplets 

around 2.6 and 2.8 ppm), myo-Inositol (m-Ins) (multiplets appearing as a single peak at 3.56 

ppm), Taurine (Tau) (two triplets at 3.25 and 3.42 ppm), and three lipids at 0.89, 1.30 and 

2.05 ppm (Howe and Opstad, 2003, Govindaraju et al., 2000) as shown in Figure 5.1.  
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Figure 5.1: The 10 metabolites and lipids used in synthesised basis set 1. 

 

In addition, we create a more complex synthesised basis set 2 which includes Glutamine (Gln) 

& Glutamate (Glu) (broad multiplet signals between 2 and 2.4 ppm and ~3.8 ppm), Glycine 

(Gly) (singlet at ~3.56 ppm) and use Glycerophosphorylcholine (GPC) & Phosphorylcholine 

(PCh) to replace Cho (Figure 5.2). The synthesised basis sets 1 and 2 described here will be 
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used in the experiments in both Chapters 7 and 8.  
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Figure 5.2: The GPC and PCh used to replace Cho, and Gln, Glu, Gly added in the synthesised basis 
set 2. 

The mean and standard deviation for each metabolite or MMLip component concentration 

were set to those observed in in vivo MR spectra of the three classes of childhood cerebellar 

tumours (Davies et al., 2008), namely astrocytoma, ependymoma and medulloblastoma, as 

shown in Table 5.1. 
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Table 5.1:Metabolite and MMLip components concentrations (Davies et al., 2008) used for the 
simulation of astrocytoma, ependymoma, and medulloblastoma spectra. 

 

The sum of correlation coefficients between the obtained ICs and the original individual 

metabolite and MMLip components was used as a measure of the quality of the resulting ICs 

for the synthesised datasets. An IC correlated more closely to its original component will have 

a correlation coefficient closer to 1.  

5.3.2 Experimental dataset 

We have used an experimental dataset, which contains in vivo MR spectra from children aged 

under 16 years with brain tumours obtained prior to treatment and in follow-up scans between 

1 January 2003 and 6 May 2008 at Birmingham Children’s Hospital. All studies were 

performed using a 1.5T scanner (Siemens Symphony Magnetom, NUM4 and GE Signa Excite 

& HDx). MR spectra were acquired using a point resolved single voxel spectroscopy (PRESS) 
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(as explained in Chapter 2) sequence (TE = 30 ms, TR5 = 1500 ms). The voxel volume was 

3.4 ml (1.5 cm sided cube) or 8 ml (2 cm sided cube) with 256 or 128 signal averages 

acquired respectively. The bandwidth of the GE spectra was 1.22 Hz per point, while it was 

0.98 Hz per point for the Siemens spectra, and the spectral range analysed was 0.2 ppm to 4.0 

ppm. The FIDs of GE spectra were re-sampled accordingly and an additional shift (0.0017 

ppm) along the ppm-axis was required in the spectra domain to fit these with the Siemens 

spectra. Ethical approval was obtained for the study from the Local Research Ethics 

Committee and parental consent was obtained. 

The 115 experimental spectra were obtained after applying two quality control criteria: (a) 

Full width at half maximum (FWHM) of the water reference peak less than 6 Hz and (b) SNR 

of the spectra greater than 10. The correlation coefficients between the obtained ICs and the 

simulated metabolites from (Reynolds et al., 2006) or basis MMLip components from 

LCModel are used as a measure of the quality of the resulting ICs.  

To make the experimental dataset similar to the synthesised dataset, the baseline estimated 

from the LCModel software package (Provencher, 2009) was removed from each MR 

spectrum. Actually, the LCModel baseline mostly accounts for a missing or incorrect 

macromolecule model with good data, and becomes flatter (inadequate information to 

determine the baseline detail) with poorer data. ICA applied to an experimental dataset 

without subtracting the baseline assumed by LCModel may reveal components not included 

in the model. This is not presented in this thesis and will be investigated in a future study.  

                                                            

5 Repetition time (TR): The amount of time that exists between successive pulse sequences applied to the same slice or 

voxel.   
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5.4 Summary 

The different implementation aspects of BSS- and FE-based ICA methods are explained with 

the consideration of noise corruption. A feature dimension reduction guideline for using ICA 

on the MRS data is also proposed based on the SNR of the dataset. The bootstrap re-sampling 

is used when the dataset is not large enough to be considered representative. This method 

attempts to determine the probability distribution from the data itself.  

The synthesised MRS datasets constructed in this chapter will be used in Chapters 7 and 8 for 

analysing the applicability of BSS- and FE-based ICA. They will also be used to test the 

proposed hybrid ICA method in Chapter 8. The findings will be verified with the 

experimental dataset. 
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CHAPTER 6  

NOISE REDUCTION ON IN VIVO 
1H MR 

SPECTRA USING WAVELET SHRINKAGE  

DE-NOISING (WSD) AND LORENTZIAN 

LINESHAPE PROPERTY 

6.1 Introduction 

The SNR of an MR spectrum is proportional to the square root of the number of acquisitions 

(Kreis, 1997, Schorn and Taylor, 2004). Clearly there is a trade-off between the SNR required 

and the total scanning time. In clinical circumstances, long and time-consuming 

measurements usually are not preferred. As a consequence, in vivo 1H MR spectra are often 

characterized by a low SNR. The de-noising is an important pre-processing step in the 

analysis of the MRS signals. Improvements have been found when the de-noised MR spectra 

were used for metabolite decomposition by peak picking (Dancea and Günther, 2005), 
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independent component analysis (ICA) (Hao et al., 2009b) or principal component analysis 

(PCA) (Trbovic et al., 2005). It has been shown that the wavelet shrinkage de-noising (WSD) 

is an efficient de-noising algorithm for 1H MR spectra. Hector et al. (Cancino-De-Greiff et al., 

2002) examined the WSD on free induction decay (FID) signals and Hoch et al. (Hoch and 

Stern, 1996) briefly showed noise reduction by WSD on MRS data.  

In previous research, only the real part of the MR spectrum is analysed, the imaginary part is 

usually ignored. As part of this research, we will incorporate the imaginary part of MR 

spectrum to improve the robustness of the WSD-based MR spectrum de-noising performance. 

First, a novel analysis, which reveals the relationship between the real and imaginary parts of 

the MR spectrum, is presented. The analysis demonstrates that the real and imaginary parts of 

an MR spectrum can be derived from each other. Based on that conclusion, a novel WSD-

based MRS enhancement algorithm is proposed. The de-noising processing, including WSD, 

always leads to some inevitable signal misrepresentation (Lu and Wang, 2003). To alleviate 

such a distortion, the WSD-enhanced real part of MR spectrum is averaged with the derived 

real part from the WSD-enhanced imaginary part according to the relationship obtained.  

In this chapter, we examine several commonly used wavelet bases in the proposed scheme 

and compare the results with the conventional algorithms. The signals to be de-noised are the 

synthesised FID signals and their respective MR spectra. The de-noising performance is 

measured by SNR on the real part of the spectrum. 

6.2 Theory 

6.2.1 Relationship between the real and imaginary parts of the MR spectrum  
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We have derived a relationship between the real and imaginary parts of the MR spectrum as: 

 ,  R I
I R

I R

A B
A B jB

A B

 
    

 (6.1)

 ,  R I
I R

I R

B A
B A jA

B A


    

 (6.2)

where A  and B  are the inverse Fourier transform (IFT) of the real and imaginary parts of the 

spectrum, respectively. 

The detailed derivation of the relationship between the real and imaginary parts of the MR 

spectrum is presented in Appendix B.   

A linear combination of several Lorentzian lineshapes should still obey the above derived 

equations. Hence the real part of the MR spectrum can be calculated from its imaginary part, 

and vice versa. So for clean signals, the derived real and imaginary parts of the spectrum are 

exactly the same as their original ones as shown in Figure 6.1. It is clearer in Figure 6.2, 

where the real and derived real parts of an MR spectrum overlap with each other, similarly for 

the imaginary parts. When noise is present, the spectra could not satisfy the above equations, 

since noise does not have the Lorentzian lineshape. As illustrated in Figure 6.3 and 6.4, the 

derived noisy real and imaginary parts of the spectrum are very close to their original ones 

with slight variations due to the noise effect. Averaging the corresponding calculated and 

original parts of the spectrum should reduce the noise effect on the noisy signal. For the 

shown example, the real part of the spectrum has an SNR of 7.88, and the averaged spectrum 

has an SNR of 11.23. Similar effect can be observed for an experimental MR spectrum 

(Figure 6.6). 
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Figure 6.1: The real and imaginary parts of an example clean synthesised MR spectrum and the 
derived real and imaginary parts. 
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Figure 6.2: The real and the derived real, the imaginary and the derived imaginary parts of the clean 
synthesised MR spectrum plotted together. 
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Figure 6.3: The real and imaginary parts of an example noisy synthesised MR spectrum and the 
derived real and imaginary parts. 
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Figure 6.4: The clean, noisy and derived real, the clean, noisy and derived imaginary parts of the noisy 
synthesised MR spectrum plotted together. 
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Figure 6.5: The real and imaginary parts of an experimental MR spectrum and the derived real and 
imaginary parts. 
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Figure 6.6: The noisy and derived real, the noisy and derived imaginary parts of the experimental MR 
spectrum plotted together. 
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6.2.2 Wavelet Transform 

The family of wavelet basis functions can be obtained from the mother wavelet function 

2( ) ( )t L  R  by dilation and translation (Daubechies, 1992),  

 
1 2 1

( , ) ( ) ( )b a t a a t b       (6.3)

where the dilation and translation parameters ,   (  and 0)a b b a R  may be continuous or 

discrete. 

With continuous parameters, the continuous wavelet transform (CWT) of a function 

2( ) ( )f t L R  is defined as: 

 ,

1
( , ) ( ) * ( ), ( )f a b

t b
WT a b f t dt f t t

aa
 





   
   (6.4)

Through CWT analysis, a set of wavelet coefficients  ( , )fWT a b  are obtained. These 

coefficients indicate how close the signal is to a particular wavelet basis function. The CWT 

provides a redundant representation of the signal in the sense that the entire support of 

 ( , )fWT a b  need not be used to recover the ( )f t  signal. Therefore, the dilation and 

translation parameters are evaluated on a discrete grid of time-scale plane, leading to a 

discrete set of continuous basis functions. 

The discrete wavelet transform (DWT) is obtained by setting the dilation and translation 

parameters as, 



 

 99 

 0 0 0andm ma a b na b   (6.5)

where 0 0,  a b  are fixed and ,  m nZ . The most widely used set is 0 02,  1a b  , so the 

family of discrete wavelets basis becomes,  

  2
, ( ) 2 2m m

m n t t n     (6.6)

Multiresolution Analysis (MRA) (Mallat, 1989) provides a general framework to construct 

the orthonormal wavelet basis 6  and efficient implementation through fast filterbank 

algorithms similar to fast Fourier transform (FFT) (Bracewell, 2000, Brigham, 1988) 

algorithms. It is based on the idea that a function or a signal can be approximated at different 

dilatation levels. It consists of a sequence of embedded subspaces 1 0 1... ...V V V   of 

2 ( )L R . A scaling function (father wavelet), 

  / 2
, 2 (2 );  ,  m m

m n t n m n    Z  (6.7)

is introduced here and forms a set of orthonormal basis for the reference space nV . The 

wavelet function (mother wavelet) ,{ ;  ,  }m n m n Z  is a set of orthonormal basis for the 

orthonormal complement nW  of nV  to 1nV   (i.e. 1 ,n n nV V W n   Z ).   

Since 0 1V V   , 0 1W V   , and the -1,n  are orthonormal basis in 1V , we have, 

                                                            

6 An orthonormal wavelet basis is an orthonormal set of wavelet basis as described in equation (6.41). A set of vectors form 

an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length.  
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 (6.8)

where 1, 1,,  ,  ,  n n n nh = g =      can be viewed as the coefficients of lowpass and 

highpass filters, respectively.  

6.2.3 Wavelet shrinkage de-noising  

The signal and noise for one-dimensional noisy model can be presented as:  

 obs x x + n  
(6.9)

where x  is a clean signal with length L , xobs is a noisy signal corrupted by additive white 

Gaussian noise n . The de-noising objective is to suppress the noise part of the signal xobs so 

as to recover x . 

The technique works in the following way. When decomposing a signal using wavelets, they 

act as filters that produce averaging and detail parts of the signal. If the detail parts are small, 

they might be omitted without substantially affecting the main features of the signal. As noise 

is commonly assumed to have a Gaussian distribution, most of the noise components tend to 

be represented by wavelet coefficients at smaller scales (higher frequencies). Removing these 

coefficients would result in reducing the noise without substantially affecting the original 

clean signal.  

The general WSD procedure involves three steps and is described below: 

1. Decomposing the signal by DWT with the selected mother wavelet and selected 
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level of wavelet decomposition. 

2. Determining the threshold for each level by certain thresholding rule and apply 

thresholding to the detail coefficients. 

3. Reconstructing the signal by inverse DWT using the thresholded transform 

coefficients. 

The threshold determines how much noise we want to suppress, and the larger the variance of 

the noise, the larger the threshold should be. The effectiveness of four thresholding selection 

rules (Misiti et al.) was investigated in this study.  

1) 'rigrsure' uses the principle of Stein's Unbiased Risk Estimate (SURE), 

2) 'sqtwolog' uses a universal threshold,   is the threshold value selected.  

 

 2log( )N   
(6.10)

3) 'heursure' is a heuristic variant of the previous two rules. 

4) 'minimaxi' uses using minimax principle for selection. 

These thresholding selection rules of wavelet coefficients can be applied mainly by either 

hard or soft thresholding (Donoho and Johnstone, 1994, Donoho, 1995). In hard thresholding, 

all coefficients below a threshold are zeroed, while in the soft thresholding, all the non-zero 

coefficients are shrunk towards zero by subtracting the threshold.  

The hard thresholding function is given as:  

 
,  

hard( )
0,  

w w
z w

w




    
 (6.11)
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where w  and z  are the input and output wavelet coefficients, respectively.  

Similarly, the soft thresholding function is given as:  

 
sgn( ) max( ,0),  

soft( )
0,  

w w w
z w

w

 


     
 (6.12)

Generally soft thresholding gives fewer artefacts and preserves the smoothness of the signal. 

The inverse wavelet transform of the thresholded coefficients is the de-noised signal.  

The three multiplicative threshold rescaling methods are also examined,  

(1) 'one' for no rescaling, 

(2) 'sln' for rescaling using a single estimation of level noise based on first-level 

coefficients, 

(3) 'mln' for rescaling using level-dependent estimation of level noise. 

The WSD is not limited to time domain signals. Mathematically, this method tries to remove 

whatever noise presented in a noisy signal regardless of its physical content. As the noise is 

assumed Gaussian in the time domain, its Fourier transform (FT) in the frequency domain 

should also be Gaussian, and vice versa. The WSD is designed to remove Gaussian noise, so 

it could be used on either time or frequency domain signals.  

6.3 Methods 

6.3.1 Synthesised MR spectra 

A set of synthesised in vivo 1H MR spectra (TE = 30 ms, 1.5T) of childhood brain tumours is 
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generated in the experiments. The synthesised dataset contains 50 noisy MR spectra from 

each of the three classes of tumours, i.e. astrocytoma, ependymoma, and medulloblastoma. 

The MR spectra are generated using the 14 metabolite and MMLip components of basis set 2 

constructed in Chapter 5 with various amount of white Gaussian noise. The mean and 

standard deviation of each component concentration are set to according to Table 5.1. 

6.3.2 Wavelet basis 

Choosing the proper wavelet basis is very important for de-noising. Different wavelets give 

different de-noised signals. Generally, the employed wavelet basis should possess similar 

properties with the original signal. The wavelet de-noising routines used in this work were 

based on the Matlab wavelet toolbox (Misiti et al.). The wavelet families listed in Table 6.1 

are examined in this study. The de-noising effects of the listed 54 wavelet functions are 

compared in the next section.  

Table 6.1: Wavelet families examined in this study, the superscript in front of each wavelet name is its 
y axis index in Figures 6.7, 6.9 and 6.12. 

Wavelets families  Wavelet name 

Haar                  1Haar 

Daubechies  2db1 3db2 4db3 5db4 6db5 7db6 8db7 9db8 10db9 11db10 

Symlets  12sym2 13sym3 14sym4 15sym5 16sym6 17sym7 18sym8 

Coiflets  19coif1  20coif2  21coif3  22coif4  23coif5 

Biorthogonal  24bior1.1 25bior1.3 26bior1.5 27bior2.2 28bior2.4 29bior2.6 
30bior2.8 31bior3.1 32bior3.3 33bior3.5 34bior3.7 35bior3.9 
36bior4.4 37bior5.5 38bior6.8 

Reverse Biorthogonal  39rbio1.1 40rbio1.3 41rbio1.5 42rbio2.2 43rbio2.4 44rbio2.6 
45rbio2.8 46rbio3.1 47rbio3.3 48rbio3.5 49rbio3.7 50rbio3.9 
51rbio4.4 52rbio5.5 53rbio6.8 

Discrete Meyer  54Dmey 
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6.3.3 Performance measure  

The performance of de-noising algorithms is quantitatively evaluated by the MSE between 

original and de-noised signal,  

 
2

1

1
ˆMSE

L

i i
i

x x
L 

   (6.13)

and also the SNRLC (as defined by equation(5.8)) of the de-noised signal, 

 
 LC

max( )
ˆ2 RMS

max( )
       

2 MSE

SNR 
 




x

x x

x
 (6.14)

where x̂  is the estimate of the clean signal x, L is the length of these signals, and ˆix and ix are 

the ith element of x̂  and x, respectively. Equation (6.14) shows that for each signal, the 

square root of MSE is inversely proportional to its SNR; therefore, we will only use the SNR 

value for the performance measure in this study. The SNR is calculated between the de-noised 

real part of the MR spectrum and its original clean spectrum and follows the definition in 

LCModel as defined by equation (6.14).  

The wavelet decomposition is performed with levels ranging from 1 to 8. The combinations 

from four thresholding rules, two threshold applying methods, three rescaling options and 8 

levels of decomposition for every wavelet basis, listed in Table 6.1, are considered as the 

WSD rules. They are evaluated on each of the 150 synthesised MR spectra.  

Four experiments are performed in the next section. In the first two experiments, the WSD 

rules are applied to the FID signals, as well as, the real parts of the MR spectra. The mean de-
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noised SNRs of the whole synthesised dataset are calculated for every WSD rule. In the last 

two experiments, the WSD rules are applied on both the real and imaginary parts of the MR 

spectra, and the average signal between the WSD enhanced real and derived real from the 

WSD enhanced imaginary parts (equation (B.36)) gives the final de-noised result.   

6.4 Result 

6.4.1 Experiment 1: WSD on FID signal  

De-noising by the 10368 WSD rules (54 wavelet basis   4 thresholding rules   2 threshold 

applying methods   3 rescaling options   8 levels of decomposition) is performed on the FID 

signals of the 150 synthesised MR spectra. The mean de-noised SNR values of the 

synthesised spectra dataset by all the WSD rules are illustrated in Figure 6.7. The lighter the 

colour block in Figure 6.7 is, the higher the SNR values are. The best WSD rule, which 

produces the highest mean SNR value of 22.70 (point (184, 54) in Figure 6.7), is the wavelet 

basis ‘dmey’, the ‘minimaxi’, ‘hard’ and ‘sln’ thresholding rules at level 8. The 150 noisy 

signals’ SNR values (with mean SNR of 10.75) and the de-noised SNR values by the above 

mentioned WSD rule are plotted in Figure 6.8. The average improvement of this de-noising 

method is 111%. 
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Figure 6.7: The average de-noised SNR values by the 10368 WSD rules on the FID signals of the 
spectra. The maximum SNR value of 22.70 occurs at point (184, 54).The 54 wavelet families in the y 

axis are ordered as they appeared in Table 6.1. The x axis is the combination of the WSD rule 
parameters from the sets: [rigrsure, heursure, sqtwolog, minimaxi], [soft, hard], [one, sln, mln], and 

levels [1: 8]. For example, the first 8 scales on the x axis are the WSD rules: rigrsure, soft, one, levels 
1 to 8, the next 8 scales on the x axis are the WSD rules : rigrsure, soft, sln, levels 1 to 8 and so on. 
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Figure 6.8: Comparing the SNRs between the noisy and the de-noised spectra by applying WSD rules 
on the FID signals. 

 

6.4.2 Experiment 2: WSD on real part of the MR spectrum  

Since only the real part of the MR spectrum is normally used for analysis, the de-noising 

effect on the noisy real part of the spectrum is examined in this experiment. Figure 6.9 shows 

the average de-noised SNR values by each of the WSD rules on the whole synthesised dataset. 

The best de-noised SNR value is 26.44 (point (60, 36) in Figure 6.9) and is produced by the 

wavelet basis ‘bior4.4’, under the thresholding rules ‘heursure’, ‘soft’ and ‘sln’ at level 4. The 

de-noised SNR values by the best WSD rule are compared with the results from experiment 1 

in Figure 6.10. It is obvious that applying WSD on the real part of the spectrum generally 
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provides better SNR result than applying WSD on the FID signal of the same spectrum. The 

average improvement of the de-noised SNR values is 146% over the noisy ones, and up to 1.5 

times better than the results in experiment 1.  

 

Figure 6.9: The average de-noised SNR values by the 10368 WSD rules on real part of the spectra. 
The maximum SNR value of 26.44 occurs at point (60, 36).The 54 wavelet families in the y axis are 
ordered as they appeared in Table 6.1. The x axis is the combination of the WSD rule parameters 

from the sets: [rigrsure, heursure, sqtwolog, minimaxi], [soft, hard], [one, sln, mln], and levels [1: 8]. 
For example, the first 8 scales on the x axis are the WSD rules: rigrsure, soft, one, levels 1 to 8, the 

next 8 scales on the x axis are the WSD rules: rigrsure, soft, sln, levels 1 to 8 and so on. 
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Figure 6.10: Comparing the de-noised SNRs by applying WSD on the FID signals and on the real part 
of the MR spectra. 

 

6.4.3 Experiment 3: WSD on real and imaginary parts of the MR spectrum 

with different WSD rules 

Based on the conclusions reached in section 6.2.1, a WSD-based MR spectrum enhancement 

algorithm is proposed. In this experiment, the WSD enhanced imaginary part of the spectrum 

will be used to derive another version of the real part of the spectrum. The average of the de-

noised real part of the spectrum and the derived one from its de-noised imaginary part is the 

final de-noised signal. Two approaches of finding the best WSD rule are explored in this 
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experiment and the next one.  

Since the best WSD rule for the real part of the spectra has already obtained in experiment 2, 

only the best WSD rule for the imaginary part of the spectra is searched. It is found that using 

wavelet basis ‘bior6.8’, under the thresholding rules ‘heursure’, ‘soft’ and ‘sln’ at level 5 

works best on the imaginary part. The final de-noised SNR values obtained by averaging the 

two real parts of the spectrum are plotted in Figure 6.11 together with the SNR values from 

experiment 2 as a reference. No obvious improvement can be found as the two SNR lines are 

fluctuating with each other. The mean SNR value for this approach is 27.2, which is very 

close to 26.44 in experiment 2. 
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Figure 6.11: Comparing the de-noised SNRs between real and real & imaginary parts of the MR 
spectra with different WSD rules. 
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6.4.4 Experiment 4: WSD on real and imaginary parts of the MR spectrum 

with the same WSD rule 

In this experiment, slightly different from the previous experiment, a single WSD rule is 

sought for both the real and imaginary parts of the spectra. The mean de-noised SNR values 

of the synthesised dataset obtained by the proposed algorithm with all the WSD rules are 

shown in Figure 6.12. The one with wavelet basis ‘bior4.4’, under the thresholding rules 

‘heursure’, ‘hard’ and ‘mln’ at level 5, produces the highest mean SNR value at 38.56 (point 

(93, 36) in Figure 6.12). The final de-noised SNR values for all the 150 MR spectra are 

illustrated in Figure 6.13 and compared with the results from experiment 2. It can be seen that 

there is a clear gap between the enhanced SNR values from this experiment and experiment 2. 

The mean SNR improvement is 258% over the original noisy signal, and it is up to 2.04 times 

better than the results from experiment 2.  

 



 

 112 

 

Figure 6.12: The average de-noised SNR values by the 10368 WSD rules on real and imaginary parts 
of the spectra. The maximum SNR value of 38.56 is at point (93, 36). The 54 wavelet families in the y 

axis are ordered as they appeared in Table 6.1. The x axis is the combination of the WSD rule 
parameters from the sets: [rigrsure, heursure, sqtwolog, minimaxi], [soft, hard], [one, sln, mln], and 

levels [1: 8]. For example, the first 8 scales on the x axis are the WSD rules : rigrsure, soft, one, levels 
1 to 8, the next 8 scales on the x axis are the WSD rules : rigrsure, soft, sln, levels 1 to 8 and so on. 
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Figure 6.13: Comparing the de-noised SNRs between real and real & imaginary parts of the MR 
spectra. 
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Figure 6.14: A comparison of the SNRs for noisy and de-noised spectra of the whole synthesised 
dataset. 

 

The de-noised SNR values of all the 150 synthesised spectra by various methods are shown in 

Figure 6.14. One example of the real part of a synthesised MR spectrum and its de-noised 

signals from the four experiments are shown in Figure 6.15. The spectrum of the FID de-

noised signal is still very fuzzy compared with the clean spectrum. Spectra from experiment 2, 

3 and 4 are smoother than from experiment 1. De-noising by experiment 4 gives more 

detailed information and smoother spectrum than the others.  
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Figure 6.15: An example synthesised MR spectrum (clean and noisy) and its de-noised results in 
experiment 1, 2, 3 and 4. 

The proposed WSD-based MRS enhancement algorithm with the best WSD rule found from 

experiment 4 is also applied on two experimental MR spectra and illustrated in Figure 6.16. 

An example of the noisy experimental MR spectrum and its de-noised results, by the 

proposed algorithm, are used as the inputs of the LCModel fitting (Figure 6.17), respectively. 

It could be seen that more metabolites with small %SD values are produced with the de-

noised case. These are the estimated standard deviations expressed in percent of the estimated 

concentrations. A %SD < 20% has been used by many as a very rough criterion for estimates 

of acceptable reliability. 
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Figure 6.16: The de-noised results of two example noisy experimental MR spectrum and its de-noised 
signal. 
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Figure 6.17: The LCModel fitting outputs of (a) the noisy MR spectrum, and (b) the de-noised MR 
spectrum. There are more blue coloured results on the right column of (b) than (a), which means more 

metabolites and MMLips with lower %SD values (less than 20%) are estimated. 

a. 

b. 
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6.5 Discussion 

When the mean de-noised SNR values for each WSD rule for the whole synthesised dataset 

are plotted in each experiment, it is obvious that the overall colour of Figure 6.7 in experiment 

1 is the darkest compared with Figure 6.9 in experiment 2 and Figure 6.12 in experiment 4. 

This implies that it is generally better to de-noise on the MR spectrum than on the FID signal. 

The overall grey scale in Figure 6.12 is the lightest in the three experiments. This confirms 

that, generally, the proposed de-noising algorithm, which utilises both the real and imaginary 

parts of the MR spectrum is a better approach compared to the other approaches in experiment 

1 and 2.  

The decomposition and reconstruction wavelet functions of bior4.4, which gives the best de-

noising results is plotted in Figure 6.18. Its lineshape are very close to a single peak in the MR 

spectrum. There are two obvious dark horizontal lines across Figure 6.12 which correspond to 

the wavelet number 31, bior3.1, and wavelet number 46, rbio3.1. Figure 6.19 shows the 

decomposition and reconstruction wavelets of bior3.1, which are the reconstruction and 

decomposition wavelets of the rbio3.1 (reverse bior3.1), respectively. It is obvious that the 

lineshapes of the two wavelet functions are quite different from the MR spectrum examined, 

hence causing their poor de-noising performance. In the rest of the figure, the better 

performance generally comes from wavelet which has a similar lineshape as the bior 4.4. 

There are vertical dark columns appear in every 16 (2×8 levels) WSD rules, which correspond 

to the threshold rescaling method ‘one - for no rescaling’. This shows that the rescaling is 

necessary for the de-noising on the MR spectrum. 
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Figure 6.18: The (a) decomposition and (b) reconstruction wavelets of bior4.4. 

 

 

Figure 6.19: The (a) decomposition and (b) reconstruction wavelets of bior3.1, and also the (b) 
reconstruction and (a) decomposition wavelets of rbior3.1. 

 
 
 

The best WSD rule for the FID signal is similar to the findings by Cancino-De-Greiff et al. 

(Cancino-De-Greiff et al., 2002). The best WSD rule on the real and imaginary parts of the 

MR spectrum in experiment 4 is different from their individual ones. Averaging the calculated 

real part of the spectrum and the de-noised real part of the spectrum cancels out the noise 

factor. The de-noised effects on the real and imaginary parts of the spectrum need to be 

somewhat opposite to each other in order to be cancelled out. Applying different WSD rules 

on the real and imaginary parts of the spectrum, such as in experiment 3, does not provide this 
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opposite effect on the de-noised real and imaginary parts of the spectrum. Therefore, there is 

not much improvement on the de-noising results compared with only apply WSD on the real 

part of the spectrum.  

The real part of the spectrum can be derived from its corresponding imaginary part by 

equation (B.36), and vice versa by equation (B.37). Since the real part of the spectrum is 

always 
2


 ahead of its imaginary counterpart, equation (B.36) is basically calculating the 

input signal at +
2


 phase. Similarly, equation (B.37) gives the output signal at −

2


 phase of 

its input.   

De-noising using both real and imaginary parts of the spectrum utilises the embedded relation 

of the Lorentzian lineshape, which is the basis of the MR spectrum. This relation is not 

affected by the data acquisition process or environmental effects, and it is valid with any 

phase conditions. So the proposed enhancement algorithm can be performed at any phase 

condition. It can also be used for the de-noising of the imaginary part of the spectra. There 

may still be other applications for utilising the relationship between the real and imaginary 

parts of the MR spectrum, and this will be investigated in future studies. 

6.6 Summary 

Experiments of applying WSD for signal enhancement are performed on 150 synthesised in 

vivo 1H MR spectra. It was found that the de-noised signal has higher SNR when the WSD is 

applied to the MR spectrum (with mean SNR of 26.44) than to its FID signal (with mean SNR 

of 22.7).  
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The best de-noising result is obtained by first applying the WSD rule (wavelet basis ‘bior4.4’, 

thresholding rules ‘heursure’, ‘hard’ and ‘mln’ at level 5) on both the real and imaginary parts 

of the MR spectrum. Then, the average of the WSD enhanced real part and derived one from 

the WSD enhanced imaginary part of the MR spectrum gives the final de-noised signal. The 

mean SNR value of the proposed algorithm is 3.58 times the noisy signal, 1.70 times the de-

noised result on FID signal, and 1.46 times the de-noised result on only the real part of the 

spectrum. 



 

 121 

CHAPTER 7 

COMPARING FEATURE EXTRACTION AND 

BLIND SOURCE SEPARATION OF ICA ON 

CHILDHOOD BRAIN TUMOUR 
1H MR 

SPECTRA 

7.1 Introduction 

From the previous studies of applying ICA technique on in vivo MRS datasets (as reviewed in 

Chapter 4), it was unclear under what conditions ICA could extract individual metabolite and 

MMLip components and, therefore, what the precise benefits of ICA were. In this chapter, the 

ICA technique is first applied to synthesised MRS datasets that simulate typical childhood 

brain tumours, and then to the patients’ experimental MRS dataset. The work presented in this 

chapter allows for the effects of SNR, sample size, bandwidth (measured as full-width-at-half-
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maximum, FWHM), magnetic field strength and peak frequency variations to be investigated 

systematically (Hao et al., 2009b). The two common approaches to the application of ICA 

were employed with the main focus being their comparison and the identification of any 

critical factors of the two approaches that might affect the analysis of synthesised childhood 

brain tumour MRS data. 

7.2 Methods 

7.2.1 Synthesised datasets 

Various sets of synthesised MR spectra of three classes of childhood brain tumours (TE = 30 

ms, 1.5 and 3T) were generated using a quantum mechanics-based simulation program 

(Reynolds et al., 2006) detailed in Appendix A. Each MR spectrum was constructed as a 

linear combination of individual metabolite and MMLip components using the basis set 1 

described in Chapter 5. A randomly distributed line-broadening (FWHM) factor was applied 

to each metabolite and MMLip, while a controlled amount of white noise was added. The 

signal-to-noise ratio (SNR) was measured linearly, as the ratio of the power (in watts) of the 

clean signal (the combination of individual metabolite and MMLip components) over noise.  

The sum of correlation coefficients between the obtained ICs and the original individual 

metabolite and MMLip components was used as a measure of the quality of the resulting ICs 

for the synthesised datasets. ICs corresponded more closely to these components having 

correlation coefficients closer to 1; hence a perfectly correlated set of ICs with the original 

components should have a sum very close to 10 in the synthesisation experiments presented. 

Each of the synthesised results, presented in the next section, was the average of 50 repeated 
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experiments and with a 95% confidence interval calculated by a bootstrap re-sampling 

method (Efron and Tibshirani, 1993, Johnson, 2001) explained in section 5.2.5.  

7.2.2 Experimental dataset 

Quality control criteria for the selection of experimental dataset were set based on the 

experiments findings from the synthesised dataset. 115 experimental MR spectra were 

obtained as a result of applying the following two criteria to the experimental spectra:  

(1) FWHM of the water reference peak less than 6 Hz and  

(2) SNR of the spectra greater than 10.  

As mentioned in section 5.2.4, the SNR is defined in the LCModel as the ratio of the highest 

signal intensity in the 0.2–4 ppm region to twice the RMS of the LCModel fit residuals 

(equation (5.8)). The SNR values used in the synthesised datasets can be converted according 

to this definition and shown in Table 7.1. 

 

Table 7.1: SNR values corresponding to the LCModel definition 
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7.3 Results 

The synthesised datasets containing clean, noisy and de-noised signals, with all three classes 

(astrocytoma, ependymoma and medulloblastoma) included, were used in the generation of 

the results described in the following five subsections. The average spectra of all the three 

classes generated from the simulator are shown in Figure 7.1, with SNR equal to 6 and 

FWHM equal to 5.5 Hz. Figure 7.2 shows one example spectrum from each tumour class. 

 

Figure 7.1: The average synthesised spectra of (a) astrocytoma, (b) ependymoma and (c) 
medulloblastoma 

 

 

Figure 7.2: One example spectrum from each synthesised tumour class: (a) astrocytoma, (b) 
ependymoma and (c) medulloblastoma. 
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One of the sets of results for both FE-ICA and BSS-ICA methods on 600 synthesised MR 

spectra is illustrated in Figure 7.3. The SNR for the noisy synthesised dataset is 40, and the 

FWHM is 5.5 Hz. ICs from the BSS-ICA method correspond closely to individual metabolite 

and MMLip spectra. In contrast, for the same synthesised datasets, ICs from the FE-ICA 

method correspond mostly to the combination of several individual components. The MMLip 

components from the BSS-ICA method are sometimes affected by the metabolites appearing 

at the same position. It is important to note that, the BSS-ICA method treats the noise as 

possible independent sources, whereas the FE-ICA method removes most of the noise in its 

dimensionality reduction step (by PCA). Hence, when the noise level is high, more noise-

related ICs appeared in the BSS-ICA method results than in the FE-ICA method. In the 

following experiments, the BSS-ICA algorithm is set to automatically identify the extra ICs 

when ICs highly related to noise are obtained in the result. 
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Figure 7.3: The 10 ICs obtained from the synthesized mixture of three classes by (a) the FE-ICA 
method and (b) the BSS-ICA method for clean, noisy and de-noised spectra labelled with the 

corresponding metabolite and MMLip components. 
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In the following subsections, the ability of ICA to extract components from the synthesised 

MRS datasets is examined in detail by varying the SNR, the number of spectra, the FWHM 

ranges, the magnetic field strength, peak frequency variations and the number of ICs in each 

synthesised dataset. The sum of correlation coefficients is used as a measure of the ICs’ 

quality. In the last subsection, ICA is applied on an experimental dataset. 

7.3.1 Experiments on varying SNR 

To investigate the effects of SNR on the ICA methods, six different noise levels (SNR equal 

to 1, 6, 10, 20, 40 and 50) were used in this set of experiments. A clean synthesised dataset of 

600 MR spectra including all three classes of tumour with the FWHM = 5.5 Hz was first 

generated, and then noise was added to obtain the required SNRs. The reason for using 600 

MR spectra will be explained in the next subsection. The sum of the correlation coefficients 

between the obtained ICs and the independent sources is shown in Figure 7.4, where the 

dotted line represents the results from the BSS-ICA method, and the solid line represents the 

equivalent results from the FE-ICA method. The larger the value of the sum of the correlation 

coefficients, the greater will be the correlation between the resultant ICs and the original 

sources. For the de-noised synthesised dataset, both methods give better results when SNR 

increases from 1 to 10, and after that, relatively similar results are obtained at higher SNRs. 

The BSS-ICA method has a performance similar to the FE-ICA method at very low SNRs 

(less than about 4), whereas for the higher SNRs (greater or equal to 6), the BSS-ICA method 

outperforms the FE-ICA method (p < 0.0005). For the noisy synthesised dataset, similar 

results can be seen. The point when the BSS-ICA method outperforms FE-ICA appears at 

higher SNRs around 10 (p < 0.0005). Comparing the results horizontally in Figure 7.4, the 

BSS-ICA method has a better performance in de-noised conditions than noisy ones, while the 
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FE-ICA method gives similar results in both conditions. The 95% confidence interval for the 

BSS-ICA method is generally smaller than that of the FE-ICA method, which indicates 

smaller variation of the resulted ICs of the BSS-ICA method than the FE-ICA method. The 

detailed individual correlation coefficient between the obtained IC and its corresponding 

simulated metabolite/MMLip component for all the experiments performed in this section are 

also shown in Figure 7.5. The same experiment was performed with FWHM = 4.5, 5.0 and 

6.0 Hz, respectively. Similar results as those presented in Figure 7.4 were obtained. 

 

Figure 7.4: Comparison of FE-ICA and BSS-ICA methods with the SNR = 1, 6, 10, 20, 40, 50 for 600 
noisy and de-noised synthesised spectral datasets at FWHM = 5.5 Hz. The error bar shows the 95% 

confidence interval by Bootstrap method. 
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Figure 7.5: The individual correlation coefficient comparison for the FE-ICA and BSS-ICA methods 
with the SNR = 1, 6, 10, 20, 40, 50 for 600 noisy and de-noised synthesised spectral datasets at 

FWHM = 5.5 Hz. The error bar shows the 95% confidence interval by Bootstrap method. 
 

 

7.3.2 Experiments on varying number of spectra 

The synthesised datasets used in this set of experiments had an FWHM of 5.5 Hz, and SNR = 

40. The number of spectra in each synthesised dataset was 60, 150, 300 and 600 with all three 

classes included. The variations in the sum of correlation coefficients between the obtained 

ICs and the independent sources are shown in Figure 7.6 for both the FE-ICA and BSS-ICA 
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methods. The performance of the BSS-ICA method is stable throughout the experiments. For 

the de-noised synthesised datasets, even with a small number of spectra, the BSS-ICA method 

can produce realistic ICs, while the results of the FE-ICA method improve with the larger 

number of spectra available in the set up to the inclusion of 300 spectra. For the noisy 

synthesised dataset, an increased number of spectra (up to 150) can improve the performance 

of the FE-ICA method significantly and give stable results thereafter. Performances of both 

the BSS-ICA and FE-ICA methods improve in de-noised conditions than in noisy ones. The 

95% confidence interval for the BSS-ICA method is much smaller than that for the FE-ICA 

method. With 600 spectra, the results for both BSS-ICA and FE-ICA methods are stable, so 

when examining the effect of noise in the previous subsection, a synthesised dataset of size 

600 was used to ensure that the changes in results are only caused by the SNR being the 

single varying parameter. The detailed individual correlation coefficient between the obtained 

IC and its corresponding simulated metabolite/MMLip component for all the experiments 

performed in this section are also shown in Figure 7.7. 

 

Figure 7.6: Comparison of FE-ICA and BSS-ICA methods for de-noised and noisy synthesised 
datasets (SNR = 40, FWHM = 5.5 Hz) with the number of spectra = 60, 150, 300, and 600. The error 

bar shows the 95% confidence interval by Bootstrap method. 
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Figure 7.7: The individual correlation coefficient comparison of FE-ICA and BSS-ICA methods for de-
noised and noisy synthesised datasets (SNR = 40, FWHM = 5.5 Hz) with the number of spectra = 60, 

150, 300, and 600. The error bar shows the 95% confidence interval by Bootstrap method. 

 

7.3.3 Experiments on the effect of varying FWHM 

The FWHM for the synthesised tumour MRS datasets has been set to the average value 

0.089±0.011 ppm (Peet et al., 2007) observed in in vivo MRS data of childhood cerebellar 

tumours. This value corresponds to approximately 5.5 (±0.6) Hz in this set of experiments. 

The FWHM values were varied in steps of 0.5 Hz (as seen in Figure 7.8). The synthesised 

dataset has 600 MR spectra when all the three tumour classes are included. 

The ICs resulting from the application of both FE-ICA and BSS-ICA methods to these 

synthesised datasets were used to calculate the sum of correlation coefficients and are 

illustrated in Figure 7.8. The FE-ICA method has a better performance than the BSS-ICA 

method when the range of FWHM is greater than 0 Hz in the de-noised synthesised dataset 
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and 0.5 Hz in the noisy synthesised dataset. The performance of both FE-ICA and BSS-ICA 

is fairly stable until the range of FWHM is 3 Hz but decreases beyond this level. The detailed 

individual correlation coefficient between the obtained IC and its corresponding simulated 

metabolite/MMLip component for all the experiments performed in this section are also 

shown in Figure 7.9. 

 

 

Figure 7.8: Comparison of FE-ICA and BSS-ICA methods with the FWHM = 5.5 Hz, 5.5±0.5 Hz, 5.5 ± 
1 Hz, ..., 5.5 ± 4 Hz for de-noised and noisy synthesised datasets. The error bar shows the 95% 

confidence interval by Bootstrap method. 
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Figure 7.9: : The individual correlation coefficient comparison of FE-ICA and BSS-ICA methods with 
the FWHM = 5.5 Hz, 5.5±0.5 Hz, 5.5 ± 1 Hz, ..., 5.5 ± 4 Hz for de-noised and noisy synthesised 

datasets. The error bar shows the 95% confidence interval by Bootstrap method. 

 

7.3.4 Experiments on varying magnetic field strength 
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This set of experiments examines the effect of ICA at two different magnetic field strengths, 

namely 1.5T and 3T for 600 spectra with FWHM = 5.5 Hz and SNR = 40. The results are 

shown in Figure 7.10. In the de-noised case, the BSS-ICA method produces better results at 

high magnetic field strengths, whereas the performance of the FE-ICA method worsens at 

high field strengths. In the noisy case, the BSS-ICA method performs in a consistent manner, 

while the FE-ICA method still performs worse than that observed at low magnetic field 

strengths. The detailed individual correlation coefficient between the obtained IC and its 

corresponding simulated metabolite/MMLip component for all the experiments performed in 

this section are also shown in Figure 7.11. 

 

Figure 7.10: Comparison of FE-ICA and BSS-ICA methods for de-noised and noisy synthesised 
datasets (number of spectra = 600, FWHM = 5.5 Hz and SNR = 40) with the magnetic field strength = 

1.5T and 3T. The error bar shows the 95% confidence interval by Bootstrap method. 
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Figure 7.11: The individual correlation coefficient comparison of FE-ICA and BSS-ICA methods for de-
noised and noisy synthesised datasets (number of spectra = 600, FWHM = 5.5 Hz and SNR = 40) with 

the magnetic field strength = 1.5T and 3T. The error bar shows the 95% confidence interval by 
Bootstrap method. 

 

7.3.5 Experiments on peak frequency variations 

To examine the effect of peak frequency variations on the ICA method, one of the sources 

(Cho) was shifted by ±0.01, ±0.03, ±0.05, ±0.06, ±0.08 and ±0.1 ppm from its original 

position. The Cho was chosen as it has a singlet, which does not overlap with other peaks, 

hence any changes in the output ICs will only be the consequences of peak frequency shifting. 

The synthesised datasets still contained 600 spectra of the three tumour classes with FWHM = 

5.5 Hz and SNR = 40 at 1.5T. The results are shown in Figure 7.12, and the zero ppm 

variation case is included for comparison purpose. In the de-noised case, the results of the 

BSS-ICA method were not affected by the peak position variations up to ±0.05 ppm; after that 

point, the ICs’ quality decreased and the 95% confidence interval increased. The FE-ICA 

method provided similar results with the zero ppm variation case up to ±0.08 ppm, and 

slightly worse results were obtained after that. In the noisy case, similar to the de-noised 

condition, the decreasing point for the BSS-ICA method was at ±0.05 ppm and for the FE-

ICA method it was at ±0.08 ppm. The 95% confidence intervals for both methods increased 

when the frequency variations were increased. The detailed individual correlation coefficient 
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between the obtained IC and its corresponding simulated metabolite/MMLip component for 

all the experiments performed in this section are also shown in Figure 7.13. 

 

Figure 7.12: Comparison of FE-ICA and BSS-ICA methods for de-noised and noisy synthesised 
datasets (number of spectra = 600, FWHM = 5.5Hz, SNR = 40 and 1.5T) with the Cho peak position 

variations of 0, ±0.01, ±0.03, ±0.05, ±0.06, ±0.08 and ±0.1 ppm. The error bar shows the 95% 
confidence interval by Bootstrap method. 
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Figure 7.13: The individual correlation coefficient comparison of FE-ICA and BSS-ICA methods for de-
noised and noisy synthesised datasets (number of spectra = 600, FWHM = 5.5Hz, SNR = 40 and 1.5T) 
with the Cho peak position variations of 0, ±0.01, ±0.03, ±0.05, ±0.06, ±0.08 and ±0.1 ppm. The error 

bar shows the 95% confidence interval by Bootstrap method. 
 

7.3.6 Experiment on number of ICs 

The dimensions of the synthesised datasets are all reduced from 7 to 14 to examine the 

sensitivity of the methods against the number of ICs. The results for one set of spectra are 

plotted in Figure 7.14. Varying the dimension has no observed difference for the FE-ICA 

method, where the ICs still contain combinations of the original metabolite and MMLip 

components. However, for the BSS-ICA method, when the dimension is less than 9, some 
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non-overlapping peaks appear in the same IC. At dimension 9, the BSS-ICA method produces 

9 ICs which are very similar to the resultant ICs at dimension 10 with one of the metabolite 

missing. When further increasing the dimension, more noise-related ICs appear. This could be 

used as a rough guideline to choose the dimension of a dataset, by trial and error, for example, 

in the case of the experimental dataset. 
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a 

 

b 

 

 
Figure 7.14: Varying the number of ICs used for the synthesised dataset (a) 7 ICs, (b) 8 ICs, (c) 9 ICs, 
(d) 10 ICs, (e) 11 ICs, (f) 12 ICs, (g) 13 ICs, and (h) 14 ICs. (Figure continued in the next three pages). 
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c 

 

d 

 

Figure 7.14: Varying the number of ICs used for the synthesised dataset (a) 7 ICs, (b) 8 ICs, (c) 9 ICs, 
(d) 10 ICs, (e) 11 ICs, (f) 12 ICs, (g) 13 ICs, and (h) 14 ICs. (Figure continued in the next two pages). 
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e 

 

f 

 

Figure 7.14: Varying the number of ICs used for the synthesised dataset (a) 7 ICs, (b) 8 ICs, (c) 9 ICs, 
(d) 10 ICs, (e) 11 ICs, (f) 12 ICs, (g) 13 ICs, and (h) 14 ICs. (Figure continued in the next page). 
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g 

 

h 

 

Figure 7.14: Varying the number of ICs used for the synthesised dataset (a) 7 ICs, (b) 8 ICs, (c) 9 ICs, 
(d) 10 ICs, (e) 11 ICs, (f) 12 ICs, (g) 13 ICs, and (h) 14 ICs.  
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7.3.7 Experiment on experimental dataset 

Figure 7.15 and Figure 7.16 show the results from a set of 115 in vivo MR spectra of patients 

aged under 16 years. The PCA is used to reduce the experimental dataset dimension to 15. 

The eigenvalue sequence of the covariance matrix for the experimental dataset decreased 

sharply, where ten ICs can already explain more than 99.3% of the dataset. However, when 

ten ICs were obtained, non-overlapping peaks were seen in the same IC for the BSS-ICA 

method. This indicates that a sufficient number of ICs were not estimated. On increasing the 

number of ICs in an attempt to keep the non-overlapping peaks from appearing in one IC, it 

was found that the ICs were relatively stable after 15. The results were similar for both FE-

ICA and BSS-ICA methods with the synthesised datasets. In the FE-ICA method (Figure 

7.15), the MMLip components were mostly picked up and the three metabolites, Cr, Cho and 

m-Ins, were appearing in the same ICs as in the synthesised case. The overlapping peaks were 

not affected by each other in the FE-ICA method results. In the BSS-ICA method (Figure 

7.16), several non-overlapping metabolites (IC4 m-Ins, IC10 Cr, IC14 guanidoacetate (Gua), 

IC15 Tau) and MMLip (IC6 MMLip at 0.9 ppm) components were obtained as expected. The 

overlapping peaks as shown in IC8, IC12 and IC1, IC2, IC5, IC7 were extracted similar to the 

synthesised results. 
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Figure 7.15: The 15 ICs obtained from the mixture of 115 experimental MR spectra by the FE-ICA method for de-noised (left) and noisy (middle) conditions 
labelled with the corresponding metabolites and lipids. The synthesised metabolites and MMLips spectra (right) are also plotted for comparison, 
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Figure 7.16: The 15 ICs obtained from the mixture of 115 experimental MR spectra by the BSS-ICA method for de-noised (left) and noisy (middle) 
conditions labelled with the corresponding metabolite and MMLip components. The synthesised metabolites and MMLips spectra (right) are also plotted for 

comparison, 
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7.4 Discussion 

As noise was added to the synthesised datasets, the performance of the BSS-ICA method 

degraded with respect to that of the FE-ICA method. This is due to the BSS-ICA method 

treating the noise as independent sources of original signal, whereas under the FE-ICA 

method, it was removed by PCA at the pre-processing stage. The missing component in the 

BSS-ICA method may reappear when the number of ICs is increased. The automated 

identification of the ICs, which contain mainly noise, was implemented in the BSS-ICA 

method. The identification of these noise ICs is based on the fact that noise signal is more 

Gaussian than that of the metabolite and MMLip components. 

When the SNR increases to 10 in the de-noised case, the effect of removing the noise makes 

less difference to the result of the FE-ICA method than those of the BSS-ICA method. It is at 

this level of SNR that the BSS-ICA method begins to outperform the FE-ICA method. The 

BSS-ICA method restores almost all the original metabolite and MMLip components except 

where there is significant overlapping of MMLips with metabolites. The FE-ICA method 

tends to be better than the BSS-ICA method where overlapping peaks are present, in 

particular where broad and narrow signals overlap; but it gives ICs that combine metabolite 

and MMLips at other frequencies. This is consistent with the assumptions taken in the BSS-

ICA and FE-ICA methods by ICA. These overlapping peaks should be more correlated with 

each other than with the rest of the components, thus the assumption in the BSS-ICA method 

might not be entirely true in this condition and the assumption in the FE-ICA method seems 

to be more suitable for this condition. Combining the advantages of FE-ICA and BSS-ICA 

methods could improve the quality of the ICs, which will be investigated in details in the next 

chapter. 
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With a good SNR (greater than 10), the BSS-ICA method appears to perform better than the 

FE-ICA method, even with small numbers of spectra in the dataset. As can be seen in Figure 

7.5, on varying the number of spectra available in the synthesised dataset, the ICs from the 

BSS-ICA method remain accurate. The results from the FE-ICA method improve when the 

number of spectra increases to 300; while further increasing the number of spectra had no 

marked effect on the resulting ICs. The error bars on the results of the BSS-ICA method are 

generally smaller than those of the FE-ICA method, indicating that BSS-ICA method 

performs more consistently than the FE-ICA method. Theoretically, the BSS-ICA method can 

be applied to any dataset with a sample number greater than or equal to the original mixing 

sources. So even with a dataset size smaller than 300, as long as it is greater than or equal to 

the number of metabolite and MMLip components contained in the mixture, the BSS-ICA 

method should be working, but the FE-ICA method may not. 

Increasing the range of FWHM has an interesting effect on the FE-ICA method, its 

performance improves first before stabilizing for both the de-noised and noisy conditions. 

This suggests that the method is more robust and more effective on metabolite and MMLip 

components spectra over a wide range of frequencies compared to the BSS-ICA method. This 

can also be seen in the first part of Figure 7.3 where the MMLip components occupy a wider 

range of frequencies than the metabolite components. The experiment on magnetic field 

strength shows results consistent with the above. At higher field strength, the metabolite and 

MMLip components are generally narrower than those observed at lower field strengths. The 

results of the FE-ICA method are worse at 3T compared to those at 1.5T, showing that the 

FE-ICA method is less effective on narrow spectral components. The BSS-ICA method, on 

the other hand, performs better at 3T than at 1.5T, indicating that it is more effective when the 

components are narrower and preferably not overlapping.  
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The FE-ICA method has slightly higher tolerance for the peak frequency variations than the 

BSS-ICA method. If the frequency variations on the peak position are large, the ICA 

algorithm will treat them as different components. Hence, multiple ICs might be found with 

peaks closer to one another in the BSS-ICA method. 

The correlation coefficients between the estimated mixing matrices and the original mixing 

matrices are calculated for the synthesised datasets. It shows that for both methods, when ICs 

are closely related to the metabolite or MMLip components, the corresponding correlation 

coefficients of the mixing matrices are very close to 1. This indicates that the mixing vectors 

are successfully estimated with possibly some scale differences. When the ICs are distorted 

by overlapping peaks or multiple components, the corresponding correlation coefficients will 

have a strong correlation with more than one IC or have weak correlation with any IC. The 

scale differences are mainly caused by the normalization in the ICA algorithm, where the 

matrix S is normalized to have the standard deviation equal to 1 in its rows. As the estimated 

mixing matrix is strongly correlated to the original one with only some scale differences for 

these well estimated ICs, it could be used for quantification and classification purposes. 

However, the accuracy of those applications might be limited by the quality of the estimated 

ICs. This requires further study which is will be dealt with in the next chapter. 

The synthesised datasets are simulations of the three common tumour classes in paediatric 

brain tumours to demonstrate its applicability to real case data. However, the ICA method is 

not limited to those tumour classes, any brain tumour class or even metabolic case fulfilling 

the quality requirements examined in this study can be included in the dataset for analysis. As 

the baseline factor is not included in the synthesised dataset, when applying the ICA method 

on the experimental dataset, the baselines need to be removed prior to the analysis. 
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Similar results were obtained with the experimental patient dataset and the synthesised 

datasets. As in the synthesised case, for the FE-ICA method, the non-overlapping peaks of Cr, 

Cho, m-Ins and Lac appear in same ICs, and overlapping peaks are picked up undistorted. For 

the BSS-ICA method, non-overlapping metabolite and MMLip components are obtained as 

expected. The un-separated Cho peak in IC11 and IC13 could be explained by the peak 

frequency variations being greater than ±0.05 ppm. 

7.5 Summary 

The BSS- and FE-based ICA are capable of extracting individual metabolite and MMLip 

component from a set of MRS data that closely simulate in vivo MRS of childhood brain 

tumours. Similar results were obtained when the BSS-ICA and FE-ICA methods were applied 

to a quality controlled in vivo experimental MRS dataset. The BSS-ICA method is more 

sensitive to noise; therefore, de-noising is necessary before using ICA for the BSS-ICA 

method. The BSS-ICA method appears to outperform the FE-ICA method particularly with 

small numbers of spectra in the synthesised dataset. The FE-ICA method is more dependent 

on the number of spectra, so a large dataset is required when performing the FE-ICA method 

with ICA. We suggest that the BSS-ICA method gives better performance for the dataset with 

an SNR greater than or equal to 10, and a small range of FWHM and peak frequency 

variations for small or large number of spectra. The FE-ICA method should give better 

performance when a large dataset (greater or equal to 300) with low SNR (less than or 

approximately equal to 4) and large variations of FWHM and peak frequency are used. The 

optimal conditions for a reliable and repeatable experiment under either method, in the 

context of MRS analysis, are obtained with datasets with a minimum number of 300 spectra 

and an SNR greater than or equal to 10. The FE-ICA method is more robust and more 
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effective on metabolite and MMLip components’ spectra containing a wide range of 

frequencies, whereas the BSS-ICA method is more effective on spectra with frequencies over 

a narrow range. The FE-ICA method is limited in that it performs very poorly when a 

combination of metabolite and MMLip components appears in the same IC, and a large 

sample size is required. Most of the problems with the BSS-ICA method were caused by the 

overlapping peaks and the existence of high levels of noise.  

Since the advantages and limitations are different for both methods, combining the advantages 

of the two methods may compensate their disadvantages and lead to better decomposition 

results for revealing further hidden information in MRS. A novel ICA approach involving a 

hybrid of BSS and FE techniques for automated decomposition of a series of MR spectra is 

proposed in the next chapter, in which, the disadvantages of both methods are compensated 

by each other, hence a better decomposition result is generated. 
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CHAPTER 8 

A NOVEL HYBRID METHOD OF APPLYING ICA 

ON IN VIVO 
1H MR SPECTRA OF CHILDHOOD 

BRAIN TUMOURS FOR AUTOMATIC 

DECOMPOSITION 

8.1 Introduction 

In Chapter 7, a systematic comparison of the ability of ICA was performed on both simulated 

and experimental in vivo MRS datasets of childhood brain tumours (Hao et al., 2009b). It 

compared the performance of two ICA-based algorithms, i.e., FE and BSS algorithms and 

found that the FE-based ICA method is limited in that a combination of metabolite and 

MMLip components commonly appears in the same IC, and a large sample size is required, 

whereas most of the problems with the BSS-based ICA method were caused by overlapping 

peaks. It concluded that stable decomposition results could be achieved with 300 MRS at an 
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SNR (defined in LCModel (Provencher, 2009)) greater or equal to 10.  

Since both FE- and BSS-based ICA algorithms have their advantages and disadvantages, 

combining the two methods could potentially help compensate their problems and improve 

the decomposition on MRS data. The aim of this chapter is to improve the extraction of 

meaningful individual metabolite and MMLip components from the MRS dataset. A novel 

ICA approach involving a hybrid of BSS and FE techniques for automated decomposition of 

MR spectra is proposed. An SNR-based automatic feature dimension selection algorithm is 

also proposed together with the hybrid ICA algorithm. Experiments on synthesised and 

experimental in vivo childhood brain tumours MRS datasets are performed to show that the 

new hybrid independent components (ICs) comprise the advantages of both BSS-ICA and FE-

ICA results.  

8.2 Theory 

8.2.1 BSS- and FE-based ICA  

Recall from Chapters 3 and 4 that the ICA algorithm can be applied to a mixture observation 

matrix X  to derive S  by the following linear transformation, 

 X = AS  (8.1)  

 S = BX  (8.2)  

where B  is the unmixing matrix, pinv( )B A , which is estimated based on the maximization 

of independency of S . 
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The unmixing processing usually consists of two steps, i.e. the whitening and separating steps. 

In the whitening step, the observed signal X  is decorrelated. The signal dimension reduction 

can also be performed during this step based on eigenvalue feature selection criterion (Jolliffe, 

2002). In the separating step, an orthogonal separation matrix is estimated based on 

maximization of independency criteria.  

As presented in last chapter, the ICA algorithm can be applied in two ways. One is based on 

the independency of the metabolite and MMLip components, which is referred as the BSS-

based ICA method. The other is based on the independency of their concentration coefficients, 

i.e. the FE-based ICA method. For a given MRS dataset, once the concentration coefficients 

are known, the corresponding metabolite and MMLip components can be uniquely 

determined.  

For the BSS-ICA method, the assumption taken is that the metabolite and MMLip 

components are statistically independent from each other. However, this is not always the 

case. The experimental results from Chapter 7 (Hao et al., 2009b) showed that this 

assumption worked well to extract the metabolite and MMLip components that are not 

overlapping with each other. But when the overlapping happens, the resultant ICs are 

truncated by each other.   

The FE-ICA method is based on the idea that the observed signal is a composition of many 

bases with different weighting coefficients. In this case, the bases are spectra of metabolite 

and MMLip components and composition weighting coefficients indicate their concentrations 

for the mixture. The concentration coefficients are considered independent from each other. In 

the FE-ICA method, the concentration coefficients matrix will be S , the metabolite and 

MMLip components matrix will be A  (with spectra of metabolite and MMLip as its column 
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vectors) in equation (8.1). The FE-ICA algorithm will recover the concentration coefficients 

FE
m lS , and as such FE

d mA  can be determined. The experimental results from Chapter 7 show 

that this method does not have a problem with overlapping peaks in the same way as the BSS-

ICA method does. It can extract the overlapping peaks in an intact manner. The problem with 

FE-ICA though is that a single IC may contain peaks from many different metabolites.  

A hybrid ICA algorithm combining the advantages of the above mentioned two approaches is 

needed. In the next section we present a hybrid ICA method, which incorporates the 

advantages of both BSS-ICA and FE-ICA methods. 

8.2.2 Hybrid ICA algorithm 

The proposed hybrid ICA algorithm flow chart is illustrated in Figure 8.1. The MR spectra are 

de-noised at the beginning of the process by wavelet shrinkage de-noising. The BSS-ICA 

decomposes the de-noised MRS dataset as BSS BSS
m d m l l d  S B X , where dimension is reduced to 

m  by the method described in the previous section. 
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Figure 8.1: The hybrid ICA algorithm flow chart. 
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As the overlapping peaks produce distorted ICs in the results, they are identified by the 

following two steps. 

First, the column vectors in the estimated mixing matrix BSS
l mA  are checked. Since 

BSS BSS
l d l m m d  X A S , according to the ICA theory, if BSS

l mA and BSS
m dS are the solution of the 

problem, then BSS
l mA  is a permuted version of A . While if BSS

l mA  and BSS
m dS  are not the solutions, 

some row vectors of BSS
m dS  may still be the linear combinations of the original sources, and the 

corresponding column vectors of BSS
l mA  will be linear combinations of the column vectors of 

the true mixing matrix A . In this case, the correlation between these column vectors of BSS
l mA  

will be strong.  

The correlation coefficient between two columns is defined as the covariance of the two 

columns divided by the product of their standard deviations as shown below: 

 cov( , )
( , ) i j

i j
i j

R
 


a a

a a  
(8.3)  

where ia  and ja are the ith and jth column of matrix A, respectively. A threshold is set to find 

the strongly correlated columns of BSS
l mA , hence the IC groups.  

Next, within these groups, the ICs with overlapping local minimum and maximum points are 

identified. The differences between the adjacent points for each IC vector 1[ ,... ]ms s   (row of 

BSSS ) are examined.  



 

 157 

 
1 1 2[ ,... ] [ ,... ]m ms s s s diff  (8.4)  

Locate the indices of the points where there is a change of sign in the vector diff. If it changes 

from positive to negative, the index corresponds to a local maximum point in the IC; 

otherwise, it is a local minimum point. To account for the noise factor in the ICs, we also 

check if the difference between adjacent local maximum and minimum is greater than certain 

threshold, here we set the threshold to be 1/3 of the difference between the global max/min 

points for each IC.  

The subsets of BSSA  and BSSS corresponding to the overlapping ICs 1,... Kk k  are used to 

reconstruct a new dataset to the same dimension as the original one, as shown in the equation 

below: 

 rec BSS BSS
l d l K K d  X A S  (8.5)  

where rec
l dX  is the reconstructed dataset from the 1,... Kk k  overlapped ICs and their 

corresponding mixing coefficients. 

After this step, the reconstructed dataset contains only the overlapping components. Then the 

FE-based ICA is performed on the reconstructed datasets from each of the IC groups. The FE-

ICA algorithm is applied on rec( )T
l dX  to obtain FE

K dB , in this case, the dimension is reduced 

from l  to K . The estimate of the original metabolite and MMLip components will be the 

column vectors of FE FEpinv( )d K K d A B . To make it more consistent with the result format from 

the BSS-ICA, the metabolite and MMLip components obtained from this step are normalised 

to have a standard deviation equal to 1, the same as in the BSS-ICA. These procedures are 



 

 158 

repeated for each of the overlapping IC groups.  

To check if the results from the FE-ICA are properly extracted, a further procedure of local 

min/max identification is executed. In most of the cases, the FE-ICA results will be properly 

extracted, and the algorithm will output its final results. However, in some complex cases, the 

resultant ICs from the FE-ICA still contain some multiple metabolites, and a further BSS-ICA 

method is needed to separate them.  

8.3 Methods 

8.3.1 Synthesised datasets 

Various sets of synthesised MR spectra of three types of childhood brain tumours (TE = 30 

ms, 1.5T and 3T) were generated using the basis sets 1 and 2 described in Chapter 5. 

The mean and standard deviation of each metabolite and MMLip components concentrations 

were set to these observed in average in vivo MR spectra of the three classes of childhood 

cerebellar tumours (Davies et al., 2008), namely astrocytoma, ependymoma and 

medulloblastoma, as shown in Table 5.1. 

The sum of correlation coefficients between the obtained ICs and the original individual 

metabolite and MMLip components was used as a measure of the quality of the resulting ICs 

for the synthesised datasets. IC correlated more closely to its original component will have a 

correlation coefficient closer to 1. Each of the synthesised results, presented in the next 

section, was the average of 200 repeated experiments and with a 95% confidence interval 

calculated by a bootstrap re-sampling method (as described in section 5.2.5).  
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8.3.2 Experimental dataset 

The same 115 experimental spectra obtained from the two quality control criteria in Chapter 7 

are used here. The correlation coefficients between the obtained ICs and the simulated 

metabolites from (Reynolds et al., 2006) or basis MMLip components from LCModel are 

used as a measure of the quality of the resulting ICs.  

8.4. Results 

8.4.1 Feature selection algorithm evaluation on synthesised data 

The proposed SNR-based feature dimension selection algorithm was evaluated using the 

synthesised datasets (minimum LCSNR ≥10) described in section 5.3.1, and the experiments on 

synthesised datasets show the following: 

1. If the kurtosis of the set of ESNR  for the dataset is negative or close to 0, then the 

average ESNR  for the dataset is used to calculate the percentage of the clean 

signal power over the noisy signal power in equation (5.6); therefore, the 

dimension to be reduced to is determined with an error of ± 3. 

2. If the kurtosis of the set of ESNR  is much greater than 0, we can plot the 

histogram of the set of ESNR , and exclude the outliers. Since kurtosis is very 

sensitive to outliers, its value may depend on only a few observations in the tails 

of the distribution. Removing the outliers is eventually reducing kurtosis to a 

smaller value. Then the maximum ESNR  is used in equation (5.6) as in the 

previous condition.  
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This method only gives an estimation of the starting point for dimension reduction, as the 

LCSNR  from LCModel fit is still an estimation of the true unknown SNR value.  

8.4.2 Synthesised data basis set 1 

Each synthesised dataset consists 60 spectra with an average LC 20.8SNR   and FWHM = 5.5 

Hz. It was shown in the study by Hao et al. (Hao et al., 2009b) that the BSS-ICA method 

produces stable and realistic ICs with small and large datasets. Hence, small sized synthesised 

datasets (60 spectra) were used to make sure our experiments are robust. The ICA algorithm 

was applied on the wavelet de-noised dataset. One example set of the results from the BSS, 

FE and hybrid ICA methods are shown in Figure 8.2. It can be seen that the BSS-ICA method 

gives overlapping peaks in IC3, IC4 & IC6, and IC9 & IC10. Most of the FE-ICA method 

results have multiple metabolites or MMLip components in one IC. The hybrid ICA method 

restores all the overlapping ICs, which are distorted in the BSS-ICA method. The hybrid ICA 

results are very similar to the original individual simulated metabolites and MMLip 

components used. For the BSS, FE and hybrid ICA methods, the average sum of correlation 

coefficients (from 200 repeated experiments) with their 95% confidence intervals by 

bootstrapping are 8.89 (8.88 - 8.90), 7.67 (7.60 - 7.75) and 9.12 (9.06 - 9.18), respectively. 

The hybrid ICA method has the highest value among the three methods which indicates that 

the ICs from the hybrid ICA method are indeed more closely related to the original 

components in the basis set. 
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Figure 8.2: The 10 ICs obtained from 60 MRS synthesised dataset using (a) BSS, (b) FE and (c) Hybrid ICA methods labelled with the corresponding 
metabolite and MMLip components, (d) the synthesised metabolites and MMLips are plotted for comparison. It can be seen that the IC3 and IC9 from 

hybrid ICA results in (c) are improved compare to IC4 and IC10 from BSS-ICA results in (a) which correspond to IC9, MMLip1.30, and IC10, MMLip2.05 
in (d). The extraction of individual metatoblites and MMLips by the FE-ICA (b) are not very successful as several combinations of metatoblites and 

MMLips present in most of the ICs.
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8.4.3 Synthesised data basis set 2 

Further experiments were performed on more complex synthesised datasets using basis set 2. 

The hybrid ICA method performs better than BSS-ICA and FE-ICA methods again. Similar 

as in the last section, the average sum of correlation coefficients for the BSS, FE and hybrid 

ICA methods with their 95% confidence intervals are 10.61 (10.59-10.63), 10.35 (10.27-10.44) 

and 11.63 (11.58-11.67), respectively. One example result is shown in Figure 8.3, and the 

correlation coefficients between all the resultant ICs and the simulated components are shown 

in Table 8.1 for the hybrid ICA method. The ICs are assigned to their most correlated 

metabolites or MMLip components (highlighted in grey colour). The sum of their correlation 

coefficients is 11.61, which lies in the 95% confidence interval for the hybrid ICA method. 

The corresponding concentration for each IC also has the strongest correlation with its 

simulated value, which confirms with the findings in Table 8.1. 
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Figure 8.3: The 14 ICs obtained from 60 MRS synthesised dataset using (a) BSS, (b) FE and (c) Hybrid ICA methods labelled with the corresponding 
metabolite and MMLip components, (d) the synthesised metabolites and MMLips are plotted for comparison. Similar as in Figure 8.2, the ICs 

corresponding to overlapping metabolites or MMLips are better extracted (c) than in (a). 
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Table 8.1: The correlation coefficients between the resultant ICs and the simulated metabolite and 
MMLip components for synthesised data basis set 2. 

 

8.4.4 Experimental dataset 

The kurtosis of the 115 SNRE of the experimental dataset is 25.6. The histogram of the SNRE is 

plotted and shown in Figure 8.4. The outliers are the three very high valued ESNR near the 

right end of the plot. The dimension should be reduced to approximately 29 (±3) according to 

equation (5.6). The experimental dataset dimension is reduced to 28 as no more 

distinguishable new metabolite or MMLip components are shown after this value.   
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Figure 8.4: The histogram of SNRE for the experimental dataset. 

 

Figure 8.5 shows the resultant ICs from the set of 115 in vivo experimental MR spectra. The 

ICs are assigned to the metabolite or MMLip with the largest correlation. The sum of 

correlation coefficients between the resultant ICs from the experimental dataset and the 

simulated metabolite and MMLip components for BSS, FE and hybrid ICA methods are 

17.12, 21.11 and 22.83, respectively.  

For the hybrid ICA method, the correlation coefficients between the 28 ICs and the simulated 

components are evaluated and their three highest values are shown in Table 8.2. The ICs are 

assigned to their most correlated metabolite and MMLip component. The simulated 

metabolites are generated from the same simulator used for the synthesised dataset in this 

research work, and the simulated MMLip components are obtained from the LCModel basis 

spectra parameters (Provencher, 2009). Most of the ICs obtained from the hybrid ICA method 

have a strong correlation with the simulated metabolite and MMLip components. 
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Figure 8.5: The 28 ICs obtained from 115 experimental MRS experimental dataset using (a) BSS, (b) FE and (c) Hybrid ICA methods labelled with the 
corresponding metabolite and MMLip components, (d) the synthesised metabolites and MMLips are plotted for comparison. Similar to the synthesised cases, in 

(c), the extraction of overlapping metabolites and MMLips, such as Gly, m-Ins, Cr Lac MM2.08 and MMLip at around 1.30ppm, are  improved compare to the ICs 
in (a).
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Table 8.2: The correlation coefficients between the resultant ICs and the simulated metabolite and 
MMLip components for the experimental dataset. The highest three correlation coefficients are shown 
in this table, where the first highest correlation coefficient between the metabolites and MMLips and 

the resultant ICs are very close to 1 in most of the cases.  
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8.5 Discussion 

The hybrid ICA method was applied to both synthesised and experimental MRS datasets to 

decompose them into individual metabolite and MMLip components. The results show that 

the hybrid ICA method demonstrates the advantages of both BSS and FE-based ICA methods, 

while it overcomes their individual limitations.  

For the BSS-ICA method, the overlapping mostly occurs when one or more narrow peaks lie 

in the same range with a broad peak. It can be easily shown that in this case, the metabolite 

and MMLip components are not statistically independent from each other by calculating the 

correlation coefficient between them. As shown in our synthesised data, the absolute value of 

correlation coefficients between the overlapped components are all greater than 0.58 (at 

FWHM = 5.5 Hz), which is not a weak correlation and, therefore, not statistically 

independent from each other. The correlation coefficients between the others are much 

smaller, which can be considered as weak correlation. Although independent variables are 

uncorrelated, uncorrelatedness does not imply independence. Here we are not trying to prove 

the statistical independence of those components, but to show the non-independence of the 

overlapping components. 

The fundamental difference between the BSS-ICA and FE-ICA methods is their assumptions 

on statistical independence. In contrast with the BSS-ICA method, where the metabolite and 

MMLip components are treated as statistically independent from each other, the FE-ICA 

method assumes the independency of the concentration coefficients of different metabolite 

and MMLip components. Experiments imply that the concentrations (linear mixing) of these 

overlapping components are independent, or at least are more independent than the 

overlapping components themselves. This may explain why these overlapping components 
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can be better extracted from their mixture spectra by FE-ICA method.  

The BSS-ICA is placed as the first step of the hybrid ICA algorithm, because it works under a 

smaller size of dataset. This makes the hybrid ICA method more efficient, since collecting a 

large dataset of MR spectra may not always be possible. We have also shown by Hao et al. 

(Hao et al., 2009b) that BSS-ICA method generally produces ICs more correlated to the 

original signals than the FE-ICA method. Another reason to use the BSS-ICA first instead of 

FE-ICA is that the FE-ICA result may be dominated by a few very high peak components, 

like the MMLip components, and combinations of several components may present 

throughout the resultant ICs. This will make the next stage analysis complex in terms of 

information to be included, and number of new ICs to be determined.  

The size of the matrix BSSA  is usually much smaller than matrix BSSS , so examining BSSA  

first for the overlapping ICs identification should reduce the choices of potential overlapping 

ICs to a smaller one. Hence, there is less computational complexity compared with 

examining BSSS  directly for identification.  

For the synthesised datasets, the hybrid ICA method restores the same number of metabolite 

and MMLip components as the original synthesised components. Their mixing matrix has a 

very high correlation with the original one. In the synthesised data basis set 1 experiment, the 

problem with BSS-ICA method is extracting the overlapping components of NAA & MMLip 

at 2.05 ppm, and Ala, Lac & MMLip at 1.30 ppm. The FE-ICA method cannot separate Cr, 

Cho & m-Ins and Cho & Lac. These problems were mostly solved by the hybrid ICA method 

and most of the simulated basis components were restored. 

The experiments on synthesised data using basis set 2 deal with a greater degree of 

complexity since pairs of metabolites are included, which have a similar lineshape and appear 
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at a similar frequency, notably PCh & GPC, Gly & m-Ins and Gln & Glu. From Figure 8.3, 

the hybrid ICA method produces ICs corresponding to all of the metabolite and MMLip 

signals. In particular, there are two ICs that correspond to each of the pairs of overlapping 

metabolites showing that the hybrid ICA method can detect the presence of more than one IC 

from signals, which have a large degree of spectral overlap. This is particularly impressive 

for PCh and GPC, since not only are their MRS signals very similar but the amount of PCh is 

small in astrocytoma and ependymoma, reducing the effective number of cases. From Table 

8.1, the ICs, which correspond to the strongly overlapped metabolites, show large 

correlations with each of the two signals, however, this is as to be expected since the signals 

overlap considerably.  

While the resultant ICs from the hybrid ICA method are normalised to have standard 

deviation equal to 1, the original mixing matrix can be easily recovered by simply dividing 

the mixing matrix by the true standard deviation of the ICs from theoretical values. For IC13 

and IC14, they are assigned to Gln and Glu, respectively. Although, the correlation 

coefficients between these metabolites and their concentrations indicate that it is the best 

choice for assignment, their correlations are not as strong as for the rest of the ICs. This could 

be due to their very similar spectra shapes in low magnetic fields and the presence of noise.  

We have chosen not to use guanidoacetate (Gua) in the synthesised dataset experiments, as 

this is not one of the most commonly quantitated metabolites in vivo. However, our 

algorithm’s result is originating from the experimental data clearly identifies Gua as an 

independent component and verifies its existence. Therefore, we have generated a simulated 

Gua quantity for identification and comparison purposes within the experimental dataset. 

For the experimental dataset, similar results were obtained to those in the synthesised 

experiments. The hybrid ICA method picks up most of the metabolite and MMLip 
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components within 28 ICs, whereas the BSS-ICA and FE-ICA suffer from the same problems, 

as revealed by the synthesised datasets. For example, the BSS-ICA results, IC17 in Figure 8.5 

is very similar to the synthesised IC8 in Figure 8.3, indicating that the m-Ins IC was distorted 

by Gly. In Figure 8.5(c), the NAA and MMLip peaks at 2.05 ppm are restored. Several 

MMLip components are present in the range of 1 ppm to 1.5 ppm, with little trace of Lac in 

IC4 & IC5. The IC7, IC8, IC17 & IC27 are strongly correlated to Gly and m-Ins, but more to 

Gly in IC8 & IC27. In IC22, the two Cr peaks are shown and better than in the BSS-ICA and 

FE-ICA method. It showed that Gly and m-Ins were both present, and Glu & Gln could be 

detected. A metabolite assigned to Gua does exist and needs assigning. 

For the hybrid ICA results, some ICs are very similar. This may be accounted for by the 

presence of metabolites with similar MRS signals such as those used in simulated bases set 2, 

e.g. PCh and GPC. It may also reveal the presence of other metabolites not hitherto discussed 

such as choline and phosphatidyl choline. The area around 3.8 ppm is particularly interesting 

since the assignment of a singlet in this region to Gua is controversial in tumour spectra. 

However, one IC corresponds to a signal, which appears as a singlet in this region but a 

second similar signal appears at a slightly different ppm and a more complex signal also 

occurs in the same region. The hybrid ICA method, therefore, starts to give some insight into 

complex regions of the MRS of childhood brain tumours, which has not been available 

previously. 

Although the hybrid ICA method can reveal the presence of multiple metabolite signals, 

which strongly overlap, some ICs may also represent variability in the data from the known 

metabolites. This effect may be caused by differences in FWHM of these peaks or by 

referencing the spectra to the Cr peak at around 3.2 ppm or to the NAA peak at 2.01 ppm 

when the Cr peak is low or absent in the experimental dataset. As the experimental MR 
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spectra are collected under different pH and temperature environments, there might be slight 

variations of the metabolite and MMLip components peak positions. Increasing the number 

of ICs will result in more repeated components with frequency shifting and FWHM 

difference.  

Additional confidence in the biological validity of the ICs may be obtained by comparing the 

various methods. Since there are several overlapping components in the ICs, the BSS-ICA 

results are mostly distorted. Therefore, the sum of correlation coefficients is higher for the 

FE-ICA method than for the BSS-ICA method. However, the Gua is successfully restored in 

both BSS-ICA and FE-ICA methods, suggesting that Gua is independent from the other 

metabolite and MMLip components in both spectrum shape and its concentration.  

Another approach of estimating the dimension is examined, and the results are shown in 

Table 8.3.  Each of the estimated dimensions for synthesised datasets shown in Table 8.3 is 

an average from 100 repeated experiments on the synthesised datasets (with minimum 

SNRLC≥10 and varying mean SNRs). Four approaches of choosing the SNR values for 

equation (5.6) are examined in the experiment, and it shows that the mean SNR of a dataset 

gives closer estimate of the true dimension in all the conditions. The kurtosis is calculated as 

an indication of the distribution of the dataset’s SNRs. The proposed method gives more 

accurate estimate for Gaussian distributed SNRs than for non-Gaussian (sub- and super-

Gaussian) distributed ones. The estimated dimension for dataset with non-Gaussian 

distributed SNRs is generally smaller than its true value, and the difference between the 

estimated dimension and the true dimension tends to grow slowly with larger dimension 

values. As shown in Table 8.3, this difference is less than one for 10ICs, and is about 2 for 

14ICs. 

The last row of Table 8.3 gives the estimated dimensions using the experimental dataset. The 
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SNRs in patient dataset has a non-Gaussian distribution. The proposed method gives an 

estimated dimension of 15 by using the mean SNR. Based on the findings from synthesised 

data experiments, the estimated dimension should be smaller than its true dimension and the 

difference between them should be around 3. So the dimension to be reduced for patient 

dataset should be around 18.  

 

Table 8.3: The estimated dimensions by the proposed feature dimension selection method for 
synthesised datasets with various SNR distributions. 

 

Estimated dimensions of the synthesised datasets 
from 

 SNRs distributions 
Kurtosis 
of SNRs Maximum 

SNR 
Minimum 

SNR 
Mean 
SNR 

Median 
SNRs 

SNRs with a sub- 
Gaussian 

distribution 
-1.33  18.55 3.95 9.01 9.17 

SNRs with a 
Gaussian 

distribution 
0.67 31.81 4.02 10.22 8.98 

Basis set 1 

(10 metabolite 
and MMLip 
components) 

SNRs with a super- 
Gaussian 

distribution 
23.90 39.93 2.00 10.06 7.97 

SNRs with a sub- 
Gaussian 

distribution 
-1 27.25 6.00 12.38 12.33 

SNRs with a 
Gaussian 

distribution 
0.21 34.20 4.08 14.44 10.17 

 

Basis set 2 

(14 metabolite 
and MMLip 
components) 

SNRs with a super- 
Gaussian 

distribution 
23.85 42.22 2.00 12.52 9.70 

Experimental 
dataset 

SNRs with a super- 
Gaussian 

distribution 
23.60 31 3 15 13 
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Figure 8.6 shows the resultant ICs from the set of 115 in vivo experimental MR spectra. The 

dimension reductions for values around 18 are also examined. For the hybrid ICA method, 

the difference between dimension 15 and 16 is IC18, Cr peak at 3.2ppm, in Figure 8.6(c). IC9 

Lac first time appears in dimension 17. IC12 Gly is added in for dimension 18 but not for 

dimension 17. An IC very similar to IC18 is repeated in dimension 19. In dimension 20, a flat 

and broad IC appears. 
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Figure 8.6: The 18 ICs obtained from 115 MR spectra experimental dataset using (a) BSS, (b) FE and (c) Hybrid ICA methods labelled with the corresponding 
metabolites and MMLip components, (d) the synthesised metabolites and MMLips are plotted for comparison. By choosing a smaller dimension, the problem of 

repeating metabolite ICs appeared in Figure 8.5(c) are eliminated. The improvement of hybrid ICA (c) when dealing with overlapping metabolites and MMLips are 
obvious compared to (a).   



 

 176

The sum of correlation coefficients between the resultant ICs from the experimental dataset 

and the simulated metabolites and MMLip components for BSS, FE and hybrid ICA methods 

are 12.96, 13.25 and 15.60, respectively. For the hybrid ICA method, the correlation 

coefficients between the 18 ICs and the simulated components are evaluated and their three 

highest values are listed in Table 8.4. 

It can be seen that for this approach, the new reduced dimension of 18 gives less repeated or 

similar shaped ICs compared with reducing the dimension to 28. However, actually existence 

of those missing ICs are uncertain, and this will be investigated in future study. 

Table 8.4: The correlation coefficients between the resultant ICs and the simulated metabolites and 
MMLip components for the experimental dataset. 

 

 

Three highest correlation coefficients 

(in descending order) 

Ala IC9 (0.44) IC2 (0.43) IC3 (0.34) 
GPC IC15 (0.95) IC1 (0.95) IC13 (0.89) 
Cr IC10 (0.93) IC18 (0.22) IC2 (0.06) 
Lac IC2 (0.94) IC9 (0.91) IC3 (0.79) 
NAA IC7 (0.96) IC8 (0.66) IC2 (0.07) 
m-Ins IC4 (0.92) IC12 (0.81) IC9 (0.15) 
Tau IC16 (0.80) IC13 (0.37) IC15 (0.28) 
PCh IC15 (0.96) IC1 (0.96) IC13 (0.91) 
Gln IC2 (0.94) IC9 (0.91) IC3 (0.79) 
Glu IC11 (0.75) IC8 (0.32) IC7 (0.28) 
Gly IC4 (0.90) IC12 (0.87) IC9 (0.07) 
Gua IC17 (0.96) IC18 (0.09) IC2 (0.07) 
Lip13a  IC5 (0.97) IC3 (0.96) IC2 (0.96) 
Lip13b  IC5 (0.98) IC3 (0.96) IC2 (0.87) 
Lip13c IC3 (0.99) IC5 (0.96) IC2 (0.88) 
Lip13d IC5 (0.98) IC3 (0.89) IC2 (0.85) 
Lip09 IC6 (0.95) IC14 (0.17) IC11 (0.15) 
MM09 IC6 (0.95) IC14 (0.12) IC11 (0.12) 
Lip20 IC8 (0.88) IC7 (0.75) IC11 (0.31) 
MM20 IC8 (0.86) IC7 (0.57) IC11 (0.38) 
MM12 IC5 (0.85) IC2 (0.84) IC14 (0.82) 
MM14 IC2 (0.83) IC9 (0.79) IC3 (0.71) 
MM17 IC14 (0.37) IC2 (0.18) IC4 (0.14) 
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8.6 Summary 

The proposed hybrid ICA method combines the advantages of the BSS and FE-based ICA 

methods, whilst at the same time overcoming their disadvantages when dealing with MR 

spectra. The results demonstrate that the hybrid ICA method provided more realistic 

individual metabolites and MMLip components than the BSS-ICA and FE-ICA method alone 

for both synthesised and experimental datasets. It can aid metabolite identification and 

assignment. The hybrid ICA method has the potential for extracting biologically useful 

features and discovering biomarkers. However, the identification of metabolites and MMLip 

components with very similar peak positions and lineshapes, such as PCh and GPC, or Glu 

and Gln, may be confusing in some cases, and this needs further investigation. The mixing 

matrix, which is closely related to concentrations of the metabolites and MMLip components, 

could be used to construct classifiers. These will be investigated in further studies.  

  



 

 178

CHAPTER 9  

CONCLUSION 

9.1 Summary 

This thesis presents a study of applying ICA on in vivo MR spectra of childhood brain 

tumours. To fully explore the ability of ICA on this type of data, four objectives have been 

set at the beginning of this study.  

As the in vivo MR spectra are often characterized by low SNRs, a de-noising step is needed 

before being processed by ICA. So the first objective of this thesis was to enhance the MR 

spectra before decomposition. The conventional de-noising process usually only focuses on 

the real part of the MR spectrum and ignores the imaginary part. A novel WSD-based MRS 

enhancement algorithm, which utilises both the real and imaginary parts of a spectrum, has 

been proposed in this thesis. A relationship between the real and imaginary parts of the MR 

spectrum is derived, which improves the de-noising result by adding the useful information 

contained in the imaginary part of the spectrum. The de-noised spectra SNRs obtained by this 

algorithm are compared with the results from the conventional methods, which apply WSD 

on FID signal and on the real part of the MR spectrum. The results show that the new 
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approach can perform 1.46 times better than de-noising solely on the real part of the spectrum 

and 1.70 times better than on the FID signals.  

The common approach followed in choosing dimensionality reduction in ICA is by trial and 

error. An accurate estimate of the dimension could aid the next stage ICA decomposition. To 

help make the ICA application more sensible to our MRS dataset, the second objective of the 

thesis was to find a dimension reduction guideline in the context of MRS. We have proposed 

a feature dimension reduction method based on the SNR values of the MRS dataset. The 

percentage of the information contained in the dataset is estimated from the overall SNR. 

This can be used as a guideline for the first stage ICA feature dimension reduction. 

Experiments on synthesised data confirmed the usefulness of this method. 

ICA has the potential to automatically decompose a set of MR spectra into the individual 

metabolite and MMLip components. Most of current studies on the ICA application to MRS 

were ambiguous about how ICA works on MRS data. The third objective of this thesis was to 

study the ability of ICA on the MRS dataset. A systematic comparison between the two 

approaches of ICA, the BSS and FE methods, on synthesised in vivo MR spectra of childhood 

brain tumour datasets was performed. It has been found that applying ICA on simulated data 

could extract individual metabolite and MMLip components from a set of MRS data. The 

BSS-ICA method generates ICs with a closer correlation to the original metabolite and 

MMLip components than the FE-ICA method when the number of spectra in the dataset is 

small. The optimal conditions for a reliable and repeatable experiment under either method 

can be obtained with a minimum number of 300 spectra and SNR values greater than or equal 

to 10. The FE-ICA method is relatively insensitive to different ranges of FWHM (from 0 to 3 

Hz), whereas the BSS-ICA method degrades on increasing the range of FWHM. The peak 

frequency variations do not affect the results within the range of ±0.08 ppm for the FE 
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method, and ±0.05 ppm for the BSS-ICA method. The FE-ICA method is more robust and 

more effective on metabolite and MMLips spectra containing a wide range of frequencies, 

whereas the BSS-ICA method is more effective on spectra with frequencies over a narrow 

range. The FE-ICA method is limited in that it performs very poorly when a combination of 

metabolite and MMLip components appears in the same IC, and a large sample size is 

required. Most of the problems with the BSS-ICA method are caused by the overlapping 

peaks and the existence of high levels of noise. Similar results are obtained when the BSS-

ICA and FE-ICA methods are applied to a quality controlled in vivo MRS of experimental 

dataset. 

By achieving the third objective, the abilities of BSS-ICA and FE-ICA on in vivo MRS 

dataset are revealed for the first time in the MRS research. The fourth objective of this thesis 

is to improve the ICA method in the automatic decomposition of the MRS dataset into 

meaningful metabolite and MMLip components. A novel ICA approach involving a hybrid of 

BSS and FE techniques for automated decomposition of a series of MR spectra has been 

proposed. It combines the advantages of both BSS-ICA and FE-ICA methods. Experiments 

were performed on synthesised and experimental in vivo MR spectra of childhood brain 

tumour datasets. It has been demonstrated that the proposed hybrid ICA method provided 

more realistic individual metabolite and MMLip components than the BSS-ICA and FE-ICA 

method alone for both synthesised and experimental datasets. It can aid metabolite 

identification and assignment. The hybrid ICA method has the potential for extracting 

biologically useful features and discovering biomarkers.  

The techniques developed in this thesis have been used for the clinical research of Childhood 

brain tumour cases from Birmingham Children's Hospital and has shown some interesting 

results. For example, it provides further evidence for the existence of a singlet peak at 3.8 
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ppm in childhood brain tumours, which has tentatively been assigned to Gua in the literature 

(e.g. (Panigrahy et al., 2006)). The assignment of this peak requires confirmation and its 

significance warrants further investigation. 

9.2 Future research 

As the imaginary part of the spectrum is just at a different phase stage (− / 2 ) with the real 

part of the spectra, it should contain the same amount of information as the real part, but with 

different noise details. Using only the real part of the MR spectrum for any analysis may 

cause bias with a high level of noise. If we could also include the imaginary part of the MR 

spectrum in the same process, and compare it with the real part using their relationship 

derived in this thesis, it may reduce the possibility of bias by unknown effects. In this thesis, 

we only used this relationship to reduce the bias in de-noising, but there could be many other 

situations in analysing MRS when it might be useful. For example, in the hybrid ICA 

experiments, only the real parts of the MR spectra were examined. It could also be applied on 

both the real and imaginary parts of the spectra, and further improvement may be achieved by 

comparing the obtained ICs from both parts.  

If the MR spectra for various tumour types are large enough, the mixing matrix obtained for 

the hybrid ICA method, which is closely related to concentrations of the metabolite and 

MMLip components, could be used to construct the brain tumour classifiers, and possibly, 

reveal new biomarkers. However, the identification of metabolite and MMLip components 

with very similar peak positions and lineshapes, such as PCh and GPC, or Glu and Gln, may 

be confusing in some cases, and this needs further investigation. 

In the case where metabolites are under represented in the spectrum, they could still be 

extracted. One possible method is to remove all the extracted ICs from each MR spectrum 
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and check if there is still information left by visual inspection or by checking the non-

Guassianity of the remaining spectrum, and perform accordingly. However, if the noise level 

is high, there is the possibility that the under represented metabolite will be buried in the 

noise. In that case, a better de-noising method or acquisition procedure is needed. 

The fundamental difference between the traditional ICA method and the proposed hybrid 

ICA algorithm is in the assumption of statistical independence. The traditional ICA method 

assumes the statistical independence strictly in the original sources for the BSS approach and 

in the extracted features for the FE approach. However, the hybrid ICA method looses this 

assumption slightly, where the independence can be either in the original sources or in its 

mixing matrix. Hence, it obtains a hybrid of independent components. It has been confirmed 

that for the MRS data, the slightly loosed assumption is a closer fit to the true model of the 

MRS data. This can be explained as that for the overlapping (strongly correlated) metabolite 

and MMLip components, their mixing coefficients (concentrations) are more independent 

from each other than their individual spectra lineshapes.  

In the general context of digital signal processing, there may be other types of signals, which 

fit better to the loosed independence assumptions. The hybrid ICA method may improve the 

decomposition for these types of signals compared with the traditional ICA algorithms.  

Magnetic resonance spectroscopic imaging (MRSI) is a powerful technique for metabolic 

imaging. MRSI allows the detection of metabolic profiles from multiple spatial positions (de 

Graaf, 2007). The multi-voxel spectra make MRSI a perfect candidate for the hybrid ICA 

method. The correlated spectra in adjacent voxels should be an advantage compared to single 

voxel MR spectra. The decomposed ICs and their corresponding concentrations could be 

mapped onto the corresponding patient MRI to aid the diagnosis and prognosis for tumours. 

With the improved automated decomposition ability of the hybrid ICA method, there is a 
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possibility to reveal further hidden information in the MRSI data.   
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APPENDIX A  

QUANTUM MECHANICAL SIMULATOR 

A.1 Method 

The discrete-time acquired free induction decay signal of N samples, Ny C , can be 

modelled as a linear combination of the signals from various metabolites (the basis set) and 

some additive noise. Writing the time-series signals from the M metabolites as the columns of 

a matrix N MS C  and the corresponding amplitudes (and phases) as elements of a 

vector Ma C : 

 y = Sa + w  (A.1)

where Nw C  is a vector representing noise and modelling error.  

A.2 Basis set simulation 

The quantum mechanical simulation of 1H NMR signals from small molecules has been 

extensively described by Levitt et al. (Levitt, 2001). Detailed a priori knowledge of 
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metabolite chemistry makes accurate simulation possible, as shown by Govindaraju et al 

(Govindaraju et al., 2000). An implementation of the method in the study by Levitt et al. 

(Levitt, 2001) was developed by Reynolds et al. (Reynolds et al., 2006). Quantum mechanical 

operators are applied to the density matrix describing the spin system, in order to simulate the 

time domain signal of each metabolite. Each NMR experiment is modelled by the sequential 

application of the following operators: thermal equilibrium, RF-pulse, free-evolution and 

acquisition. For a simple proton one-dimensional homonuclear experiment it is assumed that 

the spin system begins in a state of thermal equilibrium represented by the thermal 

equilibrium operator. Pulse sequences are modelled by sequential application of the RF-pulse 

and free-evolution operators. The experiment is completed by applying the acquisition 

operator, ultimately producing sets of frequencies,  , and amplitudes.  

The Hamiltonian directly dictates the free evolution dynamics of a spin system. For a 

motionally averaged homonuclear spin system, the Hamiltonian can be accurately 

represented by considering the chemical shift interaction and the J-couplings between spins in 

the same molecule: 

 
0

1

ˆ ˆ ˆ ˆ2
n n

j jz jk j jz
j j k

H J
  

   = I I I  (A.2)

where: 

 ˆ ˆ ˆ ˆ=  +  +  j jx x jy y jz ze e eI I I I  (A.3)

where jzI  is the z-component of the jth angular momentum operator, j  is the chemical shift 

of the jth spin in the rotating frame of reference, Jjk is the J-coupling interaction between spins 

j and k and n is the number of spins in the molecule. All of these parameters can be 
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represented by a lower-triangular matrix J and vector Ω. For example, lactate is completely 

specified for simulation purposes by data taken from (Govindaraju et al., 2000): 

  = 4.0974 1.3142 1.3142 1.3142   
T

Ω  (A.4)

 

0 0 0 0

6.933 0 0 0
=   

6.933 0 0 0

6.933 0 0 0

 
 
 
 
 
 

J  (A.5)
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APPENDIX B  

DERIVATION OF THE RELATIONSHIP BETWEEN 

THE REAL AND IMAGINARY PARTS OF THE MR 

SPECTRUM  

The clean free induction decay (FID) signal (Keeler, 2005) of a single isochromat can be 

expressed as: 

 0( ) t j tjs t Ce e      (B.1)

where C  is the maximum signal amplitude. The spectrum of this FID signal is obtained by 

FT, 
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The inverse Fourier transform (IFT) of the spectrum is,  
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where A  and B  are the IFTs of the real and imaginary parts of the spectrum, respectively. 

They can be expanded as,  
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Let 0  x    , then 0 x   , 

 

0 0

0 0

( ) ( )

2 2 2 2
0 0

2 2 2 2
0 0

e e
   cos sin

e e
   e cos e sin

j x t j x t

jxt jxt
j t j t

x
dx dx

x x

x
dx dx

x x

 

 

  
 

  
 

  

  

 
 

 
 

 

 
 (B.6)

Let '  x xt  , so 'x x t  , 
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Following the results from (Abramowitz and Stegun, 1964), the above equation can be 

expanded as, 
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where 1( )E z  is the exponential integral of z , and 0' ( )x t    . Replace 1( ')E t jx   by 

1E , and 1( ')]E t jx   by 2E ,  
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so,  
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where RA  and IA are the real and imaginary part of A , respectively.  
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Similarly, we can get, 
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Let 0  x    , then 0 x   , 
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Let '  x xt  , 0' ( )x t    , so 'x x t  , 
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Replace 1( ')E t jx   by 1E , and 1( ')E t jx   by 2E ,  
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And, 
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where RB  and IB are the real and imaginary part of B, respectively. They can be expressed as, 
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Now let us find the relationship between the real and imaginary parts of A  and B , 
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Since 1E  and 2E  are not dependent on the phase  , they should not change with different 

values of  . Consider a special case at zero phase. When 0  , sin 0,  and cos 1   , 

equations (B.18, B.19) become, 
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And the relationship between equations (B.20, B.21) is 
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when 0  , we have, 
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From equations (B.22) and (B.18, B.19), we get 
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Simplifying equation (B.26) yields, 
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 1 0 or 2 0E E   (B.30)

But from equations (B.1, B.4, B.10, B.16), we also have 
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So 1E  is a constant, 

 1 2E j  (B.32)

This leaves only one option in equation (B.30), that is  

 2 0E   (B.33)

Equation (B.25) now becomes, 

 1R I

I R

A A

B B


 


 (B.34)

Substituting the values of 1E  and 2E  into the original equations (B.11, B.17), we can 

confirm that the relationships between RA , IA  and RB , IB  as in equations (B.22, B.34) are 

still valid with any value of  . So the relations between the real and imaginary parts of A  

and B  can be obtained by solving the following equations.  
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The solutions for A  and B  are 
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The FT of A  and B  are the real and imaginary parts of the spectrum. 
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